xref: /openbmc/linux/fs/btrfs/extent_io.c (revision 171170c1c5625cab9687ecf6714e09e0c8a6ed3c)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31 
32 static DEFINE_SPINLOCK(leak_lock);
33 
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37 	unsigned long flags;
38 
39 	spin_lock_irqsave(&leak_lock, flags);
40 	list_add(new, head);
41 	spin_unlock_irqrestore(&leak_lock, flags);
42 }
43 
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&leak_lock, flags);
50 	list_del(entry);
51 	spin_unlock_irqrestore(&leak_lock, flags);
52 }
53 
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57 	struct extent_state *state;
58 	struct extent_buffer *eb;
59 
60 	while (!list_empty(&states)) {
61 		state = list_entry(states.next, struct extent_state, leak_list);
62 		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 		       "state %lu in tree %p refs %d\n",
64 		       (unsigned long long)state->start,
65 		       (unsigned long long)state->end,
66 		       state->state, state->tree, atomic_read(&state->refs));
67 		list_del(&state->leak_list);
68 		kmem_cache_free(extent_state_cache, state);
69 	}
70 
71 	while (!list_empty(&buffers)) {
72 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 		       "refs %d\n", (unsigned long long)eb->start,
75 		       eb->len, atomic_read(&eb->refs));
76 		list_del(&eb->leak_list);
77 		kmem_cache_free(extent_buffer_cache, eb);
78 	}
79 }
80 
81 #define btrfs_debug_check_extent_io_range(inode, start, end)		\
82 	__btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84 		struct inode *inode, u64 start, u64 end)
85 {
86 	u64 isize = i_size_read(inode);
87 
88 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89 		printk_ratelimited(KERN_DEBUG
90 		    "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91 				caller,
92 				(unsigned long long)btrfs_ino(inode),
93 				(unsigned long long)isize,
94 				(unsigned long long)start,
95 				(unsigned long long)end);
96 	}
97 }
98 #else
99 #define btrfs_leak_debug_add(new, head)	do {} while (0)
100 #define btrfs_leak_debug_del(entry)	do {} while (0)
101 #define btrfs_leak_debug_check()	do {} while (0)
102 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
103 #endif
104 
105 #define BUFFER_LRU_MAX 64
106 
107 struct tree_entry {
108 	u64 start;
109 	u64 end;
110 	struct rb_node rb_node;
111 };
112 
113 struct extent_page_data {
114 	struct bio *bio;
115 	struct extent_io_tree *tree;
116 	get_extent_t *get_extent;
117 	unsigned long bio_flags;
118 
119 	/* tells writepage not to lock the state bits for this range
120 	 * it still does the unlocking
121 	 */
122 	unsigned int extent_locked:1;
123 
124 	/* tells the submit_bio code to use a WRITE_SYNC */
125 	unsigned int sync_io:1;
126 };
127 
128 static noinline void flush_write_bio(void *data);
129 static inline struct btrfs_fs_info *
130 tree_fs_info(struct extent_io_tree *tree)
131 {
132 	return btrfs_sb(tree->mapping->host->i_sb);
133 }
134 
135 int __init extent_io_init(void)
136 {
137 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
138 			sizeof(struct extent_state), 0,
139 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
140 	if (!extent_state_cache)
141 		return -ENOMEM;
142 
143 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
144 			sizeof(struct extent_buffer), 0,
145 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
146 	if (!extent_buffer_cache)
147 		goto free_state_cache;
148 
149 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150 				     offsetof(struct btrfs_io_bio, bio));
151 	if (!btrfs_bioset)
152 		goto free_buffer_cache;
153 	return 0;
154 
155 free_buffer_cache:
156 	kmem_cache_destroy(extent_buffer_cache);
157 	extent_buffer_cache = NULL;
158 
159 free_state_cache:
160 	kmem_cache_destroy(extent_state_cache);
161 	extent_state_cache = NULL;
162 	return -ENOMEM;
163 }
164 
165 void extent_io_exit(void)
166 {
167 	btrfs_leak_debug_check();
168 
169 	/*
170 	 * Make sure all delayed rcu free are flushed before we
171 	 * destroy caches.
172 	 */
173 	rcu_barrier();
174 	if (extent_state_cache)
175 		kmem_cache_destroy(extent_state_cache);
176 	if (extent_buffer_cache)
177 		kmem_cache_destroy(extent_buffer_cache);
178 	if (btrfs_bioset)
179 		bioset_free(btrfs_bioset);
180 }
181 
182 void extent_io_tree_init(struct extent_io_tree *tree,
183 			 struct address_space *mapping)
184 {
185 	tree->state = RB_ROOT;
186 	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
187 	tree->ops = NULL;
188 	tree->dirty_bytes = 0;
189 	spin_lock_init(&tree->lock);
190 	spin_lock_init(&tree->buffer_lock);
191 	tree->mapping = mapping;
192 }
193 
194 static struct extent_state *alloc_extent_state(gfp_t mask)
195 {
196 	struct extent_state *state;
197 
198 	state = kmem_cache_alloc(extent_state_cache, mask);
199 	if (!state)
200 		return state;
201 	state->state = 0;
202 	state->private = 0;
203 	state->tree = NULL;
204 	btrfs_leak_debug_add(&state->leak_list, &states);
205 	atomic_set(&state->refs, 1);
206 	init_waitqueue_head(&state->wq);
207 	trace_alloc_extent_state(state, mask, _RET_IP_);
208 	return state;
209 }
210 
211 void free_extent_state(struct extent_state *state)
212 {
213 	if (!state)
214 		return;
215 	if (atomic_dec_and_test(&state->refs)) {
216 		WARN_ON(state->tree);
217 		btrfs_leak_debug_del(&state->leak_list);
218 		trace_free_extent_state(state, _RET_IP_);
219 		kmem_cache_free(extent_state_cache, state);
220 	}
221 }
222 
223 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224 				   struct rb_node *node)
225 {
226 	struct rb_node **p = &root->rb_node;
227 	struct rb_node *parent = NULL;
228 	struct tree_entry *entry;
229 
230 	while (*p) {
231 		parent = *p;
232 		entry = rb_entry(parent, struct tree_entry, rb_node);
233 
234 		if (offset < entry->start)
235 			p = &(*p)->rb_left;
236 		else if (offset > entry->end)
237 			p = &(*p)->rb_right;
238 		else
239 			return parent;
240 	}
241 
242 	rb_link_node(node, parent, p);
243 	rb_insert_color(node, root);
244 	return NULL;
245 }
246 
247 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
248 				     struct rb_node **prev_ret,
249 				     struct rb_node **next_ret)
250 {
251 	struct rb_root *root = &tree->state;
252 	struct rb_node *n = root->rb_node;
253 	struct rb_node *prev = NULL;
254 	struct rb_node *orig_prev = NULL;
255 	struct tree_entry *entry;
256 	struct tree_entry *prev_entry = NULL;
257 
258 	while (n) {
259 		entry = rb_entry(n, struct tree_entry, rb_node);
260 		prev = n;
261 		prev_entry = entry;
262 
263 		if (offset < entry->start)
264 			n = n->rb_left;
265 		else if (offset > entry->end)
266 			n = n->rb_right;
267 		else
268 			return n;
269 	}
270 
271 	if (prev_ret) {
272 		orig_prev = prev;
273 		while (prev && offset > prev_entry->end) {
274 			prev = rb_next(prev);
275 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276 		}
277 		*prev_ret = prev;
278 		prev = orig_prev;
279 	}
280 
281 	if (next_ret) {
282 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
283 		while (prev && offset < prev_entry->start) {
284 			prev = rb_prev(prev);
285 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 		}
287 		*next_ret = prev;
288 	}
289 	return NULL;
290 }
291 
292 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293 					  u64 offset)
294 {
295 	struct rb_node *prev = NULL;
296 	struct rb_node *ret;
297 
298 	ret = __etree_search(tree, offset, &prev, NULL);
299 	if (!ret)
300 		return prev;
301 	return ret;
302 }
303 
304 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305 		     struct extent_state *other)
306 {
307 	if (tree->ops && tree->ops->merge_extent_hook)
308 		tree->ops->merge_extent_hook(tree->mapping->host, new,
309 					     other);
310 }
311 
312 /*
313  * utility function to look for merge candidates inside a given range.
314  * Any extents with matching state are merged together into a single
315  * extent in the tree.  Extents with EXTENT_IO in their state field
316  * are not merged because the end_io handlers need to be able to do
317  * operations on them without sleeping (or doing allocations/splits).
318  *
319  * This should be called with the tree lock held.
320  */
321 static void merge_state(struct extent_io_tree *tree,
322 		        struct extent_state *state)
323 {
324 	struct extent_state *other;
325 	struct rb_node *other_node;
326 
327 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
328 		return;
329 
330 	other_node = rb_prev(&state->rb_node);
331 	if (other_node) {
332 		other = rb_entry(other_node, struct extent_state, rb_node);
333 		if (other->end == state->start - 1 &&
334 		    other->state == state->state) {
335 			merge_cb(tree, state, other);
336 			state->start = other->start;
337 			other->tree = NULL;
338 			rb_erase(&other->rb_node, &tree->state);
339 			free_extent_state(other);
340 		}
341 	}
342 	other_node = rb_next(&state->rb_node);
343 	if (other_node) {
344 		other = rb_entry(other_node, struct extent_state, rb_node);
345 		if (other->start == state->end + 1 &&
346 		    other->state == state->state) {
347 			merge_cb(tree, state, other);
348 			state->end = other->end;
349 			other->tree = NULL;
350 			rb_erase(&other->rb_node, &tree->state);
351 			free_extent_state(other);
352 		}
353 	}
354 }
355 
356 static void set_state_cb(struct extent_io_tree *tree,
357 			 struct extent_state *state, unsigned long *bits)
358 {
359 	if (tree->ops && tree->ops->set_bit_hook)
360 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
361 }
362 
363 static void clear_state_cb(struct extent_io_tree *tree,
364 			   struct extent_state *state, unsigned long *bits)
365 {
366 	if (tree->ops && tree->ops->clear_bit_hook)
367 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
368 }
369 
370 static void set_state_bits(struct extent_io_tree *tree,
371 			   struct extent_state *state, unsigned long *bits);
372 
373 /*
374  * insert an extent_state struct into the tree.  'bits' are set on the
375  * struct before it is inserted.
376  *
377  * This may return -EEXIST if the extent is already there, in which case the
378  * state struct is freed.
379  *
380  * The tree lock is not taken internally.  This is a utility function and
381  * probably isn't what you want to call (see set/clear_extent_bit).
382  */
383 static int insert_state(struct extent_io_tree *tree,
384 			struct extent_state *state, u64 start, u64 end,
385 			unsigned long *bits)
386 {
387 	struct rb_node *node;
388 
389 	if (end < start)
390 		WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
391 		       (unsigned long long)end,
392 		       (unsigned long long)start);
393 	state->start = start;
394 	state->end = end;
395 
396 	set_state_bits(tree, state, bits);
397 
398 	node = tree_insert(&tree->state, end, &state->rb_node);
399 	if (node) {
400 		struct extent_state *found;
401 		found = rb_entry(node, struct extent_state, rb_node);
402 		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403 		       "%llu %llu\n", (unsigned long long)found->start,
404 		       (unsigned long long)found->end,
405 		       (unsigned long long)start, (unsigned long long)end);
406 		return -EEXIST;
407 	}
408 	state->tree = tree;
409 	merge_state(tree, state);
410 	return 0;
411 }
412 
413 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
414 		     u64 split)
415 {
416 	if (tree->ops && tree->ops->split_extent_hook)
417 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
418 }
419 
420 /*
421  * split a given extent state struct in two, inserting the preallocated
422  * struct 'prealloc' as the newly created second half.  'split' indicates an
423  * offset inside 'orig' where it should be split.
424  *
425  * Before calling,
426  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
427  * are two extent state structs in the tree:
428  * prealloc: [orig->start, split - 1]
429  * orig: [ split, orig->end ]
430  *
431  * The tree locks are not taken by this function. They need to be held
432  * by the caller.
433  */
434 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435 		       struct extent_state *prealloc, u64 split)
436 {
437 	struct rb_node *node;
438 
439 	split_cb(tree, orig, split);
440 
441 	prealloc->start = orig->start;
442 	prealloc->end = split - 1;
443 	prealloc->state = orig->state;
444 	orig->start = split;
445 
446 	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447 	if (node) {
448 		free_extent_state(prealloc);
449 		return -EEXIST;
450 	}
451 	prealloc->tree = tree;
452 	return 0;
453 }
454 
455 static struct extent_state *next_state(struct extent_state *state)
456 {
457 	struct rb_node *next = rb_next(&state->rb_node);
458 	if (next)
459 		return rb_entry(next, struct extent_state, rb_node);
460 	else
461 		return NULL;
462 }
463 
464 /*
465  * utility function to clear some bits in an extent state struct.
466  * it will optionally wake up any one waiting on this state (wake == 1).
467  *
468  * If no bits are set on the state struct after clearing things, the
469  * struct is freed and removed from the tree
470  */
471 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472 					    struct extent_state *state,
473 					    unsigned long *bits, int wake)
474 {
475 	struct extent_state *next;
476 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
477 
478 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
479 		u64 range = state->end - state->start + 1;
480 		WARN_ON(range > tree->dirty_bytes);
481 		tree->dirty_bytes -= range;
482 	}
483 	clear_state_cb(tree, state, bits);
484 	state->state &= ~bits_to_clear;
485 	if (wake)
486 		wake_up(&state->wq);
487 	if (state->state == 0) {
488 		next = next_state(state);
489 		if (state->tree) {
490 			rb_erase(&state->rb_node, &tree->state);
491 			state->tree = NULL;
492 			free_extent_state(state);
493 		} else {
494 			WARN_ON(1);
495 		}
496 	} else {
497 		merge_state(tree, state);
498 		next = next_state(state);
499 	}
500 	return next;
501 }
502 
503 static struct extent_state *
504 alloc_extent_state_atomic(struct extent_state *prealloc)
505 {
506 	if (!prealloc)
507 		prealloc = alloc_extent_state(GFP_ATOMIC);
508 
509 	return prealloc;
510 }
511 
512 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
513 {
514 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515 		    "Extent tree was modified by another "
516 		    "thread while locked.");
517 }
518 
519 /*
520  * clear some bits on a range in the tree.  This may require splitting
521  * or inserting elements in the tree, so the gfp mask is used to
522  * indicate which allocations or sleeping are allowed.
523  *
524  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525  * the given range from the tree regardless of state (ie for truncate).
526  *
527  * the range [start, end] is inclusive.
528  *
529  * This takes the tree lock, and returns 0 on success and < 0 on error.
530  */
531 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
532 		     unsigned long bits, int wake, int delete,
533 		     struct extent_state **cached_state,
534 		     gfp_t mask)
535 {
536 	struct extent_state *state;
537 	struct extent_state *cached;
538 	struct extent_state *prealloc = NULL;
539 	struct rb_node *node;
540 	u64 last_end;
541 	int err;
542 	int clear = 0;
543 
544 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545 
546 	if (bits & EXTENT_DELALLOC)
547 		bits |= EXTENT_NORESERVE;
548 
549 	if (delete)
550 		bits |= ~EXTENT_CTLBITS;
551 	bits |= EXTENT_FIRST_DELALLOC;
552 
553 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554 		clear = 1;
555 again:
556 	if (!prealloc && (mask & __GFP_WAIT)) {
557 		prealloc = alloc_extent_state(mask);
558 		if (!prealloc)
559 			return -ENOMEM;
560 	}
561 
562 	spin_lock(&tree->lock);
563 	if (cached_state) {
564 		cached = *cached_state;
565 
566 		if (clear) {
567 			*cached_state = NULL;
568 			cached_state = NULL;
569 		}
570 
571 		if (cached && cached->tree && cached->start <= start &&
572 		    cached->end > start) {
573 			if (clear)
574 				atomic_dec(&cached->refs);
575 			state = cached;
576 			goto hit_next;
577 		}
578 		if (clear)
579 			free_extent_state(cached);
580 	}
581 	/*
582 	 * this search will find the extents that end after
583 	 * our range starts
584 	 */
585 	node = tree_search(tree, start);
586 	if (!node)
587 		goto out;
588 	state = rb_entry(node, struct extent_state, rb_node);
589 hit_next:
590 	if (state->start > end)
591 		goto out;
592 	WARN_ON(state->end < start);
593 	last_end = state->end;
594 
595 	/* the state doesn't have the wanted bits, go ahead */
596 	if (!(state->state & bits)) {
597 		state = next_state(state);
598 		goto next;
599 	}
600 
601 	/*
602 	 *     | ---- desired range ---- |
603 	 *  | state | or
604 	 *  | ------------- state -------------- |
605 	 *
606 	 * We need to split the extent we found, and may flip
607 	 * bits on second half.
608 	 *
609 	 * If the extent we found extends past our range, we
610 	 * just split and search again.  It'll get split again
611 	 * the next time though.
612 	 *
613 	 * If the extent we found is inside our range, we clear
614 	 * the desired bit on it.
615 	 */
616 
617 	if (state->start < start) {
618 		prealloc = alloc_extent_state_atomic(prealloc);
619 		BUG_ON(!prealloc);
620 		err = split_state(tree, state, prealloc, start);
621 		if (err)
622 			extent_io_tree_panic(tree, err);
623 
624 		prealloc = NULL;
625 		if (err)
626 			goto out;
627 		if (state->end <= end) {
628 			state = clear_state_bit(tree, state, &bits, wake);
629 			goto next;
630 		}
631 		goto search_again;
632 	}
633 	/*
634 	 * | ---- desired range ---- |
635 	 *                        | state |
636 	 * We need to split the extent, and clear the bit
637 	 * on the first half
638 	 */
639 	if (state->start <= end && state->end > end) {
640 		prealloc = alloc_extent_state_atomic(prealloc);
641 		BUG_ON(!prealloc);
642 		err = split_state(tree, state, prealloc, end + 1);
643 		if (err)
644 			extent_io_tree_panic(tree, err);
645 
646 		if (wake)
647 			wake_up(&state->wq);
648 
649 		clear_state_bit(tree, prealloc, &bits, wake);
650 
651 		prealloc = NULL;
652 		goto out;
653 	}
654 
655 	state = clear_state_bit(tree, state, &bits, wake);
656 next:
657 	if (last_end == (u64)-1)
658 		goto out;
659 	start = last_end + 1;
660 	if (start <= end && state && !need_resched())
661 		goto hit_next;
662 	goto search_again;
663 
664 out:
665 	spin_unlock(&tree->lock);
666 	if (prealloc)
667 		free_extent_state(prealloc);
668 
669 	return 0;
670 
671 search_again:
672 	if (start > end)
673 		goto out;
674 	spin_unlock(&tree->lock);
675 	if (mask & __GFP_WAIT)
676 		cond_resched();
677 	goto again;
678 }
679 
680 static void wait_on_state(struct extent_io_tree *tree,
681 			  struct extent_state *state)
682 		__releases(tree->lock)
683 		__acquires(tree->lock)
684 {
685 	DEFINE_WAIT(wait);
686 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
687 	spin_unlock(&tree->lock);
688 	schedule();
689 	spin_lock(&tree->lock);
690 	finish_wait(&state->wq, &wait);
691 }
692 
693 /*
694  * waits for one or more bits to clear on a range in the state tree.
695  * The range [start, end] is inclusive.
696  * The tree lock is taken by this function
697  */
698 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 			    unsigned long bits)
700 {
701 	struct extent_state *state;
702 	struct rb_node *node;
703 
704 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705 
706 	spin_lock(&tree->lock);
707 again:
708 	while (1) {
709 		/*
710 		 * this search will find all the extents that end after
711 		 * our range starts
712 		 */
713 		node = tree_search(tree, start);
714 		if (!node)
715 			break;
716 
717 		state = rb_entry(node, struct extent_state, rb_node);
718 
719 		if (state->start > end)
720 			goto out;
721 
722 		if (state->state & bits) {
723 			start = state->start;
724 			atomic_inc(&state->refs);
725 			wait_on_state(tree, state);
726 			free_extent_state(state);
727 			goto again;
728 		}
729 		start = state->end + 1;
730 
731 		if (start > end)
732 			break;
733 
734 		cond_resched_lock(&tree->lock);
735 	}
736 out:
737 	spin_unlock(&tree->lock);
738 }
739 
740 static void set_state_bits(struct extent_io_tree *tree,
741 			   struct extent_state *state,
742 			   unsigned long *bits)
743 {
744 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
745 
746 	set_state_cb(tree, state, bits);
747 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
748 		u64 range = state->end - state->start + 1;
749 		tree->dirty_bytes += range;
750 	}
751 	state->state |= bits_to_set;
752 }
753 
754 static void cache_state(struct extent_state *state,
755 			struct extent_state **cached_ptr)
756 {
757 	if (cached_ptr && !(*cached_ptr)) {
758 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759 			*cached_ptr = state;
760 			atomic_inc(&state->refs);
761 		}
762 	}
763 }
764 
765 /*
766  * set some bits on a range in the tree.  This may require allocations or
767  * sleeping, so the gfp mask is used to indicate what is allowed.
768  *
769  * If any of the exclusive bits are set, this will fail with -EEXIST if some
770  * part of the range already has the desired bits set.  The start of the
771  * existing range is returned in failed_start in this case.
772  *
773  * [start, end] is inclusive This takes the tree lock.
774  */
775 
776 static int __must_check
777 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
778 		 unsigned long bits, unsigned long exclusive_bits,
779 		 u64 *failed_start, struct extent_state **cached_state,
780 		 gfp_t mask)
781 {
782 	struct extent_state *state;
783 	struct extent_state *prealloc = NULL;
784 	struct rb_node *node;
785 	int err = 0;
786 	u64 last_start;
787 	u64 last_end;
788 
789 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
790 
791 	bits |= EXTENT_FIRST_DELALLOC;
792 again:
793 	if (!prealloc && (mask & __GFP_WAIT)) {
794 		prealloc = alloc_extent_state(mask);
795 		BUG_ON(!prealloc);
796 	}
797 
798 	spin_lock(&tree->lock);
799 	if (cached_state && *cached_state) {
800 		state = *cached_state;
801 		if (state->start <= start && state->end > start &&
802 		    state->tree) {
803 			node = &state->rb_node;
804 			goto hit_next;
805 		}
806 	}
807 	/*
808 	 * this search will find all the extents that end after
809 	 * our range starts.
810 	 */
811 	node = tree_search(tree, start);
812 	if (!node) {
813 		prealloc = alloc_extent_state_atomic(prealloc);
814 		BUG_ON(!prealloc);
815 		err = insert_state(tree, prealloc, start, end, &bits);
816 		if (err)
817 			extent_io_tree_panic(tree, err);
818 
819 		prealloc = NULL;
820 		goto out;
821 	}
822 	state = rb_entry(node, struct extent_state, rb_node);
823 hit_next:
824 	last_start = state->start;
825 	last_end = state->end;
826 
827 	/*
828 	 * | ---- desired range ---- |
829 	 * | state |
830 	 *
831 	 * Just lock what we found and keep going
832 	 */
833 	if (state->start == start && state->end <= end) {
834 		if (state->state & exclusive_bits) {
835 			*failed_start = state->start;
836 			err = -EEXIST;
837 			goto out;
838 		}
839 
840 		set_state_bits(tree, state, &bits);
841 		cache_state(state, cached_state);
842 		merge_state(tree, state);
843 		if (last_end == (u64)-1)
844 			goto out;
845 		start = last_end + 1;
846 		state = next_state(state);
847 		if (start < end && state && state->start == start &&
848 		    !need_resched())
849 			goto hit_next;
850 		goto search_again;
851 	}
852 
853 	/*
854 	 *     | ---- desired range ---- |
855 	 * | state |
856 	 *   or
857 	 * | ------------- state -------------- |
858 	 *
859 	 * We need to split the extent we found, and may flip bits on
860 	 * second half.
861 	 *
862 	 * If the extent we found extends past our
863 	 * range, we just split and search again.  It'll get split
864 	 * again the next time though.
865 	 *
866 	 * If the extent we found is inside our range, we set the
867 	 * desired bit on it.
868 	 */
869 	if (state->start < start) {
870 		if (state->state & exclusive_bits) {
871 			*failed_start = start;
872 			err = -EEXIST;
873 			goto out;
874 		}
875 
876 		prealloc = alloc_extent_state_atomic(prealloc);
877 		BUG_ON(!prealloc);
878 		err = split_state(tree, state, prealloc, start);
879 		if (err)
880 			extent_io_tree_panic(tree, err);
881 
882 		prealloc = NULL;
883 		if (err)
884 			goto out;
885 		if (state->end <= end) {
886 			set_state_bits(tree, state, &bits);
887 			cache_state(state, cached_state);
888 			merge_state(tree, state);
889 			if (last_end == (u64)-1)
890 				goto out;
891 			start = last_end + 1;
892 			state = next_state(state);
893 			if (start < end && state && state->start == start &&
894 			    !need_resched())
895 				goto hit_next;
896 		}
897 		goto search_again;
898 	}
899 	/*
900 	 * | ---- desired range ---- |
901 	 *     | state | or               | state |
902 	 *
903 	 * There's a hole, we need to insert something in it and
904 	 * ignore the extent we found.
905 	 */
906 	if (state->start > start) {
907 		u64 this_end;
908 		if (end < last_start)
909 			this_end = end;
910 		else
911 			this_end = last_start - 1;
912 
913 		prealloc = alloc_extent_state_atomic(prealloc);
914 		BUG_ON(!prealloc);
915 
916 		/*
917 		 * Avoid to free 'prealloc' if it can be merged with
918 		 * the later extent.
919 		 */
920 		err = insert_state(tree, prealloc, start, this_end,
921 				   &bits);
922 		if (err)
923 			extent_io_tree_panic(tree, err);
924 
925 		cache_state(prealloc, cached_state);
926 		prealloc = NULL;
927 		start = this_end + 1;
928 		goto search_again;
929 	}
930 	/*
931 	 * | ---- desired range ---- |
932 	 *                        | state |
933 	 * We need to split the extent, and set the bit
934 	 * on the first half
935 	 */
936 	if (state->start <= end && state->end > end) {
937 		if (state->state & exclusive_bits) {
938 			*failed_start = start;
939 			err = -EEXIST;
940 			goto out;
941 		}
942 
943 		prealloc = alloc_extent_state_atomic(prealloc);
944 		BUG_ON(!prealloc);
945 		err = split_state(tree, state, prealloc, end + 1);
946 		if (err)
947 			extent_io_tree_panic(tree, err);
948 
949 		set_state_bits(tree, prealloc, &bits);
950 		cache_state(prealloc, cached_state);
951 		merge_state(tree, prealloc);
952 		prealloc = NULL;
953 		goto out;
954 	}
955 
956 	goto search_again;
957 
958 out:
959 	spin_unlock(&tree->lock);
960 	if (prealloc)
961 		free_extent_state(prealloc);
962 
963 	return err;
964 
965 search_again:
966 	if (start > end)
967 		goto out;
968 	spin_unlock(&tree->lock);
969 	if (mask & __GFP_WAIT)
970 		cond_resched();
971 	goto again;
972 }
973 
974 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
975 		   unsigned long bits, u64 * failed_start,
976 		   struct extent_state **cached_state, gfp_t mask)
977 {
978 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
979 				cached_state, mask);
980 }
981 
982 
983 /**
984  * convert_extent_bit - convert all bits in a given range from one bit to
985  * 			another
986  * @tree:	the io tree to search
987  * @start:	the start offset in bytes
988  * @end:	the end offset in bytes (inclusive)
989  * @bits:	the bits to set in this range
990  * @clear_bits:	the bits to clear in this range
991  * @cached_state:	state that we're going to cache
992  * @mask:	the allocation mask
993  *
994  * This will go through and set bits for the given range.  If any states exist
995  * already in this range they are set with the given bit and cleared of the
996  * clear_bits.  This is only meant to be used by things that are mergeable, ie
997  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
998  * boundary bits like LOCK.
999  */
1000 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1001 		       unsigned long bits, unsigned long clear_bits,
1002 		       struct extent_state **cached_state, gfp_t mask)
1003 {
1004 	struct extent_state *state;
1005 	struct extent_state *prealloc = NULL;
1006 	struct rb_node *node;
1007 	int err = 0;
1008 	u64 last_start;
1009 	u64 last_end;
1010 
1011 	btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1012 
1013 again:
1014 	if (!prealloc && (mask & __GFP_WAIT)) {
1015 		prealloc = alloc_extent_state(mask);
1016 		if (!prealloc)
1017 			return -ENOMEM;
1018 	}
1019 
1020 	spin_lock(&tree->lock);
1021 	if (cached_state && *cached_state) {
1022 		state = *cached_state;
1023 		if (state->start <= start && state->end > start &&
1024 		    state->tree) {
1025 			node = &state->rb_node;
1026 			goto hit_next;
1027 		}
1028 	}
1029 
1030 	/*
1031 	 * this search will find all the extents that end after
1032 	 * our range starts.
1033 	 */
1034 	node = tree_search(tree, start);
1035 	if (!node) {
1036 		prealloc = alloc_extent_state_atomic(prealloc);
1037 		if (!prealloc) {
1038 			err = -ENOMEM;
1039 			goto out;
1040 		}
1041 		err = insert_state(tree, prealloc, start, end, &bits);
1042 		prealloc = NULL;
1043 		if (err)
1044 			extent_io_tree_panic(tree, err);
1045 		goto out;
1046 	}
1047 	state = rb_entry(node, struct extent_state, rb_node);
1048 hit_next:
1049 	last_start = state->start;
1050 	last_end = state->end;
1051 
1052 	/*
1053 	 * | ---- desired range ---- |
1054 	 * | state |
1055 	 *
1056 	 * Just lock what we found and keep going
1057 	 */
1058 	if (state->start == start && state->end <= end) {
1059 		set_state_bits(tree, state, &bits);
1060 		cache_state(state, cached_state);
1061 		state = clear_state_bit(tree, state, &clear_bits, 0);
1062 		if (last_end == (u64)-1)
1063 			goto out;
1064 		start = last_end + 1;
1065 		if (start < end && state && state->start == start &&
1066 		    !need_resched())
1067 			goto hit_next;
1068 		goto search_again;
1069 	}
1070 
1071 	/*
1072 	 *     | ---- desired range ---- |
1073 	 * | state |
1074 	 *   or
1075 	 * | ------------- state -------------- |
1076 	 *
1077 	 * We need to split the extent we found, and may flip bits on
1078 	 * second half.
1079 	 *
1080 	 * If the extent we found extends past our
1081 	 * range, we just split and search again.  It'll get split
1082 	 * again the next time though.
1083 	 *
1084 	 * If the extent we found is inside our range, we set the
1085 	 * desired bit on it.
1086 	 */
1087 	if (state->start < start) {
1088 		prealloc = alloc_extent_state_atomic(prealloc);
1089 		if (!prealloc) {
1090 			err = -ENOMEM;
1091 			goto out;
1092 		}
1093 		err = split_state(tree, state, prealloc, start);
1094 		if (err)
1095 			extent_io_tree_panic(tree, err);
1096 		prealloc = NULL;
1097 		if (err)
1098 			goto out;
1099 		if (state->end <= end) {
1100 			set_state_bits(tree, state, &bits);
1101 			cache_state(state, cached_state);
1102 			state = clear_state_bit(tree, state, &clear_bits, 0);
1103 			if (last_end == (u64)-1)
1104 				goto out;
1105 			start = last_end + 1;
1106 			if (start < end && state && state->start == start &&
1107 			    !need_resched())
1108 				goto hit_next;
1109 		}
1110 		goto search_again;
1111 	}
1112 	/*
1113 	 * | ---- desired range ---- |
1114 	 *     | state | or               | state |
1115 	 *
1116 	 * There's a hole, we need to insert something in it and
1117 	 * ignore the extent we found.
1118 	 */
1119 	if (state->start > start) {
1120 		u64 this_end;
1121 		if (end < last_start)
1122 			this_end = end;
1123 		else
1124 			this_end = last_start - 1;
1125 
1126 		prealloc = alloc_extent_state_atomic(prealloc);
1127 		if (!prealloc) {
1128 			err = -ENOMEM;
1129 			goto out;
1130 		}
1131 
1132 		/*
1133 		 * Avoid to free 'prealloc' if it can be merged with
1134 		 * the later extent.
1135 		 */
1136 		err = insert_state(tree, prealloc, start, this_end,
1137 				   &bits);
1138 		if (err)
1139 			extent_io_tree_panic(tree, err);
1140 		cache_state(prealloc, cached_state);
1141 		prealloc = NULL;
1142 		start = this_end + 1;
1143 		goto search_again;
1144 	}
1145 	/*
1146 	 * | ---- desired range ---- |
1147 	 *                        | state |
1148 	 * We need to split the extent, and set the bit
1149 	 * on the first half
1150 	 */
1151 	if (state->start <= end && state->end > end) {
1152 		prealloc = alloc_extent_state_atomic(prealloc);
1153 		if (!prealloc) {
1154 			err = -ENOMEM;
1155 			goto out;
1156 		}
1157 
1158 		err = split_state(tree, state, prealloc, end + 1);
1159 		if (err)
1160 			extent_io_tree_panic(tree, err);
1161 
1162 		set_state_bits(tree, prealloc, &bits);
1163 		cache_state(prealloc, cached_state);
1164 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1165 		prealloc = NULL;
1166 		goto out;
1167 	}
1168 
1169 	goto search_again;
1170 
1171 out:
1172 	spin_unlock(&tree->lock);
1173 	if (prealloc)
1174 		free_extent_state(prealloc);
1175 
1176 	return err;
1177 
1178 search_again:
1179 	if (start > end)
1180 		goto out;
1181 	spin_unlock(&tree->lock);
1182 	if (mask & __GFP_WAIT)
1183 		cond_resched();
1184 	goto again;
1185 }
1186 
1187 /* wrappers around set/clear extent bit */
1188 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1189 		     gfp_t mask)
1190 {
1191 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1192 			      NULL, mask);
1193 }
1194 
1195 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1196 		    unsigned long bits, gfp_t mask)
1197 {
1198 	return set_extent_bit(tree, start, end, bits, NULL,
1199 			      NULL, mask);
1200 }
1201 
1202 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1203 		      unsigned long bits, gfp_t mask)
1204 {
1205 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1206 }
1207 
1208 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1209 			struct extent_state **cached_state, gfp_t mask)
1210 {
1211 	return set_extent_bit(tree, start, end,
1212 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1213 			      NULL, cached_state, mask);
1214 }
1215 
1216 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1217 		      struct extent_state **cached_state, gfp_t mask)
1218 {
1219 	return set_extent_bit(tree, start, end,
1220 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1221 			      NULL, cached_state, mask);
1222 }
1223 
1224 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1225 		       gfp_t mask)
1226 {
1227 	return clear_extent_bit(tree, start, end,
1228 				EXTENT_DIRTY | EXTENT_DELALLOC |
1229 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1230 }
1231 
1232 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1233 		     gfp_t mask)
1234 {
1235 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1236 			      NULL, mask);
1237 }
1238 
1239 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1240 			struct extent_state **cached_state, gfp_t mask)
1241 {
1242 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1243 			      cached_state, mask);
1244 }
1245 
1246 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1247 			  struct extent_state **cached_state, gfp_t mask)
1248 {
1249 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1250 				cached_state, mask);
1251 }
1252 
1253 /*
1254  * either insert or lock state struct between start and end use mask to tell
1255  * us if waiting is desired.
1256  */
1257 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1258 		     unsigned long bits, struct extent_state **cached_state)
1259 {
1260 	int err;
1261 	u64 failed_start;
1262 	while (1) {
1263 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1264 				       EXTENT_LOCKED, &failed_start,
1265 				       cached_state, GFP_NOFS);
1266 		if (err == -EEXIST) {
1267 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1268 			start = failed_start;
1269 		} else
1270 			break;
1271 		WARN_ON(start > end);
1272 	}
1273 	return err;
1274 }
1275 
1276 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1277 {
1278 	return lock_extent_bits(tree, start, end, 0, NULL);
1279 }
1280 
1281 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1282 {
1283 	int err;
1284 	u64 failed_start;
1285 
1286 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1287 			       &failed_start, NULL, GFP_NOFS);
1288 	if (err == -EEXIST) {
1289 		if (failed_start > start)
1290 			clear_extent_bit(tree, start, failed_start - 1,
1291 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1292 		return 0;
1293 	}
1294 	return 1;
1295 }
1296 
1297 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1298 			 struct extent_state **cached, gfp_t mask)
1299 {
1300 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1301 				mask);
1302 }
1303 
1304 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1305 {
1306 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1307 				GFP_NOFS);
1308 }
1309 
1310 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1311 {
1312 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1313 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1314 	struct page *page;
1315 
1316 	while (index <= end_index) {
1317 		page = find_get_page(inode->i_mapping, index);
1318 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1319 		clear_page_dirty_for_io(page);
1320 		page_cache_release(page);
1321 		index++;
1322 	}
1323 	return 0;
1324 }
1325 
1326 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1327 {
1328 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1329 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1330 	struct page *page;
1331 
1332 	while (index <= end_index) {
1333 		page = find_get_page(inode->i_mapping, index);
1334 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1335 		account_page_redirty(page);
1336 		__set_page_dirty_nobuffers(page);
1337 		page_cache_release(page);
1338 		index++;
1339 	}
1340 	return 0;
1341 }
1342 
1343 /*
1344  * helper function to set both pages and extents in the tree writeback
1345  */
1346 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1347 {
1348 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1349 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1350 	struct page *page;
1351 
1352 	while (index <= end_index) {
1353 		page = find_get_page(tree->mapping, index);
1354 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1355 		set_page_writeback(page);
1356 		page_cache_release(page);
1357 		index++;
1358 	}
1359 	return 0;
1360 }
1361 
1362 /* find the first state struct with 'bits' set after 'start', and
1363  * return it.  tree->lock must be held.  NULL will returned if
1364  * nothing was found after 'start'
1365  */
1366 static struct extent_state *
1367 find_first_extent_bit_state(struct extent_io_tree *tree,
1368 			    u64 start, unsigned long bits)
1369 {
1370 	struct rb_node *node;
1371 	struct extent_state *state;
1372 
1373 	/*
1374 	 * this search will find all the extents that end after
1375 	 * our range starts.
1376 	 */
1377 	node = tree_search(tree, start);
1378 	if (!node)
1379 		goto out;
1380 
1381 	while (1) {
1382 		state = rb_entry(node, struct extent_state, rb_node);
1383 		if (state->end >= start && (state->state & bits))
1384 			return state;
1385 
1386 		node = rb_next(node);
1387 		if (!node)
1388 			break;
1389 	}
1390 out:
1391 	return NULL;
1392 }
1393 
1394 /*
1395  * find the first offset in the io tree with 'bits' set. zero is
1396  * returned if we find something, and *start_ret and *end_ret are
1397  * set to reflect the state struct that was found.
1398  *
1399  * If nothing was found, 1 is returned. If found something, return 0.
1400  */
1401 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1402 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1403 			  struct extent_state **cached_state)
1404 {
1405 	struct extent_state *state;
1406 	struct rb_node *n;
1407 	int ret = 1;
1408 
1409 	spin_lock(&tree->lock);
1410 	if (cached_state && *cached_state) {
1411 		state = *cached_state;
1412 		if (state->end == start - 1 && state->tree) {
1413 			n = rb_next(&state->rb_node);
1414 			while (n) {
1415 				state = rb_entry(n, struct extent_state,
1416 						 rb_node);
1417 				if (state->state & bits)
1418 					goto got_it;
1419 				n = rb_next(n);
1420 			}
1421 			free_extent_state(*cached_state);
1422 			*cached_state = NULL;
1423 			goto out;
1424 		}
1425 		free_extent_state(*cached_state);
1426 		*cached_state = NULL;
1427 	}
1428 
1429 	state = find_first_extent_bit_state(tree, start, bits);
1430 got_it:
1431 	if (state) {
1432 		cache_state(state, cached_state);
1433 		*start_ret = state->start;
1434 		*end_ret = state->end;
1435 		ret = 0;
1436 	}
1437 out:
1438 	spin_unlock(&tree->lock);
1439 	return ret;
1440 }
1441 
1442 /*
1443  * find a contiguous range of bytes in the file marked as delalloc, not
1444  * more than 'max_bytes'.  start and end are used to return the range,
1445  *
1446  * 1 is returned if we find something, 0 if nothing was in the tree
1447  */
1448 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1449 					u64 *start, u64 *end, u64 max_bytes,
1450 					struct extent_state **cached_state)
1451 {
1452 	struct rb_node *node;
1453 	struct extent_state *state;
1454 	u64 cur_start = *start;
1455 	u64 found = 0;
1456 	u64 total_bytes = 0;
1457 
1458 	spin_lock(&tree->lock);
1459 
1460 	/*
1461 	 * this search will find all the extents that end after
1462 	 * our range starts.
1463 	 */
1464 	node = tree_search(tree, cur_start);
1465 	if (!node) {
1466 		if (!found)
1467 			*end = (u64)-1;
1468 		goto out;
1469 	}
1470 
1471 	while (1) {
1472 		state = rb_entry(node, struct extent_state, rb_node);
1473 		if (found && (state->start != cur_start ||
1474 			      (state->state & EXTENT_BOUNDARY))) {
1475 			goto out;
1476 		}
1477 		if (!(state->state & EXTENT_DELALLOC)) {
1478 			if (!found)
1479 				*end = state->end;
1480 			goto out;
1481 		}
1482 		if (!found) {
1483 			*start = state->start;
1484 			*cached_state = state;
1485 			atomic_inc(&state->refs);
1486 		}
1487 		found++;
1488 		*end = state->end;
1489 		cur_start = state->end + 1;
1490 		node = rb_next(node);
1491 		if (!node)
1492 			break;
1493 		total_bytes += state->end - state->start + 1;
1494 		if (total_bytes >= max_bytes)
1495 			break;
1496 	}
1497 out:
1498 	spin_unlock(&tree->lock);
1499 	return found;
1500 }
1501 
1502 static noinline void __unlock_for_delalloc(struct inode *inode,
1503 					   struct page *locked_page,
1504 					   u64 start, u64 end)
1505 {
1506 	int ret;
1507 	struct page *pages[16];
1508 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1509 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1510 	unsigned long nr_pages = end_index - index + 1;
1511 	int i;
1512 
1513 	if (index == locked_page->index && end_index == index)
1514 		return;
1515 
1516 	while (nr_pages > 0) {
1517 		ret = find_get_pages_contig(inode->i_mapping, index,
1518 				     min_t(unsigned long, nr_pages,
1519 				     ARRAY_SIZE(pages)), pages);
1520 		for (i = 0; i < ret; i++) {
1521 			if (pages[i] != locked_page)
1522 				unlock_page(pages[i]);
1523 			page_cache_release(pages[i]);
1524 		}
1525 		nr_pages -= ret;
1526 		index += ret;
1527 		cond_resched();
1528 	}
1529 }
1530 
1531 static noinline int lock_delalloc_pages(struct inode *inode,
1532 					struct page *locked_page,
1533 					u64 delalloc_start,
1534 					u64 delalloc_end)
1535 {
1536 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1537 	unsigned long start_index = index;
1538 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1539 	unsigned long pages_locked = 0;
1540 	struct page *pages[16];
1541 	unsigned long nrpages;
1542 	int ret;
1543 	int i;
1544 
1545 	/* the caller is responsible for locking the start index */
1546 	if (index == locked_page->index && index == end_index)
1547 		return 0;
1548 
1549 	/* skip the page at the start index */
1550 	nrpages = end_index - index + 1;
1551 	while (nrpages > 0) {
1552 		ret = find_get_pages_contig(inode->i_mapping, index,
1553 				     min_t(unsigned long,
1554 				     nrpages, ARRAY_SIZE(pages)), pages);
1555 		if (ret == 0) {
1556 			ret = -EAGAIN;
1557 			goto done;
1558 		}
1559 		/* now we have an array of pages, lock them all */
1560 		for (i = 0; i < ret; i++) {
1561 			/*
1562 			 * the caller is taking responsibility for
1563 			 * locked_page
1564 			 */
1565 			if (pages[i] != locked_page) {
1566 				lock_page(pages[i]);
1567 				if (!PageDirty(pages[i]) ||
1568 				    pages[i]->mapping != inode->i_mapping) {
1569 					ret = -EAGAIN;
1570 					unlock_page(pages[i]);
1571 					page_cache_release(pages[i]);
1572 					goto done;
1573 				}
1574 			}
1575 			page_cache_release(pages[i]);
1576 			pages_locked++;
1577 		}
1578 		nrpages -= ret;
1579 		index += ret;
1580 		cond_resched();
1581 	}
1582 	ret = 0;
1583 done:
1584 	if (ret && pages_locked) {
1585 		__unlock_for_delalloc(inode, locked_page,
1586 			      delalloc_start,
1587 			      ((u64)(start_index + pages_locked - 1)) <<
1588 			      PAGE_CACHE_SHIFT);
1589 	}
1590 	return ret;
1591 }
1592 
1593 /*
1594  * find a contiguous range of bytes in the file marked as delalloc, not
1595  * more than 'max_bytes'.  start and end are used to return the range,
1596  *
1597  * 1 is returned if we find something, 0 if nothing was in the tree
1598  */
1599 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1600 					     struct extent_io_tree *tree,
1601 					     struct page *locked_page,
1602 					     u64 *start, u64 *end,
1603 					     u64 max_bytes)
1604 {
1605 	u64 delalloc_start;
1606 	u64 delalloc_end;
1607 	u64 found;
1608 	struct extent_state *cached_state = NULL;
1609 	int ret;
1610 	int loops = 0;
1611 
1612 again:
1613 	/* step one, find a bunch of delalloc bytes starting at start */
1614 	delalloc_start = *start;
1615 	delalloc_end = 0;
1616 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1617 				    max_bytes, &cached_state);
1618 	if (!found || delalloc_end <= *start) {
1619 		*start = delalloc_start;
1620 		*end = delalloc_end;
1621 		free_extent_state(cached_state);
1622 		return found;
1623 	}
1624 
1625 	/*
1626 	 * start comes from the offset of locked_page.  We have to lock
1627 	 * pages in order, so we can't process delalloc bytes before
1628 	 * locked_page
1629 	 */
1630 	if (delalloc_start < *start)
1631 		delalloc_start = *start;
1632 
1633 	/*
1634 	 * make sure to limit the number of pages we try to lock down
1635 	 * if we're looping.
1636 	 */
1637 	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1638 		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1639 
1640 	/* step two, lock all the pages after the page that has start */
1641 	ret = lock_delalloc_pages(inode, locked_page,
1642 				  delalloc_start, delalloc_end);
1643 	if (ret == -EAGAIN) {
1644 		/* some of the pages are gone, lets avoid looping by
1645 		 * shortening the size of the delalloc range we're searching
1646 		 */
1647 		free_extent_state(cached_state);
1648 		if (!loops) {
1649 			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1650 			max_bytes = PAGE_CACHE_SIZE - offset;
1651 			loops = 1;
1652 			goto again;
1653 		} else {
1654 			found = 0;
1655 			goto out_failed;
1656 		}
1657 	}
1658 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1659 
1660 	/* step three, lock the state bits for the whole range */
1661 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1662 
1663 	/* then test to make sure it is all still delalloc */
1664 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1665 			     EXTENT_DELALLOC, 1, cached_state);
1666 	if (!ret) {
1667 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1668 				     &cached_state, GFP_NOFS);
1669 		__unlock_for_delalloc(inode, locked_page,
1670 			      delalloc_start, delalloc_end);
1671 		cond_resched();
1672 		goto again;
1673 	}
1674 	free_extent_state(cached_state);
1675 	*start = delalloc_start;
1676 	*end = delalloc_end;
1677 out_failed:
1678 	return found;
1679 }
1680 
1681 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1682 				 struct page *locked_page,
1683 				 unsigned long clear_bits,
1684 				 unsigned long page_ops)
1685 {
1686 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1687 	int ret;
1688 	struct page *pages[16];
1689 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1690 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1691 	unsigned long nr_pages = end_index - index + 1;
1692 	int i;
1693 
1694 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1695 	if (page_ops == 0)
1696 		return 0;
1697 
1698 	while (nr_pages > 0) {
1699 		ret = find_get_pages_contig(inode->i_mapping, index,
1700 				     min_t(unsigned long,
1701 				     nr_pages, ARRAY_SIZE(pages)), pages);
1702 		for (i = 0; i < ret; i++) {
1703 
1704 			if (page_ops & PAGE_SET_PRIVATE2)
1705 				SetPagePrivate2(pages[i]);
1706 
1707 			if (pages[i] == locked_page) {
1708 				page_cache_release(pages[i]);
1709 				continue;
1710 			}
1711 			if (page_ops & PAGE_CLEAR_DIRTY)
1712 				clear_page_dirty_for_io(pages[i]);
1713 			if (page_ops & PAGE_SET_WRITEBACK)
1714 				set_page_writeback(pages[i]);
1715 			if (page_ops & PAGE_END_WRITEBACK)
1716 				end_page_writeback(pages[i]);
1717 			if (page_ops & PAGE_UNLOCK)
1718 				unlock_page(pages[i]);
1719 			page_cache_release(pages[i]);
1720 		}
1721 		nr_pages -= ret;
1722 		index += ret;
1723 		cond_resched();
1724 	}
1725 	return 0;
1726 }
1727 
1728 /*
1729  * count the number of bytes in the tree that have a given bit(s)
1730  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1731  * cached.  The total number found is returned.
1732  */
1733 u64 count_range_bits(struct extent_io_tree *tree,
1734 		     u64 *start, u64 search_end, u64 max_bytes,
1735 		     unsigned long bits, int contig)
1736 {
1737 	struct rb_node *node;
1738 	struct extent_state *state;
1739 	u64 cur_start = *start;
1740 	u64 total_bytes = 0;
1741 	u64 last = 0;
1742 	int found = 0;
1743 
1744 	if (search_end <= cur_start) {
1745 		WARN_ON(1);
1746 		return 0;
1747 	}
1748 
1749 	spin_lock(&tree->lock);
1750 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1751 		total_bytes = tree->dirty_bytes;
1752 		goto out;
1753 	}
1754 	/*
1755 	 * this search will find all the extents that end after
1756 	 * our range starts.
1757 	 */
1758 	node = tree_search(tree, cur_start);
1759 	if (!node)
1760 		goto out;
1761 
1762 	while (1) {
1763 		state = rb_entry(node, struct extent_state, rb_node);
1764 		if (state->start > search_end)
1765 			break;
1766 		if (contig && found && state->start > last + 1)
1767 			break;
1768 		if (state->end >= cur_start && (state->state & bits) == bits) {
1769 			total_bytes += min(search_end, state->end) + 1 -
1770 				       max(cur_start, state->start);
1771 			if (total_bytes >= max_bytes)
1772 				break;
1773 			if (!found) {
1774 				*start = max(cur_start, state->start);
1775 				found = 1;
1776 			}
1777 			last = state->end;
1778 		} else if (contig && found) {
1779 			break;
1780 		}
1781 		node = rb_next(node);
1782 		if (!node)
1783 			break;
1784 	}
1785 out:
1786 	spin_unlock(&tree->lock);
1787 	return total_bytes;
1788 }
1789 
1790 /*
1791  * set the private field for a given byte offset in the tree.  If there isn't
1792  * an extent_state there already, this does nothing.
1793  */
1794 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1795 {
1796 	struct rb_node *node;
1797 	struct extent_state *state;
1798 	int ret = 0;
1799 
1800 	spin_lock(&tree->lock);
1801 	/*
1802 	 * this search will find all the extents that end after
1803 	 * our range starts.
1804 	 */
1805 	node = tree_search(tree, start);
1806 	if (!node) {
1807 		ret = -ENOENT;
1808 		goto out;
1809 	}
1810 	state = rb_entry(node, struct extent_state, rb_node);
1811 	if (state->start != start) {
1812 		ret = -ENOENT;
1813 		goto out;
1814 	}
1815 	state->private = private;
1816 out:
1817 	spin_unlock(&tree->lock);
1818 	return ret;
1819 }
1820 
1821 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1822 {
1823 	struct rb_node *node;
1824 	struct extent_state *state;
1825 	int ret = 0;
1826 
1827 	spin_lock(&tree->lock);
1828 	/*
1829 	 * this search will find all the extents that end after
1830 	 * our range starts.
1831 	 */
1832 	node = tree_search(tree, start);
1833 	if (!node) {
1834 		ret = -ENOENT;
1835 		goto out;
1836 	}
1837 	state = rb_entry(node, struct extent_state, rb_node);
1838 	if (state->start != start) {
1839 		ret = -ENOENT;
1840 		goto out;
1841 	}
1842 	*private = state->private;
1843 out:
1844 	spin_unlock(&tree->lock);
1845 	return ret;
1846 }
1847 
1848 /*
1849  * searches a range in the state tree for a given mask.
1850  * If 'filled' == 1, this returns 1 only if every extent in the tree
1851  * has the bits set.  Otherwise, 1 is returned if any bit in the
1852  * range is found set.
1853  */
1854 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1855 		   unsigned long bits, int filled, struct extent_state *cached)
1856 {
1857 	struct extent_state *state = NULL;
1858 	struct rb_node *node;
1859 	int bitset = 0;
1860 
1861 	spin_lock(&tree->lock);
1862 	if (cached && cached->tree && cached->start <= start &&
1863 	    cached->end > start)
1864 		node = &cached->rb_node;
1865 	else
1866 		node = tree_search(tree, start);
1867 	while (node && start <= end) {
1868 		state = rb_entry(node, struct extent_state, rb_node);
1869 
1870 		if (filled && state->start > start) {
1871 			bitset = 0;
1872 			break;
1873 		}
1874 
1875 		if (state->start > end)
1876 			break;
1877 
1878 		if (state->state & bits) {
1879 			bitset = 1;
1880 			if (!filled)
1881 				break;
1882 		} else if (filled) {
1883 			bitset = 0;
1884 			break;
1885 		}
1886 
1887 		if (state->end == (u64)-1)
1888 			break;
1889 
1890 		start = state->end + 1;
1891 		if (start > end)
1892 			break;
1893 		node = rb_next(node);
1894 		if (!node) {
1895 			if (filled)
1896 				bitset = 0;
1897 			break;
1898 		}
1899 	}
1900 	spin_unlock(&tree->lock);
1901 	return bitset;
1902 }
1903 
1904 /*
1905  * helper function to set a given page up to date if all the
1906  * extents in the tree for that page are up to date
1907  */
1908 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1909 {
1910 	u64 start = page_offset(page);
1911 	u64 end = start + PAGE_CACHE_SIZE - 1;
1912 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1913 		SetPageUptodate(page);
1914 }
1915 
1916 /*
1917  * When IO fails, either with EIO or csum verification fails, we
1918  * try other mirrors that might have a good copy of the data.  This
1919  * io_failure_record is used to record state as we go through all the
1920  * mirrors.  If another mirror has good data, the page is set up to date
1921  * and things continue.  If a good mirror can't be found, the original
1922  * bio end_io callback is called to indicate things have failed.
1923  */
1924 struct io_failure_record {
1925 	struct page *page;
1926 	u64 start;
1927 	u64 len;
1928 	u64 logical;
1929 	unsigned long bio_flags;
1930 	int this_mirror;
1931 	int failed_mirror;
1932 	int in_validation;
1933 };
1934 
1935 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1936 				int did_repair)
1937 {
1938 	int ret;
1939 	int err = 0;
1940 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1941 
1942 	set_state_private(failure_tree, rec->start, 0);
1943 	ret = clear_extent_bits(failure_tree, rec->start,
1944 				rec->start + rec->len - 1,
1945 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1946 	if (ret)
1947 		err = ret;
1948 
1949 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1950 				rec->start + rec->len - 1,
1951 				EXTENT_DAMAGED, GFP_NOFS);
1952 	if (ret && !err)
1953 		err = ret;
1954 
1955 	kfree(rec);
1956 	return err;
1957 }
1958 
1959 static void repair_io_failure_callback(struct bio *bio, int err)
1960 {
1961 	complete(bio->bi_private);
1962 }
1963 
1964 /*
1965  * this bypasses the standard btrfs submit functions deliberately, as
1966  * the standard behavior is to write all copies in a raid setup. here we only
1967  * want to write the one bad copy. so we do the mapping for ourselves and issue
1968  * submit_bio directly.
1969  * to avoid any synchronization issues, wait for the data after writing, which
1970  * actually prevents the read that triggered the error from finishing.
1971  * currently, there can be no more than two copies of every data bit. thus,
1972  * exactly one rewrite is required.
1973  */
1974 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1975 			u64 length, u64 logical, struct page *page,
1976 			int mirror_num)
1977 {
1978 	struct bio *bio;
1979 	struct btrfs_device *dev;
1980 	DECLARE_COMPLETION_ONSTACK(compl);
1981 	u64 map_length = 0;
1982 	u64 sector;
1983 	struct btrfs_bio *bbio = NULL;
1984 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1985 	int ret;
1986 
1987 	BUG_ON(!mirror_num);
1988 
1989 	/* we can't repair anything in raid56 yet */
1990 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1991 		return 0;
1992 
1993 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1994 	if (!bio)
1995 		return -EIO;
1996 	bio->bi_private = &compl;
1997 	bio->bi_end_io = repair_io_failure_callback;
1998 	bio->bi_size = 0;
1999 	map_length = length;
2000 
2001 	ret = btrfs_map_block(fs_info, WRITE, logical,
2002 			      &map_length, &bbio, mirror_num);
2003 	if (ret) {
2004 		bio_put(bio);
2005 		return -EIO;
2006 	}
2007 	BUG_ON(mirror_num != bbio->mirror_num);
2008 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2009 	bio->bi_sector = sector;
2010 	dev = bbio->stripes[mirror_num-1].dev;
2011 	kfree(bbio);
2012 	if (!dev || !dev->bdev || !dev->writeable) {
2013 		bio_put(bio);
2014 		return -EIO;
2015 	}
2016 	bio->bi_bdev = dev->bdev;
2017 	bio_add_page(bio, page, length, start - page_offset(page));
2018 	btrfsic_submit_bio(WRITE_SYNC, bio);
2019 	wait_for_completion(&compl);
2020 
2021 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2022 		/* try to remap that extent elsewhere? */
2023 		bio_put(bio);
2024 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2025 		return -EIO;
2026 	}
2027 
2028 	printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2029 		      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2030 		      start, rcu_str_deref(dev->name), sector);
2031 
2032 	bio_put(bio);
2033 	return 0;
2034 }
2035 
2036 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2037 			 int mirror_num)
2038 {
2039 	u64 start = eb->start;
2040 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2041 	int ret = 0;
2042 
2043 	for (i = 0; i < num_pages; i++) {
2044 		struct page *p = extent_buffer_page(eb, i);
2045 		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2046 					start, p, mirror_num);
2047 		if (ret)
2048 			break;
2049 		start += PAGE_CACHE_SIZE;
2050 	}
2051 
2052 	return ret;
2053 }
2054 
2055 /*
2056  * each time an IO finishes, we do a fast check in the IO failure tree
2057  * to see if we need to process or clean up an io_failure_record
2058  */
2059 static int clean_io_failure(u64 start, struct page *page)
2060 {
2061 	u64 private;
2062 	u64 private_failure;
2063 	struct io_failure_record *failrec;
2064 	struct btrfs_fs_info *fs_info;
2065 	struct extent_state *state;
2066 	int num_copies;
2067 	int did_repair = 0;
2068 	int ret;
2069 	struct inode *inode = page->mapping->host;
2070 
2071 	private = 0;
2072 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2073 				(u64)-1, 1, EXTENT_DIRTY, 0);
2074 	if (!ret)
2075 		return 0;
2076 
2077 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2078 				&private_failure);
2079 	if (ret)
2080 		return 0;
2081 
2082 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2083 	BUG_ON(!failrec->this_mirror);
2084 
2085 	if (failrec->in_validation) {
2086 		/* there was no real error, just free the record */
2087 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2088 			 failrec->start);
2089 		did_repair = 1;
2090 		goto out;
2091 	}
2092 
2093 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2094 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2095 					    failrec->start,
2096 					    EXTENT_LOCKED);
2097 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2098 
2099 	if (state && state->start <= failrec->start &&
2100 	    state->end >= failrec->start + failrec->len - 1) {
2101 		fs_info = BTRFS_I(inode)->root->fs_info;
2102 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103 					      failrec->len);
2104 		if (num_copies > 1)  {
2105 			ret = repair_io_failure(fs_info, start, failrec->len,
2106 						failrec->logical, page,
2107 						failrec->failed_mirror);
2108 			did_repair = !ret;
2109 		}
2110 		ret = 0;
2111 	}
2112 
2113 out:
2114 	if (!ret)
2115 		ret = free_io_failure(inode, failrec, did_repair);
2116 
2117 	return ret;
2118 }
2119 
2120 /*
2121  * this is a generic handler for readpage errors (default
2122  * readpage_io_failed_hook). if other copies exist, read those and write back
2123  * good data to the failed position. does not investigate in remapping the
2124  * failed extent elsewhere, hoping the device will be smart enough to do this as
2125  * needed
2126  */
2127 
2128 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2129 			      struct page *page, u64 start, u64 end,
2130 			      int failed_mirror)
2131 {
2132 	struct io_failure_record *failrec = NULL;
2133 	u64 private;
2134 	struct extent_map *em;
2135 	struct inode *inode = page->mapping->host;
2136 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2137 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2138 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2139 	struct bio *bio;
2140 	struct btrfs_io_bio *btrfs_failed_bio;
2141 	struct btrfs_io_bio *btrfs_bio;
2142 	int num_copies;
2143 	int ret;
2144 	int read_mode;
2145 	u64 logical;
2146 
2147 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2148 
2149 	ret = get_state_private(failure_tree, start, &private);
2150 	if (ret) {
2151 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2152 		if (!failrec)
2153 			return -ENOMEM;
2154 		failrec->start = start;
2155 		failrec->len = end - start + 1;
2156 		failrec->this_mirror = 0;
2157 		failrec->bio_flags = 0;
2158 		failrec->in_validation = 0;
2159 
2160 		read_lock(&em_tree->lock);
2161 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2162 		if (!em) {
2163 			read_unlock(&em_tree->lock);
2164 			kfree(failrec);
2165 			return -EIO;
2166 		}
2167 
2168 		if (em->start > start || em->start + em->len < start) {
2169 			free_extent_map(em);
2170 			em = NULL;
2171 		}
2172 		read_unlock(&em_tree->lock);
2173 
2174 		if (!em) {
2175 			kfree(failrec);
2176 			return -EIO;
2177 		}
2178 		logical = start - em->start;
2179 		logical = em->block_start + logical;
2180 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2181 			logical = em->block_start;
2182 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2183 			extent_set_compress_type(&failrec->bio_flags,
2184 						 em->compress_type);
2185 		}
2186 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2187 			 "len=%llu\n", logical, start, failrec->len);
2188 		failrec->logical = logical;
2189 		free_extent_map(em);
2190 
2191 		/* set the bits in the private failure tree */
2192 		ret = set_extent_bits(failure_tree, start, end,
2193 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2194 		if (ret >= 0)
2195 			ret = set_state_private(failure_tree, start,
2196 						(u64)(unsigned long)failrec);
2197 		/* set the bits in the inode's tree */
2198 		if (ret >= 0)
2199 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2200 						GFP_NOFS);
2201 		if (ret < 0) {
2202 			kfree(failrec);
2203 			return ret;
2204 		}
2205 	} else {
2206 		failrec = (struct io_failure_record *)(unsigned long)private;
2207 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2208 			 "start=%llu, len=%llu, validation=%d\n",
2209 			 failrec->logical, failrec->start, failrec->len,
2210 			 failrec->in_validation);
2211 		/*
2212 		 * when data can be on disk more than twice, add to failrec here
2213 		 * (e.g. with a list for failed_mirror) to make
2214 		 * clean_io_failure() clean all those errors at once.
2215 		 */
2216 	}
2217 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2218 				      failrec->logical, failrec->len);
2219 	if (num_copies == 1) {
2220 		/*
2221 		 * we only have a single copy of the data, so don't bother with
2222 		 * all the retry and error correction code that follows. no
2223 		 * matter what the error is, it is very likely to persist.
2224 		 */
2225 		pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2226 			 num_copies, failrec->this_mirror, failed_mirror);
2227 		free_io_failure(inode, failrec, 0);
2228 		return -EIO;
2229 	}
2230 
2231 	/*
2232 	 * there are two premises:
2233 	 *	a) deliver good data to the caller
2234 	 *	b) correct the bad sectors on disk
2235 	 */
2236 	if (failed_bio->bi_vcnt > 1) {
2237 		/*
2238 		 * to fulfill b), we need to know the exact failing sectors, as
2239 		 * we don't want to rewrite any more than the failed ones. thus,
2240 		 * we need separate read requests for the failed bio
2241 		 *
2242 		 * if the following BUG_ON triggers, our validation request got
2243 		 * merged. we need separate requests for our algorithm to work.
2244 		 */
2245 		BUG_ON(failrec->in_validation);
2246 		failrec->in_validation = 1;
2247 		failrec->this_mirror = failed_mirror;
2248 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2249 	} else {
2250 		/*
2251 		 * we're ready to fulfill a) and b) alongside. get a good copy
2252 		 * of the failed sector and if we succeed, we have setup
2253 		 * everything for repair_io_failure to do the rest for us.
2254 		 */
2255 		if (failrec->in_validation) {
2256 			BUG_ON(failrec->this_mirror != failed_mirror);
2257 			failrec->in_validation = 0;
2258 			failrec->this_mirror = 0;
2259 		}
2260 		failrec->failed_mirror = failed_mirror;
2261 		failrec->this_mirror++;
2262 		if (failrec->this_mirror == failed_mirror)
2263 			failrec->this_mirror++;
2264 		read_mode = READ_SYNC;
2265 	}
2266 
2267 	if (failrec->this_mirror > num_copies) {
2268 		pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2269 			 num_copies, failrec->this_mirror, failed_mirror);
2270 		free_io_failure(inode, failrec, 0);
2271 		return -EIO;
2272 	}
2273 
2274 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2275 	if (!bio) {
2276 		free_io_failure(inode, failrec, 0);
2277 		return -EIO;
2278 	}
2279 	bio->bi_end_io = failed_bio->bi_end_io;
2280 	bio->bi_sector = failrec->logical >> 9;
2281 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2282 	bio->bi_size = 0;
2283 
2284 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2285 	if (btrfs_failed_bio->csum) {
2286 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2287 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2288 
2289 		btrfs_bio = btrfs_io_bio(bio);
2290 		btrfs_bio->csum = btrfs_bio->csum_inline;
2291 		phy_offset >>= inode->i_sb->s_blocksize_bits;
2292 		phy_offset *= csum_size;
2293 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2294 		       csum_size);
2295 	}
2296 
2297 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2298 
2299 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2300 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2301 		 failrec->this_mirror, num_copies, failrec->in_validation);
2302 
2303 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2304 					 failrec->this_mirror,
2305 					 failrec->bio_flags, 0);
2306 	return ret;
2307 }
2308 
2309 /* lots and lots of room for performance fixes in the end_bio funcs */
2310 
2311 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2312 {
2313 	int uptodate = (err == 0);
2314 	struct extent_io_tree *tree;
2315 	int ret;
2316 
2317 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2318 
2319 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2320 		ret = tree->ops->writepage_end_io_hook(page, start,
2321 					       end, NULL, uptodate);
2322 		if (ret)
2323 			uptodate = 0;
2324 	}
2325 
2326 	if (!uptodate) {
2327 		ClearPageUptodate(page);
2328 		SetPageError(page);
2329 	}
2330 	return 0;
2331 }
2332 
2333 /*
2334  * after a writepage IO is done, we need to:
2335  * clear the uptodate bits on error
2336  * clear the writeback bits in the extent tree for this IO
2337  * end_page_writeback if the page has no more pending IO
2338  *
2339  * Scheduling is not allowed, so the extent state tree is expected
2340  * to have one and only one object corresponding to this IO.
2341  */
2342 static void end_bio_extent_writepage(struct bio *bio, int err)
2343 {
2344 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2345 	struct extent_io_tree *tree;
2346 	u64 start;
2347 	u64 end;
2348 
2349 	do {
2350 		struct page *page = bvec->bv_page;
2351 		tree = &BTRFS_I(page->mapping->host)->io_tree;
2352 
2353 		/* We always issue full-page reads, but if some block
2354 		 * in a page fails to read, blk_update_request() will
2355 		 * advance bv_offset and adjust bv_len to compensate.
2356 		 * Print a warning for nonzero offsets, and an error
2357 		 * if they don't add up to a full page.  */
2358 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2359 			printk("%s page write in btrfs with offset %u and length %u\n",
2360 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2361 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2362 			       bvec->bv_offset, bvec->bv_len);
2363 
2364 		start = page_offset(page);
2365 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2366 
2367 		if (--bvec >= bio->bi_io_vec)
2368 			prefetchw(&bvec->bv_page->flags);
2369 
2370 		if (end_extent_writepage(page, err, start, end))
2371 			continue;
2372 
2373 		end_page_writeback(page);
2374 	} while (bvec >= bio->bi_io_vec);
2375 
2376 	bio_put(bio);
2377 }
2378 
2379 static void
2380 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2381 			      int uptodate)
2382 {
2383 	struct extent_state *cached = NULL;
2384 	u64 end = start + len - 1;
2385 
2386 	if (uptodate && tree->track_uptodate)
2387 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2388 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2389 }
2390 
2391 /*
2392  * after a readpage IO is done, we need to:
2393  * clear the uptodate bits on error
2394  * set the uptodate bits if things worked
2395  * set the page up to date if all extents in the tree are uptodate
2396  * clear the lock bit in the extent tree
2397  * unlock the page if there are no other extents locked for it
2398  *
2399  * Scheduling is not allowed, so the extent state tree is expected
2400  * to have one and only one object corresponding to this IO.
2401  */
2402 static void end_bio_extent_readpage(struct bio *bio, int err)
2403 {
2404 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2405 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2406 	struct bio_vec *bvec = bio->bi_io_vec;
2407 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2408 	struct extent_io_tree *tree;
2409 	u64 offset = 0;
2410 	u64 start;
2411 	u64 end;
2412 	u64 len;
2413 	u64 extent_start = 0;
2414 	u64 extent_len = 0;
2415 	int mirror;
2416 	int ret;
2417 
2418 	if (err)
2419 		uptodate = 0;
2420 
2421 	do {
2422 		struct page *page = bvec->bv_page;
2423 		struct inode *inode = page->mapping->host;
2424 
2425 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2426 			 "mirror=%lu\n", (u64)bio->bi_sector, err,
2427 			 io_bio->mirror_num);
2428 		tree = &BTRFS_I(inode)->io_tree;
2429 
2430 		/* We always issue full-page reads, but if some block
2431 		 * in a page fails to read, blk_update_request() will
2432 		 * advance bv_offset and adjust bv_len to compensate.
2433 		 * Print a warning for nonzero offsets, and an error
2434 		 * if they don't add up to a full page.  */
2435 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2436 			printk("%s page read in btrfs with offset %u and length %u\n",
2437 			       bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2438 			       ? KERN_ERR "partial" : KERN_INFO "incomplete",
2439 			       bvec->bv_offset, bvec->bv_len);
2440 
2441 		start = page_offset(page);
2442 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2443 		len = bvec->bv_len;
2444 
2445 		if (++bvec <= bvec_end)
2446 			prefetchw(&bvec->bv_page->flags);
2447 
2448 		mirror = io_bio->mirror_num;
2449 		if (likely(uptodate && tree->ops &&
2450 			   tree->ops->readpage_end_io_hook)) {
2451 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2452 							      page, start, end,
2453 							      mirror);
2454 			if (ret)
2455 				uptodate = 0;
2456 			else
2457 				clean_io_failure(start, page);
2458 		}
2459 
2460 		if (likely(uptodate))
2461 			goto readpage_ok;
2462 
2463 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2464 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2465 			if (!ret && !err &&
2466 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2467 				uptodate = 1;
2468 		} else {
2469 			/*
2470 			 * The generic bio_readpage_error handles errors the
2471 			 * following way: If possible, new read requests are
2472 			 * created and submitted and will end up in
2473 			 * end_bio_extent_readpage as well (if we're lucky, not
2474 			 * in the !uptodate case). In that case it returns 0 and
2475 			 * we just go on with the next page in our bio. If it
2476 			 * can't handle the error it will return -EIO and we
2477 			 * remain responsible for that page.
2478 			 */
2479 			ret = bio_readpage_error(bio, offset, page, start, end,
2480 						 mirror);
2481 			if (ret == 0) {
2482 				uptodate =
2483 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2484 				if (err)
2485 					uptodate = 0;
2486 				continue;
2487 			}
2488 		}
2489 readpage_ok:
2490 		if (likely(uptodate)) {
2491 			loff_t i_size = i_size_read(inode);
2492 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2493 			unsigned offset;
2494 
2495 			/* Zero out the end if this page straddles i_size */
2496 			offset = i_size & (PAGE_CACHE_SIZE-1);
2497 			if (page->index == end_index && offset)
2498 				zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2499 			SetPageUptodate(page);
2500 		} else {
2501 			ClearPageUptodate(page);
2502 			SetPageError(page);
2503 		}
2504 		unlock_page(page);
2505 		offset += len;
2506 
2507 		if (unlikely(!uptodate)) {
2508 			if (extent_len) {
2509 				endio_readpage_release_extent(tree,
2510 							      extent_start,
2511 							      extent_len, 1);
2512 				extent_start = 0;
2513 				extent_len = 0;
2514 			}
2515 			endio_readpage_release_extent(tree, start,
2516 						      end - start + 1, 0);
2517 		} else if (!extent_len) {
2518 			extent_start = start;
2519 			extent_len = end + 1 - start;
2520 		} else if (extent_start + extent_len == start) {
2521 			extent_len += end + 1 - start;
2522 		} else {
2523 			endio_readpage_release_extent(tree, extent_start,
2524 						      extent_len, uptodate);
2525 			extent_start = start;
2526 			extent_len = end + 1 - start;
2527 		}
2528 	} while (bvec <= bvec_end);
2529 
2530 	if (extent_len)
2531 		endio_readpage_release_extent(tree, extent_start, extent_len,
2532 					      uptodate);
2533 	if (io_bio->end_io)
2534 		io_bio->end_io(io_bio, err);
2535 	bio_put(bio);
2536 }
2537 
2538 /*
2539  * this allocates from the btrfs_bioset.  We're returning a bio right now
2540  * but you can call btrfs_io_bio for the appropriate container_of magic
2541  */
2542 struct bio *
2543 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2544 		gfp_t gfp_flags)
2545 {
2546 	struct btrfs_io_bio *btrfs_bio;
2547 	struct bio *bio;
2548 
2549 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2550 
2551 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2552 		while (!bio && (nr_vecs /= 2)) {
2553 			bio = bio_alloc_bioset(gfp_flags,
2554 					       nr_vecs, btrfs_bioset);
2555 		}
2556 	}
2557 
2558 	if (bio) {
2559 		bio->bi_size = 0;
2560 		bio->bi_bdev = bdev;
2561 		bio->bi_sector = first_sector;
2562 		btrfs_bio = btrfs_io_bio(bio);
2563 		btrfs_bio->csum = NULL;
2564 		btrfs_bio->csum_allocated = NULL;
2565 		btrfs_bio->end_io = NULL;
2566 	}
2567 	return bio;
2568 }
2569 
2570 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2571 {
2572 	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2573 }
2574 
2575 
2576 /* this also allocates from the btrfs_bioset */
2577 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2578 {
2579 	struct btrfs_io_bio *btrfs_bio;
2580 	struct bio *bio;
2581 
2582 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2583 	if (bio) {
2584 		btrfs_bio = btrfs_io_bio(bio);
2585 		btrfs_bio->csum = NULL;
2586 		btrfs_bio->csum_allocated = NULL;
2587 		btrfs_bio->end_io = NULL;
2588 	}
2589 	return bio;
2590 }
2591 
2592 
2593 static int __must_check submit_one_bio(int rw, struct bio *bio,
2594 				       int mirror_num, unsigned long bio_flags)
2595 {
2596 	int ret = 0;
2597 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2598 	struct page *page = bvec->bv_page;
2599 	struct extent_io_tree *tree = bio->bi_private;
2600 	u64 start;
2601 
2602 	start = page_offset(page) + bvec->bv_offset;
2603 
2604 	bio->bi_private = NULL;
2605 
2606 	bio_get(bio);
2607 
2608 	if (tree->ops && tree->ops->submit_bio_hook)
2609 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2610 					   mirror_num, bio_flags, start);
2611 	else
2612 		btrfsic_submit_bio(rw, bio);
2613 
2614 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2615 		ret = -EOPNOTSUPP;
2616 	bio_put(bio);
2617 	return ret;
2618 }
2619 
2620 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2621 		     unsigned long offset, size_t size, struct bio *bio,
2622 		     unsigned long bio_flags)
2623 {
2624 	int ret = 0;
2625 	if (tree->ops && tree->ops->merge_bio_hook)
2626 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2627 						bio_flags);
2628 	BUG_ON(ret < 0);
2629 	return ret;
2630 
2631 }
2632 
2633 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2634 			      struct page *page, sector_t sector,
2635 			      size_t size, unsigned long offset,
2636 			      struct block_device *bdev,
2637 			      struct bio **bio_ret,
2638 			      unsigned long max_pages,
2639 			      bio_end_io_t end_io_func,
2640 			      int mirror_num,
2641 			      unsigned long prev_bio_flags,
2642 			      unsigned long bio_flags)
2643 {
2644 	int ret = 0;
2645 	struct bio *bio;
2646 	int nr;
2647 	int contig = 0;
2648 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2649 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2650 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2651 
2652 	if (bio_ret && *bio_ret) {
2653 		bio = *bio_ret;
2654 		if (old_compressed)
2655 			contig = bio->bi_sector == sector;
2656 		else
2657 			contig = bio_end_sector(bio) == sector;
2658 
2659 		if (prev_bio_flags != bio_flags || !contig ||
2660 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2661 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2662 			ret = submit_one_bio(rw, bio, mirror_num,
2663 					     prev_bio_flags);
2664 			if (ret < 0)
2665 				return ret;
2666 			bio = NULL;
2667 		} else {
2668 			return 0;
2669 		}
2670 	}
2671 	if (this_compressed)
2672 		nr = BIO_MAX_PAGES;
2673 	else
2674 		nr = bio_get_nr_vecs(bdev);
2675 
2676 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2677 	if (!bio)
2678 		return -ENOMEM;
2679 
2680 	bio_add_page(bio, page, page_size, offset);
2681 	bio->bi_end_io = end_io_func;
2682 	bio->bi_private = tree;
2683 
2684 	if (bio_ret)
2685 		*bio_ret = bio;
2686 	else
2687 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2688 
2689 	return ret;
2690 }
2691 
2692 static void attach_extent_buffer_page(struct extent_buffer *eb,
2693 				      struct page *page)
2694 {
2695 	if (!PagePrivate(page)) {
2696 		SetPagePrivate(page);
2697 		page_cache_get(page);
2698 		set_page_private(page, (unsigned long)eb);
2699 	} else {
2700 		WARN_ON(page->private != (unsigned long)eb);
2701 	}
2702 }
2703 
2704 void set_page_extent_mapped(struct page *page)
2705 {
2706 	if (!PagePrivate(page)) {
2707 		SetPagePrivate(page);
2708 		page_cache_get(page);
2709 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2710 	}
2711 }
2712 
2713 static struct extent_map *
2714 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2715 		 u64 start, u64 len, get_extent_t *get_extent,
2716 		 struct extent_map **em_cached)
2717 {
2718 	struct extent_map *em;
2719 
2720 	if (em_cached && *em_cached) {
2721 		em = *em_cached;
2722 		if (em->in_tree && start >= em->start &&
2723 		    start < extent_map_end(em)) {
2724 			atomic_inc(&em->refs);
2725 			return em;
2726 		}
2727 
2728 		free_extent_map(em);
2729 		*em_cached = NULL;
2730 	}
2731 
2732 	em = get_extent(inode, page, pg_offset, start, len, 0);
2733 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2734 		BUG_ON(*em_cached);
2735 		atomic_inc(&em->refs);
2736 		*em_cached = em;
2737 	}
2738 	return em;
2739 }
2740 /*
2741  * basic readpage implementation.  Locked extent state structs are inserted
2742  * into the tree that are removed when the IO is done (by the end_io
2743  * handlers)
2744  * XXX JDM: This needs looking at to ensure proper page locking
2745  */
2746 static int __do_readpage(struct extent_io_tree *tree,
2747 			 struct page *page,
2748 			 get_extent_t *get_extent,
2749 			 struct extent_map **em_cached,
2750 			 struct bio **bio, int mirror_num,
2751 			 unsigned long *bio_flags, int rw)
2752 {
2753 	struct inode *inode = page->mapping->host;
2754 	u64 start = page_offset(page);
2755 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2756 	u64 end;
2757 	u64 cur = start;
2758 	u64 extent_offset;
2759 	u64 last_byte = i_size_read(inode);
2760 	u64 block_start;
2761 	u64 cur_end;
2762 	sector_t sector;
2763 	struct extent_map *em;
2764 	struct block_device *bdev;
2765 	int ret;
2766 	int nr = 0;
2767 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2768 	size_t pg_offset = 0;
2769 	size_t iosize;
2770 	size_t disk_io_size;
2771 	size_t blocksize = inode->i_sb->s_blocksize;
2772 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2773 
2774 	set_page_extent_mapped(page);
2775 
2776 	end = page_end;
2777 	if (!PageUptodate(page)) {
2778 		if (cleancache_get_page(page) == 0) {
2779 			BUG_ON(blocksize != PAGE_SIZE);
2780 			unlock_extent(tree, start, end);
2781 			goto out;
2782 		}
2783 	}
2784 
2785 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2786 		char *userpage;
2787 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2788 
2789 		if (zero_offset) {
2790 			iosize = PAGE_CACHE_SIZE - zero_offset;
2791 			userpage = kmap_atomic(page);
2792 			memset(userpage + zero_offset, 0, iosize);
2793 			flush_dcache_page(page);
2794 			kunmap_atomic(userpage);
2795 		}
2796 	}
2797 	while (cur <= end) {
2798 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2799 
2800 		if (cur >= last_byte) {
2801 			char *userpage;
2802 			struct extent_state *cached = NULL;
2803 
2804 			iosize = PAGE_CACHE_SIZE - pg_offset;
2805 			userpage = kmap_atomic(page);
2806 			memset(userpage + pg_offset, 0, iosize);
2807 			flush_dcache_page(page);
2808 			kunmap_atomic(userpage);
2809 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2810 					    &cached, GFP_NOFS);
2811 			if (!parent_locked)
2812 				unlock_extent_cached(tree, cur,
2813 						     cur + iosize - 1,
2814 						     &cached, GFP_NOFS);
2815 			break;
2816 		}
2817 		em = __get_extent_map(inode, page, pg_offset, cur,
2818 				      end - cur + 1, get_extent, em_cached);
2819 		if (IS_ERR_OR_NULL(em)) {
2820 			SetPageError(page);
2821 			if (!parent_locked)
2822 				unlock_extent(tree, cur, end);
2823 			break;
2824 		}
2825 		extent_offset = cur - em->start;
2826 		BUG_ON(extent_map_end(em) <= cur);
2827 		BUG_ON(end < cur);
2828 
2829 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2830 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2831 			extent_set_compress_type(&this_bio_flag,
2832 						 em->compress_type);
2833 		}
2834 
2835 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2836 		cur_end = min(extent_map_end(em) - 1, end);
2837 		iosize = ALIGN(iosize, blocksize);
2838 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2839 			disk_io_size = em->block_len;
2840 			sector = em->block_start >> 9;
2841 		} else {
2842 			sector = (em->block_start + extent_offset) >> 9;
2843 			disk_io_size = iosize;
2844 		}
2845 		bdev = em->bdev;
2846 		block_start = em->block_start;
2847 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2848 			block_start = EXTENT_MAP_HOLE;
2849 		free_extent_map(em);
2850 		em = NULL;
2851 
2852 		/* we've found a hole, just zero and go on */
2853 		if (block_start == EXTENT_MAP_HOLE) {
2854 			char *userpage;
2855 			struct extent_state *cached = NULL;
2856 
2857 			userpage = kmap_atomic(page);
2858 			memset(userpage + pg_offset, 0, iosize);
2859 			flush_dcache_page(page);
2860 			kunmap_atomic(userpage);
2861 
2862 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2863 					    &cached, GFP_NOFS);
2864 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2865 			                     &cached, GFP_NOFS);
2866 			cur = cur + iosize;
2867 			pg_offset += iosize;
2868 			continue;
2869 		}
2870 		/* the get_extent function already copied into the page */
2871 		if (test_range_bit(tree, cur, cur_end,
2872 				   EXTENT_UPTODATE, 1, NULL)) {
2873 			check_page_uptodate(tree, page);
2874 			if (!parent_locked)
2875 				unlock_extent(tree, cur, cur + iosize - 1);
2876 			cur = cur + iosize;
2877 			pg_offset += iosize;
2878 			continue;
2879 		}
2880 		/* we have an inline extent but it didn't get marked up
2881 		 * to date.  Error out
2882 		 */
2883 		if (block_start == EXTENT_MAP_INLINE) {
2884 			SetPageError(page);
2885 			if (!parent_locked)
2886 				unlock_extent(tree, cur, cur + iosize - 1);
2887 			cur = cur + iosize;
2888 			pg_offset += iosize;
2889 			continue;
2890 		}
2891 
2892 		pnr -= page->index;
2893 		ret = submit_extent_page(rw, tree, page,
2894 					 sector, disk_io_size, pg_offset,
2895 					 bdev, bio, pnr,
2896 					 end_bio_extent_readpage, mirror_num,
2897 					 *bio_flags,
2898 					 this_bio_flag);
2899 		if (!ret) {
2900 			nr++;
2901 			*bio_flags = this_bio_flag;
2902 		} else {
2903 			SetPageError(page);
2904 			if (!parent_locked)
2905 				unlock_extent(tree, cur, cur + iosize - 1);
2906 		}
2907 		cur = cur + iosize;
2908 		pg_offset += iosize;
2909 	}
2910 out:
2911 	if (!nr) {
2912 		if (!PageError(page))
2913 			SetPageUptodate(page);
2914 		unlock_page(page);
2915 	}
2916 	return 0;
2917 }
2918 
2919 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2920 					     struct page *pages[], int nr_pages,
2921 					     u64 start, u64 end,
2922 					     get_extent_t *get_extent,
2923 					     struct extent_map **em_cached,
2924 					     struct bio **bio, int mirror_num,
2925 					     unsigned long *bio_flags, int rw)
2926 {
2927 	struct inode *inode;
2928 	struct btrfs_ordered_extent *ordered;
2929 	int index;
2930 
2931 	inode = pages[0]->mapping->host;
2932 	while (1) {
2933 		lock_extent(tree, start, end);
2934 		ordered = btrfs_lookup_ordered_range(inode, start,
2935 						     end - start + 1);
2936 		if (!ordered)
2937 			break;
2938 		unlock_extent(tree, start, end);
2939 		btrfs_start_ordered_extent(inode, ordered, 1);
2940 		btrfs_put_ordered_extent(ordered);
2941 	}
2942 
2943 	for (index = 0; index < nr_pages; index++) {
2944 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
2945 			      mirror_num, bio_flags, rw);
2946 		page_cache_release(pages[index]);
2947 	}
2948 }
2949 
2950 static void __extent_readpages(struct extent_io_tree *tree,
2951 			       struct page *pages[],
2952 			       int nr_pages, get_extent_t *get_extent,
2953 			       struct extent_map **em_cached,
2954 			       struct bio **bio, int mirror_num,
2955 			       unsigned long *bio_flags, int rw)
2956 {
2957 	u64 start = 0;
2958 	u64 end = 0;
2959 	u64 page_start;
2960 	int index;
2961 	int first_index = 0;
2962 
2963 	for (index = 0; index < nr_pages; index++) {
2964 		page_start = page_offset(pages[index]);
2965 		if (!end) {
2966 			start = page_start;
2967 			end = start + PAGE_CACHE_SIZE - 1;
2968 			first_index = index;
2969 		} else if (end + 1 == page_start) {
2970 			end += PAGE_CACHE_SIZE;
2971 		} else {
2972 			__do_contiguous_readpages(tree, &pages[first_index],
2973 						  index - first_index, start,
2974 						  end, get_extent, em_cached,
2975 						  bio, mirror_num, bio_flags,
2976 						  rw);
2977 			start = page_start;
2978 			end = start + PAGE_CACHE_SIZE - 1;
2979 			first_index = index;
2980 		}
2981 	}
2982 
2983 	if (end)
2984 		__do_contiguous_readpages(tree, &pages[first_index],
2985 					  index - first_index, start,
2986 					  end, get_extent, em_cached, bio,
2987 					  mirror_num, bio_flags, rw);
2988 }
2989 
2990 static int __extent_read_full_page(struct extent_io_tree *tree,
2991 				   struct page *page,
2992 				   get_extent_t *get_extent,
2993 				   struct bio **bio, int mirror_num,
2994 				   unsigned long *bio_flags, int rw)
2995 {
2996 	struct inode *inode = page->mapping->host;
2997 	struct btrfs_ordered_extent *ordered;
2998 	u64 start = page_offset(page);
2999 	u64 end = start + PAGE_CACHE_SIZE - 1;
3000 	int ret;
3001 
3002 	while (1) {
3003 		lock_extent(tree, start, end);
3004 		ordered = btrfs_lookup_ordered_extent(inode, start);
3005 		if (!ordered)
3006 			break;
3007 		unlock_extent(tree, start, end);
3008 		btrfs_start_ordered_extent(inode, ordered, 1);
3009 		btrfs_put_ordered_extent(ordered);
3010 	}
3011 
3012 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3013 			    bio_flags, rw);
3014 	return ret;
3015 }
3016 
3017 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3018 			    get_extent_t *get_extent, int mirror_num)
3019 {
3020 	struct bio *bio = NULL;
3021 	unsigned long bio_flags = 0;
3022 	int ret;
3023 
3024 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3025 				      &bio_flags, READ);
3026 	if (bio)
3027 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3028 	return ret;
3029 }
3030 
3031 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3032 				 get_extent_t *get_extent, int mirror_num)
3033 {
3034 	struct bio *bio = NULL;
3035 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3036 	int ret;
3037 
3038 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3039 				      &bio_flags, READ);
3040 	if (bio)
3041 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3042 	return ret;
3043 }
3044 
3045 static noinline void update_nr_written(struct page *page,
3046 				      struct writeback_control *wbc,
3047 				      unsigned long nr_written)
3048 {
3049 	wbc->nr_to_write -= nr_written;
3050 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3051 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3052 		page->mapping->writeback_index = page->index + nr_written;
3053 }
3054 
3055 /*
3056  * the writepage semantics are similar to regular writepage.  extent
3057  * records are inserted to lock ranges in the tree, and as dirty areas
3058  * are found, they are marked writeback.  Then the lock bits are removed
3059  * and the end_io handler clears the writeback ranges
3060  */
3061 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3062 			      void *data)
3063 {
3064 	struct inode *inode = page->mapping->host;
3065 	struct extent_page_data *epd = data;
3066 	struct extent_io_tree *tree = epd->tree;
3067 	u64 start = page_offset(page);
3068 	u64 delalloc_start;
3069 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3070 	u64 end;
3071 	u64 cur = start;
3072 	u64 extent_offset;
3073 	u64 last_byte = i_size_read(inode);
3074 	u64 block_start;
3075 	u64 iosize;
3076 	sector_t sector;
3077 	struct extent_state *cached_state = NULL;
3078 	struct extent_map *em;
3079 	struct block_device *bdev;
3080 	int ret;
3081 	int nr = 0;
3082 	size_t pg_offset = 0;
3083 	size_t blocksize;
3084 	loff_t i_size = i_size_read(inode);
3085 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3086 	u64 nr_delalloc;
3087 	u64 delalloc_end;
3088 	int page_started;
3089 	int compressed;
3090 	int write_flags;
3091 	unsigned long nr_written = 0;
3092 	bool fill_delalloc = true;
3093 
3094 	if (wbc->sync_mode == WB_SYNC_ALL)
3095 		write_flags = WRITE_SYNC;
3096 	else
3097 		write_flags = WRITE;
3098 
3099 	trace___extent_writepage(page, inode, wbc);
3100 
3101 	WARN_ON(!PageLocked(page));
3102 
3103 	ClearPageError(page);
3104 
3105 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3106 	if (page->index > end_index ||
3107 	   (page->index == end_index && !pg_offset)) {
3108 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3109 		unlock_page(page);
3110 		return 0;
3111 	}
3112 
3113 	if (page->index == end_index) {
3114 		char *userpage;
3115 
3116 		userpage = kmap_atomic(page);
3117 		memset(userpage + pg_offset, 0,
3118 		       PAGE_CACHE_SIZE - pg_offset);
3119 		kunmap_atomic(userpage);
3120 		flush_dcache_page(page);
3121 	}
3122 	pg_offset = 0;
3123 
3124 	set_page_extent_mapped(page);
3125 
3126 	if (!tree->ops || !tree->ops->fill_delalloc)
3127 		fill_delalloc = false;
3128 
3129 	delalloc_start = start;
3130 	delalloc_end = 0;
3131 	page_started = 0;
3132 	if (!epd->extent_locked && fill_delalloc) {
3133 		u64 delalloc_to_write = 0;
3134 		/*
3135 		 * make sure the wbc mapping index is at least updated
3136 		 * to this page.
3137 		 */
3138 		update_nr_written(page, wbc, 0);
3139 
3140 		while (delalloc_end < page_end) {
3141 			nr_delalloc = find_lock_delalloc_range(inode, tree,
3142 						       page,
3143 						       &delalloc_start,
3144 						       &delalloc_end,
3145 						       128 * 1024 * 1024);
3146 			if (nr_delalloc == 0) {
3147 				delalloc_start = delalloc_end + 1;
3148 				continue;
3149 			}
3150 			ret = tree->ops->fill_delalloc(inode, page,
3151 						       delalloc_start,
3152 						       delalloc_end,
3153 						       &page_started,
3154 						       &nr_written);
3155 			/* File system has been set read-only */
3156 			if (ret) {
3157 				SetPageError(page);
3158 				goto done;
3159 			}
3160 			/*
3161 			 * delalloc_end is already one less than the total
3162 			 * length, so we don't subtract one from
3163 			 * PAGE_CACHE_SIZE
3164 			 */
3165 			delalloc_to_write += (delalloc_end - delalloc_start +
3166 					      PAGE_CACHE_SIZE) >>
3167 					      PAGE_CACHE_SHIFT;
3168 			delalloc_start = delalloc_end + 1;
3169 		}
3170 		if (wbc->nr_to_write < delalloc_to_write) {
3171 			int thresh = 8192;
3172 
3173 			if (delalloc_to_write < thresh * 2)
3174 				thresh = delalloc_to_write;
3175 			wbc->nr_to_write = min_t(u64, delalloc_to_write,
3176 						 thresh);
3177 		}
3178 
3179 		/* did the fill delalloc function already unlock and start
3180 		 * the IO?
3181 		 */
3182 		if (page_started) {
3183 			ret = 0;
3184 			/*
3185 			 * we've unlocked the page, so we can't update
3186 			 * the mapping's writeback index, just update
3187 			 * nr_to_write.
3188 			 */
3189 			wbc->nr_to_write -= nr_written;
3190 			goto done_unlocked;
3191 		}
3192 	}
3193 	if (tree->ops && tree->ops->writepage_start_hook) {
3194 		ret = tree->ops->writepage_start_hook(page, start,
3195 						      page_end);
3196 		if (ret) {
3197 			/* Fixup worker will requeue */
3198 			if (ret == -EBUSY)
3199 				wbc->pages_skipped++;
3200 			else
3201 				redirty_page_for_writepage(wbc, page);
3202 			update_nr_written(page, wbc, nr_written);
3203 			unlock_page(page);
3204 			ret = 0;
3205 			goto done_unlocked;
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * we don't want to touch the inode after unlocking the page,
3211 	 * so we update the mapping writeback index now
3212 	 */
3213 	update_nr_written(page, wbc, nr_written + 1);
3214 
3215 	end = page_end;
3216 	if (last_byte <= start) {
3217 		if (tree->ops && tree->ops->writepage_end_io_hook)
3218 			tree->ops->writepage_end_io_hook(page, start,
3219 							 page_end, NULL, 1);
3220 		goto done;
3221 	}
3222 
3223 	blocksize = inode->i_sb->s_blocksize;
3224 
3225 	while (cur <= end) {
3226 		if (cur >= last_byte) {
3227 			if (tree->ops && tree->ops->writepage_end_io_hook)
3228 				tree->ops->writepage_end_io_hook(page, cur,
3229 							 page_end, NULL, 1);
3230 			break;
3231 		}
3232 		em = epd->get_extent(inode, page, pg_offset, cur,
3233 				     end - cur + 1, 1);
3234 		if (IS_ERR_OR_NULL(em)) {
3235 			SetPageError(page);
3236 			break;
3237 		}
3238 
3239 		extent_offset = cur - em->start;
3240 		BUG_ON(extent_map_end(em) <= cur);
3241 		BUG_ON(end < cur);
3242 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3243 		iosize = ALIGN(iosize, blocksize);
3244 		sector = (em->block_start + extent_offset) >> 9;
3245 		bdev = em->bdev;
3246 		block_start = em->block_start;
3247 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3248 		free_extent_map(em);
3249 		em = NULL;
3250 
3251 		/*
3252 		 * compressed and inline extents are written through other
3253 		 * paths in the FS
3254 		 */
3255 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3256 		    block_start == EXTENT_MAP_INLINE) {
3257 			/*
3258 			 * end_io notification does not happen here for
3259 			 * compressed extents
3260 			 */
3261 			if (!compressed && tree->ops &&
3262 			    tree->ops->writepage_end_io_hook)
3263 				tree->ops->writepage_end_io_hook(page, cur,
3264 							 cur + iosize - 1,
3265 							 NULL, 1);
3266 			else if (compressed) {
3267 				/* we don't want to end_page_writeback on
3268 				 * a compressed extent.  this happens
3269 				 * elsewhere
3270 				 */
3271 				nr++;
3272 			}
3273 
3274 			cur += iosize;
3275 			pg_offset += iosize;
3276 			continue;
3277 		}
3278 		/* leave this out until we have a page_mkwrite call */
3279 		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3280 				   EXTENT_DIRTY, 0, NULL)) {
3281 			cur = cur + iosize;
3282 			pg_offset += iosize;
3283 			continue;
3284 		}
3285 
3286 		if (tree->ops && tree->ops->writepage_io_hook) {
3287 			ret = tree->ops->writepage_io_hook(page, cur,
3288 						cur + iosize - 1);
3289 		} else {
3290 			ret = 0;
3291 		}
3292 		if (ret) {
3293 			SetPageError(page);
3294 		} else {
3295 			unsigned long max_nr = end_index + 1;
3296 
3297 			set_range_writeback(tree, cur, cur + iosize - 1);
3298 			if (!PageWriteback(page)) {
3299 				printk(KERN_ERR "btrfs warning page %lu not "
3300 				       "writeback, cur %llu end %llu\n",
3301 				       page->index, (unsigned long long)cur,
3302 				       (unsigned long long)end);
3303 			}
3304 
3305 			ret = submit_extent_page(write_flags, tree, page,
3306 						 sector, iosize, pg_offset,
3307 						 bdev, &epd->bio, max_nr,
3308 						 end_bio_extent_writepage,
3309 						 0, 0, 0);
3310 			if (ret)
3311 				SetPageError(page);
3312 		}
3313 		cur = cur + iosize;
3314 		pg_offset += iosize;
3315 		nr++;
3316 	}
3317 done:
3318 	if (nr == 0) {
3319 		/* make sure the mapping tag for page dirty gets cleared */
3320 		set_page_writeback(page);
3321 		end_page_writeback(page);
3322 	}
3323 	unlock_page(page);
3324 
3325 done_unlocked:
3326 
3327 	/* drop our reference on any cached states */
3328 	free_extent_state(cached_state);
3329 	return 0;
3330 }
3331 
3332 static int eb_wait(void *word)
3333 {
3334 	io_schedule();
3335 	return 0;
3336 }
3337 
3338 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3339 {
3340 	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3341 		    TASK_UNINTERRUPTIBLE);
3342 }
3343 
3344 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3345 				     struct btrfs_fs_info *fs_info,
3346 				     struct extent_page_data *epd)
3347 {
3348 	unsigned long i, num_pages;
3349 	int flush = 0;
3350 	int ret = 0;
3351 
3352 	if (!btrfs_try_tree_write_lock(eb)) {
3353 		flush = 1;
3354 		flush_write_bio(epd);
3355 		btrfs_tree_lock(eb);
3356 	}
3357 
3358 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3359 		btrfs_tree_unlock(eb);
3360 		if (!epd->sync_io)
3361 			return 0;
3362 		if (!flush) {
3363 			flush_write_bio(epd);
3364 			flush = 1;
3365 		}
3366 		while (1) {
3367 			wait_on_extent_buffer_writeback(eb);
3368 			btrfs_tree_lock(eb);
3369 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3370 				break;
3371 			btrfs_tree_unlock(eb);
3372 		}
3373 	}
3374 
3375 	/*
3376 	 * We need to do this to prevent races in people who check if the eb is
3377 	 * under IO since we can end up having no IO bits set for a short period
3378 	 * of time.
3379 	 */
3380 	spin_lock(&eb->refs_lock);
3381 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3382 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3383 		spin_unlock(&eb->refs_lock);
3384 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3385 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3386 				     -eb->len,
3387 				     fs_info->dirty_metadata_batch);
3388 		ret = 1;
3389 	} else {
3390 		spin_unlock(&eb->refs_lock);
3391 	}
3392 
3393 	btrfs_tree_unlock(eb);
3394 
3395 	if (!ret)
3396 		return ret;
3397 
3398 	num_pages = num_extent_pages(eb->start, eb->len);
3399 	for (i = 0; i < num_pages; i++) {
3400 		struct page *p = extent_buffer_page(eb, i);
3401 
3402 		if (!trylock_page(p)) {
3403 			if (!flush) {
3404 				flush_write_bio(epd);
3405 				flush = 1;
3406 			}
3407 			lock_page(p);
3408 		}
3409 	}
3410 
3411 	return ret;
3412 }
3413 
3414 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3415 {
3416 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3417 	smp_mb__after_clear_bit();
3418 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3419 }
3420 
3421 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3422 {
3423 	int uptodate = err == 0;
3424 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3425 	struct extent_buffer *eb;
3426 	int done;
3427 
3428 	do {
3429 		struct page *page = bvec->bv_page;
3430 
3431 		bvec--;
3432 		eb = (struct extent_buffer *)page->private;
3433 		BUG_ON(!eb);
3434 		done = atomic_dec_and_test(&eb->io_pages);
3435 
3436 		if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3437 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3438 			ClearPageUptodate(page);
3439 			SetPageError(page);
3440 		}
3441 
3442 		end_page_writeback(page);
3443 
3444 		if (!done)
3445 			continue;
3446 
3447 		end_extent_buffer_writeback(eb);
3448 	} while (bvec >= bio->bi_io_vec);
3449 
3450 	bio_put(bio);
3451 
3452 }
3453 
3454 static int write_one_eb(struct extent_buffer *eb,
3455 			struct btrfs_fs_info *fs_info,
3456 			struct writeback_control *wbc,
3457 			struct extent_page_data *epd)
3458 {
3459 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3460 	u64 offset = eb->start;
3461 	unsigned long i, num_pages;
3462 	unsigned long bio_flags = 0;
3463 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3464 	int ret = 0;
3465 
3466 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3467 	num_pages = num_extent_pages(eb->start, eb->len);
3468 	atomic_set(&eb->io_pages, num_pages);
3469 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3470 		bio_flags = EXTENT_BIO_TREE_LOG;
3471 
3472 	for (i = 0; i < num_pages; i++) {
3473 		struct page *p = extent_buffer_page(eb, i);
3474 
3475 		clear_page_dirty_for_io(p);
3476 		set_page_writeback(p);
3477 		ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3478 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3479 					 -1, end_bio_extent_buffer_writepage,
3480 					 0, epd->bio_flags, bio_flags);
3481 		epd->bio_flags = bio_flags;
3482 		if (ret) {
3483 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3484 			SetPageError(p);
3485 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3486 				end_extent_buffer_writeback(eb);
3487 			ret = -EIO;
3488 			break;
3489 		}
3490 		offset += PAGE_CACHE_SIZE;
3491 		update_nr_written(p, wbc, 1);
3492 		unlock_page(p);
3493 	}
3494 
3495 	if (unlikely(ret)) {
3496 		for (; i < num_pages; i++) {
3497 			struct page *p = extent_buffer_page(eb, i);
3498 			unlock_page(p);
3499 		}
3500 	}
3501 
3502 	return ret;
3503 }
3504 
3505 int btree_write_cache_pages(struct address_space *mapping,
3506 				   struct writeback_control *wbc)
3507 {
3508 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3509 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3510 	struct extent_buffer *eb, *prev_eb = NULL;
3511 	struct extent_page_data epd = {
3512 		.bio = NULL,
3513 		.tree = tree,
3514 		.extent_locked = 0,
3515 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3516 		.bio_flags = 0,
3517 	};
3518 	int ret = 0;
3519 	int done = 0;
3520 	int nr_to_write_done = 0;
3521 	struct pagevec pvec;
3522 	int nr_pages;
3523 	pgoff_t index;
3524 	pgoff_t end;		/* Inclusive */
3525 	int scanned = 0;
3526 	int tag;
3527 
3528 	pagevec_init(&pvec, 0);
3529 	if (wbc->range_cyclic) {
3530 		index = mapping->writeback_index; /* Start from prev offset */
3531 		end = -1;
3532 	} else {
3533 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3534 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3535 		scanned = 1;
3536 	}
3537 	if (wbc->sync_mode == WB_SYNC_ALL)
3538 		tag = PAGECACHE_TAG_TOWRITE;
3539 	else
3540 		tag = PAGECACHE_TAG_DIRTY;
3541 retry:
3542 	if (wbc->sync_mode == WB_SYNC_ALL)
3543 		tag_pages_for_writeback(mapping, index, end);
3544 	while (!done && !nr_to_write_done && (index <= end) &&
3545 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3546 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3547 		unsigned i;
3548 
3549 		scanned = 1;
3550 		for (i = 0; i < nr_pages; i++) {
3551 			struct page *page = pvec.pages[i];
3552 
3553 			if (!PagePrivate(page))
3554 				continue;
3555 
3556 			if (!wbc->range_cyclic && page->index > end) {
3557 				done = 1;
3558 				break;
3559 			}
3560 
3561 			spin_lock(&mapping->private_lock);
3562 			if (!PagePrivate(page)) {
3563 				spin_unlock(&mapping->private_lock);
3564 				continue;
3565 			}
3566 
3567 			eb = (struct extent_buffer *)page->private;
3568 
3569 			/*
3570 			 * Shouldn't happen and normally this would be a BUG_ON
3571 			 * but no sense in crashing the users box for something
3572 			 * we can survive anyway.
3573 			 */
3574 			if (!eb) {
3575 				spin_unlock(&mapping->private_lock);
3576 				WARN_ON(1);
3577 				continue;
3578 			}
3579 
3580 			if (eb == prev_eb) {
3581 				spin_unlock(&mapping->private_lock);
3582 				continue;
3583 			}
3584 
3585 			ret = atomic_inc_not_zero(&eb->refs);
3586 			spin_unlock(&mapping->private_lock);
3587 			if (!ret)
3588 				continue;
3589 
3590 			prev_eb = eb;
3591 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3592 			if (!ret) {
3593 				free_extent_buffer(eb);
3594 				continue;
3595 			}
3596 
3597 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3598 			if (ret) {
3599 				done = 1;
3600 				free_extent_buffer(eb);
3601 				break;
3602 			}
3603 			free_extent_buffer(eb);
3604 
3605 			/*
3606 			 * the filesystem may choose to bump up nr_to_write.
3607 			 * We have to make sure to honor the new nr_to_write
3608 			 * at any time
3609 			 */
3610 			nr_to_write_done = wbc->nr_to_write <= 0;
3611 		}
3612 		pagevec_release(&pvec);
3613 		cond_resched();
3614 	}
3615 	if (!scanned && !done) {
3616 		/*
3617 		 * We hit the last page and there is more work to be done: wrap
3618 		 * back to the start of the file
3619 		 */
3620 		scanned = 1;
3621 		index = 0;
3622 		goto retry;
3623 	}
3624 	flush_write_bio(&epd);
3625 	return ret;
3626 }
3627 
3628 /**
3629  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3630  * @mapping: address space structure to write
3631  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3632  * @writepage: function called for each page
3633  * @data: data passed to writepage function
3634  *
3635  * If a page is already under I/O, write_cache_pages() skips it, even
3636  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3637  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3638  * and msync() need to guarantee that all the data which was dirty at the time
3639  * the call was made get new I/O started against them.  If wbc->sync_mode is
3640  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3641  * existing IO to complete.
3642  */
3643 static int extent_write_cache_pages(struct extent_io_tree *tree,
3644 			     struct address_space *mapping,
3645 			     struct writeback_control *wbc,
3646 			     writepage_t writepage, void *data,
3647 			     void (*flush_fn)(void *))
3648 {
3649 	struct inode *inode = mapping->host;
3650 	int ret = 0;
3651 	int done = 0;
3652 	int nr_to_write_done = 0;
3653 	struct pagevec pvec;
3654 	int nr_pages;
3655 	pgoff_t index;
3656 	pgoff_t end;		/* Inclusive */
3657 	int scanned = 0;
3658 	int tag;
3659 
3660 	/*
3661 	 * We have to hold onto the inode so that ordered extents can do their
3662 	 * work when the IO finishes.  The alternative to this is failing to add
3663 	 * an ordered extent if the igrab() fails there and that is a huge pain
3664 	 * to deal with, so instead just hold onto the inode throughout the
3665 	 * writepages operation.  If it fails here we are freeing up the inode
3666 	 * anyway and we'd rather not waste our time writing out stuff that is
3667 	 * going to be truncated anyway.
3668 	 */
3669 	if (!igrab(inode))
3670 		return 0;
3671 
3672 	pagevec_init(&pvec, 0);
3673 	if (wbc->range_cyclic) {
3674 		index = mapping->writeback_index; /* Start from prev offset */
3675 		end = -1;
3676 	} else {
3677 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3678 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3679 		scanned = 1;
3680 	}
3681 	if (wbc->sync_mode == WB_SYNC_ALL)
3682 		tag = PAGECACHE_TAG_TOWRITE;
3683 	else
3684 		tag = PAGECACHE_TAG_DIRTY;
3685 retry:
3686 	if (wbc->sync_mode == WB_SYNC_ALL)
3687 		tag_pages_for_writeback(mapping, index, end);
3688 	while (!done && !nr_to_write_done && (index <= end) &&
3689 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3690 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3691 		unsigned i;
3692 
3693 		scanned = 1;
3694 		for (i = 0; i < nr_pages; i++) {
3695 			struct page *page = pvec.pages[i];
3696 
3697 			/*
3698 			 * At this point we hold neither mapping->tree_lock nor
3699 			 * lock on the page itself: the page may be truncated or
3700 			 * invalidated (changing page->mapping to NULL), or even
3701 			 * swizzled back from swapper_space to tmpfs file
3702 			 * mapping
3703 			 */
3704 			if (!trylock_page(page)) {
3705 				flush_fn(data);
3706 				lock_page(page);
3707 			}
3708 
3709 			if (unlikely(page->mapping != mapping)) {
3710 				unlock_page(page);
3711 				continue;
3712 			}
3713 
3714 			if (!wbc->range_cyclic && page->index > end) {
3715 				done = 1;
3716 				unlock_page(page);
3717 				continue;
3718 			}
3719 
3720 			if (wbc->sync_mode != WB_SYNC_NONE) {
3721 				if (PageWriteback(page))
3722 					flush_fn(data);
3723 				wait_on_page_writeback(page);
3724 			}
3725 
3726 			if (PageWriteback(page) ||
3727 			    !clear_page_dirty_for_io(page)) {
3728 				unlock_page(page);
3729 				continue;
3730 			}
3731 
3732 			ret = (*writepage)(page, wbc, data);
3733 
3734 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3735 				unlock_page(page);
3736 				ret = 0;
3737 			}
3738 			if (ret)
3739 				done = 1;
3740 
3741 			/*
3742 			 * the filesystem may choose to bump up nr_to_write.
3743 			 * We have to make sure to honor the new nr_to_write
3744 			 * at any time
3745 			 */
3746 			nr_to_write_done = wbc->nr_to_write <= 0;
3747 		}
3748 		pagevec_release(&pvec);
3749 		cond_resched();
3750 	}
3751 	if (!scanned && !done) {
3752 		/*
3753 		 * We hit the last page and there is more work to be done: wrap
3754 		 * back to the start of the file
3755 		 */
3756 		scanned = 1;
3757 		index = 0;
3758 		goto retry;
3759 	}
3760 	btrfs_add_delayed_iput(inode);
3761 	return ret;
3762 }
3763 
3764 static void flush_epd_write_bio(struct extent_page_data *epd)
3765 {
3766 	if (epd->bio) {
3767 		int rw = WRITE;
3768 		int ret;
3769 
3770 		if (epd->sync_io)
3771 			rw = WRITE_SYNC;
3772 
3773 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3774 		BUG_ON(ret < 0); /* -ENOMEM */
3775 		epd->bio = NULL;
3776 	}
3777 }
3778 
3779 static noinline void flush_write_bio(void *data)
3780 {
3781 	struct extent_page_data *epd = data;
3782 	flush_epd_write_bio(epd);
3783 }
3784 
3785 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3786 			  get_extent_t *get_extent,
3787 			  struct writeback_control *wbc)
3788 {
3789 	int ret;
3790 	struct extent_page_data epd = {
3791 		.bio = NULL,
3792 		.tree = tree,
3793 		.get_extent = get_extent,
3794 		.extent_locked = 0,
3795 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3796 		.bio_flags = 0,
3797 	};
3798 
3799 	ret = __extent_writepage(page, wbc, &epd);
3800 
3801 	flush_epd_write_bio(&epd);
3802 	return ret;
3803 }
3804 
3805 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3806 			      u64 start, u64 end, get_extent_t *get_extent,
3807 			      int mode)
3808 {
3809 	int ret = 0;
3810 	struct address_space *mapping = inode->i_mapping;
3811 	struct page *page;
3812 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3813 		PAGE_CACHE_SHIFT;
3814 
3815 	struct extent_page_data epd = {
3816 		.bio = NULL,
3817 		.tree = tree,
3818 		.get_extent = get_extent,
3819 		.extent_locked = 1,
3820 		.sync_io = mode == WB_SYNC_ALL,
3821 		.bio_flags = 0,
3822 	};
3823 	struct writeback_control wbc_writepages = {
3824 		.sync_mode	= mode,
3825 		.nr_to_write	= nr_pages * 2,
3826 		.range_start	= start,
3827 		.range_end	= end + 1,
3828 	};
3829 
3830 	while (start <= end) {
3831 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3832 		if (clear_page_dirty_for_io(page))
3833 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3834 		else {
3835 			if (tree->ops && tree->ops->writepage_end_io_hook)
3836 				tree->ops->writepage_end_io_hook(page, start,
3837 						 start + PAGE_CACHE_SIZE - 1,
3838 						 NULL, 1);
3839 			unlock_page(page);
3840 		}
3841 		page_cache_release(page);
3842 		start += PAGE_CACHE_SIZE;
3843 	}
3844 
3845 	flush_epd_write_bio(&epd);
3846 	return ret;
3847 }
3848 
3849 int extent_writepages(struct extent_io_tree *tree,
3850 		      struct address_space *mapping,
3851 		      get_extent_t *get_extent,
3852 		      struct writeback_control *wbc)
3853 {
3854 	int ret = 0;
3855 	struct extent_page_data epd = {
3856 		.bio = NULL,
3857 		.tree = tree,
3858 		.get_extent = get_extent,
3859 		.extent_locked = 0,
3860 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3861 		.bio_flags = 0,
3862 	};
3863 
3864 	ret = extent_write_cache_pages(tree, mapping, wbc,
3865 				       __extent_writepage, &epd,
3866 				       flush_write_bio);
3867 	flush_epd_write_bio(&epd);
3868 	return ret;
3869 }
3870 
3871 int extent_readpages(struct extent_io_tree *tree,
3872 		     struct address_space *mapping,
3873 		     struct list_head *pages, unsigned nr_pages,
3874 		     get_extent_t get_extent)
3875 {
3876 	struct bio *bio = NULL;
3877 	unsigned page_idx;
3878 	unsigned long bio_flags = 0;
3879 	struct page *pagepool[16];
3880 	struct page *page;
3881 	struct extent_map *em_cached = NULL;
3882 	int nr = 0;
3883 
3884 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3885 		page = list_entry(pages->prev, struct page, lru);
3886 
3887 		prefetchw(&page->flags);
3888 		list_del(&page->lru);
3889 		if (add_to_page_cache_lru(page, mapping,
3890 					page->index, GFP_NOFS)) {
3891 			page_cache_release(page);
3892 			continue;
3893 		}
3894 
3895 		pagepool[nr++] = page;
3896 		if (nr < ARRAY_SIZE(pagepool))
3897 			continue;
3898 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3899 				   &bio, 0, &bio_flags, READ);
3900 		nr = 0;
3901 	}
3902 	if (nr)
3903 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3904 				   &bio, 0, &bio_flags, READ);
3905 
3906 	if (em_cached)
3907 		free_extent_map(em_cached);
3908 
3909 	BUG_ON(!list_empty(pages));
3910 	if (bio)
3911 		return submit_one_bio(READ, bio, 0, bio_flags);
3912 	return 0;
3913 }
3914 
3915 /*
3916  * basic invalidatepage code, this waits on any locked or writeback
3917  * ranges corresponding to the page, and then deletes any extent state
3918  * records from the tree
3919  */
3920 int extent_invalidatepage(struct extent_io_tree *tree,
3921 			  struct page *page, unsigned long offset)
3922 {
3923 	struct extent_state *cached_state = NULL;
3924 	u64 start = page_offset(page);
3925 	u64 end = start + PAGE_CACHE_SIZE - 1;
3926 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3927 
3928 	start += ALIGN(offset, blocksize);
3929 	if (start > end)
3930 		return 0;
3931 
3932 	lock_extent_bits(tree, start, end, 0, &cached_state);
3933 	wait_on_page_writeback(page);
3934 	clear_extent_bit(tree, start, end,
3935 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3936 			 EXTENT_DO_ACCOUNTING,
3937 			 1, 1, &cached_state, GFP_NOFS);
3938 	return 0;
3939 }
3940 
3941 /*
3942  * a helper for releasepage, this tests for areas of the page that
3943  * are locked or under IO and drops the related state bits if it is safe
3944  * to drop the page.
3945  */
3946 static int try_release_extent_state(struct extent_map_tree *map,
3947 				    struct extent_io_tree *tree,
3948 				    struct page *page, gfp_t mask)
3949 {
3950 	u64 start = page_offset(page);
3951 	u64 end = start + PAGE_CACHE_SIZE - 1;
3952 	int ret = 1;
3953 
3954 	if (test_range_bit(tree, start, end,
3955 			   EXTENT_IOBITS, 0, NULL))
3956 		ret = 0;
3957 	else {
3958 		if ((mask & GFP_NOFS) == GFP_NOFS)
3959 			mask = GFP_NOFS;
3960 		/*
3961 		 * at this point we can safely clear everything except the
3962 		 * locked bit and the nodatasum bit
3963 		 */
3964 		ret = clear_extent_bit(tree, start, end,
3965 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3966 				 0, 0, NULL, mask);
3967 
3968 		/* if clear_extent_bit failed for enomem reasons,
3969 		 * we can't allow the release to continue.
3970 		 */
3971 		if (ret < 0)
3972 			ret = 0;
3973 		else
3974 			ret = 1;
3975 	}
3976 	return ret;
3977 }
3978 
3979 /*
3980  * a helper for releasepage.  As long as there are no locked extents
3981  * in the range corresponding to the page, both state records and extent
3982  * map records are removed
3983  */
3984 int try_release_extent_mapping(struct extent_map_tree *map,
3985 			       struct extent_io_tree *tree, struct page *page,
3986 			       gfp_t mask)
3987 {
3988 	struct extent_map *em;
3989 	u64 start = page_offset(page);
3990 	u64 end = start + PAGE_CACHE_SIZE - 1;
3991 
3992 	if ((mask & __GFP_WAIT) &&
3993 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
3994 		u64 len;
3995 		while (start <= end) {
3996 			len = end - start + 1;
3997 			write_lock(&map->lock);
3998 			em = lookup_extent_mapping(map, start, len);
3999 			if (!em) {
4000 				write_unlock(&map->lock);
4001 				break;
4002 			}
4003 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4004 			    em->start != start) {
4005 				write_unlock(&map->lock);
4006 				free_extent_map(em);
4007 				break;
4008 			}
4009 			if (!test_range_bit(tree, em->start,
4010 					    extent_map_end(em) - 1,
4011 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4012 					    0, NULL)) {
4013 				remove_extent_mapping(map, em);
4014 				/* once for the rb tree */
4015 				free_extent_map(em);
4016 			}
4017 			start = extent_map_end(em);
4018 			write_unlock(&map->lock);
4019 
4020 			/* once for us */
4021 			free_extent_map(em);
4022 		}
4023 	}
4024 	return try_release_extent_state(map, tree, page, mask);
4025 }
4026 
4027 /*
4028  * helper function for fiemap, which doesn't want to see any holes.
4029  * This maps until we find something past 'last'
4030  */
4031 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4032 						u64 offset,
4033 						u64 last,
4034 						get_extent_t *get_extent)
4035 {
4036 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4037 	struct extent_map *em;
4038 	u64 len;
4039 
4040 	if (offset >= last)
4041 		return NULL;
4042 
4043 	while(1) {
4044 		len = last - offset;
4045 		if (len == 0)
4046 			break;
4047 		len = ALIGN(len, sectorsize);
4048 		em = get_extent(inode, NULL, 0, offset, len, 0);
4049 		if (IS_ERR_OR_NULL(em))
4050 			return em;
4051 
4052 		/* if this isn't a hole return it */
4053 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4054 		    em->block_start != EXTENT_MAP_HOLE) {
4055 			return em;
4056 		}
4057 
4058 		/* this is a hole, advance to the next extent */
4059 		offset = extent_map_end(em);
4060 		free_extent_map(em);
4061 		if (offset >= last)
4062 			break;
4063 	}
4064 	return NULL;
4065 }
4066 
4067 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4068 		__u64 start, __u64 len, get_extent_t *get_extent)
4069 {
4070 	int ret = 0;
4071 	u64 off = start;
4072 	u64 max = start + len;
4073 	u32 flags = 0;
4074 	u32 found_type;
4075 	u64 last;
4076 	u64 last_for_get_extent = 0;
4077 	u64 disko = 0;
4078 	u64 isize = i_size_read(inode);
4079 	struct btrfs_key found_key;
4080 	struct extent_map *em = NULL;
4081 	struct extent_state *cached_state = NULL;
4082 	struct btrfs_path *path;
4083 	struct btrfs_file_extent_item *item;
4084 	int end = 0;
4085 	u64 em_start = 0;
4086 	u64 em_len = 0;
4087 	u64 em_end = 0;
4088 	unsigned long emflags;
4089 
4090 	if (len == 0)
4091 		return -EINVAL;
4092 
4093 	path = btrfs_alloc_path();
4094 	if (!path)
4095 		return -ENOMEM;
4096 	path->leave_spinning = 1;
4097 
4098 	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4099 	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4100 
4101 	/*
4102 	 * lookup the last file extent.  We're not using i_size here
4103 	 * because there might be preallocation past i_size
4104 	 */
4105 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4106 				       path, btrfs_ino(inode), -1, 0);
4107 	if (ret < 0) {
4108 		btrfs_free_path(path);
4109 		return ret;
4110 	}
4111 	WARN_ON(!ret);
4112 	path->slots[0]--;
4113 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4114 			      struct btrfs_file_extent_item);
4115 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4116 	found_type = btrfs_key_type(&found_key);
4117 
4118 	/* No extents, but there might be delalloc bits */
4119 	if (found_key.objectid != btrfs_ino(inode) ||
4120 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4121 		/* have to trust i_size as the end */
4122 		last = (u64)-1;
4123 		last_for_get_extent = isize;
4124 	} else {
4125 		/*
4126 		 * remember the start of the last extent.  There are a
4127 		 * bunch of different factors that go into the length of the
4128 		 * extent, so its much less complex to remember where it started
4129 		 */
4130 		last = found_key.offset;
4131 		last_for_get_extent = last + 1;
4132 	}
4133 	btrfs_free_path(path);
4134 
4135 	/*
4136 	 * we might have some extents allocated but more delalloc past those
4137 	 * extents.  so, we trust isize unless the start of the last extent is
4138 	 * beyond isize
4139 	 */
4140 	if (last < isize) {
4141 		last = (u64)-1;
4142 		last_for_get_extent = isize;
4143 	}
4144 
4145 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4146 			 &cached_state);
4147 
4148 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4149 				   get_extent);
4150 	if (!em)
4151 		goto out;
4152 	if (IS_ERR(em)) {
4153 		ret = PTR_ERR(em);
4154 		goto out;
4155 	}
4156 
4157 	while (!end) {
4158 		u64 offset_in_extent = 0;
4159 
4160 		/* break if the extent we found is outside the range */
4161 		if (em->start >= max || extent_map_end(em) < off)
4162 			break;
4163 
4164 		/*
4165 		 * get_extent may return an extent that starts before our
4166 		 * requested range.  We have to make sure the ranges
4167 		 * we return to fiemap always move forward and don't
4168 		 * overlap, so adjust the offsets here
4169 		 */
4170 		em_start = max(em->start, off);
4171 
4172 		/*
4173 		 * record the offset from the start of the extent
4174 		 * for adjusting the disk offset below.  Only do this if the
4175 		 * extent isn't compressed since our in ram offset may be past
4176 		 * what we have actually allocated on disk.
4177 		 */
4178 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4179 			offset_in_extent = em_start - em->start;
4180 		em_end = extent_map_end(em);
4181 		em_len = em_end - em_start;
4182 		emflags = em->flags;
4183 		disko = 0;
4184 		flags = 0;
4185 
4186 		/*
4187 		 * bump off for our next call to get_extent
4188 		 */
4189 		off = extent_map_end(em);
4190 		if (off >= max)
4191 			end = 1;
4192 
4193 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4194 			end = 1;
4195 			flags |= FIEMAP_EXTENT_LAST;
4196 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4197 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4198 				  FIEMAP_EXTENT_NOT_ALIGNED);
4199 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4200 			flags |= (FIEMAP_EXTENT_DELALLOC |
4201 				  FIEMAP_EXTENT_UNKNOWN);
4202 		} else {
4203 			disko = em->block_start + offset_in_extent;
4204 		}
4205 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4206 			flags |= FIEMAP_EXTENT_ENCODED;
4207 
4208 		free_extent_map(em);
4209 		em = NULL;
4210 		if ((em_start >= last) || em_len == (u64)-1 ||
4211 		   (last == (u64)-1 && isize <= em_end)) {
4212 			flags |= FIEMAP_EXTENT_LAST;
4213 			end = 1;
4214 		}
4215 
4216 		/* now scan forward to see if this is really the last extent. */
4217 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4218 					   get_extent);
4219 		if (IS_ERR(em)) {
4220 			ret = PTR_ERR(em);
4221 			goto out;
4222 		}
4223 		if (!em) {
4224 			flags |= FIEMAP_EXTENT_LAST;
4225 			end = 1;
4226 		}
4227 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4228 					      em_len, flags);
4229 		if (ret)
4230 			goto out_free;
4231 	}
4232 out_free:
4233 	free_extent_map(em);
4234 out:
4235 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4236 			     &cached_state, GFP_NOFS);
4237 	return ret;
4238 }
4239 
4240 static void __free_extent_buffer(struct extent_buffer *eb)
4241 {
4242 	btrfs_leak_debug_del(&eb->leak_list);
4243 	kmem_cache_free(extent_buffer_cache, eb);
4244 }
4245 
4246 static int extent_buffer_under_io(struct extent_buffer *eb)
4247 {
4248 	return (atomic_read(&eb->io_pages) ||
4249 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4250 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4251 }
4252 
4253 /*
4254  * Helper for releasing extent buffer page.
4255  */
4256 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4257 						unsigned long start_idx)
4258 {
4259 	unsigned long index;
4260 	unsigned long num_pages;
4261 	struct page *page;
4262 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4263 
4264 	BUG_ON(extent_buffer_under_io(eb));
4265 
4266 	num_pages = num_extent_pages(eb->start, eb->len);
4267 	index = start_idx + num_pages;
4268 	if (start_idx >= index)
4269 		return;
4270 
4271 	do {
4272 		index--;
4273 		page = extent_buffer_page(eb, index);
4274 		if (page && mapped) {
4275 			spin_lock(&page->mapping->private_lock);
4276 			/*
4277 			 * We do this since we'll remove the pages after we've
4278 			 * removed the eb from the radix tree, so we could race
4279 			 * and have this page now attached to the new eb.  So
4280 			 * only clear page_private if it's still connected to
4281 			 * this eb.
4282 			 */
4283 			if (PagePrivate(page) &&
4284 			    page->private == (unsigned long)eb) {
4285 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4286 				BUG_ON(PageDirty(page));
4287 				BUG_ON(PageWriteback(page));
4288 				/*
4289 				 * We need to make sure we haven't be attached
4290 				 * to a new eb.
4291 				 */
4292 				ClearPagePrivate(page);
4293 				set_page_private(page, 0);
4294 				/* One for the page private */
4295 				page_cache_release(page);
4296 			}
4297 			spin_unlock(&page->mapping->private_lock);
4298 
4299 		}
4300 		if (page) {
4301 			/* One for when we alloced the page */
4302 			page_cache_release(page);
4303 		}
4304 	} while (index != start_idx);
4305 }
4306 
4307 /*
4308  * Helper for releasing the extent buffer.
4309  */
4310 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4311 {
4312 	btrfs_release_extent_buffer_page(eb, 0);
4313 	__free_extent_buffer(eb);
4314 }
4315 
4316 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4317 						   u64 start,
4318 						   unsigned long len,
4319 						   gfp_t mask)
4320 {
4321 	struct extent_buffer *eb = NULL;
4322 
4323 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4324 	if (eb == NULL)
4325 		return NULL;
4326 	eb->start = start;
4327 	eb->len = len;
4328 	eb->tree = tree;
4329 	eb->bflags = 0;
4330 	rwlock_init(&eb->lock);
4331 	atomic_set(&eb->write_locks, 0);
4332 	atomic_set(&eb->read_locks, 0);
4333 	atomic_set(&eb->blocking_readers, 0);
4334 	atomic_set(&eb->blocking_writers, 0);
4335 	atomic_set(&eb->spinning_readers, 0);
4336 	atomic_set(&eb->spinning_writers, 0);
4337 	eb->lock_nested = 0;
4338 	init_waitqueue_head(&eb->write_lock_wq);
4339 	init_waitqueue_head(&eb->read_lock_wq);
4340 
4341 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4342 
4343 	spin_lock_init(&eb->refs_lock);
4344 	atomic_set(&eb->refs, 1);
4345 	atomic_set(&eb->io_pages, 0);
4346 
4347 	/*
4348 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4349 	 */
4350 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4351 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4352 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4353 
4354 	return eb;
4355 }
4356 
4357 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4358 {
4359 	unsigned long i;
4360 	struct page *p;
4361 	struct extent_buffer *new;
4362 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4363 
4364 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4365 	if (new == NULL)
4366 		return NULL;
4367 
4368 	for (i = 0; i < num_pages; i++) {
4369 		p = alloc_page(GFP_NOFS);
4370 		if (!p) {
4371 			btrfs_release_extent_buffer(new);
4372 			return NULL;
4373 		}
4374 		attach_extent_buffer_page(new, p);
4375 		WARN_ON(PageDirty(p));
4376 		SetPageUptodate(p);
4377 		new->pages[i] = p;
4378 	}
4379 
4380 	copy_extent_buffer(new, src, 0, 0, src->len);
4381 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4382 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4383 
4384 	return new;
4385 }
4386 
4387 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4388 {
4389 	struct extent_buffer *eb;
4390 	unsigned long num_pages = num_extent_pages(0, len);
4391 	unsigned long i;
4392 
4393 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4394 	if (!eb)
4395 		return NULL;
4396 
4397 	for (i = 0; i < num_pages; i++) {
4398 		eb->pages[i] = alloc_page(GFP_NOFS);
4399 		if (!eb->pages[i])
4400 			goto err;
4401 	}
4402 	set_extent_buffer_uptodate(eb);
4403 	btrfs_set_header_nritems(eb, 0);
4404 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4405 
4406 	return eb;
4407 err:
4408 	for (; i > 0; i--)
4409 		__free_page(eb->pages[i - 1]);
4410 	__free_extent_buffer(eb);
4411 	return NULL;
4412 }
4413 
4414 static void check_buffer_tree_ref(struct extent_buffer *eb)
4415 {
4416 	int refs;
4417 	/* the ref bit is tricky.  We have to make sure it is set
4418 	 * if we have the buffer dirty.   Otherwise the
4419 	 * code to free a buffer can end up dropping a dirty
4420 	 * page
4421 	 *
4422 	 * Once the ref bit is set, it won't go away while the
4423 	 * buffer is dirty or in writeback, and it also won't
4424 	 * go away while we have the reference count on the
4425 	 * eb bumped.
4426 	 *
4427 	 * We can't just set the ref bit without bumping the
4428 	 * ref on the eb because free_extent_buffer might
4429 	 * see the ref bit and try to clear it.  If this happens
4430 	 * free_extent_buffer might end up dropping our original
4431 	 * ref by mistake and freeing the page before we are able
4432 	 * to add one more ref.
4433 	 *
4434 	 * So bump the ref count first, then set the bit.  If someone
4435 	 * beat us to it, drop the ref we added.
4436 	 */
4437 	refs = atomic_read(&eb->refs);
4438 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4439 		return;
4440 
4441 	spin_lock(&eb->refs_lock);
4442 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4443 		atomic_inc(&eb->refs);
4444 	spin_unlock(&eb->refs_lock);
4445 }
4446 
4447 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4448 {
4449 	unsigned long num_pages, i;
4450 
4451 	check_buffer_tree_ref(eb);
4452 
4453 	num_pages = num_extent_pages(eb->start, eb->len);
4454 	for (i = 0; i < num_pages; i++) {
4455 		struct page *p = extent_buffer_page(eb, i);
4456 		mark_page_accessed(p);
4457 	}
4458 }
4459 
4460 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4461 					  u64 start, unsigned long len)
4462 {
4463 	unsigned long num_pages = num_extent_pages(start, len);
4464 	unsigned long i;
4465 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4466 	struct extent_buffer *eb;
4467 	struct extent_buffer *exists = NULL;
4468 	struct page *p;
4469 	struct address_space *mapping = tree->mapping;
4470 	int uptodate = 1;
4471 	int ret;
4472 
4473 	rcu_read_lock();
4474 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4475 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4476 		rcu_read_unlock();
4477 		mark_extent_buffer_accessed(eb);
4478 		return eb;
4479 	}
4480 	rcu_read_unlock();
4481 
4482 	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4483 	if (!eb)
4484 		return NULL;
4485 
4486 	for (i = 0; i < num_pages; i++, index++) {
4487 		p = find_or_create_page(mapping, index, GFP_NOFS);
4488 		if (!p)
4489 			goto free_eb;
4490 
4491 		spin_lock(&mapping->private_lock);
4492 		if (PagePrivate(p)) {
4493 			/*
4494 			 * We could have already allocated an eb for this page
4495 			 * and attached one so lets see if we can get a ref on
4496 			 * the existing eb, and if we can we know it's good and
4497 			 * we can just return that one, else we know we can just
4498 			 * overwrite page->private.
4499 			 */
4500 			exists = (struct extent_buffer *)p->private;
4501 			if (atomic_inc_not_zero(&exists->refs)) {
4502 				spin_unlock(&mapping->private_lock);
4503 				unlock_page(p);
4504 				page_cache_release(p);
4505 				mark_extent_buffer_accessed(exists);
4506 				goto free_eb;
4507 			}
4508 
4509 			/*
4510 			 * Do this so attach doesn't complain and we need to
4511 			 * drop the ref the old guy had.
4512 			 */
4513 			ClearPagePrivate(p);
4514 			WARN_ON(PageDirty(p));
4515 			page_cache_release(p);
4516 		}
4517 		attach_extent_buffer_page(eb, p);
4518 		spin_unlock(&mapping->private_lock);
4519 		WARN_ON(PageDirty(p));
4520 		mark_page_accessed(p);
4521 		eb->pages[i] = p;
4522 		if (!PageUptodate(p))
4523 			uptodate = 0;
4524 
4525 		/*
4526 		 * see below about how we avoid a nasty race with release page
4527 		 * and why we unlock later
4528 		 */
4529 	}
4530 	if (uptodate)
4531 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4532 again:
4533 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4534 	if (ret)
4535 		goto free_eb;
4536 
4537 	spin_lock(&tree->buffer_lock);
4538 	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4539 	if (ret == -EEXIST) {
4540 		exists = radix_tree_lookup(&tree->buffer,
4541 						start >> PAGE_CACHE_SHIFT);
4542 		if (!atomic_inc_not_zero(&exists->refs)) {
4543 			spin_unlock(&tree->buffer_lock);
4544 			radix_tree_preload_end();
4545 			exists = NULL;
4546 			goto again;
4547 		}
4548 		spin_unlock(&tree->buffer_lock);
4549 		radix_tree_preload_end();
4550 		mark_extent_buffer_accessed(exists);
4551 		goto free_eb;
4552 	}
4553 	/* add one reference for the tree */
4554 	check_buffer_tree_ref(eb);
4555 	spin_unlock(&tree->buffer_lock);
4556 	radix_tree_preload_end();
4557 
4558 	/*
4559 	 * there is a race where release page may have
4560 	 * tried to find this extent buffer in the radix
4561 	 * but failed.  It will tell the VM it is safe to
4562 	 * reclaim the, and it will clear the page private bit.
4563 	 * We must make sure to set the page private bit properly
4564 	 * after the extent buffer is in the radix tree so
4565 	 * it doesn't get lost
4566 	 */
4567 	SetPageChecked(eb->pages[0]);
4568 	for (i = 1; i < num_pages; i++) {
4569 		p = extent_buffer_page(eb, i);
4570 		ClearPageChecked(p);
4571 		unlock_page(p);
4572 	}
4573 	unlock_page(eb->pages[0]);
4574 	return eb;
4575 
4576 free_eb:
4577 	for (i = 0; i < num_pages; i++) {
4578 		if (eb->pages[i])
4579 			unlock_page(eb->pages[i]);
4580 	}
4581 
4582 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4583 	btrfs_release_extent_buffer(eb);
4584 	return exists;
4585 }
4586 
4587 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4588 					 u64 start, unsigned long len)
4589 {
4590 	struct extent_buffer *eb;
4591 
4592 	rcu_read_lock();
4593 	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4594 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4595 		rcu_read_unlock();
4596 		mark_extent_buffer_accessed(eb);
4597 		return eb;
4598 	}
4599 	rcu_read_unlock();
4600 
4601 	return NULL;
4602 }
4603 
4604 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4605 {
4606 	struct extent_buffer *eb =
4607 			container_of(head, struct extent_buffer, rcu_head);
4608 
4609 	__free_extent_buffer(eb);
4610 }
4611 
4612 /* Expects to have eb->eb_lock already held */
4613 static int release_extent_buffer(struct extent_buffer *eb)
4614 {
4615 	WARN_ON(atomic_read(&eb->refs) == 0);
4616 	if (atomic_dec_and_test(&eb->refs)) {
4617 		if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4618 			spin_unlock(&eb->refs_lock);
4619 		} else {
4620 			struct extent_io_tree *tree = eb->tree;
4621 
4622 			spin_unlock(&eb->refs_lock);
4623 
4624 			spin_lock(&tree->buffer_lock);
4625 			radix_tree_delete(&tree->buffer,
4626 					  eb->start >> PAGE_CACHE_SHIFT);
4627 			spin_unlock(&tree->buffer_lock);
4628 		}
4629 
4630 		/* Should be safe to release our pages at this point */
4631 		btrfs_release_extent_buffer_page(eb, 0);
4632 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4633 		return 1;
4634 	}
4635 	spin_unlock(&eb->refs_lock);
4636 
4637 	return 0;
4638 }
4639 
4640 void free_extent_buffer(struct extent_buffer *eb)
4641 {
4642 	int refs;
4643 	int old;
4644 	if (!eb)
4645 		return;
4646 
4647 	while (1) {
4648 		refs = atomic_read(&eb->refs);
4649 		if (refs <= 3)
4650 			break;
4651 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4652 		if (old == refs)
4653 			return;
4654 	}
4655 
4656 	spin_lock(&eb->refs_lock);
4657 	if (atomic_read(&eb->refs) == 2 &&
4658 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4659 		atomic_dec(&eb->refs);
4660 
4661 	if (atomic_read(&eb->refs) == 2 &&
4662 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4663 	    !extent_buffer_under_io(eb) &&
4664 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4665 		atomic_dec(&eb->refs);
4666 
4667 	/*
4668 	 * I know this is terrible, but it's temporary until we stop tracking
4669 	 * the uptodate bits and such for the extent buffers.
4670 	 */
4671 	release_extent_buffer(eb);
4672 }
4673 
4674 void free_extent_buffer_stale(struct extent_buffer *eb)
4675 {
4676 	if (!eb)
4677 		return;
4678 
4679 	spin_lock(&eb->refs_lock);
4680 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4681 
4682 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4683 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4684 		atomic_dec(&eb->refs);
4685 	release_extent_buffer(eb);
4686 }
4687 
4688 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4689 {
4690 	unsigned long i;
4691 	unsigned long num_pages;
4692 	struct page *page;
4693 
4694 	num_pages = num_extent_pages(eb->start, eb->len);
4695 
4696 	for (i = 0; i < num_pages; i++) {
4697 		page = extent_buffer_page(eb, i);
4698 		if (!PageDirty(page))
4699 			continue;
4700 
4701 		lock_page(page);
4702 		WARN_ON(!PagePrivate(page));
4703 
4704 		clear_page_dirty_for_io(page);
4705 		spin_lock_irq(&page->mapping->tree_lock);
4706 		if (!PageDirty(page)) {
4707 			radix_tree_tag_clear(&page->mapping->page_tree,
4708 						page_index(page),
4709 						PAGECACHE_TAG_DIRTY);
4710 		}
4711 		spin_unlock_irq(&page->mapping->tree_lock);
4712 		ClearPageError(page);
4713 		unlock_page(page);
4714 	}
4715 	WARN_ON(atomic_read(&eb->refs) == 0);
4716 }
4717 
4718 int set_extent_buffer_dirty(struct extent_buffer *eb)
4719 {
4720 	unsigned long i;
4721 	unsigned long num_pages;
4722 	int was_dirty = 0;
4723 
4724 	check_buffer_tree_ref(eb);
4725 
4726 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4727 
4728 	num_pages = num_extent_pages(eb->start, eb->len);
4729 	WARN_ON(atomic_read(&eb->refs) == 0);
4730 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4731 
4732 	for (i = 0; i < num_pages; i++)
4733 		set_page_dirty(extent_buffer_page(eb, i));
4734 	return was_dirty;
4735 }
4736 
4737 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4738 {
4739 	unsigned long i;
4740 	struct page *page;
4741 	unsigned long num_pages;
4742 
4743 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4744 	num_pages = num_extent_pages(eb->start, eb->len);
4745 	for (i = 0; i < num_pages; i++) {
4746 		page = extent_buffer_page(eb, i);
4747 		if (page)
4748 			ClearPageUptodate(page);
4749 	}
4750 	return 0;
4751 }
4752 
4753 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4754 {
4755 	unsigned long i;
4756 	struct page *page;
4757 	unsigned long num_pages;
4758 
4759 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4760 	num_pages = num_extent_pages(eb->start, eb->len);
4761 	for (i = 0; i < num_pages; i++) {
4762 		page = extent_buffer_page(eb, i);
4763 		SetPageUptodate(page);
4764 	}
4765 	return 0;
4766 }
4767 
4768 int extent_buffer_uptodate(struct extent_buffer *eb)
4769 {
4770 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4771 }
4772 
4773 int read_extent_buffer_pages(struct extent_io_tree *tree,
4774 			     struct extent_buffer *eb, u64 start, int wait,
4775 			     get_extent_t *get_extent, int mirror_num)
4776 {
4777 	unsigned long i;
4778 	unsigned long start_i;
4779 	struct page *page;
4780 	int err;
4781 	int ret = 0;
4782 	int locked_pages = 0;
4783 	int all_uptodate = 1;
4784 	unsigned long num_pages;
4785 	unsigned long num_reads = 0;
4786 	struct bio *bio = NULL;
4787 	unsigned long bio_flags = 0;
4788 
4789 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4790 		return 0;
4791 
4792 	if (start) {
4793 		WARN_ON(start < eb->start);
4794 		start_i = (start >> PAGE_CACHE_SHIFT) -
4795 			(eb->start >> PAGE_CACHE_SHIFT);
4796 	} else {
4797 		start_i = 0;
4798 	}
4799 
4800 	num_pages = num_extent_pages(eb->start, eb->len);
4801 	for (i = start_i; i < num_pages; i++) {
4802 		page = extent_buffer_page(eb, i);
4803 		if (wait == WAIT_NONE) {
4804 			if (!trylock_page(page))
4805 				goto unlock_exit;
4806 		} else {
4807 			lock_page(page);
4808 		}
4809 		locked_pages++;
4810 		if (!PageUptodate(page)) {
4811 			num_reads++;
4812 			all_uptodate = 0;
4813 		}
4814 	}
4815 	if (all_uptodate) {
4816 		if (start_i == 0)
4817 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4818 		goto unlock_exit;
4819 	}
4820 
4821 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4822 	eb->read_mirror = 0;
4823 	atomic_set(&eb->io_pages, num_reads);
4824 	for (i = start_i; i < num_pages; i++) {
4825 		page = extent_buffer_page(eb, i);
4826 		if (!PageUptodate(page)) {
4827 			ClearPageError(page);
4828 			err = __extent_read_full_page(tree, page,
4829 						      get_extent, &bio,
4830 						      mirror_num, &bio_flags,
4831 						      READ | REQ_META);
4832 			if (err)
4833 				ret = err;
4834 		} else {
4835 			unlock_page(page);
4836 		}
4837 	}
4838 
4839 	if (bio) {
4840 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4841 				     bio_flags);
4842 		if (err)
4843 			return err;
4844 	}
4845 
4846 	if (ret || wait != WAIT_COMPLETE)
4847 		return ret;
4848 
4849 	for (i = start_i; i < num_pages; i++) {
4850 		page = extent_buffer_page(eb, i);
4851 		wait_on_page_locked(page);
4852 		if (!PageUptodate(page))
4853 			ret = -EIO;
4854 	}
4855 
4856 	return ret;
4857 
4858 unlock_exit:
4859 	i = start_i;
4860 	while (locked_pages > 0) {
4861 		page = extent_buffer_page(eb, i);
4862 		i++;
4863 		unlock_page(page);
4864 		locked_pages--;
4865 	}
4866 	return ret;
4867 }
4868 
4869 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4870 			unsigned long start,
4871 			unsigned long len)
4872 {
4873 	size_t cur;
4874 	size_t offset;
4875 	struct page *page;
4876 	char *kaddr;
4877 	char *dst = (char *)dstv;
4878 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4879 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4880 
4881 	WARN_ON(start > eb->len);
4882 	WARN_ON(start + len > eb->start + eb->len);
4883 
4884 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4885 
4886 	while (len > 0) {
4887 		page = extent_buffer_page(eb, i);
4888 
4889 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4890 		kaddr = page_address(page);
4891 		memcpy(dst, kaddr + offset, cur);
4892 
4893 		dst += cur;
4894 		len -= cur;
4895 		offset = 0;
4896 		i++;
4897 	}
4898 }
4899 
4900 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4901 			       unsigned long min_len, char **map,
4902 			       unsigned long *map_start,
4903 			       unsigned long *map_len)
4904 {
4905 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4906 	char *kaddr;
4907 	struct page *p;
4908 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4909 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4910 	unsigned long end_i = (start_offset + start + min_len - 1) >>
4911 		PAGE_CACHE_SHIFT;
4912 
4913 	if (i != end_i)
4914 		return -EINVAL;
4915 
4916 	if (i == 0) {
4917 		offset = start_offset;
4918 		*map_start = 0;
4919 	} else {
4920 		offset = 0;
4921 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4922 	}
4923 
4924 	if (start + min_len > eb->len) {
4925 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4926 		       "wanted %lu %lu\n", (unsigned long long)eb->start,
4927 		       eb->len, start, min_len);
4928 		return -EINVAL;
4929 	}
4930 
4931 	p = extent_buffer_page(eb, i);
4932 	kaddr = page_address(p);
4933 	*map = kaddr + offset;
4934 	*map_len = PAGE_CACHE_SIZE - offset;
4935 	return 0;
4936 }
4937 
4938 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4939 			  unsigned long start,
4940 			  unsigned long len)
4941 {
4942 	size_t cur;
4943 	size_t offset;
4944 	struct page *page;
4945 	char *kaddr;
4946 	char *ptr = (char *)ptrv;
4947 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4948 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4949 	int ret = 0;
4950 
4951 	WARN_ON(start > eb->len);
4952 	WARN_ON(start + len > eb->start + eb->len);
4953 
4954 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4955 
4956 	while (len > 0) {
4957 		page = extent_buffer_page(eb, i);
4958 
4959 		cur = min(len, (PAGE_CACHE_SIZE - offset));
4960 
4961 		kaddr = page_address(page);
4962 		ret = memcmp(ptr, kaddr + offset, cur);
4963 		if (ret)
4964 			break;
4965 
4966 		ptr += cur;
4967 		len -= cur;
4968 		offset = 0;
4969 		i++;
4970 	}
4971 	return ret;
4972 }
4973 
4974 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4975 			 unsigned long start, unsigned long len)
4976 {
4977 	size_t cur;
4978 	size_t offset;
4979 	struct page *page;
4980 	char *kaddr;
4981 	char *src = (char *)srcv;
4982 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4983 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4984 
4985 	WARN_ON(start > eb->len);
4986 	WARN_ON(start + len > eb->start + eb->len);
4987 
4988 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4989 
4990 	while (len > 0) {
4991 		page = extent_buffer_page(eb, i);
4992 		WARN_ON(!PageUptodate(page));
4993 
4994 		cur = min(len, PAGE_CACHE_SIZE - offset);
4995 		kaddr = page_address(page);
4996 		memcpy(kaddr + offset, src, cur);
4997 
4998 		src += cur;
4999 		len -= cur;
5000 		offset = 0;
5001 		i++;
5002 	}
5003 }
5004 
5005 void memset_extent_buffer(struct extent_buffer *eb, char c,
5006 			  unsigned long start, unsigned long len)
5007 {
5008 	size_t cur;
5009 	size_t offset;
5010 	struct page *page;
5011 	char *kaddr;
5012 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5013 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5014 
5015 	WARN_ON(start > eb->len);
5016 	WARN_ON(start + len > eb->start + eb->len);
5017 
5018 	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
5019 
5020 	while (len > 0) {
5021 		page = extent_buffer_page(eb, i);
5022 		WARN_ON(!PageUptodate(page));
5023 
5024 		cur = min(len, PAGE_CACHE_SIZE - offset);
5025 		kaddr = page_address(page);
5026 		memset(kaddr + offset, c, cur);
5027 
5028 		len -= cur;
5029 		offset = 0;
5030 		i++;
5031 	}
5032 }
5033 
5034 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5035 			unsigned long dst_offset, unsigned long src_offset,
5036 			unsigned long len)
5037 {
5038 	u64 dst_len = dst->len;
5039 	size_t cur;
5040 	size_t offset;
5041 	struct page *page;
5042 	char *kaddr;
5043 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5044 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5045 
5046 	WARN_ON(src->len != dst_len);
5047 
5048 	offset = (start_offset + dst_offset) &
5049 		((unsigned long)PAGE_CACHE_SIZE - 1);
5050 
5051 	while (len > 0) {
5052 		page = extent_buffer_page(dst, i);
5053 		WARN_ON(!PageUptodate(page));
5054 
5055 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5056 
5057 		kaddr = page_address(page);
5058 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5059 
5060 		src_offset += cur;
5061 		len -= cur;
5062 		offset = 0;
5063 		i++;
5064 	}
5065 }
5066 
5067 static void move_pages(struct page *dst_page, struct page *src_page,
5068 		       unsigned long dst_off, unsigned long src_off,
5069 		       unsigned long len)
5070 {
5071 	char *dst_kaddr = page_address(dst_page);
5072 	if (dst_page == src_page) {
5073 		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5074 	} else {
5075 		char *src_kaddr = page_address(src_page);
5076 		char *p = dst_kaddr + dst_off + len;
5077 		char *s = src_kaddr + src_off + len;
5078 
5079 		while (len--)
5080 			*--p = *--s;
5081 	}
5082 }
5083 
5084 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5085 {
5086 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5087 	return distance < len;
5088 }
5089 
5090 static void copy_pages(struct page *dst_page, struct page *src_page,
5091 		       unsigned long dst_off, unsigned long src_off,
5092 		       unsigned long len)
5093 {
5094 	char *dst_kaddr = page_address(dst_page);
5095 	char *src_kaddr;
5096 	int must_memmove = 0;
5097 
5098 	if (dst_page != src_page) {
5099 		src_kaddr = page_address(src_page);
5100 	} else {
5101 		src_kaddr = dst_kaddr;
5102 		if (areas_overlap(src_off, dst_off, len))
5103 			must_memmove = 1;
5104 	}
5105 
5106 	if (must_memmove)
5107 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5108 	else
5109 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5110 }
5111 
5112 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5113 			   unsigned long src_offset, unsigned long len)
5114 {
5115 	size_t cur;
5116 	size_t dst_off_in_page;
5117 	size_t src_off_in_page;
5118 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5119 	unsigned long dst_i;
5120 	unsigned long src_i;
5121 
5122 	if (src_offset + len > dst->len) {
5123 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5124 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5125 		BUG_ON(1);
5126 	}
5127 	if (dst_offset + len > dst->len) {
5128 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5129 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5130 		BUG_ON(1);
5131 	}
5132 
5133 	while (len > 0) {
5134 		dst_off_in_page = (start_offset + dst_offset) &
5135 			((unsigned long)PAGE_CACHE_SIZE - 1);
5136 		src_off_in_page = (start_offset + src_offset) &
5137 			((unsigned long)PAGE_CACHE_SIZE - 1);
5138 
5139 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5140 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5141 
5142 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5143 					       src_off_in_page));
5144 		cur = min_t(unsigned long, cur,
5145 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5146 
5147 		copy_pages(extent_buffer_page(dst, dst_i),
5148 			   extent_buffer_page(dst, src_i),
5149 			   dst_off_in_page, src_off_in_page, cur);
5150 
5151 		src_offset += cur;
5152 		dst_offset += cur;
5153 		len -= cur;
5154 	}
5155 }
5156 
5157 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5158 			   unsigned long src_offset, unsigned long len)
5159 {
5160 	size_t cur;
5161 	size_t dst_off_in_page;
5162 	size_t src_off_in_page;
5163 	unsigned long dst_end = dst_offset + len - 1;
5164 	unsigned long src_end = src_offset + len - 1;
5165 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5166 	unsigned long dst_i;
5167 	unsigned long src_i;
5168 
5169 	if (src_offset + len > dst->len) {
5170 		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5171 		       "len %lu len %lu\n", src_offset, len, dst->len);
5172 		BUG_ON(1);
5173 	}
5174 	if (dst_offset + len > dst->len) {
5175 		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5176 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5177 		BUG_ON(1);
5178 	}
5179 	if (dst_offset < src_offset) {
5180 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5181 		return;
5182 	}
5183 	while (len > 0) {
5184 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5185 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5186 
5187 		dst_off_in_page = (start_offset + dst_end) &
5188 			((unsigned long)PAGE_CACHE_SIZE - 1);
5189 		src_off_in_page = (start_offset + src_end) &
5190 			((unsigned long)PAGE_CACHE_SIZE - 1);
5191 
5192 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5193 		cur = min(cur, dst_off_in_page + 1);
5194 		move_pages(extent_buffer_page(dst, dst_i),
5195 			   extent_buffer_page(dst, src_i),
5196 			   dst_off_in_page - cur + 1,
5197 			   src_off_in_page - cur + 1, cur);
5198 
5199 		dst_end -= cur;
5200 		src_end -= cur;
5201 		len -= cur;
5202 	}
5203 }
5204 
5205 int try_release_extent_buffer(struct page *page)
5206 {
5207 	struct extent_buffer *eb;
5208 
5209 	/*
5210 	 * We need to make sure noboody is attaching this page to an eb right
5211 	 * now.
5212 	 */
5213 	spin_lock(&page->mapping->private_lock);
5214 	if (!PagePrivate(page)) {
5215 		spin_unlock(&page->mapping->private_lock);
5216 		return 1;
5217 	}
5218 
5219 	eb = (struct extent_buffer *)page->private;
5220 	BUG_ON(!eb);
5221 
5222 	/*
5223 	 * This is a little awful but should be ok, we need to make sure that
5224 	 * the eb doesn't disappear out from under us while we're looking at
5225 	 * this page.
5226 	 */
5227 	spin_lock(&eb->refs_lock);
5228 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5229 		spin_unlock(&eb->refs_lock);
5230 		spin_unlock(&page->mapping->private_lock);
5231 		return 0;
5232 	}
5233 	spin_unlock(&page->mapping->private_lock);
5234 
5235 	/*
5236 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5237 	 * so just return, this page will likely be freed soon anyway.
5238 	 */
5239 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5240 		spin_unlock(&eb->refs_lock);
5241 		return 0;
5242 	}
5243 
5244 	return release_extent_buffer(eb);
5245 }
5246