xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 8c2a3ca20f6233677ac3222c6506174010eb414f)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 
37 /* control flags for do_chunk_alloc's force field
38  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
39  * if we really need one.
40  *
41  * CHUNK_ALLOC_FORCE means it must try to allocate one
42  *
43  * CHUNK_ALLOC_LIMITED means to only try and allocate one
44  * if we have very few chunks already allocated.  This is
45  * used as part of the clustering code to help make sure
46  * we have a good pool of storage to cluster in, without
47  * filling the FS with empty chunks
48  *
49  */
50 enum {
51 	CHUNK_ALLOC_NO_FORCE = 0,
52 	CHUNK_ALLOC_FORCE = 1,
53 	CHUNK_ALLOC_LIMITED = 2,
54 };
55 
56 /*
57  * Control how reservations are dealt with.
58  *
59  * RESERVE_FREE - freeing a reservation.
60  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
61  *   ENOSPC accounting
62  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
63  *   bytes_may_use as the ENOSPC accounting is done elsewhere
64  */
65 enum {
66 	RESERVE_FREE = 0,
67 	RESERVE_ALLOC = 1,
68 	RESERVE_ALLOC_NO_ACCOUNT = 2,
69 };
70 
71 static int update_block_group(struct btrfs_trans_handle *trans,
72 			      struct btrfs_root *root,
73 			      u64 bytenr, u64 num_bytes, int alloc);
74 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
75 				struct btrfs_root *root,
76 				u64 bytenr, u64 num_bytes, u64 parent,
77 				u64 root_objectid, u64 owner_objectid,
78 				u64 owner_offset, int refs_to_drop,
79 				struct btrfs_delayed_extent_op *extra_op);
80 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
81 				    struct extent_buffer *leaf,
82 				    struct btrfs_extent_item *ei);
83 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84 				      struct btrfs_root *root,
85 				      u64 parent, u64 root_objectid,
86 				      u64 flags, u64 owner, u64 offset,
87 				      struct btrfs_key *ins, int ref_mod);
88 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
89 				     struct btrfs_root *root,
90 				     u64 parent, u64 root_objectid,
91 				     u64 flags, struct btrfs_disk_key *key,
92 				     int level, struct btrfs_key *ins);
93 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
94 			  struct btrfs_root *extent_root, u64 alloc_bytes,
95 			  u64 flags, int force);
96 static int find_next_key(struct btrfs_path *path, int level,
97 			 struct btrfs_key *key);
98 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
99 			    int dump_block_groups);
100 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
101 				       u64 num_bytes, int reserve);
102 
103 static noinline int
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
105 {
106 	smp_mb();
107 	return cache->cached == BTRFS_CACHE_FINISHED;
108 }
109 
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 	return (cache->flags & bits) == bits;
113 }
114 
115 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 	atomic_inc(&cache->count);
118 }
119 
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 	if (atomic_dec_and_test(&cache->count)) {
123 		WARN_ON(cache->pinned > 0);
124 		WARN_ON(cache->reserved > 0);
125 		kfree(cache->free_space_ctl);
126 		kfree(cache);
127 	}
128 }
129 
130 /*
131  * this adds the block group to the fs_info rb tree for the block group
132  * cache
133  */
134 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
135 				struct btrfs_block_group_cache *block_group)
136 {
137 	struct rb_node **p;
138 	struct rb_node *parent = NULL;
139 	struct btrfs_block_group_cache *cache;
140 
141 	spin_lock(&info->block_group_cache_lock);
142 	p = &info->block_group_cache_tree.rb_node;
143 
144 	while (*p) {
145 		parent = *p;
146 		cache = rb_entry(parent, struct btrfs_block_group_cache,
147 				 cache_node);
148 		if (block_group->key.objectid < cache->key.objectid) {
149 			p = &(*p)->rb_left;
150 		} else if (block_group->key.objectid > cache->key.objectid) {
151 			p = &(*p)->rb_right;
152 		} else {
153 			spin_unlock(&info->block_group_cache_lock);
154 			return -EEXIST;
155 		}
156 	}
157 
158 	rb_link_node(&block_group->cache_node, parent, p);
159 	rb_insert_color(&block_group->cache_node,
160 			&info->block_group_cache_tree);
161 	spin_unlock(&info->block_group_cache_lock);
162 
163 	return 0;
164 }
165 
166 /*
167  * This will return the block group at or after bytenr if contains is 0, else
168  * it will return the block group that contains the bytenr
169  */
170 static struct btrfs_block_group_cache *
171 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 			      int contains)
173 {
174 	struct btrfs_block_group_cache *cache, *ret = NULL;
175 	struct rb_node *n;
176 	u64 end, start;
177 
178 	spin_lock(&info->block_group_cache_lock);
179 	n = info->block_group_cache_tree.rb_node;
180 
181 	while (n) {
182 		cache = rb_entry(n, struct btrfs_block_group_cache,
183 				 cache_node);
184 		end = cache->key.objectid + cache->key.offset - 1;
185 		start = cache->key.objectid;
186 
187 		if (bytenr < start) {
188 			if (!contains && (!ret || start < ret->key.objectid))
189 				ret = cache;
190 			n = n->rb_left;
191 		} else if (bytenr > start) {
192 			if (contains && bytenr <= end) {
193 				ret = cache;
194 				break;
195 			}
196 			n = n->rb_right;
197 		} else {
198 			ret = cache;
199 			break;
200 		}
201 	}
202 	if (ret)
203 		btrfs_get_block_group(ret);
204 	spin_unlock(&info->block_group_cache_lock);
205 
206 	return ret;
207 }
208 
209 static int add_excluded_extent(struct btrfs_root *root,
210 			       u64 start, u64 num_bytes)
211 {
212 	u64 end = start + num_bytes - 1;
213 	set_extent_bits(&root->fs_info->freed_extents[0],
214 			start, end, EXTENT_UPTODATE, GFP_NOFS);
215 	set_extent_bits(&root->fs_info->freed_extents[1],
216 			start, end, EXTENT_UPTODATE, GFP_NOFS);
217 	return 0;
218 }
219 
220 static void free_excluded_extents(struct btrfs_root *root,
221 				  struct btrfs_block_group_cache *cache)
222 {
223 	u64 start, end;
224 
225 	start = cache->key.objectid;
226 	end = start + cache->key.offset - 1;
227 
228 	clear_extent_bits(&root->fs_info->freed_extents[0],
229 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
230 	clear_extent_bits(&root->fs_info->freed_extents[1],
231 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
232 }
233 
234 static int exclude_super_stripes(struct btrfs_root *root,
235 				 struct btrfs_block_group_cache *cache)
236 {
237 	u64 bytenr;
238 	u64 *logical;
239 	int stripe_len;
240 	int i, nr, ret;
241 
242 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 		cache->bytes_super += stripe_len;
245 		ret = add_excluded_extent(root, cache->key.objectid,
246 					  stripe_len);
247 		BUG_ON(ret);
248 	}
249 
250 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
251 		bytenr = btrfs_sb_offset(i);
252 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
253 				       cache->key.objectid, bytenr,
254 				       0, &logical, &nr, &stripe_len);
255 		BUG_ON(ret);
256 
257 		while (nr--) {
258 			cache->bytes_super += stripe_len;
259 			ret = add_excluded_extent(root, logical[nr],
260 						  stripe_len);
261 			BUG_ON(ret);
262 		}
263 
264 		kfree(logical);
265 	}
266 	return 0;
267 }
268 
269 static struct btrfs_caching_control *
270 get_caching_control(struct btrfs_block_group_cache *cache)
271 {
272 	struct btrfs_caching_control *ctl;
273 
274 	spin_lock(&cache->lock);
275 	if (cache->cached != BTRFS_CACHE_STARTED) {
276 		spin_unlock(&cache->lock);
277 		return NULL;
278 	}
279 
280 	/* We're loading it the fast way, so we don't have a caching_ctl. */
281 	if (!cache->caching_ctl) {
282 		spin_unlock(&cache->lock);
283 		return NULL;
284 	}
285 
286 	ctl = cache->caching_ctl;
287 	atomic_inc(&ctl->count);
288 	spin_unlock(&cache->lock);
289 	return ctl;
290 }
291 
292 static void put_caching_control(struct btrfs_caching_control *ctl)
293 {
294 	if (atomic_dec_and_test(&ctl->count))
295 		kfree(ctl);
296 }
297 
298 /*
299  * this is only called by cache_block_group, since we could have freed extents
300  * we need to check the pinned_extents for any extents that can't be used yet
301  * since their free space will be released as soon as the transaction commits.
302  */
303 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
304 			      struct btrfs_fs_info *info, u64 start, u64 end)
305 {
306 	u64 extent_start, extent_end, size, total_added = 0;
307 	int ret;
308 
309 	while (start < end) {
310 		ret = find_first_extent_bit(info->pinned_extents, start,
311 					    &extent_start, &extent_end,
312 					    EXTENT_DIRTY | EXTENT_UPTODATE);
313 		if (ret)
314 			break;
315 
316 		if (extent_start <= start) {
317 			start = extent_end + 1;
318 		} else if (extent_start > start && extent_start < end) {
319 			size = extent_start - start;
320 			total_added += size;
321 			ret = btrfs_add_free_space(block_group, start,
322 						   size);
323 			BUG_ON(ret);
324 			start = extent_end + 1;
325 		} else {
326 			break;
327 		}
328 	}
329 
330 	if (start < end) {
331 		size = end - start;
332 		total_added += size;
333 		ret = btrfs_add_free_space(block_group, start, size);
334 		BUG_ON(ret);
335 	}
336 
337 	return total_added;
338 }
339 
340 static noinline void caching_thread(struct btrfs_work *work)
341 {
342 	struct btrfs_block_group_cache *block_group;
343 	struct btrfs_fs_info *fs_info;
344 	struct btrfs_caching_control *caching_ctl;
345 	struct btrfs_root *extent_root;
346 	struct btrfs_path *path;
347 	struct extent_buffer *leaf;
348 	struct btrfs_key key;
349 	u64 total_found = 0;
350 	u64 last = 0;
351 	u32 nritems;
352 	int ret = 0;
353 
354 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
355 	block_group = caching_ctl->block_group;
356 	fs_info = block_group->fs_info;
357 	extent_root = fs_info->extent_root;
358 
359 	path = btrfs_alloc_path();
360 	if (!path)
361 		goto out;
362 
363 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
364 
365 	/*
366 	 * We don't want to deadlock with somebody trying to allocate a new
367 	 * extent for the extent root while also trying to search the extent
368 	 * root to add free space.  So we skip locking and search the commit
369 	 * root, since its read-only
370 	 */
371 	path->skip_locking = 1;
372 	path->search_commit_root = 1;
373 	path->reada = 1;
374 
375 	key.objectid = last;
376 	key.offset = 0;
377 	key.type = BTRFS_EXTENT_ITEM_KEY;
378 again:
379 	mutex_lock(&caching_ctl->mutex);
380 	/* need to make sure the commit_root doesn't disappear */
381 	down_read(&fs_info->extent_commit_sem);
382 
383 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
384 	if (ret < 0)
385 		goto err;
386 
387 	leaf = path->nodes[0];
388 	nritems = btrfs_header_nritems(leaf);
389 
390 	while (1) {
391 		if (btrfs_fs_closing(fs_info) > 1) {
392 			last = (u64)-1;
393 			break;
394 		}
395 
396 		if (path->slots[0] < nritems) {
397 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
398 		} else {
399 			ret = find_next_key(path, 0, &key);
400 			if (ret)
401 				break;
402 
403 			if (need_resched() ||
404 			    btrfs_next_leaf(extent_root, path)) {
405 				caching_ctl->progress = last;
406 				btrfs_release_path(path);
407 				up_read(&fs_info->extent_commit_sem);
408 				mutex_unlock(&caching_ctl->mutex);
409 				cond_resched();
410 				goto again;
411 			}
412 			leaf = path->nodes[0];
413 			nritems = btrfs_header_nritems(leaf);
414 			continue;
415 		}
416 
417 		if (key.objectid < block_group->key.objectid) {
418 			path->slots[0]++;
419 			continue;
420 		}
421 
422 		if (key.objectid >= block_group->key.objectid +
423 		    block_group->key.offset)
424 			break;
425 
426 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
427 			total_found += add_new_free_space(block_group,
428 							  fs_info, last,
429 							  key.objectid);
430 			last = key.objectid + key.offset;
431 
432 			if (total_found > (1024 * 1024 * 2)) {
433 				total_found = 0;
434 				wake_up(&caching_ctl->wait);
435 			}
436 		}
437 		path->slots[0]++;
438 	}
439 	ret = 0;
440 
441 	total_found += add_new_free_space(block_group, fs_info, last,
442 					  block_group->key.objectid +
443 					  block_group->key.offset);
444 	caching_ctl->progress = (u64)-1;
445 
446 	spin_lock(&block_group->lock);
447 	block_group->caching_ctl = NULL;
448 	block_group->cached = BTRFS_CACHE_FINISHED;
449 	spin_unlock(&block_group->lock);
450 
451 err:
452 	btrfs_free_path(path);
453 	up_read(&fs_info->extent_commit_sem);
454 
455 	free_excluded_extents(extent_root, block_group);
456 
457 	mutex_unlock(&caching_ctl->mutex);
458 out:
459 	wake_up(&caching_ctl->wait);
460 
461 	put_caching_control(caching_ctl);
462 	btrfs_put_block_group(block_group);
463 }
464 
465 static int cache_block_group(struct btrfs_block_group_cache *cache,
466 			     struct btrfs_trans_handle *trans,
467 			     struct btrfs_root *root,
468 			     int load_cache_only)
469 {
470 	DEFINE_WAIT(wait);
471 	struct btrfs_fs_info *fs_info = cache->fs_info;
472 	struct btrfs_caching_control *caching_ctl;
473 	int ret = 0;
474 
475 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
476 	BUG_ON(!caching_ctl);
477 
478 	INIT_LIST_HEAD(&caching_ctl->list);
479 	mutex_init(&caching_ctl->mutex);
480 	init_waitqueue_head(&caching_ctl->wait);
481 	caching_ctl->block_group = cache;
482 	caching_ctl->progress = cache->key.objectid;
483 	atomic_set(&caching_ctl->count, 1);
484 	caching_ctl->work.func = caching_thread;
485 
486 	spin_lock(&cache->lock);
487 	/*
488 	 * This should be a rare occasion, but this could happen I think in the
489 	 * case where one thread starts to load the space cache info, and then
490 	 * some other thread starts a transaction commit which tries to do an
491 	 * allocation while the other thread is still loading the space cache
492 	 * info.  The previous loop should have kept us from choosing this block
493 	 * group, but if we've moved to the state where we will wait on caching
494 	 * block groups we need to first check if we're doing a fast load here,
495 	 * so we can wait for it to finish, otherwise we could end up allocating
496 	 * from a block group who's cache gets evicted for one reason or
497 	 * another.
498 	 */
499 	while (cache->cached == BTRFS_CACHE_FAST) {
500 		struct btrfs_caching_control *ctl;
501 
502 		ctl = cache->caching_ctl;
503 		atomic_inc(&ctl->count);
504 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
505 		spin_unlock(&cache->lock);
506 
507 		schedule();
508 
509 		finish_wait(&ctl->wait, &wait);
510 		put_caching_control(ctl);
511 		spin_lock(&cache->lock);
512 	}
513 
514 	if (cache->cached != BTRFS_CACHE_NO) {
515 		spin_unlock(&cache->lock);
516 		kfree(caching_ctl);
517 		return 0;
518 	}
519 	WARN_ON(cache->caching_ctl);
520 	cache->caching_ctl = caching_ctl;
521 	cache->cached = BTRFS_CACHE_FAST;
522 	spin_unlock(&cache->lock);
523 
524 	/*
525 	 * We can't do the read from on-disk cache during a commit since we need
526 	 * to have the normal tree locking.  Also if we are currently trying to
527 	 * allocate blocks for the tree root we can't do the fast caching since
528 	 * we likely hold important locks.
529 	 */
530 	if (trans && (!trans->transaction->in_commit) &&
531 	    (root && root != root->fs_info->tree_root) &&
532 	    btrfs_test_opt(root, SPACE_CACHE)) {
533 		ret = load_free_space_cache(fs_info, cache);
534 
535 		spin_lock(&cache->lock);
536 		if (ret == 1) {
537 			cache->caching_ctl = NULL;
538 			cache->cached = BTRFS_CACHE_FINISHED;
539 			cache->last_byte_to_unpin = (u64)-1;
540 		} else {
541 			if (load_cache_only) {
542 				cache->caching_ctl = NULL;
543 				cache->cached = BTRFS_CACHE_NO;
544 			} else {
545 				cache->cached = BTRFS_CACHE_STARTED;
546 			}
547 		}
548 		spin_unlock(&cache->lock);
549 		wake_up(&caching_ctl->wait);
550 		if (ret == 1) {
551 			put_caching_control(caching_ctl);
552 			free_excluded_extents(fs_info->extent_root, cache);
553 			return 0;
554 		}
555 	} else {
556 		/*
557 		 * We are not going to do the fast caching, set cached to the
558 		 * appropriate value and wakeup any waiters.
559 		 */
560 		spin_lock(&cache->lock);
561 		if (load_cache_only) {
562 			cache->caching_ctl = NULL;
563 			cache->cached = BTRFS_CACHE_NO;
564 		} else {
565 			cache->cached = BTRFS_CACHE_STARTED;
566 		}
567 		spin_unlock(&cache->lock);
568 		wake_up(&caching_ctl->wait);
569 	}
570 
571 	if (load_cache_only) {
572 		put_caching_control(caching_ctl);
573 		return 0;
574 	}
575 
576 	down_write(&fs_info->extent_commit_sem);
577 	atomic_inc(&caching_ctl->count);
578 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 	up_write(&fs_info->extent_commit_sem);
580 
581 	btrfs_get_block_group(cache);
582 
583 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
584 
585 	return ret;
586 }
587 
588 /*
589  * return the block group that starts at or after bytenr
590  */
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
593 {
594 	struct btrfs_block_group_cache *cache;
595 
596 	cache = block_group_cache_tree_search(info, bytenr, 0);
597 
598 	return cache;
599 }
600 
601 /*
602  * return the block group that contains the given bytenr
603  */
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 						 struct btrfs_fs_info *info,
606 						 u64 bytenr)
607 {
608 	struct btrfs_block_group_cache *cache;
609 
610 	cache = block_group_cache_tree_search(info, bytenr, 1);
611 
612 	return cache;
613 }
614 
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 						  u64 flags)
617 {
618 	struct list_head *head = &info->space_info;
619 	struct btrfs_space_info *found;
620 
621 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
622 
623 	rcu_read_lock();
624 	list_for_each_entry_rcu(found, head, list) {
625 		if (found->flags & flags) {
626 			rcu_read_unlock();
627 			return found;
628 		}
629 	}
630 	rcu_read_unlock();
631 	return NULL;
632 }
633 
634 /*
635  * after adding space to the filesystem, we need to clear the full flags
636  * on all the space infos.
637  */
638 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
639 {
640 	struct list_head *head = &info->space_info;
641 	struct btrfs_space_info *found;
642 
643 	rcu_read_lock();
644 	list_for_each_entry_rcu(found, head, list)
645 		found->full = 0;
646 	rcu_read_unlock();
647 }
648 
649 static u64 div_factor(u64 num, int factor)
650 {
651 	if (factor == 10)
652 		return num;
653 	num *= factor;
654 	do_div(num, 10);
655 	return num;
656 }
657 
658 static u64 div_factor_fine(u64 num, int factor)
659 {
660 	if (factor == 100)
661 		return num;
662 	num *= factor;
663 	do_div(num, 100);
664 	return num;
665 }
666 
667 u64 btrfs_find_block_group(struct btrfs_root *root,
668 			   u64 search_start, u64 search_hint, int owner)
669 {
670 	struct btrfs_block_group_cache *cache;
671 	u64 used;
672 	u64 last = max(search_hint, search_start);
673 	u64 group_start = 0;
674 	int full_search = 0;
675 	int factor = 9;
676 	int wrapped = 0;
677 again:
678 	while (1) {
679 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
680 		if (!cache)
681 			break;
682 
683 		spin_lock(&cache->lock);
684 		last = cache->key.objectid + cache->key.offset;
685 		used = btrfs_block_group_used(&cache->item);
686 
687 		if ((full_search || !cache->ro) &&
688 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
689 			if (used + cache->pinned + cache->reserved <
690 			    div_factor(cache->key.offset, factor)) {
691 				group_start = cache->key.objectid;
692 				spin_unlock(&cache->lock);
693 				btrfs_put_block_group(cache);
694 				goto found;
695 			}
696 		}
697 		spin_unlock(&cache->lock);
698 		btrfs_put_block_group(cache);
699 		cond_resched();
700 	}
701 	if (!wrapped) {
702 		last = search_start;
703 		wrapped = 1;
704 		goto again;
705 	}
706 	if (!full_search && factor < 10) {
707 		last = search_start;
708 		full_search = 1;
709 		factor = 10;
710 		goto again;
711 	}
712 found:
713 	return group_start;
714 }
715 
716 /* simple helper to search for an existing extent at a given offset */
717 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
718 {
719 	int ret;
720 	struct btrfs_key key;
721 	struct btrfs_path *path;
722 
723 	path = btrfs_alloc_path();
724 	if (!path)
725 		return -ENOMEM;
726 
727 	key.objectid = start;
728 	key.offset = len;
729 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
730 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
731 				0, 0);
732 	btrfs_free_path(path);
733 	return ret;
734 }
735 
736 /*
737  * helper function to lookup reference count and flags of extent.
738  *
739  * the head node for delayed ref is used to store the sum of all the
740  * reference count modifications queued up in the rbtree. the head
741  * node may also store the extent flags to set. This way you can check
742  * to see what the reference count and extent flags would be if all of
743  * the delayed refs are not processed.
744  */
745 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
746 			     struct btrfs_root *root, u64 bytenr,
747 			     u64 num_bytes, u64 *refs, u64 *flags)
748 {
749 	struct btrfs_delayed_ref_head *head;
750 	struct btrfs_delayed_ref_root *delayed_refs;
751 	struct btrfs_path *path;
752 	struct btrfs_extent_item *ei;
753 	struct extent_buffer *leaf;
754 	struct btrfs_key key;
755 	u32 item_size;
756 	u64 num_refs;
757 	u64 extent_flags;
758 	int ret;
759 
760 	path = btrfs_alloc_path();
761 	if (!path)
762 		return -ENOMEM;
763 
764 	key.objectid = bytenr;
765 	key.type = BTRFS_EXTENT_ITEM_KEY;
766 	key.offset = num_bytes;
767 	if (!trans) {
768 		path->skip_locking = 1;
769 		path->search_commit_root = 1;
770 	}
771 again:
772 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
773 				&key, path, 0, 0);
774 	if (ret < 0)
775 		goto out_free;
776 
777 	if (ret == 0) {
778 		leaf = path->nodes[0];
779 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
780 		if (item_size >= sizeof(*ei)) {
781 			ei = btrfs_item_ptr(leaf, path->slots[0],
782 					    struct btrfs_extent_item);
783 			num_refs = btrfs_extent_refs(leaf, ei);
784 			extent_flags = btrfs_extent_flags(leaf, ei);
785 		} else {
786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 			struct btrfs_extent_item_v0 *ei0;
788 			BUG_ON(item_size != sizeof(*ei0));
789 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
790 					     struct btrfs_extent_item_v0);
791 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
792 			/* FIXME: this isn't correct for data */
793 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
794 #else
795 			BUG();
796 #endif
797 		}
798 		BUG_ON(num_refs == 0);
799 	} else {
800 		num_refs = 0;
801 		extent_flags = 0;
802 		ret = 0;
803 	}
804 
805 	if (!trans)
806 		goto out;
807 
808 	delayed_refs = &trans->transaction->delayed_refs;
809 	spin_lock(&delayed_refs->lock);
810 	head = btrfs_find_delayed_ref_head(trans, bytenr);
811 	if (head) {
812 		if (!mutex_trylock(&head->mutex)) {
813 			atomic_inc(&head->node.refs);
814 			spin_unlock(&delayed_refs->lock);
815 
816 			btrfs_release_path(path);
817 
818 			/*
819 			 * Mutex was contended, block until it's released and try
820 			 * again
821 			 */
822 			mutex_lock(&head->mutex);
823 			mutex_unlock(&head->mutex);
824 			btrfs_put_delayed_ref(&head->node);
825 			goto again;
826 		}
827 		if (head->extent_op && head->extent_op->update_flags)
828 			extent_flags |= head->extent_op->flags_to_set;
829 		else
830 			BUG_ON(num_refs == 0);
831 
832 		num_refs += head->node.ref_mod;
833 		mutex_unlock(&head->mutex);
834 	}
835 	spin_unlock(&delayed_refs->lock);
836 out:
837 	WARN_ON(num_refs == 0);
838 	if (refs)
839 		*refs = num_refs;
840 	if (flags)
841 		*flags = extent_flags;
842 out_free:
843 	btrfs_free_path(path);
844 	return ret;
845 }
846 
847 /*
848  * Back reference rules.  Back refs have three main goals:
849  *
850  * 1) differentiate between all holders of references to an extent so that
851  *    when a reference is dropped we can make sure it was a valid reference
852  *    before freeing the extent.
853  *
854  * 2) Provide enough information to quickly find the holders of an extent
855  *    if we notice a given block is corrupted or bad.
856  *
857  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858  *    maintenance.  This is actually the same as #2, but with a slightly
859  *    different use case.
860  *
861  * There are two kinds of back refs. The implicit back refs is optimized
862  * for pointers in non-shared tree blocks. For a given pointer in a block,
863  * back refs of this kind provide information about the block's owner tree
864  * and the pointer's key. These information allow us to find the block by
865  * b-tree searching. The full back refs is for pointers in tree blocks not
866  * referenced by their owner trees. The location of tree block is recorded
867  * in the back refs. Actually the full back refs is generic, and can be
868  * used in all cases the implicit back refs is used. The major shortcoming
869  * of the full back refs is its overhead. Every time a tree block gets
870  * COWed, we have to update back refs entry for all pointers in it.
871  *
872  * For a newly allocated tree block, we use implicit back refs for
873  * pointers in it. This means most tree related operations only involve
874  * implicit back refs. For a tree block created in old transaction, the
875  * only way to drop a reference to it is COW it. So we can detect the
876  * event that tree block loses its owner tree's reference and do the
877  * back refs conversion.
878  *
879  * When a tree block is COW'd through a tree, there are four cases:
880  *
881  * The reference count of the block is one and the tree is the block's
882  * owner tree. Nothing to do in this case.
883  *
884  * The reference count of the block is one and the tree is not the
885  * block's owner tree. In this case, full back refs is used for pointers
886  * in the block. Remove these full back refs, add implicit back refs for
887  * every pointers in the new block.
888  *
889  * The reference count of the block is greater than one and the tree is
890  * the block's owner tree. In this case, implicit back refs is used for
891  * pointers in the block. Add full back refs for every pointers in the
892  * block, increase lower level extents' reference counts. The original
893  * implicit back refs are entailed to the new block.
894  *
895  * The reference count of the block is greater than one and the tree is
896  * not the block's owner tree. Add implicit back refs for every pointer in
897  * the new block, increase lower level extents' reference count.
898  *
899  * Back Reference Key composing:
900  *
901  * The key objectid corresponds to the first byte in the extent,
902  * The key type is used to differentiate between types of back refs.
903  * There are different meanings of the key offset for different types
904  * of back refs.
905  *
906  * File extents can be referenced by:
907  *
908  * - multiple snapshots, subvolumes, or different generations in one subvol
909  * - different files inside a single subvolume
910  * - different offsets inside a file (bookend extents in file.c)
911  *
912  * The extent ref structure for the implicit back refs has fields for:
913  *
914  * - Objectid of the subvolume root
915  * - objectid of the file holding the reference
916  * - original offset in the file
917  * - how many bookend extents
918  *
919  * The key offset for the implicit back refs is hash of the first
920  * three fields.
921  *
922  * The extent ref structure for the full back refs has field for:
923  *
924  * - number of pointers in the tree leaf
925  *
926  * The key offset for the implicit back refs is the first byte of
927  * the tree leaf
928  *
929  * When a file extent is allocated, The implicit back refs is used.
930  * the fields are filled in:
931  *
932  *     (root_key.objectid, inode objectid, offset in file, 1)
933  *
934  * When a file extent is removed file truncation, we find the
935  * corresponding implicit back refs and check the following fields:
936  *
937  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
938  *
939  * Btree extents can be referenced by:
940  *
941  * - Different subvolumes
942  *
943  * Both the implicit back refs and the full back refs for tree blocks
944  * only consist of key. The key offset for the implicit back refs is
945  * objectid of block's owner tree. The key offset for the full back refs
946  * is the first byte of parent block.
947  *
948  * When implicit back refs is used, information about the lowest key and
949  * level of the tree block are required. These information are stored in
950  * tree block info structure.
951  */
952 
953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
954 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
955 				  struct btrfs_root *root,
956 				  struct btrfs_path *path,
957 				  u64 owner, u32 extra_size)
958 {
959 	struct btrfs_extent_item *item;
960 	struct btrfs_extent_item_v0 *ei0;
961 	struct btrfs_extent_ref_v0 *ref0;
962 	struct btrfs_tree_block_info *bi;
963 	struct extent_buffer *leaf;
964 	struct btrfs_key key;
965 	struct btrfs_key found_key;
966 	u32 new_size = sizeof(*item);
967 	u64 refs;
968 	int ret;
969 
970 	leaf = path->nodes[0];
971 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
972 
973 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
974 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
975 			     struct btrfs_extent_item_v0);
976 	refs = btrfs_extent_refs_v0(leaf, ei0);
977 
978 	if (owner == (u64)-1) {
979 		while (1) {
980 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 				ret = btrfs_next_leaf(root, path);
982 				if (ret < 0)
983 					return ret;
984 				BUG_ON(ret > 0);
985 				leaf = path->nodes[0];
986 			}
987 			btrfs_item_key_to_cpu(leaf, &found_key,
988 					      path->slots[0]);
989 			BUG_ON(key.objectid != found_key.objectid);
990 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
991 				path->slots[0]++;
992 				continue;
993 			}
994 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
995 					      struct btrfs_extent_ref_v0);
996 			owner = btrfs_ref_objectid_v0(leaf, ref0);
997 			break;
998 		}
999 	}
1000 	btrfs_release_path(path);
1001 
1002 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1003 		new_size += sizeof(*bi);
1004 
1005 	new_size -= sizeof(*ei0);
1006 	ret = btrfs_search_slot(trans, root, &key, path,
1007 				new_size + extra_size, 1);
1008 	if (ret < 0)
1009 		return ret;
1010 	BUG_ON(ret);
1011 
1012 	ret = btrfs_extend_item(trans, root, path, new_size);
1013 
1014 	leaf = path->nodes[0];
1015 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 	btrfs_set_extent_refs(leaf, item, refs);
1017 	/* FIXME: get real generation */
1018 	btrfs_set_extent_generation(leaf, item, 0);
1019 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1020 		btrfs_set_extent_flags(leaf, item,
1021 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1022 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1023 		bi = (struct btrfs_tree_block_info *)(item + 1);
1024 		/* FIXME: get first key of the block */
1025 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1026 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1027 	} else {
1028 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1029 	}
1030 	btrfs_mark_buffer_dirty(leaf);
1031 	return 0;
1032 }
1033 #endif
1034 
1035 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1036 {
1037 	u32 high_crc = ~(u32)0;
1038 	u32 low_crc = ~(u32)0;
1039 	__le64 lenum;
1040 
1041 	lenum = cpu_to_le64(root_objectid);
1042 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1043 	lenum = cpu_to_le64(owner);
1044 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1045 	lenum = cpu_to_le64(offset);
1046 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 
1048 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1049 }
1050 
1051 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1052 				     struct btrfs_extent_data_ref *ref)
1053 {
1054 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1055 				    btrfs_extent_data_ref_objectid(leaf, ref),
1056 				    btrfs_extent_data_ref_offset(leaf, ref));
1057 }
1058 
1059 static int match_extent_data_ref(struct extent_buffer *leaf,
1060 				 struct btrfs_extent_data_ref *ref,
1061 				 u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1064 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1065 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1066 		return 0;
1067 	return 1;
1068 }
1069 
1070 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1071 					   struct btrfs_root *root,
1072 					   struct btrfs_path *path,
1073 					   u64 bytenr, u64 parent,
1074 					   u64 root_objectid,
1075 					   u64 owner, u64 offset)
1076 {
1077 	struct btrfs_key key;
1078 	struct btrfs_extent_data_ref *ref;
1079 	struct extent_buffer *leaf;
1080 	u32 nritems;
1081 	int ret;
1082 	int recow;
1083 	int err = -ENOENT;
1084 
1085 	key.objectid = bytenr;
1086 	if (parent) {
1087 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1088 		key.offset = parent;
1089 	} else {
1090 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1091 		key.offset = hash_extent_data_ref(root_objectid,
1092 						  owner, offset);
1093 	}
1094 again:
1095 	recow = 0;
1096 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1097 	if (ret < 0) {
1098 		err = ret;
1099 		goto fail;
1100 	}
1101 
1102 	if (parent) {
1103 		if (!ret)
1104 			return 0;
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 		btrfs_release_path(path);
1108 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 		if (ret < 0) {
1110 			err = ret;
1111 			goto fail;
1112 		}
1113 		if (!ret)
1114 			return 0;
1115 #endif
1116 		goto fail;
1117 	}
1118 
1119 	leaf = path->nodes[0];
1120 	nritems = btrfs_header_nritems(leaf);
1121 	while (1) {
1122 		if (path->slots[0] >= nritems) {
1123 			ret = btrfs_next_leaf(root, path);
1124 			if (ret < 0)
1125 				err = ret;
1126 			if (ret)
1127 				goto fail;
1128 
1129 			leaf = path->nodes[0];
1130 			nritems = btrfs_header_nritems(leaf);
1131 			recow = 1;
1132 		}
1133 
1134 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 		if (key.objectid != bytenr ||
1136 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1137 			goto fail;
1138 
1139 		ref = btrfs_item_ptr(leaf, path->slots[0],
1140 				     struct btrfs_extent_data_ref);
1141 
1142 		if (match_extent_data_ref(leaf, ref, root_objectid,
1143 					  owner, offset)) {
1144 			if (recow) {
1145 				btrfs_release_path(path);
1146 				goto again;
1147 			}
1148 			err = 0;
1149 			break;
1150 		}
1151 		path->slots[0]++;
1152 	}
1153 fail:
1154 	return err;
1155 }
1156 
1157 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1158 					   struct btrfs_root *root,
1159 					   struct btrfs_path *path,
1160 					   u64 bytenr, u64 parent,
1161 					   u64 root_objectid, u64 owner,
1162 					   u64 offset, int refs_to_add)
1163 {
1164 	struct btrfs_key key;
1165 	struct extent_buffer *leaf;
1166 	u32 size;
1167 	u32 num_refs;
1168 	int ret;
1169 
1170 	key.objectid = bytenr;
1171 	if (parent) {
1172 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 		key.offset = parent;
1174 		size = sizeof(struct btrfs_shared_data_ref);
1175 	} else {
1176 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 		key.offset = hash_extent_data_ref(root_objectid,
1178 						  owner, offset);
1179 		size = sizeof(struct btrfs_extent_data_ref);
1180 	}
1181 
1182 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1183 	if (ret && ret != -EEXIST)
1184 		goto fail;
1185 
1186 	leaf = path->nodes[0];
1187 	if (parent) {
1188 		struct btrfs_shared_data_ref *ref;
1189 		ref = btrfs_item_ptr(leaf, path->slots[0],
1190 				     struct btrfs_shared_data_ref);
1191 		if (ret == 0) {
1192 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1193 		} else {
1194 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1195 			num_refs += refs_to_add;
1196 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1197 		}
1198 	} else {
1199 		struct btrfs_extent_data_ref *ref;
1200 		while (ret == -EEXIST) {
1201 			ref = btrfs_item_ptr(leaf, path->slots[0],
1202 					     struct btrfs_extent_data_ref);
1203 			if (match_extent_data_ref(leaf, ref, root_objectid,
1204 						  owner, offset))
1205 				break;
1206 			btrfs_release_path(path);
1207 			key.offset++;
1208 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1209 						      size);
1210 			if (ret && ret != -EEXIST)
1211 				goto fail;
1212 
1213 			leaf = path->nodes[0];
1214 		}
1215 		ref = btrfs_item_ptr(leaf, path->slots[0],
1216 				     struct btrfs_extent_data_ref);
1217 		if (ret == 0) {
1218 			btrfs_set_extent_data_ref_root(leaf, ref,
1219 						       root_objectid);
1220 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1221 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1222 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1223 		} else {
1224 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1225 			num_refs += refs_to_add;
1226 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1227 		}
1228 	}
1229 	btrfs_mark_buffer_dirty(leaf);
1230 	ret = 0;
1231 fail:
1232 	btrfs_release_path(path);
1233 	return ret;
1234 }
1235 
1236 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1237 					   struct btrfs_root *root,
1238 					   struct btrfs_path *path,
1239 					   int refs_to_drop)
1240 {
1241 	struct btrfs_key key;
1242 	struct btrfs_extent_data_ref *ref1 = NULL;
1243 	struct btrfs_shared_data_ref *ref2 = NULL;
1244 	struct extent_buffer *leaf;
1245 	u32 num_refs = 0;
1246 	int ret = 0;
1247 
1248 	leaf = path->nodes[0];
1249 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1250 
1251 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 				      struct btrfs_extent_data_ref);
1254 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 				      struct btrfs_shared_data_ref);
1258 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1261 		struct btrfs_extent_ref_v0 *ref0;
1262 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1263 				      struct btrfs_extent_ref_v0);
1264 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1265 #endif
1266 	} else {
1267 		BUG();
1268 	}
1269 
1270 	BUG_ON(num_refs < refs_to_drop);
1271 	num_refs -= refs_to_drop;
1272 
1273 	if (num_refs == 0) {
1274 		ret = btrfs_del_item(trans, root, path);
1275 	} else {
1276 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1277 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1278 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1279 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 		else {
1282 			struct btrfs_extent_ref_v0 *ref0;
1283 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 					struct btrfs_extent_ref_v0);
1285 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1286 		}
1287 #endif
1288 		btrfs_mark_buffer_dirty(leaf);
1289 	}
1290 	return ret;
1291 }
1292 
1293 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1294 					  struct btrfs_path *path,
1295 					  struct btrfs_extent_inline_ref *iref)
1296 {
1297 	struct btrfs_key key;
1298 	struct extent_buffer *leaf;
1299 	struct btrfs_extent_data_ref *ref1;
1300 	struct btrfs_shared_data_ref *ref2;
1301 	u32 num_refs = 0;
1302 
1303 	leaf = path->nodes[0];
1304 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1305 	if (iref) {
1306 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1307 		    BTRFS_EXTENT_DATA_REF_KEY) {
1308 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1309 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1310 		} else {
1311 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1312 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1313 		}
1314 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1315 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1316 				      struct btrfs_extent_data_ref);
1317 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1318 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1319 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1320 				      struct btrfs_shared_data_ref);
1321 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1322 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1324 		struct btrfs_extent_ref_v0 *ref0;
1325 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1326 				      struct btrfs_extent_ref_v0);
1327 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1328 #endif
1329 	} else {
1330 		WARN_ON(1);
1331 	}
1332 	return num_refs;
1333 }
1334 
1335 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1336 					  struct btrfs_root *root,
1337 					  struct btrfs_path *path,
1338 					  u64 bytenr, u64 parent,
1339 					  u64 root_objectid)
1340 {
1341 	struct btrfs_key key;
1342 	int ret;
1343 
1344 	key.objectid = bytenr;
1345 	if (parent) {
1346 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1347 		key.offset = parent;
1348 	} else {
1349 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1350 		key.offset = root_objectid;
1351 	}
1352 
1353 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1354 	if (ret > 0)
1355 		ret = -ENOENT;
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 	if (ret == -ENOENT && parent) {
1358 		btrfs_release_path(path);
1359 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1360 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1361 		if (ret > 0)
1362 			ret = -ENOENT;
1363 	}
1364 #endif
1365 	return ret;
1366 }
1367 
1368 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1369 					  struct btrfs_root *root,
1370 					  struct btrfs_path *path,
1371 					  u64 bytenr, u64 parent,
1372 					  u64 root_objectid)
1373 {
1374 	struct btrfs_key key;
1375 	int ret;
1376 
1377 	key.objectid = bytenr;
1378 	if (parent) {
1379 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 		key.offset = parent;
1381 	} else {
1382 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 		key.offset = root_objectid;
1384 	}
1385 
1386 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1387 	btrfs_release_path(path);
1388 	return ret;
1389 }
1390 
1391 static inline int extent_ref_type(u64 parent, u64 owner)
1392 {
1393 	int type;
1394 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1395 		if (parent > 0)
1396 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1397 		else
1398 			type = BTRFS_TREE_BLOCK_REF_KEY;
1399 	} else {
1400 		if (parent > 0)
1401 			type = BTRFS_SHARED_DATA_REF_KEY;
1402 		else
1403 			type = BTRFS_EXTENT_DATA_REF_KEY;
1404 	}
1405 	return type;
1406 }
1407 
1408 static int find_next_key(struct btrfs_path *path, int level,
1409 			 struct btrfs_key *key)
1410 
1411 {
1412 	for (; level < BTRFS_MAX_LEVEL; level++) {
1413 		if (!path->nodes[level])
1414 			break;
1415 		if (path->slots[level] + 1 >=
1416 		    btrfs_header_nritems(path->nodes[level]))
1417 			continue;
1418 		if (level == 0)
1419 			btrfs_item_key_to_cpu(path->nodes[level], key,
1420 					      path->slots[level] + 1);
1421 		else
1422 			btrfs_node_key_to_cpu(path->nodes[level], key,
1423 					      path->slots[level] + 1);
1424 		return 0;
1425 	}
1426 	return 1;
1427 }
1428 
1429 /*
1430  * look for inline back ref. if back ref is found, *ref_ret is set
1431  * to the address of inline back ref, and 0 is returned.
1432  *
1433  * if back ref isn't found, *ref_ret is set to the address where it
1434  * should be inserted, and -ENOENT is returned.
1435  *
1436  * if insert is true and there are too many inline back refs, the path
1437  * points to the extent item, and -EAGAIN is returned.
1438  *
1439  * NOTE: inline back refs are ordered in the same way that back ref
1440  *	 items in the tree are ordered.
1441  */
1442 static noinline_for_stack
1443 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1444 				 struct btrfs_root *root,
1445 				 struct btrfs_path *path,
1446 				 struct btrfs_extent_inline_ref **ref_ret,
1447 				 u64 bytenr, u64 num_bytes,
1448 				 u64 parent, u64 root_objectid,
1449 				 u64 owner, u64 offset, int insert)
1450 {
1451 	struct btrfs_key key;
1452 	struct extent_buffer *leaf;
1453 	struct btrfs_extent_item *ei;
1454 	struct btrfs_extent_inline_ref *iref;
1455 	u64 flags;
1456 	u64 item_size;
1457 	unsigned long ptr;
1458 	unsigned long end;
1459 	int extra_size;
1460 	int type;
1461 	int want;
1462 	int ret;
1463 	int err = 0;
1464 
1465 	key.objectid = bytenr;
1466 	key.type = BTRFS_EXTENT_ITEM_KEY;
1467 	key.offset = num_bytes;
1468 
1469 	want = extent_ref_type(parent, owner);
1470 	if (insert) {
1471 		extra_size = btrfs_extent_inline_ref_size(want);
1472 		path->keep_locks = 1;
1473 	} else
1474 		extra_size = -1;
1475 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1476 	if (ret < 0) {
1477 		err = ret;
1478 		goto out;
1479 	}
1480 	BUG_ON(ret);
1481 
1482 	leaf = path->nodes[0];
1483 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1484 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1485 	if (item_size < sizeof(*ei)) {
1486 		if (!insert) {
1487 			err = -ENOENT;
1488 			goto out;
1489 		}
1490 		ret = convert_extent_item_v0(trans, root, path, owner,
1491 					     extra_size);
1492 		if (ret < 0) {
1493 			err = ret;
1494 			goto out;
1495 		}
1496 		leaf = path->nodes[0];
1497 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1498 	}
1499 #endif
1500 	BUG_ON(item_size < sizeof(*ei));
1501 
1502 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1503 	flags = btrfs_extent_flags(leaf, ei);
1504 
1505 	ptr = (unsigned long)(ei + 1);
1506 	end = (unsigned long)ei + item_size;
1507 
1508 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1509 		ptr += sizeof(struct btrfs_tree_block_info);
1510 		BUG_ON(ptr > end);
1511 	} else {
1512 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1513 	}
1514 
1515 	err = -ENOENT;
1516 	while (1) {
1517 		if (ptr >= end) {
1518 			WARN_ON(ptr > end);
1519 			break;
1520 		}
1521 		iref = (struct btrfs_extent_inline_ref *)ptr;
1522 		type = btrfs_extent_inline_ref_type(leaf, iref);
1523 		if (want < type)
1524 			break;
1525 		if (want > type) {
1526 			ptr += btrfs_extent_inline_ref_size(type);
1527 			continue;
1528 		}
1529 
1530 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1531 			struct btrfs_extent_data_ref *dref;
1532 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1533 			if (match_extent_data_ref(leaf, dref, root_objectid,
1534 						  owner, offset)) {
1535 				err = 0;
1536 				break;
1537 			}
1538 			if (hash_extent_data_ref_item(leaf, dref) <
1539 			    hash_extent_data_ref(root_objectid, owner, offset))
1540 				break;
1541 		} else {
1542 			u64 ref_offset;
1543 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1544 			if (parent > 0) {
1545 				if (parent == ref_offset) {
1546 					err = 0;
1547 					break;
1548 				}
1549 				if (ref_offset < parent)
1550 					break;
1551 			} else {
1552 				if (root_objectid == ref_offset) {
1553 					err = 0;
1554 					break;
1555 				}
1556 				if (ref_offset < root_objectid)
1557 					break;
1558 			}
1559 		}
1560 		ptr += btrfs_extent_inline_ref_size(type);
1561 	}
1562 	if (err == -ENOENT && insert) {
1563 		if (item_size + extra_size >=
1564 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1565 			err = -EAGAIN;
1566 			goto out;
1567 		}
1568 		/*
1569 		 * To add new inline back ref, we have to make sure
1570 		 * there is no corresponding back ref item.
1571 		 * For simplicity, we just do not add new inline back
1572 		 * ref if there is any kind of item for this block
1573 		 */
1574 		if (find_next_key(path, 0, &key) == 0 &&
1575 		    key.objectid == bytenr &&
1576 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1577 			err = -EAGAIN;
1578 			goto out;
1579 		}
1580 	}
1581 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1582 out:
1583 	if (insert) {
1584 		path->keep_locks = 0;
1585 		btrfs_unlock_up_safe(path, 1);
1586 	}
1587 	return err;
1588 }
1589 
1590 /*
1591  * helper to add new inline back ref
1592  */
1593 static noinline_for_stack
1594 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1595 				struct btrfs_root *root,
1596 				struct btrfs_path *path,
1597 				struct btrfs_extent_inline_ref *iref,
1598 				u64 parent, u64 root_objectid,
1599 				u64 owner, u64 offset, int refs_to_add,
1600 				struct btrfs_delayed_extent_op *extent_op)
1601 {
1602 	struct extent_buffer *leaf;
1603 	struct btrfs_extent_item *ei;
1604 	unsigned long ptr;
1605 	unsigned long end;
1606 	unsigned long item_offset;
1607 	u64 refs;
1608 	int size;
1609 	int type;
1610 	int ret;
1611 
1612 	leaf = path->nodes[0];
1613 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1614 	item_offset = (unsigned long)iref - (unsigned long)ei;
1615 
1616 	type = extent_ref_type(parent, owner);
1617 	size = btrfs_extent_inline_ref_size(type);
1618 
1619 	ret = btrfs_extend_item(trans, root, path, size);
1620 
1621 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1622 	refs = btrfs_extent_refs(leaf, ei);
1623 	refs += refs_to_add;
1624 	btrfs_set_extent_refs(leaf, ei, refs);
1625 	if (extent_op)
1626 		__run_delayed_extent_op(extent_op, leaf, ei);
1627 
1628 	ptr = (unsigned long)ei + item_offset;
1629 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1630 	if (ptr < end - size)
1631 		memmove_extent_buffer(leaf, ptr + size, ptr,
1632 				      end - size - ptr);
1633 
1634 	iref = (struct btrfs_extent_inline_ref *)ptr;
1635 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1636 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1637 		struct btrfs_extent_data_ref *dref;
1638 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1639 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1640 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1641 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1642 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1643 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1644 		struct btrfs_shared_data_ref *sref;
1645 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1646 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1647 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1648 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1649 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1650 	} else {
1651 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1652 	}
1653 	btrfs_mark_buffer_dirty(leaf);
1654 	return 0;
1655 }
1656 
1657 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1658 				 struct btrfs_root *root,
1659 				 struct btrfs_path *path,
1660 				 struct btrfs_extent_inline_ref **ref_ret,
1661 				 u64 bytenr, u64 num_bytes, u64 parent,
1662 				 u64 root_objectid, u64 owner, u64 offset)
1663 {
1664 	int ret;
1665 
1666 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1667 					   bytenr, num_bytes, parent,
1668 					   root_objectid, owner, offset, 0);
1669 	if (ret != -ENOENT)
1670 		return ret;
1671 
1672 	btrfs_release_path(path);
1673 	*ref_ret = NULL;
1674 
1675 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1676 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1677 					    root_objectid);
1678 	} else {
1679 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1680 					     root_objectid, owner, offset);
1681 	}
1682 	return ret;
1683 }
1684 
1685 /*
1686  * helper to update/remove inline back ref
1687  */
1688 static noinline_for_stack
1689 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1690 				 struct btrfs_root *root,
1691 				 struct btrfs_path *path,
1692 				 struct btrfs_extent_inline_ref *iref,
1693 				 int refs_to_mod,
1694 				 struct btrfs_delayed_extent_op *extent_op)
1695 {
1696 	struct extent_buffer *leaf;
1697 	struct btrfs_extent_item *ei;
1698 	struct btrfs_extent_data_ref *dref = NULL;
1699 	struct btrfs_shared_data_ref *sref = NULL;
1700 	unsigned long ptr;
1701 	unsigned long end;
1702 	u32 item_size;
1703 	int size;
1704 	int type;
1705 	int ret;
1706 	u64 refs;
1707 
1708 	leaf = path->nodes[0];
1709 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 	refs = btrfs_extent_refs(leaf, ei);
1711 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1712 	refs += refs_to_mod;
1713 	btrfs_set_extent_refs(leaf, ei, refs);
1714 	if (extent_op)
1715 		__run_delayed_extent_op(extent_op, leaf, ei);
1716 
1717 	type = btrfs_extent_inline_ref_type(leaf, iref);
1718 
1719 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1720 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1721 		refs = btrfs_extent_data_ref_count(leaf, dref);
1722 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1723 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1724 		refs = btrfs_shared_data_ref_count(leaf, sref);
1725 	} else {
1726 		refs = 1;
1727 		BUG_ON(refs_to_mod != -1);
1728 	}
1729 
1730 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1731 	refs += refs_to_mod;
1732 
1733 	if (refs > 0) {
1734 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1735 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1736 		else
1737 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1738 	} else {
1739 		size =  btrfs_extent_inline_ref_size(type);
1740 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1741 		ptr = (unsigned long)iref;
1742 		end = (unsigned long)ei + item_size;
1743 		if (ptr + size < end)
1744 			memmove_extent_buffer(leaf, ptr, ptr + size,
1745 					      end - ptr - size);
1746 		item_size -= size;
1747 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1748 	}
1749 	btrfs_mark_buffer_dirty(leaf);
1750 	return 0;
1751 }
1752 
1753 static noinline_for_stack
1754 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1755 				 struct btrfs_root *root,
1756 				 struct btrfs_path *path,
1757 				 u64 bytenr, u64 num_bytes, u64 parent,
1758 				 u64 root_objectid, u64 owner,
1759 				 u64 offset, int refs_to_add,
1760 				 struct btrfs_delayed_extent_op *extent_op)
1761 {
1762 	struct btrfs_extent_inline_ref *iref;
1763 	int ret;
1764 
1765 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1766 					   bytenr, num_bytes, parent,
1767 					   root_objectid, owner, offset, 1);
1768 	if (ret == 0) {
1769 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1770 		ret = update_inline_extent_backref(trans, root, path, iref,
1771 						   refs_to_add, extent_op);
1772 	} else if (ret == -ENOENT) {
1773 		ret = setup_inline_extent_backref(trans, root, path, iref,
1774 						  parent, root_objectid,
1775 						  owner, offset, refs_to_add,
1776 						  extent_op);
1777 	}
1778 	return ret;
1779 }
1780 
1781 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1782 				 struct btrfs_root *root,
1783 				 struct btrfs_path *path,
1784 				 u64 bytenr, u64 parent, u64 root_objectid,
1785 				 u64 owner, u64 offset, int refs_to_add)
1786 {
1787 	int ret;
1788 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1789 		BUG_ON(refs_to_add != 1);
1790 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1791 					    parent, root_objectid);
1792 	} else {
1793 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1794 					     parent, root_objectid,
1795 					     owner, offset, refs_to_add);
1796 	}
1797 	return ret;
1798 }
1799 
1800 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1801 				 struct btrfs_root *root,
1802 				 struct btrfs_path *path,
1803 				 struct btrfs_extent_inline_ref *iref,
1804 				 int refs_to_drop, int is_data)
1805 {
1806 	int ret;
1807 
1808 	BUG_ON(!is_data && refs_to_drop != 1);
1809 	if (iref) {
1810 		ret = update_inline_extent_backref(trans, root, path, iref,
1811 						   -refs_to_drop, NULL);
1812 	} else if (is_data) {
1813 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1814 	} else {
1815 		ret = btrfs_del_item(trans, root, path);
1816 	}
1817 	return ret;
1818 }
1819 
1820 static int btrfs_issue_discard(struct block_device *bdev,
1821 				u64 start, u64 len)
1822 {
1823 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1824 }
1825 
1826 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1827 				u64 num_bytes, u64 *actual_bytes)
1828 {
1829 	int ret;
1830 	u64 discarded_bytes = 0;
1831 	struct btrfs_bio *bbio = NULL;
1832 
1833 
1834 	/* Tell the block device(s) that the sectors can be discarded */
1835 	ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1836 			      bytenr, &num_bytes, &bbio, 0);
1837 	if (!ret) {
1838 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1839 		int i;
1840 
1841 
1842 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1843 			if (!stripe->dev->can_discard)
1844 				continue;
1845 
1846 			ret = btrfs_issue_discard(stripe->dev->bdev,
1847 						  stripe->physical,
1848 						  stripe->length);
1849 			if (!ret)
1850 				discarded_bytes += stripe->length;
1851 			else if (ret != -EOPNOTSUPP)
1852 				break;
1853 
1854 			/*
1855 			 * Just in case we get back EOPNOTSUPP for some reason,
1856 			 * just ignore the return value so we don't screw up
1857 			 * people calling discard_extent.
1858 			 */
1859 			ret = 0;
1860 		}
1861 		kfree(bbio);
1862 	}
1863 
1864 	if (actual_bytes)
1865 		*actual_bytes = discarded_bytes;
1866 
1867 
1868 	return ret;
1869 }
1870 
1871 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1872 			 struct btrfs_root *root,
1873 			 u64 bytenr, u64 num_bytes, u64 parent,
1874 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1875 {
1876 	int ret;
1877 	struct btrfs_fs_info *fs_info = root->fs_info;
1878 
1879 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1880 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1881 
1882 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1883 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1884 					num_bytes,
1885 					parent, root_objectid, (int)owner,
1886 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1887 	} else {
1888 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1889 					num_bytes,
1890 					parent, root_objectid, owner, offset,
1891 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1892 	}
1893 	return ret;
1894 }
1895 
1896 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1897 				  struct btrfs_root *root,
1898 				  u64 bytenr, u64 num_bytes,
1899 				  u64 parent, u64 root_objectid,
1900 				  u64 owner, u64 offset, int refs_to_add,
1901 				  struct btrfs_delayed_extent_op *extent_op)
1902 {
1903 	struct btrfs_path *path;
1904 	struct extent_buffer *leaf;
1905 	struct btrfs_extent_item *item;
1906 	u64 refs;
1907 	int ret;
1908 	int err = 0;
1909 
1910 	path = btrfs_alloc_path();
1911 	if (!path)
1912 		return -ENOMEM;
1913 
1914 	path->reada = 1;
1915 	path->leave_spinning = 1;
1916 	/* this will setup the path even if it fails to insert the back ref */
1917 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1918 					   path, bytenr, num_bytes, parent,
1919 					   root_objectid, owner, offset,
1920 					   refs_to_add, extent_op);
1921 	if (ret == 0)
1922 		goto out;
1923 
1924 	if (ret != -EAGAIN) {
1925 		err = ret;
1926 		goto out;
1927 	}
1928 
1929 	leaf = path->nodes[0];
1930 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1931 	refs = btrfs_extent_refs(leaf, item);
1932 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1933 	if (extent_op)
1934 		__run_delayed_extent_op(extent_op, leaf, item);
1935 
1936 	btrfs_mark_buffer_dirty(leaf);
1937 	btrfs_release_path(path);
1938 
1939 	path->reada = 1;
1940 	path->leave_spinning = 1;
1941 
1942 	/* now insert the actual backref */
1943 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1944 				    path, bytenr, parent, root_objectid,
1945 				    owner, offset, refs_to_add);
1946 	BUG_ON(ret);
1947 out:
1948 	btrfs_free_path(path);
1949 	return err;
1950 }
1951 
1952 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1953 				struct btrfs_root *root,
1954 				struct btrfs_delayed_ref_node *node,
1955 				struct btrfs_delayed_extent_op *extent_op,
1956 				int insert_reserved)
1957 {
1958 	int ret = 0;
1959 	struct btrfs_delayed_data_ref *ref;
1960 	struct btrfs_key ins;
1961 	u64 parent = 0;
1962 	u64 ref_root = 0;
1963 	u64 flags = 0;
1964 
1965 	ins.objectid = node->bytenr;
1966 	ins.offset = node->num_bytes;
1967 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1968 
1969 	ref = btrfs_delayed_node_to_data_ref(node);
1970 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1971 		parent = ref->parent;
1972 	else
1973 		ref_root = ref->root;
1974 
1975 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1976 		if (extent_op) {
1977 			BUG_ON(extent_op->update_key);
1978 			flags |= extent_op->flags_to_set;
1979 		}
1980 		ret = alloc_reserved_file_extent(trans, root,
1981 						 parent, ref_root, flags,
1982 						 ref->objectid, ref->offset,
1983 						 &ins, node->ref_mod);
1984 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1985 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1986 					     node->num_bytes, parent,
1987 					     ref_root, ref->objectid,
1988 					     ref->offset, node->ref_mod,
1989 					     extent_op);
1990 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1991 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1992 					  node->num_bytes, parent,
1993 					  ref_root, ref->objectid,
1994 					  ref->offset, node->ref_mod,
1995 					  extent_op);
1996 	} else {
1997 		BUG();
1998 	}
1999 	return ret;
2000 }
2001 
2002 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2003 				    struct extent_buffer *leaf,
2004 				    struct btrfs_extent_item *ei)
2005 {
2006 	u64 flags = btrfs_extent_flags(leaf, ei);
2007 	if (extent_op->update_flags) {
2008 		flags |= extent_op->flags_to_set;
2009 		btrfs_set_extent_flags(leaf, ei, flags);
2010 	}
2011 
2012 	if (extent_op->update_key) {
2013 		struct btrfs_tree_block_info *bi;
2014 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2015 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2016 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2017 	}
2018 }
2019 
2020 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2021 				 struct btrfs_root *root,
2022 				 struct btrfs_delayed_ref_node *node,
2023 				 struct btrfs_delayed_extent_op *extent_op)
2024 {
2025 	struct btrfs_key key;
2026 	struct btrfs_path *path;
2027 	struct btrfs_extent_item *ei;
2028 	struct extent_buffer *leaf;
2029 	u32 item_size;
2030 	int ret;
2031 	int err = 0;
2032 
2033 	path = btrfs_alloc_path();
2034 	if (!path)
2035 		return -ENOMEM;
2036 
2037 	key.objectid = node->bytenr;
2038 	key.type = BTRFS_EXTENT_ITEM_KEY;
2039 	key.offset = node->num_bytes;
2040 
2041 	path->reada = 1;
2042 	path->leave_spinning = 1;
2043 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2044 				path, 0, 1);
2045 	if (ret < 0) {
2046 		err = ret;
2047 		goto out;
2048 	}
2049 	if (ret > 0) {
2050 		err = -EIO;
2051 		goto out;
2052 	}
2053 
2054 	leaf = path->nodes[0];
2055 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2056 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2057 	if (item_size < sizeof(*ei)) {
2058 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2059 					     path, (u64)-1, 0);
2060 		if (ret < 0) {
2061 			err = ret;
2062 			goto out;
2063 		}
2064 		leaf = path->nodes[0];
2065 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2066 	}
2067 #endif
2068 	BUG_ON(item_size < sizeof(*ei));
2069 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2070 	__run_delayed_extent_op(extent_op, leaf, ei);
2071 
2072 	btrfs_mark_buffer_dirty(leaf);
2073 out:
2074 	btrfs_free_path(path);
2075 	return err;
2076 }
2077 
2078 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2079 				struct btrfs_root *root,
2080 				struct btrfs_delayed_ref_node *node,
2081 				struct btrfs_delayed_extent_op *extent_op,
2082 				int insert_reserved)
2083 {
2084 	int ret = 0;
2085 	struct btrfs_delayed_tree_ref *ref;
2086 	struct btrfs_key ins;
2087 	u64 parent = 0;
2088 	u64 ref_root = 0;
2089 
2090 	ins.objectid = node->bytenr;
2091 	ins.offset = node->num_bytes;
2092 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2093 
2094 	ref = btrfs_delayed_node_to_tree_ref(node);
2095 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2096 		parent = ref->parent;
2097 	else
2098 		ref_root = ref->root;
2099 
2100 	BUG_ON(node->ref_mod != 1);
2101 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2102 		BUG_ON(!extent_op || !extent_op->update_flags ||
2103 		       !extent_op->update_key);
2104 		ret = alloc_reserved_tree_block(trans, root,
2105 						parent, ref_root,
2106 						extent_op->flags_to_set,
2107 						&extent_op->key,
2108 						ref->level, &ins);
2109 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2110 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2111 					     node->num_bytes, parent, ref_root,
2112 					     ref->level, 0, 1, extent_op);
2113 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2114 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2115 					  node->num_bytes, parent, ref_root,
2116 					  ref->level, 0, 1, extent_op);
2117 	} else {
2118 		BUG();
2119 	}
2120 	return ret;
2121 }
2122 
2123 /* helper function to actually process a single delayed ref entry */
2124 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2125 			       struct btrfs_root *root,
2126 			       struct btrfs_delayed_ref_node *node,
2127 			       struct btrfs_delayed_extent_op *extent_op,
2128 			       int insert_reserved)
2129 {
2130 	int ret;
2131 	if (btrfs_delayed_ref_is_head(node)) {
2132 		struct btrfs_delayed_ref_head *head;
2133 		/*
2134 		 * we've hit the end of the chain and we were supposed
2135 		 * to insert this extent into the tree.  But, it got
2136 		 * deleted before we ever needed to insert it, so all
2137 		 * we have to do is clean up the accounting
2138 		 */
2139 		BUG_ON(extent_op);
2140 		head = btrfs_delayed_node_to_head(node);
2141 		if (insert_reserved) {
2142 			btrfs_pin_extent(root, node->bytenr,
2143 					 node->num_bytes, 1);
2144 			if (head->is_data) {
2145 				ret = btrfs_del_csums(trans, root,
2146 						      node->bytenr,
2147 						      node->num_bytes);
2148 				BUG_ON(ret);
2149 			}
2150 		}
2151 		mutex_unlock(&head->mutex);
2152 		return 0;
2153 	}
2154 
2155 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2156 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2157 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2158 					   insert_reserved);
2159 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2160 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2161 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2162 					   insert_reserved);
2163 	else
2164 		BUG();
2165 	return ret;
2166 }
2167 
2168 static noinline struct btrfs_delayed_ref_node *
2169 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2170 {
2171 	struct rb_node *node;
2172 	struct btrfs_delayed_ref_node *ref;
2173 	int action = BTRFS_ADD_DELAYED_REF;
2174 again:
2175 	/*
2176 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2177 	 * this prevents ref count from going down to zero when
2178 	 * there still are pending delayed ref.
2179 	 */
2180 	node = rb_prev(&head->node.rb_node);
2181 	while (1) {
2182 		if (!node)
2183 			break;
2184 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2185 				rb_node);
2186 		if (ref->bytenr != head->node.bytenr)
2187 			break;
2188 		if (ref->action == action)
2189 			return ref;
2190 		node = rb_prev(node);
2191 	}
2192 	if (action == BTRFS_ADD_DELAYED_REF) {
2193 		action = BTRFS_DROP_DELAYED_REF;
2194 		goto again;
2195 	}
2196 	return NULL;
2197 }
2198 
2199 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2200 				       struct btrfs_root *root,
2201 				       struct list_head *cluster)
2202 {
2203 	struct btrfs_delayed_ref_root *delayed_refs;
2204 	struct btrfs_delayed_ref_node *ref;
2205 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2206 	struct btrfs_delayed_extent_op *extent_op;
2207 	int ret;
2208 	int count = 0;
2209 	int must_insert_reserved = 0;
2210 
2211 	delayed_refs = &trans->transaction->delayed_refs;
2212 	while (1) {
2213 		if (!locked_ref) {
2214 			/* pick a new head ref from the cluster list */
2215 			if (list_empty(cluster))
2216 				break;
2217 
2218 			locked_ref = list_entry(cluster->next,
2219 				     struct btrfs_delayed_ref_head, cluster);
2220 
2221 			/* grab the lock that says we are going to process
2222 			 * all the refs for this head */
2223 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2224 
2225 			/*
2226 			 * we may have dropped the spin lock to get the head
2227 			 * mutex lock, and that might have given someone else
2228 			 * time to free the head.  If that's true, it has been
2229 			 * removed from our list and we can move on.
2230 			 */
2231 			if (ret == -EAGAIN) {
2232 				locked_ref = NULL;
2233 				count++;
2234 				continue;
2235 			}
2236 		}
2237 
2238 		/*
2239 		 * locked_ref is the head node, so we have to go one
2240 		 * node back for any delayed ref updates
2241 		 */
2242 		ref = select_delayed_ref(locked_ref);
2243 
2244 		if (ref && ref->seq &&
2245 		    btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2246 			/*
2247 			 * there are still refs with lower seq numbers in the
2248 			 * process of being added. Don't run this ref yet.
2249 			 */
2250 			list_del_init(&locked_ref->cluster);
2251 			mutex_unlock(&locked_ref->mutex);
2252 			locked_ref = NULL;
2253 			delayed_refs->num_heads_ready++;
2254 			spin_unlock(&delayed_refs->lock);
2255 			cond_resched();
2256 			spin_lock(&delayed_refs->lock);
2257 			continue;
2258 		}
2259 
2260 		/*
2261 		 * record the must insert reserved flag before we
2262 		 * drop the spin lock.
2263 		 */
2264 		must_insert_reserved = locked_ref->must_insert_reserved;
2265 		locked_ref->must_insert_reserved = 0;
2266 
2267 		extent_op = locked_ref->extent_op;
2268 		locked_ref->extent_op = NULL;
2269 
2270 		if (!ref) {
2271 			/* All delayed refs have been processed, Go ahead
2272 			 * and send the head node to run_one_delayed_ref,
2273 			 * so that any accounting fixes can happen
2274 			 */
2275 			ref = &locked_ref->node;
2276 
2277 			if (extent_op && must_insert_reserved) {
2278 				kfree(extent_op);
2279 				extent_op = NULL;
2280 			}
2281 
2282 			if (extent_op) {
2283 				spin_unlock(&delayed_refs->lock);
2284 
2285 				ret = run_delayed_extent_op(trans, root,
2286 							    ref, extent_op);
2287 				BUG_ON(ret);
2288 				kfree(extent_op);
2289 
2290 				goto next;
2291 			}
2292 
2293 			list_del_init(&locked_ref->cluster);
2294 			locked_ref = NULL;
2295 		}
2296 
2297 		ref->in_tree = 0;
2298 		rb_erase(&ref->rb_node, &delayed_refs->root);
2299 		delayed_refs->num_entries--;
2300 		/*
2301 		 * we modified num_entries, but as we're currently running
2302 		 * delayed refs, skip
2303 		 *     wake_up(&delayed_refs->seq_wait);
2304 		 * here.
2305 		 */
2306 		spin_unlock(&delayed_refs->lock);
2307 
2308 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2309 					  must_insert_reserved);
2310 		BUG_ON(ret);
2311 
2312 		btrfs_put_delayed_ref(ref);
2313 		kfree(extent_op);
2314 		count++;
2315 next:
2316 		do_chunk_alloc(trans, root->fs_info->extent_root,
2317 			       2 * 1024 * 1024,
2318 			       btrfs_get_alloc_profile(root, 0),
2319 			       CHUNK_ALLOC_NO_FORCE);
2320 		cond_resched();
2321 		spin_lock(&delayed_refs->lock);
2322 	}
2323 	return count;
2324 }
2325 
2326 
2327 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2328 			unsigned long num_refs)
2329 {
2330 	struct list_head *first_seq = delayed_refs->seq_head.next;
2331 
2332 	spin_unlock(&delayed_refs->lock);
2333 	pr_debug("waiting for more refs (num %ld, first %p)\n",
2334 		 num_refs, first_seq);
2335 	wait_event(delayed_refs->seq_wait,
2336 		   num_refs != delayed_refs->num_entries ||
2337 		   delayed_refs->seq_head.next != first_seq);
2338 	pr_debug("done waiting for more refs (num %ld, first %p)\n",
2339 		 delayed_refs->num_entries, delayed_refs->seq_head.next);
2340 	spin_lock(&delayed_refs->lock);
2341 }
2342 
2343 /*
2344  * this starts processing the delayed reference count updates and
2345  * extent insertions we have queued up so far.  count can be
2346  * 0, which means to process everything in the tree at the start
2347  * of the run (but not newly added entries), or it can be some target
2348  * number you'd like to process.
2349  */
2350 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2351 			   struct btrfs_root *root, unsigned long count)
2352 {
2353 	struct rb_node *node;
2354 	struct btrfs_delayed_ref_root *delayed_refs;
2355 	struct btrfs_delayed_ref_node *ref;
2356 	struct list_head cluster;
2357 	int ret;
2358 	u64 delayed_start;
2359 	int run_all = count == (unsigned long)-1;
2360 	int run_most = 0;
2361 	unsigned long num_refs = 0;
2362 	int consider_waiting;
2363 
2364 	if (root == root->fs_info->extent_root)
2365 		root = root->fs_info->tree_root;
2366 
2367 	do_chunk_alloc(trans, root->fs_info->extent_root,
2368 		       2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2369 		       CHUNK_ALLOC_NO_FORCE);
2370 
2371 	delayed_refs = &trans->transaction->delayed_refs;
2372 	INIT_LIST_HEAD(&cluster);
2373 again:
2374 	consider_waiting = 0;
2375 	spin_lock(&delayed_refs->lock);
2376 	if (count == 0) {
2377 		count = delayed_refs->num_entries * 2;
2378 		run_most = 1;
2379 	}
2380 	while (1) {
2381 		if (!(run_all || run_most) &&
2382 		    delayed_refs->num_heads_ready < 64)
2383 			break;
2384 
2385 		/*
2386 		 * go find something we can process in the rbtree.  We start at
2387 		 * the beginning of the tree, and then build a cluster
2388 		 * of refs to process starting at the first one we are able to
2389 		 * lock
2390 		 */
2391 		delayed_start = delayed_refs->run_delayed_start;
2392 		ret = btrfs_find_ref_cluster(trans, &cluster,
2393 					     delayed_refs->run_delayed_start);
2394 		if (ret)
2395 			break;
2396 
2397 		if (delayed_start >= delayed_refs->run_delayed_start) {
2398 			if (consider_waiting == 0) {
2399 				/*
2400 				 * btrfs_find_ref_cluster looped. let's do one
2401 				 * more cycle. if we don't run any delayed ref
2402 				 * during that cycle (because we can't because
2403 				 * all of them are blocked) and if the number of
2404 				 * refs doesn't change, we avoid busy waiting.
2405 				 */
2406 				consider_waiting = 1;
2407 				num_refs = delayed_refs->num_entries;
2408 			} else {
2409 				wait_for_more_refs(delayed_refs, num_refs);
2410 				/*
2411 				 * after waiting, things have changed. we
2412 				 * dropped the lock and someone else might have
2413 				 * run some refs, built new clusters and so on.
2414 				 * therefore, we restart staleness detection.
2415 				 */
2416 				consider_waiting = 0;
2417 			}
2418 		}
2419 
2420 		ret = run_clustered_refs(trans, root, &cluster);
2421 		BUG_ON(ret < 0);
2422 
2423 		count -= min_t(unsigned long, ret, count);
2424 
2425 		if (count == 0)
2426 			break;
2427 
2428 		if (ret || delayed_refs->run_delayed_start == 0) {
2429 			/* refs were run, let's reset staleness detection */
2430 			consider_waiting = 0;
2431 		}
2432 	}
2433 
2434 	if (run_all) {
2435 		node = rb_first(&delayed_refs->root);
2436 		if (!node)
2437 			goto out;
2438 		count = (unsigned long)-1;
2439 
2440 		while (node) {
2441 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2442 				       rb_node);
2443 			if (btrfs_delayed_ref_is_head(ref)) {
2444 				struct btrfs_delayed_ref_head *head;
2445 
2446 				head = btrfs_delayed_node_to_head(ref);
2447 				atomic_inc(&ref->refs);
2448 
2449 				spin_unlock(&delayed_refs->lock);
2450 				/*
2451 				 * Mutex was contended, block until it's
2452 				 * released and try again
2453 				 */
2454 				mutex_lock(&head->mutex);
2455 				mutex_unlock(&head->mutex);
2456 
2457 				btrfs_put_delayed_ref(ref);
2458 				cond_resched();
2459 				goto again;
2460 			}
2461 			node = rb_next(node);
2462 		}
2463 		spin_unlock(&delayed_refs->lock);
2464 		schedule_timeout(1);
2465 		goto again;
2466 	}
2467 out:
2468 	spin_unlock(&delayed_refs->lock);
2469 	return 0;
2470 }
2471 
2472 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2473 				struct btrfs_root *root,
2474 				u64 bytenr, u64 num_bytes, u64 flags,
2475 				int is_data)
2476 {
2477 	struct btrfs_delayed_extent_op *extent_op;
2478 	int ret;
2479 
2480 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2481 	if (!extent_op)
2482 		return -ENOMEM;
2483 
2484 	extent_op->flags_to_set = flags;
2485 	extent_op->update_flags = 1;
2486 	extent_op->update_key = 0;
2487 	extent_op->is_data = is_data ? 1 : 0;
2488 
2489 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2490 					  num_bytes, extent_op);
2491 	if (ret)
2492 		kfree(extent_op);
2493 	return ret;
2494 }
2495 
2496 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2497 				      struct btrfs_root *root,
2498 				      struct btrfs_path *path,
2499 				      u64 objectid, u64 offset, u64 bytenr)
2500 {
2501 	struct btrfs_delayed_ref_head *head;
2502 	struct btrfs_delayed_ref_node *ref;
2503 	struct btrfs_delayed_data_ref *data_ref;
2504 	struct btrfs_delayed_ref_root *delayed_refs;
2505 	struct rb_node *node;
2506 	int ret = 0;
2507 
2508 	ret = -ENOENT;
2509 	delayed_refs = &trans->transaction->delayed_refs;
2510 	spin_lock(&delayed_refs->lock);
2511 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2512 	if (!head)
2513 		goto out;
2514 
2515 	if (!mutex_trylock(&head->mutex)) {
2516 		atomic_inc(&head->node.refs);
2517 		spin_unlock(&delayed_refs->lock);
2518 
2519 		btrfs_release_path(path);
2520 
2521 		/*
2522 		 * Mutex was contended, block until it's released and let
2523 		 * caller try again
2524 		 */
2525 		mutex_lock(&head->mutex);
2526 		mutex_unlock(&head->mutex);
2527 		btrfs_put_delayed_ref(&head->node);
2528 		return -EAGAIN;
2529 	}
2530 
2531 	node = rb_prev(&head->node.rb_node);
2532 	if (!node)
2533 		goto out_unlock;
2534 
2535 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2536 
2537 	if (ref->bytenr != bytenr)
2538 		goto out_unlock;
2539 
2540 	ret = 1;
2541 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2542 		goto out_unlock;
2543 
2544 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2545 
2546 	node = rb_prev(node);
2547 	if (node) {
2548 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2549 		if (ref->bytenr == bytenr)
2550 			goto out_unlock;
2551 	}
2552 
2553 	if (data_ref->root != root->root_key.objectid ||
2554 	    data_ref->objectid != objectid || data_ref->offset != offset)
2555 		goto out_unlock;
2556 
2557 	ret = 0;
2558 out_unlock:
2559 	mutex_unlock(&head->mutex);
2560 out:
2561 	spin_unlock(&delayed_refs->lock);
2562 	return ret;
2563 }
2564 
2565 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2566 					struct btrfs_root *root,
2567 					struct btrfs_path *path,
2568 					u64 objectid, u64 offset, u64 bytenr)
2569 {
2570 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2571 	struct extent_buffer *leaf;
2572 	struct btrfs_extent_data_ref *ref;
2573 	struct btrfs_extent_inline_ref *iref;
2574 	struct btrfs_extent_item *ei;
2575 	struct btrfs_key key;
2576 	u32 item_size;
2577 	int ret;
2578 
2579 	key.objectid = bytenr;
2580 	key.offset = (u64)-1;
2581 	key.type = BTRFS_EXTENT_ITEM_KEY;
2582 
2583 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2584 	if (ret < 0)
2585 		goto out;
2586 	BUG_ON(ret == 0);
2587 
2588 	ret = -ENOENT;
2589 	if (path->slots[0] == 0)
2590 		goto out;
2591 
2592 	path->slots[0]--;
2593 	leaf = path->nodes[0];
2594 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2595 
2596 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2597 		goto out;
2598 
2599 	ret = 1;
2600 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2601 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2602 	if (item_size < sizeof(*ei)) {
2603 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2604 		goto out;
2605 	}
2606 #endif
2607 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2608 
2609 	if (item_size != sizeof(*ei) +
2610 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2611 		goto out;
2612 
2613 	if (btrfs_extent_generation(leaf, ei) <=
2614 	    btrfs_root_last_snapshot(&root->root_item))
2615 		goto out;
2616 
2617 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2618 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2619 	    BTRFS_EXTENT_DATA_REF_KEY)
2620 		goto out;
2621 
2622 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2623 	if (btrfs_extent_refs(leaf, ei) !=
2624 	    btrfs_extent_data_ref_count(leaf, ref) ||
2625 	    btrfs_extent_data_ref_root(leaf, ref) !=
2626 	    root->root_key.objectid ||
2627 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2628 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2629 		goto out;
2630 
2631 	ret = 0;
2632 out:
2633 	return ret;
2634 }
2635 
2636 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2637 			  struct btrfs_root *root,
2638 			  u64 objectid, u64 offset, u64 bytenr)
2639 {
2640 	struct btrfs_path *path;
2641 	int ret;
2642 	int ret2;
2643 
2644 	path = btrfs_alloc_path();
2645 	if (!path)
2646 		return -ENOENT;
2647 
2648 	do {
2649 		ret = check_committed_ref(trans, root, path, objectid,
2650 					  offset, bytenr);
2651 		if (ret && ret != -ENOENT)
2652 			goto out;
2653 
2654 		ret2 = check_delayed_ref(trans, root, path, objectid,
2655 					 offset, bytenr);
2656 	} while (ret2 == -EAGAIN);
2657 
2658 	if (ret2 && ret2 != -ENOENT) {
2659 		ret = ret2;
2660 		goto out;
2661 	}
2662 
2663 	if (ret != -ENOENT || ret2 != -ENOENT)
2664 		ret = 0;
2665 out:
2666 	btrfs_free_path(path);
2667 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2668 		WARN_ON(ret > 0);
2669 	return ret;
2670 }
2671 
2672 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2673 			   struct btrfs_root *root,
2674 			   struct extent_buffer *buf,
2675 			   int full_backref, int inc, int for_cow)
2676 {
2677 	u64 bytenr;
2678 	u64 num_bytes;
2679 	u64 parent;
2680 	u64 ref_root;
2681 	u32 nritems;
2682 	struct btrfs_key key;
2683 	struct btrfs_file_extent_item *fi;
2684 	int i;
2685 	int level;
2686 	int ret = 0;
2687 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2688 			    u64, u64, u64, u64, u64, u64, int);
2689 
2690 	ref_root = btrfs_header_owner(buf);
2691 	nritems = btrfs_header_nritems(buf);
2692 	level = btrfs_header_level(buf);
2693 
2694 	if (!root->ref_cows && level == 0)
2695 		return 0;
2696 
2697 	if (inc)
2698 		process_func = btrfs_inc_extent_ref;
2699 	else
2700 		process_func = btrfs_free_extent;
2701 
2702 	if (full_backref)
2703 		parent = buf->start;
2704 	else
2705 		parent = 0;
2706 
2707 	for (i = 0; i < nritems; i++) {
2708 		if (level == 0) {
2709 			btrfs_item_key_to_cpu(buf, &key, i);
2710 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2711 				continue;
2712 			fi = btrfs_item_ptr(buf, i,
2713 					    struct btrfs_file_extent_item);
2714 			if (btrfs_file_extent_type(buf, fi) ==
2715 			    BTRFS_FILE_EXTENT_INLINE)
2716 				continue;
2717 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2718 			if (bytenr == 0)
2719 				continue;
2720 
2721 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2722 			key.offset -= btrfs_file_extent_offset(buf, fi);
2723 			ret = process_func(trans, root, bytenr, num_bytes,
2724 					   parent, ref_root, key.objectid,
2725 					   key.offset, for_cow);
2726 			if (ret)
2727 				goto fail;
2728 		} else {
2729 			bytenr = btrfs_node_blockptr(buf, i);
2730 			num_bytes = btrfs_level_size(root, level - 1);
2731 			ret = process_func(trans, root, bytenr, num_bytes,
2732 					   parent, ref_root, level - 1, 0,
2733 					   for_cow);
2734 			if (ret)
2735 				goto fail;
2736 		}
2737 	}
2738 	return 0;
2739 fail:
2740 	BUG();
2741 	return ret;
2742 }
2743 
2744 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2745 		  struct extent_buffer *buf, int full_backref, int for_cow)
2746 {
2747 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2748 }
2749 
2750 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2751 		  struct extent_buffer *buf, int full_backref, int for_cow)
2752 {
2753 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2754 }
2755 
2756 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2757 				 struct btrfs_root *root,
2758 				 struct btrfs_path *path,
2759 				 struct btrfs_block_group_cache *cache)
2760 {
2761 	int ret;
2762 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2763 	unsigned long bi;
2764 	struct extent_buffer *leaf;
2765 
2766 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2767 	if (ret < 0)
2768 		goto fail;
2769 	BUG_ON(ret);
2770 
2771 	leaf = path->nodes[0];
2772 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2773 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2774 	btrfs_mark_buffer_dirty(leaf);
2775 	btrfs_release_path(path);
2776 fail:
2777 	if (ret)
2778 		return ret;
2779 	return 0;
2780 
2781 }
2782 
2783 static struct btrfs_block_group_cache *
2784 next_block_group(struct btrfs_root *root,
2785 		 struct btrfs_block_group_cache *cache)
2786 {
2787 	struct rb_node *node;
2788 	spin_lock(&root->fs_info->block_group_cache_lock);
2789 	node = rb_next(&cache->cache_node);
2790 	btrfs_put_block_group(cache);
2791 	if (node) {
2792 		cache = rb_entry(node, struct btrfs_block_group_cache,
2793 				 cache_node);
2794 		btrfs_get_block_group(cache);
2795 	} else
2796 		cache = NULL;
2797 	spin_unlock(&root->fs_info->block_group_cache_lock);
2798 	return cache;
2799 }
2800 
2801 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2802 			    struct btrfs_trans_handle *trans,
2803 			    struct btrfs_path *path)
2804 {
2805 	struct btrfs_root *root = block_group->fs_info->tree_root;
2806 	struct inode *inode = NULL;
2807 	u64 alloc_hint = 0;
2808 	int dcs = BTRFS_DC_ERROR;
2809 	int num_pages = 0;
2810 	int retries = 0;
2811 	int ret = 0;
2812 
2813 	/*
2814 	 * If this block group is smaller than 100 megs don't bother caching the
2815 	 * block group.
2816 	 */
2817 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2818 		spin_lock(&block_group->lock);
2819 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2820 		spin_unlock(&block_group->lock);
2821 		return 0;
2822 	}
2823 
2824 again:
2825 	inode = lookup_free_space_inode(root, block_group, path);
2826 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2827 		ret = PTR_ERR(inode);
2828 		btrfs_release_path(path);
2829 		goto out;
2830 	}
2831 
2832 	if (IS_ERR(inode)) {
2833 		BUG_ON(retries);
2834 		retries++;
2835 
2836 		if (block_group->ro)
2837 			goto out_free;
2838 
2839 		ret = create_free_space_inode(root, trans, block_group, path);
2840 		if (ret)
2841 			goto out_free;
2842 		goto again;
2843 	}
2844 
2845 	/* We've already setup this transaction, go ahead and exit */
2846 	if (block_group->cache_generation == trans->transid &&
2847 	    i_size_read(inode)) {
2848 		dcs = BTRFS_DC_SETUP;
2849 		goto out_put;
2850 	}
2851 
2852 	/*
2853 	 * We want to set the generation to 0, that way if anything goes wrong
2854 	 * from here on out we know not to trust this cache when we load up next
2855 	 * time.
2856 	 */
2857 	BTRFS_I(inode)->generation = 0;
2858 	ret = btrfs_update_inode(trans, root, inode);
2859 	WARN_ON(ret);
2860 
2861 	if (i_size_read(inode) > 0) {
2862 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2863 						      inode);
2864 		if (ret)
2865 			goto out_put;
2866 	}
2867 
2868 	spin_lock(&block_group->lock);
2869 	if (block_group->cached != BTRFS_CACHE_FINISHED) {
2870 		/* We're not cached, don't bother trying to write stuff out */
2871 		dcs = BTRFS_DC_WRITTEN;
2872 		spin_unlock(&block_group->lock);
2873 		goto out_put;
2874 	}
2875 	spin_unlock(&block_group->lock);
2876 
2877 	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2878 	if (!num_pages)
2879 		num_pages = 1;
2880 
2881 	/*
2882 	 * Just to make absolutely sure we have enough space, we're going to
2883 	 * preallocate 12 pages worth of space for each block group.  In
2884 	 * practice we ought to use at most 8, but we need extra space so we can
2885 	 * add our header and have a terminator between the extents and the
2886 	 * bitmaps.
2887 	 */
2888 	num_pages *= 16;
2889 	num_pages *= PAGE_CACHE_SIZE;
2890 
2891 	ret = btrfs_check_data_free_space(inode, num_pages);
2892 	if (ret)
2893 		goto out_put;
2894 
2895 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2896 					      num_pages, num_pages,
2897 					      &alloc_hint);
2898 	if (!ret)
2899 		dcs = BTRFS_DC_SETUP;
2900 	btrfs_free_reserved_data_space(inode, num_pages);
2901 
2902 out_put:
2903 	iput(inode);
2904 out_free:
2905 	btrfs_release_path(path);
2906 out:
2907 	spin_lock(&block_group->lock);
2908 	if (!ret && dcs == BTRFS_DC_SETUP)
2909 		block_group->cache_generation = trans->transid;
2910 	block_group->disk_cache_state = dcs;
2911 	spin_unlock(&block_group->lock);
2912 
2913 	return ret;
2914 }
2915 
2916 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2917 				   struct btrfs_root *root)
2918 {
2919 	struct btrfs_block_group_cache *cache;
2920 	int err = 0;
2921 	struct btrfs_path *path;
2922 	u64 last = 0;
2923 
2924 	path = btrfs_alloc_path();
2925 	if (!path)
2926 		return -ENOMEM;
2927 
2928 again:
2929 	while (1) {
2930 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2931 		while (cache) {
2932 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2933 				break;
2934 			cache = next_block_group(root, cache);
2935 		}
2936 		if (!cache) {
2937 			if (last == 0)
2938 				break;
2939 			last = 0;
2940 			continue;
2941 		}
2942 		err = cache_save_setup(cache, trans, path);
2943 		last = cache->key.objectid + cache->key.offset;
2944 		btrfs_put_block_group(cache);
2945 	}
2946 
2947 	while (1) {
2948 		if (last == 0) {
2949 			err = btrfs_run_delayed_refs(trans, root,
2950 						     (unsigned long)-1);
2951 			BUG_ON(err);
2952 		}
2953 
2954 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2955 		while (cache) {
2956 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2957 				btrfs_put_block_group(cache);
2958 				goto again;
2959 			}
2960 
2961 			if (cache->dirty)
2962 				break;
2963 			cache = next_block_group(root, cache);
2964 		}
2965 		if (!cache) {
2966 			if (last == 0)
2967 				break;
2968 			last = 0;
2969 			continue;
2970 		}
2971 
2972 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
2973 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2974 		cache->dirty = 0;
2975 		last = cache->key.objectid + cache->key.offset;
2976 
2977 		err = write_one_cache_group(trans, root, path, cache);
2978 		BUG_ON(err);
2979 		btrfs_put_block_group(cache);
2980 	}
2981 
2982 	while (1) {
2983 		/*
2984 		 * I don't think this is needed since we're just marking our
2985 		 * preallocated extent as written, but just in case it can't
2986 		 * hurt.
2987 		 */
2988 		if (last == 0) {
2989 			err = btrfs_run_delayed_refs(trans, root,
2990 						     (unsigned long)-1);
2991 			BUG_ON(err);
2992 		}
2993 
2994 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2995 		while (cache) {
2996 			/*
2997 			 * Really this shouldn't happen, but it could if we
2998 			 * couldn't write the entire preallocated extent and
2999 			 * splitting the extent resulted in a new block.
3000 			 */
3001 			if (cache->dirty) {
3002 				btrfs_put_block_group(cache);
3003 				goto again;
3004 			}
3005 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3006 				break;
3007 			cache = next_block_group(root, cache);
3008 		}
3009 		if (!cache) {
3010 			if (last == 0)
3011 				break;
3012 			last = 0;
3013 			continue;
3014 		}
3015 
3016 		btrfs_write_out_cache(root, trans, cache, path);
3017 
3018 		/*
3019 		 * If we didn't have an error then the cache state is still
3020 		 * NEED_WRITE, so we can set it to WRITTEN.
3021 		 */
3022 		if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3023 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3024 		last = cache->key.objectid + cache->key.offset;
3025 		btrfs_put_block_group(cache);
3026 	}
3027 
3028 	btrfs_free_path(path);
3029 	return 0;
3030 }
3031 
3032 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3033 {
3034 	struct btrfs_block_group_cache *block_group;
3035 	int readonly = 0;
3036 
3037 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3038 	if (!block_group || block_group->ro)
3039 		readonly = 1;
3040 	if (block_group)
3041 		btrfs_put_block_group(block_group);
3042 	return readonly;
3043 }
3044 
3045 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3046 			     u64 total_bytes, u64 bytes_used,
3047 			     struct btrfs_space_info **space_info)
3048 {
3049 	struct btrfs_space_info *found;
3050 	int i;
3051 	int factor;
3052 
3053 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3054 		     BTRFS_BLOCK_GROUP_RAID10))
3055 		factor = 2;
3056 	else
3057 		factor = 1;
3058 
3059 	found = __find_space_info(info, flags);
3060 	if (found) {
3061 		spin_lock(&found->lock);
3062 		found->total_bytes += total_bytes;
3063 		found->disk_total += total_bytes * factor;
3064 		found->bytes_used += bytes_used;
3065 		found->disk_used += bytes_used * factor;
3066 		found->full = 0;
3067 		spin_unlock(&found->lock);
3068 		*space_info = found;
3069 		return 0;
3070 	}
3071 	found = kzalloc(sizeof(*found), GFP_NOFS);
3072 	if (!found)
3073 		return -ENOMEM;
3074 
3075 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3076 		INIT_LIST_HEAD(&found->block_groups[i]);
3077 	init_rwsem(&found->groups_sem);
3078 	spin_lock_init(&found->lock);
3079 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3080 	found->total_bytes = total_bytes;
3081 	found->disk_total = total_bytes * factor;
3082 	found->bytes_used = bytes_used;
3083 	found->disk_used = bytes_used * factor;
3084 	found->bytes_pinned = 0;
3085 	found->bytes_reserved = 0;
3086 	found->bytes_readonly = 0;
3087 	found->bytes_may_use = 0;
3088 	found->full = 0;
3089 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3090 	found->chunk_alloc = 0;
3091 	found->flush = 0;
3092 	init_waitqueue_head(&found->wait);
3093 	*space_info = found;
3094 	list_add_rcu(&found->list, &info->space_info);
3095 	return 0;
3096 }
3097 
3098 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3099 {
3100 	u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3101 
3102 	/* chunk -> extended profile */
3103 	if (extra_flags == 0)
3104 		extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3105 
3106 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3107 		fs_info->avail_data_alloc_bits |= extra_flags;
3108 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3109 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3110 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3111 		fs_info->avail_system_alloc_bits |= extra_flags;
3112 }
3113 
3114 /*
3115  * @flags: available profiles in extended format (see ctree.h)
3116  *
3117  * Returns reduced profile in chunk format.  If profile changing is in
3118  * progress (either running or paused) picks the target profile (if it's
3119  * already available), otherwise falls back to plain reducing.
3120  */
3121 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3122 {
3123 	/*
3124 	 * we add in the count of missing devices because we want
3125 	 * to make sure that any RAID levels on a degraded FS
3126 	 * continue to be honored.
3127 	 */
3128 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3129 		root->fs_info->fs_devices->missing_devices;
3130 
3131 	/* pick restriper's target profile if it's available */
3132 	spin_lock(&root->fs_info->balance_lock);
3133 	if (root->fs_info->balance_ctl) {
3134 		struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3135 		u64 tgt = 0;
3136 
3137 		if ((flags & BTRFS_BLOCK_GROUP_DATA) &&
3138 		    (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3139 		    (flags & bctl->data.target)) {
3140 			tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3141 		} else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) &&
3142 			   (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3143 			   (flags & bctl->sys.target)) {
3144 			tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3145 		} else if ((flags & BTRFS_BLOCK_GROUP_METADATA) &&
3146 			   (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3147 			   (flags & bctl->meta.target)) {
3148 			tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3149 		}
3150 
3151 		if (tgt) {
3152 			spin_unlock(&root->fs_info->balance_lock);
3153 			flags = tgt;
3154 			goto out;
3155 		}
3156 	}
3157 	spin_unlock(&root->fs_info->balance_lock);
3158 
3159 	if (num_devices == 1)
3160 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3161 	if (num_devices < 4)
3162 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3163 
3164 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3165 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3166 		      BTRFS_BLOCK_GROUP_RAID10))) {
3167 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3168 	}
3169 
3170 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3171 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3172 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3173 	}
3174 
3175 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3176 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3177 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3178 	     (flags & BTRFS_BLOCK_GROUP_DUP))) {
3179 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3180 	}
3181 
3182 out:
3183 	/* extended -> chunk profile */
3184 	flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3185 	return flags;
3186 }
3187 
3188 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3189 {
3190 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3191 		flags |= root->fs_info->avail_data_alloc_bits;
3192 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3193 		flags |= root->fs_info->avail_system_alloc_bits;
3194 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3195 		flags |= root->fs_info->avail_metadata_alloc_bits;
3196 
3197 	return btrfs_reduce_alloc_profile(root, flags);
3198 }
3199 
3200 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3201 {
3202 	u64 flags;
3203 
3204 	if (data)
3205 		flags = BTRFS_BLOCK_GROUP_DATA;
3206 	else if (root == root->fs_info->chunk_root)
3207 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3208 	else
3209 		flags = BTRFS_BLOCK_GROUP_METADATA;
3210 
3211 	return get_alloc_profile(root, flags);
3212 }
3213 
3214 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3215 {
3216 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3217 						       BTRFS_BLOCK_GROUP_DATA);
3218 }
3219 
3220 /*
3221  * This will check the space that the inode allocates from to make sure we have
3222  * enough space for bytes.
3223  */
3224 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3225 {
3226 	struct btrfs_space_info *data_sinfo;
3227 	struct btrfs_root *root = BTRFS_I(inode)->root;
3228 	u64 used;
3229 	int ret = 0, committed = 0, alloc_chunk = 1;
3230 
3231 	/* make sure bytes are sectorsize aligned */
3232 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3233 
3234 	if (root == root->fs_info->tree_root ||
3235 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3236 		alloc_chunk = 0;
3237 		committed = 1;
3238 	}
3239 
3240 	data_sinfo = BTRFS_I(inode)->space_info;
3241 	if (!data_sinfo)
3242 		goto alloc;
3243 
3244 again:
3245 	/* make sure we have enough space to handle the data first */
3246 	spin_lock(&data_sinfo->lock);
3247 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3248 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3249 		data_sinfo->bytes_may_use;
3250 
3251 	if (used + bytes > data_sinfo->total_bytes) {
3252 		struct btrfs_trans_handle *trans;
3253 
3254 		/*
3255 		 * if we don't have enough free bytes in this space then we need
3256 		 * to alloc a new chunk.
3257 		 */
3258 		if (!data_sinfo->full && alloc_chunk) {
3259 			u64 alloc_target;
3260 
3261 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3262 			spin_unlock(&data_sinfo->lock);
3263 alloc:
3264 			alloc_target = btrfs_get_alloc_profile(root, 1);
3265 			trans = btrfs_join_transaction(root);
3266 			if (IS_ERR(trans))
3267 				return PTR_ERR(trans);
3268 
3269 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3270 					     bytes + 2 * 1024 * 1024,
3271 					     alloc_target,
3272 					     CHUNK_ALLOC_NO_FORCE);
3273 			btrfs_end_transaction(trans, root);
3274 			if (ret < 0) {
3275 				if (ret != -ENOSPC)
3276 					return ret;
3277 				else
3278 					goto commit_trans;
3279 			}
3280 
3281 			if (!data_sinfo) {
3282 				btrfs_set_inode_space_info(root, inode);
3283 				data_sinfo = BTRFS_I(inode)->space_info;
3284 			}
3285 			goto again;
3286 		}
3287 
3288 		/*
3289 		 * If we have less pinned bytes than we want to allocate then
3290 		 * don't bother committing the transaction, it won't help us.
3291 		 */
3292 		if (data_sinfo->bytes_pinned < bytes)
3293 			committed = 1;
3294 		spin_unlock(&data_sinfo->lock);
3295 
3296 		/* commit the current transaction and try again */
3297 commit_trans:
3298 		if (!committed &&
3299 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3300 			committed = 1;
3301 			trans = btrfs_join_transaction(root);
3302 			if (IS_ERR(trans))
3303 				return PTR_ERR(trans);
3304 			ret = btrfs_commit_transaction(trans, root);
3305 			if (ret)
3306 				return ret;
3307 			goto again;
3308 		}
3309 
3310 		return -ENOSPC;
3311 	}
3312 	data_sinfo->bytes_may_use += bytes;
3313 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3314 				      (u64)data_sinfo, bytes, 1);
3315 	spin_unlock(&data_sinfo->lock);
3316 
3317 	return 0;
3318 }
3319 
3320 /*
3321  * Called if we need to clear a data reservation for this inode.
3322  */
3323 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3324 {
3325 	struct btrfs_root *root = BTRFS_I(inode)->root;
3326 	struct btrfs_space_info *data_sinfo;
3327 
3328 	/* make sure bytes are sectorsize aligned */
3329 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3330 
3331 	data_sinfo = BTRFS_I(inode)->space_info;
3332 	spin_lock(&data_sinfo->lock);
3333 	data_sinfo->bytes_may_use -= bytes;
3334 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3335 				      (u64)data_sinfo, bytes, 0);
3336 	spin_unlock(&data_sinfo->lock);
3337 }
3338 
3339 static void force_metadata_allocation(struct btrfs_fs_info *info)
3340 {
3341 	struct list_head *head = &info->space_info;
3342 	struct btrfs_space_info *found;
3343 
3344 	rcu_read_lock();
3345 	list_for_each_entry_rcu(found, head, list) {
3346 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3347 			found->force_alloc = CHUNK_ALLOC_FORCE;
3348 	}
3349 	rcu_read_unlock();
3350 }
3351 
3352 static int should_alloc_chunk(struct btrfs_root *root,
3353 			      struct btrfs_space_info *sinfo, u64 alloc_bytes,
3354 			      int force)
3355 {
3356 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3357 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3358 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3359 	u64 thresh;
3360 
3361 	if (force == CHUNK_ALLOC_FORCE)
3362 		return 1;
3363 
3364 	/*
3365 	 * We need to take into account the global rsv because for all intents
3366 	 * and purposes it's used space.  Don't worry about locking the
3367 	 * global_rsv, it doesn't change except when the transaction commits.
3368 	 */
3369 	num_allocated += global_rsv->size;
3370 
3371 	/*
3372 	 * in limited mode, we want to have some free space up to
3373 	 * about 1% of the FS size.
3374 	 */
3375 	if (force == CHUNK_ALLOC_LIMITED) {
3376 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3377 		thresh = max_t(u64, 64 * 1024 * 1024,
3378 			       div_factor_fine(thresh, 1));
3379 
3380 		if (num_bytes - num_allocated < thresh)
3381 			return 1;
3382 	}
3383 	thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3384 
3385 	/* 256MB or 2% of the FS */
3386 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3387 
3388 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3389 		return 0;
3390 	return 1;
3391 }
3392 
3393 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3394 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3395 			  u64 flags, int force)
3396 {
3397 	struct btrfs_space_info *space_info;
3398 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3399 	int wait_for_alloc = 0;
3400 	int ret = 0;
3401 
3402 	BUG_ON(!profile_is_valid(flags, 0));
3403 
3404 	space_info = __find_space_info(extent_root->fs_info, flags);
3405 	if (!space_info) {
3406 		ret = update_space_info(extent_root->fs_info, flags,
3407 					0, 0, &space_info);
3408 		BUG_ON(ret);
3409 	}
3410 	BUG_ON(!space_info);
3411 
3412 again:
3413 	spin_lock(&space_info->lock);
3414 	if (space_info->force_alloc)
3415 		force = space_info->force_alloc;
3416 	if (space_info->full) {
3417 		spin_unlock(&space_info->lock);
3418 		return 0;
3419 	}
3420 
3421 	if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3422 		spin_unlock(&space_info->lock);
3423 		return 0;
3424 	} else if (space_info->chunk_alloc) {
3425 		wait_for_alloc = 1;
3426 	} else {
3427 		space_info->chunk_alloc = 1;
3428 	}
3429 
3430 	spin_unlock(&space_info->lock);
3431 
3432 	mutex_lock(&fs_info->chunk_mutex);
3433 
3434 	/*
3435 	 * The chunk_mutex is held throughout the entirety of a chunk
3436 	 * allocation, so once we've acquired the chunk_mutex we know that the
3437 	 * other guy is done and we need to recheck and see if we should
3438 	 * allocate.
3439 	 */
3440 	if (wait_for_alloc) {
3441 		mutex_unlock(&fs_info->chunk_mutex);
3442 		wait_for_alloc = 0;
3443 		goto again;
3444 	}
3445 
3446 	/*
3447 	 * If we have mixed data/metadata chunks we want to make sure we keep
3448 	 * allocating mixed chunks instead of individual chunks.
3449 	 */
3450 	if (btrfs_mixed_space_info(space_info))
3451 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3452 
3453 	/*
3454 	 * if we're doing a data chunk, go ahead and make sure that
3455 	 * we keep a reasonable number of metadata chunks allocated in the
3456 	 * FS as well.
3457 	 */
3458 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3459 		fs_info->data_chunk_allocations++;
3460 		if (!(fs_info->data_chunk_allocations %
3461 		      fs_info->metadata_ratio))
3462 			force_metadata_allocation(fs_info);
3463 	}
3464 
3465 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3466 	if (ret < 0 && ret != -ENOSPC)
3467 		goto out;
3468 
3469 	spin_lock(&space_info->lock);
3470 	if (ret)
3471 		space_info->full = 1;
3472 	else
3473 		ret = 1;
3474 
3475 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3476 	space_info->chunk_alloc = 0;
3477 	spin_unlock(&space_info->lock);
3478 out:
3479 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3480 	return ret;
3481 }
3482 
3483 /*
3484  * shrink metadata reservation for delalloc
3485  */
3486 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3487 			   bool wait_ordered)
3488 {
3489 	struct btrfs_block_rsv *block_rsv;
3490 	struct btrfs_space_info *space_info;
3491 	struct btrfs_trans_handle *trans;
3492 	u64 reserved;
3493 	u64 max_reclaim;
3494 	u64 reclaimed = 0;
3495 	long time_left;
3496 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3497 	int loops = 0;
3498 	unsigned long progress;
3499 
3500 	trans = (struct btrfs_trans_handle *)current->journal_info;
3501 	block_rsv = &root->fs_info->delalloc_block_rsv;
3502 	space_info = block_rsv->space_info;
3503 
3504 	smp_mb();
3505 	reserved = space_info->bytes_may_use;
3506 	progress = space_info->reservation_progress;
3507 
3508 	if (reserved == 0)
3509 		return 0;
3510 
3511 	smp_mb();
3512 	if (root->fs_info->delalloc_bytes == 0) {
3513 		if (trans)
3514 			return 0;
3515 		btrfs_wait_ordered_extents(root, 0, 0);
3516 		return 0;
3517 	}
3518 
3519 	max_reclaim = min(reserved, to_reclaim);
3520 	nr_pages = max_t(unsigned long, nr_pages,
3521 			 max_reclaim >> PAGE_CACHE_SHIFT);
3522 	while (loops < 1024) {
3523 		/* have the flusher threads jump in and do some IO */
3524 		smp_mb();
3525 		nr_pages = min_t(unsigned long, nr_pages,
3526 		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3527 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3528 						WB_REASON_FS_FREE_SPACE);
3529 
3530 		spin_lock(&space_info->lock);
3531 		if (reserved > space_info->bytes_may_use)
3532 			reclaimed += reserved - space_info->bytes_may_use;
3533 		reserved = space_info->bytes_may_use;
3534 		spin_unlock(&space_info->lock);
3535 
3536 		loops++;
3537 
3538 		if (reserved == 0 || reclaimed >= max_reclaim)
3539 			break;
3540 
3541 		if (trans && trans->transaction->blocked)
3542 			return -EAGAIN;
3543 
3544 		if (wait_ordered && !trans) {
3545 			btrfs_wait_ordered_extents(root, 0, 0);
3546 		} else {
3547 			time_left = schedule_timeout_interruptible(1);
3548 
3549 			/* We were interrupted, exit */
3550 			if (time_left)
3551 				break;
3552 		}
3553 
3554 		/* we've kicked the IO a few times, if anything has been freed,
3555 		 * exit.  There is no sense in looping here for a long time
3556 		 * when we really need to commit the transaction, or there are
3557 		 * just too many writers without enough free space
3558 		 */
3559 
3560 		if (loops > 3) {
3561 			smp_mb();
3562 			if (progress != space_info->reservation_progress)
3563 				break;
3564 		}
3565 
3566 	}
3567 
3568 	return reclaimed >= to_reclaim;
3569 }
3570 
3571 /**
3572  * maybe_commit_transaction - possibly commit the transaction if its ok to
3573  * @root - the root we're allocating for
3574  * @bytes - the number of bytes we want to reserve
3575  * @force - force the commit
3576  *
3577  * This will check to make sure that committing the transaction will actually
3578  * get us somewhere and then commit the transaction if it does.  Otherwise it
3579  * will return -ENOSPC.
3580  */
3581 static int may_commit_transaction(struct btrfs_root *root,
3582 				  struct btrfs_space_info *space_info,
3583 				  u64 bytes, int force)
3584 {
3585 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3586 	struct btrfs_trans_handle *trans;
3587 
3588 	trans = (struct btrfs_trans_handle *)current->journal_info;
3589 	if (trans)
3590 		return -EAGAIN;
3591 
3592 	if (force)
3593 		goto commit;
3594 
3595 	/* See if there is enough pinned space to make this reservation */
3596 	spin_lock(&space_info->lock);
3597 	if (space_info->bytes_pinned >= bytes) {
3598 		spin_unlock(&space_info->lock);
3599 		goto commit;
3600 	}
3601 	spin_unlock(&space_info->lock);
3602 
3603 	/*
3604 	 * See if there is some space in the delayed insertion reservation for
3605 	 * this reservation.
3606 	 */
3607 	if (space_info != delayed_rsv->space_info)
3608 		return -ENOSPC;
3609 
3610 	spin_lock(&delayed_rsv->lock);
3611 	if (delayed_rsv->size < bytes) {
3612 		spin_unlock(&delayed_rsv->lock);
3613 		return -ENOSPC;
3614 	}
3615 	spin_unlock(&delayed_rsv->lock);
3616 
3617 commit:
3618 	trans = btrfs_join_transaction(root);
3619 	if (IS_ERR(trans))
3620 		return -ENOSPC;
3621 
3622 	return btrfs_commit_transaction(trans, root);
3623 }
3624 
3625 /**
3626  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3627  * @root - the root we're allocating for
3628  * @block_rsv - the block_rsv we're allocating for
3629  * @orig_bytes - the number of bytes we want
3630  * @flush - wether or not we can flush to make our reservation
3631  *
3632  * This will reserve orgi_bytes number of bytes from the space info associated
3633  * with the block_rsv.  If there is not enough space it will make an attempt to
3634  * flush out space to make room.  It will do this by flushing delalloc if
3635  * possible or committing the transaction.  If flush is 0 then no attempts to
3636  * regain reservations will be made and this will fail if there is not enough
3637  * space already.
3638  */
3639 static int reserve_metadata_bytes(struct btrfs_root *root,
3640 				  struct btrfs_block_rsv *block_rsv,
3641 				  u64 orig_bytes, int flush)
3642 {
3643 	struct btrfs_space_info *space_info = block_rsv->space_info;
3644 	u64 used;
3645 	u64 num_bytes = orig_bytes;
3646 	int retries = 0;
3647 	int ret = 0;
3648 	bool committed = false;
3649 	bool flushing = false;
3650 	bool wait_ordered = false;
3651 
3652 again:
3653 	ret = 0;
3654 	spin_lock(&space_info->lock);
3655 	/*
3656 	 * We only want to wait if somebody other than us is flushing and we are
3657 	 * actually alloed to flush.
3658 	 */
3659 	while (flush && !flushing && space_info->flush) {
3660 		spin_unlock(&space_info->lock);
3661 		/*
3662 		 * If we have a trans handle we can't wait because the flusher
3663 		 * may have to commit the transaction, which would mean we would
3664 		 * deadlock since we are waiting for the flusher to finish, but
3665 		 * hold the current transaction open.
3666 		 */
3667 		if (current->journal_info)
3668 			return -EAGAIN;
3669 		ret = wait_event_interruptible(space_info->wait,
3670 					       !space_info->flush);
3671 		/* Must have been interrupted, return */
3672 		if (ret)
3673 			return -EINTR;
3674 
3675 		spin_lock(&space_info->lock);
3676 	}
3677 
3678 	ret = -ENOSPC;
3679 	used = space_info->bytes_used + space_info->bytes_reserved +
3680 		space_info->bytes_pinned + space_info->bytes_readonly +
3681 		space_info->bytes_may_use;
3682 
3683 	/*
3684 	 * The idea here is that we've not already over-reserved the block group
3685 	 * then we can go ahead and save our reservation first and then start
3686 	 * flushing if we need to.  Otherwise if we've already overcommitted
3687 	 * lets start flushing stuff first and then come back and try to make
3688 	 * our reservation.
3689 	 */
3690 	if (used <= space_info->total_bytes) {
3691 		if (used + orig_bytes <= space_info->total_bytes) {
3692 			space_info->bytes_may_use += orig_bytes;
3693 			trace_btrfs_space_reservation(root->fs_info,
3694 						      "space_info",
3695 						      (u64)space_info,
3696 						      orig_bytes, 1);
3697 			ret = 0;
3698 		} else {
3699 			/*
3700 			 * Ok set num_bytes to orig_bytes since we aren't
3701 			 * overocmmitted, this way we only try and reclaim what
3702 			 * we need.
3703 			 */
3704 			num_bytes = orig_bytes;
3705 		}
3706 	} else {
3707 		/*
3708 		 * Ok we're over committed, set num_bytes to the overcommitted
3709 		 * amount plus the amount of bytes that we need for this
3710 		 * reservation.
3711 		 */
3712 		wait_ordered = true;
3713 		num_bytes = used - space_info->total_bytes +
3714 			(orig_bytes * (retries + 1));
3715 	}
3716 
3717 	if (ret) {
3718 		u64 profile = btrfs_get_alloc_profile(root, 0);
3719 		u64 avail;
3720 
3721 		/*
3722 		 * If we have a lot of space that's pinned, don't bother doing
3723 		 * the overcommit dance yet and just commit the transaction.
3724 		 */
3725 		avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3726 		do_div(avail, 10);
3727 		if (space_info->bytes_pinned >= avail && flush && !committed) {
3728 			space_info->flush = 1;
3729 			flushing = true;
3730 			spin_unlock(&space_info->lock);
3731 			ret = may_commit_transaction(root, space_info,
3732 						     orig_bytes, 1);
3733 			if (ret)
3734 				goto out;
3735 			committed = true;
3736 			goto again;
3737 		}
3738 
3739 		spin_lock(&root->fs_info->free_chunk_lock);
3740 		avail = root->fs_info->free_chunk_space;
3741 
3742 		/*
3743 		 * If we have dup, raid1 or raid10 then only half of the free
3744 		 * space is actually useable.
3745 		 */
3746 		if (profile & (BTRFS_BLOCK_GROUP_DUP |
3747 			       BTRFS_BLOCK_GROUP_RAID1 |
3748 			       BTRFS_BLOCK_GROUP_RAID10))
3749 			avail >>= 1;
3750 
3751 		/*
3752 		 * If we aren't flushing don't let us overcommit too much, say
3753 		 * 1/8th of the space.  If we can flush, let it overcommit up to
3754 		 * 1/2 of the space.
3755 		 */
3756 		if (flush)
3757 			avail >>= 3;
3758 		else
3759 			avail >>= 1;
3760 		 spin_unlock(&root->fs_info->free_chunk_lock);
3761 
3762 		if (used + num_bytes < space_info->total_bytes + avail) {
3763 			space_info->bytes_may_use += orig_bytes;
3764 			trace_btrfs_space_reservation(root->fs_info,
3765 						      "space_info",
3766 						      (u64)space_info,
3767 						      orig_bytes, 1);
3768 			ret = 0;
3769 		} else {
3770 			wait_ordered = true;
3771 		}
3772 	}
3773 
3774 	/*
3775 	 * Couldn't make our reservation, save our place so while we're trying
3776 	 * to reclaim space we can actually use it instead of somebody else
3777 	 * stealing it from us.
3778 	 */
3779 	if (ret && flush) {
3780 		flushing = true;
3781 		space_info->flush = 1;
3782 	}
3783 
3784 	spin_unlock(&space_info->lock);
3785 
3786 	if (!ret || !flush)
3787 		goto out;
3788 
3789 	/*
3790 	 * We do synchronous shrinking since we don't actually unreserve
3791 	 * metadata until after the IO is completed.
3792 	 */
3793 	ret = shrink_delalloc(root, num_bytes, wait_ordered);
3794 	if (ret < 0)
3795 		goto out;
3796 
3797 	ret = 0;
3798 
3799 	/*
3800 	 * So if we were overcommitted it's possible that somebody else flushed
3801 	 * out enough space and we simply didn't have enough space to reclaim,
3802 	 * so go back around and try again.
3803 	 */
3804 	if (retries < 2) {
3805 		wait_ordered = true;
3806 		retries++;
3807 		goto again;
3808 	}
3809 
3810 	ret = -ENOSPC;
3811 	if (committed)
3812 		goto out;
3813 
3814 	ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3815 	if (!ret) {
3816 		committed = true;
3817 		goto again;
3818 	}
3819 
3820 out:
3821 	if (flushing) {
3822 		spin_lock(&space_info->lock);
3823 		space_info->flush = 0;
3824 		wake_up_all(&space_info->wait);
3825 		spin_unlock(&space_info->lock);
3826 	}
3827 	return ret;
3828 }
3829 
3830 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3831 					     struct btrfs_root *root)
3832 {
3833 	struct btrfs_block_rsv *block_rsv = NULL;
3834 
3835 	if (root->ref_cows || root == root->fs_info->csum_root)
3836 		block_rsv = trans->block_rsv;
3837 
3838 	if (!block_rsv)
3839 		block_rsv = root->block_rsv;
3840 
3841 	if (!block_rsv)
3842 		block_rsv = &root->fs_info->empty_block_rsv;
3843 
3844 	return block_rsv;
3845 }
3846 
3847 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3848 			       u64 num_bytes)
3849 {
3850 	int ret = -ENOSPC;
3851 	spin_lock(&block_rsv->lock);
3852 	if (block_rsv->reserved >= num_bytes) {
3853 		block_rsv->reserved -= num_bytes;
3854 		if (block_rsv->reserved < block_rsv->size)
3855 			block_rsv->full = 0;
3856 		ret = 0;
3857 	}
3858 	spin_unlock(&block_rsv->lock);
3859 	return ret;
3860 }
3861 
3862 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3863 				u64 num_bytes, int update_size)
3864 {
3865 	spin_lock(&block_rsv->lock);
3866 	block_rsv->reserved += num_bytes;
3867 	if (update_size)
3868 		block_rsv->size += num_bytes;
3869 	else if (block_rsv->reserved >= block_rsv->size)
3870 		block_rsv->full = 1;
3871 	spin_unlock(&block_rsv->lock);
3872 }
3873 
3874 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3875 				    struct btrfs_block_rsv *block_rsv,
3876 				    struct btrfs_block_rsv *dest, u64 num_bytes)
3877 {
3878 	struct btrfs_space_info *space_info = block_rsv->space_info;
3879 
3880 	spin_lock(&block_rsv->lock);
3881 	if (num_bytes == (u64)-1)
3882 		num_bytes = block_rsv->size;
3883 	block_rsv->size -= num_bytes;
3884 	if (block_rsv->reserved >= block_rsv->size) {
3885 		num_bytes = block_rsv->reserved - block_rsv->size;
3886 		block_rsv->reserved = block_rsv->size;
3887 		block_rsv->full = 1;
3888 	} else {
3889 		num_bytes = 0;
3890 	}
3891 	spin_unlock(&block_rsv->lock);
3892 
3893 	if (num_bytes > 0) {
3894 		if (dest) {
3895 			spin_lock(&dest->lock);
3896 			if (!dest->full) {
3897 				u64 bytes_to_add;
3898 
3899 				bytes_to_add = dest->size - dest->reserved;
3900 				bytes_to_add = min(num_bytes, bytes_to_add);
3901 				dest->reserved += bytes_to_add;
3902 				if (dest->reserved >= dest->size)
3903 					dest->full = 1;
3904 				num_bytes -= bytes_to_add;
3905 			}
3906 			spin_unlock(&dest->lock);
3907 		}
3908 		if (num_bytes) {
3909 			spin_lock(&space_info->lock);
3910 			space_info->bytes_may_use -= num_bytes;
3911 			trace_btrfs_space_reservation(fs_info, "space_info",
3912 						      (u64)space_info,
3913 						      num_bytes, 0);
3914 			space_info->reservation_progress++;
3915 			spin_unlock(&space_info->lock);
3916 		}
3917 	}
3918 }
3919 
3920 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3921 				   struct btrfs_block_rsv *dst, u64 num_bytes)
3922 {
3923 	int ret;
3924 
3925 	ret = block_rsv_use_bytes(src, num_bytes);
3926 	if (ret)
3927 		return ret;
3928 
3929 	block_rsv_add_bytes(dst, num_bytes, 1);
3930 	return 0;
3931 }
3932 
3933 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3934 {
3935 	memset(rsv, 0, sizeof(*rsv));
3936 	spin_lock_init(&rsv->lock);
3937 }
3938 
3939 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3940 {
3941 	struct btrfs_block_rsv *block_rsv;
3942 	struct btrfs_fs_info *fs_info = root->fs_info;
3943 
3944 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3945 	if (!block_rsv)
3946 		return NULL;
3947 
3948 	btrfs_init_block_rsv(block_rsv);
3949 	block_rsv->space_info = __find_space_info(fs_info,
3950 						  BTRFS_BLOCK_GROUP_METADATA);
3951 	return block_rsv;
3952 }
3953 
3954 void btrfs_free_block_rsv(struct btrfs_root *root,
3955 			  struct btrfs_block_rsv *rsv)
3956 {
3957 	btrfs_block_rsv_release(root, rsv, (u64)-1);
3958 	kfree(rsv);
3959 }
3960 
3961 static inline int __block_rsv_add(struct btrfs_root *root,
3962 				  struct btrfs_block_rsv *block_rsv,
3963 				  u64 num_bytes, int flush)
3964 {
3965 	int ret;
3966 
3967 	if (num_bytes == 0)
3968 		return 0;
3969 
3970 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3971 	if (!ret) {
3972 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
3973 		return 0;
3974 	}
3975 
3976 	return ret;
3977 }
3978 
3979 int btrfs_block_rsv_add(struct btrfs_root *root,
3980 			struct btrfs_block_rsv *block_rsv,
3981 			u64 num_bytes)
3982 {
3983 	return __block_rsv_add(root, block_rsv, num_bytes, 1);
3984 }
3985 
3986 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3987 				struct btrfs_block_rsv *block_rsv,
3988 				u64 num_bytes)
3989 {
3990 	return __block_rsv_add(root, block_rsv, num_bytes, 0);
3991 }
3992 
3993 int btrfs_block_rsv_check(struct btrfs_root *root,
3994 			  struct btrfs_block_rsv *block_rsv, int min_factor)
3995 {
3996 	u64 num_bytes = 0;
3997 	int ret = -ENOSPC;
3998 
3999 	if (!block_rsv)
4000 		return 0;
4001 
4002 	spin_lock(&block_rsv->lock);
4003 	num_bytes = div_factor(block_rsv->size, min_factor);
4004 	if (block_rsv->reserved >= num_bytes)
4005 		ret = 0;
4006 	spin_unlock(&block_rsv->lock);
4007 
4008 	return ret;
4009 }
4010 
4011 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4012 					   struct btrfs_block_rsv *block_rsv,
4013 					   u64 min_reserved, int flush)
4014 {
4015 	u64 num_bytes = 0;
4016 	int ret = -ENOSPC;
4017 
4018 	if (!block_rsv)
4019 		return 0;
4020 
4021 	spin_lock(&block_rsv->lock);
4022 	num_bytes = min_reserved;
4023 	if (block_rsv->reserved >= num_bytes)
4024 		ret = 0;
4025 	else
4026 		num_bytes -= block_rsv->reserved;
4027 	spin_unlock(&block_rsv->lock);
4028 
4029 	if (!ret)
4030 		return 0;
4031 
4032 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4033 	if (!ret) {
4034 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4035 		return 0;
4036 	}
4037 
4038 	return ret;
4039 }
4040 
4041 int btrfs_block_rsv_refill(struct btrfs_root *root,
4042 			   struct btrfs_block_rsv *block_rsv,
4043 			   u64 min_reserved)
4044 {
4045 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4046 }
4047 
4048 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4049 				   struct btrfs_block_rsv *block_rsv,
4050 				   u64 min_reserved)
4051 {
4052 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4053 }
4054 
4055 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4056 			    struct btrfs_block_rsv *dst_rsv,
4057 			    u64 num_bytes)
4058 {
4059 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4060 }
4061 
4062 void btrfs_block_rsv_release(struct btrfs_root *root,
4063 			     struct btrfs_block_rsv *block_rsv,
4064 			     u64 num_bytes)
4065 {
4066 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4067 	if (global_rsv->full || global_rsv == block_rsv ||
4068 	    block_rsv->space_info != global_rsv->space_info)
4069 		global_rsv = NULL;
4070 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4071 				num_bytes);
4072 }
4073 
4074 /*
4075  * helper to calculate size of global block reservation.
4076  * the desired value is sum of space used by extent tree,
4077  * checksum tree and root tree
4078  */
4079 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4080 {
4081 	struct btrfs_space_info *sinfo;
4082 	u64 num_bytes;
4083 	u64 meta_used;
4084 	u64 data_used;
4085 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4086 
4087 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4088 	spin_lock(&sinfo->lock);
4089 	data_used = sinfo->bytes_used;
4090 	spin_unlock(&sinfo->lock);
4091 
4092 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4093 	spin_lock(&sinfo->lock);
4094 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4095 		data_used = 0;
4096 	meta_used = sinfo->bytes_used;
4097 	spin_unlock(&sinfo->lock);
4098 
4099 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4100 		    csum_size * 2;
4101 	num_bytes += div64_u64(data_used + meta_used, 50);
4102 
4103 	if (num_bytes * 3 > meta_used)
4104 		num_bytes = div64_u64(meta_used, 3);
4105 
4106 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4107 }
4108 
4109 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4110 {
4111 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4112 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4113 	u64 num_bytes;
4114 
4115 	num_bytes = calc_global_metadata_size(fs_info);
4116 
4117 	spin_lock(&block_rsv->lock);
4118 	spin_lock(&sinfo->lock);
4119 
4120 	block_rsv->size = num_bytes;
4121 
4122 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4123 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4124 		    sinfo->bytes_may_use;
4125 
4126 	if (sinfo->total_bytes > num_bytes) {
4127 		num_bytes = sinfo->total_bytes - num_bytes;
4128 		block_rsv->reserved += num_bytes;
4129 		sinfo->bytes_may_use += num_bytes;
4130 		trace_btrfs_space_reservation(fs_info, "space_info",
4131 					      (u64)sinfo, num_bytes, 1);
4132 	}
4133 
4134 	if (block_rsv->reserved >= block_rsv->size) {
4135 		num_bytes = block_rsv->reserved - block_rsv->size;
4136 		sinfo->bytes_may_use -= num_bytes;
4137 		trace_btrfs_space_reservation(fs_info, "space_info",
4138 					      (u64)sinfo, num_bytes, 0);
4139 		sinfo->reservation_progress++;
4140 		block_rsv->reserved = block_rsv->size;
4141 		block_rsv->full = 1;
4142 	}
4143 
4144 	spin_unlock(&sinfo->lock);
4145 	spin_unlock(&block_rsv->lock);
4146 }
4147 
4148 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4149 {
4150 	struct btrfs_space_info *space_info;
4151 
4152 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4153 	fs_info->chunk_block_rsv.space_info = space_info;
4154 
4155 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4156 	fs_info->global_block_rsv.space_info = space_info;
4157 	fs_info->delalloc_block_rsv.space_info = space_info;
4158 	fs_info->trans_block_rsv.space_info = space_info;
4159 	fs_info->empty_block_rsv.space_info = space_info;
4160 	fs_info->delayed_block_rsv.space_info = space_info;
4161 
4162 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4163 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4164 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4165 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4166 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4167 
4168 	update_global_block_rsv(fs_info);
4169 }
4170 
4171 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4172 {
4173 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4174 				(u64)-1);
4175 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4176 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4177 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4178 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4179 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4180 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4181 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4182 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4183 }
4184 
4185 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4186 				  struct btrfs_root *root)
4187 {
4188 	if (!trans->bytes_reserved)
4189 		return;
4190 
4191 	trace_btrfs_space_reservation(root->fs_info, "transaction", (u64)trans,
4192 				      trans->bytes_reserved, 0);
4193 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4194 	trans->bytes_reserved = 0;
4195 }
4196 
4197 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4198 				  struct inode *inode)
4199 {
4200 	struct btrfs_root *root = BTRFS_I(inode)->root;
4201 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4202 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4203 
4204 	/*
4205 	 * We need to hold space in order to delete our orphan item once we've
4206 	 * added it, so this takes the reservation so we can release it later
4207 	 * when we are truly done with the orphan item.
4208 	 */
4209 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4210 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4211 				      btrfs_ino(inode), num_bytes, 1);
4212 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4213 }
4214 
4215 void btrfs_orphan_release_metadata(struct inode *inode)
4216 {
4217 	struct btrfs_root *root = BTRFS_I(inode)->root;
4218 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4219 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4220 				      btrfs_ino(inode), num_bytes, 0);
4221 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4222 }
4223 
4224 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4225 				struct btrfs_pending_snapshot *pending)
4226 {
4227 	struct btrfs_root *root = pending->root;
4228 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4229 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4230 	/*
4231 	 * two for root back/forward refs, two for directory entries
4232 	 * and one for root of the snapshot.
4233 	 */
4234 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4235 	dst_rsv->space_info = src_rsv->space_info;
4236 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4237 }
4238 
4239 /**
4240  * drop_outstanding_extent - drop an outstanding extent
4241  * @inode: the inode we're dropping the extent for
4242  *
4243  * This is called when we are freeing up an outstanding extent, either called
4244  * after an error or after an extent is written.  This will return the number of
4245  * reserved extents that need to be freed.  This must be called with
4246  * BTRFS_I(inode)->lock held.
4247  */
4248 static unsigned drop_outstanding_extent(struct inode *inode)
4249 {
4250 	unsigned drop_inode_space = 0;
4251 	unsigned dropped_extents = 0;
4252 
4253 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4254 	BTRFS_I(inode)->outstanding_extents--;
4255 
4256 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4257 	    BTRFS_I(inode)->delalloc_meta_reserved) {
4258 		drop_inode_space = 1;
4259 		BTRFS_I(inode)->delalloc_meta_reserved = 0;
4260 	}
4261 
4262 	/*
4263 	 * If we have more or the same amount of outsanding extents than we have
4264 	 * reserved then we need to leave the reserved extents count alone.
4265 	 */
4266 	if (BTRFS_I(inode)->outstanding_extents >=
4267 	    BTRFS_I(inode)->reserved_extents)
4268 		return drop_inode_space;
4269 
4270 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4271 		BTRFS_I(inode)->outstanding_extents;
4272 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4273 	return dropped_extents + drop_inode_space;
4274 }
4275 
4276 /**
4277  * calc_csum_metadata_size - return the amount of metada space that must be
4278  *	reserved/free'd for the given bytes.
4279  * @inode: the inode we're manipulating
4280  * @num_bytes: the number of bytes in question
4281  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4282  *
4283  * This adjusts the number of csum_bytes in the inode and then returns the
4284  * correct amount of metadata that must either be reserved or freed.  We
4285  * calculate how many checksums we can fit into one leaf and then divide the
4286  * number of bytes that will need to be checksumed by this value to figure out
4287  * how many checksums will be required.  If we are adding bytes then the number
4288  * may go up and we will return the number of additional bytes that must be
4289  * reserved.  If it is going down we will return the number of bytes that must
4290  * be freed.
4291  *
4292  * This must be called with BTRFS_I(inode)->lock held.
4293  */
4294 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4295 				   int reserve)
4296 {
4297 	struct btrfs_root *root = BTRFS_I(inode)->root;
4298 	u64 csum_size;
4299 	int num_csums_per_leaf;
4300 	int num_csums;
4301 	int old_csums;
4302 
4303 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4304 	    BTRFS_I(inode)->csum_bytes == 0)
4305 		return 0;
4306 
4307 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4308 	if (reserve)
4309 		BTRFS_I(inode)->csum_bytes += num_bytes;
4310 	else
4311 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4312 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4313 	num_csums_per_leaf = (int)div64_u64(csum_size,
4314 					    sizeof(struct btrfs_csum_item) +
4315 					    sizeof(struct btrfs_disk_key));
4316 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4317 	num_csums = num_csums + num_csums_per_leaf - 1;
4318 	num_csums = num_csums / num_csums_per_leaf;
4319 
4320 	old_csums = old_csums + num_csums_per_leaf - 1;
4321 	old_csums = old_csums / num_csums_per_leaf;
4322 
4323 	/* No change, no need to reserve more */
4324 	if (old_csums == num_csums)
4325 		return 0;
4326 
4327 	if (reserve)
4328 		return btrfs_calc_trans_metadata_size(root,
4329 						      num_csums - old_csums);
4330 
4331 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4332 }
4333 
4334 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4335 {
4336 	struct btrfs_root *root = BTRFS_I(inode)->root;
4337 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4338 	u64 to_reserve = 0;
4339 	u64 csum_bytes;
4340 	unsigned nr_extents = 0;
4341 	int extra_reserve = 0;
4342 	int flush = 1;
4343 	int ret;
4344 
4345 	/* Need to be holding the i_mutex here if we aren't free space cache */
4346 	if (btrfs_is_free_space_inode(root, inode))
4347 		flush = 0;
4348 	else
4349 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
4350 
4351 	if (flush && btrfs_transaction_in_commit(root->fs_info))
4352 		schedule_timeout(1);
4353 
4354 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4355 
4356 	spin_lock(&BTRFS_I(inode)->lock);
4357 	BTRFS_I(inode)->outstanding_extents++;
4358 
4359 	if (BTRFS_I(inode)->outstanding_extents >
4360 	    BTRFS_I(inode)->reserved_extents)
4361 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4362 			BTRFS_I(inode)->reserved_extents;
4363 
4364 	/*
4365 	 * Add an item to reserve for updating the inode when we complete the
4366 	 * delalloc io.
4367 	 */
4368 	if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4369 		nr_extents++;
4370 		extra_reserve = 1;
4371 	}
4372 
4373 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4374 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4375 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4376 	spin_unlock(&BTRFS_I(inode)->lock);
4377 
4378 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4379 	if (ret) {
4380 		u64 to_free = 0;
4381 		unsigned dropped;
4382 
4383 		spin_lock(&BTRFS_I(inode)->lock);
4384 		dropped = drop_outstanding_extent(inode);
4385 		/*
4386 		 * If the inodes csum_bytes is the same as the original
4387 		 * csum_bytes then we know we haven't raced with any free()ers
4388 		 * so we can just reduce our inodes csum bytes and carry on.
4389 		 * Otherwise we have to do the normal free thing to account for
4390 		 * the case that the free side didn't free up its reserve
4391 		 * because of this outstanding reservation.
4392 		 */
4393 		if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4394 			calc_csum_metadata_size(inode, num_bytes, 0);
4395 		else
4396 			to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4397 		spin_unlock(&BTRFS_I(inode)->lock);
4398 		if (dropped)
4399 			to_free += btrfs_calc_trans_metadata_size(root, dropped);
4400 
4401 		if (to_free) {
4402 			btrfs_block_rsv_release(root, block_rsv, to_free);
4403 			trace_btrfs_space_reservation(root->fs_info,
4404 						      "delalloc",
4405 						      btrfs_ino(inode),
4406 						      to_free, 0);
4407 		}
4408 		return ret;
4409 	}
4410 
4411 	spin_lock(&BTRFS_I(inode)->lock);
4412 	if (extra_reserve) {
4413 		BTRFS_I(inode)->delalloc_meta_reserved = 1;
4414 		nr_extents--;
4415 	}
4416 	BTRFS_I(inode)->reserved_extents += nr_extents;
4417 	spin_unlock(&BTRFS_I(inode)->lock);
4418 
4419 	if (to_reserve)
4420 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4421 					      btrfs_ino(inode), to_reserve, 1);
4422 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4423 
4424 	return 0;
4425 }
4426 
4427 /**
4428  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4429  * @inode: the inode to release the reservation for
4430  * @num_bytes: the number of bytes we're releasing
4431  *
4432  * This will release the metadata reservation for an inode.  This can be called
4433  * once we complete IO for a given set of bytes to release their metadata
4434  * reservations.
4435  */
4436 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4437 {
4438 	struct btrfs_root *root = BTRFS_I(inode)->root;
4439 	u64 to_free = 0;
4440 	unsigned dropped;
4441 
4442 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4443 	spin_lock(&BTRFS_I(inode)->lock);
4444 	dropped = drop_outstanding_extent(inode);
4445 
4446 	to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4447 	spin_unlock(&BTRFS_I(inode)->lock);
4448 	if (dropped > 0)
4449 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4450 
4451 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
4452 				      btrfs_ino(inode), to_free, 0);
4453 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4454 				to_free);
4455 }
4456 
4457 /**
4458  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4459  * @inode: inode we're writing to
4460  * @num_bytes: the number of bytes we want to allocate
4461  *
4462  * This will do the following things
4463  *
4464  * o reserve space in the data space info for num_bytes
4465  * o reserve space in the metadata space info based on number of outstanding
4466  *   extents and how much csums will be needed
4467  * o add to the inodes ->delalloc_bytes
4468  * o add it to the fs_info's delalloc inodes list.
4469  *
4470  * This will return 0 for success and -ENOSPC if there is no space left.
4471  */
4472 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4473 {
4474 	int ret;
4475 
4476 	ret = btrfs_check_data_free_space(inode, num_bytes);
4477 	if (ret)
4478 		return ret;
4479 
4480 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4481 	if (ret) {
4482 		btrfs_free_reserved_data_space(inode, num_bytes);
4483 		return ret;
4484 	}
4485 
4486 	return 0;
4487 }
4488 
4489 /**
4490  * btrfs_delalloc_release_space - release data and metadata space for delalloc
4491  * @inode: inode we're releasing space for
4492  * @num_bytes: the number of bytes we want to free up
4493  *
4494  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
4495  * called in the case that we don't need the metadata AND data reservations
4496  * anymore.  So if there is an error or we insert an inline extent.
4497  *
4498  * This function will release the metadata space that was not used and will
4499  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4500  * list if there are no delalloc bytes left.
4501  */
4502 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4503 {
4504 	btrfs_delalloc_release_metadata(inode, num_bytes);
4505 	btrfs_free_reserved_data_space(inode, num_bytes);
4506 }
4507 
4508 static int update_block_group(struct btrfs_trans_handle *trans,
4509 			      struct btrfs_root *root,
4510 			      u64 bytenr, u64 num_bytes, int alloc)
4511 {
4512 	struct btrfs_block_group_cache *cache = NULL;
4513 	struct btrfs_fs_info *info = root->fs_info;
4514 	u64 total = num_bytes;
4515 	u64 old_val;
4516 	u64 byte_in_group;
4517 	int factor;
4518 
4519 	/* block accounting for super block */
4520 	spin_lock(&info->delalloc_lock);
4521 	old_val = btrfs_super_bytes_used(info->super_copy);
4522 	if (alloc)
4523 		old_val += num_bytes;
4524 	else
4525 		old_val -= num_bytes;
4526 	btrfs_set_super_bytes_used(info->super_copy, old_val);
4527 	spin_unlock(&info->delalloc_lock);
4528 
4529 	while (total) {
4530 		cache = btrfs_lookup_block_group(info, bytenr);
4531 		if (!cache)
4532 			return -1;
4533 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4534 				    BTRFS_BLOCK_GROUP_RAID1 |
4535 				    BTRFS_BLOCK_GROUP_RAID10))
4536 			factor = 2;
4537 		else
4538 			factor = 1;
4539 		/*
4540 		 * If this block group has free space cache written out, we
4541 		 * need to make sure to load it if we are removing space.  This
4542 		 * is because we need the unpinning stage to actually add the
4543 		 * space back to the block group, otherwise we will leak space.
4544 		 */
4545 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4546 			cache_block_group(cache, trans, NULL, 1);
4547 
4548 		byte_in_group = bytenr - cache->key.objectid;
4549 		WARN_ON(byte_in_group > cache->key.offset);
4550 
4551 		spin_lock(&cache->space_info->lock);
4552 		spin_lock(&cache->lock);
4553 
4554 		if (btrfs_test_opt(root, SPACE_CACHE) &&
4555 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4556 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4557 
4558 		cache->dirty = 1;
4559 		old_val = btrfs_block_group_used(&cache->item);
4560 		num_bytes = min(total, cache->key.offset - byte_in_group);
4561 		if (alloc) {
4562 			old_val += num_bytes;
4563 			btrfs_set_block_group_used(&cache->item, old_val);
4564 			cache->reserved -= num_bytes;
4565 			cache->space_info->bytes_reserved -= num_bytes;
4566 			cache->space_info->bytes_used += num_bytes;
4567 			cache->space_info->disk_used += num_bytes * factor;
4568 			spin_unlock(&cache->lock);
4569 			spin_unlock(&cache->space_info->lock);
4570 		} else {
4571 			old_val -= num_bytes;
4572 			btrfs_set_block_group_used(&cache->item, old_val);
4573 			cache->pinned += num_bytes;
4574 			cache->space_info->bytes_pinned += num_bytes;
4575 			cache->space_info->bytes_used -= num_bytes;
4576 			cache->space_info->disk_used -= num_bytes * factor;
4577 			spin_unlock(&cache->lock);
4578 			spin_unlock(&cache->space_info->lock);
4579 
4580 			set_extent_dirty(info->pinned_extents,
4581 					 bytenr, bytenr + num_bytes - 1,
4582 					 GFP_NOFS | __GFP_NOFAIL);
4583 		}
4584 		btrfs_put_block_group(cache);
4585 		total -= num_bytes;
4586 		bytenr += num_bytes;
4587 	}
4588 	return 0;
4589 }
4590 
4591 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4592 {
4593 	struct btrfs_block_group_cache *cache;
4594 	u64 bytenr;
4595 
4596 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4597 	if (!cache)
4598 		return 0;
4599 
4600 	bytenr = cache->key.objectid;
4601 	btrfs_put_block_group(cache);
4602 
4603 	return bytenr;
4604 }
4605 
4606 static int pin_down_extent(struct btrfs_root *root,
4607 			   struct btrfs_block_group_cache *cache,
4608 			   u64 bytenr, u64 num_bytes, int reserved)
4609 {
4610 	spin_lock(&cache->space_info->lock);
4611 	spin_lock(&cache->lock);
4612 	cache->pinned += num_bytes;
4613 	cache->space_info->bytes_pinned += num_bytes;
4614 	if (reserved) {
4615 		cache->reserved -= num_bytes;
4616 		cache->space_info->bytes_reserved -= num_bytes;
4617 	}
4618 	spin_unlock(&cache->lock);
4619 	spin_unlock(&cache->space_info->lock);
4620 
4621 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4622 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4623 	return 0;
4624 }
4625 
4626 /*
4627  * this function must be called within transaction
4628  */
4629 int btrfs_pin_extent(struct btrfs_root *root,
4630 		     u64 bytenr, u64 num_bytes, int reserved)
4631 {
4632 	struct btrfs_block_group_cache *cache;
4633 
4634 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4635 	BUG_ON(!cache);
4636 
4637 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4638 
4639 	btrfs_put_block_group(cache);
4640 	return 0;
4641 }
4642 
4643 /*
4644  * this function must be called within transaction
4645  */
4646 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4647 				    struct btrfs_root *root,
4648 				    u64 bytenr, u64 num_bytes)
4649 {
4650 	struct btrfs_block_group_cache *cache;
4651 
4652 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4653 	BUG_ON(!cache);
4654 
4655 	/*
4656 	 * pull in the free space cache (if any) so that our pin
4657 	 * removes the free space from the cache.  We have load_only set
4658 	 * to one because the slow code to read in the free extents does check
4659 	 * the pinned extents.
4660 	 */
4661 	cache_block_group(cache, trans, root, 1);
4662 
4663 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
4664 
4665 	/* remove us from the free space cache (if we're there at all) */
4666 	btrfs_remove_free_space(cache, bytenr, num_bytes);
4667 	btrfs_put_block_group(cache);
4668 	return 0;
4669 }
4670 
4671 /**
4672  * btrfs_update_reserved_bytes - update the block_group and space info counters
4673  * @cache:	The cache we are manipulating
4674  * @num_bytes:	The number of bytes in question
4675  * @reserve:	One of the reservation enums
4676  *
4677  * This is called by the allocator when it reserves space, or by somebody who is
4678  * freeing space that was never actually used on disk.  For example if you
4679  * reserve some space for a new leaf in transaction A and before transaction A
4680  * commits you free that leaf, you call this with reserve set to 0 in order to
4681  * clear the reservation.
4682  *
4683  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4684  * ENOSPC accounting.  For data we handle the reservation through clearing the
4685  * delalloc bits in the io_tree.  We have to do this since we could end up
4686  * allocating less disk space for the amount of data we have reserved in the
4687  * case of compression.
4688  *
4689  * If this is a reservation and the block group has become read only we cannot
4690  * make the reservation and return -EAGAIN, otherwise this function always
4691  * succeeds.
4692  */
4693 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4694 				       u64 num_bytes, int reserve)
4695 {
4696 	struct btrfs_space_info *space_info = cache->space_info;
4697 	int ret = 0;
4698 	spin_lock(&space_info->lock);
4699 	spin_lock(&cache->lock);
4700 	if (reserve != RESERVE_FREE) {
4701 		if (cache->ro) {
4702 			ret = -EAGAIN;
4703 		} else {
4704 			cache->reserved += num_bytes;
4705 			space_info->bytes_reserved += num_bytes;
4706 			if (reserve == RESERVE_ALLOC) {
4707 				trace_btrfs_space_reservation(cache->fs_info,
4708 							      "space_info",
4709 							      (u64)space_info,
4710 							      num_bytes, 0);
4711 				space_info->bytes_may_use -= num_bytes;
4712 			}
4713 		}
4714 	} else {
4715 		if (cache->ro)
4716 			space_info->bytes_readonly += num_bytes;
4717 		cache->reserved -= num_bytes;
4718 		space_info->bytes_reserved -= num_bytes;
4719 		space_info->reservation_progress++;
4720 	}
4721 	spin_unlock(&cache->lock);
4722 	spin_unlock(&space_info->lock);
4723 	return ret;
4724 }
4725 
4726 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4727 				struct btrfs_root *root)
4728 {
4729 	struct btrfs_fs_info *fs_info = root->fs_info;
4730 	struct btrfs_caching_control *next;
4731 	struct btrfs_caching_control *caching_ctl;
4732 	struct btrfs_block_group_cache *cache;
4733 
4734 	down_write(&fs_info->extent_commit_sem);
4735 
4736 	list_for_each_entry_safe(caching_ctl, next,
4737 				 &fs_info->caching_block_groups, list) {
4738 		cache = caching_ctl->block_group;
4739 		if (block_group_cache_done(cache)) {
4740 			cache->last_byte_to_unpin = (u64)-1;
4741 			list_del_init(&caching_ctl->list);
4742 			put_caching_control(caching_ctl);
4743 		} else {
4744 			cache->last_byte_to_unpin = caching_ctl->progress;
4745 		}
4746 	}
4747 
4748 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4749 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4750 	else
4751 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4752 
4753 	up_write(&fs_info->extent_commit_sem);
4754 
4755 	update_global_block_rsv(fs_info);
4756 	return 0;
4757 }
4758 
4759 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4760 {
4761 	struct btrfs_fs_info *fs_info = root->fs_info;
4762 	struct btrfs_block_group_cache *cache = NULL;
4763 	u64 len;
4764 
4765 	while (start <= end) {
4766 		if (!cache ||
4767 		    start >= cache->key.objectid + cache->key.offset) {
4768 			if (cache)
4769 				btrfs_put_block_group(cache);
4770 			cache = btrfs_lookup_block_group(fs_info, start);
4771 			BUG_ON(!cache);
4772 		}
4773 
4774 		len = cache->key.objectid + cache->key.offset - start;
4775 		len = min(len, end + 1 - start);
4776 
4777 		if (start < cache->last_byte_to_unpin) {
4778 			len = min(len, cache->last_byte_to_unpin - start);
4779 			btrfs_add_free_space(cache, start, len);
4780 		}
4781 
4782 		start += len;
4783 
4784 		spin_lock(&cache->space_info->lock);
4785 		spin_lock(&cache->lock);
4786 		cache->pinned -= len;
4787 		cache->space_info->bytes_pinned -= len;
4788 		if (cache->ro)
4789 			cache->space_info->bytes_readonly += len;
4790 		spin_unlock(&cache->lock);
4791 		spin_unlock(&cache->space_info->lock);
4792 	}
4793 
4794 	if (cache)
4795 		btrfs_put_block_group(cache);
4796 	return 0;
4797 }
4798 
4799 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4800 			       struct btrfs_root *root)
4801 {
4802 	struct btrfs_fs_info *fs_info = root->fs_info;
4803 	struct extent_io_tree *unpin;
4804 	u64 start;
4805 	u64 end;
4806 	int ret;
4807 
4808 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4809 		unpin = &fs_info->freed_extents[1];
4810 	else
4811 		unpin = &fs_info->freed_extents[0];
4812 
4813 	while (1) {
4814 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4815 					    EXTENT_DIRTY);
4816 		if (ret)
4817 			break;
4818 
4819 		if (btrfs_test_opt(root, DISCARD))
4820 			ret = btrfs_discard_extent(root, start,
4821 						   end + 1 - start, NULL);
4822 
4823 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4824 		unpin_extent_range(root, start, end);
4825 		cond_resched();
4826 	}
4827 
4828 	return 0;
4829 }
4830 
4831 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4832 				struct btrfs_root *root,
4833 				u64 bytenr, u64 num_bytes, u64 parent,
4834 				u64 root_objectid, u64 owner_objectid,
4835 				u64 owner_offset, int refs_to_drop,
4836 				struct btrfs_delayed_extent_op *extent_op)
4837 {
4838 	struct btrfs_key key;
4839 	struct btrfs_path *path;
4840 	struct btrfs_fs_info *info = root->fs_info;
4841 	struct btrfs_root *extent_root = info->extent_root;
4842 	struct extent_buffer *leaf;
4843 	struct btrfs_extent_item *ei;
4844 	struct btrfs_extent_inline_ref *iref;
4845 	int ret;
4846 	int is_data;
4847 	int extent_slot = 0;
4848 	int found_extent = 0;
4849 	int num_to_del = 1;
4850 	u32 item_size;
4851 	u64 refs;
4852 
4853 	path = btrfs_alloc_path();
4854 	if (!path)
4855 		return -ENOMEM;
4856 
4857 	path->reada = 1;
4858 	path->leave_spinning = 1;
4859 
4860 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4861 	BUG_ON(!is_data && refs_to_drop != 1);
4862 
4863 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
4864 				    bytenr, num_bytes, parent,
4865 				    root_objectid, owner_objectid,
4866 				    owner_offset);
4867 	if (ret == 0) {
4868 		extent_slot = path->slots[0];
4869 		while (extent_slot >= 0) {
4870 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4871 					      extent_slot);
4872 			if (key.objectid != bytenr)
4873 				break;
4874 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4875 			    key.offset == num_bytes) {
4876 				found_extent = 1;
4877 				break;
4878 			}
4879 			if (path->slots[0] - extent_slot > 5)
4880 				break;
4881 			extent_slot--;
4882 		}
4883 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4884 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4885 		if (found_extent && item_size < sizeof(*ei))
4886 			found_extent = 0;
4887 #endif
4888 		if (!found_extent) {
4889 			BUG_ON(iref);
4890 			ret = remove_extent_backref(trans, extent_root, path,
4891 						    NULL, refs_to_drop,
4892 						    is_data);
4893 			BUG_ON(ret);
4894 			btrfs_release_path(path);
4895 			path->leave_spinning = 1;
4896 
4897 			key.objectid = bytenr;
4898 			key.type = BTRFS_EXTENT_ITEM_KEY;
4899 			key.offset = num_bytes;
4900 
4901 			ret = btrfs_search_slot(trans, extent_root,
4902 						&key, path, -1, 1);
4903 			if (ret) {
4904 				printk(KERN_ERR "umm, got %d back from search"
4905 				       ", was looking for %llu\n", ret,
4906 				       (unsigned long long)bytenr);
4907 				if (ret > 0)
4908 					btrfs_print_leaf(extent_root,
4909 							 path->nodes[0]);
4910 			}
4911 			BUG_ON(ret);
4912 			extent_slot = path->slots[0];
4913 		}
4914 	} else {
4915 		btrfs_print_leaf(extent_root, path->nodes[0]);
4916 		WARN_ON(1);
4917 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4918 		       "parent %llu root %llu  owner %llu offset %llu\n",
4919 		       (unsigned long long)bytenr,
4920 		       (unsigned long long)parent,
4921 		       (unsigned long long)root_objectid,
4922 		       (unsigned long long)owner_objectid,
4923 		       (unsigned long long)owner_offset);
4924 	}
4925 
4926 	leaf = path->nodes[0];
4927 	item_size = btrfs_item_size_nr(leaf, extent_slot);
4928 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4929 	if (item_size < sizeof(*ei)) {
4930 		BUG_ON(found_extent || extent_slot != path->slots[0]);
4931 		ret = convert_extent_item_v0(trans, extent_root, path,
4932 					     owner_objectid, 0);
4933 		BUG_ON(ret < 0);
4934 
4935 		btrfs_release_path(path);
4936 		path->leave_spinning = 1;
4937 
4938 		key.objectid = bytenr;
4939 		key.type = BTRFS_EXTENT_ITEM_KEY;
4940 		key.offset = num_bytes;
4941 
4942 		ret = btrfs_search_slot(trans, extent_root, &key, path,
4943 					-1, 1);
4944 		if (ret) {
4945 			printk(KERN_ERR "umm, got %d back from search"
4946 			       ", was looking for %llu\n", ret,
4947 			       (unsigned long long)bytenr);
4948 			btrfs_print_leaf(extent_root, path->nodes[0]);
4949 		}
4950 		BUG_ON(ret);
4951 		extent_slot = path->slots[0];
4952 		leaf = path->nodes[0];
4953 		item_size = btrfs_item_size_nr(leaf, extent_slot);
4954 	}
4955 #endif
4956 	BUG_ON(item_size < sizeof(*ei));
4957 	ei = btrfs_item_ptr(leaf, extent_slot,
4958 			    struct btrfs_extent_item);
4959 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4960 		struct btrfs_tree_block_info *bi;
4961 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4962 		bi = (struct btrfs_tree_block_info *)(ei + 1);
4963 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4964 	}
4965 
4966 	refs = btrfs_extent_refs(leaf, ei);
4967 	BUG_ON(refs < refs_to_drop);
4968 	refs -= refs_to_drop;
4969 
4970 	if (refs > 0) {
4971 		if (extent_op)
4972 			__run_delayed_extent_op(extent_op, leaf, ei);
4973 		/*
4974 		 * In the case of inline back ref, reference count will
4975 		 * be updated by remove_extent_backref
4976 		 */
4977 		if (iref) {
4978 			BUG_ON(!found_extent);
4979 		} else {
4980 			btrfs_set_extent_refs(leaf, ei, refs);
4981 			btrfs_mark_buffer_dirty(leaf);
4982 		}
4983 		if (found_extent) {
4984 			ret = remove_extent_backref(trans, extent_root, path,
4985 						    iref, refs_to_drop,
4986 						    is_data);
4987 			BUG_ON(ret);
4988 		}
4989 	} else {
4990 		if (found_extent) {
4991 			BUG_ON(is_data && refs_to_drop !=
4992 			       extent_data_ref_count(root, path, iref));
4993 			if (iref) {
4994 				BUG_ON(path->slots[0] != extent_slot);
4995 			} else {
4996 				BUG_ON(path->slots[0] != extent_slot + 1);
4997 				path->slots[0] = extent_slot;
4998 				num_to_del = 2;
4999 			}
5000 		}
5001 
5002 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5003 				      num_to_del);
5004 		BUG_ON(ret);
5005 		btrfs_release_path(path);
5006 
5007 		if (is_data) {
5008 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5009 			BUG_ON(ret);
5010 		} else {
5011 			invalidate_mapping_pages(info->btree_inode->i_mapping,
5012 			     bytenr >> PAGE_CACHE_SHIFT,
5013 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
5014 		}
5015 
5016 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5017 		BUG_ON(ret);
5018 	}
5019 	btrfs_free_path(path);
5020 	return ret;
5021 }
5022 
5023 /*
5024  * when we free an block, it is possible (and likely) that we free the last
5025  * delayed ref for that extent as well.  This searches the delayed ref tree for
5026  * a given extent, and if there are no other delayed refs to be processed, it
5027  * removes it from the tree.
5028  */
5029 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5030 				      struct btrfs_root *root, u64 bytenr)
5031 {
5032 	struct btrfs_delayed_ref_head *head;
5033 	struct btrfs_delayed_ref_root *delayed_refs;
5034 	struct btrfs_delayed_ref_node *ref;
5035 	struct rb_node *node;
5036 	int ret = 0;
5037 
5038 	delayed_refs = &trans->transaction->delayed_refs;
5039 	spin_lock(&delayed_refs->lock);
5040 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5041 	if (!head)
5042 		goto out;
5043 
5044 	node = rb_prev(&head->node.rb_node);
5045 	if (!node)
5046 		goto out;
5047 
5048 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5049 
5050 	/* there are still entries for this ref, we can't drop it */
5051 	if (ref->bytenr == bytenr)
5052 		goto out;
5053 
5054 	if (head->extent_op) {
5055 		if (!head->must_insert_reserved)
5056 			goto out;
5057 		kfree(head->extent_op);
5058 		head->extent_op = NULL;
5059 	}
5060 
5061 	/*
5062 	 * waiting for the lock here would deadlock.  If someone else has it
5063 	 * locked they are already in the process of dropping it anyway
5064 	 */
5065 	if (!mutex_trylock(&head->mutex))
5066 		goto out;
5067 
5068 	/*
5069 	 * at this point we have a head with no other entries.  Go
5070 	 * ahead and process it.
5071 	 */
5072 	head->node.in_tree = 0;
5073 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5074 
5075 	delayed_refs->num_entries--;
5076 	if (waitqueue_active(&delayed_refs->seq_wait))
5077 		wake_up(&delayed_refs->seq_wait);
5078 
5079 	/*
5080 	 * we don't take a ref on the node because we're removing it from the
5081 	 * tree, so we just steal the ref the tree was holding.
5082 	 */
5083 	delayed_refs->num_heads--;
5084 	if (list_empty(&head->cluster))
5085 		delayed_refs->num_heads_ready--;
5086 
5087 	list_del_init(&head->cluster);
5088 	spin_unlock(&delayed_refs->lock);
5089 
5090 	BUG_ON(head->extent_op);
5091 	if (head->must_insert_reserved)
5092 		ret = 1;
5093 
5094 	mutex_unlock(&head->mutex);
5095 	btrfs_put_delayed_ref(&head->node);
5096 	return ret;
5097 out:
5098 	spin_unlock(&delayed_refs->lock);
5099 	return 0;
5100 }
5101 
5102 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5103 			   struct btrfs_root *root,
5104 			   struct extent_buffer *buf,
5105 			   u64 parent, int last_ref, int for_cow)
5106 {
5107 	struct btrfs_block_group_cache *cache = NULL;
5108 	int ret;
5109 
5110 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5111 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5112 					buf->start, buf->len,
5113 					parent, root->root_key.objectid,
5114 					btrfs_header_level(buf),
5115 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5116 		BUG_ON(ret);
5117 	}
5118 
5119 	if (!last_ref)
5120 		return;
5121 
5122 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5123 
5124 	if (btrfs_header_generation(buf) == trans->transid) {
5125 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5126 			ret = check_ref_cleanup(trans, root, buf->start);
5127 			if (!ret)
5128 				goto out;
5129 		}
5130 
5131 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5132 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5133 			goto out;
5134 		}
5135 
5136 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5137 
5138 		btrfs_add_free_space(cache, buf->start, buf->len);
5139 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5140 	}
5141 out:
5142 	/*
5143 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5144 	 * anymore.
5145 	 */
5146 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5147 	btrfs_put_block_group(cache);
5148 }
5149 
5150 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5151 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5152 		      u64 owner, u64 offset, int for_cow)
5153 {
5154 	int ret;
5155 	struct btrfs_fs_info *fs_info = root->fs_info;
5156 
5157 	/*
5158 	 * tree log blocks never actually go into the extent allocation
5159 	 * tree, just update pinning info and exit early.
5160 	 */
5161 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5162 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5163 		/* unlocks the pinned mutex */
5164 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
5165 		ret = 0;
5166 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5167 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5168 					num_bytes,
5169 					parent, root_objectid, (int)owner,
5170 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5171 		BUG_ON(ret);
5172 	} else {
5173 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5174 						num_bytes,
5175 						parent, root_objectid, owner,
5176 						offset, BTRFS_DROP_DELAYED_REF,
5177 						NULL, for_cow);
5178 		BUG_ON(ret);
5179 	}
5180 	return ret;
5181 }
5182 
5183 static u64 stripe_align(struct btrfs_root *root, u64 val)
5184 {
5185 	u64 mask = ((u64)root->stripesize - 1);
5186 	u64 ret = (val + mask) & ~mask;
5187 	return ret;
5188 }
5189 
5190 /*
5191  * when we wait for progress in the block group caching, its because
5192  * our allocation attempt failed at least once.  So, we must sleep
5193  * and let some progress happen before we try again.
5194  *
5195  * This function will sleep at least once waiting for new free space to
5196  * show up, and then it will check the block group free space numbers
5197  * for our min num_bytes.  Another option is to have it go ahead
5198  * and look in the rbtree for a free extent of a given size, but this
5199  * is a good start.
5200  */
5201 static noinline int
5202 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5203 				u64 num_bytes)
5204 {
5205 	struct btrfs_caching_control *caching_ctl;
5206 	DEFINE_WAIT(wait);
5207 
5208 	caching_ctl = get_caching_control(cache);
5209 	if (!caching_ctl)
5210 		return 0;
5211 
5212 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5213 		   (cache->free_space_ctl->free_space >= num_bytes));
5214 
5215 	put_caching_control(caching_ctl);
5216 	return 0;
5217 }
5218 
5219 static noinline int
5220 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5221 {
5222 	struct btrfs_caching_control *caching_ctl;
5223 	DEFINE_WAIT(wait);
5224 
5225 	caching_ctl = get_caching_control(cache);
5226 	if (!caching_ctl)
5227 		return 0;
5228 
5229 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5230 
5231 	put_caching_control(caching_ctl);
5232 	return 0;
5233 }
5234 
5235 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5236 {
5237 	int index;
5238 	if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5239 		index = 0;
5240 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5241 		index = 1;
5242 	else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5243 		index = 2;
5244 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5245 		index = 3;
5246 	else
5247 		index = 4;
5248 	return index;
5249 }
5250 
5251 enum btrfs_loop_type {
5252 	LOOP_FIND_IDEAL = 0,
5253 	LOOP_CACHING_NOWAIT = 1,
5254 	LOOP_CACHING_WAIT = 2,
5255 	LOOP_ALLOC_CHUNK = 3,
5256 	LOOP_NO_EMPTY_SIZE = 4,
5257 };
5258 
5259 /*
5260  * walks the btree of allocated extents and find a hole of a given size.
5261  * The key ins is changed to record the hole:
5262  * ins->objectid == block start
5263  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5264  * ins->offset == number of blocks
5265  * Any available blocks before search_start are skipped.
5266  */
5267 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5268 				     struct btrfs_root *orig_root,
5269 				     u64 num_bytes, u64 empty_size,
5270 				     u64 search_start, u64 search_end,
5271 				     u64 hint_byte, struct btrfs_key *ins,
5272 				     u64 data)
5273 {
5274 	int ret = 0;
5275 	struct btrfs_root *root = orig_root->fs_info->extent_root;
5276 	struct btrfs_free_cluster *last_ptr = NULL;
5277 	struct btrfs_block_group_cache *block_group = NULL;
5278 	struct btrfs_block_group_cache *used_block_group;
5279 	int empty_cluster = 2 * 1024 * 1024;
5280 	int allowed_chunk_alloc = 0;
5281 	int done_chunk_alloc = 0;
5282 	struct btrfs_space_info *space_info;
5283 	int loop = 0;
5284 	int index = 0;
5285 	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5286 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5287 	bool found_uncached_bg = false;
5288 	bool failed_cluster_refill = false;
5289 	bool failed_alloc = false;
5290 	bool use_cluster = true;
5291 	bool have_caching_bg = false;
5292 	u64 ideal_cache_percent = 0;
5293 	u64 ideal_cache_offset = 0;
5294 
5295 	WARN_ON(num_bytes < root->sectorsize);
5296 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5297 	ins->objectid = 0;
5298 	ins->offset = 0;
5299 
5300 	trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5301 
5302 	space_info = __find_space_info(root->fs_info, data);
5303 	if (!space_info) {
5304 		printk(KERN_ERR "No space info for %llu\n", data);
5305 		return -ENOSPC;
5306 	}
5307 
5308 	/*
5309 	 * If the space info is for both data and metadata it means we have a
5310 	 * small filesystem and we can't use the clustering stuff.
5311 	 */
5312 	if (btrfs_mixed_space_info(space_info))
5313 		use_cluster = false;
5314 
5315 	if (orig_root->ref_cows || empty_size)
5316 		allowed_chunk_alloc = 1;
5317 
5318 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5319 		last_ptr = &root->fs_info->meta_alloc_cluster;
5320 		if (!btrfs_test_opt(root, SSD))
5321 			empty_cluster = 64 * 1024;
5322 	}
5323 
5324 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5325 	    btrfs_test_opt(root, SSD)) {
5326 		last_ptr = &root->fs_info->data_alloc_cluster;
5327 	}
5328 
5329 	if (last_ptr) {
5330 		spin_lock(&last_ptr->lock);
5331 		if (last_ptr->block_group)
5332 			hint_byte = last_ptr->window_start;
5333 		spin_unlock(&last_ptr->lock);
5334 	}
5335 
5336 	search_start = max(search_start, first_logical_byte(root, 0));
5337 	search_start = max(search_start, hint_byte);
5338 
5339 	if (!last_ptr)
5340 		empty_cluster = 0;
5341 
5342 	if (search_start == hint_byte) {
5343 ideal_cache:
5344 		block_group = btrfs_lookup_block_group(root->fs_info,
5345 						       search_start);
5346 		used_block_group = block_group;
5347 		/*
5348 		 * we don't want to use the block group if it doesn't match our
5349 		 * allocation bits, or if its not cached.
5350 		 *
5351 		 * However if we are re-searching with an ideal block group
5352 		 * picked out then we don't care that the block group is cached.
5353 		 */
5354 		if (block_group && block_group_bits(block_group, data) &&
5355 		    (block_group->cached != BTRFS_CACHE_NO ||
5356 		     search_start == ideal_cache_offset)) {
5357 			down_read(&space_info->groups_sem);
5358 			if (list_empty(&block_group->list) ||
5359 			    block_group->ro) {
5360 				/*
5361 				 * someone is removing this block group,
5362 				 * we can't jump into the have_block_group
5363 				 * target because our list pointers are not
5364 				 * valid
5365 				 */
5366 				btrfs_put_block_group(block_group);
5367 				up_read(&space_info->groups_sem);
5368 			} else {
5369 				index = get_block_group_index(block_group);
5370 				goto have_block_group;
5371 			}
5372 		} else if (block_group) {
5373 			btrfs_put_block_group(block_group);
5374 		}
5375 	}
5376 search:
5377 	have_caching_bg = false;
5378 	down_read(&space_info->groups_sem);
5379 	list_for_each_entry(block_group, &space_info->block_groups[index],
5380 			    list) {
5381 		u64 offset;
5382 		int cached;
5383 
5384 		used_block_group = block_group;
5385 		btrfs_get_block_group(block_group);
5386 		search_start = block_group->key.objectid;
5387 
5388 		/*
5389 		 * this can happen if we end up cycling through all the
5390 		 * raid types, but we want to make sure we only allocate
5391 		 * for the proper type.
5392 		 */
5393 		if (!block_group_bits(block_group, data)) {
5394 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
5395 				BTRFS_BLOCK_GROUP_RAID1 |
5396 				BTRFS_BLOCK_GROUP_RAID10;
5397 
5398 			/*
5399 			 * if they asked for extra copies and this block group
5400 			 * doesn't provide them, bail.  This does allow us to
5401 			 * fill raid0 from raid1.
5402 			 */
5403 			if ((data & extra) && !(block_group->flags & extra))
5404 				goto loop;
5405 		}
5406 
5407 have_block_group:
5408 		cached = block_group_cache_done(block_group);
5409 		if (unlikely(!cached)) {
5410 			u64 free_percent;
5411 
5412 			found_uncached_bg = true;
5413 			ret = cache_block_group(block_group, trans,
5414 						orig_root, 1);
5415 			if (block_group->cached == BTRFS_CACHE_FINISHED)
5416 				goto alloc;
5417 
5418 			free_percent = btrfs_block_group_used(&block_group->item);
5419 			free_percent *= 100;
5420 			free_percent = div64_u64(free_percent,
5421 						 block_group->key.offset);
5422 			free_percent = 100 - free_percent;
5423 			if (free_percent > ideal_cache_percent &&
5424 			    likely(!block_group->ro)) {
5425 				ideal_cache_offset = block_group->key.objectid;
5426 				ideal_cache_percent = free_percent;
5427 			}
5428 
5429 			/*
5430 			 * The caching workers are limited to 2 threads, so we
5431 			 * can queue as much work as we care to.
5432 			 */
5433 			if (loop > LOOP_FIND_IDEAL) {
5434 				ret = cache_block_group(block_group, trans,
5435 							orig_root, 0);
5436 				BUG_ON(ret);
5437 			}
5438 
5439 			/*
5440 			 * If loop is set for cached only, try the next block
5441 			 * group.
5442 			 */
5443 			if (loop == LOOP_FIND_IDEAL)
5444 				goto loop;
5445 		}
5446 
5447 alloc:
5448 		if (unlikely(block_group->ro))
5449 			goto loop;
5450 
5451 		/*
5452 		 * Ok we want to try and use the cluster allocator, so
5453 		 * lets look there
5454 		 */
5455 		if (last_ptr) {
5456 			/*
5457 			 * the refill lock keeps out other
5458 			 * people trying to start a new cluster
5459 			 */
5460 			spin_lock(&last_ptr->refill_lock);
5461 			used_block_group = last_ptr->block_group;
5462 			if (used_block_group != block_group &&
5463 			    (!used_block_group ||
5464 			     used_block_group->ro ||
5465 			     !block_group_bits(used_block_group, data))) {
5466 				used_block_group = block_group;
5467 				goto refill_cluster;
5468 			}
5469 
5470 			if (used_block_group != block_group)
5471 				btrfs_get_block_group(used_block_group);
5472 
5473 			offset = btrfs_alloc_from_cluster(used_block_group,
5474 			  last_ptr, num_bytes, used_block_group->key.objectid);
5475 			if (offset) {
5476 				/* we have a block, we're done */
5477 				spin_unlock(&last_ptr->refill_lock);
5478 				trace_btrfs_reserve_extent_cluster(root,
5479 					block_group, search_start, num_bytes);
5480 				goto checks;
5481 			}
5482 
5483 			WARN_ON(last_ptr->block_group != used_block_group);
5484 			if (used_block_group != block_group) {
5485 				btrfs_put_block_group(used_block_group);
5486 				used_block_group = block_group;
5487 			}
5488 refill_cluster:
5489 			BUG_ON(used_block_group != block_group);
5490 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
5491 			 * set up a new clusters, so lets just skip it
5492 			 * and let the allocator find whatever block
5493 			 * it can find.  If we reach this point, we
5494 			 * will have tried the cluster allocator
5495 			 * plenty of times and not have found
5496 			 * anything, so we are likely way too
5497 			 * fragmented for the clustering stuff to find
5498 			 * anything.
5499 			 *
5500 			 * However, if the cluster is taken from the
5501 			 * current block group, release the cluster
5502 			 * first, so that we stand a better chance of
5503 			 * succeeding in the unclustered
5504 			 * allocation.  */
5505 			if (loop >= LOOP_NO_EMPTY_SIZE &&
5506 			    last_ptr->block_group != block_group) {
5507 				spin_unlock(&last_ptr->refill_lock);
5508 				goto unclustered_alloc;
5509 			}
5510 
5511 			/*
5512 			 * this cluster didn't work out, free it and
5513 			 * start over
5514 			 */
5515 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5516 
5517 			if (loop >= LOOP_NO_EMPTY_SIZE) {
5518 				spin_unlock(&last_ptr->refill_lock);
5519 				goto unclustered_alloc;
5520 			}
5521 
5522 			/* allocate a cluster in this block group */
5523 			ret = btrfs_find_space_cluster(trans, root,
5524 					       block_group, last_ptr,
5525 					       search_start, num_bytes,
5526 					       empty_cluster + empty_size);
5527 			if (ret == 0) {
5528 				/*
5529 				 * now pull our allocation out of this
5530 				 * cluster
5531 				 */
5532 				offset = btrfs_alloc_from_cluster(block_group,
5533 						  last_ptr, num_bytes,
5534 						  search_start);
5535 				if (offset) {
5536 					/* we found one, proceed */
5537 					spin_unlock(&last_ptr->refill_lock);
5538 					trace_btrfs_reserve_extent_cluster(root,
5539 						block_group, search_start,
5540 						num_bytes);
5541 					goto checks;
5542 				}
5543 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5544 				   && !failed_cluster_refill) {
5545 				spin_unlock(&last_ptr->refill_lock);
5546 
5547 				failed_cluster_refill = true;
5548 				wait_block_group_cache_progress(block_group,
5549 				       num_bytes + empty_cluster + empty_size);
5550 				goto have_block_group;
5551 			}
5552 
5553 			/*
5554 			 * at this point we either didn't find a cluster
5555 			 * or we weren't able to allocate a block from our
5556 			 * cluster.  Free the cluster we've been trying
5557 			 * to use, and go to the next block group
5558 			 */
5559 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5560 			spin_unlock(&last_ptr->refill_lock);
5561 			goto loop;
5562 		}
5563 
5564 unclustered_alloc:
5565 		spin_lock(&block_group->free_space_ctl->tree_lock);
5566 		if (cached &&
5567 		    block_group->free_space_ctl->free_space <
5568 		    num_bytes + empty_cluster + empty_size) {
5569 			spin_unlock(&block_group->free_space_ctl->tree_lock);
5570 			goto loop;
5571 		}
5572 		spin_unlock(&block_group->free_space_ctl->tree_lock);
5573 
5574 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5575 						    num_bytes, empty_size);
5576 		/*
5577 		 * If we didn't find a chunk, and we haven't failed on this
5578 		 * block group before, and this block group is in the middle of
5579 		 * caching and we are ok with waiting, then go ahead and wait
5580 		 * for progress to be made, and set failed_alloc to true.
5581 		 *
5582 		 * If failed_alloc is true then we've already waited on this
5583 		 * block group once and should move on to the next block group.
5584 		 */
5585 		if (!offset && !failed_alloc && !cached &&
5586 		    loop > LOOP_CACHING_NOWAIT) {
5587 			wait_block_group_cache_progress(block_group,
5588 						num_bytes + empty_size);
5589 			failed_alloc = true;
5590 			goto have_block_group;
5591 		} else if (!offset) {
5592 			if (!cached)
5593 				have_caching_bg = true;
5594 			goto loop;
5595 		}
5596 checks:
5597 		search_start = stripe_align(root, offset);
5598 		/* move on to the next group */
5599 		if (search_start + num_bytes >= search_end) {
5600 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5601 			goto loop;
5602 		}
5603 
5604 		/* move on to the next group */
5605 		if (search_start + num_bytes >
5606 		    used_block_group->key.objectid + used_block_group->key.offset) {
5607 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5608 			goto loop;
5609 		}
5610 
5611 		if (offset < search_start)
5612 			btrfs_add_free_space(used_block_group, offset,
5613 					     search_start - offset);
5614 		BUG_ON(offset > search_start);
5615 
5616 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5617 						  alloc_type);
5618 		if (ret == -EAGAIN) {
5619 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5620 			goto loop;
5621 		}
5622 
5623 		/* we are all good, lets return */
5624 		ins->objectid = search_start;
5625 		ins->offset = num_bytes;
5626 
5627 		trace_btrfs_reserve_extent(orig_root, block_group,
5628 					   search_start, num_bytes);
5629 		if (offset < search_start)
5630 			btrfs_add_free_space(used_block_group, offset,
5631 					     search_start - offset);
5632 		BUG_ON(offset > search_start);
5633 		if (used_block_group != block_group)
5634 			btrfs_put_block_group(used_block_group);
5635 		btrfs_put_block_group(block_group);
5636 		break;
5637 loop:
5638 		failed_cluster_refill = false;
5639 		failed_alloc = false;
5640 		BUG_ON(index != get_block_group_index(block_group));
5641 		if (used_block_group != block_group)
5642 			btrfs_put_block_group(used_block_group);
5643 		btrfs_put_block_group(block_group);
5644 	}
5645 	up_read(&space_info->groups_sem);
5646 
5647 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5648 		goto search;
5649 
5650 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5651 		goto search;
5652 
5653 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5654 	 *			for them to make caching progress.  Also
5655 	 *			determine the best possible bg to cache
5656 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5657 	 *			caching kthreads as we move along
5658 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5659 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5660 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5661 	 *			again
5662 	 */
5663 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5664 		index = 0;
5665 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5666 			found_uncached_bg = false;
5667 			loop++;
5668 			if (!ideal_cache_percent)
5669 				goto search;
5670 
5671 			/*
5672 			 * 1 of the following 2 things have happened so far
5673 			 *
5674 			 * 1) We found an ideal block group for caching that
5675 			 * is mostly full and will cache quickly, so we might
5676 			 * as well wait for it.
5677 			 *
5678 			 * 2) We searched for cached only and we didn't find
5679 			 * anything, and we didn't start any caching kthreads
5680 			 * either, so chances are we will loop through and
5681 			 * start a couple caching kthreads, and then come back
5682 			 * around and just wait for them.  This will be slower
5683 			 * because we will have 2 caching kthreads reading at
5684 			 * the same time when we could have just started one
5685 			 * and waited for it to get far enough to give us an
5686 			 * allocation, so go ahead and go to the wait caching
5687 			 * loop.
5688 			 */
5689 			loop = LOOP_CACHING_WAIT;
5690 			search_start = ideal_cache_offset;
5691 			ideal_cache_percent = 0;
5692 			goto ideal_cache;
5693 		} else if (loop == LOOP_FIND_IDEAL) {
5694 			/*
5695 			 * Didn't find a uncached bg, wait on anything we find
5696 			 * next.
5697 			 */
5698 			loop = LOOP_CACHING_WAIT;
5699 			goto search;
5700 		}
5701 
5702 		loop++;
5703 
5704 		if (loop == LOOP_ALLOC_CHUNK) {
5705 		       if (allowed_chunk_alloc) {
5706 				ret = do_chunk_alloc(trans, root, num_bytes +
5707 						     2 * 1024 * 1024, data,
5708 						     CHUNK_ALLOC_LIMITED);
5709 				allowed_chunk_alloc = 0;
5710 				if (ret == 1)
5711 					done_chunk_alloc = 1;
5712 			} else if (!done_chunk_alloc &&
5713 				   space_info->force_alloc ==
5714 				   CHUNK_ALLOC_NO_FORCE) {
5715 				space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5716 			}
5717 
5718 		       /*
5719 			* We didn't allocate a chunk, go ahead and drop the
5720 			* empty size and loop again.
5721 			*/
5722 		       if (!done_chunk_alloc)
5723 			       loop = LOOP_NO_EMPTY_SIZE;
5724 		}
5725 
5726 		if (loop == LOOP_NO_EMPTY_SIZE) {
5727 			empty_size = 0;
5728 			empty_cluster = 0;
5729 		}
5730 
5731 		goto search;
5732 	} else if (!ins->objectid) {
5733 		ret = -ENOSPC;
5734 	} else if (ins->objectid) {
5735 		ret = 0;
5736 	}
5737 
5738 	return ret;
5739 }
5740 
5741 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5742 			    int dump_block_groups)
5743 {
5744 	struct btrfs_block_group_cache *cache;
5745 	int index = 0;
5746 
5747 	spin_lock(&info->lock);
5748 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5749 	       (unsigned long long)info->flags,
5750 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5751 				    info->bytes_pinned - info->bytes_reserved -
5752 				    info->bytes_readonly),
5753 	       (info->full) ? "" : "not ");
5754 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5755 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5756 	       (unsigned long long)info->total_bytes,
5757 	       (unsigned long long)info->bytes_used,
5758 	       (unsigned long long)info->bytes_pinned,
5759 	       (unsigned long long)info->bytes_reserved,
5760 	       (unsigned long long)info->bytes_may_use,
5761 	       (unsigned long long)info->bytes_readonly);
5762 	spin_unlock(&info->lock);
5763 
5764 	if (!dump_block_groups)
5765 		return;
5766 
5767 	down_read(&info->groups_sem);
5768 again:
5769 	list_for_each_entry(cache, &info->block_groups[index], list) {
5770 		spin_lock(&cache->lock);
5771 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5772 		       "%llu pinned %llu reserved\n",
5773 		       (unsigned long long)cache->key.objectid,
5774 		       (unsigned long long)cache->key.offset,
5775 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5776 		       (unsigned long long)cache->pinned,
5777 		       (unsigned long long)cache->reserved);
5778 		btrfs_dump_free_space(cache, bytes);
5779 		spin_unlock(&cache->lock);
5780 	}
5781 	if (++index < BTRFS_NR_RAID_TYPES)
5782 		goto again;
5783 	up_read(&info->groups_sem);
5784 }
5785 
5786 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5787 			 struct btrfs_root *root,
5788 			 u64 num_bytes, u64 min_alloc_size,
5789 			 u64 empty_size, u64 hint_byte,
5790 			 u64 search_end, struct btrfs_key *ins,
5791 			 u64 data)
5792 {
5793 	int ret;
5794 	u64 search_start = 0;
5795 
5796 	data = btrfs_get_alloc_profile(root, data);
5797 again:
5798 	/*
5799 	 * the only place that sets empty_size is btrfs_realloc_node, which
5800 	 * is not called recursively on allocations
5801 	 */
5802 	if (empty_size || root->ref_cows)
5803 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5804 				     num_bytes + 2 * 1024 * 1024, data,
5805 				     CHUNK_ALLOC_NO_FORCE);
5806 
5807 	WARN_ON(num_bytes < root->sectorsize);
5808 	ret = find_free_extent(trans, root, num_bytes, empty_size,
5809 			       search_start, search_end, hint_byte,
5810 			       ins, data);
5811 
5812 	if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5813 		num_bytes = num_bytes >> 1;
5814 		num_bytes = num_bytes & ~(root->sectorsize - 1);
5815 		num_bytes = max(num_bytes, min_alloc_size);
5816 		do_chunk_alloc(trans, root->fs_info->extent_root,
5817 			       num_bytes, data, CHUNK_ALLOC_FORCE);
5818 		goto again;
5819 	}
5820 	if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5821 		struct btrfs_space_info *sinfo;
5822 
5823 		sinfo = __find_space_info(root->fs_info, data);
5824 		printk(KERN_ERR "btrfs allocation failed flags %llu, "
5825 		       "wanted %llu\n", (unsigned long long)data,
5826 		       (unsigned long long)num_bytes);
5827 		dump_space_info(sinfo, num_bytes, 1);
5828 	}
5829 
5830 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5831 
5832 	return ret;
5833 }
5834 
5835 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5836 					u64 start, u64 len, int pin)
5837 {
5838 	struct btrfs_block_group_cache *cache;
5839 	int ret = 0;
5840 
5841 	cache = btrfs_lookup_block_group(root->fs_info, start);
5842 	if (!cache) {
5843 		printk(KERN_ERR "Unable to find block group for %llu\n",
5844 		       (unsigned long long)start);
5845 		return -ENOSPC;
5846 	}
5847 
5848 	if (btrfs_test_opt(root, DISCARD))
5849 		ret = btrfs_discard_extent(root, start, len, NULL);
5850 
5851 	if (pin)
5852 		pin_down_extent(root, cache, start, len, 1);
5853 	else {
5854 		btrfs_add_free_space(cache, start, len);
5855 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5856 	}
5857 	btrfs_put_block_group(cache);
5858 
5859 	trace_btrfs_reserved_extent_free(root, start, len);
5860 
5861 	return ret;
5862 }
5863 
5864 int btrfs_free_reserved_extent(struct btrfs_root *root,
5865 					u64 start, u64 len)
5866 {
5867 	return __btrfs_free_reserved_extent(root, start, len, 0);
5868 }
5869 
5870 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5871 				       u64 start, u64 len)
5872 {
5873 	return __btrfs_free_reserved_extent(root, start, len, 1);
5874 }
5875 
5876 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5877 				      struct btrfs_root *root,
5878 				      u64 parent, u64 root_objectid,
5879 				      u64 flags, u64 owner, u64 offset,
5880 				      struct btrfs_key *ins, int ref_mod)
5881 {
5882 	int ret;
5883 	struct btrfs_fs_info *fs_info = root->fs_info;
5884 	struct btrfs_extent_item *extent_item;
5885 	struct btrfs_extent_inline_ref *iref;
5886 	struct btrfs_path *path;
5887 	struct extent_buffer *leaf;
5888 	int type;
5889 	u32 size;
5890 
5891 	if (parent > 0)
5892 		type = BTRFS_SHARED_DATA_REF_KEY;
5893 	else
5894 		type = BTRFS_EXTENT_DATA_REF_KEY;
5895 
5896 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5897 
5898 	path = btrfs_alloc_path();
5899 	if (!path)
5900 		return -ENOMEM;
5901 
5902 	path->leave_spinning = 1;
5903 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5904 				      ins, size);
5905 	BUG_ON(ret);
5906 
5907 	leaf = path->nodes[0];
5908 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5909 				     struct btrfs_extent_item);
5910 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5911 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5912 	btrfs_set_extent_flags(leaf, extent_item,
5913 			       flags | BTRFS_EXTENT_FLAG_DATA);
5914 
5915 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5916 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
5917 	if (parent > 0) {
5918 		struct btrfs_shared_data_ref *ref;
5919 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
5920 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5921 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5922 	} else {
5923 		struct btrfs_extent_data_ref *ref;
5924 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5925 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5926 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5927 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5928 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5929 	}
5930 
5931 	btrfs_mark_buffer_dirty(path->nodes[0]);
5932 	btrfs_free_path(path);
5933 
5934 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5935 	if (ret) {
5936 		printk(KERN_ERR "btrfs update block group failed for %llu "
5937 		       "%llu\n", (unsigned long long)ins->objectid,
5938 		       (unsigned long long)ins->offset);
5939 		BUG();
5940 	}
5941 	return ret;
5942 }
5943 
5944 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5945 				     struct btrfs_root *root,
5946 				     u64 parent, u64 root_objectid,
5947 				     u64 flags, struct btrfs_disk_key *key,
5948 				     int level, struct btrfs_key *ins)
5949 {
5950 	int ret;
5951 	struct btrfs_fs_info *fs_info = root->fs_info;
5952 	struct btrfs_extent_item *extent_item;
5953 	struct btrfs_tree_block_info *block_info;
5954 	struct btrfs_extent_inline_ref *iref;
5955 	struct btrfs_path *path;
5956 	struct extent_buffer *leaf;
5957 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5958 
5959 	path = btrfs_alloc_path();
5960 	if (!path)
5961 		return -ENOMEM;
5962 
5963 	path->leave_spinning = 1;
5964 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5965 				      ins, size);
5966 	BUG_ON(ret);
5967 
5968 	leaf = path->nodes[0];
5969 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5970 				     struct btrfs_extent_item);
5971 	btrfs_set_extent_refs(leaf, extent_item, 1);
5972 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5973 	btrfs_set_extent_flags(leaf, extent_item,
5974 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5975 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5976 
5977 	btrfs_set_tree_block_key(leaf, block_info, key);
5978 	btrfs_set_tree_block_level(leaf, block_info, level);
5979 
5980 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5981 	if (parent > 0) {
5982 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5983 		btrfs_set_extent_inline_ref_type(leaf, iref,
5984 						 BTRFS_SHARED_BLOCK_REF_KEY);
5985 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5986 	} else {
5987 		btrfs_set_extent_inline_ref_type(leaf, iref,
5988 						 BTRFS_TREE_BLOCK_REF_KEY);
5989 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5990 	}
5991 
5992 	btrfs_mark_buffer_dirty(leaf);
5993 	btrfs_free_path(path);
5994 
5995 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5996 	if (ret) {
5997 		printk(KERN_ERR "btrfs update block group failed for %llu "
5998 		       "%llu\n", (unsigned long long)ins->objectid,
5999 		       (unsigned long long)ins->offset);
6000 		BUG();
6001 	}
6002 	return ret;
6003 }
6004 
6005 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6006 				     struct btrfs_root *root,
6007 				     u64 root_objectid, u64 owner,
6008 				     u64 offset, struct btrfs_key *ins)
6009 {
6010 	int ret;
6011 
6012 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6013 
6014 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6015 					 ins->offset, 0,
6016 					 root_objectid, owner, offset,
6017 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6018 	return ret;
6019 }
6020 
6021 /*
6022  * this is used by the tree logging recovery code.  It records that
6023  * an extent has been allocated and makes sure to clear the free
6024  * space cache bits as well
6025  */
6026 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6027 				   struct btrfs_root *root,
6028 				   u64 root_objectid, u64 owner, u64 offset,
6029 				   struct btrfs_key *ins)
6030 {
6031 	int ret;
6032 	struct btrfs_block_group_cache *block_group;
6033 	struct btrfs_caching_control *caching_ctl;
6034 	u64 start = ins->objectid;
6035 	u64 num_bytes = ins->offset;
6036 
6037 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6038 	cache_block_group(block_group, trans, NULL, 0);
6039 	caching_ctl = get_caching_control(block_group);
6040 
6041 	if (!caching_ctl) {
6042 		BUG_ON(!block_group_cache_done(block_group));
6043 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6044 		BUG_ON(ret);
6045 	} else {
6046 		mutex_lock(&caching_ctl->mutex);
6047 
6048 		if (start >= caching_ctl->progress) {
6049 			ret = add_excluded_extent(root, start, num_bytes);
6050 			BUG_ON(ret);
6051 		} else if (start + num_bytes <= caching_ctl->progress) {
6052 			ret = btrfs_remove_free_space(block_group,
6053 						      start, num_bytes);
6054 			BUG_ON(ret);
6055 		} else {
6056 			num_bytes = caching_ctl->progress - start;
6057 			ret = btrfs_remove_free_space(block_group,
6058 						      start, num_bytes);
6059 			BUG_ON(ret);
6060 
6061 			start = caching_ctl->progress;
6062 			num_bytes = ins->objectid + ins->offset -
6063 				    caching_ctl->progress;
6064 			ret = add_excluded_extent(root, start, num_bytes);
6065 			BUG_ON(ret);
6066 		}
6067 
6068 		mutex_unlock(&caching_ctl->mutex);
6069 		put_caching_control(caching_ctl);
6070 	}
6071 
6072 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6073 					  RESERVE_ALLOC_NO_ACCOUNT);
6074 	BUG_ON(ret);
6075 	btrfs_put_block_group(block_group);
6076 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6077 					 0, owner, offset, ins, 1);
6078 	return ret;
6079 }
6080 
6081 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6082 					    struct btrfs_root *root,
6083 					    u64 bytenr, u32 blocksize,
6084 					    int level)
6085 {
6086 	struct extent_buffer *buf;
6087 
6088 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6089 	if (!buf)
6090 		return ERR_PTR(-ENOMEM);
6091 	btrfs_set_header_generation(buf, trans->transid);
6092 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6093 	btrfs_tree_lock(buf);
6094 	clean_tree_block(trans, root, buf);
6095 
6096 	btrfs_set_lock_blocking(buf);
6097 	btrfs_set_buffer_uptodate(buf);
6098 
6099 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6100 		/*
6101 		 * we allow two log transactions at a time, use different
6102 		 * EXENT bit to differentiate dirty pages.
6103 		 */
6104 		if (root->log_transid % 2 == 0)
6105 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6106 					buf->start + buf->len - 1, GFP_NOFS);
6107 		else
6108 			set_extent_new(&root->dirty_log_pages, buf->start,
6109 					buf->start + buf->len - 1, GFP_NOFS);
6110 	} else {
6111 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6112 			 buf->start + buf->len - 1, GFP_NOFS);
6113 	}
6114 	trans->blocks_used++;
6115 	/* this returns a buffer locked for blocking */
6116 	return buf;
6117 }
6118 
6119 static struct btrfs_block_rsv *
6120 use_block_rsv(struct btrfs_trans_handle *trans,
6121 	      struct btrfs_root *root, u32 blocksize)
6122 {
6123 	struct btrfs_block_rsv *block_rsv;
6124 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6125 	int ret;
6126 
6127 	block_rsv = get_block_rsv(trans, root);
6128 
6129 	if (block_rsv->size == 0) {
6130 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6131 		/*
6132 		 * If we couldn't reserve metadata bytes try and use some from
6133 		 * the global reserve.
6134 		 */
6135 		if (ret && block_rsv != global_rsv) {
6136 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6137 			if (!ret)
6138 				return global_rsv;
6139 			return ERR_PTR(ret);
6140 		} else if (ret) {
6141 			return ERR_PTR(ret);
6142 		}
6143 		return block_rsv;
6144 	}
6145 
6146 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6147 	if (!ret)
6148 		return block_rsv;
6149 	if (ret) {
6150 		static DEFINE_RATELIMIT_STATE(_rs,
6151 				DEFAULT_RATELIMIT_INTERVAL,
6152 				/*DEFAULT_RATELIMIT_BURST*/ 2);
6153 		if (__ratelimit(&_rs)) {
6154 			printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6155 			WARN_ON(1);
6156 		}
6157 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6158 		if (!ret) {
6159 			return block_rsv;
6160 		} else if (ret && block_rsv != global_rsv) {
6161 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6162 			if (!ret)
6163 				return global_rsv;
6164 		}
6165 	}
6166 
6167 	return ERR_PTR(-ENOSPC);
6168 }
6169 
6170 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6171 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6172 {
6173 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6174 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6175 }
6176 
6177 /*
6178  * finds a free extent and does all the dirty work required for allocation
6179  * returns the key for the extent through ins, and a tree buffer for
6180  * the first block of the extent through buf.
6181  *
6182  * returns the tree buffer or NULL.
6183  */
6184 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6185 					struct btrfs_root *root, u32 blocksize,
6186 					u64 parent, u64 root_objectid,
6187 					struct btrfs_disk_key *key, int level,
6188 					u64 hint, u64 empty_size, int for_cow)
6189 {
6190 	struct btrfs_key ins;
6191 	struct btrfs_block_rsv *block_rsv;
6192 	struct extent_buffer *buf;
6193 	u64 flags = 0;
6194 	int ret;
6195 
6196 
6197 	block_rsv = use_block_rsv(trans, root, blocksize);
6198 	if (IS_ERR(block_rsv))
6199 		return ERR_CAST(block_rsv);
6200 
6201 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6202 				   empty_size, hint, (u64)-1, &ins, 0);
6203 	if (ret) {
6204 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6205 		return ERR_PTR(ret);
6206 	}
6207 
6208 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6209 				    blocksize, level);
6210 	BUG_ON(IS_ERR(buf));
6211 
6212 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6213 		if (parent == 0)
6214 			parent = ins.objectid;
6215 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6216 	} else
6217 		BUG_ON(parent > 0);
6218 
6219 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6220 		struct btrfs_delayed_extent_op *extent_op;
6221 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6222 		BUG_ON(!extent_op);
6223 		if (key)
6224 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6225 		else
6226 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6227 		extent_op->flags_to_set = flags;
6228 		extent_op->update_key = 1;
6229 		extent_op->update_flags = 1;
6230 		extent_op->is_data = 0;
6231 
6232 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6233 					ins.objectid,
6234 					ins.offset, parent, root_objectid,
6235 					level, BTRFS_ADD_DELAYED_EXTENT,
6236 					extent_op, for_cow);
6237 		BUG_ON(ret);
6238 	}
6239 	return buf;
6240 }
6241 
6242 struct walk_control {
6243 	u64 refs[BTRFS_MAX_LEVEL];
6244 	u64 flags[BTRFS_MAX_LEVEL];
6245 	struct btrfs_key update_progress;
6246 	int stage;
6247 	int level;
6248 	int shared_level;
6249 	int update_ref;
6250 	int keep_locks;
6251 	int reada_slot;
6252 	int reada_count;
6253 	int for_reloc;
6254 };
6255 
6256 #define DROP_REFERENCE	1
6257 #define UPDATE_BACKREF	2
6258 
6259 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6260 				     struct btrfs_root *root,
6261 				     struct walk_control *wc,
6262 				     struct btrfs_path *path)
6263 {
6264 	u64 bytenr;
6265 	u64 generation;
6266 	u64 refs;
6267 	u64 flags;
6268 	u32 nritems;
6269 	u32 blocksize;
6270 	struct btrfs_key key;
6271 	struct extent_buffer *eb;
6272 	int ret;
6273 	int slot;
6274 	int nread = 0;
6275 
6276 	if (path->slots[wc->level] < wc->reada_slot) {
6277 		wc->reada_count = wc->reada_count * 2 / 3;
6278 		wc->reada_count = max(wc->reada_count, 2);
6279 	} else {
6280 		wc->reada_count = wc->reada_count * 3 / 2;
6281 		wc->reada_count = min_t(int, wc->reada_count,
6282 					BTRFS_NODEPTRS_PER_BLOCK(root));
6283 	}
6284 
6285 	eb = path->nodes[wc->level];
6286 	nritems = btrfs_header_nritems(eb);
6287 	blocksize = btrfs_level_size(root, wc->level - 1);
6288 
6289 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6290 		if (nread >= wc->reada_count)
6291 			break;
6292 
6293 		cond_resched();
6294 		bytenr = btrfs_node_blockptr(eb, slot);
6295 		generation = btrfs_node_ptr_generation(eb, slot);
6296 
6297 		if (slot == path->slots[wc->level])
6298 			goto reada;
6299 
6300 		if (wc->stage == UPDATE_BACKREF &&
6301 		    generation <= root->root_key.offset)
6302 			continue;
6303 
6304 		/* We don't lock the tree block, it's OK to be racy here */
6305 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6306 					       &refs, &flags);
6307 		BUG_ON(ret);
6308 		BUG_ON(refs == 0);
6309 
6310 		if (wc->stage == DROP_REFERENCE) {
6311 			if (refs == 1)
6312 				goto reada;
6313 
6314 			if (wc->level == 1 &&
6315 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6316 				continue;
6317 			if (!wc->update_ref ||
6318 			    generation <= root->root_key.offset)
6319 				continue;
6320 			btrfs_node_key_to_cpu(eb, &key, slot);
6321 			ret = btrfs_comp_cpu_keys(&key,
6322 						  &wc->update_progress);
6323 			if (ret < 0)
6324 				continue;
6325 		} else {
6326 			if (wc->level == 1 &&
6327 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6328 				continue;
6329 		}
6330 reada:
6331 		ret = readahead_tree_block(root, bytenr, blocksize,
6332 					   generation);
6333 		if (ret)
6334 			break;
6335 		nread++;
6336 	}
6337 	wc->reada_slot = slot;
6338 }
6339 
6340 /*
6341  * hepler to process tree block while walking down the tree.
6342  *
6343  * when wc->stage == UPDATE_BACKREF, this function updates
6344  * back refs for pointers in the block.
6345  *
6346  * NOTE: return value 1 means we should stop walking down.
6347  */
6348 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6349 				   struct btrfs_root *root,
6350 				   struct btrfs_path *path,
6351 				   struct walk_control *wc, int lookup_info)
6352 {
6353 	int level = wc->level;
6354 	struct extent_buffer *eb = path->nodes[level];
6355 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6356 	int ret;
6357 
6358 	if (wc->stage == UPDATE_BACKREF &&
6359 	    btrfs_header_owner(eb) != root->root_key.objectid)
6360 		return 1;
6361 
6362 	/*
6363 	 * when reference count of tree block is 1, it won't increase
6364 	 * again. once full backref flag is set, we never clear it.
6365 	 */
6366 	if (lookup_info &&
6367 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6368 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6369 		BUG_ON(!path->locks[level]);
6370 		ret = btrfs_lookup_extent_info(trans, root,
6371 					       eb->start, eb->len,
6372 					       &wc->refs[level],
6373 					       &wc->flags[level]);
6374 		BUG_ON(ret);
6375 		BUG_ON(wc->refs[level] == 0);
6376 	}
6377 
6378 	if (wc->stage == DROP_REFERENCE) {
6379 		if (wc->refs[level] > 1)
6380 			return 1;
6381 
6382 		if (path->locks[level] && !wc->keep_locks) {
6383 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6384 			path->locks[level] = 0;
6385 		}
6386 		return 0;
6387 	}
6388 
6389 	/* wc->stage == UPDATE_BACKREF */
6390 	if (!(wc->flags[level] & flag)) {
6391 		BUG_ON(!path->locks[level]);
6392 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6393 		BUG_ON(ret);
6394 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6395 		BUG_ON(ret);
6396 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6397 						  eb->len, flag, 0);
6398 		BUG_ON(ret);
6399 		wc->flags[level] |= flag;
6400 	}
6401 
6402 	/*
6403 	 * the block is shared by multiple trees, so it's not good to
6404 	 * keep the tree lock
6405 	 */
6406 	if (path->locks[level] && level > 0) {
6407 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6408 		path->locks[level] = 0;
6409 	}
6410 	return 0;
6411 }
6412 
6413 /*
6414  * hepler to process tree block pointer.
6415  *
6416  * when wc->stage == DROP_REFERENCE, this function checks
6417  * reference count of the block pointed to. if the block
6418  * is shared and we need update back refs for the subtree
6419  * rooted at the block, this function changes wc->stage to
6420  * UPDATE_BACKREF. if the block is shared and there is no
6421  * need to update back, this function drops the reference
6422  * to the block.
6423  *
6424  * NOTE: return value 1 means we should stop walking down.
6425  */
6426 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6427 				 struct btrfs_root *root,
6428 				 struct btrfs_path *path,
6429 				 struct walk_control *wc, int *lookup_info)
6430 {
6431 	u64 bytenr;
6432 	u64 generation;
6433 	u64 parent;
6434 	u32 blocksize;
6435 	struct btrfs_key key;
6436 	struct extent_buffer *next;
6437 	int level = wc->level;
6438 	int reada = 0;
6439 	int ret = 0;
6440 
6441 	generation = btrfs_node_ptr_generation(path->nodes[level],
6442 					       path->slots[level]);
6443 	/*
6444 	 * if the lower level block was created before the snapshot
6445 	 * was created, we know there is no need to update back refs
6446 	 * for the subtree
6447 	 */
6448 	if (wc->stage == UPDATE_BACKREF &&
6449 	    generation <= root->root_key.offset) {
6450 		*lookup_info = 1;
6451 		return 1;
6452 	}
6453 
6454 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6455 	blocksize = btrfs_level_size(root, level - 1);
6456 
6457 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6458 	if (!next) {
6459 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6460 		if (!next)
6461 			return -ENOMEM;
6462 		reada = 1;
6463 	}
6464 	btrfs_tree_lock(next);
6465 	btrfs_set_lock_blocking(next);
6466 
6467 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6468 				       &wc->refs[level - 1],
6469 				       &wc->flags[level - 1]);
6470 	BUG_ON(ret);
6471 	BUG_ON(wc->refs[level - 1] == 0);
6472 	*lookup_info = 0;
6473 
6474 	if (wc->stage == DROP_REFERENCE) {
6475 		if (wc->refs[level - 1] > 1) {
6476 			if (level == 1 &&
6477 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6478 				goto skip;
6479 
6480 			if (!wc->update_ref ||
6481 			    generation <= root->root_key.offset)
6482 				goto skip;
6483 
6484 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6485 					      path->slots[level]);
6486 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6487 			if (ret < 0)
6488 				goto skip;
6489 
6490 			wc->stage = UPDATE_BACKREF;
6491 			wc->shared_level = level - 1;
6492 		}
6493 	} else {
6494 		if (level == 1 &&
6495 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6496 			goto skip;
6497 	}
6498 
6499 	if (!btrfs_buffer_uptodate(next, generation)) {
6500 		btrfs_tree_unlock(next);
6501 		free_extent_buffer(next);
6502 		next = NULL;
6503 		*lookup_info = 1;
6504 	}
6505 
6506 	if (!next) {
6507 		if (reada && level == 1)
6508 			reada_walk_down(trans, root, wc, path);
6509 		next = read_tree_block(root, bytenr, blocksize, generation);
6510 		if (!next)
6511 			return -EIO;
6512 		btrfs_tree_lock(next);
6513 		btrfs_set_lock_blocking(next);
6514 	}
6515 
6516 	level--;
6517 	BUG_ON(level != btrfs_header_level(next));
6518 	path->nodes[level] = next;
6519 	path->slots[level] = 0;
6520 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6521 	wc->level = level;
6522 	if (wc->level == 1)
6523 		wc->reada_slot = 0;
6524 	return 0;
6525 skip:
6526 	wc->refs[level - 1] = 0;
6527 	wc->flags[level - 1] = 0;
6528 	if (wc->stage == DROP_REFERENCE) {
6529 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6530 			parent = path->nodes[level]->start;
6531 		} else {
6532 			BUG_ON(root->root_key.objectid !=
6533 			       btrfs_header_owner(path->nodes[level]));
6534 			parent = 0;
6535 		}
6536 
6537 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6538 				root->root_key.objectid, level - 1, 0, 0);
6539 		BUG_ON(ret);
6540 	}
6541 	btrfs_tree_unlock(next);
6542 	free_extent_buffer(next);
6543 	*lookup_info = 1;
6544 	return 1;
6545 }
6546 
6547 /*
6548  * hepler to process tree block while walking up the tree.
6549  *
6550  * when wc->stage == DROP_REFERENCE, this function drops
6551  * reference count on the block.
6552  *
6553  * when wc->stage == UPDATE_BACKREF, this function changes
6554  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6555  * to UPDATE_BACKREF previously while processing the block.
6556  *
6557  * NOTE: return value 1 means we should stop walking up.
6558  */
6559 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6560 				 struct btrfs_root *root,
6561 				 struct btrfs_path *path,
6562 				 struct walk_control *wc)
6563 {
6564 	int ret;
6565 	int level = wc->level;
6566 	struct extent_buffer *eb = path->nodes[level];
6567 	u64 parent = 0;
6568 
6569 	if (wc->stage == UPDATE_BACKREF) {
6570 		BUG_ON(wc->shared_level < level);
6571 		if (level < wc->shared_level)
6572 			goto out;
6573 
6574 		ret = find_next_key(path, level + 1, &wc->update_progress);
6575 		if (ret > 0)
6576 			wc->update_ref = 0;
6577 
6578 		wc->stage = DROP_REFERENCE;
6579 		wc->shared_level = -1;
6580 		path->slots[level] = 0;
6581 
6582 		/*
6583 		 * check reference count again if the block isn't locked.
6584 		 * we should start walking down the tree again if reference
6585 		 * count is one.
6586 		 */
6587 		if (!path->locks[level]) {
6588 			BUG_ON(level == 0);
6589 			btrfs_tree_lock(eb);
6590 			btrfs_set_lock_blocking(eb);
6591 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6592 
6593 			ret = btrfs_lookup_extent_info(trans, root,
6594 						       eb->start, eb->len,
6595 						       &wc->refs[level],
6596 						       &wc->flags[level]);
6597 			BUG_ON(ret);
6598 			BUG_ON(wc->refs[level] == 0);
6599 			if (wc->refs[level] == 1) {
6600 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6601 				return 1;
6602 			}
6603 		}
6604 	}
6605 
6606 	/* wc->stage == DROP_REFERENCE */
6607 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6608 
6609 	if (wc->refs[level] == 1) {
6610 		if (level == 0) {
6611 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6612 				ret = btrfs_dec_ref(trans, root, eb, 1,
6613 						    wc->for_reloc);
6614 			else
6615 				ret = btrfs_dec_ref(trans, root, eb, 0,
6616 						    wc->for_reloc);
6617 			BUG_ON(ret);
6618 		}
6619 		/* make block locked assertion in clean_tree_block happy */
6620 		if (!path->locks[level] &&
6621 		    btrfs_header_generation(eb) == trans->transid) {
6622 			btrfs_tree_lock(eb);
6623 			btrfs_set_lock_blocking(eb);
6624 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6625 		}
6626 		clean_tree_block(trans, root, eb);
6627 	}
6628 
6629 	if (eb == root->node) {
6630 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6631 			parent = eb->start;
6632 		else
6633 			BUG_ON(root->root_key.objectid !=
6634 			       btrfs_header_owner(eb));
6635 	} else {
6636 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6637 			parent = path->nodes[level + 1]->start;
6638 		else
6639 			BUG_ON(root->root_key.objectid !=
6640 			       btrfs_header_owner(path->nodes[level + 1]));
6641 	}
6642 
6643 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6644 out:
6645 	wc->refs[level] = 0;
6646 	wc->flags[level] = 0;
6647 	return 0;
6648 }
6649 
6650 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6651 				   struct btrfs_root *root,
6652 				   struct btrfs_path *path,
6653 				   struct walk_control *wc)
6654 {
6655 	int level = wc->level;
6656 	int lookup_info = 1;
6657 	int ret;
6658 
6659 	while (level >= 0) {
6660 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6661 		if (ret > 0)
6662 			break;
6663 
6664 		if (level == 0)
6665 			break;
6666 
6667 		if (path->slots[level] >=
6668 		    btrfs_header_nritems(path->nodes[level]))
6669 			break;
6670 
6671 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6672 		if (ret > 0) {
6673 			path->slots[level]++;
6674 			continue;
6675 		} else if (ret < 0)
6676 			return ret;
6677 		level = wc->level;
6678 	}
6679 	return 0;
6680 }
6681 
6682 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6683 				 struct btrfs_root *root,
6684 				 struct btrfs_path *path,
6685 				 struct walk_control *wc, int max_level)
6686 {
6687 	int level = wc->level;
6688 	int ret;
6689 
6690 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6691 	while (level < max_level && path->nodes[level]) {
6692 		wc->level = level;
6693 		if (path->slots[level] + 1 <
6694 		    btrfs_header_nritems(path->nodes[level])) {
6695 			path->slots[level]++;
6696 			return 0;
6697 		} else {
6698 			ret = walk_up_proc(trans, root, path, wc);
6699 			if (ret > 0)
6700 				return 0;
6701 
6702 			if (path->locks[level]) {
6703 				btrfs_tree_unlock_rw(path->nodes[level],
6704 						     path->locks[level]);
6705 				path->locks[level] = 0;
6706 			}
6707 			free_extent_buffer(path->nodes[level]);
6708 			path->nodes[level] = NULL;
6709 			level++;
6710 		}
6711 	}
6712 	return 1;
6713 }
6714 
6715 /*
6716  * drop a subvolume tree.
6717  *
6718  * this function traverses the tree freeing any blocks that only
6719  * referenced by the tree.
6720  *
6721  * when a shared tree block is found. this function decreases its
6722  * reference count by one. if update_ref is true, this function
6723  * also make sure backrefs for the shared block and all lower level
6724  * blocks are properly updated.
6725  */
6726 void btrfs_drop_snapshot(struct btrfs_root *root,
6727 			 struct btrfs_block_rsv *block_rsv, int update_ref,
6728 			 int for_reloc)
6729 {
6730 	struct btrfs_path *path;
6731 	struct btrfs_trans_handle *trans;
6732 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6733 	struct btrfs_root_item *root_item = &root->root_item;
6734 	struct walk_control *wc;
6735 	struct btrfs_key key;
6736 	int err = 0;
6737 	int ret;
6738 	int level;
6739 
6740 	path = btrfs_alloc_path();
6741 	if (!path) {
6742 		err = -ENOMEM;
6743 		goto out;
6744 	}
6745 
6746 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6747 	if (!wc) {
6748 		btrfs_free_path(path);
6749 		err = -ENOMEM;
6750 		goto out;
6751 	}
6752 
6753 	trans = btrfs_start_transaction(tree_root, 0);
6754 	BUG_ON(IS_ERR(trans));
6755 
6756 	if (block_rsv)
6757 		trans->block_rsv = block_rsv;
6758 
6759 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6760 		level = btrfs_header_level(root->node);
6761 		path->nodes[level] = btrfs_lock_root_node(root);
6762 		btrfs_set_lock_blocking(path->nodes[level]);
6763 		path->slots[level] = 0;
6764 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6765 		memset(&wc->update_progress, 0,
6766 		       sizeof(wc->update_progress));
6767 	} else {
6768 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6769 		memcpy(&wc->update_progress, &key,
6770 		       sizeof(wc->update_progress));
6771 
6772 		level = root_item->drop_level;
6773 		BUG_ON(level == 0);
6774 		path->lowest_level = level;
6775 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6776 		path->lowest_level = 0;
6777 		if (ret < 0) {
6778 			err = ret;
6779 			goto out_free;
6780 		}
6781 		WARN_ON(ret > 0);
6782 
6783 		/*
6784 		 * unlock our path, this is safe because only this
6785 		 * function is allowed to delete this snapshot
6786 		 */
6787 		btrfs_unlock_up_safe(path, 0);
6788 
6789 		level = btrfs_header_level(root->node);
6790 		while (1) {
6791 			btrfs_tree_lock(path->nodes[level]);
6792 			btrfs_set_lock_blocking(path->nodes[level]);
6793 
6794 			ret = btrfs_lookup_extent_info(trans, root,
6795 						path->nodes[level]->start,
6796 						path->nodes[level]->len,
6797 						&wc->refs[level],
6798 						&wc->flags[level]);
6799 			BUG_ON(ret);
6800 			BUG_ON(wc->refs[level] == 0);
6801 
6802 			if (level == root_item->drop_level)
6803 				break;
6804 
6805 			btrfs_tree_unlock(path->nodes[level]);
6806 			WARN_ON(wc->refs[level] != 1);
6807 			level--;
6808 		}
6809 	}
6810 
6811 	wc->level = level;
6812 	wc->shared_level = -1;
6813 	wc->stage = DROP_REFERENCE;
6814 	wc->update_ref = update_ref;
6815 	wc->keep_locks = 0;
6816 	wc->for_reloc = for_reloc;
6817 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6818 
6819 	while (1) {
6820 		ret = walk_down_tree(trans, root, path, wc);
6821 		if (ret < 0) {
6822 			err = ret;
6823 			break;
6824 		}
6825 
6826 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6827 		if (ret < 0) {
6828 			err = ret;
6829 			break;
6830 		}
6831 
6832 		if (ret > 0) {
6833 			BUG_ON(wc->stage != DROP_REFERENCE);
6834 			break;
6835 		}
6836 
6837 		if (wc->stage == DROP_REFERENCE) {
6838 			level = wc->level;
6839 			btrfs_node_key(path->nodes[level],
6840 				       &root_item->drop_progress,
6841 				       path->slots[level]);
6842 			root_item->drop_level = level;
6843 		}
6844 
6845 		BUG_ON(wc->level == 0);
6846 		if (btrfs_should_end_transaction(trans, tree_root)) {
6847 			ret = btrfs_update_root(trans, tree_root,
6848 						&root->root_key,
6849 						root_item);
6850 			BUG_ON(ret);
6851 
6852 			btrfs_end_transaction_throttle(trans, tree_root);
6853 			trans = btrfs_start_transaction(tree_root, 0);
6854 			BUG_ON(IS_ERR(trans));
6855 			if (block_rsv)
6856 				trans->block_rsv = block_rsv;
6857 		}
6858 	}
6859 	btrfs_release_path(path);
6860 	BUG_ON(err);
6861 
6862 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
6863 	BUG_ON(ret);
6864 
6865 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6866 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6867 					   NULL, NULL);
6868 		BUG_ON(ret < 0);
6869 		if (ret > 0) {
6870 			/* if we fail to delete the orphan item this time
6871 			 * around, it'll get picked up the next time.
6872 			 *
6873 			 * The most common failure here is just -ENOENT.
6874 			 */
6875 			btrfs_del_orphan_item(trans, tree_root,
6876 					      root->root_key.objectid);
6877 		}
6878 	}
6879 
6880 	if (root->in_radix) {
6881 		btrfs_free_fs_root(tree_root->fs_info, root);
6882 	} else {
6883 		free_extent_buffer(root->node);
6884 		free_extent_buffer(root->commit_root);
6885 		kfree(root);
6886 	}
6887 out_free:
6888 	btrfs_end_transaction_throttle(trans, tree_root);
6889 	kfree(wc);
6890 	btrfs_free_path(path);
6891 out:
6892 	if (err)
6893 		btrfs_std_error(root->fs_info, err);
6894 	return;
6895 }
6896 
6897 /*
6898  * drop subtree rooted at tree block 'node'.
6899  *
6900  * NOTE: this function will unlock and release tree block 'node'
6901  * only used by relocation code
6902  */
6903 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6904 			struct btrfs_root *root,
6905 			struct extent_buffer *node,
6906 			struct extent_buffer *parent)
6907 {
6908 	struct btrfs_path *path;
6909 	struct walk_control *wc;
6910 	int level;
6911 	int parent_level;
6912 	int ret = 0;
6913 	int wret;
6914 
6915 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6916 
6917 	path = btrfs_alloc_path();
6918 	if (!path)
6919 		return -ENOMEM;
6920 
6921 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6922 	if (!wc) {
6923 		btrfs_free_path(path);
6924 		return -ENOMEM;
6925 	}
6926 
6927 	btrfs_assert_tree_locked(parent);
6928 	parent_level = btrfs_header_level(parent);
6929 	extent_buffer_get(parent);
6930 	path->nodes[parent_level] = parent;
6931 	path->slots[parent_level] = btrfs_header_nritems(parent);
6932 
6933 	btrfs_assert_tree_locked(node);
6934 	level = btrfs_header_level(node);
6935 	path->nodes[level] = node;
6936 	path->slots[level] = 0;
6937 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6938 
6939 	wc->refs[parent_level] = 1;
6940 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6941 	wc->level = level;
6942 	wc->shared_level = -1;
6943 	wc->stage = DROP_REFERENCE;
6944 	wc->update_ref = 0;
6945 	wc->keep_locks = 1;
6946 	wc->for_reloc = 1;
6947 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6948 
6949 	while (1) {
6950 		wret = walk_down_tree(trans, root, path, wc);
6951 		if (wret < 0) {
6952 			ret = wret;
6953 			break;
6954 		}
6955 
6956 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6957 		if (wret < 0)
6958 			ret = wret;
6959 		if (wret != 0)
6960 			break;
6961 	}
6962 
6963 	kfree(wc);
6964 	btrfs_free_path(path);
6965 	return ret;
6966 }
6967 
6968 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6969 {
6970 	u64 num_devices;
6971 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6972 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6973 
6974 	if (root->fs_info->balance_ctl) {
6975 		struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
6976 		u64 tgt = 0;
6977 
6978 		/* pick restriper's target profile and return */
6979 		if (flags & BTRFS_BLOCK_GROUP_DATA &&
6980 		    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6981 			tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
6982 		} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
6983 			   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6984 			tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
6985 		} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
6986 			   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6987 			tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
6988 		}
6989 
6990 		if (tgt) {
6991 			/* extended -> chunk profile */
6992 			tgt &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
6993 			return tgt;
6994 		}
6995 	}
6996 
6997 	/*
6998 	 * we add in the count of missing devices because we want
6999 	 * to make sure that any RAID levels on a degraded FS
7000 	 * continue to be honored.
7001 	 */
7002 	num_devices = root->fs_info->fs_devices->rw_devices +
7003 		root->fs_info->fs_devices->missing_devices;
7004 
7005 	if (num_devices == 1) {
7006 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7007 		stripped = flags & ~stripped;
7008 
7009 		/* turn raid0 into single device chunks */
7010 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7011 			return stripped;
7012 
7013 		/* turn mirroring into duplication */
7014 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7015 			     BTRFS_BLOCK_GROUP_RAID10))
7016 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7017 		return flags;
7018 	} else {
7019 		/* they already had raid on here, just return */
7020 		if (flags & stripped)
7021 			return flags;
7022 
7023 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7024 		stripped = flags & ~stripped;
7025 
7026 		/* switch duplicated blocks with raid1 */
7027 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7028 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7029 
7030 		/* turn single device chunks into raid0 */
7031 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
7032 	}
7033 	return flags;
7034 }
7035 
7036 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7037 {
7038 	struct btrfs_space_info *sinfo = cache->space_info;
7039 	u64 num_bytes;
7040 	u64 min_allocable_bytes;
7041 	int ret = -ENOSPC;
7042 
7043 
7044 	/*
7045 	 * We need some metadata space and system metadata space for
7046 	 * allocating chunks in some corner cases until we force to set
7047 	 * it to be readonly.
7048 	 */
7049 	if ((sinfo->flags &
7050 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7051 	    !force)
7052 		min_allocable_bytes = 1 * 1024 * 1024;
7053 	else
7054 		min_allocable_bytes = 0;
7055 
7056 	spin_lock(&sinfo->lock);
7057 	spin_lock(&cache->lock);
7058 
7059 	if (cache->ro) {
7060 		ret = 0;
7061 		goto out;
7062 	}
7063 
7064 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7065 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7066 
7067 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7068 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7069 	    min_allocable_bytes <= sinfo->total_bytes) {
7070 		sinfo->bytes_readonly += num_bytes;
7071 		cache->ro = 1;
7072 		ret = 0;
7073 	}
7074 out:
7075 	spin_unlock(&cache->lock);
7076 	spin_unlock(&sinfo->lock);
7077 	return ret;
7078 }
7079 
7080 int btrfs_set_block_group_ro(struct btrfs_root *root,
7081 			     struct btrfs_block_group_cache *cache)
7082 
7083 {
7084 	struct btrfs_trans_handle *trans;
7085 	u64 alloc_flags;
7086 	int ret;
7087 
7088 	BUG_ON(cache->ro);
7089 
7090 	trans = btrfs_join_transaction(root);
7091 	BUG_ON(IS_ERR(trans));
7092 
7093 	alloc_flags = update_block_group_flags(root, cache->flags);
7094 	if (alloc_flags != cache->flags)
7095 		do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7096 			       CHUNK_ALLOC_FORCE);
7097 
7098 	ret = set_block_group_ro(cache, 0);
7099 	if (!ret)
7100 		goto out;
7101 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7102 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7103 			     CHUNK_ALLOC_FORCE);
7104 	if (ret < 0)
7105 		goto out;
7106 	ret = set_block_group_ro(cache, 0);
7107 out:
7108 	btrfs_end_transaction(trans, root);
7109 	return ret;
7110 }
7111 
7112 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7113 			    struct btrfs_root *root, u64 type)
7114 {
7115 	u64 alloc_flags = get_alloc_profile(root, type);
7116 	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7117 			      CHUNK_ALLOC_FORCE);
7118 }
7119 
7120 /*
7121  * helper to account the unused space of all the readonly block group in the
7122  * list. takes mirrors into account.
7123  */
7124 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7125 {
7126 	struct btrfs_block_group_cache *block_group;
7127 	u64 free_bytes = 0;
7128 	int factor;
7129 
7130 	list_for_each_entry(block_group, groups_list, list) {
7131 		spin_lock(&block_group->lock);
7132 
7133 		if (!block_group->ro) {
7134 			spin_unlock(&block_group->lock);
7135 			continue;
7136 		}
7137 
7138 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7139 					  BTRFS_BLOCK_GROUP_RAID10 |
7140 					  BTRFS_BLOCK_GROUP_DUP))
7141 			factor = 2;
7142 		else
7143 			factor = 1;
7144 
7145 		free_bytes += (block_group->key.offset -
7146 			       btrfs_block_group_used(&block_group->item)) *
7147 			       factor;
7148 
7149 		spin_unlock(&block_group->lock);
7150 	}
7151 
7152 	return free_bytes;
7153 }
7154 
7155 /*
7156  * helper to account the unused space of all the readonly block group in the
7157  * space_info. takes mirrors into account.
7158  */
7159 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7160 {
7161 	int i;
7162 	u64 free_bytes = 0;
7163 
7164 	spin_lock(&sinfo->lock);
7165 
7166 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7167 		if (!list_empty(&sinfo->block_groups[i]))
7168 			free_bytes += __btrfs_get_ro_block_group_free_space(
7169 						&sinfo->block_groups[i]);
7170 
7171 	spin_unlock(&sinfo->lock);
7172 
7173 	return free_bytes;
7174 }
7175 
7176 int btrfs_set_block_group_rw(struct btrfs_root *root,
7177 			      struct btrfs_block_group_cache *cache)
7178 {
7179 	struct btrfs_space_info *sinfo = cache->space_info;
7180 	u64 num_bytes;
7181 
7182 	BUG_ON(!cache->ro);
7183 
7184 	spin_lock(&sinfo->lock);
7185 	spin_lock(&cache->lock);
7186 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7187 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7188 	sinfo->bytes_readonly -= num_bytes;
7189 	cache->ro = 0;
7190 	spin_unlock(&cache->lock);
7191 	spin_unlock(&sinfo->lock);
7192 	return 0;
7193 }
7194 
7195 /*
7196  * checks to see if its even possible to relocate this block group.
7197  *
7198  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7199  * ok to go ahead and try.
7200  */
7201 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7202 {
7203 	struct btrfs_block_group_cache *block_group;
7204 	struct btrfs_space_info *space_info;
7205 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7206 	struct btrfs_device *device;
7207 	u64 min_free;
7208 	u64 dev_min = 1;
7209 	u64 dev_nr = 0;
7210 	int index;
7211 	int full = 0;
7212 	int ret = 0;
7213 
7214 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7215 
7216 	/* odd, couldn't find the block group, leave it alone */
7217 	if (!block_group)
7218 		return -1;
7219 
7220 	min_free = btrfs_block_group_used(&block_group->item);
7221 
7222 	/* no bytes used, we're good */
7223 	if (!min_free)
7224 		goto out;
7225 
7226 	space_info = block_group->space_info;
7227 	spin_lock(&space_info->lock);
7228 
7229 	full = space_info->full;
7230 
7231 	/*
7232 	 * if this is the last block group we have in this space, we can't
7233 	 * relocate it unless we're able to allocate a new chunk below.
7234 	 *
7235 	 * Otherwise, we need to make sure we have room in the space to handle
7236 	 * all of the extents from this block group.  If we can, we're good
7237 	 */
7238 	if ((space_info->total_bytes != block_group->key.offset) &&
7239 	    (space_info->bytes_used + space_info->bytes_reserved +
7240 	     space_info->bytes_pinned + space_info->bytes_readonly +
7241 	     min_free < space_info->total_bytes)) {
7242 		spin_unlock(&space_info->lock);
7243 		goto out;
7244 	}
7245 	spin_unlock(&space_info->lock);
7246 
7247 	/*
7248 	 * ok we don't have enough space, but maybe we have free space on our
7249 	 * devices to allocate new chunks for relocation, so loop through our
7250 	 * alloc devices and guess if we have enough space.  However, if we
7251 	 * were marked as full, then we know there aren't enough chunks, and we
7252 	 * can just return.
7253 	 */
7254 	ret = -1;
7255 	if (full)
7256 		goto out;
7257 
7258 	/*
7259 	 * index:
7260 	 *      0: raid10
7261 	 *      1: raid1
7262 	 *      2: dup
7263 	 *      3: raid0
7264 	 *      4: single
7265 	 */
7266 	index = get_block_group_index(block_group);
7267 	if (index == 0) {
7268 		dev_min = 4;
7269 		/* Divide by 2 */
7270 		min_free >>= 1;
7271 	} else if (index == 1) {
7272 		dev_min = 2;
7273 	} else if (index == 2) {
7274 		/* Multiply by 2 */
7275 		min_free <<= 1;
7276 	} else if (index == 3) {
7277 		dev_min = fs_devices->rw_devices;
7278 		do_div(min_free, dev_min);
7279 	}
7280 
7281 	mutex_lock(&root->fs_info->chunk_mutex);
7282 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7283 		u64 dev_offset;
7284 
7285 		/*
7286 		 * check to make sure we can actually find a chunk with enough
7287 		 * space to fit our block group in.
7288 		 */
7289 		if (device->total_bytes > device->bytes_used + min_free) {
7290 			ret = find_free_dev_extent(device, min_free,
7291 						   &dev_offset, NULL);
7292 			if (!ret)
7293 				dev_nr++;
7294 
7295 			if (dev_nr >= dev_min)
7296 				break;
7297 
7298 			ret = -1;
7299 		}
7300 	}
7301 	mutex_unlock(&root->fs_info->chunk_mutex);
7302 out:
7303 	btrfs_put_block_group(block_group);
7304 	return ret;
7305 }
7306 
7307 static int find_first_block_group(struct btrfs_root *root,
7308 		struct btrfs_path *path, struct btrfs_key *key)
7309 {
7310 	int ret = 0;
7311 	struct btrfs_key found_key;
7312 	struct extent_buffer *leaf;
7313 	int slot;
7314 
7315 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7316 	if (ret < 0)
7317 		goto out;
7318 
7319 	while (1) {
7320 		slot = path->slots[0];
7321 		leaf = path->nodes[0];
7322 		if (slot >= btrfs_header_nritems(leaf)) {
7323 			ret = btrfs_next_leaf(root, path);
7324 			if (ret == 0)
7325 				continue;
7326 			if (ret < 0)
7327 				goto out;
7328 			break;
7329 		}
7330 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7331 
7332 		if (found_key.objectid >= key->objectid &&
7333 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7334 			ret = 0;
7335 			goto out;
7336 		}
7337 		path->slots[0]++;
7338 	}
7339 out:
7340 	return ret;
7341 }
7342 
7343 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7344 {
7345 	struct btrfs_block_group_cache *block_group;
7346 	u64 last = 0;
7347 
7348 	while (1) {
7349 		struct inode *inode;
7350 
7351 		block_group = btrfs_lookup_first_block_group(info, last);
7352 		while (block_group) {
7353 			spin_lock(&block_group->lock);
7354 			if (block_group->iref)
7355 				break;
7356 			spin_unlock(&block_group->lock);
7357 			block_group = next_block_group(info->tree_root,
7358 						       block_group);
7359 		}
7360 		if (!block_group) {
7361 			if (last == 0)
7362 				break;
7363 			last = 0;
7364 			continue;
7365 		}
7366 
7367 		inode = block_group->inode;
7368 		block_group->iref = 0;
7369 		block_group->inode = NULL;
7370 		spin_unlock(&block_group->lock);
7371 		iput(inode);
7372 		last = block_group->key.objectid + block_group->key.offset;
7373 		btrfs_put_block_group(block_group);
7374 	}
7375 }
7376 
7377 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7378 {
7379 	struct btrfs_block_group_cache *block_group;
7380 	struct btrfs_space_info *space_info;
7381 	struct btrfs_caching_control *caching_ctl;
7382 	struct rb_node *n;
7383 
7384 	down_write(&info->extent_commit_sem);
7385 	while (!list_empty(&info->caching_block_groups)) {
7386 		caching_ctl = list_entry(info->caching_block_groups.next,
7387 					 struct btrfs_caching_control, list);
7388 		list_del(&caching_ctl->list);
7389 		put_caching_control(caching_ctl);
7390 	}
7391 	up_write(&info->extent_commit_sem);
7392 
7393 	spin_lock(&info->block_group_cache_lock);
7394 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7395 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7396 				       cache_node);
7397 		rb_erase(&block_group->cache_node,
7398 			 &info->block_group_cache_tree);
7399 		spin_unlock(&info->block_group_cache_lock);
7400 
7401 		down_write(&block_group->space_info->groups_sem);
7402 		list_del(&block_group->list);
7403 		up_write(&block_group->space_info->groups_sem);
7404 
7405 		if (block_group->cached == BTRFS_CACHE_STARTED)
7406 			wait_block_group_cache_done(block_group);
7407 
7408 		/*
7409 		 * We haven't cached this block group, which means we could
7410 		 * possibly have excluded extents on this block group.
7411 		 */
7412 		if (block_group->cached == BTRFS_CACHE_NO)
7413 			free_excluded_extents(info->extent_root, block_group);
7414 
7415 		btrfs_remove_free_space_cache(block_group);
7416 		btrfs_put_block_group(block_group);
7417 
7418 		spin_lock(&info->block_group_cache_lock);
7419 	}
7420 	spin_unlock(&info->block_group_cache_lock);
7421 
7422 	/* now that all the block groups are freed, go through and
7423 	 * free all the space_info structs.  This is only called during
7424 	 * the final stages of unmount, and so we know nobody is
7425 	 * using them.  We call synchronize_rcu() once before we start,
7426 	 * just to be on the safe side.
7427 	 */
7428 	synchronize_rcu();
7429 
7430 	release_global_block_rsv(info);
7431 
7432 	while(!list_empty(&info->space_info)) {
7433 		space_info = list_entry(info->space_info.next,
7434 					struct btrfs_space_info,
7435 					list);
7436 		if (space_info->bytes_pinned > 0 ||
7437 		    space_info->bytes_reserved > 0 ||
7438 		    space_info->bytes_may_use > 0) {
7439 			WARN_ON(1);
7440 			dump_space_info(space_info, 0, 0);
7441 		}
7442 		list_del(&space_info->list);
7443 		kfree(space_info);
7444 	}
7445 	return 0;
7446 }
7447 
7448 static void __link_block_group(struct btrfs_space_info *space_info,
7449 			       struct btrfs_block_group_cache *cache)
7450 {
7451 	int index = get_block_group_index(cache);
7452 
7453 	down_write(&space_info->groups_sem);
7454 	list_add_tail(&cache->list, &space_info->block_groups[index]);
7455 	up_write(&space_info->groups_sem);
7456 }
7457 
7458 int btrfs_read_block_groups(struct btrfs_root *root)
7459 {
7460 	struct btrfs_path *path;
7461 	int ret;
7462 	struct btrfs_block_group_cache *cache;
7463 	struct btrfs_fs_info *info = root->fs_info;
7464 	struct btrfs_space_info *space_info;
7465 	struct btrfs_key key;
7466 	struct btrfs_key found_key;
7467 	struct extent_buffer *leaf;
7468 	int need_clear = 0;
7469 	u64 cache_gen;
7470 
7471 	root = info->extent_root;
7472 	key.objectid = 0;
7473 	key.offset = 0;
7474 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7475 	path = btrfs_alloc_path();
7476 	if (!path)
7477 		return -ENOMEM;
7478 	path->reada = 1;
7479 
7480 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7481 	if (btrfs_test_opt(root, SPACE_CACHE) &&
7482 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7483 		need_clear = 1;
7484 	if (btrfs_test_opt(root, CLEAR_CACHE))
7485 		need_clear = 1;
7486 
7487 	while (1) {
7488 		ret = find_first_block_group(root, path, &key);
7489 		if (ret > 0)
7490 			break;
7491 		if (ret != 0)
7492 			goto error;
7493 		leaf = path->nodes[0];
7494 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7495 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7496 		if (!cache) {
7497 			ret = -ENOMEM;
7498 			goto error;
7499 		}
7500 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7501 						GFP_NOFS);
7502 		if (!cache->free_space_ctl) {
7503 			kfree(cache);
7504 			ret = -ENOMEM;
7505 			goto error;
7506 		}
7507 
7508 		atomic_set(&cache->count, 1);
7509 		spin_lock_init(&cache->lock);
7510 		cache->fs_info = info;
7511 		INIT_LIST_HEAD(&cache->list);
7512 		INIT_LIST_HEAD(&cache->cluster_list);
7513 
7514 		if (need_clear)
7515 			cache->disk_cache_state = BTRFS_DC_CLEAR;
7516 
7517 		read_extent_buffer(leaf, &cache->item,
7518 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7519 				   sizeof(cache->item));
7520 		memcpy(&cache->key, &found_key, sizeof(found_key));
7521 
7522 		key.objectid = found_key.objectid + found_key.offset;
7523 		btrfs_release_path(path);
7524 		cache->flags = btrfs_block_group_flags(&cache->item);
7525 		cache->sectorsize = root->sectorsize;
7526 
7527 		btrfs_init_free_space_ctl(cache);
7528 
7529 		/*
7530 		 * We need to exclude the super stripes now so that the space
7531 		 * info has super bytes accounted for, otherwise we'll think
7532 		 * we have more space than we actually do.
7533 		 */
7534 		exclude_super_stripes(root, cache);
7535 
7536 		/*
7537 		 * check for two cases, either we are full, and therefore
7538 		 * don't need to bother with the caching work since we won't
7539 		 * find any space, or we are empty, and we can just add all
7540 		 * the space in and be done with it.  This saves us _alot_ of
7541 		 * time, particularly in the full case.
7542 		 */
7543 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7544 			cache->last_byte_to_unpin = (u64)-1;
7545 			cache->cached = BTRFS_CACHE_FINISHED;
7546 			free_excluded_extents(root, cache);
7547 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7548 			cache->last_byte_to_unpin = (u64)-1;
7549 			cache->cached = BTRFS_CACHE_FINISHED;
7550 			add_new_free_space(cache, root->fs_info,
7551 					   found_key.objectid,
7552 					   found_key.objectid +
7553 					   found_key.offset);
7554 			free_excluded_extents(root, cache);
7555 		}
7556 
7557 		ret = update_space_info(info, cache->flags, found_key.offset,
7558 					btrfs_block_group_used(&cache->item),
7559 					&space_info);
7560 		BUG_ON(ret);
7561 		cache->space_info = space_info;
7562 		spin_lock(&cache->space_info->lock);
7563 		cache->space_info->bytes_readonly += cache->bytes_super;
7564 		spin_unlock(&cache->space_info->lock);
7565 
7566 		__link_block_group(space_info, cache);
7567 
7568 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7569 		BUG_ON(ret);
7570 
7571 		set_avail_alloc_bits(root->fs_info, cache->flags);
7572 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7573 			set_block_group_ro(cache, 1);
7574 	}
7575 
7576 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7577 		if (!(get_alloc_profile(root, space_info->flags) &
7578 		      (BTRFS_BLOCK_GROUP_RAID10 |
7579 		       BTRFS_BLOCK_GROUP_RAID1 |
7580 		       BTRFS_BLOCK_GROUP_DUP)))
7581 			continue;
7582 		/*
7583 		 * avoid allocating from un-mirrored block group if there are
7584 		 * mirrored block groups.
7585 		 */
7586 		list_for_each_entry(cache, &space_info->block_groups[3], list)
7587 			set_block_group_ro(cache, 1);
7588 		list_for_each_entry(cache, &space_info->block_groups[4], list)
7589 			set_block_group_ro(cache, 1);
7590 	}
7591 
7592 	init_global_block_rsv(info);
7593 	ret = 0;
7594 error:
7595 	btrfs_free_path(path);
7596 	return ret;
7597 }
7598 
7599 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7600 			   struct btrfs_root *root, u64 bytes_used,
7601 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7602 			   u64 size)
7603 {
7604 	int ret;
7605 	struct btrfs_root *extent_root;
7606 	struct btrfs_block_group_cache *cache;
7607 
7608 	extent_root = root->fs_info->extent_root;
7609 
7610 	root->fs_info->last_trans_log_full_commit = trans->transid;
7611 
7612 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7613 	if (!cache)
7614 		return -ENOMEM;
7615 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7616 					GFP_NOFS);
7617 	if (!cache->free_space_ctl) {
7618 		kfree(cache);
7619 		return -ENOMEM;
7620 	}
7621 
7622 	cache->key.objectid = chunk_offset;
7623 	cache->key.offset = size;
7624 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7625 	cache->sectorsize = root->sectorsize;
7626 	cache->fs_info = root->fs_info;
7627 
7628 	atomic_set(&cache->count, 1);
7629 	spin_lock_init(&cache->lock);
7630 	INIT_LIST_HEAD(&cache->list);
7631 	INIT_LIST_HEAD(&cache->cluster_list);
7632 
7633 	btrfs_init_free_space_ctl(cache);
7634 
7635 	btrfs_set_block_group_used(&cache->item, bytes_used);
7636 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7637 	cache->flags = type;
7638 	btrfs_set_block_group_flags(&cache->item, type);
7639 
7640 	cache->last_byte_to_unpin = (u64)-1;
7641 	cache->cached = BTRFS_CACHE_FINISHED;
7642 	exclude_super_stripes(root, cache);
7643 
7644 	add_new_free_space(cache, root->fs_info, chunk_offset,
7645 			   chunk_offset + size);
7646 
7647 	free_excluded_extents(root, cache);
7648 
7649 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7650 				&cache->space_info);
7651 	BUG_ON(ret);
7652 	update_global_block_rsv(root->fs_info);
7653 
7654 	spin_lock(&cache->space_info->lock);
7655 	cache->space_info->bytes_readonly += cache->bytes_super;
7656 	spin_unlock(&cache->space_info->lock);
7657 
7658 	__link_block_group(cache->space_info, cache);
7659 
7660 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7661 	BUG_ON(ret);
7662 
7663 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7664 				sizeof(cache->item));
7665 	BUG_ON(ret);
7666 
7667 	set_avail_alloc_bits(extent_root->fs_info, type);
7668 
7669 	return 0;
7670 }
7671 
7672 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7673 {
7674 	u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
7675 
7676 	/* chunk -> extended profile */
7677 	if (extra_flags == 0)
7678 		extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7679 
7680 	if (flags & BTRFS_BLOCK_GROUP_DATA)
7681 		fs_info->avail_data_alloc_bits &= ~extra_flags;
7682 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
7683 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7684 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7685 		fs_info->avail_system_alloc_bits &= ~extra_flags;
7686 }
7687 
7688 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7689 			     struct btrfs_root *root, u64 group_start)
7690 {
7691 	struct btrfs_path *path;
7692 	struct btrfs_block_group_cache *block_group;
7693 	struct btrfs_free_cluster *cluster;
7694 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7695 	struct btrfs_key key;
7696 	struct inode *inode;
7697 	int ret;
7698 	int index;
7699 	int factor;
7700 
7701 	root = root->fs_info->extent_root;
7702 
7703 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7704 	BUG_ON(!block_group);
7705 	BUG_ON(!block_group->ro);
7706 
7707 	/*
7708 	 * Free the reserved super bytes from this block group before
7709 	 * remove it.
7710 	 */
7711 	free_excluded_extents(root, block_group);
7712 
7713 	memcpy(&key, &block_group->key, sizeof(key));
7714 	index = get_block_group_index(block_group);
7715 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7716 				  BTRFS_BLOCK_GROUP_RAID1 |
7717 				  BTRFS_BLOCK_GROUP_RAID10))
7718 		factor = 2;
7719 	else
7720 		factor = 1;
7721 
7722 	/* make sure this block group isn't part of an allocation cluster */
7723 	cluster = &root->fs_info->data_alloc_cluster;
7724 	spin_lock(&cluster->refill_lock);
7725 	btrfs_return_cluster_to_free_space(block_group, cluster);
7726 	spin_unlock(&cluster->refill_lock);
7727 
7728 	/*
7729 	 * make sure this block group isn't part of a metadata
7730 	 * allocation cluster
7731 	 */
7732 	cluster = &root->fs_info->meta_alloc_cluster;
7733 	spin_lock(&cluster->refill_lock);
7734 	btrfs_return_cluster_to_free_space(block_group, cluster);
7735 	spin_unlock(&cluster->refill_lock);
7736 
7737 	path = btrfs_alloc_path();
7738 	if (!path) {
7739 		ret = -ENOMEM;
7740 		goto out;
7741 	}
7742 
7743 	inode = lookup_free_space_inode(tree_root, block_group, path);
7744 	if (!IS_ERR(inode)) {
7745 		ret = btrfs_orphan_add(trans, inode);
7746 		BUG_ON(ret);
7747 		clear_nlink(inode);
7748 		/* One for the block groups ref */
7749 		spin_lock(&block_group->lock);
7750 		if (block_group->iref) {
7751 			block_group->iref = 0;
7752 			block_group->inode = NULL;
7753 			spin_unlock(&block_group->lock);
7754 			iput(inode);
7755 		} else {
7756 			spin_unlock(&block_group->lock);
7757 		}
7758 		/* One for our lookup ref */
7759 		btrfs_add_delayed_iput(inode);
7760 	}
7761 
7762 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7763 	key.offset = block_group->key.objectid;
7764 	key.type = 0;
7765 
7766 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7767 	if (ret < 0)
7768 		goto out;
7769 	if (ret > 0)
7770 		btrfs_release_path(path);
7771 	if (ret == 0) {
7772 		ret = btrfs_del_item(trans, tree_root, path);
7773 		if (ret)
7774 			goto out;
7775 		btrfs_release_path(path);
7776 	}
7777 
7778 	spin_lock(&root->fs_info->block_group_cache_lock);
7779 	rb_erase(&block_group->cache_node,
7780 		 &root->fs_info->block_group_cache_tree);
7781 	spin_unlock(&root->fs_info->block_group_cache_lock);
7782 
7783 	down_write(&block_group->space_info->groups_sem);
7784 	/*
7785 	 * we must use list_del_init so people can check to see if they
7786 	 * are still on the list after taking the semaphore
7787 	 */
7788 	list_del_init(&block_group->list);
7789 	if (list_empty(&block_group->space_info->block_groups[index]))
7790 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
7791 	up_write(&block_group->space_info->groups_sem);
7792 
7793 	if (block_group->cached == BTRFS_CACHE_STARTED)
7794 		wait_block_group_cache_done(block_group);
7795 
7796 	btrfs_remove_free_space_cache(block_group);
7797 
7798 	spin_lock(&block_group->space_info->lock);
7799 	block_group->space_info->total_bytes -= block_group->key.offset;
7800 	block_group->space_info->bytes_readonly -= block_group->key.offset;
7801 	block_group->space_info->disk_total -= block_group->key.offset * factor;
7802 	spin_unlock(&block_group->space_info->lock);
7803 
7804 	memcpy(&key, &block_group->key, sizeof(key));
7805 
7806 	btrfs_clear_space_info_full(root->fs_info);
7807 
7808 	btrfs_put_block_group(block_group);
7809 	btrfs_put_block_group(block_group);
7810 
7811 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7812 	if (ret > 0)
7813 		ret = -EIO;
7814 	if (ret < 0)
7815 		goto out;
7816 
7817 	ret = btrfs_del_item(trans, root, path);
7818 out:
7819 	btrfs_free_path(path);
7820 	return ret;
7821 }
7822 
7823 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7824 {
7825 	struct btrfs_space_info *space_info;
7826 	struct btrfs_super_block *disk_super;
7827 	u64 features;
7828 	u64 flags;
7829 	int mixed = 0;
7830 	int ret;
7831 
7832 	disk_super = fs_info->super_copy;
7833 	if (!btrfs_super_root(disk_super))
7834 		return 1;
7835 
7836 	features = btrfs_super_incompat_flags(disk_super);
7837 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7838 		mixed = 1;
7839 
7840 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
7841 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7842 	if (ret)
7843 		goto out;
7844 
7845 	if (mixed) {
7846 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7847 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7848 	} else {
7849 		flags = BTRFS_BLOCK_GROUP_METADATA;
7850 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7851 		if (ret)
7852 			goto out;
7853 
7854 		flags = BTRFS_BLOCK_GROUP_DATA;
7855 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7856 	}
7857 out:
7858 	return ret;
7859 }
7860 
7861 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7862 {
7863 	return unpin_extent_range(root, start, end);
7864 }
7865 
7866 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7867 			       u64 num_bytes, u64 *actual_bytes)
7868 {
7869 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7870 }
7871 
7872 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7873 {
7874 	struct btrfs_fs_info *fs_info = root->fs_info;
7875 	struct btrfs_block_group_cache *cache = NULL;
7876 	u64 group_trimmed;
7877 	u64 start;
7878 	u64 end;
7879 	u64 trimmed = 0;
7880 	int ret = 0;
7881 
7882 	cache = btrfs_lookup_block_group(fs_info, range->start);
7883 
7884 	while (cache) {
7885 		if (cache->key.objectid >= (range->start + range->len)) {
7886 			btrfs_put_block_group(cache);
7887 			break;
7888 		}
7889 
7890 		start = max(range->start, cache->key.objectid);
7891 		end = min(range->start + range->len,
7892 				cache->key.objectid + cache->key.offset);
7893 
7894 		if (end - start >= range->minlen) {
7895 			if (!block_group_cache_done(cache)) {
7896 				ret = cache_block_group(cache, NULL, root, 0);
7897 				if (!ret)
7898 					wait_block_group_cache_done(cache);
7899 			}
7900 			ret = btrfs_trim_block_group(cache,
7901 						     &group_trimmed,
7902 						     start,
7903 						     end,
7904 						     range->minlen);
7905 
7906 			trimmed += group_trimmed;
7907 			if (ret) {
7908 				btrfs_put_block_group(cache);
7909 				break;
7910 			}
7911 		}
7912 
7913 		cache = next_block_group(fs_info->tree_root, cache);
7914 	}
7915 
7916 	range->len = trimmed;
7917 	return ret;
7918 }
7919