xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision c6b305a89b1903d63652691ad5eb9f05aa0326b8)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 
38 #undef SCRAMBLE_DELAYED_REFS
39 
40 /*
41  * control flags for do_chunk_alloc's force field
42  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
43  * if we really need one.
44  *
45  * CHUNK_ALLOC_LIMITED means to only try and allocate one
46  * if we have very few chunks already allocated.  This is
47  * used as part of the clustering code to help make sure
48  * we have a good pool of storage to cluster in, without
49  * filling the FS with empty chunks
50  *
51  * CHUNK_ALLOC_FORCE means it must try to allocate one
52  *
53  */
54 enum {
55 	CHUNK_ALLOC_NO_FORCE = 0,
56 	CHUNK_ALLOC_LIMITED = 1,
57 	CHUNK_ALLOC_FORCE = 2,
58 };
59 
60 /*
61  * Control how reservations are dealt with.
62  *
63  * RESERVE_FREE - freeing a reservation.
64  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
65  *   ENOSPC accounting
66  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
67  *   bytes_may_use as the ENOSPC accounting is done elsewhere
68  */
69 enum {
70 	RESERVE_FREE = 0,
71 	RESERVE_ALLOC = 1,
72 	RESERVE_ALLOC_NO_ACCOUNT = 2,
73 };
74 
75 static int update_block_group(struct btrfs_trans_handle *trans,
76 			      struct btrfs_root *root,
77 			      u64 bytenr, u64 num_bytes, int alloc);
78 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
79 				struct btrfs_root *root,
80 				u64 bytenr, u64 num_bytes, u64 parent,
81 				u64 root_objectid, u64 owner_objectid,
82 				u64 owner_offset, int refs_to_drop,
83 				struct btrfs_delayed_extent_op *extra_op);
84 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
85 				    struct extent_buffer *leaf,
86 				    struct btrfs_extent_item *ei);
87 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
88 				      struct btrfs_root *root,
89 				      u64 parent, u64 root_objectid,
90 				      u64 flags, u64 owner, u64 offset,
91 				      struct btrfs_key *ins, int ref_mod);
92 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
93 				     struct btrfs_root *root,
94 				     u64 parent, u64 root_objectid,
95 				     u64 flags, struct btrfs_disk_key *key,
96 				     int level, struct btrfs_key *ins);
97 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
98 			  struct btrfs_root *extent_root, u64 flags,
99 			  int force);
100 static int find_next_key(struct btrfs_path *path, int level,
101 			 struct btrfs_key *key);
102 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
103 			    int dump_block_groups);
104 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
105 				       u64 num_bytes, int reserve);
106 
107 static noinline int
108 block_group_cache_done(struct btrfs_block_group_cache *cache)
109 {
110 	smp_mb();
111 	return cache->cached == BTRFS_CACHE_FINISHED;
112 }
113 
114 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
115 {
116 	return (cache->flags & bits) == bits;
117 }
118 
119 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
120 {
121 	atomic_inc(&cache->count);
122 }
123 
124 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
125 {
126 	if (atomic_dec_and_test(&cache->count)) {
127 		WARN_ON(cache->pinned > 0);
128 		WARN_ON(cache->reserved > 0);
129 		kfree(cache->free_space_ctl);
130 		kfree(cache);
131 	}
132 }
133 
134 /*
135  * this adds the block group to the fs_info rb tree for the block group
136  * cache
137  */
138 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
139 				struct btrfs_block_group_cache *block_group)
140 {
141 	struct rb_node **p;
142 	struct rb_node *parent = NULL;
143 	struct btrfs_block_group_cache *cache;
144 
145 	spin_lock(&info->block_group_cache_lock);
146 	p = &info->block_group_cache_tree.rb_node;
147 
148 	while (*p) {
149 		parent = *p;
150 		cache = rb_entry(parent, struct btrfs_block_group_cache,
151 				 cache_node);
152 		if (block_group->key.objectid < cache->key.objectid) {
153 			p = &(*p)->rb_left;
154 		} else if (block_group->key.objectid > cache->key.objectid) {
155 			p = &(*p)->rb_right;
156 		} else {
157 			spin_unlock(&info->block_group_cache_lock);
158 			return -EEXIST;
159 		}
160 	}
161 
162 	rb_link_node(&block_group->cache_node, parent, p);
163 	rb_insert_color(&block_group->cache_node,
164 			&info->block_group_cache_tree);
165 	spin_unlock(&info->block_group_cache_lock);
166 
167 	return 0;
168 }
169 
170 /*
171  * This will return the block group at or after bytenr if contains is 0, else
172  * it will return the block group that contains the bytenr
173  */
174 static struct btrfs_block_group_cache *
175 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
176 			      int contains)
177 {
178 	struct btrfs_block_group_cache *cache, *ret = NULL;
179 	struct rb_node *n;
180 	u64 end, start;
181 
182 	spin_lock(&info->block_group_cache_lock);
183 	n = info->block_group_cache_tree.rb_node;
184 
185 	while (n) {
186 		cache = rb_entry(n, struct btrfs_block_group_cache,
187 				 cache_node);
188 		end = cache->key.objectid + cache->key.offset - 1;
189 		start = cache->key.objectid;
190 
191 		if (bytenr < start) {
192 			if (!contains && (!ret || start < ret->key.objectid))
193 				ret = cache;
194 			n = n->rb_left;
195 		} else if (bytenr > start) {
196 			if (contains && bytenr <= end) {
197 				ret = cache;
198 				break;
199 			}
200 			n = n->rb_right;
201 		} else {
202 			ret = cache;
203 			break;
204 		}
205 	}
206 	if (ret)
207 		btrfs_get_block_group(ret);
208 	spin_unlock(&info->block_group_cache_lock);
209 
210 	return ret;
211 }
212 
213 static int add_excluded_extent(struct btrfs_root *root,
214 			       u64 start, u64 num_bytes)
215 {
216 	u64 end = start + num_bytes - 1;
217 	set_extent_bits(&root->fs_info->freed_extents[0],
218 			start, end, EXTENT_UPTODATE, GFP_NOFS);
219 	set_extent_bits(&root->fs_info->freed_extents[1],
220 			start, end, EXTENT_UPTODATE, GFP_NOFS);
221 	return 0;
222 }
223 
224 static void free_excluded_extents(struct btrfs_root *root,
225 				  struct btrfs_block_group_cache *cache)
226 {
227 	u64 start, end;
228 
229 	start = cache->key.objectid;
230 	end = start + cache->key.offset - 1;
231 
232 	clear_extent_bits(&root->fs_info->freed_extents[0],
233 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	clear_extent_bits(&root->fs_info->freed_extents[1],
235 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
236 }
237 
238 static int exclude_super_stripes(struct btrfs_root *root,
239 				 struct btrfs_block_group_cache *cache)
240 {
241 	u64 bytenr;
242 	u64 *logical;
243 	int stripe_len;
244 	int i, nr, ret;
245 
246 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
247 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
248 		cache->bytes_super += stripe_len;
249 		ret = add_excluded_extent(root, cache->key.objectid,
250 					  stripe_len);
251 		BUG_ON(ret); /* -ENOMEM */
252 	}
253 
254 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
255 		bytenr = btrfs_sb_offset(i);
256 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
257 				       cache->key.objectid, bytenr,
258 				       0, &logical, &nr, &stripe_len);
259 		BUG_ON(ret); /* -ENOMEM */
260 
261 		while (nr--) {
262 			cache->bytes_super += stripe_len;
263 			ret = add_excluded_extent(root, logical[nr],
264 						  stripe_len);
265 			BUG_ON(ret); /* -ENOMEM */
266 		}
267 
268 		kfree(logical);
269 	}
270 	return 0;
271 }
272 
273 static struct btrfs_caching_control *
274 get_caching_control(struct btrfs_block_group_cache *cache)
275 {
276 	struct btrfs_caching_control *ctl;
277 
278 	spin_lock(&cache->lock);
279 	if (cache->cached != BTRFS_CACHE_STARTED) {
280 		spin_unlock(&cache->lock);
281 		return NULL;
282 	}
283 
284 	/* We're loading it the fast way, so we don't have a caching_ctl. */
285 	if (!cache->caching_ctl) {
286 		spin_unlock(&cache->lock);
287 		return NULL;
288 	}
289 
290 	ctl = cache->caching_ctl;
291 	atomic_inc(&ctl->count);
292 	spin_unlock(&cache->lock);
293 	return ctl;
294 }
295 
296 static void put_caching_control(struct btrfs_caching_control *ctl)
297 {
298 	if (atomic_dec_and_test(&ctl->count))
299 		kfree(ctl);
300 }
301 
302 /*
303  * this is only called by cache_block_group, since we could have freed extents
304  * we need to check the pinned_extents for any extents that can't be used yet
305  * since their free space will be released as soon as the transaction commits.
306  */
307 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
308 			      struct btrfs_fs_info *info, u64 start, u64 end)
309 {
310 	u64 extent_start, extent_end, size, total_added = 0;
311 	int ret;
312 
313 	while (start < end) {
314 		ret = find_first_extent_bit(info->pinned_extents, start,
315 					    &extent_start, &extent_end,
316 					    EXTENT_DIRTY | EXTENT_UPTODATE,
317 					    NULL);
318 		if (ret)
319 			break;
320 
321 		if (extent_start <= start) {
322 			start = extent_end + 1;
323 		} else if (extent_start > start && extent_start < end) {
324 			size = extent_start - start;
325 			total_added += size;
326 			ret = btrfs_add_free_space(block_group, start,
327 						   size);
328 			BUG_ON(ret); /* -ENOMEM or logic error */
329 			start = extent_end + 1;
330 		} else {
331 			break;
332 		}
333 	}
334 
335 	if (start < end) {
336 		size = end - start;
337 		total_added += size;
338 		ret = btrfs_add_free_space(block_group, start, size);
339 		BUG_ON(ret); /* -ENOMEM or logic error */
340 	}
341 
342 	return total_added;
343 }
344 
345 static noinline void caching_thread(struct btrfs_work *work)
346 {
347 	struct btrfs_block_group_cache *block_group;
348 	struct btrfs_fs_info *fs_info;
349 	struct btrfs_caching_control *caching_ctl;
350 	struct btrfs_root *extent_root;
351 	struct btrfs_path *path;
352 	struct extent_buffer *leaf;
353 	struct btrfs_key key;
354 	u64 total_found = 0;
355 	u64 last = 0;
356 	u32 nritems;
357 	int ret = 0;
358 
359 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
360 	block_group = caching_ctl->block_group;
361 	fs_info = block_group->fs_info;
362 	extent_root = fs_info->extent_root;
363 
364 	path = btrfs_alloc_path();
365 	if (!path)
366 		goto out;
367 
368 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
369 
370 	/*
371 	 * We don't want to deadlock with somebody trying to allocate a new
372 	 * extent for the extent root while also trying to search the extent
373 	 * root to add free space.  So we skip locking and search the commit
374 	 * root, since its read-only
375 	 */
376 	path->skip_locking = 1;
377 	path->search_commit_root = 1;
378 	path->reada = 1;
379 
380 	key.objectid = last;
381 	key.offset = 0;
382 	key.type = BTRFS_EXTENT_ITEM_KEY;
383 again:
384 	mutex_lock(&caching_ctl->mutex);
385 	/* need to make sure the commit_root doesn't disappear */
386 	down_read(&fs_info->extent_commit_sem);
387 
388 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
389 	if (ret < 0)
390 		goto err;
391 
392 	leaf = path->nodes[0];
393 	nritems = btrfs_header_nritems(leaf);
394 
395 	while (1) {
396 		if (btrfs_fs_closing(fs_info) > 1) {
397 			last = (u64)-1;
398 			break;
399 		}
400 
401 		if (path->slots[0] < nritems) {
402 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
403 		} else {
404 			ret = find_next_key(path, 0, &key);
405 			if (ret)
406 				break;
407 
408 			if (need_resched() ||
409 			    btrfs_next_leaf(extent_root, path)) {
410 				caching_ctl->progress = last;
411 				btrfs_release_path(path);
412 				up_read(&fs_info->extent_commit_sem);
413 				mutex_unlock(&caching_ctl->mutex);
414 				cond_resched();
415 				goto again;
416 			}
417 			leaf = path->nodes[0];
418 			nritems = btrfs_header_nritems(leaf);
419 			continue;
420 		}
421 
422 		if (key.objectid < block_group->key.objectid) {
423 			path->slots[0]++;
424 			continue;
425 		}
426 
427 		if (key.objectid >= block_group->key.objectid +
428 		    block_group->key.offset)
429 			break;
430 
431 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
432 			total_found += add_new_free_space(block_group,
433 							  fs_info, last,
434 							  key.objectid);
435 			last = key.objectid + key.offset;
436 
437 			if (total_found > (1024 * 1024 * 2)) {
438 				total_found = 0;
439 				wake_up(&caching_ctl->wait);
440 			}
441 		}
442 		path->slots[0]++;
443 	}
444 	ret = 0;
445 
446 	total_found += add_new_free_space(block_group, fs_info, last,
447 					  block_group->key.objectid +
448 					  block_group->key.offset);
449 	caching_ctl->progress = (u64)-1;
450 
451 	spin_lock(&block_group->lock);
452 	block_group->caching_ctl = NULL;
453 	block_group->cached = BTRFS_CACHE_FINISHED;
454 	spin_unlock(&block_group->lock);
455 
456 err:
457 	btrfs_free_path(path);
458 	up_read(&fs_info->extent_commit_sem);
459 
460 	free_excluded_extents(extent_root, block_group);
461 
462 	mutex_unlock(&caching_ctl->mutex);
463 out:
464 	wake_up(&caching_ctl->wait);
465 
466 	put_caching_control(caching_ctl);
467 	btrfs_put_block_group(block_group);
468 }
469 
470 static int cache_block_group(struct btrfs_block_group_cache *cache,
471 			     struct btrfs_trans_handle *trans,
472 			     struct btrfs_root *root,
473 			     int load_cache_only)
474 {
475 	DEFINE_WAIT(wait);
476 	struct btrfs_fs_info *fs_info = cache->fs_info;
477 	struct btrfs_caching_control *caching_ctl;
478 	int ret = 0;
479 
480 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
481 	if (!caching_ctl)
482 		return -ENOMEM;
483 
484 	INIT_LIST_HEAD(&caching_ctl->list);
485 	mutex_init(&caching_ctl->mutex);
486 	init_waitqueue_head(&caching_ctl->wait);
487 	caching_ctl->block_group = cache;
488 	caching_ctl->progress = cache->key.objectid;
489 	atomic_set(&caching_ctl->count, 1);
490 	caching_ctl->work.func = caching_thread;
491 
492 	spin_lock(&cache->lock);
493 	/*
494 	 * This should be a rare occasion, but this could happen I think in the
495 	 * case where one thread starts to load the space cache info, and then
496 	 * some other thread starts a transaction commit which tries to do an
497 	 * allocation while the other thread is still loading the space cache
498 	 * info.  The previous loop should have kept us from choosing this block
499 	 * group, but if we've moved to the state where we will wait on caching
500 	 * block groups we need to first check if we're doing a fast load here,
501 	 * so we can wait for it to finish, otherwise we could end up allocating
502 	 * from a block group who's cache gets evicted for one reason or
503 	 * another.
504 	 */
505 	while (cache->cached == BTRFS_CACHE_FAST) {
506 		struct btrfs_caching_control *ctl;
507 
508 		ctl = cache->caching_ctl;
509 		atomic_inc(&ctl->count);
510 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
511 		spin_unlock(&cache->lock);
512 
513 		schedule();
514 
515 		finish_wait(&ctl->wait, &wait);
516 		put_caching_control(ctl);
517 		spin_lock(&cache->lock);
518 	}
519 
520 	if (cache->cached != BTRFS_CACHE_NO) {
521 		spin_unlock(&cache->lock);
522 		kfree(caching_ctl);
523 		return 0;
524 	}
525 	WARN_ON(cache->caching_ctl);
526 	cache->caching_ctl = caching_ctl;
527 	cache->cached = BTRFS_CACHE_FAST;
528 	spin_unlock(&cache->lock);
529 
530 	/*
531 	 * We can't do the read from on-disk cache during a commit since we need
532 	 * to have the normal tree locking.  Also if we are currently trying to
533 	 * allocate blocks for the tree root we can't do the fast caching since
534 	 * we likely hold important locks.
535 	 */
536 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
537 		ret = load_free_space_cache(fs_info, cache);
538 
539 		spin_lock(&cache->lock);
540 		if (ret == 1) {
541 			cache->caching_ctl = NULL;
542 			cache->cached = BTRFS_CACHE_FINISHED;
543 			cache->last_byte_to_unpin = (u64)-1;
544 		} else {
545 			if (load_cache_only) {
546 				cache->caching_ctl = NULL;
547 				cache->cached = BTRFS_CACHE_NO;
548 			} else {
549 				cache->cached = BTRFS_CACHE_STARTED;
550 			}
551 		}
552 		spin_unlock(&cache->lock);
553 		wake_up(&caching_ctl->wait);
554 		if (ret == 1) {
555 			put_caching_control(caching_ctl);
556 			free_excluded_extents(fs_info->extent_root, cache);
557 			return 0;
558 		}
559 	} else {
560 		/*
561 		 * We are not going to do the fast caching, set cached to the
562 		 * appropriate value and wakeup any waiters.
563 		 */
564 		spin_lock(&cache->lock);
565 		if (load_cache_only) {
566 			cache->caching_ctl = NULL;
567 			cache->cached = BTRFS_CACHE_NO;
568 		} else {
569 			cache->cached = BTRFS_CACHE_STARTED;
570 		}
571 		spin_unlock(&cache->lock);
572 		wake_up(&caching_ctl->wait);
573 	}
574 
575 	if (load_cache_only) {
576 		put_caching_control(caching_ctl);
577 		return 0;
578 	}
579 
580 	down_write(&fs_info->extent_commit_sem);
581 	atomic_inc(&caching_ctl->count);
582 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
583 	up_write(&fs_info->extent_commit_sem);
584 
585 	btrfs_get_block_group(cache);
586 
587 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
588 
589 	return ret;
590 }
591 
592 /*
593  * return the block group that starts at or after bytenr
594  */
595 static struct btrfs_block_group_cache *
596 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
597 {
598 	struct btrfs_block_group_cache *cache;
599 
600 	cache = block_group_cache_tree_search(info, bytenr, 0);
601 
602 	return cache;
603 }
604 
605 /*
606  * return the block group that contains the given bytenr
607  */
608 struct btrfs_block_group_cache *btrfs_lookup_block_group(
609 						 struct btrfs_fs_info *info,
610 						 u64 bytenr)
611 {
612 	struct btrfs_block_group_cache *cache;
613 
614 	cache = block_group_cache_tree_search(info, bytenr, 1);
615 
616 	return cache;
617 }
618 
619 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
620 						  u64 flags)
621 {
622 	struct list_head *head = &info->space_info;
623 	struct btrfs_space_info *found;
624 
625 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
626 
627 	rcu_read_lock();
628 	list_for_each_entry_rcu(found, head, list) {
629 		if (found->flags & flags) {
630 			rcu_read_unlock();
631 			return found;
632 		}
633 	}
634 	rcu_read_unlock();
635 	return NULL;
636 }
637 
638 /*
639  * after adding space to the filesystem, we need to clear the full flags
640  * on all the space infos.
641  */
642 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
643 {
644 	struct list_head *head = &info->space_info;
645 	struct btrfs_space_info *found;
646 
647 	rcu_read_lock();
648 	list_for_each_entry_rcu(found, head, list)
649 		found->full = 0;
650 	rcu_read_unlock();
651 }
652 
653 u64 btrfs_find_block_group(struct btrfs_root *root,
654 			   u64 search_start, u64 search_hint, int owner)
655 {
656 	struct btrfs_block_group_cache *cache;
657 	u64 used;
658 	u64 last = max(search_hint, search_start);
659 	u64 group_start = 0;
660 	int full_search = 0;
661 	int factor = 9;
662 	int wrapped = 0;
663 again:
664 	while (1) {
665 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
666 		if (!cache)
667 			break;
668 
669 		spin_lock(&cache->lock);
670 		last = cache->key.objectid + cache->key.offset;
671 		used = btrfs_block_group_used(&cache->item);
672 
673 		if ((full_search || !cache->ro) &&
674 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
675 			if (used + cache->pinned + cache->reserved <
676 			    div_factor(cache->key.offset, factor)) {
677 				group_start = cache->key.objectid;
678 				spin_unlock(&cache->lock);
679 				btrfs_put_block_group(cache);
680 				goto found;
681 			}
682 		}
683 		spin_unlock(&cache->lock);
684 		btrfs_put_block_group(cache);
685 		cond_resched();
686 	}
687 	if (!wrapped) {
688 		last = search_start;
689 		wrapped = 1;
690 		goto again;
691 	}
692 	if (!full_search && factor < 10) {
693 		last = search_start;
694 		full_search = 1;
695 		factor = 10;
696 		goto again;
697 	}
698 found:
699 	return group_start;
700 }
701 
702 /* simple helper to search for an existing extent at a given offset */
703 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
704 {
705 	int ret;
706 	struct btrfs_key key;
707 	struct btrfs_path *path;
708 
709 	path = btrfs_alloc_path();
710 	if (!path)
711 		return -ENOMEM;
712 
713 	key.objectid = start;
714 	key.offset = len;
715 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
716 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
717 				0, 0);
718 	btrfs_free_path(path);
719 	return ret;
720 }
721 
722 /*
723  * helper function to lookup reference count and flags of extent.
724  *
725  * the head node for delayed ref is used to store the sum of all the
726  * reference count modifications queued up in the rbtree. the head
727  * node may also store the extent flags to set. This way you can check
728  * to see what the reference count and extent flags would be if all of
729  * the delayed refs are not processed.
730  */
731 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
732 			     struct btrfs_root *root, u64 bytenr,
733 			     u64 num_bytes, u64 *refs, u64 *flags)
734 {
735 	struct btrfs_delayed_ref_head *head;
736 	struct btrfs_delayed_ref_root *delayed_refs;
737 	struct btrfs_path *path;
738 	struct btrfs_extent_item *ei;
739 	struct extent_buffer *leaf;
740 	struct btrfs_key key;
741 	u32 item_size;
742 	u64 num_refs;
743 	u64 extent_flags;
744 	int ret;
745 
746 	path = btrfs_alloc_path();
747 	if (!path)
748 		return -ENOMEM;
749 
750 	key.objectid = bytenr;
751 	key.type = BTRFS_EXTENT_ITEM_KEY;
752 	key.offset = num_bytes;
753 	if (!trans) {
754 		path->skip_locking = 1;
755 		path->search_commit_root = 1;
756 	}
757 again:
758 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
759 				&key, path, 0, 0);
760 	if (ret < 0)
761 		goto out_free;
762 
763 	if (ret == 0) {
764 		leaf = path->nodes[0];
765 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
766 		if (item_size >= sizeof(*ei)) {
767 			ei = btrfs_item_ptr(leaf, path->slots[0],
768 					    struct btrfs_extent_item);
769 			num_refs = btrfs_extent_refs(leaf, ei);
770 			extent_flags = btrfs_extent_flags(leaf, ei);
771 		} else {
772 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
773 			struct btrfs_extent_item_v0 *ei0;
774 			BUG_ON(item_size != sizeof(*ei0));
775 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
776 					     struct btrfs_extent_item_v0);
777 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
778 			/* FIXME: this isn't correct for data */
779 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
780 #else
781 			BUG();
782 #endif
783 		}
784 		BUG_ON(num_refs == 0);
785 	} else {
786 		num_refs = 0;
787 		extent_flags = 0;
788 		ret = 0;
789 	}
790 
791 	if (!trans)
792 		goto out;
793 
794 	delayed_refs = &trans->transaction->delayed_refs;
795 	spin_lock(&delayed_refs->lock);
796 	head = btrfs_find_delayed_ref_head(trans, bytenr);
797 	if (head) {
798 		if (!mutex_trylock(&head->mutex)) {
799 			atomic_inc(&head->node.refs);
800 			spin_unlock(&delayed_refs->lock);
801 
802 			btrfs_release_path(path);
803 
804 			/*
805 			 * Mutex was contended, block until it's released and try
806 			 * again
807 			 */
808 			mutex_lock(&head->mutex);
809 			mutex_unlock(&head->mutex);
810 			btrfs_put_delayed_ref(&head->node);
811 			goto again;
812 		}
813 		if (head->extent_op && head->extent_op->update_flags)
814 			extent_flags |= head->extent_op->flags_to_set;
815 		else
816 			BUG_ON(num_refs == 0);
817 
818 		num_refs += head->node.ref_mod;
819 		mutex_unlock(&head->mutex);
820 	}
821 	spin_unlock(&delayed_refs->lock);
822 out:
823 	WARN_ON(num_refs == 0);
824 	if (refs)
825 		*refs = num_refs;
826 	if (flags)
827 		*flags = extent_flags;
828 out_free:
829 	btrfs_free_path(path);
830 	return ret;
831 }
832 
833 /*
834  * Back reference rules.  Back refs have three main goals:
835  *
836  * 1) differentiate between all holders of references to an extent so that
837  *    when a reference is dropped we can make sure it was a valid reference
838  *    before freeing the extent.
839  *
840  * 2) Provide enough information to quickly find the holders of an extent
841  *    if we notice a given block is corrupted or bad.
842  *
843  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
844  *    maintenance.  This is actually the same as #2, but with a slightly
845  *    different use case.
846  *
847  * There are two kinds of back refs. The implicit back refs is optimized
848  * for pointers in non-shared tree blocks. For a given pointer in a block,
849  * back refs of this kind provide information about the block's owner tree
850  * and the pointer's key. These information allow us to find the block by
851  * b-tree searching. The full back refs is for pointers in tree blocks not
852  * referenced by their owner trees. The location of tree block is recorded
853  * in the back refs. Actually the full back refs is generic, and can be
854  * used in all cases the implicit back refs is used. The major shortcoming
855  * of the full back refs is its overhead. Every time a tree block gets
856  * COWed, we have to update back refs entry for all pointers in it.
857  *
858  * For a newly allocated tree block, we use implicit back refs for
859  * pointers in it. This means most tree related operations only involve
860  * implicit back refs. For a tree block created in old transaction, the
861  * only way to drop a reference to it is COW it. So we can detect the
862  * event that tree block loses its owner tree's reference and do the
863  * back refs conversion.
864  *
865  * When a tree block is COW'd through a tree, there are four cases:
866  *
867  * The reference count of the block is one and the tree is the block's
868  * owner tree. Nothing to do in this case.
869  *
870  * The reference count of the block is one and the tree is not the
871  * block's owner tree. In this case, full back refs is used for pointers
872  * in the block. Remove these full back refs, add implicit back refs for
873  * every pointers in the new block.
874  *
875  * The reference count of the block is greater than one and the tree is
876  * the block's owner tree. In this case, implicit back refs is used for
877  * pointers in the block. Add full back refs for every pointers in the
878  * block, increase lower level extents' reference counts. The original
879  * implicit back refs are entailed to the new block.
880  *
881  * The reference count of the block is greater than one and the tree is
882  * not the block's owner tree. Add implicit back refs for every pointer in
883  * the new block, increase lower level extents' reference count.
884  *
885  * Back Reference Key composing:
886  *
887  * The key objectid corresponds to the first byte in the extent,
888  * The key type is used to differentiate between types of back refs.
889  * There are different meanings of the key offset for different types
890  * of back refs.
891  *
892  * File extents can be referenced by:
893  *
894  * - multiple snapshots, subvolumes, or different generations in one subvol
895  * - different files inside a single subvolume
896  * - different offsets inside a file (bookend extents in file.c)
897  *
898  * The extent ref structure for the implicit back refs has fields for:
899  *
900  * - Objectid of the subvolume root
901  * - objectid of the file holding the reference
902  * - original offset in the file
903  * - how many bookend extents
904  *
905  * The key offset for the implicit back refs is hash of the first
906  * three fields.
907  *
908  * The extent ref structure for the full back refs has field for:
909  *
910  * - number of pointers in the tree leaf
911  *
912  * The key offset for the implicit back refs is the first byte of
913  * the tree leaf
914  *
915  * When a file extent is allocated, The implicit back refs is used.
916  * the fields are filled in:
917  *
918  *     (root_key.objectid, inode objectid, offset in file, 1)
919  *
920  * When a file extent is removed file truncation, we find the
921  * corresponding implicit back refs and check the following fields:
922  *
923  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
924  *
925  * Btree extents can be referenced by:
926  *
927  * - Different subvolumes
928  *
929  * Both the implicit back refs and the full back refs for tree blocks
930  * only consist of key. The key offset for the implicit back refs is
931  * objectid of block's owner tree. The key offset for the full back refs
932  * is the first byte of parent block.
933  *
934  * When implicit back refs is used, information about the lowest key and
935  * level of the tree block are required. These information are stored in
936  * tree block info structure.
937  */
938 
939 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
940 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
941 				  struct btrfs_root *root,
942 				  struct btrfs_path *path,
943 				  u64 owner, u32 extra_size)
944 {
945 	struct btrfs_extent_item *item;
946 	struct btrfs_extent_item_v0 *ei0;
947 	struct btrfs_extent_ref_v0 *ref0;
948 	struct btrfs_tree_block_info *bi;
949 	struct extent_buffer *leaf;
950 	struct btrfs_key key;
951 	struct btrfs_key found_key;
952 	u32 new_size = sizeof(*item);
953 	u64 refs;
954 	int ret;
955 
956 	leaf = path->nodes[0];
957 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
958 
959 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
960 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
961 			     struct btrfs_extent_item_v0);
962 	refs = btrfs_extent_refs_v0(leaf, ei0);
963 
964 	if (owner == (u64)-1) {
965 		while (1) {
966 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
967 				ret = btrfs_next_leaf(root, path);
968 				if (ret < 0)
969 					return ret;
970 				BUG_ON(ret > 0); /* Corruption */
971 				leaf = path->nodes[0];
972 			}
973 			btrfs_item_key_to_cpu(leaf, &found_key,
974 					      path->slots[0]);
975 			BUG_ON(key.objectid != found_key.objectid);
976 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
977 				path->slots[0]++;
978 				continue;
979 			}
980 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
981 					      struct btrfs_extent_ref_v0);
982 			owner = btrfs_ref_objectid_v0(leaf, ref0);
983 			break;
984 		}
985 	}
986 	btrfs_release_path(path);
987 
988 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
989 		new_size += sizeof(*bi);
990 
991 	new_size -= sizeof(*ei0);
992 	ret = btrfs_search_slot(trans, root, &key, path,
993 				new_size + extra_size, 1);
994 	if (ret < 0)
995 		return ret;
996 	BUG_ON(ret); /* Corruption */
997 
998 	btrfs_extend_item(trans, root, path, new_size);
999 
1000 	leaf = path->nodes[0];
1001 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1002 	btrfs_set_extent_refs(leaf, item, refs);
1003 	/* FIXME: get real generation */
1004 	btrfs_set_extent_generation(leaf, item, 0);
1005 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1006 		btrfs_set_extent_flags(leaf, item,
1007 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1008 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1009 		bi = (struct btrfs_tree_block_info *)(item + 1);
1010 		/* FIXME: get first key of the block */
1011 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1012 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1013 	} else {
1014 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1015 	}
1016 	btrfs_mark_buffer_dirty(leaf);
1017 	return 0;
1018 }
1019 #endif
1020 
1021 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1022 {
1023 	u32 high_crc = ~(u32)0;
1024 	u32 low_crc = ~(u32)0;
1025 	__le64 lenum;
1026 
1027 	lenum = cpu_to_le64(root_objectid);
1028 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1029 	lenum = cpu_to_le64(owner);
1030 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1031 	lenum = cpu_to_le64(offset);
1032 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1033 
1034 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1035 }
1036 
1037 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1038 				     struct btrfs_extent_data_ref *ref)
1039 {
1040 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1041 				    btrfs_extent_data_ref_objectid(leaf, ref),
1042 				    btrfs_extent_data_ref_offset(leaf, ref));
1043 }
1044 
1045 static int match_extent_data_ref(struct extent_buffer *leaf,
1046 				 struct btrfs_extent_data_ref *ref,
1047 				 u64 root_objectid, u64 owner, u64 offset)
1048 {
1049 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1050 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1051 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1052 		return 0;
1053 	return 1;
1054 }
1055 
1056 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1057 					   struct btrfs_root *root,
1058 					   struct btrfs_path *path,
1059 					   u64 bytenr, u64 parent,
1060 					   u64 root_objectid,
1061 					   u64 owner, u64 offset)
1062 {
1063 	struct btrfs_key key;
1064 	struct btrfs_extent_data_ref *ref;
1065 	struct extent_buffer *leaf;
1066 	u32 nritems;
1067 	int ret;
1068 	int recow;
1069 	int err = -ENOENT;
1070 
1071 	key.objectid = bytenr;
1072 	if (parent) {
1073 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1074 		key.offset = parent;
1075 	} else {
1076 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1077 		key.offset = hash_extent_data_ref(root_objectid,
1078 						  owner, offset);
1079 	}
1080 again:
1081 	recow = 0;
1082 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1083 	if (ret < 0) {
1084 		err = ret;
1085 		goto fail;
1086 	}
1087 
1088 	if (parent) {
1089 		if (!ret)
1090 			return 0;
1091 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1092 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1093 		btrfs_release_path(path);
1094 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1095 		if (ret < 0) {
1096 			err = ret;
1097 			goto fail;
1098 		}
1099 		if (!ret)
1100 			return 0;
1101 #endif
1102 		goto fail;
1103 	}
1104 
1105 	leaf = path->nodes[0];
1106 	nritems = btrfs_header_nritems(leaf);
1107 	while (1) {
1108 		if (path->slots[0] >= nritems) {
1109 			ret = btrfs_next_leaf(root, path);
1110 			if (ret < 0)
1111 				err = ret;
1112 			if (ret)
1113 				goto fail;
1114 
1115 			leaf = path->nodes[0];
1116 			nritems = btrfs_header_nritems(leaf);
1117 			recow = 1;
1118 		}
1119 
1120 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1121 		if (key.objectid != bytenr ||
1122 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1123 			goto fail;
1124 
1125 		ref = btrfs_item_ptr(leaf, path->slots[0],
1126 				     struct btrfs_extent_data_ref);
1127 
1128 		if (match_extent_data_ref(leaf, ref, root_objectid,
1129 					  owner, offset)) {
1130 			if (recow) {
1131 				btrfs_release_path(path);
1132 				goto again;
1133 			}
1134 			err = 0;
1135 			break;
1136 		}
1137 		path->slots[0]++;
1138 	}
1139 fail:
1140 	return err;
1141 }
1142 
1143 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1144 					   struct btrfs_root *root,
1145 					   struct btrfs_path *path,
1146 					   u64 bytenr, u64 parent,
1147 					   u64 root_objectid, u64 owner,
1148 					   u64 offset, int refs_to_add)
1149 {
1150 	struct btrfs_key key;
1151 	struct extent_buffer *leaf;
1152 	u32 size;
1153 	u32 num_refs;
1154 	int ret;
1155 
1156 	key.objectid = bytenr;
1157 	if (parent) {
1158 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1159 		key.offset = parent;
1160 		size = sizeof(struct btrfs_shared_data_ref);
1161 	} else {
1162 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1163 		key.offset = hash_extent_data_ref(root_objectid,
1164 						  owner, offset);
1165 		size = sizeof(struct btrfs_extent_data_ref);
1166 	}
1167 
1168 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1169 	if (ret && ret != -EEXIST)
1170 		goto fail;
1171 
1172 	leaf = path->nodes[0];
1173 	if (parent) {
1174 		struct btrfs_shared_data_ref *ref;
1175 		ref = btrfs_item_ptr(leaf, path->slots[0],
1176 				     struct btrfs_shared_data_ref);
1177 		if (ret == 0) {
1178 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1179 		} else {
1180 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1181 			num_refs += refs_to_add;
1182 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1183 		}
1184 	} else {
1185 		struct btrfs_extent_data_ref *ref;
1186 		while (ret == -EEXIST) {
1187 			ref = btrfs_item_ptr(leaf, path->slots[0],
1188 					     struct btrfs_extent_data_ref);
1189 			if (match_extent_data_ref(leaf, ref, root_objectid,
1190 						  owner, offset))
1191 				break;
1192 			btrfs_release_path(path);
1193 			key.offset++;
1194 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1195 						      size);
1196 			if (ret && ret != -EEXIST)
1197 				goto fail;
1198 
1199 			leaf = path->nodes[0];
1200 		}
1201 		ref = btrfs_item_ptr(leaf, path->slots[0],
1202 				     struct btrfs_extent_data_ref);
1203 		if (ret == 0) {
1204 			btrfs_set_extent_data_ref_root(leaf, ref,
1205 						       root_objectid);
1206 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1207 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1208 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1209 		} else {
1210 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1211 			num_refs += refs_to_add;
1212 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1213 		}
1214 	}
1215 	btrfs_mark_buffer_dirty(leaf);
1216 	ret = 0;
1217 fail:
1218 	btrfs_release_path(path);
1219 	return ret;
1220 }
1221 
1222 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1223 					   struct btrfs_root *root,
1224 					   struct btrfs_path *path,
1225 					   int refs_to_drop)
1226 {
1227 	struct btrfs_key key;
1228 	struct btrfs_extent_data_ref *ref1 = NULL;
1229 	struct btrfs_shared_data_ref *ref2 = NULL;
1230 	struct extent_buffer *leaf;
1231 	u32 num_refs = 0;
1232 	int ret = 0;
1233 
1234 	leaf = path->nodes[0];
1235 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1236 
1237 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1238 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1239 				      struct btrfs_extent_data_ref);
1240 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1241 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1242 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1243 				      struct btrfs_shared_data_ref);
1244 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1245 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1246 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1247 		struct btrfs_extent_ref_v0 *ref0;
1248 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1249 				      struct btrfs_extent_ref_v0);
1250 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1251 #endif
1252 	} else {
1253 		BUG();
1254 	}
1255 
1256 	BUG_ON(num_refs < refs_to_drop);
1257 	num_refs -= refs_to_drop;
1258 
1259 	if (num_refs == 0) {
1260 		ret = btrfs_del_item(trans, root, path);
1261 	} else {
1262 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1263 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1264 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1265 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1267 		else {
1268 			struct btrfs_extent_ref_v0 *ref0;
1269 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1270 					struct btrfs_extent_ref_v0);
1271 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1272 		}
1273 #endif
1274 		btrfs_mark_buffer_dirty(leaf);
1275 	}
1276 	return ret;
1277 }
1278 
1279 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1280 					  struct btrfs_path *path,
1281 					  struct btrfs_extent_inline_ref *iref)
1282 {
1283 	struct btrfs_key key;
1284 	struct extent_buffer *leaf;
1285 	struct btrfs_extent_data_ref *ref1;
1286 	struct btrfs_shared_data_ref *ref2;
1287 	u32 num_refs = 0;
1288 
1289 	leaf = path->nodes[0];
1290 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1291 	if (iref) {
1292 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1293 		    BTRFS_EXTENT_DATA_REF_KEY) {
1294 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1295 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1296 		} else {
1297 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1298 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1299 		}
1300 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 				      struct btrfs_extent_data_ref);
1303 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 				      struct btrfs_shared_data_ref);
1307 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1308 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1309 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1310 		struct btrfs_extent_ref_v0 *ref0;
1311 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1312 				      struct btrfs_extent_ref_v0);
1313 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1314 #endif
1315 	} else {
1316 		WARN_ON(1);
1317 	}
1318 	return num_refs;
1319 }
1320 
1321 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1322 					  struct btrfs_root *root,
1323 					  struct btrfs_path *path,
1324 					  u64 bytenr, u64 parent,
1325 					  u64 root_objectid)
1326 {
1327 	struct btrfs_key key;
1328 	int ret;
1329 
1330 	key.objectid = bytenr;
1331 	if (parent) {
1332 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1333 		key.offset = parent;
1334 	} else {
1335 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1336 		key.offset = root_objectid;
1337 	}
1338 
1339 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1340 	if (ret > 0)
1341 		ret = -ENOENT;
1342 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1343 	if (ret == -ENOENT && parent) {
1344 		btrfs_release_path(path);
1345 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1346 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1347 		if (ret > 0)
1348 			ret = -ENOENT;
1349 	}
1350 #endif
1351 	return ret;
1352 }
1353 
1354 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1355 					  struct btrfs_root *root,
1356 					  struct btrfs_path *path,
1357 					  u64 bytenr, u64 parent,
1358 					  u64 root_objectid)
1359 {
1360 	struct btrfs_key key;
1361 	int ret;
1362 
1363 	key.objectid = bytenr;
1364 	if (parent) {
1365 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1366 		key.offset = parent;
1367 	} else {
1368 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1369 		key.offset = root_objectid;
1370 	}
1371 
1372 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1373 	btrfs_release_path(path);
1374 	return ret;
1375 }
1376 
1377 static inline int extent_ref_type(u64 parent, u64 owner)
1378 {
1379 	int type;
1380 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1381 		if (parent > 0)
1382 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1383 		else
1384 			type = BTRFS_TREE_BLOCK_REF_KEY;
1385 	} else {
1386 		if (parent > 0)
1387 			type = BTRFS_SHARED_DATA_REF_KEY;
1388 		else
1389 			type = BTRFS_EXTENT_DATA_REF_KEY;
1390 	}
1391 	return type;
1392 }
1393 
1394 static int find_next_key(struct btrfs_path *path, int level,
1395 			 struct btrfs_key *key)
1396 
1397 {
1398 	for (; level < BTRFS_MAX_LEVEL; level++) {
1399 		if (!path->nodes[level])
1400 			break;
1401 		if (path->slots[level] + 1 >=
1402 		    btrfs_header_nritems(path->nodes[level]))
1403 			continue;
1404 		if (level == 0)
1405 			btrfs_item_key_to_cpu(path->nodes[level], key,
1406 					      path->slots[level] + 1);
1407 		else
1408 			btrfs_node_key_to_cpu(path->nodes[level], key,
1409 					      path->slots[level] + 1);
1410 		return 0;
1411 	}
1412 	return 1;
1413 }
1414 
1415 /*
1416  * look for inline back ref. if back ref is found, *ref_ret is set
1417  * to the address of inline back ref, and 0 is returned.
1418  *
1419  * if back ref isn't found, *ref_ret is set to the address where it
1420  * should be inserted, and -ENOENT is returned.
1421  *
1422  * if insert is true and there are too many inline back refs, the path
1423  * points to the extent item, and -EAGAIN is returned.
1424  *
1425  * NOTE: inline back refs are ordered in the same way that back ref
1426  *	 items in the tree are ordered.
1427  */
1428 static noinline_for_stack
1429 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1430 				 struct btrfs_root *root,
1431 				 struct btrfs_path *path,
1432 				 struct btrfs_extent_inline_ref **ref_ret,
1433 				 u64 bytenr, u64 num_bytes,
1434 				 u64 parent, u64 root_objectid,
1435 				 u64 owner, u64 offset, int insert)
1436 {
1437 	struct btrfs_key key;
1438 	struct extent_buffer *leaf;
1439 	struct btrfs_extent_item *ei;
1440 	struct btrfs_extent_inline_ref *iref;
1441 	u64 flags;
1442 	u64 item_size;
1443 	unsigned long ptr;
1444 	unsigned long end;
1445 	int extra_size;
1446 	int type;
1447 	int want;
1448 	int ret;
1449 	int err = 0;
1450 
1451 	key.objectid = bytenr;
1452 	key.type = BTRFS_EXTENT_ITEM_KEY;
1453 	key.offset = num_bytes;
1454 
1455 	want = extent_ref_type(parent, owner);
1456 	if (insert) {
1457 		extra_size = btrfs_extent_inline_ref_size(want);
1458 		path->keep_locks = 1;
1459 	} else
1460 		extra_size = -1;
1461 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1462 	if (ret < 0) {
1463 		err = ret;
1464 		goto out;
1465 	}
1466 	if (ret && !insert) {
1467 		err = -ENOENT;
1468 		goto out;
1469 	}
1470 	BUG_ON(ret); /* Corruption */
1471 
1472 	leaf = path->nodes[0];
1473 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1474 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1475 	if (item_size < sizeof(*ei)) {
1476 		if (!insert) {
1477 			err = -ENOENT;
1478 			goto out;
1479 		}
1480 		ret = convert_extent_item_v0(trans, root, path, owner,
1481 					     extra_size);
1482 		if (ret < 0) {
1483 			err = ret;
1484 			goto out;
1485 		}
1486 		leaf = path->nodes[0];
1487 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1488 	}
1489 #endif
1490 	BUG_ON(item_size < sizeof(*ei));
1491 
1492 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1493 	flags = btrfs_extent_flags(leaf, ei);
1494 
1495 	ptr = (unsigned long)(ei + 1);
1496 	end = (unsigned long)ei + item_size;
1497 
1498 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1499 		ptr += sizeof(struct btrfs_tree_block_info);
1500 		BUG_ON(ptr > end);
1501 	} else {
1502 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1503 	}
1504 
1505 	err = -ENOENT;
1506 	while (1) {
1507 		if (ptr >= end) {
1508 			WARN_ON(ptr > end);
1509 			break;
1510 		}
1511 		iref = (struct btrfs_extent_inline_ref *)ptr;
1512 		type = btrfs_extent_inline_ref_type(leaf, iref);
1513 		if (want < type)
1514 			break;
1515 		if (want > type) {
1516 			ptr += btrfs_extent_inline_ref_size(type);
1517 			continue;
1518 		}
1519 
1520 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1521 			struct btrfs_extent_data_ref *dref;
1522 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1523 			if (match_extent_data_ref(leaf, dref, root_objectid,
1524 						  owner, offset)) {
1525 				err = 0;
1526 				break;
1527 			}
1528 			if (hash_extent_data_ref_item(leaf, dref) <
1529 			    hash_extent_data_ref(root_objectid, owner, offset))
1530 				break;
1531 		} else {
1532 			u64 ref_offset;
1533 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1534 			if (parent > 0) {
1535 				if (parent == ref_offset) {
1536 					err = 0;
1537 					break;
1538 				}
1539 				if (ref_offset < parent)
1540 					break;
1541 			} else {
1542 				if (root_objectid == ref_offset) {
1543 					err = 0;
1544 					break;
1545 				}
1546 				if (ref_offset < root_objectid)
1547 					break;
1548 			}
1549 		}
1550 		ptr += btrfs_extent_inline_ref_size(type);
1551 	}
1552 	if (err == -ENOENT && insert) {
1553 		if (item_size + extra_size >=
1554 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1555 			err = -EAGAIN;
1556 			goto out;
1557 		}
1558 		/*
1559 		 * To add new inline back ref, we have to make sure
1560 		 * there is no corresponding back ref item.
1561 		 * For simplicity, we just do not add new inline back
1562 		 * ref if there is any kind of item for this block
1563 		 */
1564 		if (find_next_key(path, 0, &key) == 0 &&
1565 		    key.objectid == bytenr &&
1566 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1567 			err = -EAGAIN;
1568 			goto out;
1569 		}
1570 	}
1571 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1572 out:
1573 	if (insert) {
1574 		path->keep_locks = 0;
1575 		btrfs_unlock_up_safe(path, 1);
1576 	}
1577 	return err;
1578 }
1579 
1580 /*
1581  * helper to add new inline back ref
1582  */
1583 static noinline_for_stack
1584 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1585 				 struct btrfs_root *root,
1586 				 struct btrfs_path *path,
1587 				 struct btrfs_extent_inline_ref *iref,
1588 				 u64 parent, u64 root_objectid,
1589 				 u64 owner, u64 offset, int refs_to_add,
1590 				 struct btrfs_delayed_extent_op *extent_op)
1591 {
1592 	struct extent_buffer *leaf;
1593 	struct btrfs_extent_item *ei;
1594 	unsigned long ptr;
1595 	unsigned long end;
1596 	unsigned long item_offset;
1597 	u64 refs;
1598 	int size;
1599 	int type;
1600 
1601 	leaf = path->nodes[0];
1602 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1603 	item_offset = (unsigned long)iref - (unsigned long)ei;
1604 
1605 	type = extent_ref_type(parent, owner);
1606 	size = btrfs_extent_inline_ref_size(type);
1607 
1608 	btrfs_extend_item(trans, root, path, size);
1609 
1610 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1611 	refs = btrfs_extent_refs(leaf, ei);
1612 	refs += refs_to_add;
1613 	btrfs_set_extent_refs(leaf, ei, refs);
1614 	if (extent_op)
1615 		__run_delayed_extent_op(extent_op, leaf, ei);
1616 
1617 	ptr = (unsigned long)ei + item_offset;
1618 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1619 	if (ptr < end - size)
1620 		memmove_extent_buffer(leaf, ptr + size, ptr,
1621 				      end - size - ptr);
1622 
1623 	iref = (struct btrfs_extent_inline_ref *)ptr;
1624 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1625 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1626 		struct btrfs_extent_data_ref *dref;
1627 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1628 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1629 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1630 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1631 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1632 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1633 		struct btrfs_shared_data_ref *sref;
1634 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1635 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1636 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1637 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1638 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1639 	} else {
1640 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1641 	}
1642 	btrfs_mark_buffer_dirty(leaf);
1643 }
1644 
1645 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1646 				 struct btrfs_root *root,
1647 				 struct btrfs_path *path,
1648 				 struct btrfs_extent_inline_ref **ref_ret,
1649 				 u64 bytenr, u64 num_bytes, u64 parent,
1650 				 u64 root_objectid, u64 owner, u64 offset)
1651 {
1652 	int ret;
1653 
1654 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1655 					   bytenr, num_bytes, parent,
1656 					   root_objectid, owner, offset, 0);
1657 	if (ret != -ENOENT)
1658 		return ret;
1659 
1660 	btrfs_release_path(path);
1661 	*ref_ret = NULL;
1662 
1663 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1664 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1665 					    root_objectid);
1666 	} else {
1667 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1668 					     root_objectid, owner, offset);
1669 	}
1670 	return ret;
1671 }
1672 
1673 /*
1674  * helper to update/remove inline back ref
1675  */
1676 static noinline_for_stack
1677 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1678 				  struct btrfs_root *root,
1679 				  struct btrfs_path *path,
1680 				  struct btrfs_extent_inline_ref *iref,
1681 				  int refs_to_mod,
1682 				  struct btrfs_delayed_extent_op *extent_op)
1683 {
1684 	struct extent_buffer *leaf;
1685 	struct btrfs_extent_item *ei;
1686 	struct btrfs_extent_data_ref *dref = NULL;
1687 	struct btrfs_shared_data_ref *sref = NULL;
1688 	unsigned long ptr;
1689 	unsigned long end;
1690 	u32 item_size;
1691 	int size;
1692 	int type;
1693 	u64 refs;
1694 
1695 	leaf = path->nodes[0];
1696 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1697 	refs = btrfs_extent_refs(leaf, ei);
1698 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1699 	refs += refs_to_mod;
1700 	btrfs_set_extent_refs(leaf, ei, refs);
1701 	if (extent_op)
1702 		__run_delayed_extent_op(extent_op, leaf, ei);
1703 
1704 	type = btrfs_extent_inline_ref_type(leaf, iref);
1705 
1706 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1708 		refs = btrfs_extent_data_ref_count(leaf, dref);
1709 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1711 		refs = btrfs_shared_data_ref_count(leaf, sref);
1712 	} else {
1713 		refs = 1;
1714 		BUG_ON(refs_to_mod != -1);
1715 	}
1716 
1717 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1718 	refs += refs_to_mod;
1719 
1720 	if (refs > 0) {
1721 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1722 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1723 		else
1724 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1725 	} else {
1726 		size =  btrfs_extent_inline_ref_size(type);
1727 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1728 		ptr = (unsigned long)iref;
1729 		end = (unsigned long)ei + item_size;
1730 		if (ptr + size < end)
1731 			memmove_extent_buffer(leaf, ptr, ptr + size,
1732 					      end - ptr - size);
1733 		item_size -= size;
1734 		btrfs_truncate_item(trans, root, path, item_size, 1);
1735 	}
1736 	btrfs_mark_buffer_dirty(leaf);
1737 }
1738 
1739 static noinline_for_stack
1740 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1741 				 struct btrfs_root *root,
1742 				 struct btrfs_path *path,
1743 				 u64 bytenr, u64 num_bytes, u64 parent,
1744 				 u64 root_objectid, u64 owner,
1745 				 u64 offset, int refs_to_add,
1746 				 struct btrfs_delayed_extent_op *extent_op)
1747 {
1748 	struct btrfs_extent_inline_ref *iref;
1749 	int ret;
1750 
1751 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1752 					   bytenr, num_bytes, parent,
1753 					   root_objectid, owner, offset, 1);
1754 	if (ret == 0) {
1755 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1756 		update_inline_extent_backref(trans, root, path, iref,
1757 					     refs_to_add, extent_op);
1758 	} else if (ret == -ENOENT) {
1759 		setup_inline_extent_backref(trans, root, path, iref, parent,
1760 					    root_objectid, owner, offset,
1761 					    refs_to_add, extent_op);
1762 		ret = 0;
1763 	}
1764 	return ret;
1765 }
1766 
1767 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1768 				 struct btrfs_root *root,
1769 				 struct btrfs_path *path,
1770 				 u64 bytenr, u64 parent, u64 root_objectid,
1771 				 u64 owner, u64 offset, int refs_to_add)
1772 {
1773 	int ret;
1774 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1775 		BUG_ON(refs_to_add != 1);
1776 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1777 					    parent, root_objectid);
1778 	} else {
1779 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1780 					     parent, root_objectid,
1781 					     owner, offset, refs_to_add);
1782 	}
1783 	return ret;
1784 }
1785 
1786 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1787 				 struct btrfs_root *root,
1788 				 struct btrfs_path *path,
1789 				 struct btrfs_extent_inline_ref *iref,
1790 				 int refs_to_drop, int is_data)
1791 {
1792 	int ret = 0;
1793 
1794 	BUG_ON(!is_data && refs_to_drop != 1);
1795 	if (iref) {
1796 		update_inline_extent_backref(trans, root, path, iref,
1797 					     -refs_to_drop, NULL);
1798 	} else if (is_data) {
1799 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1800 	} else {
1801 		ret = btrfs_del_item(trans, root, path);
1802 	}
1803 	return ret;
1804 }
1805 
1806 static int btrfs_issue_discard(struct block_device *bdev,
1807 				u64 start, u64 len)
1808 {
1809 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1810 }
1811 
1812 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1813 				u64 num_bytes, u64 *actual_bytes)
1814 {
1815 	int ret;
1816 	u64 discarded_bytes = 0;
1817 	struct btrfs_bio *bbio = NULL;
1818 
1819 
1820 	/* Tell the block device(s) that the sectors can be discarded */
1821 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1822 			      bytenr, &num_bytes, &bbio, 0);
1823 	/* Error condition is -ENOMEM */
1824 	if (!ret) {
1825 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1826 		int i;
1827 
1828 
1829 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1830 			if (!stripe->dev->can_discard)
1831 				continue;
1832 
1833 			ret = btrfs_issue_discard(stripe->dev->bdev,
1834 						  stripe->physical,
1835 						  stripe->length);
1836 			if (!ret)
1837 				discarded_bytes += stripe->length;
1838 			else if (ret != -EOPNOTSUPP)
1839 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1840 
1841 			/*
1842 			 * Just in case we get back EOPNOTSUPP for some reason,
1843 			 * just ignore the return value so we don't screw up
1844 			 * people calling discard_extent.
1845 			 */
1846 			ret = 0;
1847 		}
1848 		kfree(bbio);
1849 	}
1850 
1851 	if (actual_bytes)
1852 		*actual_bytes = discarded_bytes;
1853 
1854 
1855 	return ret;
1856 }
1857 
1858 /* Can return -ENOMEM */
1859 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1860 			 struct btrfs_root *root,
1861 			 u64 bytenr, u64 num_bytes, u64 parent,
1862 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1863 {
1864 	int ret;
1865 	struct btrfs_fs_info *fs_info = root->fs_info;
1866 
1867 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1868 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1869 
1870 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1871 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1872 					num_bytes,
1873 					parent, root_objectid, (int)owner,
1874 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1875 	} else {
1876 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1877 					num_bytes,
1878 					parent, root_objectid, owner, offset,
1879 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1880 	}
1881 	return ret;
1882 }
1883 
1884 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1885 				  struct btrfs_root *root,
1886 				  u64 bytenr, u64 num_bytes,
1887 				  u64 parent, u64 root_objectid,
1888 				  u64 owner, u64 offset, int refs_to_add,
1889 				  struct btrfs_delayed_extent_op *extent_op)
1890 {
1891 	struct btrfs_path *path;
1892 	struct extent_buffer *leaf;
1893 	struct btrfs_extent_item *item;
1894 	u64 refs;
1895 	int ret;
1896 	int err = 0;
1897 
1898 	path = btrfs_alloc_path();
1899 	if (!path)
1900 		return -ENOMEM;
1901 
1902 	path->reada = 1;
1903 	path->leave_spinning = 1;
1904 	/* this will setup the path even if it fails to insert the back ref */
1905 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1906 					   path, bytenr, num_bytes, parent,
1907 					   root_objectid, owner, offset,
1908 					   refs_to_add, extent_op);
1909 	if (ret == 0)
1910 		goto out;
1911 
1912 	if (ret != -EAGAIN) {
1913 		err = ret;
1914 		goto out;
1915 	}
1916 
1917 	leaf = path->nodes[0];
1918 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1919 	refs = btrfs_extent_refs(leaf, item);
1920 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1921 	if (extent_op)
1922 		__run_delayed_extent_op(extent_op, leaf, item);
1923 
1924 	btrfs_mark_buffer_dirty(leaf);
1925 	btrfs_release_path(path);
1926 
1927 	path->reada = 1;
1928 	path->leave_spinning = 1;
1929 
1930 	/* now insert the actual backref */
1931 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1932 				    path, bytenr, parent, root_objectid,
1933 				    owner, offset, refs_to_add);
1934 	if (ret)
1935 		btrfs_abort_transaction(trans, root, ret);
1936 out:
1937 	btrfs_free_path(path);
1938 	return err;
1939 }
1940 
1941 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1942 				struct btrfs_root *root,
1943 				struct btrfs_delayed_ref_node *node,
1944 				struct btrfs_delayed_extent_op *extent_op,
1945 				int insert_reserved)
1946 {
1947 	int ret = 0;
1948 	struct btrfs_delayed_data_ref *ref;
1949 	struct btrfs_key ins;
1950 	u64 parent = 0;
1951 	u64 ref_root = 0;
1952 	u64 flags = 0;
1953 
1954 	ins.objectid = node->bytenr;
1955 	ins.offset = node->num_bytes;
1956 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1957 
1958 	ref = btrfs_delayed_node_to_data_ref(node);
1959 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1960 		parent = ref->parent;
1961 	else
1962 		ref_root = ref->root;
1963 
1964 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1965 		if (extent_op) {
1966 			BUG_ON(extent_op->update_key);
1967 			flags |= extent_op->flags_to_set;
1968 		}
1969 		ret = alloc_reserved_file_extent(trans, root,
1970 						 parent, ref_root, flags,
1971 						 ref->objectid, ref->offset,
1972 						 &ins, node->ref_mod);
1973 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1974 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1975 					     node->num_bytes, parent,
1976 					     ref_root, ref->objectid,
1977 					     ref->offset, node->ref_mod,
1978 					     extent_op);
1979 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1980 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1981 					  node->num_bytes, parent,
1982 					  ref_root, ref->objectid,
1983 					  ref->offset, node->ref_mod,
1984 					  extent_op);
1985 	} else {
1986 		BUG();
1987 	}
1988 	return ret;
1989 }
1990 
1991 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1992 				    struct extent_buffer *leaf,
1993 				    struct btrfs_extent_item *ei)
1994 {
1995 	u64 flags = btrfs_extent_flags(leaf, ei);
1996 	if (extent_op->update_flags) {
1997 		flags |= extent_op->flags_to_set;
1998 		btrfs_set_extent_flags(leaf, ei, flags);
1999 	}
2000 
2001 	if (extent_op->update_key) {
2002 		struct btrfs_tree_block_info *bi;
2003 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2004 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2005 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2006 	}
2007 }
2008 
2009 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2010 				 struct btrfs_root *root,
2011 				 struct btrfs_delayed_ref_node *node,
2012 				 struct btrfs_delayed_extent_op *extent_op)
2013 {
2014 	struct btrfs_key key;
2015 	struct btrfs_path *path;
2016 	struct btrfs_extent_item *ei;
2017 	struct extent_buffer *leaf;
2018 	u32 item_size;
2019 	int ret;
2020 	int err = 0;
2021 
2022 	if (trans->aborted)
2023 		return 0;
2024 
2025 	path = btrfs_alloc_path();
2026 	if (!path)
2027 		return -ENOMEM;
2028 
2029 	key.objectid = node->bytenr;
2030 	key.type = BTRFS_EXTENT_ITEM_KEY;
2031 	key.offset = node->num_bytes;
2032 
2033 	path->reada = 1;
2034 	path->leave_spinning = 1;
2035 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2036 				path, 0, 1);
2037 	if (ret < 0) {
2038 		err = ret;
2039 		goto out;
2040 	}
2041 	if (ret > 0) {
2042 		err = -EIO;
2043 		goto out;
2044 	}
2045 
2046 	leaf = path->nodes[0];
2047 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2048 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2049 	if (item_size < sizeof(*ei)) {
2050 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2051 					     path, (u64)-1, 0);
2052 		if (ret < 0) {
2053 			err = ret;
2054 			goto out;
2055 		}
2056 		leaf = path->nodes[0];
2057 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2058 	}
2059 #endif
2060 	BUG_ON(item_size < sizeof(*ei));
2061 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2062 	__run_delayed_extent_op(extent_op, leaf, ei);
2063 
2064 	btrfs_mark_buffer_dirty(leaf);
2065 out:
2066 	btrfs_free_path(path);
2067 	return err;
2068 }
2069 
2070 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2071 				struct btrfs_root *root,
2072 				struct btrfs_delayed_ref_node *node,
2073 				struct btrfs_delayed_extent_op *extent_op,
2074 				int insert_reserved)
2075 {
2076 	int ret = 0;
2077 	struct btrfs_delayed_tree_ref *ref;
2078 	struct btrfs_key ins;
2079 	u64 parent = 0;
2080 	u64 ref_root = 0;
2081 
2082 	ins.objectid = node->bytenr;
2083 	ins.offset = node->num_bytes;
2084 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2085 
2086 	ref = btrfs_delayed_node_to_tree_ref(node);
2087 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2088 		parent = ref->parent;
2089 	else
2090 		ref_root = ref->root;
2091 
2092 	BUG_ON(node->ref_mod != 1);
2093 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2094 		BUG_ON(!extent_op || !extent_op->update_flags ||
2095 		       !extent_op->update_key);
2096 		ret = alloc_reserved_tree_block(trans, root,
2097 						parent, ref_root,
2098 						extent_op->flags_to_set,
2099 						&extent_op->key,
2100 						ref->level, &ins);
2101 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2102 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2103 					     node->num_bytes, parent, ref_root,
2104 					     ref->level, 0, 1, extent_op);
2105 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2106 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2107 					  node->num_bytes, parent, ref_root,
2108 					  ref->level, 0, 1, extent_op);
2109 	} else {
2110 		BUG();
2111 	}
2112 	return ret;
2113 }
2114 
2115 /* helper function to actually process a single delayed ref entry */
2116 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2117 			       struct btrfs_root *root,
2118 			       struct btrfs_delayed_ref_node *node,
2119 			       struct btrfs_delayed_extent_op *extent_op,
2120 			       int insert_reserved)
2121 {
2122 	int ret = 0;
2123 
2124 	if (trans->aborted)
2125 		return 0;
2126 
2127 	if (btrfs_delayed_ref_is_head(node)) {
2128 		struct btrfs_delayed_ref_head *head;
2129 		/*
2130 		 * we've hit the end of the chain and we were supposed
2131 		 * to insert this extent into the tree.  But, it got
2132 		 * deleted before we ever needed to insert it, so all
2133 		 * we have to do is clean up the accounting
2134 		 */
2135 		BUG_ON(extent_op);
2136 		head = btrfs_delayed_node_to_head(node);
2137 		if (insert_reserved) {
2138 			btrfs_pin_extent(root, node->bytenr,
2139 					 node->num_bytes, 1);
2140 			if (head->is_data) {
2141 				ret = btrfs_del_csums(trans, root,
2142 						      node->bytenr,
2143 						      node->num_bytes);
2144 			}
2145 		}
2146 		return ret;
2147 	}
2148 
2149 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2150 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2151 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2152 					   insert_reserved);
2153 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2154 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2155 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2156 					   insert_reserved);
2157 	else
2158 		BUG();
2159 	return ret;
2160 }
2161 
2162 static noinline struct btrfs_delayed_ref_node *
2163 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2164 {
2165 	struct rb_node *node;
2166 	struct btrfs_delayed_ref_node *ref;
2167 	int action = BTRFS_ADD_DELAYED_REF;
2168 again:
2169 	/*
2170 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2171 	 * this prevents ref count from going down to zero when
2172 	 * there still are pending delayed ref.
2173 	 */
2174 	node = rb_prev(&head->node.rb_node);
2175 	while (1) {
2176 		if (!node)
2177 			break;
2178 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2179 				rb_node);
2180 		if (ref->bytenr != head->node.bytenr)
2181 			break;
2182 		if (ref->action == action)
2183 			return ref;
2184 		node = rb_prev(node);
2185 	}
2186 	if (action == BTRFS_ADD_DELAYED_REF) {
2187 		action = BTRFS_DROP_DELAYED_REF;
2188 		goto again;
2189 	}
2190 	return NULL;
2191 }
2192 
2193 /*
2194  * Returns 0 on success or if called with an already aborted transaction.
2195  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2196  */
2197 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2198 				       struct btrfs_root *root,
2199 				       struct list_head *cluster)
2200 {
2201 	struct btrfs_delayed_ref_root *delayed_refs;
2202 	struct btrfs_delayed_ref_node *ref;
2203 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2204 	struct btrfs_delayed_extent_op *extent_op;
2205 	struct btrfs_fs_info *fs_info = root->fs_info;
2206 	int ret;
2207 	int count = 0;
2208 	int must_insert_reserved = 0;
2209 
2210 	delayed_refs = &trans->transaction->delayed_refs;
2211 	while (1) {
2212 		if (!locked_ref) {
2213 			/* pick a new head ref from the cluster list */
2214 			if (list_empty(cluster))
2215 				break;
2216 
2217 			locked_ref = list_entry(cluster->next,
2218 				     struct btrfs_delayed_ref_head, cluster);
2219 
2220 			/* grab the lock that says we are going to process
2221 			 * all the refs for this head */
2222 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2223 
2224 			/*
2225 			 * we may have dropped the spin lock to get the head
2226 			 * mutex lock, and that might have given someone else
2227 			 * time to free the head.  If that's true, it has been
2228 			 * removed from our list and we can move on.
2229 			 */
2230 			if (ret == -EAGAIN) {
2231 				locked_ref = NULL;
2232 				count++;
2233 				continue;
2234 			}
2235 		}
2236 
2237 		/*
2238 		 * We need to try and merge add/drops of the same ref since we
2239 		 * can run into issues with relocate dropping the implicit ref
2240 		 * and then it being added back again before the drop can
2241 		 * finish.  If we merged anything we need to re-loop so we can
2242 		 * get a good ref.
2243 		 */
2244 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2245 					 locked_ref);
2246 
2247 		/*
2248 		 * locked_ref is the head node, so we have to go one
2249 		 * node back for any delayed ref updates
2250 		 */
2251 		ref = select_delayed_ref(locked_ref);
2252 
2253 		if (ref && ref->seq &&
2254 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2255 			/*
2256 			 * there are still refs with lower seq numbers in the
2257 			 * process of being added. Don't run this ref yet.
2258 			 */
2259 			list_del_init(&locked_ref->cluster);
2260 			btrfs_delayed_ref_unlock(locked_ref);
2261 			locked_ref = NULL;
2262 			delayed_refs->num_heads_ready++;
2263 			spin_unlock(&delayed_refs->lock);
2264 			cond_resched();
2265 			spin_lock(&delayed_refs->lock);
2266 			continue;
2267 		}
2268 
2269 		/*
2270 		 * record the must insert reserved flag before we
2271 		 * drop the spin lock.
2272 		 */
2273 		must_insert_reserved = locked_ref->must_insert_reserved;
2274 		locked_ref->must_insert_reserved = 0;
2275 
2276 		extent_op = locked_ref->extent_op;
2277 		locked_ref->extent_op = NULL;
2278 
2279 		if (!ref) {
2280 			/* All delayed refs have been processed, Go ahead
2281 			 * and send the head node to run_one_delayed_ref,
2282 			 * so that any accounting fixes can happen
2283 			 */
2284 			ref = &locked_ref->node;
2285 
2286 			if (extent_op && must_insert_reserved) {
2287 				btrfs_free_delayed_extent_op(extent_op);
2288 				extent_op = NULL;
2289 			}
2290 
2291 			if (extent_op) {
2292 				spin_unlock(&delayed_refs->lock);
2293 
2294 				ret = run_delayed_extent_op(trans, root,
2295 							    ref, extent_op);
2296 				btrfs_free_delayed_extent_op(extent_op);
2297 
2298 				if (ret) {
2299 					printk(KERN_DEBUG
2300 					       "btrfs: run_delayed_extent_op "
2301 					       "returned %d\n", ret);
2302 					spin_lock(&delayed_refs->lock);
2303 					btrfs_delayed_ref_unlock(locked_ref);
2304 					return ret;
2305 				}
2306 
2307 				goto next;
2308 			}
2309 		}
2310 
2311 		ref->in_tree = 0;
2312 		rb_erase(&ref->rb_node, &delayed_refs->root);
2313 		delayed_refs->num_entries--;
2314 		if (!btrfs_delayed_ref_is_head(ref)) {
2315 			/*
2316 			 * when we play the delayed ref, also correct the
2317 			 * ref_mod on head
2318 			 */
2319 			switch (ref->action) {
2320 			case BTRFS_ADD_DELAYED_REF:
2321 			case BTRFS_ADD_DELAYED_EXTENT:
2322 				locked_ref->node.ref_mod -= ref->ref_mod;
2323 				break;
2324 			case BTRFS_DROP_DELAYED_REF:
2325 				locked_ref->node.ref_mod += ref->ref_mod;
2326 				break;
2327 			default:
2328 				WARN_ON(1);
2329 			}
2330 		}
2331 		spin_unlock(&delayed_refs->lock);
2332 
2333 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2334 					  must_insert_reserved);
2335 
2336 		btrfs_free_delayed_extent_op(extent_op);
2337 		if (ret) {
2338 			btrfs_delayed_ref_unlock(locked_ref);
2339 			btrfs_put_delayed_ref(ref);
2340 			printk(KERN_DEBUG
2341 			       "btrfs: run_one_delayed_ref returned %d\n", ret);
2342 			spin_lock(&delayed_refs->lock);
2343 			return ret;
2344 		}
2345 
2346 		/*
2347 		 * If this node is a head, that means all the refs in this head
2348 		 * have been dealt with, and we will pick the next head to deal
2349 		 * with, so we must unlock the head and drop it from the cluster
2350 		 * list before we release it.
2351 		 */
2352 		if (btrfs_delayed_ref_is_head(ref)) {
2353 			list_del_init(&locked_ref->cluster);
2354 			btrfs_delayed_ref_unlock(locked_ref);
2355 			locked_ref = NULL;
2356 		}
2357 		btrfs_put_delayed_ref(ref);
2358 		count++;
2359 next:
2360 		cond_resched();
2361 		spin_lock(&delayed_refs->lock);
2362 	}
2363 	return count;
2364 }
2365 
2366 #ifdef SCRAMBLE_DELAYED_REFS
2367 /*
2368  * Normally delayed refs get processed in ascending bytenr order. This
2369  * correlates in most cases to the order added. To expose dependencies on this
2370  * order, we start to process the tree in the middle instead of the beginning
2371  */
2372 static u64 find_middle(struct rb_root *root)
2373 {
2374 	struct rb_node *n = root->rb_node;
2375 	struct btrfs_delayed_ref_node *entry;
2376 	int alt = 1;
2377 	u64 middle;
2378 	u64 first = 0, last = 0;
2379 
2380 	n = rb_first(root);
2381 	if (n) {
2382 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2383 		first = entry->bytenr;
2384 	}
2385 	n = rb_last(root);
2386 	if (n) {
2387 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2388 		last = entry->bytenr;
2389 	}
2390 	n = root->rb_node;
2391 
2392 	while (n) {
2393 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2394 		WARN_ON(!entry->in_tree);
2395 
2396 		middle = entry->bytenr;
2397 
2398 		if (alt)
2399 			n = n->rb_left;
2400 		else
2401 			n = n->rb_right;
2402 
2403 		alt = 1 - alt;
2404 	}
2405 	return middle;
2406 }
2407 #endif
2408 
2409 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2410 					 struct btrfs_fs_info *fs_info)
2411 {
2412 	struct qgroup_update *qgroup_update;
2413 	int ret = 0;
2414 
2415 	if (list_empty(&trans->qgroup_ref_list) !=
2416 	    !trans->delayed_ref_elem.seq) {
2417 		/* list without seq or seq without list */
2418 		printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n",
2419 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2420 			trans->delayed_ref_elem.seq);
2421 		BUG();
2422 	}
2423 
2424 	if (!trans->delayed_ref_elem.seq)
2425 		return 0;
2426 
2427 	while (!list_empty(&trans->qgroup_ref_list)) {
2428 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2429 						 struct qgroup_update, list);
2430 		list_del(&qgroup_update->list);
2431 		if (!ret)
2432 			ret = btrfs_qgroup_account_ref(
2433 					trans, fs_info, qgroup_update->node,
2434 					qgroup_update->extent_op);
2435 		kfree(qgroup_update);
2436 	}
2437 
2438 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2439 
2440 	return ret;
2441 }
2442 
2443 /*
2444  * this starts processing the delayed reference count updates and
2445  * extent insertions we have queued up so far.  count can be
2446  * 0, which means to process everything in the tree at the start
2447  * of the run (but not newly added entries), or it can be some target
2448  * number you'd like to process.
2449  *
2450  * Returns 0 on success or if called with an aborted transaction
2451  * Returns <0 on error and aborts the transaction
2452  */
2453 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2454 			   struct btrfs_root *root, unsigned long count)
2455 {
2456 	struct rb_node *node;
2457 	struct btrfs_delayed_ref_root *delayed_refs;
2458 	struct btrfs_delayed_ref_node *ref;
2459 	struct list_head cluster;
2460 	int ret;
2461 	u64 delayed_start;
2462 	int run_all = count == (unsigned long)-1;
2463 	int run_most = 0;
2464 	int loops;
2465 
2466 	/* We'll clean this up in btrfs_cleanup_transaction */
2467 	if (trans->aborted)
2468 		return 0;
2469 
2470 	if (root == root->fs_info->extent_root)
2471 		root = root->fs_info->tree_root;
2472 
2473 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2474 
2475 	delayed_refs = &trans->transaction->delayed_refs;
2476 	INIT_LIST_HEAD(&cluster);
2477 again:
2478 	loops = 0;
2479 	spin_lock(&delayed_refs->lock);
2480 
2481 #ifdef SCRAMBLE_DELAYED_REFS
2482 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2483 #endif
2484 
2485 	if (count == 0) {
2486 		count = delayed_refs->num_entries * 2;
2487 		run_most = 1;
2488 	}
2489 	while (1) {
2490 		if (!(run_all || run_most) &&
2491 		    delayed_refs->num_heads_ready < 64)
2492 			break;
2493 
2494 		/*
2495 		 * go find something we can process in the rbtree.  We start at
2496 		 * the beginning of the tree, and then build a cluster
2497 		 * of refs to process starting at the first one we are able to
2498 		 * lock
2499 		 */
2500 		delayed_start = delayed_refs->run_delayed_start;
2501 		ret = btrfs_find_ref_cluster(trans, &cluster,
2502 					     delayed_refs->run_delayed_start);
2503 		if (ret)
2504 			break;
2505 
2506 		ret = run_clustered_refs(trans, root, &cluster);
2507 		if (ret < 0) {
2508 			btrfs_release_ref_cluster(&cluster);
2509 			spin_unlock(&delayed_refs->lock);
2510 			btrfs_abort_transaction(trans, root, ret);
2511 			return ret;
2512 		}
2513 
2514 		count -= min_t(unsigned long, ret, count);
2515 
2516 		if (count == 0)
2517 			break;
2518 
2519 		if (delayed_start >= delayed_refs->run_delayed_start) {
2520 			if (loops == 0) {
2521 				/*
2522 				 * btrfs_find_ref_cluster looped. let's do one
2523 				 * more cycle. if we don't run any delayed ref
2524 				 * during that cycle (because we can't because
2525 				 * all of them are blocked), bail out.
2526 				 */
2527 				loops = 1;
2528 			} else {
2529 				/*
2530 				 * no runnable refs left, stop trying
2531 				 */
2532 				BUG_ON(run_all);
2533 				break;
2534 			}
2535 		}
2536 		if (ret) {
2537 			/* refs were run, let's reset staleness detection */
2538 			loops = 0;
2539 		}
2540 	}
2541 
2542 	if (run_all) {
2543 		if (!list_empty(&trans->new_bgs)) {
2544 			spin_unlock(&delayed_refs->lock);
2545 			btrfs_create_pending_block_groups(trans, root);
2546 			spin_lock(&delayed_refs->lock);
2547 		}
2548 
2549 		node = rb_first(&delayed_refs->root);
2550 		if (!node)
2551 			goto out;
2552 		count = (unsigned long)-1;
2553 
2554 		while (node) {
2555 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2556 				       rb_node);
2557 			if (btrfs_delayed_ref_is_head(ref)) {
2558 				struct btrfs_delayed_ref_head *head;
2559 
2560 				head = btrfs_delayed_node_to_head(ref);
2561 				atomic_inc(&ref->refs);
2562 
2563 				spin_unlock(&delayed_refs->lock);
2564 				/*
2565 				 * Mutex was contended, block until it's
2566 				 * released and try again
2567 				 */
2568 				mutex_lock(&head->mutex);
2569 				mutex_unlock(&head->mutex);
2570 
2571 				btrfs_put_delayed_ref(ref);
2572 				cond_resched();
2573 				goto again;
2574 			}
2575 			node = rb_next(node);
2576 		}
2577 		spin_unlock(&delayed_refs->lock);
2578 		schedule_timeout(1);
2579 		goto again;
2580 	}
2581 out:
2582 	spin_unlock(&delayed_refs->lock);
2583 	assert_qgroups_uptodate(trans);
2584 	return 0;
2585 }
2586 
2587 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2588 				struct btrfs_root *root,
2589 				u64 bytenr, u64 num_bytes, u64 flags,
2590 				int is_data)
2591 {
2592 	struct btrfs_delayed_extent_op *extent_op;
2593 	int ret;
2594 
2595 	extent_op = btrfs_alloc_delayed_extent_op();
2596 	if (!extent_op)
2597 		return -ENOMEM;
2598 
2599 	extent_op->flags_to_set = flags;
2600 	extent_op->update_flags = 1;
2601 	extent_op->update_key = 0;
2602 	extent_op->is_data = is_data ? 1 : 0;
2603 
2604 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2605 					  num_bytes, extent_op);
2606 	if (ret)
2607 		btrfs_free_delayed_extent_op(extent_op);
2608 	return ret;
2609 }
2610 
2611 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2612 				      struct btrfs_root *root,
2613 				      struct btrfs_path *path,
2614 				      u64 objectid, u64 offset, u64 bytenr)
2615 {
2616 	struct btrfs_delayed_ref_head *head;
2617 	struct btrfs_delayed_ref_node *ref;
2618 	struct btrfs_delayed_data_ref *data_ref;
2619 	struct btrfs_delayed_ref_root *delayed_refs;
2620 	struct rb_node *node;
2621 	int ret = 0;
2622 
2623 	ret = -ENOENT;
2624 	delayed_refs = &trans->transaction->delayed_refs;
2625 	spin_lock(&delayed_refs->lock);
2626 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2627 	if (!head)
2628 		goto out;
2629 
2630 	if (!mutex_trylock(&head->mutex)) {
2631 		atomic_inc(&head->node.refs);
2632 		spin_unlock(&delayed_refs->lock);
2633 
2634 		btrfs_release_path(path);
2635 
2636 		/*
2637 		 * Mutex was contended, block until it's released and let
2638 		 * caller try again
2639 		 */
2640 		mutex_lock(&head->mutex);
2641 		mutex_unlock(&head->mutex);
2642 		btrfs_put_delayed_ref(&head->node);
2643 		return -EAGAIN;
2644 	}
2645 
2646 	node = rb_prev(&head->node.rb_node);
2647 	if (!node)
2648 		goto out_unlock;
2649 
2650 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2651 
2652 	if (ref->bytenr != bytenr)
2653 		goto out_unlock;
2654 
2655 	ret = 1;
2656 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2657 		goto out_unlock;
2658 
2659 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2660 
2661 	node = rb_prev(node);
2662 	if (node) {
2663 		int seq = ref->seq;
2664 
2665 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2666 		if (ref->bytenr == bytenr && ref->seq == seq)
2667 			goto out_unlock;
2668 	}
2669 
2670 	if (data_ref->root != root->root_key.objectid ||
2671 	    data_ref->objectid != objectid || data_ref->offset != offset)
2672 		goto out_unlock;
2673 
2674 	ret = 0;
2675 out_unlock:
2676 	mutex_unlock(&head->mutex);
2677 out:
2678 	spin_unlock(&delayed_refs->lock);
2679 	return ret;
2680 }
2681 
2682 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2683 					struct btrfs_root *root,
2684 					struct btrfs_path *path,
2685 					u64 objectid, u64 offset, u64 bytenr)
2686 {
2687 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2688 	struct extent_buffer *leaf;
2689 	struct btrfs_extent_data_ref *ref;
2690 	struct btrfs_extent_inline_ref *iref;
2691 	struct btrfs_extent_item *ei;
2692 	struct btrfs_key key;
2693 	u32 item_size;
2694 	int ret;
2695 
2696 	key.objectid = bytenr;
2697 	key.offset = (u64)-1;
2698 	key.type = BTRFS_EXTENT_ITEM_KEY;
2699 
2700 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2701 	if (ret < 0)
2702 		goto out;
2703 	BUG_ON(ret == 0); /* Corruption */
2704 
2705 	ret = -ENOENT;
2706 	if (path->slots[0] == 0)
2707 		goto out;
2708 
2709 	path->slots[0]--;
2710 	leaf = path->nodes[0];
2711 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2712 
2713 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2714 		goto out;
2715 
2716 	ret = 1;
2717 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2718 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2719 	if (item_size < sizeof(*ei)) {
2720 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2721 		goto out;
2722 	}
2723 #endif
2724 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2725 
2726 	if (item_size != sizeof(*ei) +
2727 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2728 		goto out;
2729 
2730 	if (btrfs_extent_generation(leaf, ei) <=
2731 	    btrfs_root_last_snapshot(&root->root_item))
2732 		goto out;
2733 
2734 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2735 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2736 	    BTRFS_EXTENT_DATA_REF_KEY)
2737 		goto out;
2738 
2739 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2740 	if (btrfs_extent_refs(leaf, ei) !=
2741 	    btrfs_extent_data_ref_count(leaf, ref) ||
2742 	    btrfs_extent_data_ref_root(leaf, ref) !=
2743 	    root->root_key.objectid ||
2744 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2745 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2746 		goto out;
2747 
2748 	ret = 0;
2749 out:
2750 	return ret;
2751 }
2752 
2753 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2754 			  struct btrfs_root *root,
2755 			  u64 objectid, u64 offset, u64 bytenr)
2756 {
2757 	struct btrfs_path *path;
2758 	int ret;
2759 	int ret2;
2760 
2761 	path = btrfs_alloc_path();
2762 	if (!path)
2763 		return -ENOENT;
2764 
2765 	do {
2766 		ret = check_committed_ref(trans, root, path, objectid,
2767 					  offset, bytenr);
2768 		if (ret && ret != -ENOENT)
2769 			goto out;
2770 
2771 		ret2 = check_delayed_ref(trans, root, path, objectid,
2772 					 offset, bytenr);
2773 	} while (ret2 == -EAGAIN);
2774 
2775 	if (ret2 && ret2 != -ENOENT) {
2776 		ret = ret2;
2777 		goto out;
2778 	}
2779 
2780 	if (ret != -ENOENT || ret2 != -ENOENT)
2781 		ret = 0;
2782 out:
2783 	btrfs_free_path(path);
2784 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2785 		WARN_ON(ret > 0);
2786 	return ret;
2787 }
2788 
2789 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2790 			   struct btrfs_root *root,
2791 			   struct extent_buffer *buf,
2792 			   int full_backref, int inc, int for_cow)
2793 {
2794 	u64 bytenr;
2795 	u64 num_bytes;
2796 	u64 parent;
2797 	u64 ref_root;
2798 	u32 nritems;
2799 	struct btrfs_key key;
2800 	struct btrfs_file_extent_item *fi;
2801 	int i;
2802 	int level;
2803 	int ret = 0;
2804 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2805 			    u64, u64, u64, u64, u64, u64, int);
2806 
2807 	ref_root = btrfs_header_owner(buf);
2808 	nritems = btrfs_header_nritems(buf);
2809 	level = btrfs_header_level(buf);
2810 
2811 	if (!root->ref_cows && level == 0)
2812 		return 0;
2813 
2814 	if (inc)
2815 		process_func = btrfs_inc_extent_ref;
2816 	else
2817 		process_func = btrfs_free_extent;
2818 
2819 	if (full_backref)
2820 		parent = buf->start;
2821 	else
2822 		parent = 0;
2823 
2824 	for (i = 0; i < nritems; i++) {
2825 		if (level == 0) {
2826 			btrfs_item_key_to_cpu(buf, &key, i);
2827 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2828 				continue;
2829 			fi = btrfs_item_ptr(buf, i,
2830 					    struct btrfs_file_extent_item);
2831 			if (btrfs_file_extent_type(buf, fi) ==
2832 			    BTRFS_FILE_EXTENT_INLINE)
2833 				continue;
2834 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2835 			if (bytenr == 0)
2836 				continue;
2837 
2838 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2839 			key.offset -= btrfs_file_extent_offset(buf, fi);
2840 			ret = process_func(trans, root, bytenr, num_bytes,
2841 					   parent, ref_root, key.objectid,
2842 					   key.offset, for_cow);
2843 			if (ret)
2844 				goto fail;
2845 		} else {
2846 			bytenr = btrfs_node_blockptr(buf, i);
2847 			num_bytes = btrfs_level_size(root, level - 1);
2848 			ret = process_func(trans, root, bytenr, num_bytes,
2849 					   parent, ref_root, level - 1, 0,
2850 					   for_cow);
2851 			if (ret)
2852 				goto fail;
2853 		}
2854 	}
2855 	return 0;
2856 fail:
2857 	return ret;
2858 }
2859 
2860 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2861 		  struct extent_buffer *buf, int full_backref, int for_cow)
2862 {
2863 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2864 }
2865 
2866 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2867 		  struct extent_buffer *buf, int full_backref, int for_cow)
2868 {
2869 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2870 }
2871 
2872 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2873 				 struct btrfs_root *root,
2874 				 struct btrfs_path *path,
2875 				 struct btrfs_block_group_cache *cache)
2876 {
2877 	int ret;
2878 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2879 	unsigned long bi;
2880 	struct extent_buffer *leaf;
2881 
2882 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2883 	if (ret < 0)
2884 		goto fail;
2885 	BUG_ON(ret); /* Corruption */
2886 
2887 	leaf = path->nodes[0];
2888 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2889 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2890 	btrfs_mark_buffer_dirty(leaf);
2891 	btrfs_release_path(path);
2892 fail:
2893 	if (ret) {
2894 		btrfs_abort_transaction(trans, root, ret);
2895 		return ret;
2896 	}
2897 	return 0;
2898 
2899 }
2900 
2901 static struct btrfs_block_group_cache *
2902 next_block_group(struct btrfs_root *root,
2903 		 struct btrfs_block_group_cache *cache)
2904 {
2905 	struct rb_node *node;
2906 	spin_lock(&root->fs_info->block_group_cache_lock);
2907 	node = rb_next(&cache->cache_node);
2908 	btrfs_put_block_group(cache);
2909 	if (node) {
2910 		cache = rb_entry(node, struct btrfs_block_group_cache,
2911 				 cache_node);
2912 		btrfs_get_block_group(cache);
2913 	} else
2914 		cache = NULL;
2915 	spin_unlock(&root->fs_info->block_group_cache_lock);
2916 	return cache;
2917 }
2918 
2919 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2920 			    struct btrfs_trans_handle *trans,
2921 			    struct btrfs_path *path)
2922 {
2923 	struct btrfs_root *root = block_group->fs_info->tree_root;
2924 	struct inode *inode = NULL;
2925 	u64 alloc_hint = 0;
2926 	int dcs = BTRFS_DC_ERROR;
2927 	int num_pages = 0;
2928 	int retries = 0;
2929 	int ret = 0;
2930 
2931 	/*
2932 	 * If this block group is smaller than 100 megs don't bother caching the
2933 	 * block group.
2934 	 */
2935 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2936 		spin_lock(&block_group->lock);
2937 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2938 		spin_unlock(&block_group->lock);
2939 		return 0;
2940 	}
2941 
2942 again:
2943 	inode = lookup_free_space_inode(root, block_group, path);
2944 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2945 		ret = PTR_ERR(inode);
2946 		btrfs_release_path(path);
2947 		goto out;
2948 	}
2949 
2950 	if (IS_ERR(inode)) {
2951 		BUG_ON(retries);
2952 		retries++;
2953 
2954 		if (block_group->ro)
2955 			goto out_free;
2956 
2957 		ret = create_free_space_inode(root, trans, block_group, path);
2958 		if (ret)
2959 			goto out_free;
2960 		goto again;
2961 	}
2962 
2963 	/* We've already setup this transaction, go ahead and exit */
2964 	if (block_group->cache_generation == trans->transid &&
2965 	    i_size_read(inode)) {
2966 		dcs = BTRFS_DC_SETUP;
2967 		goto out_put;
2968 	}
2969 
2970 	/*
2971 	 * We want to set the generation to 0, that way if anything goes wrong
2972 	 * from here on out we know not to trust this cache when we load up next
2973 	 * time.
2974 	 */
2975 	BTRFS_I(inode)->generation = 0;
2976 	ret = btrfs_update_inode(trans, root, inode);
2977 	WARN_ON(ret);
2978 
2979 	if (i_size_read(inode) > 0) {
2980 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2981 						      inode);
2982 		if (ret)
2983 			goto out_put;
2984 	}
2985 
2986 	spin_lock(&block_group->lock);
2987 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2988 	    !btrfs_test_opt(root, SPACE_CACHE)) {
2989 		/*
2990 		 * don't bother trying to write stuff out _if_
2991 		 * a) we're not cached,
2992 		 * b) we're with nospace_cache mount option.
2993 		 */
2994 		dcs = BTRFS_DC_WRITTEN;
2995 		spin_unlock(&block_group->lock);
2996 		goto out_put;
2997 	}
2998 	spin_unlock(&block_group->lock);
2999 
3000 	/*
3001 	 * Try to preallocate enough space based on how big the block group is.
3002 	 * Keep in mind this has to include any pinned space which could end up
3003 	 * taking up quite a bit since it's not folded into the other space
3004 	 * cache.
3005 	 */
3006 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3007 	if (!num_pages)
3008 		num_pages = 1;
3009 
3010 	num_pages *= 16;
3011 	num_pages *= PAGE_CACHE_SIZE;
3012 
3013 	ret = btrfs_check_data_free_space(inode, num_pages);
3014 	if (ret)
3015 		goto out_put;
3016 
3017 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3018 					      num_pages, num_pages,
3019 					      &alloc_hint);
3020 	if (!ret)
3021 		dcs = BTRFS_DC_SETUP;
3022 	btrfs_free_reserved_data_space(inode, num_pages);
3023 
3024 out_put:
3025 	iput(inode);
3026 out_free:
3027 	btrfs_release_path(path);
3028 out:
3029 	spin_lock(&block_group->lock);
3030 	if (!ret && dcs == BTRFS_DC_SETUP)
3031 		block_group->cache_generation = trans->transid;
3032 	block_group->disk_cache_state = dcs;
3033 	spin_unlock(&block_group->lock);
3034 
3035 	return ret;
3036 }
3037 
3038 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3039 				   struct btrfs_root *root)
3040 {
3041 	struct btrfs_block_group_cache *cache;
3042 	int err = 0;
3043 	struct btrfs_path *path;
3044 	u64 last = 0;
3045 
3046 	path = btrfs_alloc_path();
3047 	if (!path)
3048 		return -ENOMEM;
3049 
3050 again:
3051 	while (1) {
3052 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3053 		while (cache) {
3054 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3055 				break;
3056 			cache = next_block_group(root, cache);
3057 		}
3058 		if (!cache) {
3059 			if (last == 0)
3060 				break;
3061 			last = 0;
3062 			continue;
3063 		}
3064 		err = cache_save_setup(cache, trans, path);
3065 		last = cache->key.objectid + cache->key.offset;
3066 		btrfs_put_block_group(cache);
3067 	}
3068 
3069 	while (1) {
3070 		if (last == 0) {
3071 			err = btrfs_run_delayed_refs(trans, root,
3072 						     (unsigned long)-1);
3073 			if (err) /* File system offline */
3074 				goto out;
3075 		}
3076 
3077 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3078 		while (cache) {
3079 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3080 				btrfs_put_block_group(cache);
3081 				goto again;
3082 			}
3083 
3084 			if (cache->dirty)
3085 				break;
3086 			cache = next_block_group(root, cache);
3087 		}
3088 		if (!cache) {
3089 			if (last == 0)
3090 				break;
3091 			last = 0;
3092 			continue;
3093 		}
3094 
3095 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3096 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3097 		cache->dirty = 0;
3098 		last = cache->key.objectid + cache->key.offset;
3099 
3100 		err = write_one_cache_group(trans, root, path, cache);
3101 		if (err) /* File system offline */
3102 			goto out;
3103 
3104 		btrfs_put_block_group(cache);
3105 	}
3106 
3107 	while (1) {
3108 		/*
3109 		 * I don't think this is needed since we're just marking our
3110 		 * preallocated extent as written, but just in case it can't
3111 		 * hurt.
3112 		 */
3113 		if (last == 0) {
3114 			err = btrfs_run_delayed_refs(trans, root,
3115 						     (unsigned long)-1);
3116 			if (err) /* File system offline */
3117 				goto out;
3118 		}
3119 
3120 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3121 		while (cache) {
3122 			/*
3123 			 * Really this shouldn't happen, but it could if we
3124 			 * couldn't write the entire preallocated extent and
3125 			 * splitting the extent resulted in a new block.
3126 			 */
3127 			if (cache->dirty) {
3128 				btrfs_put_block_group(cache);
3129 				goto again;
3130 			}
3131 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3132 				break;
3133 			cache = next_block_group(root, cache);
3134 		}
3135 		if (!cache) {
3136 			if (last == 0)
3137 				break;
3138 			last = 0;
3139 			continue;
3140 		}
3141 
3142 		err = btrfs_write_out_cache(root, trans, cache, path);
3143 
3144 		/*
3145 		 * If we didn't have an error then the cache state is still
3146 		 * NEED_WRITE, so we can set it to WRITTEN.
3147 		 */
3148 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3149 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3150 		last = cache->key.objectid + cache->key.offset;
3151 		btrfs_put_block_group(cache);
3152 	}
3153 out:
3154 
3155 	btrfs_free_path(path);
3156 	return err;
3157 }
3158 
3159 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3160 {
3161 	struct btrfs_block_group_cache *block_group;
3162 	int readonly = 0;
3163 
3164 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3165 	if (!block_group || block_group->ro)
3166 		readonly = 1;
3167 	if (block_group)
3168 		btrfs_put_block_group(block_group);
3169 	return readonly;
3170 }
3171 
3172 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3173 			     u64 total_bytes, u64 bytes_used,
3174 			     struct btrfs_space_info **space_info)
3175 {
3176 	struct btrfs_space_info *found;
3177 	int i;
3178 	int factor;
3179 
3180 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3181 		     BTRFS_BLOCK_GROUP_RAID10))
3182 		factor = 2;
3183 	else
3184 		factor = 1;
3185 
3186 	found = __find_space_info(info, flags);
3187 	if (found) {
3188 		spin_lock(&found->lock);
3189 		found->total_bytes += total_bytes;
3190 		found->disk_total += total_bytes * factor;
3191 		found->bytes_used += bytes_used;
3192 		found->disk_used += bytes_used * factor;
3193 		found->full = 0;
3194 		spin_unlock(&found->lock);
3195 		*space_info = found;
3196 		return 0;
3197 	}
3198 	found = kzalloc(sizeof(*found), GFP_NOFS);
3199 	if (!found)
3200 		return -ENOMEM;
3201 
3202 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3203 		INIT_LIST_HEAD(&found->block_groups[i]);
3204 	init_rwsem(&found->groups_sem);
3205 	spin_lock_init(&found->lock);
3206 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3207 	found->total_bytes = total_bytes;
3208 	found->disk_total = total_bytes * factor;
3209 	found->bytes_used = bytes_used;
3210 	found->disk_used = bytes_used * factor;
3211 	found->bytes_pinned = 0;
3212 	found->bytes_reserved = 0;
3213 	found->bytes_readonly = 0;
3214 	found->bytes_may_use = 0;
3215 	found->full = 0;
3216 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3217 	found->chunk_alloc = 0;
3218 	found->flush = 0;
3219 	init_waitqueue_head(&found->wait);
3220 	*space_info = found;
3221 	list_add_rcu(&found->list, &info->space_info);
3222 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3223 		info->data_sinfo = found;
3224 	return 0;
3225 }
3226 
3227 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3228 {
3229 	u64 extra_flags = chunk_to_extended(flags) &
3230 				BTRFS_EXTENDED_PROFILE_MASK;
3231 
3232 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3233 		fs_info->avail_data_alloc_bits |= extra_flags;
3234 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3235 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3236 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3237 		fs_info->avail_system_alloc_bits |= extra_flags;
3238 }
3239 
3240 /*
3241  * returns target flags in extended format or 0 if restripe for this
3242  * chunk_type is not in progress
3243  *
3244  * should be called with either volume_mutex or balance_lock held
3245  */
3246 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3247 {
3248 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3249 	u64 target = 0;
3250 
3251 	if (!bctl)
3252 		return 0;
3253 
3254 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3255 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3256 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3257 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3258 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3259 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3260 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3261 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3262 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3263 	}
3264 
3265 	return target;
3266 }
3267 
3268 /*
3269  * @flags: available profiles in extended format (see ctree.h)
3270  *
3271  * Returns reduced profile in chunk format.  If profile changing is in
3272  * progress (either running or paused) picks the target profile (if it's
3273  * already available), otherwise falls back to plain reducing.
3274  */
3275 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3276 {
3277 	/*
3278 	 * we add in the count of missing devices because we want
3279 	 * to make sure that any RAID levels on a degraded FS
3280 	 * continue to be honored.
3281 	 */
3282 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3283 		root->fs_info->fs_devices->missing_devices;
3284 	u64 target;
3285 
3286 	/*
3287 	 * see if restripe for this chunk_type is in progress, if so
3288 	 * try to reduce to the target profile
3289 	 */
3290 	spin_lock(&root->fs_info->balance_lock);
3291 	target = get_restripe_target(root->fs_info, flags);
3292 	if (target) {
3293 		/* pick target profile only if it's already available */
3294 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3295 			spin_unlock(&root->fs_info->balance_lock);
3296 			return extended_to_chunk(target);
3297 		}
3298 	}
3299 	spin_unlock(&root->fs_info->balance_lock);
3300 
3301 	if (num_devices == 1)
3302 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3303 	if (num_devices < 4)
3304 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3305 
3306 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3307 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3308 		      BTRFS_BLOCK_GROUP_RAID10))) {
3309 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3310 	}
3311 
3312 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3313 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3314 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3315 	}
3316 
3317 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3318 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3319 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3320 	     (flags & BTRFS_BLOCK_GROUP_DUP))) {
3321 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3322 	}
3323 
3324 	return extended_to_chunk(flags);
3325 }
3326 
3327 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3328 {
3329 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3330 		flags |= root->fs_info->avail_data_alloc_bits;
3331 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3332 		flags |= root->fs_info->avail_system_alloc_bits;
3333 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3334 		flags |= root->fs_info->avail_metadata_alloc_bits;
3335 
3336 	return btrfs_reduce_alloc_profile(root, flags);
3337 }
3338 
3339 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3340 {
3341 	u64 flags;
3342 
3343 	if (data)
3344 		flags = BTRFS_BLOCK_GROUP_DATA;
3345 	else if (root == root->fs_info->chunk_root)
3346 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3347 	else
3348 		flags = BTRFS_BLOCK_GROUP_METADATA;
3349 
3350 	return get_alloc_profile(root, flags);
3351 }
3352 
3353 /*
3354  * This will check the space that the inode allocates from to make sure we have
3355  * enough space for bytes.
3356  */
3357 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3358 {
3359 	struct btrfs_space_info *data_sinfo;
3360 	struct btrfs_root *root = BTRFS_I(inode)->root;
3361 	struct btrfs_fs_info *fs_info = root->fs_info;
3362 	u64 used;
3363 	int ret = 0, committed = 0, alloc_chunk = 1;
3364 
3365 	/* make sure bytes are sectorsize aligned */
3366 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3367 
3368 	if (root == root->fs_info->tree_root ||
3369 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3370 		alloc_chunk = 0;
3371 		committed = 1;
3372 	}
3373 
3374 	data_sinfo = fs_info->data_sinfo;
3375 	if (!data_sinfo)
3376 		goto alloc;
3377 
3378 again:
3379 	/* make sure we have enough space to handle the data first */
3380 	spin_lock(&data_sinfo->lock);
3381 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3382 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3383 		data_sinfo->bytes_may_use;
3384 
3385 	if (used + bytes > data_sinfo->total_bytes) {
3386 		struct btrfs_trans_handle *trans;
3387 
3388 		/*
3389 		 * if we don't have enough free bytes in this space then we need
3390 		 * to alloc a new chunk.
3391 		 */
3392 		if (!data_sinfo->full && alloc_chunk) {
3393 			u64 alloc_target;
3394 
3395 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3396 			spin_unlock(&data_sinfo->lock);
3397 alloc:
3398 			alloc_target = btrfs_get_alloc_profile(root, 1);
3399 			trans = btrfs_join_transaction(root);
3400 			if (IS_ERR(trans))
3401 				return PTR_ERR(trans);
3402 
3403 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3404 					     alloc_target,
3405 					     CHUNK_ALLOC_NO_FORCE);
3406 			btrfs_end_transaction(trans, root);
3407 			if (ret < 0) {
3408 				if (ret != -ENOSPC)
3409 					return ret;
3410 				else
3411 					goto commit_trans;
3412 			}
3413 
3414 			if (!data_sinfo)
3415 				data_sinfo = fs_info->data_sinfo;
3416 
3417 			goto again;
3418 		}
3419 
3420 		/*
3421 		 * If we have less pinned bytes than we want to allocate then
3422 		 * don't bother committing the transaction, it won't help us.
3423 		 */
3424 		if (data_sinfo->bytes_pinned < bytes)
3425 			committed = 1;
3426 		spin_unlock(&data_sinfo->lock);
3427 
3428 		/* commit the current transaction and try again */
3429 commit_trans:
3430 		if (!committed &&
3431 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3432 			committed = 1;
3433 			trans = btrfs_join_transaction(root);
3434 			if (IS_ERR(trans))
3435 				return PTR_ERR(trans);
3436 			ret = btrfs_commit_transaction(trans, root);
3437 			if (ret)
3438 				return ret;
3439 			goto again;
3440 		}
3441 
3442 		return -ENOSPC;
3443 	}
3444 	data_sinfo->bytes_may_use += bytes;
3445 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3446 				      data_sinfo->flags, bytes, 1);
3447 	spin_unlock(&data_sinfo->lock);
3448 
3449 	return 0;
3450 }
3451 
3452 /*
3453  * Called if we need to clear a data reservation for this inode.
3454  */
3455 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3456 {
3457 	struct btrfs_root *root = BTRFS_I(inode)->root;
3458 	struct btrfs_space_info *data_sinfo;
3459 
3460 	/* make sure bytes are sectorsize aligned */
3461 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3462 
3463 	data_sinfo = root->fs_info->data_sinfo;
3464 	spin_lock(&data_sinfo->lock);
3465 	data_sinfo->bytes_may_use -= bytes;
3466 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3467 				      data_sinfo->flags, bytes, 0);
3468 	spin_unlock(&data_sinfo->lock);
3469 }
3470 
3471 static void force_metadata_allocation(struct btrfs_fs_info *info)
3472 {
3473 	struct list_head *head = &info->space_info;
3474 	struct btrfs_space_info *found;
3475 
3476 	rcu_read_lock();
3477 	list_for_each_entry_rcu(found, head, list) {
3478 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3479 			found->force_alloc = CHUNK_ALLOC_FORCE;
3480 	}
3481 	rcu_read_unlock();
3482 }
3483 
3484 static int should_alloc_chunk(struct btrfs_root *root,
3485 			      struct btrfs_space_info *sinfo, int force)
3486 {
3487 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3488 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3489 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3490 	u64 thresh;
3491 
3492 	if (force == CHUNK_ALLOC_FORCE)
3493 		return 1;
3494 
3495 	/*
3496 	 * We need to take into account the global rsv because for all intents
3497 	 * and purposes it's used space.  Don't worry about locking the
3498 	 * global_rsv, it doesn't change except when the transaction commits.
3499 	 */
3500 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3501 		num_allocated += global_rsv->size;
3502 
3503 	/*
3504 	 * in limited mode, we want to have some free space up to
3505 	 * about 1% of the FS size.
3506 	 */
3507 	if (force == CHUNK_ALLOC_LIMITED) {
3508 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3509 		thresh = max_t(u64, 64 * 1024 * 1024,
3510 			       div_factor_fine(thresh, 1));
3511 
3512 		if (num_bytes - num_allocated < thresh)
3513 			return 1;
3514 	}
3515 
3516 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3517 		return 0;
3518 	return 1;
3519 }
3520 
3521 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3522 {
3523 	u64 num_dev;
3524 
3525 	if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3526 	    type & BTRFS_BLOCK_GROUP_RAID0)
3527 		num_dev = root->fs_info->fs_devices->rw_devices;
3528 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3529 		num_dev = 2;
3530 	else
3531 		num_dev = 1;	/* DUP or single */
3532 
3533 	/* metadata for updaing devices and chunk tree */
3534 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3535 }
3536 
3537 static void check_system_chunk(struct btrfs_trans_handle *trans,
3538 			       struct btrfs_root *root, u64 type)
3539 {
3540 	struct btrfs_space_info *info;
3541 	u64 left;
3542 	u64 thresh;
3543 
3544 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3545 	spin_lock(&info->lock);
3546 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3547 		info->bytes_reserved - info->bytes_readonly;
3548 	spin_unlock(&info->lock);
3549 
3550 	thresh = get_system_chunk_thresh(root, type);
3551 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3552 		printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3553 		       left, thresh, type);
3554 		dump_space_info(info, 0, 0);
3555 	}
3556 
3557 	if (left < thresh) {
3558 		u64 flags;
3559 
3560 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3561 		btrfs_alloc_chunk(trans, root, flags);
3562 	}
3563 }
3564 
3565 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3566 			  struct btrfs_root *extent_root, u64 flags, int force)
3567 {
3568 	struct btrfs_space_info *space_info;
3569 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3570 	int wait_for_alloc = 0;
3571 	int ret = 0;
3572 
3573 	/* Don't re-enter if we're already allocating a chunk */
3574 	if (trans->allocating_chunk)
3575 		return -ENOSPC;
3576 
3577 	space_info = __find_space_info(extent_root->fs_info, flags);
3578 	if (!space_info) {
3579 		ret = update_space_info(extent_root->fs_info, flags,
3580 					0, 0, &space_info);
3581 		BUG_ON(ret); /* -ENOMEM */
3582 	}
3583 	BUG_ON(!space_info); /* Logic error */
3584 
3585 again:
3586 	spin_lock(&space_info->lock);
3587 	if (force < space_info->force_alloc)
3588 		force = space_info->force_alloc;
3589 	if (space_info->full) {
3590 		spin_unlock(&space_info->lock);
3591 		return 0;
3592 	}
3593 
3594 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3595 		spin_unlock(&space_info->lock);
3596 		return 0;
3597 	} else if (space_info->chunk_alloc) {
3598 		wait_for_alloc = 1;
3599 	} else {
3600 		space_info->chunk_alloc = 1;
3601 	}
3602 
3603 	spin_unlock(&space_info->lock);
3604 
3605 	mutex_lock(&fs_info->chunk_mutex);
3606 
3607 	/*
3608 	 * The chunk_mutex is held throughout the entirety of a chunk
3609 	 * allocation, so once we've acquired the chunk_mutex we know that the
3610 	 * other guy is done and we need to recheck and see if we should
3611 	 * allocate.
3612 	 */
3613 	if (wait_for_alloc) {
3614 		mutex_unlock(&fs_info->chunk_mutex);
3615 		wait_for_alloc = 0;
3616 		goto again;
3617 	}
3618 
3619 	trans->allocating_chunk = true;
3620 
3621 	/*
3622 	 * If we have mixed data/metadata chunks we want to make sure we keep
3623 	 * allocating mixed chunks instead of individual chunks.
3624 	 */
3625 	if (btrfs_mixed_space_info(space_info))
3626 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3627 
3628 	/*
3629 	 * if we're doing a data chunk, go ahead and make sure that
3630 	 * we keep a reasonable number of metadata chunks allocated in the
3631 	 * FS as well.
3632 	 */
3633 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3634 		fs_info->data_chunk_allocations++;
3635 		if (!(fs_info->data_chunk_allocations %
3636 		      fs_info->metadata_ratio))
3637 			force_metadata_allocation(fs_info);
3638 	}
3639 
3640 	/*
3641 	 * Check if we have enough space in SYSTEM chunk because we may need
3642 	 * to update devices.
3643 	 */
3644 	check_system_chunk(trans, extent_root, flags);
3645 
3646 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3647 	trans->allocating_chunk = false;
3648 	if (ret < 0 && ret != -ENOSPC)
3649 		goto out;
3650 
3651 	spin_lock(&space_info->lock);
3652 	if (ret)
3653 		space_info->full = 1;
3654 	else
3655 		ret = 1;
3656 
3657 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3658 	space_info->chunk_alloc = 0;
3659 	spin_unlock(&space_info->lock);
3660 out:
3661 	mutex_unlock(&fs_info->chunk_mutex);
3662 	return ret;
3663 }
3664 
3665 static int can_overcommit(struct btrfs_root *root,
3666 			  struct btrfs_space_info *space_info, u64 bytes,
3667 			  enum btrfs_reserve_flush_enum flush)
3668 {
3669 	u64 profile = btrfs_get_alloc_profile(root, 0);
3670 	u64 avail;
3671 	u64 used;
3672 
3673 	used = space_info->bytes_used + space_info->bytes_reserved +
3674 		space_info->bytes_pinned + space_info->bytes_readonly +
3675 		space_info->bytes_may_use;
3676 
3677 	spin_lock(&root->fs_info->free_chunk_lock);
3678 	avail = root->fs_info->free_chunk_space;
3679 	spin_unlock(&root->fs_info->free_chunk_lock);
3680 
3681 	/*
3682 	 * If we have dup, raid1 or raid10 then only half of the free
3683 	 * space is actually useable.
3684 	 */
3685 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3686 		       BTRFS_BLOCK_GROUP_RAID1 |
3687 		       BTRFS_BLOCK_GROUP_RAID10))
3688 		avail >>= 1;
3689 
3690 	/*
3691 	 * If we aren't flushing all things, let us overcommit up to
3692 	 * 1/2th of the space. If we can flush, don't let us overcommit
3693 	 * too much, let it overcommit up to 1/8 of the space.
3694 	 */
3695 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3696 		avail >>= 3;
3697 	else
3698 		avail >>= 1;
3699 
3700 	if (used + bytes < space_info->total_bytes + avail)
3701 		return 1;
3702 	return 0;
3703 }
3704 
3705 static inline int writeback_inodes_sb_nr_if_idle_safe(struct super_block *sb,
3706 						      unsigned long nr_pages,
3707 						      enum wb_reason reason)
3708 {
3709 	/* the flusher is dealing with the dirty inodes now. */
3710 	if (writeback_in_progress(sb->s_bdi))
3711 		return 1;
3712 
3713 	if (down_read_trylock(&sb->s_umount)) {
3714 		writeback_inodes_sb_nr(sb, nr_pages, reason);
3715 		up_read(&sb->s_umount);
3716 		return 1;
3717 	}
3718 
3719 	return 0;
3720 }
3721 
3722 void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3723 				  unsigned long nr_pages)
3724 {
3725 	struct super_block *sb = root->fs_info->sb;
3726 	int started;
3727 
3728 	/* If we can not start writeback, just sync all the delalloc file. */
3729 	started = writeback_inodes_sb_nr_if_idle_safe(sb, nr_pages,
3730 						      WB_REASON_FS_FREE_SPACE);
3731 	if (!started) {
3732 		/*
3733 		 * We needn't worry the filesystem going from r/w to r/o though
3734 		 * we don't acquire ->s_umount mutex, because the filesystem
3735 		 * should guarantee the delalloc inodes list be empty after
3736 		 * the filesystem is readonly(all dirty pages are written to
3737 		 * the disk).
3738 		 */
3739 		btrfs_start_delalloc_inodes(root, 0);
3740 		btrfs_wait_ordered_extents(root, 0);
3741 	}
3742 }
3743 
3744 /*
3745  * shrink metadata reservation for delalloc
3746  */
3747 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
3748 			    bool wait_ordered)
3749 {
3750 	struct btrfs_block_rsv *block_rsv;
3751 	struct btrfs_space_info *space_info;
3752 	struct btrfs_trans_handle *trans;
3753 	u64 delalloc_bytes;
3754 	u64 max_reclaim;
3755 	long time_left;
3756 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3757 	int loops = 0;
3758 	enum btrfs_reserve_flush_enum flush;
3759 
3760 	trans = (struct btrfs_trans_handle *)current->journal_info;
3761 	block_rsv = &root->fs_info->delalloc_block_rsv;
3762 	space_info = block_rsv->space_info;
3763 
3764 	smp_mb();
3765 	delalloc_bytes = root->fs_info->delalloc_bytes;
3766 	if (delalloc_bytes == 0) {
3767 		if (trans)
3768 			return;
3769 		btrfs_wait_ordered_extents(root, 0);
3770 		return;
3771 	}
3772 
3773 	while (delalloc_bytes && loops < 3) {
3774 		max_reclaim = min(delalloc_bytes, to_reclaim);
3775 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
3776 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
3777 		/*
3778 		 * We need to wait for the async pages to actually start before
3779 		 * we do anything.
3780 		 */
3781 		wait_event(root->fs_info->async_submit_wait,
3782 			   !atomic_read(&root->fs_info->async_delalloc_pages));
3783 
3784 		if (!trans)
3785 			flush = BTRFS_RESERVE_FLUSH_ALL;
3786 		else
3787 			flush = BTRFS_RESERVE_NO_FLUSH;
3788 		spin_lock(&space_info->lock);
3789 		if (can_overcommit(root, space_info, orig, flush)) {
3790 			spin_unlock(&space_info->lock);
3791 			break;
3792 		}
3793 		spin_unlock(&space_info->lock);
3794 
3795 		loops++;
3796 		if (wait_ordered && !trans) {
3797 			btrfs_wait_ordered_extents(root, 0);
3798 		} else {
3799 			time_left = schedule_timeout_killable(1);
3800 			if (time_left)
3801 				break;
3802 		}
3803 		smp_mb();
3804 		delalloc_bytes = root->fs_info->delalloc_bytes;
3805 	}
3806 }
3807 
3808 /**
3809  * maybe_commit_transaction - possibly commit the transaction if its ok to
3810  * @root - the root we're allocating for
3811  * @bytes - the number of bytes we want to reserve
3812  * @force - force the commit
3813  *
3814  * This will check to make sure that committing the transaction will actually
3815  * get us somewhere and then commit the transaction if it does.  Otherwise it
3816  * will return -ENOSPC.
3817  */
3818 static int may_commit_transaction(struct btrfs_root *root,
3819 				  struct btrfs_space_info *space_info,
3820 				  u64 bytes, int force)
3821 {
3822 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3823 	struct btrfs_trans_handle *trans;
3824 
3825 	trans = (struct btrfs_trans_handle *)current->journal_info;
3826 	if (trans)
3827 		return -EAGAIN;
3828 
3829 	if (force)
3830 		goto commit;
3831 
3832 	/* See if there is enough pinned space to make this reservation */
3833 	spin_lock(&space_info->lock);
3834 	if (space_info->bytes_pinned >= bytes) {
3835 		spin_unlock(&space_info->lock);
3836 		goto commit;
3837 	}
3838 	spin_unlock(&space_info->lock);
3839 
3840 	/*
3841 	 * See if there is some space in the delayed insertion reservation for
3842 	 * this reservation.
3843 	 */
3844 	if (space_info != delayed_rsv->space_info)
3845 		return -ENOSPC;
3846 
3847 	spin_lock(&space_info->lock);
3848 	spin_lock(&delayed_rsv->lock);
3849 	if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3850 		spin_unlock(&delayed_rsv->lock);
3851 		spin_unlock(&space_info->lock);
3852 		return -ENOSPC;
3853 	}
3854 	spin_unlock(&delayed_rsv->lock);
3855 	spin_unlock(&space_info->lock);
3856 
3857 commit:
3858 	trans = btrfs_join_transaction(root);
3859 	if (IS_ERR(trans))
3860 		return -ENOSPC;
3861 
3862 	return btrfs_commit_transaction(trans, root);
3863 }
3864 
3865 enum flush_state {
3866 	FLUSH_DELAYED_ITEMS_NR	=	1,
3867 	FLUSH_DELAYED_ITEMS	=	2,
3868 	FLUSH_DELALLOC		=	3,
3869 	FLUSH_DELALLOC_WAIT	=	4,
3870 	ALLOC_CHUNK		=	5,
3871 	COMMIT_TRANS		=	6,
3872 };
3873 
3874 static int flush_space(struct btrfs_root *root,
3875 		       struct btrfs_space_info *space_info, u64 num_bytes,
3876 		       u64 orig_bytes, int state)
3877 {
3878 	struct btrfs_trans_handle *trans;
3879 	int nr;
3880 	int ret = 0;
3881 
3882 	switch (state) {
3883 	case FLUSH_DELAYED_ITEMS_NR:
3884 	case FLUSH_DELAYED_ITEMS:
3885 		if (state == FLUSH_DELAYED_ITEMS_NR) {
3886 			u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
3887 
3888 			nr = (int)div64_u64(num_bytes, bytes);
3889 			if (!nr)
3890 				nr = 1;
3891 			nr *= 2;
3892 		} else {
3893 			nr = -1;
3894 		}
3895 		trans = btrfs_join_transaction(root);
3896 		if (IS_ERR(trans)) {
3897 			ret = PTR_ERR(trans);
3898 			break;
3899 		}
3900 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
3901 		btrfs_end_transaction(trans, root);
3902 		break;
3903 	case FLUSH_DELALLOC:
3904 	case FLUSH_DELALLOC_WAIT:
3905 		shrink_delalloc(root, num_bytes, orig_bytes,
3906 				state == FLUSH_DELALLOC_WAIT);
3907 		break;
3908 	case ALLOC_CHUNK:
3909 		trans = btrfs_join_transaction(root);
3910 		if (IS_ERR(trans)) {
3911 			ret = PTR_ERR(trans);
3912 			break;
3913 		}
3914 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3915 				     btrfs_get_alloc_profile(root, 0),
3916 				     CHUNK_ALLOC_NO_FORCE);
3917 		btrfs_end_transaction(trans, root);
3918 		if (ret == -ENOSPC)
3919 			ret = 0;
3920 		break;
3921 	case COMMIT_TRANS:
3922 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3923 		break;
3924 	default:
3925 		ret = -ENOSPC;
3926 		break;
3927 	}
3928 
3929 	return ret;
3930 }
3931 /**
3932  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3933  * @root - the root we're allocating for
3934  * @block_rsv - the block_rsv we're allocating for
3935  * @orig_bytes - the number of bytes we want
3936  * @flush - wether or not we can flush to make our reservation
3937  *
3938  * This will reserve orgi_bytes number of bytes from the space info associated
3939  * with the block_rsv.  If there is not enough space it will make an attempt to
3940  * flush out space to make room.  It will do this by flushing delalloc if
3941  * possible or committing the transaction.  If flush is 0 then no attempts to
3942  * regain reservations will be made and this will fail if there is not enough
3943  * space already.
3944  */
3945 static int reserve_metadata_bytes(struct btrfs_root *root,
3946 				  struct btrfs_block_rsv *block_rsv,
3947 				  u64 orig_bytes,
3948 				  enum btrfs_reserve_flush_enum flush)
3949 {
3950 	struct btrfs_space_info *space_info = block_rsv->space_info;
3951 	u64 used;
3952 	u64 num_bytes = orig_bytes;
3953 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
3954 	int ret = 0;
3955 	bool flushing = false;
3956 
3957 again:
3958 	ret = 0;
3959 	spin_lock(&space_info->lock);
3960 	/*
3961 	 * We only want to wait if somebody other than us is flushing and we
3962 	 * are actually allowed to flush all things.
3963 	 */
3964 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
3965 	       space_info->flush) {
3966 		spin_unlock(&space_info->lock);
3967 		/*
3968 		 * If we have a trans handle we can't wait because the flusher
3969 		 * may have to commit the transaction, which would mean we would
3970 		 * deadlock since we are waiting for the flusher to finish, but
3971 		 * hold the current transaction open.
3972 		 */
3973 		if (current->journal_info)
3974 			return -EAGAIN;
3975 		ret = wait_event_killable(space_info->wait, !space_info->flush);
3976 		/* Must have been killed, return */
3977 		if (ret)
3978 			return -EINTR;
3979 
3980 		spin_lock(&space_info->lock);
3981 	}
3982 
3983 	ret = -ENOSPC;
3984 	used = space_info->bytes_used + space_info->bytes_reserved +
3985 		space_info->bytes_pinned + space_info->bytes_readonly +
3986 		space_info->bytes_may_use;
3987 
3988 	/*
3989 	 * The idea here is that we've not already over-reserved the block group
3990 	 * then we can go ahead and save our reservation first and then start
3991 	 * flushing if we need to.  Otherwise if we've already overcommitted
3992 	 * lets start flushing stuff first and then come back and try to make
3993 	 * our reservation.
3994 	 */
3995 	if (used <= space_info->total_bytes) {
3996 		if (used + orig_bytes <= space_info->total_bytes) {
3997 			space_info->bytes_may_use += orig_bytes;
3998 			trace_btrfs_space_reservation(root->fs_info,
3999 				"space_info", space_info->flags, orig_bytes, 1);
4000 			ret = 0;
4001 		} else {
4002 			/*
4003 			 * Ok set num_bytes to orig_bytes since we aren't
4004 			 * overocmmitted, this way we only try and reclaim what
4005 			 * we need.
4006 			 */
4007 			num_bytes = orig_bytes;
4008 		}
4009 	} else {
4010 		/*
4011 		 * Ok we're over committed, set num_bytes to the overcommitted
4012 		 * amount plus the amount of bytes that we need for this
4013 		 * reservation.
4014 		 */
4015 		num_bytes = used - space_info->total_bytes +
4016 			(orig_bytes * 2);
4017 	}
4018 
4019 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4020 		space_info->bytes_may_use += orig_bytes;
4021 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4022 					      space_info->flags, orig_bytes,
4023 					      1);
4024 		ret = 0;
4025 	}
4026 
4027 	/*
4028 	 * Couldn't make our reservation, save our place so while we're trying
4029 	 * to reclaim space we can actually use it instead of somebody else
4030 	 * stealing it from us.
4031 	 *
4032 	 * We make the other tasks wait for the flush only when we can flush
4033 	 * all things.
4034 	 */
4035 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4036 		flushing = true;
4037 		space_info->flush = 1;
4038 	}
4039 
4040 	spin_unlock(&space_info->lock);
4041 
4042 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4043 		goto out;
4044 
4045 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4046 			  flush_state);
4047 	flush_state++;
4048 
4049 	/*
4050 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4051 	 * would happen. So skip delalloc flush.
4052 	 */
4053 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4054 	    (flush_state == FLUSH_DELALLOC ||
4055 	     flush_state == FLUSH_DELALLOC_WAIT))
4056 		flush_state = ALLOC_CHUNK;
4057 
4058 	if (!ret)
4059 		goto again;
4060 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4061 		 flush_state < COMMIT_TRANS)
4062 		goto again;
4063 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4064 		 flush_state <= COMMIT_TRANS)
4065 		goto again;
4066 
4067 out:
4068 	if (flushing) {
4069 		spin_lock(&space_info->lock);
4070 		space_info->flush = 0;
4071 		wake_up_all(&space_info->wait);
4072 		spin_unlock(&space_info->lock);
4073 	}
4074 	return ret;
4075 }
4076 
4077 static struct btrfs_block_rsv *get_block_rsv(
4078 					const struct btrfs_trans_handle *trans,
4079 					const struct btrfs_root *root)
4080 {
4081 	struct btrfs_block_rsv *block_rsv = NULL;
4082 
4083 	if (root->ref_cows)
4084 		block_rsv = trans->block_rsv;
4085 
4086 	if (root == root->fs_info->csum_root && trans->adding_csums)
4087 		block_rsv = trans->block_rsv;
4088 
4089 	if (!block_rsv)
4090 		block_rsv = root->block_rsv;
4091 
4092 	if (!block_rsv)
4093 		block_rsv = &root->fs_info->empty_block_rsv;
4094 
4095 	return block_rsv;
4096 }
4097 
4098 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4099 			       u64 num_bytes)
4100 {
4101 	int ret = -ENOSPC;
4102 	spin_lock(&block_rsv->lock);
4103 	if (block_rsv->reserved >= num_bytes) {
4104 		block_rsv->reserved -= num_bytes;
4105 		if (block_rsv->reserved < block_rsv->size)
4106 			block_rsv->full = 0;
4107 		ret = 0;
4108 	}
4109 	spin_unlock(&block_rsv->lock);
4110 	return ret;
4111 }
4112 
4113 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4114 				u64 num_bytes, int update_size)
4115 {
4116 	spin_lock(&block_rsv->lock);
4117 	block_rsv->reserved += num_bytes;
4118 	if (update_size)
4119 		block_rsv->size += num_bytes;
4120 	else if (block_rsv->reserved >= block_rsv->size)
4121 		block_rsv->full = 1;
4122 	spin_unlock(&block_rsv->lock);
4123 }
4124 
4125 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4126 				    struct btrfs_block_rsv *block_rsv,
4127 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4128 {
4129 	struct btrfs_space_info *space_info = block_rsv->space_info;
4130 
4131 	spin_lock(&block_rsv->lock);
4132 	if (num_bytes == (u64)-1)
4133 		num_bytes = block_rsv->size;
4134 	block_rsv->size -= num_bytes;
4135 	if (block_rsv->reserved >= block_rsv->size) {
4136 		num_bytes = block_rsv->reserved - block_rsv->size;
4137 		block_rsv->reserved = block_rsv->size;
4138 		block_rsv->full = 1;
4139 	} else {
4140 		num_bytes = 0;
4141 	}
4142 	spin_unlock(&block_rsv->lock);
4143 
4144 	if (num_bytes > 0) {
4145 		if (dest) {
4146 			spin_lock(&dest->lock);
4147 			if (!dest->full) {
4148 				u64 bytes_to_add;
4149 
4150 				bytes_to_add = dest->size - dest->reserved;
4151 				bytes_to_add = min(num_bytes, bytes_to_add);
4152 				dest->reserved += bytes_to_add;
4153 				if (dest->reserved >= dest->size)
4154 					dest->full = 1;
4155 				num_bytes -= bytes_to_add;
4156 			}
4157 			spin_unlock(&dest->lock);
4158 		}
4159 		if (num_bytes) {
4160 			spin_lock(&space_info->lock);
4161 			space_info->bytes_may_use -= num_bytes;
4162 			trace_btrfs_space_reservation(fs_info, "space_info",
4163 					space_info->flags, num_bytes, 0);
4164 			space_info->reservation_progress++;
4165 			spin_unlock(&space_info->lock);
4166 		}
4167 	}
4168 }
4169 
4170 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4171 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4172 {
4173 	int ret;
4174 
4175 	ret = block_rsv_use_bytes(src, num_bytes);
4176 	if (ret)
4177 		return ret;
4178 
4179 	block_rsv_add_bytes(dst, num_bytes, 1);
4180 	return 0;
4181 }
4182 
4183 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4184 {
4185 	memset(rsv, 0, sizeof(*rsv));
4186 	spin_lock_init(&rsv->lock);
4187 	rsv->type = type;
4188 }
4189 
4190 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4191 					      unsigned short type)
4192 {
4193 	struct btrfs_block_rsv *block_rsv;
4194 	struct btrfs_fs_info *fs_info = root->fs_info;
4195 
4196 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4197 	if (!block_rsv)
4198 		return NULL;
4199 
4200 	btrfs_init_block_rsv(block_rsv, type);
4201 	block_rsv->space_info = __find_space_info(fs_info,
4202 						  BTRFS_BLOCK_GROUP_METADATA);
4203 	return block_rsv;
4204 }
4205 
4206 void btrfs_free_block_rsv(struct btrfs_root *root,
4207 			  struct btrfs_block_rsv *rsv)
4208 {
4209 	if (!rsv)
4210 		return;
4211 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4212 	kfree(rsv);
4213 }
4214 
4215 int btrfs_block_rsv_add(struct btrfs_root *root,
4216 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4217 			enum btrfs_reserve_flush_enum flush)
4218 {
4219 	int ret;
4220 
4221 	if (num_bytes == 0)
4222 		return 0;
4223 
4224 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4225 	if (!ret) {
4226 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4227 		return 0;
4228 	}
4229 
4230 	return ret;
4231 }
4232 
4233 int btrfs_block_rsv_check(struct btrfs_root *root,
4234 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4235 {
4236 	u64 num_bytes = 0;
4237 	int ret = -ENOSPC;
4238 
4239 	if (!block_rsv)
4240 		return 0;
4241 
4242 	spin_lock(&block_rsv->lock);
4243 	num_bytes = div_factor(block_rsv->size, min_factor);
4244 	if (block_rsv->reserved >= num_bytes)
4245 		ret = 0;
4246 	spin_unlock(&block_rsv->lock);
4247 
4248 	return ret;
4249 }
4250 
4251 int btrfs_block_rsv_refill(struct btrfs_root *root,
4252 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4253 			   enum btrfs_reserve_flush_enum flush)
4254 {
4255 	u64 num_bytes = 0;
4256 	int ret = -ENOSPC;
4257 
4258 	if (!block_rsv)
4259 		return 0;
4260 
4261 	spin_lock(&block_rsv->lock);
4262 	num_bytes = min_reserved;
4263 	if (block_rsv->reserved >= num_bytes)
4264 		ret = 0;
4265 	else
4266 		num_bytes -= block_rsv->reserved;
4267 	spin_unlock(&block_rsv->lock);
4268 
4269 	if (!ret)
4270 		return 0;
4271 
4272 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4273 	if (!ret) {
4274 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4275 		return 0;
4276 	}
4277 
4278 	return ret;
4279 }
4280 
4281 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4282 			    struct btrfs_block_rsv *dst_rsv,
4283 			    u64 num_bytes)
4284 {
4285 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4286 }
4287 
4288 void btrfs_block_rsv_release(struct btrfs_root *root,
4289 			     struct btrfs_block_rsv *block_rsv,
4290 			     u64 num_bytes)
4291 {
4292 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4293 	if (global_rsv->full || global_rsv == block_rsv ||
4294 	    block_rsv->space_info != global_rsv->space_info)
4295 		global_rsv = NULL;
4296 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4297 				num_bytes);
4298 }
4299 
4300 /*
4301  * helper to calculate size of global block reservation.
4302  * the desired value is sum of space used by extent tree,
4303  * checksum tree and root tree
4304  */
4305 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4306 {
4307 	struct btrfs_space_info *sinfo;
4308 	u64 num_bytes;
4309 	u64 meta_used;
4310 	u64 data_used;
4311 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4312 
4313 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4314 	spin_lock(&sinfo->lock);
4315 	data_used = sinfo->bytes_used;
4316 	spin_unlock(&sinfo->lock);
4317 
4318 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4319 	spin_lock(&sinfo->lock);
4320 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4321 		data_used = 0;
4322 	meta_used = sinfo->bytes_used;
4323 	spin_unlock(&sinfo->lock);
4324 
4325 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4326 		    csum_size * 2;
4327 	num_bytes += div64_u64(data_used + meta_used, 50);
4328 
4329 	if (num_bytes * 3 > meta_used)
4330 		num_bytes = div64_u64(meta_used, 3);
4331 
4332 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4333 }
4334 
4335 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4336 {
4337 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4338 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4339 	u64 num_bytes;
4340 
4341 	num_bytes = calc_global_metadata_size(fs_info);
4342 
4343 	spin_lock(&sinfo->lock);
4344 	spin_lock(&block_rsv->lock);
4345 
4346 	block_rsv->size = num_bytes;
4347 
4348 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4349 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4350 		    sinfo->bytes_may_use;
4351 
4352 	if (sinfo->total_bytes > num_bytes) {
4353 		num_bytes = sinfo->total_bytes - num_bytes;
4354 		block_rsv->reserved += num_bytes;
4355 		sinfo->bytes_may_use += num_bytes;
4356 		trace_btrfs_space_reservation(fs_info, "space_info",
4357 				      sinfo->flags, num_bytes, 1);
4358 	}
4359 
4360 	if (block_rsv->reserved >= block_rsv->size) {
4361 		num_bytes = block_rsv->reserved - block_rsv->size;
4362 		sinfo->bytes_may_use -= num_bytes;
4363 		trace_btrfs_space_reservation(fs_info, "space_info",
4364 				      sinfo->flags, num_bytes, 0);
4365 		sinfo->reservation_progress++;
4366 		block_rsv->reserved = block_rsv->size;
4367 		block_rsv->full = 1;
4368 	}
4369 
4370 	spin_unlock(&block_rsv->lock);
4371 	spin_unlock(&sinfo->lock);
4372 }
4373 
4374 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4375 {
4376 	struct btrfs_space_info *space_info;
4377 
4378 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4379 	fs_info->chunk_block_rsv.space_info = space_info;
4380 
4381 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4382 	fs_info->global_block_rsv.space_info = space_info;
4383 	fs_info->delalloc_block_rsv.space_info = space_info;
4384 	fs_info->trans_block_rsv.space_info = space_info;
4385 	fs_info->empty_block_rsv.space_info = space_info;
4386 	fs_info->delayed_block_rsv.space_info = space_info;
4387 
4388 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4389 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4390 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4391 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4392 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4393 
4394 	update_global_block_rsv(fs_info);
4395 }
4396 
4397 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4398 {
4399 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4400 				(u64)-1);
4401 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4402 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4403 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4404 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4405 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4406 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4407 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4408 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4409 }
4410 
4411 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4412 				  struct btrfs_root *root)
4413 {
4414 	if (!trans->block_rsv)
4415 		return;
4416 
4417 	if (!trans->bytes_reserved)
4418 		return;
4419 
4420 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4421 				      trans->transid, trans->bytes_reserved, 0);
4422 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4423 	trans->bytes_reserved = 0;
4424 }
4425 
4426 /* Can only return 0 or -ENOSPC */
4427 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4428 				  struct inode *inode)
4429 {
4430 	struct btrfs_root *root = BTRFS_I(inode)->root;
4431 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4432 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4433 
4434 	/*
4435 	 * We need to hold space in order to delete our orphan item once we've
4436 	 * added it, so this takes the reservation so we can release it later
4437 	 * when we are truly done with the orphan item.
4438 	 */
4439 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4440 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4441 				      btrfs_ino(inode), num_bytes, 1);
4442 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4443 }
4444 
4445 void btrfs_orphan_release_metadata(struct inode *inode)
4446 {
4447 	struct btrfs_root *root = BTRFS_I(inode)->root;
4448 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4449 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4450 				      btrfs_ino(inode), num_bytes, 0);
4451 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4452 }
4453 
4454 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4455 				struct btrfs_pending_snapshot *pending)
4456 {
4457 	struct btrfs_root *root = pending->root;
4458 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4459 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4460 	/*
4461 	 * two for root back/forward refs, two for directory entries,
4462 	 * one for root of the snapshot and one for parent inode.
4463 	 */
4464 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 6);
4465 	dst_rsv->space_info = src_rsv->space_info;
4466 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4467 }
4468 
4469 /**
4470  * drop_outstanding_extent - drop an outstanding extent
4471  * @inode: the inode we're dropping the extent for
4472  *
4473  * This is called when we are freeing up an outstanding extent, either called
4474  * after an error or after an extent is written.  This will return the number of
4475  * reserved extents that need to be freed.  This must be called with
4476  * BTRFS_I(inode)->lock held.
4477  */
4478 static unsigned drop_outstanding_extent(struct inode *inode)
4479 {
4480 	unsigned drop_inode_space = 0;
4481 	unsigned dropped_extents = 0;
4482 
4483 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4484 	BTRFS_I(inode)->outstanding_extents--;
4485 
4486 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4487 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4488 			       &BTRFS_I(inode)->runtime_flags))
4489 		drop_inode_space = 1;
4490 
4491 	/*
4492 	 * If we have more or the same amount of outsanding extents than we have
4493 	 * reserved then we need to leave the reserved extents count alone.
4494 	 */
4495 	if (BTRFS_I(inode)->outstanding_extents >=
4496 	    BTRFS_I(inode)->reserved_extents)
4497 		return drop_inode_space;
4498 
4499 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4500 		BTRFS_I(inode)->outstanding_extents;
4501 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4502 	return dropped_extents + drop_inode_space;
4503 }
4504 
4505 /**
4506  * calc_csum_metadata_size - return the amount of metada space that must be
4507  *	reserved/free'd for the given bytes.
4508  * @inode: the inode we're manipulating
4509  * @num_bytes: the number of bytes in question
4510  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4511  *
4512  * This adjusts the number of csum_bytes in the inode and then returns the
4513  * correct amount of metadata that must either be reserved or freed.  We
4514  * calculate how many checksums we can fit into one leaf and then divide the
4515  * number of bytes that will need to be checksumed by this value to figure out
4516  * how many checksums will be required.  If we are adding bytes then the number
4517  * may go up and we will return the number of additional bytes that must be
4518  * reserved.  If it is going down we will return the number of bytes that must
4519  * be freed.
4520  *
4521  * This must be called with BTRFS_I(inode)->lock held.
4522  */
4523 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4524 				   int reserve)
4525 {
4526 	struct btrfs_root *root = BTRFS_I(inode)->root;
4527 	u64 csum_size;
4528 	int num_csums_per_leaf;
4529 	int num_csums;
4530 	int old_csums;
4531 
4532 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4533 	    BTRFS_I(inode)->csum_bytes == 0)
4534 		return 0;
4535 
4536 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4537 	if (reserve)
4538 		BTRFS_I(inode)->csum_bytes += num_bytes;
4539 	else
4540 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4541 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4542 	num_csums_per_leaf = (int)div64_u64(csum_size,
4543 					    sizeof(struct btrfs_csum_item) +
4544 					    sizeof(struct btrfs_disk_key));
4545 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4546 	num_csums = num_csums + num_csums_per_leaf - 1;
4547 	num_csums = num_csums / num_csums_per_leaf;
4548 
4549 	old_csums = old_csums + num_csums_per_leaf - 1;
4550 	old_csums = old_csums / num_csums_per_leaf;
4551 
4552 	/* No change, no need to reserve more */
4553 	if (old_csums == num_csums)
4554 		return 0;
4555 
4556 	if (reserve)
4557 		return btrfs_calc_trans_metadata_size(root,
4558 						      num_csums - old_csums);
4559 
4560 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4561 }
4562 
4563 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4564 {
4565 	struct btrfs_root *root = BTRFS_I(inode)->root;
4566 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4567 	u64 to_reserve = 0;
4568 	u64 csum_bytes;
4569 	unsigned nr_extents = 0;
4570 	int extra_reserve = 0;
4571 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4572 	int ret = 0;
4573 	bool delalloc_lock = true;
4574 
4575 	/* If we are a free space inode we need to not flush since we will be in
4576 	 * the middle of a transaction commit.  We also don't need the delalloc
4577 	 * mutex since we won't race with anybody.  We need this mostly to make
4578 	 * lockdep shut its filthy mouth.
4579 	 */
4580 	if (btrfs_is_free_space_inode(inode)) {
4581 		flush = BTRFS_RESERVE_NO_FLUSH;
4582 		delalloc_lock = false;
4583 	}
4584 
4585 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4586 	    btrfs_transaction_in_commit(root->fs_info))
4587 		schedule_timeout(1);
4588 
4589 	if (delalloc_lock)
4590 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4591 
4592 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4593 
4594 	spin_lock(&BTRFS_I(inode)->lock);
4595 	BTRFS_I(inode)->outstanding_extents++;
4596 
4597 	if (BTRFS_I(inode)->outstanding_extents >
4598 	    BTRFS_I(inode)->reserved_extents)
4599 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4600 			BTRFS_I(inode)->reserved_extents;
4601 
4602 	/*
4603 	 * Add an item to reserve for updating the inode when we complete the
4604 	 * delalloc io.
4605 	 */
4606 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4607 		      &BTRFS_I(inode)->runtime_flags)) {
4608 		nr_extents++;
4609 		extra_reserve = 1;
4610 	}
4611 
4612 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4613 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4614 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4615 	spin_unlock(&BTRFS_I(inode)->lock);
4616 
4617 	if (root->fs_info->quota_enabled)
4618 		ret = btrfs_qgroup_reserve(root, num_bytes +
4619 					   nr_extents * root->leafsize);
4620 
4621 	/*
4622 	 * ret != 0 here means the qgroup reservation failed, we go straight to
4623 	 * the shared error handling then.
4624 	 */
4625 	if (ret == 0)
4626 		ret = reserve_metadata_bytes(root, block_rsv,
4627 					     to_reserve, flush);
4628 
4629 	if (ret) {
4630 		u64 to_free = 0;
4631 		unsigned dropped;
4632 
4633 		spin_lock(&BTRFS_I(inode)->lock);
4634 		dropped = drop_outstanding_extent(inode);
4635 		/*
4636 		 * If the inodes csum_bytes is the same as the original
4637 		 * csum_bytes then we know we haven't raced with any free()ers
4638 		 * so we can just reduce our inodes csum bytes and carry on.
4639 		 * Otherwise we have to do the normal free thing to account for
4640 		 * the case that the free side didn't free up its reserve
4641 		 * because of this outstanding reservation.
4642 		 */
4643 		if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4644 			calc_csum_metadata_size(inode, num_bytes, 0);
4645 		else
4646 			to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4647 		spin_unlock(&BTRFS_I(inode)->lock);
4648 		if (dropped)
4649 			to_free += btrfs_calc_trans_metadata_size(root, dropped);
4650 
4651 		if (to_free) {
4652 			btrfs_block_rsv_release(root, block_rsv, to_free);
4653 			trace_btrfs_space_reservation(root->fs_info,
4654 						      "delalloc",
4655 						      btrfs_ino(inode),
4656 						      to_free, 0);
4657 		}
4658 		if (root->fs_info->quota_enabled) {
4659 			btrfs_qgroup_free(root, num_bytes +
4660 						nr_extents * root->leafsize);
4661 		}
4662 		if (delalloc_lock)
4663 			mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4664 		return ret;
4665 	}
4666 
4667 	spin_lock(&BTRFS_I(inode)->lock);
4668 	if (extra_reserve) {
4669 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4670 			&BTRFS_I(inode)->runtime_flags);
4671 		nr_extents--;
4672 	}
4673 	BTRFS_I(inode)->reserved_extents += nr_extents;
4674 	spin_unlock(&BTRFS_I(inode)->lock);
4675 
4676 	if (delalloc_lock)
4677 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4678 
4679 	if (to_reserve)
4680 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4681 					      btrfs_ino(inode), to_reserve, 1);
4682 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4683 
4684 	return 0;
4685 }
4686 
4687 /**
4688  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4689  * @inode: the inode to release the reservation for
4690  * @num_bytes: the number of bytes we're releasing
4691  *
4692  * This will release the metadata reservation for an inode.  This can be called
4693  * once we complete IO for a given set of bytes to release their metadata
4694  * reservations.
4695  */
4696 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4697 {
4698 	struct btrfs_root *root = BTRFS_I(inode)->root;
4699 	u64 to_free = 0;
4700 	unsigned dropped;
4701 
4702 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4703 	spin_lock(&BTRFS_I(inode)->lock);
4704 	dropped = drop_outstanding_extent(inode);
4705 
4706 	to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4707 	spin_unlock(&BTRFS_I(inode)->lock);
4708 	if (dropped > 0)
4709 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4710 
4711 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
4712 				      btrfs_ino(inode), to_free, 0);
4713 	if (root->fs_info->quota_enabled) {
4714 		btrfs_qgroup_free(root, num_bytes +
4715 					dropped * root->leafsize);
4716 	}
4717 
4718 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4719 				to_free);
4720 }
4721 
4722 /**
4723  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4724  * @inode: inode we're writing to
4725  * @num_bytes: the number of bytes we want to allocate
4726  *
4727  * This will do the following things
4728  *
4729  * o reserve space in the data space info for num_bytes
4730  * o reserve space in the metadata space info based on number of outstanding
4731  *   extents and how much csums will be needed
4732  * o add to the inodes ->delalloc_bytes
4733  * o add it to the fs_info's delalloc inodes list.
4734  *
4735  * This will return 0 for success and -ENOSPC if there is no space left.
4736  */
4737 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4738 {
4739 	int ret;
4740 
4741 	ret = btrfs_check_data_free_space(inode, num_bytes);
4742 	if (ret)
4743 		return ret;
4744 
4745 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4746 	if (ret) {
4747 		btrfs_free_reserved_data_space(inode, num_bytes);
4748 		return ret;
4749 	}
4750 
4751 	return 0;
4752 }
4753 
4754 /**
4755  * btrfs_delalloc_release_space - release data and metadata space for delalloc
4756  * @inode: inode we're releasing space for
4757  * @num_bytes: the number of bytes we want to free up
4758  *
4759  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
4760  * called in the case that we don't need the metadata AND data reservations
4761  * anymore.  So if there is an error or we insert an inline extent.
4762  *
4763  * This function will release the metadata space that was not used and will
4764  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4765  * list if there are no delalloc bytes left.
4766  */
4767 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4768 {
4769 	btrfs_delalloc_release_metadata(inode, num_bytes);
4770 	btrfs_free_reserved_data_space(inode, num_bytes);
4771 }
4772 
4773 static int update_block_group(struct btrfs_trans_handle *trans,
4774 			      struct btrfs_root *root,
4775 			      u64 bytenr, u64 num_bytes, int alloc)
4776 {
4777 	struct btrfs_block_group_cache *cache = NULL;
4778 	struct btrfs_fs_info *info = root->fs_info;
4779 	u64 total = num_bytes;
4780 	u64 old_val;
4781 	u64 byte_in_group;
4782 	int factor;
4783 
4784 	/* block accounting for super block */
4785 	spin_lock(&info->delalloc_lock);
4786 	old_val = btrfs_super_bytes_used(info->super_copy);
4787 	if (alloc)
4788 		old_val += num_bytes;
4789 	else
4790 		old_val -= num_bytes;
4791 	btrfs_set_super_bytes_used(info->super_copy, old_val);
4792 	spin_unlock(&info->delalloc_lock);
4793 
4794 	while (total) {
4795 		cache = btrfs_lookup_block_group(info, bytenr);
4796 		if (!cache)
4797 			return -ENOENT;
4798 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4799 				    BTRFS_BLOCK_GROUP_RAID1 |
4800 				    BTRFS_BLOCK_GROUP_RAID10))
4801 			factor = 2;
4802 		else
4803 			factor = 1;
4804 		/*
4805 		 * If this block group has free space cache written out, we
4806 		 * need to make sure to load it if we are removing space.  This
4807 		 * is because we need the unpinning stage to actually add the
4808 		 * space back to the block group, otherwise we will leak space.
4809 		 */
4810 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4811 			cache_block_group(cache, trans, NULL, 1);
4812 
4813 		byte_in_group = bytenr - cache->key.objectid;
4814 		WARN_ON(byte_in_group > cache->key.offset);
4815 
4816 		spin_lock(&cache->space_info->lock);
4817 		spin_lock(&cache->lock);
4818 
4819 		if (btrfs_test_opt(root, SPACE_CACHE) &&
4820 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4821 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4822 
4823 		cache->dirty = 1;
4824 		old_val = btrfs_block_group_used(&cache->item);
4825 		num_bytes = min(total, cache->key.offset - byte_in_group);
4826 		if (alloc) {
4827 			old_val += num_bytes;
4828 			btrfs_set_block_group_used(&cache->item, old_val);
4829 			cache->reserved -= num_bytes;
4830 			cache->space_info->bytes_reserved -= num_bytes;
4831 			cache->space_info->bytes_used += num_bytes;
4832 			cache->space_info->disk_used += num_bytes * factor;
4833 			spin_unlock(&cache->lock);
4834 			spin_unlock(&cache->space_info->lock);
4835 		} else {
4836 			old_val -= num_bytes;
4837 			btrfs_set_block_group_used(&cache->item, old_val);
4838 			cache->pinned += num_bytes;
4839 			cache->space_info->bytes_pinned += num_bytes;
4840 			cache->space_info->bytes_used -= num_bytes;
4841 			cache->space_info->disk_used -= num_bytes * factor;
4842 			spin_unlock(&cache->lock);
4843 			spin_unlock(&cache->space_info->lock);
4844 
4845 			set_extent_dirty(info->pinned_extents,
4846 					 bytenr, bytenr + num_bytes - 1,
4847 					 GFP_NOFS | __GFP_NOFAIL);
4848 		}
4849 		btrfs_put_block_group(cache);
4850 		total -= num_bytes;
4851 		bytenr += num_bytes;
4852 	}
4853 	return 0;
4854 }
4855 
4856 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4857 {
4858 	struct btrfs_block_group_cache *cache;
4859 	u64 bytenr;
4860 
4861 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4862 	if (!cache)
4863 		return 0;
4864 
4865 	bytenr = cache->key.objectid;
4866 	btrfs_put_block_group(cache);
4867 
4868 	return bytenr;
4869 }
4870 
4871 static int pin_down_extent(struct btrfs_root *root,
4872 			   struct btrfs_block_group_cache *cache,
4873 			   u64 bytenr, u64 num_bytes, int reserved)
4874 {
4875 	spin_lock(&cache->space_info->lock);
4876 	spin_lock(&cache->lock);
4877 	cache->pinned += num_bytes;
4878 	cache->space_info->bytes_pinned += num_bytes;
4879 	if (reserved) {
4880 		cache->reserved -= num_bytes;
4881 		cache->space_info->bytes_reserved -= num_bytes;
4882 	}
4883 	spin_unlock(&cache->lock);
4884 	spin_unlock(&cache->space_info->lock);
4885 
4886 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4887 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4888 	return 0;
4889 }
4890 
4891 /*
4892  * this function must be called within transaction
4893  */
4894 int btrfs_pin_extent(struct btrfs_root *root,
4895 		     u64 bytenr, u64 num_bytes, int reserved)
4896 {
4897 	struct btrfs_block_group_cache *cache;
4898 
4899 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4900 	BUG_ON(!cache); /* Logic error */
4901 
4902 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4903 
4904 	btrfs_put_block_group(cache);
4905 	return 0;
4906 }
4907 
4908 /*
4909  * this function must be called within transaction
4910  */
4911 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4912 				    struct btrfs_root *root,
4913 				    u64 bytenr, u64 num_bytes)
4914 {
4915 	struct btrfs_block_group_cache *cache;
4916 
4917 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4918 	BUG_ON(!cache); /* Logic error */
4919 
4920 	/*
4921 	 * pull in the free space cache (if any) so that our pin
4922 	 * removes the free space from the cache.  We have load_only set
4923 	 * to one because the slow code to read in the free extents does check
4924 	 * the pinned extents.
4925 	 */
4926 	cache_block_group(cache, trans, root, 1);
4927 
4928 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
4929 
4930 	/* remove us from the free space cache (if we're there at all) */
4931 	btrfs_remove_free_space(cache, bytenr, num_bytes);
4932 	btrfs_put_block_group(cache);
4933 	return 0;
4934 }
4935 
4936 /**
4937  * btrfs_update_reserved_bytes - update the block_group and space info counters
4938  * @cache:	The cache we are manipulating
4939  * @num_bytes:	The number of bytes in question
4940  * @reserve:	One of the reservation enums
4941  *
4942  * This is called by the allocator when it reserves space, or by somebody who is
4943  * freeing space that was never actually used on disk.  For example if you
4944  * reserve some space for a new leaf in transaction A and before transaction A
4945  * commits you free that leaf, you call this with reserve set to 0 in order to
4946  * clear the reservation.
4947  *
4948  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4949  * ENOSPC accounting.  For data we handle the reservation through clearing the
4950  * delalloc bits in the io_tree.  We have to do this since we could end up
4951  * allocating less disk space for the amount of data we have reserved in the
4952  * case of compression.
4953  *
4954  * If this is a reservation and the block group has become read only we cannot
4955  * make the reservation and return -EAGAIN, otherwise this function always
4956  * succeeds.
4957  */
4958 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4959 				       u64 num_bytes, int reserve)
4960 {
4961 	struct btrfs_space_info *space_info = cache->space_info;
4962 	int ret = 0;
4963 
4964 	spin_lock(&space_info->lock);
4965 	spin_lock(&cache->lock);
4966 	if (reserve != RESERVE_FREE) {
4967 		if (cache->ro) {
4968 			ret = -EAGAIN;
4969 		} else {
4970 			cache->reserved += num_bytes;
4971 			space_info->bytes_reserved += num_bytes;
4972 			if (reserve == RESERVE_ALLOC) {
4973 				trace_btrfs_space_reservation(cache->fs_info,
4974 						"space_info", space_info->flags,
4975 						num_bytes, 0);
4976 				space_info->bytes_may_use -= num_bytes;
4977 			}
4978 		}
4979 	} else {
4980 		if (cache->ro)
4981 			space_info->bytes_readonly += num_bytes;
4982 		cache->reserved -= num_bytes;
4983 		space_info->bytes_reserved -= num_bytes;
4984 		space_info->reservation_progress++;
4985 	}
4986 	spin_unlock(&cache->lock);
4987 	spin_unlock(&space_info->lock);
4988 	return ret;
4989 }
4990 
4991 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4992 				struct btrfs_root *root)
4993 {
4994 	struct btrfs_fs_info *fs_info = root->fs_info;
4995 	struct btrfs_caching_control *next;
4996 	struct btrfs_caching_control *caching_ctl;
4997 	struct btrfs_block_group_cache *cache;
4998 
4999 	down_write(&fs_info->extent_commit_sem);
5000 
5001 	list_for_each_entry_safe(caching_ctl, next,
5002 				 &fs_info->caching_block_groups, list) {
5003 		cache = caching_ctl->block_group;
5004 		if (block_group_cache_done(cache)) {
5005 			cache->last_byte_to_unpin = (u64)-1;
5006 			list_del_init(&caching_ctl->list);
5007 			put_caching_control(caching_ctl);
5008 		} else {
5009 			cache->last_byte_to_unpin = caching_ctl->progress;
5010 		}
5011 	}
5012 
5013 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5014 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5015 	else
5016 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5017 
5018 	up_write(&fs_info->extent_commit_sem);
5019 
5020 	update_global_block_rsv(fs_info);
5021 }
5022 
5023 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5024 {
5025 	struct btrfs_fs_info *fs_info = root->fs_info;
5026 	struct btrfs_block_group_cache *cache = NULL;
5027 	struct btrfs_space_info *space_info;
5028 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5029 	u64 len;
5030 	bool readonly;
5031 
5032 	while (start <= end) {
5033 		readonly = false;
5034 		if (!cache ||
5035 		    start >= cache->key.objectid + cache->key.offset) {
5036 			if (cache)
5037 				btrfs_put_block_group(cache);
5038 			cache = btrfs_lookup_block_group(fs_info, start);
5039 			BUG_ON(!cache); /* Logic error */
5040 		}
5041 
5042 		len = cache->key.objectid + cache->key.offset - start;
5043 		len = min(len, end + 1 - start);
5044 
5045 		if (start < cache->last_byte_to_unpin) {
5046 			len = min(len, cache->last_byte_to_unpin - start);
5047 			btrfs_add_free_space(cache, start, len);
5048 		}
5049 
5050 		start += len;
5051 		space_info = cache->space_info;
5052 
5053 		spin_lock(&space_info->lock);
5054 		spin_lock(&cache->lock);
5055 		cache->pinned -= len;
5056 		space_info->bytes_pinned -= len;
5057 		if (cache->ro) {
5058 			space_info->bytes_readonly += len;
5059 			readonly = true;
5060 		}
5061 		spin_unlock(&cache->lock);
5062 		if (!readonly && global_rsv->space_info == space_info) {
5063 			spin_lock(&global_rsv->lock);
5064 			if (!global_rsv->full) {
5065 				len = min(len, global_rsv->size -
5066 					  global_rsv->reserved);
5067 				global_rsv->reserved += len;
5068 				space_info->bytes_may_use += len;
5069 				if (global_rsv->reserved >= global_rsv->size)
5070 					global_rsv->full = 1;
5071 			}
5072 			spin_unlock(&global_rsv->lock);
5073 		}
5074 		spin_unlock(&space_info->lock);
5075 	}
5076 
5077 	if (cache)
5078 		btrfs_put_block_group(cache);
5079 	return 0;
5080 }
5081 
5082 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5083 			       struct btrfs_root *root)
5084 {
5085 	struct btrfs_fs_info *fs_info = root->fs_info;
5086 	struct extent_io_tree *unpin;
5087 	u64 start;
5088 	u64 end;
5089 	int ret;
5090 
5091 	if (trans->aborted)
5092 		return 0;
5093 
5094 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5095 		unpin = &fs_info->freed_extents[1];
5096 	else
5097 		unpin = &fs_info->freed_extents[0];
5098 
5099 	while (1) {
5100 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5101 					    EXTENT_DIRTY, NULL);
5102 		if (ret)
5103 			break;
5104 
5105 		if (btrfs_test_opt(root, DISCARD))
5106 			ret = btrfs_discard_extent(root, start,
5107 						   end + 1 - start, NULL);
5108 
5109 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5110 		unpin_extent_range(root, start, end);
5111 		cond_resched();
5112 	}
5113 
5114 	return 0;
5115 }
5116 
5117 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5118 				struct btrfs_root *root,
5119 				u64 bytenr, u64 num_bytes, u64 parent,
5120 				u64 root_objectid, u64 owner_objectid,
5121 				u64 owner_offset, int refs_to_drop,
5122 				struct btrfs_delayed_extent_op *extent_op)
5123 {
5124 	struct btrfs_key key;
5125 	struct btrfs_path *path;
5126 	struct btrfs_fs_info *info = root->fs_info;
5127 	struct btrfs_root *extent_root = info->extent_root;
5128 	struct extent_buffer *leaf;
5129 	struct btrfs_extent_item *ei;
5130 	struct btrfs_extent_inline_ref *iref;
5131 	int ret;
5132 	int is_data;
5133 	int extent_slot = 0;
5134 	int found_extent = 0;
5135 	int num_to_del = 1;
5136 	u32 item_size;
5137 	u64 refs;
5138 
5139 	path = btrfs_alloc_path();
5140 	if (!path)
5141 		return -ENOMEM;
5142 
5143 	path->reada = 1;
5144 	path->leave_spinning = 1;
5145 
5146 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5147 	BUG_ON(!is_data && refs_to_drop != 1);
5148 
5149 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5150 				    bytenr, num_bytes, parent,
5151 				    root_objectid, owner_objectid,
5152 				    owner_offset);
5153 	if (ret == 0) {
5154 		extent_slot = path->slots[0];
5155 		while (extent_slot >= 0) {
5156 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5157 					      extent_slot);
5158 			if (key.objectid != bytenr)
5159 				break;
5160 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5161 			    key.offset == num_bytes) {
5162 				found_extent = 1;
5163 				break;
5164 			}
5165 			if (path->slots[0] - extent_slot > 5)
5166 				break;
5167 			extent_slot--;
5168 		}
5169 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5170 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5171 		if (found_extent && item_size < sizeof(*ei))
5172 			found_extent = 0;
5173 #endif
5174 		if (!found_extent) {
5175 			BUG_ON(iref);
5176 			ret = remove_extent_backref(trans, extent_root, path,
5177 						    NULL, refs_to_drop,
5178 						    is_data);
5179 			if (ret) {
5180 				btrfs_abort_transaction(trans, extent_root, ret);
5181 				goto out;
5182 			}
5183 			btrfs_release_path(path);
5184 			path->leave_spinning = 1;
5185 
5186 			key.objectid = bytenr;
5187 			key.type = BTRFS_EXTENT_ITEM_KEY;
5188 			key.offset = num_bytes;
5189 
5190 			ret = btrfs_search_slot(trans, extent_root,
5191 						&key, path, -1, 1);
5192 			if (ret) {
5193 				printk(KERN_ERR "umm, got %d back from search"
5194 				       ", was looking for %llu\n", ret,
5195 				       (unsigned long long)bytenr);
5196 				if (ret > 0)
5197 					btrfs_print_leaf(extent_root,
5198 							 path->nodes[0]);
5199 			}
5200 			if (ret < 0) {
5201 				btrfs_abort_transaction(trans, extent_root, ret);
5202 				goto out;
5203 			}
5204 			extent_slot = path->slots[0];
5205 		}
5206 	} else if (ret == -ENOENT) {
5207 		btrfs_print_leaf(extent_root, path->nodes[0]);
5208 		WARN_ON(1);
5209 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5210 		       "parent %llu root %llu  owner %llu offset %llu\n",
5211 		       (unsigned long long)bytenr,
5212 		       (unsigned long long)parent,
5213 		       (unsigned long long)root_objectid,
5214 		       (unsigned long long)owner_objectid,
5215 		       (unsigned long long)owner_offset);
5216 	} else {
5217 		btrfs_abort_transaction(trans, extent_root, ret);
5218 		goto out;
5219 	}
5220 
5221 	leaf = path->nodes[0];
5222 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5223 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5224 	if (item_size < sizeof(*ei)) {
5225 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5226 		ret = convert_extent_item_v0(trans, extent_root, path,
5227 					     owner_objectid, 0);
5228 		if (ret < 0) {
5229 			btrfs_abort_transaction(trans, extent_root, ret);
5230 			goto out;
5231 		}
5232 
5233 		btrfs_release_path(path);
5234 		path->leave_spinning = 1;
5235 
5236 		key.objectid = bytenr;
5237 		key.type = BTRFS_EXTENT_ITEM_KEY;
5238 		key.offset = num_bytes;
5239 
5240 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5241 					-1, 1);
5242 		if (ret) {
5243 			printk(KERN_ERR "umm, got %d back from search"
5244 			       ", was looking for %llu\n", ret,
5245 			       (unsigned long long)bytenr);
5246 			btrfs_print_leaf(extent_root, path->nodes[0]);
5247 		}
5248 		if (ret < 0) {
5249 			btrfs_abort_transaction(trans, extent_root, ret);
5250 			goto out;
5251 		}
5252 
5253 		extent_slot = path->slots[0];
5254 		leaf = path->nodes[0];
5255 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5256 	}
5257 #endif
5258 	BUG_ON(item_size < sizeof(*ei));
5259 	ei = btrfs_item_ptr(leaf, extent_slot,
5260 			    struct btrfs_extent_item);
5261 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5262 		struct btrfs_tree_block_info *bi;
5263 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5264 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5265 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5266 	}
5267 
5268 	refs = btrfs_extent_refs(leaf, ei);
5269 	BUG_ON(refs < refs_to_drop);
5270 	refs -= refs_to_drop;
5271 
5272 	if (refs > 0) {
5273 		if (extent_op)
5274 			__run_delayed_extent_op(extent_op, leaf, ei);
5275 		/*
5276 		 * In the case of inline back ref, reference count will
5277 		 * be updated by remove_extent_backref
5278 		 */
5279 		if (iref) {
5280 			BUG_ON(!found_extent);
5281 		} else {
5282 			btrfs_set_extent_refs(leaf, ei, refs);
5283 			btrfs_mark_buffer_dirty(leaf);
5284 		}
5285 		if (found_extent) {
5286 			ret = remove_extent_backref(trans, extent_root, path,
5287 						    iref, refs_to_drop,
5288 						    is_data);
5289 			if (ret) {
5290 				btrfs_abort_transaction(trans, extent_root, ret);
5291 				goto out;
5292 			}
5293 		}
5294 	} else {
5295 		if (found_extent) {
5296 			BUG_ON(is_data && refs_to_drop !=
5297 			       extent_data_ref_count(root, path, iref));
5298 			if (iref) {
5299 				BUG_ON(path->slots[0] != extent_slot);
5300 			} else {
5301 				BUG_ON(path->slots[0] != extent_slot + 1);
5302 				path->slots[0] = extent_slot;
5303 				num_to_del = 2;
5304 			}
5305 		}
5306 
5307 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5308 				      num_to_del);
5309 		if (ret) {
5310 			btrfs_abort_transaction(trans, extent_root, ret);
5311 			goto out;
5312 		}
5313 		btrfs_release_path(path);
5314 
5315 		if (is_data) {
5316 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5317 			if (ret) {
5318 				btrfs_abort_transaction(trans, extent_root, ret);
5319 				goto out;
5320 			}
5321 		}
5322 
5323 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5324 		if (ret) {
5325 			btrfs_abort_transaction(trans, extent_root, ret);
5326 			goto out;
5327 		}
5328 	}
5329 out:
5330 	btrfs_free_path(path);
5331 	return ret;
5332 }
5333 
5334 /*
5335  * when we free an block, it is possible (and likely) that we free the last
5336  * delayed ref for that extent as well.  This searches the delayed ref tree for
5337  * a given extent, and if there are no other delayed refs to be processed, it
5338  * removes it from the tree.
5339  */
5340 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5341 				      struct btrfs_root *root, u64 bytenr)
5342 {
5343 	struct btrfs_delayed_ref_head *head;
5344 	struct btrfs_delayed_ref_root *delayed_refs;
5345 	struct btrfs_delayed_ref_node *ref;
5346 	struct rb_node *node;
5347 	int ret = 0;
5348 
5349 	delayed_refs = &trans->transaction->delayed_refs;
5350 	spin_lock(&delayed_refs->lock);
5351 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5352 	if (!head)
5353 		goto out;
5354 
5355 	node = rb_prev(&head->node.rb_node);
5356 	if (!node)
5357 		goto out;
5358 
5359 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5360 
5361 	/* there are still entries for this ref, we can't drop it */
5362 	if (ref->bytenr == bytenr)
5363 		goto out;
5364 
5365 	if (head->extent_op) {
5366 		if (!head->must_insert_reserved)
5367 			goto out;
5368 		btrfs_free_delayed_extent_op(head->extent_op);
5369 		head->extent_op = NULL;
5370 	}
5371 
5372 	/*
5373 	 * waiting for the lock here would deadlock.  If someone else has it
5374 	 * locked they are already in the process of dropping it anyway
5375 	 */
5376 	if (!mutex_trylock(&head->mutex))
5377 		goto out;
5378 
5379 	/*
5380 	 * at this point we have a head with no other entries.  Go
5381 	 * ahead and process it.
5382 	 */
5383 	head->node.in_tree = 0;
5384 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5385 
5386 	delayed_refs->num_entries--;
5387 
5388 	/*
5389 	 * we don't take a ref on the node because we're removing it from the
5390 	 * tree, so we just steal the ref the tree was holding.
5391 	 */
5392 	delayed_refs->num_heads--;
5393 	if (list_empty(&head->cluster))
5394 		delayed_refs->num_heads_ready--;
5395 
5396 	list_del_init(&head->cluster);
5397 	spin_unlock(&delayed_refs->lock);
5398 
5399 	BUG_ON(head->extent_op);
5400 	if (head->must_insert_reserved)
5401 		ret = 1;
5402 
5403 	mutex_unlock(&head->mutex);
5404 	btrfs_put_delayed_ref(&head->node);
5405 	return ret;
5406 out:
5407 	spin_unlock(&delayed_refs->lock);
5408 	return 0;
5409 }
5410 
5411 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5412 			   struct btrfs_root *root,
5413 			   struct extent_buffer *buf,
5414 			   u64 parent, int last_ref)
5415 {
5416 	struct btrfs_block_group_cache *cache = NULL;
5417 	int ret;
5418 
5419 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5420 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5421 					buf->start, buf->len,
5422 					parent, root->root_key.objectid,
5423 					btrfs_header_level(buf),
5424 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5425 		BUG_ON(ret); /* -ENOMEM */
5426 	}
5427 
5428 	if (!last_ref)
5429 		return;
5430 
5431 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5432 
5433 	if (btrfs_header_generation(buf) == trans->transid) {
5434 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5435 			ret = check_ref_cleanup(trans, root, buf->start);
5436 			if (!ret)
5437 				goto out;
5438 		}
5439 
5440 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5441 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5442 			goto out;
5443 		}
5444 
5445 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5446 
5447 		btrfs_add_free_space(cache, buf->start, buf->len);
5448 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5449 	}
5450 out:
5451 	/*
5452 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5453 	 * anymore.
5454 	 */
5455 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5456 	btrfs_put_block_group(cache);
5457 }
5458 
5459 /* Can return -ENOMEM */
5460 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5461 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5462 		      u64 owner, u64 offset, int for_cow)
5463 {
5464 	int ret;
5465 	struct btrfs_fs_info *fs_info = root->fs_info;
5466 
5467 	/*
5468 	 * tree log blocks never actually go into the extent allocation
5469 	 * tree, just update pinning info and exit early.
5470 	 */
5471 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5472 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5473 		/* unlocks the pinned mutex */
5474 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
5475 		ret = 0;
5476 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5477 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5478 					num_bytes,
5479 					parent, root_objectid, (int)owner,
5480 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5481 	} else {
5482 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5483 						num_bytes,
5484 						parent, root_objectid, owner,
5485 						offset, BTRFS_DROP_DELAYED_REF,
5486 						NULL, for_cow);
5487 	}
5488 	return ret;
5489 }
5490 
5491 static u64 stripe_align(struct btrfs_root *root, u64 val)
5492 {
5493 	u64 mask = ((u64)root->stripesize - 1);
5494 	u64 ret = (val + mask) & ~mask;
5495 	return ret;
5496 }
5497 
5498 /*
5499  * when we wait for progress in the block group caching, its because
5500  * our allocation attempt failed at least once.  So, we must sleep
5501  * and let some progress happen before we try again.
5502  *
5503  * This function will sleep at least once waiting for new free space to
5504  * show up, and then it will check the block group free space numbers
5505  * for our min num_bytes.  Another option is to have it go ahead
5506  * and look in the rbtree for a free extent of a given size, but this
5507  * is a good start.
5508  */
5509 static noinline int
5510 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5511 				u64 num_bytes)
5512 {
5513 	struct btrfs_caching_control *caching_ctl;
5514 	DEFINE_WAIT(wait);
5515 
5516 	caching_ctl = get_caching_control(cache);
5517 	if (!caching_ctl)
5518 		return 0;
5519 
5520 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5521 		   (cache->free_space_ctl->free_space >= num_bytes));
5522 
5523 	put_caching_control(caching_ctl);
5524 	return 0;
5525 }
5526 
5527 static noinline int
5528 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5529 {
5530 	struct btrfs_caching_control *caching_ctl;
5531 	DEFINE_WAIT(wait);
5532 
5533 	caching_ctl = get_caching_control(cache);
5534 	if (!caching_ctl)
5535 		return 0;
5536 
5537 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5538 
5539 	put_caching_control(caching_ctl);
5540 	return 0;
5541 }
5542 
5543 int __get_raid_index(u64 flags)
5544 {
5545 	int index;
5546 
5547 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
5548 		index = 0;
5549 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5550 		index = 1;
5551 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
5552 		index = 2;
5553 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5554 		index = 3;
5555 	else
5556 		index = 4;
5557 
5558 	return index;
5559 }
5560 
5561 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5562 {
5563 	return __get_raid_index(cache->flags);
5564 }
5565 
5566 enum btrfs_loop_type {
5567 	LOOP_CACHING_NOWAIT = 0,
5568 	LOOP_CACHING_WAIT = 1,
5569 	LOOP_ALLOC_CHUNK = 2,
5570 	LOOP_NO_EMPTY_SIZE = 3,
5571 };
5572 
5573 /*
5574  * walks the btree of allocated extents and find a hole of a given size.
5575  * The key ins is changed to record the hole:
5576  * ins->objectid == block start
5577  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5578  * ins->offset == number of blocks
5579  * Any available blocks before search_start are skipped.
5580  */
5581 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5582 				     struct btrfs_root *orig_root,
5583 				     u64 num_bytes, u64 empty_size,
5584 				     u64 hint_byte, struct btrfs_key *ins,
5585 				     u64 data)
5586 {
5587 	int ret = 0;
5588 	struct btrfs_root *root = orig_root->fs_info->extent_root;
5589 	struct btrfs_free_cluster *last_ptr = NULL;
5590 	struct btrfs_block_group_cache *block_group = NULL;
5591 	struct btrfs_block_group_cache *used_block_group;
5592 	u64 search_start = 0;
5593 	int empty_cluster = 2 * 1024 * 1024;
5594 	struct btrfs_space_info *space_info;
5595 	int loop = 0;
5596 	int index = __get_raid_index(data);
5597 	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5598 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5599 	bool found_uncached_bg = false;
5600 	bool failed_cluster_refill = false;
5601 	bool failed_alloc = false;
5602 	bool use_cluster = true;
5603 	bool have_caching_bg = false;
5604 
5605 	WARN_ON(num_bytes < root->sectorsize);
5606 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5607 	ins->objectid = 0;
5608 	ins->offset = 0;
5609 
5610 	trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5611 
5612 	space_info = __find_space_info(root->fs_info, data);
5613 	if (!space_info) {
5614 		printk(KERN_ERR "No space info for %llu\n", data);
5615 		return -ENOSPC;
5616 	}
5617 
5618 	/*
5619 	 * If the space info is for both data and metadata it means we have a
5620 	 * small filesystem and we can't use the clustering stuff.
5621 	 */
5622 	if (btrfs_mixed_space_info(space_info))
5623 		use_cluster = false;
5624 
5625 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5626 		last_ptr = &root->fs_info->meta_alloc_cluster;
5627 		if (!btrfs_test_opt(root, SSD))
5628 			empty_cluster = 64 * 1024;
5629 	}
5630 
5631 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5632 	    btrfs_test_opt(root, SSD)) {
5633 		last_ptr = &root->fs_info->data_alloc_cluster;
5634 	}
5635 
5636 	if (last_ptr) {
5637 		spin_lock(&last_ptr->lock);
5638 		if (last_ptr->block_group)
5639 			hint_byte = last_ptr->window_start;
5640 		spin_unlock(&last_ptr->lock);
5641 	}
5642 
5643 	search_start = max(search_start, first_logical_byte(root, 0));
5644 	search_start = max(search_start, hint_byte);
5645 
5646 	if (!last_ptr)
5647 		empty_cluster = 0;
5648 
5649 	if (search_start == hint_byte) {
5650 		block_group = btrfs_lookup_block_group(root->fs_info,
5651 						       search_start);
5652 		used_block_group = block_group;
5653 		/*
5654 		 * we don't want to use the block group if it doesn't match our
5655 		 * allocation bits, or if its not cached.
5656 		 *
5657 		 * However if we are re-searching with an ideal block group
5658 		 * picked out then we don't care that the block group is cached.
5659 		 */
5660 		if (block_group && block_group_bits(block_group, data) &&
5661 		    block_group->cached != BTRFS_CACHE_NO) {
5662 			down_read(&space_info->groups_sem);
5663 			if (list_empty(&block_group->list) ||
5664 			    block_group->ro) {
5665 				/*
5666 				 * someone is removing this block group,
5667 				 * we can't jump into the have_block_group
5668 				 * target because our list pointers are not
5669 				 * valid
5670 				 */
5671 				btrfs_put_block_group(block_group);
5672 				up_read(&space_info->groups_sem);
5673 			} else {
5674 				index = get_block_group_index(block_group);
5675 				goto have_block_group;
5676 			}
5677 		} else if (block_group) {
5678 			btrfs_put_block_group(block_group);
5679 		}
5680 	}
5681 search:
5682 	have_caching_bg = false;
5683 	down_read(&space_info->groups_sem);
5684 	list_for_each_entry(block_group, &space_info->block_groups[index],
5685 			    list) {
5686 		u64 offset;
5687 		int cached;
5688 
5689 		used_block_group = block_group;
5690 		btrfs_get_block_group(block_group);
5691 		search_start = block_group->key.objectid;
5692 
5693 		/*
5694 		 * this can happen if we end up cycling through all the
5695 		 * raid types, but we want to make sure we only allocate
5696 		 * for the proper type.
5697 		 */
5698 		if (!block_group_bits(block_group, data)) {
5699 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
5700 				BTRFS_BLOCK_GROUP_RAID1 |
5701 				BTRFS_BLOCK_GROUP_RAID10;
5702 
5703 			/*
5704 			 * if they asked for extra copies and this block group
5705 			 * doesn't provide them, bail.  This does allow us to
5706 			 * fill raid0 from raid1.
5707 			 */
5708 			if ((data & extra) && !(block_group->flags & extra))
5709 				goto loop;
5710 		}
5711 
5712 have_block_group:
5713 		cached = block_group_cache_done(block_group);
5714 		if (unlikely(!cached)) {
5715 			found_uncached_bg = true;
5716 			ret = cache_block_group(block_group, trans,
5717 						orig_root, 0);
5718 			BUG_ON(ret < 0);
5719 			ret = 0;
5720 		}
5721 
5722 		if (unlikely(block_group->ro))
5723 			goto loop;
5724 
5725 		/*
5726 		 * Ok we want to try and use the cluster allocator, so
5727 		 * lets look there
5728 		 */
5729 		if (last_ptr) {
5730 			/*
5731 			 * the refill lock keeps out other
5732 			 * people trying to start a new cluster
5733 			 */
5734 			spin_lock(&last_ptr->refill_lock);
5735 			used_block_group = last_ptr->block_group;
5736 			if (used_block_group != block_group &&
5737 			    (!used_block_group ||
5738 			     used_block_group->ro ||
5739 			     !block_group_bits(used_block_group, data))) {
5740 				used_block_group = block_group;
5741 				goto refill_cluster;
5742 			}
5743 
5744 			if (used_block_group != block_group)
5745 				btrfs_get_block_group(used_block_group);
5746 
5747 			offset = btrfs_alloc_from_cluster(used_block_group,
5748 			  last_ptr, num_bytes, used_block_group->key.objectid);
5749 			if (offset) {
5750 				/* we have a block, we're done */
5751 				spin_unlock(&last_ptr->refill_lock);
5752 				trace_btrfs_reserve_extent_cluster(root,
5753 					block_group, search_start, num_bytes);
5754 				goto checks;
5755 			}
5756 
5757 			WARN_ON(last_ptr->block_group != used_block_group);
5758 			if (used_block_group != block_group) {
5759 				btrfs_put_block_group(used_block_group);
5760 				used_block_group = block_group;
5761 			}
5762 refill_cluster:
5763 			BUG_ON(used_block_group != block_group);
5764 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
5765 			 * set up a new clusters, so lets just skip it
5766 			 * and let the allocator find whatever block
5767 			 * it can find.  If we reach this point, we
5768 			 * will have tried the cluster allocator
5769 			 * plenty of times and not have found
5770 			 * anything, so we are likely way too
5771 			 * fragmented for the clustering stuff to find
5772 			 * anything.
5773 			 *
5774 			 * However, if the cluster is taken from the
5775 			 * current block group, release the cluster
5776 			 * first, so that we stand a better chance of
5777 			 * succeeding in the unclustered
5778 			 * allocation.  */
5779 			if (loop >= LOOP_NO_EMPTY_SIZE &&
5780 			    last_ptr->block_group != block_group) {
5781 				spin_unlock(&last_ptr->refill_lock);
5782 				goto unclustered_alloc;
5783 			}
5784 
5785 			/*
5786 			 * this cluster didn't work out, free it and
5787 			 * start over
5788 			 */
5789 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5790 
5791 			if (loop >= LOOP_NO_EMPTY_SIZE) {
5792 				spin_unlock(&last_ptr->refill_lock);
5793 				goto unclustered_alloc;
5794 			}
5795 
5796 			/* allocate a cluster in this block group */
5797 			ret = btrfs_find_space_cluster(trans, root,
5798 					       block_group, last_ptr,
5799 					       search_start, num_bytes,
5800 					       empty_cluster + empty_size);
5801 			if (ret == 0) {
5802 				/*
5803 				 * now pull our allocation out of this
5804 				 * cluster
5805 				 */
5806 				offset = btrfs_alloc_from_cluster(block_group,
5807 						  last_ptr, num_bytes,
5808 						  search_start);
5809 				if (offset) {
5810 					/* we found one, proceed */
5811 					spin_unlock(&last_ptr->refill_lock);
5812 					trace_btrfs_reserve_extent_cluster(root,
5813 						block_group, search_start,
5814 						num_bytes);
5815 					goto checks;
5816 				}
5817 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5818 				   && !failed_cluster_refill) {
5819 				spin_unlock(&last_ptr->refill_lock);
5820 
5821 				failed_cluster_refill = true;
5822 				wait_block_group_cache_progress(block_group,
5823 				       num_bytes + empty_cluster + empty_size);
5824 				goto have_block_group;
5825 			}
5826 
5827 			/*
5828 			 * at this point we either didn't find a cluster
5829 			 * or we weren't able to allocate a block from our
5830 			 * cluster.  Free the cluster we've been trying
5831 			 * to use, and go to the next block group
5832 			 */
5833 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5834 			spin_unlock(&last_ptr->refill_lock);
5835 			goto loop;
5836 		}
5837 
5838 unclustered_alloc:
5839 		spin_lock(&block_group->free_space_ctl->tree_lock);
5840 		if (cached &&
5841 		    block_group->free_space_ctl->free_space <
5842 		    num_bytes + empty_cluster + empty_size) {
5843 			spin_unlock(&block_group->free_space_ctl->tree_lock);
5844 			goto loop;
5845 		}
5846 		spin_unlock(&block_group->free_space_ctl->tree_lock);
5847 
5848 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5849 						    num_bytes, empty_size);
5850 		/*
5851 		 * If we didn't find a chunk, and we haven't failed on this
5852 		 * block group before, and this block group is in the middle of
5853 		 * caching and we are ok with waiting, then go ahead and wait
5854 		 * for progress to be made, and set failed_alloc to true.
5855 		 *
5856 		 * If failed_alloc is true then we've already waited on this
5857 		 * block group once and should move on to the next block group.
5858 		 */
5859 		if (!offset && !failed_alloc && !cached &&
5860 		    loop > LOOP_CACHING_NOWAIT) {
5861 			wait_block_group_cache_progress(block_group,
5862 						num_bytes + empty_size);
5863 			failed_alloc = true;
5864 			goto have_block_group;
5865 		} else if (!offset) {
5866 			if (!cached)
5867 				have_caching_bg = true;
5868 			goto loop;
5869 		}
5870 checks:
5871 		search_start = stripe_align(root, offset);
5872 
5873 		/* move on to the next group */
5874 		if (search_start + num_bytes >
5875 		    used_block_group->key.objectid + used_block_group->key.offset) {
5876 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5877 			goto loop;
5878 		}
5879 
5880 		if (offset < search_start)
5881 			btrfs_add_free_space(used_block_group, offset,
5882 					     search_start - offset);
5883 		BUG_ON(offset > search_start);
5884 
5885 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5886 						  alloc_type);
5887 		if (ret == -EAGAIN) {
5888 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5889 			goto loop;
5890 		}
5891 
5892 		/* we are all good, lets return */
5893 		ins->objectid = search_start;
5894 		ins->offset = num_bytes;
5895 
5896 		trace_btrfs_reserve_extent(orig_root, block_group,
5897 					   search_start, num_bytes);
5898 		if (used_block_group != block_group)
5899 			btrfs_put_block_group(used_block_group);
5900 		btrfs_put_block_group(block_group);
5901 		break;
5902 loop:
5903 		failed_cluster_refill = false;
5904 		failed_alloc = false;
5905 		BUG_ON(index != get_block_group_index(block_group));
5906 		if (used_block_group != block_group)
5907 			btrfs_put_block_group(used_block_group);
5908 		btrfs_put_block_group(block_group);
5909 	}
5910 	up_read(&space_info->groups_sem);
5911 
5912 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5913 		goto search;
5914 
5915 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5916 		goto search;
5917 
5918 	/*
5919 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5920 	 *			caching kthreads as we move along
5921 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5922 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5923 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5924 	 *			again
5925 	 */
5926 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5927 		index = 0;
5928 		loop++;
5929 		if (loop == LOOP_ALLOC_CHUNK) {
5930 			ret = do_chunk_alloc(trans, root, data,
5931 					     CHUNK_ALLOC_FORCE);
5932 			/*
5933 			 * Do not bail out on ENOSPC since we
5934 			 * can do more things.
5935 			 */
5936 			if (ret < 0 && ret != -ENOSPC) {
5937 				btrfs_abort_transaction(trans,
5938 							root, ret);
5939 				goto out;
5940 			}
5941 		}
5942 
5943 		if (loop == LOOP_NO_EMPTY_SIZE) {
5944 			empty_size = 0;
5945 			empty_cluster = 0;
5946 		}
5947 
5948 		goto search;
5949 	} else if (!ins->objectid) {
5950 		ret = -ENOSPC;
5951 	} else if (ins->objectid) {
5952 		ret = 0;
5953 	}
5954 out:
5955 
5956 	return ret;
5957 }
5958 
5959 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5960 			    int dump_block_groups)
5961 {
5962 	struct btrfs_block_group_cache *cache;
5963 	int index = 0;
5964 
5965 	spin_lock(&info->lock);
5966 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5967 	       (unsigned long long)info->flags,
5968 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5969 				    info->bytes_pinned - info->bytes_reserved -
5970 				    info->bytes_readonly),
5971 	       (info->full) ? "" : "not ");
5972 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5973 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5974 	       (unsigned long long)info->total_bytes,
5975 	       (unsigned long long)info->bytes_used,
5976 	       (unsigned long long)info->bytes_pinned,
5977 	       (unsigned long long)info->bytes_reserved,
5978 	       (unsigned long long)info->bytes_may_use,
5979 	       (unsigned long long)info->bytes_readonly);
5980 	spin_unlock(&info->lock);
5981 
5982 	if (!dump_block_groups)
5983 		return;
5984 
5985 	down_read(&info->groups_sem);
5986 again:
5987 	list_for_each_entry(cache, &info->block_groups[index], list) {
5988 		spin_lock(&cache->lock);
5989 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
5990 		       (unsigned long long)cache->key.objectid,
5991 		       (unsigned long long)cache->key.offset,
5992 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5993 		       (unsigned long long)cache->pinned,
5994 		       (unsigned long long)cache->reserved,
5995 		       cache->ro ? "[readonly]" : "");
5996 		btrfs_dump_free_space(cache, bytes);
5997 		spin_unlock(&cache->lock);
5998 	}
5999 	if (++index < BTRFS_NR_RAID_TYPES)
6000 		goto again;
6001 	up_read(&info->groups_sem);
6002 }
6003 
6004 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
6005 			 struct btrfs_root *root,
6006 			 u64 num_bytes, u64 min_alloc_size,
6007 			 u64 empty_size, u64 hint_byte,
6008 			 struct btrfs_key *ins, u64 data)
6009 {
6010 	bool final_tried = false;
6011 	int ret;
6012 
6013 	data = btrfs_get_alloc_profile(root, data);
6014 again:
6015 	WARN_ON(num_bytes < root->sectorsize);
6016 	ret = find_free_extent(trans, root, num_bytes, empty_size,
6017 			       hint_byte, ins, data);
6018 
6019 	if (ret == -ENOSPC) {
6020 		if (!final_tried) {
6021 			num_bytes = num_bytes >> 1;
6022 			num_bytes = num_bytes & ~(root->sectorsize - 1);
6023 			num_bytes = max(num_bytes, min_alloc_size);
6024 			if (num_bytes == min_alloc_size)
6025 				final_tried = true;
6026 			goto again;
6027 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6028 			struct btrfs_space_info *sinfo;
6029 
6030 			sinfo = __find_space_info(root->fs_info, data);
6031 			printk(KERN_ERR "btrfs allocation failed flags %llu, "
6032 			       "wanted %llu\n", (unsigned long long)data,
6033 			       (unsigned long long)num_bytes);
6034 			if (sinfo)
6035 				dump_space_info(sinfo, num_bytes, 1);
6036 		}
6037 	}
6038 
6039 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6040 
6041 	return ret;
6042 }
6043 
6044 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6045 					u64 start, u64 len, int pin)
6046 {
6047 	struct btrfs_block_group_cache *cache;
6048 	int ret = 0;
6049 
6050 	cache = btrfs_lookup_block_group(root->fs_info, start);
6051 	if (!cache) {
6052 		printk(KERN_ERR "Unable to find block group for %llu\n",
6053 		       (unsigned long long)start);
6054 		return -ENOSPC;
6055 	}
6056 
6057 	if (btrfs_test_opt(root, DISCARD))
6058 		ret = btrfs_discard_extent(root, start, len, NULL);
6059 
6060 	if (pin)
6061 		pin_down_extent(root, cache, start, len, 1);
6062 	else {
6063 		btrfs_add_free_space(cache, start, len);
6064 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6065 	}
6066 	btrfs_put_block_group(cache);
6067 
6068 	trace_btrfs_reserved_extent_free(root, start, len);
6069 
6070 	return ret;
6071 }
6072 
6073 int btrfs_free_reserved_extent(struct btrfs_root *root,
6074 					u64 start, u64 len)
6075 {
6076 	return __btrfs_free_reserved_extent(root, start, len, 0);
6077 }
6078 
6079 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6080 				       u64 start, u64 len)
6081 {
6082 	return __btrfs_free_reserved_extent(root, start, len, 1);
6083 }
6084 
6085 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6086 				      struct btrfs_root *root,
6087 				      u64 parent, u64 root_objectid,
6088 				      u64 flags, u64 owner, u64 offset,
6089 				      struct btrfs_key *ins, int ref_mod)
6090 {
6091 	int ret;
6092 	struct btrfs_fs_info *fs_info = root->fs_info;
6093 	struct btrfs_extent_item *extent_item;
6094 	struct btrfs_extent_inline_ref *iref;
6095 	struct btrfs_path *path;
6096 	struct extent_buffer *leaf;
6097 	int type;
6098 	u32 size;
6099 
6100 	if (parent > 0)
6101 		type = BTRFS_SHARED_DATA_REF_KEY;
6102 	else
6103 		type = BTRFS_EXTENT_DATA_REF_KEY;
6104 
6105 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6106 
6107 	path = btrfs_alloc_path();
6108 	if (!path)
6109 		return -ENOMEM;
6110 
6111 	path->leave_spinning = 1;
6112 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6113 				      ins, size);
6114 	if (ret) {
6115 		btrfs_free_path(path);
6116 		return ret;
6117 	}
6118 
6119 	leaf = path->nodes[0];
6120 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6121 				     struct btrfs_extent_item);
6122 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6123 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6124 	btrfs_set_extent_flags(leaf, extent_item,
6125 			       flags | BTRFS_EXTENT_FLAG_DATA);
6126 
6127 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6128 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6129 	if (parent > 0) {
6130 		struct btrfs_shared_data_ref *ref;
6131 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6132 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6133 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6134 	} else {
6135 		struct btrfs_extent_data_ref *ref;
6136 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6137 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6138 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6139 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6140 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6141 	}
6142 
6143 	btrfs_mark_buffer_dirty(path->nodes[0]);
6144 	btrfs_free_path(path);
6145 
6146 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6147 	if (ret) { /* -ENOENT, logic error */
6148 		printk(KERN_ERR "btrfs update block group failed for %llu "
6149 		       "%llu\n", (unsigned long long)ins->objectid,
6150 		       (unsigned long long)ins->offset);
6151 		BUG();
6152 	}
6153 	return ret;
6154 }
6155 
6156 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6157 				     struct btrfs_root *root,
6158 				     u64 parent, u64 root_objectid,
6159 				     u64 flags, struct btrfs_disk_key *key,
6160 				     int level, struct btrfs_key *ins)
6161 {
6162 	int ret;
6163 	struct btrfs_fs_info *fs_info = root->fs_info;
6164 	struct btrfs_extent_item *extent_item;
6165 	struct btrfs_tree_block_info *block_info;
6166 	struct btrfs_extent_inline_ref *iref;
6167 	struct btrfs_path *path;
6168 	struct extent_buffer *leaf;
6169 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6170 
6171 	path = btrfs_alloc_path();
6172 	if (!path)
6173 		return -ENOMEM;
6174 
6175 	path->leave_spinning = 1;
6176 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6177 				      ins, size);
6178 	if (ret) {
6179 		btrfs_free_path(path);
6180 		return ret;
6181 	}
6182 
6183 	leaf = path->nodes[0];
6184 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6185 				     struct btrfs_extent_item);
6186 	btrfs_set_extent_refs(leaf, extent_item, 1);
6187 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6188 	btrfs_set_extent_flags(leaf, extent_item,
6189 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6190 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6191 
6192 	btrfs_set_tree_block_key(leaf, block_info, key);
6193 	btrfs_set_tree_block_level(leaf, block_info, level);
6194 
6195 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6196 	if (parent > 0) {
6197 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6198 		btrfs_set_extent_inline_ref_type(leaf, iref,
6199 						 BTRFS_SHARED_BLOCK_REF_KEY);
6200 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6201 	} else {
6202 		btrfs_set_extent_inline_ref_type(leaf, iref,
6203 						 BTRFS_TREE_BLOCK_REF_KEY);
6204 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6205 	}
6206 
6207 	btrfs_mark_buffer_dirty(leaf);
6208 	btrfs_free_path(path);
6209 
6210 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6211 	if (ret) { /* -ENOENT, logic error */
6212 		printk(KERN_ERR "btrfs update block group failed for %llu "
6213 		       "%llu\n", (unsigned long long)ins->objectid,
6214 		       (unsigned long long)ins->offset);
6215 		BUG();
6216 	}
6217 	return ret;
6218 }
6219 
6220 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6221 				     struct btrfs_root *root,
6222 				     u64 root_objectid, u64 owner,
6223 				     u64 offset, struct btrfs_key *ins)
6224 {
6225 	int ret;
6226 
6227 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6228 
6229 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6230 					 ins->offset, 0,
6231 					 root_objectid, owner, offset,
6232 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6233 	return ret;
6234 }
6235 
6236 /*
6237  * this is used by the tree logging recovery code.  It records that
6238  * an extent has been allocated and makes sure to clear the free
6239  * space cache bits as well
6240  */
6241 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6242 				   struct btrfs_root *root,
6243 				   u64 root_objectid, u64 owner, u64 offset,
6244 				   struct btrfs_key *ins)
6245 {
6246 	int ret;
6247 	struct btrfs_block_group_cache *block_group;
6248 	struct btrfs_caching_control *caching_ctl;
6249 	u64 start = ins->objectid;
6250 	u64 num_bytes = ins->offset;
6251 
6252 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6253 	cache_block_group(block_group, trans, NULL, 0);
6254 	caching_ctl = get_caching_control(block_group);
6255 
6256 	if (!caching_ctl) {
6257 		BUG_ON(!block_group_cache_done(block_group));
6258 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6259 		BUG_ON(ret); /* -ENOMEM */
6260 	} else {
6261 		mutex_lock(&caching_ctl->mutex);
6262 
6263 		if (start >= caching_ctl->progress) {
6264 			ret = add_excluded_extent(root, start, num_bytes);
6265 			BUG_ON(ret); /* -ENOMEM */
6266 		} else if (start + num_bytes <= caching_ctl->progress) {
6267 			ret = btrfs_remove_free_space(block_group,
6268 						      start, num_bytes);
6269 			BUG_ON(ret); /* -ENOMEM */
6270 		} else {
6271 			num_bytes = caching_ctl->progress - start;
6272 			ret = btrfs_remove_free_space(block_group,
6273 						      start, num_bytes);
6274 			BUG_ON(ret); /* -ENOMEM */
6275 
6276 			start = caching_ctl->progress;
6277 			num_bytes = ins->objectid + ins->offset -
6278 				    caching_ctl->progress;
6279 			ret = add_excluded_extent(root, start, num_bytes);
6280 			BUG_ON(ret); /* -ENOMEM */
6281 		}
6282 
6283 		mutex_unlock(&caching_ctl->mutex);
6284 		put_caching_control(caching_ctl);
6285 	}
6286 
6287 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6288 					  RESERVE_ALLOC_NO_ACCOUNT);
6289 	BUG_ON(ret); /* logic error */
6290 	btrfs_put_block_group(block_group);
6291 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6292 					 0, owner, offset, ins, 1);
6293 	return ret;
6294 }
6295 
6296 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6297 					    struct btrfs_root *root,
6298 					    u64 bytenr, u32 blocksize,
6299 					    int level)
6300 {
6301 	struct extent_buffer *buf;
6302 
6303 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6304 	if (!buf)
6305 		return ERR_PTR(-ENOMEM);
6306 	btrfs_set_header_generation(buf, trans->transid);
6307 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6308 	btrfs_tree_lock(buf);
6309 	clean_tree_block(trans, root, buf);
6310 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6311 
6312 	btrfs_set_lock_blocking(buf);
6313 	btrfs_set_buffer_uptodate(buf);
6314 
6315 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6316 		/*
6317 		 * we allow two log transactions at a time, use different
6318 		 * EXENT bit to differentiate dirty pages.
6319 		 */
6320 		if (root->log_transid % 2 == 0)
6321 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6322 					buf->start + buf->len - 1, GFP_NOFS);
6323 		else
6324 			set_extent_new(&root->dirty_log_pages, buf->start,
6325 					buf->start + buf->len - 1, GFP_NOFS);
6326 	} else {
6327 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6328 			 buf->start + buf->len - 1, GFP_NOFS);
6329 	}
6330 	trans->blocks_used++;
6331 	/* this returns a buffer locked for blocking */
6332 	return buf;
6333 }
6334 
6335 static struct btrfs_block_rsv *
6336 use_block_rsv(struct btrfs_trans_handle *trans,
6337 	      struct btrfs_root *root, u32 blocksize)
6338 {
6339 	struct btrfs_block_rsv *block_rsv;
6340 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6341 	int ret;
6342 
6343 	block_rsv = get_block_rsv(trans, root);
6344 
6345 	if (block_rsv->size == 0) {
6346 		ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6347 					     BTRFS_RESERVE_NO_FLUSH);
6348 		/*
6349 		 * If we couldn't reserve metadata bytes try and use some from
6350 		 * the global reserve.
6351 		 */
6352 		if (ret && block_rsv != global_rsv) {
6353 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6354 			if (!ret)
6355 				return global_rsv;
6356 			return ERR_PTR(ret);
6357 		} else if (ret) {
6358 			return ERR_PTR(ret);
6359 		}
6360 		return block_rsv;
6361 	}
6362 
6363 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6364 	if (!ret)
6365 		return block_rsv;
6366 	if (ret && !block_rsv->failfast) {
6367 		static DEFINE_RATELIMIT_STATE(_rs,
6368 				DEFAULT_RATELIMIT_INTERVAL,
6369 				/*DEFAULT_RATELIMIT_BURST*/ 2);
6370 		if (__ratelimit(&_rs))
6371 			WARN(1, KERN_DEBUG "btrfs: block rsv returned %d\n",
6372 			     ret);
6373 		ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6374 					     BTRFS_RESERVE_NO_FLUSH);
6375 		if (!ret) {
6376 			return block_rsv;
6377 		} else if (ret && block_rsv != global_rsv) {
6378 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6379 			if (!ret)
6380 				return global_rsv;
6381 		}
6382 	}
6383 
6384 	return ERR_PTR(-ENOSPC);
6385 }
6386 
6387 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6388 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6389 {
6390 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6391 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6392 }
6393 
6394 /*
6395  * finds a free extent and does all the dirty work required for allocation
6396  * returns the key for the extent through ins, and a tree buffer for
6397  * the first block of the extent through buf.
6398  *
6399  * returns the tree buffer or NULL.
6400  */
6401 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6402 					struct btrfs_root *root, u32 blocksize,
6403 					u64 parent, u64 root_objectid,
6404 					struct btrfs_disk_key *key, int level,
6405 					u64 hint, u64 empty_size)
6406 {
6407 	struct btrfs_key ins;
6408 	struct btrfs_block_rsv *block_rsv;
6409 	struct extent_buffer *buf;
6410 	u64 flags = 0;
6411 	int ret;
6412 
6413 
6414 	block_rsv = use_block_rsv(trans, root, blocksize);
6415 	if (IS_ERR(block_rsv))
6416 		return ERR_CAST(block_rsv);
6417 
6418 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6419 				   empty_size, hint, &ins, 0);
6420 	if (ret) {
6421 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6422 		return ERR_PTR(ret);
6423 	}
6424 
6425 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6426 				    blocksize, level);
6427 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6428 
6429 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6430 		if (parent == 0)
6431 			parent = ins.objectid;
6432 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6433 	} else
6434 		BUG_ON(parent > 0);
6435 
6436 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6437 		struct btrfs_delayed_extent_op *extent_op;
6438 		extent_op = btrfs_alloc_delayed_extent_op();
6439 		BUG_ON(!extent_op); /* -ENOMEM */
6440 		if (key)
6441 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6442 		else
6443 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6444 		extent_op->flags_to_set = flags;
6445 		extent_op->update_key = 1;
6446 		extent_op->update_flags = 1;
6447 		extent_op->is_data = 0;
6448 
6449 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6450 					ins.objectid,
6451 					ins.offset, parent, root_objectid,
6452 					level, BTRFS_ADD_DELAYED_EXTENT,
6453 					extent_op, 0);
6454 		BUG_ON(ret); /* -ENOMEM */
6455 	}
6456 	return buf;
6457 }
6458 
6459 struct walk_control {
6460 	u64 refs[BTRFS_MAX_LEVEL];
6461 	u64 flags[BTRFS_MAX_LEVEL];
6462 	struct btrfs_key update_progress;
6463 	int stage;
6464 	int level;
6465 	int shared_level;
6466 	int update_ref;
6467 	int keep_locks;
6468 	int reada_slot;
6469 	int reada_count;
6470 	int for_reloc;
6471 };
6472 
6473 #define DROP_REFERENCE	1
6474 #define UPDATE_BACKREF	2
6475 
6476 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6477 				     struct btrfs_root *root,
6478 				     struct walk_control *wc,
6479 				     struct btrfs_path *path)
6480 {
6481 	u64 bytenr;
6482 	u64 generation;
6483 	u64 refs;
6484 	u64 flags;
6485 	u32 nritems;
6486 	u32 blocksize;
6487 	struct btrfs_key key;
6488 	struct extent_buffer *eb;
6489 	int ret;
6490 	int slot;
6491 	int nread = 0;
6492 
6493 	if (path->slots[wc->level] < wc->reada_slot) {
6494 		wc->reada_count = wc->reada_count * 2 / 3;
6495 		wc->reada_count = max(wc->reada_count, 2);
6496 	} else {
6497 		wc->reada_count = wc->reada_count * 3 / 2;
6498 		wc->reada_count = min_t(int, wc->reada_count,
6499 					BTRFS_NODEPTRS_PER_BLOCK(root));
6500 	}
6501 
6502 	eb = path->nodes[wc->level];
6503 	nritems = btrfs_header_nritems(eb);
6504 	blocksize = btrfs_level_size(root, wc->level - 1);
6505 
6506 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6507 		if (nread >= wc->reada_count)
6508 			break;
6509 
6510 		cond_resched();
6511 		bytenr = btrfs_node_blockptr(eb, slot);
6512 		generation = btrfs_node_ptr_generation(eb, slot);
6513 
6514 		if (slot == path->slots[wc->level])
6515 			goto reada;
6516 
6517 		if (wc->stage == UPDATE_BACKREF &&
6518 		    generation <= root->root_key.offset)
6519 			continue;
6520 
6521 		/* We don't lock the tree block, it's OK to be racy here */
6522 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6523 					       &refs, &flags);
6524 		/* We don't care about errors in readahead. */
6525 		if (ret < 0)
6526 			continue;
6527 		BUG_ON(refs == 0);
6528 
6529 		if (wc->stage == DROP_REFERENCE) {
6530 			if (refs == 1)
6531 				goto reada;
6532 
6533 			if (wc->level == 1 &&
6534 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6535 				continue;
6536 			if (!wc->update_ref ||
6537 			    generation <= root->root_key.offset)
6538 				continue;
6539 			btrfs_node_key_to_cpu(eb, &key, slot);
6540 			ret = btrfs_comp_cpu_keys(&key,
6541 						  &wc->update_progress);
6542 			if (ret < 0)
6543 				continue;
6544 		} else {
6545 			if (wc->level == 1 &&
6546 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6547 				continue;
6548 		}
6549 reada:
6550 		ret = readahead_tree_block(root, bytenr, blocksize,
6551 					   generation);
6552 		if (ret)
6553 			break;
6554 		nread++;
6555 	}
6556 	wc->reada_slot = slot;
6557 }
6558 
6559 /*
6560  * hepler to process tree block while walking down the tree.
6561  *
6562  * when wc->stage == UPDATE_BACKREF, this function updates
6563  * back refs for pointers in the block.
6564  *
6565  * NOTE: return value 1 means we should stop walking down.
6566  */
6567 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6568 				   struct btrfs_root *root,
6569 				   struct btrfs_path *path,
6570 				   struct walk_control *wc, int lookup_info)
6571 {
6572 	int level = wc->level;
6573 	struct extent_buffer *eb = path->nodes[level];
6574 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6575 	int ret;
6576 
6577 	if (wc->stage == UPDATE_BACKREF &&
6578 	    btrfs_header_owner(eb) != root->root_key.objectid)
6579 		return 1;
6580 
6581 	/*
6582 	 * when reference count of tree block is 1, it won't increase
6583 	 * again. once full backref flag is set, we never clear it.
6584 	 */
6585 	if (lookup_info &&
6586 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6587 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6588 		BUG_ON(!path->locks[level]);
6589 		ret = btrfs_lookup_extent_info(trans, root,
6590 					       eb->start, eb->len,
6591 					       &wc->refs[level],
6592 					       &wc->flags[level]);
6593 		BUG_ON(ret == -ENOMEM);
6594 		if (ret)
6595 			return ret;
6596 		BUG_ON(wc->refs[level] == 0);
6597 	}
6598 
6599 	if (wc->stage == DROP_REFERENCE) {
6600 		if (wc->refs[level] > 1)
6601 			return 1;
6602 
6603 		if (path->locks[level] && !wc->keep_locks) {
6604 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6605 			path->locks[level] = 0;
6606 		}
6607 		return 0;
6608 	}
6609 
6610 	/* wc->stage == UPDATE_BACKREF */
6611 	if (!(wc->flags[level] & flag)) {
6612 		BUG_ON(!path->locks[level]);
6613 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6614 		BUG_ON(ret); /* -ENOMEM */
6615 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6616 		BUG_ON(ret); /* -ENOMEM */
6617 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6618 						  eb->len, flag, 0);
6619 		BUG_ON(ret); /* -ENOMEM */
6620 		wc->flags[level] |= flag;
6621 	}
6622 
6623 	/*
6624 	 * the block is shared by multiple trees, so it's not good to
6625 	 * keep the tree lock
6626 	 */
6627 	if (path->locks[level] && level > 0) {
6628 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6629 		path->locks[level] = 0;
6630 	}
6631 	return 0;
6632 }
6633 
6634 /*
6635  * hepler to process tree block pointer.
6636  *
6637  * when wc->stage == DROP_REFERENCE, this function checks
6638  * reference count of the block pointed to. if the block
6639  * is shared and we need update back refs for the subtree
6640  * rooted at the block, this function changes wc->stage to
6641  * UPDATE_BACKREF. if the block is shared and there is no
6642  * need to update back, this function drops the reference
6643  * to the block.
6644  *
6645  * NOTE: return value 1 means we should stop walking down.
6646  */
6647 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6648 				 struct btrfs_root *root,
6649 				 struct btrfs_path *path,
6650 				 struct walk_control *wc, int *lookup_info)
6651 {
6652 	u64 bytenr;
6653 	u64 generation;
6654 	u64 parent;
6655 	u32 blocksize;
6656 	struct btrfs_key key;
6657 	struct extent_buffer *next;
6658 	int level = wc->level;
6659 	int reada = 0;
6660 	int ret = 0;
6661 
6662 	generation = btrfs_node_ptr_generation(path->nodes[level],
6663 					       path->slots[level]);
6664 	/*
6665 	 * if the lower level block was created before the snapshot
6666 	 * was created, we know there is no need to update back refs
6667 	 * for the subtree
6668 	 */
6669 	if (wc->stage == UPDATE_BACKREF &&
6670 	    generation <= root->root_key.offset) {
6671 		*lookup_info = 1;
6672 		return 1;
6673 	}
6674 
6675 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6676 	blocksize = btrfs_level_size(root, level - 1);
6677 
6678 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6679 	if (!next) {
6680 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6681 		if (!next)
6682 			return -ENOMEM;
6683 		reada = 1;
6684 	}
6685 	btrfs_tree_lock(next);
6686 	btrfs_set_lock_blocking(next);
6687 
6688 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6689 				       &wc->refs[level - 1],
6690 				       &wc->flags[level - 1]);
6691 	if (ret < 0) {
6692 		btrfs_tree_unlock(next);
6693 		return ret;
6694 	}
6695 
6696 	BUG_ON(wc->refs[level - 1] == 0);
6697 	*lookup_info = 0;
6698 
6699 	if (wc->stage == DROP_REFERENCE) {
6700 		if (wc->refs[level - 1] > 1) {
6701 			if (level == 1 &&
6702 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6703 				goto skip;
6704 
6705 			if (!wc->update_ref ||
6706 			    generation <= root->root_key.offset)
6707 				goto skip;
6708 
6709 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6710 					      path->slots[level]);
6711 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6712 			if (ret < 0)
6713 				goto skip;
6714 
6715 			wc->stage = UPDATE_BACKREF;
6716 			wc->shared_level = level - 1;
6717 		}
6718 	} else {
6719 		if (level == 1 &&
6720 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6721 			goto skip;
6722 	}
6723 
6724 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
6725 		btrfs_tree_unlock(next);
6726 		free_extent_buffer(next);
6727 		next = NULL;
6728 		*lookup_info = 1;
6729 	}
6730 
6731 	if (!next) {
6732 		if (reada && level == 1)
6733 			reada_walk_down(trans, root, wc, path);
6734 		next = read_tree_block(root, bytenr, blocksize, generation);
6735 		if (!next)
6736 			return -EIO;
6737 		btrfs_tree_lock(next);
6738 		btrfs_set_lock_blocking(next);
6739 	}
6740 
6741 	level--;
6742 	BUG_ON(level != btrfs_header_level(next));
6743 	path->nodes[level] = next;
6744 	path->slots[level] = 0;
6745 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6746 	wc->level = level;
6747 	if (wc->level == 1)
6748 		wc->reada_slot = 0;
6749 	return 0;
6750 skip:
6751 	wc->refs[level - 1] = 0;
6752 	wc->flags[level - 1] = 0;
6753 	if (wc->stage == DROP_REFERENCE) {
6754 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6755 			parent = path->nodes[level]->start;
6756 		} else {
6757 			BUG_ON(root->root_key.objectid !=
6758 			       btrfs_header_owner(path->nodes[level]));
6759 			parent = 0;
6760 		}
6761 
6762 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6763 				root->root_key.objectid, level - 1, 0, 0);
6764 		BUG_ON(ret); /* -ENOMEM */
6765 	}
6766 	btrfs_tree_unlock(next);
6767 	free_extent_buffer(next);
6768 	*lookup_info = 1;
6769 	return 1;
6770 }
6771 
6772 /*
6773  * hepler to process tree block while walking up the tree.
6774  *
6775  * when wc->stage == DROP_REFERENCE, this function drops
6776  * reference count on the block.
6777  *
6778  * when wc->stage == UPDATE_BACKREF, this function changes
6779  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6780  * to UPDATE_BACKREF previously while processing the block.
6781  *
6782  * NOTE: return value 1 means we should stop walking up.
6783  */
6784 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6785 				 struct btrfs_root *root,
6786 				 struct btrfs_path *path,
6787 				 struct walk_control *wc)
6788 {
6789 	int ret;
6790 	int level = wc->level;
6791 	struct extent_buffer *eb = path->nodes[level];
6792 	u64 parent = 0;
6793 
6794 	if (wc->stage == UPDATE_BACKREF) {
6795 		BUG_ON(wc->shared_level < level);
6796 		if (level < wc->shared_level)
6797 			goto out;
6798 
6799 		ret = find_next_key(path, level + 1, &wc->update_progress);
6800 		if (ret > 0)
6801 			wc->update_ref = 0;
6802 
6803 		wc->stage = DROP_REFERENCE;
6804 		wc->shared_level = -1;
6805 		path->slots[level] = 0;
6806 
6807 		/*
6808 		 * check reference count again if the block isn't locked.
6809 		 * we should start walking down the tree again if reference
6810 		 * count is one.
6811 		 */
6812 		if (!path->locks[level]) {
6813 			BUG_ON(level == 0);
6814 			btrfs_tree_lock(eb);
6815 			btrfs_set_lock_blocking(eb);
6816 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6817 
6818 			ret = btrfs_lookup_extent_info(trans, root,
6819 						       eb->start, eb->len,
6820 						       &wc->refs[level],
6821 						       &wc->flags[level]);
6822 			if (ret < 0) {
6823 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6824 				path->locks[level] = 0;
6825 				return ret;
6826 			}
6827 			BUG_ON(wc->refs[level] == 0);
6828 			if (wc->refs[level] == 1) {
6829 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6830 				path->locks[level] = 0;
6831 				return 1;
6832 			}
6833 		}
6834 	}
6835 
6836 	/* wc->stage == DROP_REFERENCE */
6837 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6838 
6839 	if (wc->refs[level] == 1) {
6840 		if (level == 0) {
6841 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6842 				ret = btrfs_dec_ref(trans, root, eb, 1,
6843 						    wc->for_reloc);
6844 			else
6845 				ret = btrfs_dec_ref(trans, root, eb, 0,
6846 						    wc->for_reloc);
6847 			BUG_ON(ret); /* -ENOMEM */
6848 		}
6849 		/* make block locked assertion in clean_tree_block happy */
6850 		if (!path->locks[level] &&
6851 		    btrfs_header_generation(eb) == trans->transid) {
6852 			btrfs_tree_lock(eb);
6853 			btrfs_set_lock_blocking(eb);
6854 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6855 		}
6856 		clean_tree_block(trans, root, eb);
6857 	}
6858 
6859 	if (eb == root->node) {
6860 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6861 			parent = eb->start;
6862 		else
6863 			BUG_ON(root->root_key.objectid !=
6864 			       btrfs_header_owner(eb));
6865 	} else {
6866 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6867 			parent = path->nodes[level + 1]->start;
6868 		else
6869 			BUG_ON(root->root_key.objectid !=
6870 			       btrfs_header_owner(path->nodes[level + 1]));
6871 	}
6872 
6873 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6874 out:
6875 	wc->refs[level] = 0;
6876 	wc->flags[level] = 0;
6877 	return 0;
6878 }
6879 
6880 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6881 				   struct btrfs_root *root,
6882 				   struct btrfs_path *path,
6883 				   struct walk_control *wc)
6884 {
6885 	int level = wc->level;
6886 	int lookup_info = 1;
6887 	int ret;
6888 
6889 	while (level >= 0) {
6890 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6891 		if (ret > 0)
6892 			break;
6893 
6894 		if (level == 0)
6895 			break;
6896 
6897 		if (path->slots[level] >=
6898 		    btrfs_header_nritems(path->nodes[level]))
6899 			break;
6900 
6901 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6902 		if (ret > 0) {
6903 			path->slots[level]++;
6904 			continue;
6905 		} else if (ret < 0)
6906 			return ret;
6907 		level = wc->level;
6908 	}
6909 	return 0;
6910 }
6911 
6912 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6913 				 struct btrfs_root *root,
6914 				 struct btrfs_path *path,
6915 				 struct walk_control *wc, int max_level)
6916 {
6917 	int level = wc->level;
6918 	int ret;
6919 
6920 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6921 	while (level < max_level && path->nodes[level]) {
6922 		wc->level = level;
6923 		if (path->slots[level] + 1 <
6924 		    btrfs_header_nritems(path->nodes[level])) {
6925 			path->slots[level]++;
6926 			return 0;
6927 		} else {
6928 			ret = walk_up_proc(trans, root, path, wc);
6929 			if (ret > 0)
6930 				return 0;
6931 
6932 			if (path->locks[level]) {
6933 				btrfs_tree_unlock_rw(path->nodes[level],
6934 						     path->locks[level]);
6935 				path->locks[level] = 0;
6936 			}
6937 			free_extent_buffer(path->nodes[level]);
6938 			path->nodes[level] = NULL;
6939 			level++;
6940 		}
6941 	}
6942 	return 1;
6943 }
6944 
6945 /*
6946  * drop a subvolume tree.
6947  *
6948  * this function traverses the tree freeing any blocks that only
6949  * referenced by the tree.
6950  *
6951  * when a shared tree block is found. this function decreases its
6952  * reference count by one. if update_ref is true, this function
6953  * also make sure backrefs for the shared block and all lower level
6954  * blocks are properly updated.
6955  */
6956 int btrfs_drop_snapshot(struct btrfs_root *root,
6957 			 struct btrfs_block_rsv *block_rsv, int update_ref,
6958 			 int for_reloc)
6959 {
6960 	struct btrfs_path *path;
6961 	struct btrfs_trans_handle *trans;
6962 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6963 	struct btrfs_root_item *root_item = &root->root_item;
6964 	struct walk_control *wc;
6965 	struct btrfs_key key;
6966 	int err = 0;
6967 	int ret;
6968 	int level;
6969 
6970 	path = btrfs_alloc_path();
6971 	if (!path) {
6972 		err = -ENOMEM;
6973 		goto out;
6974 	}
6975 
6976 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6977 	if (!wc) {
6978 		btrfs_free_path(path);
6979 		err = -ENOMEM;
6980 		goto out;
6981 	}
6982 
6983 	trans = btrfs_start_transaction(tree_root, 0);
6984 	if (IS_ERR(trans)) {
6985 		err = PTR_ERR(trans);
6986 		goto out_free;
6987 	}
6988 
6989 	if (block_rsv)
6990 		trans->block_rsv = block_rsv;
6991 
6992 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6993 		level = btrfs_header_level(root->node);
6994 		path->nodes[level] = btrfs_lock_root_node(root);
6995 		btrfs_set_lock_blocking(path->nodes[level]);
6996 		path->slots[level] = 0;
6997 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6998 		memset(&wc->update_progress, 0,
6999 		       sizeof(wc->update_progress));
7000 	} else {
7001 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7002 		memcpy(&wc->update_progress, &key,
7003 		       sizeof(wc->update_progress));
7004 
7005 		level = root_item->drop_level;
7006 		BUG_ON(level == 0);
7007 		path->lowest_level = level;
7008 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7009 		path->lowest_level = 0;
7010 		if (ret < 0) {
7011 			err = ret;
7012 			goto out_end_trans;
7013 		}
7014 		WARN_ON(ret > 0);
7015 
7016 		/*
7017 		 * unlock our path, this is safe because only this
7018 		 * function is allowed to delete this snapshot
7019 		 */
7020 		btrfs_unlock_up_safe(path, 0);
7021 
7022 		level = btrfs_header_level(root->node);
7023 		while (1) {
7024 			btrfs_tree_lock(path->nodes[level]);
7025 			btrfs_set_lock_blocking(path->nodes[level]);
7026 
7027 			ret = btrfs_lookup_extent_info(trans, root,
7028 						path->nodes[level]->start,
7029 						path->nodes[level]->len,
7030 						&wc->refs[level],
7031 						&wc->flags[level]);
7032 			if (ret < 0) {
7033 				err = ret;
7034 				goto out_end_trans;
7035 			}
7036 			BUG_ON(wc->refs[level] == 0);
7037 
7038 			if (level == root_item->drop_level)
7039 				break;
7040 
7041 			btrfs_tree_unlock(path->nodes[level]);
7042 			WARN_ON(wc->refs[level] != 1);
7043 			level--;
7044 		}
7045 	}
7046 
7047 	wc->level = level;
7048 	wc->shared_level = -1;
7049 	wc->stage = DROP_REFERENCE;
7050 	wc->update_ref = update_ref;
7051 	wc->keep_locks = 0;
7052 	wc->for_reloc = for_reloc;
7053 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7054 
7055 	while (1) {
7056 		ret = walk_down_tree(trans, root, path, wc);
7057 		if (ret < 0) {
7058 			err = ret;
7059 			break;
7060 		}
7061 
7062 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7063 		if (ret < 0) {
7064 			err = ret;
7065 			break;
7066 		}
7067 
7068 		if (ret > 0) {
7069 			BUG_ON(wc->stage != DROP_REFERENCE);
7070 			break;
7071 		}
7072 
7073 		if (wc->stage == DROP_REFERENCE) {
7074 			level = wc->level;
7075 			btrfs_node_key(path->nodes[level],
7076 				       &root_item->drop_progress,
7077 				       path->slots[level]);
7078 			root_item->drop_level = level;
7079 		}
7080 
7081 		BUG_ON(wc->level == 0);
7082 		if (btrfs_should_end_transaction(trans, tree_root)) {
7083 			ret = btrfs_update_root(trans, tree_root,
7084 						&root->root_key,
7085 						root_item);
7086 			if (ret) {
7087 				btrfs_abort_transaction(trans, tree_root, ret);
7088 				err = ret;
7089 				goto out_end_trans;
7090 			}
7091 
7092 			btrfs_end_transaction_throttle(trans, tree_root);
7093 			trans = btrfs_start_transaction(tree_root, 0);
7094 			if (IS_ERR(trans)) {
7095 				err = PTR_ERR(trans);
7096 				goto out_free;
7097 			}
7098 			if (block_rsv)
7099 				trans->block_rsv = block_rsv;
7100 		}
7101 	}
7102 	btrfs_release_path(path);
7103 	if (err)
7104 		goto out_end_trans;
7105 
7106 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7107 	if (ret) {
7108 		btrfs_abort_transaction(trans, tree_root, ret);
7109 		goto out_end_trans;
7110 	}
7111 
7112 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7113 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
7114 					   NULL, NULL);
7115 		if (ret < 0) {
7116 			btrfs_abort_transaction(trans, tree_root, ret);
7117 			err = ret;
7118 			goto out_end_trans;
7119 		} else if (ret > 0) {
7120 			/* if we fail to delete the orphan item this time
7121 			 * around, it'll get picked up the next time.
7122 			 *
7123 			 * The most common failure here is just -ENOENT.
7124 			 */
7125 			btrfs_del_orphan_item(trans, tree_root,
7126 					      root->root_key.objectid);
7127 		}
7128 	}
7129 
7130 	if (root->in_radix) {
7131 		btrfs_free_fs_root(tree_root->fs_info, root);
7132 	} else {
7133 		free_extent_buffer(root->node);
7134 		free_extent_buffer(root->commit_root);
7135 		kfree(root);
7136 	}
7137 out_end_trans:
7138 	btrfs_end_transaction_throttle(trans, tree_root);
7139 out_free:
7140 	kfree(wc);
7141 	btrfs_free_path(path);
7142 out:
7143 	if (err)
7144 		btrfs_std_error(root->fs_info, err);
7145 	return err;
7146 }
7147 
7148 /*
7149  * drop subtree rooted at tree block 'node'.
7150  *
7151  * NOTE: this function will unlock and release tree block 'node'
7152  * only used by relocation code
7153  */
7154 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7155 			struct btrfs_root *root,
7156 			struct extent_buffer *node,
7157 			struct extent_buffer *parent)
7158 {
7159 	struct btrfs_path *path;
7160 	struct walk_control *wc;
7161 	int level;
7162 	int parent_level;
7163 	int ret = 0;
7164 	int wret;
7165 
7166 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7167 
7168 	path = btrfs_alloc_path();
7169 	if (!path)
7170 		return -ENOMEM;
7171 
7172 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7173 	if (!wc) {
7174 		btrfs_free_path(path);
7175 		return -ENOMEM;
7176 	}
7177 
7178 	btrfs_assert_tree_locked(parent);
7179 	parent_level = btrfs_header_level(parent);
7180 	extent_buffer_get(parent);
7181 	path->nodes[parent_level] = parent;
7182 	path->slots[parent_level] = btrfs_header_nritems(parent);
7183 
7184 	btrfs_assert_tree_locked(node);
7185 	level = btrfs_header_level(node);
7186 	path->nodes[level] = node;
7187 	path->slots[level] = 0;
7188 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7189 
7190 	wc->refs[parent_level] = 1;
7191 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7192 	wc->level = level;
7193 	wc->shared_level = -1;
7194 	wc->stage = DROP_REFERENCE;
7195 	wc->update_ref = 0;
7196 	wc->keep_locks = 1;
7197 	wc->for_reloc = 1;
7198 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7199 
7200 	while (1) {
7201 		wret = walk_down_tree(trans, root, path, wc);
7202 		if (wret < 0) {
7203 			ret = wret;
7204 			break;
7205 		}
7206 
7207 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7208 		if (wret < 0)
7209 			ret = wret;
7210 		if (wret != 0)
7211 			break;
7212 	}
7213 
7214 	kfree(wc);
7215 	btrfs_free_path(path);
7216 	return ret;
7217 }
7218 
7219 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7220 {
7221 	u64 num_devices;
7222 	u64 stripped;
7223 
7224 	/*
7225 	 * if restripe for this chunk_type is on pick target profile and
7226 	 * return, otherwise do the usual balance
7227 	 */
7228 	stripped = get_restripe_target(root->fs_info, flags);
7229 	if (stripped)
7230 		return extended_to_chunk(stripped);
7231 
7232 	/*
7233 	 * we add in the count of missing devices because we want
7234 	 * to make sure that any RAID levels on a degraded FS
7235 	 * continue to be honored.
7236 	 */
7237 	num_devices = root->fs_info->fs_devices->rw_devices +
7238 		root->fs_info->fs_devices->missing_devices;
7239 
7240 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7241 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7242 
7243 	if (num_devices == 1) {
7244 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7245 		stripped = flags & ~stripped;
7246 
7247 		/* turn raid0 into single device chunks */
7248 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7249 			return stripped;
7250 
7251 		/* turn mirroring into duplication */
7252 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7253 			     BTRFS_BLOCK_GROUP_RAID10))
7254 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7255 	} else {
7256 		/* they already had raid on here, just return */
7257 		if (flags & stripped)
7258 			return flags;
7259 
7260 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7261 		stripped = flags & ~stripped;
7262 
7263 		/* switch duplicated blocks with raid1 */
7264 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7265 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7266 
7267 		/* this is drive concat, leave it alone */
7268 	}
7269 
7270 	return flags;
7271 }
7272 
7273 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7274 {
7275 	struct btrfs_space_info *sinfo = cache->space_info;
7276 	u64 num_bytes;
7277 	u64 min_allocable_bytes;
7278 	int ret = -ENOSPC;
7279 
7280 
7281 	/*
7282 	 * We need some metadata space and system metadata space for
7283 	 * allocating chunks in some corner cases until we force to set
7284 	 * it to be readonly.
7285 	 */
7286 	if ((sinfo->flags &
7287 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7288 	    !force)
7289 		min_allocable_bytes = 1 * 1024 * 1024;
7290 	else
7291 		min_allocable_bytes = 0;
7292 
7293 	spin_lock(&sinfo->lock);
7294 	spin_lock(&cache->lock);
7295 
7296 	if (cache->ro) {
7297 		ret = 0;
7298 		goto out;
7299 	}
7300 
7301 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7302 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7303 
7304 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7305 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7306 	    min_allocable_bytes <= sinfo->total_bytes) {
7307 		sinfo->bytes_readonly += num_bytes;
7308 		cache->ro = 1;
7309 		ret = 0;
7310 	}
7311 out:
7312 	spin_unlock(&cache->lock);
7313 	spin_unlock(&sinfo->lock);
7314 	return ret;
7315 }
7316 
7317 int btrfs_set_block_group_ro(struct btrfs_root *root,
7318 			     struct btrfs_block_group_cache *cache)
7319 
7320 {
7321 	struct btrfs_trans_handle *trans;
7322 	u64 alloc_flags;
7323 	int ret;
7324 
7325 	BUG_ON(cache->ro);
7326 
7327 	trans = btrfs_join_transaction(root);
7328 	if (IS_ERR(trans))
7329 		return PTR_ERR(trans);
7330 
7331 	alloc_flags = update_block_group_flags(root, cache->flags);
7332 	if (alloc_flags != cache->flags) {
7333 		ret = do_chunk_alloc(trans, root, alloc_flags,
7334 				     CHUNK_ALLOC_FORCE);
7335 		if (ret < 0)
7336 			goto out;
7337 	}
7338 
7339 	ret = set_block_group_ro(cache, 0);
7340 	if (!ret)
7341 		goto out;
7342 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7343 	ret = do_chunk_alloc(trans, root, alloc_flags,
7344 			     CHUNK_ALLOC_FORCE);
7345 	if (ret < 0)
7346 		goto out;
7347 	ret = set_block_group_ro(cache, 0);
7348 out:
7349 	btrfs_end_transaction(trans, root);
7350 	return ret;
7351 }
7352 
7353 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7354 			    struct btrfs_root *root, u64 type)
7355 {
7356 	u64 alloc_flags = get_alloc_profile(root, type);
7357 	return do_chunk_alloc(trans, root, alloc_flags,
7358 			      CHUNK_ALLOC_FORCE);
7359 }
7360 
7361 /*
7362  * helper to account the unused space of all the readonly block group in the
7363  * list. takes mirrors into account.
7364  */
7365 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7366 {
7367 	struct btrfs_block_group_cache *block_group;
7368 	u64 free_bytes = 0;
7369 	int factor;
7370 
7371 	list_for_each_entry(block_group, groups_list, list) {
7372 		spin_lock(&block_group->lock);
7373 
7374 		if (!block_group->ro) {
7375 			spin_unlock(&block_group->lock);
7376 			continue;
7377 		}
7378 
7379 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7380 					  BTRFS_BLOCK_GROUP_RAID10 |
7381 					  BTRFS_BLOCK_GROUP_DUP))
7382 			factor = 2;
7383 		else
7384 			factor = 1;
7385 
7386 		free_bytes += (block_group->key.offset -
7387 			       btrfs_block_group_used(&block_group->item)) *
7388 			       factor;
7389 
7390 		spin_unlock(&block_group->lock);
7391 	}
7392 
7393 	return free_bytes;
7394 }
7395 
7396 /*
7397  * helper to account the unused space of all the readonly block group in the
7398  * space_info. takes mirrors into account.
7399  */
7400 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7401 {
7402 	int i;
7403 	u64 free_bytes = 0;
7404 
7405 	spin_lock(&sinfo->lock);
7406 
7407 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7408 		if (!list_empty(&sinfo->block_groups[i]))
7409 			free_bytes += __btrfs_get_ro_block_group_free_space(
7410 						&sinfo->block_groups[i]);
7411 
7412 	spin_unlock(&sinfo->lock);
7413 
7414 	return free_bytes;
7415 }
7416 
7417 void btrfs_set_block_group_rw(struct btrfs_root *root,
7418 			      struct btrfs_block_group_cache *cache)
7419 {
7420 	struct btrfs_space_info *sinfo = cache->space_info;
7421 	u64 num_bytes;
7422 
7423 	BUG_ON(!cache->ro);
7424 
7425 	spin_lock(&sinfo->lock);
7426 	spin_lock(&cache->lock);
7427 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7428 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7429 	sinfo->bytes_readonly -= num_bytes;
7430 	cache->ro = 0;
7431 	spin_unlock(&cache->lock);
7432 	spin_unlock(&sinfo->lock);
7433 }
7434 
7435 /*
7436  * checks to see if its even possible to relocate this block group.
7437  *
7438  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7439  * ok to go ahead and try.
7440  */
7441 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7442 {
7443 	struct btrfs_block_group_cache *block_group;
7444 	struct btrfs_space_info *space_info;
7445 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7446 	struct btrfs_device *device;
7447 	u64 min_free;
7448 	u64 dev_min = 1;
7449 	u64 dev_nr = 0;
7450 	u64 target;
7451 	int index;
7452 	int full = 0;
7453 	int ret = 0;
7454 
7455 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7456 
7457 	/* odd, couldn't find the block group, leave it alone */
7458 	if (!block_group)
7459 		return -1;
7460 
7461 	min_free = btrfs_block_group_used(&block_group->item);
7462 
7463 	/* no bytes used, we're good */
7464 	if (!min_free)
7465 		goto out;
7466 
7467 	space_info = block_group->space_info;
7468 	spin_lock(&space_info->lock);
7469 
7470 	full = space_info->full;
7471 
7472 	/*
7473 	 * if this is the last block group we have in this space, we can't
7474 	 * relocate it unless we're able to allocate a new chunk below.
7475 	 *
7476 	 * Otherwise, we need to make sure we have room in the space to handle
7477 	 * all of the extents from this block group.  If we can, we're good
7478 	 */
7479 	if ((space_info->total_bytes != block_group->key.offset) &&
7480 	    (space_info->bytes_used + space_info->bytes_reserved +
7481 	     space_info->bytes_pinned + space_info->bytes_readonly +
7482 	     min_free < space_info->total_bytes)) {
7483 		spin_unlock(&space_info->lock);
7484 		goto out;
7485 	}
7486 	spin_unlock(&space_info->lock);
7487 
7488 	/*
7489 	 * ok we don't have enough space, but maybe we have free space on our
7490 	 * devices to allocate new chunks for relocation, so loop through our
7491 	 * alloc devices and guess if we have enough space.  if this block
7492 	 * group is going to be restriped, run checks against the target
7493 	 * profile instead of the current one.
7494 	 */
7495 	ret = -1;
7496 
7497 	/*
7498 	 * index:
7499 	 *      0: raid10
7500 	 *      1: raid1
7501 	 *      2: dup
7502 	 *      3: raid0
7503 	 *      4: single
7504 	 */
7505 	target = get_restripe_target(root->fs_info, block_group->flags);
7506 	if (target) {
7507 		index = __get_raid_index(extended_to_chunk(target));
7508 	} else {
7509 		/*
7510 		 * this is just a balance, so if we were marked as full
7511 		 * we know there is no space for a new chunk
7512 		 */
7513 		if (full)
7514 			goto out;
7515 
7516 		index = get_block_group_index(block_group);
7517 	}
7518 
7519 	if (index == 0) {
7520 		dev_min = 4;
7521 		/* Divide by 2 */
7522 		min_free >>= 1;
7523 	} else if (index == 1) {
7524 		dev_min = 2;
7525 	} else if (index == 2) {
7526 		/* Multiply by 2 */
7527 		min_free <<= 1;
7528 	} else if (index == 3) {
7529 		dev_min = fs_devices->rw_devices;
7530 		do_div(min_free, dev_min);
7531 	}
7532 
7533 	mutex_lock(&root->fs_info->chunk_mutex);
7534 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7535 		u64 dev_offset;
7536 
7537 		/*
7538 		 * check to make sure we can actually find a chunk with enough
7539 		 * space to fit our block group in.
7540 		 */
7541 		if (device->total_bytes > device->bytes_used + min_free &&
7542 		    !device->is_tgtdev_for_dev_replace) {
7543 			ret = find_free_dev_extent(device, min_free,
7544 						   &dev_offset, NULL);
7545 			if (!ret)
7546 				dev_nr++;
7547 
7548 			if (dev_nr >= dev_min)
7549 				break;
7550 
7551 			ret = -1;
7552 		}
7553 	}
7554 	mutex_unlock(&root->fs_info->chunk_mutex);
7555 out:
7556 	btrfs_put_block_group(block_group);
7557 	return ret;
7558 }
7559 
7560 static int find_first_block_group(struct btrfs_root *root,
7561 		struct btrfs_path *path, struct btrfs_key *key)
7562 {
7563 	int ret = 0;
7564 	struct btrfs_key found_key;
7565 	struct extent_buffer *leaf;
7566 	int slot;
7567 
7568 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7569 	if (ret < 0)
7570 		goto out;
7571 
7572 	while (1) {
7573 		slot = path->slots[0];
7574 		leaf = path->nodes[0];
7575 		if (slot >= btrfs_header_nritems(leaf)) {
7576 			ret = btrfs_next_leaf(root, path);
7577 			if (ret == 0)
7578 				continue;
7579 			if (ret < 0)
7580 				goto out;
7581 			break;
7582 		}
7583 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7584 
7585 		if (found_key.objectid >= key->objectid &&
7586 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7587 			ret = 0;
7588 			goto out;
7589 		}
7590 		path->slots[0]++;
7591 	}
7592 out:
7593 	return ret;
7594 }
7595 
7596 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7597 {
7598 	struct btrfs_block_group_cache *block_group;
7599 	u64 last = 0;
7600 
7601 	while (1) {
7602 		struct inode *inode;
7603 
7604 		block_group = btrfs_lookup_first_block_group(info, last);
7605 		while (block_group) {
7606 			spin_lock(&block_group->lock);
7607 			if (block_group->iref)
7608 				break;
7609 			spin_unlock(&block_group->lock);
7610 			block_group = next_block_group(info->tree_root,
7611 						       block_group);
7612 		}
7613 		if (!block_group) {
7614 			if (last == 0)
7615 				break;
7616 			last = 0;
7617 			continue;
7618 		}
7619 
7620 		inode = block_group->inode;
7621 		block_group->iref = 0;
7622 		block_group->inode = NULL;
7623 		spin_unlock(&block_group->lock);
7624 		iput(inode);
7625 		last = block_group->key.objectid + block_group->key.offset;
7626 		btrfs_put_block_group(block_group);
7627 	}
7628 }
7629 
7630 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7631 {
7632 	struct btrfs_block_group_cache *block_group;
7633 	struct btrfs_space_info *space_info;
7634 	struct btrfs_caching_control *caching_ctl;
7635 	struct rb_node *n;
7636 
7637 	down_write(&info->extent_commit_sem);
7638 	while (!list_empty(&info->caching_block_groups)) {
7639 		caching_ctl = list_entry(info->caching_block_groups.next,
7640 					 struct btrfs_caching_control, list);
7641 		list_del(&caching_ctl->list);
7642 		put_caching_control(caching_ctl);
7643 	}
7644 	up_write(&info->extent_commit_sem);
7645 
7646 	spin_lock(&info->block_group_cache_lock);
7647 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7648 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7649 				       cache_node);
7650 		rb_erase(&block_group->cache_node,
7651 			 &info->block_group_cache_tree);
7652 		spin_unlock(&info->block_group_cache_lock);
7653 
7654 		down_write(&block_group->space_info->groups_sem);
7655 		list_del(&block_group->list);
7656 		up_write(&block_group->space_info->groups_sem);
7657 
7658 		if (block_group->cached == BTRFS_CACHE_STARTED)
7659 			wait_block_group_cache_done(block_group);
7660 
7661 		/*
7662 		 * We haven't cached this block group, which means we could
7663 		 * possibly have excluded extents on this block group.
7664 		 */
7665 		if (block_group->cached == BTRFS_CACHE_NO)
7666 			free_excluded_extents(info->extent_root, block_group);
7667 
7668 		btrfs_remove_free_space_cache(block_group);
7669 		btrfs_put_block_group(block_group);
7670 
7671 		spin_lock(&info->block_group_cache_lock);
7672 	}
7673 	spin_unlock(&info->block_group_cache_lock);
7674 
7675 	/* now that all the block groups are freed, go through and
7676 	 * free all the space_info structs.  This is only called during
7677 	 * the final stages of unmount, and so we know nobody is
7678 	 * using them.  We call synchronize_rcu() once before we start,
7679 	 * just to be on the safe side.
7680 	 */
7681 	synchronize_rcu();
7682 
7683 	release_global_block_rsv(info);
7684 
7685 	while(!list_empty(&info->space_info)) {
7686 		space_info = list_entry(info->space_info.next,
7687 					struct btrfs_space_info,
7688 					list);
7689 		if (space_info->bytes_pinned > 0 ||
7690 		    space_info->bytes_reserved > 0 ||
7691 		    space_info->bytes_may_use > 0) {
7692 			WARN_ON(1);
7693 			dump_space_info(space_info, 0, 0);
7694 		}
7695 		list_del(&space_info->list);
7696 		kfree(space_info);
7697 	}
7698 	return 0;
7699 }
7700 
7701 static void __link_block_group(struct btrfs_space_info *space_info,
7702 			       struct btrfs_block_group_cache *cache)
7703 {
7704 	int index = get_block_group_index(cache);
7705 
7706 	down_write(&space_info->groups_sem);
7707 	list_add_tail(&cache->list, &space_info->block_groups[index]);
7708 	up_write(&space_info->groups_sem);
7709 }
7710 
7711 int btrfs_read_block_groups(struct btrfs_root *root)
7712 {
7713 	struct btrfs_path *path;
7714 	int ret;
7715 	struct btrfs_block_group_cache *cache;
7716 	struct btrfs_fs_info *info = root->fs_info;
7717 	struct btrfs_space_info *space_info;
7718 	struct btrfs_key key;
7719 	struct btrfs_key found_key;
7720 	struct extent_buffer *leaf;
7721 	int need_clear = 0;
7722 	u64 cache_gen;
7723 
7724 	root = info->extent_root;
7725 	key.objectid = 0;
7726 	key.offset = 0;
7727 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7728 	path = btrfs_alloc_path();
7729 	if (!path)
7730 		return -ENOMEM;
7731 	path->reada = 1;
7732 
7733 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7734 	if (btrfs_test_opt(root, SPACE_CACHE) &&
7735 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7736 		need_clear = 1;
7737 	if (btrfs_test_opt(root, CLEAR_CACHE))
7738 		need_clear = 1;
7739 
7740 	while (1) {
7741 		ret = find_first_block_group(root, path, &key);
7742 		if (ret > 0)
7743 			break;
7744 		if (ret != 0)
7745 			goto error;
7746 		leaf = path->nodes[0];
7747 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7748 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7749 		if (!cache) {
7750 			ret = -ENOMEM;
7751 			goto error;
7752 		}
7753 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7754 						GFP_NOFS);
7755 		if (!cache->free_space_ctl) {
7756 			kfree(cache);
7757 			ret = -ENOMEM;
7758 			goto error;
7759 		}
7760 
7761 		atomic_set(&cache->count, 1);
7762 		spin_lock_init(&cache->lock);
7763 		cache->fs_info = info;
7764 		INIT_LIST_HEAD(&cache->list);
7765 		INIT_LIST_HEAD(&cache->cluster_list);
7766 
7767 		if (need_clear) {
7768 			/*
7769 			 * When we mount with old space cache, we need to
7770 			 * set BTRFS_DC_CLEAR and set dirty flag.
7771 			 *
7772 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
7773 			 *    truncate the old free space cache inode and
7774 			 *    setup a new one.
7775 			 * b) Setting 'dirty flag' makes sure that we flush
7776 			 *    the new space cache info onto disk.
7777 			 */
7778 			cache->disk_cache_state = BTRFS_DC_CLEAR;
7779 			if (btrfs_test_opt(root, SPACE_CACHE))
7780 				cache->dirty = 1;
7781 		}
7782 
7783 		read_extent_buffer(leaf, &cache->item,
7784 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7785 				   sizeof(cache->item));
7786 		memcpy(&cache->key, &found_key, sizeof(found_key));
7787 
7788 		key.objectid = found_key.objectid + found_key.offset;
7789 		btrfs_release_path(path);
7790 		cache->flags = btrfs_block_group_flags(&cache->item);
7791 		cache->sectorsize = root->sectorsize;
7792 
7793 		btrfs_init_free_space_ctl(cache);
7794 
7795 		/*
7796 		 * We need to exclude the super stripes now so that the space
7797 		 * info has super bytes accounted for, otherwise we'll think
7798 		 * we have more space than we actually do.
7799 		 */
7800 		exclude_super_stripes(root, cache);
7801 
7802 		/*
7803 		 * check for two cases, either we are full, and therefore
7804 		 * don't need to bother with the caching work since we won't
7805 		 * find any space, or we are empty, and we can just add all
7806 		 * the space in and be done with it.  This saves us _alot_ of
7807 		 * time, particularly in the full case.
7808 		 */
7809 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7810 			cache->last_byte_to_unpin = (u64)-1;
7811 			cache->cached = BTRFS_CACHE_FINISHED;
7812 			free_excluded_extents(root, cache);
7813 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7814 			cache->last_byte_to_unpin = (u64)-1;
7815 			cache->cached = BTRFS_CACHE_FINISHED;
7816 			add_new_free_space(cache, root->fs_info,
7817 					   found_key.objectid,
7818 					   found_key.objectid +
7819 					   found_key.offset);
7820 			free_excluded_extents(root, cache);
7821 		}
7822 
7823 		ret = update_space_info(info, cache->flags, found_key.offset,
7824 					btrfs_block_group_used(&cache->item),
7825 					&space_info);
7826 		BUG_ON(ret); /* -ENOMEM */
7827 		cache->space_info = space_info;
7828 		spin_lock(&cache->space_info->lock);
7829 		cache->space_info->bytes_readonly += cache->bytes_super;
7830 		spin_unlock(&cache->space_info->lock);
7831 
7832 		__link_block_group(space_info, cache);
7833 
7834 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7835 		BUG_ON(ret); /* Logic error */
7836 
7837 		set_avail_alloc_bits(root->fs_info, cache->flags);
7838 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7839 			set_block_group_ro(cache, 1);
7840 	}
7841 
7842 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7843 		if (!(get_alloc_profile(root, space_info->flags) &
7844 		      (BTRFS_BLOCK_GROUP_RAID10 |
7845 		       BTRFS_BLOCK_GROUP_RAID1 |
7846 		       BTRFS_BLOCK_GROUP_DUP)))
7847 			continue;
7848 		/*
7849 		 * avoid allocating from un-mirrored block group if there are
7850 		 * mirrored block groups.
7851 		 */
7852 		list_for_each_entry(cache, &space_info->block_groups[3], list)
7853 			set_block_group_ro(cache, 1);
7854 		list_for_each_entry(cache, &space_info->block_groups[4], list)
7855 			set_block_group_ro(cache, 1);
7856 	}
7857 
7858 	init_global_block_rsv(info);
7859 	ret = 0;
7860 error:
7861 	btrfs_free_path(path);
7862 	return ret;
7863 }
7864 
7865 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
7866 				       struct btrfs_root *root)
7867 {
7868 	struct btrfs_block_group_cache *block_group, *tmp;
7869 	struct btrfs_root *extent_root = root->fs_info->extent_root;
7870 	struct btrfs_block_group_item item;
7871 	struct btrfs_key key;
7872 	int ret = 0;
7873 
7874 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
7875 				 new_bg_list) {
7876 		list_del_init(&block_group->new_bg_list);
7877 
7878 		if (ret)
7879 			continue;
7880 
7881 		spin_lock(&block_group->lock);
7882 		memcpy(&item, &block_group->item, sizeof(item));
7883 		memcpy(&key, &block_group->key, sizeof(key));
7884 		spin_unlock(&block_group->lock);
7885 
7886 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
7887 					sizeof(item));
7888 		if (ret)
7889 			btrfs_abort_transaction(trans, extent_root, ret);
7890 	}
7891 }
7892 
7893 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7894 			   struct btrfs_root *root, u64 bytes_used,
7895 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7896 			   u64 size)
7897 {
7898 	int ret;
7899 	struct btrfs_root *extent_root;
7900 	struct btrfs_block_group_cache *cache;
7901 
7902 	extent_root = root->fs_info->extent_root;
7903 
7904 	root->fs_info->last_trans_log_full_commit = trans->transid;
7905 
7906 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7907 	if (!cache)
7908 		return -ENOMEM;
7909 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7910 					GFP_NOFS);
7911 	if (!cache->free_space_ctl) {
7912 		kfree(cache);
7913 		return -ENOMEM;
7914 	}
7915 
7916 	cache->key.objectid = chunk_offset;
7917 	cache->key.offset = size;
7918 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7919 	cache->sectorsize = root->sectorsize;
7920 	cache->fs_info = root->fs_info;
7921 
7922 	atomic_set(&cache->count, 1);
7923 	spin_lock_init(&cache->lock);
7924 	INIT_LIST_HEAD(&cache->list);
7925 	INIT_LIST_HEAD(&cache->cluster_list);
7926 	INIT_LIST_HEAD(&cache->new_bg_list);
7927 
7928 	btrfs_init_free_space_ctl(cache);
7929 
7930 	btrfs_set_block_group_used(&cache->item, bytes_used);
7931 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7932 	cache->flags = type;
7933 	btrfs_set_block_group_flags(&cache->item, type);
7934 
7935 	cache->last_byte_to_unpin = (u64)-1;
7936 	cache->cached = BTRFS_CACHE_FINISHED;
7937 	exclude_super_stripes(root, cache);
7938 
7939 	add_new_free_space(cache, root->fs_info, chunk_offset,
7940 			   chunk_offset + size);
7941 
7942 	free_excluded_extents(root, cache);
7943 
7944 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7945 				&cache->space_info);
7946 	BUG_ON(ret); /* -ENOMEM */
7947 	update_global_block_rsv(root->fs_info);
7948 
7949 	spin_lock(&cache->space_info->lock);
7950 	cache->space_info->bytes_readonly += cache->bytes_super;
7951 	spin_unlock(&cache->space_info->lock);
7952 
7953 	__link_block_group(cache->space_info, cache);
7954 
7955 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7956 	BUG_ON(ret); /* Logic error */
7957 
7958 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
7959 
7960 	set_avail_alloc_bits(extent_root->fs_info, type);
7961 
7962 	return 0;
7963 }
7964 
7965 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7966 {
7967 	u64 extra_flags = chunk_to_extended(flags) &
7968 				BTRFS_EXTENDED_PROFILE_MASK;
7969 
7970 	if (flags & BTRFS_BLOCK_GROUP_DATA)
7971 		fs_info->avail_data_alloc_bits &= ~extra_flags;
7972 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
7973 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7974 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7975 		fs_info->avail_system_alloc_bits &= ~extra_flags;
7976 }
7977 
7978 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7979 			     struct btrfs_root *root, u64 group_start)
7980 {
7981 	struct btrfs_path *path;
7982 	struct btrfs_block_group_cache *block_group;
7983 	struct btrfs_free_cluster *cluster;
7984 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7985 	struct btrfs_key key;
7986 	struct inode *inode;
7987 	int ret;
7988 	int index;
7989 	int factor;
7990 
7991 	root = root->fs_info->extent_root;
7992 
7993 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7994 	BUG_ON(!block_group);
7995 	BUG_ON(!block_group->ro);
7996 
7997 	/*
7998 	 * Free the reserved super bytes from this block group before
7999 	 * remove it.
8000 	 */
8001 	free_excluded_extents(root, block_group);
8002 
8003 	memcpy(&key, &block_group->key, sizeof(key));
8004 	index = get_block_group_index(block_group);
8005 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8006 				  BTRFS_BLOCK_GROUP_RAID1 |
8007 				  BTRFS_BLOCK_GROUP_RAID10))
8008 		factor = 2;
8009 	else
8010 		factor = 1;
8011 
8012 	/* make sure this block group isn't part of an allocation cluster */
8013 	cluster = &root->fs_info->data_alloc_cluster;
8014 	spin_lock(&cluster->refill_lock);
8015 	btrfs_return_cluster_to_free_space(block_group, cluster);
8016 	spin_unlock(&cluster->refill_lock);
8017 
8018 	/*
8019 	 * make sure this block group isn't part of a metadata
8020 	 * allocation cluster
8021 	 */
8022 	cluster = &root->fs_info->meta_alloc_cluster;
8023 	spin_lock(&cluster->refill_lock);
8024 	btrfs_return_cluster_to_free_space(block_group, cluster);
8025 	spin_unlock(&cluster->refill_lock);
8026 
8027 	path = btrfs_alloc_path();
8028 	if (!path) {
8029 		ret = -ENOMEM;
8030 		goto out;
8031 	}
8032 
8033 	inode = lookup_free_space_inode(tree_root, block_group, path);
8034 	if (!IS_ERR(inode)) {
8035 		ret = btrfs_orphan_add(trans, inode);
8036 		if (ret) {
8037 			btrfs_add_delayed_iput(inode);
8038 			goto out;
8039 		}
8040 		clear_nlink(inode);
8041 		/* One for the block groups ref */
8042 		spin_lock(&block_group->lock);
8043 		if (block_group->iref) {
8044 			block_group->iref = 0;
8045 			block_group->inode = NULL;
8046 			spin_unlock(&block_group->lock);
8047 			iput(inode);
8048 		} else {
8049 			spin_unlock(&block_group->lock);
8050 		}
8051 		/* One for our lookup ref */
8052 		btrfs_add_delayed_iput(inode);
8053 	}
8054 
8055 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8056 	key.offset = block_group->key.objectid;
8057 	key.type = 0;
8058 
8059 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8060 	if (ret < 0)
8061 		goto out;
8062 	if (ret > 0)
8063 		btrfs_release_path(path);
8064 	if (ret == 0) {
8065 		ret = btrfs_del_item(trans, tree_root, path);
8066 		if (ret)
8067 			goto out;
8068 		btrfs_release_path(path);
8069 	}
8070 
8071 	spin_lock(&root->fs_info->block_group_cache_lock);
8072 	rb_erase(&block_group->cache_node,
8073 		 &root->fs_info->block_group_cache_tree);
8074 	spin_unlock(&root->fs_info->block_group_cache_lock);
8075 
8076 	down_write(&block_group->space_info->groups_sem);
8077 	/*
8078 	 * we must use list_del_init so people can check to see if they
8079 	 * are still on the list after taking the semaphore
8080 	 */
8081 	list_del_init(&block_group->list);
8082 	if (list_empty(&block_group->space_info->block_groups[index]))
8083 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8084 	up_write(&block_group->space_info->groups_sem);
8085 
8086 	if (block_group->cached == BTRFS_CACHE_STARTED)
8087 		wait_block_group_cache_done(block_group);
8088 
8089 	btrfs_remove_free_space_cache(block_group);
8090 
8091 	spin_lock(&block_group->space_info->lock);
8092 	block_group->space_info->total_bytes -= block_group->key.offset;
8093 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8094 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8095 	spin_unlock(&block_group->space_info->lock);
8096 
8097 	memcpy(&key, &block_group->key, sizeof(key));
8098 
8099 	btrfs_clear_space_info_full(root->fs_info);
8100 
8101 	btrfs_put_block_group(block_group);
8102 	btrfs_put_block_group(block_group);
8103 
8104 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8105 	if (ret > 0)
8106 		ret = -EIO;
8107 	if (ret < 0)
8108 		goto out;
8109 
8110 	ret = btrfs_del_item(trans, root, path);
8111 out:
8112 	btrfs_free_path(path);
8113 	return ret;
8114 }
8115 
8116 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8117 {
8118 	struct btrfs_space_info *space_info;
8119 	struct btrfs_super_block *disk_super;
8120 	u64 features;
8121 	u64 flags;
8122 	int mixed = 0;
8123 	int ret;
8124 
8125 	disk_super = fs_info->super_copy;
8126 	if (!btrfs_super_root(disk_super))
8127 		return 1;
8128 
8129 	features = btrfs_super_incompat_flags(disk_super);
8130 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8131 		mixed = 1;
8132 
8133 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8134 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8135 	if (ret)
8136 		goto out;
8137 
8138 	if (mixed) {
8139 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8140 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8141 	} else {
8142 		flags = BTRFS_BLOCK_GROUP_METADATA;
8143 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8144 		if (ret)
8145 			goto out;
8146 
8147 		flags = BTRFS_BLOCK_GROUP_DATA;
8148 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8149 	}
8150 out:
8151 	return ret;
8152 }
8153 
8154 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8155 {
8156 	return unpin_extent_range(root, start, end);
8157 }
8158 
8159 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8160 			       u64 num_bytes, u64 *actual_bytes)
8161 {
8162 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8163 }
8164 
8165 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8166 {
8167 	struct btrfs_fs_info *fs_info = root->fs_info;
8168 	struct btrfs_block_group_cache *cache = NULL;
8169 	u64 group_trimmed;
8170 	u64 start;
8171 	u64 end;
8172 	u64 trimmed = 0;
8173 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8174 	int ret = 0;
8175 
8176 	/*
8177 	 * try to trim all FS space, our block group may start from non-zero.
8178 	 */
8179 	if (range->len == total_bytes)
8180 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8181 	else
8182 		cache = btrfs_lookup_block_group(fs_info, range->start);
8183 
8184 	while (cache) {
8185 		if (cache->key.objectid >= (range->start + range->len)) {
8186 			btrfs_put_block_group(cache);
8187 			break;
8188 		}
8189 
8190 		start = max(range->start, cache->key.objectid);
8191 		end = min(range->start + range->len,
8192 				cache->key.objectid + cache->key.offset);
8193 
8194 		if (end - start >= range->minlen) {
8195 			if (!block_group_cache_done(cache)) {
8196 				ret = cache_block_group(cache, NULL, root, 0);
8197 				if (!ret)
8198 					wait_block_group_cache_done(cache);
8199 			}
8200 			ret = btrfs_trim_block_group(cache,
8201 						     &group_trimmed,
8202 						     start,
8203 						     end,
8204 						     range->minlen);
8205 
8206 			trimmed += group_trimmed;
8207 			if (ret) {
8208 				btrfs_put_block_group(cache);
8209 				break;
8210 			}
8211 		}
8212 
8213 		cache = next_block_group(fs_info->tree_root, cache);
8214 	}
8215 
8216 	range->len = trimmed;
8217 	return ret;
8218 }
8219