1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include "compat.h" 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 38 #undef SCRAMBLE_DELAYED_REFS 39 40 /* 41 * control flags for do_chunk_alloc's force field 42 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 43 * if we really need one. 44 * 45 * CHUNK_ALLOC_LIMITED means to only try and allocate one 46 * if we have very few chunks already allocated. This is 47 * used as part of the clustering code to help make sure 48 * we have a good pool of storage to cluster in, without 49 * filling the FS with empty chunks 50 * 51 * CHUNK_ALLOC_FORCE means it must try to allocate one 52 * 53 */ 54 enum { 55 CHUNK_ALLOC_NO_FORCE = 0, 56 CHUNK_ALLOC_LIMITED = 1, 57 CHUNK_ALLOC_FORCE = 2, 58 }; 59 60 /* 61 * Control how reservations are dealt with. 62 * 63 * RESERVE_FREE - freeing a reservation. 64 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 65 * ENOSPC accounting 66 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 67 * bytes_may_use as the ENOSPC accounting is done elsewhere 68 */ 69 enum { 70 RESERVE_FREE = 0, 71 RESERVE_ALLOC = 1, 72 RESERVE_ALLOC_NO_ACCOUNT = 2, 73 }; 74 75 static int update_block_group(struct btrfs_trans_handle *trans, 76 struct btrfs_root *root, 77 u64 bytenr, u64 num_bytes, int alloc); 78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 79 struct btrfs_root *root, 80 u64 bytenr, u64 num_bytes, u64 parent, 81 u64 root_objectid, u64 owner_objectid, 82 u64 owner_offset, int refs_to_drop, 83 struct btrfs_delayed_extent_op *extra_op); 84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 85 struct extent_buffer *leaf, 86 struct btrfs_extent_item *ei); 87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 88 struct btrfs_root *root, 89 u64 parent, u64 root_objectid, 90 u64 flags, u64 owner, u64 offset, 91 struct btrfs_key *ins, int ref_mod); 92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 93 struct btrfs_root *root, 94 u64 parent, u64 root_objectid, 95 u64 flags, struct btrfs_disk_key *key, 96 int level, struct btrfs_key *ins); 97 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 98 struct btrfs_root *extent_root, u64 flags, 99 int force); 100 static int find_next_key(struct btrfs_path *path, int level, 101 struct btrfs_key *key); 102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 103 int dump_block_groups); 104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 105 u64 num_bytes, int reserve); 106 107 static noinline int 108 block_group_cache_done(struct btrfs_block_group_cache *cache) 109 { 110 smp_mb(); 111 return cache->cached == BTRFS_CACHE_FINISHED; 112 } 113 114 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 115 { 116 return (cache->flags & bits) == bits; 117 } 118 119 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 120 { 121 atomic_inc(&cache->count); 122 } 123 124 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 125 { 126 if (atomic_dec_and_test(&cache->count)) { 127 WARN_ON(cache->pinned > 0); 128 WARN_ON(cache->reserved > 0); 129 kfree(cache->free_space_ctl); 130 kfree(cache); 131 } 132 } 133 134 /* 135 * this adds the block group to the fs_info rb tree for the block group 136 * cache 137 */ 138 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 139 struct btrfs_block_group_cache *block_group) 140 { 141 struct rb_node **p; 142 struct rb_node *parent = NULL; 143 struct btrfs_block_group_cache *cache; 144 145 spin_lock(&info->block_group_cache_lock); 146 p = &info->block_group_cache_tree.rb_node; 147 148 while (*p) { 149 parent = *p; 150 cache = rb_entry(parent, struct btrfs_block_group_cache, 151 cache_node); 152 if (block_group->key.objectid < cache->key.objectid) { 153 p = &(*p)->rb_left; 154 } else if (block_group->key.objectid > cache->key.objectid) { 155 p = &(*p)->rb_right; 156 } else { 157 spin_unlock(&info->block_group_cache_lock); 158 return -EEXIST; 159 } 160 } 161 162 rb_link_node(&block_group->cache_node, parent, p); 163 rb_insert_color(&block_group->cache_node, 164 &info->block_group_cache_tree); 165 spin_unlock(&info->block_group_cache_lock); 166 167 return 0; 168 } 169 170 /* 171 * This will return the block group at or after bytenr if contains is 0, else 172 * it will return the block group that contains the bytenr 173 */ 174 static struct btrfs_block_group_cache * 175 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 176 int contains) 177 { 178 struct btrfs_block_group_cache *cache, *ret = NULL; 179 struct rb_node *n; 180 u64 end, start; 181 182 spin_lock(&info->block_group_cache_lock); 183 n = info->block_group_cache_tree.rb_node; 184 185 while (n) { 186 cache = rb_entry(n, struct btrfs_block_group_cache, 187 cache_node); 188 end = cache->key.objectid + cache->key.offset - 1; 189 start = cache->key.objectid; 190 191 if (bytenr < start) { 192 if (!contains && (!ret || start < ret->key.objectid)) 193 ret = cache; 194 n = n->rb_left; 195 } else if (bytenr > start) { 196 if (contains && bytenr <= end) { 197 ret = cache; 198 break; 199 } 200 n = n->rb_right; 201 } else { 202 ret = cache; 203 break; 204 } 205 } 206 if (ret) 207 btrfs_get_block_group(ret); 208 spin_unlock(&info->block_group_cache_lock); 209 210 return ret; 211 } 212 213 static int add_excluded_extent(struct btrfs_root *root, 214 u64 start, u64 num_bytes) 215 { 216 u64 end = start + num_bytes - 1; 217 set_extent_bits(&root->fs_info->freed_extents[0], 218 start, end, EXTENT_UPTODATE, GFP_NOFS); 219 set_extent_bits(&root->fs_info->freed_extents[1], 220 start, end, EXTENT_UPTODATE, GFP_NOFS); 221 return 0; 222 } 223 224 static void free_excluded_extents(struct btrfs_root *root, 225 struct btrfs_block_group_cache *cache) 226 { 227 u64 start, end; 228 229 start = cache->key.objectid; 230 end = start + cache->key.offset - 1; 231 232 clear_extent_bits(&root->fs_info->freed_extents[0], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 clear_extent_bits(&root->fs_info->freed_extents[1], 235 start, end, EXTENT_UPTODATE, GFP_NOFS); 236 } 237 238 static int exclude_super_stripes(struct btrfs_root *root, 239 struct btrfs_block_group_cache *cache) 240 { 241 u64 bytenr; 242 u64 *logical; 243 int stripe_len; 244 int i, nr, ret; 245 246 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 247 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 248 cache->bytes_super += stripe_len; 249 ret = add_excluded_extent(root, cache->key.objectid, 250 stripe_len); 251 BUG_ON(ret); /* -ENOMEM */ 252 } 253 254 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 255 bytenr = btrfs_sb_offset(i); 256 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 257 cache->key.objectid, bytenr, 258 0, &logical, &nr, &stripe_len); 259 BUG_ON(ret); /* -ENOMEM */ 260 261 while (nr--) { 262 cache->bytes_super += stripe_len; 263 ret = add_excluded_extent(root, logical[nr], 264 stripe_len); 265 BUG_ON(ret); /* -ENOMEM */ 266 } 267 268 kfree(logical); 269 } 270 return 0; 271 } 272 273 static struct btrfs_caching_control * 274 get_caching_control(struct btrfs_block_group_cache *cache) 275 { 276 struct btrfs_caching_control *ctl; 277 278 spin_lock(&cache->lock); 279 if (cache->cached != BTRFS_CACHE_STARTED) { 280 spin_unlock(&cache->lock); 281 return NULL; 282 } 283 284 /* We're loading it the fast way, so we don't have a caching_ctl. */ 285 if (!cache->caching_ctl) { 286 spin_unlock(&cache->lock); 287 return NULL; 288 } 289 290 ctl = cache->caching_ctl; 291 atomic_inc(&ctl->count); 292 spin_unlock(&cache->lock); 293 return ctl; 294 } 295 296 static void put_caching_control(struct btrfs_caching_control *ctl) 297 { 298 if (atomic_dec_and_test(&ctl->count)) 299 kfree(ctl); 300 } 301 302 /* 303 * this is only called by cache_block_group, since we could have freed extents 304 * we need to check the pinned_extents for any extents that can't be used yet 305 * since their free space will be released as soon as the transaction commits. 306 */ 307 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 308 struct btrfs_fs_info *info, u64 start, u64 end) 309 { 310 u64 extent_start, extent_end, size, total_added = 0; 311 int ret; 312 313 while (start < end) { 314 ret = find_first_extent_bit(info->pinned_extents, start, 315 &extent_start, &extent_end, 316 EXTENT_DIRTY | EXTENT_UPTODATE, 317 NULL); 318 if (ret) 319 break; 320 321 if (extent_start <= start) { 322 start = extent_end + 1; 323 } else if (extent_start > start && extent_start < end) { 324 size = extent_start - start; 325 total_added += size; 326 ret = btrfs_add_free_space(block_group, start, 327 size); 328 BUG_ON(ret); /* -ENOMEM or logic error */ 329 start = extent_end + 1; 330 } else { 331 break; 332 } 333 } 334 335 if (start < end) { 336 size = end - start; 337 total_added += size; 338 ret = btrfs_add_free_space(block_group, start, size); 339 BUG_ON(ret); /* -ENOMEM or logic error */ 340 } 341 342 return total_added; 343 } 344 345 static noinline void caching_thread(struct btrfs_work *work) 346 { 347 struct btrfs_block_group_cache *block_group; 348 struct btrfs_fs_info *fs_info; 349 struct btrfs_caching_control *caching_ctl; 350 struct btrfs_root *extent_root; 351 struct btrfs_path *path; 352 struct extent_buffer *leaf; 353 struct btrfs_key key; 354 u64 total_found = 0; 355 u64 last = 0; 356 u32 nritems; 357 int ret = 0; 358 359 caching_ctl = container_of(work, struct btrfs_caching_control, work); 360 block_group = caching_ctl->block_group; 361 fs_info = block_group->fs_info; 362 extent_root = fs_info->extent_root; 363 364 path = btrfs_alloc_path(); 365 if (!path) 366 goto out; 367 368 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 369 370 /* 371 * We don't want to deadlock with somebody trying to allocate a new 372 * extent for the extent root while also trying to search the extent 373 * root to add free space. So we skip locking and search the commit 374 * root, since its read-only 375 */ 376 path->skip_locking = 1; 377 path->search_commit_root = 1; 378 path->reada = 1; 379 380 key.objectid = last; 381 key.offset = 0; 382 key.type = BTRFS_EXTENT_ITEM_KEY; 383 again: 384 mutex_lock(&caching_ctl->mutex); 385 /* need to make sure the commit_root doesn't disappear */ 386 down_read(&fs_info->extent_commit_sem); 387 388 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 389 if (ret < 0) 390 goto err; 391 392 leaf = path->nodes[0]; 393 nritems = btrfs_header_nritems(leaf); 394 395 while (1) { 396 if (btrfs_fs_closing(fs_info) > 1) { 397 last = (u64)-1; 398 break; 399 } 400 401 if (path->slots[0] < nritems) { 402 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 403 } else { 404 ret = find_next_key(path, 0, &key); 405 if (ret) 406 break; 407 408 if (need_resched() || 409 btrfs_next_leaf(extent_root, path)) { 410 caching_ctl->progress = last; 411 btrfs_release_path(path); 412 up_read(&fs_info->extent_commit_sem); 413 mutex_unlock(&caching_ctl->mutex); 414 cond_resched(); 415 goto again; 416 } 417 leaf = path->nodes[0]; 418 nritems = btrfs_header_nritems(leaf); 419 continue; 420 } 421 422 if (key.objectid < block_group->key.objectid) { 423 path->slots[0]++; 424 continue; 425 } 426 427 if (key.objectid >= block_group->key.objectid + 428 block_group->key.offset) 429 break; 430 431 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 432 total_found += add_new_free_space(block_group, 433 fs_info, last, 434 key.objectid); 435 last = key.objectid + key.offset; 436 437 if (total_found > (1024 * 1024 * 2)) { 438 total_found = 0; 439 wake_up(&caching_ctl->wait); 440 } 441 } 442 path->slots[0]++; 443 } 444 ret = 0; 445 446 total_found += add_new_free_space(block_group, fs_info, last, 447 block_group->key.objectid + 448 block_group->key.offset); 449 caching_ctl->progress = (u64)-1; 450 451 spin_lock(&block_group->lock); 452 block_group->caching_ctl = NULL; 453 block_group->cached = BTRFS_CACHE_FINISHED; 454 spin_unlock(&block_group->lock); 455 456 err: 457 btrfs_free_path(path); 458 up_read(&fs_info->extent_commit_sem); 459 460 free_excluded_extents(extent_root, block_group); 461 462 mutex_unlock(&caching_ctl->mutex); 463 out: 464 wake_up(&caching_ctl->wait); 465 466 put_caching_control(caching_ctl); 467 btrfs_put_block_group(block_group); 468 } 469 470 static int cache_block_group(struct btrfs_block_group_cache *cache, 471 struct btrfs_trans_handle *trans, 472 struct btrfs_root *root, 473 int load_cache_only) 474 { 475 DEFINE_WAIT(wait); 476 struct btrfs_fs_info *fs_info = cache->fs_info; 477 struct btrfs_caching_control *caching_ctl; 478 int ret = 0; 479 480 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 481 if (!caching_ctl) 482 return -ENOMEM; 483 484 INIT_LIST_HEAD(&caching_ctl->list); 485 mutex_init(&caching_ctl->mutex); 486 init_waitqueue_head(&caching_ctl->wait); 487 caching_ctl->block_group = cache; 488 caching_ctl->progress = cache->key.objectid; 489 atomic_set(&caching_ctl->count, 1); 490 caching_ctl->work.func = caching_thread; 491 492 spin_lock(&cache->lock); 493 /* 494 * This should be a rare occasion, but this could happen I think in the 495 * case where one thread starts to load the space cache info, and then 496 * some other thread starts a transaction commit which tries to do an 497 * allocation while the other thread is still loading the space cache 498 * info. The previous loop should have kept us from choosing this block 499 * group, but if we've moved to the state where we will wait on caching 500 * block groups we need to first check if we're doing a fast load here, 501 * so we can wait for it to finish, otherwise we could end up allocating 502 * from a block group who's cache gets evicted for one reason or 503 * another. 504 */ 505 while (cache->cached == BTRFS_CACHE_FAST) { 506 struct btrfs_caching_control *ctl; 507 508 ctl = cache->caching_ctl; 509 atomic_inc(&ctl->count); 510 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 511 spin_unlock(&cache->lock); 512 513 schedule(); 514 515 finish_wait(&ctl->wait, &wait); 516 put_caching_control(ctl); 517 spin_lock(&cache->lock); 518 } 519 520 if (cache->cached != BTRFS_CACHE_NO) { 521 spin_unlock(&cache->lock); 522 kfree(caching_ctl); 523 return 0; 524 } 525 WARN_ON(cache->caching_ctl); 526 cache->caching_ctl = caching_ctl; 527 cache->cached = BTRFS_CACHE_FAST; 528 spin_unlock(&cache->lock); 529 530 /* 531 * We can't do the read from on-disk cache during a commit since we need 532 * to have the normal tree locking. Also if we are currently trying to 533 * allocate blocks for the tree root we can't do the fast caching since 534 * we likely hold important locks. 535 */ 536 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 537 ret = load_free_space_cache(fs_info, cache); 538 539 spin_lock(&cache->lock); 540 if (ret == 1) { 541 cache->caching_ctl = NULL; 542 cache->cached = BTRFS_CACHE_FINISHED; 543 cache->last_byte_to_unpin = (u64)-1; 544 } else { 545 if (load_cache_only) { 546 cache->caching_ctl = NULL; 547 cache->cached = BTRFS_CACHE_NO; 548 } else { 549 cache->cached = BTRFS_CACHE_STARTED; 550 } 551 } 552 spin_unlock(&cache->lock); 553 wake_up(&caching_ctl->wait); 554 if (ret == 1) { 555 put_caching_control(caching_ctl); 556 free_excluded_extents(fs_info->extent_root, cache); 557 return 0; 558 } 559 } else { 560 /* 561 * We are not going to do the fast caching, set cached to the 562 * appropriate value and wakeup any waiters. 563 */ 564 spin_lock(&cache->lock); 565 if (load_cache_only) { 566 cache->caching_ctl = NULL; 567 cache->cached = BTRFS_CACHE_NO; 568 } else { 569 cache->cached = BTRFS_CACHE_STARTED; 570 } 571 spin_unlock(&cache->lock); 572 wake_up(&caching_ctl->wait); 573 } 574 575 if (load_cache_only) { 576 put_caching_control(caching_ctl); 577 return 0; 578 } 579 580 down_write(&fs_info->extent_commit_sem); 581 atomic_inc(&caching_ctl->count); 582 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 583 up_write(&fs_info->extent_commit_sem); 584 585 btrfs_get_block_group(cache); 586 587 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 588 589 return ret; 590 } 591 592 /* 593 * return the block group that starts at or after bytenr 594 */ 595 static struct btrfs_block_group_cache * 596 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 597 { 598 struct btrfs_block_group_cache *cache; 599 600 cache = block_group_cache_tree_search(info, bytenr, 0); 601 602 return cache; 603 } 604 605 /* 606 * return the block group that contains the given bytenr 607 */ 608 struct btrfs_block_group_cache *btrfs_lookup_block_group( 609 struct btrfs_fs_info *info, 610 u64 bytenr) 611 { 612 struct btrfs_block_group_cache *cache; 613 614 cache = block_group_cache_tree_search(info, bytenr, 1); 615 616 return cache; 617 } 618 619 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 620 u64 flags) 621 { 622 struct list_head *head = &info->space_info; 623 struct btrfs_space_info *found; 624 625 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 626 627 rcu_read_lock(); 628 list_for_each_entry_rcu(found, head, list) { 629 if (found->flags & flags) { 630 rcu_read_unlock(); 631 return found; 632 } 633 } 634 rcu_read_unlock(); 635 return NULL; 636 } 637 638 /* 639 * after adding space to the filesystem, we need to clear the full flags 640 * on all the space infos. 641 */ 642 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 643 { 644 struct list_head *head = &info->space_info; 645 struct btrfs_space_info *found; 646 647 rcu_read_lock(); 648 list_for_each_entry_rcu(found, head, list) 649 found->full = 0; 650 rcu_read_unlock(); 651 } 652 653 u64 btrfs_find_block_group(struct btrfs_root *root, 654 u64 search_start, u64 search_hint, int owner) 655 { 656 struct btrfs_block_group_cache *cache; 657 u64 used; 658 u64 last = max(search_hint, search_start); 659 u64 group_start = 0; 660 int full_search = 0; 661 int factor = 9; 662 int wrapped = 0; 663 again: 664 while (1) { 665 cache = btrfs_lookup_first_block_group(root->fs_info, last); 666 if (!cache) 667 break; 668 669 spin_lock(&cache->lock); 670 last = cache->key.objectid + cache->key.offset; 671 used = btrfs_block_group_used(&cache->item); 672 673 if ((full_search || !cache->ro) && 674 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 675 if (used + cache->pinned + cache->reserved < 676 div_factor(cache->key.offset, factor)) { 677 group_start = cache->key.objectid; 678 spin_unlock(&cache->lock); 679 btrfs_put_block_group(cache); 680 goto found; 681 } 682 } 683 spin_unlock(&cache->lock); 684 btrfs_put_block_group(cache); 685 cond_resched(); 686 } 687 if (!wrapped) { 688 last = search_start; 689 wrapped = 1; 690 goto again; 691 } 692 if (!full_search && factor < 10) { 693 last = search_start; 694 full_search = 1; 695 factor = 10; 696 goto again; 697 } 698 found: 699 return group_start; 700 } 701 702 /* simple helper to search for an existing extent at a given offset */ 703 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 704 { 705 int ret; 706 struct btrfs_key key; 707 struct btrfs_path *path; 708 709 path = btrfs_alloc_path(); 710 if (!path) 711 return -ENOMEM; 712 713 key.objectid = start; 714 key.offset = len; 715 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 716 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 717 0, 0); 718 btrfs_free_path(path); 719 return ret; 720 } 721 722 /* 723 * helper function to lookup reference count and flags of extent. 724 * 725 * the head node for delayed ref is used to store the sum of all the 726 * reference count modifications queued up in the rbtree. the head 727 * node may also store the extent flags to set. This way you can check 728 * to see what the reference count and extent flags would be if all of 729 * the delayed refs are not processed. 730 */ 731 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 732 struct btrfs_root *root, u64 bytenr, 733 u64 num_bytes, u64 *refs, u64 *flags) 734 { 735 struct btrfs_delayed_ref_head *head; 736 struct btrfs_delayed_ref_root *delayed_refs; 737 struct btrfs_path *path; 738 struct btrfs_extent_item *ei; 739 struct extent_buffer *leaf; 740 struct btrfs_key key; 741 u32 item_size; 742 u64 num_refs; 743 u64 extent_flags; 744 int ret; 745 746 path = btrfs_alloc_path(); 747 if (!path) 748 return -ENOMEM; 749 750 key.objectid = bytenr; 751 key.type = BTRFS_EXTENT_ITEM_KEY; 752 key.offset = num_bytes; 753 if (!trans) { 754 path->skip_locking = 1; 755 path->search_commit_root = 1; 756 } 757 again: 758 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 759 &key, path, 0, 0); 760 if (ret < 0) 761 goto out_free; 762 763 if (ret == 0) { 764 leaf = path->nodes[0]; 765 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 766 if (item_size >= sizeof(*ei)) { 767 ei = btrfs_item_ptr(leaf, path->slots[0], 768 struct btrfs_extent_item); 769 num_refs = btrfs_extent_refs(leaf, ei); 770 extent_flags = btrfs_extent_flags(leaf, ei); 771 } else { 772 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 773 struct btrfs_extent_item_v0 *ei0; 774 BUG_ON(item_size != sizeof(*ei0)); 775 ei0 = btrfs_item_ptr(leaf, path->slots[0], 776 struct btrfs_extent_item_v0); 777 num_refs = btrfs_extent_refs_v0(leaf, ei0); 778 /* FIXME: this isn't correct for data */ 779 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 780 #else 781 BUG(); 782 #endif 783 } 784 BUG_ON(num_refs == 0); 785 } else { 786 num_refs = 0; 787 extent_flags = 0; 788 ret = 0; 789 } 790 791 if (!trans) 792 goto out; 793 794 delayed_refs = &trans->transaction->delayed_refs; 795 spin_lock(&delayed_refs->lock); 796 head = btrfs_find_delayed_ref_head(trans, bytenr); 797 if (head) { 798 if (!mutex_trylock(&head->mutex)) { 799 atomic_inc(&head->node.refs); 800 spin_unlock(&delayed_refs->lock); 801 802 btrfs_release_path(path); 803 804 /* 805 * Mutex was contended, block until it's released and try 806 * again 807 */ 808 mutex_lock(&head->mutex); 809 mutex_unlock(&head->mutex); 810 btrfs_put_delayed_ref(&head->node); 811 goto again; 812 } 813 if (head->extent_op && head->extent_op->update_flags) 814 extent_flags |= head->extent_op->flags_to_set; 815 else 816 BUG_ON(num_refs == 0); 817 818 num_refs += head->node.ref_mod; 819 mutex_unlock(&head->mutex); 820 } 821 spin_unlock(&delayed_refs->lock); 822 out: 823 WARN_ON(num_refs == 0); 824 if (refs) 825 *refs = num_refs; 826 if (flags) 827 *flags = extent_flags; 828 out_free: 829 btrfs_free_path(path); 830 return ret; 831 } 832 833 /* 834 * Back reference rules. Back refs have three main goals: 835 * 836 * 1) differentiate between all holders of references to an extent so that 837 * when a reference is dropped we can make sure it was a valid reference 838 * before freeing the extent. 839 * 840 * 2) Provide enough information to quickly find the holders of an extent 841 * if we notice a given block is corrupted or bad. 842 * 843 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 844 * maintenance. This is actually the same as #2, but with a slightly 845 * different use case. 846 * 847 * There are two kinds of back refs. The implicit back refs is optimized 848 * for pointers in non-shared tree blocks. For a given pointer in a block, 849 * back refs of this kind provide information about the block's owner tree 850 * and the pointer's key. These information allow us to find the block by 851 * b-tree searching. The full back refs is for pointers in tree blocks not 852 * referenced by their owner trees. The location of tree block is recorded 853 * in the back refs. Actually the full back refs is generic, and can be 854 * used in all cases the implicit back refs is used. The major shortcoming 855 * of the full back refs is its overhead. Every time a tree block gets 856 * COWed, we have to update back refs entry for all pointers in it. 857 * 858 * For a newly allocated tree block, we use implicit back refs for 859 * pointers in it. This means most tree related operations only involve 860 * implicit back refs. For a tree block created in old transaction, the 861 * only way to drop a reference to it is COW it. So we can detect the 862 * event that tree block loses its owner tree's reference and do the 863 * back refs conversion. 864 * 865 * When a tree block is COW'd through a tree, there are four cases: 866 * 867 * The reference count of the block is one and the tree is the block's 868 * owner tree. Nothing to do in this case. 869 * 870 * The reference count of the block is one and the tree is not the 871 * block's owner tree. In this case, full back refs is used for pointers 872 * in the block. Remove these full back refs, add implicit back refs for 873 * every pointers in the new block. 874 * 875 * The reference count of the block is greater than one and the tree is 876 * the block's owner tree. In this case, implicit back refs is used for 877 * pointers in the block. Add full back refs for every pointers in the 878 * block, increase lower level extents' reference counts. The original 879 * implicit back refs are entailed to the new block. 880 * 881 * The reference count of the block is greater than one and the tree is 882 * not the block's owner tree. Add implicit back refs for every pointer in 883 * the new block, increase lower level extents' reference count. 884 * 885 * Back Reference Key composing: 886 * 887 * The key objectid corresponds to the first byte in the extent, 888 * The key type is used to differentiate between types of back refs. 889 * There are different meanings of the key offset for different types 890 * of back refs. 891 * 892 * File extents can be referenced by: 893 * 894 * - multiple snapshots, subvolumes, or different generations in one subvol 895 * - different files inside a single subvolume 896 * - different offsets inside a file (bookend extents in file.c) 897 * 898 * The extent ref structure for the implicit back refs has fields for: 899 * 900 * - Objectid of the subvolume root 901 * - objectid of the file holding the reference 902 * - original offset in the file 903 * - how many bookend extents 904 * 905 * The key offset for the implicit back refs is hash of the first 906 * three fields. 907 * 908 * The extent ref structure for the full back refs has field for: 909 * 910 * - number of pointers in the tree leaf 911 * 912 * The key offset for the implicit back refs is the first byte of 913 * the tree leaf 914 * 915 * When a file extent is allocated, The implicit back refs is used. 916 * the fields are filled in: 917 * 918 * (root_key.objectid, inode objectid, offset in file, 1) 919 * 920 * When a file extent is removed file truncation, we find the 921 * corresponding implicit back refs and check the following fields: 922 * 923 * (btrfs_header_owner(leaf), inode objectid, offset in file) 924 * 925 * Btree extents can be referenced by: 926 * 927 * - Different subvolumes 928 * 929 * Both the implicit back refs and the full back refs for tree blocks 930 * only consist of key. The key offset for the implicit back refs is 931 * objectid of block's owner tree. The key offset for the full back refs 932 * is the first byte of parent block. 933 * 934 * When implicit back refs is used, information about the lowest key and 935 * level of the tree block are required. These information are stored in 936 * tree block info structure. 937 */ 938 939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 940 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 941 struct btrfs_root *root, 942 struct btrfs_path *path, 943 u64 owner, u32 extra_size) 944 { 945 struct btrfs_extent_item *item; 946 struct btrfs_extent_item_v0 *ei0; 947 struct btrfs_extent_ref_v0 *ref0; 948 struct btrfs_tree_block_info *bi; 949 struct extent_buffer *leaf; 950 struct btrfs_key key; 951 struct btrfs_key found_key; 952 u32 new_size = sizeof(*item); 953 u64 refs; 954 int ret; 955 956 leaf = path->nodes[0]; 957 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 958 959 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 960 ei0 = btrfs_item_ptr(leaf, path->slots[0], 961 struct btrfs_extent_item_v0); 962 refs = btrfs_extent_refs_v0(leaf, ei0); 963 964 if (owner == (u64)-1) { 965 while (1) { 966 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 967 ret = btrfs_next_leaf(root, path); 968 if (ret < 0) 969 return ret; 970 BUG_ON(ret > 0); /* Corruption */ 971 leaf = path->nodes[0]; 972 } 973 btrfs_item_key_to_cpu(leaf, &found_key, 974 path->slots[0]); 975 BUG_ON(key.objectid != found_key.objectid); 976 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 977 path->slots[0]++; 978 continue; 979 } 980 ref0 = btrfs_item_ptr(leaf, path->slots[0], 981 struct btrfs_extent_ref_v0); 982 owner = btrfs_ref_objectid_v0(leaf, ref0); 983 break; 984 } 985 } 986 btrfs_release_path(path); 987 988 if (owner < BTRFS_FIRST_FREE_OBJECTID) 989 new_size += sizeof(*bi); 990 991 new_size -= sizeof(*ei0); 992 ret = btrfs_search_slot(trans, root, &key, path, 993 new_size + extra_size, 1); 994 if (ret < 0) 995 return ret; 996 BUG_ON(ret); /* Corruption */ 997 998 btrfs_extend_item(trans, root, path, new_size); 999 1000 leaf = path->nodes[0]; 1001 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1002 btrfs_set_extent_refs(leaf, item, refs); 1003 /* FIXME: get real generation */ 1004 btrfs_set_extent_generation(leaf, item, 0); 1005 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1006 btrfs_set_extent_flags(leaf, item, 1007 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1008 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1009 bi = (struct btrfs_tree_block_info *)(item + 1); 1010 /* FIXME: get first key of the block */ 1011 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1012 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1013 } else { 1014 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1015 } 1016 btrfs_mark_buffer_dirty(leaf); 1017 return 0; 1018 } 1019 #endif 1020 1021 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1022 { 1023 u32 high_crc = ~(u32)0; 1024 u32 low_crc = ~(u32)0; 1025 __le64 lenum; 1026 1027 lenum = cpu_to_le64(root_objectid); 1028 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1029 lenum = cpu_to_le64(owner); 1030 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1031 lenum = cpu_to_le64(offset); 1032 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1033 1034 return ((u64)high_crc << 31) ^ (u64)low_crc; 1035 } 1036 1037 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1038 struct btrfs_extent_data_ref *ref) 1039 { 1040 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1041 btrfs_extent_data_ref_objectid(leaf, ref), 1042 btrfs_extent_data_ref_offset(leaf, ref)); 1043 } 1044 1045 static int match_extent_data_ref(struct extent_buffer *leaf, 1046 struct btrfs_extent_data_ref *ref, 1047 u64 root_objectid, u64 owner, u64 offset) 1048 { 1049 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1050 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1051 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1052 return 0; 1053 return 1; 1054 } 1055 1056 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1057 struct btrfs_root *root, 1058 struct btrfs_path *path, 1059 u64 bytenr, u64 parent, 1060 u64 root_objectid, 1061 u64 owner, u64 offset) 1062 { 1063 struct btrfs_key key; 1064 struct btrfs_extent_data_ref *ref; 1065 struct extent_buffer *leaf; 1066 u32 nritems; 1067 int ret; 1068 int recow; 1069 int err = -ENOENT; 1070 1071 key.objectid = bytenr; 1072 if (parent) { 1073 key.type = BTRFS_SHARED_DATA_REF_KEY; 1074 key.offset = parent; 1075 } else { 1076 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1077 key.offset = hash_extent_data_ref(root_objectid, 1078 owner, offset); 1079 } 1080 again: 1081 recow = 0; 1082 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1083 if (ret < 0) { 1084 err = ret; 1085 goto fail; 1086 } 1087 1088 if (parent) { 1089 if (!ret) 1090 return 0; 1091 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1092 key.type = BTRFS_EXTENT_REF_V0_KEY; 1093 btrfs_release_path(path); 1094 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1095 if (ret < 0) { 1096 err = ret; 1097 goto fail; 1098 } 1099 if (!ret) 1100 return 0; 1101 #endif 1102 goto fail; 1103 } 1104 1105 leaf = path->nodes[0]; 1106 nritems = btrfs_header_nritems(leaf); 1107 while (1) { 1108 if (path->slots[0] >= nritems) { 1109 ret = btrfs_next_leaf(root, path); 1110 if (ret < 0) 1111 err = ret; 1112 if (ret) 1113 goto fail; 1114 1115 leaf = path->nodes[0]; 1116 nritems = btrfs_header_nritems(leaf); 1117 recow = 1; 1118 } 1119 1120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1121 if (key.objectid != bytenr || 1122 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1123 goto fail; 1124 1125 ref = btrfs_item_ptr(leaf, path->slots[0], 1126 struct btrfs_extent_data_ref); 1127 1128 if (match_extent_data_ref(leaf, ref, root_objectid, 1129 owner, offset)) { 1130 if (recow) { 1131 btrfs_release_path(path); 1132 goto again; 1133 } 1134 err = 0; 1135 break; 1136 } 1137 path->slots[0]++; 1138 } 1139 fail: 1140 return err; 1141 } 1142 1143 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1144 struct btrfs_root *root, 1145 struct btrfs_path *path, 1146 u64 bytenr, u64 parent, 1147 u64 root_objectid, u64 owner, 1148 u64 offset, int refs_to_add) 1149 { 1150 struct btrfs_key key; 1151 struct extent_buffer *leaf; 1152 u32 size; 1153 u32 num_refs; 1154 int ret; 1155 1156 key.objectid = bytenr; 1157 if (parent) { 1158 key.type = BTRFS_SHARED_DATA_REF_KEY; 1159 key.offset = parent; 1160 size = sizeof(struct btrfs_shared_data_ref); 1161 } else { 1162 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1163 key.offset = hash_extent_data_ref(root_objectid, 1164 owner, offset); 1165 size = sizeof(struct btrfs_extent_data_ref); 1166 } 1167 1168 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1169 if (ret && ret != -EEXIST) 1170 goto fail; 1171 1172 leaf = path->nodes[0]; 1173 if (parent) { 1174 struct btrfs_shared_data_ref *ref; 1175 ref = btrfs_item_ptr(leaf, path->slots[0], 1176 struct btrfs_shared_data_ref); 1177 if (ret == 0) { 1178 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1179 } else { 1180 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1181 num_refs += refs_to_add; 1182 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1183 } 1184 } else { 1185 struct btrfs_extent_data_ref *ref; 1186 while (ret == -EEXIST) { 1187 ref = btrfs_item_ptr(leaf, path->slots[0], 1188 struct btrfs_extent_data_ref); 1189 if (match_extent_data_ref(leaf, ref, root_objectid, 1190 owner, offset)) 1191 break; 1192 btrfs_release_path(path); 1193 key.offset++; 1194 ret = btrfs_insert_empty_item(trans, root, path, &key, 1195 size); 1196 if (ret && ret != -EEXIST) 1197 goto fail; 1198 1199 leaf = path->nodes[0]; 1200 } 1201 ref = btrfs_item_ptr(leaf, path->slots[0], 1202 struct btrfs_extent_data_ref); 1203 if (ret == 0) { 1204 btrfs_set_extent_data_ref_root(leaf, ref, 1205 root_objectid); 1206 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1207 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1208 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1209 } else { 1210 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1211 num_refs += refs_to_add; 1212 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1213 } 1214 } 1215 btrfs_mark_buffer_dirty(leaf); 1216 ret = 0; 1217 fail: 1218 btrfs_release_path(path); 1219 return ret; 1220 } 1221 1222 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1223 struct btrfs_root *root, 1224 struct btrfs_path *path, 1225 int refs_to_drop) 1226 { 1227 struct btrfs_key key; 1228 struct btrfs_extent_data_ref *ref1 = NULL; 1229 struct btrfs_shared_data_ref *ref2 = NULL; 1230 struct extent_buffer *leaf; 1231 u32 num_refs = 0; 1232 int ret = 0; 1233 1234 leaf = path->nodes[0]; 1235 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1236 1237 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1238 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1239 struct btrfs_extent_data_ref); 1240 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1241 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1242 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1243 struct btrfs_shared_data_ref); 1244 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1246 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1247 struct btrfs_extent_ref_v0 *ref0; 1248 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1249 struct btrfs_extent_ref_v0); 1250 num_refs = btrfs_ref_count_v0(leaf, ref0); 1251 #endif 1252 } else { 1253 BUG(); 1254 } 1255 1256 BUG_ON(num_refs < refs_to_drop); 1257 num_refs -= refs_to_drop; 1258 1259 if (num_refs == 0) { 1260 ret = btrfs_del_item(trans, root, path); 1261 } else { 1262 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1263 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1264 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1265 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1267 else { 1268 struct btrfs_extent_ref_v0 *ref0; 1269 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1270 struct btrfs_extent_ref_v0); 1271 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1272 } 1273 #endif 1274 btrfs_mark_buffer_dirty(leaf); 1275 } 1276 return ret; 1277 } 1278 1279 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1280 struct btrfs_path *path, 1281 struct btrfs_extent_inline_ref *iref) 1282 { 1283 struct btrfs_key key; 1284 struct extent_buffer *leaf; 1285 struct btrfs_extent_data_ref *ref1; 1286 struct btrfs_shared_data_ref *ref2; 1287 u32 num_refs = 0; 1288 1289 leaf = path->nodes[0]; 1290 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1291 if (iref) { 1292 if (btrfs_extent_inline_ref_type(leaf, iref) == 1293 BTRFS_EXTENT_DATA_REF_KEY) { 1294 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1295 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1296 } else { 1297 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1298 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1299 } 1300 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1301 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1302 struct btrfs_extent_data_ref); 1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1305 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1306 struct btrfs_shared_data_ref); 1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1308 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1309 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1310 struct btrfs_extent_ref_v0 *ref0; 1311 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1312 struct btrfs_extent_ref_v0); 1313 num_refs = btrfs_ref_count_v0(leaf, ref0); 1314 #endif 1315 } else { 1316 WARN_ON(1); 1317 } 1318 return num_refs; 1319 } 1320 1321 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1322 struct btrfs_root *root, 1323 struct btrfs_path *path, 1324 u64 bytenr, u64 parent, 1325 u64 root_objectid) 1326 { 1327 struct btrfs_key key; 1328 int ret; 1329 1330 key.objectid = bytenr; 1331 if (parent) { 1332 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1333 key.offset = parent; 1334 } else { 1335 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1336 key.offset = root_objectid; 1337 } 1338 1339 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1340 if (ret > 0) 1341 ret = -ENOENT; 1342 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1343 if (ret == -ENOENT && parent) { 1344 btrfs_release_path(path); 1345 key.type = BTRFS_EXTENT_REF_V0_KEY; 1346 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1347 if (ret > 0) 1348 ret = -ENOENT; 1349 } 1350 #endif 1351 return ret; 1352 } 1353 1354 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1355 struct btrfs_root *root, 1356 struct btrfs_path *path, 1357 u64 bytenr, u64 parent, 1358 u64 root_objectid) 1359 { 1360 struct btrfs_key key; 1361 int ret; 1362 1363 key.objectid = bytenr; 1364 if (parent) { 1365 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1366 key.offset = parent; 1367 } else { 1368 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1369 key.offset = root_objectid; 1370 } 1371 1372 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1373 btrfs_release_path(path); 1374 return ret; 1375 } 1376 1377 static inline int extent_ref_type(u64 parent, u64 owner) 1378 { 1379 int type; 1380 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1381 if (parent > 0) 1382 type = BTRFS_SHARED_BLOCK_REF_KEY; 1383 else 1384 type = BTRFS_TREE_BLOCK_REF_KEY; 1385 } else { 1386 if (parent > 0) 1387 type = BTRFS_SHARED_DATA_REF_KEY; 1388 else 1389 type = BTRFS_EXTENT_DATA_REF_KEY; 1390 } 1391 return type; 1392 } 1393 1394 static int find_next_key(struct btrfs_path *path, int level, 1395 struct btrfs_key *key) 1396 1397 { 1398 for (; level < BTRFS_MAX_LEVEL; level++) { 1399 if (!path->nodes[level]) 1400 break; 1401 if (path->slots[level] + 1 >= 1402 btrfs_header_nritems(path->nodes[level])) 1403 continue; 1404 if (level == 0) 1405 btrfs_item_key_to_cpu(path->nodes[level], key, 1406 path->slots[level] + 1); 1407 else 1408 btrfs_node_key_to_cpu(path->nodes[level], key, 1409 path->slots[level] + 1); 1410 return 0; 1411 } 1412 return 1; 1413 } 1414 1415 /* 1416 * look for inline back ref. if back ref is found, *ref_ret is set 1417 * to the address of inline back ref, and 0 is returned. 1418 * 1419 * if back ref isn't found, *ref_ret is set to the address where it 1420 * should be inserted, and -ENOENT is returned. 1421 * 1422 * if insert is true and there are too many inline back refs, the path 1423 * points to the extent item, and -EAGAIN is returned. 1424 * 1425 * NOTE: inline back refs are ordered in the same way that back ref 1426 * items in the tree are ordered. 1427 */ 1428 static noinline_for_stack 1429 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1430 struct btrfs_root *root, 1431 struct btrfs_path *path, 1432 struct btrfs_extent_inline_ref **ref_ret, 1433 u64 bytenr, u64 num_bytes, 1434 u64 parent, u64 root_objectid, 1435 u64 owner, u64 offset, int insert) 1436 { 1437 struct btrfs_key key; 1438 struct extent_buffer *leaf; 1439 struct btrfs_extent_item *ei; 1440 struct btrfs_extent_inline_ref *iref; 1441 u64 flags; 1442 u64 item_size; 1443 unsigned long ptr; 1444 unsigned long end; 1445 int extra_size; 1446 int type; 1447 int want; 1448 int ret; 1449 int err = 0; 1450 1451 key.objectid = bytenr; 1452 key.type = BTRFS_EXTENT_ITEM_KEY; 1453 key.offset = num_bytes; 1454 1455 want = extent_ref_type(parent, owner); 1456 if (insert) { 1457 extra_size = btrfs_extent_inline_ref_size(want); 1458 path->keep_locks = 1; 1459 } else 1460 extra_size = -1; 1461 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1462 if (ret < 0) { 1463 err = ret; 1464 goto out; 1465 } 1466 if (ret && !insert) { 1467 err = -ENOENT; 1468 goto out; 1469 } 1470 BUG_ON(ret); /* Corruption */ 1471 1472 leaf = path->nodes[0]; 1473 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1474 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1475 if (item_size < sizeof(*ei)) { 1476 if (!insert) { 1477 err = -ENOENT; 1478 goto out; 1479 } 1480 ret = convert_extent_item_v0(trans, root, path, owner, 1481 extra_size); 1482 if (ret < 0) { 1483 err = ret; 1484 goto out; 1485 } 1486 leaf = path->nodes[0]; 1487 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1488 } 1489 #endif 1490 BUG_ON(item_size < sizeof(*ei)); 1491 1492 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1493 flags = btrfs_extent_flags(leaf, ei); 1494 1495 ptr = (unsigned long)(ei + 1); 1496 end = (unsigned long)ei + item_size; 1497 1498 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1499 ptr += sizeof(struct btrfs_tree_block_info); 1500 BUG_ON(ptr > end); 1501 } else { 1502 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1503 } 1504 1505 err = -ENOENT; 1506 while (1) { 1507 if (ptr >= end) { 1508 WARN_ON(ptr > end); 1509 break; 1510 } 1511 iref = (struct btrfs_extent_inline_ref *)ptr; 1512 type = btrfs_extent_inline_ref_type(leaf, iref); 1513 if (want < type) 1514 break; 1515 if (want > type) { 1516 ptr += btrfs_extent_inline_ref_size(type); 1517 continue; 1518 } 1519 1520 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1521 struct btrfs_extent_data_ref *dref; 1522 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1523 if (match_extent_data_ref(leaf, dref, root_objectid, 1524 owner, offset)) { 1525 err = 0; 1526 break; 1527 } 1528 if (hash_extent_data_ref_item(leaf, dref) < 1529 hash_extent_data_ref(root_objectid, owner, offset)) 1530 break; 1531 } else { 1532 u64 ref_offset; 1533 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1534 if (parent > 0) { 1535 if (parent == ref_offset) { 1536 err = 0; 1537 break; 1538 } 1539 if (ref_offset < parent) 1540 break; 1541 } else { 1542 if (root_objectid == ref_offset) { 1543 err = 0; 1544 break; 1545 } 1546 if (ref_offset < root_objectid) 1547 break; 1548 } 1549 } 1550 ptr += btrfs_extent_inline_ref_size(type); 1551 } 1552 if (err == -ENOENT && insert) { 1553 if (item_size + extra_size >= 1554 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1555 err = -EAGAIN; 1556 goto out; 1557 } 1558 /* 1559 * To add new inline back ref, we have to make sure 1560 * there is no corresponding back ref item. 1561 * For simplicity, we just do not add new inline back 1562 * ref if there is any kind of item for this block 1563 */ 1564 if (find_next_key(path, 0, &key) == 0 && 1565 key.objectid == bytenr && 1566 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1567 err = -EAGAIN; 1568 goto out; 1569 } 1570 } 1571 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1572 out: 1573 if (insert) { 1574 path->keep_locks = 0; 1575 btrfs_unlock_up_safe(path, 1); 1576 } 1577 return err; 1578 } 1579 1580 /* 1581 * helper to add new inline back ref 1582 */ 1583 static noinline_for_stack 1584 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1585 struct btrfs_root *root, 1586 struct btrfs_path *path, 1587 struct btrfs_extent_inline_ref *iref, 1588 u64 parent, u64 root_objectid, 1589 u64 owner, u64 offset, int refs_to_add, 1590 struct btrfs_delayed_extent_op *extent_op) 1591 { 1592 struct extent_buffer *leaf; 1593 struct btrfs_extent_item *ei; 1594 unsigned long ptr; 1595 unsigned long end; 1596 unsigned long item_offset; 1597 u64 refs; 1598 int size; 1599 int type; 1600 1601 leaf = path->nodes[0]; 1602 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1603 item_offset = (unsigned long)iref - (unsigned long)ei; 1604 1605 type = extent_ref_type(parent, owner); 1606 size = btrfs_extent_inline_ref_size(type); 1607 1608 btrfs_extend_item(trans, root, path, size); 1609 1610 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1611 refs = btrfs_extent_refs(leaf, ei); 1612 refs += refs_to_add; 1613 btrfs_set_extent_refs(leaf, ei, refs); 1614 if (extent_op) 1615 __run_delayed_extent_op(extent_op, leaf, ei); 1616 1617 ptr = (unsigned long)ei + item_offset; 1618 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1619 if (ptr < end - size) 1620 memmove_extent_buffer(leaf, ptr + size, ptr, 1621 end - size - ptr); 1622 1623 iref = (struct btrfs_extent_inline_ref *)ptr; 1624 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1625 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1626 struct btrfs_extent_data_ref *dref; 1627 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1628 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1629 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1630 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1631 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1632 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1633 struct btrfs_shared_data_ref *sref; 1634 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1635 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1636 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1637 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1638 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1639 } else { 1640 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1641 } 1642 btrfs_mark_buffer_dirty(leaf); 1643 } 1644 1645 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1646 struct btrfs_root *root, 1647 struct btrfs_path *path, 1648 struct btrfs_extent_inline_ref **ref_ret, 1649 u64 bytenr, u64 num_bytes, u64 parent, 1650 u64 root_objectid, u64 owner, u64 offset) 1651 { 1652 int ret; 1653 1654 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1655 bytenr, num_bytes, parent, 1656 root_objectid, owner, offset, 0); 1657 if (ret != -ENOENT) 1658 return ret; 1659 1660 btrfs_release_path(path); 1661 *ref_ret = NULL; 1662 1663 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1664 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1665 root_objectid); 1666 } else { 1667 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1668 root_objectid, owner, offset); 1669 } 1670 return ret; 1671 } 1672 1673 /* 1674 * helper to update/remove inline back ref 1675 */ 1676 static noinline_for_stack 1677 void update_inline_extent_backref(struct btrfs_trans_handle *trans, 1678 struct btrfs_root *root, 1679 struct btrfs_path *path, 1680 struct btrfs_extent_inline_ref *iref, 1681 int refs_to_mod, 1682 struct btrfs_delayed_extent_op *extent_op) 1683 { 1684 struct extent_buffer *leaf; 1685 struct btrfs_extent_item *ei; 1686 struct btrfs_extent_data_ref *dref = NULL; 1687 struct btrfs_shared_data_ref *sref = NULL; 1688 unsigned long ptr; 1689 unsigned long end; 1690 u32 item_size; 1691 int size; 1692 int type; 1693 u64 refs; 1694 1695 leaf = path->nodes[0]; 1696 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1697 refs = btrfs_extent_refs(leaf, ei); 1698 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1699 refs += refs_to_mod; 1700 btrfs_set_extent_refs(leaf, ei, refs); 1701 if (extent_op) 1702 __run_delayed_extent_op(extent_op, leaf, ei); 1703 1704 type = btrfs_extent_inline_ref_type(leaf, iref); 1705 1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1707 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1708 refs = btrfs_extent_data_ref_count(leaf, dref); 1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1710 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1711 refs = btrfs_shared_data_ref_count(leaf, sref); 1712 } else { 1713 refs = 1; 1714 BUG_ON(refs_to_mod != -1); 1715 } 1716 1717 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1718 refs += refs_to_mod; 1719 1720 if (refs > 0) { 1721 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1722 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1723 else 1724 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1725 } else { 1726 size = btrfs_extent_inline_ref_size(type); 1727 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1728 ptr = (unsigned long)iref; 1729 end = (unsigned long)ei + item_size; 1730 if (ptr + size < end) 1731 memmove_extent_buffer(leaf, ptr, ptr + size, 1732 end - ptr - size); 1733 item_size -= size; 1734 btrfs_truncate_item(trans, root, path, item_size, 1); 1735 } 1736 btrfs_mark_buffer_dirty(leaf); 1737 } 1738 1739 static noinline_for_stack 1740 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1741 struct btrfs_root *root, 1742 struct btrfs_path *path, 1743 u64 bytenr, u64 num_bytes, u64 parent, 1744 u64 root_objectid, u64 owner, 1745 u64 offset, int refs_to_add, 1746 struct btrfs_delayed_extent_op *extent_op) 1747 { 1748 struct btrfs_extent_inline_ref *iref; 1749 int ret; 1750 1751 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1752 bytenr, num_bytes, parent, 1753 root_objectid, owner, offset, 1); 1754 if (ret == 0) { 1755 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1756 update_inline_extent_backref(trans, root, path, iref, 1757 refs_to_add, extent_op); 1758 } else if (ret == -ENOENT) { 1759 setup_inline_extent_backref(trans, root, path, iref, parent, 1760 root_objectid, owner, offset, 1761 refs_to_add, extent_op); 1762 ret = 0; 1763 } 1764 return ret; 1765 } 1766 1767 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1768 struct btrfs_root *root, 1769 struct btrfs_path *path, 1770 u64 bytenr, u64 parent, u64 root_objectid, 1771 u64 owner, u64 offset, int refs_to_add) 1772 { 1773 int ret; 1774 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1775 BUG_ON(refs_to_add != 1); 1776 ret = insert_tree_block_ref(trans, root, path, bytenr, 1777 parent, root_objectid); 1778 } else { 1779 ret = insert_extent_data_ref(trans, root, path, bytenr, 1780 parent, root_objectid, 1781 owner, offset, refs_to_add); 1782 } 1783 return ret; 1784 } 1785 1786 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1787 struct btrfs_root *root, 1788 struct btrfs_path *path, 1789 struct btrfs_extent_inline_ref *iref, 1790 int refs_to_drop, int is_data) 1791 { 1792 int ret = 0; 1793 1794 BUG_ON(!is_data && refs_to_drop != 1); 1795 if (iref) { 1796 update_inline_extent_backref(trans, root, path, iref, 1797 -refs_to_drop, NULL); 1798 } else if (is_data) { 1799 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1800 } else { 1801 ret = btrfs_del_item(trans, root, path); 1802 } 1803 return ret; 1804 } 1805 1806 static int btrfs_issue_discard(struct block_device *bdev, 1807 u64 start, u64 len) 1808 { 1809 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1810 } 1811 1812 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1813 u64 num_bytes, u64 *actual_bytes) 1814 { 1815 int ret; 1816 u64 discarded_bytes = 0; 1817 struct btrfs_bio *bbio = NULL; 1818 1819 1820 /* Tell the block device(s) that the sectors can be discarded */ 1821 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1822 bytenr, &num_bytes, &bbio, 0); 1823 /* Error condition is -ENOMEM */ 1824 if (!ret) { 1825 struct btrfs_bio_stripe *stripe = bbio->stripes; 1826 int i; 1827 1828 1829 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1830 if (!stripe->dev->can_discard) 1831 continue; 1832 1833 ret = btrfs_issue_discard(stripe->dev->bdev, 1834 stripe->physical, 1835 stripe->length); 1836 if (!ret) 1837 discarded_bytes += stripe->length; 1838 else if (ret != -EOPNOTSUPP) 1839 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1840 1841 /* 1842 * Just in case we get back EOPNOTSUPP for some reason, 1843 * just ignore the return value so we don't screw up 1844 * people calling discard_extent. 1845 */ 1846 ret = 0; 1847 } 1848 kfree(bbio); 1849 } 1850 1851 if (actual_bytes) 1852 *actual_bytes = discarded_bytes; 1853 1854 1855 return ret; 1856 } 1857 1858 /* Can return -ENOMEM */ 1859 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1860 struct btrfs_root *root, 1861 u64 bytenr, u64 num_bytes, u64 parent, 1862 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1863 { 1864 int ret; 1865 struct btrfs_fs_info *fs_info = root->fs_info; 1866 1867 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1868 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1869 1870 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1871 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1872 num_bytes, 1873 parent, root_objectid, (int)owner, 1874 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1875 } else { 1876 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1877 num_bytes, 1878 parent, root_objectid, owner, offset, 1879 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1880 } 1881 return ret; 1882 } 1883 1884 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1885 struct btrfs_root *root, 1886 u64 bytenr, u64 num_bytes, 1887 u64 parent, u64 root_objectid, 1888 u64 owner, u64 offset, int refs_to_add, 1889 struct btrfs_delayed_extent_op *extent_op) 1890 { 1891 struct btrfs_path *path; 1892 struct extent_buffer *leaf; 1893 struct btrfs_extent_item *item; 1894 u64 refs; 1895 int ret; 1896 int err = 0; 1897 1898 path = btrfs_alloc_path(); 1899 if (!path) 1900 return -ENOMEM; 1901 1902 path->reada = 1; 1903 path->leave_spinning = 1; 1904 /* this will setup the path even if it fails to insert the back ref */ 1905 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1906 path, bytenr, num_bytes, parent, 1907 root_objectid, owner, offset, 1908 refs_to_add, extent_op); 1909 if (ret == 0) 1910 goto out; 1911 1912 if (ret != -EAGAIN) { 1913 err = ret; 1914 goto out; 1915 } 1916 1917 leaf = path->nodes[0]; 1918 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1919 refs = btrfs_extent_refs(leaf, item); 1920 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1921 if (extent_op) 1922 __run_delayed_extent_op(extent_op, leaf, item); 1923 1924 btrfs_mark_buffer_dirty(leaf); 1925 btrfs_release_path(path); 1926 1927 path->reada = 1; 1928 path->leave_spinning = 1; 1929 1930 /* now insert the actual backref */ 1931 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1932 path, bytenr, parent, root_objectid, 1933 owner, offset, refs_to_add); 1934 if (ret) 1935 btrfs_abort_transaction(trans, root, ret); 1936 out: 1937 btrfs_free_path(path); 1938 return err; 1939 } 1940 1941 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1942 struct btrfs_root *root, 1943 struct btrfs_delayed_ref_node *node, 1944 struct btrfs_delayed_extent_op *extent_op, 1945 int insert_reserved) 1946 { 1947 int ret = 0; 1948 struct btrfs_delayed_data_ref *ref; 1949 struct btrfs_key ins; 1950 u64 parent = 0; 1951 u64 ref_root = 0; 1952 u64 flags = 0; 1953 1954 ins.objectid = node->bytenr; 1955 ins.offset = node->num_bytes; 1956 ins.type = BTRFS_EXTENT_ITEM_KEY; 1957 1958 ref = btrfs_delayed_node_to_data_ref(node); 1959 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1960 parent = ref->parent; 1961 else 1962 ref_root = ref->root; 1963 1964 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1965 if (extent_op) { 1966 BUG_ON(extent_op->update_key); 1967 flags |= extent_op->flags_to_set; 1968 } 1969 ret = alloc_reserved_file_extent(trans, root, 1970 parent, ref_root, flags, 1971 ref->objectid, ref->offset, 1972 &ins, node->ref_mod); 1973 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1974 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1975 node->num_bytes, parent, 1976 ref_root, ref->objectid, 1977 ref->offset, node->ref_mod, 1978 extent_op); 1979 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1980 ret = __btrfs_free_extent(trans, root, node->bytenr, 1981 node->num_bytes, parent, 1982 ref_root, ref->objectid, 1983 ref->offset, node->ref_mod, 1984 extent_op); 1985 } else { 1986 BUG(); 1987 } 1988 return ret; 1989 } 1990 1991 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1992 struct extent_buffer *leaf, 1993 struct btrfs_extent_item *ei) 1994 { 1995 u64 flags = btrfs_extent_flags(leaf, ei); 1996 if (extent_op->update_flags) { 1997 flags |= extent_op->flags_to_set; 1998 btrfs_set_extent_flags(leaf, ei, flags); 1999 } 2000 2001 if (extent_op->update_key) { 2002 struct btrfs_tree_block_info *bi; 2003 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2004 bi = (struct btrfs_tree_block_info *)(ei + 1); 2005 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2006 } 2007 } 2008 2009 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2010 struct btrfs_root *root, 2011 struct btrfs_delayed_ref_node *node, 2012 struct btrfs_delayed_extent_op *extent_op) 2013 { 2014 struct btrfs_key key; 2015 struct btrfs_path *path; 2016 struct btrfs_extent_item *ei; 2017 struct extent_buffer *leaf; 2018 u32 item_size; 2019 int ret; 2020 int err = 0; 2021 2022 if (trans->aborted) 2023 return 0; 2024 2025 path = btrfs_alloc_path(); 2026 if (!path) 2027 return -ENOMEM; 2028 2029 key.objectid = node->bytenr; 2030 key.type = BTRFS_EXTENT_ITEM_KEY; 2031 key.offset = node->num_bytes; 2032 2033 path->reada = 1; 2034 path->leave_spinning = 1; 2035 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2036 path, 0, 1); 2037 if (ret < 0) { 2038 err = ret; 2039 goto out; 2040 } 2041 if (ret > 0) { 2042 err = -EIO; 2043 goto out; 2044 } 2045 2046 leaf = path->nodes[0]; 2047 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2048 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2049 if (item_size < sizeof(*ei)) { 2050 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2051 path, (u64)-1, 0); 2052 if (ret < 0) { 2053 err = ret; 2054 goto out; 2055 } 2056 leaf = path->nodes[0]; 2057 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2058 } 2059 #endif 2060 BUG_ON(item_size < sizeof(*ei)); 2061 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2062 __run_delayed_extent_op(extent_op, leaf, ei); 2063 2064 btrfs_mark_buffer_dirty(leaf); 2065 out: 2066 btrfs_free_path(path); 2067 return err; 2068 } 2069 2070 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2071 struct btrfs_root *root, 2072 struct btrfs_delayed_ref_node *node, 2073 struct btrfs_delayed_extent_op *extent_op, 2074 int insert_reserved) 2075 { 2076 int ret = 0; 2077 struct btrfs_delayed_tree_ref *ref; 2078 struct btrfs_key ins; 2079 u64 parent = 0; 2080 u64 ref_root = 0; 2081 2082 ins.objectid = node->bytenr; 2083 ins.offset = node->num_bytes; 2084 ins.type = BTRFS_EXTENT_ITEM_KEY; 2085 2086 ref = btrfs_delayed_node_to_tree_ref(node); 2087 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2088 parent = ref->parent; 2089 else 2090 ref_root = ref->root; 2091 2092 BUG_ON(node->ref_mod != 1); 2093 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2094 BUG_ON(!extent_op || !extent_op->update_flags || 2095 !extent_op->update_key); 2096 ret = alloc_reserved_tree_block(trans, root, 2097 parent, ref_root, 2098 extent_op->flags_to_set, 2099 &extent_op->key, 2100 ref->level, &ins); 2101 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2102 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2103 node->num_bytes, parent, ref_root, 2104 ref->level, 0, 1, extent_op); 2105 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2106 ret = __btrfs_free_extent(trans, root, node->bytenr, 2107 node->num_bytes, parent, ref_root, 2108 ref->level, 0, 1, extent_op); 2109 } else { 2110 BUG(); 2111 } 2112 return ret; 2113 } 2114 2115 /* helper function to actually process a single delayed ref entry */ 2116 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2117 struct btrfs_root *root, 2118 struct btrfs_delayed_ref_node *node, 2119 struct btrfs_delayed_extent_op *extent_op, 2120 int insert_reserved) 2121 { 2122 int ret = 0; 2123 2124 if (trans->aborted) 2125 return 0; 2126 2127 if (btrfs_delayed_ref_is_head(node)) { 2128 struct btrfs_delayed_ref_head *head; 2129 /* 2130 * we've hit the end of the chain and we were supposed 2131 * to insert this extent into the tree. But, it got 2132 * deleted before we ever needed to insert it, so all 2133 * we have to do is clean up the accounting 2134 */ 2135 BUG_ON(extent_op); 2136 head = btrfs_delayed_node_to_head(node); 2137 if (insert_reserved) { 2138 btrfs_pin_extent(root, node->bytenr, 2139 node->num_bytes, 1); 2140 if (head->is_data) { 2141 ret = btrfs_del_csums(trans, root, 2142 node->bytenr, 2143 node->num_bytes); 2144 } 2145 } 2146 return ret; 2147 } 2148 2149 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2150 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2151 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2152 insert_reserved); 2153 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2154 node->type == BTRFS_SHARED_DATA_REF_KEY) 2155 ret = run_delayed_data_ref(trans, root, node, extent_op, 2156 insert_reserved); 2157 else 2158 BUG(); 2159 return ret; 2160 } 2161 2162 static noinline struct btrfs_delayed_ref_node * 2163 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2164 { 2165 struct rb_node *node; 2166 struct btrfs_delayed_ref_node *ref; 2167 int action = BTRFS_ADD_DELAYED_REF; 2168 again: 2169 /* 2170 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2171 * this prevents ref count from going down to zero when 2172 * there still are pending delayed ref. 2173 */ 2174 node = rb_prev(&head->node.rb_node); 2175 while (1) { 2176 if (!node) 2177 break; 2178 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2179 rb_node); 2180 if (ref->bytenr != head->node.bytenr) 2181 break; 2182 if (ref->action == action) 2183 return ref; 2184 node = rb_prev(node); 2185 } 2186 if (action == BTRFS_ADD_DELAYED_REF) { 2187 action = BTRFS_DROP_DELAYED_REF; 2188 goto again; 2189 } 2190 return NULL; 2191 } 2192 2193 /* 2194 * Returns 0 on success or if called with an already aborted transaction. 2195 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2196 */ 2197 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2198 struct btrfs_root *root, 2199 struct list_head *cluster) 2200 { 2201 struct btrfs_delayed_ref_root *delayed_refs; 2202 struct btrfs_delayed_ref_node *ref; 2203 struct btrfs_delayed_ref_head *locked_ref = NULL; 2204 struct btrfs_delayed_extent_op *extent_op; 2205 struct btrfs_fs_info *fs_info = root->fs_info; 2206 int ret; 2207 int count = 0; 2208 int must_insert_reserved = 0; 2209 2210 delayed_refs = &trans->transaction->delayed_refs; 2211 while (1) { 2212 if (!locked_ref) { 2213 /* pick a new head ref from the cluster list */ 2214 if (list_empty(cluster)) 2215 break; 2216 2217 locked_ref = list_entry(cluster->next, 2218 struct btrfs_delayed_ref_head, cluster); 2219 2220 /* grab the lock that says we are going to process 2221 * all the refs for this head */ 2222 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2223 2224 /* 2225 * we may have dropped the spin lock to get the head 2226 * mutex lock, and that might have given someone else 2227 * time to free the head. If that's true, it has been 2228 * removed from our list and we can move on. 2229 */ 2230 if (ret == -EAGAIN) { 2231 locked_ref = NULL; 2232 count++; 2233 continue; 2234 } 2235 } 2236 2237 /* 2238 * We need to try and merge add/drops of the same ref since we 2239 * can run into issues with relocate dropping the implicit ref 2240 * and then it being added back again before the drop can 2241 * finish. If we merged anything we need to re-loop so we can 2242 * get a good ref. 2243 */ 2244 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2245 locked_ref); 2246 2247 /* 2248 * locked_ref is the head node, so we have to go one 2249 * node back for any delayed ref updates 2250 */ 2251 ref = select_delayed_ref(locked_ref); 2252 2253 if (ref && ref->seq && 2254 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2255 /* 2256 * there are still refs with lower seq numbers in the 2257 * process of being added. Don't run this ref yet. 2258 */ 2259 list_del_init(&locked_ref->cluster); 2260 btrfs_delayed_ref_unlock(locked_ref); 2261 locked_ref = NULL; 2262 delayed_refs->num_heads_ready++; 2263 spin_unlock(&delayed_refs->lock); 2264 cond_resched(); 2265 spin_lock(&delayed_refs->lock); 2266 continue; 2267 } 2268 2269 /* 2270 * record the must insert reserved flag before we 2271 * drop the spin lock. 2272 */ 2273 must_insert_reserved = locked_ref->must_insert_reserved; 2274 locked_ref->must_insert_reserved = 0; 2275 2276 extent_op = locked_ref->extent_op; 2277 locked_ref->extent_op = NULL; 2278 2279 if (!ref) { 2280 /* All delayed refs have been processed, Go ahead 2281 * and send the head node to run_one_delayed_ref, 2282 * so that any accounting fixes can happen 2283 */ 2284 ref = &locked_ref->node; 2285 2286 if (extent_op && must_insert_reserved) { 2287 btrfs_free_delayed_extent_op(extent_op); 2288 extent_op = NULL; 2289 } 2290 2291 if (extent_op) { 2292 spin_unlock(&delayed_refs->lock); 2293 2294 ret = run_delayed_extent_op(trans, root, 2295 ref, extent_op); 2296 btrfs_free_delayed_extent_op(extent_op); 2297 2298 if (ret) { 2299 printk(KERN_DEBUG 2300 "btrfs: run_delayed_extent_op " 2301 "returned %d\n", ret); 2302 spin_lock(&delayed_refs->lock); 2303 btrfs_delayed_ref_unlock(locked_ref); 2304 return ret; 2305 } 2306 2307 goto next; 2308 } 2309 } 2310 2311 ref->in_tree = 0; 2312 rb_erase(&ref->rb_node, &delayed_refs->root); 2313 delayed_refs->num_entries--; 2314 if (!btrfs_delayed_ref_is_head(ref)) { 2315 /* 2316 * when we play the delayed ref, also correct the 2317 * ref_mod on head 2318 */ 2319 switch (ref->action) { 2320 case BTRFS_ADD_DELAYED_REF: 2321 case BTRFS_ADD_DELAYED_EXTENT: 2322 locked_ref->node.ref_mod -= ref->ref_mod; 2323 break; 2324 case BTRFS_DROP_DELAYED_REF: 2325 locked_ref->node.ref_mod += ref->ref_mod; 2326 break; 2327 default: 2328 WARN_ON(1); 2329 } 2330 } 2331 spin_unlock(&delayed_refs->lock); 2332 2333 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2334 must_insert_reserved); 2335 2336 btrfs_free_delayed_extent_op(extent_op); 2337 if (ret) { 2338 btrfs_delayed_ref_unlock(locked_ref); 2339 btrfs_put_delayed_ref(ref); 2340 printk(KERN_DEBUG 2341 "btrfs: run_one_delayed_ref returned %d\n", ret); 2342 spin_lock(&delayed_refs->lock); 2343 return ret; 2344 } 2345 2346 /* 2347 * If this node is a head, that means all the refs in this head 2348 * have been dealt with, and we will pick the next head to deal 2349 * with, so we must unlock the head and drop it from the cluster 2350 * list before we release it. 2351 */ 2352 if (btrfs_delayed_ref_is_head(ref)) { 2353 list_del_init(&locked_ref->cluster); 2354 btrfs_delayed_ref_unlock(locked_ref); 2355 locked_ref = NULL; 2356 } 2357 btrfs_put_delayed_ref(ref); 2358 count++; 2359 next: 2360 cond_resched(); 2361 spin_lock(&delayed_refs->lock); 2362 } 2363 return count; 2364 } 2365 2366 #ifdef SCRAMBLE_DELAYED_REFS 2367 /* 2368 * Normally delayed refs get processed in ascending bytenr order. This 2369 * correlates in most cases to the order added. To expose dependencies on this 2370 * order, we start to process the tree in the middle instead of the beginning 2371 */ 2372 static u64 find_middle(struct rb_root *root) 2373 { 2374 struct rb_node *n = root->rb_node; 2375 struct btrfs_delayed_ref_node *entry; 2376 int alt = 1; 2377 u64 middle; 2378 u64 first = 0, last = 0; 2379 2380 n = rb_first(root); 2381 if (n) { 2382 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2383 first = entry->bytenr; 2384 } 2385 n = rb_last(root); 2386 if (n) { 2387 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2388 last = entry->bytenr; 2389 } 2390 n = root->rb_node; 2391 2392 while (n) { 2393 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2394 WARN_ON(!entry->in_tree); 2395 2396 middle = entry->bytenr; 2397 2398 if (alt) 2399 n = n->rb_left; 2400 else 2401 n = n->rb_right; 2402 2403 alt = 1 - alt; 2404 } 2405 return middle; 2406 } 2407 #endif 2408 2409 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2410 struct btrfs_fs_info *fs_info) 2411 { 2412 struct qgroup_update *qgroup_update; 2413 int ret = 0; 2414 2415 if (list_empty(&trans->qgroup_ref_list) != 2416 !trans->delayed_ref_elem.seq) { 2417 /* list without seq or seq without list */ 2418 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n", 2419 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2420 trans->delayed_ref_elem.seq); 2421 BUG(); 2422 } 2423 2424 if (!trans->delayed_ref_elem.seq) 2425 return 0; 2426 2427 while (!list_empty(&trans->qgroup_ref_list)) { 2428 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2429 struct qgroup_update, list); 2430 list_del(&qgroup_update->list); 2431 if (!ret) 2432 ret = btrfs_qgroup_account_ref( 2433 trans, fs_info, qgroup_update->node, 2434 qgroup_update->extent_op); 2435 kfree(qgroup_update); 2436 } 2437 2438 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2439 2440 return ret; 2441 } 2442 2443 /* 2444 * this starts processing the delayed reference count updates and 2445 * extent insertions we have queued up so far. count can be 2446 * 0, which means to process everything in the tree at the start 2447 * of the run (but not newly added entries), or it can be some target 2448 * number you'd like to process. 2449 * 2450 * Returns 0 on success or if called with an aborted transaction 2451 * Returns <0 on error and aborts the transaction 2452 */ 2453 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2454 struct btrfs_root *root, unsigned long count) 2455 { 2456 struct rb_node *node; 2457 struct btrfs_delayed_ref_root *delayed_refs; 2458 struct btrfs_delayed_ref_node *ref; 2459 struct list_head cluster; 2460 int ret; 2461 u64 delayed_start; 2462 int run_all = count == (unsigned long)-1; 2463 int run_most = 0; 2464 int loops; 2465 2466 /* We'll clean this up in btrfs_cleanup_transaction */ 2467 if (trans->aborted) 2468 return 0; 2469 2470 if (root == root->fs_info->extent_root) 2471 root = root->fs_info->tree_root; 2472 2473 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2474 2475 delayed_refs = &trans->transaction->delayed_refs; 2476 INIT_LIST_HEAD(&cluster); 2477 again: 2478 loops = 0; 2479 spin_lock(&delayed_refs->lock); 2480 2481 #ifdef SCRAMBLE_DELAYED_REFS 2482 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2483 #endif 2484 2485 if (count == 0) { 2486 count = delayed_refs->num_entries * 2; 2487 run_most = 1; 2488 } 2489 while (1) { 2490 if (!(run_all || run_most) && 2491 delayed_refs->num_heads_ready < 64) 2492 break; 2493 2494 /* 2495 * go find something we can process in the rbtree. We start at 2496 * the beginning of the tree, and then build a cluster 2497 * of refs to process starting at the first one we are able to 2498 * lock 2499 */ 2500 delayed_start = delayed_refs->run_delayed_start; 2501 ret = btrfs_find_ref_cluster(trans, &cluster, 2502 delayed_refs->run_delayed_start); 2503 if (ret) 2504 break; 2505 2506 ret = run_clustered_refs(trans, root, &cluster); 2507 if (ret < 0) { 2508 btrfs_release_ref_cluster(&cluster); 2509 spin_unlock(&delayed_refs->lock); 2510 btrfs_abort_transaction(trans, root, ret); 2511 return ret; 2512 } 2513 2514 count -= min_t(unsigned long, ret, count); 2515 2516 if (count == 0) 2517 break; 2518 2519 if (delayed_start >= delayed_refs->run_delayed_start) { 2520 if (loops == 0) { 2521 /* 2522 * btrfs_find_ref_cluster looped. let's do one 2523 * more cycle. if we don't run any delayed ref 2524 * during that cycle (because we can't because 2525 * all of them are blocked), bail out. 2526 */ 2527 loops = 1; 2528 } else { 2529 /* 2530 * no runnable refs left, stop trying 2531 */ 2532 BUG_ON(run_all); 2533 break; 2534 } 2535 } 2536 if (ret) { 2537 /* refs were run, let's reset staleness detection */ 2538 loops = 0; 2539 } 2540 } 2541 2542 if (run_all) { 2543 if (!list_empty(&trans->new_bgs)) { 2544 spin_unlock(&delayed_refs->lock); 2545 btrfs_create_pending_block_groups(trans, root); 2546 spin_lock(&delayed_refs->lock); 2547 } 2548 2549 node = rb_first(&delayed_refs->root); 2550 if (!node) 2551 goto out; 2552 count = (unsigned long)-1; 2553 2554 while (node) { 2555 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2556 rb_node); 2557 if (btrfs_delayed_ref_is_head(ref)) { 2558 struct btrfs_delayed_ref_head *head; 2559 2560 head = btrfs_delayed_node_to_head(ref); 2561 atomic_inc(&ref->refs); 2562 2563 spin_unlock(&delayed_refs->lock); 2564 /* 2565 * Mutex was contended, block until it's 2566 * released and try again 2567 */ 2568 mutex_lock(&head->mutex); 2569 mutex_unlock(&head->mutex); 2570 2571 btrfs_put_delayed_ref(ref); 2572 cond_resched(); 2573 goto again; 2574 } 2575 node = rb_next(node); 2576 } 2577 spin_unlock(&delayed_refs->lock); 2578 schedule_timeout(1); 2579 goto again; 2580 } 2581 out: 2582 spin_unlock(&delayed_refs->lock); 2583 assert_qgroups_uptodate(trans); 2584 return 0; 2585 } 2586 2587 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2588 struct btrfs_root *root, 2589 u64 bytenr, u64 num_bytes, u64 flags, 2590 int is_data) 2591 { 2592 struct btrfs_delayed_extent_op *extent_op; 2593 int ret; 2594 2595 extent_op = btrfs_alloc_delayed_extent_op(); 2596 if (!extent_op) 2597 return -ENOMEM; 2598 2599 extent_op->flags_to_set = flags; 2600 extent_op->update_flags = 1; 2601 extent_op->update_key = 0; 2602 extent_op->is_data = is_data ? 1 : 0; 2603 2604 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2605 num_bytes, extent_op); 2606 if (ret) 2607 btrfs_free_delayed_extent_op(extent_op); 2608 return ret; 2609 } 2610 2611 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2612 struct btrfs_root *root, 2613 struct btrfs_path *path, 2614 u64 objectid, u64 offset, u64 bytenr) 2615 { 2616 struct btrfs_delayed_ref_head *head; 2617 struct btrfs_delayed_ref_node *ref; 2618 struct btrfs_delayed_data_ref *data_ref; 2619 struct btrfs_delayed_ref_root *delayed_refs; 2620 struct rb_node *node; 2621 int ret = 0; 2622 2623 ret = -ENOENT; 2624 delayed_refs = &trans->transaction->delayed_refs; 2625 spin_lock(&delayed_refs->lock); 2626 head = btrfs_find_delayed_ref_head(trans, bytenr); 2627 if (!head) 2628 goto out; 2629 2630 if (!mutex_trylock(&head->mutex)) { 2631 atomic_inc(&head->node.refs); 2632 spin_unlock(&delayed_refs->lock); 2633 2634 btrfs_release_path(path); 2635 2636 /* 2637 * Mutex was contended, block until it's released and let 2638 * caller try again 2639 */ 2640 mutex_lock(&head->mutex); 2641 mutex_unlock(&head->mutex); 2642 btrfs_put_delayed_ref(&head->node); 2643 return -EAGAIN; 2644 } 2645 2646 node = rb_prev(&head->node.rb_node); 2647 if (!node) 2648 goto out_unlock; 2649 2650 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2651 2652 if (ref->bytenr != bytenr) 2653 goto out_unlock; 2654 2655 ret = 1; 2656 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2657 goto out_unlock; 2658 2659 data_ref = btrfs_delayed_node_to_data_ref(ref); 2660 2661 node = rb_prev(node); 2662 if (node) { 2663 int seq = ref->seq; 2664 2665 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2666 if (ref->bytenr == bytenr && ref->seq == seq) 2667 goto out_unlock; 2668 } 2669 2670 if (data_ref->root != root->root_key.objectid || 2671 data_ref->objectid != objectid || data_ref->offset != offset) 2672 goto out_unlock; 2673 2674 ret = 0; 2675 out_unlock: 2676 mutex_unlock(&head->mutex); 2677 out: 2678 spin_unlock(&delayed_refs->lock); 2679 return ret; 2680 } 2681 2682 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2683 struct btrfs_root *root, 2684 struct btrfs_path *path, 2685 u64 objectid, u64 offset, u64 bytenr) 2686 { 2687 struct btrfs_root *extent_root = root->fs_info->extent_root; 2688 struct extent_buffer *leaf; 2689 struct btrfs_extent_data_ref *ref; 2690 struct btrfs_extent_inline_ref *iref; 2691 struct btrfs_extent_item *ei; 2692 struct btrfs_key key; 2693 u32 item_size; 2694 int ret; 2695 2696 key.objectid = bytenr; 2697 key.offset = (u64)-1; 2698 key.type = BTRFS_EXTENT_ITEM_KEY; 2699 2700 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2701 if (ret < 0) 2702 goto out; 2703 BUG_ON(ret == 0); /* Corruption */ 2704 2705 ret = -ENOENT; 2706 if (path->slots[0] == 0) 2707 goto out; 2708 2709 path->slots[0]--; 2710 leaf = path->nodes[0]; 2711 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2712 2713 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2714 goto out; 2715 2716 ret = 1; 2717 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2718 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2719 if (item_size < sizeof(*ei)) { 2720 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2721 goto out; 2722 } 2723 #endif 2724 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2725 2726 if (item_size != sizeof(*ei) + 2727 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2728 goto out; 2729 2730 if (btrfs_extent_generation(leaf, ei) <= 2731 btrfs_root_last_snapshot(&root->root_item)) 2732 goto out; 2733 2734 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2735 if (btrfs_extent_inline_ref_type(leaf, iref) != 2736 BTRFS_EXTENT_DATA_REF_KEY) 2737 goto out; 2738 2739 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2740 if (btrfs_extent_refs(leaf, ei) != 2741 btrfs_extent_data_ref_count(leaf, ref) || 2742 btrfs_extent_data_ref_root(leaf, ref) != 2743 root->root_key.objectid || 2744 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2745 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2746 goto out; 2747 2748 ret = 0; 2749 out: 2750 return ret; 2751 } 2752 2753 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2754 struct btrfs_root *root, 2755 u64 objectid, u64 offset, u64 bytenr) 2756 { 2757 struct btrfs_path *path; 2758 int ret; 2759 int ret2; 2760 2761 path = btrfs_alloc_path(); 2762 if (!path) 2763 return -ENOENT; 2764 2765 do { 2766 ret = check_committed_ref(trans, root, path, objectid, 2767 offset, bytenr); 2768 if (ret && ret != -ENOENT) 2769 goto out; 2770 2771 ret2 = check_delayed_ref(trans, root, path, objectid, 2772 offset, bytenr); 2773 } while (ret2 == -EAGAIN); 2774 2775 if (ret2 && ret2 != -ENOENT) { 2776 ret = ret2; 2777 goto out; 2778 } 2779 2780 if (ret != -ENOENT || ret2 != -ENOENT) 2781 ret = 0; 2782 out: 2783 btrfs_free_path(path); 2784 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2785 WARN_ON(ret > 0); 2786 return ret; 2787 } 2788 2789 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2790 struct btrfs_root *root, 2791 struct extent_buffer *buf, 2792 int full_backref, int inc, int for_cow) 2793 { 2794 u64 bytenr; 2795 u64 num_bytes; 2796 u64 parent; 2797 u64 ref_root; 2798 u32 nritems; 2799 struct btrfs_key key; 2800 struct btrfs_file_extent_item *fi; 2801 int i; 2802 int level; 2803 int ret = 0; 2804 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2805 u64, u64, u64, u64, u64, u64, int); 2806 2807 ref_root = btrfs_header_owner(buf); 2808 nritems = btrfs_header_nritems(buf); 2809 level = btrfs_header_level(buf); 2810 2811 if (!root->ref_cows && level == 0) 2812 return 0; 2813 2814 if (inc) 2815 process_func = btrfs_inc_extent_ref; 2816 else 2817 process_func = btrfs_free_extent; 2818 2819 if (full_backref) 2820 parent = buf->start; 2821 else 2822 parent = 0; 2823 2824 for (i = 0; i < nritems; i++) { 2825 if (level == 0) { 2826 btrfs_item_key_to_cpu(buf, &key, i); 2827 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2828 continue; 2829 fi = btrfs_item_ptr(buf, i, 2830 struct btrfs_file_extent_item); 2831 if (btrfs_file_extent_type(buf, fi) == 2832 BTRFS_FILE_EXTENT_INLINE) 2833 continue; 2834 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2835 if (bytenr == 0) 2836 continue; 2837 2838 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2839 key.offset -= btrfs_file_extent_offset(buf, fi); 2840 ret = process_func(trans, root, bytenr, num_bytes, 2841 parent, ref_root, key.objectid, 2842 key.offset, for_cow); 2843 if (ret) 2844 goto fail; 2845 } else { 2846 bytenr = btrfs_node_blockptr(buf, i); 2847 num_bytes = btrfs_level_size(root, level - 1); 2848 ret = process_func(trans, root, bytenr, num_bytes, 2849 parent, ref_root, level - 1, 0, 2850 for_cow); 2851 if (ret) 2852 goto fail; 2853 } 2854 } 2855 return 0; 2856 fail: 2857 return ret; 2858 } 2859 2860 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2861 struct extent_buffer *buf, int full_backref, int for_cow) 2862 { 2863 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 2864 } 2865 2866 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2867 struct extent_buffer *buf, int full_backref, int for_cow) 2868 { 2869 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 2870 } 2871 2872 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2873 struct btrfs_root *root, 2874 struct btrfs_path *path, 2875 struct btrfs_block_group_cache *cache) 2876 { 2877 int ret; 2878 struct btrfs_root *extent_root = root->fs_info->extent_root; 2879 unsigned long bi; 2880 struct extent_buffer *leaf; 2881 2882 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2883 if (ret < 0) 2884 goto fail; 2885 BUG_ON(ret); /* Corruption */ 2886 2887 leaf = path->nodes[0]; 2888 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2889 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2890 btrfs_mark_buffer_dirty(leaf); 2891 btrfs_release_path(path); 2892 fail: 2893 if (ret) { 2894 btrfs_abort_transaction(trans, root, ret); 2895 return ret; 2896 } 2897 return 0; 2898 2899 } 2900 2901 static struct btrfs_block_group_cache * 2902 next_block_group(struct btrfs_root *root, 2903 struct btrfs_block_group_cache *cache) 2904 { 2905 struct rb_node *node; 2906 spin_lock(&root->fs_info->block_group_cache_lock); 2907 node = rb_next(&cache->cache_node); 2908 btrfs_put_block_group(cache); 2909 if (node) { 2910 cache = rb_entry(node, struct btrfs_block_group_cache, 2911 cache_node); 2912 btrfs_get_block_group(cache); 2913 } else 2914 cache = NULL; 2915 spin_unlock(&root->fs_info->block_group_cache_lock); 2916 return cache; 2917 } 2918 2919 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2920 struct btrfs_trans_handle *trans, 2921 struct btrfs_path *path) 2922 { 2923 struct btrfs_root *root = block_group->fs_info->tree_root; 2924 struct inode *inode = NULL; 2925 u64 alloc_hint = 0; 2926 int dcs = BTRFS_DC_ERROR; 2927 int num_pages = 0; 2928 int retries = 0; 2929 int ret = 0; 2930 2931 /* 2932 * If this block group is smaller than 100 megs don't bother caching the 2933 * block group. 2934 */ 2935 if (block_group->key.offset < (100 * 1024 * 1024)) { 2936 spin_lock(&block_group->lock); 2937 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2938 spin_unlock(&block_group->lock); 2939 return 0; 2940 } 2941 2942 again: 2943 inode = lookup_free_space_inode(root, block_group, path); 2944 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2945 ret = PTR_ERR(inode); 2946 btrfs_release_path(path); 2947 goto out; 2948 } 2949 2950 if (IS_ERR(inode)) { 2951 BUG_ON(retries); 2952 retries++; 2953 2954 if (block_group->ro) 2955 goto out_free; 2956 2957 ret = create_free_space_inode(root, trans, block_group, path); 2958 if (ret) 2959 goto out_free; 2960 goto again; 2961 } 2962 2963 /* We've already setup this transaction, go ahead and exit */ 2964 if (block_group->cache_generation == trans->transid && 2965 i_size_read(inode)) { 2966 dcs = BTRFS_DC_SETUP; 2967 goto out_put; 2968 } 2969 2970 /* 2971 * We want to set the generation to 0, that way if anything goes wrong 2972 * from here on out we know not to trust this cache when we load up next 2973 * time. 2974 */ 2975 BTRFS_I(inode)->generation = 0; 2976 ret = btrfs_update_inode(trans, root, inode); 2977 WARN_ON(ret); 2978 2979 if (i_size_read(inode) > 0) { 2980 ret = btrfs_truncate_free_space_cache(root, trans, path, 2981 inode); 2982 if (ret) 2983 goto out_put; 2984 } 2985 2986 spin_lock(&block_group->lock); 2987 if (block_group->cached != BTRFS_CACHE_FINISHED || 2988 !btrfs_test_opt(root, SPACE_CACHE)) { 2989 /* 2990 * don't bother trying to write stuff out _if_ 2991 * a) we're not cached, 2992 * b) we're with nospace_cache mount option. 2993 */ 2994 dcs = BTRFS_DC_WRITTEN; 2995 spin_unlock(&block_group->lock); 2996 goto out_put; 2997 } 2998 spin_unlock(&block_group->lock); 2999 3000 /* 3001 * Try to preallocate enough space based on how big the block group is. 3002 * Keep in mind this has to include any pinned space which could end up 3003 * taking up quite a bit since it's not folded into the other space 3004 * cache. 3005 */ 3006 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3007 if (!num_pages) 3008 num_pages = 1; 3009 3010 num_pages *= 16; 3011 num_pages *= PAGE_CACHE_SIZE; 3012 3013 ret = btrfs_check_data_free_space(inode, num_pages); 3014 if (ret) 3015 goto out_put; 3016 3017 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3018 num_pages, num_pages, 3019 &alloc_hint); 3020 if (!ret) 3021 dcs = BTRFS_DC_SETUP; 3022 btrfs_free_reserved_data_space(inode, num_pages); 3023 3024 out_put: 3025 iput(inode); 3026 out_free: 3027 btrfs_release_path(path); 3028 out: 3029 spin_lock(&block_group->lock); 3030 if (!ret && dcs == BTRFS_DC_SETUP) 3031 block_group->cache_generation = trans->transid; 3032 block_group->disk_cache_state = dcs; 3033 spin_unlock(&block_group->lock); 3034 3035 return ret; 3036 } 3037 3038 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3039 struct btrfs_root *root) 3040 { 3041 struct btrfs_block_group_cache *cache; 3042 int err = 0; 3043 struct btrfs_path *path; 3044 u64 last = 0; 3045 3046 path = btrfs_alloc_path(); 3047 if (!path) 3048 return -ENOMEM; 3049 3050 again: 3051 while (1) { 3052 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3053 while (cache) { 3054 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3055 break; 3056 cache = next_block_group(root, cache); 3057 } 3058 if (!cache) { 3059 if (last == 0) 3060 break; 3061 last = 0; 3062 continue; 3063 } 3064 err = cache_save_setup(cache, trans, path); 3065 last = cache->key.objectid + cache->key.offset; 3066 btrfs_put_block_group(cache); 3067 } 3068 3069 while (1) { 3070 if (last == 0) { 3071 err = btrfs_run_delayed_refs(trans, root, 3072 (unsigned long)-1); 3073 if (err) /* File system offline */ 3074 goto out; 3075 } 3076 3077 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3078 while (cache) { 3079 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3080 btrfs_put_block_group(cache); 3081 goto again; 3082 } 3083 3084 if (cache->dirty) 3085 break; 3086 cache = next_block_group(root, cache); 3087 } 3088 if (!cache) { 3089 if (last == 0) 3090 break; 3091 last = 0; 3092 continue; 3093 } 3094 3095 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3096 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3097 cache->dirty = 0; 3098 last = cache->key.objectid + cache->key.offset; 3099 3100 err = write_one_cache_group(trans, root, path, cache); 3101 if (err) /* File system offline */ 3102 goto out; 3103 3104 btrfs_put_block_group(cache); 3105 } 3106 3107 while (1) { 3108 /* 3109 * I don't think this is needed since we're just marking our 3110 * preallocated extent as written, but just in case it can't 3111 * hurt. 3112 */ 3113 if (last == 0) { 3114 err = btrfs_run_delayed_refs(trans, root, 3115 (unsigned long)-1); 3116 if (err) /* File system offline */ 3117 goto out; 3118 } 3119 3120 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3121 while (cache) { 3122 /* 3123 * Really this shouldn't happen, but it could if we 3124 * couldn't write the entire preallocated extent and 3125 * splitting the extent resulted in a new block. 3126 */ 3127 if (cache->dirty) { 3128 btrfs_put_block_group(cache); 3129 goto again; 3130 } 3131 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3132 break; 3133 cache = next_block_group(root, cache); 3134 } 3135 if (!cache) { 3136 if (last == 0) 3137 break; 3138 last = 0; 3139 continue; 3140 } 3141 3142 err = btrfs_write_out_cache(root, trans, cache, path); 3143 3144 /* 3145 * If we didn't have an error then the cache state is still 3146 * NEED_WRITE, so we can set it to WRITTEN. 3147 */ 3148 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3149 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3150 last = cache->key.objectid + cache->key.offset; 3151 btrfs_put_block_group(cache); 3152 } 3153 out: 3154 3155 btrfs_free_path(path); 3156 return err; 3157 } 3158 3159 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3160 { 3161 struct btrfs_block_group_cache *block_group; 3162 int readonly = 0; 3163 3164 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3165 if (!block_group || block_group->ro) 3166 readonly = 1; 3167 if (block_group) 3168 btrfs_put_block_group(block_group); 3169 return readonly; 3170 } 3171 3172 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3173 u64 total_bytes, u64 bytes_used, 3174 struct btrfs_space_info **space_info) 3175 { 3176 struct btrfs_space_info *found; 3177 int i; 3178 int factor; 3179 3180 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3181 BTRFS_BLOCK_GROUP_RAID10)) 3182 factor = 2; 3183 else 3184 factor = 1; 3185 3186 found = __find_space_info(info, flags); 3187 if (found) { 3188 spin_lock(&found->lock); 3189 found->total_bytes += total_bytes; 3190 found->disk_total += total_bytes * factor; 3191 found->bytes_used += bytes_used; 3192 found->disk_used += bytes_used * factor; 3193 found->full = 0; 3194 spin_unlock(&found->lock); 3195 *space_info = found; 3196 return 0; 3197 } 3198 found = kzalloc(sizeof(*found), GFP_NOFS); 3199 if (!found) 3200 return -ENOMEM; 3201 3202 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3203 INIT_LIST_HEAD(&found->block_groups[i]); 3204 init_rwsem(&found->groups_sem); 3205 spin_lock_init(&found->lock); 3206 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3207 found->total_bytes = total_bytes; 3208 found->disk_total = total_bytes * factor; 3209 found->bytes_used = bytes_used; 3210 found->disk_used = bytes_used * factor; 3211 found->bytes_pinned = 0; 3212 found->bytes_reserved = 0; 3213 found->bytes_readonly = 0; 3214 found->bytes_may_use = 0; 3215 found->full = 0; 3216 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3217 found->chunk_alloc = 0; 3218 found->flush = 0; 3219 init_waitqueue_head(&found->wait); 3220 *space_info = found; 3221 list_add_rcu(&found->list, &info->space_info); 3222 if (flags & BTRFS_BLOCK_GROUP_DATA) 3223 info->data_sinfo = found; 3224 return 0; 3225 } 3226 3227 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3228 { 3229 u64 extra_flags = chunk_to_extended(flags) & 3230 BTRFS_EXTENDED_PROFILE_MASK; 3231 3232 if (flags & BTRFS_BLOCK_GROUP_DATA) 3233 fs_info->avail_data_alloc_bits |= extra_flags; 3234 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3235 fs_info->avail_metadata_alloc_bits |= extra_flags; 3236 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3237 fs_info->avail_system_alloc_bits |= extra_flags; 3238 } 3239 3240 /* 3241 * returns target flags in extended format or 0 if restripe for this 3242 * chunk_type is not in progress 3243 * 3244 * should be called with either volume_mutex or balance_lock held 3245 */ 3246 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3247 { 3248 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3249 u64 target = 0; 3250 3251 if (!bctl) 3252 return 0; 3253 3254 if (flags & BTRFS_BLOCK_GROUP_DATA && 3255 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3256 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3257 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3258 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3259 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3260 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3261 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3262 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3263 } 3264 3265 return target; 3266 } 3267 3268 /* 3269 * @flags: available profiles in extended format (see ctree.h) 3270 * 3271 * Returns reduced profile in chunk format. If profile changing is in 3272 * progress (either running or paused) picks the target profile (if it's 3273 * already available), otherwise falls back to plain reducing. 3274 */ 3275 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3276 { 3277 /* 3278 * we add in the count of missing devices because we want 3279 * to make sure that any RAID levels on a degraded FS 3280 * continue to be honored. 3281 */ 3282 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3283 root->fs_info->fs_devices->missing_devices; 3284 u64 target; 3285 3286 /* 3287 * see if restripe for this chunk_type is in progress, if so 3288 * try to reduce to the target profile 3289 */ 3290 spin_lock(&root->fs_info->balance_lock); 3291 target = get_restripe_target(root->fs_info, flags); 3292 if (target) { 3293 /* pick target profile only if it's already available */ 3294 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3295 spin_unlock(&root->fs_info->balance_lock); 3296 return extended_to_chunk(target); 3297 } 3298 } 3299 spin_unlock(&root->fs_info->balance_lock); 3300 3301 if (num_devices == 1) 3302 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 3303 if (num_devices < 4) 3304 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3305 3306 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 3307 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3308 BTRFS_BLOCK_GROUP_RAID10))) { 3309 flags &= ~BTRFS_BLOCK_GROUP_DUP; 3310 } 3311 3312 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 3313 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 3314 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 3315 } 3316 3317 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 3318 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 3319 (flags & BTRFS_BLOCK_GROUP_RAID10) | 3320 (flags & BTRFS_BLOCK_GROUP_DUP))) { 3321 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 3322 } 3323 3324 return extended_to_chunk(flags); 3325 } 3326 3327 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3328 { 3329 if (flags & BTRFS_BLOCK_GROUP_DATA) 3330 flags |= root->fs_info->avail_data_alloc_bits; 3331 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3332 flags |= root->fs_info->avail_system_alloc_bits; 3333 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3334 flags |= root->fs_info->avail_metadata_alloc_bits; 3335 3336 return btrfs_reduce_alloc_profile(root, flags); 3337 } 3338 3339 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3340 { 3341 u64 flags; 3342 3343 if (data) 3344 flags = BTRFS_BLOCK_GROUP_DATA; 3345 else if (root == root->fs_info->chunk_root) 3346 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3347 else 3348 flags = BTRFS_BLOCK_GROUP_METADATA; 3349 3350 return get_alloc_profile(root, flags); 3351 } 3352 3353 /* 3354 * This will check the space that the inode allocates from to make sure we have 3355 * enough space for bytes. 3356 */ 3357 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3358 { 3359 struct btrfs_space_info *data_sinfo; 3360 struct btrfs_root *root = BTRFS_I(inode)->root; 3361 struct btrfs_fs_info *fs_info = root->fs_info; 3362 u64 used; 3363 int ret = 0, committed = 0, alloc_chunk = 1; 3364 3365 /* make sure bytes are sectorsize aligned */ 3366 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3367 3368 if (root == root->fs_info->tree_root || 3369 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3370 alloc_chunk = 0; 3371 committed = 1; 3372 } 3373 3374 data_sinfo = fs_info->data_sinfo; 3375 if (!data_sinfo) 3376 goto alloc; 3377 3378 again: 3379 /* make sure we have enough space to handle the data first */ 3380 spin_lock(&data_sinfo->lock); 3381 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3382 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3383 data_sinfo->bytes_may_use; 3384 3385 if (used + bytes > data_sinfo->total_bytes) { 3386 struct btrfs_trans_handle *trans; 3387 3388 /* 3389 * if we don't have enough free bytes in this space then we need 3390 * to alloc a new chunk. 3391 */ 3392 if (!data_sinfo->full && alloc_chunk) { 3393 u64 alloc_target; 3394 3395 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3396 spin_unlock(&data_sinfo->lock); 3397 alloc: 3398 alloc_target = btrfs_get_alloc_profile(root, 1); 3399 trans = btrfs_join_transaction(root); 3400 if (IS_ERR(trans)) 3401 return PTR_ERR(trans); 3402 3403 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3404 alloc_target, 3405 CHUNK_ALLOC_NO_FORCE); 3406 btrfs_end_transaction(trans, root); 3407 if (ret < 0) { 3408 if (ret != -ENOSPC) 3409 return ret; 3410 else 3411 goto commit_trans; 3412 } 3413 3414 if (!data_sinfo) 3415 data_sinfo = fs_info->data_sinfo; 3416 3417 goto again; 3418 } 3419 3420 /* 3421 * If we have less pinned bytes than we want to allocate then 3422 * don't bother committing the transaction, it won't help us. 3423 */ 3424 if (data_sinfo->bytes_pinned < bytes) 3425 committed = 1; 3426 spin_unlock(&data_sinfo->lock); 3427 3428 /* commit the current transaction and try again */ 3429 commit_trans: 3430 if (!committed && 3431 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3432 committed = 1; 3433 trans = btrfs_join_transaction(root); 3434 if (IS_ERR(trans)) 3435 return PTR_ERR(trans); 3436 ret = btrfs_commit_transaction(trans, root); 3437 if (ret) 3438 return ret; 3439 goto again; 3440 } 3441 3442 return -ENOSPC; 3443 } 3444 data_sinfo->bytes_may_use += bytes; 3445 trace_btrfs_space_reservation(root->fs_info, "space_info", 3446 data_sinfo->flags, bytes, 1); 3447 spin_unlock(&data_sinfo->lock); 3448 3449 return 0; 3450 } 3451 3452 /* 3453 * Called if we need to clear a data reservation for this inode. 3454 */ 3455 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3456 { 3457 struct btrfs_root *root = BTRFS_I(inode)->root; 3458 struct btrfs_space_info *data_sinfo; 3459 3460 /* make sure bytes are sectorsize aligned */ 3461 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3462 3463 data_sinfo = root->fs_info->data_sinfo; 3464 spin_lock(&data_sinfo->lock); 3465 data_sinfo->bytes_may_use -= bytes; 3466 trace_btrfs_space_reservation(root->fs_info, "space_info", 3467 data_sinfo->flags, bytes, 0); 3468 spin_unlock(&data_sinfo->lock); 3469 } 3470 3471 static void force_metadata_allocation(struct btrfs_fs_info *info) 3472 { 3473 struct list_head *head = &info->space_info; 3474 struct btrfs_space_info *found; 3475 3476 rcu_read_lock(); 3477 list_for_each_entry_rcu(found, head, list) { 3478 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3479 found->force_alloc = CHUNK_ALLOC_FORCE; 3480 } 3481 rcu_read_unlock(); 3482 } 3483 3484 static int should_alloc_chunk(struct btrfs_root *root, 3485 struct btrfs_space_info *sinfo, int force) 3486 { 3487 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3488 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3489 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3490 u64 thresh; 3491 3492 if (force == CHUNK_ALLOC_FORCE) 3493 return 1; 3494 3495 /* 3496 * We need to take into account the global rsv because for all intents 3497 * and purposes it's used space. Don't worry about locking the 3498 * global_rsv, it doesn't change except when the transaction commits. 3499 */ 3500 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3501 num_allocated += global_rsv->size; 3502 3503 /* 3504 * in limited mode, we want to have some free space up to 3505 * about 1% of the FS size. 3506 */ 3507 if (force == CHUNK_ALLOC_LIMITED) { 3508 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3509 thresh = max_t(u64, 64 * 1024 * 1024, 3510 div_factor_fine(thresh, 1)); 3511 3512 if (num_bytes - num_allocated < thresh) 3513 return 1; 3514 } 3515 3516 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3517 return 0; 3518 return 1; 3519 } 3520 3521 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3522 { 3523 u64 num_dev; 3524 3525 if (type & BTRFS_BLOCK_GROUP_RAID10 || 3526 type & BTRFS_BLOCK_GROUP_RAID0) 3527 num_dev = root->fs_info->fs_devices->rw_devices; 3528 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3529 num_dev = 2; 3530 else 3531 num_dev = 1; /* DUP or single */ 3532 3533 /* metadata for updaing devices and chunk tree */ 3534 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3535 } 3536 3537 static void check_system_chunk(struct btrfs_trans_handle *trans, 3538 struct btrfs_root *root, u64 type) 3539 { 3540 struct btrfs_space_info *info; 3541 u64 left; 3542 u64 thresh; 3543 3544 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3545 spin_lock(&info->lock); 3546 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3547 info->bytes_reserved - info->bytes_readonly; 3548 spin_unlock(&info->lock); 3549 3550 thresh = get_system_chunk_thresh(root, type); 3551 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3552 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n", 3553 left, thresh, type); 3554 dump_space_info(info, 0, 0); 3555 } 3556 3557 if (left < thresh) { 3558 u64 flags; 3559 3560 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3561 btrfs_alloc_chunk(trans, root, flags); 3562 } 3563 } 3564 3565 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3566 struct btrfs_root *extent_root, u64 flags, int force) 3567 { 3568 struct btrfs_space_info *space_info; 3569 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3570 int wait_for_alloc = 0; 3571 int ret = 0; 3572 3573 space_info = __find_space_info(extent_root->fs_info, flags); 3574 if (!space_info) { 3575 ret = update_space_info(extent_root->fs_info, flags, 3576 0, 0, &space_info); 3577 BUG_ON(ret); /* -ENOMEM */ 3578 } 3579 BUG_ON(!space_info); /* Logic error */ 3580 3581 again: 3582 spin_lock(&space_info->lock); 3583 if (force < space_info->force_alloc) 3584 force = space_info->force_alloc; 3585 if (space_info->full) { 3586 spin_unlock(&space_info->lock); 3587 return 0; 3588 } 3589 3590 if (!should_alloc_chunk(extent_root, space_info, force)) { 3591 spin_unlock(&space_info->lock); 3592 return 0; 3593 } else if (space_info->chunk_alloc) { 3594 wait_for_alloc = 1; 3595 } else { 3596 space_info->chunk_alloc = 1; 3597 } 3598 3599 spin_unlock(&space_info->lock); 3600 3601 mutex_lock(&fs_info->chunk_mutex); 3602 3603 /* 3604 * The chunk_mutex is held throughout the entirety of a chunk 3605 * allocation, so once we've acquired the chunk_mutex we know that the 3606 * other guy is done and we need to recheck and see if we should 3607 * allocate. 3608 */ 3609 if (wait_for_alloc) { 3610 mutex_unlock(&fs_info->chunk_mutex); 3611 wait_for_alloc = 0; 3612 goto again; 3613 } 3614 3615 /* 3616 * If we have mixed data/metadata chunks we want to make sure we keep 3617 * allocating mixed chunks instead of individual chunks. 3618 */ 3619 if (btrfs_mixed_space_info(space_info)) 3620 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3621 3622 /* 3623 * if we're doing a data chunk, go ahead and make sure that 3624 * we keep a reasonable number of metadata chunks allocated in the 3625 * FS as well. 3626 */ 3627 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3628 fs_info->data_chunk_allocations++; 3629 if (!(fs_info->data_chunk_allocations % 3630 fs_info->metadata_ratio)) 3631 force_metadata_allocation(fs_info); 3632 } 3633 3634 /* 3635 * Check if we have enough space in SYSTEM chunk because we may need 3636 * to update devices. 3637 */ 3638 check_system_chunk(trans, extent_root, flags); 3639 3640 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3641 if (ret < 0 && ret != -ENOSPC) 3642 goto out; 3643 3644 spin_lock(&space_info->lock); 3645 if (ret) 3646 space_info->full = 1; 3647 else 3648 ret = 1; 3649 3650 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3651 space_info->chunk_alloc = 0; 3652 spin_unlock(&space_info->lock); 3653 out: 3654 mutex_unlock(&fs_info->chunk_mutex); 3655 return ret; 3656 } 3657 3658 static int can_overcommit(struct btrfs_root *root, 3659 struct btrfs_space_info *space_info, u64 bytes, 3660 enum btrfs_reserve_flush_enum flush) 3661 { 3662 u64 profile = btrfs_get_alloc_profile(root, 0); 3663 u64 avail; 3664 u64 used; 3665 3666 used = space_info->bytes_used + space_info->bytes_reserved + 3667 space_info->bytes_pinned + space_info->bytes_readonly + 3668 space_info->bytes_may_use; 3669 3670 spin_lock(&root->fs_info->free_chunk_lock); 3671 avail = root->fs_info->free_chunk_space; 3672 spin_unlock(&root->fs_info->free_chunk_lock); 3673 3674 /* 3675 * If we have dup, raid1 or raid10 then only half of the free 3676 * space is actually useable. 3677 */ 3678 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3679 BTRFS_BLOCK_GROUP_RAID1 | 3680 BTRFS_BLOCK_GROUP_RAID10)) 3681 avail >>= 1; 3682 3683 /* 3684 * If we aren't flushing all things, let us overcommit up to 3685 * 1/2th of the space. If we can flush, don't let us overcommit 3686 * too much, let it overcommit up to 1/8 of the space. 3687 */ 3688 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3689 avail >>= 3; 3690 else 3691 avail >>= 1; 3692 3693 if (used + bytes < space_info->total_bytes + avail) 3694 return 1; 3695 return 0; 3696 } 3697 3698 static inline int writeback_inodes_sb_nr_if_idle_safe(struct super_block *sb, 3699 unsigned long nr_pages, 3700 enum wb_reason reason) 3701 { 3702 /* the flusher is dealing with the dirty inodes now. */ 3703 if (writeback_in_progress(sb->s_bdi)) 3704 return 1; 3705 3706 if (down_read_trylock(&sb->s_umount)) { 3707 writeback_inodes_sb_nr(sb, nr_pages, reason); 3708 up_read(&sb->s_umount); 3709 return 1; 3710 } 3711 3712 return 0; 3713 } 3714 3715 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3716 unsigned long nr_pages) 3717 { 3718 struct super_block *sb = root->fs_info->sb; 3719 int started; 3720 3721 /* If we can not start writeback, just sync all the delalloc file. */ 3722 started = writeback_inodes_sb_nr_if_idle_safe(sb, nr_pages, 3723 WB_REASON_FS_FREE_SPACE); 3724 if (!started) { 3725 /* 3726 * We needn't worry the filesystem going from r/w to r/o though 3727 * we don't acquire ->s_umount mutex, because the filesystem 3728 * should guarantee the delalloc inodes list be empty after 3729 * the filesystem is readonly(all dirty pages are written to 3730 * the disk). 3731 */ 3732 btrfs_start_delalloc_inodes(root, 0); 3733 btrfs_wait_ordered_extents(root, 0); 3734 } 3735 } 3736 3737 /* 3738 * shrink metadata reservation for delalloc 3739 */ 3740 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 3741 bool wait_ordered) 3742 { 3743 struct btrfs_block_rsv *block_rsv; 3744 struct btrfs_space_info *space_info; 3745 struct btrfs_trans_handle *trans; 3746 u64 delalloc_bytes; 3747 u64 max_reclaim; 3748 long time_left; 3749 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3750 int loops = 0; 3751 enum btrfs_reserve_flush_enum flush; 3752 3753 trans = (struct btrfs_trans_handle *)current->journal_info; 3754 block_rsv = &root->fs_info->delalloc_block_rsv; 3755 space_info = block_rsv->space_info; 3756 3757 smp_mb(); 3758 delalloc_bytes = root->fs_info->delalloc_bytes; 3759 if (delalloc_bytes == 0) { 3760 if (trans) 3761 return; 3762 btrfs_wait_ordered_extents(root, 0); 3763 return; 3764 } 3765 3766 while (delalloc_bytes && loops < 3) { 3767 max_reclaim = min(delalloc_bytes, to_reclaim); 3768 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 3769 btrfs_writeback_inodes_sb_nr(root, nr_pages); 3770 /* 3771 * We need to wait for the async pages to actually start before 3772 * we do anything. 3773 */ 3774 wait_event(root->fs_info->async_submit_wait, 3775 !atomic_read(&root->fs_info->async_delalloc_pages)); 3776 3777 if (!trans) 3778 flush = BTRFS_RESERVE_FLUSH_ALL; 3779 else 3780 flush = BTRFS_RESERVE_NO_FLUSH; 3781 spin_lock(&space_info->lock); 3782 if (can_overcommit(root, space_info, orig, flush)) { 3783 spin_unlock(&space_info->lock); 3784 break; 3785 } 3786 spin_unlock(&space_info->lock); 3787 3788 loops++; 3789 if (wait_ordered && !trans) { 3790 btrfs_wait_ordered_extents(root, 0); 3791 } else { 3792 time_left = schedule_timeout_killable(1); 3793 if (time_left) 3794 break; 3795 } 3796 smp_mb(); 3797 delalloc_bytes = root->fs_info->delalloc_bytes; 3798 } 3799 } 3800 3801 /** 3802 * maybe_commit_transaction - possibly commit the transaction if its ok to 3803 * @root - the root we're allocating for 3804 * @bytes - the number of bytes we want to reserve 3805 * @force - force the commit 3806 * 3807 * This will check to make sure that committing the transaction will actually 3808 * get us somewhere and then commit the transaction if it does. Otherwise it 3809 * will return -ENOSPC. 3810 */ 3811 static int may_commit_transaction(struct btrfs_root *root, 3812 struct btrfs_space_info *space_info, 3813 u64 bytes, int force) 3814 { 3815 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 3816 struct btrfs_trans_handle *trans; 3817 3818 trans = (struct btrfs_trans_handle *)current->journal_info; 3819 if (trans) 3820 return -EAGAIN; 3821 3822 if (force) 3823 goto commit; 3824 3825 /* See if there is enough pinned space to make this reservation */ 3826 spin_lock(&space_info->lock); 3827 if (space_info->bytes_pinned >= bytes) { 3828 spin_unlock(&space_info->lock); 3829 goto commit; 3830 } 3831 spin_unlock(&space_info->lock); 3832 3833 /* 3834 * See if there is some space in the delayed insertion reservation for 3835 * this reservation. 3836 */ 3837 if (space_info != delayed_rsv->space_info) 3838 return -ENOSPC; 3839 3840 spin_lock(&space_info->lock); 3841 spin_lock(&delayed_rsv->lock); 3842 if (space_info->bytes_pinned + delayed_rsv->size < bytes) { 3843 spin_unlock(&delayed_rsv->lock); 3844 spin_unlock(&space_info->lock); 3845 return -ENOSPC; 3846 } 3847 spin_unlock(&delayed_rsv->lock); 3848 spin_unlock(&space_info->lock); 3849 3850 commit: 3851 trans = btrfs_join_transaction(root); 3852 if (IS_ERR(trans)) 3853 return -ENOSPC; 3854 3855 return btrfs_commit_transaction(trans, root); 3856 } 3857 3858 enum flush_state { 3859 FLUSH_DELAYED_ITEMS_NR = 1, 3860 FLUSH_DELAYED_ITEMS = 2, 3861 FLUSH_DELALLOC = 3, 3862 FLUSH_DELALLOC_WAIT = 4, 3863 ALLOC_CHUNK = 5, 3864 COMMIT_TRANS = 6, 3865 }; 3866 3867 static int flush_space(struct btrfs_root *root, 3868 struct btrfs_space_info *space_info, u64 num_bytes, 3869 u64 orig_bytes, int state) 3870 { 3871 struct btrfs_trans_handle *trans; 3872 int nr; 3873 int ret = 0; 3874 3875 switch (state) { 3876 case FLUSH_DELAYED_ITEMS_NR: 3877 case FLUSH_DELAYED_ITEMS: 3878 if (state == FLUSH_DELAYED_ITEMS_NR) { 3879 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 3880 3881 nr = (int)div64_u64(num_bytes, bytes); 3882 if (!nr) 3883 nr = 1; 3884 nr *= 2; 3885 } else { 3886 nr = -1; 3887 } 3888 trans = btrfs_join_transaction(root); 3889 if (IS_ERR(trans)) { 3890 ret = PTR_ERR(trans); 3891 break; 3892 } 3893 ret = btrfs_run_delayed_items_nr(trans, root, nr); 3894 btrfs_end_transaction(trans, root); 3895 break; 3896 case FLUSH_DELALLOC: 3897 case FLUSH_DELALLOC_WAIT: 3898 shrink_delalloc(root, num_bytes, orig_bytes, 3899 state == FLUSH_DELALLOC_WAIT); 3900 break; 3901 case ALLOC_CHUNK: 3902 trans = btrfs_join_transaction(root); 3903 if (IS_ERR(trans)) { 3904 ret = PTR_ERR(trans); 3905 break; 3906 } 3907 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3908 btrfs_get_alloc_profile(root, 0), 3909 CHUNK_ALLOC_NO_FORCE); 3910 btrfs_end_transaction(trans, root); 3911 if (ret == -ENOSPC) 3912 ret = 0; 3913 break; 3914 case COMMIT_TRANS: 3915 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 3916 break; 3917 default: 3918 ret = -ENOSPC; 3919 break; 3920 } 3921 3922 return ret; 3923 } 3924 /** 3925 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 3926 * @root - the root we're allocating for 3927 * @block_rsv - the block_rsv we're allocating for 3928 * @orig_bytes - the number of bytes we want 3929 * @flush - wether or not we can flush to make our reservation 3930 * 3931 * This will reserve orgi_bytes number of bytes from the space info associated 3932 * with the block_rsv. If there is not enough space it will make an attempt to 3933 * flush out space to make room. It will do this by flushing delalloc if 3934 * possible or committing the transaction. If flush is 0 then no attempts to 3935 * regain reservations will be made and this will fail if there is not enough 3936 * space already. 3937 */ 3938 static int reserve_metadata_bytes(struct btrfs_root *root, 3939 struct btrfs_block_rsv *block_rsv, 3940 u64 orig_bytes, 3941 enum btrfs_reserve_flush_enum flush) 3942 { 3943 struct btrfs_space_info *space_info = block_rsv->space_info; 3944 u64 used; 3945 u64 num_bytes = orig_bytes; 3946 int flush_state = FLUSH_DELAYED_ITEMS_NR; 3947 int ret = 0; 3948 bool flushing = false; 3949 3950 again: 3951 ret = 0; 3952 spin_lock(&space_info->lock); 3953 /* 3954 * We only want to wait if somebody other than us is flushing and we 3955 * are actually allowed to flush all things. 3956 */ 3957 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 3958 space_info->flush) { 3959 spin_unlock(&space_info->lock); 3960 /* 3961 * If we have a trans handle we can't wait because the flusher 3962 * may have to commit the transaction, which would mean we would 3963 * deadlock since we are waiting for the flusher to finish, but 3964 * hold the current transaction open. 3965 */ 3966 if (current->journal_info) 3967 return -EAGAIN; 3968 ret = wait_event_killable(space_info->wait, !space_info->flush); 3969 /* Must have been killed, return */ 3970 if (ret) 3971 return -EINTR; 3972 3973 spin_lock(&space_info->lock); 3974 } 3975 3976 ret = -ENOSPC; 3977 used = space_info->bytes_used + space_info->bytes_reserved + 3978 space_info->bytes_pinned + space_info->bytes_readonly + 3979 space_info->bytes_may_use; 3980 3981 /* 3982 * The idea here is that we've not already over-reserved the block group 3983 * then we can go ahead and save our reservation first and then start 3984 * flushing if we need to. Otherwise if we've already overcommitted 3985 * lets start flushing stuff first and then come back and try to make 3986 * our reservation. 3987 */ 3988 if (used <= space_info->total_bytes) { 3989 if (used + orig_bytes <= space_info->total_bytes) { 3990 space_info->bytes_may_use += orig_bytes; 3991 trace_btrfs_space_reservation(root->fs_info, 3992 "space_info", space_info->flags, orig_bytes, 1); 3993 ret = 0; 3994 } else { 3995 /* 3996 * Ok set num_bytes to orig_bytes since we aren't 3997 * overocmmitted, this way we only try and reclaim what 3998 * we need. 3999 */ 4000 num_bytes = orig_bytes; 4001 } 4002 } else { 4003 /* 4004 * Ok we're over committed, set num_bytes to the overcommitted 4005 * amount plus the amount of bytes that we need for this 4006 * reservation. 4007 */ 4008 num_bytes = used - space_info->total_bytes + 4009 (orig_bytes * 2); 4010 } 4011 4012 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4013 space_info->bytes_may_use += orig_bytes; 4014 trace_btrfs_space_reservation(root->fs_info, "space_info", 4015 space_info->flags, orig_bytes, 4016 1); 4017 ret = 0; 4018 } 4019 4020 /* 4021 * Couldn't make our reservation, save our place so while we're trying 4022 * to reclaim space we can actually use it instead of somebody else 4023 * stealing it from us. 4024 * 4025 * We make the other tasks wait for the flush only when we can flush 4026 * all things. 4027 */ 4028 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4029 flushing = true; 4030 space_info->flush = 1; 4031 } 4032 4033 spin_unlock(&space_info->lock); 4034 4035 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4036 goto out; 4037 4038 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4039 flush_state); 4040 flush_state++; 4041 4042 /* 4043 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4044 * would happen. So skip delalloc flush. 4045 */ 4046 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4047 (flush_state == FLUSH_DELALLOC || 4048 flush_state == FLUSH_DELALLOC_WAIT)) 4049 flush_state = ALLOC_CHUNK; 4050 4051 if (!ret) 4052 goto again; 4053 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4054 flush_state < COMMIT_TRANS) 4055 goto again; 4056 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4057 flush_state <= COMMIT_TRANS) 4058 goto again; 4059 4060 out: 4061 if (flushing) { 4062 spin_lock(&space_info->lock); 4063 space_info->flush = 0; 4064 wake_up_all(&space_info->wait); 4065 spin_unlock(&space_info->lock); 4066 } 4067 return ret; 4068 } 4069 4070 static struct btrfs_block_rsv *get_block_rsv( 4071 const struct btrfs_trans_handle *trans, 4072 const struct btrfs_root *root) 4073 { 4074 struct btrfs_block_rsv *block_rsv = NULL; 4075 4076 if (root->ref_cows) 4077 block_rsv = trans->block_rsv; 4078 4079 if (root == root->fs_info->csum_root && trans->adding_csums) 4080 block_rsv = trans->block_rsv; 4081 4082 if (!block_rsv) 4083 block_rsv = root->block_rsv; 4084 4085 if (!block_rsv) 4086 block_rsv = &root->fs_info->empty_block_rsv; 4087 4088 return block_rsv; 4089 } 4090 4091 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4092 u64 num_bytes) 4093 { 4094 int ret = -ENOSPC; 4095 spin_lock(&block_rsv->lock); 4096 if (block_rsv->reserved >= num_bytes) { 4097 block_rsv->reserved -= num_bytes; 4098 if (block_rsv->reserved < block_rsv->size) 4099 block_rsv->full = 0; 4100 ret = 0; 4101 } 4102 spin_unlock(&block_rsv->lock); 4103 return ret; 4104 } 4105 4106 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4107 u64 num_bytes, int update_size) 4108 { 4109 spin_lock(&block_rsv->lock); 4110 block_rsv->reserved += num_bytes; 4111 if (update_size) 4112 block_rsv->size += num_bytes; 4113 else if (block_rsv->reserved >= block_rsv->size) 4114 block_rsv->full = 1; 4115 spin_unlock(&block_rsv->lock); 4116 } 4117 4118 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4119 struct btrfs_block_rsv *block_rsv, 4120 struct btrfs_block_rsv *dest, u64 num_bytes) 4121 { 4122 struct btrfs_space_info *space_info = block_rsv->space_info; 4123 4124 spin_lock(&block_rsv->lock); 4125 if (num_bytes == (u64)-1) 4126 num_bytes = block_rsv->size; 4127 block_rsv->size -= num_bytes; 4128 if (block_rsv->reserved >= block_rsv->size) { 4129 num_bytes = block_rsv->reserved - block_rsv->size; 4130 block_rsv->reserved = block_rsv->size; 4131 block_rsv->full = 1; 4132 } else { 4133 num_bytes = 0; 4134 } 4135 spin_unlock(&block_rsv->lock); 4136 4137 if (num_bytes > 0) { 4138 if (dest) { 4139 spin_lock(&dest->lock); 4140 if (!dest->full) { 4141 u64 bytes_to_add; 4142 4143 bytes_to_add = dest->size - dest->reserved; 4144 bytes_to_add = min(num_bytes, bytes_to_add); 4145 dest->reserved += bytes_to_add; 4146 if (dest->reserved >= dest->size) 4147 dest->full = 1; 4148 num_bytes -= bytes_to_add; 4149 } 4150 spin_unlock(&dest->lock); 4151 } 4152 if (num_bytes) { 4153 spin_lock(&space_info->lock); 4154 space_info->bytes_may_use -= num_bytes; 4155 trace_btrfs_space_reservation(fs_info, "space_info", 4156 space_info->flags, num_bytes, 0); 4157 space_info->reservation_progress++; 4158 spin_unlock(&space_info->lock); 4159 } 4160 } 4161 } 4162 4163 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4164 struct btrfs_block_rsv *dst, u64 num_bytes) 4165 { 4166 int ret; 4167 4168 ret = block_rsv_use_bytes(src, num_bytes); 4169 if (ret) 4170 return ret; 4171 4172 block_rsv_add_bytes(dst, num_bytes, 1); 4173 return 0; 4174 } 4175 4176 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4177 { 4178 memset(rsv, 0, sizeof(*rsv)); 4179 spin_lock_init(&rsv->lock); 4180 rsv->type = type; 4181 } 4182 4183 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4184 unsigned short type) 4185 { 4186 struct btrfs_block_rsv *block_rsv; 4187 struct btrfs_fs_info *fs_info = root->fs_info; 4188 4189 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4190 if (!block_rsv) 4191 return NULL; 4192 4193 btrfs_init_block_rsv(block_rsv, type); 4194 block_rsv->space_info = __find_space_info(fs_info, 4195 BTRFS_BLOCK_GROUP_METADATA); 4196 return block_rsv; 4197 } 4198 4199 void btrfs_free_block_rsv(struct btrfs_root *root, 4200 struct btrfs_block_rsv *rsv) 4201 { 4202 if (!rsv) 4203 return; 4204 btrfs_block_rsv_release(root, rsv, (u64)-1); 4205 kfree(rsv); 4206 } 4207 4208 int btrfs_block_rsv_add(struct btrfs_root *root, 4209 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4210 enum btrfs_reserve_flush_enum flush) 4211 { 4212 int ret; 4213 4214 if (num_bytes == 0) 4215 return 0; 4216 4217 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4218 if (!ret) { 4219 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4220 return 0; 4221 } 4222 4223 return ret; 4224 } 4225 4226 int btrfs_block_rsv_check(struct btrfs_root *root, 4227 struct btrfs_block_rsv *block_rsv, int min_factor) 4228 { 4229 u64 num_bytes = 0; 4230 int ret = -ENOSPC; 4231 4232 if (!block_rsv) 4233 return 0; 4234 4235 spin_lock(&block_rsv->lock); 4236 num_bytes = div_factor(block_rsv->size, min_factor); 4237 if (block_rsv->reserved >= num_bytes) 4238 ret = 0; 4239 spin_unlock(&block_rsv->lock); 4240 4241 return ret; 4242 } 4243 4244 int btrfs_block_rsv_refill(struct btrfs_root *root, 4245 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4246 enum btrfs_reserve_flush_enum flush) 4247 { 4248 u64 num_bytes = 0; 4249 int ret = -ENOSPC; 4250 4251 if (!block_rsv) 4252 return 0; 4253 4254 spin_lock(&block_rsv->lock); 4255 num_bytes = min_reserved; 4256 if (block_rsv->reserved >= num_bytes) 4257 ret = 0; 4258 else 4259 num_bytes -= block_rsv->reserved; 4260 spin_unlock(&block_rsv->lock); 4261 4262 if (!ret) 4263 return 0; 4264 4265 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4266 if (!ret) { 4267 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4268 return 0; 4269 } 4270 4271 return ret; 4272 } 4273 4274 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4275 struct btrfs_block_rsv *dst_rsv, 4276 u64 num_bytes) 4277 { 4278 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4279 } 4280 4281 void btrfs_block_rsv_release(struct btrfs_root *root, 4282 struct btrfs_block_rsv *block_rsv, 4283 u64 num_bytes) 4284 { 4285 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4286 if (global_rsv->full || global_rsv == block_rsv || 4287 block_rsv->space_info != global_rsv->space_info) 4288 global_rsv = NULL; 4289 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4290 num_bytes); 4291 } 4292 4293 /* 4294 * helper to calculate size of global block reservation. 4295 * the desired value is sum of space used by extent tree, 4296 * checksum tree and root tree 4297 */ 4298 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4299 { 4300 struct btrfs_space_info *sinfo; 4301 u64 num_bytes; 4302 u64 meta_used; 4303 u64 data_used; 4304 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4305 4306 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4307 spin_lock(&sinfo->lock); 4308 data_used = sinfo->bytes_used; 4309 spin_unlock(&sinfo->lock); 4310 4311 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4312 spin_lock(&sinfo->lock); 4313 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4314 data_used = 0; 4315 meta_used = sinfo->bytes_used; 4316 spin_unlock(&sinfo->lock); 4317 4318 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4319 csum_size * 2; 4320 num_bytes += div64_u64(data_used + meta_used, 50); 4321 4322 if (num_bytes * 3 > meta_used) 4323 num_bytes = div64_u64(meta_used, 3); 4324 4325 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4326 } 4327 4328 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4329 { 4330 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4331 struct btrfs_space_info *sinfo = block_rsv->space_info; 4332 u64 num_bytes; 4333 4334 num_bytes = calc_global_metadata_size(fs_info); 4335 4336 spin_lock(&sinfo->lock); 4337 spin_lock(&block_rsv->lock); 4338 4339 block_rsv->size = num_bytes; 4340 4341 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4342 sinfo->bytes_reserved + sinfo->bytes_readonly + 4343 sinfo->bytes_may_use; 4344 4345 if (sinfo->total_bytes > num_bytes) { 4346 num_bytes = sinfo->total_bytes - num_bytes; 4347 block_rsv->reserved += num_bytes; 4348 sinfo->bytes_may_use += num_bytes; 4349 trace_btrfs_space_reservation(fs_info, "space_info", 4350 sinfo->flags, num_bytes, 1); 4351 } 4352 4353 if (block_rsv->reserved >= block_rsv->size) { 4354 num_bytes = block_rsv->reserved - block_rsv->size; 4355 sinfo->bytes_may_use -= num_bytes; 4356 trace_btrfs_space_reservation(fs_info, "space_info", 4357 sinfo->flags, num_bytes, 0); 4358 sinfo->reservation_progress++; 4359 block_rsv->reserved = block_rsv->size; 4360 block_rsv->full = 1; 4361 } 4362 4363 spin_unlock(&block_rsv->lock); 4364 spin_unlock(&sinfo->lock); 4365 } 4366 4367 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4368 { 4369 struct btrfs_space_info *space_info; 4370 4371 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4372 fs_info->chunk_block_rsv.space_info = space_info; 4373 4374 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4375 fs_info->global_block_rsv.space_info = space_info; 4376 fs_info->delalloc_block_rsv.space_info = space_info; 4377 fs_info->trans_block_rsv.space_info = space_info; 4378 fs_info->empty_block_rsv.space_info = space_info; 4379 fs_info->delayed_block_rsv.space_info = space_info; 4380 4381 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4382 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4383 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4384 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4385 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4386 4387 update_global_block_rsv(fs_info); 4388 } 4389 4390 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4391 { 4392 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4393 (u64)-1); 4394 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4395 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4396 WARN_ON(fs_info->trans_block_rsv.size > 0); 4397 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4398 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4399 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4400 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4401 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4402 } 4403 4404 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4405 struct btrfs_root *root) 4406 { 4407 if (!trans->block_rsv) 4408 return; 4409 4410 if (!trans->bytes_reserved) 4411 return; 4412 4413 trace_btrfs_space_reservation(root->fs_info, "transaction", 4414 trans->transid, trans->bytes_reserved, 0); 4415 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4416 trans->bytes_reserved = 0; 4417 } 4418 4419 /* Can only return 0 or -ENOSPC */ 4420 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4421 struct inode *inode) 4422 { 4423 struct btrfs_root *root = BTRFS_I(inode)->root; 4424 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4425 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4426 4427 /* 4428 * We need to hold space in order to delete our orphan item once we've 4429 * added it, so this takes the reservation so we can release it later 4430 * when we are truly done with the orphan item. 4431 */ 4432 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4433 trace_btrfs_space_reservation(root->fs_info, "orphan", 4434 btrfs_ino(inode), num_bytes, 1); 4435 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4436 } 4437 4438 void btrfs_orphan_release_metadata(struct inode *inode) 4439 { 4440 struct btrfs_root *root = BTRFS_I(inode)->root; 4441 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4442 trace_btrfs_space_reservation(root->fs_info, "orphan", 4443 btrfs_ino(inode), num_bytes, 0); 4444 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4445 } 4446 4447 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 4448 struct btrfs_pending_snapshot *pending) 4449 { 4450 struct btrfs_root *root = pending->root; 4451 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4452 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 4453 /* 4454 * two for root back/forward refs, two for directory entries, 4455 * one for root of the snapshot and one for parent inode. 4456 */ 4457 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6); 4458 dst_rsv->space_info = src_rsv->space_info; 4459 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4460 } 4461 4462 /** 4463 * drop_outstanding_extent - drop an outstanding extent 4464 * @inode: the inode we're dropping the extent for 4465 * 4466 * This is called when we are freeing up an outstanding extent, either called 4467 * after an error or after an extent is written. This will return the number of 4468 * reserved extents that need to be freed. This must be called with 4469 * BTRFS_I(inode)->lock held. 4470 */ 4471 static unsigned drop_outstanding_extent(struct inode *inode) 4472 { 4473 unsigned drop_inode_space = 0; 4474 unsigned dropped_extents = 0; 4475 4476 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4477 BTRFS_I(inode)->outstanding_extents--; 4478 4479 if (BTRFS_I(inode)->outstanding_extents == 0 && 4480 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4481 &BTRFS_I(inode)->runtime_flags)) 4482 drop_inode_space = 1; 4483 4484 /* 4485 * If we have more or the same amount of outsanding extents than we have 4486 * reserved then we need to leave the reserved extents count alone. 4487 */ 4488 if (BTRFS_I(inode)->outstanding_extents >= 4489 BTRFS_I(inode)->reserved_extents) 4490 return drop_inode_space; 4491 4492 dropped_extents = BTRFS_I(inode)->reserved_extents - 4493 BTRFS_I(inode)->outstanding_extents; 4494 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4495 return dropped_extents + drop_inode_space; 4496 } 4497 4498 /** 4499 * calc_csum_metadata_size - return the amount of metada space that must be 4500 * reserved/free'd for the given bytes. 4501 * @inode: the inode we're manipulating 4502 * @num_bytes: the number of bytes in question 4503 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4504 * 4505 * This adjusts the number of csum_bytes in the inode and then returns the 4506 * correct amount of metadata that must either be reserved or freed. We 4507 * calculate how many checksums we can fit into one leaf and then divide the 4508 * number of bytes that will need to be checksumed by this value to figure out 4509 * how many checksums will be required. If we are adding bytes then the number 4510 * may go up and we will return the number of additional bytes that must be 4511 * reserved. If it is going down we will return the number of bytes that must 4512 * be freed. 4513 * 4514 * This must be called with BTRFS_I(inode)->lock held. 4515 */ 4516 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4517 int reserve) 4518 { 4519 struct btrfs_root *root = BTRFS_I(inode)->root; 4520 u64 csum_size; 4521 int num_csums_per_leaf; 4522 int num_csums; 4523 int old_csums; 4524 4525 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4526 BTRFS_I(inode)->csum_bytes == 0) 4527 return 0; 4528 4529 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4530 if (reserve) 4531 BTRFS_I(inode)->csum_bytes += num_bytes; 4532 else 4533 BTRFS_I(inode)->csum_bytes -= num_bytes; 4534 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4535 num_csums_per_leaf = (int)div64_u64(csum_size, 4536 sizeof(struct btrfs_csum_item) + 4537 sizeof(struct btrfs_disk_key)); 4538 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4539 num_csums = num_csums + num_csums_per_leaf - 1; 4540 num_csums = num_csums / num_csums_per_leaf; 4541 4542 old_csums = old_csums + num_csums_per_leaf - 1; 4543 old_csums = old_csums / num_csums_per_leaf; 4544 4545 /* No change, no need to reserve more */ 4546 if (old_csums == num_csums) 4547 return 0; 4548 4549 if (reserve) 4550 return btrfs_calc_trans_metadata_size(root, 4551 num_csums - old_csums); 4552 4553 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4554 } 4555 4556 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4557 { 4558 struct btrfs_root *root = BTRFS_I(inode)->root; 4559 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4560 u64 to_reserve = 0; 4561 u64 csum_bytes; 4562 unsigned nr_extents = 0; 4563 int extra_reserve = 0; 4564 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4565 int ret = 0; 4566 bool delalloc_lock = true; 4567 4568 /* If we are a free space inode we need to not flush since we will be in 4569 * the middle of a transaction commit. We also don't need the delalloc 4570 * mutex since we won't race with anybody. We need this mostly to make 4571 * lockdep shut its filthy mouth. 4572 */ 4573 if (btrfs_is_free_space_inode(inode)) { 4574 flush = BTRFS_RESERVE_NO_FLUSH; 4575 delalloc_lock = false; 4576 } 4577 4578 if (flush != BTRFS_RESERVE_NO_FLUSH && 4579 btrfs_transaction_in_commit(root->fs_info)) 4580 schedule_timeout(1); 4581 4582 if (delalloc_lock) 4583 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4584 4585 num_bytes = ALIGN(num_bytes, root->sectorsize); 4586 4587 spin_lock(&BTRFS_I(inode)->lock); 4588 BTRFS_I(inode)->outstanding_extents++; 4589 4590 if (BTRFS_I(inode)->outstanding_extents > 4591 BTRFS_I(inode)->reserved_extents) 4592 nr_extents = BTRFS_I(inode)->outstanding_extents - 4593 BTRFS_I(inode)->reserved_extents; 4594 4595 /* 4596 * Add an item to reserve for updating the inode when we complete the 4597 * delalloc io. 4598 */ 4599 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4600 &BTRFS_I(inode)->runtime_flags)) { 4601 nr_extents++; 4602 extra_reserve = 1; 4603 } 4604 4605 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4606 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4607 csum_bytes = BTRFS_I(inode)->csum_bytes; 4608 spin_unlock(&BTRFS_I(inode)->lock); 4609 4610 if (root->fs_info->quota_enabled) 4611 ret = btrfs_qgroup_reserve(root, num_bytes + 4612 nr_extents * root->leafsize); 4613 4614 /* 4615 * ret != 0 here means the qgroup reservation failed, we go straight to 4616 * the shared error handling then. 4617 */ 4618 if (ret == 0) 4619 ret = reserve_metadata_bytes(root, block_rsv, 4620 to_reserve, flush); 4621 4622 if (ret) { 4623 u64 to_free = 0; 4624 unsigned dropped; 4625 4626 spin_lock(&BTRFS_I(inode)->lock); 4627 dropped = drop_outstanding_extent(inode); 4628 /* 4629 * If the inodes csum_bytes is the same as the original 4630 * csum_bytes then we know we haven't raced with any free()ers 4631 * so we can just reduce our inodes csum bytes and carry on. 4632 * Otherwise we have to do the normal free thing to account for 4633 * the case that the free side didn't free up its reserve 4634 * because of this outstanding reservation. 4635 */ 4636 if (BTRFS_I(inode)->csum_bytes == csum_bytes) 4637 calc_csum_metadata_size(inode, num_bytes, 0); 4638 else 4639 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4640 spin_unlock(&BTRFS_I(inode)->lock); 4641 if (dropped) 4642 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4643 4644 if (to_free) { 4645 btrfs_block_rsv_release(root, block_rsv, to_free); 4646 trace_btrfs_space_reservation(root->fs_info, 4647 "delalloc", 4648 btrfs_ino(inode), 4649 to_free, 0); 4650 } 4651 if (root->fs_info->quota_enabled) { 4652 btrfs_qgroup_free(root, num_bytes + 4653 nr_extents * root->leafsize); 4654 } 4655 if (delalloc_lock) 4656 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4657 return ret; 4658 } 4659 4660 spin_lock(&BTRFS_I(inode)->lock); 4661 if (extra_reserve) { 4662 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4663 &BTRFS_I(inode)->runtime_flags); 4664 nr_extents--; 4665 } 4666 BTRFS_I(inode)->reserved_extents += nr_extents; 4667 spin_unlock(&BTRFS_I(inode)->lock); 4668 4669 if (delalloc_lock) 4670 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4671 4672 if (to_reserve) 4673 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4674 btrfs_ino(inode), to_reserve, 1); 4675 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4676 4677 return 0; 4678 } 4679 4680 /** 4681 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 4682 * @inode: the inode to release the reservation for 4683 * @num_bytes: the number of bytes we're releasing 4684 * 4685 * This will release the metadata reservation for an inode. This can be called 4686 * once we complete IO for a given set of bytes to release their metadata 4687 * reservations. 4688 */ 4689 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4690 { 4691 struct btrfs_root *root = BTRFS_I(inode)->root; 4692 u64 to_free = 0; 4693 unsigned dropped; 4694 4695 num_bytes = ALIGN(num_bytes, root->sectorsize); 4696 spin_lock(&BTRFS_I(inode)->lock); 4697 dropped = drop_outstanding_extent(inode); 4698 4699 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4700 spin_unlock(&BTRFS_I(inode)->lock); 4701 if (dropped > 0) 4702 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4703 4704 trace_btrfs_space_reservation(root->fs_info, "delalloc", 4705 btrfs_ino(inode), to_free, 0); 4706 if (root->fs_info->quota_enabled) { 4707 btrfs_qgroup_free(root, num_bytes + 4708 dropped * root->leafsize); 4709 } 4710 4711 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4712 to_free); 4713 } 4714 4715 /** 4716 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 4717 * @inode: inode we're writing to 4718 * @num_bytes: the number of bytes we want to allocate 4719 * 4720 * This will do the following things 4721 * 4722 * o reserve space in the data space info for num_bytes 4723 * o reserve space in the metadata space info based on number of outstanding 4724 * extents and how much csums will be needed 4725 * o add to the inodes ->delalloc_bytes 4726 * o add it to the fs_info's delalloc inodes list. 4727 * 4728 * This will return 0 for success and -ENOSPC if there is no space left. 4729 */ 4730 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4731 { 4732 int ret; 4733 4734 ret = btrfs_check_data_free_space(inode, num_bytes); 4735 if (ret) 4736 return ret; 4737 4738 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4739 if (ret) { 4740 btrfs_free_reserved_data_space(inode, num_bytes); 4741 return ret; 4742 } 4743 4744 return 0; 4745 } 4746 4747 /** 4748 * btrfs_delalloc_release_space - release data and metadata space for delalloc 4749 * @inode: inode we're releasing space for 4750 * @num_bytes: the number of bytes we want to free up 4751 * 4752 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 4753 * called in the case that we don't need the metadata AND data reservations 4754 * anymore. So if there is an error or we insert an inline extent. 4755 * 4756 * This function will release the metadata space that was not used and will 4757 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 4758 * list if there are no delalloc bytes left. 4759 */ 4760 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4761 { 4762 btrfs_delalloc_release_metadata(inode, num_bytes); 4763 btrfs_free_reserved_data_space(inode, num_bytes); 4764 } 4765 4766 static int update_block_group(struct btrfs_trans_handle *trans, 4767 struct btrfs_root *root, 4768 u64 bytenr, u64 num_bytes, int alloc) 4769 { 4770 struct btrfs_block_group_cache *cache = NULL; 4771 struct btrfs_fs_info *info = root->fs_info; 4772 u64 total = num_bytes; 4773 u64 old_val; 4774 u64 byte_in_group; 4775 int factor; 4776 4777 /* block accounting for super block */ 4778 spin_lock(&info->delalloc_lock); 4779 old_val = btrfs_super_bytes_used(info->super_copy); 4780 if (alloc) 4781 old_val += num_bytes; 4782 else 4783 old_val -= num_bytes; 4784 btrfs_set_super_bytes_used(info->super_copy, old_val); 4785 spin_unlock(&info->delalloc_lock); 4786 4787 while (total) { 4788 cache = btrfs_lookup_block_group(info, bytenr); 4789 if (!cache) 4790 return -ENOENT; 4791 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4792 BTRFS_BLOCK_GROUP_RAID1 | 4793 BTRFS_BLOCK_GROUP_RAID10)) 4794 factor = 2; 4795 else 4796 factor = 1; 4797 /* 4798 * If this block group has free space cache written out, we 4799 * need to make sure to load it if we are removing space. This 4800 * is because we need the unpinning stage to actually add the 4801 * space back to the block group, otherwise we will leak space. 4802 */ 4803 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4804 cache_block_group(cache, trans, NULL, 1); 4805 4806 byte_in_group = bytenr - cache->key.objectid; 4807 WARN_ON(byte_in_group > cache->key.offset); 4808 4809 spin_lock(&cache->space_info->lock); 4810 spin_lock(&cache->lock); 4811 4812 if (btrfs_test_opt(root, SPACE_CACHE) && 4813 cache->disk_cache_state < BTRFS_DC_CLEAR) 4814 cache->disk_cache_state = BTRFS_DC_CLEAR; 4815 4816 cache->dirty = 1; 4817 old_val = btrfs_block_group_used(&cache->item); 4818 num_bytes = min(total, cache->key.offset - byte_in_group); 4819 if (alloc) { 4820 old_val += num_bytes; 4821 btrfs_set_block_group_used(&cache->item, old_val); 4822 cache->reserved -= num_bytes; 4823 cache->space_info->bytes_reserved -= num_bytes; 4824 cache->space_info->bytes_used += num_bytes; 4825 cache->space_info->disk_used += num_bytes * factor; 4826 spin_unlock(&cache->lock); 4827 spin_unlock(&cache->space_info->lock); 4828 } else { 4829 old_val -= num_bytes; 4830 btrfs_set_block_group_used(&cache->item, old_val); 4831 cache->pinned += num_bytes; 4832 cache->space_info->bytes_pinned += num_bytes; 4833 cache->space_info->bytes_used -= num_bytes; 4834 cache->space_info->disk_used -= num_bytes * factor; 4835 spin_unlock(&cache->lock); 4836 spin_unlock(&cache->space_info->lock); 4837 4838 set_extent_dirty(info->pinned_extents, 4839 bytenr, bytenr + num_bytes - 1, 4840 GFP_NOFS | __GFP_NOFAIL); 4841 } 4842 btrfs_put_block_group(cache); 4843 total -= num_bytes; 4844 bytenr += num_bytes; 4845 } 4846 return 0; 4847 } 4848 4849 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4850 { 4851 struct btrfs_block_group_cache *cache; 4852 u64 bytenr; 4853 4854 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4855 if (!cache) 4856 return 0; 4857 4858 bytenr = cache->key.objectid; 4859 btrfs_put_block_group(cache); 4860 4861 return bytenr; 4862 } 4863 4864 static int pin_down_extent(struct btrfs_root *root, 4865 struct btrfs_block_group_cache *cache, 4866 u64 bytenr, u64 num_bytes, int reserved) 4867 { 4868 spin_lock(&cache->space_info->lock); 4869 spin_lock(&cache->lock); 4870 cache->pinned += num_bytes; 4871 cache->space_info->bytes_pinned += num_bytes; 4872 if (reserved) { 4873 cache->reserved -= num_bytes; 4874 cache->space_info->bytes_reserved -= num_bytes; 4875 } 4876 spin_unlock(&cache->lock); 4877 spin_unlock(&cache->space_info->lock); 4878 4879 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4880 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4881 return 0; 4882 } 4883 4884 /* 4885 * this function must be called within transaction 4886 */ 4887 int btrfs_pin_extent(struct btrfs_root *root, 4888 u64 bytenr, u64 num_bytes, int reserved) 4889 { 4890 struct btrfs_block_group_cache *cache; 4891 4892 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4893 BUG_ON(!cache); /* Logic error */ 4894 4895 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4896 4897 btrfs_put_block_group(cache); 4898 return 0; 4899 } 4900 4901 /* 4902 * this function must be called within transaction 4903 */ 4904 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 4905 struct btrfs_root *root, 4906 u64 bytenr, u64 num_bytes) 4907 { 4908 struct btrfs_block_group_cache *cache; 4909 4910 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4911 BUG_ON(!cache); /* Logic error */ 4912 4913 /* 4914 * pull in the free space cache (if any) so that our pin 4915 * removes the free space from the cache. We have load_only set 4916 * to one because the slow code to read in the free extents does check 4917 * the pinned extents. 4918 */ 4919 cache_block_group(cache, trans, root, 1); 4920 4921 pin_down_extent(root, cache, bytenr, num_bytes, 0); 4922 4923 /* remove us from the free space cache (if we're there at all) */ 4924 btrfs_remove_free_space(cache, bytenr, num_bytes); 4925 btrfs_put_block_group(cache); 4926 return 0; 4927 } 4928 4929 /** 4930 * btrfs_update_reserved_bytes - update the block_group and space info counters 4931 * @cache: The cache we are manipulating 4932 * @num_bytes: The number of bytes in question 4933 * @reserve: One of the reservation enums 4934 * 4935 * This is called by the allocator when it reserves space, or by somebody who is 4936 * freeing space that was never actually used on disk. For example if you 4937 * reserve some space for a new leaf in transaction A and before transaction A 4938 * commits you free that leaf, you call this with reserve set to 0 in order to 4939 * clear the reservation. 4940 * 4941 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 4942 * ENOSPC accounting. For data we handle the reservation through clearing the 4943 * delalloc bits in the io_tree. We have to do this since we could end up 4944 * allocating less disk space for the amount of data we have reserved in the 4945 * case of compression. 4946 * 4947 * If this is a reservation and the block group has become read only we cannot 4948 * make the reservation and return -EAGAIN, otherwise this function always 4949 * succeeds. 4950 */ 4951 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 4952 u64 num_bytes, int reserve) 4953 { 4954 struct btrfs_space_info *space_info = cache->space_info; 4955 int ret = 0; 4956 4957 spin_lock(&space_info->lock); 4958 spin_lock(&cache->lock); 4959 if (reserve != RESERVE_FREE) { 4960 if (cache->ro) { 4961 ret = -EAGAIN; 4962 } else { 4963 cache->reserved += num_bytes; 4964 space_info->bytes_reserved += num_bytes; 4965 if (reserve == RESERVE_ALLOC) { 4966 trace_btrfs_space_reservation(cache->fs_info, 4967 "space_info", space_info->flags, 4968 num_bytes, 0); 4969 space_info->bytes_may_use -= num_bytes; 4970 } 4971 } 4972 } else { 4973 if (cache->ro) 4974 space_info->bytes_readonly += num_bytes; 4975 cache->reserved -= num_bytes; 4976 space_info->bytes_reserved -= num_bytes; 4977 space_info->reservation_progress++; 4978 } 4979 spin_unlock(&cache->lock); 4980 spin_unlock(&space_info->lock); 4981 return ret; 4982 } 4983 4984 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4985 struct btrfs_root *root) 4986 { 4987 struct btrfs_fs_info *fs_info = root->fs_info; 4988 struct btrfs_caching_control *next; 4989 struct btrfs_caching_control *caching_ctl; 4990 struct btrfs_block_group_cache *cache; 4991 4992 down_write(&fs_info->extent_commit_sem); 4993 4994 list_for_each_entry_safe(caching_ctl, next, 4995 &fs_info->caching_block_groups, list) { 4996 cache = caching_ctl->block_group; 4997 if (block_group_cache_done(cache)) { 4998 cache->last_byte_to_unpin = (u64)-1; 4999 list_del_init(&caching_ctl->list); 5000 put_caching_control(caching_ctl); 5001 } else { 5002 cache->last_byte_to_unpin = caching_ctl->progress; 5003 } 5004 } 5005 5006 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5007 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5008 else 5009 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5010 5011 up_write(&fs_info->extent_commit_sem); 5012 5013 update_global_block_rsv(fs_info); 5014 } 5015 5016 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5017 { 5018 struct btrfs_fs_info *fs_info = root->fs_info; 5019 struct btrfs_block_group_cache *cache = NULL; 5020 struct btrfs_space_info *space_info; 5021 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5022 u64 len; 5023 bool readonly; 5024 5025 while (start <= end) { 5026 readonly = false; 5027 if (!cache || 5028 start >= cache->key.objectid + cache->key.offset) { 5029 if (cache) 5030 btrfs_put_block_group(cache); 5031 cache = btrfs_lookup_block_group(fs_info, start); 5032 BUG_ON(!cache); /* Logic error */ 5033 } 5034 5035 len = cache->key.objectid + cache->key.offset - start; 5036 len = min(len, end + 1 - start); 5037 5038 if (start < cache->last_byte_to_unpin) { 5039 len = min(len, cache->last_byte_to_unpin - start); 5040 btrfs_add_free_space(cache, start, len); 5041 } 5042 5043 start += len; 5044 space_info = cache->space_info; 5045 5046 spin_lock(&space_info->lock); 5047 spin_lock(&cache->lock); 5048 cache->pinned -= len; 5049 space_info->bytes_pinned -= len; 5050 if (cache->ro) { 5051 space_info->bytes_readonly += len; 5052 readonly = true; 5053 } 5054 spin_unlock(&cache->lock); 5055 if (!readonly && global_rsv->space_info == space_info) { 5056 spin_lock(&global_rsv->lock); 5057 if (!global_rsv->full) { 5058 len = min(len, global_rsv->size - 5059 global_rsv->reserved); 5060 global_rsv->reserved += len; 5061 space_info->bytes_may_use += len; 5062 if (global_rsv->reserved >= global_rsv->size) 5063 global_rsv->full = 1; 5064 } 5065 spin_unlock(&global_rsv->lock); 5066 } 5067 spin_unlock(&space_info->lock); 5068 } 5069 5070 if (cache) 5071 btrfs_put_block_group(cache); 5072 return 0; 5073 } 5074 5075 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5076 struct btrfs_root *root) 5077 { 5078 struct btrfs_fs_info *fs_info = root->fs_info; 5079 struct extent_io_tree *unpin; 5080 u64 start; 5081 u64 end; 5082 int ret; 5083 5084 if (trans->aborted) 5085 return 0; 5086 5087 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5088 unpin = &fs_info->freed_extents[1]; 5089 else 5090 unpin = &fs_info->freed_extents[0]; 5091 5092 while (1) { 5093 ret = find_first_extent_bit(unpin, 0, &start, &end, 5094 EXTENT_DIRTY, NULL); 5095 if (ret) 5096 break; 5097 5098 if (btrfs_test_opt(root, DISCARD)) 5099 ret = btrfs_discard_extent(root, start, 5100 end + 1 - start, NULL); 5101 5102 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5103 unpin_extent_range(root, start, end); 5104 cond_resched(); 5105 } 5106 5107 return 0; 5108 } 5109 5110 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5111 struct btrfs_root *root, 5112 u64 bytenr, u64 num_bytes, u64 parent, 5113 u64 root_objectid, u64 owner_objectid, 5114 u64 owner_offset, int refs_to_drop, 5115 struct btrfs_delayed_extent_op *extent_op) 5116 { 5117 struct btrfs_key key; 5118 struct btrfs_path *path; 5119 struct btrfs_fs_info *info = root->fs_info; 5120 struct btrfs_root *extent_root = info->extent_root; 5121 struct extent_buffer *leaf; 5122 struct btrfs_extent_item *ei; 5123 struct btrfs_extent_inline_ref *iref; 5124 int ret; 5125 int is_data; 5126 int extent_slot = 0; 5127 int found_extent = 0; 5128 int num_to_del = 1; 5129 u32 item_size; 5130 u64 refs; 5131 5132 path = btrfs_alloc_path(); 5133 if (!path) 5134 return -ENOMEM; 5135 5136 path->reada = 1; 5137 path->leave_spinning = 1; 5138 5139 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5140 BUG_ON(!is_data && refs_to_drop != 1); 5141 5142 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5143 bytenr, num_bytes, parent, 5144 root_objectid, owner_objectid, 5145 owner_offset); 5146 if (ret == 0) { 5147 extent_slot = path->slots[0]; 5148 while (extent_slot >= 0) { 5149 btrfs_item_key_to_cpu(path->nodes[0], &key, 5150 extent_slot); 5151 if (key.objectid != bytenr) 5152 break; 5153 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5154 key.offset == num_bytes) { 5155 found_extent = 1; 5156 break; 5157 } 5158 if (path->slots[0] - extent_slot > 5) 5159 break; 5160 extent_slot--; 5161 } 5162 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5163 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5164 if (found_extent && item_size < sizeof(*ei)) 5165 found_extent = 0; 5166 #endif 5167 if (!found_extent) { 5168 BUG_ON(iref); 5169 ret = remove_extent_backref(trans, extent_root, path, 5170 NULL, refs_to_drop, 5171 is_data); 5172 if (ret) { 5173 btrfs_abort_transaction(trans, extent_root, ret); 5174 goto out; 5175 } 5176 btrfs_release_path(path); 5177 path->leave_spinning = 1; 5178 5179 key.objectid = bytenr; 5180 key.type = BTRFS_EXTENT_ITEM_KEY; 5181 key.offset = num_bytes; 5182 5183 ret = btrfs_search_slot(trans, extent_root, 5184 &key, path, -1, 1); 5185 if (ret) { 5186 printk(KERN_ERR "umm, got %d back from search" 5187 ", was looking for %llu\n", ret, 5188 (unsigned long long)bytenr); 5189 if (ret > 0) 5190 btrfs_print_leaf(extent_root, 5191 path->nodes[0]); 5192 } 5193 if (ret < 0) { 5194 btrfs_abort_transaction(trans, extent_root, ret); 5195 goto out; 5196 } 5197 extent_slot = path->slots[0]; 5198 } 5199 } else if (ret == -ENOENT) { 5200 btrfs_print_leaf(extent_root, path->nodes[0]); 5201 WARN_ON(1); 5202 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 5203 "parent %llu root %llu owner %llu offset %llu\n", 5204 (unsigned long long)bytenr, 5205 (unsigned long long)parent, 5206 (unsigned long long)root_objectid, 5207 (unsigned long long)owner_objectid, 5208 (unsigned long long)owner_offset); 5209 } else { 5210 btrfs_abort_transaction(trans, extent_root, ret); 5211 goto out; 5212 } 5213 5214 leaf = path->nodes[0]; 5215 item_size = btrfs_item_size_nr(leaf, extent_slot); 5216 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5217 if (item_size < sizeof(*ei)) { 5218 BUG_ON(found_extent || extent_slot != path->slots[0]); 5219 ret = convert_extent_item_v0(trans, extent_root, path, 5220 owner_objectid, 0); 5221 if (ret < 0) { 5222 btrfs_abort_transaction(trans, extent_root, ret); 5223 goto out; 5224 } 5225 5226 btrfs_release_path(path); 5227 path->leave_spinning = 1; 5228 5229 key.objectid = bytenr; 5230 key.type = BTRFS_EXTENT_ITEM_KEY; 5231 key.offset = num_bytes; 5232 5233 ret = btrfs_search_slot(trans, extent_root, &key, path, 5234 -1, 1); 5235 if (ret) { 5236 printk(KERN_ERR "umm, got %d back from search" 5237 ", was looking for %llu\n", ret, 5238 (unsigned long long)bytenr); 5239 btrfs_print_leaf(extent_root, path->nodes[0]); 5240 } 5241 if (ret < 0) { 5242 btrfs_abort_transaction(trans, extent_root, ret); 5243 goto out; 5244 } 5245 5246 extent_slot = path->slots[0]; 5247 leaf = path->nodes[0]; 5248 item_size = btrfs_item_size_nr(leaf, extent_slot); 5249 } 5250 #endif 5251 BUG_ON(item_size < sizeof(*ei)); 5252 ei = btrfs_item_ptr(leaf, extent_slot, 5253 struct btrfs_extent_item); 5254 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 5255 struct btrfs_tree_block_info *bi; 5256 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5257 bi = (struct btrfs_tree_block_info *)(ei + 1); 5258 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5259 } 5260 5261 refs = btrfs_extent_refs(leaf, ei); 5262 BUG_ON(refs < refs_to_drop); 5263 refs -= refs_to_drop; 5264 5265 if (refs > 0) { 5266 if (extent_op) 5267 __run_delayed_extent_op(extent_op, leaf, ei); 5268 /* 5269 * In the case of inline back ref, reference count will 5270 * be updated by remove_extent_backref 5271 */ 5272 if (iref) { 5273 BUG_ON(!found_extent); 5274 } else { 5275 btrfs_set_extent_refs(leaf, ei, refs); 5276 btrfs_mark_buffer_dirty(leaf); 5277 } 5278 if (found_extent) { 5279 ret = remove_extent_backref(trans, extent_root, path, 5280 iref, refs_to_drop, 5281 is_data); 5282 if (ret) { 5283 btrfs_abort_transaction(trans, extent_root, ret); 5284 goto out; 5285 } 5286 } 5287 } else { 5288 if (found_extent) { 5289 BUG_ON(is_data && refs_to_drop != 5290 extent_data_ref_count(root, path, iref)); 5291 if (iref) { 5292 BUG_ON(path->slots[0] != extent_slot); 5293 } else { 5294 BUG_ON(path->slots[0] != extent_slot + 1); 5295 path->slots[0] = extent_slot; 5296 num_to_del = 2; 5297 } 5298 } 5299 5300 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5301 num_to_del); 5302 if (ret) { 5303 btrfs_abort_transaction(trans, extent_root, ret); 5304 goto out; 5305 } 5306 btrfs_release_path(path); 5307 5308 if (is_data) { 5309 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5310 if (ret) { 5311 btrfs_abort_transaction(trans, extent_root, ret); 5312 goto out; 5313 } 5314 } 5315 5316 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 5317 if (ret) { 5318 btrfs_abort_transaction(trans, extent_root, ret); 5319 goto out; 5320 } 5321 } 5322 out: 5323 btrfs_free_path(path); 5324 return ret; 5325 } 5326 5327 /* 5328 * when we free an block, it is possible (and likely) that we free the last 5329 * delayed ref for that extent as well. This searches the delayed ref tree for 5330 * a given extent, and if there are no other delayed refs to be processed, it 5331 * removes it from the tree. 5332 */ 5333 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5334 struct btrfs_root *root, u64 bytenr) 5335 { 5336 struct btrfs_delayed_ref_head *head; 5337 struct btrfs_delayed_ref_root *delayed_refs; 5338 struct btrfs_delayed_ref_node *ref; 5339 struct rb_node *node; 5340 int ret = 0; 5341 5342 delayed_refs = &trans->transaction->delayed_refs; 5343 spin_lock(&delayed_refs->lock); 5344 head = btrfs_find_delayed_ref_head(trans, bytenr); 5345 if (!head) 5346 goto out; 5347 5348 node = rb_prev(&head->node.rb_node); 5349 if (!node) 5350 goto out; 5351 5352 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5353 5354 /* there are still entries for this ref, we can't drop it */ 5355 if (ref->bytenr == bytenr) 5356 goto out; 5357 5358 if (head->extent_op) { 5359 if (!head->must_insert_reserved) 5360 goto out; 5361 btrfs_free_delayed_extent_op(head->extent_op); 5362 head->extent_op = NULL; 5363 } 5364 5365 /* 5366 * waiting for the lock here would deadlock. If someone else has it 5367 * locked they are already in the process of dropping it anyway 5368 */ 5369 if (!mutex_trylock(&head->mutex)) 5370 goto out; 5371 5372 /* 5373 * at this point we have a head with no other entries. Go 5374 * ahead and process it. 5375 */ 5376 head->node.in_tree = 0; 5377 rb_erase(&head->node.rb_node, &delayed_refs->root); 5378 5379 delayed_refs->num_entries--; 5380 5381 /* 5382 * we don't take a ref on the node because we're removing it from the 5383 * tree, so we just steal the ref the tree was holding. 5384 */ 5385 delayed_refs->num_heads--; 5386 if (list_empty(&head->cluster)) 5387 delayed_refs->num_heads_ready--; 5388 5389 list_del_init(&head->cluster); 5390 spin_unlock(&delayed_refs->lock); 5391 5392 BUG_ON(head->extent_op); 5393 if (head->must_insert_reserved) 5394 ret = 1; 5395 5396 mutex_unlock(&head->mutex); 5397 btrfs_put_delayed_ref(&head->node); 5398 return ret; 5399 out: 5400 spin_unlock(&delayed_refs->lock); 5401 return 0; 5402 } 5403 5404 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5405 struct btrfs_root *root, 5406 struct extent_buffer *buf, 5407 u64 parent, int last_ref) 5408 { 5409 struct btrfs_block_group_cache *cache = NULL; 5410 int ret; 5411 5412 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5413 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5414 buf->start, buf->len, 5415 parent, root->root_key.objectid, 5416 btrfs_header_level(buf), 5417 BTRFS_DROP_DELAYED_REF, NULL, 0); 5418 BUG_ON(ret); /* -ENOMEM */ 5419 } 5420 5421 if (!last_ref) 5422 return; 5423 5424 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5425 5426 if (btrfs_header_generation(buf) == trans->transid) { 5427 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5428 ret = check_ref_cleanup(trans, root, buf->start); 5429 if (!ret) 5430 goto out; 5431 } 5432 5433 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5434 pin_down_extent(root, cache, buf->start, buf->len, 1); 5435 goto out; 5436 } 5437 5438 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5439 5440 btrfs_add_free_space(cache, buf->start, buf->len); 5441 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5442 } 5443 out: 5444 /* 5445 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5446 * anymore. 5447 */ 5448 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5449 btrfs_put_block_group(cache); 5450 } 5451 5452 /* Can return -ENOMEM */ 5453 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5454 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5455 u64 owner, u64 offset, int for_cow) 5456 { 5457 int ret; 5458 struct btrfs_fs_info *fs_info = root->fs_info; 5459 5460 /* 5461 * tree log blocks never actually go into the extent allocation 5462 * tree, just update pinning info and exit early. 5463 */ 5464 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 5465 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 5466 /* unlocks the pinned mutex */ 5467 btrfs_pin_extent(root, bytenr, num_bytes, 1); 5468 ret = 0; 5469 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5470 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 5471 num_bytes, 5472 parent, root_objectid, (int)owner, 5473 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5474 } else { 5475 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 5476 num_bytes, 5477 parent, root_objectid, owner, 5478 offset, BTRFS_DROP_DELAYED_REF, 5479 NULL, for_cow); 5480 } 5481 return ret; 5482 } 5483 5484 static u64 stripe_align(struct btrfs_root *root, u64 val) 5485 { 5486 u64 mask = ((u64)root->stripesize - 1); 5487 u64 ret = (val + mask) & ~mask; 5488 return ret; 5489 } 5490 5491 /* 5492 * when we wait for progress in the block group caching, its because 5493 * our allocation attempt failed at least once. So, we must sleep 5494 * and let some progress happen before we try again. 5495 * 5496 * This function will sleep at least once waiting for new free space to 5497 * show up, and then it will check the block group free space numbers 5498 * for our min num_bytes. Another option is to have it go ahead 5499 * and look in the rbtree for a free extent of a given size, but this 5500 * is a good start. 5501 */ 5502 static noinline int 5503 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 5504 u64 num_bytes) 5505 { 5506 struct btrfs_caching_control *caching_ctl; 5507 DEFINE_WAIT(wait); 5508 5509 caching_ctl = get_caching_control(cache); 5510 if (!caching_ctl) 5511 return 0; 5512 5513 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 5514 (cache->free_space_ctl->free_space >= num_bytes)); 5515 5516 put_caching_control(caching_ctl); 5517 return 0; 5518 } 5519 5520 static noinline int 5521 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 5522 { 5523 struct btrfs_caching_control *caching_ctl; 5524 DEFINE_WAIT(wait); 5525 5526 caching_ctl = get_caching_control(cache); 5527 if (!caching_ctl) 5528 return 0; 5529 5530 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 5531 5532 put_caching_control(caching_ctl); 5533 return 0; 5534 } 5535 5536 int __get_raid_index(u64 flags) 5537 { 5538 int index; 5539 5540 if (flags & BTRFS_BLOCK_GROUP_RAID10) 5541 index = 0; 5542 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 5543 index = 1; 5544 else if (flags & BTRFS_BLOCK_GROUP_DUP) 5545 index = 2; 5546 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 5547 index = 3; 5548 else 5549 index = 4; 5550 5551 return index; 5552 } 5553 5554 static int get_block_group_index(struct btrfs_block_group_cache *cache) 5555 { 5556 return __get_raid_index(cache->flags); 5557 } 5558 5559 enum btrfs_loop_type { 5560 LOOP_CACHING_NOWAIT = 0, 5561 LOOP_CACHING_WAIT = 1, 5562 LOOP_ALLOC_CHUNK = 2, 5563 LOOP_NO_EMPTY_SIZE = 3, 5564 }; 5565 5566 /* 5567 * walks the btree of allocated extents and find a hole of a given size. 5568 * The key ins is changed to record the hole: 5569 * ins->objectid == block start 5570 * ins->flags = BTRFS_EXTENT_ITEM_KEY 5571 * ins->offset == number of blocks 5572 * Any available blocks before search_start are skipped. 5573 */ 5574 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 5575 struct btrfs_root *orig_root, 5576 u64 num_bytes, u64 empty_size, 5577 u64 hint_byte, struct btrfs_key *ins, 5578 u64 data) 5579 { 5580 int ret = 0; 5581 struct btrfs_root *root = orig_root->fs_info->extent_root; 5582 struct btrfs_free_cluster *last_ptr = NULL; 5583 struct btrfs_block_group_cache *block_group = NULL; 5584 struct btrfs_block_group_cache *used_block_group; 5585 u64 search_start = 0; 5586 int empty_cluster = 2 * 1024 * 1024; 5587 struct btrfs_space_info *space_info; 5588 int loop = 0; 5589 int index = __get_raid_index(data); 5590 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? 5591 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 5592 bool found_uncached_bg = false; 5593 bool failed_cluster_refill = false; 5594 bool failed_alloc = false; 5595 bool use_cluster = true; 5596 bool have_caching_bg = false; 5597 5598 WARN_ON(num_bytes < root->sectorsize); 5599 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 5600 ins->objectid = 0; 5601 ins->offset = 0; 5602 5603 trace_find_free_extent(orig_root, num_bytes, empty_size, data); 5604 5605 space_info = __find_space_info(root->fs_info, data); 5606 if (!space_info) { 5607 printk(KERN_ERR "No space info for %llu\n", data); 5608 return -ENOSPC; 5609 } 5610 5611 /* 5612 * If the space info is for both data and metadata it means we have a 5613 * small filesystem and we can't use the clustering stuff. 5614 */ 5615 if (btrfs_mixed_space_info(space_info)) 5616 use_cluster = false; 5617 5618 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 5619 last_ptr = &root->fs_info->meta_alloc_cluster; 5620 if (!btrfs_test_opt(root, SSD)) 5621 empty_cluster = 64 * 1024; 5622 } 5623 5624 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 5625 btrfs_test_opt(root, SSD)) { 5626 last_ptr = &root->fs_info->data_alloc_cluster; 5627 } 5628 5629 if (last_ptr) { 5630 spin_lock(&last_ptr->lock); 5631 if (last_ptr->block_group) 5632 hint_byte = last_ptr->window_start; 5633 spin_unlock(&last_ptr->lock); 5634 } 5635 5636 search_start = max(search_start, first_logical_byte(root, 0)); 5637 search_start = max(search_start, hint_byte); 5638 5639 if (!last_ptr) 5640 empty_cluster = 0; 5641 5642 if (search_start == hint_byte) { 5643 block_group = btrfs_lookup_block_group(root->fs_info, 5644 search_start); 5645 used_block_group = block_group; 5646 /* 5647 * we don't want to use the block group if it doesn't match our 5648 * allocation bits, or if its not cached. 5649 * 5650 * However if we are re-searching with an ideal block group 5651 * picked out then we don't care that the block group is cached. 5652 */ 5653 if (block_group && block_group_bits(block_group, data) && 5654 block_group->cached != BTRFS_CACHE_NO) { 5655 down_read(&space_info->groups_sem); 5656 if (list_empty(&block_group->list) || 5657 block_group->ro) { 5658 /* 5659 * someone is removing this block group, 5660 * we can't jump into the have_block_group 5661 * target because our list pointers are not 5662 * valid 5663 */ 5664 btrfs_put_block_group(block_group); 5665 up_read(&space_info->groups_sem); 5666 } else { 5667 index = get_block_group_index(block_group); 5668 goto have_block_group; 5669 } 5670 } else if (block_group) { 5671 btrfs_put_block_group(block_group); 5672 } 5673 } 5674 search: 5675 have_caching_bg = false; 5676 down_read(&space_info->groups_sem); 5677 list_for_each_entry(block_group, &space_info->block_groups[index], 5678 list) { 5679 u64 offset; 5680 int cached; 5681 5682 used_block_group = block_group; 5683 btrfs_get_block_group(block_group); 5684 search_start = block_group->key.objectid; 5685 5686 /* 5687 * this can happen if we end up cycling through all the 5688 * raid types, but we want to make sure we only allocate 5689 * for the proper type. 5690 */ 5691 if (!block_group_bits(block_group, data)) { 5692 u64 extra = BTRFS_BLOCK_GROUP_DUP | 5693 BTRFS_BLOCK_GROUP_RAID1 | 5694 BTRFS_BLOCK_GROUP_RAID10; 5695 5696 /* 5697 * if they asked for extra copies and this block group 5698 * doesn't provide them, bail. This does allow us to 5699 * fill raid0 from raid1. 5700 */ 5701 if ((data & extra) && !(block_group->flags & extra)) 5702 goto loop; 5703 } 5704 5705 have_block_group: 5706 cached = block_group_cache_done(block_group); 5707 if (unlikely(!cached)) { 5708 found_uncached_bg = true; 5709 ret = cache_block_group(block_group, trans, 5710 orig_root, 0); 5711 BUG_ON(ret < 0); 5712 ret = 0; 5713 } 5714 5715 if (unlikely(block_group->ro)) 5716 goto loop; 5717 5718 /* 5719 * Ok we want to try and use the cluster allocator, so 5720 * lets look there 5721 */ 5722 if (last_ptr) { 5723 /* 5724 * the refill lock keeps out other 5725 * people trying to start a new cluster 5726 */ 5727 spin_lock(&last_ptr->refill_lock); 5728 used_block_group = last_ptr->block_group; 5729 if (used_block_group != block_group && 5730 (!used_block_group || 5731 used_block_group->ro || 5732 !block_group_bits(used_block_group, data))) { 5733 used_block_group = block_group; 5734 goto refill_cluster; 5735 } 5736 5737 if (used_block_group != block_group) 5738 btrfs_get_block_group(used_block_group); 5739 5740 offset = btrfs_alloc_from_cluster(used_block_group, 5741 last_ptr, num_bytes, used_block_group->key.objectid); 5742 if (offset) { 5743 /* we have a block, we're done */ 5744 spin_unlock(&last_ptr->refill_lock); 5745 trace_btrfs_reserve_extent_cluster(root, 5746 block_group, search_start, num_bytes); 5747 goto checks; 5748 } 5749 5750 WARN_ON(last_ptr->block_group != used_block_group); 5751 if (used_block_group != block_group) { 5752 btrfs_put_block_group(used_block_group); 5753 used_block_group = block_group; 5754 } 5755 refill_cluster: 5756 BUG_ON(used_block_group != block_group); 5757 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 5758 * set up a new clusters, so lets just skip it 5759 * and let the allocator find whatever block 5760 * it can find. If we reach this point, we 5761 * will have tried the cluster allocator 5762 * plenty of times and not have found 5763 * anything, so we are likely way too 5764 * fragmented for the clustering stuff to find 5765 * anything. 5766 * 5767 * However, if the cluster is taken from the 5768 * current block group, release the cluster 5769 * first, so that we stand a better chance of 5770 * succeeding in the unclustered 5771 * allocation. */ 5772 if (loop >= LOOP_NO_EMPTY_SIZE && 5773 last_ptr->block_group != block_group) { 5774 spin_unlock(&last_ptr->refill_lock); 5775 goto unclustered_alloc; 5776 } 5777 5778 /* 5779 * this cluster didn't work out, free it and 5780 * start over 5781 */ 5782 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5783 5784 if (loop >= LOOP_NO_EMPTY_SIZE) { 5785 spin_unlock(&last_ptr->refill_lock); 5786 goto unclustered_alloc; 5787 } 5788 5789 /* allocate a cluster in this block group */ 5790 ret = btrfs_find_space_cluster(trans, root, 5791 block_group, last_ptr, 5792 search_start, num_bytes, 5793 empty_cluster + empty_size); 5794 if (ret == 0) { 5795 /* 5796 * now pull our allocation out of this 5797 * cluster 5798 */ 5799 offset = btrfs_alloc_from_cluster(block_group, 5800 last_ptr, num_bytes, 5801 search_start); 5802 if (offset) { 5803 /* we found one, proceed */ 5804 spin_unlock(&last_ptr->refill_lock); 5805 trace_btrfs_reserve_extent_cluster(root, 5806 block_group, search_start, 5807 num_bytes); 5808 goto checks; 5809 } 5810 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5811 && !failed_cluster_refill) { 5812 spin_unlock(&last_ptr->refill_lock); 5813 5814 failed_cluster_refill = true; 5815 wait_block_group_cache_progress(block_group, 5816 num_bytes + empty_cluster + empty_size); 5817 goto have_block_group; 5818 } 5819 5820 /* 5821 * at this point we either didn't find a cluster 5822 * or we weren't able to allocate a block from our 5823 * cluster. Free the cluster we've been trying 5824 * to use, and go to the next block group 5825 */ 5826 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5827 spin_unlock(&last_ptr->refill_lock); 5828 goto loop; 5829 } 5830 5831 unclustered_alloc: 5832 spin_lock(&block_group->free_space_ctl->tree_lock); 5833 if (cached && 5834 block_group->free_space_ctl->free_space < 5835 num_bytes + empty_cluster + empty_size) { 5836 spin_unlock(&block_group->free_space_ctl->tree_lock); 5837 goto loop; 5838 } 5839 spin_unlock(&block_group->free_space_ctl->tree_lock); 5840 5841 offset = btrfs_find_space_for_alloc(block_group, search_start, 5842 num_bytes, empty_size); 5843 /* 5844 * If we didn't find a chunk, and we haven't failed on this 5845 * block group before, and this block group is in the middle of 5846 * caching and we are ok with waiting, then go ahead and wait 5847 * for progress to be made, and set failed_alloc to true. 5848 * 5849 * If failed_alloc is true then we've already waited on this 5850 * block group once and should move on to the next block group. 5851 */ 5852 if (!offset && !failed_alloc && !cached && 5853 loop > LOOP_CACHING_NOWAIT) { 5854 wait_block_group_cache_progress(block_group, 5855 num_bytes + empty_size); 5856 failed_alloc = true; 5857 goto have_block_group; 5858 } else if (!offset) { 5859 if (!cached) 5860 have_caching_bg = true; 5861 goto loop; 5862 } 5863 checks: 5864 search_start = stripe_align(root, offset); 5865 5866 /* move on to the next group */ 5867 if (search_start + num_bytes > 5868 used_block_group->key.objectid + used_block_group->key.offset) { 5869 btrfs_add_free_space(used_block_group, offset, num_bytes); 5870 goto loop; 5871 } 5872 5873 if (offset < search_start) 5874 btrfs_add_free_space(used_block_group, offset, 5875 search_start - offset); 5876 BUG_ON(offset > search_start); 5877 5878 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 5879 alloc_type); 5880 if (ret == -EAGAIN) { 5881 btrfs_add_free_space(used_block_group, offset, num_bytes); 5882 goto loop; 5883 } 5884 5885 /* we are all good, lets return */ 5886 ins->objectid = search_start; 5887 ins->offset = num_bytes; 5888 5889 trace_btrfs_reserve_extent(orig_root, block_group, 5890 search_start, num_bytes); 5891 if (used_block_group != block_group) 5892 btrfs_put_block_group(used_block_group); 5893 btrfs_put_block_group(block_group); 5894 break; 5895 loop: 5896 failed_cluster_refill = false; 5897 failed_alloc = false; 5898 BUG_ON(index != get_block_group_index(block_group)); 5899 if (used_block_group != block_group) 5900 btrfs_put_block_group(used_block_group); 5901 btrfs_put_block_group(block_group); 5902 } 5903 up_read(&space_info->groups_sem); 5904 5905 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 5906 goto search; 5907 5908 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5909 goto search; 5910 5911 /* 5912 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5913 * caching kthreads as we move along 5914 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5915 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5916 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5917 * again 5918 */ 5919 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 5920 index = 0; 5921 loop++; 5922 if (loop == LOOP_ALLOC_CHUNK) { 5923 ret = do_chunk_alloc(trans, root, data, 5924 CHUNK_ALLOC_FORCE); 5925 /* 5926 * Do not bail out on ENOSPC since we 5927 * can do more things. 5928 */ 5929 if (ret < 0 && ret != -ENOSPC) { 5930 btrfs_abort_transaction(trans, 5931 root, ret); 5932 goto out; 5933 } 5934 } 5935 5936 if (loop == LOOP_NO_EMPTY_SIZE) { 5937 empty_size = 0; 5938 empty_cluster = 0; 5939 } 5940 5941 goto search; 5942 } else if (!ins->objectid) { 5943 ret = -ENOSPC; 5944 } else if (ins->objectid) { 5945 ret = 0; 5946 } 5947 out: 5948 5949 return ret; 5950 } 5951 5952 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5953 int dump_block_groups) 5954 { 5955 struct btrfs_block_group_cache *cache; 5956 int index = 0; 5957 5958 spin_lock(&info->lock); 5959 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 5960 (unsigned long long)info->flags, 5961 (unsigned long long)(info->total_bytes - info->bytes_used - 5962 info->bytes_pinned - info->bytes_reserved - 5963 info->bytes_readonly), 5964 (info->full) ? "" : "not "); 5965 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5966 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5967 (unsigned long long)info->total_bytes, 5968 (unsigned long long)info->bytes_used, 5969 (unsigned long long)info->bytes_pinned, 5970 (unsigned long long)info->bytes_reserved, 5971 (unsigned long long)info->bytes_may_use, 5972 (unsigned long long)info->bytes_readonly); 5973 spin_unlock(&info->lock); 5974 5975 if (!dump_block_groups) 5976 return; 5977 5978 down_read(&info->groups_sem); 5979 again: 5980 list_for_each_entry(cache, &info->block_groups[index], list) { 5981 spin_lock(&cache->lock); 5982 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 5983 (unsigned long long)cache->key.objectid, 5984 (unsigned long long)cache->key.offset, 5985 (unsigned long long)btrfs_block_group_used(&cache->item), 5986 (unsigned long long)cache->pinned, 5987 (unsigned long long)cache->reserved, 5988 cache->ro ? "[readonly]" : ""); 5989 btrfs_dump_free_space(cache, bytes); 5990 spin_unlock(&cache->lock); 5991 } 5992 if (++index < BTRFS_NR_RAID_TYPES) 5993 goto again; 5994 up_read(&info->groups_sem); 5995 } 5996 5997 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5998 struct btrfs_root *root, 5999 u64 num_bytes, u64 min_alloc_size, 6000 u64 empty_size, u64 hint_byte, 6001 struct btrfs_key *ins, u64 data) 6002 { 6003 bool final_tried = false; 6004 int ret; 6005 6006 data = btrfs_get_alloc_profile(root, data); 6007 again: 6008 WARN_ON(num_bytes < root->sectorsize); 6009 ret = find_free_extent(trans, root, num_bytes, empty_size, 6010 hint_byte, ins, data); 6011 6012 if (ret == -ENOSPC) { 6013 if (!final_tried) { 6014 num_bytes = num_bytes >> 1; 6015 num_bytes = num_bytes & ~(root->sectorsize - 1); 6016 num_bytes = max(num_bytes, min_alloc_size); 6017 if (num_bytes == min_alloc_size) 6018 final_tried = true; 6019 goto again; 6020 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6021 struct btrfs_space_info *sinfo; 6022 6023 sinfo = __find_space_info(root->fs_info, data); 6024 printk(KERN_ERR "btrfs allocation failed flags %llu, " 6025 "wanted %llu\n", (unsigned long long)data, 6026 (unsigned long long)num_bytes); 6027 if (sinfo) 6028 dump_space_info(sinfo, num_bytes, 1); 6029 } 6030 } 6031 6032 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6033 6034 return ret; 6035 } 6036 6037 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6038 u64 start, u64 len, int pin) 6039 { 6040 struct btrfs_block_group_cache *cache; 6041 int ret = 0; 6042 6043 cache = btrfs_lookup_block_group(root->fs_info, start); 6044 if (!cache) { 6045 printk(KERN_ERR "Unable to find block group for %llu\n", 6046 (unsigned long long)start); 6047 return -ENOSPC; 6048 } 6049 6050 if (btrfs_test_opt(root, DISCARD)) 6051 ret = btrfs_discard_extent(root, start, len, NULL); 6052 6053 if (pin) 6054 pin_down_extent(root, cache, start, len, 1); 6055 else { 6056 btrfs_add_free_space(cache, start, len); 6057 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6058 } 6059 btrfs_put_block_group(cache); 6060 6061 trace_btrfs_reserved_extent_free(root, start, len); 6062 6063 return ret; 6064 } 6065 6066 int btrfs_free_reserved_extent(struct btrfs_root *root, 6067 u64 start, u64 len) 6068 { 6069 return __btrfs_free_reserved_extent(root, start, len, 0); 6070 } 6071 6072 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6073 u64 start, u64 len) 6074 { 6075 return __btrfs_free_reserved_extent(root, start, len, 1); 6076 } 6077 6078 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6079 struct btrfs_root *root, 6080 u64 parent, u64 root_objectid, 6081 u64 flags, u64 owner, u64 offset, 6082 struct btrfs_key *ins, int ref_mod) 6083 { 6084 int ret; 6085 struct btrfs_fs_info *fs_info = root->fs_info; 6086 struct btrfs_extent_item *extent_item; 6087 struct btrfs_extent_inline_ref *iref; 6088 struct btrfs_path *path; 6089 struct extent_buffer *leaf; 6090 int type; 6091 u32 size; 6092 6093 if (parent > 0) 6094 type = BTRFS_SHARED_DATA_REF_KEY; 6095 else 6096 type = BTRFS_EXTENT_DATA_REF_KEY; 6097 6098 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6099 6100 path = btrfs_alloc_path(); 6101 if (!path) 6102 return -ENOMEM; 6103 6104 path->leave_spinning = 1; 6105 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6106 ins, size); 6107 if (ret) { 6108 btrfs_free_path(path); 6109 return ret; 6110 } 6111 6112 leaf = path->nodes[0]; 6113 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6114 struct btrfs_extent_item); 6115 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6116 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6117 btrfs_set_extent_flags(leaf, extent_item, 6118 flags | BTRFS_EXTENT_FLAG_DATA); 6119 6120 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6121 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6122 if (parent > 0) { 6123 struct btrfs_shared_data_ref *ref; 6124 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6125 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6126 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6127 } else { 6128 struct btrfs_extent_data_ref *ref; 6129 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6130 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6131 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6132 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6133 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6134 } 6135 6136 btrfs_mark_buffer_dirty(path->nodes[0]); 6137 btrfs_free_path(path); 6138 6139 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6140 if (ret) { /* -ENOENT, logic error */ 6141 printk(KERN_ERR "btrfs update block group failed for %llu " 6142 "%llu\n", (unsigned long long)ins->objectid, 6143 (unsigned long long)ins->offset); 6144 BUG(); 6145 } 6146 return ret; 6147 } 6148 6149 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6150 struct btrfs_root *root, 6151 u64 parent, u64 root_objectid, 6152 u64 flags, struct btrfs_disk_key *key, 6153 int level, struct btrfs_key *ins) 6154 { 6155 int ret; 6156 struct btrfs_fs_info *fs_info = root->fs_info; 6157 struct btrfs_extent_item *extent_item; 6158 struct btrfs_tree_block_info *block_info; 6159 struct btrfs_extent_inline_ref *iref; 6160 struct btrfs_path *path; 6161 struct extent_buffer *leaf; 6162 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 6163 6164 path = btrfs_alloc_path(); 6165 if (!path) 6166 return -ENOMEM; 6167 6168 path->leave_spinning = 1; 6169 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6170 ins, size); 6171 if (ret) { 6172 btrfs_free_path(path); 6173 return ret; 6174 } 6175 6176 leaf = path->nodes[0]; 6177 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6178 struct btrfs_extent_item); 6179 btrfs_set_extent_refs(leaf, extent_item, 1); 6180 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6181 btrfs_set_extent_flags(leaf, extent_item, 6182 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6183 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6184 6185 btrfs_set_tree_block_key(leaf, block_info, key); 6186 btrfs_set_tree_block_level(leaf, block_info, level); 6187 6188 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6189 if (parent > 0) { 6190 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6191 btrfs_set_extent_inline_ref_type(leaf, iref, 6192 BTRFS_SHARED_BLOCK_REF_KEY); 6193 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6194 } else { 6195 btrfs_set_extent_inline_ref_type(leaf, iref, 6196 BTRFS_TREE_BLOCK_REF_KEY); 6197 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6198 } 6199 6200 btrfs_mark_buffer_dirty(leaf); 6201 btrfs_free_path(path); 6202 6203 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6204 if (ret) { /* -ENOENT, logic error */ 6205 printk(KERN_ERR "btrfs update block group failed for %llu " 6206 "%llu\n", (unsigned long long)ins->objectid, 6207 (unsigned long long)ins->offset); 6208 BUG(); 6209 } 6210 return ret; 6211 } 6212 6213 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6214 struct btrfs_root *root, 6215 u64 root_objectid, u64 owner, 6216 u64 offset, struct btrfs_key *ins) 6217 { 6218 int ret; 6219 6220 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6221 6222 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6223 ins->offset, 0, 6224 root_objectid, owner, offset, 6225 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6226 return ret; 6227 } 6228 6229 /* 6230 * this is used by the tree logging recovery code. It records that 6231 * an extent has been allocated and makes sure to clear the free 6232 * space cache bits as well 6233 */ 6234 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6235 struct btrfs_root *root, 6236 u64 root_objectid, u64 owner, u64 offset, 6237 struct btrfs_key *ins) 6238 { 6239 int ret; 6240 struct btrfs_block_group_cache *block_group; 6241 struct btrfs_caching_control *caching_ctl; 6242 u64 start = ins->objectid; 6243 u64 num_bytes = ins->offset; 6244 6245 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6246 cache_block_group(block_group, trans, NULL, 0); 6247 caching_ctl = get_caching_control(block_group); 6248 6249 if (!caching_ctl) { 6250 BUG_ON(!block_group_cache_done(block_group)); 6251 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6252 BUG_ON(ret); /* -ENOMEM */ 6253 } else { 6254 mutex_lock(&caching_ctl->mutex); 6255 6256 if (start >= caching_ctl->progress) { 6257 ret = add_excluded_extent(root, start, num_bytes); 6258 BUG_ON(ret); /* -ENOMEM */ 6259 } else if (start + num_bytes <= caching_ctl->progress) { 6260 ret = btrfs_remove_free_space(block_group, 6261 start, num_bytes); 6262 BUG_ON(ret); /* -ENOMEM */ 6263 } else { 6264 num_bytes = caching_ctl->progress - start; 6265 ret = btrfs_remove_free_space(block_group, 6266 start, num_bytes); 6267 BUG_ON(ret); /* -ENOMEM */ 6268 6269 start = caching_ctl->progress; 6270 num_bytes = ins->objectid + ins->offset - 6271 caching_ctl->progress; 6272 ret = add_excluded_extent(root, start, num_bytes); 6273 BUG_ON(ret); /* -ENOMEM */ 6274 } 6275 6276 mutex_unlock(&caching_ctl->mutex); 6277 put_caching_control(caching_ctl); 6278 } 6279 6280 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6281 RESERVE_ALLOC_NO_ACCOUNT); 6282 BUG_ON(ret); /* logic error */ 6283 btrfs_put_block_group(block_group); 6284 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6285 0, owner, offset, ins, 1); 6286 return ret; 6287 } 6288 6289 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 6290 struct btrfs_root *root, 6291 u64 bytenr, u32 blocksize, 6292 int level) 6293 { 6294 struct extent_buffer *buf; 6295 6296 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6297 if (!buf) 6298 return ERR_PTR(-ENOMEM); 6299 btrfs_set_header_generation(buf, trans->transid); 6300 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6301 btrfs_tree_lock(buf); 6302 clean_tree_block(trans, root, buf); 6303 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6304 6305 btrfs_set_lock_blocking(buf); 6306 btrfs_set_buffer_uptodate(buf); 6307 6308 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6309 /* 6310 * we allow two log transactions at a time, use different 6311 * EXENT bit to differentiate dirty pages. 6312 */ 6313 if (root->log_transid % 2 == 0) 6314 set_extent_dirty(&root->dirty_log_pages, buf->start, 6315 buf->start + buf->len - 1, GFP_NOFS); 6316 else 6317 set_extent_new(&root->dirty_log_pages, buf->start, 6318 buf->start + buf->len - 1, GFP_NOFS); 6319 } else { 6320 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6321 buf->start + buf->len - 1, GFP_NOFS); 6322 } 6323 trans->blocks_used++; 6324 /* this returns a buffer locked for blocking */ 6325 return buf; 6326 } 6327 6328 static struct btrfs_block_rsv * 6329 use_block_rsv(struct btrfs_trans_handle *trans, 6330 struct btrfs_root *root, u32 blocksize) 6331 { 6332 struct btrfs_block_rsv *block_rsv; 6333 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6334 int ret; 6335 6336 block_rsv = get_block_rsv(trans, root); 6337 6338 if (block_rsv->size == 0) { 6339 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6340 BTRFS_RESERVE_NO_FLUSH); 6341 /* 6342 * If we couldn't reserve metadata bytes try and use some from 6343 * the global reserve. 6344 */ 6345 if (ret && block_rsv != global_rsv) { 6346 ret = block_rsv_use_bytes(global_rsv, blocksize); 6347 if (!ret) 6348 return global_rsv; 6349 return ERR_PTR(ret); 6350 } else if (ret) { 6351 return ERR_PTR(ret); 6352 } 6353 return block_rsv; 6354 } 6355 6356 ret = block_rsv_use_bytes(block_rsv, blocksize); 6357 if (!ret) 6358 return block_rsv; 6359 if (ret && !block_rsv->failfast) { 6360 static DEFINE_RATELIMIT_STATE(_rs, 6361 DEFAULT_RATELIMIT_INTERVAL, 6362 /*DEFAULT_RATELIMIT_BURST*/ 2); 6363 if (__ratelimit(&_rs)) 6364 WARN(1, KERN_DEBUG "btrfs: block rsv returned %d\n", 6365 ret); 6366 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6367 BTRFS_RESERVE_NO_FLUSH); 6368 if (!ret) { 6369 return block_rsv; 6370 } else if (ret && block_rsv != global_rsv) { 6371 ret = block_rsv_use_bytes(global_rsv, blocksize); 6372 if (!ret) 6373 return global_rsv; 6374 } 6375 } 6376 6377 return ERR_PTR(-ENOSPC); 6378 } 6379 6380 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6381 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6382 { 6383 block_rsv_add_bytes(block_rsv, blocksize, 0); 6384 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6385 } 6386 6387 /* 6388 * finds a free extent and does all the dirty work required for allocation 6389 * returns the key for the extent through ins, and a tree buffer for 6390 * the first block of the extent through buf. 6391 * 6392 * returns the tree buffer or NULL. 6393 */ 6394 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6395 struct btrfs_root *root, u32 blocksize, 6396 u64 parent, u64 root_objectid, 6397 struct btrfs_disk_key *key, int level, 6398 u64 hint, u64 empty_size) 6399 { 6400 struct btrfs_key ins; 6401 struct btrfs_block_rsv *block_rsv; 6402 struct extent_buffer *buf; 6403 u64 flags = 0; 6404 int ret; 6405 6406 6407 block_rsv = use_block_rsv(trans, root, blocksize); 6408 if (IS_ERR(block_rsv)) 6409 return ERR_CAST(block_rsv); 6410 6411 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 6412 empty_size, hint, &ins, 0); 6413 if (ret) { 6414 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6415 return ERR_PTR(ret); 6416 } 6417 6418 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6419 blocksize, level); 6420 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6421 6422 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6423 if (parent == 0) 6424 parent = ins.objectid; 6425 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6426 } else 6427 BUG_ON(parent > 0); 6428 6429 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6430 struct btrfs_delayed_extent_op *extent_op; 6431 extent_op = btrfs_alloc_delayed_extent_op(); 6432 BUG_ON(!extent_op); /* -ENOMEM */ 6433 if (key) 6434 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6435 else 6436 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6437 extent_op->flags_to_set = flags; 6438 extent_op->update_key = 1; 6439 extent_op->update_flags = 1; 6440 extent_op->is_data = 0; 6441 6442 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6443 ins.objectid, 6444 ins.offset, parent, root_objectid, 6445 level, BTRFS_ADD_DELAYED_EXTENT, 6446 extent_op, 0); 6447 BUG_ON(ret); /* -ENOMEM */ 6448 } 6449 return buf; 6450 } 6451 6452 struct walk_control { 6453 u64 refs[BTRFS_MAX_LEVEL]; 6454 u64 flags[BTRFS_MAX_LEVEL]; 6455 struct btrfs_key update_progress; 6456 int stage; 6457 int level; 6458 int shared_level; 6459 int update_ref; 6460 int keep_locks; 6461 int reada_slot; 6462 int reada_count; 6463 int for_reloc; 6464 }; 6465 6466 #define DROP_REFERENCE 1 6467 #define UPDATE_BACKREF 2 6468 6469 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 6470 struct btrfs_root *root, 6471 struct walk_control *wc, 6472 struct btrfs_path *path) 6473 { 6474 u64 bytenr; 6475 u64 generation; 6476 u64 refs; 6477 u64 flags; 6478 u32 nritems; 6479 u32 blocksize; 6480 struct btrfs_key key; 6481 struct extent_buffer *eb; 6482 int ret; 6483 int slot; 6484 int nread = 0; 6485 6486 if (path->slots[wc->level] < wc->reada_slot) { 6487 wc->reada_count = wc->reada_count * 2 / 3; 6488 wc->reada_count = max(wc->reada_count, 2); 6489 } else { 6490 wc->reada_count = wc->reada_count * 3 / 2; 6491 wc->reada_count = min_t(int, wc->reada_count, 6492 BTRFS_NODEPTRS_PER_BLOCK(root)); 6493 } 6494 6495 eb = path->nodes[wc->level]; 6496 nritems = btrfs_header_nritems(eb); 6497 blocksize = btrfs_level_size(root, wc->level - 1); 6498 6499 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 6500 if (nread >= wc->reada_count) 6501 break; 6502 6503 cond_resched(); 6504 bytenr = btrfs_node_blockptr(eb, slot); 6505 generation = btrfs_node_ptr_generation(eb, slot); 6506 6507 if (slot == path->slots[wc->level]) 6508 goto reada; 6509 6510 if (wc->stage == UPDATE_BACKREF && 6511 generation <= root->root_key.offset) 6512 continue; 6513 6514 /* We don't lock the tree block, it's OK to be racy here */ 6515 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6516 &refs, &flags); 6517 /* We don't care about errors in readahead. */ 6518 if (ret < 0) 6519 continue; 6520 BUG_ON(refs == 0); 6521 6522 if (wc->stage == DROP_REFERENCE) { 6523 if (refs == 1) 6524 goto reada; 6525 6526 if (wc->level == 1 && 6527 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6528 continue; 6529 if (!wc->update_ref || 6530 generation <= root->root_key.offset) 6531 continue; 6532 btrfs_node_key_to_cpu(eb, &key, slot); 6533 ret = btrfs_comp_cpu_keys(&key, 6534 &wc->update_progress); 6535 if (ret < 0) 6536 continue; 6537 } else { 6538 if (wc->level == 1 && 6539 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6540 continue; 6541 } 6542 reada: 6543 ret = readahead_tree_block(root, bytenr, blocksize, 6544 generation); 6545 if (ret) 6546 break; 6547 nread++; 6548 } 6549 wc->reada_slot = slot; 6550 } 6551 6552 /* 6553 * hepler to process tree block while walking down the tree. 6554 * 6555 * when wc->stage == UPDATE_BACKREF, this function updates 6556 * back refs for pointers in the block. 6557 * 6558 * NOTE: return value 1 means we should stop walking down. 6559 */ 6560 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 6561 struct btrfs_root *root, 6562 struct btrfs_path *path, 6563 struct walk_control *wc, int lookup_info) 6564 { 6565 int level = wc->level; 6566 struct extent_buffer *eb = path->nodes[level]; 6567 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6568 int ret; 6569 6570 if (wc->stage == UPDATE_BACKREF && 6571 btrfs_header_owner(eb) != root->root_key.objectid) 6572 return 1; 6573 6574 /* 6575 * when reference count of tree block is 1, it won't increase 6576 * again. once full backref flag is set, we never clear it. 6577 */ 6578 if (lookup_info && 6579 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 6580 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 6581 BUG_ON(!path->locks[level]); 6582 ret = btrfs_lookup_extent_info(trans, root, 6583 eb->start, eb->len, 6584 &wc->refs[level], 6585 &wc->flags[level]); 6586 BUG_ON(ret == -ENOMEM); 6587 if (ret) 6588 return ret; 6589 BUG_ON(wc->refs[level] == 0); 6590 } 6591 6592 if (wc->stage == DROP_REFERENCE) { 6593 if (wc->refs[level] > 1) 6594 return 1; 6595 6596 if (path->locks[level] && !wc->keep_locks) { 6597 btrfs_tree_unlock_rw(eb, path->locks[level]); 6598 path->locks[level] = 0; 6599 } 6600 return 0; 6601 } 6602 6603 /* wc->stage == UPDATE_BACKREF */ 6604 if (!(wc->flags[level] & flag)) { 6605 BUG_ON(!path->locks[level]); 6606 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 6607 BUG_ON(ret); /* -ENOMEM */ 6608 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 6609 BUG_ON(ret); /* -ENOMEM */ 6610 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 6611 eb->len, flag, 0); 6612 BUG_ON(ret); /* -ENOMEM */ 6613 wc->flags[level] |= flag; 6614 } 6615 6616 /* 6617 * the block is shared by multiple trees, so it's not good to 6618 * keep the tree lock 6619 */ 6620 if (path->locks[level] && level > 0) { 6621 btrfs_tree_unlock_rw(eb, path->locks[level]); 6622 path->locks[level] = 0; 6623 } 6624 return 0; 6625 } 6626 6627 /* 6628 * hepler to process tree block pointer. 6629 * 6630 * when wc->stage == DROP_REFERENCE, this function checks 6631 * reference count of the block pointed to. if the block 6632 * is shared and we need update back refs for the subtree 6633 * rooted at the block, this function changes wc->stage to 6634 * UPDATE_BACKREF. if the block is shared and there is no 6635 * need to update back, this function drops the reference 6636 * to the block. 6637 * 6638 * NOTE: return value 1 means we should stop walking down. 6639 */ 6640 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 6641 struct btrfs_root *root, 6642 struct btrfs_path *path, 6643 struct walk_control *wc, int *lookup_info) 6644 { 6645 u64 bytenr; 6646 u64 generation; 6647 u64 parent; 6648 u32 blocksize; 6649 struct btrfs_key key; 6650 struct extent_buffer *next; 6651 int level = wc->level; 6652 int reada = 0; 6653 int ret = 0; 6654 6655 generation = btrfs_node_ptr_generation(path->nodes[level], 6656 path->slots[level]); 6657 /* 6658 * if the lower level block was created before the snapshot 6659 * was created, we know there is no need to update back refs 6660 * for the subtree 6661 */ 6662 if (wc->stage == UPDATE_BACKREF && 6663 generation <= root->root_key.offset) { 6664 *lookup_info = 1; 6665 return 1; 6666 } 6667 6668 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 6669 blocksize = btrfs_level_size(root, level - 1); 6670 6671 next = btrfs_find_tree_block(root, bytenr, blocksize); 6672 if (!next) { 6673 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6674 if (!next) 6675 return -ENOMEM; 6676 reada = 1; 6677 } 6678 btrfs_tree_lock(next); 6679 btrfs_set_lock_blocking(next); 6680 6681 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6682 &wc->refs[level - 1], 6683 &wc->flags[level - 1]); 6684 if (ret < 0) { 6685 btrfs_tree_unlock(next); 6686 return ret; 6687 } 6688 6689 BUG_ON(wc->refs[level - 1] == 0); 6690 *lookup_info = 0; 6691 6692 if (wc->stage == DROP_REFERENCE) { 6693 if (wc->refs[level - 1] > 1) { 6694 if (level == 1 && 6695 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6696 goto skip; 6697 6698 if (!wc->update_ref || 6699 generation <= root->root_key.offset) 6700 goto skip; 6701 6702 btrfs_node_key_to_cpu(path->nodes[level], &key, 6703 path->slots[level]); 6704 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6705 if (ret < 0) 6706 goto skip; 6707 6708 wc->stage = UPDATE_BACKREF; 6709 wc->shared_level = level - 1; 6710 } 6711 } else { 6712 if (level == 1 && 6713 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6714 goto skip; 6715 } 6716 6717 if (!btrfs_buffer_uptodate(next, generation, 0)) { 6718 btrfs_tree_unlock(next); 6719 free_extent_buffer(next); 6720 next = NULL; 6721 *lookup_info = 1; 6722 } 6723 6724 if (!next) { 6725 if (reada && level == 1) 6726 reada_walk_down(trans, root, wc, path); 6727 next = read_tree_block(root, bytenr, blocksize, generation); 6728 if (!next) 6729 return -EIO; 6730 btrfs_tree_lock(next); 6731 btrfs_set_lock_blocking(next); 6732 } 6733 6734 level--; 6735 BUG_ON(level != btrfs_header_level(next)); 6736 path->nodes[level] = next; 6737 path->slots[level] = 0; 6738 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6739 wc->level = level; 6740 if (wc->level == 1) 6741 wc->reada_slot = 0; 6742 return 0; 6743 skip: 6744 wc->refs[level - 1] = 0; 6745 wc->flags[level - 1] = 0; 6746 if (wc->stage == DROP_REFERENCE) { 6747 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6748 parent = path->nodes[level]->start; 6749 } else { 6750 BUG_ON(root->root_key.objectid != 6751 btrfs_header_owner(path->nodes[level])); 6752 parent = 0; 6753 } 6754 6755 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6756 root->root_key.objectid, level - 1, 0, 0); 6757 BUG_ON(ret); /* -ENOMEM */ 6758 } 6759 btrfs_tree_unlock(next); 6760 free_extent_buffer(next); 6761 *lookup_info = 1; 6762 return 1; 6763 } 6764 6765 /* 6766 * hepler to process tree block while walking up the tree. 6767 * 6768 * when wc->stage == DROP_REFERENCE, this function drops 6769 * reference count on the block. 6770 * 6771 * when wc->stage == UPDATE_BACKREF, this function changes 6772 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6773 * to UPDATE_BACKREF previously while processing the block. 6774 * 6775 * NOTE: return value 1 means we should stop walking up. 6776 */ 6777 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6778 struct btrfs_root *root, 6779 struct btrfs_path *path, 6780 struct walk_control *wc) 6781 { 6782 int ret; 6783 int level = wc->level; 6784 struct extent_buffer *eb = path->nodes[level]; 6785 u64 parent = 0; 6786 6787 if (wc->stage == UPDATE_BACKREF) { 6788 BUG_ON(wc->shared_level < level); 6789 if (level < wc->shared_level) 6790 goto out; 6791 6792 ret = find_next_key(path, level + 1, &wc->update_progress); 6793 if (ret > 0) 6794 wc->update_ref = 0; 6795 6796 wc->stage = DROP_REFERENCE; 6797 wc->shared_level = -1; 6798 path->slots[level] = 0; 6799 6800 /* 6801 * check reference count again if the block isn't locked. 6802 * we should start walking down the tree again if reference 6803 * count is one. 6804 */ 6805 if (!path->locks[level]) { 6806 BUG_ON(level == 0); 6807 btrfs_tree_lock(eb); 6808 btrfs_set_lock_blocking(eb); 6809 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6810 6811 ret = btrfs_lookup_extent_info(trans, root, 6812 eb->start, eb->len, 6813 &wc->refs[level], 6814 &wc->flags[level]); 6815 if (ret < 0) { 6816 btrfs_tree_unlock_rw(eb, path->locks[level]); 6817 path->locks[level] = 0; 6818 return ret; 6819 } 6820 BUG_ON(wc->refs[level] == 0); 6821 if (wc->refs[level] == 1) { 6822 btrfs_tree_unlock_rw(eb, path->locks[level]); 6823 path->locks[level] = 0; 6824 return 1; 6825 } 6826 } 6827 } 6828 6829 /* wc->stage == DROP_REFERENCE */ 6830 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6831 6832 if (wc->refs[level] == 1) { 6833 if (level == 0) { 6834 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6835 ret = btrfs_dec_ref(trans, root, eb, 1, 6836 wc->for_reloc); 6837 else 6838 ret = btrfs_dec_ref(trans, root, eb, 0, 6839 wc->for_reloc); 6840 BUG_ON(ret); /* -ENOMEM */ 6841 } 6842 /* make block locked assertion in clean_tree_block happy */ 6843 if (!path->locks[level] && 6844 btrfs_header_generation(eb) == trans->transid) { 6845 btrfs_tree_lock(eb); 6846 btrfs_set_lock_blocking(eb); 6847 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6848 } 6849 clean_tree_block(trans, root, eb); 6850 } 6851 6852 if (eb == root->node) { 6853 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6854 parent = eb->start; 6855 else 6856 BUG_ON(root->root_key.objectid != 6857 btrfs_header_owner(eb)); 6858 } else { 6859 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6860 parent = path->nodes[level + 1]->start; 6861 else 6862 BUG_ON(root->root_key.objectid != 6863 btrfs_header_owner(path->nodes[level + 1])); 6864 } 6865 6866 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 6867 out: 6868 wc->refs[level] = 0; 6869 wc->flags[level] = 0; 6870 return 0; 6871 } 6872 6873 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6874 struct btrfs_root *root, 6875 struct btrfs_path *path, 6876 struct walk_control *wc) 6877 { 6878 int level = wc->level; 6879 int lookup_info = 1; 6880 int ret; 6881 6882 while (level >= 0) { 6883 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6884 if (ret > 0) 6885 break; 6886 6887 if (level == 0) 6888 break; 6889 6890 if (path->slots[level] >= 6891 btrfs_header_nritems(path->nodes[level])) 6892 break; 6893 6894 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6895 if (ret > 0) { 6896 path->slots[level]++; 6897 continue; 6898 } else if (ret < 0) 6899 return ret; 6900 level = wc->level; 6901 } 6902 return 0; 6903 } 6904 6905 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6906 struct btrfs_root *root, 6907 struct btrfs_path *path, 6908 struct walk_control *wc, int max_level) 6909 { 6910 int level = wc->level; 6911 int ret; 6912 6913 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6914 while (level < max_level && path->nodes[level]) { 6915 wc->level = level; 6916 if (path->slots[level] + 1 < 6917 btrfs_header_nritems(path->nodes[level])) { 6918 path->slots[level]++; 6919 return 0; 6920 } else { 6921 ret = walk_up_proc(trans, root, path, wc); 6922 if (ret > 0) 6923 return 0; 6924 6925 if (path->locks[level]) { 6926 btrfs_tree_unlock_rw(path->nodes[level], 6927 path->locks[level]); 6928 path->locks[level] = 0; 6929 } 6930 free_extent_buffer(path->nodes[level]); 6931 path->nodes[level] = NULL; 6932 level++; 6933 } 6934 } 6935 return 1; 6936 } 6937 6938 /* 6939 * drop a subvolume tree. 6940 * 6941 * this function traverses the tree freeing any blocks that only 6942 * referenced by the tree. 6943 * 6944 * when a shared tree block is found. this function decreases its 6945 * reference count by one. if update_ref is true, this function 6946 * also make sure backrefs for the shared block and all lower level 6947 * blocks are properly updated. 6948 */ 6949 int btrfs_drop_snapshot(struct btrfs_root *root, 6950 struct btrfs_block_rsv *block_rsv, int update_ref, 6951 int for_reloc) 6952 { 6953 struct btrfs_path *path; 6954 struct btrfs_trans_handle *trans; 6955 struct btrfs_root *tree_root = root->fs_info->tree_root; 6956 struct btrfs_root_item *root_item = &root->root_item; 6957 struct walk_control *wc; 6958 struct btrfs_key key; 6959 int err = 0; 6960 int ret; 6961 int level; 6962 6963 path = btrfs_alloc_path(); 6964 if (!path) { 6965 err = -ENOMEM; 6966 goto out; 6967 } 6968 6969 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6970 if (!wc) { 6971 btrfs_free_path(path); 6972 err = -ENOMEM; 6973 goto out; 6974 } 6975 6976 trans = btrfs_start_transaction(tree_root, 0); 6977 if (IS_ERR(trans)) { 6978 err = PTR_ERR(trans); 6979 goto out_free; 6980 } 6981 6982 if (block_rsv) 6983 trans->block_rsv = block_rsv; 6984 6985 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6986 level = btrfs_header_level(root->node); 6987 path->nodes[level] = btrfs_lock_root_node(root); 6988 btrfs_set_lock_blocking(path->nodes[level]); 6989 path->slots[level] = 0; 6990 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6991 memset(&wc->update_progress, 0, 6992 sizeof(wc->update_progress)); 6993 } else { 6994 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6995 memcpy(&wc->update_progress, &key, 6996 sizeof(wc->update_progress)); 6997 6998 level = root_item->drop_level; 6999 BUG_ON(level == 0); 7000 path->lowest_level = level; 7001 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7002 path->lowest_level = 0; 7003 if (ret < 0) { 7004 err = ret; 7005 goto out_end_trans; 7006 } 7007 WARN_ON(ret > 0); 7008 7009 /* 7010 * unlock our path, this is safe because only this 7011 * function is allowed to delete this snapshot 7012 */ 7013 btrfs_unlock_up_safe(path, 0); 7014 7015 level = btrfs_header_level(root->node); 7016 while (1) { 7017 btrfs_tree_lock(path->nodes[level]); 7018 btrfs_set_lock_blocking(path->nodes[level]); 7019 7020 ret = btrfs_lookup_extent_info(trans, root, 7021 path->nodes[level]->start, 7022 path->nodes[level]->len, 7023 &wc->refs[level], 7024 &wc->flags[level]); 7025 if (ret < 0) { 7026 err = ret; 7027 goto out_end_trans; 7028 } 7029 BUG_ON(wc->refs[level] == 0); 7030 7031 if (level == root_item->drop_level) 7032 break; 7033 7034 btrfs_tree_unlock(path->nodes[level]); 7035 WARN_ON(wc->refs[level] != 1); 7036 level--; 7037 } 7038 } 7039 7040 wc->level = level; 7041 wc->shared_level = -1; 7042 wc->stage = DROP_REFERENCE; 7043 wc->update_ref = update_ref; 7044 wc->keep_locks = 0; 7045 wc->for_reloc = for_reloc; 7046 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7047 7048 while (1) { 7049 ret = walk_down_tree(trans, root, path, wc); 7050 if (ret < 0) { 7051 err = ret; 7052 break; 7053 } 7054 7055 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7056 if (ret < 0) { 7057 err = ret; 7058 break; 7059 } 7060 7061 if (ret > 0) { 7062 BUG_ON(wc->stage != DROP_REFERENCE); 7063 break; 7064 } 7065 7066 if (wc->stage == DROP_REFERENCE) { 7067 level = wc->level; 7068 btrfs_node_key(path->nodes[level], 7069 &root_item->drop_progress, 7070 path->slots[level]); 7071 root_item->drop_level = level; 7072 } 7073 7074 BUG_ON(wc->level == 0); 7075 if (btrfs_should_end_transaction(trans, tree_root)) { 7076 ret = btrfs_update_root(trans, tree_root, 7077 &root->root_key, 7078 root_item); 7079 if (ret) { 7080 btrfs_abort_transaction(trans, tree_root, ret); 7081 err = ret; 7082 goto out_end_trans; 7083 } 7084 7085 btrfs_end_transaction_throttle(trans, tree_root); 7086 trans = btrfs_start_transaction(tree_root, 0); 7087 if (IS_ERR(trans)) { 7088 err = PTR_ERR(trans); 7089 goto out_free; 7090 } 7091 if (block_rsv) 7092 trans->block_rsv = block_rsv; 7093 } 7094 } 7095 btrfs_release_path(path); 7096 if (err) 7097 goto out_end_trans; 7098 7099 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7100 if (ret) { 7101 btrfs_abort_transaction(trans, tree_root, ret); 7102 goto out_end_trans; 7103 } 7104 7105 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7106 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 7107 NULL, NULL); 7108 if (ret < 0) { 7109 btrfs_abort_transaction(trans, tree_root, ret); 7110 err = ret; 7111 goto out_end_trans; 7112 } else if (ret > 0) { 7113 /* if we fail to delete the orphan item this time 7114 * around, it'll get picked up the next time. 7115 * 7116 * The most common failure here is just -ENOENT. 7117 */ 7118 btrfs_del_orphan_item(trans, tree_root, 7119 root->root_key.objectid); 7120 } 7121 } 7122 7123 if (root->in_radix) { 7124 btrfs_free_fs_root(tree_root->fs_info, root); 7125 } else { 7126 free_extent_buffer(root->node); 7127 free_extent_buffer(root->commit_root); 7128 kfree(root); 7129 } 7130 out_end_trans: 7131 btrfs_end_transaction_throttle(trans, tree_root); 7132 out_free: 7133 kfree(wc); 7134 btrfs_free_path(path); 7135 out: 7136 if (err) 7137 btrfs_std_error(root->fs_info, err); 7138 return err; 7139 } 7140 7141 /* 7142 * drop subtree rooted at tree block 'node'. 7143 * 7144 * NOTE: this function will unlock and release tree block 'node' 7145 * only used by relocation code 7146 */ 7147 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7148 struct btrfs_root *root, 7149 struct extent_buffer *node, 7150 struct extent_buffer *parent) 7151 { 7152 struct btrfs_path *path; 7153 struct walk_control *wc; 7154 int level; 7155 int parent_level; 7156 int ret = 0; 7157 int wret; 7158 7159 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7160 7161 path = btrfs_alloc_path(); 7162 if (!path) 7163 return -ENOMEM; 7164 7165 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7166 if (!wc) { 7167 btrfs_free_path(path); 7168 return -ENOMEM; 7169 } 7170 7171 btrfs_assert_tree_locked(parent); 7172 parent_level = btrfs_header_level(parent); 7173 extent_buffer_get(parent); 7174 path->nodes[parent_level] = parent; 7175 path->slots[parent_level] = btrfs_header_nritems(parent); 7176 7177 btrfs_assert_tree_locked(node); 7178 level = btrfs_header_level(node); 7179 path->nodes[level] = node; 7180 path->slots[level] = 0; 7181 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7182 7183 wc->refs[parent_level] = 1; 7184 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7185 wc->level = level; 7186 wc->shared_level = -1; 7187 wc->stage = DROP_REFERENCE; 7188 wc->update_ref = 0; 7189 wc->keep_locks = 1; 7190 wc->for_reloc = 1; 7191 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7192 7193 while (1) { 7194 wret = walk_down_tree(trans, root, path, wc); 7195 if (wret < 0) { 7196 ret = wret; 7197 break; 7198 } 7199 7200 wret = walk_up_tree(trans, root, path, wc, parent_level); 7201 if (wret < 0) 7202 ret = wret; 7203 if (wret != 0) 7204 break; 7205 } 7206 7207 kfree(wc); 7208 btrfs_free_path(path); 7209 return ret; 7210 } 7211 7212 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7213 { 7214 u64 num_devices; 7215 u64 stripped; 7216 7217 /* 7218 * if restripe for this chunk_type is on pick target profile and 7219 * return, otherwise do the usual balance 7220 */ 7221 stripped = get_restripe_target(root->fs_info, flags); 7222 if (stripped) 7223 return extended_to_chunk(stripped); 7224 7225 /* 7226 * we add in the count of missing devices because we want 7227 * to make sure that any RAID levels on a degraded FS 7228 * continue to be honored. 7229 */ 7230 num_devices = root->fs_info->fs_devices->rw_devices + 7231 root->fs_info->fs_devices->missing_devices; 7232 7233 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7234 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7235 7236 if (num_devices == 1) { 7237 stripped |= BTRFS_BLOCK_GROUP_DUP; 7238 stripped = flags & ~stripped; 7239 7240 /* turn raid0 into single device chunks */ 7241 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7242 return stripped; 7243 7244 /* turn mirroring into duplication */ 7245 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7246 BTRFS_BLOCK_GROUP_RAID10)) 7247 return stripped | BTRFS_BLOCK_GROUP_DUP; 7248 } else { 7249 /* they already had raid on here, just return */ 7250 if (flags & stripped) 7251 return flags; 7252 7253 stripped |= BTRFS_BLOCK_GROUP_DUP; 7254 stripped = flags & ~stripped; 7255 7256 /* switch duplicated blocks with raid1 */ 7257 if (flags & BTRFS_BLOCK_GROUP_DUP) 7258 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7259 7260 /* this is drive concat, leave it alone */ 7261 } 7262 7263 return flags; 7264 } 7265 7266 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7267 { 7268 struct btrfs_space_info *sinfo = cache->space_info; 7269 u64 num_bytes; 7270 u64 min_allocable_bytes; 7271 int ret = -ENOSPC; 7272 7273 7274 /* 7275 * We need some metadata space and system metadata space for 7276 * allocating chunks in some corner cases until we force to set 7277 * it to be readonly. 7278 */ 7279 if ((sinfo->flags & 7280 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7281 !force) 7282 min_allocable_bytes = 1 * 1024 * 1024; 7283 else 7284 min_allocable_bytes = 0; 7285 7286 spin_lock(&sinfo->lock); 7287 spin_lock(&cache->lock); 7288 7289 if (cache->ro) { 7290 ret = 0; 7291 goto out; 7292 } 7293 7294 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7295 cache->bytes_super - btrfs_block_group_used(&cache->item); 7296 7297 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7298 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7299 min_allocable_bytes <= sinfo->total_bytes) { 7300 sinfo->bytes_readonly += num_bytes; 7301 cache->ro = 1; 7302 ret = 0; 7303 } 7304 out: 7305 spin_unlock(&cache->lock); 7306 spin_unlock(&sinfo->lock); 7307 return ret; 7308 } 7309 7310 int btrfs_set_block_group_ro(struct btrfs_root *root, 7311 struct btrfs_block_group_cache *cache) 7312 7313 { 7314 struct btrfs_trans_handle *trans; 7315 u64 alloc_flags; 7316 int ret; 7317 7318 BUG_ON(cache->ro); 7319 7320 trans = btrfs_join_transaction(root); 7321 if (IS_ERR(trans)) 7322 return PTR_ERR(trans); 7323 7324 alloc_flags = update_block_group_flags(root, cache->flags); 7325 if (alloc_flags != cache->flags) { 7326 ret = do_chunk_alloc(trans, root, alloc_flags, 7327 CHUNK_ALLOC_FORCE); 7328 if (ret < 0) 7329 goto out; 7330 } 7331 7332 ret = set_block_group_ro(cache, 0); 7333 if (!ret) 7334 goto out; 7335 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7336 ret = do_chunk_alloc(trans, root, alloc_flags, 7337 CHUNK_ALLOC_FORCE); 7338 if (ret < 0) 7339 goto out; 7340 ret = set_block_group_ro(cache, 0); 7341 out: 7342 btrfs_end_transaction(trans, root); 7343 return ret; 7344 } 7345 7346 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7347 struct btrfs_root *root, u64 type) 7348 { 7349 u64 alloc_flags = get_alloc_profile(root, type); 7350 return do_chunk_alloc(trans, root, alloc_flags, 7351 CHUNK_ALLOC_FORCE); 7352 } 7353 7354 /* 7355 * helper to account the unused space of all the readonly block group in the 7356 * list. takes mirrors into account. 7357 */ 7358 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7359 { 7360 struct btrfs_block_group_cache *block_group; 7361 u64 free_bytes = 0; 7362 int factor; 7363 7364 list_for_each_entry(block_group, groups_list, list) { 7365 spin_lock(&block_group->lock); 7366 7367 if (!block_group->ro) { 7368 spin_unlock(&block_group->lock); 7369 continue; 7370 } 7371 7372 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7373 BTRFS_BLOCK_GROUP_RAID10 | 7374 BTRFS_BLOCK_GROUP_DUP)) 7375 factor = 2; 7376 else 7377 factor = 1; 7378 7379 free_bytes += (block_group->key.offset - 7380 btrfs_block_group_used(&block_group->item)) * 7381 factor; 7382 7383 spin_unlock(&block_group->lock); 7384 } 7385 7386 return free_bytes; 7387 } 7388 7389 /* 7390 * helper to account the unused space of all the readonly block group in the 7391 * space_info. takes mirrors into account. 7392 */ 7393 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7394 { 7395 int i; 7396 u64 free_bytes = 0; 7397 7398 spin_lock(&sinfo->lock); 7399 7400 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7401 if (!list_empty(&sinfo->block_groups[i])) 7402 free_bytes += __btrfs_get_ro_block_group_free_space( 7403 &sinfo->block_groups[i]); 7404 7405 spin_unlock(&sinfo->lock); 7406 7407 return free_bytes; 7408 } 7409 7410 void btrfs_set_block_group_rw(struct btrfs_root *root, 7411 struct btrfs_block_group_cache *cache) 7412 { 7413 struct btrfs_space_info *sinfo = cache->space_info; 7414 u64 num_bytes; 7415 7416 BUG_ON(!cache->ro); 7417 7418 spin_lock(&sinfo->lock); 7419 spin_lock(&cache->lock); 7420 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7421 cache->bytes_super - btrfs_block_group_used(&cache->item); 7422 sinfo->bytes_readonly -= num_bytes; 7423 cache->ro = 0; 7424 spin_unlock(&cache->lock); 7425 spin_unlock(&sinfo->lock); 7426 } 7427 7428 /* 7429 * checks to see if its even possible to relocate this block group. 7430 * 7431 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7432 * ok to go ahead and try. 7433 */ 7434 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7435 { 7436 struct btrfs_block_group_cache *block_group; 7437 struct btrfs_space_info *space_info; 7438 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7439 struct btrfs_device *device; 7440 u64 min_free; 7441 u64 dev_min = 1; 7442 u64 dev_nr = 0; 7443 u64 target; 7444 int index; 7445 int full = 0; 7446 int ret = 0; 7447 7448 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7449 7450 /* odd, couldn't find the block group, leave it alone */ 7451 if (!block_group) 7452 return -1; 7453 7454 min_free = btrfs_block_group_used(&block_group->item); 7455 7456 /* no bytes used, we're good */ 7457 if (!min_free) 7458 goto out; 7459 7460 space_info = block_group->space_info; 7461 spin_lock(&space_info->lock); 7462 7463 full = space_info->full; 7464 7465 /* 7466 * if this is the last block group we have in this space, we can't 7467 * relocate it unless we're able to allocate a new chunk below. 7468 * 7469 * Otherwise, we need to make sure we have room in the space to handle 7470 * all of the extents from this block group. If we can, we're good 7471 */ 7472 if ((space_info->total_bytes != block_group->key.offset) && 7473 (space_info->bytes_used + space_info->bytes_reserved + 7474 space_info->bytes_pinned + space_info->bytes_readonly + 7475 min_free < space_info->total_bytes)) { 7476 spin_unlock(&space_info->lock); 7477 goto out; 7478 } 7479 spin_unlock(&space_info->lock); 7480 7481 /* 7482 * ok we don't have enough space, but maybe we have free space on our 7483 * devices to allocate new chunks for relocation, so loop through our 7484 * alloc devices and guess if we have enough space. if this block 7485 * group is going to be restriped, run checks against the target 7486 * profile instead of the current one. 7487 */ 7488 ret = -1; 7489 7490 /* 7491 * index: 7492 * 0: raid10 7493 * 1: raid1 7494 * 2: dup 7495 * 3: raid0 7496 * 4: single 7497 */ 7498 target = get_restripe_target(root->fs_info, block_group->flags); 7499 if (target) { 7500 index = __get_raid_index(extended_to_chunk(target)); 7501 } else { 7502 /* 7503 * this is just a balance, so if we were marked as full 7504 * we know there is no space for a new chunk 7505 */ 7506 if (full) 7507 goto out; 7508 7509 index = get_block_group_index(block_group); 7510 } 7511 7512 if (index == 0) { 7513 dev_min = 4; 7514 /* Divide by 2 */ 7515 min_free >>= 1; 7516 } else if (index == 1) { 7517 dev_min = 2; 7518 } else if (index == 2) { 7519 /* Multiply by 2 */ 7520 min_free <<= 1; 7521 } else if (index == 3) { 7522 dev_min = fs_devices->rw_devices; 7523 do_div(min_free, dev_min); 7524 } 7525 7526 mutex_lock(&root->fs_info->chunk_mutex); 7527 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 7528 u64 dev_offset; 7529 7530 /* 7531 * check to make sure we can actually find a chunk with enough 7532 * space to fit our block group in. 7533 */ 7534 if (device->total_bytes > device->bytes_used + min_free && 7535 !device->is_tgtdev_for_dev_replace) { 7536 ret = find_free_dev_extent(device, min_free, 7537 &dev_offset, NULL); 7538 if (!ret) 7539 dev_nr++; 7540 7541 if (dev_nr >= dev_min) 7542 break; 7543 7544 ret = -1; 7545 } 7546 } 7547 mutex_unlock(&root->fs_info->chunk_mutex); 7548 out: 7549 btrfs_put_block_group(block_group); 7550 return ret; 7551 } 7552 7553 static int find_first_block_group(struct btrfs_root *root, 7554 struct btrfs_path *path, struct btrfs_key *key) 7555 { 7556 int ret = 0; 7557 struct btrfs_key found_key; 7558 struct extent_buffer *leaf; 7559 int slot; 7560 7561 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7562 if (ret < 0) 7563 goto out; 7564 7565 while (1) { 7566 slot = path->slots[0]; 7567 leaf = path->nodes[0]; 7568 if (slot >= btrfs_header_nritems(leaf)) { 7569 ret = btrfs_next_leaf(root, path); 7570 if (ret == 0) 7571 continue; 7572 if (ret < 0) 7573 goto out; 7574 break; 7575 } 7576 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7577 7578 if (found_key.objectid >= key->objectid && 7579 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 7580 ret = 0; 7581 goto out; 7582 } 7583 path->slots[0]++; 7584 } 7585 out: 7586 return ret; 7587 } 7588 7589 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 7590 { 7591 struct btrfs_block_group_cache *block_group; 7592 u64 last = 0; 7593 7594 while (1) { 7595 struct inode *inode; 7596 7597 block_group = btrfs_lookup_first_block_group(info, last); 7598 while (block_group) { 7599 spin_lock(&block_group->lock); 7600 if (block_group->iref) 7601 break; 7602 spin_unlock(&block_group->lock); 7603 block_group = next_block_group(info->tree_root, 7604 block_group); 7605 } 7606 if (!block_group) { 7607 if (last == 0) 7608 break; 7609 last = 0; 7610 continue; 7611 } 7612 7613 inode = block_group->inode; 7614 block_group->iref = 0; 7615 block_group->inode = NULL; 7616 spin_unlock(&block_group->lock); 7617 iput(inode); 7618 last = block_group->key.objectid + block_group->key.offset; 7619 btrfs_put_block_group(block_group); 7620 } 7621 } 7622 7623 int btrfs_free_block_groups(struct btrfs_fs_info *info) 7624 { 7625 struct btrfs_block_group_cache *block_group; 7626 struct btrfs_space_info *space_info; 7627 struct btrfs_caching_control *caching_ctl; 7628 struct rb_node *n; 7629 7630 down_write(&info->extent_commit_sem); 7631 while (!list_empty(&info->caching_block_groups)) { 7632 caching_ctl = list_entry(info->caching_block_groups.next, 7633 struct btrfs_caching_control, list); 7634 list_del(&caching_ctl->list); 7635 put_caching_control(caching_ctl); 7636 } 7637 up_write(&info->extent_commit_sem); 7638 7639 spin_lock(&info->block_group_cache_lock); 7640 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 7641 block_group = rb_entry(n, struct btrfs_block_group_cache, 7642 cache_node); 7643 rb_erase(&block_group->cache_node, 7644 &info->block_group_cache_tree); 7645 spin_unlock(&info->block_group_cache_lock); 7646 7647 down_write(&block_group->space_info->groups_sem); 7648 list_del(&block_group->list); 7649 up_write(&block_group->space_info->groups_sem); 7650 7651 if (block_group->cached == BTRFS_CACHE_STARTED) 7652 wait_block_group_cache_done(block_group); 7653 7654 /* 7655 * We haven't cached this block group, which means we could 7656 * possibly have excluded extents on this block group. 7657 */ 7658 if (block_group->cached == BTRFS_CACHE_NO) 7659 free_excluded_extents(info->extent_root, block_group); 7660 7661 btrfs_remove_free_space_cache(block_group); 7662 btrfs_put_block_group(block_group); 7663 7664 spin_lock(&info->block_group_cache_lock); 7665 } 7666 spin_unlock(&info->block_group_cache_lock); 7667 7668 /* now that all the block groups are freed, go through and 7669 * free all the space_info structs. This is only called during 7670 * the final stages of unmount, and so we know nobody is 7671 * using them. We call synchronize_rcu() once before we start, 7672 * just to be on the safe side. 7673 */ 7674 synchronize_rcu(); 7675 7676 release_global_block_rsv(info); 7677 7678 while(!list_empty(&info->space_info)) { 7679 space_info = list_entry(info->space_info.next, 7680 struct btrfs_space_info, 7681 list); 7682 if (space_info->bytes_pinned > 0 || 7683 space_info->bytes_reserved > 0 || 7684 space_info->bytes_may_use > 0) { 7685 WARN_ON(1); 7686 dump_space_info(space_info, 0, 0); 7687 } 7688 list_del(&space_info->list); 7689 kfree(space_info); 7690 } 7691 return 0; 7692 } 7693 7694 static void __link_block_group(struct btrfs_space_info *space_info, 7695 struct btrfs_block_group_cache *cache) 7696 { 7697 int index = get_block_group_index(cache); 7698 7699 down_write(&space_info->groups_sem); 7700 list_add_tail(&cache->list, &space_info->block_groups[index]); 7701 up_write(&space_info->groups_sem); 7702 } 7703 7704 int btrfs_read_block_groups(struct btrfs_root *root) 7705 { 7706 struct btrfs_path *path; 7707 int ret; 7708 struct btrfs_block_group_cache *cache; 7709 struct btrfs_fs_info *info = root->fs_info; 7710 struct btrfs_space_info *space_info; 7711 struct btrfs_key key; 7712 struct btrfs_key found_key; 7713 struct extent_buffer *leaf; 7714 int need_clear = 0; 7715 u64 cache_gen; 7716 7717 root = info->extent_root; 7718 key.objectid = 0; 7719 key.offset = 0; 7720 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7721 path = btrfs_alloc_path(); 7722 if (!path) 7723 return -ENOMEM; 7724 path->reada = 1; 7725 7726 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 7727 if (btrfs_test_opt(root, SPACE_CACHE) && 7728 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 7729 need_clear = 1; 7730 if (btrfs_test_opt(root, CLEAR_CACHE)) 7731 need_clear = 1; 7732 7733 while (1) { 7734 ret = find_first_block_group(root, path, &key); 7735 if (ret > 0) 7736 break; 7737 if (ret != 0) 7738 goto error; 7739 leaf = path->nodes[0]; 7740 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7741 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7742 if (!cache) { 7743 ret = -ENOMEM; 7744 goto error; 7745 } 7746 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7747 GFP_NOFS); 7748 if (!cache->free_space_ctl) { 7749 kfree(cache); 7750 ret = -ENOMEM; 7751 goto error; 7752 } 7753 7754 atomic_set(&cache->count, 1); 7755 spin_lock_init(&cache->lock); 7756 cache->fs_info = info; 7757 INIT_LIST_HEAD(&cache->list); 7758 INIT_LIST_HEAD(&cache->cluster_list); 7759 7760 if (need_clear) { 7761 /* 7762 * When we mount with old space cache, we need to 7763 * set BTRFS_DC_CLEAR and set dirty flag. 7764 * 7765 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 7766 * truncate the old free space cache inode and 7767 * setup a new one. 7768 * b) Setting 'dirty flag' makes sure that we flush 7769 * the new space cache info onto disk. 7770 */ 7771 cache->disk_cache_state = BTRFS_DC_CLEAR; 7772 if (btrfs_test_opt(root, SPACE_CACHE)) 7773 cache->dirty = 1; 7774 } 7775 7776 read_extent_buffer(leaf, &cache->item, 7777 btrfs_item_ptr_offset(leaf, path->slots[0]), 7778 sizeof(cache->item)); 7779 memcpy(&cache->key, &found_key, sizeof(found_key)); 7780 7781 key.objectid = found_key.objectid + found_key.offset; 7782 btrfs_release_path(path); 7783 cache->flags = btrfs_block_group_flags(&cache->item); 7784 cache->sectorsize = root->sectorsize; 7785 7786 btrfs_init_free_space_ctl(cache); 7787 7788 /* 7789 * We need to exclude the super stripes now so that the space 7790 * info has super bytes accounted for, otherwise we'll think 7791 * we have more space than we actually do. 7792 */ 7793 exclude_super_stripes(root, cache); 7794 7795 /* 7796 * check for two cases, either we are full, and therefore 7797 * don't need to bother with the caching work since we won't 7798 * find any space, or we are empty, and we can just add all 7799 * the space in and be done with it. This saves us _alot_ of 7800 * time, particularly in the full case. 7801 */ 7802 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7803 cache->last_byte_to_unpin = (u64)-1; 7804 cache->cached = BTRFS_CACHE_FINISHED; 7805 free_excluded_extents(root, cache); 7806 } else if (btrfs_block_group_used(&cache->item) == 0) { 7807 cache->last_byte_to_unpin = (u64)-1; 7808 cache->cached = BTRFS_CACHE_FINISHED; 7809 add_new_free_space(cache, root->fs_info, 7810 found_key.objectid, 7811 found_key.objectid + 7812 found_key.offset); 7813 free_excluded_extents(root, cache); 7814 } 7815 7816 ret = update_space_info(info, cache->flags, found_key.offset, 7817 btrfs_block_group_used(&cache->item), 7818 &space_info); 7819 BUG_ON(ret); /* -ENOMEM */ 7820 cache->space_info = space_info; 7821 spin_lock(&cache->space_info->lock); 7822 cache->space_info->bytes_readonly += cache->bytes_super; 7823 spin_unlock(&cache->space_info->lock); 7824 7825 __link_block_group(space_info, cache); 7826 7827 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7828 BUG_ON(ret); /* Logic error */ 7829 7830 set_avail_alloc_bits(root->fs_info, cache->flags); 7831 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7832 set_block_group_ro(cache, 1); 7833 } 7834 7835 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7836 if (!(get_alloc_profile(root, space_info->flags) & 7837 (BTRFS_BLOCK_GROUP_RAID10 | 7838 BTRFS_BLOCK_GROUP_RAID1 | 7839 BTRFS_BLOCK_GROUP_DUP))) 7840 continue; 7841 /* 7842 * avoid allocating from un-mirrored block group if there are 7843 * mirrored block groups. 7844 */ 7845 list_for_each_entry(cache, &space_info->block_groups[3], list) 7846 set_block_group_ro(cache, 1); 7847 list_for_each_entry(cache, &space_info->block_groups[4], list) 7848 set_block_group_ro(cache, 1); 7849 } 7850 7851 init_global_block_rsv(info); 7852 ret = 0; 7853 error: 7854 btrfs_free_path(path); 7855 return ret; 7856 } 7857 7858 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 7859 struct btrfs_root *root) 7860 { 7861 struct btrfs_block_group_cache *block_group, *tmp; 7862 struct btrfs_root *extent_root = root->fs_info->extent_root; 7863 struct btrfs_block_group_item item; 7864 struct btrfs_key key; 7865 int ret = 0; 7866 7867 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 7868 new_bg_list) { 7869 list_del_init(&block_group->new_bg_list); 7870 7871 if (ret) 7872 continue; 7873 7874 spin_lock(&block_group->lock); 7875 memcpy(&item, &block_group->item, sizeof(item)); 7876 memcpy(&key, &block_group->key, sizeof(key)); 7877 spin_unlock(&block_group->lock); 7878 7879 ret = btrfs_insert_item(trans, extent_root, &key, &item, 7880 sizeof(item)); 7881 if (ret) 7882 btrfs_abort_transaction(trans, extent_root, ret); 7883 } 7884 } 7885 7886 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 7887 struct btrfs_root *root, u64 bytes_used, 7888 u64 type, u64 chunk_objectid, u64 chunk_offset, 7889 u64 size) 7890 { 7891 int ret; 7892 struct btrfs_root *extent_root; 7893 struct btrfs_block_group_cache *cache; 7894 7895 extent_root = root->fs_info->extent_root; 7896 7897 root->fs_info->last_trans_log_full_commit = trans->transid; 7898 7899 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7900 if (!cache) 7901 return -ENOMEM; 7902 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7903 GFP_NOFS); 7904 if (!cache->free_space_ctl) { 7905 kfree(cache); 7906 return -ENOMEM; 7907 } 7908 7909 cache->key.objectid = chunk_offset; 7910 cache->key.offset = size; 7911 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 7912 cache->sectorsize = root->sectorsize; 7913 cache->fs_info = root->fs_info; 7914 7915 atomic_set(&cache->count, 1); 7916 spin_lock_init(&cache->lock); 7917 INIT_LIST_HEAD(&cache->list); 7918 INIT_LIST_HEAD(&cache->cluster_list); 7919 INIT_LIST_HEAD(&cache->new_bg_list); 7920 7921 btrfs_init_free_space_ctl(cache); 7922 7923 btrfs_set_block_group_used(&cache->item, bytes_used); 7924 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 7925 cache->flags = type; 7926 btrfs_set_block_group_flags(&cache->item, type); 7927 7928 cache->last_byte_to_unpin = (u64)-1; 7929 cache->cached = BTRFS_CACHE_FINISHED; 7930 exclude_super_stripes(root, cache); 7931 7932 add_new_free_space(cache, root->fs_info, chunk_offset, 7933 chunk_offset + size); 7934 7935 free_excluded_extents(root, cache); 7936 7937 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 7938 &cache->space_info); 7939 BUG_ON(ret); /* -ENOMEM */ 7940 update_global_block_rsv(root->fs_info); 7941 7942 spin_lock(&cache->space_info->lock); 7943 cache->space_info->bytes_readonly += cache->bytes_super; 7944 spin_unlock(&cache->space_info->lock); 7945 7946 __link_block_group(cache->space_info, cache); 7947 7948 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7949 BUG_ON(ret); /* Logic error */ 7950 7951 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 7952 7953 set_avail_alloc_bits(extent_root->fs_info, type); 7954 7955 return 0; 7956 } 7957 7958 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 7959 { 7960 u64 extra_flags = chunk_to_extended(flags) & 7961 BTRFS_EXTENDED_PROFILE_MASK; 7962 7963 if (flags & BTRFS_BLOCK_GROUP_DATA) 7964 fs_info->avail_data_alloc_bits &= ~extra_flags; 7965 if (flags & BTRFS_BLOCK_GROUP_METADATA) 7966 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 7967 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 7968 fs_info->avail_system_alloc_bits &= ~extra_flags; 7969 } 7970 7971 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 7972 struct btrfs_root *root, u64 group_start) 7973 { 7974 struct btrfs_path *path; 7975 struct btrfs_block_group_cache *block_group; 7976 struct btrfs_free_cluster *cluster; 7977 struct btrfs_root *tree_root = root->fs_info->tree_root; 7978 struct btrfs_key key; 7979 struct inode *inode; 7980 int ret; 7981 int index; 7982 int factor; 7983 7984 root = root->fs_info->extent_root; 7985 7986 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 7987 BUG_ON(!block_group); 7988 BUG_ON(!block_group->ro); 7989 7990 /* 7991 * Free the reserved super bytes from this block group before 7992 * remove it. 7993 */ 7994 free_excluded_extents(root, block_group); 7995 7996 memcpy(&key, &block_group->key, sizeof(key)); 7997 index = get_block_group_index(block_group); 7998 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 7999 BTRFS_BLOCK_GROUP_RAID1 | 8000 BTRFS_BLOCK_GROUP_RAID10)) 8001 factor = 2; 8002 else 8003 factor = 1; 8004 8005 /* make sure this block group isn't part of an allocation cluster */ 8006 cluster = &root->fs_info->data_alloc_cluster; 8007 spin_lock(&cluster->refill_lock); 8008 btrfs_return_cluster_to_free_space(block_group, cluster); 8009 spin_unlock(&cluster->refill_lock); 8010 8011 /* 8012 * make sure this block group isn't part of a metadata 8013 * allocation cluster 8014 */ 8015 cluster = &root->fs_info->meta_alloc_cluster; 8016 spin_lock(&cluster->refill_lock); 8017 btrfs_return_cluster_to_free_space(block_group, cluster); 8018 spin_unlock(&cluster->refill_lock); 8019 8020 path = btrfs_alloc_path(); 8021 if (!path) { 8022 ret = -ENOMEM; 8023 goto out; 8024 } 8025 8026 inode = lookup_free_space_inode(tree_root, block_group, path); 8027 if (!IS_ERR(inode)) { 8028 ret = btrfs_orphan_add(trans, inode); 8029 if (ret) { 8030 btrfs_add_delayed_iput(inode); 8031 goto out; 8032 } 8033 clear_nlink(inode); 8034 /* One for the block groups ref */ 8035 spin_lock(&block_group->lock); 8036 if (block_group->iref) { 8037 block_group->iref = 0; 8038 block_group->inode = NULL; 8039 spin_unlock(&block_group->lock); 8040 iput(inode); 8041 } else { 8042 spin_unlock(&block_group->lock); 8043 } 8044 /* One for our lookup ref */ 8045 btrfs_add_delayed_iput(inode); 8046 } 8047 8048 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8049 key.offset = block_group->key.objectid; 8050 key.type = 0; 8051 8052 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8053 if (ret < 0) 8054 goto out; 8055 if (ret > 0) 8056 btrfs_release_path(path); 8057 if (ret == 0) { 8058 ret = btrfs_del_item(trans, tree_root, path); 8059 if (ret) 8060 goto out; 8061 btrfs_release_path(path); 8062 } 8063 8064 spin_lock(&root->fs_info->block_group_cache_lock); 8065 rb_erase(&block_group->cache_node, 8066 &root->fs_info->block_group_cache_tree); 8067 spin_unlock(&root->fs_info->block_group_cache_lock); 8068 8069 down_write(&block_group->space_info->groups_sem); 8070 /* 8071 * we must use list_del_init so people can check to see if they 8072 * are still on the list after taking the semaphore 8073 */ 8074 list_del_init(&block_group->list); 8075 if (list_empty(&block_group->space_info->block_groups[index])) 8076 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8077 up_write(&block_group->space_info->groups_sem); 8078 8079 if (block_group->cached == BTRFS_CACHE_STARTED) 8080 wait_block_group_cache_done(block_group); 8081 8082 btrfs_remove_free_space_cache(block_group); 8083 8084 spin_lock(&block_group->space_info->lock); 8085 block_group->space_info->total_bytes -= block_group->key.offset; 8086 block_group->space_info->bytes_readonly -= block_group->key.offset; 8087 block_group->space_info->disk_total -= block_group->key.offset * factor; 8088 spin_unlock(&block_group->space_info->lock); 8089 8090 memcpy(&key, &block_group->key, sizeof(key)); 8091 8092 btrfs_clear_space_info_full(root->fs_info); 8093 8094 btrfs_put_block_group(block_group); 8095 btrfs_put_block_group(block_group); 8096 8097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8098 if (ret > 0) 8099 ret = -EIO; 8100 if (ret < 0) 8101 goto out; 8102 8103 ret = btrfs_del_item(trans, root, path); 8104 out: 8105 btrfs_free_path(path); 8106 return ret; 8107 } 8108 8109 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8110 { 8111 struct btrfs_space_info *space_info; 8112 struct btrfs_super_block *disk_super; 8113 u64 features; 8114 u64 flags; 8115 int mixed = 0; 8116 int ret; 8117 8118 disk_super = fs_info->super_copy; 8119 if (!btrfs_super_root(disk_super)) 8120 return 1; 8121 8122 features = btrfs_super_incompat_flags(disk_super); 8123 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8124 mixed = 1; 8125 8126 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8127 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8128 if (ret) 8129 goto out; 8130 8131 if (mixed) { 8132 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8133 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8134 } else { 8135 flags = BTRFS_BLOCK_GROUP_METADATA; 8136 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8137 if (ret) 8138 goto out; 8139 8140 flags = BTRFS_BLOCK_GROUP_DATA; 8141 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8142 } 8143 out: 8144 return ret; 8145 } 8146 8147 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8148 { 8149 return unpin_extent_range(root, start, end); 8150 } 8151 8152 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8153 u64 num_bytes, u64 *actual_bytes) 8154 { 8155 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8156 } 8157 8158 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8159 { 8160 struct btrfs_fs_info *fs_info = root->fs_info; 8161 struct btrfs_block_group_cache *cache = NULL; 8162 u64 group_trimmed; 8163 u64 start; 8164 u64 end; 8165 u64 trimmed = 0; 8166 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8167 int ret = 0; 8168 8169 /* 8170 * try to trim all FS space, our block group may start from non-zero. 8171 */ 8172 if (range->len == total_bytes) 8173 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8174 else 8175 cache = btrfs_lookup_block_group(fs_info, range->start); 8176 8177 while (cache) { 8178 if (cache->key.objectid >= (range->start + range->len)) { 8179 btrfs_put_block_group(cache); 8180 break; 8181 } 8182 8183 start = max(range->start, cache->key.objectid); 8184 end = min(range->start + range->len, 8185 cache->key.objectid + cache->key.offset); 8186 8187 if (end - start >= range->minlen) { 8188 if (!block_group_cache_done(cache)) { 8189 ret = cache_block_group(cache, NULL, root, 0); 8190 if (!ret) 8191 wait_block_group_cache_done(cache); 8192 } 8193 ret = btrfs_trim_block_group(cache, 8194 &group_trimmed, 8195 start, 8196 end, 8197 range->minlen); 8198 8199 trimmed += group_trimmed; 8200 if (ret) { 8201 btrfs_put_block_group(cache); 8202 break; 8203 } 8204 } 8205 8206 cache = next_block_group(fs_info->tree_root, cache); 8207 } 8208 8209 range->len = trimmed; 8210 return ret; 8211 } 8212