xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 4457c1c702fa1cb2f032bae6dfa0dd2f84ff2b5c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "tree-log.h"
20 #include "disk-io.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "locking.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
27 #include "math.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 
32 #undef SCRAMBLE_DELAYED_REFS
33 
34 /*
35  * control flags for do_chunk_alloc's force field
36  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37  * if we really need one.
38  *
39  * CHUNK_ALLOC_LIMITED means to only try and allocate one
40  * if we have very few chunks already allocated.  This is
41  * used as part of the clustering code to help make sure
42  * we have a good pool of storage to cluster in, without
43  * filling the FS with empty chunks
44  *
45  * CHUNK_ALLOC_FORCE means it must try to allocate one
46  *
47  */
48 enum {
49 	CHUNK_ALLOC_NO_FORCE = 0,
50 	CHUNK_ALLOC_LIMITED = 1,
51 	CHUNK_ALLOC_FORCE = 2,
52 };
53 
54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
55 			       struct btrfs_fs_info *fs_info,
56 				struct btrfs_delayed_ref_node *node, u64 parent,
57 				u64 root_objectid, u64 owner_objectid,
58 				u64 owner_offset, int refs_to_drop,
59 				struct btrfs_delayed_extent_op *extra_op);
60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 				    struct extent_buffer *leaf,
62 				    struct btrfs_extent_item *ei);
63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
64 				      struct btrfs_fs_info *fs_info,
65 				      u64 parent, u64 root_objectid,
66 				      u64 flags, u64 owner, u64 offset,
67 				      struct btrfs_key *ins, int ref_mod);
68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
69 				     struct btrfs_fs_info *fs_info,
70 				     u64 parent, u64 root_objectid,
71 				     u64 flags, struct btrfs_disk_key *key,
72 				     int level, struct btrfs_key *ins);
73 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
74 			  struct btrfs_fs_info *fs_info, u64 flags,
75 			  int force);
76 static int find_next_key(struct btrfs_path *path, int level,
77 			 struct btrfs_key *key);
78 static void dump_space_info(struct btrfs_fs_info *fs_info,
79 			    struct btrfs_space_info *info, u64 bytes,
80 			    int dump_block_groups);
81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82 			       u64 num_bytes);
83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84 				     struct btrfs_space_info *space_info,
85 				     u64 num_bytes);
86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87 				     struct btrfs_space_info *space_info,
88 				     u64 num_bytes);
89 
90 static noinline int
91 block_group_cache_done(struct btrfs_block_group_cache *cache)
92 {
93 	smp_mb();
94 	return cache->cached == BTRFS_CACHE_FINISHED ||
95 		cache->cached == BTRFS_CACHE_ERROR;
96 }
97 
98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99 {
100 	return (cache->flags & bits) == bits;
101 }
102 
103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
104 {
105 	atomic_inc(&cache->count);
106 }
107 
108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109 {
110 	if (atomic_dec_and_test(&cache->count)) {
111 		WARN_ON(cache->pinned > 0);
112 		WARN_ON(cache->reserved > 0);
113 
114 		/*
115 		 * If not empty, someone is still holding mutex of
116 		 * full_stripe_lock, which can only be released by caller.
117 		 * And it will definitely cause use-after-free when caller
118 		 * tries to release full stripe lock.
119 		 *
120 		 * No better way to resolve, but only to warn.
121 		 */
122 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
123 		kfree(cache->free_space_ctl);
124 		kfree(cache);
125 	}
126 }
127 
128 /*
129  * this adds the block group to the fs_info rb tree for the block group
130  * cache
131  */
132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
133 				struct btrfs_block_group_cache *block_group)
134 {
135 	struct rb_node **p;
136 	struct rb_node *parent = NULL;
137 	struct btrfs_block_group_cache *cache;
138 
139 	spin_lock(&info->block_group_cache_lock);
140 	p = &info->block_group_cache_tree.rb_node;
141 
142 	while (*p) {
143 		parent = *p;
144 		cache = rb_entry(parent, struct btrfs_block_group_cache,
145 				 cache_node);
146 		if (block_group->key.objectid < cache->key.objectid) {
147 			p = &(*p)->rb_left;
148 		} else if (block_group->key.objectid > cache->key.objectid) {
149 			p = &(*p)->rb_right;
150 		} else {
151 			spin_unlock(&info->block_group_cache_lock);
152 			return -EEXIST;
153 		}
154 	}
155 
156 	rb_link_node(&block_group->cache_node, parent, p);
157 	rb_insert_color(&block_group->cache_node,
158 			&info->block_group_cache_tree);
159 
160 	if (info->first_logical_byte > block_group->key.objectid)
161 		info->first_logical_byte = block_group->key.objectid;
162 
163 	spin_unlock(&info->block_group_cache_lock);
164 
165 	return 0;
166 }
167 
168 /*
169  * This will return the block group at or after bytenr if contains is 0, else
170  * it will return the block group that contains the bytenr
171  */
172 static struct btrfs_block_group_cache *
173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 			      int contains)
175 {
176 	struct btrfs_block_group_cache *cache, *ret = NULL;
177 	struct rb_node *n;
178 	u64 end, start;
179 
180 	spin_lock(&info->block_group_cache_lock);
181 	n = info->block_group_cache_tree.rb_node;
182 
183 	while (n) {
184 		cache = rb_entry(n, struct btrfs_block_group_cache,
185 				 cache_node);
186 		end = cache->key.objectid + cache->key.offset - 1;
187 		start = cache->key.objectid;
188 
189 		if (bytenr < start) {
190 			if (!contains && (!ret || start < ret->key.objectid))
191 				ret = cache;
192 			n = n->rb_left;
193 		} else if (bytenr > start) {
194 			if (contains && bytenr <= end) {
195 				ret = cache;
196 				break;
197 			}
198 			n = n->rb_right;
199 		} else {
200 			ret = cache;
201 			break;
202 		}
203 	}
204 	if (ret) {
205 		btrfs_get_block_group(ret);
206 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207 			info->first_logical_byte = ret->key.objectid;
208 	}
209 	spin_unlock(&info->block_group_cache_lock);
210 
211 	return ret;
212 }
213 
214 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
215 			       u64 start, u64 num_bytes)
216 {
217 	u64 end = start + num_bytes - 1;
218 	set_extent_bits(&fs_info->freed_extents[0],
219 			start, end, EXTENT_UPTODATE);
220 	set_extent_bits(&fs_info->freed_extents[1],
221 			start, end, EXTENT_UPTODATE);
222 	return 0;
223 }
224 
225 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
226 				  struct btrfs_block_group_cache *cache)
227 {
228 	u64 start, end;
229 
230 	start = cache->key.objectid;
231 	end = start + cache->key.offset - 1;
232 
233 	clear_extent_bits(&fs_info->freed_extents[0],
234 			  start, end, EXTENT_UPTODATE);
235 	clear_extent_bits(&fs_info->freed_extents[1],
236 			  start, end, EXTENT_UPTODATE);
237 }
238 
239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
240 				 struct btrfs_block_group_cache *cache)
241 {
242 	u64 bytenr;
243 	u64 *logical;
244 	int stripe_len;
245 	int i, nr, ret;
246 
247 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249 		cache->bytes_super += stripe_len;
250 		ret = add_excluded_extent(fs_info, cache->key.objectid,
251 					  stripe_len);
252 		if (ret)
253 			return ret;
254 	}
255 
256 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257 		bytenr = btrfs_sb_offset(i);
258 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
259 				       bytenr, &logical, &nr, &stripe_len);
260 		if (ret)
261 			return ret;
262 
263 		while (nr--) {
264 			u64 start, len;
265 
266 			if (logical[nr] > cache->key.objectid +
267 			    cache->key.offset)
268 				continue;
269 
270 			if (logical[nr] + stripe_len <= cache->key.objectid)
271 				continue;
272 
273 			start = logical[nr];
274 			if (start < cache->key.objectid) {
275 				start = cache->key.objectid;
276 				len = (logical[nr] + stripe_len) - start;
277 			} else {
278 				len = min_t(u64, stripe_len,
279 					    cache->key.objectid +
280 					    cache->key.offset - start);
281 			}
282 
283 			cache->bytes_super += len;
284 			ret = add_excluded_extent(fs_info, start, len);
285 			if (ret) {
286 				kfree(logical);
287 				return ret;
288 			}
289 		}
290 
291 		kfree(logical);
292 	}
293 	return 0;
294 }
295 
296 static struct btrfs_caching_control *
297 get_caching_control(struct btrfs_block_group_cache *cache)
298 {
299 	struct btrfs_caching_control *ctl;
300 
301 	spin_lock(&cache->lock);
302 	if (!cache->caching_ctl) {
303 		spin_unlock(&cache->lock);
304 		return NULL;
305 	}
306 
307 	ctl = cache->caching_ctl;
308 	refcount_inc(&ctl->count);
309 	spin_unlock(&cache->lock);
310 	return ctl;
311 }
312 
313 static void put_caching_control(struct btrfs_caching_control *ctl)
314 {
315 	if (refcount_dec_and_test(&ctl->count))
316 		kfree(ctl);
317 }
318 
319 #ifdef CONFIG_BTRFS_DEBUG
320 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
321 {
322 	struct btrfs_fs_info *fs_info = block_group->fs_info;
323 	u64 start = block_group->key.objectid;
324 	u64 len = block_group->key.offset;
325 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
326 		fs_info->nodesize : fs_info->sectorsize;
327 	u64 step = chunk << 1;
328 
329 	while (len > chunk) {
330 		btrfs_remove_free_space(block_group, start, chunk);
331 		start += step;
332 		if (len < step)
333 			len = 0;
334 		else
335 			len -= step;
336 	}
337 }
338 #endif
339 
340 /*
341  * this is only called by cache_block_group, since we could have freed extents
342  * we need to check the pinned_extents for any extents that can't be used yet
343  * since their free space will be released as soon as the transaction commits.
344  */
345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 		       u64 start, u64 end)
347 {
348 	struct btrfs_fs_info *info = block_group->fs_info;
349 	u64 extent_start, extent_end, size, total_added = 0;
350 	int ret;
351 
352 	while (start < end) {
353 		ret = find_first_extent_bit(info->pinned_extents, start,
354 					    &extent_start, &extent_end,
355 					    EXTENT_DIRTY | EXTENT_UPTODATE,
356 					    NULL);
357 		if (ret)
358 			break;
359 
360 		if (extent_start <= start) {
361 			start = extent_end + 1;
362 		} else if (extent_start > start && extent_start < end) {
363 			size = extent_start - start;
364 			total_added += size;
365 			ret = btrfs_add_free_space(block_group, start,
366 						   size);
367 			BUG_ON(ret); /* -ENOMEM or logic error */
368 			start = extent_end + 1;
369 		} else {
370 			break;
371 		}
372 	}
373 
374 	if (start < end) {
375 		size = end - start;
376 		total_added += size;
377 		ret = btrfs_add_free_space(block_group, start, size);
378 		BUG_ON(ret); /* -ENOMEM or logic error */
379 	}
380 
381 	return total_added;
382 }
383 
384 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
385 {
386 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
387 	struct btrfs_fs_info *fs_info = block_group->fs_info;
388 	struct btrfs_root *extent_root = fs_info->extent_root;
389 	struct btrfs_path *path;
390 	struct extent_buffer *leaf;
391 	struct btrfs_key key;
392 	u64 total_found = 0;
393 	u64 last = 0;
394 	u32 nritems;
395 	int ret;
396 	bool wakeup = true;
397 
398 	path = btrfs_alloc_path();
399 	if (!path)
400 		return -ENOMEM;
401 
402 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
403 
404 #ifdef CONFIG_BTRFS_DEBUG
405 	/*
406 	 * If we're fragmenting we don't want to make anybody think we can
407 	 * allocate from this block group until we've had a chance to fragment
408 	 * the free space.
409 	 */
410 	if (btrfs_should_fragment_free_space(block_group))
411 		wakeup = false;
412 #endif
413 	/*
414 	 * We don't want to deadlock with somebody trying to allocate a new
415 	 * extent for the extent root while also trying to search the extent
416 	 * root to add free space.  So we skip locking and search the commit
417 	 * root, since its read-only
418 	 */
419 	path->skip_locking = 1;
420 	path->search_commit_root = 1;
421 	path->reada = READA_FORWARD;
422 
423 	key.objectid = last;
424 	key.offset = 0;
425 	key.type = BTRFS_EXTENT_ITEM_KEY;
426 
427 next:
428 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
429 	if (ret < 0)
430 		goto out;
431 
432 	leaf = path->nodes[0];
433 	nritems = btrfs_header_nritems(leaf);
434 
435 	while (1) {
436 		if (btrfs_fs_closing(fs_info) > 1) {
437 			last = (u64)-1;
438 			break;
439 		}
440 
441 		if (path->slots[0] < nritems) {
442 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
443 		} else {
444 			ret = find_next_key(path, 0, &key);
445 			if (ret)
446 				break;
447 
448 			if (need_resched() ||
449 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
450 				if (wakeup)
451 					caching_ctl->progress = last;
452 				btrfs_release_path(path);
453 				up_read(&fs_info->commit_root_sem);
454 				mutex_unlock(&caching_ctl->mutex);
455 				cond_resched();
456 				mutex_lock(&caching_ctl->mutex);
457 				down_read(&fs_info->commit_root_sem);
458 				goto next;
459 			}
460 
461 			ret = btrfs_next_leaf(extent_root, path);
462 			if (ret < 0)
463 				goto out;
464 			if (ret)
465 				break;
466 			leaf = path->nodes[0];
467 			nritems = btrfs_header_nritems(leaf);
468 			continue;
469 		}
470 
471 		if (key.objectid < last) {
472 			key.objectid = last;
473 			key.offset = 0;
474 			key.type = BTRFS_EXTENT_ITEM_KEY;
475 
476 			if (wakeup)
477 				caching_ctl->progress = last;
478 			btrfs_release_path(path);
479 			goto next;
480 		}
481 
482 		if (key.objectid < block_group->key.objectid) {
483 			path->slots[0]++;
484 			continue;
485 		}
486 
487 		if (key.objectid >= block_group->key.objectid +
488 		    block_group->key.offset)
489 			break;
490 
491 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
492 		    key.type == BTRFS_METADATA_ITEM_KEY) {
493 			total_found += add_new_free_space(block_group, last,
494 							  key.objectid);
495 			if (key.type == BTRFS_METADATA_ITEM_KEY)
496 				last = key.objectid +
497 					fs_info->nodesize;
498 			else
499 				last = key.objectid + key.offset;
500 
501 			if (total_found > CACHING_CTL_WAKE_UP) {
502 				total_found = 0;
503 				if (wakeup)
504 					wake_up(&caching_ctl->wait);
505 			}
506 		}
507 		path->slots[0]++;
508 	}
509 	ret = 0;
510 
511 	total_found += add_new_free_space(block_group, last,
512 					  block_group->key.objectid +
513 					  block_group->key.offset);
514 	caching_ctl->progress = (u64)-1;
515 
516 out:
517 	btrfs_free_path(path);
518 	return ret;
519 }
520 
521 static noinline void caching_thread(struct btrfs_work *work)
522 {
523 	struct btrfs_block_group_cache *block_group;
524 	struct btrfs_fs_info *fs_info;
525 	struct btrfs_caching_control *caching_ctl;
526 	int ret;
527 
528 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
529 	block_group = caching_ctl->block_group;
530 	fs_info = block_group->fs_info;
531 
532 	mutex_lock(&caching_ctl->mutex);
533 	down_read(&fs_info->commit_root_sem);
534 
535 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536 		ret = load_free_space_tree(caching_ctl);
537 	else
538 		ret = load_extent_tree_free(caching_ctl);
539 
540 	spin_lock(&block_group->lock);
541 	block_group->caching_ctl = NULL;
542 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
543 	spin_unlock(&block_group->lock);
544 
545 #ifdef CONFIG_BTRFS_DEBUG
546 	if (btrfs_should_fragment_free_space(block_group)) {
547 		u64 bytes_used;
548 
549 		spin_lock(&block_group->space_info->lock);
550 		spin_lock(&block_group->lock);
551 		bytes_used = block_group->key.offset -
552 			btrfs_block_group_used(&block_group->item);
553 		block_group->space_info->bytes_used += bytes_used >> 1;
554 		spin_unlock(&block_group->lock);
555 		spin_unlock(&block_group->space_info->lock);
556 		fragment_free_space(block_group);
557 	}
558 #endif
559 
560 	caching_ctl->progress = (u64)-1;
561 
562 	up_read(&fs_info->commit_root_sem);
563 	free_excluded_extents(fs_info, block_group);
564 	mutex_unlock(&caching_ctl->mutex);
565 
566 	wake_up(&caching_ctl->wait);
567 
568 	put_caching_control(caching_ctl);
569 	btrfs_put_block_group(block_group);
570 }
571 
572 static int cache_block_group(struct btrfs_block_group_cache *cache,
573 			     int load_cache_only)
574 {
575 	DEFINE_WAIT(wait);
576 	struct btrfs_fs_info *fs_info = cache->fs_info;
577 	struct btrfs_caching_control *caching_ctl;
578 	int ret = 0;
579 
580 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
581 	if (!caching_ctl)
582 		return -ENOMEM;
583 
584 	INIT_LIST_HEAD(&caching_ctl->list);
585 	mutex_init(&caching_ctl->mutex);
586 	init_waitqueue_head(&caching_ctl->wait);
587 	caching_ctl->block_group = cache;
588 	caching_ctl->progress = cache->key.objectid;
589 	refcount_set(&caching_ctl->count, 1);
590 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591 			caching_thread, NULL, NULL);
592 
593 	spin_lock(&cache->lock);
594 	/*
595 	 * This should be a rare occasion, but this could happen I think in the
596 	 * case where one thread starts to load the space cache info, and then
597 	 * some other thread starts a transaction commit which tries to do an
598 	 * allocation while the other thread is still loading the space cache
599 	 * info.  The previous loop should have kept us from choosing this block
600 	 * group, but if we've moved to the state where we will wait on caching
601 	 * block groups we need to first check if we're doing a fast load here,
602 	 * so we can wait for it to finish, otherwise we could end up allocating
603 	 * from a block group who's cache gets evicted for one reason or
604 	 * another.
605 	 */
606 	while (cache->cached == BTRFS_CACHE_FAST) {
607 		struct btrfs_caching_control *ctl;
608 
609 		ctl = cache->caching_ctl;
610 		refcount_inc(&ctl->count);
611 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612 		spin_unlock(&cache->lock);
613 
614 		schedule();
615 
616 		finish_wait(&ctl->wait, &wait);
617 		put_caching_control(ctl);
618 		spin_lock(&cache->lock);
619 	}
620 
621 	if (cache->cached != BTRFS_CACHE_NO) {
622 		spin_unlock(&cache->lock);
623 		kfree(caching_ctl);
624 		return 0;
625 	}
626 	WARN_ON(cache->caching_ctl);
627 	cache->caching_ctl = caching_ctl;
628 	cache->cached = BTRFS_CACHE_FAST;
629 	spin_unlock(&cache->lock);
630 
631 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
632 		mutex_lock(&caching_ctl->mutex);
633 		ret = load_free_space_cache(fs_info, cache);
634 
635 		spin_lock(&cache->lock);
636 		if (ret == 1) {
637 			cache->caching_ctl = NULL;
638 			cache->cached = BTRFS_CACHE_FINISHED;
639 			cache->last_byte_to_unpin = (u64)-1;
640 			caching_ctl->progress = (u64)-1;
641 		} else {
642 			if (load_cache_only) {
643 				cache->caching_ctl = NULL;
644 				cache->cached = BTRFS_CACHE_NO;
645 			} else {
646 				cache->cached = BTRFS_CACHE_STARTED;
647 				cache->has_caching_ctl = 1;
648 			}
649 		}
650 		spin_unlock(&cache->lock);
651 #ifdef CONFIG_BTRFS_DEBUG
652 		if (ret == 1 &&
653 		    btrfs_should_fragment_free_space(cache)) {
654 			u64 bytes_used;
655 
656 			spin_lock(&cache->space_info->lock);
657 			spin_lock(&cache->lock);
658 			bytes_used = cache->key.offset -
659 				btrfs_block_group_used(&cache->item);
660 			cache->space_info->bytes_used += bytes_used >> 1;
661 			spin_unlock(&cache->lock);
662 			spin_unlock(&cache->space_info->lock);
663 			fragment_free_space(cache);
664 		}
665 #endif
666 		mutex_unlock(&caching_ctl->mutex);
667 
668 		wake_up(&caching_ctl->wait);
669 		if (ret == 1) {
670 			put_caching_control(caching_ctl);
671 			free_excluded_extents(fs_info, cache);
672 			return 0;
673 		}
674 	} else {
675 		/*
676 		 * We're either using the free space tree or no caching at all.
677 		 * Set cached to the appropriate value and wakeup any waiters.
678 		 */
679 		spin_lock(&cache->lock);
680 		if (load_cache_only) {
681 			cache->caching_ctl = NULL;
682 			cache->cached = BTRFS_CACHE_NO;
683 		} else {
684 			cache->cached = BTRFS_CACHE_STARTED;
685 			cache->has_caching_ctl = 1;
686 		}
687 		spin_unlock(&cache->lock);
688 		wake_up(&caching_ctl->wait);
689 	}
690 
691 	if (load_cache_only) {
692 		put_caching_control(caching_ctl);
693 		return 0;
694 	}
695 
696 	down_write(&fs_info->commit_root_sem);
697 	refcount_inc(&caching_ctl->count);
698 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
699 	up_write(&fs_info->commit_root_sem);
700 
701 	btrfs_get_block_group(cache);
702 
703 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
704 
705 	return ret;
706 }
707 
708 /*
709  * return the block group that starts at or after bytenr
710  */
711 static struct btrfs_block_group_cache *
712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
713 {
714 	return block_group_cache_tree_search(info, bytenr, 0);
715 }
716 
717 /*
718  * return the block group that contains the given bytenr
719  */
720 struct btrfs_block_group_cache *btrfs_lookup_block_group(
721 						 struct btrfs_fs_info *info,
722 						 u64 bytenr)
723 {
724 	return block_group_cache_tree_search(info, bytenr, 1);
725 }
726 
727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728 						  u64 flags)
729 {
730 	struct list_head *head = &info->space_info;
731 	struct btrfs_space_info *found;
732 
733 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
734 
735 	rcu_read_lock();
736 	list_for_each_entry_rcu(found, head, list) {
737 		if (found->flags & flags) {
738 			rcu_read_unlock();
739 			return found;
740 		}
741 	}
742 	rcu_read_unlock();
743 	return NULL;
744 }
745 
746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
747 			     bool metadata, u64 root_objectid)
748 {
749 	struct btrfs_space_info *space_info;
750 	u64 flags;
751 
752 	if (metadata) {
753 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
755 		else
756 			flags = BTRFS_BLOCK_GROUP_METADATA;
757 	} else {
758 		flags = BTRFS_BLOCK_GROUP_DATA;
759 	}
760 
761 	space_info = __find_space_info(fs_info, flags);
762 	ASSERT(space_info);
763 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764 }
765 
766 /*
767  * after adding space to the filesystem, we need to clear the full flags
768  * on all the space infos.
769  */
770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771 {
772 	struct list_head *head = &info->space_info;
773 	struct btrfs_space_info *found;
774 
775 	rcu_read_lock();
776 	list_for_each_entry_rcu(found, head, list)
777 		found->full = 0;
778 	rcu_read_unlock();
779 }
780 
781 /* simple helper to search for an existing data extent at a given offset */
782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
783 {
784 	int ret;
785 	struct btrfs_key key;
786 	struct btrfs_path *path;
787 
788 	path = btrfs_alloc_path();
789 	if (!path)
790 		return -ENOMEM;
791 
792 	key.objectid = start;
793 	key.offset = len;
794 	key.type = BTRFS_EXTENT_ITEM_KEY;
795 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
796 	btrfs_free_path(path);
797 	return ret;
798 }
799 
800 /*
801  * helper function to lookup reference count and flags of a tree block.
802  *
803  * the head node for delayed ref is used to store the sum of all the
804  * reference count modifications queued up in the rbtree. the head
805  * node may also store the extent flags to set. This way you can check
806  * to see what the reference count and extent flags would be if all of
807  * the delayed refs are not processed.
808  */
809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 			     struct btrfs_fs_info *fs_info, u64 bytenr,
811 			     u64 offset, int metadata, u64 *refs, u64 *flags)
812 {
813 	struct btrfs_delayed_ref_head *head;
814 	struct btrfs_delayed_ref_root *delayed_refs;
815 	struct btrfs_path *path;
816 	struct btrfs_extent_item *ei;
817 	struct extent_buffer *leaf;
818 	struct btrfs_key key;
819 	u32 item_size;
820 	u64 num_refs;
821 	u64 extent_flags;
822 	int ret;
823 
824 	/*
825 	 * If we don't have skinny metadata, don't bother doing anything
826 	 * different
827 	 */
828 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829 		offset = fs_info->nodesize;
830 		metadata = 0;
831 	}
832 
833 	path = btrfs_alloc_path();
834 	if (!path)
835 		return -ENOMEM;
836 
837 	if (!trans) {
838 		path->skip_locking = 1;
839 		path->search_commit_root = 1;
840 	}
841 
842 search_again:
843 	key.objectid = bytenr;
844 	key.offset = offset;
845 	if (metadata)
846 		key.type = BTRFS_METADATA_ITEM_KEY;
847 	else
848 		key.type = BTRFS_EXTENT_ITEM_KEY;
849 
850 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
851 	if (ret < 0)
852 		goto out_free;
853 
854 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
855 		if (path->slots[0]) {
856 			path->slots[0]--;
857 			btrfs_item_key_to_cpu(path->nodes[0], &key,
858 					      path->slots[0]);
859 			if (key.objectid == bytenr &&
860 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
861 			    key.offset == fs_info->nodesize)
862 				ret = 0;
863 		}
864 	}
865 
866 	if (ret == 0) {
867 		leaf = path->nodes[0];
868 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 		if (item_size >= sizeof(*ei)) {
870 			ei = btrfs_item_ptr(leaf, path->slots[0],
871 					    struct btrfs_extent_item);
872 			num_refs = btrfs_extent_refs(leaf, ei);
873 			extent_flags = btrfs_extent_flags(leaf, ei);
874 		} else {
875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876 			struct btrfs_extent_item_v0 *ei0;
877 			BUG_ON(item_size != sizeof(*ei0));
878 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
879 					     struct btrfs_extent_item_v0);
880 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
881 			/* FIXME: this isn't correct for data */
882 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883 #else
884 			BUG();
885 #endif
886 		}
887 		BUG_ON(num_refs == 0);
888 	} else {
889 		num_refs = 0;
890 		extent_flags = 0;
891 		ret = 0;
892 	}
893 
894 	if (!trans)
895 		goto out;
896 
897 	delayed_refs = &trans->transaction->delayed_refs;
898 	spin_lock(&delayed_refs->lock);
899 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
900 	if (head) {
901 		if (!mutex_trylock(&head->mutex)) {
902 			refcount_inc(&head->refs);
903 			spin_unlock(&delayed_refs->lock);
904 
905 			btrfs_release_path(path);
906 
907 			/*
908 			 * Mutex was contended, block until it's released and try
909 			 * again
910 			 */
911 			mutex_lock(&head->mutex);
912 			mutex_unlock(&head->mutex);
913 			btrfs_put_delayed_ref_head(head);
914 			goto search_again;
915 		}
916 		spin_lock(&head->lock);
917 		if (head->extent_op && head->extent_op->update_flags)
918 			extent_flags |= head->extent_op->flags_to_set;
919 		else
920 			BUG_ON(num_refs == 0);
921 
922 		num_refs += head->ref_mod;
923 		spin_unlock(&head->lock);
924 		mutex_unlock(&head->mutex);
925 	}
926 	spin_unlock(&delayed_refs->lock);
927 out:
928 	WARN_ON(num_refs == 0);
929 	if (refs)
930 		*refs = num_refs;
931 	if (flags)
932 		*flags = extent_flags;
933 out_free:
934 	btrfs_free_path(path);
935 	return ret;
936 }
937 
938 /*
939  * Back reference rules.  Back refs have three main goals:
940  *
941  * 1) differentiate between all holders of references to an extent so that
942  *    when a reference is dropped we can make sure it was a valid reference
943  *    before freeing the extent.
944  *
945  * 2) Provide enough information to quickly find the holders of an extent
946  *    if we notice a given block is corrupted or bad.
947  *
948  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949  *    maintenance.  This is actually the same as #2, but with a slightly
950  *    different use case.
951  *
952  * There are two kinds of back refs. The implicit back refs is optimized
953  * for pointers in non-shared tree blocks. For a given pointer in a block,
954  * back refs of this kind provide information about the block's owner tree
955  * and the pointer's key. These information allow us to find the block by
956  * b-tree searching. The full back refs is for pointers in tree blocks not
957  * referenced by their owner trees. The location of tree block is recorded
958  * in the back refs. Actually the full back refs is generic, and can be
959  * used in all cases the implicit back refs is used. The major shortcoming
960  * of the full back refs is its overhead. Every time a tree block gets
961  * COWed, we have to update back refs entry for all pointers in it.
962  *
963  * For a newly allocated tree block, we use implicit back refs for
964  * pointers in it. This means most tree related operations only involve
965  * implicit back refs. For a tree block created in old transaction, the
966  * only way to drop a reference to it is COW it. So we can detect the
967  * event that tree block loses its owner tree's reference and do the
968  * back refs conversion.
969  *
970  * When a tree block is COWed through a tree, there are four cases:
971  *
972  * The reference count of the block is one and the tree is the block's
973  * owner tree. Nothing to do in this case.
974  *
975  * The reference count of the block is one and the tree is not the
976  * block's owner tree. In this case, full back refs is used for pointers
977  * in the block. Remove these full back refs, add implicit back refs for
978  * every pointers in the new block.
979  *
980  * The reference count of the block is greater than one and the tree is
981  * the block's owner tree. In this case, implicit back refs is used for
982  * pointers in the block. Add full back refs for every pointers in the
983  * block, increase lower level extents' reference counts. The original
984  * implicit back refs are entailed to the new block.
985  *
986  * The reference count of the block is greater than one and the tree is
987  * not the block's owner tree. Add implicit back refs for every pointer in
988  * the new block, increase lower level extents' reference count.
989  *
990  * Back Reference Key composing:
991  *
992  * The key objectid corresponds to the first byte in the extent,
993  * The key type is used to differentiate between types of back refs.
994  * There are different meanings of the key offset for different types
995  * of back refs.
996  *
997  * File extents can be referenced by:
998  *
999  * - multiple snapshots, subvolumes, or different generations in one subvol
1000  * - different files inside a single subvolume
1001  * - different offsets inside a file (bookend extents in file.c)
1002  *
1003  * The extent ref structure for the implicit back refs has fields for:
1004  *
1005  * - Objectid of the subvolume root
1006  * - objectid of the file holding the reference
1007  * - original offset in the file
1008  * - how many bookend extents
1009  *
1010  * The key offset for the implicit back refs is hash of the first
1011  * three fields.
1012  *
1013  * The extent ref structure for the full back refs has field for:
1014  *
1015  * - number of pointers in the tree leaf
1016  *
1017  * The key offset for the implicit back refs is the first byte of
1018  * the tree leaf
1019  *
1020  * When a file extent is allocated, The implicit back refs is used.
1021  * the fields are filled in:
1022  *
1023  *     (root_key.objectid, inode objectid, offset in file, 1)
1024  *
1025  * When a file extent is removed file truncation, we find the
1026  * corresponding implicit back refs and check the following fields:
1027  *
1028  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1029  *
1030  * Btree extents can be referenced by:
1031  *
1032  * - Different subvolumes
1033  *
1034  * Both the implicit back refs and the full back refs for tree blocks
1035  * only consist of key. The key offset for the implicit back refs is
1036  * objectid of block's owner tree. The key offset for the full back refs
1037  * is the first byte of parent block.
1038  *
1039  * When implicit back refs is used, information about the lowest key and
1040  * level of the tree block are required. These information are stored in
1041  * tree block info structure.
1042  */
1043 
1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1046 				  struct btrfs_fs_info *fs_info,
1047 				  struct btrfs_path *path,
1048 				  u64 owner, u32 extra_size)
1049 {
1050 	struct btrfs_root *root = fs_info->extent_root;
1051 	struct btrfs_extent_item *item;
1052 	struct btrfs_extent_item_v0 *ei0;
1053 	struct btrfs_extent_ref_v0 *ref0;
1054 	struct btrfs_tree_block_info *bi;
1055 	struct extent_buffer *leaf;
1056 	struct btrfs_key key;
1057 	struct btrfs_key found_key;
1058 	u32 new_size = sizeof(*item);
1059 	u64 refs;
1060 	int ret;
1061 
1062 	leaf = path->nodes[0];
1063 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064 
1065 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 			     struct btrfs_extent_item_v0);
1068 	refs = btrfs_extent_refs_v0(leaf, ei0);
1069 
1070 	if (owner == (u64)-1) {
1071 		while (1) {
1072 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 				ret = btrfs_next_leaf(root, path);
1074 				if (ret < 0)
1075 					return ret;
1076 				BUG_ON(ret > 0); /* Corruption */
1077 				leaf = path->nodes[0];
1078 			}
1079 			btrfs_item_key_to_cpu(leaf, &found_key,
1080 					      path->slots[0]);
1081 			BUG_ON(key.objectid != found_key.objectid);
1082 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 				path->slots[0]++;
1084 				continue;
1085 			}
1086 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 					      struct btrfs_extent_ref_v0);
1088 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 			break;
1090 		}
1091 	}
1092 	btrfs_release_path(path);
1093 
1094 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 		new_size += sizeof(*bi);
1096 
1097 	new_size -= sizeof(*ei0);
1098 	ret = btrfs_search_slot(trans, root, &key, path,
1099 				new_size + extra_size, 1);
1100 	if (ret < 0)
1101 		return ret;
1102 	BUG_ON(ret); /* Corruption */
1103 
1104 	btrfs_extend_item(fs_info, path, new_size);
1105 
1106 	leaf = path->nodes[0];
1107 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 	btrfs_set_extent_refs(leaf, item, refs);
1109 	/* FIXME: get real generation */
1110 	btrfs_set_extent_generation(leaf, item, 0);
1111 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 		btrfs_set_extent_flags(leaf, item,
1113 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 		bi = (struct btrfs_tree_block_info *)(item + 1);
1116 		/* FIXME: get first key of the block */
1117 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1118 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 	} else {
1120 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 	}
1122 	btrfs_mark_buffer_dirty(leaf);
1123 	return 0;
1124 }
1125 #endif
1126 
1127 /*
1128  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131  */
1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133 				     struct btrfs_extent_inline_ref *iref,
1134 				     enum btrfs_inline_ref_type is_data)
1135 {
1136 	int type = btrfs_extent_inline_ref_type(eb, iref);
1137 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1138 
1139 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1142 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1143 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1144 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1145 				return type;
1146 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147 				ASSERT(eb->fs_info);
1148 				/*
1149 				 * Every shared one has parent tree
1150 				 * block, which must be aligned to
1151 				 * nodesize.
1152 				 */
1153 				if (offset &&
1154 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1155 					return type;
1156 			}
1157 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1158 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1159 				return type;
1160 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161 				ASSERT(eb->fs_info);
1162 				/*
1163 				 * Every shared one has parent tree
1164 				 * block, which must be aligned to
1165 				 * nodesize.
1166 				 */
1167 				if (offset &&
1168 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 					return type;
1170 			}
1171 		} else {
1172 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173 			return type;
1174 		}
1175 	}
1176 
1177 	btrfs_print_leaf((struct extent_buffer *)eb);
1178 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179 		  eb->start, type);
1180 	WARN_ON(1);
1181 
1182 	return BTRFS_REF_TYPE_INVALID;
1183 }
1184 
1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186 {
1187 	u32 high_crc = ~(u32)0;
1188 	u32 low_crc = ~(u32)0;
1189 	__le64 lenum;
1190 
1191 	lenum = cpu_to_le64(root_objectid);
1192 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1193 	lenum = cpu_to_le64(owner);
1194 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1195 	lenum = cpu_to_le64(offset);
1196 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1197 
1198 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1199 }
1200 
1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202 				     struct btrfs_extent_data_ref *ref)
1203 {
1204 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205 				    btrfs_extent_data_ref_objectid(leaf, ref),
1206 				    btrfs_extent_data_ref_offset(leaf, ref));
1207 }
1208 
1209 static int match_extent_data_ref(struct extent_buffer *leaf,
1210 				 struct btrfs_extent_data_ref *ref,
1211 				 u64 root_objectid, u64 owner, u64 offset)
1212 {
1213 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216 		return 0;
1217 	return 1;
1218 }
1219 
1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1221 					   struct btrfs_fs_info *fs_info,
1222 					   struct btrfs_path *path,
1223 					   u64 bytenr, u64 parent,
1224 					   u64 root_objectid,
1225 					   u64 owner, u64 offset)
1226 {
1227 	struct btrfs_root *root = fs_info->extent_root;
1228 	struct btrfs_key key;
1229 	struct btrfs_extent_data_ref *ref;
1230 	struct extent_buffer *leaf;
1231 	u32 nritems;
1232 	int ret;
1233 	int recow;
1234 	int err = -ENOENT;
1235 
1236 	key.objectid = bytenr;
1237 	if (parent) {
1238 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1239 		key.offset = parent;
1240 	} else {
1241 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242 		key.offset = hash_extent_data_ref(root_objectid,
1243 						  owner, offset);
1244 	}
1245 again:
1246 	recow = 0;
1247 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248 	if (ret < 0) {
1249 		err = ret;
1250 		goto fail;
1251 	}
1252 
1253 	if (parent) {
1254 		if (!ret)
1255 			return 0;
1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1258 		btrfs_release_path(path);
1259 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 		if (ret < 0) {
1261 			err = ret;
1262 			goto fail;
1263 		}
1264 		if (!ret)
1265 			return 0;
1266 #endif
1267 		goto fail;
1268 	}
1269 
1270 	leaf = path->nodes[0];
1271 	nritems = btrfs_header_nritems(leaf);
1272 	while (1) {
1273 		if (path->slots[0] >= nritems) {
1274 			ret = btrfs_next_leaf(root, path);
1275 			if (ret < 0)
1276 				err = ret;
1277 			if (ret)
1278 				goto fail;
1279 
1280 			leaf = path->nodes[0];
1281 			nritems = btrfs_header_nritems(leaf);
1282 			recow = 1;
1283 		}
1284 
1285 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 		if (key.objectid != bytenr ||
1287 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288 			goto fail;
1289 
1290 		ref = btrfs_item_ptr(leaf, path->slots[0],
1291 				     struct btrfs_extent_data_ref);
1292 
1293 		if (match_extent_data_ref(leaf, ref, root_objectid,
1294 					  owner, offset)) {
1295 			if (recow) {
1296 				btrfs_release_path(path);
1297 				goto again;
1298 			}
1299 			err = 0;
1300 			break;
1301 		}
1302 		path->slots[0]++;
1303 	}
1304 fail:
1305 	return err;
1306 }
1307 
1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1309 					   struct btrfs_fs_info *fs_info,
1310 					   struct btrfs_path *path,
1311 					   u64 bytenr, u64 parent,
1312 					   u64 root_objectid, u64 owner,
1313 					   u64 offset, int refs_to_add)
1314 {
1315 	struct btrfs_root *root = fs_info->extent_root;
1316 	struct btrfs_key key;
1317 	struct extent_buffer *leaf;
1318 	u32 size;
1319 	u32 num_refs;
1320 	int ret;
1321 
1322 	key.objectid = bytenr;
1323 	if (parent) {
1324 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1325 		key.offset = parent;
1326 		size = sizeof(struct btrfs_shared_data_ref);
1327 	} else {
1328 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329 		key.offset = hash_extent_data_ref(root_objectid,
1330 						  owner, offset);
1331 		size = sizeof(struct btrfs_extent_data_ref);
1332 	}
1333 
1334 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335 	if (ret && ret != -EEXIST)
1336 		goto fail;
1337 
1338 	leaf = path->nodes[0];
1339 	if (parent) {
1340 		struct btrfs_shared_data_ref *ref;
1341 		ref = btrfs_item_ptr(leaf, path->slots[0],
1342 				     struct btrfs_shared_data_ref);
1343 		if (ret == 0) {
1344 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345 		} else {
1346 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347 			num_refs += refs_to_add;
1348 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1349 		}
1350 	} else {
1351 		struct btrfs_extent_data_ref *ref;
1352 		while (ret == -EEXIST) {
1353 			ref = btrfs_item_ptr(leaf, path->slots[0],
1354 					     struct btrfs_extent_data_ref);
1355 			if (match_extent_data_ref(leaf, ref, root_objectid,
1356 						  owner, offset))
1357 				break;
1358 			btrfs_release_path(path);
1359 			key.offset++;
1360 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1361 						      size);
1362 			if (ret && ret != -EEXIST)
1363 				goto fail;
1364 
1365 			leaf = path->nodes[0];
1366 		}
1367 		ref = btrfs_item_ptr(leaf, path->slots[0],
1368 				     struct btrfs_extent_data_ref);
1369 		if (ret == 0) {
1370 			btrfs_set_extent_data_ref_root(leaf, ref,
1371 						       root_objectid);
1372 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375 		} else {
1376 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377 			num_refs += refs_to_add;
1378 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1379 		}
1380 	}
1381 	btrfs_mark_buffer_dirty(leaf);
1382 	ret = 0;
1383 fail:
1384 	btrfs_release_path(path);
1385 	return ret;
1386 }
1387 
1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1389 					   struct btrfs_fs_info *fs_info,
1390 					   struct btrfs_path *path,
1391 					   int refs_to_drop, int *last_ref)
1392 {
1393 	struct btrfs_key key;
1394 	struct btrfs_extent_data_ref *ref1 = NULL;
1395 	struct btrfs_shared_data_ref *ref2 = NULL;
1396 	struct extent_buffer *leaf;
1397 	u32 num_refs = 0;
1398 	int ret = 0;
1399 
1400 	leaf = path->nodes[0];
1401 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402 
1403 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 				      struct btrfs_extent_data_ref);
1406 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 				      struct btrfs_shared_data_ref);
1410 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 		struct btrfs_extent_ref_v0 *ref0;
1414 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 				      struct btrfs_extent_ref_v0);
1416 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1417 #endif
1418 	} else {
1419 		BUG();
1420 	}
1421 
1422 	BUG_ON(num_refs < refs_to_drop);
1423 	num_refs -= refs_to_drop;
1424 
1425 	if (num_refs == 0) {
1426 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1427 		*last_ref = 1;
1428 	} else {
1429 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434 		else {
1435 			struct btrfs_extent_ref_v0 *ref0;
1436 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437 					struct btrfs_extent_ref_v0);
1438 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439 		}
1440 #endif
1441 		btrfs_mark_buffer_dirty(leaf);
1442 	}
1443 	return ret;
1444 }
1445 
1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1447 					  struct btrfs_extent_inline_ref *iref)
1448 {
1449 	struct btrfs_key key;
1450 	struct extent_buffer *leaf;
1451 	struct btrfs_extent_data_ref *ref1;
1452 	struct btrfs_shared_data_ref *ref2;
1453 	u32 num_refs = 0;
1454 	int type;
1455 
1456 	leaf = path->nodes[0];
1457 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458 	if (iref) {
1459 		/*
1460 		 * If type is invalid, we should have bailed out earlier than
1461 		 * this call.
1462 		 */
1463 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1466 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468 		} else {
1469 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471 		}
1472 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474 				      struct btrfs_extent_data_ref);
1475 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478 				      struct btrfs_shared_data_ref);
1479 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482 		struct btrfs_extent_ref_v0 *ref0;
1483 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484 				      struct btrfs_extent_ref_v0);
1485 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1486 #endif
1487 	} else {
1488 		WARN_ON(1);
1489 	}
1490 	return num_refs;
1491 }
1492 
1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1494 					  struct btrfs_fs_info *fs_info,
1495 					  struct btrfs_path *path,
1496 					  u64 bytenr, u64 parent,
1497 					  u64 root_objectid)
1498 {
1499 	struct btrfs_root *root = fs_info->extent_root;
1500 	struct btrfs_key key;
1501 	int ret;
1502 
1503 	key.objectid = bytenr;
1504 	if (parent) {
1505 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506 		key.offset = parent;
1507 	} else {
1508 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509 		key.offset = root_objectid;
1510 	}
1511 
1512 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513 	if (ret > 0)
1514 		ret = -ENOENT;
1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516 	if (ret == -ENOENT && parent) {
1517 		btrfs_release_path(path);
1518 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1519 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 		if (ret > 0)
1521 			ret = -ENOENT;
1522 	}
1523 #endif
1524 	return ret;
1525 }
1526 
1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1528 					  struct btrfs_fs_info *fs_info,
1529 					  struct btrfs_path *path,
1530 					  u64 bytenr, u64 parent,
1531 					  u64 root_objectid)
1532 {
1533 	struct btrfs_key key;
1534 	int ret;
1535 
1536 	key.objectid = bytenr;
1537 	if (parent) {
1538 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539 		key.offset = parent;
1540 	} else {
1541 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542 		key.offset = root_objectid;
1543 	}
1544 
1545 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546 				      path, &key, 0);
1547 	btrfs_release_path(path);
1548 	return ret;
1549 }
1550 
1551 static inline int extent_ref_type(u64 parent, u64 owner)
1552 {
1553 	int type;
1554 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555 		if (parent > 0)
1556 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1557 		else
1558 			type = BTRFS_TREE_BLOCK_REF_KEY;
1559 	} else {
1560 		if (parent > 0)
1561 			type = BTRFS_SHARED_DATA_REF_KEY;
1562 		else
1563 			type = BTRFS_EXTENT_DATA_REF_KEY;
1564 	}
1565 	return type;
1566 }
1567 
1568 static int find_next_key(struct btrfs_path *path, int level,
1569 			 struct btrfs_key *key)
1570 
1571 {
1572 	for (; level < BTRFS_MAX_LEVEL; level++) {
1573 		if (!path->nodes[level])
1574 			break;
1575 		if (path->slots[level] + 1 >=
1576 		    btrfs_header_nritems(path->nodes[level]))
1577 			continue;
1578 		if (level == 0)
1579 			btrfs_item_key_to_cpu(path->nodes[level], key,
1580 					      path->slots[level] + 1);
1581 		else
1582 			btrfs_node_key_to_cpu(path->nodes[level], key,
1583 					      path->slots[level] + 1);
1584 		return 0;
1585 	}
1586 	return 1;
1587 }
1588 
1589 /*
1590  * look for inline back ref. if back ref is found, *ref_ret is set
1591  * to the address of inline back ref, and 0 is returned.
1592  *
1593  * if back ref isn't found, *ref_ret is set to the address where it
1594  * should be inserted, and -ENOENT is returned.
1595  *
1596  * if insert is true and there are too many inline back refs, the path
1597  * points to the extent item, and -EAGAIN is returned.
1598  *
1599  * NOTE: inline back refs are ordered in the same way that back ref
1600  *	 items in the tree are ordered.
1601  */
1602 static noinline_for_stack
1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1604 				 struct btrfs_fs_info *fs_info,
1605 				 struct btrfs_path *path,
1606 				 struct btrfs_extent_inline_ref **ref_ret,
1607 				 u64 bytenr, u64 num_bytes,
1608 				 u64 parent, u64 root_objectid,
1609 				 u64 owner, u64 offset, int insert)
1610 {
1611 	struct btrfs_root *root = fs_info->extent_root;
1612 	struct btrfs_key key;
1613 	struct extent_buffer *leaf;
1614 	struct btrfs_extent_item *ei;
1615 	struct btrfs_extent_inline_ref *iref;
1616 	u64 flags;
1617 	u64 item_size;
1618 	unsigned long ptr;
1619 	unsigned long end;
1620 	int extra_size;
1621 	int type;
1622 	int want;
1623 	int ret;
1624 	int err = 0;
1625 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1626 	int needed;
1627 
1628 	key.objectid = bytenr;
1629 	key.type = BTRFS_EXTENT_ITEM_KEY;
1630 	key.offset = num_bytes;
1631 
1632 	want = extent_ref_type(parent, owner);
1633 	if (insert) {
1634 		extra_size = btrfs_extent_inline_ref_size(want);
1635 		path->keep_locks = 1;
1636 	} else
1637 		extra_size = -1;
1638 
1639 	/*
1640 	 * Owner is our parent level, so we can just add one to get the level
1641 	 * for the block we are interested in.
1642 	 */
1643 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644 		key.type = BTRFS_METADATA_ITEM_KEY;
1645 		key.offset = owner;
1646 	}
1647 
1648 again:
1649 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1650 	if (ret < 0) {
1651 		err = ret;
1652 		goto out;
1653 	}
1654 
1655 	/*
1656 	 * We may be a newly converted file system which still has the old fat
1657 	 * extent entries for metadata, so try and see if we have one of those.
1658 	 */
1659 	if (ret > 0 && skinny_metadata) {
1660 		skinny_metadata = false;
1661 		if (path->slots[0]) {
1662 			path->slots[0]--;
1663 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1664 					      path->slots[0]);
1665 			if (key.objectid == bytenr &&
1666 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 			    key.offset == num_bytes)
1668 				ret = 0;
1669 		}
1670 		if (ret) {
1671 			key.objectid = bytenr;
1672 			key.type = BTRFS_EXTENT_ITEM_KEY;
1673 			key.offset = num_bytes;
1674 			btrfs_release_path(path);
1675 			goto again;
1676 		}
1677 	}
1678 
1679 	if (ret && !insert) {
1680 		err = -ENOENT;
1681 		goto out;
1682 	} else if (WARN_ON(ret)) {
1683 		err = -EIO;
1684 		goto out;
1685 	}
1686 
1687 	leaf = path->nodes[0];
1688 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690 	if (item_size < sizeof(*ei)) {
1691 		if (!insert) {
1692 			err = -ENOENT;
1693 			goto out;
1694 		}
1695 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1696 					     extra_size);
1697 		if (ret < 0) {
1698 			err = ret;
1699 			goto out;
1700 		}
1701 		leaf = path->nodes[0];
1702 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 	}
1704 #endif
1705 	BUG_ON(item_size < sizeof(*ei));
1706 
1707 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 	flags = btrfs_extent_flags(leaf, ei);
1709 
1710 	ptr = (unsigned long)(ei + 1);
1711 	end = (unsigned long)ei + item_size;
1712 
1713 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1714 		ptr += sizeof(struct btrfs_tree_block_info);
1715 		BUG_ON(ptr > end);
1716 	}
1717 
1718 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719 		needed = BTRFS_REF_TYPE_DATA;
1720 	else
1721 		needed = BTRFS_REF_TYPE_BLOCK;
1722 
1723 	err = -ENOENT;
1724 	while (1) {
1725 		if (ptr >= end) {
1726 			WARN_ON(ptr > end);
1727 			break;
1728 		}
1729 		iref = (struct btrfs_extent_inline_ref *)ptr;
1730 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731 		if (type == BTRFS_REF_TYPE_INVALID) {
1732 			err = -EINVAL;
1733 			goto out;
1734 		}
1735 
1736 		if (want < type)
1737 			break;
1738 		if (want > type) {
1739 			ptr += btrfs_extent_inline_ref_size(type);
1740 			continue;
1741 		}
1742 
1743 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744 			struct btrfs_extent_data_ref *dref;
1745 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746 			if (match_extent_data_ref(leaf, dref, root_objectid,
1747 						  owner, offset)) {
1748 				err = 0;
1749 				break;
1750 			}
1751 			if (hash_extent_data_ref_item(leaf, dref) <
1752 			    hash_extent_data_ref(root_objectid, owner, offset))
1753 				break;
1754 		} else {
1755 			u64 ref_offset;
1756 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757 			if (parent > 0) {
1758 				if (parent == ref_offset) {
1759 					err = 0;
1760 					break;
1761 				}
1762 				if (ref_offset < parent)
1763 					break;
1764 			} else {
1765 				if (root_objectid == ref_offset) {
1766 					err = 0;
1767 					break;
1768 				}
1769 				if (ref_offset < root_objectid)
1770 					break;
1771 			}
1772 		}
1773 		ptr += btrfs_extent_inline_ref_size(type);
1774 	}
1775 	if (err == -ENOENT && insert) {
1776 		if (item_size + extra_size >=
1777 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778 			err = -EAGAIN;
1779 			goto out;
1780 		}
1781 		/*
1782 		 * To add new inline back ref, we have to make sure
1783 		 * there is no corresponding back ref item.
1784 		 * For simplicity, we just do not add new inline back
1785 		 * ref if there is any kind of item for this block
1786 		 */
1787 		if (find_next_key(path, 0, &key) == 0 &&
1788 		    key.objectid == bytenr &&
1789 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1790 			err = -EAGAIN;
1791 			goto out;
1792 		}
1793 	}
1794 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795 out:
1796 	if (insert) {
1797 		path->keep_locks = 0;
1798 		btrfs_unlock_up_safe(path, 1);
1799 	}
1800 	return err;
1801 }
1802 
1803 /*
1804  * helper to add new inline back ref
1805  */
1806 static noinline_for_stack
1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1808 				 struct btrfs_path *path,
1809 				 struct btrfs_extent_inline_ref *iref,
1810 				 u64 parent, u64 root_objectid,
1811 				 u64 owner, u64 offset, int refs_to_add,
1812 				 struct btrfs_delayed_extent_op *extent_op)
1813 {
1814 	struct extent_buffer *leaf;
1815 	struct btrfs_extent_item *ei;
1816 	unsigned long ptr;
1817 	unsigned long end;
1818 	unsigned long item_offset;
1819 	u64 refs;
1820 	int size;
1821 	int type;
1822 
1823 	leaf = path->nodes[0];
1824 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825 	item_offset = (unsigned long)iref - (unsigned long)ei;
1826 
1827 	type = extent_ref_type(parent, owner);
1828 	size = btrfs_extent_inline_ref_size(type);
1829 
1830 	btrfs_extend_item(fs_info, path, size);
1831 
1832 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833 	refs = btrfs_extent_refs(leaf, ei);
1834 	refs += refs_to_add;
1835 	btrfs_set_extent_refs(leaf, ei, refs);
1836 	if (extent_op)
1837 		__run_delayed_extent_op(extent_op, leaf, ei);
1838 
1839 	ptr = (unsigned long)ei + item_offset;
1840 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841 	if (ptr < end - size)
1842 		memmove_extent_buffer(leaf, ptr + size, ptr,
1843 				      end - size - ptr);
1844 
1845 	iref = (struct btrfs_extent_inline_ref *)ptr;
1846 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 		struct btrfs_extent_data_ref *dref;
1849 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855 		struct btrfs_shared_data_ref *sref;
1856 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861 	} else {
1862 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863 	}
1864 	btrfs_mark_buffer_dirty(leaf);
1865 }
1866 
1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1868 				 struct btrfs_fs_info *fs_info,
1869 				 struct btrfs_path *path,
1870 				 struct btrfs_extent_inline_ref **ref_ret,
1871 				 u64 bytenr, u64 num_bytes, u64 parent,
1872 				 u64 root_objectid, u64 owner, u64 offset)
1873 {
1874 	int ret;
1875 
1876 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1877 					   bytenr, num_bytes, parent,
1878 					   root_objectid, owner, offset, 0);
1879 	if (ret != -ENOENT)
1880 		return ret;
1881 
1882 	btrfs_release_path(path);
1883 	*ref_ret = NULL;
1884 
1885 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1886 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887 					    parent, root_objectid);
1888 	} else {
1889 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890 					     parent, root_objectid, owner,
1891 					     offset);
1892 	}
1893 	return ret;
1894 }
1895 
1896 /*
1897  * helper to update/remove inline back ref
1898  */
1899 static noinline_for_stack
1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1901 				  struct btrfs_path *path,
1902 				  struct btrfs_extent_inline_ref *iref,
1903 				  int refs_to_mod,
1904 				  struct btrfs_delayed_extent_op *extent_op,
1905 				  int *last_ref)
1906 {
1907 	struct extent_buffer *leaf;
1908 	struct btrfs_extent_item *ei;
1909 	struct btrfs_extent_data_ref *dref = NULL;
1910 	struct btrfs_shared_data_ref *sref = NULL;
1911 	unsigned long ptr;
1912 	unsigned long end;
1913 	u32 item_size;
1914 	int size;
1915 	int type;
1916 	u64 refs;
1917 
1918 	leaf = path->nodes[0];
1919 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920 	refs = btrfs_extent_refs(leaf, ei);
1921 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922 	refs += refs_to_mod;
1923 	btrfs_set_extent_refs(leaf, ei, refs);
1924 	if (extent_op)
1925 		__run_delayed_extent_op(extent_op, leaf, ei);
1926 
1927 	/*
1928 	 * If type is invalid, we should have bailed out after
1929 	 * lookup_inline_extent_backref().
1930 	 */
1931 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1933 
1934 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936 		refs = btrfs_extent_data_ref_count(leaf, dref);
1937 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939 		refs = btrfs_shared_data_ref_count(leaf, sref);
1940 	} else {
1941 		refs = 1;
1942 		BUG_ON(refs_to_mod != -1);
1943 	}
1944 
1945 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946 	refs += refs_to_mod;
1947 
1948 	if (refs > 0) {
1949 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951 		else
1952 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953 	} else {
1954 		*last_ref = 1;
1955 		size =  btrfs_extent_inline_ref_size(type);
1956 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957 		ptr = (unsigned long)iref;
1958 		end = (unsigned long)ei + item_size;
1959 		if (ptr + size < end)
1960 			memmove_extent_buffer(leaf, ptr, ptr + size,
1961 					      end - ptr - size);
1962 		item_size -= size;
1963 		btrfs_truncate_item(fs_info, path, item_size, 1);
1964 	}
1965 	btrfs_mark_buffer_dirty(leaf);
1966 }
1967 
1968 static noinline_for_stack
1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1970 				 struct btrfs_fs_info *fs_info,
1971 				 struct btrfs_path *path,
1972 				 u64 bytenr, u64 num_bytes, u64 parent,
1973 				 u64 root_objectid, u64 owner,
1974 				 u64 offset, int refs_to_add,
1975 				 struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 	struct btrfs_extent_inline_ref *iref;
1978 	int ret;
1979 
1980 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1981 					   bytenr, num_bytes, parent,
1982 					   root_objectid, owner, offset, 1);
1983 	if (ret == 0) {
1984 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1985 		update_inline_extent_backref(fs_info, path, iref,
1986 					     refs_to_add, extent_op, NULL);
1987 	} else if (ret == -ENOENT) {
1988 		setup_inline_extent_backref(fs_info, path, iref, parent,
1989 					    root_objectid, owner, offset,
1990 					    refs_to_add, extent_op);
1991 		ret = 0;
1992 	}
1993 	return ret;
1994 }
1995 
1996 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1997 				 struct btrfs_fs_info *fs_info,
1998 				 struct btrfs_path *path,
1999 				 u64 bytenr, u64 parent, u64 root_objectid,
2000 				 u64 owner, u64 offset, int refs_to_add)
2001 {
2002 	int ret;
2003 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004 		BUG_ON(refs_to_add != 1);
2005 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2006 					    parent, root_objectid);
2007 	} else {
2008 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2009 					     parent, root_objectid,
2010 					     owner, offset, refs_to_add);
2011 	}
2012 	return ret;
2013 }
2014 
2015 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2016 				 struct btrfs_fs_info *fs_info,
2017 				 struct btrfs_path *path,
2018 				 struct btrfs_extent_inline_ref *iref,
2019 				 int refs_to_drop, int is_data, int *last_ref)
2020 {
2021 	int ret = 0;
2022 
2023 	BUG_ON(!is_data && refs_to_drop != 1);
2024 	if (iref) {
2025 		update_inline_extent_backref(fs_info, path, iref,
2026 					     -refs_to_drop, NULL, last_ref);
2027 	} else if (is_data) {
2028 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2029 					     last_ref);
2030 	} else {
2031 		*last_ref = 1;
2032 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
2033 	}
2034 	return ret;
2035 }
2036 
2037 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039 			       u64 *discarded_bytes)
2040 {
2041 	int j, ret = 0;
2042 	u64 bytes_left, end;
2043 	u64 aligned_start = ALIGN(start, 1 << 9);
2044 
2045 	if (WARN_ON(start != aligned_start)) {
2046 		len -= aligned_start - start;
2047 		len = round_down(len, 1 << 9);
2048 		start = aligned_start;
2049 	}
2050 
2051 	*discarded_bytes = 0;
2052 
2053 	if (!len)
2054 		return 0;
2055 
2056 	end = start + len;
2057 	bytes_left = len;
2058 
2059 	/* Skip any superblocks on this device. */
2060 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061 		u64 sb_start = btrfs_sb_offset(j);
2062 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063 		u64 size = sb_start - start;
2064 
2065 		if (!in_range(sb_start, start, bytes_left) &&
2066 		    !in_range(sb_end, start, bytes_left) &&
2067 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068 			continue;
2069 
2070 		/*
2071 		 * Superblock spans beginning of range.  Adjust start and
2072 		 * try again.
2073 		 */
2074 		if (sb_start <= start) {
2075 			start += sb_end - start;
2076 			if (start > end) {
2077 				bytes_left = 0;
2078 				break;
2079 			}
2080 			bytes_left = end - start;
2081 			continue;
2082 		}
2083 
2084 		if (size) {
2085 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086 						   GFP_NOFS, 0);
2087 			if (!ret)
2088 				*discarded_bytes += size;
2089 			else if (ret != -EOPNOTSUPP)
2090 				return ret;
2091 		}
2092 
2093 		start = sb_end;
2094 		if (start > end) {
2095 			bytes_left = 0;
2096 			break;
2097 		}
2098 		bytes_left = end - start;
2099 	}
2100 
2101 	if (bytes_left) {
2102 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2103 					   GFP_NOFS, 0);
2104 		if (!ret)
2105 			*discarded_bytes += bytes_left;
2106 	}
2107 	return ret;
2108 }
2109 
2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2111 			 u64 num_bytes, u64 *actual_bytes)
2112 {
2113 	int ret;
2114 	u64 discarded_bytes = 0;
2115 	struct btrfs_bio *bbio = NULL;
2116 
2117 
2118 	/*
2119 	 * Avoid races with device replace and make sure our bbio has devices
2120 	 * associated to its stripes that don't go away while we are discarding.
2121 	 */
2122 	btrfs_bio_counter_inc_blocked(fs_info);
2123 	/* Tell the block device(s) that the sectors can be discarded */
2124 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125 			      &bbio, 0);
2126 	/* Error condition is -ENOMEM */
2127 	if (!ret) {
2128 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2129 		int i;
2130 
2131 
2132 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2133 			u64 bytes;
2134 			struct request_queue *req_q;
2135 
2136 			if (!stripe->dev->bdev) {
2137 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138 				continue;
2139 			}
2140 			req_q = bdev_get_queue(stripe->dev->bdev);
2141 			if (!blk_queue_discard(req_q))
2142 				continue;
2143 
2144 			ret = btrfs_issue_discard(stripe->dev->bdev,
2145 						  stripe->physical,
2146 						  stripe->length,
2147 						  &bytes);
2148 			if (!ret)
2149 				discarded_bytes += bytes;
2150 			else if (ret != -EOPNOTSUPP)
2151 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2152 
2153 			/*
2154 			 * Just in case we get back EOPNOTSUPP for some reason,
2155 			 * just ignore the return value so we don't screw up
2156 			 * people calling discard_extent.
2157 			 */
2158 			ret = 0;
2159 		}
2160 		btrfs_put_bbio(bbio);
2161 	}
2162 	btrfs_bio_counter_dec(fs_info);
2163 
2164 	if (actual_bytes)
2165 		*actual_bytes = discarded_bytes;
2166 
2167 
2168 	if (ret == -EOPNOTSUPP)
2169 		ret = 0;
2170 	return ret;
2171 }
2172 
2173 /* Can return -ENOMEM */
2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2175 			 struct btrfs_root *root,
2176 			 u64 bytenr, u64 num_bytes, u64 parent,
2177 			 u64 root_objectid, u64 owner, u64 offset)
2178 {
2179 	struct btrfs_fs_info *fs_info = root->fs_info;
2180 	int old_ref_mod, new_ref_mod;
2181 	int ret;
2182 
2183 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185 
2186 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2188 
2189 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2190 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2191 						 num_bytes, parent,
2192 						 root_objectid, (int)owner,
2193 						 BTRFS_ADD_DELAYED_REF, NULL,
2194 						 &old_ref_mod, &new_ref_mod);
2195 	} else {
2196 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2197 						 num_bytes, parent,
2198 						 root_objectid, owner, offset,
2199 						 0, BTRFS_ADD_DELAYED_REF,
2200 						 &old_ref_mod, &new_ref_mod);
2201 	}
2202 
2203 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2204 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2205 
2206 		add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2207 	}
2208 
2209 	return ret;
2210 }
2211 
2212 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2213 				  struct btrfs_fs_info *fs_info,
2214 				  struct btrfs_delayed_ref_node *node,
2215 				  u64 parent, u64 root_objectid,
2216 				  u64 owner, u64 offset, int refs_to_add,
2217 				  struct btrfs_delayed_extent_op *extent_op)
2218 {
2219 	struct btrfs_path *path;
2220 	struct extent_buffer *leaf;
2221 	struct btrfs_extent_item *item;
2222 	struct btrfs_key key;
2223 	u64 bytenr = node->bytenr;
2224 	u64 num_bytes = node->num_bytes;
2225 	u64 refs;
2226 	int ret;
2227 
2228 	path = btrfs_alloc_path();
2229 	if (!path)
2230 		return -ENOMEM;
2231 
2232 	path->reada = READA_FORWARD;
2233 	path->leave_spinning = 1;
2234 	/* this will setup the path even if it fails to insert the back ref */
2235 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2236 					   num_bytes, parent, root_objectid,
2237 					   owner, offset,
2238 					   refs_to_add, extent_op);
2239 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2240 		goto out;
2241 
2242 	/*
2243 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2244 	 * inline extent ref, so just update the reference count and add a
2245 	 * normal backref.
2246 	 */
2247 	leaf = path->nodes[0];
2248 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2249 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2250 	refs = btrfs_extent_refs(leaf, item);
2251 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2252 	if (extent_op)
2253 		__run_delayed_extent_op(extent_op, leaf, item);
2254 
2255 	btrfs_mark_buffer_dirty(leaf);
2256 	btrfs_release_path(path);
2257 
2258 	path->reada = READA_FORWARD;
2259 	path->leave_spinning = 1;
2260 	/* now insert the actual backref */
2261 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2262 				    root_objectid, owner, offset, refs_to_add);
2263 	if (ret)
2264 		btrfs_abort_transaction(trans, ret);
2265 out:
2266 	btrfs_free_path(path);
2267 	return ret;
2268 }
2269 
2270 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2271 				struct btrfs_fs_info *fs_info,
2272 				struct btrfs_delayed_ref_node *node,
2273 				struct btrfs_delayed_extent_op *extent_op,
2274 				int insert_reserved)
2275 {
2276 	int ret = 0;
2277 	struct btrfs_delayed_data_ref *ref;
2278 	struct btrfs_key ins;
2279 	u64 parent = 0;
2280 	u64 ref_root = 0;
2281 	u64 flags = 0;
2282 
2283 	ins.objectid = node->bytenr;
2284 	ins.offset = node->num_bytes;
2285 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2286 
2287 	ref = btrfs_delayed_node_to_data_ref(node);
2288 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2289 
2290 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2291 		parent = ref->parent;
2292 	ref_root = ref->root;
2293 
2294 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2295 		if (extent_op)
2296 			flags |= extent_op->flags_to_set;
2297 		ret = alloc_reserved_file_extent(trans, fs_info,
2298 						 parent, ref_root, flags,
2299 						 ref->objectid, ref->offset,
2300 						 &ins, node->ref_mod);
2301 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2302 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2303 					     ref_root, ref->objectid,
2304 					     ref->offset, node->ref_mod,
2305 					     extent_op);
2306 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2307 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2308 					  ref_root, ref->objectid,
2309 					  ref->offset, node->ref_mod,
2310 					  extent_op);
2311 	} else {
2312 		BUG();
2313 	}
2314 	return ret;
2315 }
2316 
2317 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2318 				    struct extent_buffer *leaf,
2319 				    struct btrfs_extent_item *ei)
2320 {
2321 	u64 flags = btrfs_extent_flags(leaf, ei);
2322 	if (extent_op->update_flags) {
2323 		flags |= extent_op->flags_to_set;
2324 		btrfs_set_extent_flags(leaf, ei, flags);
2325 	}
2326 
2327 	if (extent_op->update_key) {
2328 		struct btrfs_tree_block_info *bi;
2329 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2330 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2331 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2332 	}
2333 }
2334 
2335 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2336 				 struct btrfs_fs_info *fs_info,
2337 				 struct btrfs_delayed_ref_head *head,
2338 				 struct btrfs_delayed_extent_op *extent_op)
2339 {
2340 	struct btrfs_key key;
2341 	struct btrfs_path *path;
2342 	struct btrfs_extent_item *ei;
2343 	struct extent_buffer *leaf;
2344 	u32 item_size;
2345 	int ret;
2346 	int err = 0;
2347 	int metadata = !extent_op->is_data;
2348 
2349 	if (trans->aborted)
2350 		return 0;
2351 
2352 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2353 		metadata = 0;
2354 
2355 	path = btrfs_alloc_path();
2356 	if (!path)
2357 		return -ENOMEM;
2358 
2359 	key.objectid = head->bytenr;
2360 
2361 	if (metadata) {
2362 		key.type = BTRFS_METADATA_ITEM_KEY;
2363 		key.offset = extent_op->level;
2364 	} else {
2365 		key.type = BTRFS_EXTENT_ITEM_KEY;
2366 		key.offset = head->num_bytes;
2367 	}
2368 
2369 again:
2370 	path->reada = READA_FORWARD;
2371 	path->leave_spinning = 1;
2372 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2373 	if (ret < 0) {
2374 		err = ret;
2375 		goto out;
2376 	}
2377 	if (ret > 0) {
2378 		if (metadata) {
2379 			if (path->slots[0] > 0) {
2380 				path->slots[0]--;
2381 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2382 						      path->slots[0]);
2383 				if (key.objectid == head->bytenr &&
2384 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2385 				    key.offset == head->num_bytes)
2386 					ret = 0;
2387 			}
2388 			if (ret > 0) {
2389 				btrfs_release_path(path);
2390 				metadata = 0;
2391 
2392 				key.objectid = head->bytenr;
2393 				key.offset = head->num_bytes;
2394 				key.type = BTRFS_EXTENT_ITEM_KEY;
2395 				goto again;
2396 			}
2397 		} else {
2398 			err = -EIO;
2399 			goto out;
2400 		}
2401 	}
2402 
2403 	leaf = path->nodes[0];
2404 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2406 	if (item_size < sizeof(*ei)) {
2407 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2408 		if (ret < 0) {
2409 			err = ret;
2410 			goto out;
2411 		}
2412 		leaf = path->nodes[0];
2413 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2414 	}
2415 #endif
2416 	BUG_ON(item_size < sizeof(*ei));
2417 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418 	__run_delayed_extent_op(extent_op, leaf, ei);
2419 
2420 	btrfs_mark_buffer_dirty(leaf);
2421 out:
2422 	btrfs_free_path(path);
2423 	return err;
2424 }
2425 
2426 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2427 				struct btrfs_fs_info *fs_info,
2428 				struct btrfs_delayed_ref_node *node,
2429 				struct btrfs_delayed_extent_op *extent_op,
2430 				int insert_reserved)
2431 {
2432 	int ret = 0;
2433 	struct btrfs_delayed_tree_ref *ref;
2434 	struct btrfs_key ins;
2435 	u64 parent = 0;
2436 	u64 ref_root = 0;
2437 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2438 
2439 	ref = btrfs_delayed_node_to_tree_ref(node);
2440 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2441 
2442 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2443 		parent = ref->parent;
2444 	ref_root = ref->root;
2445 
2446 	ins.objectid = node->bytenr;
2447 	if (skinny_metadata) {
2448 		ins.offset = ref->level;
2449 		ins.type = BTRFS_METADATA_ITEM_KEY;
2450 	} else {
2451 		ins.offset = node->num_bytes;
2452 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2453 	}
2454 
2455 	if (node->ref_mod != 1) {
2456 		btrfs_err(fs_info,
2457 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2458 			  node->bytenr, node->ref_mod, node->action, ref_root,
2459 			  parent);
2460 		return -EIO;
2461 	}
2462 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2463 		BUG_ON(!extent_op || !extent_op->update_flags);
2464 		ret = alloc_reserved_tree_block(trans, fs_info,
2465 						parent, ref_root,
2466 						extent_op->flags_to_set,
2467 						&extent_op->key,
2468 						ref->level, &ins);
2469 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2470 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2471 					     parent, ref_root,
2472 					     ref->level, 0, 1,
2473 					     extent_op);
2474 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2475 		ret = __btrfs_free_extent(trans, fs_info, node,
2476 					  parent, ref_root,
2477 					  ref->level, 0, 1, extent_op);
2478 	} else {
2479 		BUG();
2480 	}
2481 	return ret;
2482 }
2483 
2484 /* helper function to actually process a single delayed ref entry */
2485 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2486 			       struct btrfs_fs_info *fs_info,
2487 			       struct btrfs_delayed_ref_node *node,
2488 			       struct btrfs_delayed_extent_op *extent_op,
2489 			       int insert_reserved)
2490 {
2491 	int ret = 0;
2492 
2493 	if (trans->aborted) {
2494 		if (insert_reserved)
2495 			btrfs_pin_extent(fs_info, node->bytenr,
2496 					 node->num_bytes, 1);
2497 		return 0;
2498 	}
2499 
2500 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2501 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2502 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2503 					   insert_reserved);
2504 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2505 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2506 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2507 					   insert_reserved);
2508 	else
2509 		BUG();
2510 	return ret;
2511 }
2512 
2513 static inline struct btrfs_delayed_ref_node *
2514 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2515 {
2516 	struct btrfs_delayed_ref_node *ref;
2517 
2518 	if (RB_EMPTY_ROOT(&head->ref_tree))
2519 		return NULL;
2520 
2521 	/*
2522 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2523 	 * This is to prevent a ref count from going down to zero, which deletes
2524 	 * the extent item from the extent tree, when there still are references
2525 	 * to add, which would fail because they would not find the extent item.
2526 	 */
2527 	if (!list_empty(&head->ref_add_list))
2528 		return list_first_entry(&head->ref_add_list,
2529 				struct btrfs_delayed_ref_node, add_list);
2530 
2531 	ref = rb_entry(rb_first(&head->ref_tree),
2532 		       struct btrfs_delayed_ref_node, ref_node);
2533 	ASSERT(list_empty(&ref->add_list));
2534 	return ref;
2535 }
2536 
2537 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2538 				      struct btrfs_delayed_ref_head *head)
2539 {
2540 	spin_lock(&delayed_refs->lock);
2541 	head->processing = 0;
2542 	delayed_refs->num_heads_ready++;
2543 	spin_unlock(&delayed_refs->lock);
2544 	btrfs_delayed_ref_unlock(head);
2545 }
2546 
2547 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2548 			     struct btrfs_fs_info *fs_info,
2549 			     struct btrfs_delayed_ref_head *head)
2550 {
2551 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2552 	int ret;
2553 
2554 	if (!extent_op)
2555 		return 0;
2556 	head->extent_op = NULL;
2557 	if (head->must_insert_reserved) {
2558 		btrfs_free_delayed_extent_op(extent_op);
2559 		return 0;
2560 	}
2561 	spin_unlock(&head->lock);
2562 	ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2563 	btrfs_free_delayed_extent_op(extent_op);
2564 	return ret ? ret : 1;
2565 }
2566 
2567 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2568 			    struct btrfs_fs_info *fs_info,
2569 			    struct btrfs_delayed_ref_head *head)
2570 {
2571 	struct btrfs_delayed_ref_root *delayed_refs;
2572 	int ret;
2573 
2574 	delayed_refs = &trans->transaction->delayed_refs;
2575 
2576 	ret = cleanup_extent_op(trans, fs_info, head);
2577 	if (ret < 0) {
2578 		unselect_delayed_ref_head(delayed_refs, head);
2579 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2580 		return ret;
2581 	} else if (ret) {
2582 		return ret;
2583 	}
2584 
2585 	/*
2586 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2587 	 * and then re-check to make sure nobody got added.
2588 	 */
2589 	spin_unlock(&head->lock);
2590 	spin_lock(&delayed_refs->lock);
2591 	spin_lock(&head->lock);
2592 	if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2593 		spin_unlock(&head->lock);
2594 		spin_unlock(&delayed_refs->lock);
2595 		return 1;
2596 	}
2597 	delayed_refs->num_heads--;
2598 	rb_erase(&head->href_node, &delayed_refs->href_root);
2599 	RB_CLEAR_NODE(&head->href_node);
2600 	spin_unlock(&head->lock);
2601 	spin_unlock(&delayed_refs->lock);
2602 	atomic_dec(&delayed_refs->num_entries);
2603 
2604 	trace_run_delayed_ref_head(fs_info, head, 0);
2605 
2606 	if (head->total_ref_mod < 0) {
2607 		struct btrfs_space_info *space_info;
2608 		u64 flags;
2609 
2610 		if (head->is_data)
2611 			flags = BTRFS_BLOCK_GROUP_DATA;
2612 		else if (head->is_system)
2613 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
2614 		else
2615 			flags = BTRFS_BLOCK_GROUP_METADATA;
2616 		space_info = __find_space_info(fs_info, flags);
2617 		ASSERT(space_info);
2618 		percpu_counter_add(&space_info->total_bytes_pinned,
2619 				   -head->num_bytes);
2620 
2621 		if (head->is_data) {
2622 			spin_lock(&delayed_refs->lock);
2623 			delayed_refs->pending_csums -= head->num_bytes;
2624 			spin_unlock(&delayed_refs->lock);
2625 		}
2626 	}
2627 
2628 	if (head->must_insert_reserved) {
2629 		btrfs_pin_extent(fs_info, head->bytenr,
2630 				 head->num_bytes, 1);
2631 		if (head->is_data) {
2632 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2633 					      head->num_bytes);
2634 		}
2635 	}
2636 
2637 	/* Also free its reserved qgroup space */
2638 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2639 				      head->qgroup_reserved);
2640 	btrfs_delayed_ref_unlock(head);
2641 	btrfs_put_delayed_ref_head(head);
2642 	return 0;
2643 }
2644 
2645 /*
2646  * Returns 0 on success or if called with an already aborted transaction.
2647  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2648  */
2649 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2650 					     unsigned long nr)
2651 {
2652 	struct btrfs_fs_info *fs_info = trans->fs_info;
2653 	struct btrfs_delayed_ref_root *delayed_refs;
2654 	struct btrfs_delayed_ref_node *ref;
2655 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2656 	struct btrfs_delayed_extent_op *extent_op;
2657 	ktime_t start = ktime_get();
2658 	int ret;
2659 	unsigned long count = 0;
2660 	unsigned long actual_count = 0;
2661 	int must_insert_reserved = 0;
2662 
2663 	delayed_refs = &trans->transaction->delayed_refs;
2664 	while (1) {
2665 		if (!locked_ref) {
2666 			if (count >= nr)
2667 				break;
2668 
2669 			spin_lock(&delayed_refs->lock);
2670 			locked_ref = btrfs_select_ref_head(trans);
2671 			if (!locked_ref) {
2672 				spin_unlock(&delayed_refs->lock);
2673 				break;
2674 			}
2675 
2676 			/* grab the lock that says we are going to process
2677 			 * all the refs for this head */
2678 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2679 			spin_unlock(&delayed_refs->lock);
2680 			/*
2681 			 * we may have dropped the spin lock to get the head
2682 			 * mutex lock, and that might have given someone else
2683 			 * time to free the head.  If that's true, it has been
2684 			 * removed from our list and we can move on.
2685 			 */
2686 			if (ret == -EAGAIN) {
2687 				locked_ref = NULL;
2688 				count++;
2689 				continue;
2690 			}
2691 		}
2692 
2693 		/*
2694 		 * We need to try and merge add/drops of the same ref since we
2695 		 * can run into issues with relocate dropping the implicit ref
2696 		 * and then it being added back again before the drop can
2697 		 * finish.  If we merged anything we need to re-loop so we can
2698 		 * get a good ref.
2699 		 * Or we can get node references of the same type that weren't
2700 		 * merged when created due to bumps in the tree mod seq, and
2701 		 * we need to merge them to prevent adding an inline extent
2702 		 * backref before dropping it (triggering a BUG_ON at
2703 		 * insert_inline_extent_backref()).
2704 		 */
2705 		spin_lock(&locked_ref->lock);
2706 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2707 
2708 		/*
2709 		 * locked_ref is the head node, so we have to go one
2710 		 * node back for any delayed ref updates
2711 		 */
2712 		ref = select_delayed_ref(locked_ref);
2713 
2714 		if (ref && ref->seq &&
2715 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2716 			spin_unlock(&locked_ref->lock);
2717 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2718 			locked_ref = NULL;
2719 			cond_resched();
2720 			count++;
2721 			continue;
2722 		}
2723 
2724 		/*
2725 		 * We're done processing refs in this ref_head, clean everything
2726 		 * up and move on to the next ref_head.
2727 		 */
2728 		if (!ref) {
2729 			ret = cleanup_ref_head(trans, fs_info, locked_ref);
2730 			if (ret > 0 ) {
2731 				/* We dropped our lock, we need to loop. */
2732 				ret = 0;
2733 				continue;
2734 			} else if (ret) {
2735 				return ret;
2736 			}
2737 			locked_ref = NULL;
2738 			count++;
2739 			continue;
2740 		}
2741 
2742 		actual_count++;
2743 		ref->in_tree = 0;
2744 		rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2745 		RB_CLEAR_NODE(&ref->ref_node);
2746 		if (!list_empty(&ref->add_list))
2747 			list_del(&ref->add_list);
2748 		/*
2749 		 * When we play the delayed ref, also correct the ref_mod on
2750 		 * head
2751 		 */
2752 		switch (ref->action) {
2753 		case BTRFS_ADD_DELAYED_REF:
2754 		case BTRFS_ADD_DELAYED_EXTENT:
2755 			locked_ref->ref_mod -= ref->ref_mod;
2756 			break;
2757 		case BTRFS_DROP_DELAYED_REF:
2758 			locked_ref->ref_mod += ref->ref_mod;
2759 			break;
2760 		default:
2761 			WARN_ON(1);
2762 		}
2763 		atomic_dec(&delayed_refs->num_entries);
2764 
2765 		/*
2766 		 * Record the must-insert_reserved flag before we drop the spin
2767 		 * lock.
2768 		 */
2769 		must_insert_reserved = locked_ref->must_insert_reserved;
2770 		locked_ref->must_insert_reserved = 0;
2771 
2772 		extent_op = locked_ref->extent_op;
2773 		locked_ref->extent_op = NULL;
2774 		spin_unlock(&locked_ref->lock);
2775 
2776 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2777 					  must_insert_reserved);
2778 
2779 		btrfs_free_delayed_extent_op(extent_op);
2780 		if (ret) {
2781 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2782 			btrfs_put_delayed_ref(ref);
2783 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2784 				    ret);
2785 			return ret;
2786 		}
2787 
2788 		btrfs_put_delayed_ref(ref);
2789 		count++;
2790 		cond_resched();
2791 	}
2792 
2793 	/*
2794 	 * We don't want to include ref heads since we can have empty ref heads
2795 	 * and those will drastically skew our runtime down since we just do
2796 	 * accounting, no actual extent tree updates.
2797 	 */
2798 	if (actual_count > 0) {
2799 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2800 		u64 avg;
2801 
2802 		/*
2803 		 * We weigh the current average higher than our current runtime
2804 		 * to avoid large swings in the average.
2805 		 */
2806 		spin_lock(&delayed_refs->lock);
2807 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2808 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2809 		spin_unlock(&delayed_refs->lock);
2810 	}
2811 	return 0;
2812 }
2813 
2814 #ifdef SCRAMBLE_DELAYED_REFS
2815 /*
2816  * Normally delayed refs get processed in ascending bytenr order. This
2817  * correlates in most cases to the order added. To expose dependencies on this
2818  * order, we start to process the tree in the middle instead of the beginning
2819  */
2820 static u64 find_middle(struct rb_root *root)
2821 {
2822 	struct rb_node *n = root->rb_node;
2823 	struct btrfs_delayed_ref_node *entry;
2824 	int alt = 1;
2825 	u64 middle;
2826 	u64 first = 0, last = 0;
2827 
2828 	n = rb_first(root);
2829 	if (n) {
2830 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2831 		first = entry->bytenr;
2832 	}
2833 	n = rb_last(root);
2834 	if (n) {
2835 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2836 		last = entry->bytenr;
2837 	}
2838 	n = root->rb_node;
2839 
2840 	while (n) {
2841 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842 		WARN_ON(!entry->in_tree);
2843 
2844 		middle = entry->bytenr;
2845 
2846 		if (alt)
2847 			n = n->rb_left;
2848 		else
2849 			n = n->rb_right;
2850 
2851 		alt = 1 - alt;
2852 	}
2853 	return middle;
2854 }
2855 #endif
2856 
2857 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2858 {
2859 	u64 num_bytes;
2860 
2861 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2862 			     sizeof(struct btrfs_extent_inline_ref));
2863 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2864 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2865 
2866 	/*
2867 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2868 	 * closer to what we're really going to want to use.
2869 	 */
2870 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2871 }
2872 
2873 /*
2874  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2875  * would require to store the csums for that many bytes.
2876  */
2877 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2878 {
2879 	u64 csum_size;
2880 	u64 num_csums_per_leaf;
2881 	u64 num_csums;
2882 
2883 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2884 	num_csums_per_leaf = div64_u64(csum_size,
2885 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2886 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2887 	num_csums += num_csums_per_leaf - 1;
2888 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2889 	return num_csums;
2890 }
2891 
2892 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2893 				       struct btrfs_fs_info *fs_info)
2894 {
2895 	struct btrfs_block_rsv *global_rsv;
2896 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2897 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2898 	unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2899 	u64 num_bytes, num_dirty_bgs_bytes;
2900 	int ret = 0;
2901 
2902 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2903 	num_heads = heads_to_leaves(fs_info, num_heads);
2904 	if (num_heads > 1)
2905 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2906 	num_bytes <<= 1;
2907 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2908 							fs_info->nodesize;
2909 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2910 							     num_dirty_bgs);
2911 	global_rsv = &fs_info->global_block_rsv;
2912 
2913 	/*
2914 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2915 	 * wiggle room since running delayed refs can create more delayed refs.
2916 	 */
2917 	if (global_rsv->space_info->full) {
2918 		num_dirty_bgs_bytes <<= 1;
2919 		num_bytes <<= 1;
2920 	}
2921 
2922 	spin_lock(&global_rsv->lock);
2923 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2924 		ret = 1;
2925 	spin_unlock(&global_rsv->lock);
2926 	return ret;
2927 }
2928 
2929 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2930 				       struct btrfs_fs_info *fs_info)
2931 {
2932 	u64 num_entries =
2933 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2934 	u64 avg_runtime;
2935 	u64 val;
2936 
2937 	smp_mb();
2938 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2939 	val = num_entries * avg_runtime;
2940 	if (val >= NSEC_PER_SEC)
2941 		return 1;
2942 	if (val >= NSEC_PER_SEC / 2)
2943 		return 2;
2944 
2945 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2946 }
2947 
2948 struct async_delayed_refs {
2949 	struct btrfs_root *root;
2950 	u64 transid;
2951 	int count;
2952 	int error;
2953 	int sync;
2954 	struct completion wait;
2955 	struct btrfs_work work;
2956 };
2957 
2958 static inline struct async_delayed_refs *
2959 to_async_delayed_refs(struct btrfs_work *work)
2960 {
2961 	return container_of(work, struct async_delayed_refs, work);
2962 }
2963 
2964 static void delayed_ref_async_start(struct btrfs_work *work)
2965 {
2966 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2967 	struct btrfs_trans_handle *trans;
2968 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2969 	int ret;
2970 
2971 	/* if the commit is already started, we don't need to wait here */
2972 	if (btrfs_transaction_blocked(fs_info))
2973 		goto done;
2974 
2975 	trans = btrfs_join_transaction(async->root);
2976 	if (IS_ERR(trans)) {
2977 		async->error = PTR_ERR(trans);
2978 		goto done;
2979 	}
2980 
2981 	/*
2982 	 * trans->sync means that when we call end_transaction, we won't
2983 	 * wait on delayed refs
2984 	 */
2985 	trans->sync = true;
2986 
2987 	/* Don't bother flushing if we got into a different transaction */
2988 	if (trans->transid > async->transid)
2989 		goto end;
2990 
2991 	ret = btrfs_run_delayed_refs(trans, async->count);
2992 	if (ret)
2993 		async->error = ret;
2994 end:
2995 	ret = btrfs_end_transaction(trans);
2996 	if (ret && !async->error)
2997 		async->error = ret;
2998 done:
2999 	if (async->sync)
3000 		complete(&async->wait);
3001 	else
3002 		kfree(async);
3003 }
3004 
3005 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3006 				 unsigned long count, u64 transid, int wait)
3007 {
3008 	struct async_delayed_refs *async;
3009 	int ret;
3010 
3011 	async = kmalloc(sizeof(*async), GFP_NOFS);
3012 	if (!async)
3013 		return -ENOMEM;
3014 
3015 	async->root = fs_info->tree_root;
3016 	async->count = count;
3017 	async->error = 0;
3018 	async->transid = transid;
3019 	if (wait)
3020 		async->sync = 1;
3021 	else
3022 		async->sync = 0;
3023 	init_completion(&async->wait);
3024 
3025 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3026 			delayed_ref_async_start, NULL, NULL);
3027 
3028 	btrfs_queue_work(fs_info->extent_workers, &async->work);
3029 
3030 	if (wait) {
3031 		wait_for_completion(&async->wait);
3032 		ret = async->error;
3033 		kfree(async);
3034 		return ret;
3035 	}
3036 	return 0;
3037 }
3038 
3039 /*
3040  * this starts processing the delayed reference count updates and
3041  * extent insertions we have queued up so far.  count can be
3042  * 0, which means to process everything in the tree at the start
3043  * of the run (but not newly added entries), or it can be some target
3044  * number you'd like to process.
3045  *
3046  * Returns 0 on success or if called with an aborted transaction
3047  * Returns <0 on error and aborts the transaction
3048  */
3049 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3050 			   unsigned long count)
3051 {
3052 	struct btrfs_fs_info *fs_info = trans->fs_info;
3053 	struct rb_node *node;
3054 	struct btrfs_delayed_ref_root *delayed_refs;
3055 	struct btrfs_delayed_ref_head *head;
3056 	int ret;
3057 	int run_all = count == (unsigned long)-1;
3058 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3059 
3060 	/* We'll clean this up in btrfs_cleanup_transaction */
3061 	if (trans->aborted)
3062 		return 0;
3063 
3064 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3065 		return 0;
3066 
3067 	delayed_refs = &trans->transaction->delayed_refs;
3068 	if (count == 0)
3069 		count = atomic_read(&delayed_refs->num_entries) * 2;
3070 
3071 again:
3072 #ifdef SCRAMBLE_DELAYED_REFS
3073 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3074 #endif
3075 	trans->can_flush_pending_bgs = false;
3076 	ret = __btrfs_run_delayed_refs(trans, count);
3077 	if (ret < 0) {
3078 		btrfs_abort_transaction(trans, ret);
3079 		return ret;
3080 	}
3081 
3082 	if (run_all) {
3083 		if (!list_empty(&trans->new_bgs))
3084 			btrfs_create_pending_block_groups(trans);
3085 
3086 		spin_lock(&delayed_refs->lock);
3087 		node = rb_first(&delayed_refs->href_root);
3088 		if (!node) {
3089 			spin_unlock(&delayed_refs->lock);
3090 			goto out;
3091 		}
3092 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3093 				href_node);
3094 		refcount_inc(&head->refs);
3095 		spin_unlock(&delayed_refs->lock);
3096 
3097 		/* Mutex was contended, block until it's released and retry. */
3098 		mutex_lock(&head->mutex);
3099 		mutex_unlock(&head->mutex);
3100 
3101 		btrfs_put_delayed_ref_head(head);
3102 		cond_resched();
3103 		goto again;
3104 	}
3105 out:
3106 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3107 	return 0;
3108 }
3109 
3110 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3111 				struct btrfs_fs_info *fs_info,
3112 				u64 bytenr, u64 num_bytes, u64 flags,
3113 				int level, int is_data)
3114 {
3115 	struct btrfs_delayed_extent_op *extent_op;
3116 	int ret;
3117 
3118 	extent_op = btrfs_alloc_delayed_extent_op();
3119 	if (!extent_op)
3120 		return -ENOMEM;
3121 
3122 	extent_op->flags_to_set = flags;
3123 	extent_op->update_flags = true;
3124 	extent_op->update_key = false;
3125 	extent_op->is_data = is_data ? true : false;
3126 	extent_op->level = level;
3127 
3128 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3129 					  num_bytes, extent_op);
3130 	if (ret)
3131 		btrfs_free_delayed_extent_op(extent_op);
3132 	return ret;
3133 }
3134 
3135 static noinline int check_delayed_ref(struct btrfs_root *root,
3136 				      struct btrfs_path *path,
3137 				      u64 objectid, u64 offset, u64 bytenr)
3138 {
3139 	struct btrfs_delayed_ref_head *head;
3140 	struct btrfs_delayed_ref_node *ref;
3141 	struct btrfs_delayed_data_ref *data_ref;
3142 	struct btrfs_delayed_ref_root *delayed_refs;
3143 	struct btrfs_transaction *cur_trans;
3144 	struct rb_node *node;
3145 	int ret = 0;
3146 
3147 	spin_lock(&root->fs_info->trans_lock);
3148 	cur_trans = root->fs_info->running_transaction;
3149 	if (cur_trans)
3150 		refcount_inc(&cur_trans->use_count);
3151 	spin_unlock(&root->fs_info->trans_lock);
3152 	if (!cur_trans)
3153 		return 0;
3154 
3155 	delayed_refs = &cur_trans->delayed_refs;
3156 	spin_lock(&delayed_refs->lock);
3157 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3158 	if (!head) {
3159 		spin_unlock(&delayed_refs->lock);
3160 		btrfs_put_transaction(cur_trans);
3161 		return 0;
3162 	}
3163 
3164 	if (!mutex_trylock(&head->mutex)) {
3165 		refcount_inc(&head->refs);
3166 		spin_unlock(&delayed_refs->lock);
3167 
3168 		btrfs_release_path(path);
3169 
3170 		/*
3171 		 * Mutex was contended, block until it's released and let
3172 		 * caller try again
3173 		 */
3174 		mutex_lock(&head->mutex);
3175 		mutex_unlock(&head->mutex);
3176 		btrfs_put_delayed_ref_head(head);
3177 		btrfs_put_transaction(cur_trans);
3178 		return -EAGAIN;
3179 	}
3180 	spin_unlock(&delayed_refs->lock);
3181 
3182 	spin_lock(&head->lock);
3183 	/*
3184 	 * XXX: We should replace this with a proper search function in the
3185 	 * future.
3186 	 */
3187 	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3188 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3189 		/* If it's a shared ref we know a cross reference exists */
3190 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3191 			ret = 1;
3192 			break;
3193 		}
3194 
3195 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3196 
3197 		/*
3198 		 * If our ref doesn't match the one we're currently looking at
3199 		 * then we have a cross reference.
3200 		 */
3201 		if (data_ref->root != root->root_key.objectid ||
3202 		    data_ref->objectid != objectid ||
3203 		    data_ref->offset != offset) {
3204 			ret = 1;
3205 			break;
3206 		}
3207 	}
3208 	spin_unlock(&head->lock);
3209 	mutex_unlock(&head->mutex);
3210 	btrfs_put_transaction(cur_trans);
3211 	return ret;
3212 }
3213 
3214 static noinline int check_committed_ref(struct btrfs_root *root,
3215 					struct btrfs_path *path,
3216 					u64 objectid, u64 offset, u64 bytenr)
3217 {
3218 	struct btrfs_fs_info *fs_info = root->fs_info;
3219 	struct btrfs_root *extent_root = fs_info->extent_root;
3220 	struct extent_buffer *leaf;
3221 	struct btrfs_extent_data_ref *ref;
3222 	struct btrfs_extent_inline_ref *iref;
3223 	struct btrfs_extent_item *ei;
3224 	struct btrfs_key key;
3225 	u32 item_size;
3226 	int type;
3227 	int ret;
3228 
3229 	key.objectid = bytenr;
3230 	key.offset = (u64)-1;
3231 	key.type = BTRFS_EXTENT_ITEM_KEY;
3232 
3233 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3234 	if (ret < 0)
3235 		goto out;
3236 	BUG_ON(ret == 0); /* Corruption */
3237 
3238 	ret = -ENOENT;
3239 	if (path->slots[0] == 0)
3240 		goto out;
3241 
3242 	path->slots[0]--;
3243 	leaf = path->nodes[0];
3244 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3245 
3246 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3247 		goto out;
3248 
3249 	ret = 1;
3250 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3251 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3252 	if (item_size < sizeof(*ei)) {
3253 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3254 		goto out;
3255 	}
3256 #endif
3257 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3258 
3259 	if (item_size != sizeof(*ei) +
3260 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3261 		goto out;
3262 
3263 	if (btrfs_extent_generation(leaf, ei) <=
3264 	    btrfs_root_last_snapshot(&root->root_item))
3265 		goto out;
3266 
3267 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3268 
3269 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3270 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3271 		goto out;
3272 
3273 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3274 	if (btrfs_extent_refs(leaf, ei) !=
3275 	    btrfs_extent_data_ref_count(leaf, ref) ||
3276 	    btrfs_extent_data_ref_root(leaf, ref) !=
3277 	    root->root_key.objectid ||
3278 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3279 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3280 		goto out;
3281 
3282 	ret = 0;
3283 out:
3284 	return ret;
3285 }
3286 
3287 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3288 			  u64 bytenr)
3289 {
3290 	struct btrfs_path *path;
3291 	int ret;
3292 	int ret2;
3293 
3294 	path = btrfs_alloc_path();
3295 	if (!path)
3296 		return -ENOENT;
3297 
3298 	do {
3299 		ret = check_committed_ref(root, path, objectid,
3300 					  offset, bytenr);
3301 		if (ret && ret != -ENOENT)
3302 			goto out;
3303 
3304 		ret2 = check_delayed_ref(root, path, objectid,
3305 					 offset, bytenr);
3306 	} while (ret2 == -EAGAIN);
3307 
3308 	if (ret2 && ret2 != -ENOENT) {
3309 		ret = ret2;
3310 		goto out;
3311 	}
3312 
3313 	if (ret != -ENOENT || ret2 != -ENOENT)
3314 		ret = 0;
3315 out:
3316 	btrfs_free_path(path);
3317 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3318 		WARN_ON(ret > 0);
3319 	return ret;
3320 }
3321 
3322 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3323 			   struct btrfs_root *root,
3324 			   struct extent_buffer *buf,
3325 			   int full_backref, int inc)
3326 {
3327 	struct btrfs_fs_info *fs_info = root->fs_info;
3328 	u64 bytenr;
3329 	u64 num_bytes;
3330 	u64 parent;
3331 	u64 ref_root;
3332 	u32 nritems;
3333 	struct btrfs_key key;
3334 	struct btrfs_file_extent_item *fi;
3335 	int i;
3336 	int level;
3337 	int ret = 0;
3338 	int (*process_func)(struct btrfs_trans_handle *,
3339 			    struct btrfs_root *,
3340 			    u64, u64, u64, u64, u64, u64);
3341 
3342 
3343 	if (btrfs_is_testing(fs_info))
3344 		return 0;
3345 
3346 	ref_root = btrfs_header_owner(buf);
3347 	nritems = btrfs_header_nritems(buf);
3348 	level = btrfs_header_level(buf);
3349 
3350 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3351 		return 0;
3352 
3353 	if (inc)
3354 		process_func = btrfs_inc_extent_ref;
3355 	else
3356 		process_func = btrfs_free_extent;
3357 
3358 	if (full_backref)
3359 		parent = buf->start;
3360 	else
3361 		parent = 0;
3362 
3363 	for (i = 0; i < nritems; i++) {
3364 		if (level == 0) {
3365 			btrfs_item_key_to_cpu(buf, &key, i);
3366 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3367 				continue;
3368 			fi = btrfs_item_ptr(buf, i,
3369 					    struct btrfs_file_extent_item);
3370 			if (btrfs_file_extent_type(buf, fi) ==
3371 			    BTRFS_FILE_EXTENT_INLINE)
3372 				continue;
3373 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3374 			if (bytenr == 0)
3375 				continue;
3376 
3377 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3378 			key.offset -= btrfs_file_extent_offset(buf, fi);
3379 			ret = process_func(trans, root, bytenr, num_bytes,
3380 					   parent, ref_root, key.objectid,
3381 					   key.offset);
3382 			if (ret)
3383 				goto fail;
3384 		} else {
3385 			bytenr = btrfs_node_blockptr(buf, i);
3386 			num_bytes = fs_info->nodesize;
3387 			ret = process_func(trans, root, bytenr, num_bytes,
3388 					   parent, ref_root, level - 1, 0);
3389 			if (ret)
3390 				goto fail;
3391 		}
3392 	}
3393 	return 0;
3394 fail:
3395 	return ret;
3396 }
3397 
3398 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3399 		  struct extent_buffer *buf, int full_backref)
3400 {
3401 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3402 }
3403 
3404 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3405 		  struct extent_buffer *buf, int full_backref)
3406 {
3407 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3408 }
3409 
3410 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3411 				 struct btrfs_fs_info *fs_info,
3412 				 struct btrfs_path *path,
3413 				 struct btrfs_block_group_cache *cache)
3414 {
3415 	int ret;
3416 	struct btrfs_root *extent_root = fs_info->extent_root;
3417 	unsigned long bi;
3418 	struct extent_buffer *leaf;
3419 
3420 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3421 	if (ret) {
3422 		if (ret > 0)
3423 			ret = -ENOENT;
3424 		goto fail;
3425 	}
3426 
3427 	leaf = path->nodes[0];
3428 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3429 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3430 	btrfs_mark_buffer_dirty(leaf);
3431 fail:
3432 	btrfs_release_path(path);
3433 	return ret;
3434 
3435 }
3436 
3437 static struct btrfs_block_group_cache *
3438 next_block_group(struct btrfs_fs_info *fs_info,
3439 		 struct btrfs_block_group_cache *cache)
3440 {
3441 	struct rb_node *node;
3442 
3443 	spin_lock(&fs_info->block_group_cache_lock);
3444 
3445 	/* If our block group was removed, we need a full search. */
3446 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3447 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3448 
3449 		spin_unlock(&fs_info->block_group_cache_lock);
3450 		btrfs_put_block_group(cache);
3451 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3452 	}
3453 	node = rb_next(&cache->cache_node);
3454 	btrfs_put_block_group(cache);
3455 	if (node) {
3456 		cache = rb_entry(node, struct btrfs_block_group_cache,
3457 				 cache_node);
3458 		btrfs_get_block_group(cache);
3459 	} else
3460 		cache = NULL;
3461 	spin_unlock(&fs_info->block_group_cache_lock);
3462 	return cache;
3463 }
3464 
3465 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3466 			    struct btrfs_trans_handle *trans,
3467 			    struct btrfs_path *path)
3468 {
3469 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3470 	struct btrfs_root *root = fs_info->tree_root;
3471 	struct inode *inode = NULL;
3472 	struct extent_changeset *data_reserved = NULL;
3473 	u64 alloc_hint = 0;
3474 	int dcs = BTRFS_DC_ERROR;
3475 	u64 num_pages = 0;
3476 	int retries = 0;
3477 	int ret = 0;
3478 
3479 	/*
3480 	 * If this block group is smaller than 100 megs don't bother caching the
3481 	 * block group.
3482 	 */
3483 	if (block_group->key.offset < (100 * SZ_1M)) {
3484 		spin_lock(&block_group->lock);
3485 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3486 		spin_unlock(&block_group->lock);
3487 		return 0;
3488 	}
3489 
3490 	if (trans->aborted)
3491 		return 0;
3492 again:
3493 	inode = lookup_free_space_inode(fs_info, block_group, path);
3494 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3495 		ret = PTR_ERR(inode);
3496 		btrfs_release_path(path);
3497 		goto out;
3498 	}
3499 
3500 	if (IS_ERR(inode)) {
3501 		BUG_ON(retries);
3502 		retries++;
3503 
3504 		if (block_group->ro)
3505 			goto out_free;
3506 
3507 		ret = create_free_space_inode(fs_info, trans, block_group,
3508 					      path);
3509 		if (ret)
3510 			goto out_free;
3511 		goto again;
3512 	}
3513 
3514 	/*
3515 	 * We want to set the generation to 0, that way if anything goes wrong
3516 	 * from here on out we know not to trust this cache when we load up next
3517 	 * time.
3518 	 */
3519 	BTRFS_I(inode)->generation = 0;
3520 	ret = btrfs_update_inode(trans, root, inode);
3521 	if (ret) {
3522 		/*
3523 		 * So theoretically we could recover from this, simply set the
3524 		 * super cache generation to 0 so we know to invalidate the
3525 		 * cache, but then we'd have to keep track of the block groups
3526 		 * that fail this way so we know we _have_ to reset this cache
3527 		 * before the next commit or risk reading stale cache.  So to
3528 		 * limit our exposure to horrible edge cases lets just abort the
3529 		 * transaction, this only happens in really bad situations
3530 		 * anyway.
3531 		 */
3532 		btrfs_abort_transaction(trans, ret);
3533 		goto out_put;
3534 	}
3535 	WARN_ON(ret);
3536 
3537 	/* We've already setup this transaction, go ahead and exit */
3538 	if (block_group->cache_generation == trans->transid &&
3539 	    i_size_read(inode)) {
3540 		dcs = BTRFS_DC_SETUP;
3541 		goto out_put;
3542 	}
3543 
3544 	if (i_size_read(inode) > 0) {
3545 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3546 					&fs_info->global_block_rsv);
3547 		if (ret)
3548 			goto out_put;
3549 
3550 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3551 		if (ret)
3552 			goto out_put;
3553 	}
3554 
3555 	spin_lock(&block_group->lock);
3556 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3557 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3558 		/*
3559 		 * don't bother trying to write stuff out _if_
3560 		 * a) we're not cached,
3561 		 * b) we're with nospace_cache mount option,
3562 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3563 		 */
3564 		dcs = BTRFS_DC_WRITTEN;
3565 		spin_unlock(&block_group->lock);
3566 		goto out_put;
3567 	}
3568 	spin_unlock(&block_group->lock);
3569 
3570 	/*
3571 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3572 	 * skip doing the setup, we've already cleared the cache so we're safe.
3573 	 */
3574 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3575 		ret = -ENOSPC;
3576 		goto out_put;
3577 	}
3578 
3579 	/*
3580 	 * Try to preallocate enough space based on how big the block group is.
3581 	 * Keep in mind this has to include any pinned space which could end up
3582 	 * taking up quite a bit since it's not folded into the other space
3583 	 * cache.
3584 	 */
3585 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3586 	if (!num_pages)
3587 		num_pages = 1;
3588 
3589 	num_pages *= 16;
3590 	num_pages *= PAGE_SIZE;
3591 
3592 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3593 	if (ret)
3594 		goto out_put;
3595 
3596 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3597 					      num_pages, num_pages,
3598 					      &alloc_hint);
3599 	/*
3600 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3601 	 * of metadata or split extents when writing the cache out, which means
3602 	 * we can enospc if we are heavily fragmented in addition to just normal
3603 	 * out of space conditions.  So if we hit this just skip setting up any
3604 	 * other block groups for this transaction, maybe we'll unpin enough
3605 	 * space the next time around.
3606 	 */
3607 	if (!ret)
3608 		dcs = BTRFS_DC_SETUP;
3609 	else if (ret == -ENOSPC)
3610 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3611 
3612 out_put:
3613 	iput(inode);
3614 out_free:
3615 	btrfs_release_path(path);
3616 out:
3617 	spin_lock(&block_group->lock);
3618 	if (!ret && dcs == BTRFS_DC_SETUP)
3619 		block_group->cache_generation = trans->transid;
3620 	block_group->disk_cache_state = dcs;
3621 	spin_unlock(&block_group->lock);
3622 
3623 	extent_changeset_free(data_reserved);
3624 	return ret;
3625 }
3626 
3627 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3628 			    struct btrfs_fs_info *fs_info)
3629 {
3630 	struct btrfs_block_group_cache *cache, *tmp;
3631 	struct btrfs_transaction *cur_trans = trans->transaction;
3632 	struct btrfs_path *path;
3633 
3634 	if (list_empty(&cur_trans->dirty_bgs) ||
3635 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3636 		return 0;
3637 
3638 	path = btrfs_alloc_path();
3639 	if (!path)
3640 		return -ENOMEM;
3641 
3642 	/* Could add new block groups, use _safe just in case */
3643 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3644 				 dirty_list) {
3645 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3646 			cache_save_setup(cache, trans, path);
3647 	}
3648 
3649 	btrfs_free_path(path);
3650 	return 0;
3651 }
3652 
3653 /*
3654  * transaction commit does final block group cache writeback during a
3655  * critical section where nothing is allowed to change the FS.  This is
3656  * required in order for the cache to actually match the block group,
3657  * but can introduce a lot of latency into the commit.
3658  *
3659  * So, btrfs_start_dirty_block_groups is here to kick off block group
3660  * cache IO.  There's a chance we'll have to redo some of it if the
3661  * block group changes again during the commit, but it greatly reduces
3662  * the commit latency by getting rid of the easy block groups while
3663  * we're still allowing others to join the commit.
3664  */
3665 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3666 {
3667 	struct btrfs_fs_info *fs_info = trans->fs_info;
3668 	struct btrfs_block_group_cache *cache;
3669 	struct btrfs_transaction *cur_trans = trans->transaction;
3670 	int ret = 0;
3671 	int should_put;
3672 	struct btrfs_path *path = NULL;
3673 	LIST_HEAD(dirty);
3674 	struct list_head *io = &cur_trans->io_bgs;
3675 	int num_started = 0;
3676 	int loops = 0;
3677 
3678 	spin_lock(&cur_trans->dirty_bgs_lock);
3679 	if (list_empty(&cur_trans->dirty_bgs)) {
3680 		spin_unlock(&cur_trans->dirty_bgs_lock);
3681 		return 0;
3682 	}
3683 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3684 	spin_unlock(&cur_trans->dirty_bgs_lock);
3685 
3686 again:
3687 	/*
3688 	 * make sure all the block groups on our dirty list actually
3689 	 * exist
3690 	 */
3691 	btrfs_create_pending_block_groups(trans);
3692 
3693 	if (!path) {
3694 		path = btrfs_alloc_path();
3695 		if (!path)
3696 			return -ENOMEM;
3697 	}
3698 
3699 	/*
3700 	 * cache_write_mutex is here only to save us from balance or automatic
3701 	 * removal of empty block groups deleting this block group while we are
3702 	 * writing out the cache
3703 	 */
3704 	mutex_lock(&trans->transaction->cache_write_mutex);
3705 	while (!list_empty(&dirty)) {
3706 		cache = list_first_entry(&dirty,
3707 					 struct btrfs_block_group_cache,
3708 					 dirty_list);
3709 		/*
3710 		 * this can happen if something re-dirties a block
3711 		 * group that is already under IO.  Just wait for it to
3712 		 * finish and then do it all again
3713 		 */
3714 		if (!list_empty(&cache->io_list)) {
3715 			list_del_init(&cache->io_list);
3716 			btrfs_wait_cache_io(trans, cache, path);
3717 			btrfs_put_block_group(cache);
3718 		}
3719 
3720 
3721 		/*
3722 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3723 		 * if it should update the cache_state.  Don't delete
3724 		 * until after we wait.
3725 		 *
3726 		 * Since we're not running in the commit critical section
3727 		 * we need the dirty_bgs_lock to protect from update_block_group
3728 		 */
3729 		spin_lock(&cur_trans->dirty_bgs_lock);
3730 		list_del_init(&cache->dirty_list);
3731 		spin_unlock(&cur_trans->dirty_bgs_lock);
3732 
3733 		should_put = 1;
3734 
3735 		cache_save_setup(cache, trans, path);
3736 
3737 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3738 			cache->io_ctl.inode = NULL;
3739 			ret = btrfs_write_out_cache(fs_info, trans,
3740 						    cache, path);
3741 			if (ret == 0 && cache->io_ctl.inode) {
3742 				num_started++;
3743 				should_put = 0;
3744 
3745 				/*
3746 				 * The cache_write_mutex is protecting the
3747 				 * io_list, also refer to the definition of
3748 				 * btrfs_transaction::io_bgs for more details
3749 				 */
3750 				list_add_tail(&cache->io_list, io);
3751 			} else {
3752 				/*
3753 				 * if we failed to write the cache, the
3754 				 * generation will be bad and life goes on
3755 				 */
3756 				ret = 0;
3757 			}
3758 		}
3759 		if (!ret) {
3760 			ret = write_one_cache_group(trans, fs_info,
3761 						    path, cache);
3762 			/*
3763 			 * Our block group might still be attached to the list
3764 			 * of new block groups in the transaction handle of some
3765 			 * other task (struct btrfs_trans_handle->new_bgs). This
3766 			 * means its block group item isn't yet in the extent
3767 			 * tree. If this happens ignore the error, as we will
3768 			 * try again later in the critical section of the
3769 			 * transaction commit.
3770 			 */
3771 			if (ret == -ENOENT) {
3772 				ret = 0;
3773 				spin_lock(&cur_trans->dirty_bgs_lock);
3774 				if (list_empty(&cache->dirty_list)) {
3775 					list_add_tail(&cache->dirty_list,
3776 						      &cur_trans->dirty_bgs);
3777 					btrfs_get_block_group(cache);
3778 				}
3779 				spin_unlock(&cur_trans->dirty_bgs_lock);
3780 			} else if (ret) {
3781 				btrfs_abort_transaction(trans, ret);
3782 			}
3783 		}
3784 
3785 		/* if its not on the io list, we need to put the block group */
3786 		if (should_put)
3787 			btrfs_put_block_group(cache);
3788 
3789 		if (ret)
3790 			break;
3791 
3792 		/*
3793 		 * Avoid blocking other tasks for too long. It might even save
3794 		 * us from writing caches for block groups that are going to be
3795 		 * removed.
3796 		 */
3797 		mutex_unlock(&trans->transaction->cache_write_mutex);
3798 		mutex_lock(&trans->transaction->cache_write_mutex);
3799 	}
3800 	mutex_unlock(&trans->transaction->cache_write_mutex);
3801 
3802 	/*
3803 	 * go through delayed refs for all the stuff we've just kicked off
3804 	 * and then loop back (just once)
3805 	 */
3806 	ret = btrfs_run_delayed_refs(trans, 0);
3807 	if (!ret && loops == 0) {
3808 		loops++;
3809 		spin_lock(&cur_trans->dirty_bgs_lock);
3810 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3811 		/*
3812 		 * dirty_bgs_lock protects us from concurrent block group
3813 		 * deletes too (not just cache_write_mutex).
3814 		 */
3815 		if (!list_empty(&dirty)) {
3816 			spin_unlock(&cur_trans->dirty_bgs_lock);
3817 			goto again;
3818 		}
3819 		spin_unlock(&cur_trans->dirty_bgs_lock);
3820 	} else if (ret < 0) {
3821 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3822 	}
3823 
3824 	btrfs_free_path(path);
3825 	return ret;
3826 }
3827 
3828 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3829 				   struct btrfs_fs_info *fs_info)
3830 {
3831 	struct btrfs_block_group_cache *cache;
3832 	struct btrfs_transaction *cur_trans = trans->transaction;
3833 	int ret = 0;
3834 	int should_put;
3835 	struct btrfs_path *path;
3836 	struct list_head *io = &cur_trans->io_bgs;
3837 	int num_started = 0;
3838 
3839 	path = btrfs_alloc_path();
3840 	if (!path)
3841 		return -ENOMEM;
3842 
3843 	/*
3844 	 * Even though we are in the critical section of the transaction commit,
3845 	 * we can still have concurrent tasks adding elements to this
3846 	 * transaction's list of dirty block groups. These tasks correspond to
3847 	 * endio free space workers started when writeback finishes for a
3848 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3849 	 * allocate new block groups as a result of COWing nodes of the root
3850 	 * tree when updating the free space inode. The writeback for the space
3851 	 * caches is triggered by an earlier call to
3852 	 * btrfs_start_dirty_block_groups() and iterations of the following
3853 	 * loop.
3854 	 * Also we want to do the cache_save_setup first and then run the
3855 	 * delayed refs to make sure we have the best chance at doing this all
3856 	 * in one shot.
3857 	 */
3858 	spin_lock(&cur_trans->dirty_bgs_lock);
3859 	while (!list_empty(&cur_trans->dirty_bgs)) {
3860 		cache = list_first_entry(&cur_trans->dirty_bgs,
3861 					 struct btrfs_block_group_cache,
3862 					 dirty_list);
3863 
3864 		/*
3865 		 * this can happen if cache_save_setup re-dirties a block
3866 		 * group that is already under IO.  Just wait for it to
3867 		 * finish and then do it all again
3868 		 */
3869 		if (!list_empty(&cache->io_list)) {
3870 			spin_unlock(&cur_trans->dirty_bgs_lock);
3871 			list_del_init(&cache->io_list);
3872 			btrfs_wait_cache_io(trans, cache, path);
3873 			btrfs_put_block_group(cache);
3874 			spin_lock(&cur_trans->dirty_bgs_lock);
3875 		}
3876 
3877 		/*
3878 		 * don't remove from the dirty list until after we've waited
3879 		 * on any pending IO
3880 		 */
3881 		list_del_init(&cache->dirty_list);
3882 		spin_unlock(&cur_trans->dirty_bgs_lock);
3883 		should_put = 1;
3884 
3885 		cache_save_setup(cache, trans, path);
3886 
3887 		if (!ret)
3888 			ret = btrfs_run_delayed_refs(trans,
3889 						     (unsigned long) -1);
3890 
3891 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3892 			cache->io_ctl.inode = NULL;
3893 			ret = btrfs_write_out_cache(fs_info, trans,
3894 						    cache, path);
3895 			if (ret == 0 && cache->io_ctl.inode) {
3896 				num_started++;
3897 				should_put = 0;
3898 				list_add_tail(&cache->io_list, io);
3899 			} else {
3900 				/*
3901 				 * if we failed to write the cache, the
3902 				 * generation will be bad and life goes on
3903 				 */
3904 				ret = 0;
3905 			}
3906 		}
3907 		if (!ret) {
3908 			ret = write_one_cache_group(trans, fs_info,
3909 						    path, cache);
3910 			/*
3911 			 * One of the free space endio workers might have
3912 			 * created a new block group while updating a free space
3913 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3914 			 * and hasn't released its transaction handle yet, in
3915 			 * which case the new block group is still attached to
3916 			 * its transaction handle and its creation has not
3917 			 * finished yet (no block group item in the extent tree
3918 			 * yet, etc). If this is the case, wait for all free
3919 			 * space endio workers to finish and retry. This is a
3920 			 * a very rare case so no need for a more efficient and
3921 			 * complex approach.
3922 			 */
3923 			if (ret == -ENOENT) {
3924 				wait_event(cur_trans->writer_wait,
3925 				   atomic_read(&cur_trans->num_writers) == 1);
3926 				ret = write_one_cache_group(trans, fs_info,
3927 							    path, cache);
3928 			}
3929 			if (ret)
3930 				btrfs_abort_transaction(trans, ret);
3931 		}
3932 
3933 		/* if its not on the io list, we need to put the block group */
3934 		if (should_put)
3935 			btrfs_put_block_group(cache);
3936 		spin_lock(&cur_trans->dirty_bgs_lock);
3937 	}
3938 	spin_unlock(&cur_trans->dirty_bgs_lock);
3939 
3940 	/*
3941 	 * Refer to the definition of io_bgs member for details why it's safe
3942 	 * to use it without any locking
3943 	 */
3944 	while (!list_empty(io)) {
3945 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3946 					 io_list);
3947 		list_del_init(&cache->io_list);
3948 		btrfs_wait_cache_io(trans, cache, path);
3949 		btrfs_put_block_group(cache);
3950 	}
3951 
3952 	btrfs_free_path(path);
3953 	return ret;
3954 }
3955 
3956 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3957 {
3958 	struct btrfs_block_group_cache *block_group;
3959 	int readonly = 0;
3960 
3961 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3962 	if (!block_group || block_group->ro)
3963 		readonly = 1;
3964 	if (block_group)
3965 		btrfs_put_block_group(block_group);
3966 	return readonly;
3967 }
3968 
3969 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3970 {
3971 	struct btrfs_block_group_cache *bg;
3972 	bool ret = true;
3973 
3974 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3975 	if (!bg)
3976 		return false;
3977 
3978 	spin_lock(&bg->lock);
3979 	if (bg->ro)
3980 		ret = false;
3981 	else
3982 		atomic_inc(&bg->nocow_writers);
3983 	spin_unlock(&bg->lock);
3984 
3985 	/* no put on block group, done by btrfs_dec_nocow_writers */
3986 	if (!ret)
3987 		btrfs_put_block_group(bg);
3988 
3989 	return ret;
3990 
3991 }
3992 
3993 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3994 {
3995 	struct btrfs_block_group_cache *bg;
3996 
3997 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3998 	ASSERT(bg);
3999 	if (atomic_dec_and_test(&bg->nocow_writers))
4000 		wake_up_var(&bg->nocow_writers);
4001 	/*
4002 	 * Once for our lookup and once for the lookup done by a previous call
4003 	 * to btrfs_inc_nocow_writers()
4004 	 */
4005 	btrfs_put_block_group(bg);
4006 	btrfs_put_block_group(bg);
4007 }
4008 
4009 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4010 {
4011 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4012 }
4013 
4014 static const char *alloc_name(u64 flags)
4015 {
4016 	switch (flags) {
4017 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4018 		return "mixed";
4019 	case BTRFS_BLOCK_GROUP_METADATA:
4020 		return "metadata";
4021 	case BTRFS_BLOCK_GROUP_DATA:
4022 		return "data";
4023 	case BTRFS_BLOCK_GROUP_SYSTEM:
4024 		return "system";
4025 	default:
4026 		WARN_ON(1);
4027 		return "invalid-combination";
4028 	};
4029 }
4030 
4031 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4032 			     struct btrfs_space_info **new)
4033 {
4034 
4035 	struct btrfs_space_info *space_info;
4036 	int i;
4037 	int ret;
4038 
4039 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4040 	if (!space_info)
4041 		return -ENOMEM;
4042 
4043 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4044 				 GFP_KERNEL);
4045 	if (ret) {
4046 		kfree(space_info);
4047 		return ret;
4048 	}
4049 
4050 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4051 		INIT_LIST_HEAD(&space_info->block_groups[i]);
4052 	init_rwsem(&space_info->groups_sem);
4053 	spin_lock_init(&space_info->lock);
4054 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4055 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4056 	init_waitqueue_head(&space_info->wait);
4057 	INIT_LIST_HEAD(&space_info->ro_bgs);
4058 	INIT_LIST_HEAD(&space_info->tickets);
4059 	INIT_LIST_HEAD(&space_info->priority_tickets);
4060 
4061 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4062 				    info->space_info_kobj, "%s",
4063 				    alloc_name(space_info->flags));
4064 	if (ret) {
4065 		percpu_counter_destroy(&space_info->total_bytes_pinned);
4066 		kfree(space_info);
4067 		return ret;
4068 	}
4069 
4070 	*new = space_info;
4071 	list_add_rcu(&space_info->list, &info->space_info);
4072 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4073 		info->data_sinfo = space_info;
4074 
4075 	return ret;
4076 }
4077 
4078 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4079 			     u64 total_bytes, u64 bytes_used,
4080 			     u64 bytes_readonly,
4081 			     struct btrfs_space_info **space_info)
4082 {
4083 	struct btrfs_space_info *found;
4084 	int factor;
4085 
4086 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4087 		     BTRFS_BLOCK_GROUP_RAID10))
4088 		factor = 2;
4089 	else
4090 		factor = 1;
4091 
4092 	found = __find_space_info(info, flags);
4093 	ASSERT(found);
4094 	spin_lock(&found->lock);
4095 	found->total_bytes += total_bytes;
4096 	found->disk_total += total_bytes * factor;
4097 	found->bytes_used += bytes_used;
4098 	found->disk_used += bytes_used * factor;
4099 	found->bytes_readonly += bytes_readonly;
4100 	if (total_bytes > 0)
4101 		found->full = 0;
4102 	space_info_add_new_bytes(info, found, total_bytes -
4103 				 bytes_used - bytes_readonly);
4104 	spin_unlock(&found->lock);
4105 	*space_info = found;
4106 }
4107 
4108 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4109 {
4110 	u64 extra_flags = chunk_to_extended(flags) &
4111 				BTRFS_EXTENDED_PROFILE_MASK;
4112 
4113 	write_seqlock(&fs_info->profiles_lock);
4114 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4115 		fs_info->avail_data_alloc_bits |= extra_flags;
4116 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4117 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4118 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4119 		fs_info->avail_system_alloc_bits |= extra_flags;
4120 	write_sequnlock(&fs_info->profiles_lock);
4121 }
4122 
4123 /*
4124  * returns target flags in extended format or 0 if restripe for this
4125  * chunk_type is not in progress
4126  *
4127  * should be called with balance_lock held
4128  */
4129 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4130 {
4131 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4132 	u64 target = 0;
4133 
4134 	if (!bctl)
4135 		return 0;
4136 
4137 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4138 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4140 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4141 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4142 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4143 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4144 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4145 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4146 	}
4147 
4148 	return target;
4149 }
4150 
4151 /*
4152  * @flags: available profiles in extended format (see ctree.h)
4153  *
4154  * Returns reduced profile in chunk format.  If profile changing is in
4155  * progress (either running or paused) picks the target profile (if it's
4156  * already available), otherwise falls back to plain reducing.
4157  */
4158 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4159 {
4160 	u64 num_devices = fs_info->fs_devices->rw_devices;
4161 	u64 target;
4162 	u64 raid_type;
4163 	u64 allowed = 0;
4164 
4165 	/*
4166 	 * see if restripe for this chunk_type is in progress, if so
4167 	 * try to reduce to the target profile
4168 	 */
4169 	spin_lock(&fs_info->balance_lock);
4170 	target = get_restripe_target(fs_info, flags);
4171 	if (target) {
4172 		/* pick target profile only if it's already available */
4173 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4174 			spin_unlock(&fs_info->balance_lock);
4175 			return extended_to_chunk(target);
4176 		}
4177 	}
4178 	spin_unlock(&fs_info->balance_lock);
4179 
4180 	/* First, mask out the RAID levels which aren't possible */
4181 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4182 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4183 			allowed |= btrfs_raid_array[raid_type].bg_flag;
4184 	}
4185 	allowed &= flags;
4186 
4187 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4188 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4189 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4190 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4191 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4192 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4193 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4194 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4195 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4196 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4197 
4198 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4199 
4200 	return extended_to_chunk(flags | allowed);
4201 }
4202 
4203 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4204 {
4205 	unsigned seq;
4206 	u64 flags;
4207 
4208 	do {
4209 		flags = orig_flags;
4210 		seq = read_seqbegin(&fs_info->profiles_lock);
4211 
4212 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4213 			flags |= fs_info->avail_data_alloc_bits;
4214 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4215 			flags |= fs_info->avail_system_alloc_bits;
4216 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4217 			flags |= fs_info->avail_metadata_alloc_bits;
4218 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4219 
4220 	return btrfs_reduce_alloc_profile(fs_info, flags);
4221 }
4222 
4223 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4224 {
4225 	struct btrfs_fs_info *fs_info = root->fs_info;
4226 	u64 flags;
4227 	u64 ret;
4228 
4229 	if (data)
4230 		flags = BTRFS_BLOCK_GROUP_DATA;
4231 	else if (root == fs_info->chunk_root)
4232 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4233 	else
4234 		flags = BTRFS_BLOCK_GROUP_METADATA;
4235 
4236 	ret = get_alloc_profile(fs_info, flags);
4237 	return ret;
4238 }
4239 
4240 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4241 {
4242 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4243 }
4244 
4245 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4246 {
4247 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4248 }
4249 
4250 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4251 {
4252 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4253 }
4254 
4255 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4256 				 bool may_use_included)
4257 {
4258 	ASSERT(s_info);
4259 	return s_info->bytes_used + s_info->bytes_reserved +
4260 		s_info->bytes_pinned + s_info->bytes_readonly +
4261 		(may_use_included ? s_info->bytes_may_use : 0);
4262 }
4263 
4264 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4265 {
4266 	struct btrfs_root *root = inode->root;
4267 	struct btrfs_fs_info *fs_info = root->fs_info;
4268 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4269 	u64 used;
4270 	int ret = 0;
4271 	int need_commit = 2;
4272 	int have_pinned_space;
4273 
4274 	/* make sure bytes are sectorsize aligned */
4275 	bytes = ALIGN(bytes, fs_info->sectorsize);
4276 
4277 	if (btrfs_is_free_space_inode(inode)) {
4278 		need_commit = 0;
4279 		ASSERT(current->journal_info);
4280 	}
4281 
4282 again:
4283 	/* make sure we have enough space to handle the data first */
4284 	spin_lock(&data_sinfo->lock);
4285 	used = btrfs_space_info_used(data_sinfo, true);
4286 
4287 	if (used + bytes > data_sinfo->total_bytes) {
4288 		struct btrfs_trans_handle *trans;
4289 
4290 		/*
4291 		 * if we don't have enough free bytes in this space then we need
4292 		 * to alloc a new chunk.
4293 		 */
4294 		if (!data_sinfo->full) {
4295 			u64 alloc_target;
4296 
4297 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4298 			spin_unlock(&data_sinfo->lock);
4299 
4300 			alloc_target = btrfs_data_alloc_profile(fs_info);
4301 			/*
4302 			 * It is ugly that we don't call nolock join
4303 			 * transaction for the free space inode case here.
4304 			 * But it is safe because we only do the data space
4305 			 * reservation for the free space cache in the
4306 			 * transaction context, the common join transaction
4307 			 * just increase the counter of the current transaction
4308 			 * handler, doesn't try to acquire the trans_lock of
4309 			 * the fs.
4310 			 */
4311 			trans = btrfs_join_transaction(root);
4312 			if (IS_ERR(trans))
4313 				return PTR_ERR(trans);
4314 
4315 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4316 					     CHUNK_ALLOC_NO_FORCE);
4317 			btrfs_end_transaction(trans);
4318 			if (ret < 0) {
4319 				if (ret != -ENOSPC)
4320 					return ret;
4321 				else {
4322 					have_pinned_space = 1;
4323 					goto commit_trans;
4324 				}
4325 			}
4326 
4327 			goto again;
4328 		}
4329 
4330 		/*
4331 		 * If we don't have enough pinned space to deal with this
4332 		 * allocation, and no removed chunk in current transaction,
4333 		 * don't bother committing the transaction.
4334 		 */
4335 		have_pinned_space = percpu_counter_compare(
4336 			&data_sinfo->total_bytes_pinned,
4337 			used + bytes - data_sinfo->total_bytes);
4338 		spin_unlock(&data_sinfo->lock);
4339 
4340 		/* commit the current transaction and try again */
4341 commit_trans:
4342 		if (need_commit) {
4343 			need_commit--;
4344 
4345 			if (need_commit > 0) {
4346 				btrfs_start_delalloc_roots(fs_info, -1);
4347 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4348 							 (u64)-1);
4349 			}
4350 
4351 			trans = btrfs_join_transaction(root);
4352 			if (IS_ERR(trans))
4353 				return PTR_ERR(trans);
4354 			if (have_pinned_space >= 0 ||
4355 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4356 				     &trans->transaction->flags) ||
4357 			    need_commit > 0) {
4358 				ret = btrfs_commit_transaction(trans);
4359 				if (ret)
4360 					return ret;
4361 				/*
4362 				 * The cleaner kthread might still be doing iput
4363 				 * operations. Wait for it to finish so that
4364 				 * more space is released.
4365 				 */
4366 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4367 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4368 				goto again;
4369 			} else {
4370 				btrfs_end_transaction(trans);
4371 			}
4372 		}
4373 
4374 		trace_btrfs_space_reservation(fs_info,
4375 					      "space_info:enospc",
4376 					      data_sinfo->flags, bytes, 1);
4377 		return -ENOSPC;
4378 	}
4379 	data_sinfo->bytes_may_use += bytes;
4380 	trace_btrfs_space_reservation(fs_info, "space_info",
4381 				      data_sinfo->flags, bytes, 1);
4382 	spin_unlock(&data_sinfo->lock);
4383 
4384 	return ret;
4385 }
4386 
4387 int btrfs_check_data_free_space(struct inode *inode,
4388 			struct extent_changeset **reserved, u64 start, u64 len)
4389 {
4390 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4391 	int ret;
4392 
4393 	/* align the range */
4394 	len = round_up(start + len, fs_info->sectorsize) -
4395 	      round_down(start, fs_info->sectorsize);
4396 	start = round_down(start, fs_info->sectorsize);
4397 
4398 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4399 	if (ret < 0)
4400 		return ret;
4401 
4402 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4403 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4404 	if (ret < 0)
4405 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4406 	else
4407 		ret = 0;
4408 	return ret;
4409 }
4410 
4411 /*
4412  * Called if we need to clear a data reservation for this inode
4413  * Normally in a error case.
4414  *
4415  * This one will *NOT* use accurate qgroup reserved space API, just for case
4416  * which we can't sleep and is sure it won't affect qgroup reserved space.
4417  * Like clear_bit_hook().
4418  */
4419 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4420 					    u64 len)
4421 {
4422 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4423 	struct btrfs_space_info *data_sinfo;
4424 
4425 	/* Make sure the range is aligned to sectorsize */
4426 	len = round_up(start + len, fs_info->sectorsize) -
4427 	      round_down(start, fs_info->sectorsize);
4428 	start = round_down(start, fs_info->sectorsize);
4429 
4430 	data_sinfo = fs_info->data_sinfo;
4431 	spin_lock(&data_sinfo->lock);
4432 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4433 		data_sinfo->bytes_may_use = 0;
4434 	else
4435 		data_sinfo->bytes_may_use -= len;
4436 	trace_btrfs_space_reservation(fs_info, "space_info",
4437 				      data_sinfo->flags, len, 0);
4438 	spin_unlock(&data_sinfo->lock);
4439 }
4440 
4441 /*
4442  * Called if we need to clear a data reservation for this inode
4443  * Normally in a error case.
4444  *
4445  * This one will handle the per-inode data rsv map for accurate reserved
4446  * space framework.
4447  */
4448 void btrfs_free_reserved_data_space(struct inode *inode,
4449 			struct extent_changeset *reserved, u64 start, u64 len)
4450 {
4451 	struct btrfs_root *root = BTRFS_I(inode)->root;
4452 
4453 	/* Make sure the range is aligned to sectorsize */
4454 	len = round_up(start + len, root->fs_info->sectorsize) -
4455 	      round_down(start, root->fs_info->sectorsize);
4456 	start = round_down(start, root->fs_info->sectorsize);
4457 
4458 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4459 	btrfs_qgroup_free_data(inode, reserved, start, len);
4460 }
4461 
4462 static void force_metadata_allocation(struct btrfs_fs_info *info)
4463 {
4464 	struct list_head *head = &info->space_info;
4465 	struct btrfs_space_info *found;
4466 
4467 	rcu_read_lock();
4468 	list_for_each_entry_rcu(found, head, list) {
4469 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4470 			found->force_alloc = CHUNK_ALLOC_FORCE;
4471 	}
4472 	rcu_read_unlock();
4473 }
4474 
4475 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4476 {
4477 	return (global->size << 1);
4478 }
4479 
4480 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4481 			      struct btrfs_space_info *sinfo, int force)
4482 {
4483 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4484 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4485 	u64 thresh;
4486 
4487 	if (force == CHUNK_ALLOC_FORCE)
4488 		return 1;
4489 
4490 	/*
4491 	 * We need to take into account the global rsv because for all intents
4492 	 * and purposes it's used space.  Don't worry about locking the
4493 	 * global_rsv, it doesn't change except when the transaction commits.
4494 	 */
4495 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4496 		bytes_used += calc_global_rsv_need_space(global_rsv);
4497 
4498 	/*
4499 	 * in limited mode, we want to have some free space up to
4500 	 * about 1% of the FS size.
4501 	 */
4502 	if (force == CHUNK_ALLOC_LIMITED) {
4503 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4504 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4505 
4506 		if (sinfo->total_bytes - bytes_used < thresh)
4507 			return 1;
4508 	}
4509 
4510 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4511 		return 0;
4512 	return 1;
4513 }
4514 
4515 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4516 {
4517 	u64 num_dev;
4518 
4519 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4520 		    BTRFS_BLOCK_GROUP_RAID0 |
4521 		    BTRFS_BLOCK_GROUP_RAID5 |
4522 		    BTRFS_BLOCK_GROUP_RAID6))
4523 		num_dev = fs_info->fs_devices->rw_devices;
4524 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4525 		num_dev = 2;
4526 	else
4527 		num_dev = 1;	/* DUP or single */
4528 
4529 	return num_dev;
4530 }
4531 
4532 /*
4533  * If @is_allocation is true, reserve space in the system space info necessary
4534  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4535  * removing a chunk.
4536  */
4537 void check_system_chunk(struct btrfs_trans_handle *trans,
4538 			struct btrfs_fs_info *fs_info, u64 type)
4539 {
4540 	struct btrfs_space_info *info;
4541 	u64 left;
4542 	u64 thresh;
4543 	int ret = 0;
4544 	u64 num_devs;
4545 
4546 	/*
4547 	 * Needed because we can end up allocating a system chunk and for an
4548 	 * atomic and race free space reservation in the chunk block reserve.
4549 	 */
4550 	lockdep_assert_held(&fs_info->chunk_mutex);
4551 
4552 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4553 	spin_lock(&info->lock);
4554 	left = info->total_bytes - btrfs_space_info_used(info, true);
4555 	spin_unlock(&info->lock);
4556 
4557 	num_devs = get_profile_num_devs(fs_info, type);
4558 
4559 	/* num_devs device items to update and 1 chunk item to add or remove */
4560 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4561 		btrfs_calc_trans_metadata_size(fs_info, 1);
4562 
4563 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4564 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4565 			   left, thresh, type);
4566 		dump_space_info(fs_info, info, 0, 0);
4567 	}
4568 
4569 	if (left < thresh) {
4570 		u64 flags = btrfs_system_alloc_profile(fs_info);
4571 
4572 		/*
4573 		 * Ignore failure to create system chunk. We might end up not
4574 		 * needing it, as we might not need to COW all nodes/leafs from
4575 		 * the paths we visit in the chunk tree (they were already COWed
4576 		 * or created in the current transaction for example).
4577 		 */
4578 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4579 	}
4580 
4581 	if (!ret) {
4582 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4583 					  &fs_info->chunk_block_rsv,
4584 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4585 		if (!ret)
4586 			trans->chunk_bytes_reserved += thresh;
4587 	}
4588 }
4589 
4590 /*
4591  * If force is CHUNK_ALLOC_FORCE:
4592  *    - return 1 if it successfully allocates a chunk,
4593  *    - return errors including -ENOSPC otherwise.
4594  * If force is NOT CHUNK_ALLOC_FORCE:
4595  *    - return 0 if it doesn't need to allocate a new chunk,
4596  *    - return 1 if it successfully allocates a chunk,
4597  *    - return errors including -ENOSPC otherwise.
4598  */
4599 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4600 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4601 {
4602 	struct btrfs_space_info *space_info;
4603 	int wait_for_alloc = 0;
4604 	int ret = 0;
4605 
4606 	/* Don't re-enter if we're already allocating a chunk */
4607 	if (trans->allocating_chunk)
4608 		return -ENOSPC;
4609 
4610 	space_info = __find_space_info(fs_info, flags);
4611 	ASSERT(space_info);
4612 
4613 again:
4614 	spin_lock(&space_info->lock);
4615 	if (force < space_info->force_alloc)
4616 		force = space_info->force_alloc;
4617 	if (space_info->full) {
4618 		if (should_alloc_chunk(fs_info, space_info, force))
4619 			ret = -ENOSPC;
4620 		else
4621 			ret = 0;
4622 		spin_unlock(&space_info->lock);
4623 		return ret;
4624 	}
4625 
4626 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4627 		spin_unlock(&space_info->lock);
4628 		return 0;
4629 	} else if (space_info->chunk_alloc) {
4630 		wait_for_alloc = 1;
4631 	} else {
4632 		space_info->chunk_alloc = 1;
4633 	}
4634 
4635 	spin_unlock(&space_info->lock);
4636 
4637 	mutex_lock(&fs_info->chunk_mutex);
4638 
4639 	/*
4640 	 * The chunk_mutex is held throughout the entirety of a chunk
4641 	 * allocation, so once we've acquired the chunk_mutex we know that the
4642 	 * other guy is done and we need to recheck and see if we should
4643 	 * allocate.
4644 	 */
4645 	if (wait_for_alloc) {
4646 		mutex_unlock(&fs_info->chunk_mutex);
4647 		wait_for_alloc = 0;
4648 		cond_resched();
4649 		goto again;
4650 	}
4651 
4652 	trans->allocating_chunk = true;
4653 
4654 	/*
4655 	 * If we have mixed data/metadata chunks we want to make sure we keep
4656 	 * allocating mixed chunks instead of individual chunks.
4657 	 */
4658 	if (btrfs_mixed_space_info(space_info))
4659 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4660 
4661 	/*
4662 	 * if we're doing a data chunk, go ahead and make sure that
4663 	 * we keep a reasonable number of metadata chunks allocated in the
4664 	 * FS as well.
4665 	 */
4666 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4667 		fs_info->data_chunk_allocations++;
4668 		if (!(fs_info->data_chunk_allocations %
4669 		      fs_info->metadata_ratio))
4670 			force_metadata_allocation(fs_info);
4671 	}
4672 
4673 	/*
4674 	 * Check if we have enough space in SYSTEM chunk because we may need
4675 	 * to update devices.
4676 	 */
4677 	check_system_chunk(trans, fs_info, flags);
4678 
4679 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4680 	trans->allocating_chunk = false;
4681 
4682 	spin_lock(&space_info->lock);
4683 	if (ret < 0) {
4684 		if (ret == -ENOSPC)
4685 			space_info->full = 1;
4686 		else
4687 			goto out;
4688 	} else {
4689 		ret = 1;
4690 	}
4691 
4692 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4693 out:
4694 	space_info->chunk_alloc = 0;
4695 	spin_unlock(&space_info->lock);
4696 	mutex_unlock(&fs_info->chunk_mutex);
4697 	/*
4698 	 * When we allocate a new chunk we reserve space in the chunk block
4699 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4700 	 * add new nodes/leafs to it if we end up needing to do it when
4701 	 * inserting the chunk item and updating device items as part of the
4702 	 * second phase of chunk allocation, performed by
4703 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4704 	 * large number of new block groups to create in our transaction
4705 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4706 	 * in extreme cases - like having a single transaction create many new
4707 	 * block groups when starting to write out the free space caches of all
4708 	 * the block groups that were made dirty during the lifetime of the
4709 	 * transaction.
4710 	 */
4711 	if (trans->can_flush_pending_bgs &&
4712 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4713 		btrfs_create_pending_block_groups(trans);
4714 		btrfs_trans_release_chunk_metadata(trans);
4715 	}
4716 	return ret;
4717 }
4718 
4719 static int can_overcommit(struct btrfs_fs_info *fs_info,
4720 			  struct btrfs_space_info *space_info, u64 bytes,
4721 			  enum btrfs_reserve_flush_enum flush,
4722 			  bool system_chunk)
4723 {
4724 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4725 	u64 profile;
4726 	u64 space_size;
4727 	u64 avail;
4728 	u64 used;
4729 
4730 	/* Don't overcommit when in mixed mode. */
4731 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4732 		return 0;
4733 
4734 	if (system_chunk)
4735 		profile = btrfs_system_alloc_profile(fs_info);
4736 	else
4737 		profile = btrfs_metadata_alloc_profile(fs_info);
4738 
4739 	used = btrfs_space_info_used(space_info, false);
4740 
4741 	/*
4742 	 * We only want to allow over committing if we have lots of actual space
4743 	 * free, but if we don't have enough space to handle the global reserve
4744 	 * space then we could end up having a real enospc problem when trying
4745 	 * to allocate a chunk or some other such important allocation.
4746 	 */
4747 	spin_lock(&global_rsv->lock);
4748 	space_size = calc_global_rsv_need_space(global_rsv);
4749 	spin_unlock(&global_rsv->lock);
4750 	if (used + space_size >= space_info->total_bytes)
4751 		return 0;
4752 
4753 	used += space_info->bytes_may_use;
4754 
4755 	avail = atomic64_read(&fs_info->free_chunk_space);
4756 
4757 	/*
4758 	 * If we have dup, raid1 or raid10 then only half of the free
4759 	 * space is actually useable.  For raid56, the space info used
4760 	 * doesn't include the parity drive, so we don't have to
4761 	 * change the math
4762 	 */
4763 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4764 		       BTRFS_BLOCK_GROUP_RAID1 |
4765 		       BTRFS_BLOCK_GROUP_RAID10))
4766 		avail >>= 1;
4767 
4768 	/*
4769 	 * If we aren't flushing all things, let us overcommit up to
4770 	 * 1/2th of the space. If we can flush, don't let us overcommit
4771 	 * too much, let it overcommit up to 1/8 of the space.
4772 	 */
4773 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4774 		avail >>= 3;
4775 	else
4776 		avail >>= 1;
4777 
4778 	if (used + bytes < space_info->total_bytes + avail)
4779 		return 1;
4780 	return 0;
4781 }
4782 
4783 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4784 					 unsigned long nr_pages, int nr_items)
4785 {
4786 	struct super_block *sb = fs_info->sb;
4787 
4788 	if (down_read_trylock(&sb->s_umount)) {
4789 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4790 		up_read(&sb->s_umount);
4791 	} else {
4792 		/*
4793 		 * We needn't worry the filesystem going from r/w to r/o though
4794 		 * we don't acquire ->s_umount mutex, because the filesystem
4795 		 * should guarantee the delalloc inodes list be empty after
4796 		 * the filesystem is readonly(all dirty pages are written to
4797 		 * the disk).
4798 		 */
4799 		btrfs_start_delalloc_roots(fs_info, nr_items);
4800 		if (!current->journal_info)
4801 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4802 	}
4803 }
4804 
4805 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4806 					u64 to_reclaim)
4807 {
4808 	u64 bytes;
4809 	u64 nr;
4810 
4811 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4812 	nr = div64_u64(to_reclaim, bytes);
4813 	if (!nr)
4814 		nr = 1;
4815 	return nr;
4816 }
4817 
4818 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4819 
4820 /*
4821  * shrink metadata reservation for delalloc
4822  */
4823 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4824 			    u64 orig, bool wait_ordered)
4825 {
4826 	struct btrfs_space_info *space_info;
4827 	struct btrfs_trans_handle *trans;
4828 	u64 delalloc_bytes;
4829 	u64 max_reclaim;
4830 	u64 items;
4831 	long time_left;
4832 	unsigned long nr_pages;
4833 	int loops;
4834 
4835 	/* Calc the number of the pages we need flush for space reservation */
4836 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4837 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4838 
4839 	trans = (struct btrfs_trans_handle *)current->journal_info;
4840 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4841 
4842 	delalloc_bytes = percpu_counter_sum_positive(
4843 						&fs_info->delalloc_bytes);
4844 	if (delalloc_bytes == 0) {
4845 		if (trans)
4846 			return;
4847 		if (wait_ordered)
4848 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4849 		return;
4850 	}
4851 
4852 	loops = 0;
4853 	while (delalloc_bytes && loops < 3) {
4854 		max_reclaim = min(delalloc_bytes, to_reclaim);
4855 		nr_pages = max_reclaim >> PAGE_SHIFT;
4856 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4857 		/*
4858 		 * We need to wait for the async pages to actually start before
4859 		 * we do anything.
4860 		 */
4861 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4862 		if (!max_reclaim)
4863 			goto skip_async;
4864 
4865 		if (max_reclaim <= nr_pages)
4866 			max_reclaim = 0;
4867 		else
4868 			max_reclaim -= nr_pages;
4869 
4870 		wait_event(fs_info->async_submit_wait,
4871 			   atomic_read(&fs_info->async_delalloc_pages) <=
4872 			   (int)max_reclaim);
4873 skip_async:
4874 		spin_lock(&space_info->lock);
4875 		if (list_empty(&space_info->tickets) &&
4876 		    list_empty(&space_info->priority_tickets)) {
4877 			spin_unlock(&space_info->lock);
4878 			break;
4879 		}
4880 		spin_unlock(&space_info->lock);
4881 
4882 		loops++;
4883 		if (wait_ordered && !trans) {
4884 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4885 		} else {
4886 			time_left = schedule_timeout_killable(1);
4887 			if (time_left)
4888 				break;
4889 		}
4890 		delalloc_bytes = percpu_counter_sum_positive(
4891 						&fs_info->delalloc_bytes);
4892 	}
4893 }
4894 
4895 struct reserve_ticket {
4896 	u64 bytes;
4897 	int error;
4898 	struct list_head list;
4899 	wait_queue_head_t wait;
4900 };
4901 
4902 /**
4903  * maybe_commit_transaction - possibly commit the transaction if its ok to
4904  * @root - the root we're allocating for
4905  * @bytes - the number of bytes we want to reserve
4906  * @force - force the commit
4907  *
4908  * This will check to make sure that committing the transaction will actually
4909  * get us somewhere and then commit the transaction if it does.  Otherwise it
4910  * will return -ENOSPC.
4911  */
4912 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4913 				  struct btrfs_space_info *space_info)
4914 {
4915 	struct reserve_ticket *ticket = NULL;
4916 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4917 	struct btrfs_trans_handle *trans;
4918 	u64 bytes;
4919 
4920 	trans = (struct btrfs_trans_handle *)current->journal_info;
4921 	if (trans)
4922 		return -EAGAIN;
4923 
4924 	spin_lock(&space_info->lock);
4925 	if (!list_empty(&space_info->priority_tickets))
4926 		ticket = list_first_entry(&space_info->priority_tickets,
4927 					  struct reserve_ticket, list);
4928 	else if (!list_empty(&space_info->tickets))
4929 		ticket = list_first_entry(&space_info->tickets,
4930 					  struct reserve_ticket, list);
4931 	bytes = (ticket) ? ticket->bytes : 0;
4932 	spin_unlock(&space_info->lock);
4933 
4934 	if (!bytes)
4935 		return 0;
4936 
4937 	/* See if there is enough pinned space to make this reservation */
4938 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4939 				   bytes) >= 0)
4940 		goto commit;
4941 
4942 	/*
4943 	 * See if there is some space in the delayed insertion reservation for
4944 	 * this reservation.
4945 	 */
4946 	if (space_info != delayed_rsv->space_info)
4947 		return -ENOSPC;
4948 
4949 	spin_lock(&delayed_rsv->lock);
4950 	if (delayed_rsv->size > bytes)
4951 		bytes = 0;
4952 	else
4953 		bytes -= delayed_rsv->size;
4954 	spin_unlock(&delayed_rsv->lock);
4955 
4956 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4957 				   bytes) < 0) {
4958 		return -ENOSPC;
4959 	}
4960 
4961 commit:
4962 	trans = btrfs_join_transaction(fs_info->extent_root);
4963 	if (IS_ERR(trans))
4964 		return -ENOSPC;
4965 
4966 	return btrfs_commit_transaction(trans);
4967 }
4968 
4969 /*
4970  * Try to flush some data based on policy set by @state. This is only advisory
4971  * and may fail for various reasons. The caller is supposed to examine the
4972  * state of @space_info to detect the outcome.
4973  */
4974 static void flush_space(struct btrfs_fs_info *fs_info,
4975 		       struct btrfs_space_info *space_info, u64 num_bytes,
4976 		       int state)
4977 {
4978 	struct btrfs_root *root = fs_info->extent_root;
4979 	struct btrfs_trans_handle *trans;
4980 	int nr;
4981 	int ret = 0;
4982 
4983 	switch (state) {
4984 	case FLUSH_DELAYED_ITEMS_NR:
4985 	case FLUSH_DELAYED_ITEMS:
4986 		if (state == FLUSH_DELAYED_ITEMS_NR)
4987 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4988 		else
4989 			nr = -1;
4990 
4991 		trans = btrfs_join_transaction(root);
4992 		if (IS_ERR(trans)) {
4993 			ret = PTR_ERR(trans);
4994 			break;
4995 		}
4996 		ret = btrfs_run_delayed_items_nr(trans, nr);
4997 		btrfs_end_transaction(trans);
4998 		break;
4999 	case FLUSH_DELALLOC:
5000 	case FLUSH_DELALLOC_WAIT:
5001 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5002 				state == FLUSH_DELALLOC_WAIT);
5003 		break;
5004 	case ALLOC_CHUNK:
5005 		trans = btrfs_join_transaction(root);
5006 		if (IS_ERR(trans)) {
5007 			ret = PTR_ERR(trans);
5008 			break;
5009 		}
5010 		ret = do_chunk_alloc(trans, fs_info,
5011 				     btrfs_metadata_alloc_profile(fs_info),
5012 				     CHUNK_ALLOC_NO_FORCE);
5013 		btrfs_end_transaction(trans);
5014 		if (ret > 0 || ret == -ENOSPC)
5015 			ret = 0;
5016 		break;
5017 	case COMMIT_TRANS:
5018 		ret = may_commit_transaction(fs_info, space_info);
5019 		break;
5020 	default:
5021 		ret = -ENOSPC;
5022 		break;
5023 	}
5024 
5025 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5026 				ret);
5027 	return;
5028 }
5029 
5030 static inline u64
5031 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5032 				 struct btrfs_space_info *space_info,
5033 				 bool system_chunk)
5034 {
5035 	struct reserve_ticket *ticket;
5036 	u64 used;
5037 	u64 expected;
5038 	u64 to_reclaim = 0;
5039 
5040 	list_for_each_entry(ticket, &space_info->tickets, list)
5041 		to_reclaim += ticket->bytes;
5042 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
5043 		to_reclaim += ticket->bytes;
5044 	if (to_reclaim)
5045 		return to_reclaim;
5046 
5047 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5048 	if (can_overcommit(fs_info, space_info, to_reclaim,
5049 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5050 		return 0;
5051 
5052 	used = btrfs_space_info_used(space_info, true);
5053 
5054 	if (can_overcommit(fs_info, space_info, SZ_1M,
5055 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5056 		expected = div_factor_fine(space_info->total_bytes, 95);
5057 	else
5058 		expected = div_factor_fine(space_info->total_bytes, 90);
5059 
5060 	if (used > expected)
5061 		to_reclaim = used - expected;
5062 	else
5063 		to_reclaim = 0;
5064 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5065 				     space_info->bytes_reserved);
5066 	return to_reclaim;
5067 }
5068 
5069 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5070 					struct btrfs_space_info *space_info,
5071 					u64 used, bool system_chunk)
5072 {
5073 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5074 
5075 	/* If we're just plain full then async reclaim just slows us down. */
5076 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5077 		return 0;
5078 
5079 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5080 					      system_chunk))
5081 		return 0;
5082 
5083 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5084 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5085 }
5086 
5087 static void wake_all_tickets(struct list_head *head)
5088 {
5089 	struct reserve_ticket *ticket;
5090 
5091 	while (!list_empty(head)) {
5092 		ticket = list_first_entry(head, struct reserve_ticket, list);
5093 		list_del_init(&ticket->list);
5094 		ticket->error = -ENOSPC;
5095 		wake_up(&ticket->wait);
5096 	}
5097 }
5098 
5099 /*
5100  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5101  * will loop and continuously try to flush as long as we are making progress.
5102  * We count progress as clearing off tickets each time we have to loop.
5103  */
5104 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5105 {
5106 	struct btrfs_fs_info *fs_info;
5107 	struct btrfs_space_info *space_info;
5108 	u64 to_reclaim;
5109 	int flush_state;
5110 	int commit_cycles = 0;
5111 	u64 last_tickets_id;
5112 
5113 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5114 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5115 
5116 	spin_lock(&space_info->lock);
5117 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5118 						      false);
5119 	if (!to_reclaim) {
5120 		space_info->flush = 0;
5121 		spin_unlock(&space_info->lock);
5122 		return;
5123 	}
5124 	last_tickets_id = space_info->tickets_id;
5125 	spin_unlock(&space_info->lock);
5126 
5127 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5128 	do {
5129 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5130 		spin_lock(&space_info->lock);
5131 		if (list_empty(&space_info->tickets)) {
5132 			space_info->flush = 0;
5133 			spin_unlock(&space_info->lock);
5134 			return;
5135 		}
5136 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5137 							      space_info,
5138 							      false);
5139 		if (last_tickets_id == space_info->tickets_id) {
5140 			flush_state++;
5141 		} else {
5142 			last_tickets_id = space_info->tickets_id;
5143 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5144 			if (commit_cycles)
5145 				commit_cycles--;
5146 		}
5147 
5148 		if (flush_state > COMMIT_TRANS) {
5149 			commit_cycles++;
5150 			if (commit_cycles > 2) {
5151 				wake_all_tickets(&space_info->tickets);
5152 				space_info->flush = 0;
5153 			} else {
5154 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5155 			}
5156 		}
5157 		spin_unlock(&space_info->lock);
5158 	} while (flush_state <= COMMIT_TRANS);
5159 }
5160 
5161 void btrfs_init_async_reclaim_work(struct work_struct *work)
5162 {
5163 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5164 }
5165 
5166 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5167 					    struct btrfs_space_info *space_info,
5168 					    struct reserve_ticket *ticket)
5169 {
5170 	u64 to_reclaim;
5171 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5172 
5173 	spin_lock(&space_info->lock);
5174 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5175 						      false);
5176 	if (!to_reclaim) {
5177 		spin_unlock(&space_info->lock);
5178 		return;
5179 	}
5180 	spin_unlock(&space_info->lock);
5181 
5182 	do {
5183 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5184 		flush_state++;
5185 		spin_lock(&space_info->lock);
5186 		if (ticket->bytes == 0) {
5187 			spin_unlock(&space_info->lock);
5188 			return;
5189 		}
5190 		spin_unlock(&space_info->lock);
5191 
5192 		/*
5193 		 * Priority flushers can't wait on delalloc without
5194 		 * deadlocking.
5195 		 */
5196 		if (flush_state == FLUSH_DELALLOC ||
5197 		    flush_state == FLUSH_DELALLOC_WAIT)
5198 			flush_state = ALLOC_CHUNK;
5199 	} while (flush_state < COMMIT_TRANS);
5200 }
5201 
5202 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5203 			       struct btrfs_space_info *space_info,
5204 			       struct reserve_ticket *ticket, u64 orig_bytes)
5205 
5206 {
5207 	DEFINE_WAIT(wait);
5208 	int ret = 0;
5209 
5210 	spin_lock(&space_info->lock);
5211 	while (ticket->bytes > 0 && ticket->error == 0) {
5212 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5213 		if (ret) {
5214 			ret = -EINTR;
5215 			break;
5216 		}
5217 		spin_unlock(&space_info->lock);
5218 
5219 		schedule();
5220 
5221 		finish_wait(&ticket->wait, &wait);
5222 		spin_lock(&space_info->lock);
5223 	}
5224 	if (!ret)
5225 		ret = ticket->error;
5226 	if (!list_empty(&ticket->list))
5227 		list_del_init(&ticket->list);
5228 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5229 		u64 num_bytes = orig_bytes - ticket->bytes;
5230 		space_info->bytes_may_use -= num_bytes;
5231 		trace_btrfs_space_reservation(fs_info, "space_info",
5232 					      space_info->flags, num_bytes, 0);
5233 	}
5234 	spin_unlock(&space_info->lock);
5235 
5236 	return ret;
5237 }
5238 
5239 /**
5240  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5241  * @root - the root we're allocating for
5242  * @space_info - the space info we want to allocate from
5243  * @orig_bytes - the number of bytes we want
5244  * @flush - whether or not we can flush to make our reservation
5245  *
5246  * This will reserve orig_bytes number of bytes from the space info associated
5247  * with the block_rsv.  If there is not enough space it will make an attempt to
5248  * flush out space to make room.  It will do this by flushing delalloc if
5249  * possible or committing the transaction.  If flush is 0 then no attempts to
5250  * regain reservations will be made and this will fail if there is not enough
5251  * space already.
5252  */
5253 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5254 				    struct btrfs_space_info *space_info,
5255 				    u64 orig_bytes,
5256 				    enum btrfs_reserve_flush_enum flush,
5257 				    bool system_chunk)
5258 {
5259 	struct reserve_ticket ticket;
5260 	u64 used;
5261 	int ret = 0;
5262 
5263 	ASSERT(orig_bytes);
5264 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5265 
5266 	spin_lock(&space_info->lock);
5267 	ret = -ENOSPC;
5268 	used = btrfs_space_info_used(space_info, true);
5269 
5270 	/*
5271 	 * If we have enough space then hooray, make our reservation and carry
5272 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5273 	 * If not things get more complicated.
5274 	 */
5275 	if (used + orig_bytes <= space_info->total_bytes) {
5276 		space_info->bytes_may_use += orig_bytes;
5277 		trace_btrfs_space_reservation(fs_info, "space_info",
5278 					      space_info->flags, orig_bytes, 1);
5279 		ret = 0;
5280 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5281 				  system_chunk)) {
5282 		space_info->bytes_may_use += orig_bytes;
5283 		trace_btrfs_space_reservation(fs_info, "space_info",
5284 					      space_info->flags, orig_bytes, 1);
5285 		ret = 0;
5286 	}
5287 
5288 	/*
5289 	 * If we couldn't make a reservation then setup our reservation ticket
5290 	 * and kick the async worker if it's not already running.
5291 	 *
5292 	 * If we are a priority flusher then we just need to add our ticket to
5293 	 * the list and we will do our own flushing further down.
5294 	 */
5295 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5296 		ticket.bytes = orig_bytes;
5297 		ticket.error = 0;
5298 		init_waitqueue_head(&ticket.wait);
5299 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5300 			list_add_tail(&ticket.list, &space_info->tickets);
5301 			if (!space_info->flush) {
5302 				space_info->flush = 1;
5303 				trace_btrfs_trigger_flush(fs_info,
5304 							  space_info->flags,
5305 							  orig_bytes, flush,
5306 							  "enospc");
5307 				queue_work(system_unbound_wq,
5308 					   &fs_info->async_reclaim_work);
5309 			}
5310 		} else {
5311 			list_add_tail(&ticket.list,
5312 				      &space_info->priority_tickets);
5313 		}
5314 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5315 		used += orig_bytes;
5316 		/*
5317 		 * We will do the space reservation dance during log replay,
5318 		 * which means we won't have fs_info->fs_root set, so don't do
5319 		 * the async reclaim as we will panic.
5320 		 */
5321 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5322 		    need_do_async_reclaim(fs_info, space_info,
5323 					  used, system_chunk) &&
5324 		    !work_busy(&fs_info->async_reclaim_work)) {
5325 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5326 						  orig_bytes, flush, "preempt");
5327 			queue_work(system_unbound_wq,
5328 				   &fs_info->async_reclaim_work);
5329 		}
5330 	}
5331 	spin_unlock(&space_info->lock);
5332 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5333 		return ret;
5334 
5335 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5336 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5337 					   orig_bytes);
5338 
5339 	ret = 0;
5340 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5341 	spin_lock(&space_info->lock);
5342 	if (ticket.bytes) {
5343 		if (ticket.bytes < orig_bytes) {
5344 			u64 num_bytes = orig_bytes - ticket.bytes;
5345 			space_info->bytes_may_use -= num_bytes;
5346 			trace_btrfs_space_reservation(fs_info, "space_info",
5347 						      space_info->flags,
5348 						      num_bytes, 0);
5349 
5350 		}
5351 		list_del_init(&ticket.list);
5352 		ret = -ENOSPC;
5353 	}
5354 	spin_unlock(&space_info->lock);
5355 	ASSERT(list_empty(&ticket.list));
5356 	return ret;
5357 }
5358 
5359 /**
5360  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5361  * @root - the root we're allocating for
5362  * @block_rsv - the block_rsv we're allocating for
5363  * @orig_bytes - the number of bytes we want
5364  * @flush - whether or not we can flush to make our reservation
5365  *
5366  * This will reserve orgi_bytes number of bytes from the space info associated
5367  * with the block_rsv.  If there is not enough space it will make an attempt to
5368  * flush out space to make room.  It will do this by flushing delalloc if
5369  * possible or committing the transaction.  If flush is 0 then no attempts to
5370  * regain reservations will be made and this will fail if there is not enough
5371  * space already.
5372  */
5373 static int reserve_metadata_bytes(struct btrfs_root *root,
5374 				  struct btrfs_block_rsv *block_rsv,
5375 				  u64 orig_bytes,
5376 				  enum btrfs_reserve_flush_enum flush)
5377 {
5378 	struct btrfs_fs_info *fs_info = root->fs_info;
5379 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5380 	int ret;
5381 	bool system_chunk = (root == fs_info->chunk_root);
5382 
5383 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5384 				       orig_bytes, flush, system_chunk);
5385 	if (ret == -ENOSPC &&
5386 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5387 		if (block_rsv != global_rsv &&
5388 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5389 			ret = 0;
5390 	}
5391 	if (ret == -ENOSPC) {
5392 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5393 					      block_rsv->space_info->flags,
5394 					      orig_bytes, 1);
5395 
5396 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5397 			dump_space_info(fs_info, block_rsv->space_info,
5398 					orig_bytes, 0);
5399 	}
5400 	return ret;
5401 }
5402 
5403 static struct btrfs_block_rsv *get_block_rsv(
5404 					const struct btrfs_trans_handle *trans,
5405 					const struct btrfs_root *root)
5406 {
5407 	struct btrfs_fs_info *fs_info = root->fs_info;
5408 	struct btrfs_block_rsv *block_rsv = NULL;
5409 
5410 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5411 	    (root == fs_info->csum_root && trans->adding_csums) ||
5412 	    (root == fs_info->uuid_root))
5413 		block_rsv = trans->block_rsv;
5414 
5415 	if (!block_rsv)
5416 		block_rsv = root->block_rsv;
5417 
5418 	if (!block_rsv)
5419 		block_rsv = &fs_info->empty_block_rsv;
5420 
5421 	return block_rsv;
5422 }
5423 
5424 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5425 			       u64 num_bytes)
5426 {
5427 	int ret = -ENOSPC;
5428 	spin_lock(&block_rsv->lock);
5429 	if (block_rsv->reserved >= num_bytes) {
5430 		block_rsv->reserved -= num_bytes;
5431 		if (block_rsv->reserved < block_rsv->size)
5432 			block_rsv->full = 0;
5433 		ret = 0;
5434 	}
5435 	spin_unlock(&block_rsv->lock);
5436 	return ret;
5437 }
5438 
5439 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5440 				u64 num_bytes, int update_size)
5441 {
5442 	spin_lock(&block_rsv->lock);
5443 	block_rsv->reserved += num_bytes;
5444 	if (update_size)
5445 		block_rsv->size += num_bytes;
5446 	else if (block_rsv->reserved >= block_rsv->size)
5447 		block_rsv->full = 1;
5448 	spin_unlock(&block_rsv->lock);
5449 }
5450 
5451 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5452 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5453 			     int min_factor)
5454 {
5455 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5456 	u64 min_bytes;
5457 
5458 	if (global_rsv->space_info != dest->space_info)
5459 		return -ENOSPC;
5460 
5461 	spin_lock(&global_rsv->lock);
5462 	min_bytes = div_factor(global_rsv->size, min_factor);
5463 	if (global_rsv->reserved < min_bytes + num_bytes) {
5464 		spin_unlock(&global_rsv->lock);
5465 		return -ENOSPC;
5466 	}
5467 	global_rsv->reserved -= num_bytes;
5468 	if (global_rsv->reserved < global_rsv->size)
5469 		global_rsv->full = 0;
5470 	spin_unlock(&global_rsv->lock);
5471 
5472 	block_rsv_add_bytes(dest, num_bytes, 1);
5473 	return 0;
5474 }
5475 
5476 /*
5477  * This is for space we already have accounted in space_info->bytes_may_use, so
5478  * basically when we're returning space from block_rsv's.
5479  */
5480 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5481 				     struct btrfs_space_info *space_info,
5482 				     u64 num_bytes)
5483 {
5484 	struct reserve_ticket *ticket;
5485 	struct list_head *head;
5486 	u64 used;
5487 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5488 	bool check_overcommit = false;
5489 
5490 	spin_lock(&space_info->lock);
5491 	head = &space_info->priority_tickets;
5492 
5493 	/*
5494 	 * If we are over our limit then we need to check and see if we can
5495 	 * overcommit, and if we can't then we just need to free up our space
5496 	 * and not satisfy any requests.
5497 	 */
5498 	used = btrfs_space_info_used(space_info, true);
5499 	if (used - num_bytes >= space_info->total_bytes)
5500 		check_overcommit = true;
5501 again:
5502 	while (!list_empty(head) && num_bytes) {
5503 		ticket = list_first_entry(head, struct reserve_ticket,
5504 					  list);
5505 		/*
5506 		 * We use 0 bytes because this space is already reserved, so
5507 		 * adding the ticket space would be a double count.
5508 		 */
5509 		if (check_overcommit &&
5510 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5511 			break;
5512 		if (num_bytes >= ticket->bytes) {
5513 			list_del_init(&ticket->list);
5514 			num_bytes -= ticket->bytes;
5515 			ticket->bytes = 0;
5516 			space_info->tickets_id++;
5517 			wake_up(&ticket->wait);
5518 		} else {
5519 			ticket->bytes -= num_bytes;
5520 			num_bytes = 0;
5521 		}
5522 	}
5523 
5524 	if (num_bytes && head == &space_info->priority_tickets) {
5525 		head = &space_info->tickets;
5526 		flush = BTRFS_RESERVE_FLUSH_ALL;
5527 		goto again;
5528 	}
5529 	space_info->bytes_may_use -= num_bytes;
5530 	trace_btrfs_space_reservation(fs_info, "space_info",
5531 				      space_info->flags, num_bytes, 0);
5532 	spin_unlock(&space_info->lock);
5533 }
5534 
5535 /*
5536  * This is for newly allocated space that isn't accounted in
5537  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5538  * we use this helper.
5539  */
5540 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5541 				     struct btrfs_space_info *space_info,
5542 				     u64 num_bytes)
5543 {
5544 	struct reserve_ticket *ticket;
5545 	struct list_head *head = &space_info->priority_tickets;
5546 
5547 again:
5548 	while (!list_empty(head) && num_bytes) {
5549 		ticket = list_first_entry(head, struct reserve_ticket,
5550 					  list);
5551 		if (num_bytes >= ticket->bytes) {
5552 			trace_btrfs_space_reservation(fs_info, "space_info",
5553 						      space_info->flags,
5554 						      ticket->bytes, 1);
5555 			list_del_init(&ticket->list);
5556 			num_bytes -= ticket->bytes;
5557 			space_info->bytes_may_use += ticket->bytes;
5558 			ticket->bytes = 0;
5559 			space_info->tickets_id++;
5560 			wake_up(&ticket->wait);
5561 		} else {
5562 			trace_btrfs_space_reservation(fs_info, "space_info",
5563 						      space_info->flags,
5564 						      num_bytes, 1);
5565 			space_info->bytes_may_use += num_bytes;
5566 			ticket->bytes -= num_bytes;
5567 			num_bytes = 0;
5568 		}
5569 	}
5570 
5571 	if (num_bytes && head == &space_info->priority_tickets) {
5572 		head = &space_info->tickets;
5573 		goto again;
5574 	}
5575 }
5576 
5577 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5578 				    struct btrfs_block_rsv *block_rsv,
5579 				    struct btrfs_block_rsv *dest, u64 num_bytes,
5580 				    u64 *qgroup_to_release_ret)
5581 {
5582 	struct btrfs_space_info *space_info = block_rsv->space_info;
5583 	u64 qgroup_to_release = 0;
5584 	u64 ret;
5585 
5586 	spin_lock(&block_rsv->lock);
5587 	if (num_bytes == (u64)-1) {
5588 		num_bytes = block_rsv->size;
5589 		qgroup_to_release = block_rsv->qgroup_rsv_size;
5590 	}
5591 	block_rsv->size -= num_bytes;
5592 	if (block_rsv->reserved >= block_rsv->size) {
5593 		num_bytes = block_rsv->reserved - block_rsv->size;
5594 		block_rsv->reserved = block_rsv->size;
5595 		block_rsv->full = 1;
5596 	} else {
5597 		num_bytes = 0;
5598 	}
5599 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5600 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5601 				    block_rsv->qgroup_rsv_size;
5602 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5603 	} else {
5604 		qgroup_to_release = 0;
5605 	}
5606 	spin_unlock(&block_rsv->lock);
5607 
5608 	ret = num_bytes;
5609 	if (num_bytes > 0) {
5610 		if (dest) {
5611 			spin_lock(&dest->lock);
5612 			if (!dest->full) {
5613 				u64 bytes_to_add;
5614 
5615 				bytes_to_add = dest->size - dest->reserved;
5616 				bytes_to_add = min(num_bytes, bytes_to_add);
5617 				dest->reserved += bytes_to_add;
5618 				if (dest->reserved >= dest->size)
5619 					dest->full = 1;
5620 				num_bytes -= bytes_to_add;
5621 			}
5622 			spin_unlock(&dest->lock);
5623 		}
5624 		if (num_bytes)
5625 			space_info_add_old_bytes(fs_info, space_info,
5626 						 num_bytes);
5627 	}
5628 	if (qgroup_to_release_ret)
5629 		*qgroup_to_release_ret = qgroup_to_release;
5630 	return ret;
5631 }
5632 
5633 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5634 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5635 			    int update_size)
5636 {
5637 	int ret;
5638 
5639 	ret = block_rsv_use_bytes(src, num_bytes);
5640 	if (ret)
5641 		return ret;
5642 
5643 	block_rsv_add_bytes(dst, num_bytes, update_size);
5644 	return 0;
5645 }
5646 
5647 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5648 {
5649 	memset(rsv, 0, sizeof(*rsv));
5650 	spin_lock_init(&rsv->lock);
5651 	rsv->type = type;
5652 }
5653 
5654 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5655 				   struct btrfs_block_rsv *rsv,
5656 				   unsigned short type)
5657 {
5658 	btrfs_init_block_rsv(rsv, type);
5659 	rsv->space_info = __find_space_info(fs_info,
5660 					    BTRFS_BLOCK_GROUP_METADATA);
5661 }
5662 
5663 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5664 					      unsigned short type)
5665 {
5666 	struct btrfs_block_rsv *block_rsv;
5667 
5668 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5669 	if (!block_rsv)
5670 		return NULL;
5671 
5672 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5673 	return block_rsv;
5674 }
5675 
5676 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5677 			  struct btrfs_block_rsv *rsv)
5678 {
5679 	if (!rsv)
5680 		return;
5681 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5682 	kfree(rsv);
5683 }
5684 
5685 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5686 {
5687 	kfree(rsv);
5688 }
5689 
5690 int btrfs_block_rsv_add(struct btrfs_root *root,
5691 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5692 			enum btrfs_reserve_flush_enum flush)
5693 {
5694 	int ret;
5695 
5696 	if (num_bytes == 0)
5697 		return 0;
5698 
5699 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5700 	if (!ret) {
5701 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5702 		return 0;
5703 	}
5704 
5705 	return ret;
5706 }
5707 
5708 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5709 {
5710 	u64 num_bytes = 0;
5711 	int ret = -ENOSPC;
5712 
5713 	if (!block_rsv)
5714 		return 0;
5715 
5716 	spin_lock(&block_rsv->lock);
5717 	num_bytes = div_factor(block_rsv->size, min_factor);
5718 	if (block_rsv->reserved >= num_bytes)
5719 		ret = 0;
5720 	spin_unlock(&block_rsv->lock);
5721 
5722 	return ret;
5723 }
5724 
5725 int btrfs_block_rsv_refill(struct btrfs_root *root,
5726 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5727 			   enum btrfs_reserve_flush_enum flush)
5728 {
5729 	u64 num_bytes = 0;
5730 	int ret = -ENOSPC;
5731 
5732 	if (!block_rsv)
5733 		return 0;
5734 
5735 	spin_lock(&block_rsv->lock);
5736 	num_bytes = min_reserved;
5737 	if (block_rsv->reserved >= num_bytes)
5738 		ret = 0;
5739 	else
5740 		num_bytes -= block_rsv->reserved;
5741 	spin_unlock(&block_rsv->lock);
5742 
5743 	if (!ret)
5744 		return 0;
5745 
5746 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5747 	if (!ret) {
5748 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5749 		return 0;
5750 	}
5751 
5752 	return ret;
5753 }
5754 
5755 /**
5756  * btrfs_inode_rsv_refill - refill the inode block rsv.
5757  * @inode - the inode we are refilling.
5758  * @flush - the flusing restriction.
5759  *
5760  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5761  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5762  * or return if we already have enough space.  This will also handle the resreve
5763  * tracepoint for the reserved amount.
5764  */
5765 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5766 				  enum btrfs_reserve_flush_enum flush)
5767 {
5768 	struct btrfs_root *root = inode->root;
5769 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5770 	u64 num_bytes = 0;
5771 	u64 qgroup_num_bytes = 0;
5772 	int ret = -ENOSPC;
5773 
5774 	spin_lock(&block_rsv->lock);
5775 	if (block_rsv->reserved < block_rsv->size)
5776 		num_bytes = block_rsv->size - block_rsv->reserved;
5777 	if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5778 		qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5779 				   block_rsv->qgroup_rsv_reserved;
5780 	spin_unlock(&block_rsv->lock);
5781 
5782 	if (num_bytes == 0)
5783 		return 0;
5784 
5785 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
5786 	if (ret)
5787 		return ret;
5788 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5789 	if (!ret) {
5790 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5791 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5792 					      btrfs_ino(inode), num_bytes, 1);
5793 
5794 		/* Don't forget to increase qgroup_rsv_reserved */
5795 		spin_lock(&block_rsv->lock);
5796 		block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5797 		spin_unlock(&block_rsv->lock);
5798 	} else
5799 		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5800 	return ret;
5801 }
5802 
5803 /**
5804  * btrfs_inode_rsv_release - release any excessive reservation.
5805  * @inode - the inode we need to release from.
5806  * @qgroup_free - free or convert qgroup meta.
5807  *   Unlike normal operation, qgroup meta reservation needs to know if we are
5808  *   freeing qgroup reservation or just converting it into per-trans.  Normally
5809  *   @qgroup_free is true for error handling, and false for normal release.
5810  *
5811  * This is the same as btrfs_block_rsv_release, except that it handles the
5812  * tracepoint for the reservation.
5813  */
5814 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5815 {
5816 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5817 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5818 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5819 	u64 released = 0;
5820 	u64 qgroup_to_release = 0;
5821 
5822 	/*
5823 	 * Since we statically set the block_rsv->size we just want to say we
5824 	 * are releasing 0 bytes, and then we'll just get the reservation over
5825 	 * the size free'd.
5826 	 */
5827 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5828 					   &qgroup_to_release);
5829 	if (released > 0)
5830 		trace_btrfs_space_reservation(fs_info, "delalloc",
5831 					      btrfs_ino(inode), released, 0);
5832 	if (qgroup_free)
5833 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5834 	else
5835 		btrfs_qgroup_convert_reserved_meta(inode->root,
5836 						   qgroup_to_release);
5837 }
5838 
5839 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5840 			     struct btrfs_block_rsv *block_rsv,
5841 			     u64 num_bytes)
5842 {
5843 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5844 
5845 	if (global_rsv == block_rsv ||
5846 	    block_rsv->space_info != global_rsv->space_info)
5847 		global_rsv = NULL;
5848 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
5849 }
5850 
5851 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5852 {
5853 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5854 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5855 	u64 num_bytes;
5856 
5857 	/*
5858 	 * The global block rsv is based on the size of the extent tree, the
5859 	 * checksum tree and the root tree.  If the fs is empty we want to set
5860 	 * it to a minimal amount for safety.
5861 	 */
5862 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5863 		btrfs_root_used(&fs_info->csum_root->root_item) +
5864 		btrfs_root_used(&fs_info->tree_root->root_item);
5865 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5866 
5867 	spin_lock(&sinfo->lock);
5868 	spin_lock(&block_rsv->lock);
5869 
5870 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5871 
5872 	if (block_rsv->reserved < block_rsv->size) {
5873 		num_bytes = btrfs_space_info_used(sinfo, true);
5874 		if (sinfo->total_bytes > num_bytes) {
5875 			num_bytes = sinfo->total_bytes - num_bytes;
5876 			num_bytes = min(num_bytes,
5877 					block_rsv->size - block_rsv->reserved);
5878 			block_rsv->reserved += num_bytes;
5879 			sinfo->bytes_may_use += num_bytes;
5880 			trace_btrfs_space_reservation(fs_info, "space_info",
5881 						      sinfo->flags, num_bytes,
5882 						      1);
5883 		}
5884 	} else if (block_rsv->reserved > block_rsv->size) {
5885 		num_bytes = block_rsv->reserved - block_rsv->size;
5886 		sinfo->bytes_may_use -= num_bytes;
5887 		trace_btrfs_space_reservation(fs_info, "space_info",
5888 				      sinfo->flags, num_bytes, 0);
5889 		block_rsv->reserved = block_rsv->size;
5890 	}
5891 
5892 	if (block_rsv->reserved == block_rsv->size)
5893 		block_rsv->full = 1;
5894 	else
5895 		block_rsv->full = 0;
5896 
5897 	spin_unlock(&block_rsv->lock);
5898 	spin_unlock(&sinfo->lock);
5899 }
5900 
5901 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5902 {
5903 	struct btrfs_space_info *space_info;
5904 
5905 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5906 	fs_info->chunk_block_rsv.space_info = space_info;
5907 
5908 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5909 	fs_info->global_block_rsv.space_info = space_info;
5910 	fs_info->trans_block_rsv.space_info = space_info;
5911 	fs_info->empty_block_rsv.space_info = space_info;
5912 	fs_info->delayed_block_rsv.space_info = space_info;
5913 
5914 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5915 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5916 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5917 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5918 	if (fs_info->quota_root)
5919 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5920 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5921 
5922 	update_global_block_rsv(fs_info);
5923 }
5924 
5925 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5926 {
5927 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5928 				(u64)-1, NULL);
5929 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5930 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5931 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5932 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5933 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5934 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5935 }
5936 
5937 
5938 /*
5939  * To be called after all the new block groups attached to the transaction
5940  * handle have been created (btrfs_create_pending_block_groups()).
5941  */
5942 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5943 {
5944 	struct btrfs_fs_info *fs_info = trans->fs_info;
5945 
5946 	if (!trans->chunk_bytes_reserved)
5947 		return;
5948 
5949 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5950 
5951 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5952 				trans->chunk_bytes_reserved, NULL);
5953 	trans->chunk_bytes_reserved = 0;
5954 }
5955 
5956 /* Can only return 0 or -ENOSPC */
5957 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5958 				  struct btrfs_inode *inode)
5959 {
5960 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5961 	struct btrfs_root *root = inode->root;
5962 	/*
5963 	 * We always use trans->block_rsv here as we will have reserved space
5964 	 * for our orphan when starting the transaction, using get_block_rsv()
5965 	 * here will sometimes make us choose the wrong block rsv as we could be
5966 	 * doing a reloc inode for a non refcounted root.
5967 	 */
5968 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5969 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5970 
5971 	/*
5972 	 * We need to hold space in order to delete our orphan item once we've
5973 	 * added it, so this takes the reservation so we can release it later
5974 	 * when we are truly done with the orphan item.
5975 	 */
5976 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5977 
5978 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5979 			num_bytes, 1);
5980 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5981 }
5982 
5983 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5984 {
5985 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5986 	struct btrfs_root *root = inode->root;
5987 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5988 
5989 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5990 			num_bytes, 0);
5991 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5992 }
5993 
5994 /*
5995  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5996  * root: the root of the parent directory
5997  * rsv: block reservation
5998  * items: the number of items that we need do reservation
5999  * qgroup_reserved: used to return the reserved size in qgroup
6000  *
6001  * This function is used to reserve the space for snapshot/subvolume
6002  * creation and deletion. Those operations are different with the
6003  * common file/directory operations, they change two fs/file trees
6004  * and root tree, the number of items that the qgroup reserves is
6005  * different with the free space reservation. So we can not use
6006  * the space reservation mechanism in start_transaction().
6007  */
6008 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6009 				     struct btrfs_block_rsv *rsv,
6010 				     int items,
6011 				     u64 *qgroup_reserved,
6012 				     bool use_global_rsv)
6013 {
6014 	u64 num_bytes;
6015 	int ret;
6016 	struct btrfs_fs_info *fs_info = root->fs_info;
6017 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6018 
6019 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6020 		/* One for parent inode, two for dir entries */
6021 		num_bytes = 3 * fs_info->nodesize;
6022 		ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
6023 		if (ret)
6024 			return ret;
6025 	} else {
6026 		num_bytes = 0;
6027 	}
6028 
6029 	*qgroup_reserved = num_bytes;
6030 
6031 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6032 	rsv->space_info = __find_space_info(fs_info,
6033 					    BTRFS_BLOCK_GROUP_METADATA);
6034 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6035 				  BTRFS_RESERVE_FLUSH_ALL);
6036 
6037 	if (ret == -ENOSPC && use_global_rsv)
6038 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6039 
6040 	if (ret && *qgroup_reserved)
6041 		btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
6042 
6043 	return ret;
6044 }
6045 
6046 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6047 				      struct btrfs_block_rsv *rsv)
6048 {
6049 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6050 }
6051 
6052 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6053 						 struct btrfs_inode *inode)
6054 {
6055 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6056 	u64 reserve_size = 0;
6057 	u64 qgroup_rsv_size = 0;
6058 	u64 csum_leaves;
6059 	unsigned outstanding_extents;
6060 
6061 	lockdep_assert_held(&inode->lock);
6062 	outstanding_extents = inode->outstanding_extents;
6063 	if (outstanding_extents)
6064 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6065 						outstanding_extents + 1);
6066 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6067 						 inode->csum_bytes);
6068 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6069 						       csum_leaves);
6070 	/*
6071 	 * For qgroup rsv, the calculation is very simple:
6072 	 * account one nodesize for each outstanding extent
6073 	 *
6074 	 * This is overestimating in most cases.
6075 	 */
6076 	qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6077 
6078 	spin_lock(&block_rsv->lock);
6079 	block_rsv->size = reserve_size;
6080 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6081 	spin_unlock(&block_rsv->lock);
6082 }
6083 
6084 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6085 {
6086 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6087 	unsigned nr_extents;
6088 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6089 	int ret = 0;
6090 	bool delalloc_lock = true;
6091 
6092 	/* If we are a free space inode we need to not flush since we will be in
6093 	 * the middle of a transaction commit.  We also don't need the delalloc
6094 	 * mutex since we won't race with anybody.  We need this mostly to make
6095 	 * lockdep shut its filthy mouth.
6096 	 *
6097 	 * If we have a transaction open (can happen if we call truncate_block
6098 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6099 	 */
6100 	if (btrfs_is_free_space_inode(inode)) {
6101 		flush = BTRFS_RESERVE_NO_FLUSH;
6102 		delalloc_lock = false;
6103 	} else {
6104 		if (current->journal_info)
6105 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
6106 
6107 		if (btrfs_transaction_in_commit(fs_info))
6108 			schedule_timeout(1);
6109 	}
6110 
6111 	if (delalloc_lock)
6112 		mutex_lock(&inode->delalloc_mutex);
6113 
6114 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6115 
6116 	/* Add our new extents and calculate the new rsv size. */
6117 	spin_lock(&inode->lock);
6118 	nr_extents = count_max_extents(num_bytes);
6119 	btrfs_mod_outstanding_extents(inode, nr_extents);
6120 	inode->csum_bytes += num_bytes;
6121 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6122 	spin_unlock(&inode->lock);
6123 
6124 	ret = btrfs_inode_rsv_refill(inode, flush);
6125 	if (unlikely(ret))
6126 		goto out_fail;
6127 
6128 	if (delalloc_lock)
6129 		mutex_unlock(&inode->delalloc_mutex);
6130 	return 0;
6131 
6132 out_fail:
6133 	spin_lock(&inode->lock);
6134 	nr_extents = count_max_extents(num_bytes);
6135 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6136 	inode->csum_bytes -= num_bytes;
6137 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6138 	spin_unlock(&inode->lock);
6139 
6140 	btrfs_inode_rsv_release(inode, true);
6141 	if (delalloc_lock)
6142 		mutex_unlock(&inode->delalloc_mutex);
6143 	return ret;
6144 }
6145 
6146 /**
6147  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6148  * @inode: the inode to release the reservation for.
6149  * @num_bytes: the number of bytes we are releasing.
6150  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6151  *
6152  * This will release the metadata reservation for an inode.  This can be called
6153  * once we complete IO for a given set of bytes to release their metadata
6154  * reservations, or on error for the same reason.
6155  */
6156 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6157 				     bool qgroup_free)
6158 {
6159 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6160 
6161 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6162 	spin_lock(&inode->lock);
6163 	inode->csum_bytes -= num_bytes;
6164 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6165 	spin_unlock(&inode->lock);
6166 
6167 	if (btrfs_is_testing(fs_info))
6168 		return;
6169 
6170 	btrfs_inode_rsv_release(inode, qgroup_free);
6171 }
6172 
6173 /**
6174  * btrfs_delalloc_release_extents - release our outstanding_extents
6175  * @inode: the inode to balance the reservation for.
6176  * @num_bytes: the number of bytes we originally reserved with
6177  * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6178  *
6179  * When we reserve space we increase outstanding_extents for the extents we may
6180  * add.  Once we've set the range as delalloc or created our ordered extents we
6181  * have outstanding_extents to track the real usage, so we use this to free our
6182  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6183  * with btrfs_delalloc_reserve_metadata.
6184  */
6185 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6186 				    bool qgroup_free)
6187 {
6188 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6189 	unsigned num_extents;
6190 
6191 	spin_lock(&inode->lock);
6192 	num_extents = count_max_extents(num_bytes);
6193 	btrfs_mod_outstanding_extents(inode, -num_extents);
6194 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6195 	spin_unlock(&inode->lock);
6196 
6197 	if (btrfs_is_testing(fs_info))
6198 		return;
6199 
6200 	btrfs_inode_rsv_release(inode, qgroup_free);
6201 }
6202 
6203 /**
6204  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6205  * delalloc
6206  * @inode: inode we're writing to
6207  * @start: start range we are writing to
6208  * @len: how long the range we are writing to
6209  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6210  * 	      current reservation.
6211  *
6212  * This will do the following things
6213  *
6214  * o reserve space in data space info for num bytes
6215  *   and reserve precious corresponding qgroup space
6216  *   (Done in check_data_free_space)
6217  *
6218  * o reserve space for metadata space, based on the number of outstanding
6219  *   extents and how much csums will be needed
6220  *   also reserve metadata space in a per root over-reserve method.
6221  * o add to the inodes->delalloc_bytes
6222  * o add it to the fs_info's delalloc inodes list.
6223  *   (Above 3 all done in delalloc_reserve_metadata)
6224  *
6225  * Return 0 for success
6226  * Return <0 for error(-ENOSPC or -EQUOT)
6227  */
6228 int btrfs_delalloc_reserve_space(struct inode *inode,
6229 			struct extent_changeset **reserved, u64 start, u64 len)
6230 {
6231 	int ret;
6232 
6233 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6234 	if (ret < 0)
6235 		return ret;
6236 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6237 	if (ret < 0)
6238 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6239 	return ret;
6240 }
6241 
6242 /**
6243  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6244  * @inode: inode we're releasing space for
6245  * @start: start position of the space already reserved
6246  * @len: the len of the space already reserved
6247  * @release_bytes: the len of the space we consumed or didn't use
6248  *
6249  * This function will release the metadata space that was not used and will
6250  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6251  * list if there are no delalloc bytes left.
6252  * Also it will handle the qgroup reserved space.
6253  */
6254 void btrfs_delalloc_release_space(struct inode *inode,
6255 				  struct extent_changeset *reserved,
6256 				  u64 start, u64 len, bool qgroup_free)
6257 {
6258 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6259 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6260 }
6261 
6262 static int update_block_group(struct btrfs_trans_handle *trans,
6263 			      struct btrfs_fs_info *info, u64 bytenr,
6264 			      u64 num_bytes, int alloc)
6265 {
6266 	struct btrfs_block_group_cache *cache = NULL;
6267 	u64 total = num_bytes;
6268 	u64 old_val;
6269 	u64 byte_in_group;
6270 	int factor;
6271 
6272 	/* block accounting for super block */
6273 	spin_lock(&info->delalloc_root_lock);
6274 	old_val = btrfs_super_bytes_used(info->super_copy);
6275 	if (alloc)
6276 		old_val += num_bytes;
6277 	else
6278 		old_val -= num_bytes;
6279 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6280 	spin_unlock(&info->delalloc_root_lock);
6281 
6282 	while (total) {
6283 		cache = btrfs_lookup_block_group(info, bytenr);
6284 		if (!cache)
6285 			return -ENOENT;
6286 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6287 				    BTRFS_BLOCK_GROUP_RAID1 |
6288 				    BTRFS_BLOCK_GROUP_RAID10))
6289 			factor = 2;
6290 		else
6291 			factor = 1;
6292 		/*
6293 		 * If this block group has free space cache written out, we
6294 		 * need to make sure to load it if we are removing space.  This
6295 		 * is because we need the unpinning stage to actually add the
6296 		 * space back to the block group, otherwise we will leak space.
6297 		 */
6298 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6299 			cache_block_group(cache, 1);
6300 
6301 		byte_in_group = bytenr - cache->key.objectid;
6302 		WARN_ON(byte_in_group > cache->key.offset);
6303 
6304 		spin_lock(&cache->space_info->lock);
6305 		spin_lock(&cache->lock);
6306 
6307 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6308 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6309 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6310 
6311 		old_val = btrfs_block_group_used(&cache->item);
6312 		num_bytes = min(total, cache->key.offset - byte_in_group);
6313 		if (alloc) {
6314 			old_val += num_bytes;
6315 			btrfs_set_block_group_used(&cache->item, old_val);
6316 			cache->reserved -= num_bytes;
6317 			cache->space_info->bytes_reserved -= num_bytes;
6318 			cache->space_info->bytes_used += num_bytes;
6319 			cache->space_info->disk_used += num_bytes * factor;
6320 			spin_unlock(&cache->lock);
6321 			spin_unlock(&cache->space_info->lock);
6322 		} else {
6323 			old_val -= num_bytes;
6324 			btrfs_set_block_group_used(&cache->item, old_val);
6325 			cache->pinned += num_bytes;
6326 			cache->space_info->bytes_pinned += num_bytes;
6327 			cache->space_info->bytes_used -= num_bytes;
6328 			cache->space_info->disk_used -= num_bytes * factor;
6329 			spin_unlock(&cache->lock);
6330 			spin_unlock(&cache->space_info->lock);
6331 
6332 			trace_btrfs_space_reservation(info, "pinned",
6333 						      cache->space_info->flags,
6334 						      num_bytes, 1);
6335 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
6336 					   num_bytes);
6337 			set_extent_dirty(info->pinned_extents,
6338 					 bytenr, bytenr + num_bytes - 1,
6339 					 GFP_NOFS | __GFP_NOFAIL);
6340 		}
6341 
6342 		spin_lock(&trans->transaction->dirty_bgs_lock);
6343 		if (list_empty(&cache->dirty_list)) {
6344 			list_add_tail(&cache->dirty_list,
6345 				      &trans->transaction->dirty_bgs);
6346 				trans->transaction->num_dirty_bgs++;
6347 			btrfs_get_block_group(cache);
6348 		}
6349 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6350 
6351 		/*
6352 		 * No longer have used bytes in this block group, queue it for
6353 		 * deletion. We do this after adding the block group to the
6354 		 * dirty list to avoid races between cleaner kthread and space
6355 		 * cache writeout.
6356 		 */
6357 		if (!alloc && old_val == 0) {
6358 			spin_lock(&info->unused_bgs_lock);
6359 			if (list_empty(&cache->bg_list)) {
6360 				btrfs_get_block_group(cache);
6361 				trace_btrfs_add_unused_block_group(cache);
6362 				list_add_tail(&cache->bg_list,
6363 					      &info->unused_bgs);
6364 			}
6365 			spin_unlock(&info->unused_bgs_lock);
6366 		}
6367 
6368 		btrfs_put_block_group(cache);
6369 		total -= num_bytes;
6370 		bytenr += num_bytes;
6371 	}
6372 	return 0;
6373 }
6374 
6375 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6376 {
6377 	struct btrfs_block_group_cache *cache;
6378 	u64 bytenr;
6379 
6380 	spin_lock(&fs_info->block_group_cache_lock);
6381 	bytenr = fs_info->first_logical_byte;
6382 	spin_unlock(&fs_info->block_group_cache_lock);
6383 
6384 	if (bytenr < (u64)-1)
6385 		return bytenr;
6386 
6387 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6388 	if (!cache)
6389 		return 0;
6390 
6391 	bytenr = cache->key.objectid;
6392 	btrfs_put_block_group(cache);
6393 
6394 	return bytenr;
6395 }
6396 
6397 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6398 			   struct btrfs_block_group_cache *cache,
6399 			   u64 bytenr, u64 num_bytes, int reserved)
6400 {
6401 	spin_lock(&cache->space_info->lock);
6402 	spin_lock(&cache->lock);
6403 	cache->pinned += num_bytes;
6404 	cache->space_info->bytes_pinned += num_bytes;
6405 	if (reserved) {
6406 		cache->reserved -= num_bytes;
6407 		cache->space_info->bytes_reserved -= num_bytes;
6408 	}
6409 	spin_unlock(&cache->lock);
6410 	spin_unlock(&cache->space_info->lock);
6411 
6412 	trace_btrfs_space_reservation(fs_info, "pinned",
6413 				      cache->space_info->flags, num_bytes, 1);
6414 	percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6415 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6416 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6417 	return 0;
6418 }
6419 
6420 /*
6421  * this function must be called within transaction
6422  */
6423 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6424 		     u64 bytenr, u64 num_bytes, int reserved)
6425 {
6426 	struct btrfs_block_group_cache *cache;
6427 
6428 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6429 	BUG_ON(!cache); /* Logic error */
6430 
6431 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6432 
6433 	btrfs_put_block_group(cache);
6434 	return 0;
6435 }
6436 
6437 /*
6438  * this function must be called within transaction
6439  */
6440 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6441 				    u64 bytenr, u64 num_bytes)
6442 {
6443 	struct btrfs_block_group_cache *cache;
6444 	int ret;
6445 
6446 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6447 	if (!cache)
6448 		return -EINVAL;
6449 
6450 	/*
6451 	 * pull in the free space cache (if any) so that our pin
6452 	 * removes the free space from the cache.  We have load_only set
6453 	 * to one because the slow code to read in the free extents does check
6454 	 * the pinned extents.
6455 	 */
6456 	cache_block_group(cache, 1);
6457 
6458 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6459 
6460 	/* remove us from the free space cache (if we're there at all) */
6461 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6462 	btrfs_put_block_group(cache);
6463 	return ret;
6464 }
6465 
6466 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6467 				   u64 start, u64 num_bytes)
6468 {
6469 	int ret;
6470 	struct btrfs_block_group_cache *block_group;
6471 	struct btrfs_caching_control *caching_ctl;
6472 
6473 	block_group = btrfs_lookup_block_group(fs_info, start);
6474 	if (!block_group)
6475 		return -EINVAL;
6476 
6477 	cache_block_group(block_group, 0);
6478 	caching_ctl = get_caching_control(block_group);
6479 
6480 	if (!caching_ctl) {
6481 		/* Logic error */
6482 		BUG_ON(!block_group_cache_done(block_group));
6483 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6484 	} else {
6485 		mutex_lock(&caching_ctl->mutex);
6486 
6487 		if (start >= caching_ctl->progress) {
6488 			ret = add_excluded_extent(fs_info, start, num_bytes);
6489 		} else if (start + num_bytes <= caching_ctl->progress) {
6490 			ret = btrfs_remove_free_space(block_group,
6491 						      start, num_bytes);
6492 		} else {
6493 			num_bytes = caching_ctl->progress - start;
6494 			ret = btrfs_remove_free_space(block_group,
6495 						      start, num_bytes);
6496 			if (ret)
6497 				goto out_lock;
6498 
6499 			num_bytes = (start + num_bytes) -
6500 				caching_ctl->progress;
6501 			start = caching_ctl->progress;
6502 			ret = add_excluded_extent(fs_info, start, num_bytes);
6503 		}
6504 out_lock:
6505 		mutex_unlock(&caching_ctl->mutex);
6506 		put_caching_control(caching_ctl);
6507 	}
6508 	btrfs_put_block_group(block_group);
6509 	return ret;
6510 }
6511 
6512 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6513 				 struct extent_buffer *eb)
6514 {
6515 	struct btrfs_file_extent_item *item;
6516 	struct btrfs_key key;
6517 	int found_type;
6518 	int i;
6519 
6520 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6521 		return 0;
6522 
6523 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6524 		btrfs_item_key_to_cpu(eb, &key, i);
6525 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6526 			continue;
6527 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6528 		found_type = btrfs_file_extent_type(eb, item);
6529 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6530 			continue;
6531 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6532 			continue;
6533 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6534 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6535 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6536 	}
6537 
6538 	return 0;
6539 }
6540 
6541 static void
6542 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6543 {
6544 	atomic_inc(&bg->reservations);
6545 }
6546 
6547 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6548 					const u64 start)
6549 {
6550 	struct btrfs_block_group_cache *bg;
6551 
6552 	bg = btrfs_lookup_block_group(fs_info, start);
6553 	ASSERT(bg);
6554 	if (atomic_dec_and_test(&bg->reservations))
6555 		wake_up_var(&bg->reservations);
6556 	btrfs_put_block_group(bg);
6557 }
6558 
6559 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6560 {
6561 	struct btrfs_space_info *space_info = bg->space_info;
6562 
6563 	ASSERT(bg->ro);
6564 
6565 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6566 		return;
6567 
6568 	/*
6569 	 * Our block group is read only but before we set it to read only,
6570 	 * some task might have had allocated an extent from it already, but it
6571 	 * has not yet created a respective ordered extent (and added it to a
6572 	 * root's list of ordered extents).
6573 	 * Therefore wait for any task currently allocating extents, since the
6574 	 * block group's reservations counter is incremented while a read lock
6575 	 * on the groups' semaphore is held and decremented after releasing
6576 	 * the read access on that semaphore and creating the ordered extent.
6577 	 */
6578 	down_write(&space_info->groups_sem);
6579 	up_write(&space_info->groups_sem);
6580 
6581 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6582 }
6583 
6584 /**
6585  * btrfs_add_reserved_bytes - update the block_group and space info counters
6586  * @cache:	The cache we are manipulating
6587  * @ram_bytes:  The number of bytes of file content, and will be same to
6588  *              @num_bytes except for the compress path.
6589  * @num_bytes:	The number of bytes in question
6590  * @delalloc:   The blocks are allocated for the delalloc write
6591  *
6592  * This is called by the allocator when it reserves space. If this is a
6593  * reservation and the block group has become read only we cannot make the
6594  * reservation and return -EAGAIN, otherwise this function always succeeds.
6595  */
6596 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6597 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6598 {
6599 	struct btrfs_space_info *space_info = cache->space_info;
6600 	int ret = 0;
6601 
6602 	spin_lock(&space_info->lock);
6603 	spin_lock(&cache->lock);
6604 	if (cache->ro) {
6605 		ret = -EAGAIN;
6606 	} else {
6607 		cache->reserved += num_bytes;
6608 		space_info->bytes_reserved += num_bytes;
6609 
6610 		trace_btrfs_space_reservation(cache->fs_info,
6611 				"space_info", space_info->flags,
6612 				ram_bytes, 0);
6613 		space_info->bytes_may_use -= ram_bytes;
6614 		if (delalloc)
6615 			cache->delalloc_bytes += num_bytes;
6616 	}
6617 	spin_unlock(&cache->lock);
6618 	spin_unlock(&space_info->lock);
6619 	return ret;
6620 }
6621 
6622 /**
6623  * btrfs_free_reserved_bytes - update the block_group and space info counters
6624  * @cache:      The cache we are manipulating
6625  * @num_bytes:  The number of bytes in question
6626  * @delalloc:   The blocks are allocated for the delalloc write
6627  *
6628  * This is called by somebody who is freeing space that was never actually used
6629  * on disk.  For example if you reserve some space for a new leaf in transaction
6630  * A and before transaction A commits you free that leaf, you call this with
6631  * reserve set to 0 in order to clear the reservation.
6632  */
6633 
6634 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6635 				     u64 num_bytes, int delalloc)
6636 {
6637 	struct btrfs_space_info *space_info = cache->space_info;
6638 	int ret = 0;
6639 
6640 	spin_lock(&space_info->lock);
6641 	spin_lock(&cache->lock);
6642 	if (cache->ro)
6643 		space_info->bytes_readonly += num_bytes;
6644 	cache->reserved -= num_bytes;
6645 	space_info->bytes_reserved -= num_bytes;
6646 
6647 	if (delalloc)
6648 		cache->delalloc_bytes -= num_bytes;
6649 	spin_unlock(&cache->lock);
6650 	spin_unlock(&space_info->lock);
6651 	return ret;
6652 }
6653 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6654 {
6655 	struct btrfs_caching_control *next;
6656 	struct btrfs_caching_control *caching_ctl;
6657 	struct btrfs_block_group_cache *cache;
6658 
6659 	down_write(&fs_info->commit_root_sem);
6660 
6661 	list_for_each_entry_safe(caching_ctl, next,
6662 				 &fs_info->caching_block_groups, list) {
6663 		cache = caching_ctl->block_group;
6664 		if (block_group_cache_done(cache)) {
6665 			cache->last_byte_to_unpin = (u64)-1;
6666 			list_del_init(&caching_ctl->list);
6667 			put_caching_control(caching_ctl);
6668 		} else {
6669 			cache->last_byte_to_unpin = caching_ctl->progress;
6670 		}
6671 	}
6672 
6673 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6674 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6675 	else
6676 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6677 
6678 	up_write(&fs_info->commit_root_sem);
6679 
6680 	update_global_block_rsv(fs_info);
6681 }
6682 
6683 /*
6684  * Returns the free cluster for the given space info and sets empty_cluster to
6685  * what it should be based on the mount options.
6686  */
6687 static struct btrfs_free_cluster *
6688 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6689 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6690 {
6691 	struct btrfs_free_cluster *ret = NULL;
6692 
6693 	*empty_cluster = 0;
6694 	if (btrfs_mixed_space_info(space_info))
6695 		return ret;
6696 
6697 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6698 		ret = &fs_info->meta_alloc_cluster;
6699 		if (btrfs_test_opt(fs_info, SSD))
6700 			*empty_cluster = SZ_2M;
6701 		else
6702 			*empty_cluster = SZ_64K;
6703 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6704 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6705 		*empty_cluster = SZ_2M;
6706 		ret = &fs_info->data_alloc_cluster;
6707 	}
6708 
6709 	return ret;
6710 }
6711 
6712 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6713 			      u64 start, u64 end,
6714 			      const bool return_free_space)
6715 {
6716 	struct btrfs_block_group_cache *cache = NULL;
6717 	struct btrfs_space_info *space_info;
6718 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6719 	struct btrfs_free_cluster *cluster = NULL;
6720 	u64 len;
6721 	u64 total_unpinned = 0;
6722 	u64 empty_cluster = 0;
6723 	bool readonly;
6724 
6725 	while (start <= end) {
6726 		readonly = false;
6727 		if (!cache ||
6728 		    start >= cache->key.objectid + cache->key.offset) {
6729 			if (cache)
6730 				btrfs_put_block_group(cache);
6731 			total_unpinned = 0;
6732 			cache = btrfs_lookup_block_group(fs_info, start);
6733 			BUG_ON(!cache); /* Logic error */
6734 
6735 			cluster = fetch_cluster_info(fs_info,
6736 						     cache->space_info,
6737 						     &empty_cluster);
6738 			empty_cluster <<= 1;
6739 		}
6740 
6741 		len = cache->key.objectid + cache->key.offset - start;
6742 		len = min(len, end + 1 - start);
6743 
6744 		if (start < cache->last_byte_to_unpin) {
6745 			len = min(len, cache->last_byte_to_unpin - start);
6746 			if (return_free_space)
6747 				btrfs_add_free_space(cache, start, len);
6748 		}
6749 
6750 		start += len;
6751 		total_unpinned += len;
6752 		space_info = cache->space_info;
6753 
6754 		/*
6755 		 * If this space cluster has been marked as fragmented and we've
6756 		 * unpinned enough in this block group to potentially allow a
6757 		 * cluster to be created inside of it go ahead and clear the
6758 		 * fragmented check.
6759 		 */
6760 		if (cluster && cluster->fragmented &&
6761 		    total_unpinned > empty_cluster) {
6762 			spin_lock(&cluster->lock);
6763 			cluster->fragmented = 0;
6764 			spin_unlock(&cluster->lock);
6765 		}
6766 
6767 		spin_lock(&space_info->lock);
6768 		spin_lock(&cache->lock);
6769 		cache->pinned -= len;
6770 		space_info->bytes_pinned -= len;
6771 
6772 		trace_btrfs_space_reservation(fs_info, "pinned",
6773 					      space_info->flags, len, 0);
6774 		space_info->max_extent_size = 0;
6775 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6776 		if (cache->ro) {
6777 			space_info->bytes_readonly += len;
6778 			readonly = true;
6779 		}
6780 		spin_unlock(&cache->lock);
6781 		if (!readonly && return_free_space &&
6782 		    global_rsv->space_info == space_info) {
6783 			u64 to_add = len;
6784 
6785 			spin_lock(&global_rsv->lock);
6786 			if (!global_rsv->full) {
6787 				to_add = min(len, global_rsv->size -
6788 					     global_rsv->reserved);
6789 				global_rsv->reserved += to_add;
6790 				space_info->bytes_may_use += to_add;
6791 				if (global_rsv->reserved >= global_rsv->size)
6792 					global_rsv->full = 1;
6793 				trace_btrfs_space_reservation(fs_info,
6794 							      "space_info",
6795 							      space_info->flags,
6796 							      to_add, 1);
6797 				len -= to_add;
6798 			}
6799 			spin_unlock(&global_rsv->lock);
6800 			/* Add to any tickets we may have */
6801 			if (len)
6802 				space_info_add_new_bytes(fs_info, space_info,
6803 							 len);
6804 		}
6805 		spin_unlock(&space_info->lock);
6806 	}
6807 
6808 	if (cache)
6809 		btrfs_put_block_group(cache);
6810 	return 0;
6811 }
6812 
6813 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6814 {
6815 	struct btrfs_fs_info *fs_info = trans->fs_info;
6816 	struct btrfs_block_group_cache *block_group, *tmp;
6817 	struct list_head *deleted_bgs;
6818 	struct extent_io_tree *unpin;
6819 	u64 start;
6820 	u64 end;
6821 	int ret;
6822 
6823 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6824 		unpin = &fs_info->freed_extents[1];
6825 	else
6826 		unpin = &fs_info->freed_extents[0];
6827 
6828 	while (!trans->aborted) {
6829 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6830 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6831 					    EXTENT_DIRTY, NULL);
6832 		if (ret) {
6833 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6834 			break;
6835 		}
6836 
6837 		if (btrfs_test_opt(fs_info, DISCARD))
6838 			ret = btrfs_discard_extent(fs_info, start,
6839 						   end + 1 - start, NULL);
6840 
6841 		clear_extent_dirty(unpin, start, end);
6842 		unpin_extent_range(fs_info, start, end, true);
6843 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6844 		cond_resched();
6845 	}
6846 
6847 	/*
6848 	 * Transaction is finished.  We don't need the lock anymore.  We
6849 	 * do need to clean up the block groups in case of a transaction
6850 	 * abort.
6851 	 */
6852 	deleted_bgs = &trans->transaction->deleted_bgs;
6853 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6854 		u64 trimmed = 0;
6855 
6856 		ret = -EROFS;
6857 		if (!trans->aborted)
6858 			ret = btrfs_discard_extent(fs_info,
6859 						   block_group->key.objectid,
6860 						   block_group->key.offset,
6861 						   &trimmed);
6862 
6863 		list_del_init(&block_group->bg_list);
6864 		btrfs_put_block_group_trimming(block_group);
6865 		btrfs_put_block_group(block_group);
6866 
6867 		if (ret) {
6868 			const char *errstr = btrfs_decode_error(ret);
6869 			btrfs_warn(fs_info,
6870 			   "discard failed while removing blockgroup: errno=%d %s",
6871 				   ret, errstr);
6872 		}
6873 	}
6874 
6875 	return 0;
6876 }
6877 
6878 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6879 				struct btrfs_fs_info *info,
6880 				struct btrfs_delayed_ref_node *node, u64 parent,
6881 				u64 root_objectid, u64 owner_objectid,
6882 				u64 owner_offset, int refs_to_drop,
6883 				struct btrfs_delayed_extent_op *extent_op)
6884 {
6885 	struct btrfs_key key;
6886 	struct btrfs_path *path;
6887 	struct btrfs_root *extent_root = info->extent_root;
6888 	struct extent_buffer *leaf;
6889 	struct btrfs_extent_item *ei;
6890 	struct btrfs_extent_inline_ref *iref;
6891 	int ret;
6892 	int is_data;
6893 	int extent_slot = 0;
6894 	int found_extent = 0;
6895 	int num_to_del = 1;
6896 	u32 item_size;
6897 	u64 refs;
6898 	u64 bytenr = node->bytenr;
6899 	u64 num_bytes = node->num_bytes;
6900 	int last_ref = 0;
6901 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6902 
6903 	path = btrfs_alloc_path();
6904 	if (!path)
6905 		return -ENOMEM;
6906 
6907 	path->reada = READA_FORWARD;
6908 	path->leave_spinning = 1;
6909 
6910 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6911 	BUG_ON(!is_data && refs_to_drop != 1);
6912 
6913 	if (is_data)
6914 		skinny_metadata = false;
6915 
6916 	ret = lookup_extent_backref(trans, info, path, &iref,
6917 				    bytenr, num_bytes, parent,
6918 				    root_objectid, owner_objectid,
6919 				    owner_offset);
6920 	if (ret == 0) {
6921 		extent_slot = path->slots[0];
6922 		while (extent_slot >= 0) {
6923 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6924 					      extent_slot);
6925 			if (key.objectid != bytenr)
6926 				break;
6927 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6928 			    key.offset == num_bytes) {
6929 				found_extent = 1;
6930 				break;
6931 			}
6932 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6933 			    key.offset == owner_objectid) {
6934 				found_extent = 1;
6935 				break;
6936 			}
6937 			if (path->slots[0] - extent_slot > 5)
6938 				break;
6939 			extent_slot--;
6940 		}
6941 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6942 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6943 		if (found_extent && item_size < sizeof(*ei))
6944 			found_extent = 0;
6945 #endif
6946 		if (!found_extent) {
6947 			BUG_ON(iref);
6948 			ret = remove_extent_backref(trans, info, path, NULL,
6949 						    refs_to_drop,
6950 						    is_data, &last_ref);
6951 			if (ret) {
6952 				btrfs_abort_transaction(trans, ret);
6953 				goto out;
6954 			}
6955 			btrfs_release_path(path);
6956 			path->leave_spinning = 1;
6957 
6958 			key.objectid = bytenr;
6959 			key.type = BTRFS_EXTENT_ITEM_KEY;
6960 			key.offset = num_bytes;
6961 
6962 			if (!is_data && skinny_metadata) {
6963 				key.type = BTRFS_METADATA_ITEM_KEY;
6964 				key.offset = owner_objectid;
6965 			}
6966 
6967 			ret = btrfs_search_slot(trans, extent_root,
6968 						&key, path, -1, 1);
6969 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6970 				/*
6971 				 * Couldn't find our skinny metadata item,
6972 				 * see if we have ye olde extent item.
6973 				 */
6974 				path->slots[0]--;
6975 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6976 						      path->slots[0]);
6977 				if (key.objectid == bytenr &&
6978 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6979 				    key.offset == num_bytes)
6980 					ret = 0;
6981 			}
6982 
6983 			if (ret > 0 && skinny_metadata) {
6984 				skinny_metadata = false;
6985 				key.objectid = bytenr;
6986 				key.type = BTRFS_EXTENT_ITEM_KEY;
6987 				key.offset = num_bytes;
6988 				btrfs_release_path(path);
6989 				ret = btrfs_search_slot(trans, extent_root,
6990 							&key, path, -1, 1);
6991 			}
6992 
6993 			if (ret) {
6994 				btrfs_err(info,
6995 					  "umm, got %d back from search, was looking for %llu",
6996 					  ret, bytenr);
6997 				if (ret > 0)
6998 					btrfs_print_leaf(path->nodes[0]);
6999 			}
7000 			if (ret < 0) {
7001 				btrfs_abort_transaction(trans, ret);
7002 				goto out;
7003 			}
7004 			extent_slot = path->slots[0];
7005 		}
7006 	} else if (WARN_ON(ret == -ENOENT)) {
7007 		btrfs_print_leaf(path->nodes[0]);
7008 		btrfs_err(info,
7009 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
7010 			bytenr, parent, root_objectid, owner_objectid,
7011 			owner_offset);
7012 		btrfs_abort_transaction(trans, ret);
7013 		goto out;
7014 	} else {
7015 		btrfs_abort_transaction(trans, ret);
7016 		goto out;
7017 	}
7018 
7019 	leaf = path->nodes[0];
7020 	item_size = btrfs_item_size_nr(leaf, extent_slot);
7021 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7022 	if (item_size < sizeof(*ei)) {
7023 		BUG_ON(found_extent || extent_slot != path->slots[0]);
7024 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7025 					     0);
7026 		if (ret < 0) {
7027 			btrfs_abort_transaction(trans, ret);
7028 			goto out;
7029 		}
7030 
7031 		btrfs_release_path(path);
7032 		path->leave_spinning = 1;
7033 
7034 		key.objectid = bytenr;
7035 		key.type = BTRFS_EXTENT_ITEM_KEY;
7036 		key.offset = num_bytes;
7037 
7038 		ret = btrfs_search_slot(trans, extent_root, &key, path,
7039 					-1, 1);
7040 		if (ret) {
7041 			btrfs_err(info,
7042 				  "umm, got %d back from search, was looking for %llu",
7043 				ret, bytenr);
7044 			btrfs_print_leaf(path->nodes[0]);
7045 		}
7046 		if (ret < 0) {
7047 			btrfs_abort_transaction(trans, ret);
7048 			goto out;
7049 		}
7050 
7051 		extent_slot = path->slots[0];
7052 		leaf = path->nodes[0];
7053 		item_size = btrfs_item_size_nr(leaf, extent_slot);
7054 	}
7055 #endif
7056 	BUG_ON(item_size < sizeof(*ei));
7057 	ei = btrfs_item_ptr(leaf, extent_slot,
7058 			    struct btrfs_extent_item);
7059 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7060 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7061 		struct btrfs_tree_block_info *bi;
7062 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7063 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7064 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7065 	}
7066 
7067 	refs = btrfs_extent_refs(leaf, ei);
7068 	if (refs < refs_to_drop) {
7069 		btrfs_err(info,
7070 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7071 			  refs_to_drop, refs, bytenr);
7072 		ret = -EINVAL;
7073 		btrfs_abort_transaction(trans, ret);
7074 		goto out;
7075 	}
7076 	refs -= refs_to_drop;
7077 
7078 	if (refs > 0) {
7079 		if (extent_op)
7080 			__run_delayed_extent_op(extent_op, leaf, ei);
7081 		/*
7082 		 * In the case of inline back ref, reference count will
7083 		 * be updated by remove_extent_backref
7084 		 */
7085 		if (iref) {
7086 			BUG_ON(!found_extent);
7087 		} else {
7088 			btrfs_set_extent_refs(leaf, ei, refs);
7089 			btrfs_mark_buffer_dirty(leaf);
7090 		}
7091 		if (found_extent) {
7092 			ret = remove_extent_backref(trans, info, path,
7093 						    iref, refs_to_drop,
7094 						    is_data, &last_ref);
7095 			if (ret) {
7096 				btrfs_abort_transaction(trans, ret);
7097 				goto out;
7098 			}
7099 		}
7100 	} else {
7101 		if (found_extent) {
7102 			BUG_ON(is_data && refs_to_drop !=
7103 			       extent_data_ref_count(path, iref));
7104 			if (iref) {
7105 				BUG_ON(path->slots[0] != extent_slot);
7106 			} else {
7107 				BUG_ON(path->slots[0] != extent_slot + 1);
7108 				path->slots[0] = extent_slot;
7109 				num_to_del = 2;
7110 			}
7111 		}
7112 
7113 		last_ref = 1;
7114 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7115 				      num_to_del);
7116 		if (ret) {
7117 			btrfs_abort_transaction(trans, ret);
7118 			goto out;
7119 		}
7120 		btrfs_release_path(path);
7121 
7122 		if (is_data) {
7123 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7124 			if (ret) {
7125 				btrfs_abort_transaction(trans, ret);
7126 				goto out;
7127 			}
7128 		}
7129 
7130 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7131 		if (ret) {
7132 			btrfs_abort_transaction(trans, ret);
7133 			goto out;
7134 		}
7135 
7136 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7137 		if (ret) {
7138 			btrfs_abort_transaction(trans, ret);
7139 			goto out;
7140 		}
7141 	}
7142 	btrfs_release_path(path);
7143 
7144 out:
7145 	btrfs_free_path(path);
7146 	return ret;
7147 }
7148 
7149 /*
7150  * when we free an block, it is possible (and likely) that we free the last
7151  * delayed ref for that extent as well.  This searches the delayed ref tree for
7152  * a given extent, and if there are no other delayed refs to be processed, it
7153  * removes it from the tree.
7154  */
7155 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7156 				      u64 bytenr)
7157 {
7158 	struct btrfs_delayed_ref_head *head;
7159 	struct btrfs_delayed_ref_root *delayed_refs;
7160 	int ret = 0;
7161 
7162 	delayed_refs = &trans->transaction->delayed_refs;
7163 	spin_lock(&delayed_refs->lock);
7164 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7165 	if (!head)
7166 		goto out_delayed_unlock;
7167 
7168 	spin_lock(&head->lock);
7169 	if (!RB_EMPTY_ROOT(&head->ref_tree))
7170 		goto out;
7171 
7172 	if (head->extent_op) {
7173 		if (!head->must_insert_reserved)
7174 			goto out;
7175 		btrfs_free_delayed_extent_op(head->extent_op);
7176 		head->extent_op = NULL;
7177 	}
7178 
7179 	/*
7180 	 * waiting for the lock here would deadlock.  If someone else has it
7181 	 * locked they are already in the process of dropping it anyway
7182 	 */
7183 	if (!mutex_trylock(&head->mutex))
7184 		goto out;
7185 
7186 	/*
7187 	 * at this point we have a head with no other entries.  Go
7188 	 * ahead and process it.
7189 	 */
7190 	rb_erase(&head->href_node, &delayed_refs->href_root);
7191 	RB_CLEAR_NODE(&head->href_node);
7192 	atomic_dec(&delayed_refs->num_entries);
7193 
7194 	/*
7195 	 * we don't take a ref on the node because we're removing it from the
7196 	 * tree, so we just steal the ref the tree was holding.
7197 	 */
7198 	delayed_refs->num_heads--;
7199 	if (head->processing == 0)
7200 		delayed_refs->num_heads_ready--;
7201 	head->processing = 0;
7202 	spin_unlock(&head->lock);
7203 	spin_unlock(&delayed_refs->lock);
7204 
7205 	BUG_ON(head->extent_op);
7206 	if (head->must_insert_reserved)
7207 		ret = 1;
7208 
7209 	mutex_unlock(&head->mutex);
7210 	btrfs_put_delayed_ref_head(head);
7211 	return ret;
7212 out:
7213 	spin_unlock(&head->lock);
7214 
7215 out_delayed_unlock:
7216 	spin_unlock(&delayed_refs->lock);
7217 	return 0;
7218 }
7219 
7220 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7221 			   struct btrfs_root *root,
7222 			   struct extent_buffer *buf,
7223 			   u64 parent, int last_ref)
7224 {
7225 	struct btrfs_fs_info *fs_info = root->fs_info;
7226 	int pin = 1;
7227 	int ret;
7228 
7229 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7230 		int old_ref_mod, new_ref_mod;
7231 
7232 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7233 				   root->root_key.objectid,
7234 				   btrfs_header_level(buf), 0,
7235 				   BTRFS_DROP_DELAYED_REF);
7236 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7237 						 buf->len, parent,
7238 						 root->root_key.objectid,
7239 						 btrfs_header_level(buf),
7240 						 BTRFS_DROP_DELAYED_REF, NULL,
7241 						 &old_ref_mod, &new_ref_mod);
7242 		BUG_ON(ret); /* -ENOMEM */
7243 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7244 	}
7245 
7246 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7247 		struct btrfs_block_group_cache *cache;
7248 
7249 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7250 			ret = check_ref_cleanup(trans, buf->start);
7251 			if (!ret)
7252 				goto out;
7253 		}
7254 
7255 		pin = 0;
7256 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7257 
7258 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7259 			pin_down_extent(fs_info, cache, buf->start,
7260 					buf->len, 1);
7261 			btrfs_put_block_group(cache);
7262 			goto out;
7263 		}
7264 
7265 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7266 
7267 		btrfs_add_free_space(cache, buf->start, buf->len);
7268 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7269 		btrfs_put_block_group(cache);
7270 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7271 	}
7272 out:
7273 	if (pin)
7274 		add_pinned_bytes(fs_info, buf->len, true,
7275 				 root->root_key.objectid);
7276 
7277 	if (last_ref) {
7278 		/*
7279 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7280 		 * matter anymore.
7281 		 */
7282 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7283 	}
7284 }
7285 
7286 /* Can return -ENOMEM */
7287 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7288 		      struct btrfs_root *root,
7289 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7290 		      u64 owner, u64 offset)
7291 {
7292 	struct btrfs_fs_info *fs_info = root->fs_info;
7293 	int old_ref_mod, new_ref_mod;
7294 	int ret;
7295 
7296 	if (btrfs_is_testing(fs_info))
7297 		return 0;
7298 
7299 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7300 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7301 				   root_objectid, owner, offset,
7302 				   BTRFS_DROP_DELAYED_REF);
7303 
7304 	/*
7305 	 * tree log blocks never actually go into the extent allocation
7306 	 * tree, just update pinning info and exit early.
7307 	 */
7308 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7309 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7310 		/* unlocks the pinned mutex */
7311 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7312 		old_ref_mod = new_ref_mod = 0;
7313 		ret = 0;
7314 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7315 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7316 						 num_bytes, parent,
7317 						 root_objectid, (int)owner,
7318 						 BTRFS_DROP_DELAYED_REF, NULL,
7319 						 &old_ref_mod, &new_ref_mod);
7320 	} else {
7321 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7322 						 num_bytes, parent,
7323 						 root_objectid, owner, offset,
7324 						 0, BTRFS_DROP_DELAYED_REF,
7325 						 &old_ref_mod, &new_ref_mod);
7326 	}
7327 
7328 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7329 		bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7330 
7331 		add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7332 	}
7333 
7334 	return ret;
7335 }
7336 
7337 /*
7338  * when we wait for progress in the block group caching, its because
7339  * our allocation attempt failed at least once.  So, we must sleep
7340  * and let some progress happen before we try again.
7341  *
7342  * This function will sleep at least once waiting for new free space to
7343  * show up, and then it will check the block group free space numbers
7344  * for our min num_bytes.  Another option is to have it go ahead
7345  * and look in the rbtree for a free extent of a given size, but this
7346  * is a good start.
7347  *
7348  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7349  * any of the information in this block group.
7350  */
7351 static noinline void
7352 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7353 				u64 num_bytes)
7354 {
7355 	struct btrfs_caching_control *caching_ctl;
7356 
7357 	caching_ctl = get_caching_control(cache);
7358 	if (!caching_ctl)
7359 		return;
7360 
7361 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7362 		   (cache->free_space_ctl->free_space >= num_bytes));
7363 
7364 	put_caching_control(caching_ctl);
7365 }
7366 
7367 static noinline int
7368 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7369 {
7370 	struct btrfs_caching_control *caching_ctl;
7371 	int ret = 0;
7372 
7373 	caching_ctl = get_caching_control(cache);
7374 	if (!caching_ctl)
7375 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7376 
7377 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7378 	if (cache->cached == BTRFS_CACHE_ERROR)
7379 		ret = -EIO;
7380 	put_caching_control(caching_ctl);
7381 	return ret;
7382 }
7383 
7384 enum btrfs_loop_type {
7385 	LOOP_CACHING_NOWAIT = 0,
7386 	LOOP_CACHING_WAIT = 1,
7387 	LOOP_ALLOC_CHUNK = 2,
7388 	LOOP_NO_EMPTY_SIZE = 3,
7389 };
7390 
7391 static inline void
7392 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7393 		       int delalloc)
7394 {
7395 	if (delalloc)
7396 		down_read(&cache->data_rwsem);
7397 }
7398 
7399 static inline void
7400 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7401 		       int delalloc)
7402 {
7403 	btrfs_get_block_group(cache);
7404 	if (delalloc)
7405 		down_read(&cache->data_rwsem);
7406 }
7407 
7408 static struct btrfs_block_group_cache *
7409 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7410 		   struct btrfs_free_cluster *cluster,
7411 		   int delalloc)
7412 {
7413 	struct btrfs_block_group_cache *used_bg = NULL;
7414 
7415 	spin_lock(&cluster->refill_lock);
7416 	while (1) {
7417 		used_bg = cluster->block_group;
7418 		if (!used_bg)
7419 			return NULL;
7420 
7421 		if (used_bg == block_group)
7422 			return used_bg;
7423 
7424 		btrfs_get_block_group(used_bg);
7425 
7426 		if (!delalloc)
7427 			return used_bg;
7428 
7429 		if (down_read_trylock(&used_bg->data_rwsem))
7430 			return used_bg;
7431 
7432 		spin_unlock(&cluster->refill_lock);
7433 
7434 		/* We should only have one-level nested. */
7435 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7436 
7437 		spin_lock(&cluster->refill_lock);
7438 		if (used_bg == cluster->block_group)
7439 			return used_bg;
7440 
7441 		up_read(&used_bg->data_rwsem);
7442 		btrfs_put_block_group(used_bg);
7443 	}
7444 }
7445 
7446 static inline void
7447 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7448 			 int delalloc)
7449 {
7450 	if (delalloc)
7451 		up_read(&cache->data_rwsem);
7452 	btrfs_put_block_group(cache);
7453 }
7454 
7455 /*
7456  * walks the btree of allocated extents and find a hole of a given size.
7457  * The key ins is changed to record the hole:
7458  * ins->objectid == start position
7459  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7460  * ins->offset == the size of the hole.
7461  * Any available blocks before search_start are skipped.
7462  *
7463  * If there is no suitable free space, we will record the max size of
7464  * the free space extent currently.
7465  */
7466 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7467 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7468 				u64 hint_byte, struct btrfs_key *ins,
7469 				u64 flags, int delalloc)
7470 {
7471 	int ret = 0;
7472 	struct btrfs_root *root = fs_info->extent_root;
7473 	struct btrfs_free_cluster *last_ptr = NULL;
7474 	struct btrfs_block_group_cache *block_group = NULL;
7475 	u64 search_start = 0;
7476 	u64 max_extent_size = 0;
7477 	u64 empty_cluster = 0;
7478 	struct btrfs_space_info *space_info;
7479 	int loop = 0;
7480 	int index = btrfs_bg_flags_to_raid_index(flags);
7481 	bool failed_cluster_refill = false;
7482 	bool failed_alloc = false;
7483 	bool use_cluster = true;
7484 	bool have_caching_bg = false;
7485 	bool orig_have_caching_bg = false;
7486 	bool full_search = false;
7487 
7488 	WARN_ON(num_bytes < fs_info->sectorsize);
7489 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7490 	ins->objectid = 0;
7491 	ins->offset = 0;
7492 
7493 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7494 
7495 	space_info = __find_space_info(fs_info, flags);
7496 	if (!space_info) {
7497 		btrfs_err(fs_info, "No space info for %llu", flags);
7498 		return -ENOSPC;
7499 	}
7500 
7501 	/*
7502 	 * If our free space is heavily fragmented we may not be able to make
7503 	 * big contiguous allocations, so instead of doing the expensive search
7504 	 * for free space, simply return ENOSPC with our max_extent_size so we
7505 	 * can go ahead and search for a more manageable chunk.
7506 	 *
7507 	 * If our max_extent_size is large enough for our allocation simply
7508 	 * disable clustering since we will likely not be able to find enough
7509 	 * space to create a cluster and induce latency trying.
7510 	 */
7511 	if (unlikely(space_info->max_extent_size)) {
7512 		spin_lock(&space_info->lock);
7513 		if (space_info->max_extent_size &&
7514 		    num_bytes > space_info->max_extent_size) {
7515 			ins->offset = space_info->max_extent_size;
7516 			spin_unlock(&space_info->lock);
7517 			return -ENOSPC;
7518 		} else if (space_info->max_extent_size) {
7519 			use_cluster = false;
7520 		}
7521 		spin_unlock(&space_info->lock);
7522 	}
7523 
7524 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7525 	if (last_ptr) {
7526 		spin_lock(&last_ptr->lock);
7527 		if (last_ptr->block_group)
7528 			hint_byte = last_ptr->window_start;
7529 		if (last_ptr->fragmented) {
7530 			/*
7531 			 * We still set window_start so we can keep track of the
7532 			 * last place we found an allocation to try and save
7533 			 * some time.
7534 			 */
7535 			hint_byte = last_ptr->window_start;
7536 			use_cluster = false;
7537 		}
7538 		spin_unlock(&last_ptr->lock);
7539 	}
7540 
7541 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7542 	search_start = max(search_start, hint_byte);
7543 	if (search_start == hint_byte) {
7544 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7545 		/*
7546 		 * we don't want to use the block group if it doesn't match our
7547 		 * allocation bits, or if its not cached.
7548 		 *
7549 		 * However if we are re-searching with an ideal block group
7550 		 * picked out then we don't care that the block group is cached.
7551 		 */
7552 		if (block_group && block_group_bits(block_group, flags) &&
7553 		    block_group->cached != BTRFS_CACHE_NO) {
7554 			down_read(&space_info->groups_sem);
7555 			if (list_empty(&block_group->list) ||
7556 			    block_group->ro) {
7557 				/*
7558 				 * someone is removing this block group,
7559 				 * we can't jump into the have_block_group
7560 				 * target because our list pointers are not
7561 				 * valid
7562 				 */
7563 				btrfs_put_block_group(block_group);
7564 				up_read(&space_info->groups_sem);
7565 			} else {
7566 				index = btrfs_bg_flags_to_raid_index(
7567 						block_group->flags);
7568 				btrfs_lock_block_group(block_group, delalloc);
7569 				goto have_block_group;
7570 			}
7571 		} else if (block_group) {
7572 			btrfs_put_block_group(block_group);
7573 		}
7574 	}
7575 search:
7576 	have_caching_bg = false;
7577 	if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7578 		full_search = true;
7579 	down_read(&space_info->groups_sem);
7580 	list_for_each_entry(block_group, &space_info->block_groups[index],
7581 			    list) {
7582 		u64 offset;
7583 		int cached;
7584 
7585 		/* If the block group is read-only, we can skip it entirely. */
7586 		if (unlikely(block_group->ro))
7587 			continue;
7588 
7589 		btrfs_grab_block_group(block_group, delalloc);
7590 		search_start = block_group->key.objectid;
7591 
7592 		/*
7593 		 * this can happen if we end up cycling through all the
7594 		 * raid types, but we want to make sure we only allocate
7595 		 * for the proper type.
7596 		 */
7597 		if (!block_group_bits(block_group, flags)) {
7598 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7599 				BTRFS_BLOCK_GROUP_RAID1 |
7600 				BTRFS_BLOCK_GROUP_RAID5 |
7601 				BTRFS_BLOCK_GROUP_RAID6 |
7602 				BTRFS_BLOCK_GROUP_RAID10;
7603 
7604 			/*
7605 			 * if they asked for extra copies and this block group
7606 			 * doesn't provide them, bail.  This does allow us to
7607 			 * fill raid0 from raid1.
7608 			 */
7609 			if ((flags & extra) && !(block_group->flags & extra))
7610 				goto loop;
7611 		}
7612 
7613 have_block_group:
7614 		cached = block_group_cache_done(block_group);
7615 		if (unlikely(!cached)) {
7616 			have_caching_bg = true;
7617 			ret = cache_block_group(block_group, 0);
7618 			BUG_ON(ret < 0);
7619 			ret = 0;
7620 		}
7621 
7622 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7623 			goto loop;
7624 
7625 		/*
7626 		 * Ok we want to try and use the cluster allocator, so
7627 		 * lets look there
7628 		 */
7629 		if (last_ptr && use_cluster) {
7630 			struct btrfs_block_group_cache *used_block_group;
7631 			unsigned long aligned_cluster;
7632 			/*
7633 			 * the refill lock keeps out other
7634 			 * people trying to start a new cluster
7635 			 */
7636 			used_block_group = btrfs_lock_cluster(block_group,
7637 							      last_ptr,
7638 							      delalloc);
7639 			if (!used_block_group)
7640 				goto refill_cluster;
7641 
7642 			if (used_block_group != block_group &&
7643 			    (used_block_group->ro ||
7644 			     !block_group_bits(used_block_group, flags)))
7645 				goto release_cluster;
7646 
7647 			offset = btrfs_alloc_from_cluster(used_block_group,
7648 						last_ptr,
7649 						num_bytes,
7650 						used_block_group->key.objectid,
7651 						&max_extent_size);
7652 			if (offset) {
7653 				/* we have a block, we're done */
7654 				spin_unlock(&last_ptr->refill_lock);
7655 				trace_btrfs_reserve_extent_cluster(
7656 						used_block_group,
7657 						search_start, num_bytes);
7658 				if (used_block_group != block_group) {
7659 					btrfs_release_block_group(block_group,
7660 								  delalloc);
7661 					block_group = used_block_group;
7662 				}
7663 				goto checks;
7664 			}
7665 
7666 			WARN_ON(last_ptr->block_group != used_block_group);
7667 release_cluster:
7668 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7669 			 * set up a new clusters, so lets just skip it
7670 			 * and let the allocator find whatever block
7671 			 * it can find.  If we reach this point, we
7672 			 * will have tried the cluster allocator
7673 			 * plenty of times and not have found
7674 			 * anything, so we are likely way too
7675 			 * fragmented for the clustering stuff to find
7676 			 * anything.
7677 			 *
7678 			 * However, if the cluster is taken from the
7679 			 * current block group, release the cluster
7680 			 * first, so that we stand a better chance of
7681 			 * succeeding in the unclustered
7682 			 * allocation.  */
7683 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7684 			    used_block_group != block_group) {
7685 				spin_unlock(&last_ptr->refill_lock);
7686 				btrfs_release_block_group(used_block_group,
7687 							  delalloc);
7688 				goto unclustered_alloc;
7689 			}
7690 
7691 			/*
7692 			 * this cluster didn't work out, free it and
7693 			 * start over
7694 			 */
7695 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7696 
7697 			if (used_block_group != block_group)
7698 				btrfs_release_block_group(used_block_group,
7699 							  delalloc);
7700 refill_cluster:
7701 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7702 				spin_unlock(&last_ptr->refill_lock);
7703 				goto unclustered_alloc;
7704 			}
7705 
7706 			aligned_cluster = max_t(unsigned long,
7707 						empty_cluster + empty_size,
7708 					      block_group->full_stripe_len);
7709 
7710 			/* allocate a cluster in this block group */
7711 			ret = btrfs_find_space_cluster(fs_info, block_group,
7712 						       last_ptr, search_start,
7713 						       num_bytes,
7714 						       aligned_cluster);
7715 			if (ret == 0) {
7716 				/*
7717 				 * now pull our allocation out of this
7718 				 * cluster
7719 				 */
7720 				offset = btrfs_alloc_from_cluster(block_group,
7721 							last_ptr,
7722 							num_bytes,
7723 							search_start,
7724 							&max_extent_size);
7725 				if (offset) {
7726 					/* we found one, proceed */
7727 					spin_unlock(&last_ptr->refill_lock);
7728 					trace_btrfs_reserve_extent_cluster(
7729 						block_group, search_start,
7730 						num_bytes);
7731 					goto checks;
7732 				}
7733 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7734 				   && !failed_cluster_refill) {
7735 				spin_unlock(&last_ptr->refill_lock);
7736 
7737 				failed_cluster_refill = true;
7738 				wait_block_group_cache_progress(block_group,
7739 				       num_bytes + empty_cluster + empty_size);
7740 				goto have_block_group;
7741 			}
7742 
7743 			/*
7744 			 * at this point we either didn't find a cluster
7745 			 * or we weren't able to allocate a block from our
7746 			 * cluster.  Free the cluster we've been trying
7747 			 * to use, and go to the next block group
7748 			 */
7749 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7750 			spin_unlock(&last_ptr->refill_lock);
7751 			goto loop;
7752 		}
7753 
7754 unclustered_alloc:
7755 		/*
7756 		 * We are doing an unclustered alloc, set the fragmented flag so
7757 		 * we don't bother trying to setup a cluster again until we get
7758 		 * more space.
7759 		 */
7760 		if (unlikely(last_ptr)) {
7761 			spin_lock(&last_ptr->lock);
7762 			last_ptr->fragmented = 1;
7763 			spin_unlock(&last_ptr->lock);
7764 		}
7765 		if (cached) {
7766 			struct btrfs_free_space_ctl *ctl =
7767 				block_group->free_space_ctl;
7768 
7769 			spin_lock(&ctl->tree_lock);
7770 			if (ctl->free_space <
7771 			    num_bytes + empty_cluster + empty_size) {
7772 				if (ctl->free_space > max_extent_size)
7773 					max_extent_size = ctl->free_space;
7774 				spin_unlock(&ctl->tree_lock);
7775 				goto loop;
7776 			}
7777 			spin_unlock(&ctl->tree_lock);
7778 		}
7779 
7780 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7781 						    num_bytes, empty_size,
7782 						    &max_extent_size);
7783 		/*
7784 		 * If we didn't find a chunk, and we haven't failed on this
7785 		 * block group before, and this block group is in the middle of
7786 		 * caching and we are ok with waiting, then go ahead and wait
7787 		 * for progress to be made, and set failed_alloc to true.
7788 		 *
7789 		 * If failed_alloc is true then we've already waited on this
7790 		 * block group once and should move on to the next block group.
7791 		 */
7792 		if (!offset && !failed_alloc && !cached &&
7793 		    loop > LOOP_CACHING_NOWAIT) {
7794 			wait_block_group_cache_progress(block_group,
7795 						num_bytes + empty_size);
7796 			failed_alloc = true;
7797 			goto have_block_group;
7798 		} else if (!offset) {
7799 			goto loop;
7800 		}
7801 checks:
7802 		search_start = ALIGN(offset, fs_info->stripesize);
7803 
7804 		/* move on to the next group */
7805 		if (search_start + num_bytes >
7806 		    block_group->key.objectid + block_group->key.offset) {
7807 			btrfs_add_free_space(block_group, offset, num_bytes);
7808 			goto loop;
7809 		}
7810 
7811 		if (offset < search_start)
7812 			btrfs_add_free_space(block_group, offset,
7813 					     search_start - offset);
7814 		BUG_ON(offset > search_start);
7815 
7816 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7817 				num_bytes, delalloc);
7818 		if (ret == -EAGAIN) {
7819 			btrfs_add_free_space(block_group, offset, num_bytes);
7820 			goto loop;
7821 		}
7822 		btrfs_inc_block_group_reservations(block_group);
7823 
7824 		/* we are all good, lets return */
7825 		ins->objectid = search_start;
7826 		ins->offset = num_bytes;
7827 
7828 		trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
7829 		btrfs_release_block_group(block_group, delalloc);
7830 		break;
7831 loop:
7832 		failed_cluster_refill = false;
7833 		failed_alloc = false;
7834 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7835 		       index);
7836 		btrfs_release_block_group(block_group, delalloc);
7837 		cond_resched();
7838 	}
7839 	up_read(&space_info->groups_sem);
7840 
7841 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7842 		&& !orig_have_caching_bg)
7843 		orig_have_caching_bg = true;
7844 
7845 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7846 		goto search;
7847 
7848 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7849 		goto search;
7850 
7851 	/*
7852 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7853 	 *			caching kthreads as we move along
7854 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7855 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7856 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7857 	 *			again
7858 	 */
7859 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7860 		index = 0;
7861 		if (loop == LOOP_CACHING_NOWAIT) {
7862 			/*
7863 			 * We want to skip the LOOP_CACHING_WAIT step if we
7864 			 * don't have any uncached bgs and we've already done a
7865 			 * full search through.
7866 			 */
7867 			if (orig_have_caching_bg || !full_search)
7868 				loop = LOOP_CACHING_WAIT;
7869 			else
7870 				loop = LOOP_ALLOC_CHUNK;
7871 		} else {
7872 			loop++;
7873 		}
7874 
7875 		if (loop == LOOP_ALLOC_CHUNK) {
7876 			struct btrfs_trans_handle *trans;
7877 			int exist = 0;
7878 
7879 			trans = current->journal_info;
7880 			if (trans)
7881 				exist = 1;
7882 			else
7883 				trans = btrfs_join_transaction(root);
7884 
7885 			if (IS_ERR(trans)) {
7886 				ret = PTR_ERR(trans);
7887 				goto out;
7888 			}
7889 
7890 			ret = do_chunk_alloc(trans, fs_info, flags,
7891 					     CHUNK_ALLOC_FORCE);
7892 
7893 			/*
7894 			 * If we can't allocate a new chunk we've already looped
7895 			 * through at least once, move on to the NO_EMPTY_SIZE
7896 			 * case.
7897 			 */
7898 			if (ret == -ENOSPC)
7899 				loop = LOOP_NO_EMPTY_SIZE;
7900 
7901 			/*
7902 			 * Do not bail out on ENOSPC since we
7903 			 * can do more things.
7904 			 */
7905 			if (ret < 0 && ret != -ENOSPC)
7906 				btrfs_abort_transaction(trans, ret);
7907 			else
7908 				ret = 0;
7909 			if (!exist)
7910 				btrfs_end_transaction(trans);
7911 			if (ret)
7912 				goto out;
7913 		}
7914 
7915 		if (loop == LOOP_NO_EMPTY_SIZE) {
7916 			/*
7917 			 * Don't loop again if we already have no empty_size and
7918 			 * no empty_cluster.
7919 			 */
7920 			if (empty_size == 0 &&
7921 			    empty_cluster == 0) {
7922 				ret = -ENOSPC;
7923 				goto out;
7924 			}
7925 			empty_size = 0;
7926 			empty_cluster = 0;
7927 		}
7928 
7929 		goto search;
7930 	} else if (!ins->objectid) {
7931 		ret = -ENOSPC;
7932 	} else if (ins->objectid) {
7933 		if (!use_cluster && last_ptr) {
7934 			spin_lock(&last_ptr->lock);
7935 			last_ptr->window_start = ins->objectid;
7936 			spin_unlock(&last_ptr->lock);
7937 		}
7938 		ret = 0;
7939 	}
7940 out:
7941 	if (ret == -ENOSPC) {
7942 		spin_lock(&space_info->lock);
7943 		space_info->max_extent_size = max_extent_size;
7944 		spin_unlock(&space_info->lock);
7945 		ins->offset = max_extent_size;
7946 	}
7947 	return ret;
7948 }
7949 
7950 static void dump_space_info(struct btrfs_fs_info *fs_info,
7951 			    struct btrfs_space_info *info, u64 bytes,
7952 			    int dump_block_groups)
7953 {
7954 	struct btrfs_block_group_cache *cache;
7955 	int index = 0;
7956 
7957 	spin_lock(&info->lock);
7958 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7959 		   info->flags,
7960 		   info->total_bytes - btrfs_space_info_used(info, true),
7961 		   info->full ? "" : "not ");
7962 	btrfs_info(fs_info,
7963 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7964 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7965 		info->bytes_reserved, info->bytes_may_use,
7966 		info->bytes_readonly);
7967 	spin_unlock(&info->lock);
7968 
7969 	if (!dump_block_groups)
7970 		return;
7971 
7972 	down_read(&info->groups_sem);
7973 again:
7974 	list_for_each_entry(cache, &info->block_groups[index], list) {
7975 		spin_lock(&cache->lock);
7976 		btrfs_info(fs_info,
7977 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7978 			cache->key.objectid, cache->key.offset,
7979 			btrfs_block_group_used(&cache->item), cache->pinned,
7980 			cache->reserved, cache->ro ? "[readonly]" : "");
7981 		btrfs_dump_free_space(cache, bytes);
7982 		spin_unlock(&cache->lock);
7983 	}
7984 	if (++index < BTRFS_NR_RAID_TYPES)
7985 		goto again;
7986 	up_read(&info->groups_sem);
7987 }
7988 
7989 /*
7990  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7991  *			  hole that is at least as big as @num_bytes.
7992  *
7993  * @root           -	The root that will contain this extent
7994  *
7995  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
7996  *			is used for accounting purposes. This value differs
7997  *			from @num_bytes only in the case of compressed extents.
7998  *
7999  * @num_bytes      -	Number of bytes to allocate on-disk.
8000  *
8001  * @min_alloc_size -	Indicates the minimum amount of space that the
8002  *			allocator should try to satisfy. In some cases
8003  *			@num_bytes may be larger than what is required and if
8004  *			the filesystem is fragmented then allocation fails.
8005  *			However, the presence of @min_alloc_size gives a
8006  *			chance to try and satisfy the smaller allocation.
8007  *
8008  * @empty_size     -	A hint that you plan on doing more COW. This is the
8009  *			size in bytes the allocator should try to find free
8010  *			next to the block it returns.  This is just a hint and
8011  *			may be ignored by the allocator.
8012  *
8013  * @hint_byte      -	Hint to the allocator to start searching above the byte
8014  *			address passed. It might be ignored.
8015  *
8016  * @ins            -	This key is modified to record the found hole. It will
8017  *			have the following values:
8018  *			ins->objectid == start position
8019  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
8020  *			ins->offset == the size of the hole.
8021  *
8022  * @is_data        -	Boolean flag indicating whether an extent is
8023  *			allocated for data (true) or metadata (false)
8024  *
8025  * @delalloc       -	Boolean flag indicating whether this allocation is for
8026  *			delalloc or not. If 'true' data_rwsem of block groups
8027  *			is going to be acquired.
8028  *
8029  *
8030  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8031  * case -ENOSPC is returned then @ins->offset will contain the size of the
8032  * largest available hole the allocator managed to find.
8033  */
8034 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8035 			 u64 num_bytes, u64 min_alloc_size,
8036 			 u64 empty_size, u64 hint_byte,
8037 			 struct btrfs_key *ins, int is_data, int delalloc)
8038 {
8039 	struct btrfs_fs_info *fs_info = root->fs_info;
8040 	bool final_tried = num_bytes == min_alloc_size;
8041 	u64 flags;
8042 	int ret;
8043 
8044 	flags = get_alloc_profile_by_root(root, is_data);
8045 again:
8046 	WARN_ON(num_bytes < fs_info->sectorsize);
8047 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8048 			       hint_byte, ins, flags, delalloc);
8049 	if (!ret && !is_data) {
8050 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8051 	} else if (ret == -ENOSPC) {
8052 		if (!final_tried && ins->offset) {
8053 			num_bytes = min(num_bytes >> 1, ins->offset);
8054 			num_bytes = round_down(num_bytes,
8055 					       fs_info->sectorsize);
8056 			num_bytes = max(num_bytes, min_alloc_size);
8057 			ram_bytes = num_bytes;
8058 			if (num_bytes == min_alloc_size)
8059 				final_tried = true;
8060 			goto again;
8061 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8062 			struct btrfs_space_info *sinfo;
8063 
8064 			sinfo = __find_space_info(fs_info, flags);
8065 			btrfs_err(fs_info,
8066 				  "allocation failed flags %llu, wanted %llu",
8067 				  flags, num_bytes);
8068 			if (sinfo)
8069 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8070 		}
8071 	}
8072 
8073 	return ret;
8074 }
8075 
8076 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8077 					u64 start, u64 len,
8078 					int pin, int delalloc)
8079 {
8080 	struct btrfs_block_group_cache *cache;
8081 	int ret = 0;
8082 
8083 	cache = btrfs_lookup_block_group(fs_info, start);
8084 	if (!cache) {
8085 		btrfs_err(fs_info, "Unable to find block group for %llu",
8086 			  start);
8087 		return -ENOSPC;
8088 	}
8089 
8090 	if (pin)
8091 		pin_down_extent(fs_info, cache, start, len, 1);
8092 	else {
8093 		if (btrfs_test_opt(fs_info, DISCARD))
8094 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8095 		btrfs_add_free_space(cache, start, len);
8096 		btrfs_free_reserved_bytes(cache, len, delalloc);
8097 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8098 	}
8099 
8100 	btrfs_put_block_group(cache);
8101 	return ret;
8102 }
8103 
8104 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8105 			       u64 start, u64 len, int delalloc)
8106 {
8107 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8108 }
8109 
8110 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8111 				       u64 start, u64 len)
8112 {
8113 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8114 }
8115 
8116 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8117 				      struct btrfs_fs_info *fs_info,
8118 				      u64 parent, u64 root_objectid,
8119 				      u64 flags, u64 owner, u64 offset,
8120 				      struct btrfs_key *ins, int ref_mod)
8121 {
8122 	int ret;
8123 	struct btrfs_extent_item *extent_item;
8124 	struct btrfs_extent_inline_ref *iref;
8125 	struct btrfs_path *path;
8126 	struct extent_buffer *leaf;
8127 	int type;
8128 	u32 size;
8129 
8130 	if (parent > 0)
8131 		type = BTRFS_SHARED_DATA_REF_KEY;
8132 	else
8133 		type = BTRFS_EXTENT_DATA_REF_KEY;
8134 
8135 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8136 
8137 	path = btrfs_alloc_path();
8138 	if (!path)
8139 		return -ENOMEM;
8140 
8141 	path->leave_spinning = 1;
8142 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8143 				      ins, size);
8144 	if (ret) {
8145 		btrfs_free_path(path);
8146 		return ret;
8147 	}
8148 
8149 	leaf = path->nodes[0];
8150 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8151 				     struct btrfs_extent_item);
8152 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8153 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8154 	btrfs_set_extent_flags(leaf, extent_item,
8155 			       flags | BTRFS_EXTENT_FLAG_DATA);
8156 
8157 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8158 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8159 	if (parent > 0) {
8160 		struct btrfs_shared_data_ref *ref;
8161 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8162 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8163 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8164 	} else {
8165 		struct btrfs_extent_data_ref *ref;
8166 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8167 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8168 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8169 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8170 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8171 	}
8172 
8173 	btrfs_mark_buffer_dirty(path->nodes[0]);
8174 	btrfs_free_path(path);
8175 
8176 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8177 					  ins->offset);
8178 	if (ret)
8179 		return ret;
8180 
8181 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8182 	if (ret) { /* -ENOENT, logic error */
8183 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8184 			ins->objectid, ins->offset);
8185 		BUG();
8186 	}
8187 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8188 	return ret;
8189 }
8190 
8191 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8192 				     struct btrfs_fs_info *fs_info,
8193 				     u64 parent, u64 root_objectid,
8194 				     u64 flags, struct btrfs_disk_key *key,
8195 				     int level, struct btrfs_key *ins)
8196 {
8197 	int ret;
8198 	struct btrfs_extent_item *extent_item;
8199 	struct btrfs_tree_block_info *block_info;
8200 	struct btrfs_extent_inline_ref *iref;
8201 	struct btrfs_path *path;
8202 	struct extent_buffer *leaf;
8203 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8204 	u64 num_bytes = ins->offset;
8205 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8206 
8207 	if (!skinny_metadata)
8208 		size += sizeof(*block_info);
8209 
8210 	path = btrfs_alloc_path();
8211 	if (!path) {
8212 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8213 						   fs_info->nodesize);
8214 		return -ENOMEM;
8215 	}
8216 
8217 	path->leave_spinning = 1;
8218 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8219 				      ins, size);
8220 	if (ret) {
8221 		btrfs_free_path(path);
8222 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8223 						   fs_info->nodesize);
8224 		return ret;
8225 	}
8226 
8227 	leaf = path->nodes[0];
8228 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8229 				     struct btrfs_extent_item);
8230 	btrfs_set_extent_refs(leaf, extent_item, 1);
8231 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8232 	btrfs_set_extent_flags(leaf, extent_item,
8233 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8234 
8235 	if (skinny_metadata) {
8236 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8237 		num_bytes = fs_info->nodesize;
8238 	} else {
8239 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8240 		btrfs_set_tree_block_key(leaf, block_info, key);
8241 		btrfs_set_tree_block_level(leaf, block_info, level);
8242 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8243 	}
8244 
8245 	if (parent > 0) {
8246 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8247 		btrfs_set_extent_inline_ref_type(leaf, iref,
8248 						 BTRFS_SHARED_BLOCK_REF_KEY);
8249 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8250 	} else {
8251 		btrfs_set_extent_inline_ref_type(leaf, iref,
8252 						 BTRFS_TREE_BLOCK_REF_KEY);
8253 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8254 	}
8255 
8256 	btrfs_mark_buffer_dirty(leaf);
8257 	btrfs_free_path(path);
8258 
8259 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8260 					  num_bytes);
8261 	if (ret)
8262 		return ret;
8263 
8264 	ret = update_block_group(trans, fs_info, ins->objectid,
8265 				 fs_info->nodesize, 1);
8266 	if (ret) { /* -ENOENT, logic error */
8267 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8268 			ins->objectid, ins->offset);
8269 		BUG();
8270 	}
8271 
8272 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8273 					  fs_info->nodesize);
8274 	return ret;
8275 }
8276 
8277 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8278 				     struct btrfs_root *root, u64 owner,
8279 				     u64 offset, u64 ram_bytes,
8280 				     struct btrfs_key *ins)
8281 {
8282 	struct btrfs_fs_info *fs_info = root->fs_info;
8283 	int ret;
8284 
8285 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8286 
8287 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8288 			   root->root_key.objectid, owner, offset,
8289 			   BTRFS_ADD_DELAYED_EXTENT);
8290 
8291 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8292 					 ins->offset, 0,
8293 					 root->root_key.objectid, owner,
8294 					 offset, ram_bytes,
8295 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8296 	return ret;
8297 }
8298 
8299 /*
8300  * this is used by the tree logging recovery code.  It records that
8301  * an extent has been allocated and makes sure to clear the free
8302  * space cache bits as well
8303  */
8304 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8305 				   struct btrfs_fs_info *fs_info,
8306 				   u64 root_objectid, u64 owner, u64 offset,
8307 				   struct btrfs_key *ins)
8308 {
8309 	int ret;
8310 	struct btrfs_block_group_cache *block_group;
8311 	struct btrfs_space_info *space_info;
8312 
8313 	/*
8314 	 * Mixed block groups will exclude before processing the log so we only
8315 	 * need to do the exclude dance if this fs isn't mixed.
8316 	 */
8317 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8318 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8319 					      ins->offset);
8320 		if (ret)
8321 			return ret;
8322 	}
8323 
8324 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8325 	if (!block_group)
8326 		return -EINVAL;
8327 
8328 	space_info = block_group->space_info;
8329 	spin_lock(&space_info->lock);
8330 	spin_lock(&block_group->lock);
8331 	space_info->bytes_reserved += ins->offset;
8332 	block_group->reserved += ins->offset;
8333 	spin_unlock(&block_group->lock);
8334 	spin_unlock(&space_info->lock);
8335 
8336 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8337 					 0, owner, offset, ins, 1);
8338 	btrfs_put_block_group(block_group);
8339 	return ret;
8340 }
8341 
8342 static struct extent_buffer *
8343 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8344 		      u64 bytenr, int level)
8345 {
8346 	struct btrfs_fs_info *fs_info = root->fs_info;
8347 	struct extent_buffer *buf;
8348 
8349 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8350 	if (IS_ERR(buf))
8351 		return buf;
8352 
8353 	btrfs_set_header_generation(buf, trans->transid);
8354 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8355 	btrfs_tree_lock(buf);
8356 	clean_tree_block(fs_info, buf);
8357 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8358 
8359 	btrfs_set_lock_blocking(buf);
8360 	set_extent_buffer_uptodate(buf);
8361 
8362 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8363 		buf->log_index = root->log_transid % 2;
8364 		/*
8365 		 * we allow two log transactions at a time, use different
8366 		 * EXENT bit to differentiate dirty pages.
8367 		 */
8368 		if (buf->log_index == 0)
8369 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8370 					buf->start + buf->len - 1, GFP_NOFS);
8371 		else
8372 			set_extent_new(&root->dirty_log_pages, buf->start,
8373 					buf->start + buf->len - 1);
8374 	} else {
8375 		buf->log_index = -1;
8376 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8377 			 buf->start + buf->len - 1, GFP_NOFS);
8378 	}
8379 	trans->dirty = true;
8380 	/* this returns a buffer locked for blocking */
8381 	return buf;
8382 }
8383 
8384 static struct btrfs_block_rsv *
8385 use_block_rsv(struct btrfs_trans_handle *trans,
8386 	      struct btrfs_root *root, u32 blocksize)
8387 {
8388 	struct btrfs_fs_info *fs_info = root->fs_info;
8389 	struct btrfs_block_rsv *block_rsv;
8390 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8391 	int ret;
8392 	bool global_updated = false;
8393 
8394 	block_rsv = get_block_rsv(trans, root);
8395 
8396 	if (unlikely(block_rsv->size == 0))
8397 		goto try_reserve;
8398 again:
8399 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8400 	if (!ret)
8401 		return block_rsv;
8402 
8403 	if (block_rsv->failfast)
8404 		return ERR_PTR(ret);
8405 
8406 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8407 		global_updated = true;
8408 		update_global_block_rsv(fs_info);
8409 		goto again;
8410 	}
8411 
8412 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8413 		static DEFINE_RATELIMIT_STATE(_rs,
8414 				DEFAULT_RATELIMIT_INTERVAL * 10,
8415 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8416 		if (__ratelimit(&_rs))
8417 			WARN(1, KERN_DEBUG
8418 				"BTRFS: block rsv returned %d\n", ret);
8419 	}
8420 try_reserve:
8421 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8422 				     BTRFS_RESERVE_NO_FLUSH);
8423 	if (!ret)
8424 		return block_rsv;
8425 	/*
8426 	 * If we couldn't reserve metadata bytes try and use some from
8427 	 * the global reserve if its space type is the same as the global
8428 	 * reservation.
8429 	 */
8430 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8431 	    block_rsv->space_info == global_rsv->space_info) {
8432 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8433 		if (!ret)
8434 			return global_rsv;
8435 	}
8436 	return ERR_PTR(ret);
8437 }
8438 
8439 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8440 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8441 {
8442 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8443 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8444 }
8445 
8446 /*
8447  * finds a free extent and does all the dirty work required for allocation
8448  * returns the tree buffer or an ERR_PTR on error.
8449  */
8450 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8451 					     struct btrfs_root *root,
8452 					     u64 parent, u64 root_objectid,
8453 					     const struct btrfs_disk_key *key,
8454 					     int level, u64 hint,
8455 					     u64 empty_size)
8456 {
8457 	struct btrfs_fs_info *fs_info = root->fs_info;
8458 	struct btrfs_key ins;
8459 	struct btrfs_block_rsv *block_rsv;
8460 	struct extent_buffer *buf;
8461 	struct btrfs_delayed_extent_op *extent_op;
8462 	u64 flags = 0;
8463 	int ret;
8464 	u32 blocksize = fs_info->nodesize;
8465 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8466 
8467 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8468 	if (btrfs_is_testing(fs_info)) {
8469 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8470 					    level);
8471 		if (!IS_ERR(buf))
8472 			root->alloc_bytenr += blocksize;
8473 		return buf;
8474 	}
8475 #endif
8476 
8477 	block_rsv = use_block_rsv(trans, root, blocksize);
8478 	if (IS_ERR(block_rsv))
8479 		return ERR_CAST(block_rsv);
8480 
8481 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8482 				   empty_size, hint, &ins, 0, 0);
8483 	if (ret)
8484 		goto out_unuse;
8485 
8486 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8487 	if (IS_ERR(buf)) {
8488 		ret = PTR_ERR(buf);
8489 		goto out_free_reserved;
8490 	}
8491 
8492 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8493 		if (parent == 0)
8494 			parent = ins.objectid;
8495 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8496 	} else
8497 		BUG_ON(parent > 0);
8498 
8499 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8500 		extent_op = btrfs_alloc_delayed_extent_op();
8501 		if (!extent_op) {
8502 			ret = -ENOMEM;
8503 			goto out_free_buf;
8504 		}
8505 		if (key)
8506 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8507 		else
8508 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8509 		extent_op->flags_to_set = flags;
8510 		extent_op->update_key = skinny_metadata ? false : true;
8511 		extent_op->update_flags = true;
8512 		extent_op->is_data = false;
8513 		extent_op->level = level;
8514 
8515 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8516 				   root_objectid, level, 0,
8517 				   BTRFS_ADD_DELAYED_EXTENT);
8518 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8519 						 ins.offset, parent,
8520 						 root_objectid, level,
8521 						 BTRFS_ADD_DELAYED_EXTENT,
8522 						 extent_op, NULL, NULL);
8523 		if (ret)
8524 			goto out_free_delayed;
8525 	}
8526 	return buf;
8527 
8528 out_free_delayed:
8529 	btrfs_free_delayed_extent_op(extent_op);
8530 out_free_buf:
8531 	free_extent_buffer(buf);
8532 out_free_reserved:
8533 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8534 out_unuse:
8535 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8536 	return ERR_PTR(ret);
8537 }
8538 
8539 struct walk_control {
8540 	u64 refs[BTRFS_MAX_LEVEL];
8541 	u64 flags[BTRFS_MAX_LEVEL];
8542 	struct btrfs_key update_progress;
8543 	int stage;
8544 	int level;
8545 	int shared_level;
8546 	int update_ref;
8547 	int keep_locks;
8548 	int reada_slot;
8549 	int reada_count;
8550 	int for_reloc;
8551 };
8552 
8553 #define DROP_REFERENCE	1
8554 #define UPDATE_BACKREF	2
8555 
8556 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8557 				     struct btrfs_root *root,
8558 				     struct walk_control *wc,
8559 				     struct btrfs_path *path)
8560 {
8561 	struct btrfs_fs_info *fs_info = root->fs_info;
8562 	u64 bytenr;
8563 	u64 generation;
8564 	u64 refs;
8565 	u64 flags;
8566 	u32 nritems;
8567 	struct btrfs_key key;
8568 	struct extent_buffer *eb;
8569 	int ret;
8570 	int slot;
8571 	int nread = 0;
8572 
8573 	if (path->slots[wc->level] < wc->reada_slot) {
8574 		wc->reada_count = wc->reada_count * 2 / 3;
8575 		wc->reada_count = max(wc->reada_count, 2);
8576 	} else {
8577 		wc->reada_count = wc->reada_count * 3 / 2;
8578 		wc->reada_count = min_t(int, wc->reada_count,
8579 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8580 	}
8581 
8582 	eb = path->nodes[wc->level];
8583 	nritems = btrfs_header_nritems(eb);
8584 
8585 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8586 		if (nread >= wc->reada_count)
8587 			break;
8588 
8589 		cond_resched();
8590 		bytenr = btrfs_node_blockptr(eb, slot);
8591 		generation = btrfs_node_ptr_generation(eb, slot);
8592 
8593 		if (slot == path->slots[wc->level])
8594 			goto reada;
8595 
8596 		if (wc->stage == UPDATE_BACKREF &&
8597 		    generation <= root->root_key.offset)
8598 			continue;
8599 
8600 		/* We don't lock the tree block, it's OK to be racy here */
8601 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8602 					       wc->level - 1, 1, &refs,
8603 					       &flags);
8604 		/* We don't care about errors in readahead. */
8605 		if (ret < 0)
8606 			continue;
8607 		BUG_ON(refs == 0);
8608 
8609 		if (wc->stage == DROP_REFERENCE) {
8610 			if (refs == 1)
8611 				goto reada;
8612 
8613 			if (wc->level == 1 &&
8614 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8615 				continue;
8616 			if (!wc->update_ref ||
8617 			    generation <= root->root_key.offset)
8618 				continue;
8619 			btrfs_node_key_to_cpu(eb, &key, slot);
8620 			ret = btrfs_comp_cpu_keys(&key,
8621 						  &wc->update_progress);
8622 			if (ret < 0)
8623 				continue;
8624 		} else {
8625 			if (wc->level == 1 &&
8626 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8627 				continue;
8628 		}
8629 reada:
8630 		readahead_tree_block(fs_info, bytenr);
8631 		nread++;
8632 	}
8633 	wc->reada_slot = slot;
8634 }
8635 
8636 /*
8637  * helper to process tree block while walking down the tree.
8638  *
8639  * when wc->stage == UPDATE_BACKREF, this function updates
8640  * back refs for pointers in the block.
8641  *
8642  * NOTE: return value 1 means we should stop walking down.
8643  */
8644 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8645 				   struct btrfs_root *root,
8646 				   struct btrfs_path *path,
8647 				   struct walk_control *wc, int lookup_info)
8648 {
8649 	struct btrfs_fs_info *fs_info = root->fs_info;
8650 	int level = wc->level;
8651 	struct extent_buffer *eb = path->nodes[level];
8652 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8653 	int ret;
8654 
8655 	if (wc->stage == UPDATE_BACKREF &&
8656 	    btrfs_header_owner(eb) != root->root_key.objectid)
8657 		return 1;
8658 
8659 	/*
8660 	 * when reference count of tree block is 1, it won't increase
8661 	 * again. once full backref flag is set, we never clear it.
8662 	 */
8663 	if (lookup_info &&
8664 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8665 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8666 		BUG_ON(!path->locks[level]);
8667 		ret = btrfs_lookup_extent_info(trans, fs_info,
8668 					       eb->start, level, 1,
8669 					       &wc->refs[level],
8670 					       &wc->flags[level]);
8671 		BUG_ON(ret == -ENOMEM);
8672 		if (ret)
8673 			return ret;
8674 		BUG_ON(wc->refs[level] == 0);
8675 	}
8676 
8677 	if (wc->stage == DROP_REFERENCE) {
8678 		if (wc->refs[level] > 1)
8679 			return 1;
8680 
8681 		if (path->locks[level] && !wc->keep_locks) {
8682 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8683 			path->locks[level] = 0;
8684 		}
8685 		return 0;
8686 	}
8687 
8688 	/* wc->stage == UPDATE_BACKREF */
8689 	if (!(wc->flags[level] & flag)) {
8690 		BUG_ON(!path->locks[level]);
8691 		ret = btrfs_inc_ref(trans, root, eb, 1);
8692 		BUG_ON(ret); /* -ENOMEM */
8693 		ret = btrfs_dec_ref(trans, root, eb, 0);
8694 		BUG_ON(ret); /* -ENOMEM */
8695 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8696 						  eb->len, flag,
8697 						  btrfs_header_level(eb), 0);
8698 		BUG_ON(ret); /* -ENOMEM */
8699 		wc->flags[level] |= flag;
8700 	}
8701 
8702 	/*
8703 	 * the block is shared by multiple trees, so it's not good to
8704 	 * keep the tree lock
8705 	 */
8706 	if (path->locks[level] && level > 0) {
8707 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8708 		path->locks[level] = 0;
8709 	}
8710 	return 0;
8711 }
8712 
8713 /*
8714  * helper to process tree block pointer.
8715  *
8716  * when wc->stage == DROP_REFERENCE, this function checks
8717  * reference count of the block pointed to. if the block
8718  * is shared and we need update back refs for the subtree
8719  * rooted at the block, this function changes wc->stage to
8720  * UPDATE_BACKREF. if the block is shared and there is no
8721  * need to update back, this function drops the reference
8722  * to the block.
8723  *
8724  * NOTE: return value 1 means we should stop walking down.
8725  */
8726 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8727 				 struct btrfs_root *root,
8728 				 struct btrfs_path *path,
8729 				 struct walk_control *wc, int *lookup_info)
8730 {
8731 	struct btrfs_fs_info *fs_info = root->fs_info;
8732 	u64 bytenr;
8733 	u64 generation;
8734 	u64 parent;
8735 	u32 blocksize;
8736 	struct btrfs_key key;
8737 	struct btrfs_key first_key;
8738 	struct extent_buffer *next;
8739 	int level = wc->level;
8740 	int reada = 0;
8741 	int ret = 0;
8742 	bool need_account = false;
8743 
8744 	generation = btrfs_node_ptr_generation(path->nodes[level],
8745 					       path->slots[level]);
8746 	/*
8747 	 * if the lower level block was created before the snapshot
8748 	 * was created, we know there is no need to update back refs
8749 	 * for the subtree
8750 	 */
8751 	if (wc->stage == UPDATE_BACKREF &&
8752 	    generation <= root->root_key.offset) {
8753 		*lookup_info = 1;
8754 		return 1;
8755 	}
8756 
8757 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8758 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8759 			      path->slots[level]);
8760 	blocksize = fs_info->nodesize;
8761 
8762 	next = find_extent_buffer(fs_info, bytenr);
8763 	if (!next) {
8764 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8765 		if (IS_ERR(next))
8766 			return PTR_ERR(next);
8767 
8768 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8769 					       level - 1);
8770 		reada = 1;
8771 	}
8772 	btrfs_tree_lock(next);
8773 	btrfs_set_lock_blocking(next);
8774 
8775 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8776 				       &wc->refs[level - 1],
8777 				       &wc->flags[level - 1]);
8778 	if (ret < 0)
8779 		goto out_unlock;
8780 
8781 	if (unlikely(wc->refs[level - 1] == 0)) {
8782 		btrfs_err(fs_info, "Missing references.");
8783 		ret = -EIO;
8784 		goto out_unlock;
8785 	}
8786 	*lookup_info = 0;
8787 
8788 	if (wc->stage == DROP_REFERENCE) {
8789 		if (wc->refs[level - 1] > 1) {
8790 			need_account = true;
8791 			if (level == 1 &&
8792 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8793 				goto skip;
8794 
8795 			if (!wc->update_ref ||
8796 			    generation <= root->root_key.offset)
8797 				goto skip;
8798 
8799 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8800 					      path->slots[level]);
8801 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8802 			if (ret < 0)
8803 				goto skip;
8804 
8805 			wc->stage = UPDATE_BACKREF;
8806 			wc->shared_level = level - 1;
8807 		}
8808 	} else {
8809 		if (level == 1 &&
8810 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8811 			goto skip;
8812 	}
8813 
8814 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8815 		btrfs_tree_unlock(next);
8816 		free_extent_buffer(next);
8817 		next = NULL;
8818 		*lookup_info = 1;
8819 	}
8820 
8821 	if (!next) {
8822 		if (reada && level == 1)
8823 			reada_walk_down(trans, root, wc, path);
8824 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
8825 				       &first_key);
8826 		if (IS_ERR(next)) {
8827 			return PTR_ERR(next);
8828 		} else if (!extent_buffer_uptodate(next)) {
8829 			free_extent_buffer(next);
8830 			return -EIO;
8831 		}
8832 		btrfs_tree_lock(next);
8833 		btrfs_set_lock_blocking(next);
8834 	}
8835 
8836 	level--;
8837 	ASSERT(level == btrfs_header_level(next));
8838 	if (level != btrfs_header_level(next)) {
8839 		btrfs_err(root->fs_info, "mismatched level");
8840 		ret = -EIO;
8841 		goto out_unlock;
8842 	}
8843 	path->nodes[level] = next;
8844 	path->slots[level] = 0;
8845 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8846 	wc->level = level;
8847 	if (wc->level == 1)
8848 		wc->reada_slot = 0;
8849 	return 0;
8850 skip:
8851 	wc->refs[level - 1] = 0;
8852 	wc->flags[level - 1] = 0;
8853 	if (wc->stage == DROP_REFERENCE) {
8854 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8855 			parent = path->nodes[level]->start;
8856 		} else {
8857 			ASSERT(root->root_key.objectid ==
8858 			       btrfs_header_owner(path->nodes[level]));
8859 			if (root->root_key.objectid !=
8860 			    btrfs_header_owner(path->nodes[level])) {
8861 				btrfs_err(root->fs_info,
8862 						"mismatched block owner");
8863 				ret = -EIO;
8864 				goto out_unlock;
8865 			}
8866 			parent = 0;
8867 		}
8868 
8869 		if (need_account) {
8870 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8871 							 generation, level - 1);
8872 			if (ret) {
8873 				btrfs_err_rl(fs_info,
8874 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8875 					     ret);
8876 			}
8877 		}
8878 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8879 					parent, root->root_key.objectid,
8880 					level - 1, 0);
8881 		if (ret)
8882 			goto out_unlock;
8883 	}
8884 
8885 	*lookup_info = 1;
8886 	ret = 1;
8887 
8888 out_unlock:
8889 	btrfs_tree_unlock(next);
8890 	free_extent_buffer(next);
8891 
8892 	return ret;
8893 }
8894 
8895 /*
8896  * helper to process tree block while walking up the tree.
8897  *
8898  * when wc->stage == DROP_REFERENCE, this function drops
8899  * reference count on the block.
8900  *
8901  * when wc->stage == UPDATE_BACKREF, this function changes
8902  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8903  * to UPDATE_BACKREF previously while processing the block.
8904  *
8905  * NOTE: return value 1 means we should stop walking up.
8906  */
8907 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8908 				 struct btrfs_root *root,
8909 				 struct btrfs_path *path,
8910 				 struct walk_control *wc)
8911 {
8912 	struct btrfs_fs_info *fs_info = root->fs_info;
8913 	int ret;
8914 	int level = wc->level;
8915 	struct extent_buffer *eb = path->nodes[level];
8916 	u64 parent = 0;
8917 
8918 	if (wc->stage == UPDATE_BACKREF) {
8919 		BUG_ON(wc->shared_level < level);
8920 		if (level < wc->shared_level)
8921 			goto out;
8922 
8923 		ret = find_next_key(path, level + 1, &wc->update_progress);
8924 		if (ret > 0)
8925 			wc->update_ref = 0;
8926 
8927 		wc->stage = DROP_REFERENCE;
8928 		wc->shared_level = -1;
8929 		path->slots[level] = 0;
8930 
8931 		/*
8932 		 * check reference count again if the block isn't locked.
8933 		 * we should start walking down the tree again if reference
8934 		 * count is one.
8935 		 */
8936 		if (!path->locks[level]) {
8937 			BUG_ON(level == 0);
8938 			btrfs_tree_lock(eb);
8939 			btrfs_set_lock_blocking(eb);
8940 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8941 
8942 			ret = btrfs_lookup_extent_info(trans, fs_info,
8943 						       eb->start, level, 1,
8944 						       &wc->refs[level],
8945 						       &wc->flags[level]);
8946 			if (ret < 0) {
8947 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8948 				path->locks[level] = 0;
8949 				return ret;
8950 			}
8951 			BUG_ON(wc->refs[level] == 0);
8952 			if (wc->refs[level] == 1) {
8953 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8954 				path->locks[level] = 0;
8955 				return 1;
8956 			}
8957 		}
8958 	}
8959 
8960 	/* wc->stage == DROP_REFERENCE */
8961 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8962 
8963 	if (wc->refs[level] == 1) {
8964 		if (level == 0) {
8965 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8966 				ret = btrfs_dec_ref(trans, root, eb, 1);
8967 			else
8968 				ret = btrfs_dec_ref(trans, root, eb, 0);
8969 			BUG_ON(ret); /* -ENOMEM */
8970 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8971 			if (ret) {
8972 				btrfs_err_rl(fs_info,
8973 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8974 					     ret);
8975 			}
8976 		}
8977 		/* make block locked assertion in clean_tree_block happy */
8978 		if (!path->locks[level] &&
8979 		    btrfs_header_generation(eb) == trans->transid) {
8980 			btrfs_tree_lock(eb);
8981 			btrfs_set_lock_blocking(eb);
8982 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8983 		}
8984 		clean_tree_block(fs_info, eb);
8985 	}
8986 
8987 	if (eb == root->node) {
8988 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8989 			parent = eb->start;
8990 		else
8991 			BUG_ON(root->root_key.objectid !=
8992 			       btrfs_header_owner(eb));
8993 	} else {
8994 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8995 			parent = path->nodes[level + 1]->start;
8996 		else
8997 			BUG_ON(root->root_key.objectid !=
8998 			       btrfs_header_owner(path->nodes[level + 1]));
8999 	}
9000 
9001 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9002 out:
9003 	wc->refs[level] = 0;
9004 	wc->flags[level] = 0;
9005 	return 0;
9006 }
9007 
9008 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9009 				   struct btrfs_root *root,
9010 				   struct btrfs_path *path,
9011 				   struct walk_control *wc)
9012 {
9013 	int level = wc->level;
9014 	int lookup_info = 1;
9015 	int ret;
9016 
9017 	while (level >= 0) {
9018 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9019 		if (ret > 0)
9020 			break;
9021 
9022 		if (level == 0)
9023 			break;
9024 
9025 		if (path->slots[level] >=
9026 		    btrfs_header_nritems(path->nodes[level]))
9027 			break;
9028 
9029 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9030 		if (ret > 0) {
9031 			path->slots[level]++;
9032 			continue;
9033 		} else if (ret < 0)
9034 			return ret;
9035 		level = wc->level;
9036 	}
9037 	return 0;
9038 }
9039 
9040 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9041 				 struct btrfs_root *root,
9042 				 struct btrfs_path *path,
9043 				 struct walk_control *wc, int max_level)
9044 {
9045 	int level = wc->level;
9046 	int ret;
9047 
9048 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9049 	while (level < max_level && path->nodes[level]) {
9050 		wc->level = level;
9051 		if (path->slots[level] + 1 <
9052 		    btrfs_header_nritems(path->nodes[level])) {
9053 			path->slots[level]++;
9054 			return 0;
9055 		} else {
9056 			ret = walk_up_proc(trans, root, path, wc);
9057 			if (ret > 0)
9058 				return 0;
9059 
9060 			if (path->locks[level]) {
9061 				btrfs_tree_unlock_rw(path->nodes[level],
9062 						     path->locks[level]);
9063 				path->locks[level] = 0;
9064 			}
9065 			free_extent_buffer(path->nodes[level]);
9066 			path->nodes[level] = NULL;
9067 			level++;
9068 		}
9069 	}
9070 	return 1;
9071 }
9072 
9073 /*
9074  * drop a subvolume tree.
9075  *
9076  * this function traverses the tree freeing any blocks that only
9077  * referenced by the tree.
9078  *
9079  * when a shared tree block is found. this function decreases its
9080  * reference count by one. if update_ref is true, this function
9081  * also make sure backrefs for the shared block and all lower level
9082  * blocks are properly updated.
9083  *
9084  * If called with for_reloc == 0, may exit early with -EAGAIN
9085  */
9086 int btrfs_drop_snapshot(struct btrfs_root *root,
9087 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9088 			 int for_reloc)
9089 {
9090 	struct btrfs_fs_info *fs_info = root->fs_info;
9091 	struct btrfs_path *path;
9092 	struct btrfs_trans_handle *trans;
9093 	struct btrfs_root *tree_root = fs_info->tree_root;
9094 	struct btrfs_root_item *root_item = &root->root_item;
9095 	struct walk_control *wc;
9096 	struct btrfs_key key;
9097 	int err = 0;
9098 	int ret;
9099 	int level;
9100 	bool root_dropped = false;
9101 
9102 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9103 
9104 	path = btrfs_alloc_path();
9105 	if (!path) {
9106 		err = -ENOMEM;
9107 		goto out;
9108 	}
9109 
9110 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9111 	if (!wc) {
9112 		btrfs_free_path(path);
9113 		err = -ENOMEM;
9114 		goto out;
9115 	}
9116 
9117 	trans = btrfs_start_transaction(tree_root, 0);
9118 	if (IS_ERR(trans)) {
9119 		err = PTR_ERR(trans);
9120 		goto out_free;
9121 	}
9122 
9123 	if (block_rsv)
9124 		trans->block_rsv = block_rsv;
9125 
9126 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9127 		level = btrfs_header_level(root->node);
9128 		path->nodes[level] = btrfs_lock_root_node(root);
9129 		btrfs_set_lock_blocking(path->nodes[level]);
9130 		path->slots[level] = 0;
9131 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9132 		memset(&wc->update_progress, 0,
9133 		       sizeof(wc->update_progress));
9134 	} else {
9135 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9136 		memcpy(&wc->update_progress, &key,
9137 		       sizeof(wc->update_progress));
9138 
9139 		level = root_item->drop_level;
9140 		BUG_ON(level == 0);
9141 		path->lowest_level = level;
9142 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9143 		path->lowest_level = 0;
9144 		if (ret < 0) {
9145 			err = ret;
9146 			goto out_end_trans;
9147 		}
9148 		WARN_ON(ret > 0);
9149 
9150 		/*
9151 		 * unlock our path, this is safe because only this
9152 		 * function is allowed to delete this snapshot
9153 		 */
9154 		btrfs_unlock_up_safe(path, 0);
9155 
9156 		level = btrfs_header_level(root->node);
9157 		while (1) {
9158 			btrfs_tree_lock(path->nodes[level]);
9159 			btrfs_set_lock_blocking(path->nodes[level]);
9160 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9161 
9162 			ret = btrfs_lookup_extent_info(trans, fs_info,
9163 						path->nodes[level]->start,
9164 						level, 1, &wc->refs[level],
9165 						&wc->flags[level]);
9166 			if (ret < 0) {
9167 				err = ret;
9168 				goto out_end_trans;
9169 			}
9170 			BUG_ON(wc->refs[level] == 0);
9171 
9172 			if (level == root_item->drop_level)
9173 				break;
9174 
9175 			btrfs_tree_unlock(path->nodes[level]);
9176 			path->locks[level] = 0;
9177 			WARN_ON(wc->refs[level] != 1);
9178 			level--;
9179 		}
9180 	}
9181 
9182 	wc->level = level;
9183 	wc->shared_level = -1;
9184 	wc->stage = DROP_REFERENCE;
9185 	wc->update_ref = update_ref;
9186 	wc->keep_locks = 0;
9187 	wc->for_reloc = for_reloc;
9188 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9189 
9190 	while (1) {
9191 
9192 		ret = walk_down_tree(trans, root, path, wc);
9193 		if (ret < 0) {
9194 			err = ret;
9195 			break;
9196 		}
9197 
9198 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9199 		if (ret < 0) {
9200 			err = ret;
9201 			break;
9202 		}
9203 
9204 		if (ret > 0) {
9205 			BUG_ON(wc->stage != DROP_REFERENCE);
9206 			break;
9207 		}
9208 
9209 		if (wc->stage == DROP_REFERENCE) {
9210 			level = wc->level;
9211 			btrfs_node_key(path->nodes[level],
9212 				       &root_item->drop_progress,
9213 				       path->slots[level]);
9214 			root_item->drop_level = level;
9215 		}
9216 
9217 		BUG_ON(wc->level == 0);
9218 		if (btrfs_should_end_transaction(trans) ||
9219 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9220 			ret = btrfs_update_root(trans, tree_root,
9221 						&root->root_key,
9222 						root_item);
9223 			if (ret) {
9224 				btrfs_abort_transaction(trans, ret);
9225 				err = ret;
9226 				goto out_end_trans;
9227 			}
9228 
9229 			btrfs_end_transaction_throttle(trans);
9230 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9231 				btrfs_debug(fs_info,
9232 					    "drop snapshot early exit");
9233 				err = -EAGAIN;
9234 				goto out_free;
9235 			}
9236 
9237 			trans = btrfs_start_transaction(tree_root, 0);
9238 			if (IS_ERR(trans)) {
9239 				err = PTR_ERR(trans);
9240 				goto out_free;
9241 			}
9242 			if (block_rsv)
9243 				trans->block_rsv = block_rsv;
9244 		}
9245 	}
9246 	btrfs_release_path(path);
9247 	if (err)
9248 		goto out_end_trans;
9249 
9250 	ret = btrfs_del_root(trans, fs_info, &root->root_key);
9251 	if (ret) {
9252 		btrfs_abort_transaction(trans, ret);
9253 		err = ret;
9254 		goto out_end_trans;
9255 	}
9256 
9257 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9258 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9259 				      NULL, NULL);
9260 		if (ret < 0) {
9261 			btrfs_abort_transaction(trans, ret);
9262 			err = ret;
9263 			goto out_end_trans;
9264 		} else if (ret > 0) {
9265 			/* if we fail to delete the orphan item this time
9266 			 * around, it'll get picked up the next time.
9267 			 *
9268 			 * The most common failure here is just -ENOENT.
9269 			 */
9270 			btrfs_del_orphan_item(trans, tree_root,
9271 					      root->root_key.objectid);
9272 		}
9273 	}
9274 
9275 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9276 		btrfs_add_dropped_root(trans, root);
9277 	} else {
9278 		free_extent_buffer(root->node);
9279 		free_extent_buffer(root->commit_root);
9280 		btrfs_put_fs_root(root);
9281 	}
9282 	root_dropped = true;
9283 out_end_trans:
9284 	btrfs_end_transaction_throttle(trans);
9285 out_free:
9286 	kfree(wc);
9287 	btrfs_free_path(path);
9288 out:
9289 	/*
9290 	 * So if we need to stop dropping the snapshot for whatever reason we
9291 	 * need to make sure to add it back to the dead root list so that we
9292 	 * keep trying to do the work later.  This also cleans up roots if we
9293 	 * don't have it in the radix (like when we recover after a power fail
9294 	 * or unmount) so we don't leak memory.
9295 	 */
9296 	if (!for_reloc && !root_dropped)
9297 		btrfs_add_dead_root(root);
9298 	if (err && err != -EAGAIN)
9299 		btrfs_handle_fs_error(fs_info, err, NULL);
9300 	return err;
9301 }
9302 
9303 /*
9304  * drop subtree rooted at tree block 'node'.
9305  *
9306  * NOTE: this function will unlock and release tree block 'node'
9307  * only used by relocation code
9308  */
9309 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9310 			struct btrfs_root *root,
9311 			struct extent_buffer *node,
9312 			struct extent_buffer *parent)
9313 {
9314 	struct btrfs_fs_info *fs_info = root->fs_info;
9315 	struct btrfs_path *path;
9316 	struct walk_control *wc;
9317 	int level;
9318 	int parent_level;
9319 	int ret = 0;
9320 	int wret;
9321 
9322 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9323 
9324 	path = btrfs_alloc_path();
9325 	if (!path)
9326 		return -ENOMEM;
9327 
9328 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9329 	if (!wc) {
9330 		btrfs_free_path(path);
9331 		return -ENOMEM;
9332 	}
9333 
9334 	btrfs_assert_tree_locked(parent);
9335 	parent_level = btrfs_header_level(parent);
9336 	extent_buffer_get(parent);
9337 	path->nodes[parent_level] = parent;
9338 	path->slots[parent_level] = btrfs_header_nritems(parent);
9339 
9340 	btrfs_assert_tree_locked(node);
9341 	level = btrfs_header_level(node);
9342 	path->nodes[level] = node;
9343 	path->slots[level] = 0;
9344 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9345 
9346 	wc->refs[parent_level] = 1;
9347 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9348 	wc->level = level;
9349 	wc->shared_level = -1;
9350 	wc->stage = DROP_REFERENCE;
9351 	wc->update_ref = 0;
9352 	wc->keep_locks = 1;
9353 	wc->for_reloc = 1;
9354 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9355 
9356 	while (1) {
9357 		wret = walk_down_tree(trans, root, path, wc);
9358 		if (wret < 0) {
9359 			ret = wret;
9360 			break;
9361 		}
9362 
9363 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9364 		if (wret < 0)
9365 			ret = wret;
9366 		if (wret != 0)
9367 			break;
9368 	}
9369 
9370 	kfree(wc);
9371 	btrfs_free_path(path);
9372 	return ret;
9373 }
9374 
9375 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9376 {
9377 	u64 num_devices;
9378 	u64 stripped;
9379 
9380 	/*
9381 	 * if restripe for this chunk_type is on pick target profile and
9382 	 * return, otherwise do the usual balance
9383 	 */
9384 	stripped = get_restripe_target(fs_info, flags);
9385 	if (stripped)
9386 		return extended_to_chunk(stripped);
9387 
9388 	num_devices = fs_info->fs_devices->rw_devices;
9389 
9390 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9391 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9392 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9393 
9394 	if (num_devices == 1) {
9395 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9396 		stripped = flags & ~stripped;
9397 
9398 		/* turn raid0 into single device chunks */
9399 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9400 			return stripped;
9401 
9402 		/* turn mirroring into duplication */
9403 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9404 			     BTRFS_BLOCK_GROUP_RAID10))
9405 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9406 	} else {
9407 		/* they already had raid on here, just return */
9408 		if (flags & stripped)
9409 			return flags;
9410 
9411 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9412 		stripped = flags & ~stripped;
9413 
9414 		/* switch duplicated blocks with raid1 */
9415 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9416 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9417 
9418 		/* this is drive concat, leave it alone */
9419 	}
9420 
9421 	return flags;
9422 }
9423 
9424 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9425 {
9426 	struct btrfs_space_info *sinfo = cache->space_info;
9427 	u64 num_bytes;
9428 	u64 min_allocable_bytes;
9429 	int ret = -ENOSPC;
9430 
9431 	/*
9432 	 * We need some metadata space and system metadata space for
9433 	 * allocating chunks in some corner cases until we force to set
9434 	 * it to be readonly.
9435 	 */
9436 	if ((sinfo->flags &
9437 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9438 	    !force)
9439 		min_allocable_bytes = SZ_1M;
9440 	else
9441 		min_allocable_bytes = 0;
9442 
9443 	spin_lock(&sinfo->lock);
9444 	spin_lock(&cache->lock);
9445 
9446 	if (cache->ro) {
9447 		cache->ro++;
9448 		ret = 0;
9449 		goto out;
9450 	}
9451 
9452 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9453 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9454 
9455 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9456 	    min_allocable_bytes <= sinfo->total_bytes) {
9457 		sinfo->bytes_readonly += num_bytes;
9458 		cache->ro++;
9459 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9460 		ret = 0;
9461 	}
9462 out:
9463 	spin_unlock(&cache->lock);
9464 	spin_unlock(&sinfo->lock);
9465 	return ret;
9466 }
9467 
9468 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9469 			     struct btrfs_block_group_cache *cache)
9470 
9471 {
9472 	struct btrfs_trans_handle *trans;
9473 	u64 alloc_flags;
9474 	int ret;
9475 
9476 again:
9477 	trans = btrfs_join_transaction(fs_info->extent_root);
9478 	if (IS_ERR(trans))
9479 		return PTR_ERR(trans);
9480 
9481 	/*
9482 	 * we're not allowed to set block groups readonly after the dirty
9483 	 * block groups cache has started writing.  If it already started,
9484 	 * back off and let this transaction commit
9485 	 */
9486 	mutex_lock(&fs_info->ro_block_group_mutex);
9487 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9488 		u64 transid = trans->transid;
9489 
9490 		mutex_unlock(&fs_info->ro_block_group_mutex);
9491 		btrfs_end_transaction(trans);
9492 
9493 		ret = btrfs_wait_for_commit(fs_info, transid);
9494 		if (ret)
9495 			return ret;
9496 		goto again;
9497 	}
9498 
9499 	/*
9500 	 * if we are changing raid levels, try to allocate a corresponding
9501 	 * block group with the new raid level.
9502 	 */
9503 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9504 	if (alloc_flags != cache->flags) {
9505 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9506 				     CHUNK_ALLOC_FORCE);
9507 		/*
9508 		 * ENOSPC is allowed here, we may have enough space
9509 		 * already allocated at the new raid level to
9510 		 * carry on
9511 		 */
9512 		if (ret == -ENOSPC)
9513 			ret = 0;
9514 		if (ret < 0)
9515 			goto out;
9516 	}
9517 
9518 	ret = inc_block_group_ro(cache, 0);
9519 	if (!ret)
9520 		goto out;
9521 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9522 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9523 			     CHUNK_ALLOC_FORCE);
9524 	if (ret < 0)
9525 		goto out;
9526 	ret = inc_block_group_ro(cache, 0);
9527 out:
9528 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9529 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9530 		mutex_lock(&fs_info->chunk_mutex);
9531 		check_system_chunk(trans, fs_info, alloc_flags);
9532 		mutex_unlock(&fs_info->chunk_mutex);
9533 	}
9534 	mutex_unlock(&fs_info->ro_block_group_mutex);
9535 
9536 	btrfs_end_transaction(trans);
9537 	return ret;
9538 }
9539 
9540 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9541 			    struct btrfs_fs_info *fs_info, u64 type)
9542 {
9543 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9544 
9545 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9546 }
9547 
9548 /*
9549  * helper to account the unused space of all the readonly block group in the
9550  * space_info. takes mirrors into account.
9551  */
9552 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9553 {
9554 	struct btrfs_block_group_cache *block_group;
9555 	u64 free_bytes = 0;
9556 	int factor;
9557 
9558 	/* It's df, we don't care if it's racy */
9559 	if (list_empty(&sinfo->ro_bgs))
9560 		return 0;
9561 
9562 	spin_lock(&sinfo->lock);
9563 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9564 		spin_lock(&block_group->lock);
9565 
9566 		if (!block_group->ro) {
9567 			spin_unlock(&block_group->lock);
9568 			continue;
9569 		}
9570 
9571 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9572 					  BTRFS_BLOCK_GROUP_RAID10 |
9573 					  BTRFS_BLOCK_GROUP_DUP))
9574 			factor = 2;
9575 		else
9576 			factor = 1;
9577 
9578 		free_bytes += (block_group->key.offset -
9579 			       btrfs_block_group_used(&block_group->item)) *
9580 			       factor;
9581 
9582 		spin_unlock(&block_group->lock);
9583 	}
9584 	spin_unlock(&sinfo->lock);
9585 
9586 	return free_bytes;
9587 }
9588 
9589 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9590 {
9591 	struct btrfs_space_info *sinfo = cache->space_info;
9592 	u64 num_bytes;
9593 
9594 	BUG_ON(!cache->ro);
9595 
9596 	spin_lock(&sinfo->lock);
9597 	spin_lock(&cache->lock);
9598 	if (!--cache->ro) {
9599 		num_bytes = cache->key.offset - cache->reserved -
9600 			    cache->pinned - cache->bytes_super -
9601 			    btrfs_block_group_used(&cache->item);
9602 		sinfo->bytes_readonly -= num_bytes;
9603 		list_del_init(&cache->ro_list);
9604 	}
9605 	spin_unlock(&cache->lock);
9606 	spin_unlock(&sinfo->lock);
9607 }
9608 
9609 /*
9610  * checks to see if its even possible to relocate this block group.
9611  *
9612  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9613  * ok to go ahead and try.
9614  */
9615 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9616 {
9617 	struct btrfs_root *root = fs_info->extent_root;
9618 	struct btrfs_block_group_cache *block_group;
9619 	struct btrfs_space_info *space_info;
9620 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9621 	struct btrfs_device *device;
9622 	struct btrfs_trans_handle *trans;
9623 	u64 min_free;
9624 	u64 dev_min = 1;
9625 	u64 dev_nr = 0;
9626 	u64 target;
9627 	int debug;
9628 	int index;
9629 	int full = 0;
9630 	int ret = 0;
9631 
9632 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9633 
9634 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9635 
9636 	/* odd, couldn't find the block group, leave it alone */
9637 	if (!block_group) {
9638 		if (debug)
9639 			btrfs_warn(fs_info,
9640 				   "can't find block group for bytenr %llu",
9641 				   bytenr);
9642 		return -1;
9643 	}
9644 
9645 	min_free = btrfs_block_group_used(&block_group->item);
9646 
9647 	/* no bytes used, we're good */
9648 	if (!min_free)
9649 		goto out;
9650 
9651 	space_info = block_group->space_info;
9652 	spin_lock(&space_info->lock);
9653 
9654 	full = space_info->full;
9655 
9656 	/*
9657 	 * if this is the last block group we have in this space, we can't
9658 	 * relocate it unless we're able to allocate a new chunk below.
9659 	 *
9660 	 * Otherwise, we need to make sure we have room in the space to handle
9661 	 * all of the extents from this block group.  If we can, we're good
9662 	 */
9663 	if ((space_info->total_bytes != block_group->key.offset) &&
9664 	    (btrfs_space_info_used(space_info, false) + min_free <
9665 	     space_info->total_bytes)) {
9666 		spin_unlock(&space_info->lock);
9667 		goto out;
9668 	}
9669 	spin_unlock(&space_info->lock);
9670 
9671 	/*
9672 	 * ok we don't have enough space, but maybe we have free space on our
9673 	 * devices to allocate new chunks for relocation, so loop through our
9674 	 * alloc devices and guess if we have enough space.  if this block
9675 	 * group is going to be restriped, run checks against the target
9676 	 * profile instead of the current one.
9677 	 */
9678 	ret = -1;
9679 
9680 	/*
9681 	 * index:
9682 	 *      0: raid10
9683 	 *      1: raid1
9684 	 *      2: dup
9685 	 *      3: raid0
9686 	 *      4: single
9687 	 */
9688 	target = get_restripe_target(fs_info, block_group->flags);
9689 	if (target) {
9690 		index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9691 	} else {
9692 		/*
9693 		 * this is just a balance, so if we were marked as full
9694 		 * we know there is no space for a new chunk
9695 		 */
9696 		if (full) {
9697 			if (debug)
9698 				btrfs_warn(fs_info,
9699 					   "no space to alloc new chunk for block group %llu",
9700 					   block_group->key.objectid);
9701 			goto out;
9702 		}
9703 
9704 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
9705 	}
9706 
9707 	if (index == BTRFS_RAID_RAID10) {
9708 		dev_min = 4;
9709 		/* Divide by 2 */
9710 		min_free >>= 1;
9711 	} else if (index == BTRFS_RAID_RAID1) {
9712 		dev_min = 2;
9713 	} else if (index == BTRFS_RAID_DUP) {
9714 		/* Multiply by 2 */
9715 		min_free <<= 1;
9716 	} else if (index == BTRFS_RAID_RAID0) {
9717 		dev_min = fs_devices->rw_devices;
9718 		min_free = div64_u64(min_free, dev_min);
9719 	}
9720 
9721 	/* We need to do this so that we can look at pending chunks */
9722 	trans = btrfs_join_transaction(root);
9723 	if (IS_ERR(trans)) {
9724 		ret = PTR_ERR(trans);
9725 		goto out;
9726 	}
9727 
9728 	mutex_lock(&fs_info->chunk_mutex);
9729 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9730 		u64 dev_offset;
9731 
9732 		/*
9733 		 * check to make sure we can actually find a chunk with enough
9734 		 * space to fit our block group in.
9735 		 */
9736 		if (device->total_bytes > device->bytes_used + min_free &&
9737 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9738 			ret = find_free_dev_extent(trans, device, min_free,
9739 						   &dev_offset, NULL);
9740 			if (!ret)
9741 				dev_nr++;
9742 
9743 			if (dev_nr >= dev_min)
9744 				break;
9745 
9746 			ret = -1;
9747 		}
9748 	}
9749 	if (debug && ret == -1)
9750 		btrfs_warn(fs_info,
9751 			   "no space to allocate a new chunk for block group %llu",
9752 			   block_group->key.objectid);
9753 	mutex_unlock(&fs_info->chunk_mutex);
9754 	btrfs_end_transaction(trans);
9755 out:
9756 	btrfs_put_block_group(block_group);
9757 	return ret;
9758 }
9759 
9760 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9761 				  struct btrfs_path *path,
9762 				  struct btrfs_key *key)
9763 {
9764 	struct btrfs_root *root = fs_info->extent_root;
9765 	int ret = 0;
9766 	struct btrfs_key found_key;
9767 	struct extent_buffer *leaf;
9768 	int slot;
9769 
9770 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9771 	if (ret < 0)
9772 		goto out;
9773 
9774 	while (1) {
9775 		slot = path->slots[0];
9776 		leaf = path->nodes[0];
9777 		if (slot >= btrfs_header_nritems(leaf)) {
9778 			ret = btrfs_next_leaf(root, path);
9779 			if (ret == 0)
9780 				continue;
9781 			if (ret < 0)
9782 				goto out;
9783 			break;
9784 		}
9785 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9786 
9787 		if (found_key.objectid >= key->objectid &&
9788 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9789 			struct extent_map_tree *em_tree;
9790 			struct extent_map *em;
9791 
9792 			em_tree = &root->fs_info->mapping_tree.map_tree;
9793 			read_lock(&em_tree->lock);
9794 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9795 						   found_key.offset);
9796 			read_unlock(&em_tree->lock);
9797 			if (!em) {
9798 				btrfs_err(fs_info,
9799 			"logical %llu len %llu found bg but no related chunk",
9800 					  found_key.objectid, found_key.offset);
9801 				ret = -ENOENT;
9802 			} else {
9803 				ret = 0;
9804 			}
9805 			free_extent_map(em);
9806 			goto out;
9807 		}
9808 		path->slots[0]++;
9809 	}
9810 out:
9811 	return ret;
9812 }
9813 
9814 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9815 {
9816 	struct btrfs_block_group_cache *block_group;
9817 	u64 last = 0;
9818 
9819 	while (1) {
9820 		struct inode *inode;
9821 
9822 		block_group = btrfs_lookup_first_block_group(info, last);
9823 		while (block_group) {
9824 			spin_lock(&block_group->lock);
9825 			if (block_group->iref)
9826 				break;
9827 			spin_unlock(&block_group->lock);
9828 			block_group = next_block_group(info, block_group);
9829 		}
9830 		if (!block_group) {
9831 			if (last == 0)
9832 				break;
9833 			last = 0;
9834 			continue;
9835 		}
9836 
9837 		inode = block_group->inode;
9838 		block_group->iref = 0;
9839 		block_group->inode = NULL;
9840 		spin_unlock(&block_group->lock);
9841 		ASSERT(block_group->io_ctl.inode == NULL);
9842 		iput(inode);
9843 		last = block_group->key.objectid + block_group->key.offset;
9844 		btrfs_put_block_group(block_group);
9845 	}
9846 }
9847 
9848 /*
9849  * Must be called only after stopping all workers, since we could have block
9850  * group caching kthreads running, and therefore they could race with us if we
9851  * freed the block groups before stopping them.
9852  */
9853 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9854 {
9855 	struct btrfs_block_group_cache *block_group;
9856 	struct btrfs_space_info *space_info;
9857 	struct btrfs_caching_control *caching_ctl;
9858 	struct rb_node *n;
9859 
9860 	down_write(&info->commit_root_sem);
9861 	while (!list_empty(&info->caching_block_groups)) {
9862 		caching_ctl = list_entry(info->caching_block_groups.next,
9863 					 struct btrfs_caching_control, list);
9864 		list_del(&caching_ctl->list);
9865 		put_caching_control(caching_ctl);
9866 	}
9867 	up_write(&info->commit_root_sem);
9868 
9869 	spin_lock(&info->unused_bgs_lock);
9870 	while (!list_empty(&info->unused_bgs)) {
9871 		block_group = list_first_entry(&info->unused_bgs,
9872 					       struct btrfs_block_group_cache,
9873 					       bg_list);
9874 		list_del_init(&block_group->bg_list);
9875 		btrfs_put_block_group(block_group);
9876 	}
9877 	spin_unlock(&info->unused_bgs_lock);
9878 
9879 	spin_lock(&info->block_group_cache_lock);
9880 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9881 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9882 				       cache_node);
9883 		rb_erase(&block_group->cache_node,
9884 			 &info->block_group_cache_tree);
9885 		RB_CLEAR_NODE(&block_group->cache_node);
9886 		spin_unlock(&info->block_group_cache_lock);
9887 
9888 		down_write(&block_group->space_info->groups_sem);
9889 		list_del(&block_group->list);
9890 		up_write(&block_group->space_info->groups_sem);
9891 
9892 		/*
9893 		 * We haven't cached this block group, which means we could
9894 		 * possibly have excluded extents on this block group.
9895 		 */
9896 		if (block_group->cached == BTRFS_CACHE_NO ||
9897 		    block_group->cached == BTRFS_CACHE_ERROR)
9898 			free_excluded_extents(info, block_group);
9899 
9900 		btrfs_remove_free_space_cache(block_group);
9901 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9902 		ASSERT(list_empty(&block_group->dirty_list));
9903 		ASSERT(list_empty(&block_group->io_list));
9904 		ASSERT(list_empty(&block_group->bg_list));
9905 		ASSERT(atomic_read(&block_group->count) == 1);
9906 		btrfs_put_block_group(block_group);
9907 
9908 		spin_lock(&info->block_group_cache_lock);
9909 	}
9910 	spin_unlock(&info->block_group_cache_lock);
9911 
9912 	/* now that all the block groups are freed, go through and
9913 	 * free all the space_info structs.  This is only called during
9914 	 * the final stages of unmount, and so we know nobody is
9915 	 * using them.  We call synchronize_rcu() once before we start,
9916 	 * just to be on the safe side.
9917 	 */
9918 	synchronize_rcu();
9919 
9920 	release_global_block_rsv(info);
9921 
9922 	while (!list_empty(&info->space_info)) {
9923 		int i;
9924 
9925 		space_info = list_entry(info->space_info.next,
9926 					struct btrfs_space_info,
9927 					list);
9928 
9929 		/*
9930 		 * Do not hide this behind enospc_debug, this is actually
9931 		 * important and indicates a real bug if this happens.
9932 		 */
9933 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9934 			    space_info->bytes_reserved > 0 ||
9935 			    space_info->bytes_may_use > 0))
9936 			dump_space_info(info, space_info, 0, 0);
9937 		list_del(&space_info->list);
9938 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9939 			struct kobject *kobj;
9940 			kobj = space_info->block_group_kobjs[i];
9941 			space_info->block_group_kobjs[i] = NULL;
9942 			if (kobj) {
9943 				kobject_del(kobj);
9944 				kobject_put(kobj);
9945 			}
9946 		}
9947 		kobject_del(&space_info->kobj);
9948 		kobject_put(&space_info->kobj);
9949 	}
9950 	return 0;
9951 }
9952 
9953 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
9954 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9955 {
9956 	struct btrfs_space_info *space_info;
9957 	struct raid_kobject *rkobj;
9958 	LIST_HEAD(list);
9959 	int index;
9960 	int ret = 0;
9961 
9962 	spin_lock(&fs_info->pending_raid_kobjs_lock);
9963 	list_splice_init(&fs_info->pending_raid_kobjs, &list);
9964 	spin_unlock(&fs_info->pending_raid_kobjs_lock);
9965 
9966 	list_for_each_entry(rkobj, &list, list) {
9967 		space_info = __find_space_info(fs_info, rkobj->flags);
9968 		index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9969 
9970 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9971 				  "%s", get_raid_name(index));
9972 		if (ret) {
9973 			kobject_put(&rkobj->kobj);
9974 			break;
9975 		}
9976 	}
9977 	if (ret)
9978 		btrfs_warn(fs_info,
9979 			   "failed to add kobject for block cache, ignoring");
9980 }
9981 
9982 static void link_block_group(struct btrfs_block_group_cache *cache)
9983 {
9984 	struct btrfs_space_info *space_info = cache->space_info;
9985 	struct btrfs_fs_info *fs_info = cache->fs_info;
9986 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
9987 	bool first = false;
9988 
9989 	down_write(&space_info->groups_sem);
9990 	if (list_empty(&space_info->block_groups[index]))
9991 		first = true;
9992 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9993 	up_write(&space_info->groups_sem);
9994 
9995 	if (first) {
9996 		struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9997 		if (!rkobj) {
9998 			btrfs_warn(cache->fs_info,
9999 				"couldn't alloc memory for raid level kobject");
10000 			return;
10001 		}
10002 		rkobj->flags = cache->flags;
10003 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10004 
10005 		spin_lock(&fs_info->pending_raid_kobjs_lock);
10006 		list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10007 		spin_unlock(&fs_info->pending_raid_kobjs_lock);
10008 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10009 	}
10010 }
10011 
10012 static struct btrfs_block_group_cache *
10013 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10014 			       u64 start, u64 size)
10015 {
10016 	struct btrfs_block_group_cache *cache;
10017 
10018 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10019 	if (!cache)
10020 		return NULL;
10021 
10022 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10023 					GFP_NOFS);
10024 	if (!cache->free_space_ctl) {
10025 		kfree(cache);
10026 		return NULL;
10027 	}
10028 
10029 	cache->key.objectid = start;
10030 	cache->key.offset = size;
10031 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10032 
10033 	cache->fs_info = fs_info;
10034 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10035 	set_free_space_tree_thresholds(cache);
10036 
10037 	atomic_set(&cache->count, 1);
10038 	spin_lock_init(&cache->lock);
10039 	init_rwsem(&cache->data_rwsem);
10040 	INIT_LIST_HEAD(&cache->list);
10041 	INIT_LIST_HEAD(&cache->cluster_list);
10042 	INIT_LIST_HEAD(&cache->bg_list);
10043 	INIT_LIST_HEAD(&cache->ro_list);
10044 	INIT_LIST_HEAD(&cache->dirty_list);
10045 	INIT_LIST_HEAD(&cache->io_list);
10046 	btrfs_init_free_space_ctl(cache);
10047 	atomic_set(&cache->trimming, 0);
10048 	mutex_init(&cache->free_space_lock);
10049 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10050 
10051 	return cache;
10052 }
10053 
10054 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10055 {
10056 	struct btrfs_path *path;
10057 	int ret;
10058 	struct btrfs_block_group_cache *cache;
10059 	struct btrfs_space_info *space_info;
10060 	struct btrfs_key key;
10061 	struct btrfs_key found_key;
10062 	struct extent_buffer *leaf;
10063 	int need_clear = 0;
10064 	u64 cache_gen;
10065 	u64 feature;
10066 	int mixed;
10067 
10068 	feature = btrfs_super_incompat_flags(info->super_copy);
10069 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10070 
10071 	key.objectid = 0;
10072 	key.offset = 0;
10073 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10074 	path = btrfs_alloc_path();
10075 	if (!path)
10076 		return -ENOMEM;
10077 	path->reada = READA_FORWARD;
10078 
10079 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10080 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10081 	    btrfs_super_generation(info->super_copy) != cache_gen)
10082 		need_clear = 1;
10083 	if (btrfs_test_opt(info, CLEAR_CACHE))
10084 		need_clear = 1;
10085 
10086 	while (1) {
10087 		ret = find_first_block_group(info, path, &key);
10088 		if (ret > 0)
10089 			break;
10090 		if (ret != 0)
10091 			goto error;
10092 
10093 		leaf = path->nodes[0];
10094 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10095 
10096 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10097 						       found_key.offset);
10098 		if (!cache) {
10099 			ret = -ENOMEM;
10100 			goto error;
10101 		}
10102 
10103 		if (need_clear) {
10104 			/*
10105 			 * When we mount with old space cache, we need to
10106 			 * set BTRFS_DC_CLEAR and set dirty flag.
10107 			 *
10108 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10109 			 *    truncate the old free space cache inode and
10110 			 *    setup a new one.
10111 			 * b) Setting 'dirty flag' makes sure that we flush
10112 			 *    the new space cache info onto disk.
10113 			 */
10114 			if (btrfs_test_opt(info, SPACE_CACHE))
10115 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10116 		}
10117 
10118 		read_extent_buffer(leaf, &cache->item,
10119 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10120 				   sizeof(cache->item));
10121 		cache->flags = btrfs_block_group_flags(&cache->item);
10122 		if (!mixed &&
10123 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10124 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10125 			btrfs_err(info,
10126 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10127 				  cache->key.objectid);
10128 			ret = -EINVAL;
10129 			goto error;
10130 		}
10131 
10132 		key.objectid = found_key.objectid + found_key.offset;
10133 		btrfs_release_path(path);
10134 
10135 		/*
10136 		 * We need to exclude the super stripes now so that the space
10137 		 * info has super bytes accounted for, otherwise we'll think
10138 		 * we have more space than we actually do.
10139 		 */
10140 		ret = exclude_super_stripes(info, cache);
10141 		if (ret) {
10142 			/*
10143 			 * We may have excluded something, so call this just in
10144 			 * case.
10145 			 */
10146 			free_excluded_extents(info, cache);
10147 			btrfs_put_block_group(cache);
10148 			goto error;
10149 		}
10150 
10151 		/*
10152 		 * check for two cases, either we are full, and therefore
10153 		 * don't need to bother with the caching work since we won't
10154 		 * find any space, or we are empty, and we can just add all
10155 		 * the space in and be done with it.  This saves us _alot_ of
10156 		 * time, particularly in the full case.
10157 		 */
10158 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10159 			cache->last_byte_to_unpin = (u64)-1;
10160 			cache->cached = BTRFS_CACHE_FINISHED;
10161 			free_excluded_extents(info, cache);
10162 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10163 			cache->last_byte_to_unpin = (u64)-1;
10164 			cache->cached = BTRFS_CACHE_FINISHED;
10165 			add_new_free_space(cache, found_key.objectid,
10166 					   found_key.objectid +
10167 					   found_key.offset);
10168 			free_excluded_extents(info, cache);
10169 		}
10170 
10171 		ret = btrfs_add_block_group_cache(info, cache);
10172 		if (ret) {
10173 			btrfs_remove_free_space_cache(cache);
10174 			btrfs_put_block_group(cache);
10175 			goto error;
10176 		}
10177 
10178 		trace_btrfs_add_block_group(info, cache, 0);
10179 		update_space_info(info, cache->flags, found_key.offset,
10180 				  btrfs_block_group_used(&cache->item),
10181 				  cache->bytes_super, &space_info);
10182 
10183 		cache->space_info = space_info;
10184 
10185 		link_block_group(cache);
10186 
10187 		set_avail_alloc_bits(info, cache->flags);
10188 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10189 			inc_block_group_ro(cache, 1);
10190 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10191 			spin_lock(&info->unused_bgs_lock);
10192 			/* Should always be true but just in case. */
10193 			if (list_empty(&cache->bg_list)) {
10194 				btrfs_get_block_group(cache);
10195 				trace_btrfs_add_unused_block_group(cache);
10196 				list_add_tail(&cache->bg_list,
10197 					      &info->unused_bgs);
10198 			}
10199 			spin_unlock(&info->unused_bgs_lock);
10200 		}
10201 	}
10202 
10203 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10204 		if (!(get_alloc_profile(info, space_info->flags) &
10205 		      (BTRFS_BLOCK_GROUP_RAID10 |
10206 		       BTRFS_BLOCK_GROUP_RAID1 |
10207 		       BTRFS_BLOCK_GROUP_RAID5 |
10208 		       BTRFS_BLOCK_GROUP_RAID6 |
10209 		       BTRFS_BLOCK_GROUP_DUP)))
10210 			continue;
10211 		/*
10212 		 * avoid allocating from un-mirrored block group if there are
10213 		 * mirrored block groups.
10214 		 */
10215 		list_for_each_entry(cache,
10216 				&space_info->block_groups[BTRFS_RAID_RAID0],
10217 				list)
10218 			inc_block_group_ro(cache, 1);
10219 		list_for_each_entry(cache,
10220 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10221 				list)
10222 			inc_block_group_ro(cache, 1);
10223 	}
10224 
10225 	btrfs_add_raid_kobjects(info);
10226 	init_global_block_rsv(info);
10227 	ret = 0;
10228 error:
10229 	btrfs_free_path(path);
10230 	return ret;
10231 }
10232 
10233 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10234 {
10235 	struct btrfs_fs_info *fs_info = trans->fs_info;
10236 	struct btrfs_block_group_cache *block_group, *tmp;
10237 	struct btrfs_root *extent_root = fs_info->extent_root;
10238 	struct btrfs_block_group_item item;
10239 	struct btrfs_key key;
10240 	int ret = 0;
10241 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10242 
10243 	trans->can_flush_pending_bgs = false;
10244 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10245 		if (ret)
10246 			goto next;
10247 
10248 		spin_lock(&block_group->lock);
10249 		memcpy(&item, &block_group->item, sizeof(item));
10250 		memcpy(&key, &block_group->key, sizeof(key));
10251 		spin_unlock(&block_group->lock);
10252 
10253 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10254 					sizeof(item));
10255 		if (ret)
10256 			btrfs_abort_transaction(trans, ret);
10257 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10258 					       key.offset);
10259 		if (ret)
10260 			btrfs_abort_transaction(trans, ret);
10261 		add_block_group_free_space(trans, block_group);
10262 		/* already aborted the transaction if it failed. */
10263 next:
10264 		list_del_init(&block_group->bg_list);
10265 	}
10266 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10267 }
10268 
10269 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10270 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10271 			   u64 type, u64 chunk_offset, u64 size)
10272 {
10273 	struct btrfs_block_group_cache *cache;
10274 	int ret;
10275 
10276 	btrfs_set_log_full_commit(fs_info, trans);
10277 
10278 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10279 	if (!cache)
10280 		return -ENOMEM;
10281 
10282 	btrfs_set_block_group_used(&cache->item, bytes_used);
10283 	btrfs_set_block_group_chunk_objectid(&cache->item,
10284 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10285 	btrfs_set_block_group_flags(&cache->item, type);
10286 
10287 	cache->flags = type;
10288 	cache->last_byte_to_unpin = (u64)-1;
10289 	cache->cached = BTRFS_CACHE_FINISHED;
10290 	cache->needs_free_space = 1;
10291 	ret = exclude_super_stripes(fs_info, cache);
10292 	if (ret) {
10293 		/*
10294 		 * We may have excluded something, so call this just in
10295 		 * case.
10296 		 */
10297 		free_excluded_extents(fs_info, cache);
10298 		btrfs_put_block_group(cache);
10299 		return ret;
10300 	}
10301 
10302 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
10303 
10304 	free_excluded_extents(fs_info, cache);
10305 
10306 #ifdef CONFIG_BTRFS_DEBUG
10307 	if (btrfs_should_fragment_free_space(cache)) {
10308 		u64 new_bytes_used = size - bytes_used;
10309 
10310 		bytes_used += new_bytes_used >> 1;
10311 		fragment_free_space(cache);
10312 	}
10313 #endif
10314 	/*
10315 	 * Ensure the corresponding space_info object is created and
10316 	 * assigned to our block group. We want our bg to be added to the rbtree
10317 	 * with its ->space_info set.
10318 	 */
10319 	cache->space_info = __find_space_info(fs_info, cache->flags);
10320 	ASSERT(cache->space_info);
10321 
10322 	ret = btrfs_add_block_group_cache(fs_info, cache);
10323 	if (ret) {
10324 		btrfs_remove_free_space_cache(cache);
10325 		btrfs_put_block_group(cache);
10326 		return ret;
10327 	}
10328 
10329 	/*
10330 	 * Now that our block group has its ->space_info set and is inserted in
10331 	 * the rbtree, update the space info's counters.
10332 	 */
10333 	trace_btrfs_add_block_group(fs_info, cache, 1);
10334 	update_space_info(fs_info, cache->flags, size, bytes_used,
10335 				cache->bytes_super, &cache->space_info);
10336 	update_global_block_rsv(fs_info);
10337 
10338 	link_block_group(cache);
10339 
10340 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10341 
10342 	set_avail_alloc_bits(fs_info, type);
10343 	return 0;
10344 }
10345 
10346 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10347 {
10348 	u64 extra_flags = chunk_to_extended(flags) &
10349 				BTRFS_EXTENDED_PROFILE_MASK;
10350 
10351 	write_seqlock(&fs_info->profiles_lock);
10352 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10353 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10354 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10355 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10356 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10357 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10358 	write_sequnlock(&fs_info->profiles_lock);
10359 }
10360 
10361 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10362 			     struct btrfs_fs_info *fs_info, u64 group_start,
10363 			     struct extent_map *em)
10364 {
10365 	struct btrfs_root *root = fs_info->extent_root;
10366 	struct btrfs_path *path;
10367 	struct btrfs_block_group_cache *block_group;
10368 	struct btrfs_free_cluster *cluster;
10369 	struct btrfs_root *tree_root = fs_info->tree_root;
10370 	struct btrfs_key key;
10371 	struct inode *inode;
10372 	struct kobject *kobj = NULL;
10373 	int ret;
10374 	int index;
10375 	int factor;
10376 	struct btrfs_caching_control *caching_ctl = NULL;
10377 	bool remove_em;
10378 
10379 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10380 	BUG_ON(!block_group);
10381 	BUG_ON(!block_group->ro);
10382 
10383 	trace_btrfs_remove_block_group(block_group);
10384 	/*
10385 	 * Free the reserved super bytes from this block group before
10386 	 * remove it.
10387 	 */
10388 	free_excluded_extents(fs_info, block_group);
10389 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10390 				  block_group->key.offset);
10391 
10392 	memcpy(&key, &block_group->key, sizeof(key));
10393 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
10394 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10395 				  BTRFS_BLOCK_GROUP_RAID1 |
10396 				  BTRFS_BLOCK_GROUP_RAID10))
10397 		factor = 2;
10398 	else
10399 		factor = 1;
10400 
10401 	/* make sure this block group isn't part of an allocation cluster */
10402 	cluster = &fs_info->data_alloc_cluster;
10403 	spin_lock(&cluster->refill_lock);
10404 	btrfs_return_cluster_to_free_space(block_group, cluster);
10405 	spin_unlock(&cluster->refill_lock);
10406 
10407 	/*
10408 	 * make sure this block group isn't part of a metadata
10409 	 * allocation cluster
10410 	 */
10411 	cluster = &fs_info->meta_alloc_cluster;
10412 	spin_lock(&cluster->refill_lock);
10413 	btrfs_return_cluster_to_free_space(block_group, cluster);
10414 	spin_unlock(&cluster->refill_lock);
10415 
10416 	path = btrfs_alloc_path();
10417 	if (!path) {
10418 		ret = -ENOMEM;
10419 		goto out;
10420 	}
10421 
10422 	/*
10423 	 * get the inode first so any iput calls done for the io_list
10424 	 * aren't the final iput (no unlinks allowed now)
10425 	 */
10426 	inode = lookup_free_space_inode(fs_info, block_group, path);
10427 
10428 	mutex_lock(&trans->transaction->cache_write_mutex);
10429 	/*
10430 	 * make sure our free spache cache IO is done before remove the
10431 	 * free space inode
10432 	 */
10433 	spin_lock(&trans->transaction->dirty_bgs_lock);
10434 	if (!list_empty(&block_group->io_list)) {
10435 		list_del_init(&block_group->io_list);
10436 
10437 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10438 
10439 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10440 		btrfs_wait_cache_io(trans, block_group, path);
10441 		btrfs_put_block_group(block_group);
10442 		spin_lock(&trans->transaction->dirty_bgs_lock);
10443 	}
10444 
10445 	if (!list_empty(&block_group->dirty_list)) {
10446 		list_del_init(&block_group->dirty_list);
10447 		btrfs_put_block_group(block_group);
10448 	}
10449 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10450 	mutex_unlock(&trans->transaction->cache_write_mutex);
10451 
10452 	if (!IS_ERR(inode)) {
10453 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10454 		if (ret) {
10455 			btrfs_add_delayed_iput(inode);
10456 			goto out;
10457 		}
10458 		clear_nlink(inode);
10459 		/* One for the block groups ref */
10460 		spin_lock(&block_group->lock);
10461 		if (block_group->iref) {
10462 			block_group->iref = 0;
10463 			block_group->inode = NULL;
10464 			spin_unlock(&block_group->lock);
10465 			iput(inode);
10466 		} else {
10467 			spin_unlock(&block_group->lock);
10468 		}
10469 		/* One for our lookup ref */
10470 		btrfs_add_delayed_iput(inode);
10471 	}
10472 
10473 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10474 	key.offset = block_group->key.objectid;
10475 	key.type = 0;
10476 
10477 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10478 	if (ret < 0)
10479 		goto out;
10480 	if (ret > 0)
10481 		btrfs_release_path(path);
10482 	if (ret == 0) {
10483 		ret = btrfs_del_item(trans, tree_root, path);
10484 		if (ret)
10485 			goto out;
10486 		btrfs_release_path(path);
10487 	}
10488 
10489 	spin_lock(&fs_info->block_group_cache_lock);
10490 	rb_erase(&block_group->cache_node,
10491 		 &fs_info->block_group_cache_tree);
10492 	RB_CLEAR_NODE(&block_group->cache_node);
10493 
10494 	if (fs_info->first_logical_byte == block_group->key.objectid)
10495 		fs_info->first_logical_byte = (u64)-1;
10496 	spin_unlock(&fs_info->block_group_cache_lock);
10497 
10498 	down_write(&block_group->space_info->groups_sem);
10499 	/*
10500 	 * we must use list_del_init so people can check to see if they
10501 	 * are still on the list after taking the semaphore
10502 	 */
10503 	list_del_init(&block_group->list);
10504 	if (list_empty(&block_group->space_info->block_groups[index])) {
10505 		kobj = block_group->space_info->block_group_kobjs[index];
10506 		block_group->space_info->block_group_kobjs[index] = NULL;
10507 		clear_avail_alloc_bits(fs_info, block_group->flags);
10508 	}
10509 	up_write(&block_group->space_info->groups_sem);
10510 	if (kobj) {
10511 		kobject_del(kobj);
10512 		kobject_put(kobj);
10513 	}
10514 
10515 	if (block_group->has_caching_ctl)
10516 		caching_ctl = get_caching_control(block_group);
10517 	if (block_group->cached == BTRFS_CACHE_STARTED)
10518 		wait_block_group_cache_done(block_group);
10519 	if (block_group->has_caching_ctl) {
10520 		down_write(&fs_info->commit_root_sem);
10521 		if (!caching_ctl) {
10522 			struct btrfs_caching_control *ctl;
10523 
10524 			list_for_each_entry(ctl,
10525 				    &fs_info->caching_block_groups, list)
10526 				if (ctl->block_group == block_group) {
10527 					caching_ctl = ctl;
10528 					refcount_inc(&caching_ctl->count);
10529 					break;
10530 				}
10531 		}
10532 		if (caching_ctl)
10533 			list_del_init(&caching_ctl->list);
10534 		up_write(&fs_info->commit_root_sem);
10535 		if (caching_ctl) {
10536 			/* Once for the caching bgs list and once for us. */
10537 			put_caching_control(caching_ctl);
10538 			put_caching_control(caching_ctl);
10539 		}
10540 	}
10541 
10542 	spin_lock(&trans->transaction->dirty_bgs_lock);
10543 	if (!list_empty(&block_group->dirty_list)) {
10544 		WARN_ON(1);
10545 	}
10546 	if (!list_empty(&block_group->io_list)) {
10547 		WARN_ON(1);
10548 	}
10549 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10550 	btrfs_remove_free_space_cache(block_group);
10551 
10552 	spin_lock(&block_group->space_info->lock);
10553 	list_del_init(&block_group->ro_list);
10554 
10555 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10556 		WARN_ON(block_group->space_info->total_bytes
10557 			< block_group->key.offset);
10558 		WARN_ON(block_group->space_info->bytes_readonly
10559 			< block_group->key.offset);
10560 		WARN_ON(block_group->space_info->disk_total
10561 			< block_group->key.offset * factor);
10562 	}
10563 	block_group->space_info->total_bytes -= block_group->key.offset;
10564 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10565 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10566 
10567 	spin_unlock(&block_group->space_info->lock);
10568 
10569 	memcpy(&key, &block_group->key, sizeof(key));
10570 
10571 	mutex_lock(&fs_info->chunk_mutex);
10572 	if (!list_empty(&em->list)) {
10573 		/* We're in the transaction->pending_chunks list. */
10574 		free_extent_map(em);
10575 	}
10576 	spin_lock(&block_group->lock);
10577 	block_group->removed = 1;
10578 	/*
10579 	 * At this point trimming can't start on this block group, because we
10580 	 * removed the block group from the tree fs_info->block_group_cache_tree
10581 	 * so no one can't find it anymore and even if someone already got this
10582 	 * block group before we removed it from the rbtree, they have already
10583 	 * incremented block_group->trimming - if they didn't, they won't find
10584 	 * any free space entries because we already removed them all when we
10585 	 * called btrfs_remove_free_space_cache().
10586 	 *
10587 	 * And we must not remove the extent map from the fs_info->mapping_tree
10588 	 * to prevent the same logical address range and physical device space
10589 	 * ranges from being reused for a new block group. This is because our
10590 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10591 	 * completely transactionless, so while it is trimming a range the
10592 	 * currently running transaction might finish and a new one start,
10593 	 * allowing for new block groups to be created that can reuse the same
10594 	 * physical device locations unless we take this special care.
10595 	 *
10596 	 * There may also be an implicit trim operation if the file system
10597 	 * is mounted with -odiscard. The same protections must remain
10598 	 * in place until the extents have been discarded completely when
10599 	 * the transaction commit has completed.
10600 	 */
10601 	remove_em = (atomic_read(&block_group->trimming) == 0);
10602 	/*
10603 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10604 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10605 	 * before checking block_group->removed).
10606 	 */
10607 	if (!remove_em) {
10608 		/*
10609 		 * Our em might be in trans->transaction->pending_chunks which
10610 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10611 		 * and so is the fs_info->pinned_chunks list.
10612 		 *
10613 		 * So at this point we must be holding the chunk_mutex to avoid
10614 		 * any races with chunk allocation (more specifically at
10615 		 * volumes.c:contains_pending_extent()), to ensure it always
10616 		 * sees the em, either in the pending_chunks list or in the
10617 		 * pinned_chunks list.
10618 		 */
10619 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10620 	}
10621 	spin_unlock(&block_group->lock);
10622 
10623 	if (remove_em) {
10624 		struct extent_map_tree *em_tree;
10625 
10626 		em_tree = &fs_info->mapping_tree.map_tree;
10627 		write_lock(&em_tree->lock);
10628 		/*
10629 		 * The em might be in the pending_chunks list, so make sure the
10630 		 * chunk mutex is locked, since remove_extent_mapping() will
10631 		 * delete us from that list.
10632 		 */
10633 		remove_extent_mapping(em_tree, em);
10634 		write_unlock(&em_tree->lock);
10635 		/* once for the tree */
10636 		free_extent_map(em);
10637 	}
10638 
10639 	mutex_unlock(&fs_info->chunk_mutex);
10640 
10641 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10642 	if (ret)
10643 		goto out;
10644 
10645 	btrfs_put_block_group(block_group);
10646 	btrfs_put_block_group(block_group);
10647 
10648 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10649 	if (ret > 0)
10650 		ret = -EIO;
10651 	if (ret < 0)
10652 		goto out;
10653 
10654 	ret = btrfs_del_item(trans, root, path);
10655 out:
10656 	btrfs_free_path(path);
10657 	return ret;
10658 }
10659 
10660 struct btrfs_trans_handle *
10661 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10662 				     const u64 chunk_offset)
10663 {
10664 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10665 	struct extent_map *em;
10666 	struct map_lookup *map;
10667 	unsigned int num_items;
10668 
10669 	read_lock(&em_tree->lock);
10670 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10671 	read_unlock(&em_tree->lock);
10672 	ASSERT(em && em->start == chunk_offset);
10673 
10674 	/*
10675 	 * We need to reserve 3 + N units from the metadata space info in order
10676 	 * to remove a block group (done at btrfs_remove_chunk() and at
10677 	 * btrfs_remove_block_group()), which are used for:
10678 	 *
10679 	 * 1 unit for adding the free space inode's orphan (located in the tree
10680 	 * of tree roots).
10681 	 * 1 unit for deleting the block group item (located in the extent
10682 	 * tree).
10683 	 * 1 unit for deleting the free space item (located in tree of tree
10684 	 * roots).
10685 	 * N units for deleting N device extent items corresponding to each
10686 	 * stripe (located in the device tree).
10687 	 *
10688 	 * In order to remove a block group we also need to reserve units in the
10689 	 * system space info in order to update the chunk tree (update one or
10690 	 * more device items and remove one chunk item), but this is done at
10691 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10692 	 */
10693 	map = em->map_lookup;
10694 	num_items = 3 + map->num_stripes;
10695 	free_extent_map(em);
10696 
10697 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10698 							   num_items, 1);
10699 }
10700 
10701 /*
10702  * Process the unused_bgs list and remove any that don't have any allocated
10703  * space inside of them.
10704  */
10705 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10706 {
10707 	struct btrfs_block_group_cache *block_group;
10708 	struct btrfs_space_info *space_info;
10709 	struct btrfs_trans_handle *trans;
10710 	int ret = 0;
10711 
10712 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10713 		return;
10714 
10715 	spin_lock(&fs_info->unused_bgs_lock);
10716 	while (!list_empty(&fs_info->unused_bgs)) {
10717 		u64 start, end;
10718 		int trimming;
10719 
10720 		block_group = list_first_entry(&fs_info->unused_bgs,
10721 					       struct btrfs_block_group_cache,
10722 					       bg_list);
10723 		list_del_init(&block_group->bg_list);
10724 
10725 		space_info = block_group->space_info;
10726 
10727 		if (ret || btrfs_mixed_space_info(space_info)) {
10728 			btrfs_put_block_group(block_group);
10729 			continue;
10730 		}
10731 		spin_unlock(&fs_info->unused_bgs_lock);
10732 
10733 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10734 
10735 		/* Don't want to race with allocators so take the groups_sem */
10736 		down_write(&space_info->groups_sem);
10737 		spin_lock(&block_group->lock);
10738 		if (block_group->reserved ||
10739 		    btrfs_block_group_used(&block_group->item) ||
10740 		    block_group->ro ||
10741 		    list_is_singular(&block_group->list)) {
10742 			/*
10743 			 * We want to bail if we made new allocations or have
10744 			 * outstanding allocations in this block group.  We do
10745 			 * the ro check in case balance is currently acting on
10746 			 * this block group.
10747 			 */
10748 			trace_btrfs_skip_unused_block_group(block_group);
10749 			spin_unlock(&block_group->lock);
10750 			up_write(&space_info->groups_sem);
10751 			goto next;
10752 		}
10753 		spin_unlock(&block_group->lock);
10754 
10755 		/* We don't want to force the issue, only flip if it's ok. */
10756 		ret = inc_block_group_ro(block_group, 0);
10757 		up_write(&space_info->groups_sem);
10758 		if (ret < 0) {
10759 			ret = 0;
10760 			goto next;
10761 		}
10762 
10763 		/*
10764 		 * Want to do this before we do anything else so we can recover
10765 		 * properly if we fail to join the transaction.
10766 		 */
10767 		trans = btrfs_start_trans_remove_block_group(fs_info,
10768 						     block_group->key.objectid);
10769 		if (IS_ERR(trans)) {
10770 			btrfs_dec_block_group_ro(block_group);
10771 			ret = PTR_ERR(trans);
10772 			goto next;
10773 		}
10774 
10775 		/*
10776 		 * We could have pending pinned extents for this block group,
10777 		 * just delete them, we don't care about them anymore.
10778 		 */
10779 		start = block_group->key.objectid;
10780 		end = start + block_group->key.offset - 1;
10781 		/*
10782 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10783 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10784 		 * another task might be running finish_extent_commit() for the
10785 		 * previous transaction N - 1, and have seen a range belonging
10786 		 * to the block group in freed_extents[] before we were able to
10787 		 * clear the whole block group range from freed_extents[]. This
10788 		 * means that task can lookup for the block group after we
10789 		 * unpinned it from freed_extents[] and removed it, leading to
10790 		 * a BUG_ON() at btrfs_unpin_extent_range().
10791 		 */
10792 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10793 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10794 				  EXTENT_DIRTY);
10795 		if (ret) {
10796 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10797 			btrfs_dec_block_group_ro(block_group);
10798 			goto end_trans;
10799 		}
10800 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10801 				  EXTENT_DIRTY);
10802 		if (ret) {
10803 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10804 			btrfs_dec_block_group_ro(block_group);
10805 			goto end_trans;
10806 		}
10807 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10808 
10809 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10810 		spin_lock(&space_info->lock);
10811 		spin_lock(&block_group->lock);
10812 
10813 		space_info->bytes_pinned -= block_group->pinned;
10814 		space_info->bytes_readonly += block_group->pinned;
10815 		percpu_counter_add(&space_info->total_bytes_pinned,
10816 				   -block_group->pinned);
10817 		block_group->pinned = 0;
10818 
10819 		spin_unlock(&block_group->lock);
10820 		spin_unlock(&space_info->lock);
10821 
10822 		/* DISCARD can flip during remount */
10823 		trimming = btrfs_test_opt(fs_info, DISCARD);
10824 
10825 		/* Implicit trim during transaction commit. */
10826 		if (trimming)
10827 			btrfs_get_block_group_trimming(block_group);
10828 
10829 		/*
10830 		 * Btrfs_remove_chunk will abort the transaction if things go
10831 		 * horribly wrong.
10832 		 */
10833 		ret = btrfs_remove_chunk(trans, fs_info,
10834 					 block_group->key.objectid);
10835 
10836 		if (ret) {
10837 			if (trimming)
10838 				btrfs_put_block_group_trimming(block_group);
10839 			goto end_trans;
10840 		}
10841 
10842 		/*
10843 		 * If we're not mounted with -odiscard, we can just forget
10844 		 * about this block group. Otherwise we'll need to wait
10845 		 * until transaction commit to do the actual discard.
10846 		 */
10847 		if (trimming) {
10848 			spin_lock(&fs_info->unused_bgs_lock);
10849 			/*
10850 			 * A concurrent scrub might have added us to the list
10851 			 * fs_info->unused_bgs, so use a list_move operation
10852 			 * to add the block group to the deleted_bgs list.
10853 			 */
10854 			list_move(&block_group->bg_list,
10855 				  &trans->transaction->deleted_bgs);
10856 			spin_unlock(&fs_info->unused_bgs_lock);
10857 			btrfs_get_block_group(block_group);
10858 		}
10859 end_trans:
10860 		btrfs_end_transaction(trans);
10861 next:
10862 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10863 		btrfs_put_block_group(block_group);
10864 		spin_lock(&fs_info->unused_bgs_lock);
10865 	}
10866 	spin_unlock(&fs_info->unused_bgs_lock);
10867 }
10868 
10869 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10870 {
10871 	struct btrfs_space_info *space_info;
10872 	struct btrfs_super_block *disk_super;
10873 	u64 features;
10874 	u64 flags;
10875 	int mixed = 0;
10876 	int ret;
10877 
10878 	disk_super = fs_info->super_copy;
10879 	if (!btrfs_super_root(disk_super))
10880 		return -EINVAL;
10881 
10882 	features = btrfs_super_incompat_flags(disk_super);
10883 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10884 		mixed = 1;
10885 
10886 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10887 	ret = create_space_info(fs_info, flags, &space_info);
10888 	if (ret)
10889 		goto out;
10890 
10891 	if (mixed) {
10892 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10893 		ret = create_space_info(fs_info, flags, &space_info);
10894 	} else {
10895 		flags = BTRFS_BLOCK_GROUP_METADATA;
10896 		ret = create_space_info(fs_info, flags, &space_info);
10897 		if (ret)
10898 			goto out;
10899 
10900 		flags = BTRFS_BLOCK_GROUP_DATA;
10901 		ret = create_space_info(fs_info, flags, &space_info);
10902 	}
10903 out:
10904 	return ret;
10905 }
10906 
10907 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10908 				   u64 start, u64 end)
10909 {
10910 	return unpin_extent_range(fs_info, start, end, false);
10911 }
10912 
10913 /*
10914  * It used to be that old block groups would be left around forever.
10915  * Iterating over them would be enough to trim unused space.  Since we
10916  * now automatically remove them, we also need to iterate over unallocated
10917  * space.
10918  *
10919  * We don't want a transaction for this since the discard may take a
10920  * substantial amount of time.  We don't require that a transaction be
10921  * running, but we do need to take a running transaction into account
10922  * to ensure that we're not discarding chunks that were released in
10923  * the current transaction.
10924  *
10925  * Holding the chunks lock will prevent other threads from allocating
10926  * or releasing chunks, but it won't prevent a running transaction
10927  * from committing and releasing the memory that the pending chunks
10928  * list head uses.  For that, we need to take a reference to the
10929  * transaction.
10930  */
10931 static int btrfs_trim_free_extents(struct btrfs_device *device,
10932 				   u64 minlen, u64 *trimmed)
10933 {
10934 	u64 start = 0, len = 0;
10935 	int ret;
10936 
10937 	*trimmed = 0;
10938 
10939 	/* Not writeable = nothing to do. */
10940 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10941 		return 0;
10942 
10943 	/* No free space = nothing to do. */
10944 	if (device->total_bytes <= device->bytes_used)
10945 		return 0;
10946 
10947 	ret = 0;
10948 
10949 	while (1) {
10950 		struct btrfs_fs_info *fs_info = device->fs_info;
10951 		struct btrfs_transaction *trans;
10952 		u64 bytes;
10953 
10954 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10955 		if (ret)
10956 			return ret;
10957 
10958 		down_read(&fs_info->commit_root_sem);
10959 
10960 		spin_lock(&fs_info->trans_lock);
10961 		trans = fs_info->running_transaction;
10962 		if (trans)
10963 			refcount_inc(&trans->use_count);
10964 		spin_unlock(&fs_info->trans_lock);
10965 
10966 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10967 						 &start, &len);
10968 		if (trans)
10969 			btrfs_put_transaction(trans);
10970 
10971 		if (ret) {
10972 			up_read(&fs_info->commit_root_sem);
10973 			mutex_unlock(&fs_info->chunk_mutex);
10974 			if (ret == -ENOSPC)
10975 				ret = 0;
10976 			break;
10977 		}
10978 
10979 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10980 		up_read(&fs_info->commit_root_sem);
10981 		mutex_unlock(&fs_info->chunk_mutex);
10982 
10983 		if (ret)
10984 			break;
10985 
10986 		start += len;
10987 		*trimmed += bytes;
10988 
10989 		if (fatal_signal_pending(current)) {
10990 			ret = -ERESTARTSYS;
10991 			break;
10992 		}
10993 
10994 		cond_resched();
10995 	}
10996 
10997 	return ret;
10998 }
10999 
11000 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11001 {
11002 	struct btrfs_block_group_cache *cache = NULL;
11003 	struct btrfs_device *device;
11004 	struct list_head *devices;
11005 	u64 group_trimmed;
11006 	u64 start;
11007 	u64 end;
11008 	u64 trimmed = 0;
11009 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11010 	int ret = 0;
11011 
11012 	/*
11013 	 * try to trim all FS space, our block group may start from non-zero.
11014 	 */
11015 	if (range->len == total_bytes)
11016 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
11017 	else
11018 		cache = btrfs_lookup_block_group(fs_info, range->start);
11019 
11020 	while (cache) {
11021 		if (cache->key.objectid >= (range->start + range->len)) {
11022 			btrfs_put_block_group(cache);
11023 			break;
11024 		}
11025 
11026 		start = max(range->start, cache->key.objectid);
11027 		end = min(range->start + range->len,
11028 				cache->key.objectid + cache->key.offset);
11029 
11030 		if (end - start >= range->minlen) {
11031 			if (!block_group_cache_done(cache)) {
11032 				ret = cache_block_group(cache, 0);
11033 				if (ret) {
11034 					btrfs_put_block_group(cache);
11035 					break;
11036 				}
11037 				ret = wait_block_group_cache_done(cache);
11038 				if (ret) {
11039 					btrfs_put_block_group(cache);
11040 					break;
11041 				}
11042 			}
11043 			ret = btrfs_trim_block_group(cache,
11044 						     &group_trimmed,
11045 						     start,
11046 						     end,
11047 						     range->minlen);
11048 
11049 			trimmed += group_trimmed;
11050 			if (ret) {
11051 				btrfs_put_block_group(cache);
11052 				break;
11053 			}
11054 		}
11055 
11056 		cache = next_block_group(fs_info, cache);
11057 	}
11058 
11059 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11060 	devices = &fs_info->fs_devices->alloc_list;
11061 	list_for_each_entry(device, devices, dev_alloc_list) {
11062 		ret = btrfs_trim_free_extents(device, range->minlen,
11063 					      &group_trimmed);
11064 		if (ret)
11065 			break;
11066 
11067 		trimmed += group_trimmed;
11068 	}
11069 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11070 
11071 	range->len = trimmed;
11072 	return ret;
11073 }
11074 
11075 /*
11076  * btrfs_{start,end}_write_no_snapshotting() are similar to
11077  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11078  * data into the page cache through nocow before the subvolume is snapshoted,
11079  * but flush the data into disk after the snapshot creation, or to prevent
11080  * operations while snapshotting is ongoing and that cause the snapshot to be
11081  * inconsistent (writes followed by expanding truncates for example).
11082  */
11083 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11084 {
11085 	percpu_counter_dec(&root->subv_writers->counter);
11086 	/*
11087 	 * Make sure counter is updated before we wake up waiters.
11088 	 */
11089 	smp_mb();
11090 	if (waitqueue_active(&root->subv_writers->wait))
11091 		wake_up(&root->subv_writers->wait);
11092 }
11093 
11094 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11095 {
11096 	if (atomic_read(&root->will_be_snapshotted))
11097 		return 0;
11098 
11099 	percpu_counter_inc(&root->subv_writers->counter);
11100 	/*
11101 	 * Make sure counter is updated before we check for snapshot creation.
11102 	 */
11103 	smp_mb();
11104 	if (atomic_read(&root->will_be_snapshotted)) {
11105 		btrfs_end_write_no_snapshotting(root);
11106 		return 0;
11107 	}
11108 	return 1;
11109 }
11110 
11111 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11112 {
11113 	while (true) {
11114 		int ret;
11115 
11116 		ret = btrfs_start_write_no_snapshotting(root);
11117 		if (ret)
11118 			break;
11119 		wait_var_event(&root->will_be_snapshotted,
11120 			       !atomic_read(&root->will_be_snapshotted));
11121 	}
11122 }
11123