xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision da633a42170165cbf20a2d3886c7480ccc832ec3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 
38 #undef SCRAMBLE_DELAYED_REFS
39 
40 /*
41  * control flags for do_chunk_alloc's force field
42  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
43  * if we really need one.
44  *
45  * CHUNK_ALLOC_LIMITED means to only try and allocate one
46  * if we have very few chunks already allocated.  This is
47  * used as part of the clustering code to help make sure
48  * we have a good pool of storage to cluster in, without
49  * filling the FS with empty chunks
50  *
51  * CHUNK_ALLOC_FORCE means it must try to allocate one
52  *
53  */
54 enum {
55 	CHUNK_ALLOC_NO_FORCE = 0,
56 	CHUNK_ALLOC_LIMITED = 1,
57 	CHUNK_ALLOC_FORCE = 2,
58 };
59 
60 /*
61  * Control how reservations are dealt with.
62  *
63  * RESERVE_FREE - freeing a reservation.
64  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
65  *   ENOSPC accounting
66  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
67  *   bytes_may_use as the ENOSPC accounting is done elsewhere
68  */
69 enum {
70 	RESERVE_FREE = 0,
71 	RESERVE_ALLOC = 1,
72 	RESERVE_ALLOC_NO_ACCOUNT = 2,
73 };
74 
75 static int update_block_group(struct btrfs_trans_handle *trans,
76 			      struct btrfs_root *root,
77 			      u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 				struct btrfs_root *root,
80 				u64 bytenr, u64 num_bytes, u64 parent,
81 				u64 root_objectid, u64 owner_objectid,
82 				u64 owner_offset, int refs_to_drop,
83 				struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 				    struct extent_buffer *leaf,
86 				    struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 				      struct btrfs_root *root,
89 				      u64 parent, u64 root_objectid,
90 				      u64 flags, u64 owner, u64 offset,
91 				      struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 				     struct btrfs_root *root,
94 				     u64 parent, u64 root_objectid,
95 				     u64 flags, struct btrfs_disk_key *key,
96 				     int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 			  struct btrfs_root *extent_root, u64 flags,
99 			  int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 			 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 			    int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 				       u64 num_bytes, int reserve);
106 
107 static noinline int
108 block_group_cache_done(struct btrfs_block_group_cache *cache)
109 {
110 	smp_mb();
111 	return cache->cached == BTRFS_CACHE_FINISHED;
112 }
113 
114 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
115 {
116 	return (cache->flags & bits) == bits;
117 }
118 
119 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
120 {
121 	atomic_inc(&cache->count);
122 }
123 
124 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
125 {
126 	if (atomic_dec_and_test(&cache->count)) {
127 		WARN_ON(cache->pinned > 0);
128 		WARN_ON(cache->reserved > 0);
129 		kfree(cache->free_space_ctl);
130 		kfree(cache);
131 	}
132 }
133 
134 /*
135  * this adds the block group to the fs_info rb tree for the block group
136  * cache
137  */
138 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
139 				struct btrfs_block_group_cache *block_group)
140 {
141 	struct rb_node **p;
142 	struct rb_node *parent = NULL;
143 	struct btrfs_block_group_cache *cache;
144 
145 	spin_lock(&info->block_group_cache_lock);
146 	p = &info->block_group_cache_tree.rb_node;
147 
148 	while (*p) {
149 		parent = *p;
150 		cache = rb_entry(parent, struct btrfs_block_group_cache,
151 				 cache_node);
152 		if (block_group->key.objectid < cache->key.objectid) {
153 			p = &(*p)->rb_left;
154 		} else if (block_group->key.objectid > cache->key.objectid) {
155 			p = &(*p)->rb_right;
156 		} else {
157 			spin_unlock(&info->block_group_cache_lock);
158 			return -EEXIST;
159 		}
160 	}
161 
162 	rb_link_node(&block_group->cache_node, parent, p);
163 	rb_insert_color(&block_group->cache_node,
164 			&info->block_group_cache_tree);
165 	spin_unlock(&info->block_group_cache_lock);
166 
167 	return 0;
168 }
169 
170 /*
171  * This will return the block group at or after bytenr if contains is 0, else
172  * it will return the block group that contains the bytenr
173  */
174 static struct btrfs_block_group_cache *
175 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
176 			      int contains)
177 {
178 	struct btrfs_block_group_cache *cache, *ret = NULL;
179 	struct rb_node *n;
180 	u64 end, start;
181 
182 	spin_lock(&info->block_group_cache_lock);
183 	n = info->block_group_cache_tree.rb_node;
184 
185 	while (n) {
186 		cache = rb_entry(n, struct btrfs_block_group_cache,
187 				 cache_node);
188 		end = cache->key.objectid + cache->key.offset - 1;
189 		start = cache->key.objectid;
190 
191 		if (bytenr < start) {
192 			if (!contains && (!ret || start < ret->key.objectid))
193 				ret = cache;
194 			n = n->rb_left;
195 		} else if (bytenr > start) {
196 			if (contains && bytenr <= end) {
197 				ret = cache;
198 				break;
199 			}
200 			n = n->rb_right;
201 		} else {
202 			ret = cache;
203 			break;
204 		}
205 	}
206 	if (ret)
207 		btrfs_get_block_group(ret);
208 	spin_unlock(&info->block_group_cache_lock);
209 
210 	return ret;
211 }
212 
213 static int add_excluded_extent(struct btrfs_root *root,
214 			       u64 start, u64 num_bytes)
215 {
216 	u64 end = start + num_bytes - 1;
217 	set_extent_bits(&root->fs_info->freed_extents[0],
218 			start, end, EXTENT_UPTODATE, GFP_NOFS);
219 	set_extent_bits(&root->fs_info->freed_extents[1],
220 			start, end, EXTENT_UPTODATE, GFP_NOFS);
221 	return 0;
222 }
223 
224 static void free_excluded_extents(struct btrfs_root *root,
225 				  struct btrfs_block_group_cache *cache)
226 {
227 	u64 start, end;
228 
229 	start = cache->key.objectid;
230 	end = start + cache->key.offset - 1;
231 
232 	clear_extent_bits(&root->fs_info->freed_extents[0],
233 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	clear_extent_bits(&root->fs_info->freed_extents[1],
235 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
236 }
237 
238 static int exclude_super_stripes(struct btrfs_root *root,
239 				 struct btrfs_block_group_cache *cache)
240 {
241 	u64 bytenr;
242 	u64 *logical;
243 	int stripe_len;
244 	int i, nr, ret;
245 
246 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
247 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
248 		cache->bytes_super += stripe_len;
249 		ret = add_excluded_extent(root, cache->key.objectid,
250 					  stripe_len);
251 		BUG_ON(ret); /* -ENOMEM */
252 	}
253 
254 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
255 		bytenr = btrfs_sb_offset(i);
256 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
257 				       cache->key.objectid, bytenr,
258 				       0, &logical, &nr, &stripe_len);
259 		BUG_ON(ret); /* -ENOMEM */
260 
261 		while (nr--) {
262 			cache->bytes_super += stripe_len;
263 			ret = add_excluded_extent(root, logical[nr],
264 						  stripe_len);
265 			BUG_ON(ret); /* -ENOMEM */
266 		}
267 
268 		kfree(logical);
269 	}
270 	return 0;
271 }
272 
273 static struct btrfs_caching_control *
274 get_caching_control(struct btrfs_block_group_cache *cache)
275 {
276 	struct btrfs_caching_control *ctl;
277 
278 	spin_lock(&cache->lock);
279 	if (cache->cached != BTRFS_CACHE_STARTED) {
280 		spin_unlock(&cache->lock);
281 		return NULL;
282 	}
283 
284 	/* We're loading it the fast way, so we don't have a caching_ctl. */
285 	if (!cache->caching_ctl) {
286 		spin_unlock(&cache->lock);
287 		return NULL;
288 	}
289 
290 	ctl = cache->caching_ctl;
291 	atomic_inc(&ctl->count);
292 	spin_unlock(&cache->lock);
293 	return ctl;
294 }
295 
296 static void put_caching_control(struct btrfs_caching_control *ctl)
297 {
298 	if (atomic_dec_and_test(&ctl->count))
299 		kfree(ctl);
300 }
301 
302 /*
303  * this is only called by cache_block_group, since we could have freed extents
304  * we need to check the pinned_extents for any extents that can't be used yet
305  * since their free space will be released as soon as the transaction commits.
306  */
307 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
308 			      struct btrfs_fs_info *info, u64 start, u64 end)
309 {
310 	u64 extent_start, extent_end, size, total_added = 0;
311 	int ret;
312 
313 	while (start < end) {
314 		ret = find_first_extent_bit(info->pinned_extents, start,
315 					    &extent_start, &extent_end,
316 					    EXTENT_DIRTY | EXTENT_UPTODATE,
317 					    NULL);
318 		if (ret)
319 			break;
320 
321 		if (extent_start <= start) {
322 			start = extent_end + 1;
323 		} else if (extent_start > start && extent_start < end) {
324 			size = extent_start - start;
325 			total_added += size;
326 			ret = btrfs_add_free_space(block_group, start,
327 						   size);
328 			BUG_ON(ret); /* -ENOMEM or logic error */
329 			start = extent_end + 1;
330 		} else {
331 			break;
332 		}
333 	}
334 
335 	if (start < end) {
336 		size = end - start;
337 		total_added += size;
338 		ret = btrfs_add_free_space(block_group, start, size);
339 		BUG_ON(ret); /* -ENOMEM or logic error */
340 	}
341 
342 	return total_added;
343 }
344 
345 static noinline void caching_thread(struct btrfs_work *work)
346 {
347 	struct btrfs_block_group_cache *block_group;
348 	struct btrfs_fs_info *fs_info;
349 	struct btrfs_caching_control *caching_ctl;
350 	struct btrfs_root *extent_root;
351 	struct btrfs_path *path;
352 	struct extent_buffer *leaf;
353 	struct btrfs_key key;
354 	u64 total_found = 0;
355 	u64 last = 0;
356 	u32 nritems;
357 	int ret = 0;
358 
359 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
360 	block_group = caching_ctl->block_group;
361 	fs_info = block_group->fs_info;
362 	extent_root = fs_info->extent_root;
363 
364 	path = btrfs_alloc_path();
365 	if (!path)
366 		goto out;
367 
368 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
369 
370 	/*
371 	 * We don't want to deadlock with somebody trying to allocate a new
372 	 * extent for the extent root while also trying to search the extent
373 	 * root to add free space.  So we skip locking and search the commit
374 	 * root, since its read-only
375 	 */
376 	path->skip_locking = 1;
377 	path->search_commit_root = 1;
378 	path->reada = 1;
379 
380 	key.objectid = last;
381 	key.offset = 0;
382 	key.type = BTRFS_EXTENT_ITEM_KEY;
383 again:
384 	mutex_lock(&caching_ctl->mutex);
385 	/* need to make sure the commit_root doesn't disappear */
386 	down_read(&fs_info->extent_commit_sem);
387 
388 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
389 	if (ret < 0)
390 		goto err;
391 
392 	leaf = path->nodes[0];
393 	nritems = btrfs_header_nritems(leaf);
394 
395 	while (1) {
396 		if (btrfs_fs_closing(fs_info) > 1) {
397 			last = (u64)-1;
398 			break;
399 		}
400 
401 		if (path->slots[0] < nritems) {
402 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
403 		} else {
404 			ret = find_next_key(path, 0, &key);
405 			if (ret)
406 				break;
407 
408 			if (need_resched() ||
409 			    btrfs_next_leaf(extent_root, path)) {
410 				caching_ctl->progress = last;
411 				btrfs_release_path(path);
412 				up_read(&fs_info->extent_commit_sem);
413 				mutex_unlock(&caching_ctl->mutex);
414 				cond_resched();
415 				goto again;
416 			}
417 			leaf = path->nodes[0];
418 			nritems = btrfs_header_nritems(leaf);
419 			continue;
420 		}
421 
422 		if (key.objectid < block_group->key.objectid) {
423 			path->slots[0]++;
424 			continue;
425 		}
426 
427 		if (key.objectid >= block_group->key.objectid +
428 		    block_group->key.offset)
429 			break;
430 
431 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
432 			total_found += add_new_free_space(block_group,
433 							  fs_info, last,
434 							  key.objectid);
435 			last = key.objectid + key.offset;
436 
437 			if (total_found > (1024 * 1024 * 2)) {
438 				total_found = 0;
439 				wake_up(&caching_ctl->wait);
440 			}
441 		}
442 		path->slots[0]++;
443 	}
444 	ret = 0;
445 
446 	total_found += add_new_free_space(block_group, fs_info, last,
447 					  block_group->key.objectid +
448 					  block_group->key.offset);
449 	caching_ctl->progress = (u64)-1;
450 
451 	spin_lock(&block_group->lock);
452 	block_group->caching_ctl = NULL;
453 	block_group->cached = BTRFS_CACHE_FINISHED;
454 	spin_unlock(&block_group->lock);
455 
456 err:
457 	btrfs_free_path(path);
458 	up_read(&fs_info->extent_commit_sem);
459 
460 	free_excluded_extents(extent_root, block_group);
461 
462 	mutex_unlock(&caching_ctl->mutex);
463 out:
464 	wake_up(&caching_ctl->wait);
465 
466 	put_caching_control(caching_ctl);
467 	btrfs_put_block_group(block_group);
468 }
469 
470 static int cache_block_group(struct btrfs_block_group_cache *cache,
471 			     struct btrfs_trans_handle *trans,
472 			     struct btrfs_root *root,
473 			     int load_cache_only)
474 {
475 	DEFINE_WAIT(wait);
476 	struct btrfs_fs_info *fs_info = cache->fs_info;
477 	struct btrfs_caching_control *caching_ctl;
478 	int ret = 0;
479 
480 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
481 	if (!caching_ctl)
482 		return -ENOMEM;
483 
484 	INIT_LIST_HEAD(&caching_ctl->list);
485 	mutex_init(&caching_ctl->mutex);
486 	init_waitqueue_head(&caching_ctl->wait);
487 	caching_ctl->block_group = cache;
488 	caching_ctl->progress = cache->key.objectid;
489 	atomic_set(&caching_ctl->count, 1);
490 	caching_ctl->work.func = caching_thread;
491 
492 	spin_lock(&cache->lock);
493 	/*
494 	 * This should be a rare occasion, but this could happen I think in the
495 	 * case where one thread starts to load the space cache info, and then
496 	 * some other thread starts a transaction commit which tries to do an
497 	 * allocation while the other thread is still loading the space cache
498 	 * info.  The previous loop should have kept us from choosing this block
499 	 * group, but if we've moved to the state where we will wait on caching
500 	 * block groups we need to first check if we're doing a fast load here,
501 	 * so we can wait for it to finish, otherwise we could end up allocating
502 	 * from a block group who's cache gets evicted for one reason or
503 	 * another.
504 	 */
505 	while (cache->cached == BTRFS_CACHE_FAST) {
506 		struct btrfs_caching_control *ctl;
507 
508 		ctl = cache->caching_ctl;
509 		atomic_inc(&ctl->count);
510 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
511 		spin_unlock(&cache->lock);
512 
513 		schedule();
514 
515 		finish_wait(&ctl->wait, &wait);
516 		put_caching_control(ctl);
517 		spin_lock(&cache->lock);
518 	}
519 
520 	if (cache->cached != BTRFS_CACHE_NO) {
521 		spin_unlock(&cache->lock);
522 		kfree(caching_ctl);
523 		return 0;
524 	}
525 	WARN_ON(cache->caching_ctl);
526 	cache->caching_ctl = caching_ctl;
527 	cache->cached = BTRFS_CACHE_FAST;
528 	spin_unlock(&cache->lock);
529 
530 	/*
531 	 * We can't do the read from on-disk cache during a commit since we need
532 	 * to have the normal tree locking.  Also if we are currently trying to
533 	 * allocate blocks for the tree root we can't do the fast caching since
534 	 * we likely hold important locks.
535 	 */
536 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
537 		ret = load_free_space_cache(fs_info, cache);
538 
539 		spin_lock(&cache->lock);
540 		if (ret == 1) {
541 			cache->caching_ctl = NULL;
542 			cache->cached = BTRFS_CACHE_FINISHED;
543 			cache->last_byte_to_unpin = (u64)-1;
544 		} else {
545 			if (load_cache_only) {
546 				cache->caching_ctl = NULL;
547 				cache->cached = BTRFS_CACHE_NO;
548 			} else {
549 				cache->cached = BTRFS_CACHE_STARTED;
550 			}
551 		}
552 		spin_unlock(&cache->lock);
553 		wake_up(&caching_ctl->wait);
554 		if (ret == 1) {
555 			put_caching_control(caching_ctl);
556 			free_excluded_extents(fs_info->extent_root, cache);
557 			return 0;
558 		}
559 	} else {
560 		/*
561 		 * We are not going to do the fast caching, set cached to the
562 		 * appropriate value and wakeup any waiters.
563 		 */
564 		spin_lock(&cache->lock);
565 		if (load_cache_only) {
566 			cache->caching_ctl = NULL;
567 			cache->cached = BTRFS_CACHE_NO;
568 		} else {
569 			cache->cached = BTRFS_CACHE_STARTED;
570 		}
571 		spin_unlock(&cache->lock);
572 		wake_up(&caching_ctl->wait);
573 	}
574 
575 	if (load_cache_only) {
576 		put_caching_control(caching_ctl);
577 		return 0;
578 	}
579 
580 	down_write(&fs_info->extent_commit_sem);
581 	atomic_inc(&caching_ctl->count);
582 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
583 	up_write(&fs_info->extent_commit_sem);
584 
585 	btrfs_get_block_group(cache);
586 
587 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
588 
589 	return ret;
590 }
591 
592 /*
593  * return the block group that starts at or after bytenr
594  */
595 static struct btrfs_block_group_cache *
596 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
597 {
598 	struct btrfs_block_group_cache *cache;
599 
600 	cache = block_group_cache_tree_search(info, bytenr, 0);
601 
602 	return cache;
603 }
604 
605 /*
606  * return the block group that contains the given bytenr
607  */
608 struct btrfs_block_group_cache *btrfs_lookup_block_group(
609 						 struct btrfs_fs_info *info,
610 						 u64 bytenr)
611 {
612 	struct btrfs_block_group_cache *cache;
613 
614 	cache = block_group_cache_tree_search(info, bytenr, 1);
615 
616 	return cache;
617 }
618 
619 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
620 						  u64 flags)
621 {
622 	struct list_head *head = &info->space_info;
623 	struct btrfs_space_info *found;
624 
625 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
626 
627 	rcu_read_lock();
628 	list_for_each_entry_rcu(found, head, list) {
629 		if (found->flags & flags) {
630 			rcu_read_unlock();
631 			return found;
632 		}
633 	}
634 	rcu_read_unlock();
635 	return NULL;
636 }
637 
638 /*
639  * after adding space to the filesystem, we need to clear the full flags
640  * on all the space infos.
641  */
642 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
643 {
644 	struct list_head *head = &info->space_info;
645 	struct btrfs_space_info *found;
646 
647 	rcu_read_lock();
648 	list_for_each_entry_rcu(found, head, list)
649 		found->full = 0;
650 	rcu_read_unlock();
651 }
652 
653 u64 btrfs_find_block_group(struct btrfs_root *root,
654 			   u64 search_start, u64 search_hint, int owner)
655 {
656 	struct btrfs_block_group_cache *cache;
657 	u64 used;
658 	u64 last = max(search_hint, search_start);
659 	u64 group_start = 0;
660 	int full_search = 0;
661 	int factor = 9;
662 	int wrapped = 0;
663 again:
664 	while (1) {
665 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
666 		if (!cache)
667 			break;
668 
669 		spin_lock(&cache->lock);
670 		last = cache->key.objectid + cache->key.offset;
671 		used = btrfs_block_group_used(&cache->item);
672 
673 		if ((full_search || !cache->ro) &&
674 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
675 			if (used + cache->pinned + cache->reserved <
676 			    div_factor(cache->key.offset, factor)) {
677 				group_start = cache->key.objectid;
678 				spin_unlock(&cache->lock);
679 				btrfs_put_block_group(cache);
680 				goto found;
681 			}
682 		}
683 		spin_unlock(&cache->lock);
684 		btrfs_put_block_group(cache);
685 		cond_resched();
686 	}
687 	if (!wrapped) {
688 		last = search_start;
689 		wrapped = 1;
690 		goto again;
691 	}
692 	if (!full_search && factor < 10) {
693 		last = search_start;
694 		full_search = 1;
695 		factor = 10;
696 		goto again;
697 	}
698 found:
699 	return group_start;
700 }
701 
702 /* simple helper to search for an existing extent at a given offset */
703 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
704 {
705 	int ret;
706 	struct btrfs_key key;
707 	struct btrfs_path *path;
708 
709 	path = btrfs_alloc_path();
710 	if (!path)
711 		return -ENOMEM;
712 
713 	key.objectid = start;
714 	key.offset = len;
715 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
716 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
717 				0, 0);
718 	btrfs_free_path(path);
719 	return ret;
720 }
721 
722 /*
723  * helper function to lookup reference count and flags of extent.
724  *
725  * the head node for delayed ref is used to store the sum of all the
726  * reference count modifications queued up in the rbtree. the head
727  * node may also store the extent flags to set. This way you can check
728  * to see what the reference count and extent flags would be if all of
729  * the delayed refs are not processed.
730  */
731 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
732 			     struct btrfs_root *root, u64 bytenr,
733 			     u64 num_bytes, u64 *refs, u64 *flags)
734 {
735 	struct btrfs_delayed_ref_head *head;
736 	struct btrfs_delayed_ref_root *delayed_refs;
737 	struct btrfs_path *path;
738 	struct btrfs_extent_item *ei;
739 	struct extent_buffer *leaf;
740 	struct btrfs_key key;
741 	u32 item_size;
742 	u64 num_refs;
743 	u64 extent_flags;
744 	int ret;
745 
746 	path = btrfs_alloc_path();
747 	if (!path)
748 		return -ENOMEM;
749 
750 	key.objectid = bytenr;
751 	key.type = BTRFS_EXTENT_ITEM_KEY;
752 	key.offset = num_bytes;
753 	if (!trans) {
754 		path->skip_locking = 1;
755 		path->search_commit_root = 1;
756 	}
757 again:
758 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
759 				&key, path, 0, 0);
760 	if (ret < 0)
761 		goto out_free;
762 
763 	if (ret == 0) {
764 		leaf = path->nodes[0];
765 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
766 		if (item_size >= sizeof(*ei)) {
767 			ei = btrfs_item_ptr(leaf, path->slots[0],
768 					    struct btrfs_extent_item);
769 			num_refs = btrfs_extent_refs(leaf, ei);
770 			extent_flags = btrfs_extent_flags(leaf, ei);
771 		} else {
772 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
773 			struct btrfs_extent_item_v0 *ei0;
774 			BUG_ON(item_size != sizeof(*ei0));
775 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
776 					     struct btrfs_extent_item_v0);
777 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
778 			/* FIXME: this isn't correct for data */
779 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
780 #else
781 			BUG();
782 #endif
783 		}
784 		BUG_ON(num_refs == 0);
785 	} else {
786 		num_refs = 0;
787 		extent_flags = 0;
788 		ret = 0;
789 	}
790 
791 	if (!trans)
792 		goto out;
793 
794 	delayed_refs = &trans->transaction->delayed_refs;
795 	spin_lock(&delayed_refs->lock);
796 	head = btrfs_find_delayed_ref_head(trans, bytenr);
797 	if (head) {
798 		if (!mutex_trylock(&head->mutex)) {
799 			atomic_inc(&head->node.refs);
800 			spin_unlock(&delayed_refs->lock);
801 
802 			btrfs_release_path(path);
803 
804 			/*
805 			 * Mutex was contended, block until it's released and try
806 			 * again
807 			 */
808 			mutex_lock(&head->mutex);
809 			mutex_unlock(&head->mutex);
810 			btrfs_put_delayed_ref(&head->node);
811 			goto again;
812 		}
813 		if (head->extent_op && head->extent_op->update_flags)
814 			extent_flags |= head->extent_op->flags_to_set;
815 		else
816 			BUG_ON(num_refs == 0);
817 
818 		num_refs += head->node.ref_mod;
819 		mutex_unlock(&head->mutex);
820 	}
821 	spin_unlock(&delayed_refs->lock);
822 out:
823 	WARN_ON(num_refs == 0);
824 	if (refs)
825 		*refs = num_refs;
826 	if (flags)
827 		*flags = extent_flags;
828 out_free:
829 	btrfs_free_path(path);
830 	return ret;
831 }
832 
833 /*
834  * Back reference rules.  Back refs have three main goals:
835  *
836  * 1) differentiate between all holders of references to an extent so that
837  *    when a reference is dropped we can make sure it was a valid reference
838  *    before freeing the extent.
839  *
840  * 2) Provide enough information to quickly find the holders of an extent
841  *    if we notice a given block is corrupted or bad.
842  *
843  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
844  *    maintenance.  This is actually the same as #2, but with a slightly
845  *    different use case.
846  *
847  * There are two kinds of back refs. The implicit back refs is optimized
848  * for pointers in non-shared tree blocks. For a given pointer in a block,
849  * back refs of this kind provide information about the block's owner tree
850  * and the pointer's key. These information allow us to find the block by
851  * b-tree searching. The full back refs is for pointers in tree blocks not
852  * referenced by their owner trees. The location of tree block is recorded
853  * in the back refs. Actually the full back refs is generic, and can be
854  * used in all cases the implicit back refs is used. The major shortcoming
855  * of the full back refs is its overhead. Every time a tree block gets
856  * COWed, we have to update back refs entry for all pointers in it.
857  *
858  * For a newly allocated tree block, we use implicit back refs for
859  * pointers in it. This means most tree related operations only involve
860  * implicit back refs. For a tree block created in old transaction, the
861  * only way to drop a reference to it is COW it. So we can detect the
862  * event that tree block loses its owner tree's reference and do the
863  * back refs conversion.
864  *
865  * When a tree block is COW'd through a tree, there are four cases:
866  *
867  * The reference count of the block is one and the tree is the block's
868  * owner tree. Nothing to do in this case.
869  *
870  * The reference count of the block is one and the tree is not the
871  * block's owner tree. In this case, full back refs is used for pointers
872  * in the block. Remove these full back refs, add implicit back refs for
873  * every pointers in the new block.
874  *
875  * The reference count of the block is greater than one and the tree is
876  * the block's owner tree. In this case, implicit back refs is used for
877  * pointers in the block. Add full back refs for every pointers in the
878  * block, increase lower level extents' reference counts. The original
879  * implicit back refs are entailed to the new block.
880  *
881  * The reference count of the block is greater than one and the tree is
882  * not the block's owner tree. Add implicit back refs for every pointer in
883  * the new block, increase lower level extents' reference count.
884  *
885  * Back Reference Key composing:
886  *
887  * The key objectid corresponds to the first byte in the extent,
888  * The key type is used to differentiate between types of back refs.
889  * There are different meanings of the key offset for different types
890  * of back refs.
891  *
892  * File extents can be referenced by:
893  *
894  * - multiple snapshots, subvolumes, or different generations in one subvol
895  * - different files inside a single subvolume
896  * - different offsets inside a file (bookend extents in file.c)
897  *
898  * The extent ref structure for the implicit back refs has fields for:
899  *
900  * - Objectid of the subvolume root
901  * - objectid of the file holding the reference
902  * - original offset in the file
903  * - how many bookend extents
904  *
905  * The key offset for the implicit back refs is hash of the first
906  * three fields.
907  *
908  * The extent ref structure for the full back refs has field for:
909  *
910  * - number of pointers in the tree leaf
911  *
912  * The key offset for the implicit back refs is the first byte of
913  * the tree leaf
914  *
915  * When a file extent is allocated, The implicit back refs is used.
916  * the fields are filled in:
917  *
918  *     (root_key.objectid, inode objectid, offset in file, 1)
919  *
920  * When a file extent is removed file truncation, we find the
921  * corresponding implicit back refs and check the following fields:
922  *
923  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
924  *
925  * Btree extents can be referenced by:
926  *
927  * - Different subvolumes
928  *
929  * Both the implicit back refs and the full back refs for tree blocks
930  * only consist of key. The key offset for the implicit back refs is
931  * objectid of block's owner tree. The key offset for the full back refs
932  * is the first byte of parent block.
933  *
934  * When implicit back refs is used, information about the lowest key and
935  * level of the tree block are required. These information are stored in
936  * tree block info structure.
937  */
938 
939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
940 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
941 				  struct btrfs_root *root,
942 				  struct btrfs_path *path,
943 				  u64 owner, u32 extra_size)
944 {
945 	struct btrfs_extent_item *item;
946 	struct btrfs_extent_item_v0 *ei0;
947 	struct btrfs_extent_ref_v0 *ref0;
948 	struct btrfs_tree_block_info *bi;
949 	struct extent_buffer *leaf;
950 	struct btrfs_key key;
951 	struct btrfs_key found_key;
952 	u32 new_size = sizeof(*item);
953 	u64 refs;
954 	int ret;
955 
956 	leaf = path->nodes[0];
957 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
958 
959 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
960 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
961 			     struct btrfs_extent_item_v0);
962 	refs = btrfs_extent_refs_v0(leaf, ei0);
963 
964 	if (owner == (u64)-1) {
965 		while (1) {
966 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
967 				ret = btrfs_next_leaf(root, path);
968 				if (ret < 0)
969 					return ret;
970 				BUG_ON(ret > 0); /* Corruption */
971 				leaf = path->nodes[0];
972 			}
973 			btrfs_item_key_to_cpu(leaf, &found_key,
974 					      path->slots[0]);
975 			BUG_ON(key.objectid != found_key.objectid);
976 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
977 				path->slots[0]++;
978 				continue;
979 			}
980 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
981 					      struct btrfs_extent_ref_v0);
982 			owner = btrfs_ref_objectid_v0(leaf, ref0);
983 			break;
984 		}
985 	}
986 	btrfs_release_path(path);
987 
988 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
989 		new_size += sizeof(*bi);
990 
991 	new_size -= sizeof(*ei0);
992 	ret = btrfs_search_slot(trans, root, &key, path,
993 				new_size + extra_size, 1);
994 	if (ret < 0)
995 		return ret;
996 	BUG_ON(ret); /* Corruption */
997 
998 	btrfs_extend_item(trans, root, path, new_size);
999 
1000 	leaf = path->nodes[0];
1001 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1002 	btrfs_set_extent_refs(leaf, item, refs);
1003 	/* FIXME: get real generation */
1004 	btrfs_set_extent_generation(leaf, item, 0);
1005 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1006 		btrfs_set_extent_flags(leaf, item,
1007 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1008 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1009 		bi = (struct btrfs_tree_block_info *)(item + 1);
1010 		/* FIXME: get first key of the block */
1011 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1012 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1013 	} else {
1014 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1015 	}
1016 	btrfs_mark_buffer_dirty(leaf);
1017 	return 0;
1018 }
1019 #endif
1020 
1021 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1022 {
1023 	u32 high_crc = ~(u32)0;
1024 	u32 low_crc = ~(u32)0;
1025 	__le64 lenum;
1026 
1027 	lenum = cpu_to_le64(root_objectid);
1028 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1029 	lenum = cpu_to_le64(owner);
1030 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1031 	lenum = cpu_to_le64(offset);
1032 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1033 
1034 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1035 }
1036 
1037 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1038 				     struct btrfs_extent_data_ref *ref)
1039 {
1040 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1041 				    btrfs_extent_data_ref_objectid(leaf, ref),
1042 				    btrfs_extent_data_ref_offset(leaf, ref));
1043 }
1044 
1045 static int match_extent_data_ref(struct extent_buffer *leaf,
1046 				 struct btrfs_extent_data_ref *ref,
1047 				 u64 root_objectid, u64 owner, u64 offset)
1048 {
1049 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1050 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1051 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1052 		return 0;
1053 	return 1;
1054 }
1055 
1056 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1057 					   struct btrfs_root *root,
1058 					   struct btrfs_path *path,
1059 					   u64 bytenr, u64 parent,
1060 					   u64 root_objectid,
1061 					   u64 owner, u64 offset)
1062 {
1063 	struct btrfs_key key;
1064 	struct btrfs_extent_data_ref *ref;
1065 	struct extent_buffer *leaf;
1066 	u32 nritems;
1067 	int ret;
1068 	int recow;
1069 	int err = -ENOENT;
1070 
1071 	key.objectid = bytenr;
1072 	if (parent) {
1073 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1074 		key.offset = parent;
1075 	} else {
1076 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1077 		key.offset = hash_extent_data_ref(root_objectid,
1078 						  owner, offset);
1079 	}
1080 again:
1081 	recow = 0;
1082 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1083 	if (ret < 0) {
1084 		err = ret;
1085 		goto fail;
1086 	}
1087 
1088 	if (parent) {
1089 		if (!ret)
1090 			return 0;
1091 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1092 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1093 		btrfs_release_path(path);
1094 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1095 		if (ret < 0) {
1096 			err = ret;
1097 			goto fail;
1098 		}
1099 		if (!ret)
1100 			return 0;
1101 #endif
1102 		goto fail;
1103 	}
1104 
1105 	leaf = path->nodes[0];
1106 	nritems = btrfs_header_nritems(leaf);
1107 	while (1) {
1108 		if (path->slots[0] >= nritems) {
1109 			ret = btrfs_next_leaf(root, path);
1110 			if (ret < 0)
1111 				err = ret;
1112 			if (ret)
1113 				goto fail;
1114 
1115 			leaf = path->nodes[0];
1116 			nritems = btrfs_header_nritems(leaf);
1117 			recow = 1;
1118 		}
1119 
1120 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1121 		if (key.objectid != bytenr ||
1122 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1123 			goto fail;
1124 
1125 		ref = btrfs_item_ptr(leaf, path->slots[0],
1126 				     struct btrfs_extent_data_ref);
1127 
1128 		if (match_extent_data_ref(leaf, ref, root_objectid,
1129 					  owner, offset)) {
1130 			if (recow) {
1131 				btrfs_release_path(path);
1132 				goto again;
1133 			}
1134 			err = 0;
1135 			break;
1136 		}
1137 		path->slots[0]++;
1138 	}
1139 fail:
1140 	return err;
1141 }
1142 
1143 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1144 					   struct btrfs_root *root,
1145 					   struct btrfs_path *path,
1146 					   u64 bytenr, u64 parent,
1147 					   u64 root_objectid, u64 owner,
1148 					   u64 offset, int refs_to_add)
1149 {
1150 	struct btrfs_key key;
1151 	struct extent_buffer *leaf;
1152 	u32 size;
1153 	u32 num_refs;
1154 	int ret;
1155 
1156 	key.objectid = bytenr;
1157 	if (parent) {
1158 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1159 		key.offset = parent;
1160 		size = sizeof(struct btrfs_shared_data_ref);
1161 	} else {
1162 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1163 		key.offset = hash_extent_data_ref(root_objectid,
1164 						  owner, offset);
1165 		size = sizeof(struct btrfs_extent_data_ref);
1166 	}
1167 
1168 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1169 	if (ret && ret != -EEXIST)
1170 		goto fail;
1171 
1172 	leaf = path->nodes[0];
1173 	if (parent) {
1174 		struct btrfs_shared_data_ref *ref;
1175 		ref = btrfs_item_ptr(leaf, path->slots[0],
1176 				     struct btrfs_shared_data_ref);
1177 		if (ret == 0) {
1178 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1179 		} else {
1180 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1181 			num_refs += refs_to_add;
1182 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1183 		}
1184 	} else {
1185 		struct btrfs_extent_data_ref *ref;
1186 		while (ret == -EEXIST) {
1187 			ref = btrfs_item_ptr(leaf, path->slots[0],
1188 					     struct btrfs_extent_data_ref);
1189 			if (match_extent_data_ref(leaf, ref, root_objectid,
1190 						  owner, offset))
1191 				break;
1192 			btrfs_release_path(path);
1193 			key.offset++;
1194 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1195 						      size);
1196 			if (ret && ret != -EEXIST)
1197 				goto fail;
1198 
1199 			leaf = path->nodes[0];
1200 		}
1201 		ref = btrfs_item_ptr(leaf, path->slots[0],
1202 				     struct btrfs_extent_data_ref);
1203 		if (ret == 0) {
1204 			btrfs_set_extent_data_ref_root(leaf, ref,
1205 						       root_objectid);
1206 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1207 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1208 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1209 		} else {
1210 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1211 			num_refs += refs_to_add;
1212 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1213 		}
1214 	}
1215 	btrfs_mark_buffer_dirty(leaf);
1216 	ret = 0;
1217 fail:
1218 	btrfs_release_path(path);
1219 	return ret;
1220 }
1221 
1222 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1223 					   struct btrfs_root *root,
1224 					   struct btrfs_path *path,
1225 					   int refs_to_drop)
1226 {
1227 	struct btrfs_key key;
1228 	struct btrfs_extent_data_ref *ref1 = NULL;
1229 	struct btrfs_shared_data_ref *ref2 = NULL;
1230 	struct extent_buffer *leaf;
1231 	u32 num_refs = 0;
1232 	int ret = 0;
1233 
1234 	leaf = path->nodes[0];
1235 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1236 
1237 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1238 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1239 				      struct btrfs_extent_data_ref);
1240 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1241 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1242 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1243 				      struct btrfs_shared_data_ref);
1244 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1246 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1247 		struct btrfs_extent_ref_v0 *ref0;
1248 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1249 				      struct btrfs_extent_ref_v0);
1250 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1251 #endif
1252 	} else {
1253 		BUG();
1254 	}
1255 
1256 	BUG_ON(num_refs < refs_to_drop);
1257 	num_refs -= refs_to_drop;
1258 
1259 	if (num_refs == 0) {
1260 		ret = btrfs_del_item(trans, root, path);
1261 	} else {
1262 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1263 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1264 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1265 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1267 		else {
1268 			struct btrfs_extent_ref_v0 *ref0;
1269 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1270 					struct btrfs_extent_ref_v0);
1271 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1272 		}
1273 #endif
1274 		btrfs_mark_buffer_dirty(leaf);
1275 	}
1276 	return ret;
1277 }
1278 
1279 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1280 					  struct btrfs_path *path,
1281 					  struct btrfs_extent_inline_ref *iref)
1282 {
1283 	struct btrfs_key key;
1284 	struct extent_buffer *leaf;
1285 	struct btrfs_extent_data_ref *ref1;
1286 	struct btrfs_shared_data_ref *ref2;
1287 	u32 num_refs = 0;
1288 
1289 	leaf = path->nodes[0];
1290 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1291 	if (iref) {
1292 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1293 		    BTRFS_EXTENT_DATA_REF_KEY) {
1294 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1295 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1296 		} else {
1297 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1298 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1299 		}
1300 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 				      struct btrfs_extent_data_ref);
1303 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 				      struct btrfs_shared_data_ref);
1307 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1309 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1310 		struct btrfs_extent_ref_v0 *ref0;
1311 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1312 				      struct btrfs_extent_ref_v0);
1313 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1314 #endif
1315 	} else {
1316 		WARN_ON(1);
1317 	}
1318 	return num_refs;
1319 }
1320 
1321 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1322 					  struct btrfs_root *root,
1323 					  struct btrfs_path *path,
1324 					  u64 bytenr, u64 parent,
1325 					  u64 root_objectid)
1326 {
1327 	struct btrfs_key key;
1328 	int ret;
1329 
1330 	key.objectid = bytenr;
1331 	if (parent) {
1332 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1333 		key.offset = parent;
1334 	} else {
1335 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1336 		key.offset = root_objectid;
1337 	}
1338 
1339 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1340 	if (ret > 0)
1341 		ret = -ENOENT;
1342 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1343 	if (ret == -ENOENT && parent) {
1344 		btrfs_release_path(path);
1345 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1346 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1347 		if (ret > 0)
1348 			ret = -ENOENT;
1349 	}
1350 #endif
1351 	return ret;
1352 }
1353 
1354 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1355 					  struct btrfs_root *root,
1356 					  struct btrfs_path *path,
1357 					  u64 bytenr, u64 parent,
1358 					  u64 root_objectid)
1359 {
1360 	struct btrfs_key key;
1361 	int ret;
1362 
1363 	key.objectid = bytenr;
1364 	if (parent) {
1365 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1366 		key.offset = parent;
1367 	} else {
1368 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1369 		key.offset = root_objectid;
1370 	}
1371 
1372 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1373 	btrfs_release_path(path);
1374 	return ret;
1375 }
1376 
1377 static inline int extent_ref_type(u64 parent, u64 owner)
1378 {
1379 	int type;
1380 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1381 		if (parent > 0)
1382 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1383 		else
1384 			type = BTRFS_TREE_BLOCK_REF_KEY;
1385 	} else {
1386 		if (parent > 0)
1387 			type = BTRFS_SHARED_DATA_REF_KEY;
1388 		else
1389 			type = BTRFS_EXTENT_DATA_REF_KEY;
1390 	}
1391 	return type;
1392 }
1393 
1394 static int find_next_key(struct btrfs_path *path, int level,
1395 			 struct btrfs_key *key)
1396 
1397 {
1398 	for (; level < BTRFS_MAX_LEVEL; level++) {
1399 		if (!path->nodes[level])
1400 			break;
1401 		if (path->slots[level] + 1 >=
1402 		    btrfs_header_nritems(path->nodes[level]))
1403 			continue;
1404 		if (level == 0)
1405 			btrfs_item_key_to_cpu(path->nodes[level], key,
1406 					      path->slots[level] + 1);
1407 		else
1408 			btrfs_node_key_to_cpu(path->nodes[level], key,
1409 					      path->slots[level] + 1);
1410 		return 0;
1411 	}
1412 	return 1;
1413 }
1414 
1415 /*
1416  * look for inline back ref. if back ref is found, *ref_ret is set
1417  * to the address of inline back ref, and 0 is returned.
1418  *
1419  * if back ref isn't found, *ref_ret is set to the address where it
1420  * should be inserted, and -ENOENT is returned.
1421  *
1422  * if insert is true and there are too many inline back refs, the path
1423  * points to the extent item, and -EAGAIN is returned.
1424  *
1425  * NOTE: inline back refs are ordered in the same way that back ref
1426  *	 items in the tree are ordered.
1427  */
1428 static noinline_for_stack
1429 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1430 				 struct btrfs_root *root,
1431 				 struct btrfs_path *path,
1432 				 struct btrfs_extent_inline_ref **ref_ret,
1433 				 u64 bytenr, u64 num_bytes,
1434 				 u64 parent, u64 root_objectid,
1435 				 u64 owner, u64 offset, int insert)
1436 {
1437 	struct btrfs_key key;
1438 	struct extent_buffer *leaf;
1439 	struct btrfs_extent_item *ei;
1440 	struct btrfs_extent_inline_ref *iref;
1441 	u64 flags;
1442 	u64 item_size;
1443 	unsigned long ptr;
1444 	unsigned long end;
1445 	int extra_size;
1446 	int type;
1447 	int want;
1448 	int ret;
1449 	int err = 0;
1450 
1451 	key.objectid = bytenr;
1452 	key.type = BTRFS_EXTENT_ITEM_KEY;
1453 	key.offset = num_bytes;
1454 
1455 	want = extent_ref_type(parent, owner);
1456 	if (insert) {
1457 		extra_size = btrfs_extent_inline_ref_size(want);
1458 		path->keep_locks = 1;
1459 	} else
1460 		extra_size = -1;
1461 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1462 	if (ret < 0) {
1463 		err = ret;
1464 		goto out;
1465 	}
1466 	if (ret && !insert) {
1467 		err = -ENOENT;
1468 		goto out;
1469 	}
1470 	BUG_ON(ret); /* Corruption */
1471 
1472 	leaf = path->nodes[0];
1473 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1474 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1475 	if (item_size < sizeof(*ei)) {
1476 		if (!insert) {
1477 			err = -ENOENT;
1478 			goto out;
1479 		}
1480 		ret = convert_extent_item_v0(trans, root, path, owner,
1481 					     extra_size);
1482 		if (ret < 0) {
1483 			err = ret;
1484 			goto out;
1485 		}
1486 		leaf = path->nodes[0];
1487 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1488 	}
1489 #endif
1490 	BUG_ON(item_size < sizeof(*ei));
1491 
1492 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1493 	flags = btrfs_extent_flags(leaf, ei);
1494 
1495 	ptr = (unsigned long)(ei + 1);
1496 	end = (unsigned long)ei + item_size;
1497 
1498 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1499 		ptr += sizeof(struct btrfs_tree_block_info);
1500 		BUG_ON(ptr > end);
1501 	} else {
1502 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1503 	}
1504 
1505 	err = -ENOENT;
1506 	while (1) {
1507 		if (ptr >= end) {
1508 			WARN_ON(ptr > end);
1509 			break;
1510 		}
1511 		iref = (struct btrfs_extent_inline_ref *)ptr;
1512 		type = btrfs_extent_inline_ref_type(leaf, iref);
1513 		if (want < type)
1514 			break;
1515 		if (want > type) {
1516 			ptr += btrfs_extent_inline_ref_size(type);
1517 			continue;
1518 		}
1519 
1520 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1521 			struct btrfs_extent_data_ref *dref;
1522 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1523 			if (match_extent_data_ref(leaf, dref, root_objectid,
1524 						  owner, offset)) {
1525 				err = 0;
1526 				break;
1527 			}
1528 			if (hash_extent_data_ref_item(leaf, dref) <
1529 			    hash_extent_data_ref(root_objectid, owner, offset))
1530 				break;
1531 		} else {
1532 			u64 ref_offset;
1533 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1534 			if (parent > 0) {
1535 				if (parent == ref_offset) {
1536 					err = 0;
1537 					break;
1538 				}
1539 				if (ref_offset < parent)
1540 					break;
1541 			} else {
1542 				if (root_objectid == ref_offset) {
1543 					err = 0;
1544 					break;
1545 				}
1546 				if (ref_offset < root_objectid)
1547 					break;
1548 			}
1549 		}
1550 		ptr += btrfs_extent_inline_ref_size(type);
1551 	}
1552 	if (err == -ENOENT && insert) {
1553 		if (item_size + extra_size >=
1554 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1555 			err = -EAGAIN;
1556 			goto out;
1557 		}
1558 		/*
1559 		 * To add new inline back ref, we have to make sure
1560 		 * there is no corresponding back ref item.
1561 		 * For simplicity, we just do not add new inline back
1562 		 * ref if there is any kind of item for this block
1563 		 */
1564 		if (find_next_key(path, 0, &key) == 0 &&
1565 		    key.objectid == bytenr &&
1566 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1567 			err = -EAGAIN;
1568 			goto out;
1569 		}
1570 	}
1571 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1572 out:
1573 	if (insert) {
1574 		path->keep_locks = 0;
1575 		btrfs_unlock_up_safe(path, 1);
1576 	}
1577 	return err;
1578 }
1579 
1580 /*
1581  * helper to add new inline back ref
1582  */
1583 static noinline_for_stack
1584 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1585 				 struct btrfs_root *root,
1586 				 struct btrfs_path *path,
1587 				 struct btrfs_extent_inline_ref *iref,
1588 				 u64 parent, u64 root_objectid,
1589 				 u64 owner, u64 offset, int refs_to_add,
1590 				 struct btrfs_delayed_extent_op *extent_op)
1591 {
1592 	struct extent_buffer *leaf;
1593 	struct btrfs_extent_item *ei;
1594 	unsigned long ptr;
1595 	unsigned long end;
1596 	unsigned long item_offset;
1597 	u64 refs;
1598 	int size;
1599 	int type;
1600 
1601 	leaf = path->nodes[0];
1602 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1603 	item_offset = (unsigned long)iref - (unsigned long)ei;
1604 
1605 	type = extent_ref_type(parent, owner);
1606 	size = btrfs_extent_inline_ref_size(type);
1607 
1608 	btrfs_extend_item(trans, root, path, size);
1609 
1610 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1611 	refs = btrfs_extent_refs(leaf, ei);
1612 	refs += refs_to_add;
1613 	btrfs_set_extent_refs(leaf, ei, refs);
1614 	if (extent_op)
1615 		__run_delayed_extent_op(extent_op, leaf, ei);
1616 
1617 	ptr = (unsigned long)ei + item_offset;
1618 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1619 	if (ptr < end - size)
1620 		memmove_extent_buffer(leaf, ptr + size, ptr,
1621 				      end - size - ptr);
1622 
1623 	iref = (struct btrfs_extent_inline_ref *)ptr;
1624 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1625 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1626 		struct btrfs_extent_data_ref *dref;
1627 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1628 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1629 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1630 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1631 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1632 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1633 		struct btrfs_shared_data_ref *sref;
1634 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1635 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1636 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1637 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1638 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1639 	} else {
1640 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1641 	}
1642 	btrfs_mark_buffer_dirty(leaf);
1643 }
1644 
1645 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1646 				 struct btrfs_root *root,
1647 				 struct btrfs_path *path,
1648 				 struct btrfs_extent_inline_ref **ref_ret,
1649 				 u64 bytenr, u64 num_bytes, u64 parent,
1650 				 u64 root_objectid, u64 owner, u64 offset)
1651 {
1652 	int ret;
1653 
1654 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1655 					   bytenr, num_bytes, parent,
1656 					   root_objectid, owner, offset, 0);
1657 	if (ret != -ENOENT)
1658 		return ret;
1659 
1660 	btrfs_release_path(path);
1661 	*ref_ret = NULL;
1662 
1663 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1664 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1665 					    root_objectid);
1666 	} else {
1667 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1668 					     root_objectid, owner, offset);
1669 	}
1670 	return ret;
1671 }
1672 
1673 /*
1674  * helper to update/remove inline back ref
1675  */
1676 static noinline_for_stack
1677 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1678 				  struct btrfs_root *root,
1679 				  struct btrfs_path *path,
1680 				  struct btrfs_extent_inline_ref *iref,
1681 				  int refs_to_mod,
1682 				  struct btrfs_delayed_extent_op *extent_op)
1683 {
1684 	struct extent_buffer *leaf;
1685 	struct btrfs_extent_item *ei;
1686 	struct btrfs_extent_data_ref *dref = NULL;
1687 	struct btrfs_shared_data_ref *sref = NULL;
1688 	unsigned long ptr;
1689 	unsigned long end;
1690 	u32 item_size;
1691 	int size;
1692 	int type;
1693 	u64 refs;
1694 
1695 	leaf = path->nodes[0];
1696 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1697 	refs = btrfs_extent_refs(leaf, ei);
1698 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1699 	refs += refs_to_mod;
1700 	btrfs_set_extent_refs(leaf, ei, refs);
1701 	if (extent_op)
1702 		__run_delayed_extent_op(extent_op, leaf, ei);
1703 
1704 	type = btrfs_extent_inline_ref_type(leaf, iref);
1705 
1706 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1708 		refs = btrfs_extent_data_ref_count(leaf, dref);
1709 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 		refs = btrfs_shared_data_ref_count(leaf, sref);
1712 	} else {
1713 		refs = 1;
1714 		BUG_ON(refs_to_mod != -1);
1715 	}
1716 
1717 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1718 	refs += refs_to_mod;
1719 
1720 	if (refs > 0) {
1721 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1722 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1723 		else
1724 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1725 	} else {
1726 		size =  btrfs_extent_inline_ref_size(type);
1727 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1728 		ptr = (unsigned long)iref;
1729 		end = (unsigned long)ei + item_size;
1730 		if (ptr + size < end)
1731 			memmove_extent_buffer(leaf, ptr, ptr + size,
1732 					      end - ptr - size);
1733 		item_size -= size;
1734 		btrfs_truncate_item(trans, root, path, item_size, 1);
1735 	}
1736 	btrfs_mark_buffer_dirty(leaf);
1737 }
1738 
1739 static noinline_for_stack
1740 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1741 				 struct btrfs_root *root,
1742 				 struct btrfs_path *path,
1743 				 u64 bytenr, u64 num_bytes, u64 parent,
1744 				 u64 root_objectid, u64 owner,
1745 				 u64 offset, int refs_to_add,
1746 				 struct btrfs_delayed_extent_op *extent_op)
1747 {
1748 	struct btrfs_extent_inline_ref *iref;
1749 	int ret;
1750 
1751 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1752 					   bytenr, num_bytes, parent,
1753 					   root_objectid, owner, offset, 1);
1754 	if (ret == 0) {
1755 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1756 		update_inline_extent_backref(trans, root, path, iref,
1757 					     refs_to_add, extent_op);
1758 	} else if (ret == -ENOENT) {
1759 		setup_inline_extent_backref(trans, root, path, iref, parent,
1760 					    root_objectid, owner, offset,
1761 					    refs_to_add, extent_op);
1762 		ret = 0;
1763 	}
1764 	return ret;
1765 }
1766 
1767 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1768 				 struct btrfs_root *root,
1769 				 struct btrfs_path *path,
1770 				 u64 bytenr, u64 parent, u64 root_objectid,
1771 				 u64 owner, u64 offset, int refs_to_add)
1772 {
1773 	int ret;
1774 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1775 		BUG_ON(refs_to_add != 1);
1776 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1777 					    parent, root_objectid);
1778 	} else {
1779 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1780 					     parent, root_objectid,
1781 					     owner, offset, refs_to_add);
1782 	}
1783 	return ret;
1784 }
1785 
1786 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1787 				 struct btrfs_root *root,
1788 				 struct btrfs_path *path,
1789 				 struct btrfs_extent_inline_ref *iref,
1790 				 int refs_to_drop, int is_data)
1791 {
1792 	int ret = 0;
1793 
1794 	BUG_ON(!is_data && refs_to_drop != 1);
1795 	if (iref) {
1796 		update_inline_extent_backref(trans, root, path, iref,
1797 					     -refs_to_drop, NULL);
1798 	} else if (is_data) {
1799 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1800 	} else {
1801 		ret = btrfs_del_item(trans, root, path);
1802 	}
1803 	return ret;
1804 }
1805 
1806 static int btrfs_issue_discard(struct block_device *bdev,
1807 				u64 start, u64 len)
1808 {
1809 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1810 }
1811 
1812 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1813 				u64 num_bytes, u64 *actual_bytes)
1814 {
1815 	int ret;
1816 	u64 discarded_bytes = 0;
1817 	struct btrfs_bio *bbio = NULL;
1818 
1819 
1820 	/* Tell the block device(s) that the sectors can be discarded */
1821 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1822 			      bytenr, &num_bytes, &bbio, 0);
1823 	/* Error condition is -ENOMEM */
1824 	if (!ret) {
1825 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1826 		int i;
1827 
1828 
1829 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1830 			if (!stripe->dev->can_discard)
1831 				continue;
1832 
1833 			ret = btrfs_issue_discard(stripe->dev->bdev,
1834 						  stripe->physical,
1835 						  stripe->length);
1836 			if (!ret)
1837 				discarded_bytes += stripe->length;
1838 			else if (ret != -EOPNOTSUPP)
1839 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1840 
1841 			/*
1842 			 * Just in case we get back EOPNOTSUPP for some reason,
1843 			 * just ignore the return value so we don't screw up
1844 			 * people calling discard_extent.
1845 			 */
1846 			ret = 0;
1847 		}
1848 		kfree(bbio);
1849 	}
1850 
1851 	if (actual_bytes)
1852 		*actual_bytes = discarded_bytes;
1853 
1854 
1855 	return ret;
1856 }
1857 
1858 /* Can return -ENOMEM */
1859 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1860 			 struct btrfs_root *root,
1861 			 u64 bytenr, u64 num_bytes, u64 parent,
1862 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1863 {
1864 	int ret;
1865 	struct btrfs_fs_info *fs_info = root->fs_info;
1866 
1867 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1868 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1869 
1870 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1871 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1872 					num_bytes,
1873 					parent, root_objectid, (int)owner,
1874 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1875 	} else {
1876 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1877 					num_bytes,
1878 					parent, root_objectid, owner, offset,
1879 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1880 	}
1881 	return ret;
1882 }
1883 
1884 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1885 				  struct btrfs_root *root,
1886 				  u64 bytenr, u64 num_bytes,
1887 				  u64 parent, u64 root_objectid,
1888 				  u64 owner, u64 offset, int refs_to_add,
1889 				  struct btrfs_delayed_extent_op *extent_op)
1890 {
1891 	struct btrfs_path *path;
1892 	struct extent_buffer *leaf;
1893 	struct btrfs_extent_item *item;
1894 	u64 refs;
1895 	int ret;
1896 	int err = 0;
1897 
1898 	path = btrfs_alloc_path();
1899 	if (!path)
1900 		return -ENOMEM;
1901 
1902 	path->reada = 1;
1903 	path->leave_spinning = 1;
1904 	/* this will setup the path even if it fails to insert the back ref */
1905 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1906 					   path, bytenr, num_bytes, parent,
1907 					   root_objectid, owner, offset,
1908 					   refs_to_add, extent_op);
1909 	if (ret == 0)
1910 		goto out;
1911 
1912 	if (ret != -EAGAIN) {
1913 		err = ret;
1914 		goto out;
1915 	}
1916 
1917 	leaf = path->nodes[0];
1918 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1919 	refs = btrfs_extent_refs(leaf, item);
1920 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1921 	if (extent_op)
1922 		__run_delayed_extent_op(extent_op, leaf, item);
1923 
1924 	btrfs_mark_buffer_dirty(leaf);
1925 	btrfs_release_path(path);
1926 
1927 	path->reada = 1;
1928 	path->leave_spinning = 1;
1929 
1930 	/* now insert the actual backref */
1931 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1932 				    path, bytenr, parent, root_objectid,
1933 				    owner, offset, refs_to_add);
1934 	if (ret)
1935 		btrfs_abort_transaction(trans, root, ret);
1936 out:
1937 	btrfs_free_path(path);
1938 	return err;
1939 }
1940 
1941 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1942 				struct btrfs_root *root,
1943 				struct btrfs_delayed_ref_node *node,
1944 				struct btrfs_delayed_extent_op *extent_op,
1945 				int insert_reserved)
1946 {
1947 	int ret = 0;
1948 	struct btrfs_delayed_data_ref *ref;
1949 	struct btrfs_key ins;
1950 	u64 parent = 0;
1951 	u64 ref_root = 0;
1952 	u64 flags = 0;
1953 
1954 	ins.objectid = node->bytenr;
1955 	ins.offset = node->num_bytes;
1956 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1957 
1958 	ref = btrfs_delayed_node_to_data_ref(node);
1959 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1960 		parent = ref->parent;
1961 	else
1962 		ref_root = ref->root;
1963 
1964 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1965 		if (extent_op) {
1966 			BUG_ON(extent_op->update_key);
1967 			flags |= extent_op->flags_to_set;
1968 		}
1969 		ret = alloc_reserved_file_extent(trans, root,
1970 						 parent, ref_root, flags,
1971 						 ref->objectid, ref->offset,
1972 						 &ins, node->ref_mod);
1973 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1974 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1975 					     node->num_bytes, parent,
1976 					     ref_root, ref->objectid,
1977 					     ref->offset, node->ref_mod,
1978 					     extent_op);
1979 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1980 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1981 					  node->num_bytes, parent,
1982 					  ref_root, ref->objectid,
1983 					  ref->offset, node->ref_mod,
1984 					  extent_op);
1985 	} else {
1986 		BUG();
1987 	}
1988 	return ret;
1989 }
1990 
1991 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1992 				    struct extent_buffer *leaf,
1993 				    struct btrfs_extent_item *ei)
1994 {
1995 	u64 flags = btrfs_extent_flags(leaf, ei);
1996 	if (extent_op->update_flags) {
1997 		flags |= extent_op->flags_to_set;
1998 		btrfs_set_extent_flags(leaf, ei, flags);
1999 	}
2000 
2001 	if (extent_op->update_key) {
2002 		struct btrfs_tree_block_info *bi;
2003 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2004 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2005 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2006 	}
2007 }
2008 
2009 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2010 				 struct btrfs_root *root,
2011 				 struct btrfs_delayed_ref_node *node,
2012 				 struct btrfs_delayed_extent_op *extent_op)
2013 {
2014 	struct btrfs_key key;
2015 	struct btrfs_path *path;
2016 	struct btrfs_extent_item *ei;
2017 	struct extent_buffer *leaf;
2018 	u32 item_size;
2019 	int ret;
2020 	int err = 0;
2021 
2022 	if (trans->aborted)
2023 		return 0;
2024 
2025 	path = btrfs_alloc_path();
2026 	if (!path)
2027 		return -ENOMEM;
2028 
2029 	key.objectid = node->bytenr;
2030 	key.type = BTRFS_EXTENT_ITEM_KEY;
2031 	key.offset = node->num_bytes;
2032 
2033 	path->reada = 1;
2034 	path->leave_spinning = 1;
2035 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2036 				path, 0, 1);
2037 	if (ret < 0) {
2038 		err = ret;
2039 		goto out;
2040 	}
2041 	if (ret > 0) {
2042 		err = -EIO;
2043 		goto out;
2044 	}
2045 
2046 	leaf = path->nodes[0];
2047 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2048 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2049 	if (item_size < sizeof(*ei)) {
2050 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2051 					     path, (u64)-1, 0);
2052 		if (ret < 0) {
2053 			err = ret;
2054 			goto out;
2055 		}
2056 		leaf = path->nodes[0];
2057 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2058 	}
2059 #endif
2060 	BUG_ON(item_size < sizeof(*ei));
2061 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2062 	__run_delayed_extent_op(extent_op, leaf, ei);
2063 
2064 	btrfs_mark_buffer_dirty(leaf);
2065 out:
2066 	btrfs_free_path(path);
2067 	return err;
2068 }
2069 
2070 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2071 				struct btrfs_root *root,
2072 				struct btrfs_delayed_ref_node *node,
2073 				struct btrfs_delayed_extent_op *extent_op,
2074 				int insert_reserved)
2075 {
2076 	int ret = 0;
2077 	struct btrfs_delayed_tree_ref *ref;
2078 	struct btrfs_key ins;
2079 	u64 parent = 0;
2080 	u64 ref_root = 0;
2081 
2082 	ins.objectid = node->bytenr;
2083 	ins.offset = node->num_bytes;
2084 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2085 
2086 	ref = btrfs_delayed_node_to_tree_ref(node);
2087 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2088 		parent = ref->parent;
2089 	else
2090 		ref_root = ref->root;
2091 
2092 	BUG_ON(node->ref_mod != 1);
2093 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2094 		BUG_ON(!extent_op || !extent_op->update_flags ||
2095 		       !extent_op->update_key);
2096 		ret = alloc_reserved_tree_block(trans, root,
2097 						parent, ref_root,
2098 						extent_op->flags_to_set,
2099 						&extent_op->key,
2100 						ref->level, &ins);
2101 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2102 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2103 					     node->num_bytes, parent, ref_root,
2104 					     ref->level, 0, 1, extent_op);
2105 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2106 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2107 					  node->num_bytes, parent, ref_root,
2108 					  ref->level, 0, 1, extent_op);
2109 	} else {
2110 		BUG();
2111 	}
2112 	return ret;
2113 }
2114 
2115 /* helper function to actually process a single delayed ref entry */
2116 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2117 			       struct btrfs_root *root,
2118 			       struct btrfs_delayed_ref_node *node,
2119 			       struct btrfs_delayed_extent_op *extent_op,
2120 			       int insert_reserved)
2121 {
2122 	int ret = 0;
2123 
2124 	if (trans->aborted)
2125 		return 0;
2126 
2127 	if (btrfs_delayed_ref_is_head(node)) {
2128 		struct btrfs_delayed_ref_head *head;
2129 		/*
2130 		 * we've hit the end of the chain and we were supposed
2131 		 * to insert this extent into the tree.  But, it got
2132 		 * deleted before we ever needed to insert it, so all
2133 		 * we have to do is clean up the accounting
2134 		 */
2135 		BUG_ON(extent_op);
2136 		head = btrfs_delayed_node_to_head(node);
2137 		if (insert_reserved) {
2138 			btrfs_pin_extent(root, node->bytenr,
2139 					 node->num_bytes, 1);
2140 			if (head->is_data) {
2141 				ret = btrfs_del_csums(trans, root,
2142 						      node->bytenr,
2143 						      node->num_bytes);
2144 			}
2145 		}
2146 		return ret;
2147 	}
2148 
2149 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2150 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2151 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2152 					   insert_reserved);
2153 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2154 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2155 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2156 					   insert_reserved);
2157 	else
2158 		BUG();
2159 	return ret;
2160 }
2161 
2162 static noinline struct btrfs_delayed_ref_node *
2163 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2164 {
2165 	struct rb_node *node;
2166 	struct btrfs_delayed_ref_node *ref;
2167 	int action = BTRFS_ADD_DELAYED_REF;
2168 again:
2169 	/*
2170 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2171 	 * this prevents ref count from going down to zero when
2172 	 * there still are pending delayed ref.
2173 	 */
2174 	node = rb_prev(&head->node.rb_node);
2175 	while (1) {
2176 		if (!node)
2177 			break;
2178 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2179 				rb_node);
2180 		if (ref->bytenr != head->node.bytenr)
2181 			break;
2182 		if (ref->action == action)
2183 			return ref;
2184 		node = rb_prev(node);
2185 	}
2186 	if (action == BTRFS_ADD_DELAYED_REF) {
2187 		action = BTRFS_DROP_DELAYED_REF;
2188 		goto again;
2189 	}
2190 	return NULL;
2191 }
2192 
2193 /*
2194  * Returns 0 on success or if called with an already aborted transaction.
2195  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2196  */
2197 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2198 				       struct btrfs_root *root,
2199 				       struct list_head *cluster)
2200 {
2201 	struct btrfs_delayed_ref_root *delayed_refs;
2202 	struct btrfs_delayed_ref_node *ref;
2203 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2204 	struct btrfs_delayed_extent_op *extent_op;
2205 	struct btrfs_fs_info *fs_info = root->fs_info;
2206 	int ret;
2207 	int count = 0;
2208 	int must_insert_reserved = 0;
2209 
2210 	delayed_refs = &trans->transaction->delayed_refs;
2211 	while (1) {
2212 		if (!locked_ref) {
2213 			/* pick a new head ref from the cluster list */
2214 			if (list_empty(cluster))
2215 				break;
2216 
2217 			locked_ref = list_entry(cluster->next,
2218 				     struct btrfs_delayed_ref_head, cluster);
2219 
2220 			/* grab the lock that says we are going to process
2221 			 * all the refs for this head */
2222 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2223 
2224 			/*
2225 			 * we may have dropped the spin lock to get the head
2226 			 * mutex lock, and that might have given someone else
2227 			 * time to free the head.  If that's true, it has been
2228 			 * removed from our list and we can move on.
2229 			 */
2230 			if (ret == -EAGAIN) {
2231 				locked_ref = NULL;
2232 				count++;
2233 				continue;
2234 			}
2235 		}
2236 
2237 		/*
2238 		 * We need to try and merge add/drops of the same ref since we
2239 		 * can run into issues with relocate dropping the implicit ref
2240 		 * and then it being added back again before the drop can
2241 		 * finish.  If we merged anything we need to re-loop so we can
2242 		 * get a good ref.
2243 		 */
2244 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2245 					 locked_ref);
2246 
2247 		/*
2248 		 * locked_ref is the head node, so we have to go one
2249 		 * node back for any delayed ref updates
2250 		 */
2251 		ref = select_delayed_ref(locked_ref);
2252 
2253 		if (ref && ref->seq &&
2254 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2255 			/*
2256 			 * there are still refs with lower seq numbers in the
2257 			 * process of being added. Don't run this ref yet.
2258 			 */
2259 			list_del_init(&locked_ref->cluster);
2260 			btrfs_delayed_ref_unlock(locked_ref);
2261 			locked_ref = NULL;
2262 			delayed_refs->num_heads_ready++;
2263 			spin_unlock(&delayed_refs->lock);
2264 			cond_resched();
2265 			spin_lock(&delayed_refs->lock);
2266 			continue;
2267 		}
2268 
2269 		/*
2270 		 * record the must insert reserved flag before we
2271 		 * drop the spin lock.
2272 		 */
2273 		must_insert_reserved = locked_ref->must_insert_reserved;
2274 		locked_ref->must_insert_reserved = 0;
2275 
2276 		extent_op = locked_ref->extent_op;
2277 		locked_ref->extent_op = NULL;
2278 
2279 		if (!ref) {
2280 			/* All delayed refs have been processed, Go ahead
2281 			 * and send the head node to run_one_delayed_ref,
2282 			 * so that any accounting fixes can happen
2283 			 */
2284 			ref = &locked_ref->node;
2285 
2286 			if (extent_op && must_insert_reserved) {
2287 				btrfs_free_delayed_extent_op(extent_op);
2288 				extent_op = NULL;
2289 			}
2290 
2291 			if (extent_op) {
2292 				spin_unlock(&delayed_refs->lock);
2293 
2294 				ret = run_delayed_extent_op(trans, root,
2295 							    ref, extent_op);
2296 				btrfs_free_delayed_extent_op(extent_op);
2297 
2298 				if (ret) {
2299 					printk(KERN_DEBUG
2300 					       "btrfs: run_delayed_extent_op "
2301 					       "returned %d\n", ret);
2302 					spin_lock(&delayed_refs->lock);
2303 					btrfs_delayed_ref_unlock(locked_ref);
2304 					return ret;
2305 				}
2306 
2307 				goto next;
2308 			}
2309 		}
2310 
2311 		ref->in_tree = 0;
2312 		rb_erase(&ref->rb_node, &delayed_refs->root);
2313 		delayed_refs->num_entries--;
2314 		if (!btrfs_delayed_ref_is_head(ref)) {
2315 			/*
2316 			 * when we play the delayed ref, also correct the
2317 			 * ref_mod on head
2318 			 */
2319 			switch (ref->action) {
2320 			case BTRFS_ADD_DELAYED_REF:
2321 			case BTRFS_ADD_DELAYED_EXTENT:
2322 				locked_ref->node.ref_mod -= ref->ref_mod;
2323 				break;
2324 			case BTRFS_DROP_DELAYED_REF:
2325 				locked_ref->node.ref_mod += ref->ref_mod;
2326 				break;
2327 			default:
2328 				WARN_ON(1);
2329 			}
2330 		}
2331 		spin_unlock(&delayed_refs->lock);
2332 
2333 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2334 					  must_insert_reserved);
2335 
2336 		btrfs_free_delayed_extent_op(extent_op);
2337 		if (ret) {
2338 			btrfs_delayed_ref_unlock(locked_ref);
2339 			btrfs_put_delayed_ref(ref);
2340 			printk(KERN_DEBUG
2341 			       "btrfs: run_one_delayed_ref returned %d\n", ret);
2342 			spin_lock(&delayed_refs->lock);
2343 			return ret;
2344 		}
2345 
2346 		/*
2347 		 * If this node is a head, that means all the refs in this head
2348 		 * have been dealt with, and we will pick the next head to deal
2349 		 * with, so we must unlock the head and drop it from the cluster
2350 		 * list before we release it.
2351 		 */
2352 		if (btrfs_delayed_ref_is_head(ref)) {
2353 			list_del_init(&locked_ref->cluster);
2354 			btrfs_delayed_ref_unlock(locked_ref);
2355 			locked_ref = NULL;
2356 		}
2357 		btrfs_put_delayed_ref(ref);
2358 		count++;
2359 next:
2360 		cond_resched();
2361 		spin_lock(&delayed_refs->lock);
2362 	}
2363 	return count;
2364 }
2365 
2366 #ifdef SCRAMBLE_DELAYED_REFS
2367 /*
2368  * Normally delayed refs get processed in ascending bytenr order. This
2369  * correlates in most cases to the order added. To expose dependencies on this
2370  * order, we start to process the tree in the middle instead of the beginning
2371  */
2372 static u64 find_middle(struct rb_root *root)
2373 {
2374 	struct rb_node *n = root->rb_node;
2375 	struct btrfs_delayed_ref_node *entry;
2376 	int alt = 1;
2377 	u64 middle;
2378 	u64 first = 0, last = 0;
2379 
2380 	n = rb_first(root);
2381 	if (n) {
2382 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2383 		first = entry->bytenr;
2384 	}
2385 	n = rb_last(root);
2386 	if (n) {
2387 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2388 		last = entry->bytenr;
2389 	}
2390 	n = root->rb_node;
2391 
2392 	while (n) {
2393 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2394 		WARN_ON(!entry->in_tree);
2395 
2396 		middle = entry->bytenr;
2397 
2398 		if (alt)
2399 			n = n->rb_left;
2400 		else
2401 			n = n->rb_right;
2402 
2403 		alt = 1 - alt;
2404 	}
2405 	return middle;
2406 }
2407 #endif
2408 
2409 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2410 					 struct btrfs_fs_info *fs_info)
2411 {
2412 	struct qgroup_update *qgroup_update;
2413 	int ret = 0;
2414 
2415 	if (list_empty(&trans->qgroup_ref_list) !=
2416 	    !trans->delayed_ref_elem.seq) {
2417 		/* list without seq or seq without list */
2418 		printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2419 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2420 			trans->delayed_ref_elem.seq);
2421 		BUG();
2422 	}
2423 
2424 	if (!trans->delayed_ref_elem.seq)
2425 		return 0;
2426 
2427 	while (!list_empty(&trans->qgroup_ref_list)) {
2428 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2429 						 struct qgroup_update, list);
2430 		list_del(&qgroup_update->list);
2431 		if (!ret)
2432 			ret = btrfs_qgroup_account_ref(
2433 					trans, fs_info, qgroup_update->node,
2434 					qgroup_update->extent_op);
2435 		kfree(qgroup_update);
2436 	}
2437 
2438 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2439 
2440 	return ret;
2441 }
2442 
2443 /*
2444  * this starts processing the delayed reference count updates and
2445  * extent insertions we have queued up so far.  count can be
2446  * 0, which means to process everything in the tree at the start
2447  * of the run (but not newly added entries), or it can be some target
2448  * number you'd like to process.
2449  *
2450  * Returns 0 on success or if called with an aborted transaction
2451  * Returns <0 on error and aborts the transaction
2452  */
2453 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2454 			   struct btrfs_root *root, unsigned long count)
2455 {
2456 	struct rb_node *node;
2457 	struct btrfs_delayed_ref_root *delayed_refs;
2458 	struct btrfs_delayed_ref_node *ref;
2459 	struct list_head cluster;
2460 	int ret;
2461 	u64 delayed_start;
2462 	int run_all = count == (unsigned long)-1;
2463 	int run_most = 0;
2464 	int loops;
2465 
2466 	/* We'll clean this up in btrfs_cleanup_transaction */
2467 	if (trans->aborted)
2468 		return 0;
2469 
2470 	if (root == root->fs_info->extent_root)
2471 		root = root->fs_info->tree_root;
2472 
2473 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2474 
2475 	delayed_refs = &trans->transaction->delayed_refs;
2476 	INIT_LIST_HEAD(&cluster);
2477 again:
2478 	loops = 0;
2479 	spin_lock(&delayed_refs->lock);
2480 
2481 #ifdef SCRAMBLE_DELAYED_REFS
2482 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2483 #endif
2484 
2485 	if (count == 0) {
2486 		count = delayed_refs->num_entries * 2;
2487 		run_most = 1;
2488 	}
2489 	while (1) {
2490 		if (!(run_all || run_most) &&
2491 		    delayed_refs->num_heads_ready < 64)
2492 			break;
2493 
2494 		/*
2495 		 * go find something we can process in the rbtree.  We start at
2496 		 * the beginning of the tree, and then build a cluster
2497 		 * of refs to process starting at the first one we are able to
2498 		 * lock
2499 		 */
2500 		delayed_start = delayed_refs->run_delayed_start;
2501 		ret = btrfs_find_ref_cluster(trans, &cluster,
2502 					     delayed_refs->run_delayed_start);
2503 		if (ret)
2504 			break;
2505 
2506 		ret = run_clustered_refs(trans, root, &cluster);
2507 		if (ret < 0) {
2508 			btrfs_release_ref_cluster(&cluster);
2509 			spin_unlock(&delayed_refs->lock);
2510 			btrfs_abort_transaction(trans, root, ret);
2511 			return ret;
2512 		}
2513 
2514 		count -= min_t(unsigned long, ret, count);
2515 
2516 		if (count == 0)
2517 			break;
2518 
2519 		if (delayed_start >= delayed_refs->run_delayed_start) {
2520 			if (loops == 0) {
2521 				/*
2522 				 * btrfs_find_ref_cluster looped. let's do one
2523 				 * more cycle. if we don't run any delayed ref
2524 				 * during that cycle (because we can't because
2525 				 * all of them are blocked), bail out.
2526 				 */
2527 				loops = 1;
2528 			} else {
2529 				/*
2530 				 * no runnable refs left, stop trying
2531 				 */
2532 				BUG_ON(run_all);
2533 				break;
2534 			}
2535 		}
2536 		if (ret) {
2537 			/* refs were run, let's reset staleness detection */
2538 			loops = 0;
2539 		}
2540 	}
2541 
2542 	if (run_all) {
2543 		if (!list_empty(&trans->new_bgs)) {
2544 			spin_unlock(&delayed_refs->lock);
2545 			btrfs_create_pending_block_groups(trans, root);
2546 			spin_lock(&delayed_refs->lock);
2547 		}
2548 
2549 		node = rb_first(&delayed_refs->root);
2550 		if (!node)
2551 			goto out;
2552 		count = (unsigned long)-1;
2553 
2554 		while (node) {
2555 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2556 				       rb_node);
2557 			if (btrfs_delayed_ref_is_head(ref)) {
2558 				struct btrfs_delayed_ref_head *head;
2559 
2560 				head = btrfs_delayed_node_to_head(ref);
2561 				atomic_inc(&ref->refs);
2562 
2563 				spin_unlock(&delayed_refs->lock);
2564 				/*
2565 				 * Mutex was contended, block until it's
2566 				 * released and try again
2567 				 */
2568 				mutex_lock(&head->mutex);
2569 				mutex_unlock(&head->mutex);
2570 
2571 				btrfs_put_delayed_ref(ref);
2572 				cond_resched();
2573 				goto again;
2574 			}
2575 			node = rb_next(node);
2576 		}
2577 		spin_unlock(&delayed_refs->lock);
2578 		schedule_timeout(1);
2579 		goto again;
2580 	}
2581 out:
2582 	spin_unlock(&delayed_refs->lock);
2583 	assert_qgroups_uptodate(trans);
2584 	return 0;
2585 }
2586 
2587 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2588 				struct btrfs_root *root,
2589 				u64 bytenr, u64 num_bytes, u64 flags,
2590 				int is_data)
2591 {
2592 	struct btrfs_delayed_extent_op *extent_op;
2593 	int ret;
2594 
2595 	extent_op = btrfs_alloc_delayed_extent_op();
2596 	if (!extent_op)
2597 		return -ENOMEM;
2598 
2599 	extent_op->flags_to_set = flags;
2600 	extent_op->update_flags = 1;
2601 	extent_op->update_key = 0;
2602 	extent_op->is_data = is_data ? 1 : 0;
2603 
2604 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2605 					  num_bytes, extent_op);
2606 	if (ret)
2607 		btrfs_free_delayed_extent_op(extent_op);
2608 	return ret;
2609 }
2610 
2611 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2612 				      struct btrfs_root *root,
2613 				      struct btrfs_path *path,
2614 				      u64 objectid, u64 offset, u64 bytenr)
2615 {
2616 	struct btrfs_delayed_ref_head *head;
2617 	struct btrfs_delayed_ref_node *ref;
2618 	struct btrfs_delayed_data_ref *data_ref;
2619 	struct btrfs_delayed_ref_root *delayed_refs;
2620 	struct rb_node *node;
2621 	int ret = 0;
2622 
2623 	ret = -ENOENT;
2624 	delayed_refs = &trans->transaction->delayed_refs;
2625 	spin_lock(&delayed_refs->lock);
2626 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2627 	if (!head)
2628 		goto out;
2629 
2630 	if (!mutex_trylock(&head->mutex)) {
2631 		atomic_inc(&head->node.refs);
2632 		spin_unlock(&delayed_refs->lock);
2633 
2634 		btrfs_release_path(path);
2635 
2636 		/*
2637 		 * Mutex was contended, block until it's released and let
2638 		 * caller try again
2639 		 */
2640 		mutex_lock(&head->mutex);
2641 		mutex_unlock(&head->mutex);
2642 		btrfs_put_delayed_ref(&head->node);
2643 		return -EAGAIN;
2644 	}
2645 
2646 	node = rb_prev(&head->node.rb_node);
2647 	if (!node)
2648 		goto out_unlock;
2649 
2650 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2651 
2652 	if (ref->bytenr != bytenr)
2653 		goto out_unlock;
2654 
2655 	ret = 1;
2656 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2657 		goto out_unlock;
2658 
2659 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2660 
2661 	node = rb_prev(node);
2662 	if (node) {
2663 		int seq = ref->seq;
2664 
2665 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2666 		if (ref->bytenr == bytenr && ref->seq == seq)
2667 			goto out_unlock;
2668 	}
2669 
2670 	if (data_ref->root != root->root_key.objectid ||
2671 	    data_ref->objectid != objectid || data_ref->offset != offset)
2672 		goto out_unlock;
2673 
2674 	ret = 0;
2675 out_unlock:
2676 	mutex_unlock(&head->mutex);
2677 out:
2678 	spin_unlock(&delayed_refs->lock);
2679 	return ret;
2680 }
2681 
2682 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2683 					struct btrfs_root *root,
2684 					struct btrfs_path *path,
2685 					u64 objectid, u64 offset, u64 bytenr)
2686 {
2687 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2688 	struct extent_buffer *leaf;
2689 	struct btrfs_extent_data_ref *ref;
2690 	struct btrfs_extent_inline_ref *iref;
2691 	struct btrfs_extent_item *ei;
2692 	struct btrfs_key key;
2693 	u32 item_size;
2694 	int ret;
2695 
2696 	key.objectid = bytenr;
2697 	key.offset = (u64)-1;
2698 	key.type = BTRFS_EXTENT_ITEM_KEY;
2699 
2700 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2701 	if (ret < 0)
2702 		goto out;
2703 	BUG_ON(ret == 0); /* Corruption */
2704 
2705 	ret = -ENOENT;
2706 	if (path->slots[0] == 0)
2707 		goto out;
2708 
2709 	path->slots[0]--;
2710 	leaf = path->nodes[0];
2711 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2712 
2713 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2714 		goto out;
2715 
2716 	ret = 1;
2717 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2718 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2719 	if (item_size < sizeof(*ei)) {
2720 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2721 		goto out;
2722 	}
2723 #endif
2724 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2725 
2726 	if (item_size != sizeof(*ei) +
2727 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2728 		goto out;
2729 
2730 	if (btrfs_extent_generation(leaf, ei) <=
2731 	    btrfs_root_last_snapshot(&root->root_item))
2732 		goto out;
2733 
2734 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2735 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2736 	    BTRFS_EXTENT_DATA_REF_KEY)
2737 		goto out;
2738 
2739 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2740 	if (btrfs_extent_refs(leaf, ei) !=
2741 	    btrfs_extent_data_ref_count(leaf, ref) ||
2742 	    btrfs_extent_data_ref_root(leaf, ref) !=
2743 	    root->root_key.objectid ||
2744 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2745 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2746 		goto out;
2747 
2748 	ret = 0;
2749 out:
2750 	return ret;
2751 }
2752 
2753 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2754 			  struct btrfs_root *root,
2755 			  u64 objectid, u64 offset, u64 bytenr)
2756 {
2757 	struct btrfs_path *path;
2758 	int ret;
2759 	int ret2;
2760 
2761 	path = btrfs_alloc_path();
2762 	if (!path)
2763 		return -ENOENT;
2764 
2765 	do {
2766 		ret = check_committed_ref(trans, root, path, objectid,
2767 					  offset, bytenr);
2768 		if (ret && ret != -ENOENT)
2769 			goto out;
2770 
2771 		ret2 = check_delayed_ref(trans, root, path, objectid,
2772 					 offset, bytenr);
2773 	} while (ret2 == -EAGAIN);
2774 
2775 	if (ret2 && ret2 != -ENOENT) {
2776 		ret = ret2;
2777 		goto out;
2778 	}
2779 
2780 	if (ret != -ENOENT || ret2 != -ENOENT)
2781 		ret = 0;
2782 out:
2783 	btrfs_free_path(path);
2784 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2785 		WARN_ON(ret > 0);
2786 	return ret;
2787 }
2788 
2789 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2790 			   struct btrfs_root *root,
2791 			   struct extent_buffer *buf,
2792 			   int full_backref, int inc, int for_cow)
2793 {
2794 	u64 bytenr;
2795 	u64 num_bytes;
2796 	u64 parent;
2797 	u64 ref_root;
2798 	u32 nritems;
2799 	struct btrfs_key key;
2800 	struct btrfs_file_extent_item *fi;
2801 	int i;
2802 	int level;
2803 	int ret = 0;
2804 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2805 			    u64, u64, u64, u64, u64, u64, int);
2806 
2807 	ref_root = btrfs_header_owner(buf);
2808 	nritems = btrfs_header_nritems(buf);
2809 	level = btrfs_header_level(buf);
2810 
2811 	if (!root->ref_cows && level == 0)
2812 		return 0;
2813 
2814 	if (inc)
2815 		process_func = btrfs_inc_extent_ref;
2816 	else
2817 		process_func = btrfs_free_extent;
2818 
2819 	if (full_backref)
2820 		parent = buf->start;
2821 	else
2822 		parent = 0;
2823 
2824 	for (i = 0; i < nritems; i++) {
2825 		if (level == 0) {
2826 			btrfs_item_key_to_cpu(buf, &key, i);
2827 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2828 				continue;
2829 			fi = btrfs_item_ptr(buf, i,
2830 					    struct btrfs_file_extent_item);
2831 			if (btrfs_file_extent_type(buf, fi) ==
2832 			    BTRFS_FILE_EXTENT_INLINE)
2833 				continue;
2834 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2835 			if (bytenr == 0)
2836 				continue;
2837 
2838 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2839 			key.offset -= btrfs_file_extent_offset(buf, fi);
2840 			ret = process_func(trans, root, bytenr, num_bytes,
2841 					   parent, ref_root, key.objectid,
2842 					   key.offset, for_cow);
2843 			if (ret)
2844 				goto fail;
2845 		} else {
2846 			bytenr = btrfs_node_blockptr(buf, i);
2847 			num_bytes = btrfs_level_size(root, level - 1);
2848 			ret = process_func(trans, root, bytenr, num_bytes,
2849 					   parent, ref_root, level - 1, 0,
2850 					   for_cow);
2851 			if (ret)
2852 				goto fail;
2853 		}
2854 	}
2855 	return 0;
2856 fail:
2857 	return ret;
2858 }
2859 
2860 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2861 		  struct extent_buffer *buf, int full_backref, int for_cow)
2862 {
2863 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2864 }
2865 
2866 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2867 		  struct extent_buffer *buf, int full_backref, int for_cow)
2868 {
2869 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2870 }
2871 
2872 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2873 				 struct btrfs_root *root,
2874 				 struct btrfs_path *path,
2875 				 struct btrfs_block_group_cache *cache)
2876 {
2877 	int ret;
2878 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2879 	unsigned long bi;
2880 	struct extent_buffer *leaf;
2881 
2882 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2883 	if (ret < 0)
2884 		goto fail;
2885 	BUG_ON(ret); /* Corruption */
2886 
2887 	leaf = path->nodes[0];
2888 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2889 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2890 	btrfs_mark_buffer_dirty(leaf);
2891 	btrfs_release_path(path);
2892 fail:
2893 	if (ret) {
2894 		btrfs_abort_transaction(trans, root, ret);
2895 		return ret;
2896 	}
2897 	return 0;
2898 
2899 }
2900 
2901 static struct btrfs_block_group_cache *
2902 next_block_group(struct btrfs_root *root,
2903 		 struct btrfs_block_group_cache *cache)
2904 {
2905 	struct rb_node *node;
2906 	spin_lock(&root->fs_info->block_group_cache_lock);
2907 	node = rb_next(&cache->cache_node);
2908 	btrfs_put_block_group(cache);
2909 	if (node) {
2910 		cache = rb_entry(node, struct btrfs_block_group_cache,
2911 				 cache_node);
2912 		btrfs_get_block_group(cache);
2913 	} else
2914 		cache = NULL;
2915 	spin_unlock(&root->fs_info->block_group_cache_lock);
2916 	return cache;
2917 }
2918 
2919 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2920 			    struct btrfs_trans_handle *trans,
2921 			    struct btrfs_path *path)
2922 {
2923 	struct btrfs_root *root = block_group->fs_info->tree_root;
2924 	struct inode *inode = NULL;
2925 	u64 alloc_hint = 0;
2926 	int dcs = BTRFS_DC_ERROR;
2927 	int num_pages = 0;
2928 	int retries = 0;
2929 	int ret = 0;
2930 
2931 	/*
2932 	 * If this block group is smaller than 100 megs don't bother caching the
2933 	 * block group.
2934 	 */
2935 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2936 		spin_lock(&block_group->lock);
2937 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2938 		spin_unlock(&block_group->lock);
2939 		return 0;
2940 	}
2941 
2942 again:
2943 	inode = lookup_free_space_inode(root, block_group, path);
2944 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2945 		ret = PTR_ERR(inode);
2946 		btrfs_release_path(path);
2947 		goto out;
2948 	}
2949 
2950 	if (IS_ERR(inode)) {
2951 		BUG_ON(retries);
2952 		retries++;
2953 
2954 		if (block_group->ro)
2955 			goto out_free;
2956 
2957 		ret = create_free_space_inode(root, trans, block_group, path);
2958 		if (ret)
2959 			goto out_free;
2960 		goto again;
2961 	}
2962 
2963 	/* We've already setup this transaction, go ahead and exit */
2964 	if (block_group->cache_generation == trans->transid &&
2965 	    i_size_read(inode)) {
2966 		dcs = BTRFS_DC_SETUP;
2967 		goto out_put;
2968 	}
2969 
2970 	/*
2971 	 * We want to set the generation to 0, that way if anything goes wrong
2972 	 * from here on out we know not to trust this cache when we load up next
2973 	 * time.
2974 	 */
2975 	BTRFS_I(inode)->generation = 0;
2976 	ret = btrfs_update_inode(trans, root, inode);
2977 	WARN_ON(ret);
2978 
2979 	if (i_size_read(inode) > 0) {
2980 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2981 						      inode);
2982 		if (ret)
2983 			goto out_put;
2984 	}
2985 
2986 	spin_lock(&block_group->lock);
2987 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2988 	    !btrfs_test_opt(root, SPACE_CACHE)) {
2989 		/*
2990 		 * don't bother trying to write stuff out _if_
2991 		 * a) we're not cached,
2992 		 * b) we're with nospace_cache mount option.
2993 		 */
2994 		dcs = BTRFS_DC_WRITTEN;
2995 		spin_unlock(&block_group->lock);
2996 		goto out_put;
2997 	}
2998 	spin_unlock(&block_group->lock);
2999 
3000 	/*
3001 	 * Try to preallocate enough space based on how big the block group is.
3002 	 * Keep in mind this has to include any pinned space which could end up
3003 	 * taking up quite a bit since it's not folded into the other space
3004 	 * cache.
3005 	 */
3006 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3007 	if (!num_pages)
3008 		num_pages = 1;
3009 
3010 	num_pages *= 16;
3011 	num_pages *= PAGE_CACHE_SIZE;
3012 
3013 	ret = btrfs_check_data_free_space(inode, num_pages);
3014 	if (ret)
3015 		goto out_put;
3016 
3017 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3018 					      num_pages, num_pages,
3019 					      &alloc_hint);
3020 	if (!ret)
3021 		dcs = BTRFS_DC_SETUP;
3022 	btrfs_free_reserved_data_space(inode, num_pages);
3023 
3024 out_put:
3025 	iput(inode);
3026 out_free:
3027 	btrfs_release_path(path);
3028 out:
3029 	spin_lock(&block_group->lock);
3030 	if (!ret && dcs == BTRFS_DC_SETUP)
3031 		block_group->cache_generation = trans->transid;
3032 	block_group->disk_cache_state = dcs;
3033 	spin_unlock(&block_group->lock);
3034 
3035 	return ret;
3036 }
3037 
3038 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3039 				   struct btrfs_root *root)
3040 {
3041 	struct btrfs_block_group_cache *cache;
3042 	int err = 0;
3043 	struct btrfs_path *path;
3044 	u64 last = 0;
3045 
3046 	path = btrfs_alloc_path();
3047 	if (!path)
3048 		return -ENOMEM;
3049 
3050 again:
3051 	while (1) {
3052 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3053 		while (cache) {
3054 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3055 				break;
3056 			cache = next_block_group(root, cache);
3057 		}
3058 		if (!cache) {
3059 			if (last == 0)
3060 				break;
3061 			last = 0;
3062 			continue;
3063 		}
3064 		err = cache_save_setup(cache, trans, path);
3065 		last = cache->key.objectid + cache->key.offset;
3066 		btrfs_put_block_group(cache);
3067 	}
3068 
3069 	while (1) {
3070 		if (last == 0) {
3071 			err = btrfs_run_delayed_refs(trans, root,
3072 						     (unsigned long)-1);
3073 			if (err) /* File system offline */
3074 				goto out;
3075 		}
3076 
3077 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3078 		while (cache) {
3079 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3080 				btrfs_put_block_group(cache);
3081 				goto again;
3082 			}
3083 
3084 			if (cache->dirty)
3085 				break;
3086 			cache = next_block_group(root, cache);
3087 		}
3088 		if (!cache) {
3089 			if (last == 0)
3090 				break;
3091 			last = 0;
3092 			continue;
3093 		}
3094 
3095 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3096 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3097 		cache->dirty = 0;
3098 		last = cache->key.objectid + cache->key.offset;
3099 
3100 		err = write_one_cache_group(trans, root, path, cache);
3101 		if (err) /* File system offline */
3102 			goto out;
3103 
3104 		btrfs_put_block_group(cache);
3105 	}
3106 
3107 	while (1) {
3108 		/*
3109 		 * I don't think this is needed since we're just marking our
3110 		 * preallocated extent as written, but just in case it can't
3111 		 * hurt.
3112 		 */
3113 		if (last == 0) {
3114 			err = btrfs_run_delayed_refs(trans, root,
3115 						     (unsigned long)-1);
3116 			if (err) /* File system offline */
3117 				goto out;
3118 		}
3119 
3120 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3121 		while (cache) {
3122 			/*
3123 			 * Really this shouldn't happen, but it could if we
3124 			 * couldn't write the entire preallocated extent and
3125 			 * splitting the extent resulted in a new block.
3126 			 */
3127 			if (cache->dirty) {
3128 				btrfs_put_block_group(cache);
3129 				goto again;
3130 			}
3131 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3132 				break;
3133 			cache = next_block_group(root, cache);
3134 		}
3135 		if (!cache) {
3136 			if (last == 0)
3137 				break;
3138 			last = 0;
3139 			continue;
3140 		}
3141 
3142 		err = btrfs_write_out_cache(root, trans, cache, path);
3143 
3144 		/*
3145 		 * If we didn't have an error then the cache state is still
3146 		 * NEED_WRITE, so we can set it to WRITTEN.
3147 		 */
3148 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3149 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3150 		last = cache->key.objectid + cache->key.offset;
3151 		btrfs_put_block_group(cache);
3152 	}
3153 out:
3154 
3155 	btrfs_free_path(path);
3156 	return err;
3157 }
3158 
3159 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3160 {
3161 	struct btrfs_block_group_cache *block_group;
3162 	int readonly = 0;
3163 
3164 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3165 	if (!block_group || block_group->ro)
3166 		readonly = 1;
3167 	if (block_group)
3168 		btrfs_put_block_group(block_group);
3169 	return readonly;
3170 }
3171 
3172 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3173 			     u64 total_bytes, u64 bytes_used,
3174 			     struct btrfs_space_info **space_info)
3175 {
3176 	struct btrfs_space_info *found;
3177 	int i;
3178 	int factor;
3179 
3180 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3181 		     BTRFS_BLOCK_GROUP_RAID10))
3182 		factor = 2;
3183 	else
3184 		factor = 1;
3185 
3186 	found = __find_space_info(info, flags);
3187 	if (found) {
3188 		spin_lock(&found->lock);
3189 		found->total_bytes += total_bytes;
3190 		found->disk_total += total_bytes * factor;
3191 		found->bytes_used += bytes_used;
3192 		found->disk_used += bytes_used * factor;
3193 		found->full = 0;
3194 		spin_unlock(&found->lock);
3195 		*space_info = found;
3196 		return 0;
3197 	}
3198 	found = kzalloc(sizeof(*found), GFP_NOFS);
3199 	if (!found)
3200 		return -ENOMEM;
3201 
3202 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3203 		INIT_LIST_HEAD(&found->block_groups[i]);
3204 	init_rwsem(&found->groups_sem);
3205 	spin_lock_init(&found->lock);
3206 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3207 	found->total_bytes = total_bytes;
3208 	found->disk_total = total_bytes * factor;
3209 	found->bytes_used = bytes_used;
3210 	found->disk_used = bytes_used * factor;
3211 	found->bytes_pinned = 0;
3212 	found->bytes_reserved = 0;
3213 	found->bytes_readonly = 0;
3214 	found->bytes_may_use = 0;
3215 	found->full = 0;
3216 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3217 	found->chunk_alloc = 0;
3218 	found->flush = 0;
3219 	init_waitqueue_head(&found->wait);
3220 	*space_info = found;
3221 	list_add_rcu(&found->list, &info->space_info);
3222 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3223 		info->data_sinfo = found;
3224 	return 0;
3225 }
3226 
3227 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3228 {
3229 	u64 extra_flags = chunk_to_extended(flags) &
3230 				BTRFS_EXTENDED_PROFILE_MASK;
3231 
3232 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3233 		fs_info->avail_data_alloc_bits |= extra_flags;
3234 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3235 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3236 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3237 		fs_info->avail_system_alloc_bits |= extra_flags;
3238 }
3239 
3240 /*
3241  * returns target flags in extended format or 0 if restripe for this
3242  * chunk_type is not in progress
3243  *
3244  * should be called with either volume_mutex or balance_lock held
3245  */
3246 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3247 {
3248 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3249 	u64 target = 0;
3250 
3251 	if (!bctl)
3252 		return 0;
3253 
3254 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3255 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3256 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3257 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3258 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3259 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3260 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3261 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3262 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3263 	}
3264 
3265 	return target;
3266 }
3267 
3268 /*
3269  * @flags: available profiles in extended format (see ctree.h)
3270  *
3271  * Returns reduced profile in chunk format.  If profile changing is in
3272  * progress (either running or paused) picks the target profile (if it's
3273  * already available), otherwise falls back to plain reducing.
3274  */
3275 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3276 {
3277 	/*
3278 	 * we add in the count of missing devices because we want
3279 	 * to make sure that any RAID levels on a degraded FS
3280 	 * continue to be honored.
3281 	 */
3282 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3283 		root->fs_info->fs_devices->missing_devices;
3284 	u64 target;
3285 
3286 	/*
3287 	 * see if restripe for this chunk_type is in progress, if so
3288 	 * try to reduce to the target profile
3289 	 */
3290 	spin_lock(&root->fs_info->balance_lock);
3291 	target = get_restripe_target(root->fs_info, flags);
3292 	if (target) {
3293 		/* pick target profile only if it's already available */
3294 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3295 			spin_unlock(&root->fs_info->balance_lock);
3296 			return extended_to_chunk(target);
3297 		}
3298 	}
3299 	spin_unlock(&root->fs_info->balance_lock);
3300 
3301 	if (num_devices == 1)
3302 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3303 	if (num_devices < 4)
3304 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3305 
3306 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3307 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3308 		      BTRFS_BLOCK_GROUP_RAID10))) {
3309 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3310 	}
3311 
3312 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3313 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3314 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3315 	}
3316 
3317 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3318 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3319 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3320 	     (flags & BTRFS_BLOCK_GROUP_DUP))) {
3321 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3322 	}
3323 
3324 	return extended_to_chunk(flags);
3325 }
3326 
3327 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3328 {
3329 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3330 		flags |= root->fs_info->avail_data_alloc_bits;
3331 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3332 		flags |= root->fs_info->avail_system_alloc_bits;
3333 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3334 		flags |= root->fs_info->avail_metadata_alloc_bits;
3335 
3336 	return btrfs_reduce_alloc_profile(root, flags);
3337 }
3338 
3339 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3340 {
3341 	u64 flags;
3342 
3343 	if (data)
3344 		flags = BTRFS_BLOCK_GROUP_DATA;
3345 	else if (root == root->fs_info->chunk_root)
3346 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3347 	else
3348 		flags = BTRFS_BLOCK_GROUP_METADATA;
3349 
3350 	return get_alloc_profile(root, flags);
3351 }
3352 
3353 /*
3354  * This will check the space that the inode allocates from to make sure we have
3355  * enough space for bytes.
3356  */
3357 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3358 {
3359 	struct btrfs_space_info *data_sinfo;
3360 	struct btrfs_root *root = BTRFS_I(inode)->root;
3361 	struct btrfs_fs_info *fs_info = root->fs_info;
3362 	u64 used;
3363 	int ret = 0, committed = 0, alloc_chunk = 1;
3364 
3365 	/* make sure bytes are sectorsize aligned */
3366 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3367 
3368 	if (root == root->fs_info->tree_root ||
3369 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3370 		alloc_chunk = 0;
3371 		committed = 1;
3372 	}
3373 
3374 	data_sinfo = fs_info->data_sinfo;
3375 	if (!data_sinfo)
3376 		goto alloc;
3377 
3378 again:
3379 	/* make sure we have enough space to handle the data first */
3380 	spin_lock(&data_sinfo->lock);
3381 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3382 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3383 		data_sinfo->bytes_may_use;
3384 
3385 	if (used + bytes > data_sinfo->total_bytes) {
3386 		struct btrfs_trans_handle *trans;
3387 
3388 		/*
3389 		 * if we don't have enough free bytes in this space then we need
3390 		 * to alloc a new chunk.
3391 		 */
3392 		if (!data_sinfo->full && alloc_chunk) {
3393 			u64 alloc_target;
3394 
3395 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3396 			spin_unlock(&data_sinfo->lock);
3397 alloc:
3398 			alloc_target = btrfs_get_alloc_profile(root, 1);
3399 			trans = btrfs_join_transaction(root);
3400 			if (IS_ERR(trans))
3401 				return PTR_ERR(trans);
3402 
3403 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3404 					     alloc_target,
3405 					     CHUNK_ALLOC_NO_FORCE);
3406 			btrfs_end_transaction(trans, root);
3407 			if (ret < 0) {
3408 				if (ret != -ENOSPC)
3409 					return ret;
3410 				else
3411 					goto commit_trans;
3412 			}
3413 
3414 			if (!data_sinfo)
3415 				data_sinfo = fs_info->data_sinfo;
3416 
3417 			goto again;
3418 		}
3419 
3420 		/*
3421 		 * If we have less pinned bytes than we want to allocate then
3422 		 * don't bother committing the transaction, it won't help us.
3423 		 */
3424 		if (data_sinfo->bytes_pinned < bytes)
3425 			committed = 1;
3426 		spin_unlock(&data_sinfo->lock);
3427 
3428 		/* commit the current transaction and try again */
3429 commit_trans:
3430 		if (!committed &&
3431 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3432 			committed = 1;
3433 			trans = btrfs_join_transaction(root);
3434 			if (IS_ERR(trans))
3435 				return PTR_ERR(trans);
3436 			ret = btrfs_commit_transaction(trans, root);
3437 			if (ret)
3438 				return ret;
3439 			goto again;
3440 		}
3441 
3442 		return -ENOSPC;
3443 	}
3444 	data_sinfo->bytes_may_use += bytes;
3445 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3446 				      data_sinfo->flags, bytes, 1);
3447 	spin_unlock(&data_sinfo->lock);
3448 
3449 	return 0;
3450 }
3451 
3452 /*
3453  * Called if we need to clear a data reservation for this inode.
3454  */
3455 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3456 {
3457 	struct btrfs_root *root = BTRFS_I(inode)->root;
3458 	struct btrfs_space_info *data_sinfo;
3459 
3460 	/* make sure bytes are sectorsize aligned */
3461 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3462 
3463 	data_sinfo = root->fs_info->data_sinfo;
3464 	spin_lock(&data_sinfo->lock);
3465 	data_sinfo->bytes_may_use -= bytes;
3466 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3467 				      data_sinfo->flags, bytes, 0);
3468 	spin_unlock(&data_sinfo->lock);
3469 }
3470 
3471 static void force_metadata_allocation(struct btrfs_fs_info *info)
3472 {
3473 	struct list_head *head = &info->space_info;
3474 	struct btrfs_space_info *found;
3475 
3476 	rcu_read_lock();
3477 	list_for_each_entry_rcu(found, head, list) {
3478 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3479 			found->force_alloc = CHUNK_ALLOC_FORCE;
3480 	}
3481 	rcu_read_unlock();
3482 }
3483 
3484 static int should_alloc_chunk(struct btrfs_root *root,
3485 			      struct btrfs_space_info *sinfo, int force)
3486 {
3487 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3488 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3489 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3490 	u64 thresh;
3491 
3492 	if (force == CHUNK_ALLOC_FORCE)
3493 		return 1;
3494 
3495 	/*
3496 	 * We need to take into account the global rsv because for all intents
3497 	 * and purposes it's used space.  Don't worry about locking the
3498 	 * global_rsv, it doesn't change except when the transaction commits.
3499 	 */
3500 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3501 		num_allocated += global_rsv->size;
3502 
3503 	/*
3504 	 * in limited mode, we want to have some free space up to
3505 	 * about 1% of the FS size.
3506 	 */
3507 	if (force == CHUNK_ALLOC_LIMITED) {
3508 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3509 		thresh = max_t(u64, 64 * 1024 * 1024,
3510 			       div_factor_fine(thresh, 1));
3511 
3512 		if (num_bytes - num_allocated < thresh)
3513 			return 1;
3514 	}
3515 
3516 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3517 		return 0;
3518 	return 1;
3519 }
3520 
3521 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3522 {
3523 	u64 num_dev;
3524 
3525 	if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3526 	    type & BTRFS_BLOCK_GROUP_RAID0)
3527 		num_dev = root->fs_info->fs_devices->rw_devices;
3528 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3529 		num_dev = 2;
3530 	else
3531 		num_dev = 1;	/* DUP or single */
3532 
3533 	/* metadata for updaing devices and chunk tree */
3534 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3535 }
3536 
3537 static void check_system_chunk(struct btrfs_trans_handle *trans,
3538 			       struct btrfs_root *root, u64 type)
3539 {
3540 	struct btrfs_space_info *info;
3541 	u64 left;
3542 	u64 thresh;
3543 
3544 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3545 	spin_lock(&info->lock);
3546 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3547 		info->bytes_reserved - info->bytes_readonly;
3548 	spin_unlock(&info->lock);
3549 
3550 	thresh = get_system_chunk_thresh(root, type);
3551 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3552 		printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3553 		       left, thresh, type);
3554 		dump_space_info(info, 0, 0);
3555 	}
3556 
3557 	if (left < thresh) {
3558 		u64 flags;
3559 
3560 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3561 		btrfs_alloc_chunk(trans, root, flags);
3562 	}
3563 }
3564 
3565 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3566 			  struct btrfs_root *extent_root, u64 flags, int force)
3567 {
3568 	struct btrfs_space_info *space_info;
3569 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3570 	int wait_for_alloc = 0;
3571 	int ret = 0;
3572 
3573 	space_info = __find_space_info(extent_root->fs_info, flags);
3574 	if (!space_info) {
3575 		ret = update_space_info(extent_root->fs_info, flags,
3576 					0, 0, &space_info);
3577 		BUG_ON(ret); /* -ENOMEM */
3578 	}
3579 	BUG_ON(!space_info); /* Logic error */
3580 
3581 again:
3582 	spin_lock(&space_info->lock);
3583 	if (force < space_info->force_alloc)
3584 		force = space_info->force_alloc;
3585 	if (space_info->full) {
3586 		spin_unlock(&space_info->lock);
3587 		return 0;
3588 	}
3589 
3590 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3591 		spin_unlock(&space_info->lock);
3592 		return 0;
3593 	} else if (space_info->chunk_alloc) {
3594 		wait_for_alloc = 1;
3595 	} else {
3596 		space_info->chunk_alloc = 1;
3597 	}
3598 
3599 	spin_unlock(&space_info->lock);
3600 
3601 	mutex_lock(&fs_info->chunk_mutex);
3602 
3603 	/*
3604 	 * The chunk_mutex is held throughout the entirety of a chunk
3605 	 * allocation, so once we've acquired the chunk_mutex we know that the
3606 	 * other guy is done and we need to recheck and see if we should
3607 	 * allocate.
3608 	 */
3609 	if (wait_for_alloc) {
3610 		mutex_unlock(&fs_info->chunk_mutex);
3611 		wait_for_alloc = 0;
3612 		goto again;
3613 	}
3614 
3615 	/*
3616 	 * If we have mixed data/metadata chunks we want to make sure we keep
3617 	 * allocating mixed chunks instead of individual chunks.
3618 	 */
3619 	if (btrfs_mixed_space_info(space_info))
3620 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3621 
3622 	/*
3623 	 * if we're doing a data chunk, go ahead and make sure that
3624 	 * we keep a reasonable number of metadata chunks allocated in the
3625 	 * FS as well.
3626 	 */
3627 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3628 		fs_info->data_chunk_allocations++;
3629 		if (!(fs_info->data_chunk_allocations %
3630 		      fs_info->metadata_ratio))
3631 			force_metadata_allocation(fs_info);
3632 	}
3633 
3634 	/*
3635 	 * Check if we have enough space in SYSTEM chunk because we may need
3636 	 * to update devices.
3637 	 */
3638 	check_system_chunk(trans, extent_root, flags);
3639 
3640 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3641 	if (ret < 0 && ret != -ENOSPC)
3642 		goto out;
3643 
3644 	spin_lock(&space_info->lock);
3645 	if (ret)
3646 		space_info->full = 1;
3647 	else
3648 		ret = 1;
3649 
3650 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3651 	space_info->chunk_alloc = 0;
3652 	spin_unlock(&space_info->lock);
3653 out:
3654 	mutex_unlock(&fs_info->chunk_mutex);
3655 	return ret;
3656 }
3657 
3658 static int can_overcommit(struct btrfs_root *root,
3659 			  struct btrfs_space_info *space_info, u64 bytes,
3660 			  enum btrfs_reserve_flush_enum flush)
3661 {
3662 	u64 profile = btrfs_get_alloc_profile(root, 0);
3663 	u64 avail;
3664 	u64 used;
3665 
3666 	used = space_info->bytes_used + space_info->bytes_reserved +
3667 		space_info->bytes_pinned + space_info->bytes_readonly +
3668 		space_info->bytes_may_use;
3669 
3670 	spin_lock(&root->fs_info->free_chunk_lock);
3671 	avail = root->fs_info->free_chunk_space;
3672 	spin_unlock(&root->fs_info->free_chunk_lock);
3673 
3674 	/*
3675 	 * If we have dup, raid1 or raid10 then only half of the free
3676 	 * space is actually useable.
3677 	 */
3678 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3679 		       BTRFS_BLOCK_GROUP_RAID1 |
3680 		       BTRFS_BLOCK_GROUP_RAID10))
3681 		avail >>= 1;
3682 
3683 	/*
3684 	 * If we aren't flushing all things, let us overcommit up to
3685 	 * 1/2th of the space. If we can flush, don't let us overcommit
3686 	 * too much, let it overcommit up to 1/8 of the space.
3687 	 */
3688 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3689 		avail >>= 3;
3690 	else
3691 		avail >>= 1;
3692 
3693 	if (used + bytes < space_info->total_bytes + avail)
3694 		return 1;
3695 	return 0;
3696 }
3697 
3698 static inline int writeback_inodes_sb_nr_if_idle_safe(struct super_block *sb,
3699 						      unsigned long nr_pages,
3700 						      enum wb_reason reason)
3701 {
3702 	/* the flusher is dealing with the dirty inodes now. */
3703 	if (writeback_in_progress(sb->s_bdi))
3704 		return 1;
3705 
3706 	if (down_read_trylock(&sb->s_umount)) {
3707 		writeback_inodes_sb_nr(sb, nr_pages, reason);
3708 		up_read(&sb->s_umount);
3709 		return 1;
3710 	}
3711 
3712 	return 0;
3713 }
3714 
3715 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3716 				  unsigned long nr_pages)
3717 {
3718 	struct super_block *sb = root->fs_info->sb;
3719 	int started;
3720 
3721 	/* If we can not start writeback, just sync all the delalloc file. */
3722 	started = writeback_inodes_sb_nr_if_idle_safe(sb, nr_pages,
3723 						      WB_REASON_FS_FREE_SPACE);
3724 	if (!started) {
3725 		/*
3726 		 * We needn't worry the filesystem going from r/w to r/o though
3727 		 * we don't acquire ->s_umount mutex, because the filesystem
3728 		 * should guarantee the delalloc inodes list be empty after
3729 		 * the filesystem is readonly(all dirty pages are written to
3730 		 * the disk).
3731 		 */
3732 		btrfs_start_delalloc_inodes(root, 0);
3733 		btrfs_wait_ordered_extents(root, 0);
3734 	}
3735 }
3736 
3737 /*
3738  * shrink metadata reservation for delalloc
3739  */
3740 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3741 			    bool wait_ordered)
3742 {
3743 	struct btrfs_block_rsv *block_rsv;
3744 	struct btrfs_space_info *space_info;
3745 	struct btrfs_trans_handle *trans;
3746 	u64 delalloc_bytes;
3747 	u64 max_reclaim;
3748 	long time_left;
3749 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3750 	int loops = 0;
3751 	enum btrfs_reserve_flush_enum flush;
3752 
3753 	trans = (struct btrfs_trans_handle *)current->journal_info;
3754 	block_rsv = &root->fs_info->delalloc_block_rsv;
3755 	space_info = block_rsv->space_info;
3756 
3757 	smp_mb();
3758 	delalloc_bytes = root->fs_info->delalloc_bytes;
3759 	if (delalloc_bytes == 0) {
3760 		if (trans)
3761 			return;
3762 		btrfs_wait_ordered_extents(root, 0);
3763 		return;
3764 	}
3765 
3766 	while (delalloc_bytes && loops < 3) {
3767 		max_reclaim = min(delalloc_bytes, to_reclaim);
3768 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3769 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
3770 		/*
3771 		 * We need to wait for the async pages to actually start before
3772 		 * we do anything.
3773 		 */
3774 		wait_event(root->fs_info->async_submit_wait,
3775 			   !atomic_read(&root->fs_info->async_delalloc_pages));
3776 
3777 		if (!trans)
3778 			flush = BTRFS_RESERVE_FLUSH_ALL;
3779 		else
3780 			flush = BTRFS_RESERVE_NO_FLUSH;
3781 		spin_lock(&space_info->lock);
3782 		if (can_overcommit(root, space_info, orig, flush)) {
3783 			spin_unlock(&space_info->lock);
3784 			break;
3785 		}
3786 		spin_unlock(&space_info->lock);
3787 
3788 		loops++;
3789 		if (wait_ordered && !trans) {
3790 			btrfs_wait_ordered_extents(root, 0);
3791 		} else {
3792 			time_left = schedule_timeout_killable(1);
3793 			if (time_left)
3794 				break;
3795 		}
3796 		smp_mb();
3797 		delalloc_bytes = root->fs_info->delalloc_bytes;
3798 	}
3799 }
3800 
3801 /**
3802  * maybe_commit_transaction - possibly commit the transaction if its ok to
3803  * @root - the root we're allocating for
3804  * @bytes - the number of bytes we want to reserve
3805  * @force - force the commit
3806  *
3807  * This will check to make sure that committing the transaction will actually
3808  * get us somewhere and then commit the transaction if it does.  Otherwise it
3809  * will return -ENOSPC.
3810  */
3811 static int may_commit_transaction(struct btrfs_root *root,
3812 				  struct btrfs_space_info *space_info,
3813 				  u64 bytes, int force)
3814 {
3815 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3816 	struct btrfs_trans_handle *trans;
3817 
3818 	trans = (struct btrfs_trans_handle *)current->journal_info;
3819 	if (trans)
3820 		return -EAGAIN;
3821 
3822 	if (force)
3823 		goto commit;
3824 
3825 	/* See if there is enough pinned space to make this reservation */
3826 	spin_lock(&space_info->lock);
3827 	if (space_info->bytes_pinned >= bytes) {
3828 		spin_unlock(&space_info->lock);
3829 		goto commit;
3830 	}
3831 	spin_unlock(&space_info->lock);
3832 
3833 	/*
3834 	 * See if there is some space in the delayed insertion reservation for
3835 	 * this reservation.
3836 	 */
3837 	if (space_info != delayed_rsv->space_info)
3838 		return -ENOSPC;
3839 
3840 	spin_lock(&space_info->lock);
3841 	spin_lock(&delayed_rsv->lock);
3842 	if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3843 		spin_unlock(&delayed_rsv->lock);
3844 		spin_unlock(&space_info->lock);
3845 		return -ENOSPC;
3846 	}
3847 	spin_unlock(&delayed_rsv->lock);
3848 	spin_unlock(&space_info->lock);
3849 
3850 commit:
3851 	trans = btrfs_join_transaction(root);
3852 	if (IS_ERR(trans))
3853 		return -ENOSPC;
3854 
3855 	return btrfs_commit_transaction(trans, root);
3856 }
3857 
3858 enum flush_state {
3859 	FLUSH_DELAYED_ITEMS_NR	=	1,
3860 	FLUSH_DELAYED_ITEMS	=	2,
3861 	FLUSH_DELALLOC		=	3,
3862 	FLUSH_DELALLOC_WAIT	=	4,
3863 	ALLOC_CHUNK		=	5,
3864 	COMMIT_TRANS		=	6,
3865 };
3866 
3867 static int flush_space(struct btrfs_root *root,
3868 		       struct btrfs_space_info *space_info, u64 num_bytes,
3869 		       u64 orig_bytes, int state)
3870 {
3871 	struct btrfs_trans_handle *trans;
3872 	int nr;
3873 	int ret = 0;
3874 
3875 	switch (state) {
3876 	case FLUSH_DELAYED_ITEMS_NR:
3877 	case FLUSH_DELAYED_ITEMS:
3878 		if (state == FLUSH_DELAYED_ITEMS_NR) {
3879 			u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3880 
3881 			nr = (int)div64_u64(num_bytes, bytes);
3882 			if (!nr)
3883 				nr = 1;
3884 			nr *= 2;
3885 		} else {
3886 			nr = -1;
3887 		}
3888 		trans = btrfs_join_transaction(root);
3889 		if (IS_ERR(trans)) {
3890 			ret = PTR_ERR(trans);
3891 			break;
3892 		}
3893 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
3894 		btrfs_end_transaction(trans, root);
3895 		break;
3896 	case FLUSH_DELALLOC:
3897 	case FLUSH_DELALLOC_WAIT:
3898 		shrink_delalloc(root, num_bytes, orig_bytes,
3899 				state == FLUSH_DELALLOC_WAIT);
3900 		break;
3901 	case ALLOC_CHUNK:
3902 		trans = btrfs_join_transaction(root);
3903 		if (IS_ERR(trans)) {
3904 			ret = PTR_ERR(trans);
3905 			break;
3906 		}
3907 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3908 				     btrfs_get_alloc_profile(root, 0),
3909 				     CHUNK_ALLOC_NO_FORCE);
3910 		btrfs_end_transaction(trans, root);
3911 		if (ret == -ENOSPC)
3912 			ret = 0;
3913 		break;
3914 	case COMMIT_TRANS:
3915 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3916 		break;
3917 	default:
3918 		ret = -ENOSPC;
3919 		break;
3920 	}
3921 
3922 	return ret;
3923 }
3924 /**
3925  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3926  * @root - the root we're allocating for
3927  * @block_rsv - the block_rsv we're allocating for
3928  * @orig_bytes - the number of bytes we want
3929  * @flush - wether or not we can flush to make our reservation
3930  *
3931  * This will reserve orgi_bytes number of bytes from the space info associated
3932  * with the block_rsv.  If there is not enough space it will make an attempt to
3933  * flush out space to make room.  It will do this by flushing delalloc if
3934  * possible or committing the transaction.  If flush is 0 then no attempts to
3935  * regain reservations will be made and this will fail if there is not enough
3936  * space already.
3937  */
3938 static int reserve_metadata_bytes(struct btrfs_root *root,
3939 				  struct btrfs_block_rsv *block_rsv,
3940 				  u64 orig_bytes,
3941 				  enum btrfs_reserve_flush_enum flush)
3942 {
3943 	struct btrfs_space_info *space_info = block_rsv->space_info;
3944 	u64 used;
3945 	u64 num_bytes = orig_bytes;
3946 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
3947 	int ret = 0;
3948 	bool flushing = false;
3949 
3950 again:
3951 	ret = 0;
3952 	spin_lock(&space_info->lock);
3953 	/*
3954 	 * We only want to wait if somebody other than us is flushing and we
3955 	 * are actually allowed to flush all things.
3956 	 */
3957 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
3958 	       space_info->flush) {
3959 		spin_unlock(&space_info->lock);
3960 		/*
3961 		 * If we have a trans handle we can't wait because the flusher
3962 		 * may have to commit the transaction, which would mean we would
3963 		 * deadlock since we are waiting for the flusher to finish, but
3964 		 * hold the current transaction open.
3965 		 */
3966 		if (current->journal_info)
3967 			return -EAGAIN;
3968 		ret = wait_event_killable(space_info->wait, !space_info->flush);
3969 		/* Must have been killed, return */
3970 		if (ret)
3971 			return -EINTR;
3972 
3973 		spin_lock(&space_info->lock);
3974 	}
3975 
3976 	ret = -ENOSPC;
3977 	used = space_info->bytes_used + space_info->bytes_reserved +
3978 		space_info->bytes_pinned + space_info->bytes_readonly +
3979 		space_info->bytes_may_use;
3980 
3981 	/*
3982 	 * The idea here is that we've not already over-reserved the block group
3983 	 * then we can go ahead and save our reservation first and then start
3984 	 * flushing if we need to.  Otherwise if we've already overcommitted
3985 	 * lets start flushing stuff first and then come back and try to make
3986 	 * our reservation.
3987 	 */
3988 	if (used <= space_info->total_bytes) {
3989 		if (used + orig_bytes <= space_info->total_bytes) {
3990 			space_info->bytes_may_use += orig_bytes;
3991 			trace_btrfs_space_reservation(root->fs_info,
3992 				"space_info", space_info->flags, orig_bytes, 1);
3993 			ret = 0;
3994 		} else {
3995 			/*
3996 			 * Ok set num_bytes to orig_bytes since we aren't
3997 			 * overocmmitted, this way we only try and reclaim what
3998 			 * we need.
3999 			 */
4000 			num_bytes = orig_bytes;
4001 		}
4002 	} else {
4003 		/*
4004 		 * Ok we're over committed, set num_bytes to the overcommitted
4005 		 * amount plus the amount of bytes that we need for this
4006 		 * reservation.
4007 		 */
4008 		num_bytes = used - space_info->total_bytes +
4009 			(orig_bytes * 2);
4010 	}
4011 
4012 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4013 		space_info->bytes_may_use += orig_bytes;
4014 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4015 					      space_info->flags, orig_bytes,
4016 					      1);
4017 		ret = 0;
4018 	}
4019 
4020 	/*
4021 	 * Couldn't make our reservation, save our place so while we're trying
4022 	 * to reclaim space we can actually use it instead of somebody else
4023 	 * stealing it from us.
4024 	 *
4025 	 * We make the other tasks wait for the flush only when we can flush
4026 	 * all things.
4027 	 */
4028 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4029 		flushing = true;
4030 		space_info->flush = 1;
4031 	}
4032 
4033 	spin_unlock(&space_info->lock);
4034 
4035 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4036 		goto out;
4037 
4038 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4039 			  flush_state);
4040 	flush_state++;
4041 
4042 	/*
4043 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4044 	 * would happen. So skip delalloc flush.
4045 	 */
4046 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4047 	    (flush_state == FLUSH_DELALLOC ||
4048 	     flush_state == FLUSH_DELALLOC_WAIT))
4049 		flush_state = ALLOC_CHUNK;
4050 
4051 	if (!ret)
4052 		goto again;
4053 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4054 		 flush_state < COMMIT_TRANS)
4055 		goto again;
4056 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4057 		 flush_state <= COMMIT_TRANS)
4058 		goto again;
4059 
4060 out:
4061 	if (flushing) {
4062 		spin_lock(&space_info->lock);
4063 		space_info->flush = 0;
4064 		wake_up_all(&space_info->wait);
4065 		spin_unlock(&space_info->lock);
4066 	}
4067 	return ret;
4068 }
4069 
4070 static struct btrfs_block_rsv *get_block_rsv(
4071 					const struct btrfs_trans_handle *trans,
4072 					const struct btrfs_root *root)
4073 {
4074 	struct btrfs_block_rsv *block_rsv = NULL;
4075 
4076 	if (root->ref_cows)
4077 		block_rsv = trans->block_rsv;
4078 
4079 	if (root == root->fs_info->csum_root && trans->adding_csums)
4080 		block_rsv = trans->block_rsv;
4081 
4082 	if (!block_rsv)
4083 		block_rsv = root->block_rsv;
4084 
4085 	if (!block_rsv)
4086 		block_rsv = &root->fs_info->empty_block_rsv;
4087 
4088 	return block_rsv;
4089 }
4090 
4091 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4092 			       u64 num_bytes)
4093 {
4094 	int ret = -ENOSPC;
4095 	spin_lock(&block_rsv->lock);
4096 	if (block_rsv->reserved >= num_bytes) {
4097 		block_rsv->reserved -= num_bytes;
4098 		if (block_rsv->reserved < block_rsv->size)
4099 			block_rsv->full = 0;
4100 		ret = 0;
4101 	}
4102 	spin_unlock(&block_rsv->lock);
4103 	return ret;
4104 }
4105 
4106 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4107 				u64 num_bytes, int update_size)
4108 {
4109 	spin_lock(&block_rsv->lock);
4110 	block_rsv->reserved += num_bytes;
4111 	if (update_size)
4112 		block_rsv->size += num_bytes;
4113 	else if (block_rsv->reserved >= block_rsv->size)
4114 		block_rsv->full = 1;
4115 	spin_unlock(&block_rsv->lock);
4116 }
4117 
4118 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4119 				    struct btrfs_block_rsv *block_rsv,
4120 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4121 {
4122 	struct btrfs_space_info *space_info = block_rsv->space_info;
4123 
4124 	spin_lock(&block_rsv->lock);
4125 	if (num_bytes == (u64)-1)
4126 		num_bytes = block_rsv->size;
4127 	block_rsv->size -= num_bytes;
4128 	if (block_rsv->reserved >= block_rsv->size) {
4129 		num_bytes = block_rsv->reserved - block_rsv->size;
4130 		block_rsv->reserved = block_rsv->size;
4131 		block_rsv->full = 1;
4132 	} else {
4133 		num_bytes = 0;
4134 	}
4135 	spin_unlock(&block_rsv->lock);
4136 
4137 	if (num_bytes > 0) {
4138 		if (dest) {
4139 			spin_lock(&dest->lock);
4140 			if (!dest->full) {
4141 				u64 bytes_to_add;
4142 
4143 				bytes_to_add = dest->size - dest->reserved;
4144 				bytes_to_add = min(num_bytes, bytes_to_add);
4145 				dest->reserved += bytes_to_add;
4146 				if (dest->reserved >= dest->size)
4147 					dest->full = 1;
4148 				num_bytes -= bytes_to_add;
4149 			}
4150 			spin_unlock(&dest->lock);
4151 		}
4152 		if (num_bytes) {
4153 			spin_lock(&space_info->lock);
4154 			space_info->bytes_may_use -= num_bytes;
4155 			trace_btrfs_space_reservation(fs_info, "space_info",
4156 					space_info->flags, num_bytes, 0);
4157 			space_info->reservation_progress++;
4158 			spin_unlock(&space_info->lock);
4159 		}
4160 	}
4161 }
4162 
4163 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4164 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4165 {
4166 	int ret;
4167 
4168 	ret = block_rsv_use_bytes(src, num_bytes);
4169 	if (ret)
4170 		return ret;
4171 
4172 	block_rsv_add_bytes(dst, num_bytes, 1);
4173 	return 0;
4174 }
4175 
4176 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4177 {
4178 	memset(rsv, 0, sizeof(*rsv));
4179 	spin_lock_init(&rsv->lock);
4180 	rsv->type = type;
4181 }
4182 
4183 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4184 					      unsigned short type)
4185 {
4186 	struct btrfs_block_rsv *block_rsv;
4187 	struct btrfs_fs_info *fs_info = root->fs_info;
4188 
4189 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4190 	if (!block_rsv)
4191 		return NULL;
4192 
4193 	btrfs_init_block_rsv(block_rsv, type);
4194 	block_rsv->space_info = __find_space_info(fs_info,
4195 						  BTRFS_BLOCK_GROUP_METADATA);
4196 	return block_rsv;
4197 }
4198 
4199 void btrfs_free_block_rsv(struct btrfs_root *root,
4200 			  struct btrfs_block_rsv *rsv)
4201 {
4202 	if (!rsv)
4203 		return;
4204 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4205 	kfree(rsv);
4206 }
4207 
4208 int btrfs_block_rsv_add(struct btrfs_root *root,
4209 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4210 			enum btrfs_reserve_flush_enum flush)
4211 {
4212 	int ret;
4213 
4214 	if (num_bytes == 0)
4215 		return 0;
4216 
4217 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4218 	if (!ret) {
4219 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4220 		return 0;
4221 	}
4222 
4223 	return ret;
4224 }
4225 
4226 int btrfs_block_rsv_check(struct btrfs_root *root,
4227 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4228 {
4229 	u64 num_bytes = 0;
4230 	int ret = -ENOSPC;
4231 
4232 	if (!block_rsv)
4233 		return 0;
4234 
4235 	spin_lock(&block_rsv->lock);
4236 	num_bytes = div_factor(block_rsv->size, min_factor);
4237 	if (block_rsv->reserved >= num_bytes)
4238 		ret = 0;
4239 	spin_unlock(&block_rsv->lock);
4240 
4241 	return ret;
4242 }
4243 
4244 int btrfs_block_rsv_refill(struct btrfs_root *root,
4245 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4246 			   enum btrfs_reserve_flush_enum flush)
4247 {
4248 	u64 num_bytes = 0;
4249 	int ret = -ENOSPC;
4250 
4251 	if (!block_rsv)
4252 		return 0;
4253 
4254 	spin_lock(&block_rsv->lock);
4255 	num_bytes = min_reserved;
4256 	if (block_rsv->reserved >= num_bytes)
4257 		ret = 0;
4258 	else
4259 		num_bytes -= block_rsv->reserved;
4260 	spin_unlock(&block_rsv->lock);
4261 
4262 	if (!ret)
4263 		return 0;
4264 
4265 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4266 	if (!ret) {
4267 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4268 		return 0;
4269 	}
4270 
4271 	return ret;
4272 }
4273 
4274 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4275 			    struct btrfs_block_rsv *dst_rsv,
4276 			    u64 num_bytes)
4277 {
4278 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4279 }
4280 
4281 void btrfs_block_rsv_release(struct btrfs_root *root,
4282 			     struct btrfs_block_rsv *block_rsv,
4283 			     u64 num_bytes)
4284 {
4285 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4286 	if (global_rsv->full || global_rsv == block_rsv ||
4287 	    block_rsv->space_info != global_rsv->space_info)
4288 		global_rsv = NULL;
4289 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4290 				num_bytes);
4291 }
4292 
4293 /*
4294  * helper to calculate size of global block reservation.
4295  * the desired value is sum of space used by extent tree,
4296  * checksum tree and root tree
4297  */
4298 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4299 {
4300 	struct btrfs_space_info *sinfo;
4301 	u64 num_bytes;
4302 	u64 meta_used;
4303 	u64 data_used;
4304 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4305 
4306 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4307 	spin_lock(&sinfo->lock);
4308 	data_used = sinfo->bytes_used;
4309 	spin_unlock(&sinfo->lock);
4310 
4311 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4312 	spin_lock(&sinfo->lock);
4313 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4314 		data_used = 0;
4315 	meta_used = sinfo->bytes_used;
4316 	spin_unlock(&sinfo->lock);
4317 
4318 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4319 		    csum_size * 2;
4320 	num_bytes += div64_u64(data_used + meta_used, 50);
4321 
4322 	if (num_bytes * 3 > meta_used)
4323 		num_bytes = div64_u64(meta_used, 3);
4324 
4325 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4326 }
4327 
4328 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4329 {
4330 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4331 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4332 	u64 num_bytes;
4333 
4334 	num_bytes = calc_global_metadata_size(fs_info);
4335 
4336 	spin_lock(&sinfo->lock);
4337 	spin_lock(&block_rsv->lock);
4338 
4339 	block_rsv->size = num_bytes;
4340 
4341 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4342 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4343 		    sinfo->bytes_may_use;
4344 
4345 	if (sinfo->total_bytes > num_bytes) {
4346 		num_bytes = sinfo->total_bytes - num_bytes;
4347 		block_rsv->reserved += num_bytes;
4348 		sinfo->bytes_may_use += num_bytes;
4349 		trace_btrfs_space_reservation(fs_info, "space_info",
4350 				      sinfo->flags, num_bytes, 1);
4351 	}
4352 
4353 	if (block_rsv->reserved >= block_rsv->size) {
4354 		num_bytes = block_rsv->reserved - block_rsv->size;
4355 		sinfo->bytes_may_use -= num_bytes;
4356 		trace_btrfs_space_reservation(fs_info, "space_info",
4357 				      sinfo->flags, num_bytes, 0);
4358 		sinfo->reservation_progress++;
4359 		block_rsv->reserved = block_rsv->size;
4360 		block_rsv->full = 1;
4361 	}
4362 
4363 	spin_unlock(&block_rsv->lock);
4364 	spin_unlock(&sinfo->lock);
4365 }
4366 
4367 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4368 {
4369 	struct btrfs_space_info *space_info;
4370 
4371 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4372 	fs_info->chunk_block_rsv.space_info = space_info;
4373 
4374 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4375 	fs_info->global_block_rsv.space_info = space_info;
4376 	fs_info->delalloc_block_rsv.space_info = space_info;
4377 	fs_info->trans_block_rsv.space_info = space_info;
4378 	fs_info->empty_block_rsv.space_info = space_info;
4379 	fs_info->delayed_block_rsv.space_info = space_info;
4380 
4381 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4382 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4383 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4384 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4385 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4386 
4387 	update_global_block_rsv(fs_info);
4388 }
4389 
4390 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4391 {
4392 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4393 				(u64)-1);
4394 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4395 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4396 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4397 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4398 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4399 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4400 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4401 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4402 }
4403 
4404 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4405 				  struct btrfs_root *root)
4406 {
4407 	if (!trans->block_rsv)
4408 		return;
4409 
4410 	if (!trans->bytes_reserved)
4411 		return;
4412 
4413 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4414 				      trans->transid, trans->bytes_reserved, 0);
4415 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4416 	trans->bytes_reserved = 0;
4417 }
4418 
4419 /* Can only return 0 or -ENOSPC */
4420 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4421 				  struct inode *inode)
4422 {
4423 	struct btrfs_root *root = BTRFS_I(inode)->root;
4424 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4425 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4426 
4427 	/*
4428 	 * We need to hold space in order to delete our orphan item once we've
4429 	 * added it, so this takes the reservation so we can release it later
4430 	 * when we are truly done with the orphan item.
4431 	 */
4432 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4433 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4434 				      btrfs_ino(inode), num_bytes, 1);
4435 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4436 }
4437 
4438 void btrfs_orphan_release_metadata(struct inode *inode)
4439 {
4440 	struct btrfs_root *root = BTRFS_I(inode)->root;
4441 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4442 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4443 				      btrfs_ino(inode), num_bytes, 0);
4444 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4445 }
4446 
4447 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4448 				struct btrfs_pending_snapshot *pending)
4449 {
4450 	struct btrfs_root *root = pending->root;
4451 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4452 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4453 	/*
4454 	 * two for root back/forward refs, two for directory entries,
4455 	 * one for root of the snapshot and one for parent inode.
4456 	 */
4457 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6);
4458 	dst_rsv->space_info = src_rsv->space_info;
4459 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4460 }
4461 
4462 /**
4463  * drop_outstanding_extent - drop an outstanding extent
4464  * @inode: the inode we're dropping the extent for
4465  *
4466  * This is called when we are freeing up an outstanding extent, either called
4467  * after an error or after an extent is written.  This will return the number of
4468  * reserved extents that need to be freed.  This must be called with
4469  * BTRFS_I(inode)->lock held.
4470  */
4471 static unsigned drop_outstanding_extent(struct inode *inode)
4472 {
4473 	unsigned drop_inode_space = 0;
4474 	unsigned dropped_extents = 0;
4475 
4476 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4477 	BTRFS_I(inode)->outstanding_extents--;
4478 
4479 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4480 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4481 			       &BTRFS_I(inode)->runtime_flags))
4482 		drop_inode_space = 1;
4483 
4484 	/*
4485 	 * If we have more or the same amount of outsanding extents than we have
4486 	 * reserved then we need to leave the reserved extents count alone.
4487 	 */
4488 	if (BTRFS_I(inode)->outstanding_extents >=
4489 	    BTRFS_I(inode)->reserved_extents)
4490 		return drop_inode_space;
4491 
4492 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4493 		BTRFS_I(inode)->outstanding_extents;
4494 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4495 	return dropped_extents + drop_inode_space;
4496 }
4497 
4498 /**
4499  * calc_csum_metadata_size - return the amount of metada space that must be
4500  *	reserved/free'd for the given bytes.
4501  * @inode: the inode we're manipulating
4502  * @num_bytes: the number of bytes in question
4503  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4504  *
4505  * This adjusts the number of csum_bytes in the inode and then returns the
4506  * correct amount of metadata that must either be reserved or freed.  We
4507  * calculate how many checksums we can fit into one leaf and then divide the
4508  * number of bytes that will need to be checksumed by this value to figure out
4509  * how many checksums will be required.  If we are adding bytes then the number
4510  * may go up and we will return the number of additional bytes that must be
4511  * reserved.  If it is going down we will return the number of bytes that must
4512  * be freed.
4513  *
4514  * This must be called with BTRFS_I(inode)->lock held.
4515  */
4516 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4517 				   int reserve)
4518 {
4519 	struct btrfs_root *root = BTRFS_I(inode)->root;
4520 	u64 csum_size;
4521 	int num_csums_per_leaf;
4522 	int num_csums;
4523 	int old_csums;
4524 
4525 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4526 	    BTRFS_I(inode)->csum_bytes == 0)
4527 		return 0;
4528 
4529 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4530 	if (reserve)
4531 		BTRFS_I(inode)->csum_bytes += num_bytes;
4532 	else
4533 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4534 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4535 	num_csums_per_leaf = (int)div64_u64(csum_size,
4536 					    sizeof(struct btrfs_csum_item) +
4537 					    sizeof(struct btrfs_disk_key));
4538 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4539 	num_csums = num_csums + num_csums_per_leaf - 1;
4540 	num_csums = num_csums / num_csums_per_leaf;
4541 
4542 	old_csums = old_csums + num_csums_per_leaf - 1;
4543 	old_csums = old_csums / num_csums_per_leaf;
4544 
4545 	/* No change, no need to reserve more */
4546 	if (old_csums == num_csums)
4547 		return 0;
4548 
4549 	if (reserve)
4550 		return btrfs_calc_trans_metadata_size(root,
4551 						      num_csums - old_csums);
4552 
4553 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4554 }
4555 
4556 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4557 {
4558 	struct btrfs_root *root = BTRFS_I(inode)->root;
4559 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4560 	u64 to_reserve = 0;
4561 	u64 csum_bytes;
4562 	unsigned nr_extents = 0;
4563 	int extra_reserve = 0;
4564 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4565 	int ret = 0;
4566 	bool delalloc_lock = true;
4567 
4568 	/* If we are a free space inode we need to not flush since we will be in
4569 	 * the middle of a transaction commit.  We also don't need the delalloc
4570 	 * mutex since we won't race with anybody.  We need this mostly to make
4571 	 * lockdep shut its filthy mouth.
4572 	 */
4573 	if (btrfs_is_free_space_inode(inode)) {
4574 		flush = BTRFS_RESERVE_NO_FLUSH;
4575 		delalloc_lock = false;
4576 	}
4577 
4578 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4579 	    btrfs_transaction_in_commit(root->fs_info))
4580 		schedule_timeout(1);
4581 
4582 	if (delalloc_lock)
4583 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4584 
4585 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4586 
4587 	spin_lock(&BTRFS_I(inode)->lock);
4588 	BTRFS_I(inode)->outstanding_extents++;
4589 
4590 	if (BTRFS_I(inode)->outstanding_extents >
4591 	    BTRFS_I(inode)->reserved_extents)
4592 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4593 			BTRFS_I(inode)->reserved_extents;
4594 
4595 	/*
4596 	 * Add an item to reserve for updating the inode when we complete the
4597 	 * delalloc io.
4598 	 */
4599 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4600 		      &BTRFS_I(inode)->runtime_flags)) {
4601 		nr_extents++;
4602 		extra_reserve = 1;
4603 	}
4604 
4605 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4606 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4607 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4608 	spin_unlock(&BTRFS_I(inode)->lock);
4609 
4610 	if (root->fs_info->quota_enabled)
4611 		ret = btrfs_qgroup_reserve(root, num_bytes +
4612 					   nr_extents * root->leafsize);
4613 
4614 	/*
4615 	 * ret != 0 here means the qgroup reservation failed, we go straight to
4616 	 * the shared error handling then.
4617 	 */
4618 	if (ret == 0)
4619 		ret = reserve_metadata_bytes(root, block_rsv,
4620 					     to_reserve, flush);
4621 
4622 	if (ret) {
4623 		u64 to_free = 0;
4624 		unsigned dropped;
4625 
4626 		spin_lock(&BTRFS_I(inode)->lock);
4627 		dropped = drop_outstanding_extent(inode);
4628 		/*
4629 		 * If the inodes csum_bytes is the same as the original
4630 		 * csum_bytes then we know we haven't raced with any free()ers
4631 		 * so we can just reduce our inodes csum bytes and carry on.
4632 		 * Otherwise we have to do the normal free thing to account for
4633 		 * the case that the free side didn't free up its reserve
4634 		 * because of this outstanding reservation.
4635 		 */
4636 		if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4637 			calc_csum_metadata_size(inode, num_bytes, 0);
4638 		else
4639 			to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4640 		spin_unlock(&BTRFS_I(inode)->lock);
4641 		if (dropped)
4642 			to_free += btrfs_calc_trans_metadata_size(root, dropped);
4643 
4644 		if (to_free) {
4645 			btrfs_block_rsv_release(root, block_rsv, to_free);
4646 			trace_btrfs_space_reservation(root->fs_info,
4647 						      "delalloc",
4648 						      btrfs_ino(inode),
4649 						      to_free, 0);
4650 		}
4651 		if (root->fs_info->quota_enabled) {
4652 			btrfs_qgroup_free(root, num_bytes +
4653 						nr_extents * root->leafsize);
4654 		}
4655 		if (delalloc_lock)
4656 			mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4657 		return ret;
4658 	}
4659 
4660 	spin_lock(&BTRFS_I(inode)->lock);
4661 	if (extra_reserve) {
4662 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4663 			&BTRFS_I(inode)->runtime_flags);
4664 		nr_extents--;
4665 	}
4666 	BTRFS_I(inode)->reserved_extents += nr_extents;
4667 	spin_unlock(&BTRFS_I(inode)->lock);
4668 
4669 	if (delalloc_lock)
4670 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4671 
4672 	if (to_reserve)
4673 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4674 					      btrfs_ino(inode), to_reserve, 1);
4675 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4676 
4677 	return 0;
4678 }
4679 
4680 /**
4681  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4682  * @inode: the inode to release the reservation for
4683  * @num_bytes: the number of bytes we're releasing
4684  *
4685  * This will release the metadata reservation for an inode.  This can be called
4686  * once we complete IO for a given set of bytes to release their metadata
4687  * reservations.
4688  */
4689 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4690 {
4691 	struct btrfs_root *root = BTRFS_I(inode)->root;
4692 	u64 to_free = 0;
4693 	unsigned dropped;
4694 
4695 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4696 	spin_lock(&BTRFS_I(inode)->lock);
4697 	dropped = drop_outstanding_extent(inode);
4698 
4699 	to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4700 	spin_unlock(&BTRFS_I(inode)->lock);
4701 	if (dropped > 0)
4702 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4703 
4704 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
4705 				      btrfs_ino(inode), to_free, 0);
4706 	if (root->fs_info->quota_enabled) {
4707 		btrfs_qgroup_free(root, num_bytes +
4708 					dropped * root->leafsize);
4709 	}
4710 
4711 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4712 				to_free);
4713 }
4714 
4715 /**
4716  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4717  * @inode: inode we're writing to
4718  * @num_bytes: the number of bytes we want to allocate
4719  *
4720  * This will do the following things
4721  *
4722  * o reserve space in the data space info for num_bytes
4723  * o reserve space in the metadata space info based on number of outstanding
4724  *   extents and how much csums will be needed
4725  * o add to the inodes ->delalloc_bytes
4726  * o add it to the fs_info's delalloc inodes list.
4727  *
4728  * This will return 0 for success and -ENOSPC if there is no space left.
4729  */
4730 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4731 {
4732 	int ret;
4733 
4734 	ret = btrfs_check_data_free_space(inode, num_bytes);
4735 	if (ret)
4736 		return ret;
4737 
4738 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4739 	if (ret) {
4740 		btrfs_free_reserved_data_space(inode, num_bytes);
4741 		return ret;
4742 	}
4743 
4744 	return 0;
4745 }
4746 
4747 /**
4748  * btrfs_delalloc_release_space - release data and metadata space for delalloc
4749  * @inode: inode we're releasing space for
4750  * @num_bytes: the number of bytes we want to free up
4751  *
4752  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
4753  * called in the case that we don't need the metadata AND data reservations
4754  * anymore.  So if there is an error or we insert an inline extent.
4755  *
4756  * This function will release the metadata space that was not used and will
4757  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4758  * list if there are no delalloc bytes left.
4759  */
4760 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4761 {
4762 	btrfs_delalloc_release_metadata(inode, num_bytes);
4763 	btrfs_free_reserved_data_space(inode, num_bytes);
4764 }
4765 
4766 static int update_block_group(struct btrfs_trans_handle *trans,
4767 			      struct btrfs_root *root,
4768 			      u64 bytenr, u64 num_bytes, int alloc)
4769 {
4770 	struct btrfs_block_group_cache *cache = NULL;
4771 	struct btrfs_fs_info *info = root->fs_info;
4772 	u64 total = num_bytes;
4773 	u64 old_val;
4774 	u64 byte_in_group;
4775 	int factor;
4776 
4777 	/* block accounting for super block */
4778 	spin_lock(&info->delalloc_lock);
4779 	old_val = btrfs_super_bytes_used(info->super_copy);
4780 	if (alloc)
4781 		old_val += num_bytes;
4782 	else
4783 		old_val -= num_bytes;
4784 	btrfs_set_super_bytes_used(info->super_copy, old_val);
4785 	spin_unlock(&info->delalloc_lock);
4786 
4787 	while (total) {
4788 		cache = btrfs_lookup_block_group(info, bytenr);
4789 		if (!cache)
4790 			return -ENOENT;
4791 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4792 				    BTRFS_BLOCK_GROUP_RAID1 |
4793 				    BTRFS_BLOCK_GROUP_RAID10))
4794 			factor = 2;
4795 		else
4796 			factor = 1;
4797 		/*
4798 		 * If this block group has free space cache written out, we
4799 		 * need to make sure to load it if we are removing space.  This
4800 		 * is because we need the unpinning stage to actually add the
4801 		 * space back to the block group, otherwise we will leak space.
4802 		 */
4803 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4804 			cache_block_group(cache, trans, NULL, 1);
4805 
4806 		byte_in_group = bytenr - cache->key.objectid;
4807 		WARN_ON(byte_in_group > cache->key.offset);
4808 
4809 		spin_lock(&cache->space_info->lock);
4810 		spin_lock(&cache->lock);
4811 
4812 		if (btrfs_test_opt(root, SPACE_CACHE) &&
4813 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4814 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4815 
4816 		cache->dirty = 1;
4817 		old_val = btrfs_block_group_used(&cache->item);
4818 		num_bytes = min(total, cache->key.offset - byte_in_group);
4819 		if (alloc) {
4820 			old_val += num_bytes;
4821 			btrfs_set_block_group_used(&cache->item, old_val);
4822 			cache->reserved -= num_bytes;
4823 			cache->space_info->bytes_reserved -= num_bytes;
4824 			cache->space_info->bytes_used += num_bytes;
4825 			cache->space_info->disk_used += num_bytes * factor;
4826 			spin_unlock(&cache->lock);
4827 			spin_unlock(&cache->space_info->lock);
4828 		} else {
4829 			old_val -= num_bytes;
4830 			btrfs_set_block_group_used(&cache->item, old_val);
4831 			cache->pinned += num_bytes;
4832 			cache->space_info->bytes_pinned += num_bytes;
4833 			cache->space_info->bytes_used -= num_bytes;
4834 			cache->space_info->disk_used -= num_bytes * factor;
4835 			spin_unlock(&cache->lock);
4836 			spin_unlock(&cache->space_info->lock);
4837 
4838 			set_extent_dirty(info->pinned_extents,
4839 					 bytenr, bytenr + num_bytes - 1,
4840 					 GFP_NOFS | __GFP_NOFAIL);
4841 		}
4842 		btrfs_put_block_group(cache);
4843 		total -= num_bytes;
4844 		bytenr += num_bytes;
4845 	}
4846 	return 0;
4847 }
4848 
4849 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4850 {
4851 	struct btrfs_block_group_cache *cache;
4852 	u64 bytenr;
4853 
4854 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4855 	if (!cache)
4856 		return 0;
4857 
4858 	bytenr = cache->key.objectid;
4859 	btrfs_put_block_group(cache);
4860 
4861 	return bytenr;
4862 }
4863 
4864 static int pin_down_extent(struct btrfs_root *root,
4865 			   struct btrfs_block_group_cache *cache,
4866 			   u64 bytenr, u64 num_bytes, int reserved)
4867 {
4868 	spin_lock(&cache->space_info->lock);
4869 	spin_lock(&cache->lock);
4870 	cache->pinned += num_bytes;
4871 	cache->space_info->bytes_pinned += num_bytes;
4872 	if (reserved) {
4873 		cache->reserved -= num_bytes;
4874 		cache->space_info->bytes_reserved -= num_bytes;
4875 	}
4876 	spin_unlock(&cache->lock);
4877 	spin_unlock(&cache->space_info->lock);
4878 
4879 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4880 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4881 	return 0;
4882 }
4883 
4884 /*
4885  * this function must be called within transaction
4886  */
4887 int btrfs_pin_extent(struct btrfs_root *root,
4888 		     u64 bytenr, u64 num_bytes, int reserved)
4889 {
4890 	struct btrfs_block_group_cache *cache;
4891 
4892 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4893 	BUG_ON(!cache); /* Logic error */
4894 
4895 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4896 
4897 	btrfs_put_block_group(cache);
4898 	return 0;
4899 }
4900 
4901 /*
4902  * this function must be called within transaction
4903  */
4904 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4905 				    struct btrfs_root *root,
4906 				    u64 bytenr, u64 num_bytes)
4907 {
4908 	struct btrfs_block_group_cache *cache;
4909 
4910 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4911 	BUG_ON(!cache); /* Logic error */
4912 
4913 	/*
4914 	 * pull in the free space cache (if any) so that our pin
4915 	 * removes the free space from the cache.  We have load_only set
4916 	 * to one because the slow code to read in the free extents does check
4917 	 * the pinned extents.
4918 	 */
4919 	cache_block_group(cache, trans, root, 1);
4920 
4921 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
4922 
4923 	/* remove us from the free space cache (if we're there at all) */
4924 	btrfs_remove_free_space(cache, bytenr, num_bytes);
4925 	btrfs_put_block_group(cache);
4926 	return 0;
4927 }
4928 
4929 /**
4930  * btrfs_update_reserved_bytes - update the block_group and space info counters
4931  * @cache:	The cache we are manipulating
4932  * @num_bytes:	The number of bytes in question
4933  * @reserve:	One of the reservation enums
4934  *
4935  * This is called by the allocator when it reserves space, or by somebody who is
4936  * freeing space that was never actually used on disk.  For example if you
4937  * reserve some space for a new leaf in transaction A and before transaction A
4938  * commits you free that leaf, you call this with reserve set to 0 in order to
4939  * clear the reservation.
4940  *
4941  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4942  * ENOSPC accounting.  For data we handle the reservation through clearing the
4943  * delalloc bits in the io_tree.  We have to do this since we could end up
4944  * allocating less disk space for the amount of data we have reserved in the
4945  * case of compression.
4946  *
4947  * If this is a reservation and the block group has become read only we cannot
4948  * make the reservation and return -EAGAIN, otherwise this function always
4949  * succeeds.
4950  */
4951 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4952 				       u64 num_bytes, int reserve)
4953 {
4954 	struct btrfs_space_info *space_info = cache->space_info;
4955 	int ret = 0;
4956 
4957 	spin_lock(&space_info->lock);
4958 	spin_lock(&cache->lock);
4959 	if (reserve != RESERVE_FREE) {
4960 		if (cache->ro) {
4961 			ret = -EAGAIN;
4962 		} else {
4963 			cache->reserved += num_bytes;
4964 			space_info->bytes_reserved += num_bytes;
4965 			if (reserve == RESERVE_ALLOC) {
4966 				trace_btrfs_space_reservation(cache->fs_info,
4967 						"space_info", space_info->flags,
4968 						num_bytes, 0);
4969 				space_info->bytes_may_use -= num_bytes;
4970 			}
4971 		}
4972 	} else {
4973 		if (cache->ro)
4974 			space_info->bytes_readonly += num_bytes;
4975 		cache->reserved -= num_bytes;
4976 		space_info->bytes_reserved -= num_bytes;
4977 		space_info->reservation_progress++;
4978 	}
4979 	spin_unlock(&cache->lock);
4980 	spin_unlock(&space_info->lock);
4981 	return ret;
4982 }
4983 
4984 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4985 				struct btrfs_root *root)
4986 {
4987 	struct btrfs_fs_info *fs_info = root->fs_info;
4988 	struct btrfs_caching_control *next;
4989 	struct btrfs_caching_control *caching_ctl;
4990 	struct btrfs_block_group_cache *cache;
4991 
4992 	down_write(&fs_info->extent_commit_sem);
4993 
4994 	list_for_each_entry_safe(caching_ctl, next,
4995 				 &fs_info->caching_block_groups, list) {
4996 		cache = caching_ctl->block_group;
4997 		if (block_group_cache_done(cache)) {
4998 			cache->last_byte_to_unpin = (u64)-1;
4999 			list_del_init(&caching_ctl->list);
5000 			put_caching_control(caching_ctl);
5001 		} else {
5002 			cache->last_byte_to_unpin = caching_ctl->progress;
5003 		}
5004 	}
5005 
5006 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5007 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5008 	else
5009 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5010 
5011 	up_write(&fs_info->extent_commit_sem);
5012 
5013 	update_global_block_rsv(fs_info);
5014 }
5015 
5016 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5017 {
5018 	struct btrfs_fs_info *fs_info = root->fs_info;
5019 	struct btrfs_block_group_cache *cache = NULL;
5020 	struct btrfs_space_info *space_info;
5021 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5022 	u64 len;
5023 	bool readonly;
5024 
5025 	while (start <= end) {
5026 		readonly = false;
5027 		if (!cache ||
5028 		    start >= cache->key.objectid + cache->key.offset) {
5029 			if (cache)
5030 				btrfs_put_block_group(cache);
5031 			cache = btrfs_lookup_block_group(fs_info, start);
5032 			BUG_ON(!cache); /* Logic error */
5033 		}
5034 
5035 		len = cache->key.objectid + cache->key.offset - start;
5036 		len = min(len, end + 1 - start);
5037 
5038 		if (start < cache->last_byte_to_unpin) {
5039 			len = min(len, cache->last_byte_to_unpin - start);
5040 			btrfs_add_free_space(cache, start, len);
5041 		}
5042 
5043 		start += len;
5044 		space_info = cache->space_info;
5045 
5046 		spin_lock(&space_info->lock);
5047 		spin_lock(&cache->lock);
5048 		cache->pinned -= len;
5049 		space_info->bytes_pinned -= len;
5050 		if (cache->ro) {
5051 			space_info->bytes_readonly += len;
5052 			readonly = true;
5053 		}
5054 		spin_unlock(&cache->lock);
5055 		if (!readonly && global_rsv->space_info == space_info) {
5056 			spin_lock(&global_rsv->lock);
5057 			if (!global_rsv->full) {
5058 				len = min(len, global_rsv->size -
5059 					  global_rsv->reserved);
5060 				global_rsv->reserved += len;
5061 				space_info->bytes_may_use += len;
5062 				if (global_rsv->reserved >= global_rsv->size)
5063 					global_rsv->full = 1;
5064 			}
5065 			spin_unlock(&global_rsv->lock);
5066 		}
5067 		spin_unlock(&space_info->lock);
5068 	}
5069 
5070 	if (cache)
5071 		btrfs_put_block_group(cache);
5072 	return 0;
5073 }
5074 
5075 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5076 			       struct btrfs_root *root)
5077 {
5078 	struct btrfs_fs_info *fs_info = root->fs_info;
5079 	struct extent_io_tree *unpin;
5080 	u64 start;
5081 	u64 end;
5082 	int ret;
5083 
5084 	if (trans->aborted)
5085 		return 0;
5086 
5087 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5088 		unpin = &fs_info->freed_extents[1];
5089 	else
5090 		unpin = &fs_info->freed_extents[0];
5091 
5092 	while (1) {
5093 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5094 					    EXTENT_DIRTY, NULL);
5095 		if (ret)
5096 			break;
5097 
5098 		if (btrfs_test_opt(root, DISCARD))
5099 			ret = btrfs_discard_extent(root, start,
5100 						   end + 1 - start, NULL);
5101 
5102 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5103 		unpin_extent_range(root, start, end);
5104 		cond_resched();
5105 	}
5106 
5107 	return 0;
5108 }
5109 
5110 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5111 				struct btrfs_root *root,
5112 				u64 bytenr, u64 num_bytes, u64 parent,
5113 				u64 root_objectid, u64 owner_objectid,
5114 				u64 owner_offset, int refs_to_drop,
5115 				struct btrfs_delayed_extent_op *extent_op)
5116 {
5117 	struct btrfs_key key;
5118 	struct btrfs_path *path;
5119 	struct btrfs_fs_info *info = root->fs_info;
5120 	struct btrfs_root *extent_root = info->extent_root;
5121 	struct extent_buffer *leaf;
5122 	struct btrfs_extent_item *ei;
5123 	struct btrfs_extent_inline_ref *iref;
5124 	int ret;
5125 	int is_data;
5126 	int extent_slot = 0;
5127 	int found_extent = 0;
5128 	int num_to_del = 1;
5129 	u32 item_size;
5130 	u64 refs;
5131 
5132 	path = btrfs_alloc_path();
5133 	if (!path)
5134 		return -ENOMEM;
5135 
5136 	path->reada = 1;
5137 	path->leave_spinning = 1;
5138 
5139 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5140 	BUG_ON(!is_data && refs_to_drop != 1);
5141 
5142 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5143 				    bytenr, num_bytes, parent,
5144 				    root_objectid, owner_objectid,
5145 				    owner_offset);
5146 	if (ret == 0) {
5147 		extent_slot = path->slots[0];
5148 		while (extent_slot >= 0) {
5149 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5150 					      extent_slot);
5151 			if (key.objectid != bytenr)
5152 				break;
5153 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5154 			    key.offset == num_bytes) {
5155 				found_extent = 1;
5156 				break;
5157 			}
5158 			if (path->slots[0] - extent_slot > 5)
5159 				break;
5160 			extent_slot--;
5161 		}
5162 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5163 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5164 		if (found_extent && item_size < sizeof(*ei))
5165 			found_extent = 0;
5166 #endif
5167 		if (!found_extent) {
5168 			BUG_ON(iref);
5169 			ret = remove_extent_backref(trans, extent_root, path,
5170 						    NULL, refs_to_drop,
5171 						    is_data);
5172 			if (ret) {
5173 				btrfs_abort_transaction(trans, extent_root, ret);
5174 				goto out;
5175 			}
5176 			btrfs_release_path(path);
5177 			path->leave_spinning = 1;
5178 
5179 			key.objectid = bytenr;
5180 			key.type = BTRFS_EXTENT_ITEM_KEY;
5181 			key.offset = num_bytes;
5182 
5183 			ret = btrfs_search_slot(trans, extent_root,
5184 						&key, path, -1, 1);
5185 			if (ret) {
5186 				printk(KERN_ERR "umm, got %d back from search"
5187 				       ", was looking for %llu\n", ret,
5188 				       (unsigned long long)bytenr);
5189 				if (ret > 0)
5190 					btrfs_print_leaf(extent_root,
5191 							 path->nodes[0]);
5192 			}
5193 			if (ret < 0) {
5194 				btrfs_abort_transaction(trans, extent_root, ret);
5195 				goto out;
5196 			}
5197 			extent_slot = path->slots[0];
5198 		}
5199 	} else if (ret == -ENOENT) {
5200 		btrfs_print_leaf(extent_root, path->nodes[0]);
5201 		WARN_ON(1);
5202 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5203 		       "parent %llu root %llu  owner %llu offset %llu\n",
5204 		       (unsigned long long)bytenr,
5205 		       (unsigned long long)parent,
5206 		       (unsigned long long)root_objectid,
5207 		       (unsigned long long)owner_objectid,
5208 		       (unsigned long long)owner_offset);
5209 	} else {
5210 		btrfs_abort_transaction(trans, extent_root, ret);
5211 		goto out;
5212 	}
5213 
5214 	leaf = path->nodes[0];
5215 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5216 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5217 	if (item_size < sizeof(*ei)) {
5218 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5219 		ret = convert_extent_item_v0(trans, extent_root, path,
5220 					     owner_objectid, 0);
5221 		if (ret < 0) {
5222 			btrfs_abort_transaction(trans, extent_root, ret);
5223 			goto out;
5224 		}
5225 
5226 		btrfs_release_path(path);
5227 		path->leave_spinning = 1;
5228 
5229 		key.objectid = bytenr;
5230 		key.type = BTRFS_EXTENT_ITEM_KEY;
5231 		key.offset = num_bytes;
5232 
5233 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5234 					-1, 1);
5235 		if (ret) {
5236 			printk(KERN_ERR "umm, got %d back from search"
5237 			       ", was looking for %llu\n", ret,
5238 			       (unsigned long long)bytenr);
5239 			btrfs_print_leaf(extent_root, path->nodes[0]);
5240 		}
5241 		if (ret < 0) {
5242 			btrfs_abort_transaction(trans, extent_root, ret);
5243 			goto out;
5244 		}
5245 
5246 		extent_slot = path->slots[0];
5247 		leaf = path->nodes[0];
5248 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5249 	}
5250 #endif
5251 	BUG_ON(item_size < sizeof(*ei));
5252 	ei = btrfs_item_ptr(leaf, extent_slot,
5253 			    struct btrfs_extent_item);
5254 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5255 		struct btrfs_tree_block_info *bi;
5256 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5257 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5258 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5259 	}
5260 
5261 	refs = btrfs_extent_refs(leaf, ei);
5262 	BUG_ON(refs < refs_to_drop);
5263 	refs -= refs_to_drop;
5264 
5265 	if (refs > 0) {
5266 		if (extent_op)
5267 			__run_delayed_extent_op(extent_op, leaf, ei);
5268 		/*
5269 		 * In the case of inline back ref, reference count will
5270 		 * be updated by remove_extent_backref
5271 		 */
5272 		if (iref) {
5273 			BUG_ON(!found_extent);
5274 		} else {
5275 			btrfs_set_extent_refs(leaf, ei, refs);
5276 			btrfs_mark_buffer_dirty(leaf);
5277 		}
5278 		if (found_extent) {
5279 			ret = remove_extent_backref(trans, extent_root, path,
5280 						    iref, refs_to_drop,
5281 						    is_data);
5282 			if (ret) {
5283 				btrfs_abort_transaction(trans, extent_root, ret);
5284 				goto out;
5285 			}
5286 		}
5287 	} else {
5288 		if (found_extent) {
5289 			BUG_ON(is_data && refs_to_drop !=
5290 			       extent_data_ref_count(root, path, iref));
5291 			if (iref) {
5292 				BUG_ON(path->slots[0] != extent_slot);
5293 			} else {
5294 				BUG_ON(path->slots[0] != extent_slot + 1);
5295 				path->slots[0] = extent_slot;
5296 				num_to_del = 2;
5297 			}
5298 		}
5299 
5300 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5301 				      num_to_del);
5302 		if (ret) {
5303 			btrfs_abort_transaction(trans, extent_root, ret);
5304 			goto out;
5305 		}
5306 		btrfs_release_path(path);
5307 
5308 		if (is_data) {
5309 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5310 			if (ret) {
5311 				btrfs_abort_transaction(trans, extent_root, ret);
5312 				goto out;
5313 			}
5314 		}
5315 
5316 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5317 		if (ret) {
5318 			btrfs_abort_transaction(trans, extent_root, ret);
5319 			goto out;
5320 		}
5321 	}
5322 out:
5323 	btrfs_free_path(path);
5324 	return ret;
5325 }
5326 
5327 /*
5328  * when we free an block, it is possible (and likely) that we free the last
5329  * delayed ref for that extent as well.  This searches the delayed ref tree for
5330  * a given extent, and if there are no other delayed refs to be processed, it
5331  * removes it from the tree.
5332  */
5333 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5334 				      struct btrfs_root *root, u64 bytenr)
5335 {
5336 	struct btrfs_delayed_ref_head *head;
5337 	struct btrfs_delayed_ref_root *delayed_refs;
5338 	struct btrfs_delayed_ref_node *ref;
5339 	struct rb_node *node;
5340 	int ret = 0;
5341 
5342 	delayed_refs = &trans->transaction->delayed_refs;
5343 	spin_lock(&delayed_refs->lock);
5344 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5345 	if (!head)
5346 		goto out;
5347 
5348 	node = rb_prev(&head->node.rb_node);
5349 	if (!node)
5350 		goto out;
5351 
5352 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5353 
5354 	/* there are still entries for this ref, we can't drop it */
5355 	if (ref->bytenr == bytenr)
5356 		goto out;
5357 
5358 	if (head->extent_op) {
5359 		if (!head->must_insert_reserved)
5360 			goto out;
5361 		btrfs_free_delayed_extent_op(head->extent_op);
5362 		head->extent_op = NULL;
5363 	}
5364 
5365 	/*
5366 	 * waiting for the lock here would deadlock.  If someone else has it
5367 	 * locked they are already in the process of dropping it anyway
5368 	 */
5369 	if (!mutex_trylock(&head->mutex))
5370 		goto out;
5371 
5372 	/*
5373 	 * at this point we have a head with no other entries.  Go
5374 	 * ahead and process it.
5375 	 */
5376 	head->node.in_tree = 0;
5377 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5378 
5379 	delayed_refs->num_entries--;
5380 
5381 	/*
5382 	 * we don't take a ref on the node because we're removing it from the
5383 	 * tree, so we just steal the ref the tree was holding.
5384 	 */
5385 	delayed_refs->num_heads--;
5386 	if (list_empty(&head->cluster))
5387 		delayed_refs->num_heads_ready--;
5388 
5389 	list_del_init(&head->cluster);
5390 	spin_unlock(&delayed_refs->lock);
5391 
5392 	BUG_ON(head->extent_op);
5393 	if (head->must_insert_reserved)
5394 		ret = 1;
5395 
5396 	mutex_unlock(&head->mutex);
5397 	btrfs_put_delayed_ref(&head->node);
5398 	return ret;
5399 out:
5400 	spin_unlock(&delayed_refs->lock);
5401 	return 0;
5402 }
5403 
5404 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5405 			   struct btrfs_root *root,
5406 			   struct extent_buffer *buf,
5407 			   u64 parent, int last_ref)
5408 {
5409 	struct btrfs_block_group_cache *cache = NULL;
5410 	int ret;
5411 
5412 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5413 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5414 					buf->start, buf->len,
5415 					parent, root->root_key.objectid,
5416 					btrfs_header_level(buf),
5417 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5418 		BUG_ON(ret); /* -ENOMEM */
5419 	}
5420 
5421 	if (!last_ref)
5422 		return;
5423 
5424 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5425 
5426 	if (btrfs_header_generation(buf) == trans->transid) {
5427 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5428 			ret = check_ref_cleanup(trans, root, buf->start);
5429 			if (!ret)
5430 				goto out;
5431 		}
5432 
5433 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5434 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5435 			goto out;
5436 		}
5437 
5438 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5439 
5440 		btrfs_add_free_space(cache, buf->start, buf->len);
5441 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5442 	}
5443 out:
5444 	/*
5445 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5446 	 * anymore.
5447 	 */
5448 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5449 	btrfs_put_block_group(cache);
5450 }
5451 
5452 /* Can return -ENOMEM */
5453 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5454 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5455 		      u64 owner, u64 offset, int for_cow)
5456 {
5457 	int ret;
5458 	struct btrfs_fs_info *fs_info = root->fs_info;
5459 
5460 	/*
5461 	 * tree log blocks never actually go into the extent allocation
5462 	 * tree, just update pinning info and exit early.
5463 	 */
5464 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5465 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5466 		/* unlocks the pinned mutex */
5467 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
5468 		ret = 0;
5469 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5470 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5471 					num_bytes,
5472 					parent, root_objectid, (int)owner,
5473 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5474 	} else {
5475 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5476 						num_bytes,
5477 						parent, root_objectid, owner,
5478 						offset, BTRFS_DROP_DELAYED_REF,
5479 						NULL, for_cow);
5480 	}
5481 	return ret;
5482 }
5483 
5484 static u64 stripe_align(struct btrfs_root *root, u64 val)
5485 {
5486 	u64 mask = ((u64)root->stripesize - 1);
5487 	u64 ret = (val + mask) & ~mask;
5488 	return ret;
5489 }
5490 
5491 /*
5492  * when we wait for progress in the block group caching, its because
5493  * our allocation attempt failed at least once.  So, we must sleep
5494  * and let some progress happen before we try again.
5495  *
5496  * This function will sleep at least once waiting for new free space to
5497  * show up, and then it will check the block group free space numbers
5498  * for our min num_bytes.  Another option is to have it go ahead
5499  * and look in the rbtree for a free extent of a given size, but this
5500  * is a good start.
5501  */
5502 static noinline int
5503 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5504 				u64 num_bytes)
5505 {
5506 	struct btrfs_caching_control *caching_ctl;
5507 	DEFINE_WAIT(wait);
5508 
5509 	caching_ctl = get_caching_control(cache);
5510 	if (!caching_ctl)
5511 		return 0;
5512 
5513 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5514 		   (cache->free_space_ctl->free_space >= num_bytes));
5515 
5516 	put_caching_control(caching_ctl);
5517 	return 0;
5518 }
5519 
5520 static noinline int
5521 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5522 {
5523 	struct btrfs_caching_control *caching_ctl;
5524 	DEFINE_WAIT(wait);
5525 
5526 	caching_ctl = get_caching_control(cache);
5527 	if (!caching_ctl)
5528 		return 0;
5529 
5530 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5531 
5532 	put_caching_control(caching_ctl);
5533 	return 0;
5534 }
5535 
5536 int __get_raid_index(u64 flags)
5537 {
5538 	int index;
5539 
5540 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
5541 		index = 0;
5542 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5543 		index = 1;
5544 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
5545 		index = 2;
5546 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5547 		index = 3;
5548 	else
5549 		index = 4;
5550 
5551 	return index;
5552 }
5553 
5554 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5555 {
5556 	return __get_raid_index(cache->flags);
5557 }
5558 
5559 enum btrfs_loop_type {
5560 	LOOP_CACHING_NOWAIT = 0,
5561 	LOOP_CACHING_WAIT = 1,
5562 	LOOP_ALLOC_CHUNK = 2,
5563 	LOOP_NO_EMPTY_SIZE = 3,
5564 };
5565 
5566 /*
5567  * walks the btree of allocated extents and find a hole of a given size.
5568  * The key ins is changed to record the hole:
5569  * ins->objectid == block start
5570  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5571  * ins->offset == number of blocks
5572  * Any available blocks before search_start are skipped.
5573  */
5574 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5575 				     struct btrfs_root *orig_root,
5576 				     u64 num_bytes, u64 empty_size,
5577 				     u64 hint_byte, struct btrfs_key *ins,
5578 				     u64 data)
5579 {
5580 	int ret = 0;
5581 	struct btrfs_root *root = orig_root->fs_info->extent_root;
5582 	struct btrfs_free_cluster *last_ptr = NULL;
5583 	struct btrfs_block_group_cache *block_group = NULL;
5584 	struct btrfs_block_group_cache *used_block_group;
5585 	u64 search_start = 0;
5586 	int empty_cluster = 2 * 1024 * 1024;
5587 	struct btrfs_space_info *space_info;
5588 	int loop = 0;
5589 	int index = __get_raid_index(data);
5590 	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5591 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5592 	bool found_uncached_bg = false;
5593 	bool failed_cluster_refill = false;
5594 	bool failed_alloc = false;
5595 	bool use_cluster = true;
5596 	bool have_caching_bg = false;
5597 
5598 	WARN_ON(num_bytes < root->sectorsize);
5599 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5600 	ins->objectid = 0;
5601 	ins->offset = 0;
5602 
5603 	trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5604 
5605 	space_info = __find_space_info(root->fs_info, data);
5606 	if (!space_info) {
5607 		printk(KERN_ERR "No space info for %llu\n", data);
5608 		return -ENOSPC;
5609 	}
5610 
5611 	/*
5612 	 * If the space info is for both data and metadata it means we have a
5613 	 * small filesystem and we can't use the clustering stuff.
5614 	 */
5615 	if (btrfs_mixed_space_info(space_info))
5616 		use_cluster = false;
5617 
5618 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5619 		last_ptr = &root->fs_info->meta_alloc_cluster;
5620 		if (!btrfs_test_opt(root, SSD))
5621 			empty_cluster = 64 * 1024;
5622 	}
5623 
5624 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5625 	    btrfs_test_opt(root, SSD)) {
5626 		last_ptr = &root->fs_info->data_alloc_cluster;
5627 	}
5628 
5629 	if (last_ptr) {
5630 		spin_lock(&last_ptr->lock);
5631 		if (last_ptr->block_group)
5632 			hint_byte = last_ptr->window_start;
5633 		spin_unlock(&last_ptr->lock);
5634 	}
5635 
5636 	search_start = max(search_start, first_logical_byte(root, 0));
5637 	search_start = max(search_start, hint_byte);
5638 
5639 	if (!last_ptr)
5640 		empty_cluster = 0;
5641 
5642 	if (search_start == hint_byte) {
5643 		block_group = btrfs_lookup_block_group(root->fs_info,
5644 						       search_start);
5645 		used_block_group = block_group;
5646 		/*
5647 		 * we don't want to use the block group if it doesn't match our
5648 		 * allocation bits, or if its not cached.
5649 		 *
5650 		 * However if we are re-searching with an ideal block group
5651 		 * picked out then we don't care that the block group is cached.
5652 		 */
5653 		if (block_group && block_group_bits(block_group, data) &&
5654 		    block_group->cached != BTRFS_CACHE_NO) {
5655 			down_read(&space_info->groups_sem);
5656 			if (list_empty(&block_group->list) ||
5657 			    block_group->ro) {
5658 				/*
5659 				 * someone is removing this block group,
5660 				 * we can't jump into the have_block_group
5661 				 * target because our list pointers are not
5662 				 * valid
5663 				 */
5664 				btrfs_put_block_group(block_group);
5665 				up_read(&space_info->groups_sem);
5666 			} else {
5667 				index = get_block_group_index(block_group);
5668 				goto have_block_group;
5669 			}
5670 		} else if (block_group) {
5671 			btrfs_put_block_group(block_group);
5672 		}
5673 	}
5674 search:
5675 	have_caching_bg = false;
5676 	down_read(&space_info->groups_sem);
5677 	list_for_each_entry(block_group, &space_info->block_groups[index],
5678 			    list) {
5679 		u64 offset;
5680 		int cached;
5681 
5682 		used_block_group = block_group;
5683 		btrfs_get_block_group(block_group);
5684 		search_start = block_group->key.objectid;
5685 
5686 		/*
5687 		 * this can happen if we end up cycling through all the
5688 		 * raid types, but we want to make sure we only allocate
5689 		 * for the proper type.
5690 		 */
5691 		if (!block_group_bits(block_group, data)) {
5692 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
5693 				BTRFS_BLOCK_GROUP_RAID1 |
5694 				BTRFS_BLOCK_GROUP_RAID10;
5695 
5696 			/*
5697 			 * if they asked for extra copies and this block group
5698 			 * doesn't provide them, bail.  This does allow us to
5699 			 * fill raid0 from raid1.
5700 			 */
5701 			if ((data & extra) && !(block_group->flags & extra))
5702 				goto loop;
5703 		}
5704 
5705 have_block_group:
5706 		cached = block_group_cache_done(block_group);
5707 		if (unlikely(!cached)) {
5708 			found_uncached_bg = true;
5709 			ret = cache_block_group(block_group, trans,
5710 						orig_root, 0);
5711 			BUG_ON(ret < 0);
5712 			ret = 0;
5713 		}
5714 
5715 		if (unlikely(block_group->ro))
5716 			goto loop;
5717 
5718 		/*
5719 		 * Ok we want to try and use the cluster allocator, so
5720 		 * lets look there
5721 		 */
5722 		if (last_ptr) {
5723 			/*
5724 			 * the refill lock keeps out other
5725 			 * people trying to start a new cluster
5726 			 */
5727 			spin_lock(&last_ptr->refill_lock);
5728 			used_block_group = last_ptr->block_group;
5729 			if (used_block_group != block_group &&
5730 			    (!used_block_group ||
5731 			     used_block_group->ro ||
5732 			     !block_group_bits(used_block_group, data))) {
5733 				used_block_group = block_group;
5734 				goto refill_cluster;
5735 			}
5736 
5737 			if (used_block_group != block_group)
5738 				btrfs_get_block_group(used_block_group);
5739 
5740 			offset = btrfs_alloc_from_cluster(used_block_group,
5741 			  last_ptr, num_bytes, used_block_group->key.objectid);
5742 			if (offset) {
5743 				/* we have a block, we're done */
5744 				spin_unlock(&last_ptr->refill_lock);
5745 				trace_btrfs_reserve_extent_cluster(root,
5746 					block_group, search_start, num_bytes);
5747 				goto checks;
5748 			}
5749 
5750 			WARN_ON(last_ptr->block_group != used_block_group);
5751 			if (used_block_group != block_group) {
5752 				btrfs_put_block_group(used_block_group);
5753 				used_block_group = block_group;
5754 			}
5755 refill_cluster:
5756 			BUG_ON(used_block_group != block_group);
5757 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
5758 			 * set up a new clusters, so lets just skip it
5759 			 * and let the allocator find whatever block
5760 			 * it can find.  If we reach this point, we
5761 			 * will have tried the cluster allocator
5762 			 * plenty of times and not have found
5763 			 * anything, so we are likely way too
5764 			 * fragmented for the clustering stuff to find
5765 			 * anything.
5766 			 *
5767 			 * However, if the cluster is taken from the
5768 			 * current block group, release the cluster
5769 			 * first, so that we stand a better chance of
5770 			 * succeeding in the unclustered
5771 			 * allocation.  */
5772 			if (loop >= LOOP_NO_EMPTY_SIZE &&
5773 			    last_ptr->block_group != block_group) {
5774 				spin_unlock(&last_ptr->refill_lock);
5775 				goto unclustered_alloc;
5776 			}
5777 
5778 			/*
5779 			 * this cluster didn't work out, free it and
5780 			 * start over
5781 			 */
5782 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5783 
5784 			if (loop >= LOOP_NO_EMPTY_SIZE) {
5785 				spin_unlock(&last_ptr->refill_lock);
5786 				goto unclustered_alloc;
5787 			}
5788 
5789 			/* allocate a cluster in this block group */
5790 			ret = btrfs_find_space_cluster(trans, root,
5791 					       block_group, last_ptr,
5792 					       search_start, num_bytes,
5793 					       empty_cluster + empty_size);
5794 			if (ret == 0) {
5795 				/*
5796 				 * now pull our allocation out of this
5797 				 * cluster
5798 				 */
5799 				offset = btrfs_alloc_from_cluster(block_group,
5800 						  last_ptr, num_bytes,
5801 						  search_start);
5802 				if (offset) {
5803 					/* we found one, proceed */
5804 					spin_unlock(&last_ptr->refill_lock);
5805 					trace_btrfs_reserve_extent_cluster(root,
5806 						block_group, search_start,
5807 						num_bytes);
5808 					goto checks;
5809 				}
5810 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5811 				   && !failed_cluster_refill) {
5812 				spin_unlock(&last_ptr->refill_lock);
5813 
5814 				failed_cluster_refill = true;
5815 				wait_block_group_cache_progress(block_group,
5816 				       num_bytes + empty_cluster + empty_size);
5817 				goto have_block_group;
5818 			}
5819 
5820 			/*
5821 			 * at this point we either didn't find a cluster
5822 			 * or we weren't able to allocate a block from our
5823 			 * cluster.  Free the cluster we've been trying
5824 			 * to use, and go to the next block group
5825 			 */
5826 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5827 			spin_unlock(&last_ptr->refill_lock);
5828 			goto loop;
5829 		}
5830 
5831 unclustered_alloc:
5832 		spin_lock(&block_group->free_space_ctl->tree_lock);
5833 		if (cached &&
5834 		    block_group->free_space_ctl->free_space <
5835 		    num_bytes + empty_cluster + empty_size) {
5836 			spin_unlock(&block_group->free_space_ctl->tree_lock);
5837 			goto loop;
5838 		}
5839 		spin_unlock(&block_group->free_space_ctl->tree_lock);
5840 
5841 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5842 						    num_bytes, empty_size);
5843 		/*
5844 		 * If we didn't find a chunk, and we haven't failed on this
5845 		 * block group before, and this block group is in the middle of
5846 		 * caching and we are ok with waiting, then go ahead and wait
5847 		 * for progress to be made, and set failed_alloc to true.
5848 		 *
5849 		 * If failed_alloc is true then we've already waited on this
5850 		 * block group once and should move on to the next block group.
5851 		 */
5852 		if (!offset && !failed_alloc && !cached &&
5853 		    loop > LOOP_CACHING_NOWAIT) {
5854 			wait_block_group_cache_progress(block_group,
5855 						num_bytes + empty_size);
5856 			failed_alloc = true;
5857 			goto have_block_group;
5858 		} else if (!offset) {
5859 			if (!cached)
5860 				have_caching_bg = true;
5861 			goto loop;
5862 		}
5863 checks:
5864 		search_start = stripe_align(root, offset);
5865 
5866 		/* move on to the next group */
5867 		if (search_start + num_bytes >
5868 		    used_block_group->key.objectid + used_block_group->key.offset) {
5869 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5870 			goto loop;
5871 		}
5872 
5873 		if (offset < search_start)
5874 			btrfs_add_free_space(used_block_group, offset,
5875 					     search_start - offset);
5876 		BUG_ON(offset > search_start);
5877 
5878 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5879 						  alloc_type);
5880 		if (ret == -EAGAIN) {
5881 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5882 			goto loop;
5883 		}
5884 
5885 		/* we are all good, lets return */
5886 		ins->objectid = search_start;
5887 		ins->offset = num_bytes;
5888 
5889 		trace_btrfs_reserve_extent(orig_root, block_group,
5890 					   search_start, num_bytes);
5891 		if (used_block_group != block_group)
5892 			btrfs_put_block_group(used_block_group);
5893 		btrfs_put_block_group(block_group);
5894 		break;
5895 loop:
5896 		failed_cluster_refill = false;
5897 		failed_alloc = false;
5898 		BUG_ON(index != get_block_group_index(block_group));
5899 		if (used_block_group != block_group)
5900 			btrfs_put_block_group(used_block_group);
5901 		btrfs_put_block_group(block_group);
5902 	}
5903 	up_read(&space_info->groups_sem);
5904 
5905 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5906 		goto search;
5907 
5908 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5909 		goto search;
5910 
5911 	/*
5912 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5913 	 *			caching kthreads as we move along
5914 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5915 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5916 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5917 	 *			again
5918 	 */
5919 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5920 		index = 0;
5921 		loop++;
5922 		if (loop == LOOP_ALLOC_CHUNK) {
5923 			ret = do_chunk_alloc(trans, root, data,
5924 					     CHUNK_ALLOC_FORCE);
5925 			/*
5926 			 * Do not bail out on ENOSPC since we
5927 			 * can do more things.
5928 			 */
5929 			if (ret < 0 && ret != -ENOSPC) {
5930 				btrfs_abort_transaction(trans,
5931 							root, ret);
5932 				goto out;
5933 			}
5934 		}
5935 
5936 		if (loop == LOOP_NO_EMPTY_SIZE) {
5937 			empty_size = 0;
5938 			empty_cluster = 0;
5939 		}
5940 
5941 		goto search;
5942 	} else if (!ins->objectid) {
5943 		ret = -ENOSPC;
5944 	} else if (ins->objectid) {
5945 		ret = 0;
5946 	}
5947 out:
5948 
5949 	return ret;
5950 }
5951 
5952 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5953 			    int dump_block_groups)
5954 {
5955 	struct btrfs_block_group_cache *cache;
5956 	int index = 0;
5957 
5958 	spin_lock(&info->lock);
5959 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5960 	       (unsigned long long)info->flags,
5961 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5962 				    info->bytes_pinned - info->bytes_reserved -
5963 				    info->bytes_readonly),
5964 	       (info->full) ? "" : "not ");
5965 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5966 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5967 	       (unsigned long long)info->total_bytes,
5968 	       (unsigned long long)info->bytes_used,
5969 	       (unsigned long long)info->bytes_pinned,
5970 	       (unsigned long long)info->bytes_reserved,
5971 	       (unsigned long long)info->bytes_may_use,
5972 	       (unsigned long long)info->bytes_readonly);
5973 	spin_unlock(&info->lock);
5974 
5975 	if (!dump_block_groups)
5976 		return;
5977 
5978 	down_read(&info->groups_sem);
5979 again:
5980 	list_for_each_entry(cache, &info->block_groups[index], list) {
5981 		spin_lock(&cache->lock);
5982 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5983 		       (unsigned long long)cache->key.objectid,
5984 		       (unsigned long long)cache->key.offset,
5985 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5986 		       (unsigned long long)cache->pinned,
5987 		       (unsigned long long)cache->reserved,
5988 		       cache->ro ? "[readonly]" : "");
5989 		btrfs_dump_free_space(cache, bytes);
5990 		spin_unlock(&cache->lock);
5991 	}
5992 	if (++index < BTRFS_NR_RAID_TYPES)
5993 		goto again;
5994 	up_read(&info->groups_sem);
5995 }
5996 
5997 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5998 			 struct btrfs_root *root,
5999 			 u64 num_bytes, u64 min_alloc_size,
6000 			 u64 empty_size, u64 hint_byte,
6001 			 struct btrfs_key *ins, u64 data)
6002 {
6003 	bool final_tried = false;
6004 	int ret;
6005 
6006 	data = btrfs_get_alloc_profile(root, data);
6007 again:
6008 	WARN_ON(num_bytes < root->sectorsize);
6009 	ret = find_free_extent(trans, root, num_bytes, empty_size,
6010 			       hint_byte, ins, data);
6011 
6012 	if (ret == -ENOSPC) {
6013 		if (!final_tried) {
6014 			num_bytes = num_bytes >> 1;
6015 			num_bytes = num_bytes & ~(root->sectorsize - 1);
6016 			num_bytes = max(num_bytes, min_alloc_size);
6017 			if (num_bytes == min_alloc_size)
6018 				final_tried = true;
6019 			goto again;
6020 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6021 			struct btrfs_space_info *sinfo;
6022 
6023 			sinfo = __find_space_info(root->fs_info, data);
6024 			printk(KERN_ERR "btrfs allocation failed flags %llu, "
6025 			       "wanted %llu\n", (unsigned long long)data,
6026 			       (unsigned long long)num_bytes);
6027 			if (sinfo)
6028 				dump_space_info(sinfo, num_bytes, 1);
6029 		}
6030 	}
6031 
6032 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6033 
6034 	return ret;
6035 }
6036 
6037 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6038 					u64 start, u64 len, int pin)
6039 {
6040 	struct btrfs_block_group_cache *cache;
6041 	int ret = 0;
6042 
6043 	cache = btrfs_lookup_block_group(root->fs_info, start);
6044 	if (!cache) {
6045 		printk(KERN_ERR "Unable to find block group for %llu\n",
6046 		       (unsigned long long)start);
6047 		return -ENOSPC;
6048 	}
6049 
6050 	if (btrfs_test_opt(root, DISCARD))
6051 		ret = btrfs_discard_extent(root, start, len, NULL);
6052 
6053 	if (pin)
6054 		pin_down_extent(root, cache, start, len, 1);
6055 	else {
6056 		btrfs_add_free_space(cache, start, len);
6057 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6058 	}
6059 	btrfs_put_block_group(cache);
6060 
6061 	trace_btrfs_reserved_extent_free(root, start, len);
6062 
6063 	return ret;
6064 }
6065 
6066 int btrfs_free_reserved_extent(struct btrfs_root *root,
6067 					u64 start, u64 len)
6068 {
6069 	return __btrfs_free_reserved_extent(root, start, len, 0);
6070 }
6071 
6072 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6073 				       u64 start, u64 len)
6074 {
6075 	return __btrfs_free_reserved_extent(root, start, len, 1);
6076 }
6077 
6078 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6079 				      struct btrfs_root *root,
6080 				      u64 parent, u64 root_objectid,
6081 				      u64 flags, u64 owner, u64 offset,
6082 				      struct btrfs_key *ins, int ref_mod)
6083 {
6084 	int ret;
6085 	struct btrfs_fs_info *fs_info = root->fs_info;
6086 	struct btrfs_extent_item *extent_item;
6087 	struct btrfs_extent_inline_ref *iref;
6088 	struct btrfs_path *path;
6089 	struct extent_buffer *leaf;
6090 	int type;
6091 	u32 size;
6092 
6093 	if (parent > 0)
6094 		type = BTRFS_SHARED_DATA_REF_KEY;
6095 	else
6096 		type = BTRFS_EXTENT_DATA_REF_KEY;
6097 
6098 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6099 
6100 	path = btrfs_alloc_path();
6101 	if (!path)
6102 		return -ENOMEM;
6103 
6104 	path->leave_spinning = 1;
6105 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6106 				      ins, size);
6107 	if (ret) {
6108 		btrfs_free_path(path);
6109 		return ret;
6110 	}
6111 
6112 	leaf = path->nodes[0];
6113 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6114 				     struct btrfs_extent_item);
6115 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6116 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6117 	btrfs_set_extent_flags(leaf, extent_item,
6118 			       flags | BTRFS_EXTENT_FLAG_DATA);
6119 
6120 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6121 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6122 	if (parent > 0) {
6123 		struct btrfs_shared_data_ref *ref;
6124 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6125 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6126 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6127 	} else {
6128 		struct btrfs_extent_data_ref *ref;
6129 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6130 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6131 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6132 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6133 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6134 	}
6135 
6136 	btrfs_mark_buffer_dirty(path->nodes[0]);
6137 	btrfs_free_path(path);
6138 
6139 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6140 	if (ret) { /* -ENOENT, logic error */
6141 		printk(KERN_ERR "btrfs update block group failed for %llu "
6142 		       "%llu\n", (unsigned long long)ins->objectid,
6143 		       (unsigned long long)ins->offset);
6144 		BUG();
6145 	}
6146 	return ret;
6147 }
6148 
6149 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6150 				     struct btrfs_root *root,
6151 				     u64 parent, u64 root_objectid,
6152 				     u64 flags, struct btrfs_disk_key *key,
6153 				     int level, struct btrfs_key *ins)
6154 {
6155 	int ret;
6156 	struct btrfs_fs_info *fs_info = root->fs_info;
6157 	struct btrfs_extent_item *extent_item;
6158 	struct btrfs_tree_block_info *block_info;
6159 	struct btrfs_extent_inline_ref *iref;
6160 	struct btrfs_path *path;
6161 	struct extent_buffer *leaf;
6162 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6163 
6164 	path = btrfs_alloc_path();
6165 	if (!path)
6166 		return -ENOMEM;
6167 
6168 	path->leave_spinning = 1;
6169 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6170 				      ins, size);
6171 	if (ret) {
6172 		btrfs_free_path(path);
6173 		return ret;
6174 	}
6175 
6176 	leaf = path->nodes[0];
6177 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6178 				     struct btrfs_extent_item);
6179 	btrfs_set_extent_refs(leaf, extent_item, 1);
6180 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6181 	btrfs_set_extent_flags(leaf, extent_item,
6182 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6183 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6184 
6185 	btrfs_set_tree_block_key(leaf, block_info, key);
6186 	btrfs_set_tree_block_level(leaf, block_info, level);
6187 
6188 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6189 	if (parent > 0) {
6190 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6191 		btrfs_set_extent_inline_ref_type(leaf, iref,
6192 						 BTRFS_SHARED_BLOCK_REF_KEY);
6193 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6194 	} else {
6195 		btrfs_set_extent_inline_ref_type(leaf, iref,
6196 						 BTRFS_TREE_BLOCK_REF_KEY);
6197 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6198 	}
6199 
6200 	btrfs_mark_buffer_dirty(leaf);
6201 	btrfs_free_path(path);
6202 
6203 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6204 	if (ret) { /* -ENOENT, logic error */
6205 		printk(KERN_ERR "btrfs update block group failed for %llu "
6206 		       "%llu\n", (unsigned long long)ins->objectid,
6207 		       (unsigned long long)ins->offset);
6208 		BUG();
6209 	}
6210 	return ret;
6211 }
6212 
6213 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6214 				     struct btrfs_root *root,
6215 				     u64 root_objectid, u64 owner,
6216 				     u64 offset, struct btrfs_key *ins)
6217 {
6218 	int ret;
6219 
6220 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6221 
6222 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6223 					 ins->offset, 0,
6224 					 root_objectid, owner, offset,
6225 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6226 	return ret;
6227 }
6228 
6229 /*
6230  * this is used by the tree logging recovery code.  It records that
6231  * an extent has been allocated and makes sure to clear the free
6232  * space cache bits as well
6233  */
6234 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6235 				   struct btrfs_root *root,
6236 				   u64 root_objectid, u64 owner, u64 offset,
6237 				   struct btrfs_key *ins)
6238 {
6239 	int ret;
6240 	struct btrfs_block_group_cache *block_group;
6241 	struct btrfs_caching_control *caching_ctl;
6242 	u64 start = ins->objectid;
6243 	u64 num_bytes = ins->offset;
6244 
6245 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6246 	cache_block_group(block_group, trans, NULL, 0);
6247 	caching_ctl = get_caching_control(block_group);
6248 
6249 	if (!caching_ctl) {
6250 		BUG_ON(!block_group_cache_done(block_group));
6251 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6252 		BUG_ON(ret); /* -ENOMEM */
6253 	} else {
6254 		mutex_lock(&caching_ctl->mutex);
6255 
6256 		if (start >= caching_ctl->progress) {
6257 			ret = add_excluded_extent(root, start, num_bytes);
6258 			BUG_ON(ret); /* -ENOMEM */
6259 		} else if (start + num_bytes <= caching_ctl->progress) {
6260 			ret = btrfs_remove_free_space(block_group,
6261 						      start, num_bytes);
6262 			BUG_ON(ret); /* -ENOMEM */
6263 		} else {
6264 			num_bytes = caching_ctl->progress - start;
6265 			ret = btrfs_remove_free_space(block_group,
6266 						      start, num_bytes);
6267 			BUG_ON(ret); /* -ENOMEM */
6268 
6269 			start = caching_ctl->progress;
6270 			num_bytes = ins->objectid + ins->offset -
6271 				    caching_ctl->progress;
6272 			ret = add_excluded_extent(root, start, num_bytes);
6273 			BUG_ON(ret); /* -ENOMEM */
6274 		}
6275 
6276 		mutex_unlock(&caching_ctl->mutex);
6277 		put_caching_control(caching_ctl);
6278 	}
6279 
6280 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6281 					  RESERVE_ALLOC_NO_ACCOUNT);
6282 	BUG_ON(ret); /* logic error */
6283 	btrfs_put_block_group(block_group);
6284 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6285 					 0, owner, offset, ins, 1);
6286 	return ret;
6287 }
6288 
6289 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6290 					    struct btrfs_root *root,
6291 					    u64 bytenr, u32 blocksize,
6292 					    int level)
6293 {
6294 	struct extent_buffer *buf;
6295 
6296 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6297 	if (!buf)
6298 		return ERR_PTR(-ENOMEM);
6299 	btrfs_set_header_generation(buf, trans->transid);
6300 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6301 	btrfs_tree_lock(buf);
6302 	clean_tree_block(trans, root, buf);
6303 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6304 
6305 	btrfs_set_lock_blocking(buf);
6306 	btrfs_set_buffer_uptodate(buf);
6307 
6308 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6309 		/*
6310 		 * we allow two log transactions at a time, use different
6311 		 * EXENT bit to differentiate dirty pages.
6312 		 */
6313 		if (root->log_transid % 2 == 0)
6314 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6315 					buf->start + buf->len - 1, GFP_NOFS);
6316 		else
6317 			set_extent_new(&root->dirty_log_pages, buf->start,
6318 					buf->start + buf->len - 1, GFP_NOFS);
6319 	} else {
6320 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6321 			 buf->start + buf->len - 1, GFP_NOFS);
6322 	}
6323 	trans->blocks_used++;
6324 	/* this returns a buffer locked for blocking */
6325 	return buf;
6326 }
6327 
6328 static struct btrfs_block_rsv *
6329 use_block_rsv(struct btrfs_trans_handle *trans,
6330 	      struct btrfs_root *root, u32 blocksize)
6331 {
6332 	struct btrfs_block_rsv *block_rsv;
6333 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6334 	int ret;
6335 
6336 	block_rsv = get_block_rsv(trans, root);
6337 
6338 	if (block_rsv->size == 0) {
6339 		ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6340 					     BTRFS_RESERVE_NO_FLUSH);
6341 		/*
6342 		 * If we couldn't reserve metadata bytes try and use some from
6343 		 * the global reserve.
6344 		 */
6345 		if (ret && block_rsv != global_rsv) {
6346 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6347 			if (!ret)
6348 				return global_rsv;
6349 			return ERR_PTR(ret);
6350 		} else if (ret) {
6351 			return ERR_PTR(ret);
6352 		}
6353 		return block_rsv;
6354 	}
6355 
6356 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6357 	if (!ret)
6358 		return block_rsv;
6359 	if (ret && !block_rsv->failfast) {
6360 		static DEFINE_RATELIMIT_STATE(_rs,
6361 				DEFAULT_RATELIMIT_INTERVAL,
6362 				/*DEFAULT_RATELIMIT_BURST*/ 2);
6363 		if (__ratelimit(&_rs))
6364 			WARN(1, KERN_DEBUG "btrfs: block rsv returned %d\n",
6365 			     ret);
6366 		ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6367 					     BTRFS_RESERVE_NO_FLUSH);
6368 		if (!ret) {
6369 			return block_rsv;
6370 		} else if (ret && block_rsv != global_rsv) {
6371 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6372 			if (!ret)
6373 				return global_rsv;
6374 		}
6375 	}
6376 
6377 	return ERR_PTR(-ENOSPC);
6378 }
6379 
6380 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6381 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6382 {
6383 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6384 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6385 }
6386 
6387 /*
6388  * finds a free extent and does all the dirty work required for allocation
6389  * returns the key for the extent through ins, and a tree buffer for
6390  * the first block of the extent through buf.
6391  *
6392  * returns the tree buffer or NULL.
6393  */
6394 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6395 					struct btrfs_root *root, u32 blocksize,
6396 					u64 parent, u64 root_objectid,
6397 					struct btrfs_disk_key *key, int level,
6398 					u64 hint, u64 empty_size)
6399 {
6400 	struct btrfs_key ins;
6401 	struct btrfs_block_rsv *block_rsv;
6402 	struct extent_buffer *buf;
6403 	u64 flags = 0;
6404 	int ret;
6405 
6406 
6407 	block_rsv = use_block_rsv(trans, root, blocksize);
6408 	if (IS_ERR(block_rsv))
6409 		return ERR_CAST(block_rsv);
6410 
6411 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6412 				   empty_size, hint, &ins, 0);
6413 	if (ret) {
6414 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6415 		return ERR_PTR(ret);
6416 	}
6417 
6418 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6419 				    blocksize, level);
6420 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6421 
6422 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6423 		if (parent == 0)
6424 			parent = ins.objectid;
6425 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6426 	} else
6427 		BUG_ON(parent > 0);
6428 
6429 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6430 		struct btrfs_delayed_extent_op *extent_op;
6431 		extent_op = btrfs_alloc_delayed_extent_op();
6432 		BUG_ON(!extent_op); /* -ENOMEM */
6433 		if (key)
6434 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6435 		else
6436 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6437 		extent_op->flags_to_set = flags;
6438 		extent_op->update_key = 1;
6439 		extent_op->update_flags = 1;
6440 		extent_op->is_data = 0;
6441 
6442 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6443 					ins.objectid,
6444 					ins.offset, parent, root_objectid,
6445 					level, BTRFS_ADD_DELAYED_EXTENT,
6446 					extent_op, 0);
6447 		BUG_ON(ret); /* -ENOMEM */
6448 	}
6449 	return buf;
6450 }
6451 
6452 struct walk_control {
6453 	u64 refs[BTRFS_MAX_LEVEL];
6454 	u64 flags[BTRFS_MAX_LEVEL];
6455 	struct btrfs_key update_progress;
6456 	int stage;
6457 	int level;
6458 	int shared_level;
6459 	int update_ref;
6460 	int keep_locks;
6461 	int reada_slot;
6462 	int reada_count;
6463 	int for_reloc;
6464 };
6465 
6466 #define DROP_REFERENCE	1
6467 #define UPDATE_BACKREF	2
6468 
6469 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6470 				     struct btrfs_root *root,
6471 				     struct walk_control *wc,
6472 				     struct btrfs_path *path)
6473 {
6474 	u64 bytenr;
6475 	u64 generation;
6476 	u64 refs;
6477 	u64 flags;
6478 	u32 nritems;
6479 	u32 blocksize;
6480 	struct btrfs_key key;
6481 	struct extent_buffer *eb;
6482 	int ret;
6483 	int slot;
6484 	int nread = 0;
6485 
6486 	if (path->slots[wc->level] < wc->reada_slot) {
6487 		wc->reada_count = wc->reada_count * 2 / 3;
6488 		wc->reada_count = max(wc->reada_count, 2);
6489 	} else {
6490 		wc->reada_count = wc->reada_count * 3 / 2;
6491 		wc->reada_count = min_t(int, wc->reada_count,
6492 					BTRFS_NODEPTRS_PER_BLOCK(root));
6493 	}
6494 
6495 	eb = path->nodes[wc->level];
6496 	nritems = btrfs_header_nritems(eb);
6497 	blocksize = btrfs_level_size(root, wc->level - 1);
6498 
6499 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6500 		if (nread >= wc->reada_count)
6501 			break;
6502 
6503 		cond_resched();
6504 		bytenr = btrfs_node_blockptr(eb, slot);
6505 		generation = btrfs_node_ptr_generation(eb, slot);
6506 
6507 		if (slot == path->slots[wc->level])
6508 			goto reada;
6509 
6510 		if (wc->stage == UPDATE_BACKREF &&
6511 		    generation <= root->root_key.offset)
6512 			continue;
6513 
6514 		/* We don't lock the tree block, it's OK to be racy here */
6515 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6516 					       &refs, &flags);
6517 		/* We don't care about errors in readahead. */
6518 		if (ret < 0)
6519 			continue;
6520 		BUG_ON(refs == 0);
6521 
6522 		if (wc->stage == DROP_REFERENCE) {
6523 			if (refs == 1)
6524 				goto reada;
6525 
6526 			if (wc->level == 1 &&
6527 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6528 				continue;
6529 			if (!wc->update_ref ||
6530 			    generation <= root->root_key.offset)
6531 				continue;
6532 			btrfs_node_key_to_cpu(eb, &key, slot);
6533 			ret = btrfs_comp_cpu_keys(&key,
6534 						  &wc->update_progress);
6535 			if (ret < 0)
6536 				continue;
6537 		} else {
6538 			if (wc->level == 1 &&
6539 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6540 				continue;
6541 		}
6542 reada:
6543 		ret = readahead_tree_block(root, bytenr, blocksize,
6544 					   generation);
6545 		if (ret)
6546 			break;
6547 		nread++;
6548 	}
6549 	wc->reada_slot = slot;
6550 }
6551 
6552 /*
6553  * hepler to process tree block while walking down the tree.
6554  *
6555  * when wc->stage == UPDATE_BACKREF, this function updates
6556  * back refs for pointers in the block.
6557  *
6558  * NOTE: return value 1 means we should stop walking down.
6559  */
6560 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6561 				   struct btrfs_root *root,
6562 				   struct btrfs_path *path,
6563 				   struct walk_control *wc, int lookup_info)
6564 {
6565 	int level = wc->level;
6566 	struct extent_buffer *eb = path->nodes[level];
6567 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6568 	int ret;
6569 
6570 	if (wc->stage == UPDATE_BACKREF &&
6571 	    btrfs_header_owner(eb) != root->root_key.objectid)
6572 		return 1;
6573 
6574 	/*
6575 	 * when reference count of tree block is 1, it won't increase
6576 	 * again. once full backref flag is set, we never clear it.
6577 	 */
6578 	if (lookup_info &&
6579 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6580 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6581 		BUG_ON(!path->locks[level]);
6582 		ret = btrfs_lookup_extent_info(trans, root,
6583 					       eb->start, eb->len,
6584 					       &wc->refs[level],
6585 					       &wc->flags[level]);
6586 		BUG_ON(ret == -ENOMEM);
6587 		if (ret)
6588 			return ret;
6589 		BUG_ON(wc->refs[level] == 0);
6590 	}
6591 
6592 	if (wc->stage == DROP_REFERENCE) {
6593 		if (wc->refs[level] > 1)
6594 			return 1;
6595 
6596 		if (path->locks[level] && !wc->keep_locks) {
6597 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6598 			path->locks[level] = 0;
6599 		}
6600 		return 0;
6601 	}
6602 
6603 	/* wc->stage == UPDATE_BACKREF */
6604 	if (!(wc->flags[level] & flag)) {
6605 		BUG_ON(!path->locks[level]);
6606 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6607 		BUG_ON(ret); /* -ENOMEM */
6608 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6609 		BUG_ON(ret); /* -ENOMEM */
6610 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6611 						  eb->len, flag, 0);
6612 		BUG_ON(ret); /* -ENOMEM */
6613 		wc->flags[level] |= flag;
6614 	}
6615 
6616 	/*
6617 	 * the block is shared by multiple trees, so it's not good to
6618 	 * keep the tree lock
6619 	 */
6620 	if (path->locks[level] && level > 0) {
6621 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6622 		path->locks[level] = 0;
6623 	}
6624 	return 0;
6625 }
6626 
6627 /*
6628  * hepler to process tree block pointer.
6629  *
6630  * when wc->stage == DROP_REFERENCE, this function checks
6631  * reference count of the block pointed to. if the block
6632  * is shared and we need update back refs for the subtree
6633  * rooted at the block, this function changes wc->stage to
6634  * UPDATE_BACKREF. if the block is shared and there is no
6635  * need to update back, this function drops the reference
6636  * to the block.
6637  *
6638  * NOTE: return value 1 means we should stop walking down.
6639  */
6640 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6641 				 struct btrfs_root *root,
6642 				 struct btrfs_path *path,
6643 				 struct walk_control *wc, int *lookup_info)
6644 {
6645 	u64 bytenr;
6646 	u64 generation;
6647 	u64 parent;
6648 	u32 blocksize;
6649 	struct btrfs_key key;
6650 	struct extent_buffer *next;
6651 	int level = wc->level;
6652 	int reada = 0;
6653 	int ret = 0;
6654 
6655 	generation = btrfs_node_ptr_generation(path->nodes[level],
6656 					       path->slots[level]);
6657 	/*
6658 	 * if the lower level block was created before the snapshot
6659 	 * was created, we know there is no need to update back refs
6660 	 * for the subtree
6661 	 */
6662 	if (wc->stage == UPDATE_BACKREF &&
6663 	    generation <= root->root_key.offset) {
6664 		*lookup_info = 1;
6665 		return 1;
6666 	}
6667 
6668 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6669 	blocksize = btrfs_level_size(root, level - 1);
6670 
6671 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6672 	if (!next) {
6673 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6674 		if (!next)
6675 			return -ENOMEM;
6676 		reada = 1;
6677 	}
6678 	btrfs_tree_lock(next);
6679 	btrfs_set_lock_blocking(next);
6680 
6681 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6682 				       &wc->refs[level - 1],
6683 				       &wc->flags[level - 1]);
6684 	if (ret < 0) {
6685 		btrfs_tree_unlock(next);
6686 		return ret;
6687 	}
6688 
6689 	BUG_ON(wc->refs[level - 1] == 0);
6690 	*lookup_info = 0;
6691 
6692 	if (wc->stage == DROP_REFERENCE) {
6693 		if (wc->refs[level - 1] > 1) {
6694 			if (level == 1 &&
6695 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6696 				goto skip;
6697 
6698 			if (!wc->update_ref ||
6699 			    generation <= root->root_key.offset)
6700 				goto skip;
6701 
6702 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6703 					      path->slots[level]);
6704 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6705 			if (ret < 0)
6706 				goto skip;
6707 
6708 			wc->stage = UPDATE_BACKREF;
6709 			wc->shared_level = level - 1;
6710 		}
6711 	} else {
6712 		if (level == 1 &&
6713 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6714 			goto skip;
6715 	}
6716 
6717 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
6718 		btrfs_tree_unlock(next);
6719 		free_extent_buffer(next);
6720 		next = NULL;
6721 		*lookup_info = 1;
6722 	}
6723 
6724 	if (!next) {
6725 		if (reada && level == 1)
6726 			reada_walk_down(trans, root, wc, path);
6727 		next = read_tree_block(root, bytenr, blocksize, generation);
6728 		if (!next)
6729 			return -EIO;
6730 		btrfs_tree_lock(next);
6731 		btrfs_set_lock_blocking(next);
6732 	}
6733 
6734 	level--;
6735 	BUG_ON(level != btrfs_header_level(next));
6736 	path->nodes[level] = next;
6737 	path->slots[level] = 0;
6738 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6739 	wc->level = level;
6740 	if (wc->level == 1)
6741 		wc->reada_slot = 0;
6742 	return 0;
6743 skip:
6744 	wc->refs[level - 1] = 0;
6745 	wc->flags[level - 1] = 0;
6746 	if (wc->stage == DROP_REFERENCE) {
6747 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6748 			parent = path->nodes[level]->start;
6749 		} else {
6750 			BUG_ON(root->root_key.objectid !=
6751 			       btrfs_header_owner(path->nodes[level]));
6752 			parent = 0;
6753 		}
6754 
6755 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6756 				root->root_key.objectid, level - 1, 0, 0);
6757 		BUG_ON(ret); /* -ENOMEM */
6758 	}
6759 	btrfs_tree_unlock(next);
6760 	free_extent_buffer(next);
6761 	*lookup_info = 1;
6762 	return 1;
6763 }
6764 
6765 /*
6766  * hepler to process tree block while walking up the tree.
6767  *
6768  * when wc->stage == DROP_REFERENCE, this function drops
6769  * reference count on the block.
6770  *
6771  * when wc->stage == UPDATE_BACKREF, this function changes
6772  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6773  * to UPDATE_BACKREF previously while processing the block.
6774  *
6775  * NOTE: return value 1 means we should stop walking up.
6776  */
6777 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6778 				 struct btrfs_root *root,
6779 				 struct btrfs_path *path,
6780 				 struct walk_control *wc)
6781 {
6782 	int ret;
6783 	int level = wc->level;
6784 	struct extent_buffer *eb = path->nodes[level];
6785 	u64 parent = 0;
6786 
6787 	if (wc->stage == UPDATE_BACKREF) {
6788 		BUG_ON(wc->shared_level < level);
6789 		if (level < wc->shared_level)
6790 			goto out;
6791 
6792 		ret = find_next_key(path, level + 1, &wc->update_progress);
6793 		if (ret > 0)
6794 			wc->update_ref = 0;
6795 
6796 		wc->stage = DROP_REFERENCE;
6797 		wc->shared_level = -1;
6798 		path->slots[level] = 0;
6799 
6800 		/*
6801 		 * check reference count again if the block isn't locked.
6802 		 * we should start walking down the tree again if reference
6803 		 * count is one.
6804 		 */
6805 		if (!path->locks[level]) {
6806 			BUG_ON(level == 0);
6807 			btrfs_tree_lock(eb);
6808 			btrfs_set_lock_blocking(eb);
6809 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6810 
6811 			ret = btrfs_lookup_extent_info(trans, root,
6812 						       eb->start, eb->len,
6813 						       &wc->refs[level],
6814 						       &wc->flags[level]);
6815 			if (ret < 0) {
6816 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6817 				path->locks[level] = 0;
6818 				return ret;
6819 			}
6820 			BUG_ON(wc->refs[level] == 0);
6821 			if (wc->refs[level] == 1) {
6822 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6823 				path->locks[level] = 0;
6824 				return 1;
6825 			}
6826 		}
6827 	}
6828 
6829 	/* wc->stage == DROP_REFERENCE */
6830 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6831 
6832 	if (wc->refs[level] == 1) {
6833 		if (level == 0) {
6834 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6835 				ret = btrfs_dec_ref(trans, root, eb, 1,
6836 						    wc->for_reloc);
6837 			else
6838 				ret = btrfs_dec_ref(trans, root, eb, 0,
6839 						    wc->for_reloc);
6840 			BUG_ON(ret); /* -ENOMEM */
6841 		}
6842 		/* make block locked assertion in clean_tree_block happy */
6843 		if (!path->locks[level] &&
6844 		    btrfs_header_generation(eb) == trans->transid) {
6845 			btrfs_tree_lock(eb);
6846 			btrfs_set_lock_blocking(eb);
6847 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6848 		}
6849 		clean_tree_block(trans, root, eb);
6850 	}
6851 
6852 	if (eb == root->node) {
6853 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6854 			parent = eb->start;
6855 		else
6856 			BUG_ON(root->root_key.objectid !=
6857 			       btrfs_header_owner(eb));
6858 	} else {
6859 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6860 			parent = path->nodes[level + 1]->start;
6861 		else
6862 			BUG_ON(root->root_key.objectid !=
6863 			       btrfs_header_owner(path->nodes[level + 1]));
6864 	}
6865 
6866 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6867 out:
6868 	wc->refs[level] = 0;
6869 	wc->flags[level] = 0;
6870 	return 0;
6871 }
6872 
6873 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6874 				   struct btrfs_root *root,
6875 				   struct btrfs_path *path,
6876 				   struct walk_control *wc)
6877 {
6878 	int level = wc->level;
6879 	int lookup_info = 1;
6880 	int ret;
6881 
6882 	while (level >= 0) {
6883 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6884 		if (ret > 0)
6885 			break;
6886 
6887 		if (level == 0)
6888 			break;
6889 
6890 		if (path->slots[level] >=
6891 		    btrfs_header_nritems(path->nodes[level]))
6892 			break;
6893 
6894 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6895 		if (ret > 0) {
6896 			path->slots[level]++;
6897 			continue;
6898 		} else if (ret < 0)
6899 			return ret;
6900 		level = wc->level;
6901 	}
6902 	return 0;
6903 }
6904 
6905 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6906 				 struct btrfs_root *root,
6907 				 struct btrfs_path *path,
6908 				 struct walk_control *wc, int max_level)
6909 {
6910 	int level = wc->level;
6911 	int ret;
6912 
6913 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6914 	while (level < max_level && path->nodes[level]) {
6915 		wc->level = level;
6916 		if (path->slots[level] + 1 <
6917 		    btrfs_header_nritems(path->nodes[level])) {
6918 			path->slots[level]++;
6919 			return 0;
6920 		} else {
6921 			ret = walk_up_proc(trans, root, path, wc);
6922 			if (ret > 0)
6923 				return 0;
6924 
6925 			if (path->locks[level]) {
6926 				btrfs_tree_unlock_rw(path->nodes[level],
6927 						     path->locks[level]);
6928 				path->locks[level] = 0;
6929 			}
6930 			free_extent_buffer(path->nodes[level]);
6931 			path->nodes[level] = NULL;
6932 			level++;
6933 		}
6934 	}
6935 	return 1;
6936 }
6937 
6938 /*
6939  * drop a subvolume tree.
6940  *
6941  * this function traverses the tree freeing any blocks that only
6942  * referenced by the tree.
6943  *
6944  * when a shared tree block is found. this function decreases its
6945  * reference count by one. if update_ref is true, this function
6946  * also make sure backrefs for the shared block and all lower level
6947  * blocks are properly updated.
6948  */
6949 int btrfs_drop_snapshot(struct btrfs_root *root,
6950 			 struct btrfs_block_rsv *block_rsv, int update_ref,
6951 			 int for_reloc)
6952 {
6953 	struct btrfs_path *path;
6954 	struct btrfs_trans_handle *trans;
6955 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6956 	struct btrfs_root_item *root_item = &root->root_item;
6957 	struct walk_control *wc;
6958 	struct btrfs_key key;
6959 	int err = 0;
6960 	int ret;
6961 	int level;
6962 
6963 	path = btrfs_alloc_path();
6964 	if (!path) {
6965 		err = -ENOMEM;
6966 		goto out;
6967 	}
6968 
6969 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6970 	if (!wc) {
6971 		btrfs_free_path(path);
6972 		err = -ENOMEM;
6973 		goto out;
6974 	}
6975 
6976 	trans = btrfs_start_transaction(tree_root, 0);
6977 	if (IS_ERR(trans)) {
6978 		err = PTR_ERR(trans);
6979 		goto out_free;
6980 	}
6981 
6982 	if (block_rsv)
6983 		trans->block_rsv = block_rsv;
6984 
6985 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6986 		level = btrfs_header_level(root->node);
6987 		path->nodes[level] = btrfs_lock_root_node(root);
6988 		btrfs_set_lock_blocking(path->nodes[level]);
6989 		path->slots[level] = 0;
6990 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6991 		memset(&wc->update_progress, 0,
6992 		       sizeof(wc->update_progress));
6993 	} else {
6994 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6995 		memcpy(&wc->update_progress, &key,
6996 		       sizeof(wc->update_progress));
6997 
6998 		level = root_item->drop_level;
6999 		BUG_ON(level == 0);
7000 		path->lowest_level = level;
7001 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7002 		path->lowest_level = 0;
7003 		if (ret < 0) {
7004 			err = ret;
7005 			goto out_end_trans;
7006 		}
7007 		WARN_ON(ret > 0);
7008 
7009 		/*
7010 		 * unlock our path, this is safe because only this
7011 		 * function is allowed to delete this snapshot
7012 		 */
7013 		btrfs_unlock_up_safe(path, 0);
7014 
7015 		level = btrfs_header_level(root->node);
7016 		while (1) {
7017 			btrfs_tree_lock(path->nodes[level]);
7018 			btrfs_set_lock_blocking(path->nodes[level]);
7019 
7020 			ret = btrfs_lookup_extent_info(trans, root,
7021 						path->nodes[level]->start,
7022 						path->nodes[level]->len,
7023 						&wc->refs[level],
7024 						&wc->flags[level]);
7025 			if (ret < 0) {
7026 				err = ret;
7027 				goto out_end_trans;
7028 			}
7029 			BUG_ON(wc->refs[level] == 0);
7030 
7031 			if (level == root_item->drop_level)
7032 				break;
7033 
7034 			btrfs_tree_unlock(path->nodes[level]);
7035 			WARN_ON(wc->refs[level] != 1);
7036 			level--;
7037 		}
7038 	}
7039 
7040 	wc->level = level;
7041 	wc->shared_level = -1;
7042 	wc->stage = DROP_REFERENCE;
7043 	wc->update_ref = update_ref;
7044 	wc->keep_locks = 0;
7045 	wc->for_reloc = for_reloc;
7046 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7047 
7048 	while (1) {
7049 		ret = walk_down_tree(trans, root, path, wc);
7050 		if (ret < 0) {
7051 			err = ret;
7052 			break;
7053 		}
7054 
7055 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7056 		if (ret < 0) {
7057 			err = ret;
7058 			break;
7059 		}
7060 
7061 		if (ret > 0) {
7062 			BUG_ON(wc->stage != DROP_REFERENCE);
7063 			break;
7064 		}
7065 
7066 		if (wc->stage == DROP_REFERENCE) {
7067 			level = wc->level;
7068 			btrfs_node_key(path->nodes[level],
7069 				       &root_item->drop_progress,
7070 				       path->slots[level]);
7071 			root_item->drop_level = level;
7072 		}
7073 
7074 		BUG_ON(wc->level == 0);
7075 		if (btrfs_should_end_transaction(trans, tree_root)) {
7076 			ret = btrfs_update_root(trans, tree_root,
7077 						&root->root_key,
7078 						root_item);
7079 			if (ret) {
7080 				btrfs_abort_transaction(trans, tree_root, ret);
7081 				err = ret;
7082 				goto out_end_trans;
7083 			}
7084 
7085 			btrfs_end_transaction_throttle(trans, tree_root);
7086 			trans = btrfs_start_transaction(tree_root, 0);
7087 			if (IS_ERR(trans)) {
7088 				err = PTR_ERR(trans);
7089 				goto out_free;
7090 			}
7091 			if (block_rsv)
7092 				trans->block_rsv = block_rsv;
7093 		}
7094 	}
7095 	btrfs_release_path(path);
7096 	if (err)
7097 		goto out_end_trans;
7098 
7099 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7100 	if (ret) {
7101 		btrfs_abort_transaction(trans, tree_root, ret);
7102 		goto out_end_trans;
7103 	}
7104 
7105 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7106 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7107 					   NULL, NULL);
7108 		if (ret < 0) {
7109 			btrfs_abort_transaction(trans, tree_root, ret);
7110 			err = ret;
7111 			goto out_end_trans;
7112 		} else if (ret > 0) {
7113 			/* if we fail to delete the orphan item this time
7114 			 * around, it'll get picked up the next time.
7115 			 *
7116 			 * The most common failure here is just -ENOENT.
7117 			 */
7118 			btrfs_del_orphan_item(trans, tree_root,
7119 					      root->root_key.objectid);
7120 		}
7121 	}
7122 
7123 	if (root->in_radix) {
7124 		btrfs_free_fs_root(tree_root->fs_info, root);
7125 	} else {
7126 		free_extent_buffer(root->node);
7127 		free_extent_buffer(root->commit_root);
7128 		kfree(root);
7129 	}
7130 out_end_trans:
7131 	btrfs_end_transaction_throttle(trans, tree_root);
7132 out_free:
7133 	kfree(wc);
7134 	btrfs_free_path(path);
7135 out:
7136 	if (err)
7137 		btrfs_std_error(root->fs_info, err);
7138 	return err;
7139 }
7140 
7141 /*
7142  * drop subtree rooted at tree block 'node'.
7143  *
7144  * NOTE: this function will unlock and release tree block 'node'
7145  * only used by relocation code
7146  */
7147 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7148 			struct btrfs_root *root,
7149 			struct extent_buffer *node,
7150 			struct extent_buffer *parent)
7151 {
7152 	struct btrfs_path *path;
7153 	struct walk_control *wc;
7154 	int level;
7155 	int parent_level;
7156 	int ret = 0;
7157 	int wret;
7158 
7159 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7160 
7161 	path = btrfs_alloc_path();
7162 	if (!path)
7163 		return -ENOMEM;
7164 
7165 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7166 	if (!wc) {
7167 		btrfs_free_path(path);
7168 		return -ENOMEM;
7169 	}
7170 
7171 	btrfs_assert_tree_locked(parent);
7172 	parent_level = btrfs_header_level(parent);
7173 	extent_buffer_get(parent);
7174 	path->nodes[parent_level] = parent;
7175 	path->slots[parent_level] = btrfs_header_nritems(parent);
7176 
7177 	btrfs_assert_tree_locked(node);
7178 	level = btrfs_header_level(node);
7179 	path->nodes[level] = node;
7180 	path->slots[level] = 0;
7181 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7182 
7183 	wc->refs[parent_level] = 1;
7184 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7185 	wc->level = level;
7186 	wc->shared_level = -1;
7187 	wc->stage = DROP_REFERENCE;
7188 	wc->update_ref = 0;
7189 	wc->keep_locks = 1;
7190 	wc->for_reloc = 1;
7191 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7192 
7193 	while (1) {
7194 		wret = walk_down_tree(trans, root, path, wc);
7195 		if (wret < 0) {
7196 			ret = wret;
7197 			break;
7198 		}
7199 
7200 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7201 		if (wret < 0)
7202 			ret = wret;
7203 		if (wret != 0)
7204 			break;
7205 	}
7206 
7207 	kfree(wc);
7208 	btrfs_free_path(path);
7209 	return ret;
7210 }
7211 
7212 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7213 {
7214 	u64 num_devices;
7215 	u64 stripped;
7216 
7217 	/*
7218 	 * if restripe for this chunk_type is on pick target profile and
7219 	 * return, otherwise do the usual balance
7220 	 */
7221 	stripped = get_restripe_target(root->fs_info, flags);
7222 	if (stripped)
7223 		return extended_to_chunk(stripped);
7224 
7225 	/*
7226 	 * we add in the count of missing devices because we want
7227 	 * to make sure that any RAID levels on a degraded FS
7228 	 * continue to be honored.
7229 	 */
7230 	num_devices = root->fs_info->fs_devices->rw_devices +
7231 		root->fs_info->fs_devices->missing_devices;
7232 
7233 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7234 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7235 
7236 	if (num_devices == 1) {
7237 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7238 		stripped = flags & ~stripped;
7239 
7240 		/* turn raid0 into single device chunks */
7241 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7242 			return stripped;
7243 
7244 		/* turn mirroring into duplication */
7245 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7246 			     BTRFS_BLOCK_GROUP_RAID10))
7247 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7248 	} else {
7249 		/* they already had raid on here, just return */
7250 		if (flags & stripped)
7251 			return flags;
7252 
7253 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7254 		stripped = flags & ~stripped;
7255 
7256 		/* switch duplicated blocks with raid1 */
7257 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7258 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7259 
7260 		/* this is drive concat, leave it alone */
7261 	}
7262 
7263 	return flags;
7264 }
7265 
7266 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7267 {
7268 	struct btrfs_space_info *sinfo = cache->space_info;
7269 	u64 num_bytes;
7270 	u64 min_allocable_bytes;
7271 	int ret = -ENOSPC;
7272 
7273 
7274 	/*
7275 	 * We need some metadata space and system metadata space for
7276 	 * allocating chunks in some corner cases until we force to set
7277 	 * it to be readonly.
7278 	 */
7279 	if ((sinfo->flags &
7280 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7281 	    !force)
7282 		min_allocable_bytes = 1 * 1024 * 1024;
7283 	else
7284 		min_allocable_bytes = 0;
7285 
7286 	spin_lock(&sinfo->lock);
7287 	spin_lock(&cache->lock);
7288 
7289 	if (cache->ro) {
7290 		ret = 0;
7291 		goto out;
7292 	}
7293 
7294 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7295 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7296 
7297 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7298 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7299 	    min_allocable_bytes <= sinfo->total_bytes) {
7300 		sinfo->bytes_readonly += num_bytes;
7301 		cache->ro = 1;
7302 		ret = 0;
7303 	}
7304 out:
7305 	spin_unlock(&cache->lock);
7306 	spin_unlock(&sinfo->lock);
7307 	return ret;
7308 }
7309 
7310 int btrfs_set_block_group_ro(struct btrfs_root *root,
7311 			     struct btrfs_block_group_cache *cache)
7312 
7313 {
7314 	struct btrfs_trans_handle *trans;
7315 	u64 alloc_flags;
7316 	int ret;
7317 
7318 	BUG_ON(cache->ro);
7319 
7320 	trans = btrfs_join_transaction(root);
7321 	if (IS_ERR(trans))
7322 		return PTR_ERR(trans);
7323 
7324 	alloc_flags = update_block_group_flags(root, cache->flags);
7325 	if (alloc_flags != cache->flags) {
7326 		ret = do_chunk_alloc(trans, root, alloc_flags,
7327 				     CHUNK_ALLOC_FORCE);
7328 		if (ret < 0)
7329 			goto out;
7330 	}
7331 
7332 	ret = set_block_group_ro(cache, 0);
7333 	if (!ret)
7334 		goto out;
7335 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7336 	ret = do_chunk_alloc(trans, root, alloc_flags,
7337 			     CHUNK_ALLOC_FORCE);
7338 	if (ret < 0)
7339 		goto out;
7340 	ret = set_block_group_ro(cache, 0);
7341 out:
7342 	btrfs_end_transaction(trans, root);
7343 	return ret;
7344 }
7345 
7346 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7347 			    struct btrfs_root *root, u64 type)
7348 {
7349 	u64 alloc_flags = get_alloc_profile(root, type);
7350 	return do_chunk_alloc(trans, root, alloc_flags,
7351 			      CHUNK_ALLOC_FORCE);
7352 }
7353 
7354 /*
7355  * helper to account the unused space of all the readonly block group in the
7356  * list. takes mirrors into account.
7357  */
7358 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7359 {
7360 	struct btrfs_block_group_cache *block_group;
7361 	u64 free_bytes = 0;
7362 	int factor;
7363 
7364 	list_for_each_entry(block_group, groups_list, list) {
7365 		spin_lock(&block_group->lock);
7366 
7367 		if (!block_group->ro) {
7368 			spin_unlock(&block_group->lock);
7369 			continue;
7370 		}
7371 
7372 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7373 					  BTRFS_BLOCK_GROUP_RAID10 |
7374 					  BTRFS_BLOCK_GROUP_DUP))
7375 			factor = 2;
7376 		else
7377 			factor = 1;
7378 
7379 		free_bytes += (block_group->key.offset -
7380 			       btrfs_block_group_used(&block_group->item)) *
7381 			       factor;
7382 
7383 		spin_unlock(&block_group->lock);
7384 	}
7385 
7386 	return free_bytes;
7387 }
7388 
7389 /*
7390  * helper to account the unused space of all the readonly block group in the
7391  * space_info. takes mirrors into account.
7392  */
7393 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7394 {
7395 	int i;
7396 	u64 free_bytes = 0;
7397 
7398 	spin_lock(&sinfo->lock);
7399 
7400 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7401 		if (!list_empty(&sinfo->block_groups[i]))
7402 			free_bytes += __btrfs_get_ro_block_group_free_space(
7403 						&sinfo->block_groups[i]);
7404 
7405 	spin_unlock(&sinfo->lock);
7406 
7407 	return free_bytes;
7408 }
7409 
7410 void btrfs_set_block_group_rw(struct btrfs_root *root,
7411 			      struct btrfs_block_group_cache *cache)
7412 {
7413 	struct btrfs_space_info *sinfo = cache->space_info;
7414 	u64 num_bytes;
7415 
7416 	BUG_ON(!cache->ro);
7417 
7418 	spin_lock(&sinfo->lock);
7419 	spin_lock(&cache->lock);
7420 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7421 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7422 	sinfo->bytes_readonly -= num_bytes;
7423 	cache->ro = 0;
7424 	spin_unlock(&cache->lock);
7425 	spin_unlock(&sinfo->lock);
7426 }
7427 
7428 /*
7429  * checks to see if its even possible to relocate this block group.
7430  *
7431  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7432  * ok to go ahead and try.
7433  */
7434 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7435 {
7436 	struct btrfs_block_group_cache *block_group;
7437 	struct btrfs_space_info *space_info;
7438 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7439 	struct btrfs_device *device;
7440 	u64 min_free;
7441 	u64 dev_min = 1;
7442 	u64 dev_nr = 0;
7443 	u64 target;
7444 	int index;
7445 	int full = 0;
7446 	int ret = 0;
7447 
7448 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7449 
7450 	/* odd, couldn't find the block group, leave it alone */
7451 	if (!block_group)
7452 		return -1;
7453 
7454 	min_free = btrfs_block_group_used(&block_group->item);
7455 
7456 	/* no bytes used, we're good */
7457 	if (!min_free)
7458 		goto out;
7459 
7460 	space_info = block_group->space_info;
7461 	spin_lock(&space_info->lock);
7462 
7463 	full = space_info->full;
7464 
7465 	/*
7466 	 * if this is the last block group we have in this space, we can't
7467 	 * relocate it unless we're able to allocate a new chunk below.
7468 	 *
7469 	 * Otherwise, we need to make sure we have room in the space to handle
7470 	 * all of the extents from this block group.  If we can, we're good
7471 	 */
7472 	if ((space_info->total_bytes != block_group->key.offset) &&
7473 	    (space_info->bytes_used + space_info->bytes_reserved +
7474 	     space_info->bytes_pinned + space_info->bytes_readonly +
7475 	     min_free < space_info->total_bytes)) {
7476 		spin_unlock(&space_info->lock);
7477 		goto out;
7478 	}
7479 	spin_unlock(&space_info->lock);
7480 
7481 	/*
7482 	 * ok we don't have enough space, but maybe we have free space on our
7483 	 * devices to allocate new chunks for relocation, so loop through our
7484 	 * alloc devices and guess if we have enough space.  if this block
7485 	 * group is going to be restriped, run checks against the target
7486 	 * profile instead of the current one.
7487 	 */
7488 	ret = -1;
7489 
7490 	/*
7491 	 * index:
7492 	 *      0: raid10
7493 	 *      1: raid1
7494 	 *      2: dup
7495 	 *      3: raid0
7496 	 *      4: single
7497 	 */
7498 	target = get_restripe_target(root->fs_info, block_group->flags);
7499 	if (target) {
7500 		index = __get_raid_index(extended_to_chunk(target));
7501 	} else {
7502 		/*
7503 		 * this is just a balance, so if we were marked as full
7504 		 * we know there is no space for a new chunk
7505 		 */
7506 		if (full)
7507 			goto out;
7508 
7509 		index = get_block_group_index(block_group);
7510 	}
7511 
7512 	if (index == 0) {
7513 		dev_min = 4;
7514 		/* Divide by 2 */
7515 		min_free >>= 1;
7516 	} else if (index == 1) {
7517 		dev_min = 2;
7518 	} else if (index == 2) {
7519 		/* Multiply by 2 */
7520 		min_free <<= 1;
7521 	} else if (index == 3) {
7522 		dev_min = fs_devices->rw_devices;
7523 		do_div(min_free, dev_min);
7524 	}
7525 
7526 	mutex_lock(&root->fs_info->chunk_mutex);
7527 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7528 		u64 dev_offset;
7529 
7530 		/*
7531 		 * check to make sure we can actually find a chunk with enough
7532 		 * space to fit our block group in.
7533 		 */
7534 		if (device->total_bytes > device->bytes_used + min_free &&
7535 		    !device->is_tgtdev_for_dev_replace) {
7536 			ret = find_free_dev_extent(device, min_free,
7537 						   &dev_offset, NULL);
7538 			if (!ret)
7539 				dev_nr++;
7540 
7541 			if (dev_nr >= dev_min)
7542 				break;
7543 
7544 			ret = -1;
7545 		}
7546 	}
7547 	mutex_unlock(&root->fs_info->chunk_mutex);
7548 out:
7549 	btrfs_put_block_group(block_group);
7550 	return ret;
7551 }
7552 
7553 static int find_first_block_group(struct btrfs_root *root,
7554 		struct btrfs_path *path, struct btrfs_key *key)
7555 {
7556 	int ret = 0;
7557 	struct btrfs_key found_key;
7558 	struct extent_buffer *leaf;
7559 	int slot;
7560 
7561 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7562 	if (ret < 0)
7563 		goto out;
7564 
7565 	while (1) {
7566 		slot = path->slots[0];
7567 		leaf = path->nodes[0];
7568 		if (slot >= btrfs_header_nritems(leaf)) {
7569 			ret = btrfs_next_leaf(root, path);
7570 			if (ret == 0)
7571 				continue;
7572 			if (ret < 0)
7573 				goto out;
7574 			break;
7575 		}
7576 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7577 
7578 		if (found_key.objectid >= key->objectid &&
7579 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7580 			ret = 0;
7581 			goto out;
7582 		}
7583 		path->slots[0]++;
7584 	}
7585 out:
7586 	return ret;
7587 }
7588 
7589 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7590 {
7591 	struct btrfs_block_group_cache *block_group;
7592 	u64 last = 0;
7593 
7594 	while (1) {
7595 		struct inode *inode;
7596 
7597 		block_group = btrfs_lookup_first_block_group(info, last);
7598 		while (block_group) {
7599 			spin_lock(&block_group->lock);
7600 			if (block_group->iref)
7601 				break;
7602 			spin_unlock(&block_group->lock);
7603 			block_group = next_block_group(info->tree_root,
7604 						       block_group);
7605 		}
7606 		if (!block_group) {
7607 			if (last == 0)
7608 				break;
7609 			last = 0;
7610 			continue;
7611 		}
7612 
7613 		inode = block_group->inode;
7614 		block_group->iref = 0;
7615 		block_group->inode = NULL;
7616 		spin_unlock(&block_group->lock);
7617 		iput(inode);
7618 		last = block_group->key.objectid + block_group->key.offset;
7619 		btrfs_put_block_group(block_group);
7620 	}
7621 }
7622 
7623 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7624 {
7625 	struct btrfs_block_group_cache *block_group;
7626 	struct btrfs_space_info *space_info;
7627 	struct btrfs_caching_control *caching_ctl;
7628 	struct rb_node *n;
7629 
7630 	down_write(&info->extent_commit_sem);
7631 	while (!list_empty(&info->caching_block_groups)) {
7632 		caching_ctl = list_entry(info->caching_block_groups.next,
7633 					 struct btrfs_caching_control, list);
7634 		list_del(&caching_ctl->list);
7635 		put_caching_control(caching_ctl);
7636 	}
7637 	up_write(&info->extent_commit_sem);
7638 
7639 	spin_lock(&info->block_group_cache_lock);
7640 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7641 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7642 				       cache_node);
7643 		rb_erase(&block_group->cache_node,
7644 			 &info->block_group_cache_tree);
7645 		spin_unlock(&info->block_group_cache_lock);
7646 
7647 		down_write(&block_group->space_info->groups_sem);
7648 		list_del(&block_group->list);
7649 		up_write(&block_group->space_info->groups_sem);
7650 
7651 		if (block_group->cached == BTRFS_CACHE_STARTED)
7652 			wait_block_group_cache_done(block_group);
7653 
7654 		/*
7655 		 * We haven't cached this block group, which means we could
7656 		 * possibly have excluded extents on this block group.
7657 		 */
7658 		if (block_group->cached == BTRFS_CACHE_NO)
7659 			free_excluded_extents(info->extent_root, block_group);
7660 
7661 		btrfs_remove_free_space_cache(block_group);
7662 		btrfs_put_block_group(block_group);
7663 
7664 		spin_lock(&info->block_group_cache_lock);
7665 	}
7666 	spin_unlock(&info->block_group_cache_lock);
7667 
7668 	/* now that all the block groups are freed, go through and
7669 	 * free all the space_info structs.  This is only called during
7670 	 * the final stages of unmount, and so we know nobody is
7671 	 * using them.  We call synchronize_rcu() once before we start,
7672 	 * just to be on the safe side.
7673 	 */
7674 	synchronize_rcu();
7675 
7676 	release_global_block_rsv(info);
7677 
7678 	while(!list_empty(&info->space_info)) {
7679 		space_info = list_entry(info->space_info.next,
7680 					struct btrfs_space_info,
7681 					list);
7682 		if (space_info->bytes_pinned > 0 ||
7683 		    space_info->bytes_reserved > 0 ||
7684 		    space_info->bytes_may_use > 0) {
7685 			WARN_ON(1);
7686 			dump_space_info(space_info, 0, 0);
7687 		}
7688 		list_del(&space_info->list);
7689 		kfree(space_info);
7690 	}
7691 	return 0;
7692 }
7693 
7694 static void __link_block_group(struct btrfs_space_info *space_info,
7695 			       struct btrfs_block_group_cache *cache)
7696 {
7697 	int index = get_block_group_index(cache);
7698 
7699 	down_write(&space_info->groups_sem);
7700 	list_add_tail(&cache->list, &space_info->block_groups[index]);
7701 	up_write(&space_info->groups_sem);
7702 }
7703 
7704 int btrfs_read_block_groups(struct btrfs_root *root)
7705 {
7706 	struct btrfs_path *path;
7707 	int ret;
7708 	struct btrfs_block_group_cache *cache;
7709 	struct btrfs_fs_info *info = root->fs_info;
7710 	struct btrfs_space_info *space_info;
7711 	struct btrfs_key key;
7712 	struct btrfs_key found_key;
7713 	struct extent_buffer *leaf;
7714 	int need_clear = 0;
7715 	u64 cache_gen;
7716 
7717 	root = info->extent_root;
7718 	key.objectid = 0;
7719 	key.offset = 0;
7720 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7721 	path = btrfs_alloc_path();
7722 	if (!path)
7723 		return -ENOMEM;
7724 	path->reada = 1;
7725 
7726 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7727 	if (btrfs_test_opt(root, SPACE_CACHE) &&
7728 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7729 		need_clear = 1;
7730 	if (btrfs_test_opt(root, CLEAR_CACHE))
7731 		need_clear = 1;
7732 
7733 	while (1) {
7734 		ret = find_first_block_group(root, path, &key);
7735 		if (ret > 0)
7736 			break;
7737 		if (ret != 0)
7738 			goto error;
7739 		leaf = path->nodes[0];
7740 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7741 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7742 		if (!cache) {
7743 			ret = -ENOMEM;
7744 			goto error;
7745 		}
7746 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7747 						GFP_NOFS);
7748 		if (!cache->free_space_ctl) {
7749 			kfree(cache);
7750 			ret = -ENOMEM;
7751 			goto error;
7752 		}
7753 
7754 		atomic_set(&cache->count, 1);
7755 		spin_lock_init(&cache->lock);
7756 		cache->fs_info = info;
7757 		INIT_LIST_HEAD(&cache->list);
7758 		INIT_LIST_HEAD(&cache->cluster_list);
7759 
7760 		if (need_clear) {
7761 			/*
7762 			 * When we mount with old space cache, we need to
7763 			 * set BTRFS_DC_CLEAR and set dirty flag.
7764 			 *
7765 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7766 			 *    truncate the old free space cache inode and
7767 			 *    setup a new one.
7768 			 * b) Setting 'dirty flag' makes sure that we flush
7769 			 *    the new space cache info onto disk.
7770 			 */
7771 			cache->disk_cache_state = BTRFS_DC_CLEAR;
7772 			if (btrfs_test_opt(root, SPACE_CACHE))
7773 				cache->dirty = 1;
7774 		}
7775 
7776 		read_extent_buffer(leaf, &cache->item,
7777 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7778 				   sizeof(cache->item));
7779 		memcpy(&cache->key, &found_key, sizeof(found_key));
7780 
7781 		key.objectid = found_key.objectid + found_key.offset;
7782 		btrfs_release_path(path);
7783 		cache->flags = btrfs_block_group_flags(&cache->item);
7784 		cache->sectorsize = root->sectorsize;
7785 
7786 		btrfs_init_free_space_ctl(cache);
7787 
7788 		/*
7789 		 * We need to exclude the super stripes now so that the space
7790 		 * info has super bytes accounted for, otherwise we'll think
7791 		 * we have more space than we actually do.
7792 		 */
7793 		exclude_super_stripes(root, cache);
7794 
7795 		/*
7796 		 * check for two cases, either we are full, and therefore
7797 		 * don't need to bother with the caching work since we won't
7798 		 * find any space, or we are empty, and we can just add all
7799 		 * the space in and be done with it.  This saves us _alot_ of
7800 		 * time, particularly in the full case.
7801 		 */
7802 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7803 			cache->last_byte_to_unpin = (u64)-1;
7804 			cache->cached = BTRFS_CACHE_FINISHED;
7805 			free_excluded_extents(root, cache);
7806 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7807 			cache->last_byte_to_unpin = (u64)-1;
7808 			cache->cached = BTRFS_CACHE_FINISHED;
7809 			add_new_free_space(cache, root->fs_info,
7810 					   found_key.objectid,
7811 					   found_key.objectid +
7812 					   found_key.offset);
7813 			free_excluded_extents(root, cache);
7814 		}
7815 
7816 		ret = update_space_info(info, cache->flags, found_key.offset,
7817 					btrfs_block_group_used(&cache->item),
7818 					&space_info);
7819 		BUG_ON(ret); /* -ENOMEM */
7820 		cache->space_info = space_info;
7821 		spin_lock(&cache->space_info->lock);
7822 		cache->space_info->bytes_readonly += cache->bytes_super;
7823 		spin_unlock(&cache->space_info->lock);
7824 
7825 		__link_block_group(space_info, cache);
7826 
7827 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7828 		BUG_ON(ret); /* Logic error */
7829 
7830 		set_avail_alloc_bits(root->fs_info, cache->flags);
7831 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7832 			set_block_group_ro(cache, 1);
7833 	}
7834 
7835 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7836 		if (!(get_alloc_profile(root, space_info->flags) &
7837 		      (BTRFS_BLOCK_GROUP_RAID10 |
7838 		       BTRFS_BLOCK_GROUP_RAID1 |
7839 		       BTRFS_BLOCK_GROUP_DUP)))
7840 			continue;
7841 		/*
7842 		 * avoid allocating from un-mirrored block group if there are
7843 		 * mirrored block groups.
7844 		 */
7845 		list_for_each_entry(cache, &space_info->block_groups[3], list)
7846 			set_block_group_ro(cache, 1);
7847 		list_for_each_entry(cache, &space_info->block_groups[4], list)
7848 			set_block_group_ro(cache, 1);
7849 	}
7850 
7851 	init_global_block_rsv(info);
7852 	ret = 0;
7853 error:
7854 	btrfs_free_path(path);
7855 	return ret;
7856 }
7857 
7858 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
7859 				       struct btrfs_root *root)
7860 {
7861 	struct btrfs_block_group_cache *block_group, *tmp;
7862 	struct btrfs_root *extent_root = root->fs_info->extent_root;
7863 	struct btrfs_block_group_item item;
7864 	struct btrfs_key key;
7865 	int ret = 0;
7866 
7867 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
7868 				 new_bg_list) {
7869 		list_del_init(&block_group->new_bg_list);
7870 
7871 		if (ret)
7872 			continue;
7873 
7874 		spin_lock(&block_group->lock);
7875 		memcpy(&item, &block_group->item, sizeof(item));
7876 		memcpy(&key, &block_group->key, sizeof(key));
7877 		spin_unlock(&block_group->lock);
7878 
7879 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
7880 					sizeof(item));
7881 		if (ret)
7882 			btrfs_abort_transaction(trans, extent_root, ret);
7883 	}
7884 }
7885 
7886 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7887 			   struct btrfs_root *root, u64 bytes_used,
7888 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7889 			   u64 size)
7890 {
7891 	int ret;
7892 	struct btrfs_root *extent_root;
7893 	struct btrfs_block_group_cache *cache;
7894 
7895 	extent_root = root->fs_info->extent_root;
7896 
7897 	root->fs_info->last_trans_log_full_commit = trans->transid;
7898 
7899 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7900 	if (!cache)
7901 		return -ENOMEM;
7902 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7903 					GFP_NOFS);
7904 	if (!cache->free_space_ctl) {
7905 		kfree(cache);
7906 		return -ENOMEM;
7907 	}
7908 
7909 	cache->key.objectid = chunk_offset;
7910 	cache->key.offset = size;
7911 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7912 	cache->sectorsize = root->sectorsize;
7913 	cache->fs_info = root->fs_info;
7914 
7915 	atomic_set(&cache->count, 1);
7916 	spin_lock_init(&cache->lock);
7917 	INIT_LIST_HEAD(&cache->list);
7918 	INIT_LIST_HEAD(&cache->cluster_list);
7919 	INIT_LIST_HEAD(&cache->new_bg_list);
7920 
7921 	btrfs_init_free_space_ctl(cache);
7922 
7923 	btrfs_set_block_group_used(&cache->item, bytes_used);
7924 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7925 	cache->flags = type;
7926 	btrfs_set_block_group_flags(&cache->item, type);
7927 
7928 	cache->last_byte_to_unpin = (u64)-1;
7929 	cache->cached = BTRFS_CACHE_FINISHED;
7930 	exclude_super_stripes(root, cache);
7931 
7932 	add_new_free_space(cache, root->fs_info, chunk_offset,
7933 			   chunk_offset + size);
7934 
7935 	free_excluded_extents(root, cache);
7936 
7937 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7938 				&cache->space_info);
7939 	BUG_ON(ret); /* -ENOMEM */
7940 	update_global_block_rsv(root->fs_info);
7941 
7942 	spin_lock(&cache->space_info->lock);
7943 	cache->space_info->bytes_readonly += cache->bytes_super;
7944 	spin_unlock(&cache->space_info->lock);
7945 
7946 	__link_block_group(cache->space_info, cache);
7947 
7948 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7949 	BUG_ON(ret); /* Logic error */
7950 
7951 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
7952 
7953 	set_avail_alloc_bits(extent_root->fs_info, type);
7954 
7955 	return 0;
7956 }
7957 
7958 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7959 {
7960 	u64 extra_flags = chunk_to_extended(flags) &
7961 				BTRFS_EXTENDED_PROFILE_MASK;
7962 
7963 	if (flags & BTRFS_BLOCK_GROUP_DATA)
7964 		fs_info->avail_data_alloc_bits &= ~extra_flags;
7965 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
7966 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7967 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7968 		fs_info->avail_system_alloc_bits &= ~extra_flags;
7969 }
7970 
7971 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7972 			     struct btrfs_root *root, u64 group_start)
7973 {
7974 	struct btrfs_path *path;
7975 	struct btrfs_block_group_cache *block_group;
7976 	struct btrfs_free_cluster *cluster;
7977 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7978 	struct btrfs_key key;
7979 	struct inode *inode;
7980 	int ret;
7981 	int index;
7982 	int factor;
7983 
7984 	root = root->fs_info->extent_root;
7985 
7986 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7987 	BUG_ON(!block_group);
7988 	BUG_ON(!block_group->ro);
7989 
7990 	/*
7991 	 * Free the reserved super bytes from this block group before
7992 	 * remove it.
7993 	 */
7994 	free_excluded_extents(root, block_group);
7995 
7996 	memcpy(&key, &block_group->key, sizeof(key));
7997 	index = get_block_group_index(block_group);
7998 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7999 				  BTRFS_BLOCK_GROUP_RAID1 |
8000 				  BTRFS_BLOCK_GROUP_RAID10))
8001 		factor = 2;
8002 	else
8003 		factor = 1;
8004 
8005 	/* make sure this block group isn't part of an allocation cluster */
8006 	cluster = &root->fs_info->data_alloc_cluster;
8007 	spin_lock(&cluster->refill_lock);
8008 	btrfs_return_cluster_to_free_space(block_group, cluster);
8009 	spin_unlock(&cluster->refill_lock);
8010 
8011 	/*
8012 	 * make sure this block group isn't part of a metadata
8013 	 * allocation cluster
8014 	 */
8015 	cluster = &root->fs_info->meta_alloc_cluster;
8016 	spin_lock(&cluster->refill_lock);
8017 	btrfs_return_cluster_to_free_space(block_group, cluster);
8018 	spin_unlock(&cluster->refill_lock);
8019 
8020 	path = btrfs_alloc_path();
8021 	if (!path) {
8022 		ret = -ENOMEM;
8023 		goto out;
8024 	}
8025 
8026 	inode = lookup_free_space_inode(tree_root, block_group, path);
8027 	if (!IS_ERR(inode)) {
8028 		ret = btrfs_orphan_add(trans, inode);
8029 		if (ret) {
8030 			btrfs_add_delayed_iput(inode);
8031 			goto out;
8032 		}
8033 		clear_nlink(inode);
8034 		/* One for the block groups ref */
8035 		spin_lock(&block_group->lock);
8036 		if (block_group->iref) {
8037 			block_group->iref = 0;
8038 			block_group->inode = NULL;
8039 			spin_unlock(&block_group->lock);
8040 			iput(inode);
8041 		} else {
8042 			spin_unlock(&block_group->lock);
8043 		}
8044 		/* One for our lookup ref */
8045 		btrfs_add_delayed_iput(inode);
8046 	}
8047 
8048 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8049 	key.offset = block_group->key.objectid;
8050 	key.type = 0;
8051 
8052 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8053 	if (ret < 0)
8054 		goto out;
8055 	if (ret > 0)
8056 		btrfs_release_path(path);
8057 	if (ret == 0) {
8058 		ret = btrfs_del_item(trans, tree_root, path);
8059 		if (ret)
8060 			goto out;
8061 		btrfs_release_path(path);
8062 	}
8063 
8064 	spin_lock(&root->fs_info->block_group_cache_lock);
8065 	rb_erase(&block_group->cache_node,
8066 		 &root->fs_info->block_group_cache_tree);
8067 	spin_unlock(&root->fs_info->block_group_cache_lock);
8068 
8069 	down_write(&block_group->space_info->groups_sem);
8070 	/*
8071 	 * we must use list_del_init so people can check to see if they
8072 	 * are still on the list after taking the semaphore
8073 	 */
8074 	list_del_init(&block_group->list);
8075 	if (list_empty(&block_group->space_info->block_groups[index]))
8076 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8077 	up_write(&block_group->space_info->groups_sem);
8078 
8079 	if (block_group->cached == BTRFS_CACHE_STARTED)
8080 		wait_block_group_cache_done(block_group);
8081 
8082 	btrfs_remove_free_space_cache(block_group);
8083 
8084 	spin_lock(&block_group->space_info->lock);
8085 	block_group->space_info->total_bytes -= block_group->key.offset;
8086 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8087 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8088 	spin_unlock(&block_group->space_info->lock);
8089 
8090 	memcpy(&key, &block_group->key, sizeof(key));
8091 
8092 	btrfs_clear_space_info_full(root->fs_info);
8093 
8094 	btrfs_put_block_group(block_group);
8095 	btrfs_put_block_group(block_group);
8096 
8097 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8098 	if (ret > 0)
8099 		ret = -EIO;
8100 	if (ret < 0)
8101 		goto out;
8102 
8103 	ret = btrfs_del_item(trans, root, path);
8104 out:
8105 	btrfs_free_path(path);
8106 	return ret;
8107 }
8108 
8109 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8110 {
8111 	struct btrfs_space_info *space_info;
8112 	struct btrfs_super_block *disk_super;
8113 	u64 features;
8114 	u64 flags;
8115 	int mixed = 0;
8116 	int ret;
8117 
8118 	disk_super = fs_info->super_copy;
8119 	if (!btrfs_super_root(disk_super))
8120 		return 1;
8121 
8122 	features = btrfs_super_incompat_flags(disk_super);
8123 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8124 		mixed = 1;
8125 
8126 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8127 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8128 	if (ret)
8129 		goto out;
8130 
8131 	if (mixed) {
8132 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8133 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8134 	} else {
8135 		flags = BTRFS_BLOCK_GROUP_METADATA;
8136 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8137 		if (ret)
8138 			goto out;
8139 
8140 		flags = BTRFS_BLOCK_GROUP_DATA;
8141 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8142 	}
8143 out:
8144 	return ret;
8145 }
8146 
8147 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8148 {
8149 	return unpin_extent_range(root, start, end);
8150 }
8151 
8152 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8153 			       u64 num_bytes, u64 *actual_bytes)
8154 {
8155 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8156 }
8157 
8158 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8159 {
8160 	struct btrfs_fs_info *fs_info = root->fs_info;
8161 	struct btrfs_block_group_cache *cache = NULL;
8162 	u64 group_trimmed;
8163 	u64 start;
8164 	u64 end;
8165 	u64 trimmed = 0;
8166 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8167 	int ret = 0;
8168 
8169 	/*
8170 	 * try to trim all FS space, our block group may start from non-zero.
8171 	 */
8172 	if (range->len == total_bytes)
8173 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8174 	else
8175 		cache = btrfs_lookup_block_group(fs_info, range->start);
8176 
8177 	while (cache) {
8178 		if (cache->key.objectid >= (range->start + range->len)) {
8179 			btrfs_put_block_group(cache);
8180 			break;
8181 		}
8182 
8183 		start = max(range->start, cache->key.objectid);
8184 		end = min(range->start + range->len,
8185 				cache->key.objectid + cache->key.offset);
8186 
8187 		if (end - start >= range->minlen) {
8188 			if (!block_group_cache_done(cache)) {
8189 				ret = cache_block_group(cache, NULL, root, 0);
8190 				if (!ret)
8191 					wait_block_group_cache_done(cache);
8192 			}
8193 			ret = btrfs_trim_block_group(cache,
8194 						     &group_trimmed,
8195 						     start,
8196 						     end,
8197 						     range->minlen);
8198 
8199 			trimmed += group_trimmed;
8200 			if (ret) {
8201 				btrfs_put_block_group(cache);
8202 				break;
8203 			}
8204 		}
8205 
8206 		cache = next_block_group(fs_info->tree_root, cache);
8207 	}
8208 
8209 	range->len = trimmed;
8210 	return ret;
8211 }
8212