1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "compat.h" 29 #include "hash.h" 30 #include "ctree.h" 31 #include "disk-io.h" 32 #include "print-tree.h" 33 #include "transaction.h" 34 #include "volumes.h" 35 #include "raid56.h" 36 #include "locking.h" 37 #include "free-space-cache.h" 38 #include "math.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op); 85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 86 struct extent_buffer *leaf, 87 struct btrfs_extent_item *ei); 88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 89 struct btrfs_root *root, 90 u64 parent, u64 root_objectid, 91 u64 flags, u64 owner, u64 offset, 92 struct btrfs_key *ins, int ref_mod); 93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 94 struct btrfs_root *root, 95 u64 parent, u64 root_objectid, 96 u64 flags, struct btrfs_disk_key *key, 97 int level, struct btrfs_key *ins); 98 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 99 struct btrfs_root *extent_root, u64 flags, 100 int force); 101 static int find_next_key(struct btrfs_path *path, int level, 102 struct btrfs_key *key); 103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 104 int dump_block_groups); 105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 106 u64 num_bytes, int reserve); 107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 108 u64 num_bytes); 109 int btrfs_pin_extent(struct btrfs_root *root, 110 u64 bytenr, u64 num_bytes, int reserved); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_root *root, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&root->fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE, GFP_NOFS); 232 set_extent_bits(&root->fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&root->fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE, GFP_NOFS); 247 clear_extent_bits(&root->fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE, GFP_NOFS); 249 } 250 251 static int exclude_super_stripes(struct btrfs_root *root, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 271 cache->key.objectid, bytenr, 272 0, &logical, &nr, &stripe_len); 273 if (ret) 274 return ret; 275 276 while (nr--) { 277 u64 start, len; 278 279 if (logical[nr] > cache->key.objectid + 280 cache->key.offset) 281 continue; 282 283 if (logical[nr] + stripe_len <= cache->key.objectid) 284 continue; 285 286 start = logical[nr]; 287 if (start < cache->key.objectid) { 288 start = cache->key.objectid; 289 len = (logical[nr] + stripe_len) - start; 290 } else { 291 len = min_t(u64, stripe_len, 292 cache->key.objectid + 293 cache->key.offset - start); 294 } 295 296 cache->bytes_super += len; 297 ret = add_excluded_extent(root, start, len); 298 if (ret) { 299 kfree(logical); 300 return ret; 301 } 302 } 303 304 kfree(logical); 305 } 306 return 0; 307 } 308 309 static struct btrfs_caching_control * 310 get_caching_control(struct btrfs_block_group_cache *cache) 311 { 312 struct btrfs_caching_control *ctl; 313 314 spin_lock(&cache->lock); 315 if (cache->cached != BTRFS_CACHE_STARTED) { 316 spin_unlock(&cache->lock); 317 return NULL; 318 } 319 320 /* We're loading it the fast way, so we don't have a caching_ctl. */ 321 if (!cache->caching_ctl) { 322 spin_unlock(&cache->lock); 323 return NULL; 324 } 325 326 ctl = cache->caching_ctl; 327 atomic_inc(&ctl->count); 328 spin_unlock(&cache->lock); 329 return ctl; 330 } 331 332 static void put_caching_control(struct btrfs_caching_control *ctl) 333 { 334 if (atomic_dec_and_test(&ctl->count)) 335 kfree(ctl); 336 } 337 338 /* 339 * this is only called by cache_block_group, since we could have freed extents 340 * we need to check the pinned_extents for any extents that can't be used yet 341 * since their free space will be released as soon as the transaction commits. 342 */ 343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 344 struct btrfs_fs_info *info, u64 start, u64 end) 345 { 346 u64 extent_start, extent_end, size, total_added = 0; 347 int ret; 348 349 while (start < end) { 350 ret = find_first_extent_bit(info->pinned_extents, start, 351 &extent_start, &extent_end, 352 EXTENT_DIRTY | EXTENT_UPTODATE, 353 NULL); 354 if (ret) 355 break; 356 357 if (extent_start <= start) { 358 start = extent_end + 1; 359 } else if (extent_start > start && extent_start < end) { 360 size = extent_start - start; 361 total_added += size; 362 ret = btrfs_add_free_space(block_group, start, 363 size); 364 BUG_ON(ret); /* -ENOMEM or logic error */ 365 start = extent_end + 1; 366 } else { 367 break; 368 } 369 } 370 371 if (start < end) { 372 size = end - start; 373 total_added += size; 374 ret = btrfs_add_free_space(block_group, start, size); 375 BUG_ON(ret); /* -ENOMEM or logic error */ 376 } 377 378 return total_added; 379 } 380 381 static noinline void caching_thread(struct btrfs_work *work) 382 { 383 struct btrfs_block_group_cache *block_group; 384 struct btrfs_fs_info *fs_info; 385 struct btrfs_caching_control *caching_ctl; 386 struct btrfs_root *extent_root; 387 struct btrfs_path *path; 388 struct extent_buffer *leaf; 389 struct btrfs_key key; 390 u64 total_found = 0; 391 u64 last = 0; 392 u32 nritems; 393 int ret = -ENOMEM; 394 395 caching_ctl = container_of(work, struct btrfs_caching_control, work); 396 block_group = caching_ctl->block_group; 397 fs_info = block_group->fs_info; 398 extent_root = fs_info->extent_root; 399 400 path = btrfs_alloc_path(); 401 if (!path) 402 goto out; 403 404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 405 406 /* 407 * We don't want to deadlock with somebody trying to allocate a new 408 * extent for the extent root while also trying to search the extent 409 * root to add free space. So we skip locking and search the commit 410 * root, since its read-only 411 */ 412 path->skip_locking = 1; 413 path->search_commit_root = 1; 414 path->reada = 1; 415 416 key.objectid = last; 417 key.offset = 0; 418 key.type = BTRFS_EXTENT_ITEM_KEY; 419 again: 420 mutex_lock(&caching_ctl->mutex); 421 /* need to make sure the commit_root doesn't disappear */ 422 down_read(&fs_info->extent_commit_sem); 423 424 next: 425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 426 if (ret < 0) 427 goto err; 428 429 leaf = path->nodes[0]; 430 nritems = btrfs_header_nritems(leaf); 431 432 while (1) { 433 if (btrfs_fs_closing(fs_info) > 1) { 434 last = (u64)-1; 435 break; 436 } 437 438 if (path->slots[0] < nritems) { 439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 440 } else { 441 ret = find_next_key(path, 0, &key); 442 if (ret) 443 break; 444 445 if (need_resched()) { 446 caching_ctl->progress = last; 447 btrfs_release_path(path); 448 up_read(&fs_info->extent_commit_sem); 449 mutex_unlock(&caching_ctl->mutex); 450 cond_resched(); 451 goto again; 452 } 453 454 ret = btrfs_next_leaf(extent_root, path); 455 if (ret < 0) 456 goto err; 457 if (ret) 458 break; 459 leaf = path->nodes[0]; 460 nritems = btrfs_header_nritems(leaf); 461 continue; 462 } 463 464 if (key.objectid < last) { 465 key.objectid = last; 466 key.offset = 0; 467 key.type = BTRFS_EXTENT_ITEM_KEY; 468 469 caching_ctl->progress = last; 470 btrfs_release_path(path); 471 goto next; 472 } 473 474 if (key.objectid < block_group->key.objectid) { 475 path->slots[0]++; 476 continue; 477 } 478 479 if (key.objectid >= block_group->key.objectid + 480 block_group->key.offset) 481 break; 482 483 if (key.type == BTRFS_EXTENT_ITEM_KEY || 484 key.type == BTRFS_METADATA_ITEM_KEY) { 485 total_found += add_new_free_space(block_group, 486 fs_info, last, 487 key.objectid); 488 if (key.type == BTRFS_METADATA_ITEM_KEY) 489 last = key.objectid + 490 fs_info->tree_root->leafsize; 491 else 492 last = key.objectid + key.offset; 493 494 if (total_found > (1024 * 1024 * 2)) { 495 total_found = 0; 496 wake_up(&caching_ctl->wait); 497 } 498 } 499 path->slots[0]++; 500 } 501 ret = 0; 502 503 total_found += add_new_free_space(block_group, fs_info, last, 504 block_group->key.objectid + 505 block_group->key.offset); 506 caching_ctl->progress = (u64)-1; 507 508 spin_lock(&block_group->lock); 509 block_group->caching_ctl = NULL; 510 block_group->cached = BTRFS_CACHE_FINISHED; 511 spin_unlock(&block_group->lock); 512 513 err: 514 btrfs_free_path(path); 515 up_read(&fs_info->extent_commit_sem); 516 517 free_excluded_extents(extent_root, block_group); 518 519 mutex_unlock(&caching_ctl->mutex); 520 out: 521 if (ret) { 522 spin_lock(&block_group->lock); 523 block_group->caching_ctl = NULL; 524 block_group->cached = BTRFS_CACHE_ERROR; 525 spin_unlock(&block_group->lock); 526 } 527 wake_up(&caching_ctl->wait); 528 529 put_caching_control(caching_ctl); 530 btrfs_put_block_group(block_group); 531 } 532 533 static int cache_block_group(struct btrfs_block_group_cache *cache, 534 int load_cache_only) 535 { 536 DEFINE_WAIT(wait); 537 struct btrfs_fs_info *fs_info = cache->fs_info; 538 struct btrfs_caching_control *caching_ctl; 539 int ret = 0; 540 541 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 542 if (!caching_ctl) 543 return -ENOMEM; 544 545 INIT_LIST_HEAD(&caching_ctl->list); 546 mutex_init(&caching_ctl->mutex); 547 init_waitqueue_head(&caching_ctl->wait); 548 caching_ctl->block_group = cache; 549 caching_ctl->progress = cache->key.objectid; 550 atomic_set(&caching_ctl->count, 1); 551 caching_ctl->work.func = caching_thread; 552 553 spin_lock(&cache->lock); 554 /* 555 * This should be a rare occasion, but this could happen I think in the 556 * case where one thread starts to load the space cache info, and then 557 * some other thread starts a transaction commit which tries to do an 558 * allocation while the other thread is still loading the space cache 559 * info. The previous loop should have kept us from choosing this block 560 * group, but if we've moved to the state where we will wait on caching 561 * block groups we need to first check if we're doing a fast load here, 562 * so we can wait for it to finish, otherwise we could end up allocating 563 * from a block group who's cache gets evicted for one reason or 564 * another. 565 */ 566 while (cache->cached == BTRFS_CACHE_FAST) { 567 struct btrfs_caching_control *ctl; 568 569 ctl = cache->caching_ctl; 570 atomic_inc(&ctl->count); 571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 572 spin_unlock(&cache->lock); 573 574 schedule(); 575 576 finish_wait(&ctl->wait, &wait); 577 put_caching_control(ctl); 578 spin_lock(&cache->lock); 579 } 580 581 if (cache->cached != BTRFS_CACHE_NO) { 582 spin_unlock(&cache->lock); 583 kfree(caching_ctl); 584 return 0; 585 } 586 WARN_ON(cache->caching_ctl); 587 cache->caching_ctl = caching_ctl; 588 cache->cached = BTRFS_CACHE_FAST; 589 spin_unlock(&cache->lock); 590 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 592 ret = load_free_space_cache(fs_info, cache); 593 594 spin_lock(&cache->lock); 595 if (ret == 1) { 596 cache->caching_ctl = NULL; 597 cache->cached = BTRFS_CACHE_FINISHED; 598 cache->last_byte_to_unpin = (u64)-1; 599 } else { 600 if (load_cache_only) { 601 cache->caching_ctl = NULL; 602 cache->cached = BTRFS_CACHE_NO; 603 } else { 604 cache->cached = BTRFS_CACHE_STARTED; 605 } 606 } 607 spin_unlock(&cache->lock); 608 wake_up(&caching_ctl->wait); 609 if (ret == 1) { 610 put_caching_control(caching_ctl); 611 free_excluded_extents(fs_info->extent_root, cache); 612 return 0; 613 } 614 } else { 615 /* 616 * We are not going to do the fast caching, set cached to the 617 * appropriate value and wakeup any waiters. 618 */ 619 spin_lock(&cache->lock); 620 if (load_cache_only) { 621 cache->caching_ctl = NULL; 622 cache->cached = BTRFS_CACHE_NO; 623 } else { 624 cache->cached = BTRFS_CACHE_STARTED; 625 } 626 spin_unlock(&cache->lock); 627 wake_up(&caching_ctl->wait); 628 } 629 630 if (load_cache_only) { 631 put_caching_control(caching_ctl); 632 return 0; 633 } 634 635 down_write(&fs_info->extent_commit_sem); 636 atomic_inc(&caching_ctl->count); 637 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 638 up_write(&fs_info->extent_commit_sem); 639 640 btrfs_get_block_group(cache); 641 642 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 643 644 return ret; 645 } 646 647 /* 648 * return the block group that starts at or after bytenr 649 */ 650 static struct btrfs_block_group_cache * 651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 652 { 653 struct btrfs_block_group_cache *cache; 654 655 cache = block_group_cache_tree_search(info, bytenr, 0); 656 657 return cache; 658 } 659 660 /* 661 * return the block group that contains the given bytenr 662 */ 663 struct btrfs_block_group_cache *btrfs_lookup_block_group( 664 struct btrfs_fs_info *info, 665 u64 bytenr) 666 { 667 struct btrfs_block_group_cache *cache; 668 669 cache = block_group_cache_tree_search(info, bytenr, 1); 670 671 return cache; 672 } 673 674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 675 u64 flags) 676 { 677 struct list_head *head = &info->space_info; 678 struct btrfs_space_info *found; 679 680 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 681 682 rcu_read_lock(); 683 list_for_each_entry_rcu(found, head, list) { 684 if (found->flags & flags) { 685 rcu_read_unlock(); 686 return found; 687 } 688 } 689 rcu_read_unlock(); 690 return NULL; 691 } 692 693 /* 694 * after adding space to the filesystem, we need to clear the full flags 695 * on all the space infos. 696 */ 697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 698 { 699 struct list_head *head = &info->space_info; 700 struct btrfs_space_info *found; 701 702 rcu_read_lock(); 703 list_for_each_entry_rcu(found, head, list) 704 found->full = 0; 705 rcu_read_unlock(); 706 } 707 708 /* simple helper to search for an existing extent at a given offset */ 709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 710 { 711 int ret; 712 struct btrfs_key key; 713 struct btrfs_path *path; 714 715 path = btrfs_alloc_path(); 716 if (!path) 717 return -ENOMEM; 718 719 key.objectid = start; 720 key.offset = len; 721 key.type = BTRFS_EXTENT_ITEM_KEY; 722 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 723 0, 0); 724 if (ret > 0) { 725 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 726 if (key.objectid == start && 727 key.type == BTRFS_METADATA_ITEM_KEY) 728 ret = 0; 729 } 730 btrfs_free_path(path); 731 return ret; 732 } 733 734 /* 735 * helper function to lookup reference count and flags of a tree block. 736 * 737 * the head node for delayed ref is used to store the sum of all the 738 * reference count modifications queued up in the rbtree. the head 739 * node may also store the extent flags to set. This way you can check 740 * to see what the reference count and extent flags would be if all of 741 * the delayed refs are not processed. 742 */ 743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 744 struct btrfs_root *root, u64 bytenr, 745 u64 offset, int metadata, u64 *refs, u64 *flags) 746 { 747 struct btrfs_delayed_ref_head *head; 748 struct btrfs_delayed_ref_root *delayed_refs; 749 struct btrfs_path *path; 750 struct btrfs_extent_item *ei; 751 struct extent_buffer *leaf; 752 struct btrfs_key key; 753 u32 item_size; 754 u64 num_refs; 755 u64 extent_flags; 756 int ret; 757 758 /* 759 * If we don't have skinny metadata, don't bother doing anything 760 * different 761 */ 762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 763 offset = root->leafsize; 764 metadata = 0; 765 } 766 767 path = btrfs_alloc_path(); 768 if (!path) 769 return -ENOMEM; 770 771 if (metadata) { 772 key.objectid = bytenr; 773 key.type = BTRFS_METADATA_ITEM_KEY; 774 key.offset = offset; 775 } else { 776 key.objectid = bytenr; 777 key.type = BTRFS_EXTENT_ITEM_KEY; 778 key.offset = offset; 779 } 780 781 if (!trans) { 782 path->skip_locking = 1; 783 path->search_commit_root = 1; 784 } 785 again: 786 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 787 &key, path, 0, 0); 788 if (ret < 0) 789 goto out_free; 790 791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 792 metadata = 0; 793 if (path->slots[0]) { 794 path->slots[0]--; 795 btrfs_item_key_to_cpu(path->nodes[0], &key, 796 path->slots[0]); 797 if (key.objectid == bytenr && 798 key.type == BTRFS_EXTENT_ITEM_KEY && 799 key.offset == root->leafsize) 800 ret = 0; 801 } 802 if (ret) { 803 key.objectid = bytenr; 804 key.type = BTRFS_EXTENT_ITEM_KEY; 805 key.offset = root->leafsize; 806 btrfs_release_path(path); 807 goto again; 808 } 809 } 810 811 if (ret == 0) { 812 leaf = path->nodes[0]; 813 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 814 if (item_size >= sizeof(*ei)) { 815 ei = btrfs_item_ptr(leaf, path->slots[0], 816 struct btrfs_extent_item); 817 num_refs = btrfs_extent_refs(leaf, ei); 818 extent_flags = btrfs_extent_flags(leaf, ei); 819 } else { 820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 821 struct btrfs_extent_item_v0 *ei0; 822 BUG_ON(item_size != sizeof(*ei0)); 823 ei0 = btrfs_item_ptr(leaf, path->slots[0], 824 struct btrfs_extent_item_v0); 825 num_refs = btrfs_extent_refs_v0(leaf, ei0); 826 /* FIXME: this isn't correct for data */ 827 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 828 #else 829 BUG(); 830 #endif 831 } 832 BUG_ON(num_refs == 0); 833 } else { 834 num_refs = 0; 835 extent_flags = 0; 836 ret = 0; 837 } 838 839 if (!trans) 840 goto out; 841 842 delayed_refs = &trans->transaction->delayed_refs; 843 spin_lock(&delayed_refs->lock); 844 head = btrfs_find_delayed_ref_head(trans, bytenr); 845 if (head) { 846 if (!mutex_trylock(&head->mutex)) { 847 atomic_inc(&head->node.refs); 848 spin_unlock(&delayed_refs->lock); 849 850 btrfs_release_path(path); 851 852 /* 853 * Mutex was contended, block until it's released and try 854 * again 855 */ 856 mutex_lock(&head->mutex); 857 mutex_unlock(&head->mutex); 858 btrfs_put_delayed_ref(&head->node); 859 goto again; 860 } 861 if (head->extent_op && head->extent_op->update_flags) 862 extent_flags |= head->extent_op->flags_to_set; 863 else 864 BUG_ON(num_refs == 0); 865 866 num_refs += head->node.ref_mod; 867 mutex_unlock(&head->mutex); 868 } 869 spin_unlock(&delayed_refs->lock); 870 out: 871 WARN_ON(num_refs == 0); 872 if (refs) 873 *refs = num_refs; 874 if (flags) 875 *flags = extent_flags; 876 out_free: 877 btrfs_free_path(path); 878 return ret; 879 } 880 881 /* 882 * Back reference rules. Back refs have three main goals: 883 * 884 * 1) differentiate between all holders of references to an extent so that 885 * when a reference is dropped we can make sure it was a valid reference 886 * before freeing the extent. 887 * 888 * 2) Provide enough information to quickly find the holders of an extent 889 * if we notice a given block is corrupted or bad. 890 * 891 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 892 * maintenance. This is actually the same as #2, but with a slightly 893 * different use case. 894 * 895 * There are two kinds of back refs. The implicit back refs is optimized 896 * for pointers in non-shared tree blocks. For a given pointer in a block, 897 * back refs of this kind provide information about the block's owner tree 898 * and the pointer's key. These information allow us to find the block by 899 * b-tree searching. The full back refs is for pointers in tree blocks not 900 * referenced by their owner trees. The location of tree block is recorded 901 * in the back refs. Actually the full back refs is generic, and can be 902 * used in all cases the implicit back refs is used. The major shortcoming 903 * of the full back refs is its overhead. Every time a tree block gets 904 * COWed, we have to update back refs entry for all pointers in it. 905 * 906 * For a newly allocated tree block, we use implicit back refs for 907 * pointers in it. This means most tree related operations only involve 908 * implicit back refs. For a tree block created in old transaction, the 909 * only way to drop a reference to it is COW it. So we can detect the 910 * event that tree block loses its owner tree's reference and do the 911 * back refs conversion. 912 * 913 * When a tree block is COW'd through a tree, there are four cases: 914 * 915 * The reference count of the block is one and the tree is the block's 916 * owner tree. Nothing to do in this case. 917 * 918 * The reference count of the block is one and the tree is not the 919 * block's owner tree. In this case, full back refs is used for pointers 920 * in the block. Remove these full back refs, add implicit back refs for 921 * every pointers in the new block. 922 * 923 * The reference count of the block is greater than one and the tree is 924 * the block's owner tree. In this case, implicit back refs is used for 925 * pointers in the block. Add full back refs for every pointers in the 926 * block, increase lower level extents' reference counts. The original 927 * implicit back refs are entailed to the new block. 928 * 929 * The reference count of the block is greater than one and the tree is 930 * not the block's owner tree. Add implicit back refs for every pointer in 931 * the new block, increase lower level extents' reference count. 932 * 933 * Back Reference Key composing: 934 * 935 * The key objectid corresponds to the first byte in the extent, 936 * The key type is used to differentiate between types of back refs. 937 * There are different meanings of the key offset for different types 938 * of back refs. 939 * 940 * File extents can be referenced by: 941 * 942 * - multiple snapshots, subvolumes, or different generations in one subvol 943 * - different files inside a single subvolume 944 * - different offsets inside a file (bookend extents in file.c) 945 * 946 * The extent ref structure for the implicit back refs has fields for: 947 * 948 * - Objectid of the subvolume root 949 * - objectid of the file holding the reference 950 * - original offset in the file 951 * - how many bookend extents 952 * 953 * The key offset for the implicit back refs is hash of the first 954 * three fields. 955 * 956 * The extent ref structure for the full back refs has field for: 957 * 958 * - number of pointers in the tree leaf 959 * 960 * The key offset for the implicit back refs is the first byte of 961 * the tree leaf 962 * 963 * When a file extent is allocated, The implicit back refs is used. 964 * the fields are filled in: 965 * 966 * (root_key.objectid, inode objectid, offset in file, 1) 967 * 968 * When a file extent is removed file truncation, we find the 969 * corresponding implicit back refs and check the following fields: 970 * 971 * (btrfs_header_owner(leaf), inode objectid, offset in file) 972 * 973 * Btree extents can be referenced by: 974 * 975 * - Different subvolumes 976 * 977 * Both the implicit back refs and the full back refs for tree blocks 978 * only consist of key. The key offset for the implicit back refs is 979 * objectid of block's owner tree. The key offset for the full back refs 980 * is the first byte of parent block. 981 * 982 * When implicit back refs is used, information about the lowest key and 983 * level of the tree block are required. These information are stored in 984 * tree block info structure. 985 */ 986 987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 989 struct btrfs_root *root, 990 struct btrfs_path *path, 991 u64 owner, u32 extra_size) 992 { 993 struct btrfs_extent_item *item; 994 struct btrfs_extent_item_v0 *ei0; 995 struct btrfs_extent_ref_v0 *ref0; 996 struct btrfs_tree_block_info *bi; 997 struct extent_buffer *leaf; 998 struct btrfs_key key; 999 struct btrfs_key found_key; 1000 u32 new_size = sizeof(*item); 1001 u64 refs; 1002 int ret; 1003 1004 leaf = path->nodes[0]; 1005 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1006 1007 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1008 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1009 struct btrfs_extent_item_v0); 1010 refs = btrfs_extent_refs_v0(leaf, ei0); 1011 1012 if (owner == (u64)-1) { 1013 while (1) { 1014 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1015 ret = btrfs_next_leaf(root, path); 1016 if (ret < 0) 1017 return ret; 1018 BUG_ON(ret > 0); /* Corruption */ 1019 leaf = path->nodes[0]; 1020 } 1021 btrfs_item_key_to_cpu(leaf, &found_key, 1022 path->slots[0]); 1023 BUG_ON(key.objectid != found_key.objectid); 1024 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1025 path->slots[0]++; 1026 continue; 1027 } 1028 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1029 struct btrfs_extent_ref_v0); 1030 owner = btrfs_ref_objectid_v0(leaf, ref0); 1031 break; 1032 } 1033 } 1034 btrfs_release_path(path); 1035 1036 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1037 new_size += sizeof(*bi); 1038 1039 new_size -= sizeof(*ei0); 1040 ret = btrfs_search_slot(trans, root, &key, path, 1041 new_size + extra_size, 1); 1042 if (ret < 0) 1043 return ret; 1044 BUG_ON(ret); /* Corruption */ 1045 1046 btrfs_extend_item(root, path, new_size); 1047 1048 leaf = path->nodes[0]; 1049 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1050 btrfs_set_extent_refs(leaf, item, refs); 1051 /* FIXME: get real generation */ 1052 btrfs_set_extent_generation(leaf, item, 0); 1053 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1054 btrfs_set_extent_flags(leaf, item, 1055 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1056 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1057 bi = (struct btrfs_tree_block_info *)(item + 1); 1058 /* FIXME: get first key of the block */ 1059 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1060 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1061 } else { 1062 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1063 } 1064 btrfs_mark_buffer_dirty(leaf); 1065 return 0; 1066 } 1067 #endif 1068 1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1070 { 1071 u32 high_crc = ~(u32)0; 1072 u32 low_crc = ~(u32)0; 1073 __le64 lenum; 1074 1075 lenum = cpu_to_le64(root_objectid); 1076 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1077 lenum = cpu_to_le64(owner); 1078 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1079 lenum = cpu_to_le64(offset); 1080 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1081 1082 return ((u64)high_crc << 31) ^ (u64)low_crc; 1083 } 1084 1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1086 struct btrfs_extent_data_ref *ref) 1087 { 1088 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1089 btrfs_extent_data_ref_objectid(leaf, ref), 1090 btrfs_extent_data_ref_offset(leaf, ref)); 1091 } 1092 1093 static int match_extent_data_ref(struct extent_buffer *leaf, 1094 struct btrfs_extent_data_ref *ref, 1095 u64 root_objectid, u64 owner, u64 offset) 1096 { 1097 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1098 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1099 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1100 return 0; 1101 return 1; 1102 } 1103 1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1105 struct btrfs_root *root, 1106 struct btrfs_path *path, 1107 u64 bytenr, u64 parent, 1108 u64 root_objectid, 1109 u64 owner, u64 offset) 1110 { 1111 struct btrfs_key key; 1112 struct btrfs_extent_data_ref *ref; 1113 struct extent_buffer *leaf; 1114 u32 nritems; 1115 int ret; 1116 int recow; 1117 int err = -ENOENT; 1118 1119 key.objectid = bytenr; 1120 if (parent) { 1121 key.type = BTRFS_SHARED_DATA_REF_KEY; 1122 key.offset = parent; 1123 } else { 1124 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1125 key.offset = hash_extent_data_ref(root_objectid, 1126 owner, offset); 1127 } 1128 again: 1129 recow = 0; 1130 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1131 if (ret < 0) { 1132 err = ret; 1133 goto fail; 1134 } 1135 1136 if (parent) { 1137 if (!ret) 1138 return 0; 1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1140 key.type = BTRFS_EXTENT_REF_V0_KEY; 1141 btrfs_release_path(path); 1142 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1143 if (ret < 0) { 1144 err = ret; 1145 goto fail; 1146 } 1147 if (!ret) 1148 return 0; 1149 #endif 1150 goto fail; 1151 } 1152 1153 leaf = path->nodes[0]; 1154 nritems = btrfs_header_nritems(leaf); 1155 while (1) { 1156 if (path->slots[0] >= nritems) { 1157 ret = btrfs_next_leaf(root, path); 1158 if (ret < 0) 1159 err = ret; 1160 if (ret) 1161 goto fail; 1162 1163 leaf = path->nodes[0]; 1164 nritems = btrfs_header_nritems(leaf); 1165 recow = 1; 1166 } 1167 1168 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1169 if (key.objectid != bytenr || 1170 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1171 goto fail; 1172 1173 ref = btrfs_item_ptr(leaf, path->slots[0], 1174 struct btrfs_extent_data_ref); 1175 1176 if (match_extent_data_ref(leaf, ref, root_objectid, 1177 owner, offset)) { 1178 if (recow) { 1179 btrfs_release_path(path); 1180 goto again; 1181 } 1182 err = 0; 1183 break; 1184 } 1185 path->slots[0]++; 1186 } 1187 fail: 1188 return err; 1189 } 1190 1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1192 struct btrfs_root *root, 1193 struct btrfs_path *path, 1194 u64 bytenr, u64 parent, 1195 u64 root_objectid, u64 owner, 1196 u64 offset, int refs_to_add) 1197 { 1198 struct btrfs_key key; 1199 struct extent_buffer *leaf; 1200 u32 size; 1201 u32 num_refs; 1202 int ret; 1203 1204 key.objectid = bytenr; 1205 if (parent) { 1206 key.type = BTRFS_SHARED_DATA_REF_KEY; 1207 key.offset = parent; 1208 size = sizeof(struct btrfs_shared_data_ref); 1209 } else { 1210 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1211 key.offset = hash_extent_data_ref(root_objectid, 1212 owner, offset); 1213 size = sizeof(struct btrfs_extent_data_ref); 1214 } 1215 1216 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1217 if (ret && ret != -EEXIST) 1218 goto fail; 1219 1220 leaf = path->nodes[0]; 1221 if (parent) { 1222 struct btrfs_shared_data_ref *ref; 1223 ref = btrfs_item_ptr(leaf, path->slots[0], 1224 struct btrfs_shared_data_ref); 1225 if (ret == 0) { 1226 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1227 } else { 1228 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1229 num_refs += refs_to_add; 1230 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1231 } 1232 } else { 1233 struct btrfs_extent_data_ref *ref; 1234 while (ret == -EEXIST) { 1235 ref = btrfs_item_ptr(leaf, path->slots[0], 1236 struct btrfs_extent_data_ref); 1237 if (match_extent_data_ref(leaf, ref, root_objectid, 1238 owner, offset)) 1239 break; 1240 btrfs_release_path(path); 1241 key.offset++; 1242 ret = btrfs_insert_empty_item(trans, root, path, &key, 1243 size); 1244 if (ret && ret != -EEXIST) 1245 goto fail; 1246 1247 leaf = path->nodes[0]; 1248 } 1249 ref = btrfs_item_ptr(leaf, path->slots[0], 1250 struct btrfs_extent_data_ref); 1251 if (ret == 0) { 1252 btrfs_set_extent_data_ref_root(leaf, ref, 1253 root_objectid); 1254 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1255 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1256 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1257 } else { 1258 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1259 num_refs += refs_to_add; 1260 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1261 } 1262 } 1263 btrfs_mark_buffer_dirty(leaf); 1264 ret = 0; 1265 fail: 1266 btrfs_release_path(path); 1267 return ret; 1268 } 1269 1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1271 struct btrfs_root *root, 1272 struct btrfs_path *path, 1273 int refs_to_drop) 1274 { 1275 struct btrfs_key key; 1276 struct btrfs_extent_data_ref *ref1 = NULL; 1277 struct btrfs_shared_data_ref *ref2 = NULL; 1278 struct extent_buffer *leaf; 1279 u32 num_refs = 0; 1280 int ret = 0; 1281 1282 leaf = path->nodes[0]; 1283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1284 1285 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1286 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1287 struct btrfs_extent_data_ref); 1288 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1289 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1290 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_shared_data_ref); 1292 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1294 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1295 struct btrfs_extent_ref_v0 *ref0; 1296 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1297 struct btrfs_extent_ref_v0); 1298 num_refs = btrfs_ref_count_v0(leaf, ref0); 1299 #endif 1300 } else { 1301 BUG(); 1302 } 1303 1304 BUG_ON(num_refs < refs_to_drop); 1305 num_refs -= refs_to_drop; 1306 1307 if (num_refs == 0) { 1308 ret = btrfs_del_item(trans, root, path); 1309 } else { 1310 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1311 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1312 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1313 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1315 else { 1316 struct btrfs_extent_ref_v0 *ref0; 1317 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1318 struct btrfs_extent_ref_v0); 1319 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1320 } 1321 #endif 1322 btrfs_mark_buffer_dirty(leaf); 1323 } 1324 return ret; 1325 } 1326 1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1328 struct btrfs_path *path, 1329 struct btrfs_extent_inline_ref *iref) 1330 { 1331 struct btrfs_key key; 1332 struct extent_buffer *leaf; 1333 struct btrfs_extent_data_ref *ref1; 1334 struct btrfs_shared_data_ref *ref2; 1335 u32 num_refs = 0; 1336 1337 leaf = path->nodes[0]; 1338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1339 if (iref) { 1340 if (btrfs_extent_inline_ref_type(leaf, iref) == 1341 BTRFS_EXTENT_DATA_REF_KEY) { 1342 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1344 } else { 1345 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1347 } 1348 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1349 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1350 struct btrfs_extent_data_ref); 1351 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1352 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1353 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_shared_data_ref); 1355 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1357 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1358 struct btrfs_extent_ref_v0 *ref0; 1359 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1360 struct btrfs_extent_ref_v0); 1361 num_refs = btrfs_ref_count_v0(leaf, ref0); 1362 #endif 1363 } else { 1364 WARN_ON(1); 1365 } 1366 return num_refs; 1367 } 1368 1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1370 struct btrfs_root *root, 1371 struct btrfs_path *path, 1372 u64 bytenr, u64 parent, 1373 u64 root_objectid) 1374 { 1375 struct btrfs_key key; 1376 int ret; 1377 1378 key.objectid = bytenr; 1379 if (parent) { 1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1381 key.offset = parent; 1382 } else { 1383 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1384 key.offset = root_objectid; 1385 } 1386 1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1388 if (ret > 0) 1389 ret = -ENOENT; 1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1391 if (ret == -ENOENT && parent) { 1392 btrfs_release_path(path); 1393 key.type = BTRFS_EXTENT_REF_V0_KEY; 1394 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1395 if (ret > 0) 1396 ret = -ENOENT; 1397 } 1398 #endif 1399 return ret; 1400 } 1401 1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1403 struct btrfs_root *root, 1404 struct btrfs_path *path, 1405 u64 bytenr, u64 parent, 1406 u64 root_objectid) 1407 { 1408 struct btrfs_key key; 1409 int ret; 1410 1411 key.objectid = bytenr; 1412 if (parent) { 1413 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1414 key.offset = parent; 1415 } else { 1416 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1417 key.offset = root_objectid; 1418 } 1419 1420 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1421 btrfs_release_path(path); 1422 return ret; 1423 } 1424 1425 static inline int extent_ref_type(u64 parent, u64 owner) 1426 { 1427 int type; 1428 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1429 if (parent > 0) 1430 type = BTRFS_SHARED_BLOCK_REF_KEY; 1431 else 1432 type = BTRFS_TREE_BLOCK_REF_KEY; 1433 } else { 1434 if (parent > 0) 1435 type = BTRFS_SHARED_DATA_REF_KEY; 1436 else 1437 type = BTRFS_EXTENT_DATA_REF_KEY; 1438 } 1439 return type; 1440 } 1441 1442 static int find_next_key(struct btrfs_path *path, int level, 1443 struct btrfs_key *key) 1444 1445 { 1446 for (; level < BTRFS_MAX_LEVEL; level++) { 1447 if (!path->nodes[level]) 1448 break; 1449 if (path->slots[level] + 1 >= 1450 btrfs_header_nritems(path->nodes[level])) 1451 continue; 1452 if (level == 0) 1453 btrfs_item_key_to_cpu(path->nodes[level], key, 1454 path->slots[level] + 1); 1455 else 1456 btrfs_node_key_to_cpu(path->nodes[level], key, 1457 path->slots[level] + 1); 1458 return 0; 1459 } 1460 return 1; 1461 } 1462 1463 /* 1464 * look for inline back ref. if back ref is found, *ref_ret is set 1465 * to the address of inline back ref, and 0 is returned. 1466 * 1467 * if back ref isn't found, *ref_ret is set to the address where it 1468 * should be inserted, and -ENOENT is returned. 1469 * 1470 * if insert is true and there are too many inline back refs, the path 1471 * points to the extent item, and -EAGAIN is returned. 1472 * 1473 * NOTE: inline back refs are ordered in the same way that back ref 1474 * items in the tree are ordered. 1475 */ 1476 static noinline_for_stack 1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1478 struct btrfs_root *root, 1479 struct btrfs_path *path, 1480 struct btrfs_extent_inline_ref **ref_ret, 1481 u64 bytenr, u64 num_bytes, 1482 u64 parent, u64 root_objectid, 1483 u64 owner, u64 offset, int insert) 1484 { 1485 struct btrfs_key key; 1486 struct extent_buffer *leaf; 1487 struct btrfs_extent_item *ei; 1488 struct btrfs_extent_inline_ref *iref; 1489 u64 flags; 1490 u64 item_size; 1491 unsigned long ptr; 1492 unsigned long end; 1493 int extra_size; 1494 int type; 1495 int want; 1496 int ret; 1497 int err = 0; 1498 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1499 SKINNY_METADATA); 1500 1501 key.objectid = bytenr; 1502 key.type = BTRFS_EXTENT_ITEM_KEY; 1503 key.offset = num_bytes; 1504 1505 want = extent_ref_type(parent, owner); 1506 if (insert) { 1507 extra_size = btrfs_extent_inline_ref_size(want); 1508 path->keep_locks = 1; 1509 } else 1510 extra_size = -1; 1511 1512 /* 1513 * Owner is our parent level, so we can just add one to get the level 1514 * for the block we are interested in. 1515 */ 1516 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1517 key.type = BTRFS_METADATA_ITEM_KEY; 1518 key.offset = owner; 1519 } 1520 1521 again: 1522 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1523 if (ret < 0) { 1524 err = ret; 1525 goto out; 1526 } 1527 1528 /* 1529 * We may be a newly converted file system which still has the old fat 1530 * extent entries for metadata, so try and see if we have one of those. 1531 */ 1532 if (ret > 0 && skinny_metadata) { 1533 skinny_metadata = false; 1534 if (path->slots[0]) { 1535 path->slots[0]--; 1536 btrfs_item_key_to_cpu(path->nodes[0], &key, 1537 path->slots[0]); 1538 if (key.objectid == bytenr && 1539 key.type == BTRFS_EXTENT_ITEM_KEY && 1540 key.offset == num_bytes) 1541 ret = 0; 1542 } 1543 if (ret) { 1544 key.type = BTRFS_EXTENT_ITEM_KEY; 1545 key.offset = num_bytes; 1546 btrfs_release_path(path); 1547 goto again; 1548 } 1549 } 1550 1551 if (ret && !insert) { 1552 err = -ENOENT; 1553 goto out; 1554 } else if (ret) { 1555 err = -EIO; 1556 WARN_ON(1); 1557 goto out; 1558 } 1559 1560 leaf = path->nodes[0]; 1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1563 if (item_size < sizeof(*ei)) { 1564 if (!insert) { 1565 err = -ENOENT; 1566 goto out; 1567 } 1568 ret = convert_extent_item_v0(trans, root, path, owner, 1569 extra_size); 1570 if (ret < 0) { 1571 err = ret; 1572 goto out; 1573 } 1574 leaf = path->nodes[0]; 1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1576 } 1577 #endif 1578 BUG_ON(item_size < sizeof(*ei)); 1579 1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1581 flags = btrfs_extent_flags(leaf, ei); 1582 1583 ptr = (unsigned long)(ei + 1); 1584 end = (unsigned long)ei + item_size; 1585 1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1587 ptr += sizeof(struct btrfs_tree_block_info); 1588 BUG_ON(ptr > end); 1589 } 1590 1591 err = -ENOENT; 1592 while (1) { 1593 if (ptr >= end) { 1594 WARN_ON(ptr > end); 1595 break; 1596 } 1597 iref = (struct btrfs_extent_inline_ref *)ptr; 1598 type = btrfs_extent_inline_ref_type(leaf, iref); 1599 if (want < type) 1600 break; 1601 if (want > type) { 1602 ptr += btrfs_extent_inline_ref_size(type); 1603 continue; 1604 } 1605 1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1607 struct btrfs_extent_data_ref *dref; 1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1609 if (match_extent_data_ref(leaf, dref, root_objectid, 1610 owner, offset)) { 1611 err = 0; 1612 break; 1613 } 1614 if (hash_extent_data_ref_item(leaf, dref) < 1615 hash_extent_data_ref(root_objectid, owner, offset)) 1616 break; 1617 } else { 1618 u64 ref_offset; 1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1620 if (parent > 0) { 1621 if (parent == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < parent) 1626 break; 1627 } else { 1628 if (root_objectid == ref_offset) { 1629 err = 0; 1630 break; 1631 } 1632 if (ref_offset < root_objectid) 1633 break; 1634 } 1635 } 1636 ptr += btrfs_extent_inline_ref_size(type); 1637 } 1638 if (err == -ENOENT && insert) { 1639 if (item_size + extra_size >= 1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1641 err = -EAGAIN; 1642 goto out; 1643 } 1644 /* 1645 * To add new inline back ref, we have to make sure 1646 * there is no corresponding back ref item. 1647 * For simplicity, we just do not add new inline back 1648 * ref if there is any kind of item for this block 1649 */ 1650 if (find_next_key(path, 0, &key) == 0 && 1651 key.objectid == bytenr && 1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1653 err = -EAGAIN; 1654 goto out; 1655 } 1656 } 1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1658 out: 1659 if (insert) { 1660 path->keep_locks = 0; 1661 btrfs_unlock_up_safe(path, 1); 1662 } 1663 return err; 1664 } 1665 1666 /* 1667 * helper to add new inline back ref 1668 */ 1669 static noinline_for_stack 1670 void setup_inline_extent_backref(struct btrfs_root *root, 1671 struct btrfs_path *path, 1672 struct btrfs_extent_inline_ref *iref, 1673 u64 parent, u64 root_objectid, 1674 u64 owner, u64 offset, int refs_to_add, 1675 struct btrfs_delayed_extent_op *extent_op) 1676 { 1677 struct extent_buffer *leaf; 1678 struct btrfs_extent_item *ei; 1679 unsigned long ptr; 1680 unsigned long end; 1681 unsigned long item_offset; 1682 u64 refs; 1683 int size; 1684 int type; 1685 1686 leaf = path->nodes[0]; 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 item_offset = (unsigned long)iref - (unsigned long)ei; 1689 1690 type = extent_ref_type(parent, owner); 1691 size = btrfs_extent_inline_ref_size(type); 1692 1693 btrfs_extend_item(root, path, size); 1694 1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1696 refs = btrfs_extent_refs(leaf, ei); 1697 refs += refs_to_add; 1698 btrfs_set_extent_refs(leaf, ei, refs); 1699 if (extent_op) 1700 __run_delayed_extent_op(extent_op, leaf, ei); 1701 1702 ptr = (unsigned long)ei + item_offset; 1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1704 if (ptr < end - size) 1705 memmove_extent_buffer(leaf, ptr + size, ptr, 1706 end - size - ptr); 1707 1708 iref = (struct btrfs_extent_inline_ref *)ptr; 1709 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1711 struct btrfs_extent_data_ref *dref; 1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1718 struct btrfs_shared_data_ref *sref; 1719 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1724 } else { 1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1726 } 1727 btrfs_mark_buffer_dirty(leaf); 1728 } 1729 1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1731 struct btrfs_root *root, 1732 struct btrfs_path *path, 1733 struct btrfs_extent_inline_ref **ref_ret, 1734 u64 bytenr, u64 num_bytes, u64 parent, 1735 u64 root_objectid, u64 owner, u64 offset) 1736 { 1737 int ret; 1738 1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1740 bytenr, num_bytes, parent, 1741 root_objectid, owner, offset, 0); 1742 if (ret != -ENOENT) 1743 return ret; 1744 1745 btrfs_release_path(path); 1746 *ref_ret = NULL; 1747 1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1750 root_objectid); 1751 } else { 1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1753 root_objectid, owner, offset); 1754 } 1755 return ret; 1756 } 1757 1758 /* 1759 * helper to update/remove inline back ref 1760 */ 1761 static noinline_for_stack 1762 void update_inline_extent_backref(struct btrfs_root *root, 1763 struct btrfs_path *path, 1764 struct btrfs_extent_inline_ref *iref, 1765 int refs_to_mod, 1766 struct btrfs_delayed_extent_op *extent_op) 1767 { 1768 struct extent_buffer *leaf; 1769 struct btrfs_extent_item *ei; 1770 struct btrfs_extent_data_ref *dref = NULL; 1771 struct btrfs_shared_data_ref *sref = NULL; 1772 unsigned long ptr; 1773 unsigned long end; 1774 u32 item_size; 1775 int size; 1776 int type; 1777 u64 refs; 1778 1779 leaf = path->nodes[0]; 1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1781 refs = btrfs_extent_refs(leaf, ei); 1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1783 refs += refs_to_mod; 1784 btrfs_set_extent_refs(leaf, ei, refs); 1785 if (extent_op) 1786 __run_delayed_extent_op(extent_op, leaf, ei); 1787 1788 type = btrfs_extent_inline_ref_type(leaf, iref); 1789 1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1792 refs = btrfs_extent_data_ref_count(leaf, dref); 1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1794 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1795 refs = btrfs_shared_data_ref_count(leaf, sref); 1796 } else { 1797 refs = 1; 1798 BUG_ON(refs_to_mod != -1); 1799 } 1800 1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1802 refs += refs_to_mod; 1803 1804 if (refs > 0) { 1805 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1806 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1807 else 1808 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1809 } else { 1810 size = btrfs_extent_inline_ref_size(type); 1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1812 ptr = (unsigned long)iref; 1813 end = (unsigned long)ei + item_size; 1814 if (ptr + size < end) 1815 memmove_extent_buffer(leaf, ptr, ptr + size, 1816 end - ptr - size); 1817 item_size -= size; 1818 btrfs_truncate_item(root, path, item_size, 1); 1819 } 1820 btrfs_mark_buffer_dirty(leaf); 1821 } 1822 1823 static noinline_for_stack 1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1825 struct btrfs_root *root, 1826 struct btrfs_path *path, 1827 u64 bytenr, u64 num_bytes, u64 parent, 1828 u64 root_objectid, u64 owner, 1829 u64 offset, int refs_to_add, 1830 struct btrfs_delayed_extent_op *extent_op) 1831 { 1832 struct btrfs_extent_inline_ref *iref; 1833 int ret; 1834 1835 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1836 bytenr, num_bytes, parent, 1837 root_objectid, owner, offset, 1); 1838 if (ret == 0) { 1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1840 update_inline_extent_backref(root, path, iref, 1841 refs_to_add, extent_op); 1842 } else if (ret == -ENOENT) { 1843 setup_inline_extent_backref(root, path, iref, parent, 1844 root_objectid, owner, offset, 1845 refs_to_add, extent_op); 1846 ret = 0; 1847 } 1848 return ret; 1849 } 1850 1851 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1852 struct btrfs_root *root, 1853 struct btrfs_path *path, 1854 u64 bytenr, u64 parent, u64 root_objectid, 1855 u64 owner, u64 offset, int refs_to_add) 1856 { 1857 int ret; 1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1859 BUG_ON(refs_to_add != 1); 1860 ret = insert_tree_block_ref(trans, root, path, bytenr, 1861 parent, root_objectid); 1862 } else { 1863 ret = insert_extent_data_ref(trans, root, path, bytenr, 1864 parent, root_objectid, 1865 owner, offset, refs_to_add); 1866 } 1867 return ret; 1868 } 1869 1870 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1871 struct btrfs_root *root, 1872 struct btrfs_path *path, 1873 struct btrfs_extent_inline_ref *iref, 1874 int refs_to_drop, int is_data) 1875 { 1876 int ret = 0; 1877 1878 BUG_ON(!is_data && refs_to_drop != 1); 1879 if (iref) { 1880 update_inline_extent_backref(root, path, iref, 1881 -refs_to_drop, NULL); 1882 } else if (is_data) { 1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1884 } else { 1885 ret = btrfs_del_item(trans, root, path); 1886 } 1887 return ret; 1888 } 1889 1890 static int btrfs_issue_discard(struct block_device *bdev, 1891 u64 start, u64 len) 1892 { 1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1894 } 1895 1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1897 u64 num_bytes, u64 *actual_bytes) 1898 { 1899 int ret; 1900 u64 discarded_bytes = 0; 1901 struct btrfs_bio *bbio = NULL; 1902 1903 1904 /* Tell the block device(s) that the sectors can be discarded */ 1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1906 bytenr, &num_bytes, &bbio, 0); 1907 /* Error condition is -ENOMEM */ 1908 if (!ret) { 1909 struct btrfs_bio_stripe *stripe = bbio->stripes; 1910 int i; 1911 1912 1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1914 if (!stripe->dev->can_discard) 1915 continue; 1916 1917 ret = btrfs_issue_discard(stripe->dev->bdev, 1918 stripe->physical, 1919 stripe->length); 1920 if (!ret) 1921 discarded_bytes += stripe->length; 1922 else if (ret != -EOPNOTSUPP) 1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1924 1925 /* 1926 * Just in case we get back EOPNOTSUPP for some reason, 1927 * just ignore the return value so we don't screw up 1928 * people calling discard_extent. 1929 */ 1930 ret = 0; 1931 } 1932 kfree(bbio); 1933 } 1934 1935 if (actual_bytes) 1936 *actual_bytes = discarded_bytes; 1937 1938 1939 if (ret == -EOPNOTSUPP) 1940 ret = 0; 1941 return ret; 1942 } 1943 1944 /* Can return -ENOMEM */ 1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1946 struct btrfs_root *root, 1947 u64 bytenr, u64 num_bytes, u64 parent, 1948 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1949 { 1950 int ret; 1951 struct btrfs_fs_info *fs_info = root->fs_info; 1952 1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1954 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1955 1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1958 num_bytes, 1959 parent, root_objectid, (int)owner, 1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1961 } else { 1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1963 num_bytes, 1964 parent, root_objectid, owner, offset, 1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1966 } 1967 return ret; 1968 } 1969 1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1971 struct btrfs_root *root, 1972 u64 bytenr, u64 num_bytes, 1973 u64 parent, u64 root_objectid, 1974 u64 owner, u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 u64 refs; 1981 int ret; 1982 int err = 0; 1983 1984 path = btrfs_alloc_path(); 1985 if (!path) 1986 return -ENOMEM; 1987 1988 path->reada = 1; 1989 path->leave_spinning = 1; 1990 /* this will setup the path even if it fails to insert the back ref */ 1991 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1992 path, bytenr, num_bytes, parent, 1993 root_objectid, owner, offset, 1994 refs_to_add, extent_op); 1995 if (ret == 0) 1996 goto out; 1997 1998 if (ret != -EAGAIN) { 1999 err = ret; 2000 goto out; 2001 } 2002 2003 leaf = path->nodes[0]; 2004 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2005 refs = btrfs_extent_refs(leaf, item); 2006 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2007 if (extent_op) 2008 __run_delayed_extent_op(extent_op, leaf, item); 2009 2010 btrfs_mark_buffer_dirty(leaf); 2011 btrfs_release_path(path); 2012 2013 path->reada = 1; 2014 path->leave_spinning = 1; 2015 2016 /* now insert the actual backref */ 2017 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2018 path, bytenr, parent, root_objectid, 2019 owner, offset, refs_to_add); 2020 if (ret) 2021 btrfs_abort_transaction(trans, root, ret); 2022 out: 2023 btrfs_free_path(path); 2024 return err; 2025 } 2026 2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2028 struct btrfs_root *root, 2029 struct btrfs_delayed_ref_node *node, 2030 struct btrfs_delayed_extent_op *extent_op, 2031 int insert_reserved) 2032 { 2033 int ret = 0; 2034 struct btrfs_delayed_data_ref *ref; 2035 struct btrfs_key ins; 2036 u64 parent = 0; 2037 u64 ref_root = 0; 2038 u64 flags = 0; 2039 2040 ins.objectid = node->bytenr; 2041 ins.offset = node->num_bytes; 2042 ins.type = BTRFS_EXTENT_ITEM_KEY; 2043 2044 ref = btrfs_delayed_node_to_data_ref(node); 2045 trace_run_delayed_data_ref(node, ref, node->action); 2046 2047 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2048 parent = ref->parent; 2049 else 2050 ref_root = ref->root; 2051 2052 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2053 if (extent_op) 2054 flags |= extent_op->flags_to_set; 2055 ret = alloc_reserved_file_extent(trans, root, 2056 parent, ref_root, flags, 2057 ref->objectid, ref->offset, 2058 &ins, node->ref_mod); 2059 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2060 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2061 node->num_bytes, parent, 2062 ref_root, ref->objectid, 2063 ref->offset, node->ref_mod, 2064 extent_op); 2065 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2066 ret = __btrfs_free_extent(trans, root, node->bytenr, 2067 node->num_bytes, parent, 2068 ref_root, ref->objectid, 2069 ref->offset, node->ref_mod, 2070 extent_op); 2071 } else { 2072 BUG(); 2073 } 2074 return ret; 2075 } 2076 2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2078 struct extent_buffer *leaf, 2079 struct btrfs_extent_item *ei) 2080 { 2081 u64 flags = btrfs_extent_flags(leaf, ei); 2082 if (extent_op->update_flags) { 2083 flags |= extent_op->flags_to_set; 2084 btrfs_set_extent_flags(leaf, ei, flags); 2085 } 2086 2087 if (extent_op->update_key) { 2088 struct btrfs_tree_block_info *bi; 2089 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2090 bi = (struct btrfs_tree_block_info *)(ei + 1); 2091 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2092 } 2093 } 2094 2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2096 struct btrfs_root *root, 2097 struct btrfs_delayed_ref_node *node, 2098 struct btrfs_delayed_extent_op *extent_op) 2099 { 2100 struct btrfs_key key; 2101 struct btrfs_path *path; 2102 struct btrfs_extent_item *ei; 2103 struct extent_buffer *leaf; 2104 u32 item_size; 2105 int ret; 2106 int err = 0; 2107 int metadata = !extent_op->is_data; 2108 2109 if (trans->aborted) 2110 return 0; 2111 2112 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2113 metadata = 0; 2114 2115 path = btrfs_alloc_path(); 2116 if (!path) 2117 return -ENOMEM; 2118 2119 key.objectid = node->bytenr; 2120 2121 if (metadata) { 2122 key.type = BTRFS_METADATA_ITEM_KEY; 2123 key.offset = extent_op->level; 2124 } else { 2125 key.type = BTRFS_EXTENT_ITEM_KEY; 2126 key.offset = node->num_bytes; 2127 } 2128 2129 again: 2130 path->reada = 1; 2131 path->leave_spinning = 1; 2132 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2133 path, 0, 1); 2134 if (ret < 0) { 2135 err = ret; 2136 goto out; 2137 } 2138 if (ret > 0) { 2139 if (metadata) { 2140 btrfs_release_path(path); 2141 metadata = 0; 2142 2143 key.offset = node->num_bytes; 2144 key.type = BTRFS_EXTENT_ITEM_KEY; 2145 goto again; 2146 } 2147 err = -EIO; 2148 goto out; 2149 } 2150 2151 leaf = path->nodes[0]; 2152 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2154 if (item_size < sizeof(*ei)) { 2155 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2156 path, (u64)-1, 0); 2157 if (ret < 0) { 2158 err = ret; 2159 goto out; 2160 } 2161 leaf = path->nodes[0]; 2162 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2163 } 2164 #endif 2165 BUG_ON(item_size < sizeof(*ei)); 2166 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2167 __run_delayed_extent_op(extent_op, leaf, ei); 2168 2169 btrfs_mark_buffer_dirty(leaf); 2170 out: 2171 btrfs_free_path(path); 2172 return err; 2173 } 2174 2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2176 struct btrfs_root *root, 2177 struct btrfs_delayed_ref_node *node, 2178 struct btrfs_delayed_extent_op *extent_op, 2179 int insert_reserved) 2180 { 2181 int ret = 0; 2182 struct btrfs_delayed_tree_ref *ref; 2183 struct btrfs_key ins; 2184 u64 parent = 0; 2185 u64 ref_root = 0; 2186 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2187 SKINNY_METADATA); 2188 2189 ref = btrfs_delayed_node_to_tree_ref(node); 2190 trace_run_delayed_tree_ref(node, ref, node->action); 2191 2192 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2193 parent = ref->parent; 2194 else 2195 ref_root = ref->root; 2196 2197 ins.objectid = node->bytenr; 2198 if (skinny_metadata) { 2199 ins.offset = ref->level; 2200 ins.type = BTRFS_METADATA_ITEM_KEY; 2201 } else { 2202 ins.offset = node->num_bytes; 2203 ins.type = BTRFS_EXTENT_ITEM_KEY; 2204 } 2205 2206 BUG_ON(node->ref_mod != 1); 2207 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2208 BUG_ON(!extent_op || !extent_op->update_flags); 2209 ret = alloc_reserved_tree_block(trans, root, 2210 parent, ref_root, 2211 extent_op->flags_to_set, 2212 &extent_op->key, 2213 ref->level, &ins); 2214 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2215 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2216 node->num_bytes, parent, ref_root, 2217 ref->level, 0, 1, extent_op); 2218 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2219 ret = __btrfs_free_extent(trans, root, node->bytenr, 2220 node->num_bytes, parent, ref_root, 2221 ref->level, 0, 1, extent_op); 2222 } else { 2223 BUG(); 2224 } 2225 return ret; 2226 } 2227 2228 /* helper function to actually process a single delayed ref entry */ 2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2230 struct btrfs_root *root, 2231 struct btrfs_delayed_ref_node *node, 2232 struct btrfs_delayed_extent_op *extent_op, 2233 int insert_reserved) 2234 { 2235 int ret = 0; 2236 2237 if (trans->aborted) 2238 return 0; 2239 2240 if (btrfs_delayed_ref_is_head(node)) { 2241 struct btrfs_delayed_ref_head *head; 2242 /* 2243 * we've hit the end of the chain and we were supposed 2244 * to insert this extent into the tree. But, it got 2245 * deleted before we ever needed to insert it, so all 2246 * we have to do is clean up the accounting 2247 */ 2248 BUG_ON(extent_op); 2249 head = btrfs_delayed_node_to_head(node); 2250 trace_run_delayed_ref_head(node, head, node->action); 2251 2252 if (insert_reserved) { 2253 btrfs_pin_extent(root, node->bytenr, 2254 node->num_bytes, 1); 2255 if (head->is_data) { 2256 ret = btrfs_del_csums(trans, root, 2257 node->bytenr, 2258 node->num_bytes); 2259 } 2260 } 2261 return ret; 2262 } 2263 2264 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2265 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2266 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2267 insert_reserved); 2268 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2269 node->type == BTRFS_SHARED_DATA_REF_KEY) 2270 ret = run_delayed_data_ref(trans, root, node, extent_op, 2271 insert_reserved); 2272 else 2273 BUG(); 2274 return ret; 2275 } 2276 2277 static noinline struct btrfs_delayed_ref_node * 2278 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2279 { 2280 struct rb_node *node; 2281 struct btrfs_delayed_ref_node *ref; 2282 int action = BTRFS_ADD_DELAYED_REF; 2283 again: 2284 /* 2285 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2286 * this prevents ref count from going down to zero when 2287 * there still are pending delayed ref. 2288 */ 2289 node = rb_prev(&head->node.rb_node); 2290 while (1) { 2291 if (!node) 2292 break; 2293 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2294 rb_node); 2295 if (ref->bytenr != head->node.bytenr) 2296 break; 2297 if (ref->action == action) 2298 return ref; 2299 node = rb_prev(node); 2300 } 2301 if (action == BTRFS_ADD_DELAYED_REF) { 2302 action = BTRFS_DROP_DELAYED_REF; 2303 goto again; 2304 } 2305 return NULL; 2306 } 2307 2308 /* 2309 * Returns 0 on success or if called with an already aborted transaction. 2310 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2311 */ 2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2313 struct btrfs_root *root, 2314 struct list_head *cluster) 2315 { 2316 struct btrfs_delayed_ref_root *delayed_refs; 2317 struct btrfs_delayed_ref_node *ref; 2318 struct btrfs_delayed_ref_head *locked_ref = NULL; 2319 struct btrfs_delayed_extent_op *extent_op; 2320 struct btrfs_fs_info *fs_info = root->fs_info; 2321 int ret; 2322 int count = 0; 2323 int must_insert_reserved = 0; 2324 2325 delayed_refs = &trans->transaction->delayed_refs; 2326 while (1) { 2327 if (!locked_ref) { 2328 /* pick a new head ref from the cluster list */ 2329 if (list_empty(cluster)) 2330 break; 2331 2332 locked_ref = list_entry(cluster->next, 2333 struct btrfs_delayed_ref_head, cluster); 2334 2335 /* grab the lock that says we are going to process 2336 * all the refs for this head */ 2337 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2338 2339 /* 2340 * we may have dropped the spin lock to get the head 2341 * mutex lock, and that might have given someone else 2342 * time to free the head. If that's true, it has been 2343 * removed from our list and we can move on. 2344 */ 2345 if (ret == -EAGAIN) { 2346 locked_ref = NULL; 2347 count++; 2348 continue; 2349 } 2350 } 2351 2352 /* 2353 * We need to try and merge add/drops of the same ref since we 2354 * can run into issues with relocate dropping the implicit ref 2355 * and then it being added back again before the drop can 2356 * finish. If we merged anything we need to re-loop so we can 2357 * get a good ref. 2358 */ 2359 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2360 locked_ref); 2361 2362 /* 2363 * locked_ref is the head node, so we have to go one 2364 * node back for any delayed ref updates 2365 */ 2366 ref = select_delayed_ref(locked_ref); 2367 2368 if (ref && ref->seq && 2369 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2370 /* 2371 * there are still refs with lower seq numbers in the 2372 * process of being added. Don't run this ref yet. 2373 */ 2374 list_del_init(&locked_ref->cluster); 2375 btrfs_delayed_ref_unlock(locked_ref); 2376 locked_ref = NULL; 2377 delayed_refs->num_heads_ready++; 2378 spin_unlock(&delayed_refs->lock); 2379 cond_resched(); 2380 spin_lock(&delayed_refs->lock); 2381 continue; 2382 } 2383 2384 /* 2385 * record the must insert reserved flag before we 2386 * drop the spin lock. 2387 */ 2388 must_insert_reserved = locked_ref->must_insert_reserved; 2389 locked_ref->must_insert_reserved = 0; 2390 2391 extent_op = locked_ref->extent_op; 2392 locked_ref->extent_op = NULL; 2393 2394 if (!ref) { 2395 /* All delayed refs have been processed, Go ahead 2396 * and send the head node to run_one_delayed_ref, 2397 * so that any accounting fixes can happen 2398 */ 2399 ref = &locked_ref->node; 2400 2401 if (extent_op && must_insert_reserved) { 2402 btrfs_free_delayed_extent_op(extent_op); 2403 extent_op = NULL; 2404 } 2405 2406 if (extent_op) { 2407 spin_unlock(&delayed_refs->lock); 2408 2409 ret = run_delayed_extent_op(trans, root, 2410 ref, extent_op); 2411 btrfs_free_delayed_extent_op(extent_op); 2412 2413 if (ret) { 2414 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2415 spin_lock(&delayed_refs->lock); 2416 btrfs_delayed_ref_unlock(locked_ref); 2417 return ret; 2418 } 2419 2420 goto next; 2421 } 2422 } 2423 2424 ref->in_tree = 0; 2425 rb_erase(&ref->rb_node, &delayed_refs->root); 2426 delayed_refs->num_entries--; 2427 if (!btrfs_delayed_ref_is_head(ref)) { 2428 /* 2429 * when we play the delayed ref, also correct the 2430 * ref_mod on head 2431 */ 2432 switch (ref->action) { 2433 case BTRFS_ADD_DELAYED_REF: 2434 case BTRFS_ADD_DELAYED_EXTENT: 2435 locked_ref->node.ref_mod -= ref->ref_mod; 2436 break; 2437 case BTRFS_DROP_DELAYED_REF: 2438 locked_ref->node.ref_mod += ref->ref_mod; 2439 break; 2440 default: 2441 WARN_ON(1); 2442 } 2443 } 2444 spin_unlock(&delayed_refs->lock); 2445 2446 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2447 must_insert_reserved); 2448 2449 btrfs_free_delayed_extent_op(extent_op); 2450 if (ret) { 2451 btrfs_delayed_ref_unlock(locked_ref); 2452 btrfs_put_delayed_ref(ref); 2453 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2454 spin_lock(&delayed_refs->lock); 2455 return ret; 2456 } 2457 2458 /* 2459 * If this node is a head, that means all the refs in this head 2460 * have been dealt with, and we will pick the next head to deal 2461 * with, so we must unlock the head and drop it from the cluster 2462 * list before we release it. 2463 */ 2464 if (btrfs_delayed_ref_is_head(ref)) { 2465 list_del_init(&locked_ref->cluster); 2466 btrfs_delayed_ref_unlock(locked_ref); 2467 locked_ref = NULL; 2468 } 2469 btrfs_put_delayed_ref(ref); 2470 count++; 2471 next: 2472 cond_resched(); 2473 spin_lock(&delayed_refs->lock); 2474 } 2475 return count; 2476 } 2477 2478 #ifdef SCRAMBLE_DELAYED_REFS 2479 /* 2480 * Normally delayed refs get processed in ascending bytenr order. This 2481 * correlates in most cases to the order added. To expose dependencies on this 2482 * order, we start to process the tree in the middle instead of the beginning 2483 */ 2484 static u64 find_middle(struct rb_root *root) 2485 { 2486 struct rb_node *n = root->rb_node; 2487 struct btrfs_delayed_ref_node *entry; 2488 int alt = 1; 2489 u64 middle; 2490 u64 first = 0, last = 0; 2491 2492 n = rb_first(root); 2493 if (n) { 2494 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2495 first = entry->bytenr; 2496 } 2497 n = rb_last(root); 2498 if (n) { 2499 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2500 last = entry->bytenr; 2501 } 2502 n = root->rb_node; 2503 2504 while (n) { 2505 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2506 WARN_ON(!entry->in_tree); 2507 2508 middle = entry->bytenr; 2509 2510 if (alt) 2511 n = n->rb_left; 2512 else 2513 n = n->rb_right; 2514 2515 alt = 1 - alt; 2516 } 2517 return middle; 2518 } 2519 #endif 2520 2521 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2522 struct btrfs_fs_info *fs_info) 2523 { 2524 struct qgroup_update *qgroup_update; 2525 int ret = 0; 2526 2527 if (list_empty(&trans->qgroup_ref_list) != 2528 !trans->delayed_ref_elem.seq) { 2529 /* list without seq or seq without list */ 2530 btrfs_err(fs_info, 2531 "qgroup accounting update error, list is%s empty, seq is %#x.%x", 2532 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2533 (u32)(trans->delayed_ref_elem.seq >> 32), 2534 (u32)trans->delayed_ref_elem.seq); 2535 BUG(); 2536 } 2537 2538 if (!trans->delayed_ref_elem.seq) 2539 return 0; 2540 2541 while (!list_empty(&trans->qgroup_ref_list)) { 2542 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2543 struct qgroup_update, list); 2544 list_del(&qgroup_update->list); 2545 if (!ret) 2546 ret = btrfs_qgroup_account_ref( 2547 trans, fs_info, qgroup_update->node, 2548 qgroup_update->extent_op); 2549 kfree(qgroup_update); 2550 } 2551 2552 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2553 2554 return ret; 2555 } 2556 2557 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq, 2558 int count) 2559 { 2560 int val = atomic_read(&delayed_refs->ref_seq); 2561 2562 if (val < seq || val >= seq + count) 2563 return 1; 2564 return 0; 2565 } 2566 2567 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2568 { 2569 u64 num_bytes; 2570 2571 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2572 sizeof(struct btrfs_extent_inline_ref)); 2573 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2574 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2575 2576 /* 2577 * We don't ever fill up leaves all the way so multiply by 2 just to be 2578 * closer to what we're really going to want to ouse. 2579 */ 2580 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2581 } 2582 2583 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2584 struct btrfs_root *root) 2585 { 2586 struct btrfs_block_rsv *global_rsv; 2587 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2588 u64 num_bytes; 2589 int ret = 0; 2590 2591 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2592 num_heads = heads_to_leaves(root, num_heads); 2593 if (num_heads > 1) 2594 num_bytes += (num_heads - 1) * root->leafsize; 2595 num_bytes <<= 1; 2596 global_rsv = &root->fs_info->global_block_rsv; 2597 2598 /* 2599 * If we can't allocate any more chunks lets make sure we have _lots_ of 2600 * wiggle room since running delayed refs can create more delayed refs. 2601 */ 2602 if (global_rsv->space_info->full) 2603 num_bytes <<= 1; 2604 2605 spin_lock(&global_rsv->lock); 2606 if (global_rsv->reserved <= num_bytes) 2607 ret = 1; 2608 spin_unlock(&global_rsv->lock); 2609 return ret; 2610 } 2611 2612 /* 2613 * this starts processing the delayed reference count updates and 2614 * extent insertions we have queued up so far. count can be 2615 * 0, which means to process everything in the tree at the start 2616 * of the run (but not newly added entries), or it can be some target 2617 * number you'd like to process. 2618 * 2619 * Returns 0 on success or if called with an aborted transaction 2620 * Returns <0 on error and aborts the transaction 2621 */ 2622 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2623 struct btrfs_root *root, unsigned long count) 2624 { 2625 struct rb_node *node; 2626 struct btrfs_delayed_ref_root *delayed_refs; 2627 struct btrfs_delayed_ref_node *ref; 2628 struct list_head cluster; 2629 int ret; 2630 u64 delayed_start; 2631 int run_all = count == (unsigned long)-1; 2632 int run_most = 0; 2633 int loops; 2634 2635 /* We'll clean this up in btrfs_cleanup_transaction */ 2636 if (trans->aborted) 2637 return 0; 2638 2639 if (root == root->fs_info->extent_root) 2640 root = root->fs_info->tree_root; 2641 2642 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2643 2644 delayed_refs = &trans->transaction->delayed_refs; 2645 INIT_LIST_HEAD(&cluster); 2646 if (count == 0) { 2647 count = delayed_refs->num_entries * 2; 2648 run_most = 1; 2649 } 2650 2651 if (!run_all && !run_most) { 2652 int old; 2653 int seq = atomic_read(&delayed_refs->ref_seq); 2654 2655 progress: 2656 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2657 if (old) { 2658 DEFINE_WAIT(__wait); 2659 if (delayed_refs->flushing || 2660 !btrfs_should_throttle_delayed_refs(trans, root)) 2661 return 0; 2662 2663 prepare_to_wait(&delayed_refs->wait, &__wait, 2664 TASK_UNINTERRUPTIBLE); 2665 2666 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1); 2667 if (old) { 2668 schedule(); 2669 finish_wait(&delayed_refs->wait, &__wait); 2670 2671 if (!refs_newer(delayed_refs, seq, 256)) 2672 goto progress; 2673 else 2674 return 0; 2675 } else { 2676 finish_wait(&delayed_refs->wait, &__wait); 2677 goto again; 2678 } 2679 } 2680 2681 } else { 2682 atomic_inc(&delayed_refs->procs_running_refs); 2683 } 2684 2685 again: 2686 loops = 0; 2687 spin_lock(&delayed_refs->lock); 2688 2689 #ifdef SCRAMBLE_DELAYED_REFS 2690 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2691 #endif 2692 2693 while (1) { 2694 if (!(run_all || run_most) && 2695 !btrfs_should_throttle_delayed_refs(trans, root)) 2696 break; 2697 2698 /* 2699 * go find something we can process in the rbtree. We start at 2700 * the beginning of the tree, and then build a cluster 2701 * of refs to process starting at the first one we are able to 2702 * lock 2703 */ 2704 delayed_start = delayed_refs->run_delayed_start; 2705 ret = btrfs_find_ref_cluster(trans, &cluster, 2706 delayed_refs->run_delayed_start); 2707 if (ret) 2708 break; 2709 2710 ret = run_clustered_refs(trans, root, &cluster); 2711 if (ret < 0) { 2712 btrfs_release_ref_cluster(&cluster); 2713 spin_unlock(&delayed_refs->lock); 2714 btrfs_abort_transaction(trans, root, ret); 2715 atomic_dec(&delayed_refs->procs_running_refs); 2716 wake_up(&delayed_refs->wait); 2717 return ret; 2718 } 2719 2720 atomic_add(ret, &delayed_refs->ref_seq); 2721 2722 count -= min_t(unsigned long, ret, count); 2723 2724 if (count == 0) 2725 break; 2726 2727 if (delayed_start >= delayed_refs->run_delayed_start) { 2728 if (loops == 0) { 2729 /* 2730 * btrfs_find_ref_cluster looped. let's do one 2731 * more cycle. if we don't run any delayed ref 2732 * during that cycle (because we can't because 2733 * all of them are blocked), bail out. 2734 */ 2735 loops = 1; 2736 } else { 2737 /* 2738 * no runnable refs left, stop trying 2739 */ 2740 BUG_ON(run_all); 2741 break; 2742 } 2743 } 2744 if (ret) { 2745 /* refs were run, let's reset staleness detection */ 2746 loops = 0; 2747 } 2748 } 2749 2750 if (run_all) { 2751 if (!list_empty(&trans->new_bgs)) { 2752 spin_unlock(&delayed_refs->lock); 2753 btrfs_create_pending_block_groups(trans, root); 2754 spin_lock(&delayed_refs->lock); 2755 } 2756 2757 node = rb_first(&delayed_refs->root); 2758 if (!node) 2759 goto out; 2760 count = (unsigned long)-1; 2761 2762 while (node) { 2763 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2764 rb_node); 2765 if (btrfs_delayed_ref_is_head(ref)) { 2766 struct btrfs_delayed_ref_head *head; 2767 2768 head = btrfs_delayed_node_to_head(ref); 2769 atomic_inc(&ref->refs); 2770 2771 spin_unlock(&delayed_refs->lock); 2772 /* 2773 * Mutex was contended, block until it's 2774 * released and try again 2775 */ 2776 mutex_lock(&head->mutex); 2777 mutex_unlock(&head->mutex); 2778 2779 btrfs_put_delayed_ref(ref); 2780 cond_resched(); 2781 goto again; 2782 } 2783 node = rb_next(node); 2784 } 2785 spin_unlock(&delayed_refs->lock); 2786 schedule_timeout(1); 2787 goto again; 2788 } 2789 out: 2790 atomic_dec(&delayed_refs->procs_running_refs); 2791 smp_mb(); 2792 if (waitqueue_active(&delayed_refs->wait)) 2793 wake_up(&delayed_refs->wait); 2794 2795 spin_unlock(&delayed_refs->lock); 2796 assert_qgroups_uptodate(trans); 2797 return 0; 2798 } 2799 2800 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2801 struct btrfs_root *root, 2802 u64 bytenr, u64 num_bytes, u64 flags, 2803 int level, int is_data) 2804 { 2805 struct btrfs_delayed_extent_op *extent_op; 2806 int ret; 2807 2808 extent_op = btrfs_alloc_delayed_extent_op(); 2809 if (!extent_op) 2810 return -ENOMEM; 2811 2812 extent_op->flags_to_set = flags; 2813 extent_op->update_flags = 1; 2814 extent_op->update_key = 0; 2815 extent_op->is_data = is_data ? 1 : 0; 2816 extent_op->level = level; 2817 2818 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2819 num_bytes, extent_op); 2820 if (ret) 2821 btrfs_free_delayed_extent_op(extent_op); 2822 return ret; 2823 } 2824 2825 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2826 struct btrfs_root *root, 2827 struct btrfs_path *path, 2828 u64 objectid, u64 offset, u64 bytenr) 2829 { 2830 struct btrfs_delayed_ref_head *head; 2831 struct btrfs_delayed_ref_node *ref; 2832 struct btrfs_delayed_data_ref *data_ref; 2833 struct btrfs_delayed_ref_root *delayed_refs; 2834 struct rb_node *node; 2835 int ret = 0; 2836 2837 ret = -ENOENT; 2838 delayed_refs = &trans->transaction->delayed_refs; 2839 spin_lock(&delayed_refs->lock); 2840 head = btrfs_find_delayed_ref_head(trans, bytenr); 2841 if (!head) 2842 goto out; 2843 2844 if (!mutex_trylock(&head->mutex)) { 2845 atomic_inc(&head->node.refs); 2846 spin_unlock(&delayed_refs->lock); 2847 2848 btrfs_release_path(path); 2849 2850 /* 2851 * Mutex was contended, block until it's released and let 2852 * caller try again 2853 */ 2854 mutex_lock(&head->mutex); 2855 mutex_unlock(&head->mutex); 2856 btrfs_put_delayed_ref(&head->node); 2857 return -EAGAIN; 2858 } 2859 2860 node = rb_prev(&head->node.rb_node); 2861 if (!node) 2862 goto out_unlock; 2863 2864 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2865 2866 if (ref->bytenr != bytenr) 2867 goto out_unlock; 2868 2869 ret = 1; 2870 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2871 goto out_unlock; 2872 2873 data_ref = btrfs_delayed_node_to_data_ref(ref); 2874 2875 node = rb_prev(node); 2876 if (node) { 2877 int seq = ref->seq; 2878 2879 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2880 if (ref->bytenr == bytenr && ref->seq == seq) 2881 goto out_unlock; 2882 } 2883 2884 if (data_ref->root != root->root_key.objectid || 2885 data_ref->objectid != objectid || data_ref->offset != offset) 2886 goto out_unlock; 2887 2888 ret = 0; 2889 out_unlock: 2890 mutex_unlock(&head->mutex); 2891 out: 2892 spin_unlock(&delayed_refs->lock); 2893 return ret; 2894 } 2895 2896 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2897 struct btrfs_root *root, 2898 struct btrfs_path *path, 2899 u64 objectid, u64 offset, u64 bytenr) 2900 { 2901 struct btrfs_root *extent_root = root->fs_info->extent_root; 2902 struct extent_buffer *leaf; 2903 struct btrfs_extent_data_ref *ref; 2904 struct btrfs_extent_inline_ref *iref; 2905 struct btrfs_extent_item *ei; 2906 struct btrfs_key key; 2907 u32 item_size; 2908 int ret; 2909 2910 key.objectid = bytenr; 2911 key.offset = (u64)-1; 2912 key.type = BTRFS_EXTENT_ITEM_KEY; 2913 2914 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2915 if (ret < 0) 2916 goto out; 2917 BUG_ON(ret == 0); /* Corruption */ 2918 2919 ret = -ENOENT; 2920 if (path->slots[0] == 0) 2921 goto out; 2922 2923 path->slots[0]--; 2924 leaf = path->nodes[0]; 2925 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2926 2927 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2928 goto out; 2929 2930 ret = 1; 2931 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2932 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2933 if (item_size < sizeof(*ei)) { 2934 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2935 goto out; 2936 } 2937 #endif 2938 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2939 2940 if (item_size != sizeof(*ei) + 2941 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2942 goto out; 2943 2944 if (btrfs_extent_generation(leaf, ei) <= 2945 btrfs_root_last_snapshot(&root->root_item)) 2946 goto out; 2947 2948 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2949 if (btrfs_extent_inline_ref_type(leaf, iref) != 2950 BTRFS_EXTENT_DATA_REF_KEY) 2951 goto out; 2952 2953 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2954 if (btrfs_extent_refs(leaf, ei) != 2955 btrfs_extent_data_ref_count(leaf, ref) || 2956 btrfs_extent_data_ref_root(leaf, ref) != 2957 root->root_key.objectid || 2958 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2959 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2960 goto out; 2961 2962 ret = 0; 2963 out: 2964 return ret; 2965 } 2966 2967 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2968 struct btrfs_root *root, 2969 u64 objectid, u64 offset, u64 bytenr) 2970 { 2971 struct btrfs_path *path; 2972 int ret; 2973 int ret2; 2974 2975 path = btrfs_alloc_path(); 2976 if (!path) 2977 return -ENOENT; 2978 2979 do { 2980 ret = check_committed_ref(trans, root, path, objectid, 2981 offset, bytenr); 2982 if (ret && ret != -ENOENT) 2983 goto out; 2984 2985 ret2 = check_delayed_ref(trans, root, path, objectid, 2986 offset, bytenr); 2987 } while (ret2 == -EAGAIN); 2988 2989 if (ret2 && ret2 != -ENOENT) { 2990 ret = ret2; 2991 goto out; 2992 } 2993 2994 if (ret != -ENOENT || ret2 != -ENOENT) 2995 ret = 0; 2996 out: 2997 btrfs_free_path(path); 2998 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2999 WARN_ON(ret > 0); 3000 return ret; 3001 } 3002 3003 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3004 struct btrfs_root *root, 3005 struct extent_buffer *buf, 3006 int full_backref, int inc, int for_cow) 3007 { 3008 u64 bytenr; 3009 u64 num_bytes; 3010 u64 parent; 3011 u64 ref_root; 3012 u32 nritems; 3013 struct btrfs_key key; 3014 struct btrfs_file_extent_item *fi; 3015 int i; 3016 int level; 3017 int ret = 0; 3018 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3019 u64, u64, u64, u64, u64, u64, int); 3020 3021 ref_root = btrfs_header_owner(buf); 3022 nritems = btrfs_header_nritems(buf); 3023 level = btrfs_header_level(buf); 3024 3025 if (!root->ref_cows && level == 0) 3026 return 0; 3027 3028 if (inc) 3029 process_func = btrfs_inc_extent_ref; 3030 else 3031 process_func = btrfs_free_extent; 3032 3033 if (full_backref) 3034 parent = buf->start; 3035 else 3036 parent = 0; 3037 3038 for (i = 0; i < nritems; i++) { 3039 if (level == 0) { 3040 btrfs_item_key_to_cpu(buf, &key, i); 3041 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3042 continue; 3043 fi = btrfs_item_ptr(buf, i, 3044 struct btrfs_file_extent_item); 3045 if (btrfs_file_extent_type(buf, fi) == 3046 BTRFS_FILE_EXTENT_INLINE) 3047 continue; 3048 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3049 if (bytenr == 0) 3050 continue; 3051 3052 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3053 key.offset -= btrfs_file_extent_offset(buf, fi); 3054 ret = process_func(trans, root, bytenr, num_bytes, 3055 parent, ref_root, key.objectid, 3056 key.offset, for_cow); 3057 if (ret) 3058 goto fail; 3059 } else { 3060 bytenr = btrfs_node_blockptr(buf, i); 3061 num_bytes = btrfs_level_size(root, level - 1); 3062 ret = process_func(trans, root, bytenr, num_bytes, 3063 parent, ref_root, level - 1, 0, 3064 for_cow); 3065 if (ret) 3066 goto fail; 3067 } 3068 } 3069 return 0; 3070 fail: 3071 return ret; 3072 } 3073 3074 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3075 struct extent_buffer *buf, int full_backref, int for_cow) 3076 { 3077 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 3078 } 3079 3080 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3081 struct extent_buffer *buf, int full_backref, int for_cow) 3082 { 3083 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 3084 } 3085 3086 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3087 struct btrfs_root *root, 3088 struct btrfs_path *path, 3089 struct btrfs_block_group_cache *cache) 3090 { 3091 int ret; 3092 struct btrfs_root *extent_root = root->fs_info->extent_root; 3093 unsigned long bi; 3094 struct extent_buffer *leaf; 3095 3096 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3097 if (ret < 0) 3098 goto fail; 3099 BUG_ON(ret); /* Corruption */ 3100 3101 leaf = path->nodes[0]; 3102 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3103 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3104 btrfs_mark_buffer_dirty(leaf); 3105 btrfs_release_path(path); 3106 fail: 3107 if (ret) { 3108 btrfs_abort_transaction(trans, root, ret); 3109 return ret; 3110 } 3111 return 0; 3112 3113 } 3114 3115 static struct btrfs_block_group_cache * 3116 next_block_group(struct btrfs_root *root, 3117 struct btrfs_block_group_cache *cache) 3118 { 3119 struct rb_node *node; 3120 spin_lock(&root->fs_info->block_group_cache_lock); 3121 node = rb_next(&cache->cache_node); 3122 btrfs_put_block_group(cache); 3123 if (node) { 3124 cache = rb_entry(node, struct btrfs_block_group_cache, 3125 cache_node); 3126 btrfs_get_block_group(cache); 3127 } else 3128 cache = NULL; 3129 spin_unlock(&root->fs_info->block_group_cache_lock); 3130 return cache; 3131 } 3132 3133 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3134 struct btrfs_trans_handle *trans, 3135 struct btrfs_path *path) 3136 { 3137 struct btrfs_root *root = block_group->fs_info->tree_root; 3138 struct inode *inode = NULL; 3139 u64 alloc_hint = 0; 3140 int dcs = BTRFS_DC_ERROR; 3141 int num_pages = 0; 3142 int retries = 0; 3143 int ret = 0; 3144 3145 /* 3146 * If this block group is smaller than 100 megs don't bother caching the 3147 * block group. 3148 */ 3149 if (block_group->key.offset < (100 * 1024 * 1024)) { 3150 spin_lock(&block_group->lock); 3151 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3152 spin_unlock(&block_group->lock); 3153 return 0; 3154 } 3155 3156 again: 3157 inode = lookup_free_space_inode(root, block_group, path); 3158 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3159 ret = PTR_ERR(inode); 3160 btrfs_release_path(path); 3161 goto out; 3162 } 3163 3164 if (IS_ERR(inode)) { 3165 BUG_ON(retries); 3166 retries++; 3167 3168 if (block_group->ro) 3169 goto out_free; 3170 3171 ret = create_free_space_inode(root, trans, block_group, path); 3172 if (ret) 3173 goto out_free; 3174 goto again; 3175 } 3176 3177 /* We've already setup this transaction, go ahead and exit */ 3178 if (block_group->cache_generation == trans->transid && 3179 i_size_read(inode)) { 3180 dcs = BTRFS_DC_SETUP; 3181 goto out_put; 3182 } 3183 3184 /* 3185 * We want to set the generation to 0, that way if anything goes wrong 3186 * from here on out we know not to trust this cache when we load up next 3187 * time. 3188 */ 3189 BTRFS_I(inode)->generation = 0; 3190 ret = btrfs_update_inode(trans, root, inode); 3191 WARN_ON(ret); 3192 3193 if (i_size_read(inode) > 0) { 3194 ret = btrfs_check_trunc_cache_free_space(root, 3195 &root->fs_info->global_block_rsv); 3196 if (ret) 3197 goto out_put; 3198 3199 ret = btrfs_truncate_free_space_cache(root, trans, path, 3200 inode); 3201 if (ret) 3202 goto out_put; 3203 } 3204 3205 spin_lock(&block_group->lock); 3206 if (block_group->cached != BTRFS_CACHE_FINISHED || 3207 !btrfs_test_opt(root, SPACE_CACHE)) { 3208 /* 3209 * don't bother trying to write stuff out _if_ 3210 * a) we're not cached, 3211 * b) we're with nospace_cache mount option. 3212 */ 3213 dcs = BTRFS_DC_WRITTEN; 3214 spin_unlock(&block_group->lock); 3215 goto out_put; 3216 } 3217 spin_unlock(&block_group->lock); 3218 3219 /* 3220 * Try to preallocate enough space based on how big the block group is. 3221 * Keep in mind this has to include any pinned space which could end up 3222 * taking up quite a bit since it's not folded into the other space 3223 * cache. 3224 */ 3225 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3226 if (!num_pages) 3227 num_pages = 1; 3228 3229 num_pages *= 16; 3230 num_pages *= PAGE_CACHE_SIZE; 3231 3232 ret = btrfs_check_data_free_space(inode, num_pages); 3233 if (ret) 3234 goto out_put; 3235 3236 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3237 num_pages, num_pages, 3238 &alloc_hint); 3239 if (!ret) 3240 dcs = BTRFS_DC_SETUP; 3241 btrfs_free_reserved_data_space(inode, num_pages); 3242 3243 out_put: 3244 iput(inode); 3245 out_free: 3246 btrfs_release_path(path); 3247 out: 3248 spin_lock(&block_group->lock); 3249 if (!ret && dcs == BTRFS_DC_SETUP) 3250 block_group->cache_generation = trans->transid; 3251 block_group->disk_cache_state = dcs; 3252 spin_unlock(&block_group->lock); 3253 3254 return ret; 3255 } 3256 3257 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3258 struct btrfs_root *root) 3259 { 3260 struct btrfs_block_group_cache *cache; 3261 int err = 0; 3262 struct btrfs_path *path; 3263 u64 last = 0; 3264 3265 path = btrfs_alloc_path(); 3266 if (!path) 3267 return -ENOMEM; 3268 3269 again: 3270 while (1) { 3271 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3272 while (cache) { 3273 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3274 break; 3275 cache = next_block_group(root, cache); 3276 } 3277 if (!cache) { 3278 if (last == 0) 3279 break; 3280 last = 0; 3281 continue; 3282 } 3283 err = cache_save_setup(cache, trans, path); 3284 last = cache->key.objectid + cache->key.offset; 3285 btrfs_put_block_group(cache); 3286 } 3287 3288 while (1) { 3289 if (last == 0) { 3290 err = btrfs_run_delayed_refs(trans, root, 3291 (unsigned long)-1); 3292 if (err) /* File system offline */ 3293 goto out; 3294 } 3295 3296 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3297 while (cache) { 3298 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3299 btrfs_put_block_group(cache); 3300 goto again; 3301 } 3302 3303 if (cache->dirty) 3304 break; 3305 cache = next_block_group(root, cache); 3306 } 3307 if (!cache) { 3308 if (last == 0) 3309 break; 3310 last = 0; 3311 continue; 3312 } 3313 3314 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3315 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3316 cache->dirty = 0; 3317 last = cache->key.objectid + cache->key.offset; 3318 3319 err = write_one_cache_group(trans, root, path, cache); 3320 if (err) /* File system offline */ 3321 goto out; 3322 3323 btrfs_put_block_group(cache); 3324 } 3325 3326 while (1) { 3327 /* 3328 * I don't think this is needed since we're just marking our 3329 * preallocated extent as written, but just in case it can't 3330 * hurt. 3331 */ 3332 if (last == 0) { 3333 err = btrfs_run_delayed_refs(trans, root, 3334 (unsigned long)-1); 3335 if (err) /* File system offline */ 3336 goto out; 3337 } 3338 3339 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3340 while (cache) { 3341 /* 3342 * Really this shouldn't happen, but it could if we 3343 * couldn't write the entire preallocated extent and 3344 * splitting the extent resulted in a new block. 3345 */ 3346 if (cache->dirty) { 3347 btrfs_put_block_group(cache); 3348 goto again; 3349 } 3350 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3351 break; 3352 cache = next_block_group(root, cache); 3353 } 3354 if (!cache) { 3355 if (last == 0) 3356 break; 3357 last = 0; 3358 continue; 3359 } 3360 3361 err = btrfs_write_out_cache(root, trans, cache, path); 3362 3363 /* 3364 * If we didn't have an error then the cache state is still 3365 * NEED_WRITE, so we can set it to WRITTEN. 3366 */ 3367 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3368 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3369 last = cache->key.objectid + cache->key.offset; 3370 btrfs_put_block_group(cache); 3371 } 3372 out: 3373 3374 btrfs_free_path(path); 3375 return err; 3376 } 3377 3378 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3379 { 3380 struct btrfs_block_group_cache *block_group; 3381 int readonly = 0; 3382 3383 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3384 if (!block_group || block_group->ro) 3385 readonly = 1; 3386 if (block_group) 3387 btrfs_put_block_group(block_group); 3388 return readonly; 3389 } 3390 3391 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3392 u64 total_bytes, u64 bytes_used, 3393 struct btrfs_space_info **space_info) 3394 { 3395 struct btrfs_space_info *found; 3396 int i; 3397 int factor; 3398 int ret; 3399 3400 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3401 BTRFS_BLOCK_GROUP_RAID10)) 3402 factor = 2; 3403 else 3404 factor = 1; 3405 3406 found = __find_space_info(info, flags); 3407 if (found) { 3408 spin_lock(&found->lock); 3409 found->total_bytes += total_bytes; 3410 found->disk_total += total_bytes * factor; 3411 found->bytes_used += bytes_used; 3412 found->disk_used += bytes_used * factor; 3413 found->full = 0; 3414 spin_unlock(&found->lock); 3415 *space_info = found; 3416 return 0; 3417 } 3418 found = kzalloc(sizeof(*found), GFP_NOFS); 3419 if (!found) 3420 return -ENOMEM; 3421 3422 ret = percpu_counter_init(&found->total_bytes_pinned, 0); 3423 if (ret) { 3424 kfree(found); 3425 return ret; 3426 } 3427 3428 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3429 INIT_LIST_HEAD(&found->block_groups[i]); 3430 init_rwsem(&found->groups_sem); 3431 spin_lock_init(&found->lock); 3432 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3433 found->total_bytes = total_bytes; 3434 found->disk_total = total_bytes * factor; 3435 found->bytes_used = bytes_used; 3436 found->disk_used = bytes_used * factor; 3437 found->bytes_pinned = 0; 3438 found->bytes_reserved = 0; 3439 found->bytes_readonly = 0; 3440 found->bytes_may_use = 0; 3441 found->full = 0; 3442 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3443 found->chunk_alloc = 0; 3444 found->flush = 0; 3445 init_waitqueue_head(&found->wait); 3446 *space_info = found; 3447 list_add_rcu(&found->list, &info->space_info); 3448 if (flags & BTRFS_BLOCK_GROUP_DATA) 3449 info->data_sinfo = found; 3450 return 0; 3451 } 3452 3453 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3454 { 3455 u64 extra_flags = chunk_to_extended(flags) & 3456 BTRFS_EXTENDED_PROFILE_MASK; 3457 3458 write_seqlock(&fs_info->profiles_lock); 3459 if (flags & BTRFS_BLOCK_GROUP_DATA) 3460 fs_info->avail_data_alloc_bits |= extra_flags; 3461 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3462 fs_info->avail_metadata_alloc_bits |= extra_flags; 3463 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3464 fs_info->avail_system_alloc_bits |= extra_flags; 3465 write_sequnlock(&fs_info->profiles_lock); 3466 } 3467 3468 /* 3469 * returns target flags in extended format or 0 if restripe for this 3470 * chunk_type is not in progress 3471 * 3472 * should be called with either volume_mutex or balance_lock held 3473 */ 3474 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3475 { 3476 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3477 u64 target = 0; 3478 3479 if (!bctl) 3480 return 0; 3481 3482 if (flags & BTRFS_BLOCK_GROUP_DATA && 3483 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3484 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3485 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3486 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3487 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3488 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3489 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3490 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3491 } 3492 3493 return target; 3494 } 3495 3496 /* 3497 * @flags: available profiles in extended format (see ctree.h) 3498 * 3499 * Returns reduced profile in chunk format. If profile changing is in 3500 * progress (either running or paused) picks the target profile (if it's 3501 * already available), otherwise falls back to plain reducing. 3502 */ 3503 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3504 { 3505 /* 3506 * we add in the count of missing devices because we want 3507 * to make sure that any RAID levels on a degraded FS 3508 * continue to be honored. 3509 */ 3510 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3511 root->fs_info->fs_devices->missing_devices; 3512 u64 target; 3513 u64 tmp; 3514 3515 /* 3516 * see if restripe for this chunk_type is in progress, if so 3517 * try to reduce to the target profile 3518 */ 3519 spin_lock(&root->fs_info->balance_lock); 3520 target = get_restripe_target(root->fs_info, flags); 3521 if (target) { 3522 /* pick target profile only if it's already available */ 3523 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3524 spin_unlock(&root->fs_info->balance_lock); 3525 return extended_to_chunk(target); 3526 } 3527 } 3528 spin_unlock(&root->fs_info->balance_lock); 3529 3530 /* First, mask out the RAID levels which aren't possible */ 3531 if (num_devices == 1) 3532 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3533 BTRFS_BLOCK_GROUP_RAID5); 3534 if (num_devices < 3) 3535 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3536 if (num_devices < 4) 3537 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3538 3539 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3540 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3541 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3542 flags &= ~tmp; 3543 3544 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3545 tmp = BTRFS_BLOCK_GROUP_RAID6; 3546 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3547 tmp = BTRFS_BLOCK_GROUP_RAID5; 3548 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3549 tmp = BTRFS_BLOCK_GROUP_RAID10; 3550 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3551 tmp = BTRFS_BLOCK_GROUP_RAID1; 3552 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3553 tmp = BTRFS_BLOCK_GROUP_RAID0; 3554 3555 return extended_to_chunk(flags | tmp); 3556 } 3557 3558 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3559 { 3560 unsigned seq; 3561 3562 do { 3563 seq = read_seqbegin(&root->fs_info->profiles_lock); 3564 3565 if (flags & BTRFS_BLOCK_GROUP_DATA) 3566 flags |= root->fs_info->avail_data_alloc_bits; 3567 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3568 flags |= root->fs_info->avail_system_alloc_bits; 3569 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3570 flags |= root->fs_info->avail_metadata_alloc_bits; 3571 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3572 3573 return btrfs_reduce_alloc_profile(root, flags); 3574 } 3575 3576 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3577 { 3578 u64 flags; 3579 u64 ret; 3580 3581 if (data) 3582 flags = BTRFS_BLOCK_GROUP_DATA; 3583 else if (root == root->fs_info->chunk_root) 3584 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3585 else 3586 flags = BTRFS_BLOCK_GROUP_METADATA; 3587 3588 ret = get_alloc_profile(root, flags); 3589 return ret; 3590 } 3591 3592 /* 3593 * This will check the space that the inode allocates from to make sure we have 3594 * enough space for bytes. 3595 */ 3596 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3597 { 3598 struct btrfs_space_info *data_sinfo; 3599 struct btrfs_root *root = BTRFS_I(inode)->root; 3600 struct btrfs_fs_info *fs_info = root->fs_info; 3601 u64 used; 3602 int ret = 0, committed = 0, alloc_chunk = 1; 3603 3604 /* make sure bytes are sectorsize aligned */ 3605 bytes = ALIGN(bytes, root->sectorsize); 3606 3607 if (root == root->fs_info->tree_root || 3608 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3609 alloc_chunk = 0; 3610 committed = 1; 3611 } 3612 3613 data_sinfo = fs_info->data_sinfo; 3614 if (!data_sinfo) 3615 goto alloc; 3616 3617 again: 3618 /* make sure we have enough space to handle the data first */ 3619 spin_lock(&data_sinfo->lock); 3620 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3621 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3622 data_sinfo->bytes_may_use; 3623 3624 if (used + bytes > data_sinfo->total_bytes) { 3625 struct btrfs_trans_handle *trans; 3626 3627 /* 3628 * if we don't have enough free bytes in this space then we need 3629 * to alloc a new chunk. 3630 */ 3631 if (!data_sinfo->full && alloc_chunk) { 3632 u64 alloc_target; 3633 3634 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3635 spin_unlock(&data_sinfo->lock); 3636 alloc: 3637 alloc_target = btrfs_get_alloc_profile(root, 1); 3638 trans = btrfs_join_transaction(root); 3639 if (IS_ERR(trans)) 3640 return PTR_ERR(trans); 3641 3642 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3643 alloc_target, 3644 CHUNK_ALLOC_NO_FORCE); 3645 btrfs_end_transaction(trans, root); 3646 if (ret < 0) { 3647 if (ret != -ENOSPC) 3648 return ret; 3649 else 3650 goto commit_trans; 3651 } 3652 3653 if (!data_sinfo) 3654 data_sinfo = fs_info->data_sinfo; 3655 3656 goto again; 3657 } 3658 3659 /* 3660 * If we don't have enough pinned space to deal with this 3661 * allocation don't bother committing the transaction. 3662 */ 3663 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3664 bytes) < 0) 3665 committed = 1; 3666 spin_unlock(&data_sinfo->lock); 3667 3668 /* commit the current transaction and try again */ 3669 commit_trans: 3670 if (!committed && 3671 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3672 committed = 1; 3673 3674 trans = btrfs_join_transaction(root); 3675 if (IS_ERR(trans)) 3676 return PTR_ERR(trans); 3677 ret = btrfs_commit_transaction(trans, root); 3678 if (ret) 3679 return ret; 3680 goto again; 3681 } 3682 3683 return -ENOSPC; 3684 } 3685 data_sinfo->bytes_may_use += bytes; 3686 trace_btrfs_space_reservation(root->fs_info, "space_info", 3687 data_sinfo->flags, bytes, 1); 3688 spin_unlock(&data_sinfo->lock); 3689 3690 return 0; 3691 } 3692 3693 /* 3694 * Called if we need to clear a data reservation for this inode. 3695 */ 3696 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3697 { 3698 struct btrfs_root *root = BTRFS_I(inode)->root; 3699 struct btrfs_space_info *data_sinfo; 3700 3701 /* make sure bytes are sectorsize aligned */ 3702 bytes = ALIGN(bytes, root->sectorsize); 3703 3704 data_sinfo = root->fs_info->data_sinfo; 3705 spin_lock(&data_sinfo->lock); 3706 WARN_ON(data_sinfo->bytes_may_use < bytes); 3707 data_sinfo->bytes_may_use -= bytes; 3708 trace_btrfs_space_reservation(root->fs_info, "space_info", 3709 data_sinfo->flags, bytes, 0); 3710 spin_unlock(&data_sinfo->lock); 3711 } 3712 3713 static void force_metadata_allocation(struct btrfs_fs_info *info) 3714 { 3715 struct list_head *head = &info->space_info; 3716 struct btrfs_space_info *found; 3717 3718 rcu_read_lock(); 3719 list_for_each_entry_rcu(found, head, list) { 3720 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3721 found->force_alloc = CHUNK_ALLOC_FORCE; 3722 } 3723 rcu_read_unlock(); 3724 } 3725 3726 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3727 { 3728 return (global->size << 1); 3729 } 3730 3731 static int should_alloc_chunk(struct btrfs_root *root, 3732 struct btrfs_space_info *sinfo, int force) 3733 { 3734 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3735 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3736 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3737 u64 thresh; 3738 3739 if (force == CHUNK_ALLOC_FORCE) 3740 return 1; 3741 3742 /* 3743 * We need to take into account the global rsv because for all intents 3744 * and purposes it's used space. Don't worry about locking the 3745 * global_rsv, it doesn't change except when the transaction commits. 3746 */ 3747 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3748 num_allocated += calc_global_rsv_need_space(global_rsv); 3749 3750 /* 3751 * in limited mode, we want to have some free space up to 3752 * about 1% of the FS size. 3753 */ 3754 if (force == CHUNK_ALLOC_LIMITED) { 3755 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3756 thresh = max_t(u64, 64 * 1024 * 1024, 3757 div_factor_fine(thresh, 1)); 3758 3759 if (num_bytes - num_allocated < thresh) 3760 return 1; 3761 } 3762 3763 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3764 return 0; 3765 return 1; 3766 } 3767 3768 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3769 { 3770 u64 num_dev; 3771 3772 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3773 BTRFS_BLOCK_GROUP_RAID0 | 3774 BTRFS_BLOCK_GROUP_RAID5 | 3775 BTRFS_BLOCK_GROUP_RAID6)) 3776 num_dev = root->fs_info->fs_devices->rw_devices; 3777 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3778 num_dev = 2; 3779 else 3780 num_dev = 1; /* DUP or single */ 3781 3782 /* metadata for updaing devices and chunk tree */ 3783 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3784 } 3785 3786 static void check_system_chunk(struct btrfs_trans_handle *trans, 3787 struct btrfs_root *root, u64 type) 3788 { 3789 struct btrfs_space_info *info; 3790 u64 left; 3791 u64 thresh; 3792 3793 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3794 spin_lock(&info->lock); 3795 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3796 info->bytes_reserved - info->bytes_readonly; 3797 spin_unlock(&info->lock); 3798 3799 thresh = get_system_chunk_thresh(root, type); 3800 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3801 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3802 left, thresh, type); 3803 dump_space_info(info, 0, 0); 3804 } 3805 3806 if (left < thresh) { 3807 u64 flags; 3808 3809 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3810 btrfs_alloc_chunk(trans, root, flags); 3811 } 3812 } 3813 3814 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3815 struct btrfs_root *extent_root, u64 flags, int force) 3816 { 3817 struct btrfs_space_info *space_info; 3818 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3819 int wait_for_alloc = 0; 3820 int ret = 0; 3821 3822 /* Don't re-enter if we're already allocating a chunk */ 3823 if (trans->allocating_chunk) 3824 return -ENOSPC; 3825 3826 space_info = __find_space_info(extent_root->fs_info, flags); 3827 if (!space_info) { 3828 ret = update_space_info(extent_root->fs_info, flags, 3829 0, 0, &space_info); 3830 BUG_ON(ret); /* -ENOMEM */ 3831 } 3832 BUG_ON(!space_info); /* Logic error */ 3833 3834 again: 3835 spin_lock(&space_info->lock); 3836 if (force < space_info->force_alloc) 3837 force = space_info->force_alloc; 3838 if (space_info->full) { 3839 if (should_alloc_chunk(extent_root, space_info, force)) 3840 ret = -ENOSPC; 3841 else 3842 ret = 0; 3843 spin_unlock(&space_info->lock); 3844 return ret; 3845 } 3846 3847 if (!should_alloc_chunk(extent_root, space_info, force)) { 3848 spin_unlock(&space_info->lock); 3849 return 0; 3850 } else if (space_info->chunk_alloc) { 3851 wait_for_alloc = 1; 3852 } else { 3853 space_info->chunk_alloc = 1; 3854 } 3855 3856 spin_unlock(&space_info->lock); 3857 3858 mutex_lock(&fs_info->chunk_mutex); 3859 3860 /* 3861 * The chunk_mutex is held throughout the entirety of a chunk 3862 * allocation, so once we've acquired the chunk_mutex we know that the 3863 * other guy is done and we need to recheck and see if we should 3864 * allocate. 3865 */ 3866 if (wait_for_alloc) { 3867 mutex_unlock(&fs_info->chunk_mutex); 3868 wait_for_alloc = 0; 3869 goto again; 3870 } 3871 3872 trans->allocating_chunk = true; 3873 3874 /* 3875 * If we have mixed data/metadata chunks we want to make sure we keep 3876 * allocating mixed chunks instead of individual chunks. 3877 */ 3878 if (btrfs_mixed_space_info(space_info)) 3879 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3880 3881 /* 3882 * if we're doing a data chunk, go ahead and make sure that 3883 * we keep a reasonable number of metadata chunks allocated in the 3884 * FS as well. 3885 */ 3886 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3887 fs_info->data_chunk_allocations++; 3888 if (!(fs_info->data_chunk_allocations % 3889 fs_info->metadata_ratio)) 3890 force_metadata_allocation(fs_info); 3891 } 3892 3893 /* 3894 * Check if we have enough space in SYSTEM chunk because we may need 3895 * to update devices. 3896 */ 3897 check_system_chunk(trans, extent_root, flags); 3898 3899 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3900 trans->allocating_chunk = false; 3901 3902 spin_lock(&space_info->lock); 3903 if (ret < 0 && ret != -ENOSPC) 3904 goto out; 3905 if (ret) 3906 space_info->full = 1; 3907 else 3908 ret = 1; 3909 3910 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3911 out: 3912 space_info->chunk_alloc = 0; 3913 spin_unlock(&space_info->lock); 3914 mutex_unlock(&fs_info->chunk_mutex); 3915 return ret; 3916 } 3917 3918 static int can_overcommit(struct btrfs_root *root, 3919 struct btrfs_space_info *space_info, u64 bytes, 3920 enum btrfs_reserve_flush_enum flush) 3921 { 3922 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3923 u64 profile = btrfs_get_alloc_profile(root, 0); 3924 u64 space_size; 3925 u64 avail; 3926 u64 used; 3927 u64 to_add; 3928 3929 used = space_info->bytes_used + space_info->bytes_reserved + 3930 space_info->bytes_pinned + space_info->bytes_readonly; 3931 3932 /* 3933 * We only want to allow over committing if we have lots of actual space 3934 * free, but if we don't have enough space to handle the global reserve 3935 * space then we could end up having a real enospc problem when trying 3936 * to allocate a chunk or some other such important allocation. 3937 */ 3938 spin_lock(&global_rsv->lock); 3939 space_size = calc_global_rsv_need_space(global_rsv); 3940 spin_unlock(&global_rsv->lock); 3941 if (used + space_size >= space_info->total_bytes) 3942 return 0; 3943 3944 used += space_info->bytes_may_use; 3945 3946 spin_lock(&root->fs_info->free_chunk_lock); 3947 avail = root->fs_info->free_chunk_space; 3948 spin_unlock(&root->fs_info->free_chunk_lock); 3949 3950 /* 3951 * If we have dup, raid1 or raid10 then only half of the free 3952 * space is actually useable. For raid56, the space info used 3953 * doesn't include the parity drive, so we don't have to 3954 * change the math 3955 */ 3956 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3957 BTRFS_BLOCK_GROUP_RAID1 | 3958 BTRFS_BLOCK_GROUP_RAID10)) 3959 avail >>= 1; 3960 3961 to_add = space_info->total_bytes; 3962 3963 /* 3964 * If we aren't flushing all things, let us overcommit up to 3965 * 1/2th of the space. If we can flush, don't let us overcommit 3966 * too much, let it overcommit up to 1/8 of the space. 3967 */ 3968 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3969 to_add >>= 3; 3970 else 3971 to_add >>= 1; 3972 3973 /* 3974 * Limit the overcommit to the amount of free space we could possibly 3975 * allocate for chunks. 3976 */ 3977 to_add = min(avail, to_add); 3978 3979 if (used + bytes < space_info->total_bytes + to_add) 3980 return 1; 3981 return 0; 3982 } 3983 3984 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3985 unsigned long nr_pages) 3986 { 3987 struct super_block *sb = root->fs_info->sb; 3988 3989 if (down_read_trylock(&sb->s_umount)) { 3990 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 3991 up_read(&sb->s_umount); 3992 } else { 3993 /* 3994 * We needn't worry the filesystem going from r/w to r/o though 3995 * we don't acquire ->s_umount mutex, because the filesystem 3996 * should guarantee the delalloc inodes list be empty after 3997 * the filesystem is readonly(all dirty pages are written to 3998 * the disk). 3999 */ 4000 btrfs_start_all_delalloc_inodes(root->fs_info, 0); 4001 if (!current->journal_info) 4002 btrfs_wait_all_ordered_extents(root->fs_info, 0); 4003 } 4004 } 4005 4006 /* 4007 * shrink metadata reservation for delalloc 4008 */ 4009 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4010 bool wait_ordered) 4011 { 4012 struct btrfs_block_rsv *block_rsv; 4013 struct btrfs_space_info *space_info; 4014 struct btrfs_trans_handle *trans; 4015 u64 delalloc_bytes; 4016 u64 max_reclaim; 4017 long time_left; 4018 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 4019 int loops = 0; 4020 enum btrfs_reserve_flush_enum flush; 4021 4022 trans = (struct btrfs_trans_handle *)current->journal_info; 4023 block_rsv = &root->fs_info->delalloc_block_rsv; 4024 space_info = block_rsv->space_info; 4025 4026 smp_mb(); 4027 delalloc_bytes = percpu_counter_sum_positive( 4028 &root->fs_info->delalloc_bytes); 4029 if (delalloc_bytes == 0) { 4030 if (trans) 4031 return; 4032 btrfs_wait_all_ordered_extents(root->fs_info, 0); 4033 return; 4034 } 4035 4036 while (delalloc_bytes && loops < 3) { 4037 max_reclaim = min(delalloc_bytes, to_reclaim); 4038 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4039 btrfs_writeback_inodes_sb_nr(root, nr_pages); 4040 /* 4041 * We need to wait for the async pages to actually start before 4042 * we do anything. 4043 */ 4044 wait_event(root->fs_info->async_submit_wait, 4045 !atomic_read(&root->fs_info->async_delalloc_pages)); 4046 4047 if (!trans) 4048 flush = BTRFS_RESERVE_FLUSH_ALL; 4049 else 4050 flush = BTRFS_RESERVE_NO_FLUSH; 4051 spin_lock(&space_info->lock); 4052 if (can_overcommit(root, space_info, orig, flush)) { 4053 spin_unlock(&space_info->lock); 4054 break; 4055 } 4056 spin_unlock(&space_info->lock); 4057 4058 loops++; 4059 if (wait_ordered && !trans) { 4060 btrfs_wait_all_ordered_extents(root->fs_info, 0); 4061 } else { 4062 time_left = schedule_timeout_killable(1); 4063 if (time_left) 4064 break; 4065 } 4066 smp_mb(); 4067 delalloc_bytes = percpu_counter_sum_positive( 4068 &root->fs_info->delalloc_bytes); 4069 } 4070 } 4071 4072 /** 4073 * maybe_commit_transaction - possibly commit the transaction if its ok to 4074 * @root - the root we're allocating for 4075 * @bytes - the number of bytes we want to reserve 4076 * @force - force the commit 4077 * 4078 * This will check to make sure that committing the transaction will actually 4079 * get us somewhere and then commit the transaction if it does. Otherwise it 4080 * will return -ENOSPC. 4081 */ 4082 static int may_commit_transaction(struct btrfs_root *root, 4083 struct btrfs_space_info *space_info, 4084 u64 bytes, int force) 4085 { 4086 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4087 struct btrfs_trans_handle *trans; 4088 4089 trans = (struct btrfs_trans_handle *)current->journal_info; 4090 if (trans) 4091 return -EAGAIN; 4092 4093 if (force) 4094 goto commit; 4095 4096 /* See if there is enough pinned space to make this reservation */ 4097 spin_lock(&space_info->lock); 4098 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4099 bytes) >= 0) { 4100 spin_unlock(&space_info->lock); 4101 goto commit; 4102 } 4103 spin_unlock(&space_info->lock); 4104 4105 /* 4106 * See if there is some space in the delayed insertion reservation for 4107 * this reservation. 4108 */ 4109 if (space_info != delayed_rsv->space_info) 4110 return -ENOSPC; 4111 4112 spin_lock(&space_info->lock); 4113 spin_lock(&delayed_rsv->lock); 4114 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4115 bytes - delayed_rsv->size) >= 0) { 4116 spin_unlock(&delayed_rsv->lock); 4117 spin_unlock(&space_info->lock); 4118 return -ENOSPC; 4119 } 4120 spin_unlock(&delayed_rsv->lock); 4121 spin_unlock(&space_info->lock); 4122 4123 commit: 4124 trans = btrfs_join_transaction(root); 4125 if (IS_ERR(trans)) 4126 return -ENOSPC; 4127 4128 return btrfs_commit_transaction(trans, root); 4129 } 4130 4131 enum flush_state { 4132 FLUSH_DELAYED_ITEMS_NR = 1, 4133 FLUSH_DELAYED_ITEMS = 2, 4134 FLUSH_DELALLOC = 3, 4135 FLUSH_DELALLOC_WAIT = 4, 4136 ALLOC_CHUNK = 5, 4137 COMMIT_TRANS = 6, 4138 }; 4139 4140 static int flush_space(struct btrfs_root *root, 4141 struct btrfs_space_info *space_info, u64 num_bytes, 4142 u64 orig_bytes, int state) 4143 { 4144 struct btrfs_trans_handle *trans; 4145 int nr; 4146 int ret = 0; 4147 4148 switch (state) { 4149 case FLUSH_DELAYED_ITEMS_NR: 4150 case FLUSH_DELAYED_ITEMS: 4151 if (state == FLUSH_DELAYED_ITEMS_NR) { 4152 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 4153 4154 nr = (int)div64_u64(num_bytes, bytes); 4155 if (!nr) 4156 nr = 1; 4157 nr *= 2; 4158 } else { 4159 nr = -1; 4160 } 4161 trans = btrfs_join_transaction(root); 4162 if (IS_ERR(trans)) { 4163 ret = PTR_ERR(trans); 4164 break; 4165 } 4166 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4167 btrfs_end_transaction(trans, root); 4168 break; 4169 case FLUSH_DELALLOC: 4170 case FLUSH_DELALLOC_WAIT: 4171 shrink_delalloc(root, num_bytes, orig_bytes, 4172 state == FLUSH_DELALLOC_WAIT); 4173 break; 4174 case ALLOC_CHUNK: 4175 trans = btrfs_join_transaction(root); 4176 if (IS_ERR(trans)) { 4177 ret = PTR_ERR(trans); 4178 break; 4179 } 4180 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4181 btrfs_get_alloc_profile(root, 0), 4182 CHUNK_ALLOC_NO_FORCE); 4183 btrfs_end_transaction(trans, root); 4184 if (ret == -ENOSPC) 4185 ret = 0; 4186 break; 4187 case COMMIT_TRANS: 4188 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4189 break; 4190 default: 4191 ret = -ENOSPC; 4192 break; 4193 } 4194 4195 return ret; 4196 } 4197 /** 4198 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4199 * @root - the root we're allocating for 4200 * @block_rsv - the block_rsv we're allocating for 4201 * @orig_bytes - the number of bytes we want 4202 * @flush - whether or not we can flush to make our reservation 4203 * 4204 * This will reserve orgi_bytes number of bytes from the space info associated 4205 * with the block_rsv. If there is not enough space it will make an attempt to 4206 * flush out space to make room. It will do this by flushing delalloc if 4207 * possible or committing the transaction. If flush is 0 then no attempts to 4208 * regain reservations will be made and this will fail if there is not enough 4209 * space already. 4210 */ 4211 static int reserve_metadata_bytes(struct btrfs_root *root, 4212 struct btrfs_block_rsv *block_rsv, 4213 u64 orig_bytes, 4214 enum btrfs_reserve_flush_enum flush) 4215 { 4216 struct btrfs_space_info *space_info = block_rsv->space_info; 4217 u64 used; 4218 u64 num_bytes = orig_bytes; 4219 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4220 int ret = 0; 4221 bool flushing = false; 4222 4223 again: 4224 ret = 0; 4225 spin_lock(&space_info->lock); 4226 /* 4227 * We only want to wait if somebody other than us is flushing and we 4228 * are actually allowed to flush all things. 4229 */ 4230 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4231 space_info->flush) { 4232 spin_unlock(&space_info->lock); 4233 /* 4234 * If we have a trans handle we can't wait because the flusher 4235 * may have to commit the transaction, which would mean we would 4236 * deadlock since we are waiting for the flusher to finish, but 4237 * hold the current transaction open. 4238 */ 4239 if (current->journal_info) 4240 return -EAGAIN; 4241 ret = wait_event_killable(space_info->wait, !space_info->flush); 4242 /* Must have been killed, return */ 4243 if (ret) 4244 return -EINTR; 4245 4246 spin_lock(&space_info->lock); 4247 } 4248 4249 ret = -ENOSPC; 4250 used = space_info->bytes_used + space_info->bytes_reserved + 4251 space_info->bytes_pinned + space_info->bytes_readonly + 4252 space_info->bytes_may_use; 4253 4254 /* 4255 * The idea here is that we've not already over-reserved the block group 4256 * then we can go ahead and save our reservation first and then start 4257 * flushing if we need to. Otherwise if we've already overcommitted 4258 * lets start flushing stuff first and then come back and try to make 4259 * our reservation. 4260 */ 4261 if (used <= space_info->total_bytes) { 4262 if (used + orig_bytes <= space_info->total_bytes) { 4263 space_info->bytes_may_use += orig_bytes; 4264 trace_btrfs_space_reservation(root->fs_info, 4265 "space_info", space_info->flags, orig_bytes, 1); 4266 ret = 0; 4267 } else { 4268 /* 4269 * Ok set num_bytes to orig_bytes since we aren't 4270 * overocmmitted, this way we only try and reclaim what 4271 * we need. 4272 */ 4273 num_bytes = orig_bytes; 4274 } 4275 } else { 4276 /* 4277 * Ok we're over committed, set num_bytes to the overcommitted 4278 * amount plus the amount of bytes that we need for this 4279 * reservation. 4280 */ 4281 num_bytes = used - space_info->total_bytes + 4282 (orig_bytes * 2); 4283 } 4284 4285 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4286 space_info->bytes_may_use += orig_bytes; 4287 trace_btrfs_space_reservation(root->fs_info, "space_info", 4288 space_info->flags, orig_bytes, 4289 1); 4290 ret = 0; 4291 } 4292 4293 /* 4294 * Couldn't make our reservation, save our place so while we're trying 4295 * to reclaim space we can actually use it instead of somebody else 4296 * stealing it from us. 4297 * 4298 * We make the other tasks wait for the flush only when we can flush 4299 * all things. 4300 */ 4301 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4302 flushing = true; 4303 space_info->flush = 1; 4304 } 4305 4306 spin_unlock(&space_info->lock); 4307 4308 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4309 goto out; 4310 4311 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4312 flush_state); 4313 flush_state++; 4314 4315 /* 4316 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4317 * would happen. So skip delalloc flush. 4318 */ 4319 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4320 (flush_state == FLUSH_DELALLOC || 4321 flush_state == FLUSH_DELALLOC_WAIT)) 4322 flush_state = ALLOC_CHUNK; 4323 4324 if (!ret) 4325 goto again; 4326 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4327 flush_state < COMMIT_TRANS) 4328 goto again; 4329 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4330 flush_state <= COMMIT_TRANS) 4331 goto again; 4332 4333 out: 4334 if (ret == -ENOSPC && 4335 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4336 struct btrfs_block_rsv *global_rsv = 4337 &root->fs_info->global_block_rsv; 4338 4339 if (block_rsv != global_rsv && 4340 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4341 ret = 0; 4342 } 4343 if (flushing) { 4344 spin_lock(&space_info->lock); 4345 space_info->flush = 0; 4346 wake_up_all(&space_info->wait); 4347 spin_unlock(&space_info->lock); 4348 } 4349 return ret; 4350 } 4351 4352 static struct btrfs_block_rsv *get_block_rsv( 4353 const struct btrfs_trans_handle *trans, 4354 const struct btrfs_root *root) 4355 { 4356 struct btrfs_block_rsv *block_rsv = NULL; 4357 4358 if (root->ref_cows) 4359 block_rsv = trans->block_rsv; 4360 4361 if (root == root->fs_info->csum_root && trans->adding_csums) 4362 block_rsv = trans->block_rsv; 4363 4364 if (root == root->fs_info->uuid_root) 4365 block_rsv = trans->block_rsv; 4366 4367 if (!block_rsv) 4368 block_rsv = root->block_rsv; 4369 4370 if (!block_rsv) 4371 block_rsv = &root->fs_info->empty_block_rsv; 4372 4373 return block_rsv; 4374 } 4375 4376 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4377 u64 num_bytes) 4378 { 4379 int ret = -ENOSPC; 4380 spin_lock(&block_rsv->lock); 4381 if (block_rsv->reserved >= num_bytes) { 4382 block_rsv->reserved -= num_bytes; 4383 if (block_rsv->reserved < block_rsv->size) 4384 block_rsv->full = 0; 4385 ret = 0; 4386 } 4387 spin_unlock(&block_rsv->lock); 4388 return ret; 4389 } 4390 4391 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4392 u64 num_bytes, int update_size) 4393 { 4394 spin_lock(&block_rsv->lock); 4395 block_rsv->reserved += num_bytes; 4396 if (update_size) 4397 block_rsv->size += num_bytes; 4398 else if (block_rsv->reserved >= block_rsv->size) 4399 block_rsv->full = 1; 4400 spin_unlock(&block_rsv->lock); 4401 } 4402 4403 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4404 struct btrfs_block_rsv *dest, u64 num_bytes, 4405 int min_factor) 4406 { 4407 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4408 u64 min_bytes; 4409 4410 if (global_rsv->space_info != dest->space_info) 4411 return -ENOSPC; 4412 4413 spin_lock(&global_rsv->lock); 4414 min_bytes = div_factor(global_rsv->size, min_factor); 4415 if (global_rsv->reserved < min_bytes + num_bytes) { 4416 spin_unlock(&global_rsv->lock); 4417 return -ENOSPC; 4418 } 4419 global_rsv->reserved -= num_bytes; 4420 if (global_rsv->reserved < global_rsv->size) 4421 global_rsv->full = 0; 4422 spin_unlock(&global_rsv->lock); 4423 4424 block_rsv_add_bytes(dest, num_bytes, 1); 4425 return 0; 4426 } 4427 4428 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4429 struct btrfs_block_rsv *block_rsv, 4430 struct btrfs_block_rsv *dest, u64 num_bytes) 4431 { 4432 struct btrfs_space_info *space_info = block_rsv->space_info; 4433 4434 spin_lock(&block_rsv->lock); 4435 if (num_bytes == (u64)-1) 4436 num_bytes = block_rsv->size; 4437 block_rsv->size -= num_bytes; 4438 if (block_rsv->reserved >= block_rsv->size) { 4439 num_bytes = block_rsv->reserved - block_rsv->size; 4440 block_rsv->reserved = block_rsv->size; 4441 block_rsv->full = 1; 4442 } else { 4443 num_bytes = 0; 4444 } 4445 spin_unlock(&block_rsv->lock); 4446 4447 if (num_bytes > 0) { 4448 if (dest) { 4449 spin_lock(&dest->lock); 4450 if (!dest->full) { 4451 u64 bytes_to_add; 4452 4453 bytes_to_add = dest->size - dest->reserved; 4454 bytes_to_add = min(num_bytes, bytes_to_add); 4455 dest->reserved += bytes_to_add; 4456 if (dest->reserved >= dest->size) 4457 dest->full = 1; 4458 num_bytes -= bytes_to_add; 4459 } 4460 spin_unlock(&dest->lock); 4461 } 4462 if (num_bytes) { 4463 spin_lock(&space_info->lock); 4464 space_info->bytes_may_use -= num_bytes; 4465 trace_btrfs_space_reservation(fs_info, "space_info", 4466 space_info->flags, num_bytes, 0); 4467 space_info->reservation_progress++; 4468 spin_unlock(&space_info->lock); 4469 } 4470 } 4471 } 4472 4473 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4474 struct btrfs_block_rsv *dst, u64 num_bytes) 4475 { 4476 int ret; 4477 4478 ret = block_rsv_use_bytes(src, num_bytes); 4479 if (ret) 4480 return ret; 4481 4482 block_rsv_add_bytes(dst, num_bytes, 1); 4483 return 0; 4484 } 4485 4486 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4487 { 4488 memset(rsv, 0, sizeof(*rsv)); 4489 spin_lock_init(&rsv->lock); 4490 rsv->type = type; 4491 } 4492 4493 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4494 unsigned short type) 4495 { 4496 struct btrfs_block_rsv *block_rsv; 4497 struct btrfs_fs_info *fs_info = root->fs_info; 4498 4499 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4500 if (!block_rsv) 4501 return NULL; 4502 4503 btrfs_init_block_rsv(block_rsv, type); 4504 block_rsv->space_info = __find_space_info(fs_info, 4505 BTRFS_BLOCK_GROUP_METADATA); 4506 return block_rsv; 4507 } 4508 4509 void btrfs_free_block_rsv(struct btrfs_root *root, 4510 struct btrfs_block_rsv *rsv) 4511 { 4512 if (!rsv) 4513 return; 4514 btrfs_block_rsv_release(root, rsv, (u64)-1); 4515 kfree(rsv); 4516 } 4517 4518 int btrfs_block_rsv_add(struct btrfs_root *root, 4519 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4520 enum btrfs_reserve_flush_enum flush) 4521 { 4522 int ret; 4523 4524 if (num_bytes == 0) 4525 return 0; 4526 4527 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4528 if (!ret) { 4529 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4530 return 0; 4531 } 4532 4533 return ret; 4534 } 4535 4536 int btrfs_block_rsv_check(struct btrfs_root *root, 4537 struct btrfs_block_rsv *block_rsv, int min_factor) 4538 { 4539 u64 num_bytes = 0; 4540 int ret = -ENOSPC; 4541 4542 if (!block_rsv) 4543 return 0; 4544 4545 spin_lock(&block_rsv->lock); 4546 num_bytes = div_factor(block_rsv->size, min_factor); 4547 if (block_rsv->reserved >= num_bytes) 4548 ret = 0; 4549 spin_unlock(&block_rsv->lock); 4550 4551 return ret; 4552 } 4553 4554 int btrfs_block_rsv_refill(struct btrfs_root *root, 4555 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4556 enum btrfs_reserve_flush_enum flush) 4557 { 4558 u64 num_bytes = 0; 4559 int ret = -ENOSPC; 4560 4561 if (!block_rsv) 4562 return 0; 4563 4564 spin_lock(&block_rsv->lock); 4565 num_bytes = min_reserved; 4566 if (block_rsv->reserved >= num_bytes) 4567 ret = 0; 4568 else 4569 num_bytes -= block_rsv->reserved; 4570 spin_unlock(&block_rsv->lock); 4571 4572 if (!ret) 4573 return 0; 4574 4575 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4576 if (!ret) { 4577 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4578 return 0; 4579 } 4580 4581 return ret; 4582 } 4583 4584 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4585 struct btrfs_block_rsv *dst_rsv, 4586 u64 num_bytes) 4587 { 4588 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4589 } 4590 4591 void btrfs_block_rsv_release(struct btrfs_root *root, 4592 struct btrfs_block_rsv *block_rsv, 4593 u64 num_bytes) 4594 { 4595 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4596 if (global_rsv->full || global_rsv == block_rsv || 4597 block_rsv->space_info != global_rsv->space_info) 4598 global_rsv = NULL; 4599 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4600 num_bytes); 4601 } 4602 4603 /* 4604 * helper to calculate size of global block reservation. 4605 * the desired value is sum of space used by extent tree, 4606 * checksum tree and root tree 4607 */ 4608 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4609 { 4610 struct btrfs_space_info *sinfo; 4611 u64 num_bytes; 4612 u64 meta_used; 4613 u64 data_used; 4614 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4615 4616 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4617 spin_lock(&sinfo->lock); 4618 data_used = sinfo->bytes_used; 4619 spin_unlock(&sinfo->lock); 4620 4621 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4622 spin_lock(&sinfo->lock); 4623 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4624 data_used = 0; 4625 meta_used = sinfo->bytes_used; 4626 spin_unlock(&sinfo->lock); 4627 4628 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4629 csum_size * 2; 4630 num_bytes += div64_u64(data_used + meta_used, 50); 4631 4632 if (num_bytes * 3 > meta_used) 4633 num_bytes = div64_u64(meta_used, 3); 4634 4635 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4636 } 4637 4638 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4639 { 4640 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4641 struct btrfs_space_info *sinfo = block_rsv->space_info; 4642 u64 num_bytes; 4643 4644 num_bytes = calc_global_metadata_size(fs_info); 4645 4646 spin_lock(&sinfo->lock); 4647 spin_lock(&block_rsv->lock); 4648 4649 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4650 4651 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4652 sinfo->bytes_reserved + sinfo->bytes_readonly + 4653 sinfo->bytes_may_use; 4654 4655 if (sinfo->total_bytes > num_bytes) { 4656 num_bytes = sinfo->total_bytes - num_bytes; 4657 block_rsv->reserved += num_bytes; 4658 sinfo->bytes_may_use += num_bytes; 4659 trace_btrfs_space_reservation(fs_info, "space_info", 4660 sinfo->flags, num_bytes, 1); 4661 } 4662 4663 if (block_rsv->reserved >= block_rsv->size) { 4664 num_bytes = block_rsv->reserved - block_rsv->size; 4665 sinfo->bytes_may_use -= num_bytes; 4666 trace_btrfs_space_reservation(fs_info, "space_info", 4667 sinfo->flags, num_bytes, 0); 4668 sinfo->reservation_progress++; 4669 block_rsv->reserved = block_rsv->size; 4670 block_rsv->full = 1; 4671 } 4672 4673 spin_unlock(&block_rsv->lock); 4674 spin_unlock(&sinfo->lock); 4675 } 4676 4677 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4678 { 4679 struct btrfs_space_info *space_info; 4680 4681 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4682 fs_info->chunk_block_rsv.space_info = space_info; 4683 4684 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4685 fs_info->global_block_rsv.space_info = space_info; 4686 fs_info->delalloc_block_rsv.space_info = space_info; 4687 fs_info->trans_block_rsv.space_info = space_info; 4688 fs_info->empty_block_rsv.space_info = space_info; 4689 fs_info->delayed_block_rsv.space_info = space_info; 4690 4691 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4692 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4693 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4694 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4695 if (fs_info->quota_root) 4696 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4697 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4698 4699 update_global_block_rsv(fs_info); 4700 } 4701 4702 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4703 { 4704 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4705 (u64)-1); 4706 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4707 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4708 WARN_ON(fs_info->trans_block_rsv.size > 0); 4709 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4710 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4711 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4712 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4713 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4714 } 4715 4716 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4717 struct btrfs_root *root) 4718 { 4719 if (!trans->block_rsv) 4720 return; 4721 4722 if (!trans->bytes_reserved) 4723 return; 4724 4725 trace_btrfs_space_reservation(root->fs_info, "transaction", 4726 trans->transid, trans->bytes_reserved, 0); 4727 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4728 trans->bytes_reserved = 0; 4729 } 4730 4731 /* Can only return 0 or -ENOSPC */ 4732 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4733 struct inode *inode) 4734 { 4735 struct btrfs_root *root = BTRFS_I(inode)->root; 4736 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4737 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4738 4739 /* 4740 * We need to hold space in order to delete our orphan item once we've 4741 * added it, so this takes the reservation so we can release it later 4742 * when we are truly done with the orphan item. 4743 */ 4744 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4745 trace_btrfs_space_reservation(root->fs_info, "orphan", 4746 btrfs_ino(inode), num_bytes, 1); 4747 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4748 } 4749 4750 void btrfs_orphan_release_metadata(struct inode *inode) 4751 { 4752 struct btrfs_root *root = BTRFS_I(inode)->root; 4753 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4754 trace_btrfs_space_reservation(root->fs_info, "orphan", 4755 btrfs_ino(inode), num_bytes, 0); 4756 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4757 } 4758 4759 /* 4760 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4761 * root: the root of the parent directory 4762 * rsv: block reservation 4763 * items: the number of items that we need do reservation 4764 * qgroup_reserved: used to return the reserved size in qgroup 4765 * 4766 * This function is used to reserve the space for snapshot/subvolume 4767 * creation and deletion. Those operations are different with the 4768 * common file/directory operations, they change two fs/file trees 4769 * and root tree, the number of items that the qgroup reserves is 4770 * different with the free space reservation. So we can not use 4771 * the space reseravtion mechanism in start_transaction(). 4772 */ 4773 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4774 struct btrfs_block_rsv *rsv, 4775 int items, 4776 u64 *qgroup_reserved, 4777 bool use_global_rsv) 4778 { 4779 u64 num_bytes; 4780 int ret; 4781 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4782 4783 if (root->fs_info->quota_enabled) { 4784 /* One for parent inode, two for dir entries */ 4785 num_bytes = 3 * root->leafsize; 4786 ret = btrfs_qgroup_reserve(root, num_bytes); 4787 if (ret) 4788 return ret; 4789 } else { 4790 num_bytes = 0; 4791 } 4792 4793 *qgroup_reserved = num_bytes; 4794 4795 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4796 rsv->space_info = __find_space_info(root->fs_info, 4797 BTRFS_BLOCK_GROUP_METADATA); 4798 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4799 BTRFS_RESERVE_FLUSH_ALL); 4800 4801 if (ret == -ENOSPC && use_global_rsv) 4802 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 4803 4804 if (ret) { 4805 if (*qgroup_reserved) 4806 btrfs_qgroup_free(root, *qgroup_reserved); 4807 } 4808 4809 return ret; 4810 } 4811 4812 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4813 struct btrfs_block_rsv *rsv, 4814 u64 qgroup_reserved) 4815 { 4816 btrfs_block_rsv_release(root, rsv, (u64)-1); 4817 if (qgroup_reserved) 4818 btrfs_qgroup_free(root, qgroup_reserved); 4819 } 4820 4821 /** 4822 * drop_outstanding_extent - drop an outstanding extent 4823 * @inode: the inode we're dropping the extent for 4824 * 4825 * This is called when we are freeing up an outstanding extent, either called 4826 * after an error or after an extent is written. This will return the number of 4827 * reserved extents that need to be freed. This must be called with 4828 * BTRFS_I(inode)->lock held. 4829 */ 4830 static unsigned drop_outstanding_extent(struct inode *inode) 4831 { 4832 unsigned drop_inode_space = 0; 4833 unsigned dropped_extents = 0; 4834 4835 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4836 BTRFS_I(inode)->outstanding_extents--; 4837 4838 if (BTRFS_I(inode)->outstanding_extents == 0 && 4839 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4840 &BTRFS_I(inode)->runtime_flags)) 4841 drop_inode_space = 1; 4842 4843 /* 4844 * If we have more or the same amount of outsanding extents than we have 4845 * reserved then we need to leave the reserved extents count alone. 4846 */ 4847 if (BTRFS_I(inode)->outstanding_extents >= 4848 BTRFS_I(inode)->reserved_extents) 4849 return drop_inode_space; 4850 4851 dropped_extents = BTRFS_I(inode)->reserved_extents - 4852 BTRFS_I(inode)->outstanding_extents; 4853 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4854 return dropped_extents + drop_inode_space; 4855 } 4856 4857 /** 4858 * calc_csum_metadata_size - return the amount of metada space that must be 4859 * reserved/free'd for the given bytes. 4860 * @inode: the inode we're manipulating 4861 * @num_bytes: the number of bytes in question 4862 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4863 * 4864 * This adjusts the number of csum_bytes in the inode and then returns the 4865 * correct amount of metadata that must either be reserved or freed. We 4866 * calculate how many checksums we can fit into one leaf and then divide the 4867 * number of bytes that will need to be checksumed by this value to figure out 4868 * how many checksums will be required. If we are adding bytes then the number 4869 * may go up and we will return the number of additional bytes that must be 4870 * reserved. If it is going down we will return the number of bytes that must 4871 * be freed. 4872 * 4873 * This must be called with BTRFS_I(inode)->lock held. 4874 */ 4875 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4876 int reserve) 4877 { 4878 struct btrfs_root *root = BTRFS_I(inode)->root; 4879 u64 csum_size; 4880 int num_csums_per_leaf; 4881 int num_csums; 4882 int old_csums; 4883 4884 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4885 BTRFS_I(inode)->csum_bytes == 0) 4886 return 0; 4887 4888 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4889 if (reserve) 4890 BTRFS_I(inode)->csum_bytes += num_bytes; 4891 else 4892 BTRFS_I(inode)->csum_bytes -= num_bytes; 4893 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4894 num_csums_per_leaf = (int)div64_u64(csum_size, 4895 sizeof(struct btrfs_csum_item) + 4896 sizeof(struct btrfs_disk_key)); 4897 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4898 num_csums = num_csums + num_csums_per_leaf - 1; 4899 num_csums = num_csums / num_csums_per_leaf; 4900 4901 old_csums = old_csums + num_csums_per_leaf - 1; 4902 old_csums = old_csums / num_csums_per_leaf; 4903 4904 /* No change, no need to reserve more */ 4905 if (old_csums == num_csums) 4906 return 0; 4907 4908 if (reserve) 4909 return btrfs_calc_trans_metadata_size(root, 4910 num_csums - old_csums); 4911 4912 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4913 } 4914 4915 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4916 { 4917 struct btrfs_root *root = BTRFS_I(inode)->root; 4918 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4919 u64 to_reserve = 0; 4920 u64 csum_bytes; 4921 unsigned nr_extents = 0; 4922 int extra_reserve = 0; 4923 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4924 int ret = 0; 4925 bool delalloc_lock = true; 4926 u64 to_free = 0; 4927 unsigned dropped; 4928 4929 /* If we are a free space inode we need to not flush since we will be in 4930 * the middle of a transaction commit. We also don't need the delalloc 4931 * mutex since we won't race with anybody. We need this mostly to make 4932 * lockdep shut its filthy mouth. 4933 */ 4934 if (btrfs_is_free_space_inode(inode)) { 4935 flush = BTRFS_RESERVE_NO_FLUSH; 4936 delalloc_lock = false; 4937 } 4938 4939 if (flush != BTRFS_RESERVE_NO_FLUSH && 4940 btrfs_transaction_in_commit(root->fs_info)) 4941 schedule_timeout(1); 4942 4943 if (delalloc_lock) 4944 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4945 4946 num_bytes = ALIGN(num_bytes, root->sectorsize); 4947 4948 spin_lock(&BTRFS_I(inode)->lock); 4949 BTRFS_I(inode)->outstanding_extents++; 4950 4951 if (BTRFS_I(inode)->outstanding_extents > 4952 BTRFS_I(inode)->reserved_extents) 4953 nr_extents = BTRFS_I(inode)->outstanding_extents - 4954 BTRFS_I(inode)->reserved_extents; 4955 4956 /* 4957 * Add an item to reserve for updating the inode when we complete the 4958 * delalloc io. 4959 */ 4960 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4961 &BTRFS_I(inode)->runtime_flags)) { 4962 nr_extents++; 4963 extra_reserve = 1; 4964 } 4965 4966 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4967 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4968 csum_bytes = BTRFS_I(inode)->csum_bytes; 4969 spin_unlock(&BTRFS_I(inode)->lock); 4970 4971 if (root->fs_info->quota_enabled) { 4972 ret = btrfs_qgroup_reserve(root, num_bytes + 4973 nr_extents * root->leafsize); 4974 if (ret) 4975 goto out_fail; 4976 } 4977 4978 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4979 if (unlikely(ret)) { 4980 if (root->fs_info->quota_enabled) 4981 btrfs_qgroup_free(root, num_bytes + 4982 nr_extents * root->leafsize); 4983 goto out_fail; 4984 } 4985 4986 spin_lock(&BTRFS_I(inode)->lock); 4987 if (extra_reserve) { 4988 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4989 &BTRFS_I(inode)->runtime_flags); 4990 nr_extents--; 4991 } 4992 BTRFS_I(inode)->reserved_extents += nr_extents; 4993 spin_unlock(&BTRFS_I(inode)->lock); 4994 4995 if (delalloc_lock) 4996 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4997 4998 if (to_reserve) 4999 trace_btrfs_space_reservation(root->fs_info,"delalloc", 5000 btrfs_ino(inode), to_reserve, 1); 5001 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5002 5003 return 0; 5004 5005 out_fail: 5006 spin_lock(&BTRFS_I(inode)->lock); 5007 dropped = drop_outstanding_extent(inode); 5008 /* 5009 * If the inodes csum_bytes is the same as the original 5010 * csum_bytes then we know we haven't raced with any free()ers 5011 * so we can just reduce our inodes csum bytes and carry on. 5012 */ 5013 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5014 calc_csum_metadata_size(inode, num_bytes, 0); 5015 } else { 5016 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5017 u64 bytes; 5018 5019 /* 5020 * This is tricky, but first we need to figure out how much we 5021 * free'd from any free-ers that occured during this 5022 * reservation, so we reset ->csum_bytes to the csum_bytes 5023 * before we dropped our lock, and then call the free for the 5024 * number of bytes that were freed while we were trying our 5025 * reservation. 5026 */ 5027 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5028 BTRFS_I(inode)->csum_bytes = csum_bytes; 5029 to_free = calc_csum_metadata_size(inode, bytes, 0); 5030 5031 5032 /* 5033 * Now we need to see how much we would have freed had we not 5034 * been making this reservation and our ->csum_bytes were not 5035 * artificially inflated. 5036 */ 5037 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5038 bytes = csum_bytes - orig_csum_bytes; 5039 bytes = calc_csum_metadata_size(inode, bytes, 0); 5040 5041 /* 5042 * Now reset ->csum_bytes to what it should be. If bytes is 5043 * more than to_free then we would have free'd more space had we 5044 * not had an artificially high ->csum_bytes, so we need to free 5045 * the remainder. If bytes is the same or less then we don't 5046 * need to do anything, the other free-ers did the correct 5047 * thing. 5048 */ 5049 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5050 if (bytes > to_free) 5051 to_free = bytes - to_free; 5052 else 5053 to_free = 0; 5054 } 5055 spin_unlock(&BTRFS_I(inode)->lock); 5056 if (dropped) 5057 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5058 5059 if (to_free) { 5060 btrfs_block_rsv_release(root, block_rsv, to_free); 5061 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5062 btrfs_ino(inode), to_free, 0); 5063 } 5064 if (delalloc_lock) 5065 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5066 return ret; 5067 } 5068 5069 /** 5070 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5071 * @inode: the inode to release the reservation for 5072 * @num_bytes: the number of bytes we're releasing 5073 * 5074 * This will release the metadata reservation for an inode. This can be called 5075 * once we complete IO for a given set of bytes to release their metadata 5076 * reservations. 5077 */ 5078 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5079 { 5080 struct btrfs_root *root = BTRFS_I(inode)->root; 5081 u64 to_free = 0; 5082 unsigned dropped; 5083 5084 num_bytes = ALIGN(num_bytes, root->sectorsize); 5085 spin_lock(&BTRFS_I(inode)->lock); 5086 dropped = drop_outstanding_extent(inode); 5087 5088 if (num_bytes) 5089 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5090 spin_unlock(&BTRFS_I(inode)->lock); 5091 if (dropped > 0) 5092 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5093 5094 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5095 btrfs_ino(inode), to_free, 0); 5096 if (root->fs_info->quota_enabled) { 5097 btrfs_qgroup_free(root, num_bytes + 5098 dropped * root->leafsize); 5099 } 5100 5101 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5102 to_free); 5103 } 5104 5105 /** 5106 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5107 * @inode: inode we're writing to 5108 * @num_bytes: the number of bytes we want to allocate 5109 * 5110 * This will do the following things 5111 * 5112 * o reserve space in the data space info for num_bytes 5113 * o reserve space in the metadata space info based on number of outstanding 5114 * extents and how much csums will be needed 5115 * o add to the inodes ->delalloc_bytes 5116 * o add it to the fs_info's delalloc inodes list. 5117 * 5118 * This will return 0 for success and -ENOSPC if there is no space left. 5119 */ 5120 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5121 { 5122 int ret; 5123 5124 ret = btrfs_check_data_free_space(inode, num_bytes); 5125 if (ret) 5126 return ret; 5127 5128 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5129 if (ret) { 5130 btrfs_free_reserved_data_space(inode, num_bytes); 5131 return ret; 5132 } 5133 5134 return 0; 5135 } 5136 5137 /** 5138 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5139 * @inode: inode we're releasing space for 5140 * @num_bytes: the number of bytes we want to free up 5141 * 5142 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5143 * called in the case that we don't need the metadata AND data reservations 5144 * anymore. So if there is an error or we insert an inline extent. 5145 * 5146 * This function will release the metadata space that was not used and will 5147 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5148 * list if there are no delalloc bytes left. 5149 */ 5150 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5151 { 5152 btrfs_delalloc_release_metadata(inode, num_bytes); 5153 btrfs_free_reserved_data_space(inode, num_bytes); 5154 } 5155 5156 static int update_block_group(struct btrfs_root *root, 5157 u64 bytenr, u64 num_bytes, int alloc) 5158 { 5159 struct btrfs_block_group_cache *cache = NULL; 5160 struct btrfs_fs_info *info = root->fs_info; 5161 u64 total = num_bytes; 5162 u64 old_val; 5163 u64 byte_in_group; 5164 int factor; 5165 5166 /* block accounting for super block */ 5167 spin_lock(&info->delalloc_root_lock); 5168 old_val = btrfs_super_bytes_used(info->super_copy); 5169 if (alloc) 5170 old_val += num_bytes; 5171 else 5172 old_val -= num_bytes; 5173 btrfs_set_super_bytes_used(info->super_copy, old_val); 5174 spin_unlock(&info->delalloc_root_lock); 5175 5176 while (total) { 5177 cache = btrfs_lookup_block_group(info, bytenr); 5178 if (!cache) 5179 return -ENOENT; 5180 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5181 BTRFS_BLOCK_GROUP_RAID1 | 5182 BTRFS_BLOCK_GROUP_RAID10)) 5183 factor = 2; 5184 else 5185 factor = 1; 5186 /* 5187 * If this block group has free space cache written out, we 5188 * need to make sure to load it if we are removing space. This 5189 * is because we need the unpinning stage to actually add the 5190 * space back to the block group, otherwise we will leak space. 5191 */ 5192 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5193 cache_block_group(cache, 1); 5194 5195 byte_in_group = bytenr - cache->key.objectid; 5196 WARN_ON(byte_in_group > cache->key.offset); 5197 5198 spin_lock(&cache->space_info->lock); 5199 spin_lock(&cache->lock); 5200 5201 if (btrfs_test_opt(root, SPACE_CACHE) && 5202 cache->disk_cache_state < BTRFS_DC_CLEAR) 5203 cache->disk_cache_state = BTRFS_DC_CLEAR; 5204 5205 cache->dirty = 1; 5206 old_val = btrfs_block_group_used(&cache->item); 5207 num_bytes = min(total, cache->key.offset - byte_in_group); 5208 if (alloc) { 5209 old_val += num_bytes; 5210 btrfs_set_block_group_used(&cache->item, old_val); 5211 cache->reserved -= num_bytes; 5212 cache->space_info->bytes_reserved -= num_bytes; 5213 cache->space_info->bytes_used += num_bytes; 5214 cache->space_info->disk_used += num_bytes * factor; 5215 spin_unlock(&cache->lock); 5216 spin_unlock(&cache->space_info->lock); 5217 } else { 5218 old_val -= num_bytes; 5219 btrfs_set_block_group_used(&cache->item, old_val); 5220 cache->pinned += num_bytes; 5221 cache->space_info->bytes_pinned += num_bytes; 5222 cache->space_info->bytes_used -= num_bytes; 5223 cache->space_info->disk_used -= num_bytes * factor; 5224 spin_unlock(&cache->lock); 5225 spin_unlock(&cache->space_info->lock); 5226 5227 set_extent_dirty(info->pinned_extents, 5228 bytenr, bytenr + num_bytes - 1, 5229 GFP_NOFS | __GFP_NOFAIL); 5230 } 5231 btrfs_put_block_group(cache); 5232 total -= num_bytes; 5233 bytenr += num_bytes; 5234 } 5235 return 0; 5236 } 5237 5238 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5239 { 5240 struct btrfs_block_group_cache *cache; 5241 u64 bytenr; 5242 5243 spin_lock(&root->fs_info->block_group_cache_lock); 5244 bytenr = root->fs_info->first_logical_byte; 5245 spin_unlock(&root->fs_info->block_group_cache_lock); 5246 5247 if (bytenr < (u64)-1) 5248 return bytenr; 5249 5250 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5251 if (!cache) 5252 return 0; 5253 5254 bytenr = cache->key.objectid; 5255 btrfs_put_block_group(cache); 5256 5257 return bytenr; 5258 } 5259 5260 static int pin_down_extent(struct btrfs_root *root, 5261 struct btrfs_block_group_cache *cache, 5262 u64 bytenr, u64 num_bytes, int reserved) 5263 { 5264 spin_lock(&cache->space_info->lock); 5265 spin_lock(&cache->lock); 5266 cache->pinned += num_bytes; 5267 cache->space_info->bytes_pinned += num_bytes; 5268 if (reserved) { 5269 cache->reserved -= num_bytes; 5270 cache->space_info->bytes_reserved -= num_bytes; 5271 } 5272 spin_unlock(&cache->lock); 5273 spin_unlock(&cache->space_info->lock); 5274 5275 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5276 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5277 return 0; 5278 } 5279 5280 /* 5281 * this function must be called within transaction 5282 */ 5283 int btrfs_pin_extent(struct btrfs_root *root, 5284 u64 bytenr, u64 num_bytes, int reserved) 5285 { 5286 struct btrfs_block_group_cache *cache; 5287 5288 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5289 BUG_ON(!cache); /* Logic error */ 5290 5291 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5292 5293 btrfs_put_block_group(cache); 5294 return 0; 5295 } 5296 5297 /* 5298 * this function must be called within transaction 5299 */ 5300 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5301 u64 bytenr, u64 num_bytes) 5302 { 5303 struct btrfs_block_group_cache *cache; 5304 int ret; 5305 5306 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5307 if (!cache) 5308 return -EINVAL; 5309 5310 /* 5311 * pull in the free space cache (if any) so that our pin 5312 * removes the free space from the cache. We have load_only set 5313 * to one because the slow code to read in the free extents does check 5314 * the pinned extents. 5315 */ 5316 cache_block_group(cache, 1); 5317 5318 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5319 5320 /* remove us from the free space cache (if we're there at all) */ 5321 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5322 btrfs_put_block_group(cache); 5323 return ret; 5324 } 5325 5326 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5327 { 5328 int ret; 5329 struct btrfs_block_group_cache *block_group; 5330 struct btrfs_caching_control *caching_ctl; 5331 5332 block_group = btrfs_lookup_block_group(root->fs_info, start); 5333 if (!block_group) 5334 return -EINVAL; 5335 5336 cache_block_group(block_group, 0); 5337 caching_ctl = get_caching_control(block_group); 5338 5339 if (!caching_ctl) { 5340 /* Logic error */ 5341 BUG_ON(!block_group_cache_done(block_group)); 5342 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5343 } else { 5344 mutex_lock(&caching_ctl->mutex); 5345 5346 if (start >= caching_ctl->progress) { 5347 ret = add_excluded_extent(root, start, num_bytes); 5348 } else if (start + num_bytes <= caching_ctl->progress) { 5349 ret = btrfs_remove_free_space(block_group, 5350 start, num_bytes); 5351 } else { 5352 num_bytes = caching_ctl->progress - start; 5353 ret = btrfs_remove_free_space(block_group, 5354 start, num_bytes); 5355 if (ret) 5356 goto out_lock; 5357 5358 num_bytes = (start + num_bytes) - 5359 caching_ctl->progress; 5360 start = caching_ctl->progress; 5361 ret = add_excluded_extent(root, start, num_bytes); 5362 } 5363 out_lock: 5364 mutex_unlock(&caching_ctl->mutex); 5365 put_caching_control(caching_ctl); 5366 } 5367 btrfs_put_block_group(block_group); 5368 return ret; 5369 } 5370 5371 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5372 struct extent_buffer *eb) 5373 { 5374 struct btrfs_file_extent_item *item; 5375 struct btrfs_key key; 5376 int found_type; 5377 int i; 5378 5379 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5380 return 0; 5381 5382 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5383 btrfs_item_key_to_cpu(eb, &key, i); 5384 if (key.type != BTRFS_EXTENT_DATA_KEY) 5385 continue; 5386 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5387 found_type = btrfs_file_extent_type(eb, item); 5388 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5389 continue; 5390 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5391 continue; 5392 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5393 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5394 __exclude_logged_extent(log, key.objectid, key.offset); 5395 } 5396 5397 return 0; 5398 } 5399 5400 /** 5401 * btrfs_update_reserved_bytes - update the block_group and space info counters 5402 * @cache: The cache we are manipulating 5403 * @num_bytes: The number of bytes in question 5404 * @reserve: One of the reservation enums 5405 * 5406 * This is called by the allocator when it reserves space, or by somebody who is 5407 * freeing space that was never actually used on disk. For example if you 5408 * reserve some space for a new leaf in transaction A and before transaction A 5409 * commits you free that leaf, you call this with reserve set to 0 in order to 5410 * clear the reservation. 5411 * 5412 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5413 * ENOSPC accounting. For data we handle the reservation through clearing the 5414 * delalloc bits in the io_tree. We have to do this since we could end up 5415 * allocating less disk space for the amount of data we have reserved in the 5416 * case of compression. 5417 * 5418 * If this is a reservation and the block group has become read only we cannot 5419 * make the reservation and return -EAGAIN, otherwise this function always 5420 * succeeds. 5421 */ 5422 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5423 u64 num_bytes, int reserve) 5424 { 5425 struct btrfs_space_info *space_info = cache->space_info; 5426 int ret = 0; 5427 5428 spin_lock(&space_info->lock); 5429 spin_lock(&cache->lock); 5430 if (reserve != RESERVE_FREE) { 5431 if (cache->ro) { 5432 ret = -EAGAIN; 5433 } else { 5434 cache->reserved += num_bytes; 5435 space_info->bytes_reserved += num_bytes; 5436 if (reserve == RESERVE_ALLOC) { 5437 trace_btrfs_space_reservation(cache->fs_info, 5438 "space_info", space_info->flags, 5439 num_bytes, 0); 5440 space_info->bytes_may_use -= num_bytes; 5441 } 5442 } 5443 } else { 5444 if (cache->ro) 5445 space_info->bytes_readonly += num_bytes; 5446 cache->reserved -= num_bytes; 5447 space_info->bytes_reserved -= num_bytes; 5448 space_info->reservation_progress++; 5449 } 5450 spin_unlock(&cache->lock); 5451 spin_unlock(&space_info->lock); 5452 return ret; 5453 } 5454 5455 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5456 struct btrfs_root *root) 5457 { 5458 struct btrfs_fs_info *fs_info = root->fs_info; 5459 struct btrfs_caching_control *next; 5460 struct btrfs_caching_control *caching_ctl; 5461 struct btrfs_block_group_cache *cache; 5462 struct btrfs_space_info *space_info; 5463 5464 down_write(&fs_info->extent_commit_sem); 5465 5466 list_for_each_entry_safe(caching_ctl, next, 5467 &fs_info->caching_block_groups, list) { 5468 cache = caching_ctl->block_group; 5469 if (block_group_cache_done(cache)) { 5470 cache->last_byte_to_unpin = (u64)-1; 5471 list_del_init(&caching_ctl->list); 5472 put_caching_control(caching_ctl); 5473 } else { 5474 cache->last_byte_to_unpin = caching_ctl->progress; 5475 } 5476 } 5477 5478 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5479 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5480 else 5481 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5482 5483 up_write(&fs_info->extent_commit_sem); 5484 5485 list_for_each_entry_rcu(space_info, &fs_info->space_info, list) 5486 percpu_counter_set(&space_info->total_bytes_pinned, 0); 5487 5488 update_global_block_rsv(fs_info); 5489 } 5490 5491 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5492 { 5493 struct btrfs_fs_info *fs_info = root->fs_info; 5494 struct btrfs_block_group_cache *cache = NULL; 5495 struct btrfs_space_info *space_info; 5496 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5497 u64 len; 5498 bool readonly; 5499 5500 while (start <= end) { 5501 readonly = false; 5502 if (!cache || 5503 start >= cache->key.objectid + cache->key.offset) { 5504 if (cache) 5505 btrfs_put_block_group(cache); 5506 cache = btrfs_lookup_block_group(fs_info, start); 5507 BUG_ON(!cache); /* Logic error */ 5508 } 5509 5510 len = cache->key.objectid + cache->key.offset - start; 5511 len = min(len, end + 1 - start); 5512 5513 if (start < cache->last_byte_to_unpin) { 5514 len = min(len, cache->last_byte_to_unpin - start); 5515 btrfs_add_free_space(cache, start, len); 5516 } 5517 5518 start += len; 5519 space_info = cache->space_info; 5520 5521 spin_lock(&space_info->lock); 5522 spin_lock(&cache->lock); 5523 cache->pinned -= len; 5524 space_info->bytes_pinned -= len; 5525 if (cache->ro) { 5526 space_info->bytes_readonly += len; 5527 readonly = true; 5528 } 5529 spin_unlock(&cache->lock); 5530 if (!readonly && global_rsv->space_info == space_info) { 5531 spin_lock(&global_rsv->lock); 5532 if (!global_rsv->full) { 5533 len = min(len, global_rsv->size - 5534 global_rsv->reserved); 5535 global_rsv->reserved += len; 5536 space_info->bytes_may_use += len; 5537 if (global_rsv->reserved >= global_rsv->size) 5538 global_rsv->full = 1; 5539 } 5540 spin_unlock(&global_rsv->lock); 5541 } 5542 spin_unlock(&space_info->lock); 5543 } 5544 5545 if (cache) 5546 btrfs_put_block_group(cache); 5547 return 0; 5548 } 5549 5550 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5551 struct btrfs_root *root) 5552 { 5553 struct btrfs_fs_info *fs_info = root->fs_info; 5554 struct extent_io_tree *unpin; 5555 u64 start; 5556 u64 end; 5557 int ret; 5558 5559 if (trans->aborted) 5560 return 0; 5561 5562 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5563 unpin = &fs_info->freed_extents[1]; 5564 else 5565 unpin = &fs_info->freed_extents[0]; 5566 5567 while (1) { 5568 ret = find_first_extent_bit(unpin, 0, &start, &end, 5569 EXTENT_DIRTY, NULL); 5570 if (ret) 5571 break; 5572 5573 if (btrfs_test_opt(root, DISCARD)) 5574 ret = btrfs_discard_extent(root, start, 5575 end + 1 - start, NULL); 5576 5577 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5578 unpin_extent_range(root, start, end); 5579 cond_resched(); 5580 } 5581 5582 return 0; 5583 } 5584 5585 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5586 u64 owner, u64 root_objectid) 5587 { 5588 struct btrfs_space_info *space_info; 5589 u64 flags; 5590 5591 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5592 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5593 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5594 else 5595 flags = BTRFS_BLOCK_GROUP_METADATA; 5596 } else { 5597 flags = BTRFS_BLOCK_GROUP_DATA; 5598 } 5599 5600 space_info = __find_space_info(fs_info, flags); 5601 BUG_ON(!space_info); /* Logic bug */ 5602 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5603 } 5604 5605 5606 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5607 struct btrfs_root *root, 5608 u64 bytenr, u64 num_bytes, u64 parent, 5609 u64 root_objectid, u64 owner_objectid, 5610 u64 owner_offset, int refs_to_drop, 5611 struct btrfs_delayed_extent_op *extent_op) 5612 { 5613 struct btrfs_key key; 5614 struct btrfs_path *path; 5615 struct btrfs_fs_info *info = root->fs_info; 5616 struct btrfs_root *extent_root = info->extent_root; 5617 struct extent_buffer *leaf; 5618 struct btrfs_extent_item *ei; 5619 struct btrfs_extent_inline_ref *iref; 5620 int ret; 5621 int is_data; 5622 int extent_slot = 0; 5623 int found_extent = 0; 5624 int num_to_del = 1; 5625 u32 item_size; 5626 u64 refs; 5627 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5628 SKINNY_METADATA); 5629 5630 path = btrfs_alloc_path(); 5631 if (!path) 5632 return -ENOMEM; 5633 5634 path->reada = 1; 5635 path->leave_spinning = 1; 5636 5637 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5638 BUG_ON(!is_data && refs_to_drop != 1); 5639 5640 if (is_data) 5641 skinny_metadata = 0; 5642 5643 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5644 bytenr, num_bytes, parent, 5645 root_objectid, owner_objectid, 5646 owner_offset); 5647 if (ret == 0) { 5648 extent_slot = path->slots[0]; 5649 while (extent_slot >= 0) { 5650 btrfs_item_key_to_cpu(path->nodes[0], &key, 5651 extent_slot); 5652 if (key.objectid != bytenr) 5653 break; 5654 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5655 key.offset == num_bytes) { 5656 found_extent = 1; 5657 break; 5658 } 5659 if (key.type == BTRFS_METADATA_ITEM_KEY && 5660 key.offset == owner_objectid) { 5661 found_extent = 1; 5662 break; 5663 } 5664 if (path->slots[0] - extent_slot > 5) 5665 break; 5666 extent_slot--; 5667 } 5668 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5669 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5670 if (found_extent && item_size < sizeof(*ei)) 5671 found_extent = 0; 5672 #endif 5673 if (!found_extent) { 5674 BUG_ON(iref); 5675 ret = remove_extent_backref(trans, extent_root, path, 5676 NULL, refs_to_drop, 5677 is_data); 5678 if (ret) { 5679 btrfs_abort_transaction(trans, extent_root, ret); 5680 goto out; 5681 } 5682 btrfs_release_path(path); 5683 path->leave_spinning = 1; 5684 5685 key.objectid = bytenr; 5686 key.type = BTRFS_EXTENT_ITEM_KEY; 5687 key.offset = num_bytes; 5688 5689 if (!is_data && skinny_metadata) { 5690 key.type = BTRFS_METADATA_ITEM_KEY; 5691 key.offset = owner_objectid; 5692 } 5693 5694 ret = btrfs_search_slot(trans, extent_root, 5695 &key, path, -1, 1); 5696 if (ret > 0 && skinny_metadata && path->slots[0]) { 5697 /* 5698 * Couldn't find our skinny metadata item, 5699 * see if we have ye olde extent item. 5700 */ 5701 path->slots[0]--; 5702 btrfs_item_key_to_cpu(path->nodes[0], &key, 5703 path->slots[0]); 5704 if (key.objectid == bytenr && 5705 key.type == BTRFS_EXTENT_ITEM_KEY && 5706 key.offset == num_bytes) 5707 ret = 0; 5708 } 5709 5710 if (ret > 0 && skinny_metadata) { 5711 skinny_metadata = false; 5712 key.type = BTRFS_EXTENT_ITEM_KEY; 5713 key.offset = num_bytes; 5714 btrfs_release_path(path); 5715 ret = btrfs_search_slot(trans, extent_root, 5716 &key, path, -1, 1); 5717 } 5718 5719 if (ret) { 5720 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5721 ret, bytenr); 5722 if (ret > 0) 5723 btrfs_print_leaf(extent_root, 5724 path->nodes[0]); 5725 } 5726 if (ret < 0) { 5727 btrfs_abort_transaction(trans, extent_root, ret); 5728 goto out; 5729 } 5730 extent_slot = path->slots[0]; 5731 } 5732 } else if (ret == -ENOENT) { 5733 btrfs_print_leaf(extent_root, path->nodes[0]); 5734 WARN_ON(1); 5735 btrfs_err(info, 5736 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5737 bytenr, parent, root_objectid, owner_objectid, 5738 owner_offset); 5739 } else { 5740 btrfs_abort_transaction(trans, extent_root, ret); 5741 goto out; 5742 } 5743 5744 leaf = path->nodes[0]; 5745 item_size = btrfs_item_size_nr(leaf, extent_slot); 5746 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5747 if (item_size < sizeof(*ei)) { 5748 BUG_ON(found_extent || extent_slot != path->slots[0]); 5749 ret = convert_extent_item_v0(trans, extent_root, path, 5750 owner_objectid, 0); 5751 if (ret < 0) { 5752 btrfs_abort_transaction(trans, extent_root, ret); 5753 goto out; 5754 } 5755 5756 btrfs_release_path(path); 5757 path->leave_spinning = 1; 5758 5759 key.objectid = bytenr; 5760 key.type = BTRFS_EXTENT_ITEM_KEY; 5761 key.offset = num_bytes; 5762 5763 ret = btrfs_search_slot(trans, extent_root, &key, path, 5764 -1, 1); 5765 if (ret) { 5766 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5767 ret, bytenr); 5768 btrfs_print_leaf(extent_root, path->nodes[0]); 5769 } 5770 if (ret < 0) { 5771 btrfs_abort_transaction(trans, extent_root, ret); 5772 goto out; 5773 } 5774 5775 extent_slot = path->slots[0]; 5776 leaf = path->nodes[0]; 5777 item_size = btrfs_item_size_nr(leaf, extent_slot); 5778 } 5779 #endif 5780 BUG_ON(item_size < sizeof(*ei)); 5781 ei = btrfs_item_ptr(leaf, extent_slot, 5782 struct btrfs_extent_item); 5783 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 5784 key.type == BTRFS_EXTENT_ITEM_KEY) { 5785 struct btrfs_tree_block_info *bi; 5786 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5787 bi = (struct btrfs_tree_block_info *)(ei + 1); 5788 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5789 } 5790 5791 refs = btrfs_extent_refs(leaf, ei); 5792 if (refs < refs_to_drop) { 5793 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 5794 "for bytenr %Lu\n", refs_to_drop, refs, bytenr); 5795 ret = -EINVAL; 5796 btrfs_abort_transaction(trans, extent_root, ret); 5797 goto out; 5798 } 5799 refs -= refs_to_drop; 5800 5801 if (refs > 0) { 5802 if (extent_op) 5803 __run_delayed_extent_op(extent_op, leaf, ei); 5804 /* 5805 * In the case of inline back ref, reference count will 5806 * be updated by remove_extent_backref 5807 */ 5808 if (iref) { 5809 BUG_ON(!found_extent); 5810 } else { 5811 btrfs_set_extent_refs(leaf, ei, refs); 5812 btrfs_mark_buffer_dirty(leaf); 5813 } 5814 if (found_extent) { 5815 ret = remove_extent_backref(trans, extent_root, path, 5816 iref, refs_to_drop, 5817 is_data); 5818 if (ret) { 5819 btrfs_abort_transaction(trans, extent_root, ret); 5820 goto out; 5821 } 5822 } 5823 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 5824 root_objectid); 5825 } else { 5826 if (found_extent) { 5827 BUG_ON(is_data && refs_to_drop != 5828 extent_data_ref_count(root, path, iref)); 5829 if (iref) { 5830 BUG_ON(path->slots[0] != extent_slot); 5831 } else { 5832 BUG_ON(path->slots[0] != extent_slot + 1); 5833 path->slots[0] = extent_slot; 5834 num_to_del = 2; 5835 } 5836 } 5837 5838 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5839 num_to_del); 5840 if (ret) { 5841 btrfs_abort_transaction(trans, extent_root, ret); 5842 goto out; 5843 } 5844 btrfs_release_path(path); 5845 5846 if (is_data) { 5847 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5848 if (ret) { 5849 btrfs_abort_transaction(trans, extent_root, ret); 5850 goto out; 5851 } 5852 } 5853 5854 ret = update_block_group(root, bytenr, num_bytes, 0); 5855 if (ret) { 5856 btrfs_abort_transaction(trans, extent_root, ret); 5857 goto out; 5858 } 5859 } 5860 out: 5861 btrfs_free_path(path); 5862 return ret; 5863 } 5864 5865 /* 5866 * when we free an block, it is possible (and likely) that we free the last 5867 * delayed ref for that extent as well. This searches the delayed ref tree for 5868 * a given extent, and if there are no other delayed refs to be processed, it 5869 * removes it from the tree. 5870 */ 5871 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5872 struct btrfs_root *root, u64 bytenr) 5873 { 5874 struct btrfs_delayed_ref_head *head; 5875 struct btrfs_delayed_ref_root *delayed_refs; 5876 struct btrfs_delayed_ref_node *ref; 5877 struct rb_node *node; 5878 int ret = 0; 5879 5880 delayed_refs = &trans->transaction->delayed_refs; 5881 spin_lock(&delayed_refs->lock); 5882 head = btrfs_find_delayed_ref_head(trans, bytenr); 5883 if (!head) 5884 goto out; 5885 5886 node = rb_prev(&head->node.rb_node); 5887 if (!node) 5888 goto out; 5889 5890 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5891 5892 /* there are still entries for this ref, we can't drop it */ 5893 if (ref->bytenr == bytenr) 5894 goto out; 5895 5896 if (head->extent_op) { 5897 if (!head->must_insert_reserved) 5898 goto out; 5899 btrfs_free_delayed_extent_op(head->extent_op); 5900 head->extent_op = NULL; 5901 } 5902 5903 /* 5904 * waiting for the lock here would deadlock. If someone else has it 5905 * locked they are already in the process of dropping it anyway 5906 */ 5907 if (!mutex_trylock(&head->mutex)) 5908 goto out; 5909 5910 /* 5911 * at this point we have a head with no other entries. Go 5912 * ahead and process it. 5913 */ 5914 head->node.in_tree = 0; 5915 rb_erase(&head->node.rb_node, &delayed_refs->root); 5916 5917 delayed_refs->num_entries--; 5918 5919 /* 5920 * we don't take a ref on the node because we're removing it from the 5921 * tree, so we just steal the ref the tree was holding. 5922 */ 5923 delayed_refs->num_heads--; 5924 if (list_empty(&head->cluster)) 5925 delayed_refs->num_heads_ready--; 5926 5927 list_del_init(&head->cluster); 5928 spin_unlock(&delayed_refs->lock); 5929 5930 BUG_ON(head->extent_op); 5931 if (head->must_insert_reserved) 5932 ret = 1; 5933 5934 mutex_unlock(&head->mutex); 5935 btrfs_put_delayed_ref(&head->node); 5936 return ret; 5937 out: 5938 spin_unlock(&delayed_refs->lock); 5939 return 0; 5940 } 5941 5942 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5943 struct btrfs_root *root, 5944 struct extent_buffer *buf, 5945 u64 parent, int last_ref) 5946 { 5947 struct btrfs_block_group_cache *cache = NULL; 5948 int pin = 1; 5949 int ret; 5950 5951 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5952 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5953 buf->start, buf->len, 5954 parent, root->root_key.objectid, 5955 btrfs_header_level(buf), 5956 BTRFS_DROP_DELAYED_REF, NULL, 0); 5957 BUG_ON(ret); /* -ENOMEM */ 5958 } 5959 5960 if (!last_ref) 5961 return; 5962 5963 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5964 5965 if (btrfs_header_generation(buf) == trans->transid) { 5966 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5967 ret = check_ref_cleanup(trans, root, buf->start); 5968 if (!ret) 5969 goto out; 5970 } 5971 5972 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5973 pin_down_extent(root, cache, buf->start, buf->len, 1); 5974 goto out; 5975 } 5976 5977 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5978 5979 btrfs_add_free_space(cache, buf->start, buf->len); 5980 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5981 pin = 0; 5982 } 5983 out: 5984 if (pin) 5985 add_pinned_bytes(root->fs_info, buf->len, 5986 btrfs_header_level(buf), 5987 root->root_key.objectid); 5988 5989 /* 5990 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5991 * anymore. 5992 */ 5993 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5994 btrfs_put_block_group(cache); 5995 } 5996 5997 /* Can return -ENOMEM */ 5998 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5999 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6000 u64 owner, u64 offset, int for_cow) 6001 { 6002 int ret; 6003 struct btrfs_fs_info *fs_info = root->fs_info; 6004 6005 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6006 6007 /* 6008 * tree log blocks never actually go into the extent allocation 6009 * tree, just update pinning info and exit early. 6010 */ 6011 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6012 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6013 /* unlocks the pinned mutex */ 6014 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6015 ret = 0; 6016 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6017 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6018 num_bytes, 6019 parent, root_objectid, (int)owner, 6020 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 6021 } else { 6022 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6023 num_bytes, 6024 parent, root_objectid, owner, 6025 offset, BTRFS_DROP_DELAYED_REF, 6026 NULL, for_cow); 6027 } 6028 return ret; 6029 } 6030 6031 static u64 stripe_align(struct btrfs_root *root, 6032 struct btrfs_block_group_cache *cache, 6033 u64 val, u64 num_bytes) 6034 { 6035 u64 ret = ALIGN(val, root->stripesize); 6036 return ret; 6037 } 6038 6039 /* 6040 * when we wait for progress in the block group caching, its because 6041 * our allocation attempt failed at least once. So, we must sleep 6042 * and let some progress happen before we try again. 6043 * 6044 * This function will sleep at least once waiting for new free space to 6045 * show up, and then it will check the block group free space numbers 6046 * for our min num_bytes. Another option is to have it go ahead 6047 * and look in the rbtree for a free extent of a given size, but this 6048 * is a good start. 6049 * 6050 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6051 * any of the information in this block group. 6052 */ 6053 static noinline void 6054 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6055 u64 num_bytes) 6056 { 6057 struct btrfs_caching_control *caching_ctl; 6058 6059 caching_ctl = get_caching_control(cache); 6060 if (!caching_ctl) 6061 return; 6062 6063 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6064 (cache->free_space_ctl->free_space >= num_bytes)); 6065 6066 put_caching_control(caching_ctl); 6067 } 6068 6069 static noinline int 6070 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6071 { 6072 struct btrfs_caching_control *caching_ctl; 6073 int ret = 0; 6074 6075 caching_ctl = get_caching_control(cache); 6076 if (!caching_ctl) 6077 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6078 6079 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6080 if (cache->cached == BTRFS_CACHE_ERROR) 6081 ret = -EIO; 6082 put_caching_control(caching_ctl); 6083 return ret; 6084 } 6085 6086 int __get_raid_index(u64 flags) 6087 { 6088 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6089 return BTRFS_RAID_RAID10; 6090 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6091 return BTRFS_RAID_RAID1; 6092 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6093 return BTRFS_RAID_DUP; 6094 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6095 return BTRFS_RAID_RAID0; 6096 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6097 return BTRFS_RAID_RAID5; 6098 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6099 return BTRFS_RAID_RAID6; 6100 6101 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6102 } 6103 6104 static int get_block_group_index(struct btrfs_block_group_cache *cache) 6105 { 6106 return __get_raid_index(cache->flags); 6107 } 6108 6109 enum btrfs_loop_type { 6110 LOOP_CACHING_NOWAIT = 0, 6111 LOOP_CACHING_WAIT = 1, 6112 LOOP_ALLOC_CHUNK = 2, 6113 LOOP_NO_EMPTY_SIZE = 3, 6114 }; 6115 6116 /* 6117 * walks the btree of allocated extents and find a hole of a given size. 6118 * The key ins is changed to record the hole: 6119 * ins->objectid == block start 6120 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6121 * ins->offset == number of blocks 6122 * Any available blocks before search_start are skipped. 6123 */ 6124 static noinline int find_free_extent(struct btrfs_root *orig_root, 6125 u64 num_bytes, u64 empty_size, 6126 u64 hint_byte, struct btrfs_key *ins, 6127 u64 flags) 6128 { 6129 int ret = 0; 6130 struct btrfs_root *root = orig_root->fs_info->extent_root; 6131 struct btrfs_free_cluster *last_ptr = NULL; 6132 struct btrfs_block_group_cache *block_group = NULL; 6133 struct btrfs_block_group_cache *used_block_group; 6134 u64 search_start = 0; 6135 int empty_cluster = 2 * 1024 * 1024; 6136 struct btrfs_space_info *space_info; 6137 int loop = 0; 6138 int index = __get_raid_index(flags); 6139 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6140 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6141 bool found_uncached_bg = false; 6142 bool failed_cluster_refill = false; 6143 bool failed_alloc = false; 6144 bool use_cluster = true; 6145 bool have_caching_bg = false; 6146 6147 WARN_ON(num_bytes < root->sectorsize); 6148 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 6149 ins->objectid = 0; 6150 ins->offset = 0; 6151 6152 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6153 6154 space_info = __find_space_info(root->fs_info, flags); 6155 if (!space_info) { 6156 btrfs_err(root->fs_info, "No space info for %llu", flags); 6157 return -ENOSPC; 6158 } 6159 6160 /* 6161 * If the space info is for both data and metadata it means we have a 6162 * small filesystem and we can't use the clustering stuff. 6163 */ 6164 if (btrfs_mixed_space_info(space_info)) 6165 use_cluster = false; 6166 6167 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6168 last_ptr = &root->fs_info->meta_alloc_cluster; 6169 if (!btrfs_test_opt(root, SSD)) 6170 empty_cluster = 64 * 1024; 6171 } 6172 6173 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6174 btrfs_test_opt(root, SSD)) { 6175 last_ptr = &root->fs_info->data_alloc_cluster; 6176 } 6177 6178 if (last_ptr) { 6179 spin_lock(&last_ptr->lock); 6180 if (last_ptr->block_group) 6181 hint_byte = last_ptr->window_start; 6182 spin_unlock(&last_ptr->lock); 6183 } 6184 6185 search_start = max(search_start, first_logical_byte(root, 0)); 6186 search_start = max(search_start, hint_byte); 6187 6188 if (!last_ptr) 6189 empty_cluster = 0; 6190 6191 if (search_start == hint_byte) { 6192 block_group = btrfs_lookup_block_group(root->fs_info, 6193 search_start); 6194 used_block_group = block_group; 6195 /* 6196 * we don't want to use the block group if it doesn't match our 6197 * allocation bits, or if its not cached. 6198 * 6199 * However if we are re-searching with an ideal block group 6200 * picked out then we don't care that the block group is cached. 6201 */ 6202 if (block_group && block_group_bits(block_group, flags) && 6203 block_group->cached != BTRFS_CACHE_NO) { 6204 down_read(&space_info->groups_sem); 6205 if (list_empty(&block_group->list) || 6206 block_group->ro) { 6207 /* 6208 * someone is removing this block group, 6209 * we can't jump into the have_block_group 6210 * target because our list pointers are not 6211 * valid 6212 */ 6213 btrfs_put_block_group(block_group); 6214 up_read(&space_info->groups_sem); 6215 } else { 6216 index = get_block_group_index(block_group); 6217 goto have_block_group; 6218 } 6219 } else if (block_group) { 6220 btrfs_put_block_group(block_group); 6221 } 6222 } 6223 search: 6224 have_caching_bg = false; 6225 down_read(&space_info->groups_sem); 6226 list_for_each_entry(block_group, &space_info->block_groups[index], 6227 list) { 6228 u64 offset; 6229 int cached; 6230 6231 used_block_group = block_group; 6232 btrfs_get_block_group(block_group); 6233 search_start = block_group->key.objectid; 6234 6235 /* 6236 * this can happen if we end up cycling through all the 6237 * raid types, but we want to make sure we only allocate 6238 * for the proper type. 6239 */ 6240 if (!block_group_bits(block_group, flags)) { 6241 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6242 BTRFS_BLOCK_GROUP_RAID1 | 6243 BTRFS_BLOCK_GROUP_RAID5 | 6244 BTRFS_BLOCK_GROUP_RAID6 | 6245 BTRFS_BLOCK_GROUP_RAID10; 6246 6247 /* 6248 * if they asked for extra copies and this block group 6249 * doesn't provide them, bail. This does allow us to 6250 * fill raid0 from raid1. 6251 */ 6252 if ((flags & extra) && !(block_group->flags & extra)) 6253 goto loop; 6254 } 6255 6256 have_block_group: 6257 cached = block_group_cache_done(block_group); 6258 if (unlikely(!cached)) { 6259 found_uncached_bg = true; 6260 ret = cache_block_group(block_group, 0); 6261 BUG_ON(ret < 0); 6262 ret = 0; 6263 } 6264 6265 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6266 goto loop; 6267 if (unlikely(block_group->ro)) 6268 goto loop; 6269 6270 /* 6271 * Ok we want to try and use the cluster allocator, so 6272 * lets look there 6273 */ 6274 if (last_ptr) { 6275 unsigned long aligned_cluster; 6276 /* 6277 * the refill lock keeps out other 6278 * people trying to start a new cluster 6279 */ 6280 spin_lock(&last_ptr->refill_lock); 6281 used_block_group = last_ptr->block_group; 6282 if (used_block_group != block_group && 6283 (!used_block_group || 6284 used_block_group->ro || 6285 !block_group_bits(used_block_group, flags))) { 6286 used_block_group = block_group; 6287 goto refill_cluster; 6288 } 6289 6290 if (used_block_group != block_group) 6291 btrfs_get_block_group(used_block_group); 6292 6293 offset = btrfs_alloc_from_cluster(used_block_group, 6294 last_ptr, num_bytes, used_block_group->key.objectid); 6295 if (offset) { 6296 /* we have a block, we're done */ 6297 spin_unlock(&last_ptr->refill_lock); 6298 trace_btrfs_reserve_extent_cluster(root, 6299 block_group, search_start, num_bytes); 6300 goto checks; 6301 } 6302 6303 WARN_ON(last_ptr->block_group != used_block_group); 6304 if (used_block_group != block_group) { 6305 btrfs_put_block_group(used_block_group); 6306 used_block_group = block_group; 6307 } 6308 refill_cluster: 6309 BUG_ON(used_block_group != block_group); 6310 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6311 * set up a new clusters, so lets just skip it 6312 * and let the allocator find whatever block 6313 * it can find. If we reach this point, we 6314 * will have tried the cluster allocator 6315 * plenty of times and not have found 6316 * anything, so we are likely way too 6317 * fragmented for the clustering stuff to find 6318 * anything. 6319 * 6320 * However, if the cluster is taken from the 6321 * current block group, release the cluster 6322 * first, so that we stand a better chance of 6323 * succeeding in the unclustered 6324 * allocation. */ 6325 if (loop >= LOOP_NO_EMPTY_SIZE && 6326 last_ptr->block_group != block_group) { 6327 spin_unlock(&last_ptr->refill_lock); 6328 goto unclustered_alloc; 6329 } 6330 6331 /* 6332 * this cluster didn't work out, free it and 6333 * start over 6334 */ 6335 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6336 6337 if (loop >= LOOP_NO_EMPTY_SIZE) { 6338 spin_unlock(&last_ptr->refill_lock); 6339 goto unclustered_alloc; 6340 } 6341 6342 aligned_cluster = max_t(unsigned long, 6343 empty_cluster + empty_size, 6344 block_group->full_stripe_len); 6345 6346 /* allocate a cluster in this block group */ 6347 ret = btrfs_find_space_cluster(root, block_group, 6348 last_ptr, search_start, 6349 num_bytes, 6350 aligned_cluster); 6351 if (ret == 0) { 6352 /* 6353 * now pull our allocation out of this 6354 * cluster 6355 */ 6356 offset = btrfs_alloc_from_cluster(block_group, 6357 last_ptr, num_bytes, 6358 search_start); 6359 if (offset) { 6360 /* we found one, proceed */ 6361 spin_unlock(&last_ptr->refill_lock); 6362 trace_btrfs_reserve_extent_cluster(root, 6363 block_group, search_start, 6364 num_bytes); 6365 goto checks; 6366 } 6367 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6368 && !failed_cluster_refill) { 6369 spin_unlock(&last_ptr->refill_lock); 6370 6371 failed_cluster_refill = true; 6372 wait_block_group_cache_progress(block_group, 6373 num_bytes + empty_cluster + empty_size); 6374 goto have_block_group; 6375 } 6376 6377 /* 6378 * at this point we either didn't find a cluster 6379 * or we weren't able to allocate a block from our 6380 * cluster. Free the cluster we've been trying 6381 * to use, and go to the next block group 6382 */ 6383 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6384 spin_unlock(&last_ptr->refill_lock); 6385 goto loop; 6386 } 6387 6388 unclustered_alloc: 6389 spin_lock(&block_group->free_space_ctl->tree_lock); 6390 if (cached && 6391 block_group->free_space_ctl->free_space < 6392 num_bytes + empty_cluster + empty_size) { 6393 spin_unlock(&block_group->free_space_ctl->tree_lock); 6394 goto loop; 6395 } 6396 spin_unlock(&block_group->free_space_ctl->tree_lock); 6397 6398 offset = btrfs_find_space_for_alloc(block_group, search_start, 6399 num_bytes, empty_size); 6400 /* 6401 * If we didn't find a chunk, and we haven't failed on this 6402 * block group before, and this block group is in the middle of 6403 * caching and we are ok with waiting, then go ahead and wait 6404 * for progress to be made, and set failed_alloc to true. 6405 * 6406 * If failed_alloc is true then we've already waited on this 6407 * block group once and should move on to the next block group. 6408 */ 6409 if (!offset && !failed_alloc && !cached && 6410 loop > LOOP_CACHING_NOWAIT) { 6411 wait_block_group_cache_progress(block_group, 6412 num_bytes + empty_size); 6413 failed_alloc = true; 6414 goto have_block_group; 6415 } else if (!offset) { 6416 if (!cached) 6417 have_caching_bg = true; 6418 goto loop; 6419 } 6420 checks: 6421 search_start = stripe_align(root, used_block_group, 6422 offset, num_bytes); 6423 6424 /* move on to the next group */ 6425 if (search_start + num_bytes > 6426 used_block_group->key.objectid + used_block_group->key.offset) { 6427 btrfs_add_free_space(used_block_group, offset, num_bytes); 6428 goto loop; 6429 } 6430 6431 if (offset < search_start) 6432 btrfs_add_free_space(used_block_group, offset, 6433 search_start - offset); 6434 BUG_ON(offset > search_start); 6435 6436 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 6437 alloc_type); 6438 if (ret == -EAGAIN) { 6439 btrfs_add_free_space(used_block_group, offset, num_bytes); 6440 goto loop; 6441 } 6442 6443 /* we are all good, lets return */ 6444 ins->objectid = search_start; 6445 ins->offset = num_bytes; 6446 6447 trace_btrfs_reserve_extent(orig_root, block_group, 6448 search_start, num_bytes); 6449 if (used_block_group != block_group) 6450 btrfs_put_block_group(used_block_group); 6451 btrfs_put_block_group(block_group); 6452 break; 6453 loop: 6454 failed_cluster_refill = false; 6455 failed_alloc = false; 6456 BUG_ON(index != get_block_group_index(block_group)); 6457 if (used_block_group != block_group) 6458 btrfs_put_block_group(used_block_group); 6459 btrfs_put_block_group(block_group); 6460 } 6461 up_read(&space_info->groups_sem); 6462 6463 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6464 goto search; 6465 6466 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6467 goto search; 6468 6469 /* 6470 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6471 * caching kthreads as we move along 6472 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6473 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6474 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6475 * again 6476 */ 6477 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6478 index = 0; 6479 loop++; 6480 if (loop == LOOP_ALLOC_CHUNK) { 6481 struct btrfs_trans_handle *trans; 6482 6483 trans = btrfs_join_transaction(root); 6484 if (IS_ERR(trans)) { 6485 ret = PTR_ERR(trans); 6486 goto out; 6487 } 6488 6489 ret = do_chunk_alloc(trans, root, flags, 6490 CHUNK_ALLOC_FORCE); 6491 /* 6492 * Do not bail out on ENOSPC since we 6493 * can do more things. 6494 */ 6495 if (ret < 0 && ret != -ENOSPC) 6496 btrfs_abort_transaction(trans, 6497 root, ret); 6498 else 6499 ret = 0; 6500 btrfs_end_transaction(trans, root); 6501 if (ret) 6502 goto out; 6503 } 6504 6505 if (loop == LOOP_NO_EMPTY_SIZE) { 6506 empty_size = 0; 6507 empty_cluster = 0; 6508 } 6509 6510 goto search; 6511 } else if (!ins->objectid) { 6512 ret = -ENOSPC; 6513 } else if (ins->objectid) { 6514 ret = 0; 6515 } 6516 out: 6517 6518 return ret; 6519 } 6520 6521 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6522 int dump_block_groups) 6523 { 6524 struct btrfs_block_group_cache *cache; 6525 int index = 0; 6526 6527 spin_lock(&info->lock); 6528 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 6529 info->flags, 6530 info->total_bytes - info->bytes_used - info->bytes_pinned - 6531 info->bytes_reserved - info->bytes_readonly, 6532 (info->full) ? "" : "not "); 6533 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 6534 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6535 info->total_bytes, info->bytes_used, info->bytes_pinned, 6536 info->bytes_reserved, info->bytes_may_use, 6537 info->bytes_readonly); 6538 spin_unlock(&info->lock); 6539 6540 if (!dump_block_groups) 6541 return; 6542 6543 down_read(&info->groups_sem); 6544 again: 6545 list_for_each_entry(cache, &info->block_groups[index], list) { 6546 spin_lock(&cache->lock); 6547 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 6548 cache->key.objectid, cache->key.offset, 6549 btrfs_block_group_used(&cache->item), cache->pinned, 6550 cache->reserved, cache->ro ? "[readonly]" : ""); 6551 btrfs_dump_free_space(cache, bytes); 6552 spin_unlock(&cache->lock); 6553 } 6554 if (++index < BTRFS_NR_RAID_TYPES) 6555 goto again; 6556 up_read(&info->groups_sem); 6557 } 6558 6559 int btrfs_reserve_extent(struct btrfs_root *root, 6560 u64 num_bytes, u64 min_alloc_size, 6561 u64 empty_size, u64 hint_byte, 6562 struct btrfs_key *ins, int is_data) 6563 { 6564 bool final_tried = false; 6565 u64 flags; 6566 int ret; 6567 6568 flags = btrfs_get_alloc_profile(root, is_data); 6569 again: 6570 WARN_ON(num_bytes < root->sectorsize); 6571 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6572 flags); 6573 6574 if (ret == -ENOSPC) { 6575 if (!final_tried) { 6576 num_bytes = num_bytes >> 1; 6577 num_bytes = round_down(num_bytes, root->sectorsize); 6578 num_bytes = max(num_bytes, min_alloc_size); 6579 if (num_bytes == min_alloc_size) 6580 final_tried = true; 6581 goto again; 6582 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6583 struct btrfs_space_info *sinfo; 6584 6585 sinfo = __find_space_info(root->fs_info, flags); 6586 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6587 flags, num_bytes); 6588 if (sinfo) 6589 dump_space_info(sinfo, num_bytes, 1); 6590 } 6591 } 6592 6593 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6594 6595 return ret; 6596 } 6597 6598 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6599 u64 start, u64 len, int pin) 6600 { 6601 struct btrfs_block_group_cache *cache; 6602 int ret = 0; 6603 6604 cache = btrfs_lookup_block_group(root->fs_info, start); 6605 if (!cache) { 6606 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6607 start); 6608 return -ENOSPC; 6609 } 6610 6611 if (btrfs_test_opt(root, DISCARD)) 6612 ret = btrfs_discard_extent(root, start, len, NULL); 6613 6614 if (pin) 6615 pin_down_extent(root, cache, start, len, 1); 6616 else { 6617 btrfs_add_free_space(cache, start, len); 6618 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6619 } 6620 btrfs_put_block_group(cache); 6621 6622 trace_btrfs_reserved_extent_free(root, start, len); 6623 6624 return ret; 6625 } 6626 6627 int btrfs_free_reserved_extent(struct btrfs_root *root, 6628 u64 start, u64 len) 6629 { 6630 return __btrfs_free_reserved_extent(root, start, len, 0); 6631 } 6632 6633 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6634 u64 start, u64 len) 6635 { 6636 return __btrfs_free_reserved_extent(root, start, len, 1); 6637 } 6638 6639 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6640 struct btrfs_root *root, 6641 u64 parent, u64 root_objectid, 6642 u64 flags, u64 owner, u64 offset, 6643 struct btrfs_key *ins, int ref_mod) 6644 { 6645 int ret; 6646 struct btrfs_fs_info *fs_info = root->fs_info; 6647 struct btrfs_extent_item *extent_item; 6648 struct btrfs_extent_inline_ref *iref; 6649 struct btrfs_path *path; 6650 struct extent_buffer *leaf; 6651 int type; 6652 u32 size; 6653 6654 if (parent > 0) 6655 type = BTRFS_SHARED_DATA_REF_KEY; 6656 else 6657 type = BTRFS_EXTENT_DATA_REF_KEY; 6658 6659 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6660 6661 path = btrfs_alloc_path(); 6662 if (!path) 6663 return -ENOMEM; 6664 6665 path->leave_spinning = 1; 6666 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6667 ins, size); 6668 if (ret) { 6669 btrfs_free_path(path); 6670 return ret; 6671 } 6672 6673 leaf = path->nodes[0]; 6674 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6675 struct btrfs_extent_item); 6676 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6677 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6678 btrfs_set_extent_flags(leaf, extent_item, 6679 flags | BTRFS_EXTENT_FLAG_DATA); 6680 6681 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6682 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6683 if (parent > 0) { 6684 struct btrfs_shared_data_ref *ref; 6685 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6686 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6687 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6688 } else { 6689 struct btrfs_extent_data_ref *ref; 6690 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6691 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6692 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6693 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6694 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6695 } 6696 6697 btrfs_mark_buffer_dirty(path->nodes[0]); 6698 btrfs_free_path(path); 6699 6700 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6701 if (ret) { /* -ENOENT, logic error */ 6702 btrfs_err(fs_info, "update block group failed for %llu %llu", 6703 ins->objectid, ins->offset); 6704 BUG(); 6705 } 6706 return ret; 6707 } 6708 6709 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6710 struct btrfs_root *root, 6711 u64 parent, u64 root_objectid, 6712 u64 flags, struct btrfs_disk_key *key, 6713 int level, struct btrfs_key *ins) 6714 { 6715 int ret; 6716 struct btrfs_fs_info *fs_info = root->fs_info; 6717 struct btrfs_extent_item *extent_item; 6718 struct btrfs_tree_block_info *block_info; 6719 struct btrfs_extent_inline_ref *iref; 6720 struct btrfs_path *path; 6721 struct extent_buffer *leaf; 6722 u32 size = sizeof(*extent_item) + sizeof(*iref); 6723 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6724 SKINNY_METADATA); 6725 6726 if (!skinny_metadata) 6727 size += sizeof(*block_info); 6728 6729 path = btrfs_alloc_path(); 6730 if (!path) 6731 return -ENOMEM; 6732 6733 path->leave_spinning = 1; 6734 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6735 ins, size); 6736 if (ret) { 6737 btrfs_free_path(path); 6738 return ret; 6739 } 6740 6741 leaf = path->nodes[0]; 6742 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6743 struct btrfs_extent_item); 6744 btrfs_set_extent_refs(leaf, extent_item, 1); 6745 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6746 btrfs_set_extent_flags(leaf, extent_item, 6747 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6748 6749 if (skinny_metadata) { 6750 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6751 } else { 6752 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6753 btrfs_set_tree_block_key(leaf, block_info, key); 6754 btrfs_set_tree_block_level(leaf, block_info, level); 6755 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6756 } 6757 6758 if (parent > 0) { 6759 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6760 btrfs_set_extent_inline_ref_type(leaf, iref, 6761 BTRFS_SHARED_BLOCK_REF_KEY); 6762 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6763 } else { 6764 btrfs_set_extent_inline_ref_type(leaf, iref, 6765 BTRFS_TREE_BLOCK_REF_KEY); 6766 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6767 } 6768 6769 btrfs_mark_buffer_dirty(leaf); 6770 btrfs_free_path(path); 6771 6772 ret = update_block_group(root, ins->objectid, root->leafsize, 1); 6773 if (ret) { /* -ENOENT, logic error */ 6774 btrfs_err(fs_info, "update block group failed for %llu %llu", 6775 ins->objectid, ins->offset); 6776 BUG(); 6777 } 6778 return ret; 6779 } 6780 6781 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6782 struct btrfs_root *root, 6783 u64 root_objectid, u64 owner, 6784 u64 offset, struct btrfs_key *ins) 6785 { 6786 int ret; 6787 6788 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6789 6790 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6791 ins->offset, 0, 6792 root_objectid, owner, offset, 6793 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6794 return ret; 6795 } 6796 6797 /* 6798 * this is used by the tree logging recovery code. It records that 6799 * an extent has been allocated and makes sure to clear the free 6800 * space cache bits as well 6801 */ 6802 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6803 struct btrfs_root *root, 6804 u64 root_objectid, u64 owner, u64 offset, 6805 struct btrfs_key *ins) 6806 { 6807 int ret; 6808 struct btrfs_block_group_cache *block_group; 6809 6810 /* 6811 * Mixed block groups will exclude before processing the log so we only 6812 * need to do the exlude dance if this fs isn't mixed. 6813 */ 6814 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 6815 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 6816 if (ret) 6817 return ret; 6818 } 6819 6820 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6821 if (!block_group) 6822 return -EINVAL; 6823 6824 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6825 RESERVE_ALLOC_NO_ACCOUNT); 6826 BUG_ON(ret); /* logic error */ 6827 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6828 0, owner, offset, ins, 1); 6829 btrfs_put_block_group(block_group); 6830 return ret; 6831 } 6832 6833 static struct extent_buffer * 6834 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6835 u64 bytenr, u32 blocksize, int level) 6836 { 6837 struct extent_buffer *buf; 6838 6839 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6840 if (!buf) 6841 return ERR_PTR(-ENOMEM); 6842 btrfs_set_header_generation(buf, trans->transid); 6843 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6844 btrfs_tree_lock(buf); 6845 clean_tree_block(trans, root, buf); 6846 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6847 6848 btrfs_set_lock_blocking(buf); 6849 btrfs_set_buffer_uptodate(buf); 6850 6851 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6852 /* 6853 * we allow two log transactions at a time, use different 6854 * EXENT bit to differentiate dirty pages. 6855 */ 6856 if (root->log_transid % 2 == 0) 6857 set_extent_dirty(&root->dirty_log_pages, buf->start, 6858 buf->start + buf->len - 1, GFP_NOFS); 6859 else 6860 set_extent_new(&root->dirty_log_pages, buf->start, 6861 buf->start + buf->len - 1, GFP_NOFS); 6862 } else { 6863 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6864 buf->start + buf->len - 1, GFP_NOFS); 6865 } 6866 trans->blocks_used++; 6867 /* this returns a buffer locked for blocking */ 6868 return buf; 6869 } 6870 6871 static struct btrfs_block_rsv * 6872 use_block_rsv(struct btrfs_trans_handle *trans, 6873 struct btrfs_root *root, u32 blocksize) 6874 { 6875 struct btrfs_block_rsv *block_rsv; 6876 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6877 int ret; 6878 bool global_updated = false; 6879 6880 block_rsv = get_block_rsv(trans, root); 6881 6882 if (unlikely(block_rsv->size == 0)) 6883 goto try_reserve; 6884 again: 6885 ret = block_rsv_use_bytes(block_rsv, blocksize); 6886 if (!ret) 6887 return block_rsv; 6888 6889 if (block_rsv->failfast) 6890 return ERR_PTR(ret); 6891 6892 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 6893 global_updated = true; 6894 update_global_block_rsv(root->fs_info); 6895 goto again; 6896 } 6897 6898 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6899 static DEFINE_RATELIMIT_STATE(_rs, 6900 DEFAULT_RATELIMIT_INTERVAL * 10, 6901 /*DEFAULT_RATELIMIT_BURST*/ 1); 6902 if (__ratelimit(&_rs)) 6903 WARN(1, KERN_DEBUG 6904 "btrfs: block rsv returned %d\n", ret); 6905 } 6906 try_reserve: 6907 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6908 BTRFS_RESERVE_NO_FLUSH); 6909 if (!ret) 6910 return block_rsv; 6911 /* 6912 * If we couldn't reserve metadata bytes try and use some from 6913 * the global reserve if its space type is the same as the global 6914 * reservation. 6915 */ 6916 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 6917 block_rsv->space_info == global_rsv->space_info) { 6918 ret = block_rsv_use_bytes(global_rsv, blocksize); 6919 if (!ret) 6920 return global_rsv; 6921 } 6922 return ERR_PTR(ret); 6923 } 6924 6925 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6926 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6927 { 6928 block_rsv_add_bytes(block_rsv, blocksize, 0); 6929 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6930 } 6931 6932 /* 6933 * finds a free extent and does all the dirty work required for allocation 6934 * returns the key for the extent through ins, and a tree buffer for 6935 * the first block of the extent through buf. 6936 * 6937 * returns the tree buffer or NULL. 6938 */ 6939 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6940 struct btrfs_root *root, u32 blocksize, 6941 u64 parent, u64 root_objectid, 6942 struct btrfs_disk_key *key, int level, 6943 u64 hint, u64 empty_size) 6944 { 6945 struct btrfs_key ins; 6946 struct btrfs_block_rsv *block_rsv; 6947 struct extent_buffer *buf; 6948 u64 flags = 0; 6949 int ret; 6950 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6951 SKINNY_METADATA); 6952 6953 block_rsv = use_block_rsv(trans, root, blocksize); 6954 if (IS_ERR(block_rsv)) 6955 return ERR_CAST(block_rsv); 6956 6957 ret = btrfs_reserve_extent(root, blocksize, blocksize, 6958 empty_size, hint, &ins, 0); 6959 if (ret) { 6960 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6961 return ERR_PTR(ret); 6962 } 6963 6964 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6965 blocksize, level); 6966 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6967 6968 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6969 if (parent == 0) 6970 parent = ins.objectid; 6971 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6972 } else 6973 BUG_ON(parent > 0); 6974 6975 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6976 struct btrfs_delayed_extent_op *extent_op; 6977 extent_op = btrfs_alloc_delayed_extent_op(); 6978 BUG_ON(!extent_op); /* -ENOMEM */ 6979 if (key) 6980 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6981 else 6982 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6983 extent_op->flags_to_set = flags; 6984 if (skinny_metadata) 6985 extent_op->update_key = 0; 6986 else 6987 extent_op->update_key = 1; 6988 extent_op->update_flags = 1; 6989 extent_op->is_data = 0; 6990 extent_op->level = level; 6991 6992 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6993 ins.objectid, 6994 ins.offset, parent, root_objectid, 6995 level, BTRFS_ADD_DELAYED_EXTENT, 6996 extent_op, 0); 6997 BUG_ON(ret); /* -ENOMEM */ 6998 } 6999 return buf; 7000 } 7001 7002 struct walk_control { 7003 u64 refs[BTRFS_MAX_LEVEL]; 7004 u64 flags[BTRFS_MAX_LEVEL]; 7005 struct btrfs_key update_progress; 7006 int stage; 7007 int level; 7008 int shared_level; 7009 int update_ref; 7010 int keep_locks; 7011 int reada_slot; 7012 int reada_count; 7013 int for_reloc; 7014 }; 7015 7016 #define DROP_REFERENCE 1 7017 #define UPDATE_BACKREF 2 7018 7019 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7020 struct btrfs_root *root, 7021 struct walk_control *wc, 7022 struct btrfs_path *path) 7023 { 7024 u64 bytenr; 7025 u64 generation; 7026 u64 refs; 7027 u64 flags; 7028 u32 nritems; 7029 u32 blocksize; 7030 struct btrfs_key key; 7031 struct extent_buffer *eb; 7032 int ret; 7033 int slot; 7034 int nread = 0; 7035 7036 if (path->slots[wc->level] < wc->reada_slot) { 7037 wc->reada_count = wc->reada_count * 2 / 3; 7038 wc->reada_count = max(wc->reada_count, 2); 7039 } else { 7040 wc->reada_count = wc->reada_count * 3 / 2; 7041 wc->reada_count = min_t(int, wc->reada_count, 7042 BTRFS_NODEPTRS_PER_BLOCK(root)); 7043 } 7044 7045 eb = path->nodes[wc->level]; 7046 nritems = btrfs_header_nritems(eb); 7047 blocksize = btrfs_level_size(root, wc->level - 1); 7048 7049 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7050 if (nread >= wc->reada_count) 7051 break; 7052 7053 cond_resched(); 7054 bytenr = btrfs_node_blockptr(eb, slot); 7055 generation = btrfs_node_ptr_generation(eb, slot); 7056 7057 if (slot == path->slots[wc->level]) 7058 goto reada; 7059 7060 if (wc->stage == UPDATE_BACKREF && 7061 generation <= root->root_key.offset) 7062 continue; 7063 7064 /* We don't lock the tree block, it's OK to be racy here */ 7065 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7066 wc->level - 1, 1, &refs, 7067 &flags); 7068 /* We don't care about errors in readahead. */ 7069 if (ret < 0) 7070 continue; 7071 BUG_ON(refs == 0); 7072 7073 if (wc->stage == DROP_REFERENCE) { 7074 if (refs == 1) 7075 goto reada; 7076 7077 if (wc->level == 1 && 7078 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7079 continue; 7080 if (!wc->update_ref || 7081 generation <= root->root_key.offset) 7082 continue; 7083 btrfs_node_key_to_cpu(eb, &key, slot); 7084 ret = btrfs_comp_cpu_keys(&key, 7085 &wc->update_progress); 7086 if (ret < 0) 7087 continue; 7088 } else { 7089 if (wc->level == 1 && 7090 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7091 continue; 7092 } 7093 reada: 7094 ret = readahead_tree_block(root, bytenr, blocksize, 7095 generation); 7096 if (ret) 7097 break; 7098 nread++; 7099 } 7100 wc->reada_slot = slot; 7101 } 7102 7103 /* 7104 * helper to process tree block while walking down the tree. 7105 * 7106 * when wc->stage == UPDATE_BACKREF, this function updates 7107 * back refs for pointers in the block. 7108 * 7109 * NOTE: return value 1 means we should stop walking down. 7110 */ 7111 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7112 struct btrfs_root *root, 7113 struct btrfs_path *path, 7114 struct walk_control *wc, int lookup_info) 7115 { 7116 int level = wc->level; 7117 struct extent_buffer *eb = path->nodes[level]; 7118 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7119 int ret; 7120 7121 if (wc->stage == UPDATE_BACKREF && 7122 btrfs_header_owner(eb) != root->root_key.objectid) 7123 return 1; 7124 7125 /* 7126 * when reference count of tree block is 1, it won't increase 7127 * again. once full backref flag is set, we never clear it. 7128 */ 7129 if (lookup_info && 7130 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7131 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7132 BUG_ON(!path->locks[level]); 7133 ret = btrfs_lookup_extent_info(trans, root, 7134 eb->start, level, 1, 7135 &wc->refs[level], 7136 &wc->flags[level]); 7137 BUG_ON(ret == -ENOMEM); 7138 if (ret) 7139 return ret; 7140 BUG_ON(wc->refs[level] == 0); 7141 } 7142 7143 if (wc->stage == DROP_REFERENCE) { 7144 if (wc->refs[level] > 1) 7145 return 1; 7146 7147 if (path->locks[level] && !wc->keep_locks) { 7148 btrfs_tree_unlock_rw(eb, path->locks[level]); 7149 path->locks[level] = 0; 7150 } 7151 return 0; 7152 } 7153 7154 /* wc->stage == UPDATE_BACKREF */ 7155 if (!(wc->flags[level] & flag)) { 7156 BUG_ON(!path->locks[level]); 7157 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 7158 BUG_ON(ret); /* -ENOMEM */ 7159 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 7160 BUG_ON(ret); /* -ENOMEM */ 7161 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7162 eb->len, flag, 7163 btrfs_header_level(eb), 0); 7164 BUG_ON(ret); /* -ENOMEM */ 7165 wc->flags[level] |= flag; 7166 } 7167 7168 /* 7169 * the block is shared by multiple trees, so it's not good to 7170 * keep the tree lock 7171 */ 7172 if (path->locks[level] && level > 0) { 7173 btrfs_tree_unlock_rw(eb, path->locks[level]); 7174 path->locks[level] = 0; 7175 } 7176 return 0; 7177 } 7178 7179 /* 7180 * helper to process tree block pointer. 7181 * 7182 * when wc->stage == DROP_REFERENCE, this function checks 7183 * reference count of the block pointed to. if the block 7184 * is shared and we need update back refs for the subtree 7185 * rooted at the block, this function changes wc->stage to 7186 * UPDATE_BACKREF. if the block is shared and there is no 7187 * need to update back, this function drops the reference 7188 * to the block. 7189 * 7190 * NOTE: return value 1 means we should stop walking down. 7191 */ 7192 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7193 struct btrfs_root *root, 7194 struct btrfs_path *path, 7195 struct walk_control *wc, int *lookup_info) 7196 { 7197 u64 bytenr; 7198 u64 generation; 7199 u64 parent; 7200 u32 blocksize; 7201 struct btrfs_key key; 7202 struct extent_buffer *next; 7203 int level = wc->level; 7204 int reada = 0; 7205 int ret = 0; 7206 7207 generation = btrfs_node_ptr_generation(path->nodes[level], 7208 path->slots[level]); 7209 /* 7210 * if the lower level block was created before the snapshot 7211 * was created, we know there is no need to update back refs 7212 * for the subtree 7213 */ 7214 if (wc->stage == UPDATE_BACKREF && 7215 generation <= root->root_key.offset) { 7216 *lookup_info = 1; 7217 return 1; 7218 } 7219 7220 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7221 blocksize = btrfs_level_size(root, level - 1); 7222 7223 next = btrfs_find_tree_block(root, bytenr, blocksize); 7224 if (!next) { 7225 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7226 if (!next) 7227 return -ENOMEM; 7228 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7229 level - 1); 7230 reada = 1; 7231 } 7232 btrfs_tree_lock(next); 7233 btrfs_set_lock_blocking(next); 7234 7235 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7236 &wc->refs[level - 1], 7237 &wc->flags[level - 1]); 7238 if (ret < 0) { 7239 btrfs_tree_unlock(next); 7240 return ret; 7241 } 7242 7243 if (unlikely(wc->refs[level - 1] == 0)) { 7244 btrfs_err(root->fs_info, "Missing references."); 7245 BUG(); 7246 } 7247 *lookup_info = 0; 7248 7249 if (wc->stage == DROP_REFERENCE) { 7250 if (wc->refs[level - 1] > 1) { 7251 if (level == 1 && 7252 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7253 goto skip; 7254 7255 if (!wc->update_ref || 7256 generation <= root->root_key.offset) 7257 goto skip; 7258 7259 btrfs_node_key_to_cpu(path->nodes[level], &key, 7260 path->slots[level]); 7261 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7262 if (ret < 0) 7263 goto skip; 7264 7265 wc->stage = UPDATE_BACKREF; 7266 wc->shared_level = level - 1; 7267 } 7268 } else { 7269 if (level == 1 && 7270 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7271 goto skip; 7272 } 7273 7274 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7275 btrfs_tree_unlock(next); 7276 free_extent_buffer(next); 7277 next = NULL; 7278 *lookup_info = 1; 7279 } 7280 7281 if (!next) { 7282 if (reada && level == 1) 7283 reada_walk_down(trans, root, wc, path); 7284 next = read_tree_block(root, bytenr, blocksize, generation); 7285 if (!next || !extent_buffer_uptodate(next)) { 7286 free_extent_buffer(next); 7287 return -EIO; 7288 } 7289 btrfs_tree_lock(next); 7290 btrfs_set_lock_blocking(next); 7291 } 7292 7293 level--; 7294 BUG_ON(level != btrfs_header_level(next)); 7295 path->nodes[level] = next; 7296 path->slots[level] = 0; 7297 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7298 wc->level = level; 7299 if (wc->level == 1) 7300 wc->reada_slot = 0; 7301 return 0; 7302 skip: 7303 wc->refs[level - 1] = 0; 7304 wc->flags[level - 1] = 0; 7305 if (wc->stage == DROP_REFERENCE) { 7306 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7307 parent = path->nodes[level]->start; 7308 } else { 7309 BUG_ON(root->root_key.objectid != 7310 btrfs_header_owner(path->nodes[level])); 7311 parent = 0; 7312 } 7313 7314 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7315 root->root_key.objectid, level - 1, 0, 0); 7316 BUG_ON(ret); /* -ENOMEM */ 7317 } 7318 btrfs_tree_unlock(next); 7319 free_extent_buffer(next); 7320 *lookup_info = 1; 7321 return 1; 7322 } 7323 7324 /* 7325 * helper to process tree block while walking up the tree. 7326 * 7327 * when wc->stage == DROP_REFERENCE, this function drops 7328 * reference count on the block. 7329 * 7330 * when wc->stage == UPDATE_BACKREF, this function changes 7331 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7332 * to UPDATE_BACKREF previously while processing the block. 7333 * 7334 * NOTE: return value 1 means we should stop walking up. 7335 */ 7336 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7337 struct btrfs_root *root, 7338 struct btrfs_path *path, 7339 struct walk_control *wc) 7340 { 7341 int ret; 7342 int level = wc->level; 7343 struct extent_buffer *eb = path->nodes[level]; 7344 u64 parent = 0; 7345 7346 if (wc->stage == UPDATE_BACKREF) { 7347 BUG_ON(wc->shared_level < level); 7348 if (level < wc->shared_level) 7349 goto out; 7350 7351 ret = find_next_key(path, level + 1, &wc->update_progress); 7352 if (ret > 0) 7353 wc->update_ref = 0; 7354 7355 wc->stage = DROP_REFERENCE; 7356 wc->shared_level = -1; 7357 path->slots[level] = 0; 7358 7359 /* 7360 * check reference count again if the block isn't locked. 7361 * we should start walking down the tree again if reference 7362 * count is one. 7363 */ 7364 if (!path->locks[level]) { 7365 BUG_ON(level == 0); 7366 btrfs_tree_lock(eb); 7367 btrfs_set_lock_blocking(eb); 7368 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7369 7370 ret = btrfs_lookup_extent_info(trans, root, 7371 eb->start, level, 1, 7372 &wc->refs[level], 7373 &wc->flags[level]); 7374 if (ret < 0) { 7375 btrfs_tree_unlock_rw(eb, path->locks[level]); 7376 path->locks[level] = 0; 7377 return ret; 7378 } 7379 BUG_ON(wc->refs[level] == 0); 7380 if (wc->refs[level] == 1) { 7381 btrfs_tree_unlock_rw(eb, path->locks[level]); 7382 path->locks[level] = 0; 7383 return 1; 7384 } 7385 } 7386 } 7387 7388 /* wc->stage == DROP_REFERENCE */ 7389 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7390 7391 if (wc->refs[level] == 1) { 7392 if (level == 0) { 7393 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7394 ret = btrfs_dec_ref(trans, root, eb, 1, 7395 wc->for_reloc); 7396 else 7397 ret = btrfs_dec_ref(trans, root, eb, 0, 7398 wc->for_reloc); 7399 BUG_ON(ret); /* -ENOMEM */ 7400 } 7401 /* make block locked assertion in clean_tree_block happy */ 7402 if (!path->locks[level] && 7403 btrfs_header_generation(eb) == trans->transid) { 7404 btrfs_tree_lock(eb); 7405 btrfs_set_lock_blocking(eb); 7406 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7407 } 7408 clean_tree_block(trans, root, eb); 7409 } 7410 7411 if (eb == root->node) { 7412 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7413 parent = eb->start; 7414 else 7415 BUG_ON(root->root_key.objectid != 7416 btrfs_header_owner(eb)); 7417 } else { 7418 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7419 parent = path->nodes[level + 1]->start; 7420 else 7421 BUG_ON(root->root_key.objectid != 7422 btrfs_header_owner(path->nodes[level + 1])); 7423 } 7424 7425 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7426 out: 7427 wc->refs[level] = 0; 7428 wc->flags[level] = 0; 7429 return 0; 7430 } 7431 7432 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7433 struct btrfs_root *root, 7434 struct btrfs_path *path, 7435 struct walk_control *wc) 7436 { 7437 int level = wc->level; 7438 int lookup_info = 1; 7439 int ret; 7440 7441 while (level >= 0) { 7442 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7443 if (ret > 0) 7444 break; 7445 7446 if (level == 0) 7447 break; 7448 7449 if (path->slots[level] >= 7450 btrfs_header_nritems(path->nodes[level])) 7451 break; 7452 7453 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7454 if (ret > 0) { 7455 path->slots[level]++; 7456 continue; 7457 } else if (ret < 0) 7458 return ret; 7459 level = wc->level; 7460 } 7461 return 0; 7462 } 7463 7464 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7465 struct btrfs_root *root, 7466 struct btrfs_path *path, 7467 struct walk_control *wc, int max_level) 7468 { 7469 int level = wc->level; 7470 int ret; 7471 7472 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7473 while (level < max_level && path->nodes[level]) { 7474 wc->level = level; 7475 if (path->slots[level] + 1 < 7476 btrfs_header_nritems(path->nodes[level])) { 7477 path->slots[level]++; 7478 return 0; 7479 } else { 7480 ret = walk_up_proc(trans, root, path, wc); 7481 if (ret > 0) 7482 return 0; 7483 7484 if (path->locks[level]) { 7485 btrfs_tree_unlock_rw(path->nodes[level], 7486 path->locks[level]); 7487 path->locks[level] = 0; 7488 } 7489 free_extent_buffer(path->nodes[level]); 7490 path->nodes[level] = NULL; 7491 level++; 7492 } 7493 } 7494 return 1; 7495 } 7496 7497 /* 7498 * drop a subvolume tree. 7499 * 7500 * this function traverses the tree freeing any blocks that only 7501 * referenced by the tree. 7502 * 7503 * when a shared tree block is found. this function decreases its 7504 * reference count by one. if update_ref is true, this function 7505 * also make sure backrefs for the shared block and all lower level 7506 * blocks are properly updated. 7507 * 7508 * If called with for_reloc == 0, may exit early with -EAGAIN 7509 */ 7510 int btrfs_drop_snapshot(struct btrfs_root *root, 7511 struct btrfs_block_rsv *block_rsv, int update_ref, 7512 int for_reloc) 7513 { 7514 struct btrfs_path *path; 7515 struct btrfs_trans_handle *trans; 7516 struct btrfs_root *tree_root = root->fs_info->tree_root; 7517 struct btrfs_root_item *root_item = &root->root_item; 7518 struct walk_control *wc; 7519 struct btrfs_key key; 7520 int err = 0; 7521 int ret; 7522 int level; 7523 bool root_dropped = false; 7524 7525 path = btrfs_alloc_path(); 7526 if (!path) { 7527 err = -ENOMEM; 7528 goto out; 7529 } 7530 7531 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7532 if (!wc) { 7533 btrfs_free_path(path); 7534 err = -ENOMEM; 7535 goto out; 7536 } 7537 7538 trans = btrfs_start_transaction(tree_root, 0); 7539 if (IS_ERR(trans)) { 7540 err = PTR_ERR(trans); 7541 goto out_free; 7542 } 7543 7544 if (block_rsv) 7545 trans->block_rsv = block_rsv; 7546 7547 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7548 level = btrfs_header_level(root->node); 7549 path->nodes[level] = btrfs_lock_root_node(root); 7550 btrfs_set_lock_blocking(path->nodes[level]); 7551 path->slots[level] = 0; 7552 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7553 memset(&wc->update_progress, 0, 7554 sizeof(wc->update_progress)); 7555 } else { 7556 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7557 memcpy(&wc->update_progress, &key, 7558 sizeof(wc->update_progress)); 7559 7560 level = root_item->drop_level; 7561 BUG_ON(level == 0); 7562 path->lowest_level = level; 7563 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7564 path->lowest_level = 0; 7565 if (ret < 0) { 7566 err = ret; 7567 goto out_end_trans; 7568 } 7569 WARN_ON(ret > 0); 7570 7571 /* 7572 * unlock our path, this is safe because only this 7573 * function is allowed to delete this snapshot 7574 */ 7575 btrfs_unlock_up_safe(path, 0); 7576 7577 level = btrfs_header_level(root->node); 7578 while (1) { 7579 btrfs_tree_lock(path->nodes[level]); 7580 btrfs_set_lock_blocking(path->nodes[level]); 7581 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7582 7583 ret = btrfs_lookup_extent_info(trans, root, 7584 path->nodes[level]->start, 7585 level, 1, &wc->refs[level], 7586 &wc->flags[level]); 7587 if (ret < 0) { 7588 err = ret; 7589 goto out_end_trans; 7590 } 7591 BUG_ON(wc->refs[level] == 0); 7592 7593 if (level == root_item->drop_level) 7594 break; 7595 7596 btrfs_tree_unlock(path->nodes[level]); 7597 path->locks[level] = 0; 7598 WARN_ON(wc->refs[level] != 1); 7599 level--; 7600 } 7601 } 7602 7603 wc->level = level; 7604 wc->shared_level = -1; 7605 wc->stage = DROP_REFERENCE; 7606 wc->update_ref = update_ref; 7607 wc->keep_locks = 0; 7608 wc->for_reloc = for_reloc; 7609 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7610 7611 while (1) { 7612 7613 ret = walk_down_tree(trans, root, path, wc); 7614 if (ret < 0) { 7615 err = ret; 7616 break; 7617 } 7618 7619 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7620 if (ret < 0) { 7621 err = ret; 7622 break; 7623 } 7624 7625 if (ret > 0) { 7626 BUG_ON(wc->stage != DROP_REFERENCE); 7627 break; 7628 } 7629 7630 if (wc->stage == DROP_REFERENCE) { 7631 level = wc->level; 7632 btrfs_node_key(path->nodes[level], 7633 &root_item->drop_progress, 7634 path->slots[level]); 7635 root_item->drop_level = level; 7636 } 7637 7638 BUG_ON(wc->level == 0); 7639 if (btrfs_should_end_transaction(trans, tree_root) || 7640 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 7641 ret = btrfs_update_root(trans, tree_root, 7642 &root->root_key, 7643 root_item); 7644 if (ret) { 7645 btrfs_abort_transaction(trans, tree_root, ret); 7646 err = ret; 7647 goto out_end_trans; 7648 } 7649 7650 btrfs_end_transaction_throttle(trans, tree_root); 7651 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 7652 pr_debug("btrfs: drop snapshot early exit\n"); 7653 err = -EAGAIN; 7654 goto out_free; 7655 } 7656 7657 trans = btrfs_start_transaction(tree_root, 0); 7658 if (IS_ERR(trans)) { 7659 err = PTR_ERR(trans); 7660 goto out_free; 7661 } 7662 if (block_rsv) 7663 trans->block_rsv = block_rsv; 7664 } 7665 } 7666 btrfs_release_path(path); 7667 if (err) 7668 goto out_end_trans; 7669 7670 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7671 if (ret) { 7672 btrfs_abort_transaction(trans, tree_root, ret); 7673 goto out_end_trans; 7674 } 7675 7676 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7677 ret = btrfs_find_root(tree_root, &root->root_key, path, 7678 NULL, NULL); 7679 if (ret < 0) { 7680 btrfs_abort_transaction(trans, tree_root, ret); 7681 err = ret; 7682 goto out_end_trans; 7683 } else if (ret > 0) { 7684 /* if we fail to delete the orphan item this time 7685 * around, it'll get picked up the next time. 7686 * 7687 * The most common failure here is just -ENOENT. 7688 */ 7689 btrfs_del_orphan_item(trans, tree_root, 7690 root->root_key.objectid); 7691 } 7692 } 7693 7694 if (root->in_radix) { 7695 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 7696 } else { 7697 free_extent_buffer(root->node); 7698 free_extent_buffer(root->commit_root); 7699 btrfs_put_fs_root(root); 7700 } 7701 root_dropped = true; 7702 out_end_trans: 7703 btrfs_end_transaction_throttle(trans, tree_root); 7704 out_free: 7705 kfree(wc); 7706 btrfs_free_path(path); 7707 out: 7708 /* 7709 * So if we need to stop dropping the snapshot for whatever reason we 7710 * need to make sure to add it back to the dead root list so that we 7711 * keep trying to do the work later. This also cleans up roots if we 7712 * don't have it in the radix (like when we recover after a power fail 7713 * or unmount) so we don't leak memory. 7714 */ 7715 if (!for_reloc && root_dropped == false) 7716 btrfs_add_dead_root(root); 7717 if (err) 7718 btrfs_std_error(root->fs_info, err); 7719 return err; 7720 } 7721 7722 /* 7723 * drop subtree rooted at tree block 'node'. 7724 * 7725 * NOTE: this function will unlock and release tree block 'node' 7726 * only used by relocation code 7727 */ 7728 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7729 struct btrfs_root *root, 7730 struct extent_buffer *node, 7731 struct extent_buffer *parent) 7732 { 7733 struct btrfs_path *path; 7734 struct walk_control *wc; 7735 int level; 7736 int parent_level; 7737 int ret = 0; 7738 int wret; 7739 7740 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7741 7742 path = btrfs_alloc_path(); 7743 if (!path) 7744 return -ENOMEM; 7745 7746 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7747 if (!wc) { 7748 btrfs_free_path(path); 7749 return -ENOMEM; 7750 } 7751 7752 btrfs_assert_tree_locked(parent); 7753 parent_level = btrfs_header_level(parent); 7754 extent_buffer_get(parent); 7755 path->nodes[parent_level] = parent; 7756 path->slots[parent_level] = btrfs_header_nritems(parent); 7757 7758 btrfs_assert_tree_locked(node); 7759 level = btrfs_header_level(node); 7760 path->nodes[level] = node; 7761 path->slots[level] = 0; 7762 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7763 7764 wc->refs[parent_level] = 1; 7765 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7766 wc->level = level; 7767 wc->shared_level = -1; 7768 wc->stage = DROP_REFERENCE; 7769 wc->update_ref = 0; 7770 wc->keep_locks = 1; 7771 wc->for_reloc = 1; 7772 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7773 7774 while (1) { 7775 wret = walk_down_tree(trans, root, path, wc); 7776 if (wret < 0) { 7777 ret = wret; 7778 break; 7779 } 7780 7781 wret = walk_up_tree(trans, root, path, wc, parent_level); 7782 if (wret < 0) 7783 ret = wret; 7784 if (wret != 0) 7785 break; 7786 } 7787 7788 kfree(wc); 7789 btrfs_free_path(path); 7790 return ret; 7791 } 7792 7793 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7794 { 7795 u64 num_devices; 7796 u64 stripped; 7797 7798 /* 7799 * if restripe for this chunk_type is on pick target profile and 7800 * return, otherwise do the usual balance 7801 */ 7802 stripped = get_restripe_target(root->fs_info, flags); 7803 if (stripped) 7804 return extended_to_chunk(stripped); 7805 7806 /* 7807 * we add in the count of missing devices because we want 7808 * to make sure that any RAID levels on a degraded FS 7809 * continue to be honored. 7810 */ 7811 num_devices = root->fs_info->fs_devices->rw_devices + 7812 root->fs_info->fs_devices->missing_devices; 7813 7814 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7815 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7816 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7817 7818 if (num_devices == 1) { 7819 stripped |= BTRFS_BLOCK_GROUP_DUP; 7820 stripped = flags & ~stripped; 7821 7822 /* turn raid0 into single device chunks */ 7823 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7824 return stripped; 7825 7826 /* turn mirroring into duplication */ 7827 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7828 BTRFS_BLOCK_GROUP_RAID10)) 7829 return stripped | BTRFS_BLOCK_GROUP_DUP; 7830 } else { 7831 /* they already had raid on here, just return */ 7832 if (flags & stripped) 7833 return flags; 7834 7835 stripped |= BTRFS_BLOCK_GROUP_DUP; 7836 stripped = flags & ~stripped; 7837 7838 /* switch duplicated blocks with raid1 */ 7839 if (flags & BTRFS_BLOCK_GROUP_DUP) 7840 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7841 7842 /* this is drive concat, leave it alone */ 7843 } 7844 7845 return flags; 7846 } 7847 7848 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7849 { 7850 struct btrfs_space_info *sinfo = cache->space_info; 7851 u64 num_bytes; 7852 u64 min_allocable_bytes; 7853 int ret = -ENOSPC; 7854 7855 7856 /* 7857 * We need some metadata space and system metadata space for 7858 * allocating chunks in some corner cases until we force to set 7859 * it to be readonly. 7860 */ 7861 if ((sinfo->flags & 7862 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7863 !force) 7864 min_allocable_bytes = 1 * 1024 * 1024; 7865 else 7866 min_allocable_bytes = 0; 7867 7868 spin_lock(&sinfo->lock); 7869 spin_lock(&cache->lock); 7870 7871 if (cache->ro) { 7872 ret = 0; 7873 goto out; 7874 } 7875 7876 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7877 cache->bytes_super - btrfs_block_group_used(&cache->item); 7878 7879 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7880 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7881 min_allocable_bytes <= sinfo->total_bytes) { 7882 sinfo->bytes_readonly += num_bytes; 7883 cache->ro = 1; 7884 ret = 0; 7885 } 7886 out: 7887 spin_unlock(&cache->lock); 7888 spin_unlock(&sinfo->lock); 7889 return ret; 7890 } 7891 7892 int btrfs_set_block_group_ro(struct btrfs_root *root, 7893 struct btrfs_block_group_cache *cache) 7894 7895 { 7896 struct btrfs_trans_handle *trans; 7897 u64 alloc_flags; 7898 int ret; 7899 7900 BUG_ON(cache->ro); 7901 7902 trans = btrfs_join_transaction(root); 7903 if (IS_ERR(trans)) 7904 return PTR_ERR(trans); 7905 7906 alloc_flags = update_block_group_flags(root, cache->flags); 7907 if (alloc_flags != cache->flags) { 7908 ret = do_chunk_alloc(trans, root, alloc_flags, 7909 CHUNK_ALLOC_FORCE); 7910 if (ret < 0) 7911 goto out; 7912 } 7913 7914 ret = set_block_group_ro(cache, 0); 7915 if (!ret) 7916 goto out; 7917 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7918 ret = do_chunk_alloc(trans, root, alloc_flags, 7919 CHUNK_ALLOC_FORCE); 7920 if (ret < 0) 7921 goto out; 7922 ret = set_block_group_ro(cache, 0); 7923 out: 7924 btrfs_end_transaction(trans, root); 7925 return ret; 7926 } 7927 7928 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7929 struct btrfs_root *root, u64 type) 7930 { 7931 u64 alloc_flags = get_alloc_profile(root, type); 7932 return do_chunk_alloc(trans, root, alloc_flags, 7933 CHUNK_ALLOC_FORCE); 7934 } 7935 7936 /* 7937 * helper to account the unused space of all the readonly block group in the 7938 * list. takes mirrors into account. 7939 */ 7940 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7941 { 7942 struct btrfs_block_group_cache *block_group; 7943 u64 free_bytes = 0; 7944 int factor; 7945 7946 list_for_each_entry(block_group, groups_list, list) { 7947 spin_lock(&block_group->lock); 7948 7949 if (!block_group->ro) { 7950 spin_unlock(&block_group->lock); 7951 continue; 7952 } 7953 7954 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7955 BTRFS_BLOCK_GROUP_RAID10 | 7956 BTRFS_BLOCK_GROUP_DUP)) 7957 factor = 2; 7958 else 7959 factor = 1; 7960 7961 free_bytes += (block_group->key.offset - 7962 btrfs_block_group_used(&block_group->item)) * 7963 factor; 7964 7965 spin_unlock(&block_group->lock); 7966 } 7967 7968 return free_bytes; 7969 } 7970 7971 /* 7972 * helper to account the unused space of all the readonly block group in the 7973 * space_info. takes mirrors into account. 7974 */ 7975 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7976 { 7977 int i; 7978 u64 free_bytes = 0; 7979 7980 spin_lock(&sinfo->lock); 7981 7982 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7983 if (!list_empty(&sinfo->block_groups[i])) 7984 free_bytes += __btrfs_get_ro_block_group_free_space( 7985 &sinfo->block_groups[i]); 7986 7987 spin_unlock(&sinfo->lock); 7988 7989 return free_bytes; 7990 } 7991 7992 void btrfs_set_block_group_rw(struct btrfs_root *root, 7993 struct btrfs_block_group_cache *cache) 7994 { 7995 struct btrfs_space_info *sinfo = cache->space_info; 7996 u64 num_bytes; 7997 7998 BUG_ON(!cache->ro); 7999 8000 spin_lock(&sinfo->lock); 8001 spin_lock(&cache->lock); 8002 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8003 cache->bytes_super - btrfs_block_group_used(&cache->item); 8004 sinfo->bytes_readonly -= num_bytes; 8005 cache->ro = 0; 8006 spin_unlock(&cache->lock); 8007 spin_unlock(&sinfo->lock); 8008 } 8009 8010 /* 8011 * checks to see if its even possible to relocate this block group. 8012 * 8013 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8014 * ok to go ahead and try. 8015 */ 8016 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8017 { 8018 struct btrfs_block_group_cache *block_group; 8019 struct btrfs_space_info *space_info; 8020 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8021 struct btrfs_device *device; 8022 struct btrfs_trans_handle *trans; 8023 u64 min_free; 8024 u64 dev_min = 1; 8025 u64 dev_nr = 0; 8026 u64 target; 8027 int index; 8028 int full = 0; 8029 int ret = 0; 8030 8031 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8032 8033 /* odd, couldn't find the block group, leave it alone */ 8034 if (!block_group) 8035 return -1; 8036 8037 min_free = btrfs_block_group_used(&block_group->item); 8038 8039 /* no bytes used, we're good */ 8040 if (!min_free) 8041 goto out; 8042 8043 space_info = block_group->space_info; 8044 spin_lock(&space_info->lock); 8045 8046 full = space_info->full; 8047 8048 /* 8049 * if this is the last block group we have in this space, we can't 8050 * relocate it unless we're able to allocate a new chunk below. 8051 * 8052 * Otherwise, we need to make sure we have room in the space to handle 8053 * all of the extents from this block group. If we can, we're good 8054 */ 8055 if ((space_info->total_bytes != block_group->key.offset) && 8056 (space_info->bytes_used + space_info->bytes_reserved + 8057 space_info->bytes_pinned + space_info->bytes_readonly + 8058 min_free < space_info->total_bytes)) { 8059 spin_unlock(&space_info->lock); 8060 goto out; 8061 } 8062 spin_unlock(&space_info->lock); 8063 8064 /* 8065 * ok we don't have enough space, but maybe we have free space on our 8066 * devices to allocate new chunks for relocation, so loop through our 8067 * alloc devices and guess if we have enough space. if this block 8068 * group is going to be restriped, run checks against the target 8069 * profile instead of the current one. 8070 */ 8071 ret = -1; 8072 8073 /* 8074 * index: 8075 * 0: raid10 8076 * 1: raid1 8077 * 2: dup 8078 * 3: raid0 8079 * 4: single 8080 */ 8081 target = get_restripe_target(root->fs_info, block_group->flags); 8082 if (target) { 8083 index = __get_raid_index(extended_to_chunk(target)); 8084 } else { 8085 /* 8086 * this is just a balance, so if we were marked as full 8087 * we know there is no space for a new chunk 8088 */ 8089 if (full) 8090 goto out; 8091 8092 index = get_block_group_index(block_group); 8093 } 8094 8095 if (index == BTRFS_RAID_RAID10) { 8096 dev_min = 4; 8097 /* Divide by 2 */ 8098 min_free >>= 1; 8099 } else if (index == BTRFS_RAID_RAID1) { 8100 dev_min = 2; 8101 } else if (index == BTRFS_RAID_DUP) { 8102 /* Multiply by 2 */ 8103 min_free <<= 1; 8104 } else if (index == BTRFS_RAID_RAID0) { 8105 dev_min = fs_devices->rw_devices; 8106 do_div(min_free, dev_min); 8107 } 8108 8109 /* We need to do this so that we can look at pending chunks */ 8110 trans = btrfs_join_transaction(root); 8111 if (IS_ERR(trans)) { 8112 ret = PTR_ERR(trans); 8113 goto out; 8114 } 8115 8116 mutex_lock(&root->fs_info->chunk_mutex); 8117 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8118 u64 dev_offset; 8119 8120 /* 8121 * check to make sure we can actually find a chunk with enough 8122 * space to fit our block group in. 8123 */ 8124 if (device->total_bytes > device->bytes_used + min_free && 8125 !device->is_tgtdev_for_dev_replace) { 8126 ret = find_free_dev_extent(trans, device, min_free, 8127 &dev_offset, NULL); 8128 if (!ret) 8129 dev_nr++; 8130 8131 if (dev_nr >= dev_min) 8132 break; 8133 8134 ret = -1; 8135 } 8136 } 8137 mutex_unlock(&root->fs_info->chunk_mutex); 8138 btrfs_end_transaction(trans, root); 8139 out: 8140 btrfs_put_block_group(block_group); 8141 return ret; 8142 } 8143 8144 static int find_first_block_group(struct btrfs_root *root, 8145 struct btrfs_path *path, struct btrfs_key *key) 8146 { 8147 int ret = 0; 8148 struct btrfs_key found_key; 8149 struct extent_buffer *leaf; 8150 int slot; 8151 8152 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8153 if (ret < 0) 8154 goto out; 8155 8156 while (1) { 8157 slot = path->slots[0]; 8158 leaf = path->nodes[0]; 8159 if (slot >= btrfs_header_nritems(leaf)) { 8160 ret = btrfs_next_leaf(root, path); 8161 if (ret == 0) 8162 continue; 8163 if (ret < 0) 8164 goto out; 8165 break; 8166 } 8167 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8168 8169 if (found_key.objectid >= key->objectid && 8170 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8171 ret = 0; 8172 goto out; 8173 } 8174 path->slots[0]++; 8175 } 8176 out: 8177 return ret; 8178 } 8179 8180 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8181 { 8182 struct btrfs_block_group_cache *block_group; 8183 u64 last = 0; 8184 8185 while (1) { 8186 struct inode *inode; 8187 8188 block_group = btrfs_lookup_first_block_group(info, last); 8189 while (block_group) { 8190 spin_lock(&block_group->lock); 8191 if (block_group->iref) 8192 break; 8193 spin_unlock(&block_group->lock); 8194 block_group = next_block_group(info->tree_root, 8195 block_group); 8196 } 8197 if (!block_group) { 8198 if (last == 0) 8199 break; 8200 last = 0; 8201 continue; 8202 } 8203 8204 inode = block_group->inode; 8205 block_group->iref = 0; 8206 block_group->inode = NULL; 8207 spin_unlock(&block_group->lock); 8208 iput(inode); 8209 last = block_group->key.objectid + block_group->key.offset; 8210 btrfs_put_block_group(block_group); 8211 } 8212 } 8213 8214 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8215 { 8216 struct btrfs_block_group_cache *block_group; 8217 struct btrfs_space_info *space_info; 8218 struct btrfs_caching_control *caching_ctl; 8219 struct rb_node *n; 8220 8221 down_write(&info->extent_commit_sem); 8222 while (!list_empty(&info->caching_block_groups)) { 8223 caching_ctl = list_entry(info->caching_block_groups.next, 8224 struct btrfs_caching_control, list); 8225 list_del(&caching_ctl->list); 8226 put_caching_control(caching_ctl); 8227 } 8228 up_write(&info->extent_commit_sem); 8229 8230 spin_lock(&info->block_group_cache_lock); 8231 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8232 block_group = rb_entry(n, struct btrfs_block_group_cache, 8233 cache_node); 8234 rb_erase(&block_group->cache_node, 8235 &info->block_group_cache_tree); 8236 spin_unlock(&info->block_group_cache_lock); 8237 8238 down_write(&block_group->space_info->groups_sem); 8239 list_del(&block_group->list); 8240 up_write(&block_group->space_info->groups_sem); 8241 8242 if (block_group->cached == BTRFS_CACHE_STARTED) 8243 wait_block_group_cache_done(block_group); 8244 8245 /* 8246 * We haven't cached this block group, which means we could 8247 * possibly have excluded extents on this block group. 8248 */ 8249 if (block_group->cached == BTRFS_CACHE_NO || 8250 block_group->cached == BTRFS_CACHE_ERROR) 8251 free_excluded_extents(info->extent_root, block_group); 8252 8253 btrfs_remove_free_space_cache(block_group); 8254 btrfs_put_block_group(block_group); 8255 8256 spin_lock(&info->block_group_cache_lock); 8257 } 8258 spin_unlock(&info->block_group_cache_lock); 8259 8260 /* now that all the block groups are freed, go through and 8261 * free all the space_info structs. This is only called during 8262 * the final stages of unmount, and so we know nobody is 8263 * using them. We call synchronize_rcu() once before we start, 8264 * just to be on the safe side. 8265 */ 8266 synchronize_rcu(); 8267 8268 release_global_block_rsv(info); 8269 8270 while(!list_empty(&info->space_info)) { 8271 space_info = list_entry(info->space_info.next, 8272 struct btrfs_space_info, 8273 list); 8274 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8275 if (space_info->bytes_pinned > 0 || 8276 space_info->bytes_reserved > 0 || 8277 space_info->bytes_may_use > 0) { 8278 WARN_ON(1); 8279 dump_space_info(space_info, 0, 0); 8280 } 8281 } 8282 percpu_counter_destroy(&space_info->total_bytes_pinned); 8283 list_del(&space_info->list); 8284 kfree(space_info); 8285 } 8286 return 0; 8287 } 8288 8289 static void __link_block_group(struct btrfs_space_info *space_info, 8290 struct btrfs_block_group_cache *cache) 8291 { 8292 int index = get_block_group_index(cache); 8293 8294 down_write(&space_info->groups_sem); 8295 list_add_tail(&cache->list, &space_info->block_groups[index]); 8296 up_write(&space_info->groups_sem); 8297 } 8298 8299 int btrfs_read_block_groups(struct btrfs_root *root) 8300 { 8301 struct btrfs_path *path; 8302 int ret; 8303 struct btrfs_block_group_cache *cache; 8304 struct btrfs_fs_info *info = root->fs_info; 8305 struct btrfs_space_info *space_info; 8306 struct btrfs_key key; 8307 struct btrfs_key found_key; 8308 struct extent_buffer *leaf; 8309 int need_clear = 0; 8310 u64 cache_gen; 8311 8312 root = info->extent_root; 8313 key.objectid = 0; 8314 key.offset = 0; 8315 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8316 path = btrfs_alloc_path(); 8317 if (!path) 8318 return -ENOMEM; 8319 path->reada = 1; 8320 8321 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 8322 if (btrfs_test_opt(root, SPACE_CACHE) && 8323 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 8324 need_clear = 1; 8325 if (btrfs_test_opt(root, CLEAR_CACHE)) 8326 need_clear = 1; 8327 8328 while (1) { 8329 ret = find_first_block_group(root, path, &key); 8330 if (ret > 0) 8331 break; 8332 if (ret != 0) 8333 goto error; 8334 leaf = path->nodes[0]; 8335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8336 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8337 if (!cache) { 8338 ret = -ENOMEM; 8339 goto error; 8340 } 8341 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8342 GFP_NOFS); 8343 if (!cache->free_space_ctl) { 8344 kfree(cache); 8345 ret = -ENOMEM; 8346 goto error; 8347 } 8348 8349 atomic_set(&cache->count, 1); 8350 spin_lock_init(&cache->lock); 8351 cache->fs_info = info; 8352 INIT_LIST_HEAD(&cache->list); 8353 INIT_LIST_HEAD(&cache->cluster_list); 8354 8355 if (need_clear) { 8356 /* 8357 * When we mount with old space cache, we need to 8358 * set BTRFS_DC_CLEAR and set dirty flag. 8359 * 8360 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 8361 * truncate the old free space cache inode and 8362 * setup a new one. 8363 * b) Setting 'dirty flag' makes sure that we flush 8364 * the new space cache info onto disk. 8365 */ 8366 cache->disk_cache_state = BTRFS_DC_CLEAR; 8367 if (btrfs_test_opt(root, SPACE_CACHE)) 8368 cache->dirty = 1; 8369 } 8370 8371 read_extent_buffer(leaf, &cache->item, 8372 btrfs_item_ptr_offset(leaf, path->slots[0]), 8373 sizeof(cache->item)); 8374 memcpy(&cache->key, &found_key, sizeof(found_key)); 8375 8376 key.objectid = found_key.objectid + found_key.offset; 8377 btrfs_release_path(path); 8378 cache->flags = btrfs_block_group_flags(&cache->item); 8379 cache->sectorsize = root->sectorsize; 8380 cache->full_stripe_len = btrfs_full_stripe_len(root, 8381 &root->fs_info->mapping_tree, 8382 found_key.objectid); 8383 btrfs_init_free_space_ctl(cache); 8384 8385 /* 8386 * We need to exclude the super stripes now so that the space 8387 * info has super bytes accounted for, otherwise we'll think 8388 * we have more space than we actually do. 8389 */ 8390 ret = exclude_super_stripes(root, cache); 8391 if (ret) { 8392 /* 8393 * We may have excluded something, so call this just in 8394 * case. 8395 */ 8396 free_excluded_extents(root, cache); 8397 kfree(cache->free_space_ctl); 8398 kfree(cache); 8399 goto error; 8400 } 8401 8402 /* 8403 * check for two cases, either we are full, and therefore 8404 * don't need to bother with the caching work since we won't 8405 * find any space, or we are empty, and we can just add all 8406 * the space in and be done with it. This saves us _alot_ of 8407 * time, particularly in the full case. 8408 */ 8409 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8410 cache->last_byte_to_unpin = (u64)-1; 8411 cache->cached = BTRFS_CACHE_FINISHED; 8412 free_excluded_extents(root, cache); 8413 } else if (btrfs_block_group_used(&cache->item) == 0) { 8414 cache->last_byte_to_unpin = (u64)-1; 8415 cache->cached = BTRFS_CACHE_FINISHED; 8416 add_new_free_space(cache, root->fs_info, 8417 found_key.objectid, 8418 found_key.objectid + 8419 found_key.offset); 8420 free_excluded_extents(root, cache); 8421 } 8422 8423 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8424 if (ret) { 8425 btrfs_remove_free_space_cache(cache); 8426 btrfs_put_block_group(cache); 8427 goto error; 8428 } 8429 8430 ret = update_space_info(info, cache->flags, found_key.offset, 8431 btrfs_block_group_used(&cache->item), 8432 &space_info); 8433 if (ret) { 8434 btrfs_remove_free_space_cache(cache); 8435 spin_lock(&info->block_group_cache_lock); 8436 rb_erase(&cache->cache_node, 8437 &info->block_group_cache_tree); 8438 spin_unlock(&info->block_group_cache_lock); 8439 btrfs_put_block_group(cache); 8440 goto error; 8441 } 8442 8443 cache->space_info = space_info; 8444 spin_lock(&cache->space_info->lock); 8445 cache->space_info->bytes_readonly += cache->bytes_super; 8446 spin_unlock(&cache->space_info->lock); 8447 8448 __link_block_group(space_info, cache); 8449 8450 set_avail_alloc_bits(root->fs_info, cache->flags); 8451 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8452 set_block_group_ro(cache, 1); 8453 } 8454 8455 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8456 if (!(get_alloc_profile(root, space_info->flags) & 8457 (BTRFS_BLOCK_GROUP_RAID10 | 8458 BTRFS_BLOCK_GROUP_RAID1 | 8459 BTRFS_BLOCK_GROUP_RAID5 | 8460 BTRFS_BLOCK_GROUP_RAID6 | 8461 BTRFS_BLOCK_GROUP_DUP))) 8462 continue; 8463 /* 8464 * avoid allocating from un-mirrored block group if there are 8465 * mirrored block groups. 8466 */ 8467 list_for_each_entry(cache, 8468 &space_info->block_groups[BTRFS_RAID_RAID0], 8469 list) 8470 set_block_group_ro(cache, 1); 8471 list_for_each_entry(cache, 8472 &space_info->block_groups[BTRFS_RAID_SINGLE], 8473 list) 8474 set_block_group_ro(cache, 1); 8475 } 8476 8477 init_global_block_rsv(info); 8478 ret = 0; 8479 error: 8480 btrfs_free_path(path); 8481 return ret; 8482 } 8483 8484 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8485 struct btrfs_root *root) 8486 { 8487 struct btrfs_block_group_cache *block_group, *tmp; 8488 struct btrfs_root *extent_root = root->fs_info->extent_root; 8489 struct btrfs_block_group_item item; 8490 struct btrfs_key key; 8491 int ret = 0; 8492 8493 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8494 new_bg_list) { 8495 list_del_init(&block_group->new_bg_list); 8496 8497 if (ret) 8498 continue; 8499 8500 spin_lock(&block_group->lock); 8501 memcpy(&item, &block_group->item, sizeof(item)); 8502 memcpy(&key, &block_group->key, sizeof(key)); 8503 spin_unlock(&block_group->lock); 8504 8505 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8506 sizeof(item)); 8507 if (ret) 8508 btrfs_abort_transaction(trans, extent_root, ret); 8509 ret = btrfs_finish_chunk_alloc(trans, extent_root, 8510 key.objectid, key.offset); 8511 if (ret) 8512 btrfs_abort_transaction(trans, extent_root, ret); 8513 } 8514 } 8515 8516 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8517 struct btrfs_root *root, u64 bytes_used, 8518 u64 type, u64 chunk_objectid, u64 chunk_offset, 8519 u64 size) 8520 { 8521 int ret; 8522 struct btrfs_root *extent_root; 8523 struct btrfs_block_group_cache *cache; 8524 8525 extent_root = root->fs_info->extent_root; 8526 8527 root->fs_info->last_trans_log_full_commit = trans->transid; 8528 8529 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8530 if (!cache) 8531 return -ENOMEM; 8532 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8533 GFP_NOFS); 8534 if (!cache->free_space_ctl) { 8535 kfree(cache); 8536 return -ENOMEM; 8537 } 8538 8539 cache->key.objectid = chunk_offset; 8540 cache->key.offset = size; 8541 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8542 cache->sectorsize = root->sectorsize; 8543 cache->fs_info = root->fs_info; 8544 cache->full_stripe_len = btrfs_full_stripe_len(root, 8545 &root->fs_info->mapping_tree, 8546 chunk_offset); 8547 8548 atomic_set(&cache->count, 1); 8549 spin_lock_init(&cache->lock); 8550 INIT_LIST_HEAD(&cache->list); 8551 INIT_LIST_HEAD(&cache->cluster_list); 8552 INIT_LIST_HEAD(&cache->new_bg_list); 8553 8554 btrfs_init_free_space_ctl(cache); 8555 8556 btrfs_set_block_group_used(&cache->item, bytes_used); 8557 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8558 cache->flags = type; 8559 btrfs_set_block_group_flags(&cache->item, type); 8560 8561 cache->last_byte_to_unpin = (u64)-1; 8562 cache->cached = BTRFS_CACHE_FINISHED; 8563 ret = exclude_super_stripes(root, cache); 8564 if (ret) { 8565 /* 8566 * We may have excluded something, so call this just in 8567 * case. 8568 */ 8569 free_excluded_extents(root, cache); 8570 kfree(cache->free_space_ctl); 8571 kfree(cache); 8572 return ret; 8573 } 8574 8575 add_new_free_space(cache, root->fs_info, chunk_offset, 8576 chunk_offset + size); 8577 8578 free_excluded_extents(root, cache); 8579 8580 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8581 if (ret) { 8582 btrfs_remove_free_space_cache(cache); 8583 btrfs_put_block_group(cache); 8584 return ret; 8585 } 8586 8587 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8588 &cache->space_info); 8589 if (ret) { 8590 btrfs_remove_free_space_cache(cache); 8591 spin_lock(&root->fs_info->block_group_cache_lock); 8592 rb_erase(&cache->cache_node, 8593 &root->fs_info->block_group_cache_tree); 8594 spin_unlock(&root->fs_info->block_group_cache_lock); 8595 btrfs_put_block_group(cache); 8596 return ret; 8597 } 8598 update_global_block_rsv(root->fs_info); 8599 8600 spin_lock(&cache->space_info->lock); 8601 cache->space_info->bytes_readonly += cache->bytes_super; 8602 spin_unlock(&cache->space_info->lock); 8603 8604 __link_block_group(cache->space_info, cache); 8605 8606 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8607 8608 set_avail_alloc_bits(extent_root->fs_info, type); 8609 8610 return 0; 8611 } 8612 8613 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8614 { 8615 u64 extra_flags = chunk_to_extended(flags) & 8616 BTRFS_EXTENDED_PROFILE_MASK; 8617 8618 write_seqlock(&fs_info->profiles_lock); 8619 if (flags & BTRFS_BLOCK_GROUP_DATA) 8620 fs_info->avail_data_alloc_bits &= ~extra_flags; 8621 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8622 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8623 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8624 fs_info->avail_system_alloc_bits &= ~extra_flags; 8625 write_sequnlock(&fs_info->profiles_lock); 8626 } 8627 8628 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8629 struct btrfs_root *root, u64 group_start) 8630 { 8631 struct btrfs_path *path; 8632 struct btrfs_block_group_cache *block_group; 8633 struct btrfs_free_cluster *cluster; 8634 struct btrfs_root *tree_root = root->fs_info->tree_root; 8635 struct btrfs_key key; 8636 struct inode *inode; 8637 int ret; 8638 int index; 8639 int factor; 8640 8641 root = root->fs_info->extent_root; 8642 8643 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8644 BUG_ON(!block_group); 8645 BUG_ON(!block_group->ro); 8646 8647 /* 8648 * Free the reserved super bytes from this block group before 8649 * remove it. 8650 */ 8651 free_excluded_extents(root, block_group); 8652 8653 memcpy(&key, &block_group->key, sizeof(key)); 8654 index = get_block_group_index(block_group); 8655 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8656 BTRFS_BLOCK_GROUP_RAID1 | 8657 BTRFS_BLOCK_GROUP_RAID10)) 8658 factor = 2; 8659 else 8660 factor = 1; 8661 8662 /* make sure this block group isn't part of an allocation cluster */ 8663 cluster = &root->fs_info->data_alloc_cluster; 8664 spin_lock(&cluster->refill_lock); 8665 btrfs_return_cluster_to_free_space(block_group, cluster); 8666 spin_unlock(&cluster->refill_lock); 8667 8668 /* 8669 * make sure this block group isn't part of a metadata 8670 * allocation cluster 8671 */ 8672 cluster = &root->fs_info->meta_alloc_cluster; 8673 spin_lock(&cluster->refill_lock); 8674 btrfs_return_cluster_to_free_space(block_group, cluster); 8675 spin_unlock(&cluster->refill_lock); 8676 8677 path = btrfs_alloc_path(); 8678 if (!path) { 8679 ret = -ENOMEM; 8680 goto out; 8681 } 8682 8683 inode = lookup_free_space_inode(tree_root, block_group, path); 8684 if (!IS_ERR(inode)) { 8685 ret = btrfs_orphan_add(trans, inode); 8686 if (ret) { 8687 btrfs_add_delayed_iput(inode); 8688 goto out; 8689 } 8690 clear_nlink(inode); 8691 /* One for the block groups ref */ 8692 spin_lock(&block_group->lock); 8693 if (block_group->iref) { 8694 block_group->iref = 0; 8695 block_group->inode = NULL; 8696 spin_unlock(&block_group->lock); 8697 iput(inode); 8698 } else { 8699 spin_unlock(&block_group->lock); 8700 } 8701 /* One for our lookup ref */ 8702 btrfs_add_delayed_iput(inode); 8703 } 8704 8705 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8706 key.offset = block_group->key.objectid; 8707 key.type = 0; 8708 8709 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8710 if (ret < 0) 8711 goto out; 8712 if (ret > 0) 8713 btrfs_release_path(path); 8714 if (ret == 0) { 8715 ret = btrfs_del_item(trans, tree_root, path); 8716 if (ret) 8717 goto out; 8718 btrfs_release_path(path); 8719 } 8720 8721 spin_lock(&root->fs_info->block_group_cache_lock); 8722 rb_erase(&block_group->cache_node, 8723 &root->fs_info->block_group_cache_tree); 8724 8725 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8726 root->fs_info->first_logical_byte = (u64)-1; 8727 spin_unlock(&root->fs_info->block_group_cache_lock); 8728 8729 down_write(&block_group->space_info->groups_sem); 8730 /* 8731 * we must use list_del_init so people can check to see if they 8732 * are still on the list after taking the semaphore 8733 */ 8734 list_del_init(&block_group->list); 8735 if (list_empty(&block_group->space_info->block_groups[index])) 8736 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8737 up_write(&block_group->space_info->groups_sem); 8738 8739 if (block_group->cached == BTRFS_CACHE_STARTED) 8740 wait_block_group_cache_done(block_group); 8741 8742 btrfs_remove_free_space_cache(block_group); 8743 8744 spin_lock(&block_group->space_info->lock); 8745 block_group->space_info->total_bytes -= block_group->key.offset; 8746 block_group->space_info->bytes_readonly -= block_group->key.offset; 8747 block_group->space_info->disk_total -= block_group->key.offset * factor; 8748 spin_unlock(&block_group->space_info->lock); 8749 8750 memcpy(&key, &block_group->key, sizeof(key)); 8751 8752 btrfs_clear_space_info_full(root->fs_info); 8753 8754 btrfs_put_block_group(block_group); 8755 btrfs_put_block_group(block_group); 8756 8757 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8758 if (ret > 0) 8759 ret = -EIO; 8760 if (ret < 0) 8761 goto out; 8762 8763 ret = btrfs_del_item(trans, root, path); 8764 out: 8765 btrfs_free_path(path); 8766 return ret; 8767 } 8768 8769 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8770 { 8771 struct btrfs_space_info *space_info; 8772 struct btrfs_super_block *disk_super; 8773 u64 features; 8774 u64 flags; 8775 int mixed = 0; 8776 int ret; 8777 8778 disk_super = fs_info->super_copy; 8779 if (!btrfs_super_root(disk_super)) 8780 return 1; 8781 8782 features = btrfs_super_incompat_flags(disk_super); 8783 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8784 mixed = 1; 8785 8786 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8787 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8788 if (ret) 8789 goto out; 8790 8791 if (mixed) { 8792 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8793 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8794 } else { 8795 flags = BTRFS_BLOCK_GROUP_METADATA; 8796 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8797 if (ret) 8798 goto out; 8799 8800 flags = BTRFS_BLOCK_GROUP_DATA; 8801 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8802 } 8803 out: 8804 return ret; 8805 } 8806 8807 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8808 { 8809 return unpin_extent_range(root, start, end); 8810 } 8811 8812 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8813 u64 num_bytes, u64 *actual_bytes) 8814 { 8815 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8816 } 8817 8818 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8819 { 8820 struct btrfs_fs_info *fs_info = root->fs_info; 8821 struct btrfs_block_group_cache *cache = NULL; 8822 u64 group_trimmed; 8823 u64 start; 8824 u64 end; 8825 u64 trimmed = 0; 8826 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8827 int ret = 0; 8828 8829 /* 8830 * try to trim all FS space, our block group may start from non-zero. 8831 */ 8832 if (range->len == total_bytes) 8833 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8834 else 8835 cache = btrfs_lookup_block_group(fs_info, range->start); 8836 8837 while (cache) { 8838 if (cache->key.objectid >= (range->start + range->len)) { 8839 btrfs_put_block_group(cache); 8840 break; 8841 } 8842 8843 start = max(range->start, cache->key.objectid); 8844 end = min(range->start + range->len, 8845 cache->key.objectid + cache->key.offset); 8846 8847 if (end - start >= range->minlen) { 8848 if (!block_group_cache_done(cache)) { 8849 ret = cache_block_group(cache, 0); 8850 if (ret) { 8851 btrfs_put_block_group(cache); 8852 break; 8853 } 8854 ret = wait_block_group_cache_done(cache); 8855 if (ret) { 8856 btrfs_put_block_group(cache); 8857 break; 8858 } 8859 } 8860 ret = btrfs_trim_block_group(cache, 8861 &group_trimmed, 8862 start, 8863 end, 8864 range->minlen); 8865 8866 trimmed += group_trimmed; 8867 if (ret) { 8868 btrfs_put_block_group(cache); 8869 break; 8870 } 8871 } 8872 8873 cache = next_block_group(fs_info->tree_root, cache); 8874 } 8875 8876 range->len = trimmed; 8877 return ret; 8878 } 8879