1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 int ret; 91 struct btrfs_key key; 92 struct btrfs_path *path; 93 94 path = btrfs_alloc_path(); 95 if (!path) 96 return -ENOMEM; 97 98 key.objectid = start; 99 key.offset = len; 100 key.type = BTRFS_EXTENT_ITEM_KEY; 101 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 102 btrfs_free_path(path); 103 return ret; 104 } 105 106 /* 107 * helper function to lookup reference count and flags of a tree block. 108 * 109 * the head node for delayed ref is used to store the sum of all the 110 * reference count modifications queued up in the rbtree. the head 111 * node may also store the extent flags to set. This way you can check 112 * to see what the reference count and extent flags would be if all of 113 * the delayed refs are not processed. 114 */ 115 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 116 struct btrfs_fs_info *fs_info, u64 bytenr, 117 u64 offset, int metadata, u64 *refs, u64 *flags) 118 { 119 struct btrfs_delayed_ref_head *head; 120 struct btrfs_delayed_ref_root *delayed_refs; 121 struct btrfs_path *path; 122 struct btrfs_extent_item *ei; 123 struct extent_buffer *leaf; 124 struct btrfs_key key; 125 u32 item_size; 126 u64 num_refs; 127 u64 extent_flags; 128 int ret; 129 130 /* 131 * If we don't have skinny metadata, don't bother doing anything 132 * different 133 */ 134 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 135 offset = fs_info->nodesize; 136 metadata = 0; 137 } 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 if (!trans) { 144 path->skip_locking = 1; 145 path->search_commit_root = 1; 146 } 147 148 search_again: 149 key.objectid = bytenr; 150 key.offset = offset; 151 if (metadata) 152 key.type = BTRFS_METADATA_ITEM_KEY; 153 else 154 key.type = BTRFS_EXTENT_ITEM_KEY; 155 156 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 157 if (ret < 0) 158 goto out_free; 159 160 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 161 if (path->slots[0]) { 162 path->slots[0]--; 163 btrfs_item_key_to_cpu(path->nodes[0], &key, 164 path->slots[0]); 165 if (key.objectid == bytenr && 166 key.type == BTRFS_EXTENT_ITEM_KEY && 167 key.offset == fs_info->nodesize) 168 ret = 0; 169 } 170 } 171 172 if (ret == 0) { 173 leaf = path->nodes[0]; 174 item_size = btrfs_item_size(leaf, path->slots[0]); 175 if (item_size >= sizeof(*ei)) { 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_extent_item); 178 num_refs = btrfs_extent_refs(leaf, ei); 179 extent_flags = btrfs_extent_flags(leaf, ei); 180 } else { 181 ret = -EINVAL; 182 btrfs_print_v0_err(fs_info); 183 if (trans) 184 btrfs_abort_transaction(trans, ret); 185 else 186 btrfs_handle_fs_error(fs_info, ret, NULL); 187 188 goto out_free; 189 } 190 191 BUG_ON(num_refs == 0); 192 } else { 193 num_refs = 0; 194 extent_flags = 0; 195 ret = 0; 196 } 197 198 if (!trans) 199 goto out; 200 201 delayed_refs = &trans->transaction->delayed_refs; 202 spin_lock(&delayed_refs->lock); 203 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 204 if (head) { 205 if (!mutex_trylock(&head->mutex)) { 206 refcount_inc(&head->refs); 207 spin_unlock(&delayed_refs->lock); 208 209 btrfs_release_path(path); 210 211 /* 212 * Mutex was contended, block until it's released and try 213 * again 214 */ 215 mutex_lock(&head->mutex); 216 mutex_unlock(&head->mutex); 217 btrfs_put_delayed_ref_head(head); 218 goto search_again; 219 } 220 spin_lock(&head->lock); 221 if (head->extent_op && head->extent_op->update_flags) 222 extent_flags |= head->extent_op->flags_to_set; 223 else 224 BUG_ON(num_refs == 0); 225 226 num_refs += head->ref_mod; 227 spin_unlock(&head->lock); 228 mutex_unlock(&head->mutex); 229 } 230 spin_unlock(&delayed_refs->lock); 231 out: 232 WARN_ON(num_refs == 0); 233 if (refs) 234 *refs = num_refs; 235 if (flags) 236 *flags = extent_flags; 237 out_free: 238 btrfs_free_path(path); 239 return ret; 240 } 241 242 /* 243 * Back reference rules. Back refs have three main goals: 244 * 245 * 1) differentiate between all holders of references to an extent so that 246 * when a reference is dropped we can make sure it was a valid reference 247 * before freeing the extent. 248 * 249 * 2) Provide enough information to quickly find the holders of an extent 250 * if we notice a given block is corrupted or bad. 251 * 252 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 253 * maintenance. This is actually the same as #2, but with a slightly 254 * different use case. 255 * 256 * There are two kinds of back refs. The implicit back refs is optimized 257 * for pointers in non-shared tree blocks. For a given pointer in a block, 258 * back refs of this kind provide information about the block's owner tree 259 * and the pointer's key. These information allow us to find the block by 260 * b-tree searching. The full back refs is for pointers in tree blocks not 261 * referenced by their owner trees. The location of tree block is recorded 262 * in the back refs. Actually the full back refs is generic, and can be 263 * used in all cases the implicit back refs is used. The major shortcoming 264 * of the full back refs is its overhead. Every time a tree block gets 265 * COWed, we have to update back refs entry for all pointers in it. 266 * 267 * For a newly allocated tree block, we use implicit back refs for 268 * pointers in it. This means most tree related operations only involve 269 * implicit back refs. For a tree block created in old transaction, the 270 * only way to drop a reference to it is COW it. So we can detect the 271 * event that tree block loses its owner tree's reference and do the 272 * back refs conversion. 273 * 274 * When a tree block is COWed through a tree, there are four cases: 275 * 276 * The reference count of the block is one and the tree is the block's 277 * owner tree. Nothing to do in this case. 278 * 279 * The reference count of the block is one and the tree is not the 280 * block's owner tree. In this case, full back refs is used for pointers 281 * in the block. Remove these full back refs, add implicit back refs for 282 * every pointers in the new block. 283 * 284 * The reference count of the block is greater than one and the tree is 285 * the block's owner tree. In this case, implicit back refs is used for 286 * pointers in the block. Add full back refs for every pointers in the 287 * block, increase lower level extents' reference counts. The original 288 * implicit back refs are entailed to the new block. 289 * 290 * The reference count of the block is greater than one and the tree is 291 * not the block's owner tree. Add implicit back refs for every pointer in 292 * the new block, increase lower level extents' reference count. 293 * 294 * Back Reference Key composing: 295 * 296 * The key objectid corresponds to the first byte in the extent, 297 * The key type is used to differentiate between types of back refs. 298 * There are different meanings of the key offset for different types 299 * of back refs. 300 * 301 * File extents can be referenced by: 302 * 303 * - multiple snapshots, subvolumes, or different generations in one subvol 304 * - different files inside a single subvolume 305 * - different offsets inside a file (bookend extents in file.c) 306 * 307 * The extent ref structure for the implicit back refs has fields for: 308 * 309 * - Objectid of the subvolume root 310 * - objectid of the file holding the reference 311 * - original offset in the file 312 * - how many bookend extents 313 * 314 * The key offset for the implicit back refs is hash of the first 315 * three fields. 316 * 317 * The extent ref structure for the full back refs has field for: 318 * 319 * - number of pointers in the tree leaf 320 * 321 * The key offset for the implicit back refs is the first byte of 322 * the tree leaf 323 * 324 * When a file extent is allocated, The implicit back refs is used. 325 * the fields are filled in: 326 * 327 * (root_key.objectid, inode objectid, offset in file, 1) 328 * 329 * When a file extent is removed file truncation, we find the 330 * corresponding implicit back refs and check the following fields: 331 * 332 * (btrfs_header_owner(leaf), inode objectid, offset in file) 333 * 334 * Btree extents can be referenced by: 335 * 336 * - Different subvolumes 337 * 338 * Both the implicit back refs and the full back refs for tree blocks 339 * only consist of key. The key offset for the implicit back refs is 340 * objectid of block's owner tree. The key offset for the full back refs 341 * is the first byte of parent block. 342 * 343 * When implicit back refs is used, information about the lowest key and 344 * level of the tree block are required. These information are stored in 345 * tree block info structure. 346 */ 347 348 /* 349 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 350 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 351 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 352 */ 353 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 354 struct btrfs_extent_inline_ref *iref, 355 enum btrfs_inline_ref_type is_data) 356 { 357 int type = btrfs_extent_inline_ref_type(eb, iref); 358 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 359 360 if (type == BTRFS_TREE_BLOCK_REF_KEY || 361 type == BTRFS_SHARED_BLOCK_REF_KEY || 362 type == BTRFS_SHARED_DATA_REF_KEY || 363 type == BTRFS_EXTENT_DATA_REF_KEY) { 364 if (is_data == BTRFS_REF_TYPE_BLOCK) { 365 if (type == BTRFS_TREE_BLOCK_REF_KEY) 366 return type; 367 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 368 ASSERT(eb->fs_info); 369 /* 370 * Every shared one has parent tree block, 371 * which must be aligned to sector size. 372 */ 373 if (offset && 374 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 375 return type; 376 } 377 } else if (is_data == BTRFS_REF_TYPE_DATA) { 378 if (type == BTRFS_EXTENT_DATA_REF_KEY) 379 return type; 380 if (type == BTRFS_SHARED_DATA_REF_KEY) { 381 ASSERT(eb->fs_info); 382 /* 383 * Every shared one has parent tree block, 384 * which must be aligned to sector size. 385 */ 386 if (offset && 387 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 388 return type; 389 } 390 } else { 391 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 392 return type; 393 } 394 } 395 396 btrfs_print_leaf((struct extent_buffer *)eb); 397 btrfs_err(eb->fs_info, 398 "eb %llu iref 0x%lx invalid extent inline ref type %d", 399 eb->start, (unsigned long)iref, type); 400 WARN_ON(1); 401 402 return BTRFS_REF_TYPE_INVALID; 403 } 404 405 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 406 { 407 u32 high_crc = ~(u32)0; 408 u32 low_crc = ~(u32)0; 409 __le64 lenum; 410 411 lenum = cpu_to_le64(root_objectid); 412 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 413 lenum = cpu_to_le64(owner); 414 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 415 lenum = cpu_to_le64(offset); 416 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 417 418 return ((u64)high_crc << 31) ^ (u64)low_crc; 419 } 420 421 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 422 struct btrfs_extent_data_ref *ref) 423 { 424 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 425 btrfs_extent_data_ref_objectid(leaf, ref), 426 btrfs_extent_data_ref_offset(leaf, ref)); 427 } 428 429 static int match_extent_data_ref(struct extent_buffer *leaf, 430 struct btrfs_extent_data_ref *ref, 431 u64 root_objectid, u64 owner, u64 offset) 432 { 433 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 434 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 435 btrfs_extent_data_ref_offset(leaf, ref) != offset) 436 return 0; 437 return 1; 438 } 439 440 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 441 struct btrfs_path *path, 442 u64 bytenr, u64 parent, 443 u64 root_objectid, 444 u64 owner, u64 offset) 445 { 446 struct btrfs_root *root = trans->fs_info->extent_root; 447 struct btrfs_key key; 448 struct btrfs_extent_data_ref *ref; 449 struct extent_buffer *leaf; 450 u32 nritems; 451 int ret; 452 int recow; 453 int err = -ENOENT; 454 455 key.objectid = bytenr; 456 if (parent) { 457 key.type = BTRFS_SHARED_DATA_REF_KEY; 458 key.offset = parent; 459 } else { 460 key.type = BTRFS_EXTENT_DATA_REF_KEY; 461 key.offset = hash_extent_data_ref(root_objectid, 462 owner, offset); 463 } 464 again: 465 recow = 0; 466 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 467 if (ret < 0) { 468 err = ret; 469 goto fail; 470 } 471 472 if (parent) { 473 if (!ret) 474 return 0; 475 goto fail; 476 } 477 478 leaf = path->nodes[0]; 479 nritems = btrfs_header_nritems(leaf); 480 while (1) { 481 if (path->slots[0] >= nritems) { 482 ret = btrfs_next_leaf(root, path); 483 if (ret < 0) 484 err = ret; 485 if (ret) 486 goto fail; 487 488 leaf = path->nodes[0]; 489 nritems = btrfs_header_nritems(leaf); 490 recow = 1; 491 } 492 493 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 494 if (key.objectid != bytenr || 495 key.type != BTRFS_EXTENT_DATA_REF_KEY) 496 goto fail; 497 498 ref = btrfs_item_ptr(leaf, path->slots[0], 499 struct btrfs_extent_data_ref); 500 501 if (match_extent_data_ref(leaf, ref, root_objectid, 502 owner, offset)) { 503 if (recow) { 504 btrfs_release_path(path); 505 goto again; 506 } 507 err = 0; 508 break; 509 } 510 path->slots[0]++; 511 } 512 fail: 513 return err; 514 } 515 516 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 517 struct btrfs_path *path, 518 u64 bytenr, u64 parent, 519 u64 root_objectid, u64 owner, 520 u64 offset, int refs_to_add) 521 { 522 struct btrfs_root *root = trans->fs_info->extent_root; 523 struct btrfs_key key; 524 struct extent_buffer *leaf; 525 u32 size; 526 u32 num_refs; 527 int ret; 528 529 key.objectid = bytenr; 530 if (parent) { 531 key.type = BTRFS_SHARED_DATA_REF_KEY; 532 key.offset = parent; 533 size = sizeof(struct btrfs_shared_data_ref); 534 } else { 535 key.type = BTRFS_EXTENT_DATA_REF_KEY; 536 key.offset = hash_extent_data_ref(root_objectid, 537 owner, offset); 538 size = sizeof(struct btrfs_extent_data_ref); 539 } 540 541 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 542 if (ret && ret != -EEXIST) 543 goto fail; 544 545 leaf = path->nodes[0]; 546 if (parent) { 547 struct btrfs_shared_data_ref *ref; 548 ref = btrfs_item_ptr(leaf, path->slots[0], 549 struct btrfs_shared_data_ref); 550 if (ret == 0) { 551 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 552 } else { 553 num_refs = btrfs_shared_data_ref_count(leaf, ref); 554 num_refs += refs_to_add; 555 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 556 } 557 } else { 558 struct btrfs_extent_data_ref *ref; 559 while (ret == -EEXIST) { 560 ref = btrfs_item_ptr(leaf, path->slots[0], 561 struct btrfs_extent_data_ref); 562 if (match_extent_data_ref(leaf, ref, root_objectid, 563 owner, offset)) 564 break; 565 btrfs_release_path(path); 566 key.offset++; 567 ret = btrfs_insert_empty_item(trans, root, path, &key, 568 size); 569 if (ret && ret != -EEXIST) 570 goto fail; 571 572 leaf = path->nodes[0]; 573 } 574 ref = btrfs_item_ptr(leaf, path->slots[0], 575 struct btrfs_extent_data_ref); 576 if (ret == 0) { 577 btrfs_set_extent_data_ref_root(leaf, ref, 578 root_objectid); 579 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 580 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 581 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 582 } else { 583 num_refs = btrfs_extent_data_ref_count(leaf, ref); 584 num_refs += refs_to_add; 585 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 586 } 587 } 588 btrfs_mark_buffer_dirty(leaf); 589 ret = 0; 590 fail: 591 btrfs_release_path(path); 592 return ret; 593 } 594 595 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 596 struct btrfs_root *root, 597 struct btrfs_path *path, 598 int refs_to_drop, int *last_ref) 599 { 600 struct btrfs_key key; 601 struct btrfs_extent_data_ref *ref1 = NULL; 602 struct btrfs_shared_data_ref *ref2 = NULL; 603 struct extent_buffer *leaf; 604 u32 num_refs = 0; 605 int ret = 0; 606 607 leaf = path->nodes[0]; 608 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 609 610 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 611 ref1 = btrfs_item_ptr(leaf, path->slots[0], 612 struct btrfs_extent_data_ref); 613 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 614 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 615 ref2 = btrfs_item_ptr(leaf, path->slots[0], 616 struct btrfs_shared_data_ref); 617 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 618 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 619 btrfs_print_v0_err(trans->fs_info); 620 btrfs_abort_transaction(trans, -EINVAL); 621 return -EINVAL; 622 } else { 623 BUG(); 624 } 625 626 BUG_ON(num_refs < refs_to_drop); 627 num_refs -= refs_to_drop; 628 629 if (num_refs == 0) { 630 ret = btrfs_del_item(trans, root, path); 631 *last_ref = 1; 632 } else { 633 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 634 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 635 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 636 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 637 btrfs_mark_buffer_dirty(leaf); 638 } 639 return ret; 640 } 641 642 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 643 struct btrfs_extent_inline_ref *iref) 644 { 645 struct btrfs_key key; 646 struct extent_buffer *leaf; 647 struct btrfs_extent_data_ref *ref1; 648 struct btrfs_shared_data_ref *ref2; 649 u32 num_refs = 0; 650 int type; 651 652 leaf = path->nodes[0]; 653 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 654 655 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 656 if (iref) { 657 /* 658 * If type is invalid, we should have bailed out earlier than 659 * this call. 660 */ 661 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 662 ASSERT(type != BTRFS_REF_TYPE_INVALID); 663 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 664 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 665 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 666 } else { 667 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 668 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 669 } 670 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 671 ref1 = btrfs_item_ptr(leaf, path->slots[0], 672 struct btrfs_extent_data_ref); 673 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 674 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 675 ref2 = btrfs_item_ptr(leaf, path->slots[0], 676 struct btrfs_shared_data_ref); 677 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 678 } else { 679 WARN_ON(1); 680 } 681 return num_refs; 682 } 683 684 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 685 struct btrfs_path *path, 686 u64 bytenr, u64 parent, 687 u64 root_objectid) 688 { 689 struct btrfs_root *root = trans->fs_info->extent_root; 690 struct btrfs_key key; 691 int ret; 692 693 key.objectid = bytenr; 694 if (parent) { 695 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 696 key.offset = parent; 697 } else { 698 key.type = BTRFS_TREE_BLOCK_REF_KEY; 699 key.offset = root_objectid; 700 } 701 702 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 703 if (ret > 0) 704 ret = -ENOENT; 705 return ret; 706 } 707 708 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 709 struct btrfs_path *path, 710 u64 bytenr, u64 parent, 711 u64 root_objectid) 712 { 713 struct btrfs_key key; 714 int ret; 715 716 key.objectid = bytenr; 717 if (parent) { 718 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 719 key.offset = parent; 720 } else { 721 key.type = BTRFS_TREE_BLOCK_REF_KEY; 722 key.offset = root_objectid; 723 } 724 725 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, 726 path, &key, 0); 727 btrfs_release_path(path); 728 return ret; 729 } 730 731 static inline int extent_ref_type(u64 parent, u64 owner) 732 { 733 int type; 734 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 735 if (parent > 0) 736 type = BTRFS_SHARED_BLOCK_REF_KEY; 737 else 738 type = BTRFS_TREE_BLOCK_REF_KEY; 739 } else { 740 if (parent > 0) 741 type = BTRFS_SHARED_DATA_REF_KEY; 742 else 743 type = BTRFS_EXTENT_DATA_REF_KEY; 744 } 745 return type; 746 } 747 748 static int find_next_key(struct btrfs_path *path, int level, 749 struct btrfs_key *key) 750 751 { 752 for (; level < BTRFS_MAX_LEVEL; level++) { 753 if (!path->nodes[level]) 754 break; 755 if (path->slots[level] + 1 >= 756 btrfs_header_nritems(path->nodes[level])) 757 continue; 758 if (level == 0) 759 btrfs_item_key_to_cpu(path->nodes[level], key, 760 path->slots[level] + 1); 761 else 762 btrfs_node_key_to_cpu(path->nodes[level], key, 763 path->slots[level] + 1); 764 return 0; 765 } 766 return 1; 767 } 768 769 /* 770 * look for inline back ref. if back ref is found, *ref_ret is set 771 * to the address of inline back ref, and 0 is returned. 772 * 773 * if back ref isn't found, *ref_ret is set to the address where it 774 * should be inserted, and -ENOENT is returned. 775 * 776 * if insert is true and there are too many inline back refs, the path 777 * points to the extent item, and -EAGAIN is returned. 778 * 779 * NOTE: inline back refs are ordered in the same way that back ref 780 * items in the tree are ordered. 781 */ 782 static noinline_for_stack 783 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 784 struct btrfs_path *path, 785 struct btrfs_extent_inline_ref **ref_ret, 786 u64 bytenr, u64 num_bytes, 787 u64 parent, u64 root_objectid, 788 u64 owner, u64 offset, int insert) 789 { 790 struct btrfs_fs_info *fs_info = trans->fs_info; 791 struct btrfs_root *root = fs_info->extent_root; 792 struct btrfs_key key; 793 struct extent_buffer *leaf; 794 struct btrfs_extent_item *ei; 795 struct btrfs_extent_inline_ref *iref; 796 u64 flags; 797 u64 item_size; 798 unsigned long ptr; 799 unsigned long end; 800 int extra_size; 801 int type; 802 int want; 803 int ret; 804 int err = 0; 805 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 806 int needed; 807 808 key.objectid = bytenr; 809 key.type = BTRFS_EXTENT_ITEM_KEY; 810 key.offset = num_bytes; 811 812 want = extent_ref_type(parent, owner); 813 if (insert) { 814 extra_size = btrfs_extent_inline_ref_size(want); 815 path->search_for_extension = 1; 816 path->keep_locks = 1; 817 } else 818 extra_size = -1; 819 820 /* 821 * Owner is our level, so we can just add one to get the level for the 822 * block we are interested in. 823 */ 824 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 825 key.type = BTRFS_METADATA_ITEM_KEY; 826 key.offset = owner; 827 } 828 829 again: 830 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 831 if (ret < 0) { 832 err = ret; 833 goto out; 834 } 835 836 /* 837 * We may be a newly converted file system which still has the old fat 838 * extent entries for metadata, so try and see if we have one of those. 839 */ 840 if (ret > 0 && skinny_metadata) { 841 skinny_metadata = false; 842 if (path->slots[0]) { 843 path->slots[0]--; 844 btrfs_item_key_to_cpu(path->nodes[0], &key, 845 path->slots[0]); 846 if (key.objectid == bytenr && 847 key.type == BTRFS_EXTENT_ITEM_KEY && 848 key.offset == num_bytes) 849 ret = 0; 850 } 851 if (ret) { 852 key.objectid = bytenr; 853 key.type = BTRFS_EXTENT_ITEM_KEY; 854 key.offset = num_bytes; 855 btrfs_release_path(path); 856 goto again; 857 } 858 } 859 860 if (ret && !insert) { 861 err = -ENOENT; 862 goto out; 863 } else if (WARN_ON(ret)) { 864 err = -EIO; 865 goto out; 866 } 867 868 leaf = path->nodes[0]; 869 item_size = btrfs_item_size(leaf, path->slots[0]); 870 if (unlikely(item_size < sizeof(*ei))) { 871 err = -EINVAL; 872 btrfs_print_v0_err(fs_info); 873 btrfs_abort_transaction(trans, err); 874 goto out; 875 } 876 877 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 878 flags = btrfs_extent_flags(leaf, ei); 879 880 ptr = (unsigned long)(ei + 1); 881 end = (unsigned long)ei + item_size; 882 883 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 884 ptr += sizeof(struct btrfs_tree_block_info); 885 BUG_ON(ptr > end); 886 } 887 888 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 889 needed = BTRFS_REF_TYPE_DATA; 890 else 891 needed = BTRFS_REF_TYPE_BLOCK; 892 893 err = -ENOENT; 894 while (1) { 895 if (ptr >= end) { 896 WARN_ON(ptr > end); 897 break; 898 } 899 iref = (struct btrfs_extent_inline_ref *)ptr; 900 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 901 if (type == BTRFS_REF_TYPE_INVALID) { 902 err = -EUCLEAN; 903 goto out; 904 } 905 906 if (want < type) 907 break; 908 if (want > type) { 909 ptr += btrfs_extent_inline_ref_size(type); 910 continue; 911 } 912 913 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 914 struct btrfs_extent_data_ref *dref; 915 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 916 if (match_extent_data_ref(leaf, dref, root_objectid, 917 owner, offset)) { 918 err = 0; 919 break; 920 } 921 if (hash_extent_data_ref_item(leaf, dref) < 922 hash_extent_data_ref(root_objectid, owner, offset)) 923 break; 924 } else { 925 u64 ref_offset; 926 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 927 if (parent > 0) { 928 if (parent == ref_offset) { 929 err = 0; 930 break; 931 } 932 if (ref_offset < parent) 933 break; 934 } else { 935 if (root_objectid == ref_offset) { 936 err = 0; 937 break; 938 } 939 if (ref_offset < root_objectid) 940 break; 941 } 942 } 943 ptr += btrfs_extent_inline_ref_size(type); 944 } 945 if (err == -ENOENT && insert) { 946 if (item_size + extra_size >= 947 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 948 err = -EAGAIN; 949 goto out; 950 } 951 /* 952 * To add new inline back ref, we have to make sure 953 * there is no corresponding back ref item. 954 * For simplicity, we just do not add new inline back 955 * ref if there is any kind of item for this block 956 */ 957 if (find_next_key(path, 0, &key) == 0 && 958 key.objectid == bytenr && 959 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 960 err = -EAGAIN; 961 goto out; 962 } 963 } 964 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 965 out: 966 if (insert) { 967 path->keep_locks = 0; 968 path->search_for_extension = 0; 969 btrfs_unlock_up_safe(path, 1); 970 } 971 return err; 972 } 973 974 /* 975 * helper to add new inline back ref 976 */ 977 static noinline_for_stack 978 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 979 struct btrfs_path *path, 980 struct btrfs_extent_inline_ref *iref, 981 u64 parent, u64 root_objectid, 982 u64 owner, u64 offset, int refs_to_add, 983 struct btrfs_delayed_extent_op *extent_op) 984 { 985 struct extent_buffer *leaf; 986 struct btrfs_extent_item *ei; 987 unsigned long ptr; 988 unsigned long end; 989 unsigned long item_offset; 990 u64 refs; 991 int size; 992 int type; 993 994 leaf = path->nodes[0]; 995 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 996 item_offset = (unsigned long)iref - (unsigned long)ei; 997 998 type = extent_ref_type(parent, owner); 999 size = btrfs_extent_inline_ref_size(type); 1000 1001 btrfs_extend_item(path, size); 1002 1003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1004 refs = btrfs_extent_refs(leaf, ei); 1005 refs += refs_to_add; 1006 btrfs_set_extent_refs(leaf, ei, refs); 1007 if (extent_op) 1008 __run_delayed_extent_op(extent_op, leaf, ei); 1009 1010 ptr = (unsigned long)ei + item_offset; 1011 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1012 if (ptr < end - size) 1013 memmove_extent_buffer(leaf, ptr + size, ptr, 1014 end - size - ptr); 1015 1016 iref = (struct btrfs_extent_inline_ref *)ptr; 1017 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1018 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1019 struct btrfs_extent_data_ref *dref; 1020 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1021 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1022 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1023 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1024 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1025 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1026 struct btrfs_shared_data_ref *sref; 1027 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1028 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1029 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1030 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1031 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1032 } else { 1033 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1034 } 1035 btrfs_mark_buffer_dirty(leaf); 1036 } 1037 1038 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1039 struct btrfs_path *path, 1040 struct btrfs_extent_inline_ref **ref_ret, 1041 u64 bytenr, u64 num_bytes, u64 parent, 1042 u64 root_objectid, u64 owner, u64 offset) 1043 { 1044 int ret; 1045 1046 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1047 num_bytes, parent, root_objectid, 1048 owner, offset, 0); 1049 if (ret != -ENOENT) 1050 return ret; 1051 1052 btrfs_release_path(path); 1053 *ref_ret = NULL; 1054 1055 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1056 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1057 root_objectid); 1058 } else { 1059 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1060 root_objectid, owner, offset); 1061 } 1062 return ret; 1063 } 1064 1065 /* 1066 * helper to update/remove inline back ref 1067 */ 1068 static noinline_for_stack 1069 void update_inline_extent_backref(struct btrfs_path *path, 1070 struct btrfs_extent_inline_ref *iref, 1071 int refs_to_mod, 1072 struct btrfs_delayed_extent_op *extent_op, 1073 int *last_ref) 1074 { 1075 struct extent_buffer *leaf = path->nodes[0]; 1076 struct btrfs_extent_item *ei; 1077 struct btrfs_extent_data_ref *dref = NULL; 1078 struct btrfs_shared_data_ref *sref = NULL; 1079 unsigned long ptr; 1080 unsigned long end; 1081 u32 item_size; 1082 int size; 1083 int type; 1084 u64 refs; 1085 1086 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1087 refs = btrfs_extent_refs(leaf, ei); 1088 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1089 refs += refs_to_mod; 1090 btrfs_set_extent_refs(leaf, ei, refs); 1091 if (extent_op) 1092 __run_delayed_extent_op(extent_op, leaf, ei); 1093 1094 /* 1095 * If type is invalid, we should have bailed out after 1096 * lookup_inline_extent_backref(). 1097 */ 1098 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1099 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1100 1101 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1102 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1103 refs = btrfs_extent_data_ref_count(leaf, dref); 1104 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1105 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1106 refs = btrfs_shared_data_ref_count(leaf, sref); 1107 } else { 1108 refs = 1; 1109 BUG_ON(refs_to_mod != -1); 1110 } 1111 1112 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1113 refs += refs_to_mod; 1114 1115 if (refs > 0) { 1116 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1117 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1118 else 1119 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1120 } else { 1121 *last_ref = 1; 1122 size = btrfs_extent_inline_ref_size(type); 1123 item_size = btrfs_item_size(leaf, path->slots[0]); 1124 ptr = (unsigned long)iref; 1125 end = (unsigned long)ei + item_size; 1126 if (ptr + size < end) 1127 memmove_extent_buffer(leaf, ptr, ptr + size, 1128 end - ptr - size); 1129 item_size -= size; 1130 btrfs_truncate_item(path, item_size, 1); 1131 } 1132 btrfs_mark_buffer_dirty(leaf); 1133 } 1134 1135 static noinline_for_stack 1136 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1137 struct btrfs_path *path, 1138 u64 bytenr, u64 num_bytes, u64 parent, 1139 u64 root_objectid, u64 owner, 1140 u64 offset, int refs_to_add, 1141 struct btrfs_delayed_extent_op *extent_op) 1142 { 1143 struct btrfs_extent_inline_ref *iref; 1144 int ret; 1145 1146 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1147 num_bytes, parent, root_objectid, 1148 owner, offset, 1); 1149 if (ret == 0) { 1150 /* 1151 * We're adding refs to a tree block we already own, this 1152 * should not happen at all. 1153 */ 1154 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1155 btrfs_crit(trans->fs_info, 1156 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1157 bytenr, num_bytes, root_objectid); 1158 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1159 WARN_ON(1); 1160 btrfs_crit(trans->fs_info, 1161 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1162 btrfs_print_leaf(path->nodes[0]); 1163 } 1164 return -EUCLEAN; 1165 } 1166 update_inline_extent_backref(path, iref, refs_to_add, 1167 extent_op, NULL); 1168 } else if (ret == -ENOENT) { 1169 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1170 root_objectid, owner, offset, 1171 refs_to_add, extent_op); 1172 ret = 0; 1173 } 1174 return ret; 1175 } 1176 1177 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1178 struct btrfs_root *root, 1179 struct btrfs_path *path, 1180 struct btrfs_extent_inline_ref *iref, 1181 int refs_to_drop, int is_data, int *last_ref) 1182 { 1183 int ret = 0; 1184 1185 BUG_ON(!is_data && refs_to_drop != 1); 1186 if (iref) { 1187 update_inline_extent_backref(path, iref, -refs_to_drop, NULL, 1188 last_ref); 1189 } else if (is_data) { 1190 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1191 last_ref); 1192 } else { 1193 *last_ref = 1; 1194 ret = btrfs_del_item(trans, root, path); 1195 } 1196 return ret; 1197 } 1198 1199 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1200 u64 *discarded_bytes) 1201 { 1202 int j, ret = 0; 1203 u64 bytes_left, end; 1204 u64 aligned_start = ALIGN(start, 1 << 9); 1205 1206 if (WARN_ON(start != aligned_start)) { 1207 len -= aligned_start - start; 1208 len = round_down(len, 1 << 9); 1209 start = aligned_start; 1210 } 1211 1212 *discarded_bytes = 0; 1213 1214 if (!len) 1215 return 0; 1216 1217 end = start + len; 1218 bytes_left = len; 1219 1220 /* Skip any superblocks on this device. */ 1221 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1222 u64 sb_start = btrfs_sb_offset(j); 1223 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1224 u64 size = sb_start - start; 1225 1226 if (!in_range(sb_start, start, bytes_left) && 1227 !in_range(sb_end, start, bytes_left) && 1228 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1229 continue; 1230 1231 /* 1232 * Superblock spans beginning of range. Adjust start and 1233 * try again. 1234 */ 1235 if (sb_start <= start) { 1236 start += sb_end - start; 1237 if (start > end) { 1238 bytes_left = 0; 1239 break; 1240 } 1241 bytes_left = end - start; 1242 continue; 1243 } 1244 1245 if (size) { 1246 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1247 GFP_NOFS, 0); 1248 if (!ret) 1249 *discarded_bytes += size; 1250 else if (ret != -EOPNOTSUPP) 1251 return ret; 1252 } 1253 1254 start = sb_end; 1255 if (start > end) { 1256 bytes_left = 0; 1257 break; 1258 } 1259 bytes_left = end - start; 1260 } 1261 1262 if (bytes_left) { 1263 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1264 GFP_NOFS, 0); 1265 if (!ret) 1266 *discarded_bytes += bytes_left; 1267 } 1268 return ret; 1269 } 1270 1271 static int do_discard_extent(struct btrfs_io_stripe *stripe, u64 *bytes) 1272 { 1273 struct btrfs_device *dev = stripe->dev; 1274 struct btrfs_fs_info *fs_info = dev->fs_info; 1275 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1276 u64 phys = stripe->physical; 1277 u64 len = stripe->length; 1278 u64 discarded = 0; 1279 int ret = 0; 1280 1281 /* Zone reset on a zoned filesystem */ 1282 if (btrfs_can_zone_reset(dev, phys, len)) { 1283 u64 src_disc; 1284 1285 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1286 if (ret) 1287 goto out; 1288 1289 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1290 dev != dev_replace->srcdev) 1291 goto out; 1292 1293 src_disc = discarded; 1294 1295 /* Send to replace target as well */ 1296 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1297 &discarded); 1298 discarded += src_disc; 1299 } else if (blk_queue_discard(bdev_get_queue(stripe->dev->bdev))) { 1300 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1301 } else { 1302 ret = 0; 1303 *bytes = 0; 1304 } 1305 1306 out: 1307 *bytes = discarded; 1308 return ret; 1309 } 1310 1311 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1312 u64 num_bytes, u64 *actual_bytes) 1313 { 1314 int ret = 0; 1315 u64 discarded_bytes = 0; 1316 u64 end = bytenr + num_bytes; 1317 u64 cur = bytenr; 1318 struct btrfs_io_context *bioc = NULL; 1319 1320 /* 1321 * Avoid races with device replace and make sure our bioc has devices 1322 * associated to its stripes that don't go away while we are discarding. 1323 */ 1324 btrfs_bio_counter_inc_blocked(fs_info); 1325 while (cur < end) { 1326 struct btrfs_io_stripe *stripe; 1327 int i; 1328 1329 num_bytes = end - cur; 1330 /* Tell the block device(s) that the sectors can be discarded */ 1331 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur, 1332 &num_bytes, &bioc, 0); 1333 /* 1334 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or 1335 * -EOPNOTSUPP. For any such error, @num_bytes is not updated, 1336 * thus we can't continue anyway. 1337 */ 1338 if (ret < 0) 1339 goto out; 1340 1341 stripe = bioc->stripes; 1342 for (i = 0; i < bioc->num_stripes; i++, stripe++) { 1343 u64 bytes; 1344 struct btrfs_device *device = stripe->dev; 1345 1346 if (!device->bdev) { 1347 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1348 continue; 1349 } 1350 1351 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 1352 continue; 1353 1354 ret = do_discard_extent(stripe, &bytes); 1355 if (!ret) { 1356 discarded_bytes += bytes; 1357 } else if (ret != -EOPNOTSUPP) { 1358 /* 1359 * Logic errors or -ENOMEM, or -EIO, but 1360 * unlikely to happen. 1361 * 1362 * And since there are two loops, explicitly 1363 * go to out to avoid confusion. 1364 */ 1365 btrfs_put_bioc(bioc); 1366 goto out; 1367 } 1368 1369 /* 1370 * Just in case we get back EOPNOTSUPP for some reason, 1371 * just ignore the return value so we don't screw up 1372 * people calling discard_extent. 1373 */ 1374 ret = 0; 1375 } 1376 btrfs_put_bioc(bioc); 1377 cur += num_bytes; 1378 } 1379 out: 1380 btrfs_bio_counter_dec(fs_info); 1381 1382 if (actual_bytes) 1383 *actual_bytes = discarded_bytes; 1384 1385 1386 if (ret == -EOPNOTSUPP) 1387 ret = 0; 1388 return ret; 1389 } 1390 1391 /* Can return -ENOMEM */ 1392 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1393 struct btrfs_ref *generic_ref) 1394 { 1395 struct btrfs_fs_info *fs_info = trans->fs_info; 1396 int ret; 1397 1398 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1399 generic_ref->action); 1400 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1401 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1402 1403 if (generic_ref->type == BTRFS_REF_METADATA) 1404 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1405 else 1406 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1407 1408 btrfs_ref_tree_mod(fs_info, generic_ref); 1409 1410 return ret; 1411 } 1412 1413 /* 1414 * __btrfs_inc_extent_ref - insert backreference for a given extent 1415 * 1416 * The counterpart is in __btrfs_free_extent(), with examples and more details 1417 * how it works. 1418 * 1419 * @trans: Handle of transaction 1420 * 1421 * @node: The delayed ref node used to get the bytenr/length for 1422 * extent whose references are incremented. 1423 * 1424 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1425 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1426 * bytenr of the parent block. Since new extents are always 1427 * created with indirect references, this will only be the case 1428 * when relocating a shared extent. In that case, root_objectid 1429 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1430 * be 0 1431 * 1432 * @root_objectid: The id of the root where this modification has originated, 1433 * this can be either one of the well-known metadata trees or 1434 * the subvolume id which references this extent. 1435 * 1436 * @owner: For data extents it is the inode number of the owning file. 1437 * For metadata extents this parameter holds the level in the 1438 * tree of the extent. 1439 * 1440 * @offset: For metadata extents the offset is ignored and is currently 1441 * always passed as 0. For data extents it is the fileoffset 1442 * this extent belongs to. 1443 * 1444 * @refs_to_add Number of references to add 1445 * 1446 * @extent_op Pointer to a structure, holding information necessary when 1447 * updating a tree block's flags 1448 * 1449 */ 1450 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1451 struct btrfs_delayed_ref_node *node, 1452 u64 parent, u64 root_objectid, 1453 u64 owner, u64 offset, int refs_to_add, 1454 struct btrfs_delayed_extent_op *extent_op) 1455 { 1456 struct btrfs_path *path; 1457 struct extent_buffer *leaf; 1458 struct btrfs_extent_item *item; 1459 struct btrfs_key key; 1460 u64 bytenr = node->bytenr; 1461 u64 num_bytes = node->num_bytes; 1462 u64 refs; 1463 int ret; 1464 1465 path = btrfs_alloc_path(); 1466 if (!path) 1467 return -ENOMEM; 1468 1469 /* this will setup the path even if it fails to insert the back ref */ 1470 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1471 parent, root_objectid, owner, 1472 offset, refs_to_add, extent_op); 1473 if ((ret < 0 && ret != -EAGAIN) || !ret) 1474 goto out; 1475 1476 /* 1477 * Ok we had -EAGAIN which means we didn't have space to insert and 1478 * inline extent ref, so just update the reference count and add a 1479 * normal backref. 1480 */ 1481 leaf = path->nodes[0]; 1482 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1483 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1484 refs = btrfs_extent_refs(leaf, item); 1485 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1486 if (extent_op) 1487 __run_delayed_extent_op(extent_op, leaf, item); 1488 1489 btrfs_mark_buffer_dirty(leaf); 1490 btrfs_release_path(path); 1491 1492 /* now insert the actual backref */ 1493 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1494 BUG_ON(refs_to_add != 1); 1495 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1496 root_objectid); 1497 } else { 1498 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1499 root_objectid, owner, offset, 1500 refs_to_add); 1501 } 1502 if (ret) 1503 btrfs_abort_transaction(trans, ret); 1504 out: 1505 btrfs_free_path(path); 1506 return ret; 1507 } 1508 1509 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1510 struct btrfs_delayed_ref_node *node, 1511 struct btrfs_delayed_extent_op *extent_op, 1512 int insert_reserved) 1513 { 1514 int ret = 0; 1515 struct btrfs_delayed_data_ref *ref; 1516 struct btrfs_key ins; 1517 u64 parent = 0; 1518 u64 ref_root = 0; 1519 u64 flags = 0; 1520 1521 ins.objectid = node->bytenr; 1522 ins.offset = node->num_bytes; 1523 ins.type = BTRFS_EXTENT_ITEM_KEY; 1524 1525 ref = btrfs_delayed_node_to_data_ref(node); 1526 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1527 1528 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1529 parent = ref->parent; 1530 ref_root = ref->root; 1531 1532 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1533 if (extent_op) 1534 flags |= extent_op->flags_to_set; 1535 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1536 flags, ref->objectid, 1537 ref->offset, &ins, 1538 node->ref_mod); 1539 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1540 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1541 ref->objectid, ref->offset, 1542 node->ref_mod, extent_op); 1543 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1544 ret = __btrfs_free_extent(trans, node, parent, 1545 ref_root, ref->objectid, 1546 ref->offset, node->ref_mod, 1547 extent_op); 1548 } else { 1549 BUG(); 1550 } 1551 return ret; 1552 } 1553 1554 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1555 struct extent_buffer *leaf, 1556 struct btrfs_extent_item *ei) 1557 { 1558 u64 flags = btrfs_extent_flags(leaf, ei); 1559 if (extent_op->update_flags) { 1560 flags |= extent_op->flags_to_set; 1561 btrfs_set_extent_flags(leaf, ei, flags); 1562 } 1563 1564 if (extent_op->update_key) { 1565 struct btrfs_tree_block_info *bi; 1566 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1567 bi = (struct btrfs_tree_block_info *)(ei + 1); 1568 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1569 } 1570 } 1571 1572 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1573 struct btrfs_delayed_ref_head *head, 1574 struct btrfs_delayed_extent_op *extent_op) 1575 { 1576 struct btrfs_fs_info *fs_info = trans->fs_info; 1577 struct btrfs_key key; 1578 struct btrfs_path *path; 1579 struct btrfs_extent_item *ei; 1580 struct extent_buffer *leaf; 1581 u32 item_size; 1582 int ret; 1583 int err = 0; 1584 int metadata = !extent_op->is_data; 1585 1586 if (TRANS_ABORTED(trans)) 1587 return 0; 1588 1589 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1590 metadata = 0; 1591 1592 path = btrfs_alloc_path(); 1593 if (!path) 1594 return -ENOMEM; 1595 1596 key.objectid = head->bytenr; 1597 1598 if (metadata) { 1599 key.type = BTRFS_METADATA_ITEM_KEY; 1600 key.offset = extent_op->level; 1601 } else { 1602 key.type = BTRFS_EXTENT_ITEM_KEY; 1603 key.offset = head->num_bytes; 1604 } 1605 1606 again: 1607 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 1608 if (ret < 0) { 1609 err = ret; 1610 goto out; 1611 } 1612 if (ret > 0) { 1613 if (metadata) { 1614 if (path->slots[0] > 0) { 1615 path->slots[0]--; 1616 btrfs_item_key_to_cpu(path->nodes[0], &key, 1617 path->slots[0]); 1618 if (key.objectid == head->bytenr && 1619 key.type == BTRFS_EXTENT_ITEM_KEY && 1620 key.offset == head->num_bytes) 1621 ret = 0; 1622 } 1623 if (ret > 0) { 1624 btrfs_release_path(path); 1625 metadata = 0; 1626 1627 key.objectid = head->bytenr; 1628 key.offset = head->num_bytes; 1629 key.type = BTRFS_EXTENT_ITEM_KEY; 1630 goto again; 1631 } 1632 } else { 1633 err = -EIO; 1634 goto out; 1635 } 1636 } 1637 1638 leaf = path->nodes[0]; 1639 item_size = btrfs_item_size(leaf, path->slots[0]); 1640 1641 if (unlikely(item_size < sizeof(*ei))) { 1642 err = -EINVAL; 1643 btrfs_print_v0_err(fs_info); 1644 btrfs_abort_transaction(trans, err); 1645 goto out; 1646 } 1647 1648 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1649 __run_delayed_extent_op(extent_op, leaf, ei); 1650 1651 btrfs_mark_buffer_dirty(leaf); 1652 out: 1653 btrfs_free_path(path); 1654 return err; 1655 } 1656 1657 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1658 struct btrfs_delayed_ref_node *node, 1659 struct btrfs_delayed_extent_op *extent_op, 1660 int insert_reserved) 1661 { 1662 int ret = 0; 1663 struct btrfs_delayed_tree_ref *ref; 1664 u64 parent = 0; 1665 u64 ref_root = 0; 1666 1667 ref = btrfs_delayed_node_to_tree_ref(node); 1668 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1669 1670 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1671 parent = ref->parent; 1672 ref_root = ref->root; 1673 1674 if (node->ref_mod != 1) { 1675 btrfs_err(trans->fs_info, 1676 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1677 node->bytenr, node->ref_mod, node->action, ref_root, 1678 parent); 1679 return -EIO; 1680 } 1681 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1682 BUG_ON(!extent_op || !extent_op->update_flags); 1683 ret = alloc_reserved_tree_block(trans, node, extent_op); 1684 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1685 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1686 ref->level, 0, 1, extent_op); 1687 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1688 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1689 ref->level, 0, 1, extent_op); 1690 } else { 1691 BUG(); 1692 } 1693 return ret; 1694 } 1695 1696 /* helper function to actually process a single delayed ref entry */ 1697 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1698 struct btrfs_delayed_ref_node *node, 1699 struct btrfs_delayed_extent_op *extent_op, 1700 int insert_reserved) 1701 { 1702 int ret = 0; 1703 1704 if (TRANS_ABORTED(trans)) { 1705 if (insert_reserved) 1706 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1707 return 0; 1708 } 1709 1710 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1711 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1712 ret = run_delayed_tree_ref(trans, node, extent_op, 1713 insert_reserved); 1714 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1715 node->type == BTRFS_SHARED_DATA_REF_KEY) 1716 ret = run_delayed_data_ref(trans, node, extent_op, 1717 insert_reserved); 1718 else 1719 BUG(); 1720 if (ret && insert_reserved) 1721 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1722 return ret; 1723 } 1724 1725 static inline struct btrfs_delayed_ref_node * 1726 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1727 { 1728 struct btrfs_delayed_ref_node *ref; 1729 1730 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1731 return NULL; 1732 1733 /* 1734 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1735 * This is to prevent a ref count from going down to zero, which deletes 1736 * the extent item from the extent tree, when there still are references 1737 * to add, which would fail because they would not find the extent item. 1738 */ 1739 if (!list_empty(&head->ref_add_list)) 1740 return list_first_entry(&head->ref_add_list, 1741 struct btrfs_delayed_ref_node, add_list); 1742 1743 ref = rb_entry(rb_first_cached(&head->ref_tree), 1744 struct btrfs_delayed_ref_node, ref_node); 1745 ASSERT(list_empty(&ref->add_list)); 1746 return ref; 1747 } 1748 1749 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1750 struct btrfs_delayed_ref_head *head) 1751 { 1752 spin_lock(&delayed_refs->lock); 1753 head->processing = 0; 1754 delayed_refs->num_heads_ready++; 1755 spin_unlock(&delayed_refs->lock); 1756 btrfs_delayed_ref_unlock(head); 1757 } 1758 1759 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1760 struct btrfs_delayed_ref_head *head) 1761 { 1762 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1763 1764 if (!extent_op) 1765 return NULL; 1766 1767 if (head->must_insert_reserved) { 1768 head->extent_op = NULL; 1769 btrfs_free_delayed_extent_op(extent_op); 1770 return NULL; 1771 } 1772 return extent_op; 1773 } 1774 1775 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1776 struct btrfs_delayed_ref_head *head) 1777 { 1778 struct btrfs_delayed_extent_op *extent_op; 1779 int ret; 1780 1781 extent_op = cleanup_extent_op(head); 1782 if (!extent_op) 1783 return 0; 1784 head->extent_op = NULL; 1785 spin_unlock(&head->lock); 1786 ret = run_delayed_extent_op(trans, head, extent_op); 1787 btrfs_free_delayed_extent_op(extent_op); 1788 return ret ? ret : 1; 1789 } 1790 1791 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1792 struct btrfs_delayed_ref_root *delayed_refs, 1793 struct btrfs_delayed_ref_head *head) 1794 { 1795 int nr_items = 1; /* Dropping this ref head update. */ 1796 1797 /* 1798 * We had csum deletions accounted for in our delayed refs rsv, we need 1799 * to drop the csum leaves for this update from our delayed_refs_rsv. 1800 */ 1801 if (head->total_ref_mod < 0 && head->is_data) { 1802 spin_lock(&delayed_refs->lock); 1803 delayed_refs->pending_csums -= head->num_bytes; 1804 spin_unlock(&delayed_refs->lock); 1805 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1806 } 1807 1808 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1809 } 1810 1811 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1812 struct btrfs_delayed_ref_head *head) 1813 { 1814 1815 struct btrfs_fs_info *fs_info = trans->fs_info; 1816 struct btrfs_delayed_ref_root *delayed_refs; 1817 int ret; 1818 1819 delayed_refs = &trans->transaction->delayed_refs; 1820 1821 ret = run_and_cleanup_extent_op(trans, head); 1822 if (ret < 0) { 1823 unselect_delayed_ref_head(delayed_refs, head); 1824 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1825 return ret; 1826 } else if (ret) { 1827 return ret; 1828 } 1829 1830 /* 1831 * Need to drop our head ref lock and re-acquire the delayed ref lock 1832 * and then re-check to make sure nobody got added. 1833 */ 1834 spin_unlock(&head->lock); 1835 spin_lock(&delayed_refs->lock); 1836 spin_lock(&head->lock); 1837 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1838 spin_unlock(&head->lock); 1839 spin_unlock(&delayed_refs->lock); 1840 return 1; 1841 } 1842 btrfs_delete_ref_head(delayed_refs, head); 1843 spin_unlock(&head->lock); 1844 spin_unlock(&delayed_refs->lock); 1845 1846 if (head->must_insert_reserved) { 1847 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1848 if (head->is_data) { 1849 ret = btrfs_del_csums(trans, fs_info->csum_root, 1850 head->bytenr, head->num_bytes); 1851 } 1852 } 1853 1854 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1855 1856 trace_run_delayed_ref_head(fs_info, head, 0); 1857 btrfs_delayed_ref_unlock(head); 1858 btrfs_put_delayed_ref_head(head); 1859 return ret; 1860 } 1861 1862 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1863 struct btrfs_trans_handle *trans) 1864 { 1865 struct btrfs_delayed_ref_root *delayed_refs = 1866 &trans->transaction->delayed_refs; 1867 struct btrfs_delayed_ref_head *head = NULL; 1868 int ret; 1869 1870 spin_lock(&delayed_refs->lock); 1871 head = btrfs_select_ref_head(delayed_refs); 1872 if (!head) { 1873 spin_unlock(&delayed_refs->lock); 1874 return head; 1875 } 1876 1877 /* 1878 * Grab the lock that says we are going to process all the refs for 1879 * this head 1880 */ 1881 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1882 spin_unlock(&delayed_refs->lock); 1883 1884 /* 1885 * We may have dropped the spin lock to get the head mutex lock, and 1886 * that might have given someone else time to free the head. If that's 1887 * true, it has been removed from our list and we can move on. 1888 */ 1889 if (ret == -EAGAIN) 1890 head = ERR_PTR(-EAGAIN); 1891 1892 return head; 1893 } 1894 1895 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1896 struct btrfs_delayed_ref_head *locked_ref, 1897 unsigned long *run_refs) 1898 { 1899 struct btrfs_fs_info *fs_info = trans->fs_info; 1900 struct btrfs_delayed_ref_root *delayed_refs; 1901 struct btrfs_delayed_extent_op *extent_op; 1902 struct btrfs_delayed_ref_node *ref; 1903 int must_insert_reserved = 0; 1904 int ret; 1905 1906 delayed_refs = &trans->transaction->delayed_refs; 1907 1908 lockdep_assert_held(&locked_ref->mutex); 1909 lockdep_assert_held(&locked_ref->lock); 1910 1911 while ((ref = select_delayed_ref(locked_ref))) { 1912 if (ref->seq && 1913 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1914 spin_unlock(&locked_ref->lock); 1915 unselect_delayed_ref_head(delayed_refs, locked_ref); 1916 return -EAGAIN; 1917 } 1918 1919 (*run_refs)++; 1920 ref->in_tree = 0; 1921 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1922 RB_CLEAR_NODE(&ref->ref_node); 1923 if (!list_empty(&ref->add_list)) 1924 list_del(&ref->add_list); 1925 /* 1926 * When we play the delayed ref, also correct the ref_mod on 1927 * head 1928 */ 1929 switch (ref->action) { 1930 case BTRFS_ADD_DELAYED_REF: 1931 case BTRFS_ADD_DELAYED_EXTENT: 1932 locked_ref->ref_mod -= ref->ref_mod; 1933 break; 1934 case BTRFS_DROP_DELAYED_REF: 1935 locked_ref->ref_mod += ref->ref_mod; 1936 break; 1937 default: 1938 WARN_ON(1); 1939 } 1940 atomic_dec(&delayed_refs->num_entries); 1941 1942 /* 1943 * Record the must_insert_reserved flag before we drop the 1944 * spin lock. 1945 */ 1946 must_insert_reserved = locked_ref->must_insert_reserved; 1947 locked_ref->must_insert_reserved = 0; 1948 1949 extent_op = locked_ref->extent_op; 1950 locked_ref->extent_op = NULL; 1951 spin_unlock(&locked_ref->lock); 1952 1953 ret = run_one_delayed_ref(trans, ref, extent_op, 1954 must_insert_reserved); 1955 1956 btrfs_free_delayed_extent_op(extent_op); 1957 if (ret) { 1958 unselect_delayed_ref_head(delayed_refs, locked_ref); 1959 btrfs_put_delayed_ref(ref); 1960 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1961 ret); 1962 return ret; 1963 } 1964 1965 btrfs_put_delayed_ref(ref); 1966 cond_resched(); 1967 1968 spin_lock(&locked_ref->lock); 1969 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1970 } 1971 1972 return 0; 1973 } 1974 1975 /* 1976 * Returns 0 on success or if called with an already aborted transaction. 1977 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1978 */ 1979 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1980 unsigned long nr) 1981 { 1982 struct btrfs_fs_info *fs_info = trans->fs_info; 1983 struct btrfs_delayed_ref_root *delayed_refs; 1984 struct btrfs_delayed_ref_head *locked_ref = NULL; 1985 ktime_t start = ktime_get(); 1986 int ret; 1987 unsigned long count = 0; 1988 unsigned long actual_count = 0; 1989 1990 delayed_refs = &trans->transaction->delayed_refs; 1991 do { 1992 if (!locked_ref) { 1993 locked_ref = btrfs_obtain_ref_head(trans); 1994 if (IS_ERR_OR_NULL(locked_ref)) { 1995 if (PTR_ERR(locked_ref) == -EAGAIN) { 1996 continue; 1997 } else { 1998 break; 1999 } 2000 } 2001 count++; 2002 } 2003 /* 2004 * We need to try and merge add/drops of the same ref since we 2005 * can run into issues with relocate dropping the implicit ref 2006 * and then it being added back again before the drop can 2007 * finish. If we merged anything we need to re-loop so we can 2008 * get a good ref. 2009 * Or we can get node references of the same type that weren't 2010 * merged when created due to bumps in the tree mod seq, and 2011 * we need to merge them to prevent adding an inline extent 2012 * backref before dropping it (triggering a BUG_ON at 2013 * insert_inline_extent_backref()). 2014 */ 2015 spin_lock(&locked_ref->lock); 2016 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2017 2018 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2019 &actual_count); 2020 if (ret < 0 && ret != -EAGAIN) { 2021 /* 2022 * Error, btrfs_run_delayed_refs_for_head already 2023 * unlocked everything so just bail out 2024 */ 2025 return ret; 2026 } else if (!ret) { 2027 /* 2028 * Success, perform the usual cleanup of a processed 2029 * head 2030 */ 2031 ret = cleanup_ref_head(trans, locked_ref); 2032 if (ret > 0 ) { 2033 /* We dropped our lock, we need to loop. */ 2034 ret = 0; 2035 continue; 2036 } else if (ret) { 2037 return ret; 2038 } 2039 } 2040 2041 /* 2042 * Either success case or btrfs_run_delayed_refs_for_head 2043 * returned -EAGAIN, meaning we need to select another head 2044 */ 2045 2046 locked_ref = NULL; 2047 cond_resched(); 2048 } while ((nr != -1 && count < nr) || locked_ref); 2049 2050 /* 2051 * We don't want to include ref heads since we can have empty ref heads 2052 * and those will drastically skew our runtime down since we just do 2053 * accounting, no actual extent tree updates. 2054 */ 2055 if (actual_count > 0) { 2056 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2057 u64 avg; 2058 2059 /* 2060 * We weigh the current average higher than our current runtime 2061 * to avoid large swings in the average. 2062 */ 2063 spin_lock(&delayed_refs->lock); 2064 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2065 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2066 spin_unlock(&delayed_refs->lock); 2067 } 2068 return 0; 2069 } 2070 2071 #ifdef SCRAMBLE_DELAYED_REFS 2072 /* 2073 * Normally delayed refs get processed in ascending bytenr order. This 2074 * correlates in most cases to the order added. To expose dependencies on this 2075 * order, we start to process the tree in the middle instead of the beginning 2076 */ 2077 static u64 find_middle(struct rb_root *root) 2078 { 2079 struct rb_node *n = root->rb_node; 2080 struct btrfs_delayed_ref_node *entry; 2081 int alt = 1; 2082 u64 middle; 2083 u64 first = 0, last = 0; 2084 2085 n = rb_first(root); 2086 if (n) { 2087 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2088 first = entry->bytenr; 2089 } 2090 n = rb_last(root); 2091 if (n) { 2092 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2093 last = entry->bytenr; 2094 } 2095 n = root->rb_node; 2096 2097 while (n) { 2098 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2099 WARN_ON(!entry->in_tree); 2100 2101 middle = entry->bytenr; 2102 2103 if (alt) 2104 n = n->rb_left; 2105 else 2106 n = n->rb_right; 2107 2108 alt = 1 - alt; 2109 } 2110 return middle; 2111 } 2112 #endif 2113 2114 /* 2115 * this starts processing the delayed reference count updates and 2116 * extent insertions we have queued up so far. count can be 2117 * 0, which means to process everything in the tree at the start 2118 * of the run (but not newly added entries), or it can be some target 2119 * number you'd like to process. 2120 * 2121 * Returns 0 on success or if called with an aborted transaction 2122 * Returns <0 on error and aborts the transaction 2123 */ 2124 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2125 unsigned long count) 2126 { 2127 struct btrfs_fs_info *fs_info = trans->fs_info; 2128 struct rb_node *node; 2129 struct btrfs_delayed_ref_root *delayed_refs; 2130 struct btrfs_delayed_ref_head *head; 2131 int ret; 2132 int run_all = count == (unsigned long)-1; 2133 2134 /* We'll clean this up in btrfs_cleanup_transaction */ 2135 if (TRANS_ABORTED(trans)) 2136 return 0; 2137 2138 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2139 return 0; 2140 2141 delayed_refs = &trans->transaction->delayed_refs; 2142 if (count == 0) 2143 count = delayed_refs->num_heads_ready; 2144 2145 again: 2146 #ifdef SCRAMBLE_DELAYED_REFS 2147 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2148 #endif 2149 ret = __btrfs_run_delayed_refs(trans, count); 2150 if (ret < 0) { 2151 btrfs_abort_transaction(trans, ret); 2152 return ret; 2153 } 2154 2155 if (run_all) { 2156 btrfs_create_pending_block_groups(trans); 2157 2158 spin_lock(&delayed_refs->lock); 2159 node = rb_first_cached(&delayed_refs->href_root); 2160 if (!node) { 2161 spin_unlock(&delayed_refs->lock); 2162 goto out; 2163 } 2164 head = rb_entry(node, struct btrfs_delayed_ref_head, 2165 href_node); 2166 refcount_inc(&head->refs); 2167 spin_unlock(&delayed_refs->lock); 2168 2169 /* Mutex was contended, block until it's released and retry. */ 2170 mutex_lock(&head->mutex); 2171 mutex_unlock(&head->mutex); 2172 2173 btrfs_put_delayed_ref_head(head); 2174 cond_resched(); 2175 goto again; 2176 } 2177 out: 2178 return 0; 2179 } 2180 2181 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2182 struct extent_buffer *eb, u64 flags, 2183 int level, int is_data) 2184 { 2185 struct btrfs_delayed_extent_op *extent_op; 2186 int ret; 2187 2188 extent_op = btrfs_alloc_delayed_extent_op(); 2189 if (!extent_op) 2190 return -ENOMEM; 2191 2192 extent_op->flags_to_set = flags; 2193 extent_op->update_flags = true; 2194 extent_op->update_key = false; 2195 extent_op->is_data = is_data ? true : false; 2196 extent_op->level = level; 2197 2198 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2199 if (ret) 2200 btrfs_free_delayed_extent_op(extent_op); 2201 return ret; 2202 } 2203 2204 static noinline int check_delayed_ref(struct btrfs_root *root, 2205 struct btrfs_path *path, 2206 u64 objectid, u64 offset, u64 bytenr) 2207 { 2208 struct btrfs_delayed_ref_head *head; 2209 struct btrfs_delayed_ref_node *ref; 2210 struct btrfs_delayed_data_ref *data_ref; 2211 struct btrfs_delayed_ref_root *delayed_refs; 2212 struct btrfs_transaction *cur_trans; 2213 struct rb_node *node; 2214 int ret = 0; 2215 2216 spin_lock(&root->fs_info->trans_lock); 2217 cur_trans = root->fs_info->running_transaction; 2218 if (cur_trans) 2219 refcount_inc(&cur_trans->use_count); 2220 spin_unlock(&root->fs_info->trans_lock); 2221 if (!cur_trans) 2222 return 0; 2223 2224 delayed_refs = &cur_trans->delayed_refs; 2225 spin_lock(&delayed_refs->lock); 2226 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2227 if (!head) { 2228 spin_unlock(&delayed_refs->lock); 2229 btrfs_put_transaction(cur_trans); 2230 return 0; 2231 } 2232 2233 if (!mutex_trylock(&head->mutex)) { 2234 refcount_inc(&head->refs); 2235 spin_unlock(&delayed_refs->lock); 2236 2237 btrfs_release_path(path); 2238 2239 /* 2240 * Mutex was contended, block until it's released and let 2241 * caller try again 2242 */ 2243 mutex_lock(&head->mutex); 2244 mutex_unlock(&head->mutex); 2245 btrfs_put_delayed_ref_head(head); 2246 btrfs_put_transaction(cur_trans); 2247 return -EAGAIN; 2248 } 2249 spin_unlock(&delayed_refs->lock); 2250 2251 spin_lock(&head->lock); 2252 /* 2253 * XXX: We should replace this with a proper search function in the 2254 * future. 2255 */ 2256 for (node = rb_first_cached(&head->ref_tree); node; 2257 node = rb_next(node)) { 2258 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2259 /* If it's a shared ref we know a cross reference exists */ 2260 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2261 ret = 1; 2262 break; 2263 } 2264 2265 data_ref = btrfs_delayed_node_to_data_ref(ref); 2266 2267 /* 2268 * If our ref doesn't match the one we're currently looking at 2269 * then we have a cross reference. 2270 */ 2271 if (data_ref->root != root->root_key.objectid || 2272 data_ref->objectid != objectid || 2273 data_ref->offset != offset) { 2274 ret = 1; 2275 break; 2276 } 2277 } 2278 spin_unlock(&head->lock); 2279 mutex_unlock(&head->mutex); 2280 btrfs_put_transaction(cur_trans); 2281 return ret; 2282 } 2283 2284 static noinline int check_committed_ref(struct btrfs_root *root, 2285 struct btrfs_path *path, 2286 u64 objectid, u64 offset, u64 bytenr, 2287 bool strict) 2288 { 2289 struct btrfs_fs_info *fs_info = root->fs_info; 2290 struct btrfs_root *extent_root = fs_info->extent_root; 2291 struct extent_buffer *leaf; 2292 struct btrfs_extent_data_ref *ref; 2293 struct btrfs_extent_inline_ref *iref; 2294 struct btrfs_extent_item *ei; 2295 struct btrfs_key key; 2296 u32 item_size; 2297 int type; 2298 int ret; 2299 2300 key.objectid = bytenr; 2301 key.offset = (u64)-1; 2302 key.type = BTRFS_EXTENT_ITEM_KEY; 2303 2304 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2305 if (ret < 0) 2306 goto out; 2307 BUG_ON(ret == 0); /* Corruption */ 2308 2309 ret = -ENOENT; 2310 if (path->slots[0] == 0) 2311 goto out; 2312 2313 path->slots[0]--; 2314 leaf = path->nodes[0]; 2315 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2316 2317 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2318 goto out; 2319 2320 ret = 1; 2321 item_size = btrfs_item_size(leaf, path->slots[0]); 2322 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2323 2324 /* If extent item has more than 1 inline ref then it's shared */ 2325 if (item_size != sizeof(*ei) + 2326 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2327 goto out; 2328 2329 /* 2330 * If extent created before last snapshot => it's shared unless the 2331 * snapshot has been deleted. Use the heuristic if strict is false. 2332 */ 2333 if (!strict && 2334 (btrfs_extent_generation(leaf, ei) <= 2335 btrfs_root_last_snapshot(&root->root_item))) 2336 goto out; 2337 2338 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2339 2340 /* If this extent has SHARED_DATA_REF then it's shared */ 2341 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2342 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2343 goto out; 2344 2345 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2346 if (btrfs_extent_refs(leaf, ei) != 2347 btrfs_extent_data_ref_count(leaf, ref) || 2348 btrfs_extent_data_ref_root(leaf, ref) != 2349 root->root_key.objectid || 2350 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2351 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2352 goto out; 2353 2354 ret = 0; 2355 out: 2356 return ret; 2357 } 2358 2359 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2360 u64 bytenr, bool strict) 2361 { 2362 struct btrfs_path *path; 2363 int ret; 2364 2365 path = btrfs_alloc_path(); 2366 if (!path) 2367 return -ENOMEM; 2368 2369 do { 2370 ret = check_committed_ref(root, path, objectid, 2371 offset, bytenr, strict); 2372 if (ret && ret != -ENOENT) 2373 goto out; 2374 2375 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2376 } while (ret == -EAGAIN); 2377 2378 out: 2379 btrfs_free_path(path); 2380 if (btrfs_is_data_reloc_root(root)) 2381 WARN_ON(ret > 0); 2382 return ret; 2383 } 2384 2385 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2386 struct btrfs_root *root, 2387 struct extent_buffer *buf, 2388 int full_backref, int inc) 2389 { 2390 struct btrfs_fs_info *fs_info = root->fs_info; 2391 u64 bytenr; 2392 u64 num_bytes; 2393 u64 parent; 2394 u64 ref_root; 2395 u32 nritems; 2396 struct btrfs_key key; 2397 struct btrfs_file_extent_item *fi; 2398 struct btrfs_ref generic_ref = { 0 }; 2399 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2400 int i; 2401 int action; 2402 int level; 2403 int ret = 0; 2404 2405 if (btrfs_is_testing(fs_info)) 2406 return 0; 2407 2408 ref_root = btrfs_header_owner(buf); 2409 nritems = btrfs_header_nritems(buf); 2410 level = btrfs_header_level(buf); 2411 2412 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2413 return 0; 2414 2415 if (full_backref) 2416 parent = buf->start; 2417 else 2418 parent = 0; 2419 if (inc) 2420 action = BTRFS_ADD_DELAYED_REF; 2421 else 2422 action = BTRFS_DROP_DELAYED_REF; 2423 2424 for (i = 0; i < nritems; i++) { 2425 if (level == 0) { 2426 btrfs_item_key_to_cpu(buf, &key, i); 2427 if (key.type != BTRFS_EXTENT_DATA_KEY) 2428 continue; 2429 fi = btrfs_item_ptr(buf, i, 2430 struct btrfs_file_extent_item); 2431 if (btrfs_file_extent_type(buf, fi) == 2432 BTRFS_FILE_EXTENT_INLINE) 2433 continue; 2434 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2435 if (bytenr == 0) 2436 continue; 2437 2438 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2439 key.offset -= btrfs_file_extent_offset(buf, fi); 2440 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2441 num_bytes, parent); 2442 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2443 key.offset, root->root_key.objectid, 2444 for_reloc); 2445 if (inc) 2446 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2447 else 2448 ret = btrfs_free_extent(trans, &generic_ref); 2449 if (ret) 2450 goto fail; 2451 } else { 2452 bytenr = btrfs_node_blockptr(buf, i); 2453 num_bytes = fs_info->nodesize; 2454 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2455 num_bytes, parent); 2456 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2457 root->root_key.objectid, for_reloc); 2458 if (inc) 2459 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2460 else 2461 ret = btrfs_free_extent(trans, &generic_ref); 2462 if (ret) 2463 goto fail; 2464 } 2465 } 2466 return 0; 2467 fail: 2468 return ret; 2469 } 2470 2471 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2472 struct extent_buffer *buf, int full_backref) 2473 { 2474 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2475 } 2476 2477 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2478 struct extent_buffer *buf, int full_backref) 2479 { 2480 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2481 } 2482 2483 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2484 { 2485 struct btrfs_fs_info *fs_info = root->fs_info; 2486 u64 flags; 2487 u64 ret; 2488 2489 if (data) 2490 flags = BTRFS_BLOCK_GROUP_DATA; 2491 else if (root == fs_info->chunk_root) 2492 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2493 else 2494 flags = BTRFS_BLOCK_GROUP_METADATA; 2495 2496 ret = btrfs_get_alloc_profile(fs_info, flags); 2497 return ret; 2498 } 2499 2500 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 2501 { 2502 struct btrfs_block_group *cache; 2503 u64 bytenr; 2504 2505 spin_lock(&fs_info->block_group_cache_lock); 2506 bytenr = fs_info->first_logical_byte; 2507 spin_unlock(&fs_info->block_group_cache_lock); 2508 2509 if (bytenr < (u64)-1) 2510 return bytenr; 2511 2512 cache = btrfs_lookup_first_block_group(fs_info, search_start); 2513 if (!cache) 2514 return 0; 2515 2516 bytenr = cache->start; 2517 btrfs_put_block_group(cache); 2518 2519 return bytenr; 2520 } 2521 2522 static int pin_down_extent(struct btrfs_trans_handle *trans, 2523 struct btrfs_block_group *cache, 2524 u64 bytenr, u64 num_bytes, int reserved) 2525 { 2526 struct btrfs_fs_info *fs_info = cache->fs_info; 2527 2528 spin_lock(&cache->space_info->lock); 2529 spin_lock(&cache->lock); 2530 cache->pinned += num_bytes; 2531 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2532 num_bytes); 2533 if (reserved) { 2534 cache->reserved -= num_bytes; 2535 cache->space_info->bytes_reserved -= num_bytes; 2536 } 2537 spin_unlock(&cache->lock); 2538 spin_unlock(&cache->space_info->lock); 2539 2540 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2541 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2542 return 0; 2543 } 2544 2545 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2546 u64 bytenr, u64 num_bytes, int reserved) 2547 { 2548 struct btrfs_block_group *cache; 2549 2550 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2551 BUG_ON(!cache); /* Logic error */ 2552 2553 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2554 2555 btrfs_put_block_group(cache); 2556 return 0; 2557 } 2558 2559 /* 2560 * this function must be called within transaction 2561 */ 2562 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2563 u64 bytenr, u64 num_bytes) 2564 { 2565 struct btrfs_block_group *cache; 2566 int ret; 2567 2568 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2569 if (!cache) 2570 return -EINVAL; 2571 2572 /* 2573 * pull in the free space cache (if any) so that our pin 2574 * removes the free space from the cache. We have load_only set 2575 * to one because the slow code to read in the free extents does check 2576 * the pinned extents. 2577 */ 2578 btrfs_cache_block_group(cache, 1); 2579 /* 2580 * Make sure we wait until the cache is completely built in case it is 2581 * missing or is invalid and therefore needs to be rebuilt. 2582 */ 2583 ret = btrfs_wait_block_group_cache_done(cache); 2584 if (ret) 2585 goto out; 2586 2587 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2588 2589 /* remove us from the free space cache (if we're there at all) */ 2590 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2591 out: 2592 btrfs_put_block_group(cache); 2593 return ret; 2594 } 2595 2596 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2597 u64 start, u64 num_bytes) 2598 { 2599 int ret; 2600 struct btrfs_block_group *block_group; 2601 2602 block_group = btrfs_lookup_block_group(fs_info, start); 2603 if (!block_group) 2604 return -EINVAL; 2605 2606 btrfs_cache_block_group(block_group, 1); 2607 /* 2608 * Make sure we wait until the cache is completely built in case it is 2609 * missing or is invalid and therefore needs to be rebuilt. 2610 */ 2611 ret = btrfs_wait_block_group_cache_done(block_group); 2612 if (ret) 2613 goto out; 2614 2615 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2616 out: 2617 btrfs_put_block_group(block_group); 2618 return ret; 2619 } 2620 2621 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2622 { 2623 struct btrfs_fs_info *fs_info = eb->fs_info; 2624 struct btrfs_file_extent_item *item; 2625 struct btrfs_key key; 2626 int found_type; 2627 int i; 2628 int ret = 0; 2629 2630 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2631 return 0; 2632 2633 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2634 btrfs_item_key_to_cpu(eb, &key, i); 2635 if (key.type != BTRFS_EXTENT_DATA_KEY) 2636 continue; 2637 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2638 found_type = btrfs_file_extent_type(eb, item); 2639 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2640 continue; 2641 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2642 continue; 2643 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2644 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2645 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2646 if (ret) 2647 break; 2648 } 2649 2650 return ret; 2651 } 2652 2653 static void 2654 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2655 { 2656 atomic_inc(&bg->reservations); 2657 } 2658 2659 /* 2660 * Returns the free cluster for the given space info and sets empty_cluster to 2661 * what it should be based on the mount options. 2662 */ 2663 static struct btrfs_free_cluster * 2664 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2665 struct btrfs_space_info *space_info, u64 *empty_cluster) 2666 { 2667 struct btrfs_free_cluster *ret = NULL; 2668 2669 *empty_cluster = 0; 2670 if (btrfs_mixed_space_info(space_info)) 2671 return ret; 2672 2673 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2674 ret = &fs_info->meta_alloc_cluster; 2675 if (btrfs_test_opt(fs_info, SSD)) 2676 *empty_cluster = SZ_2M; 2677 else 2678 *empty_cluster = SZ_64K; 2679 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2680 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2681 *empty_cluster = SZ_2M; 2682 ret = &fs_info->data_alloc_cluster; 2683 } 2684 2685 return ret; 2686 } 2687 2688 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2689 u64 start, u64 end, 2690 const bool return_free_space) 2691 { 2692 struct btrfs_block_group *cache = NULL; 2693 struct btrfs_space_info *space_info; 2694 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2695 struct btrfs_free_cluster *cluster = NULL; 2696 u64 len; 2697 u64 total_unpinned = 0; 2698 u64 empty_cluster = 0; 2699 bool readonly; 2700 2701 while (start <= end) { 2702 readonly = false; 2703 if (!cache || 2704 start >= cache->start + cache->length) { 2705 if (cache) 2706 btrfs_put_block_group(cache); 2707 total_unpinned = 0; 2708 cache = btrfs_lookup_block_group(fs_info, start); 2709 BUG_ON(!cache); /* Logic error */ 2710 2711 cluster = fetch_cluster_info(fs_info, 2712 cache->space_info, 2713 &empty_cluster); 2714 empty_cluster <<= 1; 2715 } 2716 2717 len = cache->start + cache->length - start; 2718 len = min(len, end + 1 - start); 2719 2720 down_read(&fs_info->commit_root_sem); 2721 if (start < cache->last_byte_to_unpin && return_free_space) { 2722 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2723 2724 btrfs_add_free_space(cache, start, add_len); 2725 } 2726 up_read(&fs_info->commit_root_sem); 2727 2728 start += len; 2729 total_unpinned += len; 2730 space_info = cache->space_info; 2731 2732 /* 2733 * If this space cluster has been marked as fragmented and we've 2734 * unpinned enough in this block group to potentially allow a 2735 * cluster to be created inside of it go ahead and clear the 2736 * fragmented check. 2737 */ 2738 if (cluster && cluster->fragmented && 2739 total_unpinned > empty_cluster) { 2740 spin_lock(&cluster->lock); 2741 cluster->fragmented = 0; 2742 spin_unlock(&cluster->lock); 2743 } 2744 2745 spin_lock(&space_info->lock); 2746 spin_lock(&cache->lock); 2747 cache->pinned -= len; 2748 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2749 space_info->max_extent_size = 0; 2750 if (cache->ro) { 2751 space_info->bytes_readonly += len; 2752 readonly = true; 2753 } else if (btrfs_is_zoned(fs_info)) { 2754 /* Need reset before reusing in a zoned block group */ 2755 space_info->bytes_zone_unusable += len; 2756 readonly = true; 2757 } 2758 spin_unlock(&cache->lock); 2759 if (!readonly && return_free_space && 2760 global_rsv->space_info == space_info) { 2761 u64 to_add = len; 2762 2763 spin_lock(&global_rsv->lock); 2764 if (!global_rsv->full) { 2765 to_add = min(len, global_rsv->size - 2766 global_rsv->reserved); 2767 global_rsv->reserved += to_add; 2768 btrfs_space_info_update_bytes_may_use(fs_info, 2769 space_info, to_add); 2770 if (global_rsv->reserved >= global_rsv->size) 2771 global_rsv->full = 1; 2772 len -= to_add; 2773 } 2774 spin_unlock(&global_rsv->lock); 2775 } 2776 /* Add to any tickets we may have */ 2777 if (!readonly && return_free_space && len) 2778 btrfs_try_granting_tickets(fs_info, space_info); 2779 spin_unlock(&space_info->lock); 2780 } 2781 2782 if (cache) 2783 btrfs_put_block_group(cache); 2784 return 0; 2785 } 2786 2787 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2788 { 2789 struct btrfs_fs_info *fs_info = trans->fs_info; 2790 struct btrfs_block_group *block_group, *tmp; 2791 struct list_head *deleted_bgs; 2792 struct extent_io_tree *unpin; 2793 u64 start; 2794 u64 end; 2795 int ret; 2796 2797 unpin = &trans->transaction->pinned_extents; 2798 2799 while (!TRANS_ABORTED(trans)) { 2800 struct extent_state *cached_state = NULL; 2801 2802 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2803 ret = find_first_extent_bit(unpin, 0, &start, &end, 2804 EXTENT_DIRTY, &cached_state); 2805 if (ret) { 2806 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2807 break; 2808 } 2809 2810 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2811 ret = btrfs_discard_extent(fs_info, start, 2812 end + 1 - start, NULL); 2813 2814 clear_extent_dirty(unpin, start, end, &cached_state); 2815 unpin_extent_range(fs_info, start, end, true); 2816 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2817 free_extent_state(cached_state); 2818 cond_resched(); 2819 } 2820 2821 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2822 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2823 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2824 } 2825 2826 /* 2827 * Transaction is finished. We don't need the lock anymore. We 2828 * do need to clean up the block groups in case of a transaction 2829 * abort. 2830 */ 2831 deleted_bgs = &trans->transaction->deleted_bgs; 2832 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2833 u64 trimmed = 0; 2834 2835 ret = -EROFS; 2836 if (!TRANS_ABORTED(trans)) 2837 ret = btrfs_discard_extent(fs_info, 2838 block_group->start, 2839 block_group->length, 2840 &trimmed); 2841 2842 list_del_init(&block_group->bg_list); 2843 btrfs_unfreeze_block_group(block_group); 2844 btrfs_put_block_group(block_group); 2845 2846 if (ret) { 2847 const char *errstr = btrfs_decode_error(ret); 2848 btrfs_warn(fs_info, 2849 "discard failed while removing blockgroup: errno=%d %s", 2850 ret, errstr); 2851 } 2852 } 2853 2854 return 0; 2855 } 2856 2857 /* 2858 * Drop one or more refs of @node. 2859 * 2860 * 1. Locate the extent refs. 2861 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2862 * Locate it, then reduce the refs number or remove the ref line completely. 2863 * 2864 * 2. Update the refs count in EXTENT/METADATA_ITEM 2865 * 2866 * Inline backref case: 2867 * 2868 * in extent tree we have: 2869 * 2870 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2871 * refs 2 gen 6 flags DATA 2872 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2873 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2874 * 2875 * This function gets called with: 2876 * 2877 * node->bytenr = 13631488 2878 * node->num_bytes = 1048576 2879 * root_objectid = FS_TREE 2880 * owner_objectid = 257 2881 * owner_offset = 0 2882 * refs_to_drop = 1 2883 * 2884 * Then we should get some like: 2885 * 2886 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2887 * refs 1 gen 6 flags DATA 2888 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2889 * 2890 * Keyed backref case: 2891 * 2892 * in extent tree we have: 2893 * 2894 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2895 * refs 754 gen 6 flags DATA 2896 * [...] 2897 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2898 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2899 * 2900 * This function get called with: 2901 * 2902 * node->bytenr = 13631488 2903 * node->num_bytes = 1048576 2904 * root_objectid = FS_TREE 2905 * owner_objectid = 866 2906 * owner_offset = 0 2907 * refs_to_drop = 1 2908 * 2909 * Then we should get some like: 2910 * 2911 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2912 * refs 753 gen 6 flags DATA 2913 * 2914 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2915 */ 2916 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2917 struct btrfs_delayed_ref_node *node, u64 parent, 2918 u64 root_objectid, u64 owner_objectid, 2919 u64 owner_offset, int refs_to_drop, 2920 struct btrfs_delayed_extent_op *extent_op) 2921 { 2922 struct btrfs_fs_info *info = trans->fs_info; 2923 struct btrfs_key key; 2924 struct btrfs_path *path; 2925 struct btrfs_root *extent_root = info->extent_root; 2926 struct extent_buffer *leaf; 2927 struct btrfs_extent_item *ei; 2928 struct btrfs_extent_inline_ref *iref; 2929 int ret; 2930 int is_data; 2931 int extent_slot = 0; 2932 int found_extent = 0; 2933 int num_to_del = 1; 2934 u32 item_size; 2935 u64 refs; 2936 u64 bytenr = node->bytenr; 2937 u64 num_bytes = node->num_bytes; 2938 int last_ref = 0; 2939 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2940 2941 path = btrfs_alloc_path(); 2942 if (!path) 2943 return -ENOMEM; 2944 2945 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2946 2947 if (!is_data && refs_to_drop != 1) { 2948 btrfs_crit(info, 2949 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2950 node->bytenr, refs_to_drop); 2951 ret = -EINVAL; 2952 btrfs_abort_transaction(trans, ret); 2953 goto out; 2954 } 2955 2956 if (is_data) 2957 skinny_metadata = false; 2958 2959 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2960 parent, root_objectid, owner_objectid, 2961 owner_offset); 2962 if (ret == 0) { 2963 /* 2964 * Either the inline backref or the SHARED_DATA_REF/ 2965 * SHARED_BLOCK_REF is found 2966 * 2967 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2968 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2969 */ 2970 extent_slot = path->slots[0]; 2971 while (extent_slot >= 0) { 2972 btrfs_item_key_to_cpu(path->nodes[0], &key, 2973 extent_slot); 2974 if (key.objectid != bytenr) 2975 break; 2976 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2977 key.offset == num_bytes) { 2978 found_extent = 1; 2979 break; 2980 } 2981 if (key.type == BTRFS_METADATA_ITEM_KEY && 2982 key.offset == owner_objectid) { 2983 found_extent = 1; 2984 break; 2985 } 2986 2987 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 2988 if (path->slots[0] - extent_slot > 5) 2989 break; 2990 extent_slot--; 2991 } 2992 2993 if (!found_extent) { 2994 if (iref) { 2995 btrfs_crit(info, 2996 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 2997 btrfs_abort_transaction(trans, -EUCLEAN); 2998 goto err_dump; 2999 } 3000 /* Must be SHARED_* item, remove the backref first */ 3001 ret = remove_extent_backref(trans, extent_root, path, 3002 NULL, refs_to_drop, is_data, 3003 &last_ref); 3004 if (ret) { 3005 btrfs_abort_transaction(trans, ret); 3006 goto out; 3007 } 3008 btrfs_release_path(path); 3009 3010 /* Slow path to locate EXTENT/METADATA_ITEM */ 3011 key.objectid = bytenr; 3012 key.type = BTRFS_EXTENT_ITEM_KEY; 3013 key.offset = num_bytes; 3014 3015 if (!is_data && skinny_metadata) { 3016 key.type = BTRFS_METADATA_ITEM_KEY; 3017 key.offset = owner_objectid; 3018 } 3019 3020 ret = btrfs_search_slot(trans, extent_root, 3021 &key, path, -1, 1); 3022 if (ret > 0 && skinny_metadata && path->slots[0]) { 3023 /* 3024 * Couldn't find our skinny metadata item, 3025 * see if we have ye olde extent item. 3026 */ 3027 path->slots[0]--; 3028 btrfs_item_key_to_cpu(path->nodes[0], &key, 3029 path->slots[0]); 3030 if (key.objectid == bytenr && 3031 key.type == BTRFS_EXTENT_ITEM_KEY && 3032 key.offset == num_bytes) 3033 ret = 0; 3034 } 3035 3036 if (ret > 0 && skinny_metadata) { 3037 skinny_metadata = false; 3038 key.objectid = bytenr; 3039 key.type = BTRFS_EXTENT_ITEM_KEY; 3040 key.offset = num_bytes; 3041 btrfs_release_path(path); 3042 ret = btrfs_search_slot(trans, extent_root, 3043 &key, path, -1, 1); 3044 } 3045 3046 if (ret) { 3047 btrfs_err(info, 3048 "umm, got %d back from search, was looking for %llu", 3049 ret, bytenr); 3050 if (ret > 0) 3051 btrfs_print_leaf(path->nodes[0]); 3052 } 3053 if (ret < 0) { 3054 btrfs_abort_transaction(trans, ret); 3055 goto out; 3056 } 3057 extent_slot = path->slots[0]; 3058 } 3059 } else if (WARN_ON(ret == -ENOENT)) { 3060 btrfs_print_leaf(path->nodes[0]); 3061 btrfs_err(info, 3062 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3063 bytenr, parent, root_objectid, owner_objectid, 3064 owner_offset); 3065 btrfs_abort_transaction(trans, ret); 3066 goto out; 3067 } else { 3068 btrfs_abort_transaction(trans, ret); 3069 goto out; 3070 } 3071 3072 leaf = path->nodes[0]; 3073 item_size = btrfs_item_size(leaf, extent_slot); 3074 if (unlikely(item_size < sizeof(*ei))) { 3075 ret = -EINVAL; 3076 btrfs_print_v0_err(info); 3077 btrfs_abort_transaction(trans, ret); 3078 goto out; 3079 } 3080 ei = btrfs_item_ptr(leaf, extent_slot, 3081 struct btrfs_extent_item); 3082 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3083 key.type == BTRFS_EXTENT_ITEM_KEY) { 3084 struct btrfs_tree_block_info *bi; 3085 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3086 btrfs_crit(info, 3087 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3088 key.objectid, key.type, key.offset, 3089 owner_objectid, item_size, 3090 sizeof(*ei) + sizeof(*bi)); 3091 btrfs_abort_transaction(trans, -EUCLEAN); 3092 goto err_dump; 3093 } 3094 bi = (struct btrfs_tree_block_info *)(ei + 1); 3095 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3096 } 3097 3098 refs = btrfs_extent_refs(leaf, ei); 3099 if (refs < refs_to_drop) { 3100 btrfs_crit(info, 3101 "trying to drop %d refs but we only have %llu for bytenr %llu", 3102 refs_to_drop, refs, bytenr); 3103 btrfs_abort_transaction(trans, -EUCLEAN); 3104 goto err_dump; 3105 } 3106 refs -= refs_to_drop; 3107 3108 if (refs > 0) { 3109 if (extent_op) 3110 __run_delayed_extent_op(extent_op, leaf, ei); 3111 /* 3112 * In the case of inline back ref, reference count will 3113 * be updated by remove_extent_backref 3114 */ 3115 if (iref) { 3116 if (!found_extent) { 3117 btrfs_crit(info, 3118 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3119 btrfs_abort_transaction(trans, -EUCLEAN); 3120 goto err_dump; 3121 } 3122 } else { 3123 btrfs_set_extent_refs(leaf, ei, refs); 3124 btrfs_mark_buffer_dirty(leaf); 3125 } 3126 if (found_extent) { 3127 ret = remove_extent_backref(trans, extent_root, path, 3128 iref, refs_to_drop, is_data, 3129 &last_ref); 3130 if (ret) { 3131 btrfs_abort_transaction(trans, ret); 3132 goto out; 3133 } 3134 } 3135 } else { 3136 /* In this branch refs == 1 */ 3137 if (found_extent) { 3138 if (is_data && refs_to_drop != 3139 extent_data_ref_count(path, iref)) { 3140 btrfs_crit(info, 3141 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3142 extent_data_ref_count(path, iref), 3143 refs_to_drop); 3144 btrfs_abort_transaction(trans, -EUCLEAN); 3145 goto err_dump; 3146 } 3147 if (iref) { 3148 if (path->slots[0] != extent_slot) { 3149 btrfs_crit(info, 3150 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3151 key.objectid, key.type, 3152 key.offset); 3153 btrfs_abort_transaction(trans, -EUCLEAN); 3154 goto err_dump; 3155 } 3156 } else { 3157 /* 3158 * No inline ref, we must be at SHARED_* item, 3159 * And it's single ref, it must be: 3160 * | extent_slot ||extent_slot + 1| 3161 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3162 */ 3163 if (path->slots[0] != extent_slot + 1) { 3164 btrfs_crit(info, 3165 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3166 btrfs_abort_transaction(trans, -EUCLEAN); 3167 goto err_dump; 3168 } 3169 path->slots[0] = extent_slot; 3170 num_to_del = 2; 3171 } 3172 } 3173 3174 last_ref = 1; 3175 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3176 num_to_del); 3177 if (ret) { 3178 btrfs_abort_transaction(trans, ret); 3179 goto out; 3180 } 3181 btrfs_release_path(path); 3182 3183 if (is_data) { 3184 ret = btrfs_del_csums(trans, info->csum_root, bytenr, 3185 num_bytes); 3186 if (ret) { 3187 btrfs_abort_transaction(trans, ret); 3188 goto out; 3189 } 3190 } 3191 3192 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3193 if (ret) { 3194 btrfs_abort_transaction(trans, ret); 3195 goto out; 3196 } 3197 3198 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 3199 if (ret) { 3200 btrfs_abort_transaction(trans, ret); 3201 goto out; 3202 } 3203 } 3204 btrfs_release_path(path); 3205 3206 out: 3207 btrfs_free_path(path); 3208 return ret; 3209 err_dump: 3210 /* 3211 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3212 * dump for debug build. 3213 */ 3214 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3215 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3216 path->slots[0], extent_slot); 3217 btrfs_print_leaf(path->nodes[0]); 3218 } 3219 3220 btrfs_free_path(path); 3221 return -EUCLEAN; 3222 } 3223 3224 /* 3225 * when we free an block, it is possible (and likely) that we free the last 3226 * delayed ref for that extent as well. This searches the delayed ref tree for 3227 * a given extent, and if there are no other delayed refs to be processed, it 3228 * removes it from the tree. 3229 */ 3230 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3231 u64 bytenr) 3232 { 3233 struct btrfs_delayed_ref_head *head; 3234 struct btrfs_delayed_ref_root *delayed_refs; 3235 int ret = 0; 3236 3237 delayed_refs = &trans->transaction->delayed_refs; 3238 spin_lock(&delayed_refs->lock); 3239 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3240 if (!head) 3241 goto out_delayed_unlock; 3242 3243 spin_lock(&head->lock); 3244 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3245 goto out; 3246 3247 if (cleanup_extent_op(head) != NULL) 3248 goto out; 3249 3250 /* 3251 * waiting for the lock here would deadlock. If someone else has it 3252 * locked they are already in the process of dropping it anyway 3253 */ 3254 if (!mutex_trylock(&head->mutex)) 3255 goto out; 3256 3257 btrfs_delete_ref_head(delayed_refs, head); 3258 head->processing = 0; 3259 3260 spin_unlock(&head->lock); 3261 spin_unlock(&delayed_refs->lock); 3262 3263 BUG_ON(head->extent_op); 3264 if (head->must_insert_reserved) 3265 ret = 1; 3266 3267 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3268 mutex_unlock(&head->mutex); 3269 btrfs_put_delayed_ref_head(head); 3270 return ret; 3271 out: 3272 spin_unlock(&head->lock); 3273 3274 out_delayed_unlock: 3275 spin_unlock(&delayed_refs->lock); 3276 return 0; 3277 } 3278 3279 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3280 u64 root_id, 3281 struct extent_buffer *buf, 3282 u64 parent, int last_ref) 3283 { 3284 struct btrfs_fs_info *fs_info = trans->fs_info; 3285 struct btrfs_ref generic_ref = { 0 }; 3286 int ret; 3287 3288 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3289 buf->start, buf->len, parent); 3290 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3291 root_id, 0, false); 3292 3293 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3294 btrfs_ref_tree_mod(fs_info, &generic_ref); 3295 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3296 BUG_ON(ret); /* -ENOMEM */ 3297 } 3298 3299 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3300 struct btrfs_block_group *cache; 3301 bool must_pin = false; 3302 3303 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3304 ret = check_ref_cleanup(trans, buf->start); 3305 if (!ret) { 3306 btrfs_redirty_list_add(trans->transaction, buf); 3307 goto out; 3308 } 3309 } 3310 3311 cache = btrfs_lookup_block_group(fs_info, buf->start); 3312 3313 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3314 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3315 btrfs_put_block_group(cache); 3316 goto out; 3317 } 3318 3319 /* 3320 * If this is a leaf and there are tree mod log users, we may 3321 * have recorded mod log operations that point to this leaf. 3322 * So we must make sure no one reuses this leaf's extent before 3323 * mod log operations are applied to a node, otherwise after 3324 * rewinding a node using the mod log operations we get an 3325 * inconsistent btree, as the leaf's extent may now be used as 3326 * a node or leaf for another different btree. 3327 * We are safe from races here because at this point no other 3328 * node or root points to this extent buffer, so if after this 3329 * check a new tree mod log user joins, it will not be able to 3330 * find a node pointing to this leaf and record operations that 3331 * point to this leaf. 3332 */ 3333 if (btrfs_header_level(buf) == 0 && 3334 test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3335 must_pin = true; 3336 3337 if (must_pin || btrfs_is_zoned(fs_info)) { 3338 btrfs_redirty_list_add(trans->transaction, buf); 3339 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3340 btrfs_put_block_group(cache); 3341 goto out; 3342 } 3343 3344 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3345 3346 btrfs_add_free_space(cache, buf->start, buf->len); 3347 btrfs_free_reserved_bytes(cache, buf->len, 0); 3348 btrfs_put_block_group(cache); 3349 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3350 } 3351 out: 3352 if (last_ref) { 3353 /* 3354 * Deleting the buffer, clear the corrupt flag since it doesn't 3355 * matter anymore. 3356 */ 3357 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3358 } 3359 } 3360 3361 /* Can return -ENOMEM */ 3362 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3363 { 3364 struct btrfs_fs_info *fs_info = trans->fs_info; 3365 int ret; 3366 3367 if (btrfs_is_testing(fs_info)) 3368 return 0; 3369 3370 /* 3371 * tree log blocks never actually go into the extent allocation 3372 * tree, just update pinning info and exit early. 3373 */ 3374 if ((ref->type == BTRFS_REF_METADATA && 3375 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3376 (ref->type == BTRFS_REF_DATA && 3377 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3378 /* unlocks the pinned mutex */ 3379 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3380 ret = 0; 3381 } else if (ref->type == BTRFS_REF_METADATA) { 3382 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3383 } else { 3384 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3385 } 3386 3387 if (!((ref->type == BTRFS_REF_METADATA && 3388 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3389 (ref->type == BTRFS_REF_DATA && 3390 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3391 btrfs_ref_tree_mod(fs_info, ref); 3392 3393 return ret; 3394 } 3395 3396 enum btrfs_loop_type { 3397 LOOP_CACHING_NOWAIT, 3398 LOOP_CACHING_WAIT, 3399 LOOP_ALLOC_CHUNK, 3400 LOOP_NO_EMPTY_SIZE, 3401 }; 3402 3403 static inline void 3404 btrfs_lock_block_group(struct btrfs_block_group *cache, 3405 int delalloc) 3406 { 3407 if (delalloc) 3408 down_read(&cache->data_rwsem); 3409 } 3410 3411 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3412 int delalloc) 3413 { 3414 btrfs_get_block_group(cache); 3415 if (delalloc) 3416 down_read(&cache->data_rwsem); 3417 } 3418 3419 static struct btrfs_block_group *btrfs_lock_cluster( 3420 struct btrfs_block_group *block_group, 3421 struct btrfs_free_cluster *cluster, 3422 int delalloc) 3423 __acquires(&cluster->refill_lock) 3424 { 3425 struct btrfs_block_group *used_bg = NULL; 3426 3427 spin_lock(&cluster->refill_lock); 3428 while (1) { 3429 used_bg = cluster->block_group; 3430 if (!used_bg) 3431 return NULL; 3432 3433 if (used_bg == block_group) 3434 return used_bg; 3435 3436 btrfs_get_block_group(used_bg); 3437 3438 if (!delalloc) 3439 return used_bg; 3440 3441 if (down_read_trylock(&used_bg->data_rwsem)) 3442 return used_bg; 3443 3444 spin_unlock(&cluster->refill_lock); 3445 3446 /* We should only have one-level nested. */ 3447 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3448 3449 spin_lock(&cluster->refill_lock); 3450 if (used_bg == cluster->block_group) 3451 return used_bg; 3452 3453 up_read(&used_bg->data_rwsem); 3454 btrfs_put_block_group(used_bg); 3455 } 3456 } 3457 3458 static inline void 3459 btrfs_release_block_group(struct btrfs_block_group *cache, 3460 int delalloc) 3461 { 3462 if (delalloc) 3463 up_read(&cache->data_rwsem); 3464 btrfs_put_block_group(cache); 3465 } 3466 3467 enum btrfs_extent_allocation_policy { 3468 BTRFS_EXTENT_ALLOC_CLUSTERED, 3469 BTRFS_EXTENT_ALLOC_ZONED, 3470 }; 3471 3472 /* 3473 * Structure used internally for find_free_extent() function. Wraps needed 3474 * parameters. 3475 */ 3476 struct find_free_extent_ctl { 3477 /* Basic allocation info */ 3478 u64 ram_bytes; 3479 u64 num_bytes; 3480 u64 min_alloc_size; 3481 u64 empty_size; 3482 u64 flags; 3483 int delalloc; 3484 3485 /* Where to start the search inside the bg */ 3486 u64 search_start; 3487 3488 /* For clustered allocation */ 3489 u64 empty_cluster; 3490 struct btrfs_free_cluster *last_ptr; 3491 bool use_cluster; 3492 3493 bool have_caching_bg; 3494 bool orig_have_caching_bg; 3495 3496 /* Allocation is called for tree-log */ 3497 bool for_treelog; 3498 3499 /* Allocation is called for data relocation */ 3500 bool for_data_reloc; 3501 3502 /* RAID index, converted from flags */ 3503 int index; 3504 3505 /* 3506 * Current loop number, check find_free_extent_update_loop() for details 3507 */ 3508 int loop; 3509 3510 /* 3511 * Whether we're refilling a cluster, if true we need to re-search 3512 * current block group but don't try to refill the cluster again. 3513 */ 3514 bool retry_clustered; 3515 3516 /* 3517 * Whether we're updating free space cache, if true we need to re-search 3518 * current block group but don't try updating free space cache again. 3519 */ 3520 bool retry_unclustered; 3521 3522 /* If current block group is cached */ 3523 int cached; 3524 3525 /* Max contiguous hole found */ 3526 u64 max_extent_size; 3527 3528 /* Total free space from free space cache, not always contiguous */ 3529 u64 total_free_space; 3530 3531 /* Found result */ 3532 u64 found_offset; 3533 3534 /* Hint where to start looking for an empty space */ 3535 u64 hint_byte; 3536 3537 /* Allocation policy */ 3538 enum btrfs_extent_allocation_policy policy; 3539 }; 3540 3541 3542 /* 3543 * Helper function for find_free_extent(). 3544 * 3545 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3546 * Return -EAGAIN to inform caller that we need to re-search this block group 3547 * Return >0 to inform caller that we find nothing 3548 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3549 */ 3550 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3551 struct find_free_extent_ctl *ffe_ctl, 3552 struct btrfs_block_group **cluster_bg_ret) 3553 { 3554 struct btrfs_block_group *cluster_bg; 3555 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3556 u64 aligned_cluster; 3557 u64 offset; 3558 int ret; 3559 3560 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3561 if (!cluster_bg) 3562 goto refill_cluster; 3563 if (cluster_bg != bg && (cluster_bg->ro || 3564 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3565 goto release_cluster; 3566 3567 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3568 ffe_ctl->num_bytes, cluster_bg->start, 3569 &ffe_ctl->max_extent_size); 3570 if (offset) { 3571 /* We have a block, we're done */ 3572 spin_unlock(&last_ptr->refill_lock); 3573 trace_btrfs_reserve_extent_cluster(cluster_bg, 3574 ffe_ctl->search_start, ffe_ctl->num_bytes); 3575 *cluster_bg_ret = cluster_bg; 3576 ffe_ctl->found_offset = offset; 3577 return 0; 3578 } 3579 WARN_ON(last_ptr->block_group != cluster_bg); 3580 3581 release_cluster: 3582 /* 3583 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3584 * lets just skip it and let the allocator find whatever block it can 3585 * find. If we reach this point, we will have tried the cluster 3586 * allocator plenty of times and not have found anything, so we are 3587 * likely way too fragmented for the clustering stuff to find anything. 3588 * 3589 * However, if the cluster is taken from the current block group, 3590 * release the cluster first, so that we stand a better chance of 3591 * succeeding in the unclustered allocation. 3592 */ 3593 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3594 spin_unlock(&last_ptr->refill_lock); 3595 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3596 return -ENOENT; 3597 } 3598 3599 /* This cluster didn't work out, free it and start over */ 3600 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3601 3602 if (cluster_bg != bg) 3603 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3604 3605 refill_cluster: 3606 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3607 spin_unlock(&last_ptr->refill_lock); 3608 return -ENOENT; 3609 } 3610 3611 aligned_cluster = max_t(u64, 3612 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3613 bg->full_stripe_len); 3614 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3615 ffe_ctl->num_bytes, aligned_cluster); 3616 if (ret == 0) { 3617 /* Now pull our allocation out of this cluster */ 3618 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3619 ffe_ctl->num_bytes, ffe_ctl->search_start, 3620 &ffe_ctl->max_extent_size); 3621 if (offset) { 3622 /* We found one, proceed */ 3623 spin_unlock(&last_ptr->refill_lock); 3624 trace_btrfs_reserve_extent_cluster(bg, 3625 ffe_ctl->search_start, 3626 ffe_ctl->num_bytes); 3627 ffe_ctl->found_offset = offset; 3628 return 0; 3629 } 3630 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3631 !ffe_ctl->retry_clustered) { 3632 spin_unlock(&last_ptr->refill_lock); 3633 3634 ffe_ctl->retry_clustered = true; 3635 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3636 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3637 return -EAGAIN; 3638 } 3639 /* 3640 * At this point we either didn't find a cluster or we weren't able to 3641 * allocate a block from our cluster. Free the cluster we've been 3642 * trying to use, and go to the next block group. 3643 */ 3644 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3645 spin_unlock(&last_ptr->refill_lock); 3646 return 1; 3647 } 3648 3649 /* 3650 * Return >0 to inform caller that we find nothing 3651 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3652 * Return -EAGAIN to inform caller that we need to re-search this block group 3653 */ 3654 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3655 struct find_free_extent_ctl *ffe_ctl) 3656 { 3657 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3658 u64 offset; 3659 3660 /* 3661 * We are doing an unclustered allocation, set the fragmented flag so 3662 * we don't bother trying to setup a cluster again until we get more 3663 * space. 3664 */ 3665 if (unlikely(last_ptr)) { 3666 spin_lock(&last_ptr->lock); 3667 last_ptr->fragmented = 1; 3668 spin_unlock(&last_ptr->lock); 3669 } 3670 if (ffe_ctl->cached) { 3671 struct btrfs_free_space_ctl *free_space_ctl; 3672 3673 free_space_ctl = bg->free_space_ctl; 3674 spin_lock(&free_space_ctl->tree_lock); 3675 if (free_space_ctl->free_space < 3676 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3677 ffe_ctl->empty_size) { 3678 ffe_ctl->total_free_space = max_t(u64, 3679 ffe_ctl->total_free_space, 3680 free_space_ctl->free_space); 3681 spin_unlock(&free_space_ctl->tree_lock); 3682 return 1; 3683 } 3684 spin_unlock(&free_space_ctl->tree_lock); 3685 } 3686 3687 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3688 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3689 &ffe_ctl->max_extent_size); 3690 3691 /* 3692 * If we didn't find a chunk, and we haven't failed on this block group 3693 * before, and this block group is in the middle of caching and we are 3694 * ok with waiting, then go ahead and wait for progress to be made, and 3695 * set @retry_unclustered to true. 3696 * 3697 * If @retry_unclustered is true then we've already waited on this 3698 * block group once and should move on to the next block group. 3699 */ 3700 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3701 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3702 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3703 ffe_ctl->empty_size); 3704 ffe_ctl->retry_unclustered = true; 3705 return -EAGAIN; 3706 } else if (!offset) { 3707 return 1; 3708 } 3709 ffe_ctl->found_offset = offset; 3710 return 0; 3711 } 3712 3713 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3714 struct find_free_extent_ctl *ffe_ctl, 3715 struct btrfs_block_group **bg_ret) 3716 { 3717 int ret; 3718 3719 /* We want to try and use the cluster allocator, so lets look there */ 3720 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3721 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3722 if (ret >= 0 || ret == -EAGAIN) 3723 return ret; 3724 /* ret == -ENOENT case falls through */ 3725 } 3726 3727 return find_free_extent_unclustered(block_group, ffe_ctl); 3728 } 3729 3730 /* 3731 * Tree-log block group locking 3732 * ============================ 3733 * 3734 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3735 * indicates the starting address of a block group, which is reserved only 3736 * for tree-log metadata. 3737 * 3738 * Lock nesting 3739 * ============ 3740 * 3741 * space_info::lock 3742 * block_group::lock 3743 * fs_info::treelog_bg_lock 3744 */ 3745 3746 /* 3747 * Simple allocator for sequential-only block group. It only allows sequential 3748 * allocation. No need to play with trees. This function also reserves the 3749 * bytes as in btrfs_add_reserved_bytes. 3750 */ 3751 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3752 struct find_free_extent_ctl *ffe_ctl, 3753 struct btrfs_block_group **bg_ret) 3754 { 3755 struct btrfs_fs_info *fs_info = block_group->fs_info; 3756 struct btrfs_space_info *space_info = block_group->space_info; 3757 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3758 u64 start = block_group->start; 3759 u64 num_bytes = ffe_ctl->num_bytes; 3760 u64 avail; 3761 u64 bytenr = block_group->start; 3762 u64 log_bytenr; 3763 u64 data_reloc_bytenr; 3764 int ret = 0; 3765 bool skip = false; 3766 3767 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3768 3769 /* 3770 * Do not allow non-tree-log blocks in the dedicated tree-log block 3771 * group, and vice versa. 3772 */ 3773 spin_lock(&fs_info->treelog_bg_lock); 3774 log_bytenr = fs_info->treelog_bg; 3775 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3776 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3777 skip = true; 3778 spin_unlock(&fs_info->treelog_bg_lock); 3779 if (skip) 3780 return 1; 3781 3782 /* 3783 * Do not allow non-relocation blocks in the dedicated relocation block 3784 * group, and vice versa. 3785 */ 3786 spin_lock(&fs_info->relocation_bg_lock); 3787 data_reloc_bytenr = fs_info->data_reloc_bg; 3788 if (data_reloc_bytenr && 3789 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3790 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3791 skip = true; 3792 spin_unlock(&fs_info->relocation_bg_lock); 3793 if (skip) 3794 return 1; 3795 /* Check RO and no space case before trying to activate it */ 3796 spin_lock(&block_group->lock); 3797 if (block_group->ro || 3798 block_group->alloc_offset == block_group->zone_capacity) { 3799 spin_unlock(&block_group->lock); 3800 return 1; 3801 } 3802 spin_unlock(&block_group->lock); 3803 3804 if (!btrfs_zone_activate(block_group)) 3805 return 1; 3806 3807 spin_lock(&space_info->lock); 3808 spin_lock(&block_group->lock); 3809 spin_lock(&fs_info->treelog_bg_lock); 3810 spin_lock(&fs_info->relocation_bg_lock); 3811 3812 ASSERT(!ffe_ctl->for_treelog || 3813 block_group->start == fs_info->treelog_bg || 3814 fs_info->treelog_bg == 0); 3815 ASSERT(!ffe_ctl->for_data_reloc || 3816 block_group->start == fs_info->data_reloc_bg || 3817 fs_info->data_reloc_bg == 0); 3818 3819 if (block_group->ro) { 3820 ret = 1; 3821 goto out; 3822 } 3823 3824 /* 3825 * Do not allow currently using block group to be tree-log dedicated 3826 * block group. 3827 */ 3828 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3829 (block_group->used || block_group->reserved)) { 3830 ret = 1; 3831 goto out; 3832 } 3833 3834 /* 3835 * Do not allow currently used block group to be the data relocation 3836 * dedicated block group. 3837 */ 3838 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3839 (block_group->used || block_group->reserved)) { 3840 ret = 1; 3841 goto out; 3842 } 3843 3844 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3845 avail = block_group->zone_capacity - block_group->alloc_offset; 3846 if (avail < num_bytes) { 3847 if (ffe_ctl->max_extent_size < avail) { 3848 /* 3849 * With sequential allocator, free space is always 3850 * contiguous 3851 */ 3852 ffe_ctl->max_extent_size = avail; 3853 ffe_ctl->total_free_space = avail; 3854 } 3855 ret = 1; 3856 goto out; 3857 } 3858 3859 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3860 fs_info->treelog_bg = block_group->start; 3861 3862 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg) 3863 fs_info->data_reloc_bg = block_group->start; 3864 3865 ffe_ctl->found_offset = start + block_group->alloc_offset; 3866 block_group->alloc_offset += num_bytes; 3867 spin_lock(&ctl->tree_lock); 3868 ctl->free_space -= num_bytes; 3869 spin_unlock(&ctl->tree_lock); 3870 3871 /* 3872 * We do not check if found_offset is aligned to stripesize. The 3873 * address is anyway rewritten when using zone append writing. 3874 */ 3875 3876 ffe_ctl->search_start = ffe_ctl->found_offset; 3877 3878 out: 3879 if (ret && ffe_ctl->for_treelog) 3880 fs_info->treelog_bg = 0; 3881 if (ret && ffe_ctl->for_data_reloc) 3882 fs_info->data_reloc_bg = 0; 3883 spin_unlock(&fs_info->relocation_bg_lock); 3884 spin_unlock(&fs_info->treelog_bg_lock); 3885 spin_unlock(&block_group->lock); 3886 spin_unlock(&space_info->lock); 3887 return ret; 3888 } 3889 3890 static int do_allocation(struct btrfs_block_group *block_group, 3891 struct find_free_extent_ctl *ffe_ctl, 3892 struct btrfs_block_group **bg_ret) 3893 { 3894 switch (ffe_ctl->policy) { 3895 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3896 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3897 case BTRFS_EXTENT_ALLOC_ZONED: 3898 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3899 default: 3900 BUG(); 3901 } 3902 } 3903 3904 static void release_block_group(struct btrfs_block_group *block_group, 3905 struct find_free_extent_ctl *ffe_ctl, 3906 int delalloc) 3907 { 3908 switch (ffe_ctl->policy) { 3909 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3910 ffe_ctl->retry_clustered = false; 3911 ffe_ctl->retry_unclustered = false; 3912 break; 3913 case BTRFS_EXTENT_ALLOC_ZONED: 3914 /* Nothing to do */ 3915 break; 3916 default: 3917 BUG(); 3918 } 3919 3920 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3921 ffe_ctl->index); 3922 btrfs_release_block_group(block_group, delalloc); 3923 } 3924 3925 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3926 struct btrfs_key *ins) 3927 { 3928 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3929 3930 if (!ffe_ctl->use_cluster && last_ptr) { 3931 spin_lock(&last_ptr->lock); 3932 last_ptr->window_start = ins->objectid; 3933 spin_unlock(&last_ptr->lock); 3934 } 3935 } 3936 3937 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3938 struct btrfs_key *ins) 3939 { 3940 switch (ffe_ctl->policy) { 3941 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3942 found_extent_clustered(ffe_ctl, ins); 3943 break; 3944 case BTRFS_EXTENT_ALLOC_ZONED: 3945 /* Nothing to do */ 3946 break; 3947 default: 3948 BUG(); 3949 } 3950 } 3951 3952 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 3953 { 3954 switch (ffe_ctl->policy) { 3955 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3956 /* 3957 * If we can't allocate a new chunk we've already looped through 3958 * at least once, move on to the NO_EMPTY_SIZE case. 3959 */ 3960 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 3961 return 0; 3962 case BTRFS_EXTENT_ALLOC_ZONED: 3963 /* Give up here */ 3964 return -ENOSPC; 3965 default: 3966 BUG(); 3967 } 3968 } 3969 3970 /* 3971 * Return >0 means caller needs to re-search for free extent 3972 * Return 0 means we have the needed free extent. 3973 * Return <0 means we failed to locate any free extent. 3974 */ 3975 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 3976 struct btrfs_key *ins, 3977 struct find_free_extent_ctl *ffe_ctl, 3978 bool full_search) 3979 { 3980 struct btrfs_root *root = fs_info->chunk_root; 3981 int ret; 3982 3983 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 3984 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 3985 ffe_ctl->orig_have_caching_bg = true; 3986 3987 if (ins->objectid) { 3988 found_extent(ffe_ctl, ins); 3989 return 0; 3990 } 3991 3992 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size && 3993 !btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->index)) { 3994 /* 3995 * If we have enough free space left in an already active block 3996 * group and we can't activate any other zone now, retry the 3997 * active ones with a smaller allocation size. Returning early 3998 * from here will tell btrfs_reserve_extent() to haven the 3999 * size. 4000 */ 4001 return -ENOSPC; 4002 } 4003 4004 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4005 return 1; 4006 4007 ffe_ctl->index++; 4008 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4009 return 1; 4010 4011 /* 4012 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 4013 * caching kthreads as we move along 4014 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 4015 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 4016 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 4017 * again 4018 */ 4019 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4020 ffe_ctl->index = 0; 4021 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 4022 /* 4023 * We want to skip the LOOP_CACHING_WAIT step if we 4024 * don't have any uncached bgs and we've already done a 4025 * full search through. 4026 */ 4027 if (ffe_ctl->orig_have_caching_bg || !full_search) 4028 ffe_ctl->loop = LOOP_CACHING_WAIT; 4029 else 4030 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 4031 } else { 4032 ffe_ctl->loop++; 4033 } 4034 4035 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4036 struct btrfs_trans_handle *trans; 4037 int exist = 0; 4038 4039 trans = current->journal_info; 4040 if (trans) 4041 exist = 1; 4042 else 4043 trans = btrfs_join_transaction(root); 4044 4045 if (IS_ERR(trans)) { 4046 ret = PTR_ERR(trans); 4047 return ret; 4048 } 4049 4050 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4051 CHUNK_ALLOC_FORCE); 4052 4053 /* Do not bail out on ENOSPC since we can do more. */ 4054 if (ret == -ENOSPC) 4055 ret = chunk_allocation_failed(ffe_ctl); 4056 else if (ret < 0) 4057 btrfs_abort_transaction(trans, ret); 4058 else 4059 ret = 0; 4060 if (!exist) 4061 btrfs_end_transaction(trans); 4062 if (ret) 4063 return ret; 4064 } 4065 4066 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4067 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4068 return -ENOSPC; 4069 4070 /* 4071 * Don't loop again if we already have no empty_size and 4072 * no empty_cluster. 4073 */ 4074 if (ffe_ctl->empty_size == 0 && 4075 ffe_ctl->empty_cluster == 0) 4076 return -ENOSPC; 4077 ffe_ctl->empty_size = 0; 4078 ffe_ctl->empty_cluster = 0; 4079 } 4080 return 1; 4081 } 4082 return -ENOSPC; 4083 } 4084 4085 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4086 struct find_free_extent_ctl *ffe_ctl, 4087 struct btrfs_space_info *space_info, 4088 struct btrfs_key *ins) 4089 { 4090 /* 4091 * If our free space is heavily fragmented we may not be able to make 4092 * big contiguous allocations, so instead of doing the expensive search 4093 * for free space, simply return ENOSPC with our max_extent_size so we 4094 * can go ahead and search for a more manageable chunk. 4095 * 4096 * If our max_extent_size is large enough for our allocation simply 4097 * disable clustering since we will likely not be able to find enough 4098 * space to create a cluster and induce latency trying. 4099 */ 4100 if (space_info->max_extent_size) { 4101 spin_lock(&space_info->lock); 4102 if (space_info->max_extent_size && 4103 ffe_ctl->num_bytes > space_info->max_extent_size) { 4104 ins->offset = space_info->max_extent_size; 4105 spin_unlock(&space_info->lock); 4106 return -ENOSPC; 4107 } else if (space_info->max_extent_size) { 4108 ffe_ctl->use_cluster = false; 4109 } 4110 spin_unlock(&space_info->lock); 4111 } 4112 4113 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4114 &ffe_ctl->empty_cluster); 4115 if (ffe_ctl->last_ptr) { 4116 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4117 4118 spin_lock(&last_ptr->lock); 4119 if (last_ptr->block_group) 4120 ffe_ctl->hint_byte = last_ptr->window_start; 4121 if (last_ptr->fragmented) { 4122 /* 4123 * We still set window_start so we can keep track of the 4124 * last place we found an allocation to try and save 4125 * some time. 4126 */ 4127 ffe_ctl->hint_byte = last_ptr->window_start; 4128 ffe_ctl->use_cluster = false; 4129 } 4130 spin_unlock(&last_ptr->lock); 4131 } 4132 4133 return 0; 4134 } 4135 4136 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4137 struct find_free_extent_ctl *ffe_ctl, 4138 struct btrfs_space_info *space_info, 4139 struct btrfs_key *ins) 4140 { 4141 switch (ffe_ctl->policy) { 4142 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4143 return prepare_allocation_clustered(fs_info, ffe_ctl, 4144 space_info, ins); 4145 case BTRFS_EXTENT_ALLOC_ZONED: 4146 if (ffe_ctl->for_treelog) { 4147 spin_lock(&fs_info->treelog_bg_lock); 4148 if (fs_info->treelog_bg) 4149 ffe_ctl->hint_byte = fs_info->treelog_bg; 4150 spin_unlock(&fs_info->treelog_bg_lock); 4151 } 4152 if (ffe_ctl->for_data_reloc) { 4153 spin_lock(&fs_info->relocation_bg_lock); 4154 if (fs_info->data_reloc_bg) 4155 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4156 spin_unlock(&fs_info->relocation_bg_lock); 4157 } 4158 return 0; 4159 default: 4160 BUG(); 4161 } 4162 } 4163 4164 /* 4165 * walks the btree of allocated extents and find a hole of a given size. 4166 * The key ins is changed to record the hole: 4167 * ins->objectid == start position 4168 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4169 * ins->offset == the size of the hole. 4170 * Any available blocks before search_start are skipped. 4171 * 4172 * If there is no suitable free space, we will record the max size of 4173 * the free space extent currently. 4174 * 4175 * The overall logic and call chain: 4176 * 4177 * find_free_extent() 4178 * |- Iterate through all block groups 4179 * | |- Get a valid block group 4180 * | |- Try to do clustered allocation in that block group 4181 * | |- Try to do unclustered allocation in that block group 4182 * | |- Check if the result is valid 4183 * | | |- If valid, then exit 4184 * | |- Jump to next block group 4185 * | 4186 * |- Push harder to find free extents 4187 * |- If not found, re-iterate all block groups 4188 */ 4189 static noinline int find_free_extent(struct btrfs_root *root, 4190 struct btrfs_key *ins, 4191 struct find_free_extent_ctl *ffe_ctl) 4192 { 4193 struct btrfs_fs_info *fs_info = root->fs_info; 4194 int ret = 0; 4195 int cache_block_group_error = 0; 4196 struct btrfs_block_group *block_group = NULL; 4197 struct btrfs_space_info *space_info; 4198 bool full_search = false; 4199 4200 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4201 4202 ffe_ctl->search_start = 0; 4203 /* For clustered allocation */ 4204 ffe_ctl->empty_cluster = 0; 4205 ffe_ctl->last_ptr = NULL; 4206 ffe_ctl->use_cluster = true; 4207 ffe_ctl->have_caching_bg = false; 4208 ffe_ctl->orig_have_caching_bg = false; 4209 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4210 ffe_ctl->loop = 0; 4211 /* For clustered allocation */ 4212 ffe_ctl->retry_clustered = false; 4213 ffe_ctl->retry_unclustered = false; 4214 ffe_ctl->cached = 0; 4215 ffe_ctl->max_extent_size = 0; 4216 ffe_ctl->total_free_space = 0; 4217 ffe_ctl->found_offset = 0; 4218 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4219 4220 if (btrfs_is_zoned(fs_info)) 4221 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4222 4223 ins->type = BTRFS_EXTENT_ITEM_KEY; 4224 ins->objectid = 0; 4225 ins->offset = 0; 4226 4227 trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size, 4228 ffe_ctl->flags); 4229 4230 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4231 if (!space_info) { 4232 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4233 return -ENOSPC; 4234 } 4235 4236 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4237 if (ret < 0) 4238 return ret; 4239 4240 ffe_ctl->search_start = max(ffe_ctl->search_start, 4241 first_logical_byte(fs_info, 0)); 4242 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4243 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4244 block_group = btrfs_lookup_block_group(fs_info, 4245 ffe_ctl->search_start); 4246 /* 4247 * we don't want to use the block group if it doesn't match our 4248 * allocation bits, or if its not cached. 4249 * 4250 * However if we are re-searching with an ideal block group 4251 * picked out then we don't care that the block group is cached. 4252 */ 4253 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4254 block_group->cached != BTRFS_CACHE_NO) { 4255 down_read(&space_info->groups_sem); 4256 if (list_empty(&block_group->list) || 4257 block_group->ro) { 4258 /* 4259 * someone is removing this block group, 4260 * we can't jump into the have_block_group 4261 * target because our list pointers are not 4262 * valid 4263 */ 4264 btrfs_put_block_group(block_group); 4265 up_read(&space_info->groups_sem); 4266 } else { 4267 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4268 block_group->flags); 4269 btrfs_lock_block_group(block_group, 4270 ffe_ctl->delalloc); 4271 goto have_block_group; 4272 } 4273 } else if (block_group) { 4274 btrfs_put_block_group(block_group); 4275 } 4276 } 4277 search: 4278 ffe_ctl->have_caching_bg = false; 4279 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4280 ffe_ctl->index == 0) 4281 full_search = true; 4282 down_read(&space_info->groups_sem); 4283 list_for_each_entry(block_group, 4284 &space_info->block_groups[ffe_ctl->index], list) { 4285 struct btrfs_block_group *bg_ret; 4286 4287 /* If the block group is read-only, we can skip it entirely. */ 4288 if (unlikely(block_group->ro)) { 4289 if (ffe_ctl->for_treelog) 4290 btrfs_clear_treelog_bg(block_group); 4291 if (ffe_ctl->for_data_reloc) 4292 btrfs_clear_data_reloc_bg(block_group); 4293 continue; 4294 } 4295 4296 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4297 ffe_ctl->search_start = block_group->start; 4298 4299 /* 4300 * this can happen if we end up cycling through all the 4301 * raid types, but we want to make sure we only allocate 4302 * for the proper type. 4303 */ 4304 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4305 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4306 BTRFS_BLOCK_GROUP_RAID1_MASK | 4307 BTRFS_BLOCK_GROUP_RAID56_MASK | 4308 BTRFS_BLOCK_GROUP_RAID10; 4309 4310 /* 4311 * if they asked for extra copies and this block group 4312 * doesn't provide them, bail. This does allow us to 4313 * fill raid0 from raid1. 4314 */ 4315 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4316 goto loop; 4317 4318 /* 4319 * This block group has different flags than we want. 4320 * It's possible that we have MIXED_GROUP flag but no 4321 * block group is mixed. Just skip such block group. 4322 */ 4323 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4324 continue; 4325 } 4326 4327 have_block_group: 4328 ffe_ctl->cached = btrfs_block_group_done(block_group); 4329 if (unlikely(!ffe_ctl->cached)) { 4330 ffe_ctl->have_caching_bg = true; 4331 ret = btrfs_cache_block_group(block_group, 0); 4332 4333 /* 4334 * If we get ENOMEM here or something else we want to 4335 * try other block groups, because it may not be fatal. 4336 * However if we can't find anything else we need to 4337 * save our return here so that we return the actual 4338 * error that caused problems, not ENOSPC. 4339 */ 4340 if (ret < 0) { 4341 if (!cache_block_group_error) 4342 cache_block_group_error = ret; 4343 ret = 0; 4344 goto loop; 4345 } 4346 ret = 0; 4347 } 4348 4349 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4350 goto loop; 4351 4352 bg_ret = NULL; 4353 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4354 if (ret == 0) { 4355 if (bg_ret && bg_ret != block_group) { 4356 btrfs_release_block_group(block_group, 4357 ffe_ctl->delalloc); 4358 block_group = bg_ret; 4359 } 4360 } else if (ret == -EAGAIN) { 4361 goto have_block_group; 4362 } else if (ret > 0) { 4363 goto loop; 4364 } 4365 4366 /* Checks */ 4367 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4368 fs_info->stripesize); 4369 4370 /* move on to the next group */ 4371 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4372 block_group->start + block_group->length) { 4373 btrfs_add_free_space_unused(block_group, 4374 ffe_ctl->found_offset, 4375 ffe_ctl->num_bytes); 4376 goto loop; 4377 } 4378 4379 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4380 btrfs_add_free_space_unused(block_group, 4381 ffe_ctl->found_offset, 4382 ffe_ctl->search_start - ffe_ctl->found_offset); 4383 4384 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4385 ffe_ctl->num_bytes, 4386 ffe_ctl->delalloc); 4387 if (ret == -EAGAIN) { 4388 btrfs_add_free_space_unused(block_group, 4389 ffe_ctl->found_offset, 4390 ffe_ctl->num_bytes); 4391 goto loop; 4392 } 4393 btrfs_inc_block_group_reservations(block_group); 4394 4395 /* we are all good, lets return */ 4396 ins->objectid = ffe_ctl->search_start; 4397 ins->offset = ffe_ctl->num_bytes; 4398 4399 trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start, 4400 ffe_ctl->num_bytes); 4401 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4402 break; 4403 loop: 4404 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4405 cond_resched(); 4406 } 4407 up_read(&space_info->groups_sem); 4408 4409 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4410 if (ret > 0) 4411 goto search; 4412 4413 if (ret == -ENOSPC && !cache_block_group_error) { 4414 /* 4415 * Use ffe_ctl->total_free_space as fallback if we can't find 4416 * any contiguous hole. 4417 */ 4418 if (!ffe_ctl->max_extent_size) 4419 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4420 spin_lock(&space_info->lock); 4421 space_info->max_extent_size = ffe_ctl->max_extent_size; 4422 spin_unlock(&space_info->lock); 4423 ins->offset = ffe_ctl->max_extent_size; 4424 } else if (ret == -ENOSPC) { 4425 ret = cache_block_group_error; 4426 } 4427 return ret; 4428 } 4429 4430 /* 4431 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4432 * hole that is at least as big as @num_bytes. 4433 * 4434 * @root - The root that will contain this extent 4435 * 4436 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4437 * is used for accounting purposes. This value differs 4438 * from @num_bytes only in the case of compressed extents. 4439 * 4440 * @num_bytes - Number of bytes to allocate on-disk. 4441 * 4442 * @min_alloc_size - Indicates the minimum amount of space that the 4443 * allocator should try to satisfy. In some cases 4444 * @num_bytes may be larger than what is required and if 4445 * the filesystem is fragmented then allocation fails. 4446 * However, the presence of @min_alloc_size gives a 4447 * chance to try and satisfy the smaller allocation. 4448 * 4449 * @empty_size - A hint that you plan on doing more COW. This is the 4450 * size in bytes the allocator should try to find free 4451 * next to the block it returns. This is just a hint and 4452 * may be ignored by the allocator. 4453 * 4454 * @hint_byte - Hint to the allocator to start searching above the byte 4455 * address passed. It might be ignored. 4456 * 4457 * @ins - This key is modified to record the found hole. It will 4458 * have the following values: 4459 * ins->objectid == start position 4460 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4461 * ins->offset == the size of the hole. 4462 * 4463 * @is_data - Boolean flag indicating whether an extent is 4464 * allocated for data (true) or metadata (false) 4465 * 4466 * @delalloc - Boolean flag indicating whether this allocation is for 4467 * delalloc or not. If 'true' data_rwsem of block groups 4468 * is going to be acquired. 4469 * 4470 * 4471 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4472 * case -ENOSPC is returned then @ins->offset will contain the size of the 4473 * largest available hole the allocator managed to find. 4474 */ 4475 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4476 u64 num_bytes, u64 min_alloc_size, 4477 u64 empty_size, u64 hint_byte, 4478 struct btrfs_key *ins, int is_data, int delalloc) 4479 { 4480 struct btrfs_fs_info *fs_info = root->fs_info; 4481 struct find_free_extent_ctl ffe_ctl = {}; 4482 bool final_tried = num_bytes == min_alloc_size; 4483 u64 flags; 4484 int ret; 4485 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4486 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4487 4488 flags = get_alloc_profile_by_root(root, is_data); 4489 again: 4490 WARN_ON(num_bytes < fs_info->sectorsize); 4491 4492 ffe_ctl.ram_bytes = ram_bytes; 4493 ffe_ctl.num_bytes = num_bytes; 4494 ffe_ctl.min_alloc_size = min_alloc_size; 4495 ffe_ctl.empty_size = empty_size; 4496 ffe_ctl.flags = flags; 4497 ffe_ctl.delalloc = delalloc; 4498 ffe_ctl.hint_byte = hint_byte; 4499 ffe_ctl.for_treelog = for_treelog; 4500 ffe_ctl.for_data_reloc = for_data_reloc; 4501 4502 ret = find_free_extent(root, ins, &ffe_ctl); 4503 if (!ret && !is_data) { 4504 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4505 } else if (ret == -ENOSPC) { 4506 if (!final_tried && ins->offset) { 4507 num_bytes = min(num_bytes >> 1, ins->offset); 4508 num_bytes = round_down(num_bytes, 4509 fs_info->sectorsize); 4510 num_bytes = max(num_bytes, min_alloc_size); 4511 ram_bytes = num_bytes; 4512 if (num_bytes == min_alloc_size) 4513 final_tried = true; 4514 goto again; 4515 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4516 struct btrfs_space_info *sinfo; 4517 4518 sinfo = btrfs_find_space_info(fs_info, flags); 4519 btrfs_err(fs_info, 4520 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4521 flags, num_bytes, for_treelog, for_data_reloc); 4522 if (sinfo) 4523 btrfs_dump_space_info(fs_info, sinfo, 4524 num_bytes, 1); 4525 } 4526 } 4527 4528 return ret; 4529 } 4530 4531 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4532 u64 start, u64 len, int delalloc) 4533 { 4534 struct btrfs_block_group *cache; 4535 4536 cache = btrfs_lookup_block_group(fs_info, start); 4537 if (!cache) { 4538 btrfs_err(fs_info, "Unable to find block group for %llu", 4539 start); 4540 return -ENOSPC; 4541 } 4542 4543 btrfs_add_free_space(cache, start, len); 4544 btrfs_free_reserved_bytes(cache, len, delalloc); 4545 trace_btrfs_reserved_extent_free(fs_info, start, len); 4546 4547 btrfs_put_block_group(cache); 4548 return 0; 4549 } 4550 4551 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4552 u64 len) 4553 { 4554 struct btrfs_block_group *cache; 4555 int ret = 0; 4556 4557 cache = btrfs_lookup_block_group(trans->fs_info, start); 4558 if (!cache) { 4559 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4560 start); 4561 return -ENOSPC; 4562 } 4563 4564 ret = pin_down_extent(trans, cache, start, len, 1); 4565 btrfs_put_block_group(cache); 4566 return ret; 4567 } 4568 4569 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4570 u64 parent, u64 root_objectid, 4571 u64 flags, u64 owner, u64 offset, 4572 struct btrfs_key *ins, int ref_mod) 4573 { 4574 struct btrfs_fs_info *fs_info = trans->fs_info; 4575 int ret; 4576 struct btrfs_extent_item *extent_item; 4577 struct btrfs_extent_inline_ref *iref; 4578 struct btrfs_path *path; 4579 struct extent_buffer *leaf; 4580 int type; 4581 u32 size; 4582 4583 if (parent > 0) 4584 type = BTRFS_SHARED_DATA_REF_KEY; 4585 else 4586 type = BTRFS_EXTENT_DATA_REF_KEY; 4587 4588 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4589 4590 path = btrfs_alloc_path(); 4591 if (!path) 4592 return -ENOMEM; 4593 4594 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4595 ins, size); 4596 if (ret) { 4597 btrfs_free_path(path); 4598 return ret; 4599 } 4600 4601 leaf = path->nodes[0]; 4602 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4603 struct btrfs_extent_item); 4604 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4605 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4606 btrfs_set_extent_flags(leaf, extent_item, 4607 flags | BTRFS_EXTENT_FLAG_DATA); 4608 4609 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4610 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4611 if (parent > 0) { 4612 struct btrfs_shared_data_ref *ref; 4613 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4614 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4615 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4616 } else { 4617 struct btrfs_extent_data_ref *ref; 4618 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4619 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4620 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4621 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4622 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4623 } 4624 4625 btrfs_mark_buffer_dirty(path->nodes[0]); 4626 btrfs_free_path(path); 4627 4628 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); 4629 if (ret) 4630 return ret; 4631 4632 ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, true); 4633 if (ret) { /* -ENOENT, logic error */ 4634 btrfs_err(fs_info, "update block group failed for %llu %llu", 4635 ins->objectid, ins->offset); 4636 BUG(); 4637 } 4638 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 4639 return ret; 4640 } 4641 4642 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4643 struct btrfs_delayed_ref_node *node, 4644 struct btrfs_delayed_extent_op *extent_op) 4645 { 4646 struct btrfs_fs_info *fs_info = trans->fs_info; 4647 int ret; 4648 struct btrfs_extent_item *extent_item; 4649 struct btrfs_key extent_key; 4650 struct btrfs_tree_block_info *block_info; 4651 struct btrfs_extent_inline_ref *iref; 4652 struct btrfs_path *path; 4653 struct extent_buffer *leaf; 4654 struct btrfs_delayed_tree_ref *ref; 4655 u32 size = sizeof(*extent_item) + sizeof(*iref); 4656 u64 num_bytes; 4657 u64 flags = extent_op->flags_to_set; 4658 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4659 4660 ref = btrfs_delayed_node_to_tree_ref(node); 4661 4662 extent_key.objectid = node->bytenr; 4663 if (skinny_metadata) { 4664 extent_key.offset = ref->level; 4665 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4666 num_bytes = fs_info->nodesize; 4667 } else { 4668 extent_key.offset = node->num_bytes; 4669 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4670 size += sizeof(*block_info); 4671 num_bytes = node->num_bytes; 4672 } 4673 4674 path = btrfs_alloc_path(); 4675 if (!path) 4676 return -ENOMEM; 4677 4678 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 4679 &extent_key, size); 4680 if (ret) { 4681 btrfs_free_path(path); 4682 return ret; 4683 } 4684 4685 leaf = path->nodes[0]; 4686 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4687 struct btrfs_extent_item); 4688 btrfs_set_extent_refs(leaf, extent_item, 1); 4689 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4690 btrfs_set_extent_flags(leaf, extent_item, 4691 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4692 4693 if (skinny_metadata) { 4694 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4695 } else { 4696 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4697 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4698 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4699 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4700 } 4701 4702 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4703 btrfs_set_extent_inline_ref_type(leaf, iref, 4704 BTRFS_SHARED_BLOCK_REF_KEY); 4705 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4706 } else { 4707 btrfs_set_extent_inline_ref_type(leaf, iref, 4708 BTRFS_TREE_BLOCK_REF_KEY); 4709 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4710 } 4711 4712 btrfs_mark_buffer_dirty(leaf); 4713 btrfs_free_path(path); 4714 4715 ret = remove_from_free_space_tree(trans, extent_key.objectid, 4716 num_bytes); 4717 if (ret) 4718 return ret; 4719 4720 ret = btrfs_update_block_group(trans, extent_key.objectid, 4721 fs_info->nodesize, true); 4722 if (ret) { /* -ENOENT, logic error */ 4723 btrfs_err(fs_info, "update block group failed for %llu %llu", 4724 extent_key.objectid, extent_key.offset); 4725 BUG(); 4726 } 4727 4728 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, 4729 fs_info->nodesize); 4730 return ret; 4731 } 4732 4733 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4734 struct btrfs_root *root, u64 owner, 4735 u64 offset, u64 ram_bytes, 4736 struct btrfs_key *ins) 4737 { 4738 struct btrfs_ref generic_ref = { 0 }; 4739 4740 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4741 4742 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4743 ins->objectid, ins->offset, 0); 4744 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4745 offset, 0, false); 4746 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4747 4748 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4749 } 4750 4751 /* 4752 * this is used by the tree logging recovery code. It records that 4753 * an extent has been allocated and makes sure to clear the free 4754 * space cache bits as well 4755 */ 4756 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4757 u64 root_objectid, u64 owner, u64 offset, 4758 struct btrfs_key *ins) 4759 { 4760 struct btrfs_fs_info *fs_info = trans->fs_info; 4761 int ret; 4762 struct btrfs_block_group *block_group; 4763 struct btrfs_space_info *space_info; 4764 4765 /* 4766 * Mixed block groups will exclude before processing the log so we only 4767 * need to do the exclude dance if this fs isn't mixed. 4768 */ 4769 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4770 ret = __exclude_logged_extent(fs_info, ins->objectid, 4771 ins->offset); 4772 if (ret) 4773 return ret; 4774 } 4775 4776 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4777 if (!block_group) 4778 return -EINVAL; 4779 4780 space_info = block_group->space_info; 4781 spin_lock(&space_info->lock); 4782 spin_lock(&block_group->lock); 4783 space_info->bytes_reserved += ins->offset; 4784 block_group->reserved += ins->offset; 4785 spin_unlock(&block_group->lock); 4786 spin_unlock(&space_info->lock); 4787 4788 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4789 offset, ins, 1); 4790 if (ret) 4791 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4792 btrfs_put_block_group(block_group); 4793 return ret; 4794 } 4795 4796 static struct extent_buffer * 4797 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4798 u64 bytenr, int level, u64 owner, 4799 enum btrfs_lock_nesting nest) 4800 { 4801 struct btrfs_fs_info *fs_info = root->fs_info; 4802 struct extent_buffer *buf; 4803 4804 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4805 if (IS_ERR(buf)) 4806 return buf; 4807 4808 /* 4809 * Extra safety check in case the extent tree is corrupted and extent 4810 * allocator chooses to use a tree block which is already used and 4811 * locked. 4812 */ 4813 if (buf->lock_owner == current->pid) { 4814 btrfs_err_rl(fs_info, 4815 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4816 buf->start, btrfs_header_owner(buf), current->pid); 4817 free_extent_buffer(buf); 4818 return ERR_PTR(-EUCLEAN); 4819 } 4820 4821 /* 4822 * This needs to stay, because we could allocate a freed block from an 4823 * old tree into a new tree, so we need to make sure this new block is 4824 * set to the appropriate level and owner. 4825 */ 4826 btrfs_set_buffer_lockdep_class(owner, buf, level); 4827 __btrfs_tree_lock(buf, nest); 4828 btrfs_clean_tree_block(buf); 4829 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4830 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4831 4832 set_extent_buffer_uptodate(buf); 4833 4834 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4835 btrfs_set_header_level(buf, level); 4836 btrfs_set_header_bytenr(buf, buf->start); 4837 btrfs_set_header_generation(buf, trans->transid); 4838 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4839 btrfs_set_header_owner(buf, owner); 4840 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4841 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4842 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4843 buf->log_index = root->log_transid % 2; 4844 /* 4845 * we allow two log transactions at a time, use different 4846 * EXTENT bit to differentiate dirty pages. 4847 */ 4848 if (buf->log_index == 0) 4849 set_extent_dirty(&root->dirty_log_pages, buf->start, 4850 buf->start + buf->len - 1, GFP_NOFS); 4851 else 4852 set_extent_new(&root->dirty_log_pages, buf->start, 4853 buf->start + buf->len - 1); 4854 } else { 4855 buf->log_index = -1; 4856 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4857 buf->start + buf->len - 1, GFP_NOFS); 4858 } 4859 /* this returns a buffer locked for blocking */ 4860 return buf; 4861 } 4862 4863 /* 4864 * finds a free extent and does all the dirty work required for allocation 4865 * returns the tree buffer or an ERR_PTR on error. 4866 */ 4867 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4868 struct btrfs_root *root, 4869 u64 parent, u64 root_objectid, 4870 const struct btrfs_disk_key *key, 4871 int level, u64 hint, 4872 u64 empty_size, 4873 enum btrfs_lock_nesting nest) 4874 { 4875 struct btrfs_fs_info *fs_info = root->fs_info; 4876 struct btrfs_key ins; 4877 struct btrfs_block_rsv *block_rsv; 4878 struct extent_buffer *buf; 4879 struct btrfs_delayed_extent_op *extent_op; 4880 struct btrfs_ref generic_ref = { 0 }; 4881 u64 flags = 0; 4882 int ret; 4883 u32 blocksize = fs_info->nodesize; 4884 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4885 4886 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4887 if (btrfs_is_testing(fs_info)) { 4888 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4889 level, root_objectid, nest); 4890 if (!IS_ERR(buf)) 4891 root->alloc_bytenr += blocksize; 4892 return buf; 4893 } 4894 #endif 4895 4896 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4897 if (IS_ERR(block_rsv)) 4898 return ERR_CAST(block_rsv); 4899 4900 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4901 empty_size, hint, &ins, 0, 0); 4902 if (ret) 4903 goto out_unuse; 4904 4905 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4906 root_objectid, nest); 4907 if (IS_ERR(buf)) { 4908 ret = PTR_ERR(buf); 4909 goto out_free_reserved; 4910 } 4911 4912 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4913 if (parent == 0) 4914 parent = ins.objectid; 4915 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4916 } else 4917 BUG_ON(parent > 0); 4918 4919 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4920 extent_op = btrfs_alloc_delayed_extent_op(); 4921 if (!extent_op) { 4922 ret = -ENOMEM; 4923 goto out_free_buf; 4924 } 4925 if (key) 4926 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4927 else 4928 memset(&extent_op->key, 0, sizeof(extent_op->key)); 4929 extent_op->flags_to_set = flags; 4930 extent_op->update_key = skinny_metadata ? false : true; 4931 extent_op->update_flags = true; 4932 extent_op->is_data = false; 4933 extent_op->level = level; 4934 4935 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4936 ins.objectid, ins.offset, parent); 4937 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 4938 root->root_key.objectid, false); 4939 btrfs_ref_tree_mod(fs_info, &generic_ref); 4940 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 4941 if (ret) 4942 goto out_free_delayed; 4943 } 4944 return buf; 4945 4946 out_free_delayed: 4947 btrfs_free_delayed_extent_op(extent_op); 4948 out_free_buf: 4949 btrfs_tree_unlock(buf); 4950 free_extent_buffer(buf); 4951 out_free_reserved: 4952 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 4953 out_unuse: 4954 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 4955 return ERR_PTR(ret); 4956 } 4957 4958 struct walk_control { 4959 u64 refs[BTRFS_MAX_LEVEL]; 4960 u64 flags[BTRFS_MAX_LEVEL]; 4961 struct btrfs_key update_progress; 4962 struct btrfs_key drop_progress; 4963 int drop_level; 4964 int stage; 4965 int level; 4966 int shared_level; 4967 int update_ref; 4968 int keep_locks; 4969 int reada_slot; 4970 int reada_count; 4971 int restarted; 4972 }; 4973 4974 #define DROP_REFERENCE 1 4975 #define UPDATE_BACKREF 2 4976 4977 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 4978 struct btrfs_root *root, 4979 struct walk_control *wc, 4980 struct btrfs_path *path) 4981 { 4982 struct btrfs_fs_info *fs_info = root->fs_info; 4983 u64 bytenr; 4984 u64 generation; 4985 u64 refs; 4986 u64 flags; 4987 u32 nritems; 4988 struct btrfs_key key; 4989 struct extent_buffer *eb; 4990 int ret; 4991 int slot; 4992 int nread = 0; 4993 4994 if (path->slots[wc->level] < wc->reada_slot) { 4995 wc->reada_count = wc->reada_count * 2 / 3; 4996 wc->reada_count = max(wc->reada_count, 2); 4997 } else { 4998 wc->reada_count = wc->reada_count * 3 / 2; 4999 wc->reada_count = min_t(int, wc->reada_count, 5000 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5001 } 5002 5003 eb = path->nodes[wc->level]; 5004 nritems = btrfs_header_nritems(eb); 5005 5006 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5007 if (nread >= wc->reada_count) 5008 break; 5009 5010 cond_resched(); 5011 bytenr = btrfs_node_blockptr(eb, slot); 5012 generation = btrfs_node_ptr_generation(eb, slot); 5013 5014 if (slot == path->slots[wc->level]) 5015 goto reada; 5016 5017 if (wc->stage == UPDATE_BACKREF && 5018 generation <= root->root_key.offset) 5019 continue; 5020 5021 /* We don't lock the tree block, it's OK to be racy here */ 5022 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5023 wc->level - 1, 1, &refs, 5024 &flags); 5025 /* We don't care about errors in readahead. */ 5026 if (ret < 0) 5027 continue; 5028 BUG_ON(refs == 0); 5029 5030 if (wc->stage == DROP_REFERENCE) { 5031 if (refs == 1) 5032 goto reada; 5033 5034 if (wc->level == 1 && 5035 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5036 continue; 5037 if (!wc->update_ref || 5038 generation <= root->root_key.offset) 5039 continue; 5040 btrfs_node_key_to_cpu(eb, &key, slot); 5041 ret = btrfs_comp_cpu_keys(&key, 5042 &wc->update_progress); 5043 if (ret < 0) 5044 continue; 5045 } else { 5046 if (wc->level == 1 && 5047 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5048 continue; 5049 } 5050 reada: 5051 btrfs_readahead_node_child(eb, slot); 5052 nread++; 5053 } 5054 wc->reada_slot = slot; 5055 } 5056 5057 /* 5058 * helper to process tree block while walking down the tree. 5059 * 5060 * when wc->stage == UPDATE_BACKREF, this function updates 5061 * back refs for pointers in the block. 5062 * 5063 * NOTE: return value 1 means we should stop walking down. 5064 */ 5065 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5066 struct btrfs_root *root, 5067 struct btrfs_path *path, 5068 struct walk_control *wc, int lookup_info) 5069 { 5070 struct btrfs_fs_info *fs_info = root->fs_info; 5071 int level = wc->level; 5072 struct extent_buffer *eb = path->nodes[level]; 5073 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5074 int ret; 5075 5076 if (wc->stage == UPDATE_BACKREF && 5077 btrfs_header_owner(eb) != root->root_key.objectid) 5078 return 1; 5079 5080 /* 5081 * when reference count of tree block is 1, it won't increase 5082 * again. once full backref flag is set, we never clear it. 5083 */ 5084 if (lookup_info && 5085 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5086 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5087 BUG_ON(!path->locks[level]); 5088 ret = btrfs_lookup_extent_info(trans, fs_info, 5089 eb->start, level, 1, 5090 &wc->refs[level], 5091 &wc->flags[level]); 5092 BUG_ON(ret == -ENOMEM); 5093 if (ret) 5094 return ret; 5095 BUG_ON(wc->refs[level] == 0); 5096 } 5097 5098 if (wc->stage == DROP_REFERENCE) { 5099 if (wc->refs[level] > 1) 5100 return 1; 5101 5102 if (path->locks[level] && !wc->keep_locks) { 5103 btrfs_tree_unlock_rw(eb, path->locks[level]); 5104 path->locks[level] = 0; 5105 } 5106 return 0; 5107 } 5108 5109 /* wc->stage == UPDATE_BACKREF */ 5110 if (!(wc->flags[level] & flag)) { 5111 BUG_ON(!path->locks[level]); 5112 ret = btrfs_inc_ref(trans, root, eb, 1); 5113 BUG_ON(ret); /* -ENOMEM */ 5114 ret = btrfs_dec_ref(trans, root, eb, 0); 5115 BUG_ON(ret); /* -ENOMEM */ 5116 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5117 btrfs_header_level(eb), 0); 5118 BUG_ON(ret); /* -ENOMEM */ 5119 wc->flags[level] |= flag; 5120 } 5121 5122 /* 5123 * the block is shared by multiple trees, so it's not good to 5124 * keep the tree lock 5125 */ 5126 if (path->locks[level] && level > 0) { 5127 btrfs_tree_unlock_rw(eb, path->locks[level]); 5128 path->locks[level] = 0; 5129 } 5130 return 0; 5131 } 5132 5133 /* 5134 * This is used to verify a ref exists for this root to deal with a bug where we 5135 * would have a drop_progress key that hadn't been updated properly. 5136 */ 5137 static int check_ref_exists(struct btrfs_trans_handle *trans, 5138 struct btrfs_root *root, u64 bytenr, u64 parent, 5139 int level) 5140 { 5141 struct btrfs_path *path; 5142 struct btrfs_extent_inline_ref *iref; 5143 int ret; 5144 5145 path = btrfs_alloc_path(); 5146 if (!path) 5147 return -ENOMEM; 5148 5149 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5150 root->fs_info->nodesize, parent, 5151 root->root_key.objectid, level, 0); 5152 btrfs_free_path(path); 5153 if (ret == -ENOENT) 5154 return 0; 5155 if (ret < 0) 5156 return ret; 5157 return 1; 5158 } 5159 5160 /* 5161 * helper to process tree block pointer. 5162 * 5163 * when wc->stage == DROP_REFERENCE, this function checks 5164 * reference count of the block pointed to. if the block 5165 * is shared and we need update back refs for the subtree 5166 * rooted at the block, this function changes wc->stage to 5167 * UPDATE_BACKREF. if the block is shared and there is no 5168 * need to update back, this function drops the reference 5169 * to the block. 5170 * 5171 * NOTE: return value 1 means we should stop walking down. 5172 */ 5173 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5174 struct btrfs_root *root, 5175 struct btrfs_path *path, 5176 struct walk_control *wc, int *lookup_info) 5177 { 5178 struct btrfs_fs_info *fs_info = root->fs_info; 5179 u64 bytenr; 5180 u64 generation; 5181 u64 parent; 5182 struct btrfs_key key; 5183 struct btrfs_key first_key; 5184 struct btrfs_ref ref = { 0 }; 5185 struct extent_buffer *next; 5186 int level = wc->level; 5187 int reada = 0; 5188 int ret = 0; 5189 bool need_account = false; 5190 5191 generation = btrfs_node_ptr_generation(path->nodes[level], 5192 path->slots[level]); 5193 /* 5194 * if the lower level block was created before the snapshot 5195 * was created, we know there is no need to update back refs 5196 * for the subtree 5197 */ 5198 if (wc->stage == UPDATE_BACKREF && 5199 generation <= root->root_key.offset) { 5200 *lookup_info = 1; 5201 return 1; 5202 } 5203 5204 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5205 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5206 path->slots[level]); 5207 5208 next = find_extent_buffer(fs_info, bytenr); 5209 if (!next) { 5210 next = btrfs_find_create_tree_block(fs_info, bytenr, 5211 root->root_key.objectid, level - 1); 5212 if (IS_ERR(next)) 5213 return PTR_ERR(next); 5214 reada = 1; 5215 } 5216 btrfs_tree_lock(next); 5217 5218 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5219 &wc->refs[level - 1], 5220 &wc->flags[level - 1]); 5221 if (ret < 0) 5222 goto out_unlock; 5223 5224 if (unlikely(wc->refs[level - 1] == 0)) { 5225 btrfs_err(fs_info, "Missing references."); 5226 ret = -EIO; 5227 goto out_unlock; 5228 } 5229 *lookup_info = 0; 5230 5231 if (wc->stage == DROP_REFERENCE) { 5232 if (wc->refs[level - 1] > 1) { 5233 need_account = true; 5234 if (level == 1 && 5235 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5236 goto skip; 5237 5238 if (!wc->update_ref || 5239 generation <= root->root_key.offset) 5240 goto skip; 5241 5242 btrfs_node_key_to_cpu(path->nodes[level], &key, 5243 path->slots[level]); 5244 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5245 if (ret < 0) 5246 goto skip; 5247 5248 wc->stage = UPDATE_BACKREF; 5249 wc->shared_level = level - 1; 5250 } 5251 } else { 5252 if (level == 1 && 5253 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5254 goto skip; 5255 } 5256 5257 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5258 btrfs_tree_unlock(next); 5259 free_extent_buffer(next); 5260 next = NULL; 5261 *lookup_info = 1; 5262 } 5263 5264 if (!next) { 5265 if (reada && level == 1) 5266 reada_walk_down(trans, root, wc, path); 5267 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5268 generation, level - 1, &first_key); 5269 if (IS_ERR(next)) { 5270 return PTR_ERR(next); 5271 } else if (!extent_buffer_uptodate(next)) { 5272 free_extent_buffer(next); 5273 return -EIO; 5274 } 5275 btrfs_tree_lock(next); 5276 } 5277 5278 level--; 5279 ASSERT(level == btrfs_header_level(next)); 5280 if (level != btrfs_header_level(next)) { 5281 btrfs_err(root->fs_info, "mismatched level"); 5282 ret = -EIO; 5283 goto out_unlock; 5284 } 5285 path->nodes[level] = next; 5286 path->slots[level] = 0; 5287 path->locks[level] = BTRFS_WRITE_LOCK; 5288 wc->level = level; 5289 if (wc->level == 1) 5290 wc->reada_slot = 0; 5291 return 0; 5292 skip: 5293 wc->refs[level - 1] = 0; 5294 wc->flags[level - 1] = 0; 5295 if (wc->stage == DROP_REFERENCE) { 5296 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5297 parent = path->nodes[level]->start; 5298 } else { 5299 ASSERT(root->root_key.objectid == 5300 btrfs_header_owner(path->nodes[level])); 5301 if (root->root_key.objectid != 5302 btrfs_header_owner(path->nodes[level])) { 5303 btrfs_err(root->fs_info, 5304 "mismatched block owner"); 5305 ret = -EIO; 5306 goto out_unlock; 5307 } 5308 parent = 0; 5309 } 5310 5311 /* 5312 * If we had a drop_progress we need to verify the refs are set 5313 * as expected. If we find our ref then we know that from here 5314 * on out everything should be correct, and we can clear the 5315 * ->restarted flag. 5316 */ 5317 if (wc->restarted) { 5318 ret = check_ref_exists(trans, root, bytenr, parent, 5319 level - 1); 5320 if (ret < 0) 5321 goto out_unlock; 5322 if (ret == 0) 5323 goto no_delete; 5324 ret = 0; 5325 wc->restarted = 0; 5326 } 5327 5328 /* 5329 * Reloc tree doesn't contribute to qgroup numbers, and we have 5330 * already accounted them at merge time (replace_path), 5331 * thus we could skip expensive subtree trace here. 5332 */ 5333 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5334 need_account) { 5335 ret = btrfs_qgroup_trace_subtree(trans, next, 5336 generation, level - 1); 5337 if (ret) { 5338 btrfs_err_rl(fs_info, 5339 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5340 ret); 5341 } 5342 } 5343 5344 /* 5345 * We need to update the next key in our walk control so we can 5346 * update the drop_progress key accordingly. We don't care if 5347 * find_next_key doesn't find a key because that means we're at 5348 * the end and are going to clean up now. 5349 */ 5350 wc->drop_level = level; 5351 find_next_key(path, level, &wc->drop_progress); 5352 5353 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5354 fs_info->nodesize, parent); 5355 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5356 0, false); 5357 ret = btrfs_free_extent(trans, &ref); 5358 if (ret) 5359 goto out_unlock; 5360 } 5361 no_delete: 5362 *lookup_info = 1; 5363 ret = 1; 5364 5365 out_unlock: 5366 btrfs_tree_unlock(next); 5367 free_extent_buffer(next); 5368 5369 return ret; 5370 } 5371 5372 /* 5373 * helper to process tree block while walking up the tree. 5374 * 5375 * when wc->stage == DROP_REFERENCE, this function drops 5376 * reference count on the block. 5377 * 5378 * when wc->stage == UPDATE_BACKREF, this function changes 5379 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5380 * to UPDATE_BACKREF previously while processing the block. 5381 * 5382 * NOTE: return value 1 means we should stop walking up. 5383 */ 5384 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5385 struct btrfs_root *root, 5386 struct btrfs_path *path, 5387 struct walk_control *wc) 5388 { 5389 struct btrfs_fs_info *fs_info = root->fs_info; 5390 int ret; 5391 int level = wc->level; 5392 struct extent_buffer *eb = path->nodes[level]; 5393 u64 parent = 0; 5394 5395 if (wc->stage == UPDATE_BACKREF) { 5396 BUG_ON(wc->shared_level < level); 5397 if (level < wc->shared_level) 5398 goto out; 5399 5400 ret = find_next_key(path, level + 1, &wc->update_progress); 5401 if (ret > 0) 5402 wc->update_ref = 0; 5403 5404 wc->stage = DROP_REFERENCE; 5405 wc->shared_level = -1; 5406 path->slots[level] = 0; 5407 5408 /* 5409 * check reference count again if the block isn't locked. 5410 * we should start walking down the tree again if reference 5411 * count is one. 5412 */ 5413 if (!path->locks[level]) { 5414 BUG_ON(level == 0); 5415 btrfs_tree_lock(eb); 5416 path->locks[level] = BTRFS_WRITE_LOCK; 5417 5418 ret = btrfs_lookup_extent_info(trans, fs_info, 5419 eb->start, level, 1, 5420 &wc->refs[level], 5421 &wc->flags[level]); 5422 if (ret < 0) { 5423 btrfs_tree_unlock_rw(eb, path->locks[level]); 5424 path->locks[level] = 0; 5425 return ret; 5426 } 5427 BUG_ON(wc->refs[level] == 0); 5428 if (wc->refs[level] == 1) { 5429 btrfs_tree_unlock_rw(eb, path->locks[level]); 5430 path->locks[level] = 0; 5431 return 1; 5432 } 5433 } 5434 } 5435 5436 /* wc->stage == DROP_REFERENCE */ 5437 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5438 5439 if (wc->refs[level] == 1) { 5440 if (level == 0) { 5441 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5442 ret = btrfs_dec_ref(trans, root, eb, 1); 5443 else 5444 ret = btrfs_dec_ref(trans, root, eb, 0); 5445 BUG_ON(ret); /* -ENOMEM */ 5446 if (is_fstree(root->root_key.objectid)) { 5447 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5448 if (ret) { 5449 btrfs_err_rl(fs_info, 5450 "error %d accounting leaf items, quota is out of sync, rescan required", 5451 ret); 5452 } 5453 } 5454 } 5455 /* make block locked assertion in btrfs_clean_tree_block happy */ 5456 if (!path->locks[level] && 5457 btrfs_header_generation(eb) == trans->transid) { 5458 btrfs_tree_lock(eb); 5459 path->locks[level] = BTRFS_WRITE_LOCK; 5460 } 5461 btrfs_clean_tree_block(eb); 5462 } 5463 5464 if (eb == root->node) { 5465 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5466 parent = eb->start; 5467 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5468 goto owner_mismatch; 5469 } else { 5470 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5471 parent = path->nodes[level + 1]->start; 5472 else if (root->root_key.objectid != 5473 btrfs_header_owner(path->nodes[level + 1])) 5474 goto owner_mismatch; 5475 } 5476 5477 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5478 wc->refs[level] == 1); 5479 out: 5480 wc->refs[level] = 0; 5481 wc->flags[level] = 0; 5482 return 0; 5483 5484 owner_mismatch: 5485 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5486 btrfs_header_owner(eb), root->root_key.objectid); 5487 return -EUCLEAN; 5488 } 5489 5490 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5491 struct btrfs_root *root, 5492 struct btrfs_path *path, 5493 struct walk_control *wc) 5494 { 5495 int level = wc->level; 5496 int lookup_info = 1; 5497 int ret; 5498 5499 while (level >= 0) { 5500 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5501 if (ret > 0) 5502 break; 5503 5504 if (level == 0) 5505 break; 5506 5507 if (path->slots[level] >= 5508 btrfs_header_nritems(path->nodes[level])) 5509 break; 5510 5511 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5512 if (ret > 0) { 5513 path->slots[level]++; 5514 continue; 5515 } else if (ret < 0) 5516 return ret; 5517 level = wc->level; 5518 } 5519 return 0; 5520 } 5521 5522 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5523 struct btrfs_root *root, 5524 struct btrfs_path *path, 5525 struct walk_control *wc, int max_level) 5526 { 5527 int level = wc->level; 5528 int ret; 5529 5530 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5531 while (level < max_level && path->nodes[level]) { 5532 wc->level = level; 5533 if (path->slots[level] + 1 < 5534 btrfs_header_nritems(path->nodes[level])) { 5535 path->slots[level]++; 5536 return 0; 5537 } else { 5538 ret = walk_up_proc(trans, root, path, wc); 5539 if (ret > 0) 5540 return 0; 5541 if (ret < 0) 5542 return ret; 5543 5544 if (path->locks[level]) { 5545 btrfs_tree_unlock_rw(path->nodes[level], 5546 path->locks[level]); 5547 path->locks[level] = 0; 5548 } 5549 free_extent_buffer(path->nodes[level]); 5550 path->nodes[level] = NULL; 5551 level++; 5552 } 5553 } 5554 return 1; 5555 } 5556 5557 /* 5558 * drop a subvolume tree. 5559 * 5560 * this function traverses the tree freeing any blocks that only 5561 * referenced by the tree. 5562 * 5563 * when a shared tree block is found. this function decreases its 5564 * reference count by one. if update_ref is true, this function 5565 * also make sure backrefs for the shared block and all lower level 5566 * blocks are properly updated. 5567 * 5568 * If called with for_reloc == 0, may exit early with -EAGAIN 5569 */ 5570 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5571 { 5572 struct btrfs_fs_info *fs_info = root->fs_info; 5573 struct btrfs_path *path; 5574 struct btrfs_trans_handle *trans; 5575 struct btrfs_root *tree_root = fs_info->tree_root; 5576 struct btrfs_root_item *root_item = &root->root_item; 5577 struct walk_control *wc; 5578 struct btrfs_key key; 5579 int err = 0; 5580 int ret; 5581 int level; 5582 bool root_dropped = false; 5583 5584 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5585 5586 path = btrfs_alloc_path(); 5587 if (!path) { 5588 err = -ENOMEM; 5589 goto out; 5590 } 5591 5592 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5593 if (!wc) { 5594 btrfs_free_path(path); 5595 err = -ENOMEM; 5596 goto out; 5597 } 5598 5599 /* 5600 * Use join to avoid potential EINTR from transaction start. See 5601 * wait_reserve_ticket and the whole reservation callchain. 5602 */ 5603 if (for_reloc) 5604 trans = btrfs_join_transaction(tree_root); 5605 else 5606 trans = btrfs_start_transaction(tree_root, 0); 5607 if (IS_ERR(trans)) { 5608 err = PTR_ERR(trans); 5609 goto out_free; 5610 } 5611 5612 err = btrfs_run_delayed_items(trans); 5613 if (err) 5614 goto out_end_trans; 5615 5616 /* 5617 * This will help us catch people modifying the fs tree while we're 5618 * dropping it. It is unsafe to mess with the fs tree while it's being 5619 * dropped as we unlock the root node and parent nodes as we walk down 5620 * the tree, assuming nothing will change. If something does change 5621 * then we'll have stale information and drop references to blocks we've 5622 * already dropped. 5623 */ 5624 set_bit(BTRFS_ROOT_DELETING, &root->state); 5625 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5626 level = btrfs_header_level(root->node); 5627 path->nodes[level] = btrfs_lock_root_node(root); 5628 path->slots[level] = 0; 5629 path->locks[level] = BTRFS_WRITE_LOCK; 5630 memset(&wc->update_progress, 0, 5631 sizeof(wc->update_progress)); 5632 } else { 5633 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5634 memcpy(&wc->update_progress, &key, 5635 sizeof(wc->update_progress)); 5636 5637 level = btrfs_root_drop_level(root_item); 5638 BUG_ON(level == 0); 5639 path->lowest_level = level; 5640 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5641 path->lowest_level = 0; 5642 if (ret < 0) { 5643 err = ret; 5644 goto out_end_trans; 5645 } 5646 WARN_ON(ret > 0); 5647 5648 /* 5649 * unlock our path, this is safe because only this 5650 * function is allowed to delete this snapshot 5651 */ 5652 btrfs_unlock_up_safe(path, 0); 5653 5654 level = btrfs_header_level(root->node); 5655 while (1) { 5656 btrfs_tree_lock(path->nodes[level]); 5657 path->locks[level] = BTRFS_WRITE_LOCK; 5658 5659 ret = btrfs_lookup_extent_info(trans, fs_info, 5660 path->nodes[level]->start, 5661 level, 1, &wc->refs[level], 5662 &wc->flags[level]); 5663 if (ret < 0) { 5664 err = ret; 5665 goto out_end_trans; 5666 } 5667 BUG_ON(wc->refs[level] == 0); 5668 5669 if (level == btrfs_root_drop_level(root_item)) 5670 break; 5671 5672 btrfs_tree_unlock(path->nodes[level]); 5673 path->locks[level] = 0; 5674 WARN_ON(wc->refs[level] != 1); 5675 level--; 5676 } 5677 } 5678 5679 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5680 wc->level = level; 5681 wc->shared_level = -1; 5682 wc->stage = DROP_REFERENCE; 5683 wc->update_ref = update_ref; 5684 wc->keep_locks = 0; 5685 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5686 5687 while (1) { 5688 5689 ret = walk_down_tree(trans, root, path, wc); 5690 if (ret < 0) { 5691 err = ret; 5692 break; 5693 } 5694 5695 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5696 if (ret < 0) { 5697 err = ret; 5698 break; 5699 } 5700 5701 if (ret > 0) { 5702 BUG_ON(wc->stage != DROP_REFERENCE); 5703 break; 5704 } 5705 5706 if (wc->stage == DROP_REFERENCE) { 5707 wc->drop_level = wc->level; 5708 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5709 &wc->drop_progress, 5710 path->slots[wc->drop_level]); 5711 } 5712 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5713 &wc->drop_progress); 5714 btrfs_set_root_drop_level(root_item, wc->drop_level); 5715 5716 BUG_ON(wc->level == 0); 5717 if (btrfs_should_end_transaction(trans) || 5718 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5719 ret = btrfs_update_root(trans, tree_root, 5720 &root->root_key, 5721 root_item); 5722 if (ret) { 5723 btrfs_abort_transaction(trans, ret); 5724 err = ret; 5725 goto out_end_trans; 5726 } 5727 5728 btrfs_end_transaction_throttle(trans); 5729 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5730 btrfs_debug(fs_info, 5731 "drop snapshot early exit"); 5732 err = -EAGAIN; 5733 goto out_free; 5734 } 5735 5736 /* 5737 * Use join to avoid potential EINTR from transaction 5738 * start. See wait_reserve_ticket and the whole 5739 * reservation callchain. 5740 */ 5741 if (for_reloc) 5742 trans = btrfs_join_transaction(tree_root); 5743 else 5744 trans = btrfs_start_transaction(tree_root, 0); 5745 if (IS_ERR(trans)) { 5746 err = PTR_ERR(trans); 5747 goto out_free; 5748 } 5749 } 5750 } 5751 btrfs_release_path(path); 5752 if (err) 5753 goto out_end_trans; 5754 5755 ret = btrfs_del_root(trans, &root->root_key); 5756 if (ret) { 5757 btrfs_abort_transaction(trans, ret); 5758 err = ret; 5759 goto out_end_trans; 5760 } 5761 5762 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5763 ret = btrfs_find_root(tree_root, &root->root_key, path, 5764 NULL, NULL); 5765 if (ret < 0) { 5766 btrfs_abort_transaction(trans, ret); 5767 err = ret; 5768 goto out_end_trans; 5769 } else if (ret > 0) { 5770 /* if we fail to delete the orphan item this time 5771 * around, it'll get picked up the next time. 5772 * 5773 * The most common failure here is just -ENOENT. 5774 */ 5775 btrfs_del_orphan_item(trans, tree_root, 5776 root->root_key.objectid); 5777 } 5778 } 5779 5780 /* 5781 * This subvolume is going to be completely dropped, and won't be 5782 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5783 * commit transaction time. So free it here manually. 5784 */ 5785 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5786 btrfs_qgroup_free_meta_all_pertrans(root); 5787 5788 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5789 btrfs_add_dropped_root(trans, root); 5790 else 5791 btrfs_put_root(root); 5792 root_dropped = true; 5793 out_end_trans: 5794 btrfs_end_transaction_throttle(trans); 5795 out_free: 5796 kfree(wc); 5797 btrfs_free_path(path); 5798 out: 5799 /* 5800 * So if we need to stop dropping the snapshot for whatever reason we 5801 * need to make sure to add it back to the dead root list so that we 5802 * keep trying to do the work later. This also cleans up roots if we 5803 * don't have it in the radix (like when we recover after a power fail 5804 * or unmount) so we don't leak memory. 5805 */ 5806 if (!for_reloc && !root_dropped) 5807 btrfs_add_dead_root(root); 5808 return err; 5809 } 5810 5811 /* 5812 * drop subtree rooted at tree block 'node'. 5813 * 5814 * NOTE: this function will unlock and release tree block 'node' 5815 * only used by relocation code 5816 */ 5817 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5818 struct btrfs_root *root, 5819 struct extent_buffer *node, 5820 struct extent_buffer *parent) 5821 { 5822 struct btrfs_fs_info *fs_info = root->fs_info; 5823 struct btrfs_path *path; 5824 struct walk_control *wc; 5825 int level; 5826 int parent_level; 5827 int ret = 0; 5828 int wret; 5829 5830 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5831 5832 path = btrfs_alloc_path(); 5833 if (!path) 5834 return -ENOMEM; 5835 5836 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5837 if (!wc) { 5838 btrfs_free_path(path); 5839 return -ENOMEM; 5840 } 5841 5842 btrfs_assert_tree_write_locked(parent); 5843 parent_level = btrfs_header_level(parent); 5844 atomic_inc(&parent->refs); 5845 path->nodes[parent_level] = parent; 5846 path->slots[parent_level] = btrfs_header_nritems(parent); 5847 5848 btrfs_assert_tree_write_locked(node); 5849 level = btrfs_header_level(node); 5850 path->nodes[level] = node; 5851 path->slots[level] = 0; 5852 path->locks[level] = BTRFS_WRITE_LOCK; 5853 5854 wc->refs[parent_level] = 1; 5855 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5856 wc->level = level; 5857 wc->shared_level = -1; 5858 wc->stage = DROP_REFERENCE; 5859 wc->update_ref = 0; 5860 wc->keep_locks = 1; 5861 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5862 5863 while (1) { 5864 wret = walk_down_tree(trans, root, path, wc); 5865 if (wret < 0) { 5866 ret = wret; 5867 break; 5868 } 5869 5870 wret = walk_up_tree(trans, root, path, wc, parent_level); 5871 if (wret < 0) 5872 ret = wret; 5873 if (wret != 0) 5874 break; 5875 } 5876 5877 kfree(wc); 5878 btrfs_free_path(path); 5879 return ret; 5880 } 5881 5882 /* 5883 * helper to account the unused space of all the readonly block group in the 5884 * space_info. takes mirrors into account. 5885 */ 5886 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5887 { 5888 struct btrfs_block_group *block_group; 5889 u64 free_bytes = 0; 5890 int factor; 5891 5892 /* It's df, we don't care if it's racy */ 5893 if (list_empty(&sinfo->ro_bgs)) 5894 return 0; 5895 5896 spin_lock(&sinfo->lock); 5897 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5898 spin_lock(&block_group->lock); 5899 5900 if (!block_group->ro) { 5901 spin_unlock(&block_group->lock); 5902 continue; 5903 } 5904 5905 factor = btrfs_bg_type_to_factor(block_group->flags); 5906 free_bytes += (block_group->length - 5907 block_group->used) * factor; 5908 5909 spin_unlock(&block_group->lock); 5910 } 5911 spin_unlock(&sinfo->lock); 5912 5913 return free_bytes; 5914 } 5915 5916 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5917 u64 start, u64 end) 5918 { 5919 return unpin_extent_range(fs_info, start, end, false); 5920 } 5921 5922 /* 5923 * It used to be that old block groups would be left around forever. 5924 * Iterating over them would be enough to trim unused space. Since we 5925 * now automatically remove them, we also need to iterate over unallocated 5926 * space. 5927 * 5928 * We don't want a transaction for this since the discard may take a 5929 * substantial amount of time. We don't require that a transaction be 5930 * running, but we do need to take a running transaction into account 5931 * to ensure that we're not discarding chunks that were released or 5932 * allocated in the current transaction. 5933 * 5934 * Holding the chunks lock will prevent other threads from allocating 5935 * or releasing chunks, but it won't prevent a running transaction 5936 * from committing and releasing the memory that the pending chunks 5937 * list head uses. For that, we need to take a reference to the 5938 * transaction and hold the commit root sem. We only need to hold 5939 * it while performing the free space search since we have already 5940 * held back allocations. 5941 */ 5942 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 5943 { 5944 u64 start = SZ_1M, len = 0, end = 0; 5945 int ret; 5946 5947 *trimmed = 0; 5948 5949 /* Discard not supported = nothing to do. */ 5950 if (!blk_queue_discard(bdev_get_queue(device->bdev))) 5951 return 0; 5952 5953 /* Not writable = nothing to do. */ 5954 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 5955 return 0; 5956 5957 /* No free space = nothing to do. */ 5958 if (device->total_bytes <= device->bytes_used) 5959 return 0; 5960 5961 ret = 0; 5962 5963 while (1) { 5964 struct btrfs_fs_info *fs_info = device->fs_info; 5965 u64 bytes; 5966 5967 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 5968 if (ret) 5969 break; 5970 5971 find_first_clear_extent_bit(&device->alloc_state, start, 5972 &start, &end, 5973 CHUNK_TRIMMED | CHUNK_ALLOCATED); 5974 5975 /* Check if there are any CHUNK_* bits left */ 5976 if (start > device->total_bytes) { 5977 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 5978 btrfs_warn_in_rcu(fs_info, 5979 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 5980 start, end - start + 1, 5981 rcu_str_deref(device->name), 5982 device->total_bytes); 5983 mutex_unlock(&fs_info->chunk_mutex); 5984 ret = 0; 5985 break; 5986 } 5987 5988 /* Ensure we skip the reserved area in the first 1M */ 5989 start = max_t(u64, start, SZ_1M); 5990 5991 /* 5992 * If find_first_clear_extent_bit find a range that spans the 5993 * end of the device it will set end to -1, in this case it's up 5994 * to the caller to trim the value to the size of the device. 5995 */ 5996 end = min(end, device->total_bytes - 1); 5997 5998 len = end - start + 1; 5999 6000 /* We didn't find any extents */ 6001 if (!len) { 6002 mutex_unlock(&fs_info->chunk_mutex); 6003 ret = 0; 6004 break; 6005 } 6006 6007 ret = btrfs_issue_discard(device->bdev, start, len, 6008 &bytes); 6009 if (!ret) 6010 set_extent_bits(&device->alloc_state, start, 6011 start + bytes - 1, 6012 CHUNK_TRIMMED); 6013 mutex_unlock(&fs_info->chunk_mutex); 6014 6015 if (ret) 6016 break; 6017 6018 start += len; 6019 *trimmed += bytes; 6020 6021 if (fatal_signal_pending(current)) { 6022 ret = -ERESTARTSYS; 6023 break; 6024 } 6025 6026 cond_resched(); 6027 } 6028 6029 return ret; 6030 } 6031 6032 /* 6033 * Trim the whole filesystem by: 6034 * 1) trimming the free space in each block group 6035 * 2) trimming the unallocated space on each device 6036 * 6037 * This will also continue trimming even if a block group or device encounters 6038 * an error. The return value will be the last error, or 0 if nothing bad 6039 * happens. 6040 */ 6041 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6042 { 6043 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6044 struct btrfs_block_group *cache = NULL; 6045 struct btrfs_device *device; 6046 u64 group_trimmed; 6047 u64 range_end = U64_MAX; 6048 u64 start; 6049 u64 end; 6050 u64 trimmed = 0; 6051 u64 bg_failed = 0; 6052 u64 dev_failed = 0; 6053 int bg_ret = 0; 6054 int dev_ret = 0; 6055 int ret = 0; 6056 6057 if (range->start == U64_MAX) 6058 return -EINVAL; 6059 6060 /* 6061 * Check range overflow if range->len is set. 6062 * The default range->len is U64_MAX. 6063 */ 6064 if (range->len != U64_MAX && 6065 check_add_overflow(range->start, range->len, &range_end)) 6066 return -EINVAL; 6067 6068 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6069 for (; cache; cache = btrfs_next_block_group(cache)) { 6070 if (cache->start >= range_end) { 6071 btrfs_put_block_group(cache); 6072 break; 6073 } 6074 6075 start = max(range->start, cache->start); 6076 end = min(range_end, cache->start + cache->length); 6077 6078 if (end - start >= range->minlen) { 6079 if (!btrfs_block_group_done(cache)) { 6080 ret = btrfs_cache_block_group(cache, 0); 6081 if (ret) { 6082 bg_failed++; 6083 bg_ret = ret; 6084 continue; 6085 } 6086 ret = btrfs_wait_block_group_cache_done(cache); 6087 if (ret) { 6088 bg_failed++; 6089 bg_ret = ret; 6090 continue; 6091 } 6092 } 6093 ret = btrfs_trim_block_group(cache, 6094 &group_trimmed, 6095 start, 6096 end, 6097 range->minlen); 6098 6099 trimmed += group_trimmed; 6100 if (ret) { 6101 bg_failed++; 6102 bg_ret = ret; 6103 continue; 6104 } 6105 } 6106 } 6107 6108 if (bg_failed) 6109 btrfs_warn(fs_info, 6110 "failed to trim %llu block group(s), last error %d", 6111 bg_failed, bg_ret); 6112 6113 mutex_lock(&fs_devices->device_list_mutex); 6114 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6115 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6116 continue; 6117 6118 ret = btrfs_trim_free_extents(device, &group_trimmed); 6119 if (ret) { 6120 dev_failed++; 6121 dev_ret = ret; 6122 break; 6123 } 6124 6125 trimmed += group_trimmed; 6126 } 6127 mutex_unlock(&fs_devices->device_list_mutex); 6128 6129 if (dev_failed) 6130 btrfs_warn(fs_info, 6131 "failed to trim %llu device(s), last error %d", 6132 dev_failed, dev_ret); 6133 range->len = trimmed; 6134 if (bg_ret) 6135 return bg_ret; 6136 return dev_ret; 6137 } 6138