1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "tree-log.h" 20 #include "disk-io.h" 21 #include "print-tree.h" 22 #include "volumes.h" 23 #include "raid56.h" 24 #include "locking.h" 25 #include "free-space-cache.h" 26 #include "free-space-tree.h" 27 #include "math.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 32 #undef SCRAMBLE_DELAYED_REFS 33 34 /* 35 * control flags for do_chunk_alloc's force field 36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 37 * if we really need one. 38 * 39 * CHUNK_ALLOC_LIMITED means to only try and allocate one 40 * if we have very few chunks already allocated. This is 41 * used as part of the clustering code to help make sure 42 * we have a good pool of storage to cluster in, without 43 * filling the FS with empty chunks 44 * 45 * CHUNK_ALLOC_FORCE means it must try to allocate one 46 * 47 */ 48 enum { 49 CHUNK_ALLOC_NO_FORCE = 0, 50 CHUNK_ALLOC_LIMITED = 1, 51 CHUNK_ALLOC_FORCE = 2, 52 }; 53 54 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 55 struct btrfs_fs_info *fs_info, 56 struct btrfs_delayed_ref_node *node, u64 parent, 57 u64 root_objectid, u64 owner_objectid, 58 u64 owner_offset, int refs_to_drop, 59 struct btrfs_delayed_extent_op *extra_op); 60 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 61 struct extent_buffer *leaf, 62 struct btrfs_extent_item *ei); 63 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 64 struct btrfs_fs_info *fs_info, 65 u64 parent, u64 root_objectid, 66 u64 flags, u64 owner, u64 offset, 67 struct btrfs_key *ins, int ref_mod); 68 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 69 struct btrfs_fs_info *fs_info, 70 u64 parent, u64 root_objectid, 71 u64 flags, struct btrfs_disk_key *key, 72 int level, struct btrfs_key *ins); 73 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 74 struct btrfs_fs_info *fs_info, u64 flags, 75 int force); 76 static int find_next_key(struct btrfs_path *path, int level, 77 struct btrfs_key *key); 78 static void dump_space_info(struct btrfs_fs_info *fs_info, 79 struct btrfs_space_info *info, u64 bytes, 80 int dump_block_groups); 81 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 82 u64 num_bytes); 83 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 84 struct btrfs_space_info *space_info, 85 u64 num_bytes); 86 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 87 struct btrfs_space_info *space_info, 88 u64 num_bytes); 89 90 static noinline int 91 block_group_cache_done(struct btrfs_block_group_cache *cache) 92 { 93 smp_mb(); 94 return cache->cached == BTRFS_CACHE_FINISHED || 95 cache->cached == BTRFS_CACHE_ERROR; 96 } 97 98 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 99 { 100 return (cache->flags & bits) == bits; 101 } 102 103 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 104 { 105 atomic_inc(&cache->count); 106 } 107 108 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 109 { 110 if (atomic_dec_and_test(&cache->count)) { 111 WARN_ON(cache->pinned > 0); 112 WARN_ON(cache->reserved > 0); 113 114 /* 115 * If not empty, someone is still holding mutex of 116 * full_stripe_lock, which can only be released by caller. 117 * And it will definitely cause use-after-free when caller 118 * tries to release full stripe lock. 119 * 120 * No better way to resolve, but only to warn. 121 */ 122 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 123 kfree(cache->free_space_ctl); 124 kfree(cache); 125 } 126 } 127 128 /* 129 * this adds the block group to the fs_info rb tree for the block group 130 * cache 131 */ 132 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 133 struct btrfs_block_group_cache *block_group) 134 { 135 struct rb_node **p; 136 struct rb_node *parent = NULL; 137 struct btrfs_block_group_cache *cache; 138 139 spin_lock(&info->block_group_cache_lock); 140 p = &info->block_group_cache_tree.rb_node; 141 142 while (*p) { 143 parent = *p; 144 cache = rb_entry(parent, struct btrfs_block_group_cache, 145 cache_node); 146 if (block_group->key.objectid < cache->key.objectid) { 147 p = &(*p)->rb_left; 148 } else if (block_group->key.objectid > cache->key.objectid) { 149 p = &(*p)->rb_right; 150 } else { 151 spin_unlock(&info->block_group_cache_lock); 152 return -EEXIST; 153 } 154 } 155 156 rb_link_node(&block_group->cache_node, parent, p); 157 rb_insert_color(&block_group->cache_node, 158 &info->block_group_cache_tree); 159 160 if (info->first_logical_byte > block_group->key.objectid) 161 info->first_logical_byte = block_group->key.objectid; 162 163 spin_unlock(&info->block_group_cache_lock); 164 165 return 0; 166 } 167 168 /* 169 * This will return the block group at or after bytenr if contains is 0, else 170 * it will return the block group that contains the bytenr 171 */ 172 static struct btrfs_block_group_cache * 173 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 174 int contains) 175 { 176 struct btrfs_block_group_cache *cache, *ret = NULL; 177 struct rb_node *n; 178 u64 end, start; 179 180 spin_lock(&info->block_group_cache_lock); 181 n = info->block_group_cache_tree.rb_node; 182 183 while (n) { 184 cache = rb_entry(n, struct btrfs_block_group_cache, 185 cache_node); 186 end = cache->key.objectid + cache->key.offset - 1; 187 start = cache->key.objectid; 188 189 if (bytenr < start) { 190 if (!contains && (!ret || start < ret->key.objectid)) 191 ret = cache; 192 n = n->rb_left; 193 } else if (bytenr > start) { 194 if (contains && bytenr <= end) { 195 ret = cache; 196 break; 197 } 198 n = n->rb_right; 199 } else { 200 ret = cache; 201 break; 202 } 203 } 204 if (ret) { 205 btrfs_get_block_group(ret); 206 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 207 info->first_logical_byte = ret->key.objectid; 208 } 209 spin_unlock(&info->block_group_cache_lock); 210 211 return ret; 212 } 213 214 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 215 u64 start, u64 num_bytes) 216 { 217 u64 end = start + num_bytes - 1; 218 set_extent_bits(&fs_info->freed_extents[0], 219 start, end, EXTENT_UPTODATE); 220 set_extent_bits(&fs_info->freed_extents[1], 221 start, end, EXTENT_UPTODATE); 222 return 0; 223 } 224 225 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 226 struct btrfs_block_group_cache *cache) 227 { 228 u64 start, end; 229 230 start = cache->key.objectid; 231 end = start + cache->key.offset - 1; 232 233 clear_extent_bits(&fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE); 235 clear_extent_bits(&fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE); 237 } 238 239 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 240 struct btrfs_block_group_cache *cache) 241 { 242 u64 bytenr; 243 u64 *logical; 244 int stripe_len; 245 int i, nr, ret; 246 247 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 248 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 249 cache->bytes_super += stripe_len; 250 ret = add_excluded_extent(fs_info, cache->key.objectid, 251 stripe_len); 252 if (ret) 253 return ret; 254 } 255 256 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 257 bytenr = btrfs_sb_offset(i); 258 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 259 bytenr, &logical, &nr, &stripe_len); 260 if (ret) 261 return ret; 262 263 while (nr--) { 264 u64 start, len; 265 266 if (logical[nr] > cache->key.objectid + 267 cache->key.offset) 268 continue; 269 270 if (logical[nr] + stripe_len <= cache->key.objectid) 271 continue; 272 273 start = logical[nr]; 274 if (start < cache->key.objectid) { 275 start = cache->key.objectid; 276 len = (logical[nr] + stripe_len) - start; 277 } else { 278 len = min_t(u64, stripe_len, 279 cache->key.objectid + 280 cache->key.offset - start); 281 } 282 283 cache->bytes_super += len; 284 ret = add_excluded_extent(fs_info, start, len); 285 if (ret) { 286 kfree(logical); 287 return ret; 288 } 289 } 290 291 kfree(logical); 292 } 293 return 0; 294 } 295 296 static struct btrfs_caching_control * 297 get_caching_control(struct btrfs_block_group_cache *cache) 298 { 299 struct btrfs_caching_control *ctl; 300 301 spin_lock(&cache->lock); 302 if (!cache->caching_ctl) { 303 spin_unlock(&cache->lock); 304 return NULL; 305 } 306 307 ctl = cache->caching_ctl; 308 refcount_inc(&ctl->count); 309 spin_unlock(&cache->lock); 310 return ctl; 311 } 312 313 static void put_caching_control(struct btrfs_caching_control *ctl) 314 { 315 if (refcount_dec_and_test(&ctl->count)) 316 kfree(ctl); 317 } 318 319 #ifdef CONFIG_BTRFS_DEBUG 320 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 321 { 322 struct btrfs_fs_info *fs_info = block_group->fs_info; 323 u64 start = block_group->key.objectid; 324 u64 len = block_group->key.offset; 325 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 326 fs_info->nodesize : fs_info->sectorsize; 327 u64 step = chunk << 1; 328 329 while (len > chunk) { 330 btrfs_remove_free_space(block_group, start, chunk); 331 start += step; 332 if (len < step) 333 len = 0; 334 else 335 len -= step; 336 } 337 } 338 #endif 339 340 /* 341 * this is only called by cache_block_group, since we could have freed extents 342 * we need to check the pinned_extents for any extents that can't be used yet 343 * since their free space will be released as soon as the transaction commits. 344 */ 345 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 346 u64 start, u64 end) 347 { 348 struct btrfs_fs_info *info = block_group->fs_info; 349 u64 extent_start, extent_end, size, total_added = 0; 350 int ret; 351 352 while (start < end) { 353 ret = find_first_extent_bit(info->pinned_extents, start, 354 &extent_start, &extent_end, 355 EXTENT_DIRTY | EXTENT_UPTODATE, 356 NULL); 357 if (ret) 358 break; 359 360 if (extent_start <= start) { 361 start = extent_end + 1; 362 } else if (extent_start > start && extent_start < end) { 363 size = extent_start - start; 364 total_added += size; 365 ret = btrfs_add_free_space(block_group, start, 366 size); 367 BUG_ON(ret); /* -ENOMEM or logic error */ 368 start = extent_end + 1; 369 } else { 370 break; 371 } 372 } 373 374 if (start < end) { 375 size = end - start; 376 total_added += size; 377 ret = btrfs_add_free_space(block_group, start, size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 } 380 381 return total_added; 382 } 383 384 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 385 { 386 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 387 struct btrfs_fs_info *fs_info = block_group->fs_info; 388 struct btrfs_root *extent_root = fs_info->extent_root; 389 struct btrfs_path *path; 390 struct extent_buffer *leaf; 391 struct btrfs_key key; 392 u64 total_found = 0; 393 u64 last = 0; 394 u32 nritems; 395 int ret; 396 bool wakeup = true; 397 398 path = btrfs_alloc_path(); 399 if (!path) 400 return -ENOMEM; 401 402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 403 404 #ifdef CONFIG_BTRFS_DEBUG 405 /* 406 * If we're fragmenting we don't want to make anybody think we can 407 * allocate from this block group until we've had a chance to fragment 408 * the free space. 409 */ 410 if (btrfs_should_fragment_free_space(block_group)) 411 wakeup = false; 412 #endif 413 /* 414 * We don't want to deadlock with somebody trying to allocate a new 415 * extent for the extent root while also trying to search the extent 416 * root to add free space. So we skip locking and search the commit 417 * root, since its read-only 418 */ 419 path->skip_locking = 1; 420 path->search_commit_root = 1; 421 path->reada = READA_FORWARD; 422 423 key.objectid = last; 424 key.offset = 0; 425 key.type = BTRFS_EXTENT_ITEM_KEY; 426 427 next: 428 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 429 if (ret < 0) 430 goto out; 431 432 leaf = path->nodes[0]; 433 nritems = btrfs_header_nritems(leaf); 434 435 while (1) { 436 if (btrfs_fs_closing(fs_info) > 1) { 437 last = (u64)-1; 438 break; 439 } 440 441 if (path->slots[0] < nritems) { 442 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 443 } else { 444 ret = find_next_key(path, 0, &key); 445 if (ret) 446 break; 447 448 if (need_resched() || 449 rwsem_is_contended(&fs_info->commit_root_sem)) { 450 if (wakeup) 451 caching_ctl->progress = last; 452 btrfs_release_path(path); 453 up_read(&fs_info->commit_root_sem); 454 mutex_unlock(&caching_ctl->mutex); 455 cond_resched(); 456 mutex_lock(&caching_ctl->mutex); 457 down_read(&fs_info->commit_root_sem); 458 goto next; 459 } 460 461 ret = btrfs_next_leaf(extent_root, path); 462 if (ret < 0) 463 goto out; 464 if (ret) 465 break; 466 leaf = path->nodes[0]; 467 nritems = btrfs_header_nritems(leaf); 468 continue; 469 } 470 471 if (key.objectid < last) { 472 key.objectid = last; 473 key.offset = 0; 474 key.type = BTRFS_EXTENT_ITEM_KEY; 475 476 if (wakeup) 477 caching_ctl->progress = last; 478 btrfs_release_path(path); 479 goto next; 480 } 481 482 if (key.objectid < block_group->key.objectid) { 483 path->slots[0]++; 484 continue; 485 } 486 487 if (key.objectid >= block_group->key.objectid + 488 block_group->key.offset) 489 break; 490 491 if (key.type == BTRFS_EXTENT_ITEM_KEY || 492 key.type == BTRFS_METADATA_ITEM_KEY) { 493 total_found += add_new_free_space(block_group, last, 494 key.objectid); 495 if (key.type == BTRFS_METADATA_ITEM_KEY) 496 last = key.objectid + 497 fs_info->nodesize; 498 else 499 last = key.objectid + key.offset; 500 501 if (total_found > CACHING_CTL_WAKE_UP) { 502 total_found = 0; 503 if (wakeup) 504 wake_up(&caching_ctl->wait); 505 } 506 } 507 path->slots[0]++; 508 } 509 ret = 0; 510 511 total_found += add_new_free_space(block_group, last, 512 block_group->key.objectid + 513 block_group->key.offset); 514 caching_ctl->progress = (u64)-1; 515 516 out: 517 btrfs_free_path(path); 518 return ret; 519 } 520 521 static noinline void caching_thread(struct btrfs_work *work) 522 { 523 struct btrfs_block_group_cache *block_group; 524 struct btrfs_fs_info *fs_info; 525 struct btrfs_caching_control *caching_ctl; 526 int ret; 527 528 caching_ctl = container_of(work, struct btrfs_caching_control, work); 529 block_group = caching_ctl->block_group; 530 fs_info = block_group->fs_info; 531 532 mutex_lock(&caching_ctl->mutex); 533 down_read(&fs_info->commit_root_sem); 534 535 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 536 ret = load_free_space_tree(caching_ctl); 537 else 538 ret = load_extent_tree_free(caching_ctl); 539 540 spin_lock(&block_group->lock); 541 block_group->caching_ctl = NULL; 542 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 543 spin_unlock(&block_group->lock); 544 545 #ifdef CONFIG_BTRFS_DEBUG 546 if (btrfs_should_fragment_free_space(block_group)) { 547 u64 bytes_used; 548 549 spin_lock(&block_group->space_info->lock); 550 spin_lock(&block_group->lock); 551 bytes_used = block_group->key.offset - 552 btrfs_block_group_used(&block_group->item); 553 block_group->space_info->bytes_used += bytes_used >> 1; 554 spin_unlock(&block_group->lock); 555 spin_unlock(&block_group->space_info->lock); 556 fragment_free_space(block_group); 557 } 558 #endif 559 560 caching_ctl->progress = (u64)-1; 561 562 up_read(&fs_info->commit_root_sem); 563 free_excluded_extents(fs_info, block_group); 564 mutex_unlock(&caching_ctl->mutex); 565 566 wake_up(&caching_ctl->wait); 567 568 put_caching_control(caching_ctl); 569 btrfs_put_block_group(block_group); 570 } 571 572 static int cache_block_group(struct btrfs_block_group_cache *cache, 573 int load_cache_only) 574 { 575 DEFINE_WAIT(wait); 576 struct btrfs_fs_info *fs_info = cache->fs_info; 577 struct btrfs_caching_control *caching_ctl; 578 int ret = 0; 579 580 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 581 if (!caching_ctl) 582 return -ENOMEM; 583 584 INIT_LIST_HEAD(&caching_ctl->list); 585 mutex_init(&caching_ctl->mutex); 586 init_waitqueue_head(&caching_ctl->wait); 587 caching_ctl->block_group = cache; 588 caching_ctl->progress = cache->key.objectid; 589 refcount_set(&caching_ctl->count, 1); 590 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 591 caching_thread, NULL, NULL); 592 593 spin_lock(&cache->lock); 594 /* 595 * This should be a rare occasion, but this could happen I think in the 596 * case where one thread starts to load the space cache info, and then 597 * some other thread starts a transaction commit which tries to do an 598 * allocation while the other thread is still loading the space cache 599 * info. The previous loop should have kept us from choosing this block 600 * group, but if we've moved to the state where we will wait on caching 601 * block groups we need to first check if we're doing a fast load here, 602 * so we can wait for it to finish, otherwise we could end up allocating 603 * from a block group who's cache gets evicted for one reason or 604 * another. 605 */ 606 while (cache->cached == BTRFS_CACHE_FAST) { 607 struct btrfs_caching_control *ctl; 608 609 ctl = cache->caching_ctl; 610 refcount_inc(&ctl->count); 611 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 612 spin_unlock(&cache->lock); 613 614 schedule(); 615 616 finish_wait(&ctl->wait, &wait); 617 put_caching_control(ctl); 618 spin_lock(&cache->lock); 619 } 620 621 if (cache->cached != BTRFS_CACHE_NO) { 622 spin_unlock(&cache->lock); 623 kfree(caching_ctl); 624 return 0; 625 } 626 WARN_ON(cache->caching_ctl); 627 cache->caching_ctl = caching_ctl; 628 cache->cached = BTRFS_CACHE_FAST; 629 spin_unlock(&cache->lock); 630 631 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 632 mutex_lock(&caching_ctl->mutex); 633 ret = load_free_space_cache(fs_info, cache); 634 635 spin_lock(&cache->lock); 636 if (ret == 1) { 637 cache->caching_ctl = NULL; 638 cache->cached = BTRFS_CACHE_FINISHED; 639 cache->last_byte_to_unpin = (u64)-1; 640 caching_ctl->progress = (u64)-1; 641 } else { 642 if (load_cache_only) { 643 cache->caching_ctl = NULL; 644 cache->cached = BTRFS_CACHE_NO; 645 } else { 646 cache->cached = BTRFS_CACHE_STARTED; 647 cache->has_caching_ctl = 1; 648 } 649 } 650 spin_unlock(&cache->lock); 651 #ifdef CONFIG_BTRFS_DEBUG 652 if (ret == 1 && 653 btrfs_should_fragment_free_space(cache)) { 654 u64 bytes_used; 655 656 spin_lock(&cache->space_info->lock); 657 spin_lock(&cache->lock); 658 bytes_used = cache->key.offset - 659 btrfs_block_group_used(&cache->item); 660 cache->space_info->bytes_used += bytes_used >> 1; 661 spin_unlock(&cache->lock); 662 spin_unlock(&cache->space_info->lock); 663 fragment_free_space(cache); 664 } 665 #endif 666 mutex_unlock(&caching_ctl->mutex); 667 668 wake_up(&caching_ctl->wait); 669 if (ret == 1) { 670 put_caching_control(caching_ctl); 671 free_excluded_extents(fs_info, cache); 672 return 0; 673 } 674 } else { 675 /* 676 * We're either using the free space tree or no caching at all. 677 * Set cached to the appropriate value and wakeup any waiters. 678 */ 679 spin_lock(&cache->lock); 680 if (load_cache_only) { 681 cache->caching_ctl = NULL; 682 cache->cached = BTRFS_CACHE_NO; 683 } else { 684 cache->cached = BTRFS_CACHE_STARTED; 685 cache->has_caching_ctl = 1; 686 } 687 spin_unlock(&cache->lock); 688 wake_up(&caching_ctl->wait); 689 } 690 691 if (load_cache_only) { 692 put_caching_control(caching_ctl); 693 return 0; 694 } 695 696 down_write(&fs_info->commit_root_sem); 697 refcount_inc(&caching_ctl->count); 698 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 699 up_write(&fs_info->commit_root_sem); 700 701 btrfs_get_block_group(cache); 702 703 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 704 705 return ret; 706 } 707 708 /* 709 * return the block group that starts at or after bytenr 710 */ 711 static struct btrfs_block_group_cache * 712 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 713 { 714 return block_group_cache_tree_search(info, bytenr, 0); 715 } 716 717 /* 718 * return the block group that contains the given bytenr 719 */ 720 struct btrfs_block_group_cache *btrfs_lookup_block_group( 721 struct btrfs_fs_info *info, 722 u64 bytenr) 723 { 724 return block_group_cache_tree_search(info, bytenr, 1); 725 } 726 727 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 728 u64 flags) 729 { 730 struct list_head *head = &info->space_info; 731 struct btrfs_space_info *found; 732 733 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 734 735 rcu_read_lock(); 736 list_for_each_entry_rcu(found, head, list) { 737 if (found->flags & flags) { 738 rcu_read_unlock(); 739 return found; 740 } 741 } 742 rcu_read_unlock(); 743 return NULL; 744 } 745 746 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 747 bool metadata, u64 root_objectid) 748 { 749 struct btrfs_space_info *space_info; 750 u64 flags; 751 752 if (metadata) { 753 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 754 flags = BTRFS_BLOCK_GROUP_SYSTEM; 755 else 756 flags = BTRFS_BLOCK_GROUP_METADATA; 757 } else { 758 flags = BTRFS_BLOCK_GROUP_DATA; 759 } 760 761 space_info = __find_space_info(fs_info, flags); 762 ASSERT(space_info); 763 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 764 } 765 766 /* 767 * after adding space to the filesystem, we need to clear the full flags 768 * on all the space infos. 769 */ 770 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 771 { 772 struct list_head *head = &info->space_info; 773 struct btrfs_space_info *found; 774 775 rcu_read_lock(); 776 list_for_each_entry_rcu(found, head, list) 777 found->full = 0; 778 rcu_read_unlock(); 779 } 780 781 /* simple helper to search for an existing data extent at a given offset */ 782 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 783 { 784 int ret; 785 struct btrfs_key key; 786 struct btrfs_path *path; 787 788 path = btrfs_alloc_path(); 789 if (!path) 790 return -ENOMEM; 791 792 key.objectid = start; 793 key.offset = len; 794 key.type = BTRFS_EXTENT_ITEM_KEY; 795 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 796 btrfs_free_path(path); 797 return ret; 798 } 799 800 /* 801 * helper function to lookup reference count and flags of a tree block. 802 * 803 * the head node for delayed ref is used to store the sum of all the 804 * reference count modifications queued up in the rbtree. the head 805 * node may also store the extent flags to set. This way you can check 806 * to see what the reference count and extent flags would be if all of 807 * the delayed refs are not processed. 808 */ 809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 810 struct btrfs_fs_info *fs_info, u64 bytenr, 811 u64 offset, int metadata, u64 *refs, u64 *flags) 812 { 813 struct btrfs_delayed_ref_head *head; 814 struct btrfs_delayed_ref_root *delayed_refs; 815 struct btrfs_path *path; 816 struct btrfs_extent_item *ei; 817 struct extent_buffer *leaf; 818 struct btrfs_key key; 819 u32 item_size; 820 u64 num_refs; 821 u64 extent_flags; 822 int ret; 823 824 /* 825 * If we don't have skinny metadata, don't bother doing anything 826 * different 827 */ 828 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 829 offset = fs_info->nodesize; 830 metadata = 0; 831 } 832 833 path = btrfs_alloc_path(); 834 if (!path) 835 return -ENOMEM; 836 837 if (!trans) { 838 path->skip_locking = 1; 839 path->search_commit_root = 1; 840 } 841 842 search_again: 843 key.objectid = bytenr; 844 key.offset = offset; 845 if (metadata) 846 key.type = BTRFS_METADATA_ITEM_KEY; 847 else 848 key.type = BTRFS_EXTENT_ITEM_KEY; 849 850 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 851 if (ret < 0) 852 goto out_free; 853 854 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 855 if (path->slots[0]) { 856 path->slots[0]--; 857 btrfs_item_key_to_cpu(path->nodes[0], &key, 858 path->slots[0]); 859 if (key.objectid == bytenr && 860 key.type == BTRFS_EXTENT_ITEM_KEY && 861 key.offset == fs_info->nodesize) 862 ret = 0; 863 } 864 } 865 866 if (ret == 0) { 867 leaf = path->nodes[0]; 868 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 869 if (item_size >= sizeof(*ei)) { 870 ei = btrfs_item_ptr(leaf, path->slots[0], 871 struct btrfs_extent_item); 872 num_refs = btrfs_extent_refs(leaf, ei); 873 extent_flags = btrfs_extent_flags(leaf, ei); 874 } else { 875 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 876 struct btrfs_extent_item_v0 *ei0; 877 BUG_ON(item_size != sizeof(*ei0)); 878 ei0 = btrfs_item_ptr(leaf, path->slots[0], 879 struct btrfs_extent_item_v0); 880 num_refs = btrfs_extent_refs_v0(leaf, ei0); 881 /* FIXME: this isn't correct for data */ 882 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 883 #else 884 BUG(); 885 #endif 886 } 887 BUG_ON(num_refs == 0); 888 } else { 889 num_refs = 0; 890 extent_flags = 0; 891 ret = 0; 892 } 893 894 if (!trans) 895 goto out; 896 897 delayed_refs = &trans->transaction->delayed_refs; 898 spin_lock(&delayed_refs->lock); 899 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 900 if (head) { 901 if (!mutex_trylock(&head->mutex)) { 902 refcount_inc(&head->refs); 903 spin_unlock(&delayed_refs->lock); 904 905 btrfs_release_path(path); 906 907 /* 908 * Mutex was contended, block until it's released and try 909 * again 910 */ 911 mutex_lock(&head->mutex); 912 mutex_unlock(&head->mutex); 913 btrfs_put_delayed_ref_head(head); 914 goto search_again; 915 } 916 spin_lock(&head->lock); 917 if (head->extent_op && head->extent_op->update_flags) 918 extent_flags |= head->extent_op->flags_to_set; 919 else 920 BUG_ON(num_refs == 0); 921 922 num_refs += head->ref_mod; 923 spin_unlock(&head->lock); 924 mutex_unlock(&head->mutex); 925 } 926 spin_unlock(&delayed_refs->lock); 927 out: 928 WARN_ON(num_refs == 0); 929 if (refs) 930 *refs = num_refs; 931 if (flags) 932 *flags = extent_flags; 933 out_free: 934 btrfs_free_path(path); 935 return ret; 936 } 937 938 /* 939 * Back reference rules. Back refs have three main goals: 940 * 941 * 1) differentiate between all holders of references to an extent so that 942 * when a reference is dropped we can make sure it was a valid reference 943 * before freeing the extent. 944 * 945 * 2) Provide enough information to quickly find the holders of an extent 946 * if we notice a given block is corrupted or bad. 947 * 948 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 949 * maintenance. This is actually the same as #2, but with a slightly 950 * different use case. 951 * 952 * There are two kinds of back refs. The implicit back refs is optimized 953 * for pointers in non-shared tree blocks. For a given pointer in a block, 954 * back refs of this kind provide information about the block's owner tree 955 * and the pointer's key. These information allow us to find the block by 956 * b-tree searching. The full back refs is for pointers in tree blocks not 957 * referenced by their owner trees. The location of tree block is recorded 958 * in the back refs. Actually the full back refs is generic, and can be 959 * used in all cases the implicit back refs is used. The major shortcoming 960 * of the full back refs is its overhead. Every time a tree block gets 961 * COWed, we have to update back refs entry for all pointers in it. 962 * 963 * For a newly allocated tree block, we use implicit back refs for 964 * pointers in it. This means most tree related operations only involve 965 * implicit back refs. For a tree block created in old transaction, the 966 * only way to drop a reference to it is COW it. So we can detect the 967 * event that tree block loses its owner tree's reference and do the 968 * back refs conversion. 969 * 970 * When a tree block is COWed through a tree, there are four cases: 971 * 972 * The reference count of the block is one and the tree is the block's 973 * owner tree. Nothing to do in this case. 974 * 975 * The reference count of the block is one and the tree is not the 976 * block's owner tree. In this case, full back refs is used for pointers 977 * in the block. Remove these full back refs, add implicit back refs for 978 * every pointers in the new block. 979 * 980 * The reference count of the block is greater than one and the tree is 981 * the block's owner tree. In this case, implicit back refs is used for 982 * pointers in the block. Add full back refs for every pointers in the 983 * block, increase lower level extents' reference counts. The original 984 * implicit back refs are entailed to the new block. 985 * 986 * The reference count of the block is greater than one and the tree is 987 * not the block's owner tree. Add implicit back refs for every pointer in 988 * the new block, increase lower level extents' reference count. 989 * 990 * Back Reference Key composing: 991 * 992 * The key objectid corresponds to the first byte in the extent, 993 * The key type is used to differentiate between types of back refs. 994 * There are different meanings of the key offset for different types 995 * of back refs. 996 * 997 * File extents can be referenced by: 998 * 999 * - multiple snapshots, subvolumes, or different generations in one subvol 1000 * - different files inside a single subvolume 1001 * - different offsets inside a file (bookend extents in file.c) 1002 * 1003 * The extent ref structure for the implicit back refs has fields for: 1004 * 1005 * - Objectid of the subvolume root 1006 * - objectid of the file holding the reference 1007 * - original offset in the file 1008 * - how many bookend extents 1009 * 1010 * The key offset for the implicit back refs is hash of the first 1011 * three fields. 1012 * 1013 * The extent ref structure for the full back refs has field for: 1014 * 1015 * - number of pointers in the tree leaf 1016 * 1017 * The key offset for the implicit back refs is the first byte of 1018 * the tree leaf 1019 * 1020 * When a file extent is allocated, The implicit back refs is used. 1021 * the fields are filled in: 1022 * 1023 * (root_key.objectid, inode objectid, offset in file, 1) 1024 * 1025 * When a file extent is removed file truncation, we find the 1026 * corresponding implicit back refs and check the following fields: 1027 * 1028 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1029 * 1030 * Btree extents can be referenced by: 1031 * 1032 * - Different subvolumes 1033 * 1034 * Both the implicit back refs and the full back refs for tree blocks 1035 * only consist of key. The key offset for the implicit back refs is 1036 * objectid of block's owner tree. The key offset for the full back refs 1037 * is the first byte of parent block. 1038 * 1039 * When implicit back refs is used, information about the lowest key and 1040 * level of the tree block are required. These information are stored in 1041 * tree block info structure. 1042 */ 1043 1044 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1045 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1046 struct btrfs_fs_info *fs_info, 1047 struct btrfs_path *path, 1048 u64 owner, u32 extra_size) 1049 { 1050 struct btrfs_root *root = fs_info->extent_root; 1051 struct btrfs_extent_item *item; 1052 struct btrfs_extent_item_v0 *ei0; 1053 struct btrfs_extent_ref_v0 *ref0; 1054 struct btrfs_tree_block_info *bi; 1055 struct extent_buffer *leaf; 1056 struct btrfs_key key; 1057 struct btrfs_key found_key; 1058 u32 new_size = sizeof(*item); 1059 u64 refs; 1060 int ret; 1061 1062 leaf = path->nodes[0]; 1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1064 1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1066 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1067 struct btrfs_extent_item_v0); 1068 refs = btrfs_extent_refs_v0(leaf, ei0); 1069 1070 if (owner == (u64)-1) { 1071 while (1) { 1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1073 ret = btrfs_next_leaf(root, path); 1074 if (ret < 0) 1075 return ret; 1076 BUG_ON(ret > 0); /* Corruption */ 1077 leaf = path->nodes[0]; 1078 } 1079 btrfs_item_key_to_cpu(leaf, &found_key, 1080 path->slots[0]); 1081 BUG_ON(key.objectid != found_key.objectid); 1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1083 path->slots[0]++; 1084 continue; 1085 } 1086 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1087 struct btrfs_extent_ref_v0); 1088 owner = btrfs_ref_objectid_v0(leaf, ref0); 1089 break; 1090 } 1091 } 1092 btrfs_release_path(path); 1093 1094 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1095 new_size += sizeof(*bi); 1096 1097 new_size -= sizeof(*ei0); 1098 ret = btrfs_search_slot(trans, root, &key, path, 1099 new_size + extra_size, 1); 1100 if (ret < 0) 1101 return ret; 1102 BUG_ON(ret); /* Corruption */ 1103 1104 btrfs_extend_item(fs_info, path, new_size); 1105 1106 leaf = path->nodes[0]; 1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1108 btrfs_set_extent_refs(leaf, item, refs); 1109 /* FIXME: get real generation */ 1110 btrfs_set_extent_generation(leaf, item, 0); 1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1112 btrfs_set_extent_flags(leaf, item, 1113 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1114 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1115 bi = (struct btrfs_tree_block_info *)(item + 1); 1116 /* FIXME: get first key of the block */ 1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1118 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1119 } else { 1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1121 } 1122 btrfs_mark_buffer_dirty(leaf); 1123 return 0; 1124 } 1125 #endif 1126 1127 /* 1128 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1129 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1130 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1131 */ 1132 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1133 struct btrfs_extent_inline_ref *iref, 1134 enum btrfs_inline_ref_type is_data) 1135 { 1136 int type = btrfs_extent_inline_ref_type(eb, iref); 1137 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1138 1139 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1140 type == BTRFS_SHARED_BLOCK_REF_KEY || 1141 type == BTRFS_SHARED_DATA_REF_KEY || 1142 type == BTRFS_EXTENT_DATA_REF_KEY) { 1143 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1144 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1145 return type; 1146 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1147 ASSERT(eb->fs_info); 1148 /* 1149 * Every shared one has parent tree 1150 * block, which must be aligned to 1151 * nodesize. 1152 */ 1153 if (offset && 1154 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1155 return type; 1156 } 1157 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1158 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1159 return type; 1160 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1161 ASSERT(eb->fs_info); 1162 /* 1163 * Every shared one has parent tree 1164 * block, which must be aligned to 1165 * nodesize. 1166 */ 1167 if (offset && 1168 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1169 return type; 1170 } 1171 } else { 1172 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1173 return type; 1174 } 1175 } 1176 1177 btrfs_print_leaf((struct extent_buffer *)eb); 1178 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1179 eb->start, type); 1180 WARN_ON(1); 1181 1182 return BTRFS_REF_TYPE_INVALID; 1183 } 1184 1185 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1186 { 1187 u32 high_crc = ~(u32)0; 1188 u32 low_crc = ~(u32)0; 1189 __le64 lenum; 1190 1191 lenum = cpu_to_le64(root_objectid); 1192 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1193 lenum = cpu_to_le64(owner); 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1195 lenum = cpu_to_le64(offset); 1196 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1197 1198 return ((u64)high_crc << 31) ^ (u64)low_crc; 1199 } 1200 1201 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1202 struct btrfs_extent_data_ref *ref) 1203 { 1204 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1205 btrfs_extent_data_ref_objectid(leaf, ref), 1206 btrfs_extent_data_ref_offset(leaf, ref)); 1207 } 1208 1209 static int match_extent_data_ref(struct extent_buffer *leaf, 1210 struct btrfs_extent_data_ref *ref, 1211 u64 root_objectid, u64 owner, u64 offset) 1212 { 1213 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1214 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1215 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1216 return 0; 1217 return 1; 1218 } 1219 1220 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1221 struct btrfs_fs_info *fs_info, 1222 struct btrfs_path *path, 1223 u64 bytenr, u64 parent, 1224 u64 root_objectid, 1225 u64 owner, u64 offset) 1226 { 1227 struct btrfs_root *root = fs_info->extent_root; 1228 struct btrfs_key key; 1229 struct btrfs_extent_data_ref *ref; 1230 struct extent_buffer *leaf; 1231 u32 nritems; 1232 int ret; 1233 int recow; 1234 int err = -ENOENT; 1235 1236 key.objectid = bytenr; 1237 if (parent) { 1238 key.type = BTRFS_SHARED_DATA_REF_KEY; 1239 key.offset = parent; 1240 } else { 1241 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1242 key.offset = hash_extent_data_ref(root_objectid, 1243 owner, offset); 1244 } 1245 again: 1246 recow = 0; 1247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1248 if (ret < 0) { 1249 err = ret; 1250 goto fail; 1251 } 1252 1253 if (parent) { 1254 if (!ret) 1255 return 0; 1256 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1257 key.type = BTRFS_EXTENT_REF_V0_KEY; 1258 btrfs_release_path(path); 1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1260 if (ret < 0) { 1261 err = ret; 1262 goto fail; 1263 } 1264 if (!ret) 1265 return 0; 1266 #endif 1267 goto fail; 1268 } 1269 1270 leaf = path->nodes[0]; 1271 nritems = btrfs_header_nritems(leaf); 1272 while (1) { 1273 if (path->slots[0] >= nritems) { 1274 ret = btrfs_next_leaf(root, path); 1275 if (ret < 0) 1276 err = ret; 1277 if (ret) 1278 goto fail; 1279 1280 leaf = path->nodes[0]; 1281 nritems = btrfs_header_nritems(leaf); 1282 recow = 1; 1283 } 1284 1285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1286 if (key.objectid != bytenr || 1287 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1288 goto fail; 1289 1290 ref = btrfs_item_ptr(leaf, path->slots[0], 1291 struct btrfs_extent_data_ref); 1292 1293 if (match_extent_data_ref(leaf, ref, root_objectid, 1294 owner, offset)) { 1295 if (recow) { 1296 btrfs_release_path(path); 1297 goto again; 1298 } 1299 err = 0; 1300 break; 1301 } 1302 path->slots[0]++; 1303 } 1304 fail: 1305 return err; 1306 } 1307 1308 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1309 struct btrfs_fs_info *fs_info, 1310 struct btrfs_path *path, 1311 u64 bytenr, u64 parent, 1312 u64 root_objectid, u64 owner, 1313 u64 offset, int refs_to_add) 1314 { 1315 struct btrfs_root *root = fs_info->extent_root; 1316 struct btrfs_key key; 1317 struct extent_buffer *leaf; 1318 u32 size; 1319 u32 num_refs; 1320 int ret; 1321 1322 key.objectid = bytenr; 1323 if (parent) { 1324 key.type = BTRFS_SHARED_DATA_REF_KEY; 1325 key.offset = parent; 1326 size = sizeof(struct btrfs_shared_data_ref); 1327 } else { 1328 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1329 key.offset = hash_extent_data_ref(root_objectid, 1330 owner, offset); 1331 size = sizeof(struct btrfs_extent_data_ref); 1332 } 1333 1334 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1335 if (ret && ret != -EEXIST) 1336 goto fail; 1337 1338 leaf = path->nodes[0]; 1339 if (parent) { 1340 struct btrfs_shared_data_ref *ref; 1341 ref = btrfs_item_ptr(leaf, path->slots[0], 1342 struct btrfs_shared_data_ref); 1343 if (ret == 0) { 1344 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1345 } else { 1346 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1347 num_refs += refs_to_add; 1348 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1349 } 1350 } else { 1351 struct btrfs_extent_data_ref *ref; 1352 while (ret == -EEXIST) { 1353 ref = btrfs_item_ptr(leaf, path->slots[0], 1354 struct btrfs_extent_data_ref); 1355 if (match_extent_data_ref(leaf, ref, root_objectid, 1356 owner, offset)) 1357 break; 1358 btrfs_release_path(path); 1359 key.offset++; 1360 ret = btrfs_insert_empty_item(trans, root, path, &key, 1361 size); 1362 if (ret && ret != -EEXIST) 1363 goto fail; 1364 1365 leaf = path->nodes[0]; 1366 } 1367 ref = btrfs_item_ptr(leaf, path->slots[0], 1368 struct btrfs_extent_data_ref); 1369 if (ret == 0) { 1370 btrfs_set_extent_data_ref_root(leaf, ref, 1371 root_objectid); 1372 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1373 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1374 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1375 } else { 1376 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1377 num_refs += refs_to_add; 1378 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1379 } 1380 } 1381 btrfs_mark_buffer_dirty(leaf); 1382 ret = 0; 1383 fail: 1384 btrfs_release_path(path); 1385 return ret; 1386 } 1387 1388 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1389 struct btrfs_fs_info *fs_info, 1390 struct btrfs_path *path, 1391 int refs_to_drop, int *last_ref) 1392 { 1393 struct btrfs_key key; 1394 struct btrfs_extent_data_ref *ref1 = NULL; 1395 struct btrfs_shared_data_ref *ref2 = NULL; 1396 struct extent_buffer *leaf; 1397 u32 num_refs = 0; 1398 int ret = 0; 1399 1400 leaf = path->nodes[0]; 1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1402 1403 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1404 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1405 struct btrfs_extent_data_ref); 1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1408 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1409 struct btrfs_shared_data_ref); 1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1413 struct btrfs_extent_ref_v0 *ref0; 1414 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1415 struct btrfs_extent_ref_v0); 1416 num_refs = btrfs_ref_count_v0(leaf, ref0); 1417 #endif 1418 } else { 1419 BUG(); 1420 } 1421 1422 BUG_ON(num_refs < refs_to_drop); 1423 num_refs -= refs_to_drop; 1424 1425 if (num_refs == 0) { 1426 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1427 *last_ref = 1; 1428 } else { 1429 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1430 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1431 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1432 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1433 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1434 else { 1435 struct btrfs_extent_ref_v0 *ref0; 1436 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1437 struct btrfs_extent_ref_v0); 1438 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1439 } 1440 #endif 1441 btrfs_mark_buffer_dirty(leaf); 1442 } 1443 return ret; 1444 } 1445 1446 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1447 struct btrfs_extent_inline_ref *iref) 1448 { 1449 struct btrfs_key key; 1450 struct extent_buffer *leaf; 1451 struct btrfs_extent_data_ref *ref1; 1452 struct btrfs_shared_data_ref *ref2; 1453 u32 num_refs = 0; 1454 int type; 1455 1456 leaf = path->nodes[0]; 1457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1458 if (iref) { 1459 /* 1460 * If type is invalid, we should have bailed out earlier than 1461 * this call. 1462 */ 1463 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1464 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1465 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1466 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1468 } else { 1469 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1470 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1471 } 1472 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1473 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1474 struct btrfs_extent_data_ref); 1475 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1476 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1477 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1478 struct btrfs_shared_data_ref); 1479 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1480 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1481 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1482 struct btrfs_extent_ref_v0 *ref0; 1483 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1484 struct btrfs_extent_ref_v0); 1485 num_refs = btrfs_ref_count_v0(leaf, ref0); 1486 #endif 1487 } else { 1488 WARN_ON(1); 1489 } 1490 return num_refs; 1491 } 1492 1493 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1494 struct btrfs_fs_info *fs_info, 1495 struct btrfs_path *path, 1496 u64 bytenr, u64 parent, 1497 u64 root_objectid) 1498 { 1499 struct btrfs_root *root = fs_info->extent_root; 1500 struct btrfs_key key; 1501 int ret; 1502 1503 key.objectid = bytenr; 1504 if (parent) { 1505 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1506 key.offset = parent; 1507 } else { 1508 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1509 key.offset = root_objectid; 1510 } 1511 1512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1513 if (ret > 0) 1514 ret = -ENOENT; 1515 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1516 if (ret == -ENOENT && parent) { 1517 btrfs_release_path(path); 1518 key.type = BTRFS_EXTENT_REF_V0_KEY; 1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1520 if (ret > 0) 1521 ret = -ENOENT; 1522 } 1523 #endif 1524 return ret; 1525 } 1526 1527 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1528 struct btrfs_fs_info *fs_info, 1529 struct btrfs_path *path, 1530 u64 bytenr, u64 parent, 1531 u64 root_objectid) 1532 { 1533 struct btrfs_key key; 1534 int ret; 1535 1536 key.objectid = bytenr; 1537 if (parent) { 1538 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1539 key.offset = parent; 1540 } else { 1541 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1542 key.offset = root_objectid; 1543 } 1544 1545 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1546 path, &key, 0); 1547 btrfs_release_path(path); 1548 return ret; 1549 } 1550 1551 static inline int extent_ref_type(u64 parent, u64 owner) 1552 { 1553 int type; 1554 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1555 if (parent > 0) 1556 type = BTRFS_SHARED_BLOCK_REF_KEY; 1557 else 1558 type = BTRFS_TREE_BLOCK_REF_KEY; 1559 } else { 1560 if (parent > 0) 1561 type = BTRFS_SHARED_DATA_REF_KEY; 1562 else 1563 type = BTRFS_EXTENT_DATA_REF_KEY; 1564 } 1565 return type; 1566 } 1567 1568 static int find_next_key(struct btrfs_path *path, int level, 1569 struct btrfs_key *key) 1570 1571 { 1572 for (; level < BTRFS_MAX_LEVEL; level++) { 1573 if (!path->nodes[level]) 1574 break; 1575 if (path->slots[level] + 1 >= 1576 btrfs_header_nritems(path->nodes[level])) 1577 continue; 1578 if (level == 0) 1579 btrfs_item_key_to_cpu(path->nodes[level], key, 1580 path->slots[level] + 1); 1581 else 1582 btrfs_node_key_to_cpu(path->nodes[level], key, 1583 path->slots[level] + 1); 1584 return 0; 1585 } 1586 return 1; 1587 } 1588 1589 /* 1590 * look for inline back ref. if back ref is found, *ref_ret is set 1591 * to the address of inline back ref, and 0 is returned. 1592 * 1593 * if back ref isn't found, *ref_ret is set to the address where it 1594 * should be inserted, and -ENOENT is returned. 1595 * 1596 * if insert is true and there are too many inline back refs, the path 1597 * points to the extent item, and -EAGAIN is returned. 1598 * 1599 * NOTE: inline back refs are ordered in the same way that back ref 1600 * items in the tree are ordered. 1601 */ 1602 static noinline_for_stack 1603 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1604 struct btrfs_fs_info *fs_info, 1605 struct btrfs_path *path, 1606 struct btrfs_extent_inline_ref **ref_ret, 1607 u64 bytenr, u64 num_bytes, 1608 u64 parent, u64 root_objectid, 1609 u64 owner, u64 offset, int insert) 1610 { 1611 struct btrfs_root *root = fs_info->extent_root; 1612 struct btrfs_key key; 1613 struct extent_buffer *leaf; 1614 struct btrfs_extent_item *ei; 1615 struct btrfs_extent_inline_ref *iref; 1616 u64 flags; 1617 u64 item_size; 1618 unsigned long ptr; 1619 unsigned long end; 1620 int extra_size; 1621 int type; 1622 int want; 1623 int ret; 1624 int err = 0; 1625 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1626 int needed; 1627 1628 key.objectid = bytenr; 1629 key.type = BTRFS_EXTENT_ITEM_KEY; 1630 key.offset = num_bytes; 1631 1632 want = extent_ref_type(parent, owner); 1633 if (insert) { 1634 extra_size = btrfs_extent_inline_ref_size(want); 1635 path->keep_locks = 1; 1636 } else 1637 extra_size = -1; 1638 1639 /* 1640 * Owner is our parent level, so we can just add one to get the level 1641 * for the block we are interested in. 1642 */ 1643 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1644 key.type = BTRFS_METADATA_ITEM_KEY; 1645 key.offset = owner; 1646 } 1647 1648 again: 1649 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1650 if (ret < 0) { 1651 err = ret; 1652 goto out; 1653 } 1654 1655 /* 1656 * We may be a newly converted file system which still has the old fat 1657 * extent entries for metadata, so try and see if we have one of those. 1658 */ 1659 if (ret > 0 && skinny_metadata) { 1660 skinny_metadata = false; 1661 if (path->slots[0]) { 1662 path->slots[0]--; 1663 btrfs_item_key_to_cpu(path->nodes[0], &key, 1664 path->slots[0]); 1665 if (key.objectid == bytenr && 1666 key.type == BTRFS_EXTENT_ITEM_KEY && 1667 key.offset == num_bytes) 1668 ret = 0; 1669 } 1670 if (ret) { 1671 key.objectid = bytenr; 1672 key.type = BTRFS_EXTENT_ITEM_KEY; 1673 key.offset = num_bytes; 1674 btrfs_release_path(path); 1675 goto again; 1676 } 1677 } 1678 1679 if (ret && !insert) { 1680 err = -ENOENT; 1681 goto out; 1682 } else if (WARN_ON(ret)) { 1683 err = -EIO; 1684 goto out; 1685 } 1686 1687 leaf = path->nodes[0]; 1688 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1689 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1690 if (item_size < sizeof(*ei)) { 1691 if (!insert) { 1692 err = -ENOENT; 1693 goto out; 1694 } 1695 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1696 extra_size); 1697 if (ret < 0) { 1698 err = ret; 1699 goto out; 1700 } 1701 leaf = path->nodes[0]; 1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1703 } 1704 #endif 1705 BUG_ON(item_size < sizeof(*ei)); 1706 1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1708 flags = btrfs_extent_flags(leaf, ei); 1709 1710 ptr = (unsigned long)(ei + 1); 1711 end = (unsigned long)ei + item_size; 1712 1713 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1714 ptr += sizeof(struct btrfs_tree_block_info); 1715 BUG_ON(ptr > end); 1716 } 1717 1718 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1719 needed = BTRFS_REF_TYPE_DATA; 1720 else 1721 needed = BTRFS_REF_TYPE_BLOCK; 1722 1723 err = -ENOENT; 1724 while (1) { 1725 if (ptr >= end) { 1726 WARN_ON(ptr > end); 1727 break; 1728 } 1729 iref = (struct btrfs_extent_inline_ref *)ptr; 1730 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1731 if (type == BTRFS_REF_TYPE_INVALID) { 1732 err = -EINVAL; 1733 goto out; 1734 } 1735 1736 if (want < type) 1737 break; 1738 if (want > type) { 1739 ptr += btrfs_extent_inline_ref_size(type); 1740 continue; 1741 } 1742 1743 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1744 struct btrfs_extent_data_ref *dref; 1745 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1746 if (match_extent_data_ref(leaf, dref, root_objectid, 1747 owner, offset)) { 1748 err = 0; 1749 break; 1750 } 1751 if (hash_extent_data_ref_item(leaf, dref) < 1752 hash_extent_data_ref(root_objectid, owner, offset)) 1753 break; 1754 } else { 1755 u64 ref_offset; 1756 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1757 if (parent > 0) { 1758 if (parent == ref_offset) { 1759 err = 0; 1760 break; 1761 } 1762 if (ref_offset < parent) 1763 break; 1764 } else { 1765 if (root_objectid == ref_offset) { 1766 err = 0; 1767 break; 1768 } 1769 if (ref_offset < root_objectid) 1770 break; 1771 } 1772 } 1773 ptr += btrfs_extent_inline_ref_size(type); 1774 } 1775 if (err == -ENOENT && insert) { 1776 if (item_size + extra_size >= 1777 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1778 err = -EAGAIN; 1779 goto out; 1780 } 1781 /* 1782 * To add new inline back ref, we have to make sure 1783 * there is no corresponding back ref item. 1784 * For simplicity, we just do not add new inline back 1785 * ref if there is any kind of item for this block 1786 */ 1787 if (find_next_key(path, 0, &key) == 0 && 1788 key.objectid == bytenr && 1789 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1790 err = -EAGAIN; 1791 goto out; 1792 } 1793 } 1794 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1795 out: 1796 if (insert) { 1797 path->keep_locks = 0; 1798 btrfs_unlock_up_safe(path, 1); 1799 } 1800 return err; 1801 } 1802 1803 /* 1804 * helper to add new inline back ref 1805 */ 1806 static noinline_for_stack 1807 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1808 struct btrfs_path *path, 1809 struct btrfs_extent_inline_ref *iref, 1810 u64 parent, u64 root_objectid, 1811 u64 owner, u64 offset, int refs_to_add, 1812 struct btrfs_delayed_extent_op *extent_op) 1813 { 1814 struct extent_buffer *leaf; 1815 struct btrfs_extent_item *ei; 1816 unsigned long ptr; 1817 unsigned long end; 1818 unsigned long item_offset; 1819 u64 refs; 1820 int size; 1821 int type; 1822 1823 leaf = path->nodes[0]; 1824 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1825 item_offset = (unsigned long)iref - (unsigned long)ei; 1826 1827 type = extent_ref_type(parent, owner); 1828 size = btrfs_extent_inline_ref_size(type); 1829 1830 btrfs_extend_item(fs_info, path, size); 1831 1832 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1833 refs = btrfs_extent_refs(leaf, ei); 1834 refs += refs_to_add; 1835 btrfs_set_extent_refs(leaf, ei, refs); 1836 if (extent_op) 1837 __run_delayed_extent_op(extent_op, leaf, ei); 1838 1839 ptr = (unsigned long)ei + item_offset; 1840 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1841 if (ptr < end - size) 1842 memmove_extent_buffer(leaf, ptr + size, ptr, 1843 end - size - ptr); 1844 1845 iref = (struct btrfs_extent_inline_ref *)ptr; 1846 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1848 struct btrfs_extent_data_ref *dref; 1849 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1850 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1851 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1852 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1853 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1854 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1855 struct btrfs_shared_data_ref *sref; 1856 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1857 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1859 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1860 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1861 } else { 1862 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1863 } 1864 btrfs_mark_buffer_dirty(leaf); 1865 } 1866 1867 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1868 struct btrfs_fs_info *fs_info, 1869 struct btrfs_path *path, 1870 struct btrfs_extent_inline_ref **ref_ret, 1871 u64 bytenr, u64 num_bytes, u64 parent, 1872 u64 root_objectid, u64 owner, u64 offset) 1873 { 1874 int ret; 1875 1876 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1877 bytenr, num_bytes, parent, 1878 root_objectid, owner, offset, 0); 1879 if (ret != -ENOENT) 1880 return ret; 1881 1882 btrfs_release_path(path); 1883 *ref_ret = NULL; 1884 1885 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1886 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1887 parent, root_objectid); 1888 } else { 1889 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1890 parent, root_objectid, owner, 1891 offset); 1892 } 1893 return ret; 1894 } 1895 1896 /* 1897 * helper to update/remove inline back ref 1898 */ 1899 static noinline_for_stack 1900 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1901 struct btrfs_path *path, 1902 struct btrfs_extent_inline_ref *iref, 1903 int refs_to_mod, 1904 struct btrfs_delayed_extent_op *extent_op, 1905 int *last_ref) 1906 { 1907 struct extent_buffer *leaf; 1908 struct btrfs_extent_item *ei; 1909 struct btrfs_extent_data_ref *dref = NULL; 1910 struct btrfs_shared_data_ref *sref = NULL; 1911 unsigned long ptr; 1912 unsigned long end; 1913 u32 item_size; 1914 int size; 1915 int type; 1916 u64 refs; 1917 1918 leaf = path->nodes[0]; 1919 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1920 refs = btrfs_extent_refs(leaf, ei); 1921 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1922 refs += refs_to_mod; 1923 btrfs_set_extent_refs(leaf, ei, refs); 1924 if (extent_op) 1925 __run_delayed_extent_op(extent_op, leaf, ei); 1926 1927 /* 1928 * If type is invalid, we should have bailed out after 1929 * lookup_inline_extent_backref(). 1930 */ 1931 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1932 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1933 1934 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1935 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1936 refs = btrfs_extent_data_ref_count(leaf, dref); 1937 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1938 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1939 refs = btrfs_shared_data_ref_count(leaf, sref); 1940 } else { 1941 refs = 1; 1942 BUG_ON(refs_to_mod != -1); 1943 } 1944 1945 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1946 refs += refs_to_mod; 1947 1948 if (refs > 0) { 1949 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1950 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1951 else 1952 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1953 } else { 1954 *last_ref = 1; 1955 size = btrfs_extent_inline_ref_size(type); 1956 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1957 ptr = (unsigned long)iref; 1958 end = (unsigned long)ei + item_size; 1959 if (ptr + size < end) 1960 memmove_extent_buffer(leaf, ptr, ptr + size, 1961 end - ptr - size); 1962 item_size -= size; 1963 btrfs_truncate_item(fs_info, path, item_size, 1); 1964 } 1965 btrfs_mark_buffer_dirty(leaf); 1966 } 1967 1968 static noinline_for_stack 1969 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1970 struct btrfs_fs_info *fs_info, 1971 struct btrfs_path *path, 1972 u64 bytenr, u64 num_bytes, u64 parent, 1973 u64 root_objectid, u64 owner, 1974 u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_extent_inline_ref *iref; 1978 int ret; 1979 1980 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1981 bytenr, num_bytes, parent, 1982 root_objectid, owner, offset, 1); 1983 if (ret == 0) { 1984 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1985 update_inline_extent_backref(fs_info, path, iref, 1986 refs_to_add, extent_op, NULL); 1987 } else if (ret == -ENOENT) { 1988 setup_inline_extent_backref(fs_info, path, iref, parent, 1989 root_objectid, owner, offset, 1990 refs_to_add, extent_op); 1991 ret = 0; 1992 } 1993 return ret; 1994 } 1995 1996 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1997 struct btrfs_fs_info *fs_info, 1998 struct btrfs_path *path, 1999 u64 bytenr, u64 parent, u64 root_objectid, 2000 u64 owner, u64 offset, int refs_to_add) 2001 { 2002 int ret; 2003 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2004 BUG_ON(refs_to_add != 1); 2005 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2006 parent, root_objectid); 2007 } else { 2008 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2009 parent, root_objectid, 2010 owner, offset, refs_to_add); 2011 } 2012 return ret; 2013 } 2014 2015 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2016 struct btrfs_fs_info *fs_info, 2017 struct btrfs_path *path, 2018 struct btrfs_extent_inline_ref *iref, 2019 int refs_to_drop, int is_data, int *last_ref) 2020 { 2021 int ret = 0; 2022 2023 BUG_ON(!is_data && refs_to_drop != 1); 2024 if (iref) { 2025 update_inline_extent_backref(fs_info, path, iref, 2026 -refs_to_drop, NULL, last_ref); 2027 } else if (is_data) { 2028 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2029 last_ref); 2030 } else { 2031 *last_ref = 1; 2032 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2033 } 2034 return ret; 2035 } 2036 2037 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2038 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2039 u64 *discarded_bytes) 2040 { 2041 int j, ret = 0; 2042 u64 bytes_left, end; 2043 u64 aligned_start = ALIGN(start, 1 << 9); 2044 2045 if (WARN_ON(start != aligned_start)) { 2046 len -= aligned_start - start; 2047 len = round_down(len, 1 << 9); 2048 start = aligned_start; 2049 } 2050 2051 *discarded_bytes = 0; 2052 2053 if (!len) 2054 return 0; 2055 2056 end = start + len; 2057 bytes_left = len; 2058 2059 /* Skip any superblocks on this device. */ 2060 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2061 u64 sb_start = btrfs_sb_offset(j); 2062 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2063 u64 size = sb_start - start; 2064 2065 if (!in_range(sb_start, start, bytes_left) && 2066 !in_range(sb_end, start, bytes_left) && 2067 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2068 continue; 2069 2070 /* 2071 * Superblock spans beginning of range. Adjust start and 2072 * try again. 2073 */ 2074 if (sb_start <= start) { 2075 start += sb_end - start; 2076 if (start > end) { 2077 bytes_left = 0; 2078 break; 2079 } 2080 bytes_left = end - start; 2081 continue; 2082 } 2083 2084 if (size) { 2085 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2086 GFP_NOFS, 0); 2087 if (!ret) 2088 *discarded_bytes += size; 2089 else if (ret != -EOPNOTSUPP) 2090 return ret; 2091 } 2092 2093 start = sb_end; 2094 if (start > end) { 2095 bytes_left = 0; 2096 break; 2097 } 2098 bytes_left = end - start; 2099 } 2100 2101 if (bytes_left) { 2102 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2103 GFP_NOFS, 0); 2104 if (!ret) 2105 *discarded_bytes += bytes_left; 2106 } 2107 return ret; 2108 } 2109 2110 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2111 u64 num_bytes, u64 *actual_bytes) 2112 { 2113 int ret; 2114 u64 discarded_bytes = 0; 2115 struct btrfs_bio *bbio = NULL; 2116 2117 2118 /* 2119 * Avoid races with device replace and make sure our bbio has devices 2120 * associated to its stripes that don't go away while we are discarding. 2121 */ 2122 btrfs_bio_counter_inc_blocked(fs_info); 2123 /* Tell the block device(s) that the sectors can be discarded */ 2124 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2125 &bbio, 0); 2126 /* Error condition is -ENOMEM */ 2127 if (!ret) { 2128 struct btrfs_bio_stripe *stripe = bbio->stripes; 2129 int i; 2130 2131 2132 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2133 u64 bytes; 2134 struct request_queue *req_q; 2135 2136 if (!stripe->dev->bdev) { 2137 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 2138 continue; 2139 } 2140 req_q = bdev_get_queue(stripe->dev->bdev); 2141 if (!blk_queue_discard(req_q)) 2142 continue; 2143 2144 ret = btrfs_issue_discard(stripe->dev->bdev, 2145 stripe->physical, 2146 stripe->length, 2147 &bytes); 2148 if (!ret) 2149 discarded_bytes += bytes; 2150 else if (ret != -EOPNOTSUPP) 2151 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2152 2153 /* 2154 * Just in case we get back EOPNOTSUPP for some reason, 2155 * just ignore the return value so we don't screw up 2156 * people calling discard_extent. 2157 */ 2158 ret = 0; 2159 } 2160 btrfs_put_bbio(bbio); 2161 } 2162 btrfs_bio_counter_dec(fs_info); 2163 2164 if (actual_bytes) 2165 *actual_bytes = discarded_bytes; 2166 2167 2168 if (ret == -EOPNOTSUPP) 2169 ret = 0; 2170 return ret; 2171 } 2172 2173 /* Can return -ENOMEM */ 2174 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2175 struct btrfs_root *root, 2176 u64 bytenr, u64 num_bytes, u64 parent, 2177 u64 root_objectid, u64 owner, u64 offset) 2178 { 2179 struct btrfs_fs_info *fs_info = root->fs_info; 2180 int old_ref_mod, new_ref_mod; 2181 int ret; 2182 2183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2184 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2185 2186 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2187 owner, offset, BTRFS_ADD_DELAYED_REF); 2188 2189 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2190 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2191 num_bytes, parent, 2192 root_objectid, (int)owner, 2193 BTRFS_ADD_DELAYED_REF, NULL, 2194 &old_ref_mod, &new_ref_mod); 2195 } else { 2196 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2197 num_bytes, parent, 2198 root_objectid, owner, offset, 2199 0, BTRFS_ADD_DELAYED_REF, 2200 &old_ref_mod, &new_ref_mod); 2201 } 2202 2203 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) { 2204 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; 2205 2206 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid); 2207 } 2208 2209 return ret; 2210 } 2211 2212 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2213 struct btrfs_fs_info *fs_info, 2214 struct btrfs_delayed_ref_node *node, 2215 u64 parent, u64 root_objectid, 2216 u64 owner, u64 offset, int refs_to_add, 2217 struct btrfs_delayed_extent_op *extent_op) 2218 { 2219 struct btrfs_path *path; 2220 struct extent_buffer *leaf; 2221 struct btrfs_extent_item *item; 2222 struct btrfs_key key; 2223 u64 bytenr = node->bytenr; 2224 u64 num_bytes = node->num_bytes; 2225 u64 refs; 2226 int ret; 2227 2228 path = btrfs_alloc_path(); 2229 if (!path) 2230 return -ENOMEM; 2231 2232 path->reada = READA_FORWARD; 2233 path->leave_spinning = 1; 2234 /* this will setup the path even if it fails to insert the back ref */ 2235 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2236 num_bytes, parent, root_objectid, 2237 owner, offset, 2238 refs_to_add, extent_op); 2239 if ((ret < 0 && ret != -EAGAIN) || !ret) 2240 goto out; 2241 2242 /* 2243 * Ok we had -EAGAIN which means we didn't have space to insert and 2244 * inline extent ref, so just update the reference count and add a 2245 * normal backref. 2246 */ 2247 leaf = path->nodes[0]; 2248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2249 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2250 refs = btrfs_extent_refs(leaf, item); 2251 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2252 if (extent_op) 2253 __run_delayed_extent_op(extent_op, leaf, item); 2254 2255 btrfs_mark_buffer_dirty(leaf); 2256 btrfs_release_path(path); 2257 2258 path->reada = READA_FORWARD; 2259 path->leave_spinning = 1; 2260 /* now insert the actual backref */ 2261 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2262 root_objectid, owner, offset, refs_to_add); 2263 if (ret) 2264 btrfs_abort_transaction(trans, ret); 2265 out: 2266 btrfs_free_path(path); 2267 return ret; 2268 } 2269 2270 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2271 struct btrfs_fs_info *fs_info, 2272 struct btrfs_delayed_ref_node *node, 2273 struct btrfs_delayed_extent_op *extent_op, 2274 int insert_reserved) 2275 { 2276 int ret = 0; 2277 struct btrfs_delayed_data_ref *ref; 2278 struct btrfs_key ins; 2279 u64 parent = 0; 2280 u64 ref_root = 0; 2281 u64 flags = 0; 2282 2283 ins.objectid = node->bytenr; 2284 ins.offset = node->num_bytes; 2285 ins.type = BTRFS_EXTENT_ITEM_KEY; 2286 2287 ref = btrfs_delayed_node_to_data_ref(node); 2288 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2289 2290 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2291 parent = ref->parent; 2292 ref_root = ref->root; 2293 2294 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2295 if (extent_op) 2296 flags |= extent_op->flags_to_set; 2297 ret = alloc_reserved_file_extent(trans, fs_info, 2298 parent, ref_root, flags, 2299 ref->objectid, ref->offset, 2300 &ins, node->ref_mod); 2301 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2302 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2303 ref_root, ref->objectid, 2304 ref->offset, node->ref_mod, 2305 extent_op); 2306 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2307 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2308 ref_root, ref->objectid, 2309 ref->offset, node->ref_mod, 2310 extent_op); 2311 } else { 2312 BUG(); 2313 } 2314 return ret; 2315 } 2316 2317 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2318 struct extent_buffer *leaf, 2319 struct btrfs_extent_item *ei) 2320 { 2321 u64 flags = btrfs_extent_flags(leaf, ei); 2322 if (extent_op->update_flags) { 2323 flags |= extent_op->flags_to_set; 2324 btrfs_set_extent_flags(leaf, ei, flags); 2325 } 2326 2327 if (extent_op->update_key) { 2328 struct btrfs_tree_block_info *bi; 2329 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2330 bi = (struct btrfs_tree_block_info *)(ei + 1); 2331 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2332 } 2333 } 2334 2335 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2336 struct btrfs_fs_info *fs_info, 2337 struct btrfs_delayed_ref_head *head, 2338 struct btrfs_delayed_extent_op *extent_op) 2339 { 2340 struct btrfs_key key; 2341 struct btrfs_path *path; 2342 struct btrfs_extent_item *ei; 2343 struct extent_buffer *leaf; 2344 u32 item_size; 2345 int ret; 2346 int err = 0; 2347 int metadata = !extent_op->is_data; 2348 2349 if (trans->aborted) 2350 return 0; 2351 2352 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2353 metadata = 0; 2354 2355 path = btrfs_alloc_path(); 2356 if (!path) 2357 return -ENOMEM; 2358 2359 key.objectid = head->bytenr; 2360 2361 if (metadata) { 2362 key.type = BTRFS_METADATA_ITEM_KEY; 2363 key.offset = extent_op->level; 2364 } else { 2365 key.type = BTRFS_EXTENT_ITEM_KEY; 2366 key.offset = head->num_bytes; 2367 } 2368 2369 again: 2370 path->reada = READA_FORWARD; 2371 path->leave_spinning = 1; 2372 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2373 if (ret < 0) { 2374 err = ret; 2375 goto out; 2376 } 2377 if (ret > 0) { 2378 if (metadata) { 2379 if (path->slots[0] > 0) { 2380 path->slots[0]--; 2381 btrfs_item_key_to_cpu(path->nodes[0], &key, 2382 path->slots[0]); 2383 if (key.objectid == head->bytenr && 2384 key.type == BTRFS_EXTENT_ITEM_KEY && 2385 key.offset == head->num_bytes) 2386 ret = 0; 2387 } 2388 if (ret > 0) { 2389 btrfs_release_path(path); 2390 metadata = 0; 2391 2392 key.objectid = head->bytenr; 2393 key.offset = head->num_bytes; 2394 key.type = BTRFS_EXTENT_ITEM_KEY; 2395 goto again; 2396 } 2397 } else { 2398 err = -EIO; 2399 goto out; 2400 } 2401 } 2402 2403 leaf = path->nodes[0]; 2404 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2406 if (item_size < sizeof(*ei)) { 2407 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2408 if (ret < 0) { 2409 err = ret; 2410 goto out; 2411 } 2412 leaf = path->nodes[0]; 2413 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2414 } 2415 #endif 2416 BUG_ON(item_size < sizeof(*ei)); 2417 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2418 __run_delayed_extent_op(extent_op, leaf, ei); 2419 2420 btrfs_mark_buffer_dirty(leaf); 2421 out: 2422 btrfs_free_path(path); 2423 return err; 2424 } 2425 2426 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2427 struct btrfs_fs_info *fs_info, 2428 struct btrfs_delayed_ref_node *node, 2429 struct btrfs_delayed_extent_op *extent_op, 2430 int insert_reserved) 2431 { 2432 int ret = 0; 2433 struct btrfs_delayed_tree_ref *ref; 2434 struct btrfs_key ins; 2435 u64 parent = 0; 2436 u64 ref_root = 0; 2437 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2438 2439 ref = btrfs_delayed_node_to_tree_ref(node); 2440 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2441 2442 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2443 parent = ref->parent; 2444 ref_root = ref->root; 2445 2446 ins.objectid = node->bytenr; 2447 if (skinny_metadata) { 2448 ins.offset = ref->level; 2449 ins.type = BTRFS_METADATA_ITEM_KEY; 2450 } else { 2451 ins.offset = node->num_bytes; 2452 ins.type = BTRFS_EXTENT_ITEM_KEY; 2453 } 2454 2455 if (node->ref_mod != 1) { 2456 btrfs_err(fs_info, 2457 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2458 node->bytenr, node->ref_mod, node->action, ref_root, 2459 parent); 2460 return -EIO; 2461 } 2462 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2463 BUG_ON(!extent_op || !extent_op->update_flags); 2464 ret = alloc_reserved_tree_block(trans, fs_info, 2465 parent, ref_root, 2466 extent_op->flags_to_set, 2467 &extent_op->key, 2468 ref->level, &ins); 2469 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2470 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2471 parent, ref_root, 2472 ref->level, 0, 1, 2473 extent_op); 2474 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2475 ret = __btrfs_free_extent(trans, fs_info, node, 2476 parent, ref_root, 2477 ref->level, 0, 1, extent_op); 2478 } else { 2479 BUG(); 2480 } 2481 return ret; 2482 } 2483 2484 /* helper function to actually process a single delayed ref entry */ 2485 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2486 struct btrfs_fs_info *fs_info, 2487 struct btrfs_delayed_ref_node *node, 2488 struct btrfs_delayed_extent_op *extent_op, 2489 int insert_reserved) 2490 { 2491 int ret = 0; 2492 2493 if (trans->aborted) { 2494 if (insert_reserved) 2495 btrfs_pin_extent(fs_info, node->bytenr, 2496 node->num_bytes, 1); 2497 return 0; 2498 } 2499 2500 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2501 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2502 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2503 insert_reserved); 2504 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2505 node->type == BTRFS_SHARED_DATA_REF_KEY) 2506 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2507 insert_reserved); 2508 else 2509 BUG(); 2510 return ret; 2511 } 2512 2513 static inline struct btrfs_delayed_ref_node * 2514 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2515 { 2516 struct btrfs_delayed_ref_node *ref; 2517 2518 if (RB_EMPTY_ROOT(&head->ref_tree)) 2519 return NULL; 2520 2521 /* 2522 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2523 * This is to prevent a ref count from going down to zero, which deletes 2524 * the extent item from the extent tree, when there still are references 2525 * to add, which would fail because they would not find the extent item. 2526 */ 2527 if (!list_empty(&head->ref_add_list)) 2528 return list_first_entry(&head->ref_add_list, 2529 struct btrfs_delayed_ref_node, add_list); 2530 2531 ref = rb_entry(rb_first(&head->ref_tree), 2532 struct btrfs_delayed_ref_node, ref_node); 2533 ASSERT(list_empty(&ref->add_list)); 2534 return ref; 2535 } 2536 2537 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2538 struct btrfs_delayed_ref_head *head) 2539 { 2540 spin_lock(&delayed_refs->lock); 2541 head->processing = 0; 2542 delayed_refs->num_heads_ready++; 2543 spin_unlock(&delayed_refs->lock); 2544 btrfs_delayed_ref_unlock(head); 2545 } 2546 2547 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2548 struct btrfs_fs_info *fs_info, 2549 struct btrfs_delayed_ref_head *head) 2550 { 2551 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2552 int ret; 2553 2554 if (!extent_op) 2555 return 0; 2556 head->extent_op = NULL; 2557 if (head->must_insert_reserved) { 2558 btrfs_free_delayed_extent_op(extent_op); 2559 return 0; 2560 } 2561 spin_unlock(&head->lock); 2562 ret = run_delayed_extent_op(trans, fs_info, head, extent_op); 2563 btrfs_free_delayed_extent_op(extent_op); 2564 return ret ? ret : 1; 2565 } 2566 2567 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2568 struct btrfs_fs_info *fs_info, 2569 struct btrfs_delayed_ref_head *head) 2570 { 2571 struct btrfs_delayed_ref_root *delayed_refs; 2572 int ret; 2573 2574 delayed_refs = &trans->transaction->delayed_refs; 2575 2576 ret = cleanup_extent_op(trans, fs_info, head); 2577 if (ret < 0) { 2578 unselect_delayed_ref_head(delayed_refs, head); 2579 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2580 return ret; 2581 } else if (ret) { 2582 return ret; 2583 } 2584 2585 /* 2586 * Need to drop our head ref lock and re-acquire the delayed ref lock 2587 * and then re-check to make sure nobody got added. 2588 */ 2589 spin_unlock(&head->lock); 2590 spin_lock(&delayed_refs->lock); 2591 spin_lock(&head->lock); 2592 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { 2593 spin_unlock(&head->lock); 2594 spin_unlock(&delayed_refs->lock); 2595 return 1; 2596 } 2597 delayed_refs->num_heads--; 2598 rb_erase(&head->href_node, &delayed_refs->href_root); 2599 RB_CLEAR_NODE(&head->href_node); 2600 spin_unlock(&head->lock); 2601 spin_unlock(&delayed_refs->lock); 2602 atomic_dec(&delayed_refs->num_entries); 2603 2604 trace_run_delayed_ref_head(fs_info, head, 0); 2605 2606 if (head->total_ref_mod < 0) { 2607 struct btrfs_space_info *space_info; 2608 u64 flags; 2609 2610 if (head->is_data) 2611 flags = BTRFS_BLOCK_GROUP_DATA; 2612 else if (head->is_system) 2613 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2614 else 2615 flags = BTRFS_BLOCK_GROUP_METADATA; 2616 space_info = __find_space_info(fs_info, flags); 2617 ASSERT(space_info); 2618 percpu_counter_add(&space_info->total_bytes_pinned, 2619 -head->num_bytes); 2620 2621 if (head->is_data) { 2622 spin_lock(&delayed_refs->lock); 2623 delayed_refs->pending_csums -= head->num_bytes; 2624 spin_unlock(&delayed_refs->lock); 2625 } 2626 } 2627 2628 if (head->must_insert_reserved) { 2629 btrfs_pin_extent(fs_info, head->bytenr, 2630 head->num_bytes, 1); 2631 if (head->is_data) { 2632 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2633 head->num_bytes); 2634 } 2635 } 2636 2637 /* Also free its reserved qgroup space */ 2638 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2639 head->qgroup_reserved); 2640 btrfs_delayed_ref_unlock(head); 2641 btrfs_put_delayed_ref_head(head); 2642 return 0; 2643 } 2644 2645 /* 2646 * Returns 0 on success or if called with an already aborted transaction. 2647 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2648 */ 2649 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2650 unsigned long nr) 2651 { 2652 struct btrfs_fs_info *fs_info = trans->fs_info; 2653 struct btrfs_delayed_ref_root *delayed_refs; 2654 struct btrfs_delayed_ref_node *ref; 2655 struct btrfs_delayed_ref_head *locked_ref = NULL; 2656 struct btrfs_delayed_extent_op *extent_op; 2657 ktime_t start = ktime_get(); 2658 int ret; 2659 unsigned long count = 0; 2660 unsigned long actual_count = 0; 2661 int must_insert_reserved = 0; 2662 2663 delayed_refs = &trans->transaction->delayed_refs; 2664 while (1) { 2665 if (!locked_ref) { 2666 if (count >= nr) 2667 break; 2668 2669 spin_lock(&delayed_refs->lock); 2670 locked_ref = btrfs_select_ref_head(trans); 2671 if (!locked_ref) { 2672 spin_unlock(&delayed_refs->lock); 2673 break; 2674 } 2675 2676 /* grab the lock that says we are going to process 2677 * all the refs for this head */ 2678 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2679 spin_unlock(&delayed_refs->lock); 2680 /* 2681 * we may have dropped the spin lock to get the head 2682 * mutex lock, and that might have given someone else 2683 * time to free the head. If that's true, it has been 2684 * removed from our list and we can move on. 2685 */ 2686 if (ret == -EAGAIN) { 2687 locked_ref = NULL; 2688 count++; 2689 continue; 2690 } 2691 } 2692 2693 /* 2694 * We need to try and merge add/drops of the same ref since we 2695 * can run into issues with relocate dropping the implicit ref 2696 * and then it being added back again before the drop can 2697 * finish. If we merged anything we need to re-loop so we can 2698 * get a good ref. 2699 * Or we can get node references of the same type that weren't 2700 * merged when created due to bumps in the tree mod seq, and 2701 * we need to merge them to prevent adding an inline extent 2702 * backref before dropping it (triggering a BUG_ON at 2703 * insert_inline_extent_backref()). 2704 */ 2705 spin_lock(&locked_ref->lock); 2706 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2707 2708 /* 2709 * locked_ref is the head node, so we have to go one 2710 * node back for any delayed ref updates 2711 */ 2712 ref = select_delayed_ref(locked_ref); 2713 2714 if (ref && ref->seq && 2715 btrfs_check_delayed_seq(fs_info, ref->seq)) { 2716 spin_unlock(&locked_ref->lock); 2717 unselect_delayed_ref_head(delayed_refs, locked_ref); 2718 locked_ref = NULL; 2719 cond_resched(); 2720 count++; 2721 continue; 2722 } 2723 2724 /* 2725 * We're done processing refs in this ref_head, clean everything 2726 * up and move on to the next ref_head. 2727 */ 2728 if (!ref) { 2729 ret = cleanup_ref_head(trans, fs_info, locked_ref); 2730 if (ret > 0 ) { 2731 /* We dropped our lock, we need to loop. */ 2732 ret = 0; 2733 continue; 2734 } else if (ret) { 2735 return ret; 2736 } 2737 locked_ref = NULL; 2738 count++; 2739 continue; 2740 } 2741 2742 actual_count++; 2743 ref->in_tree = 0; 2744 rb_erase(&ref->ref_node, &locked_ref->ref_tree); 2745 RB_CLEAR_NODE(&ref->ref_node); 2746 if (!list_empty(&ref->add_list)) 2747 list_del(&ref->add_list); 2748 /* 2749 * When we play the delayed ref, also correct the ref_mod on 2750 * head 2751 */ 2752 switch (ref->action) { 2753 case BTRFS_ADD_DELAYED_REF: 2754 case BTRFS_ADD_DELAYED_EXTENT: 2755 locked_ref->ref_mod -= ref->ref_mod; 2756 break; 2757 case BTRFS_DROP_DELAYED_REF: 2758 locked_ref->ref_mod += ref->ref_mod; 2759 break; 2760 default: 2761 WARN_ON(1); 2762 } 2763 atomic_dec(&delayed_refs->num_entries); 2764 2765 /* 2766 * Record the must-insert_reserved flag before we drop the spin 2767 * lock. 2768 */ 2769 must_insert_reserved = locked_ref->must_insert_reserved; 2770 locked_ref->must_insert_reserved = 0; 2771 2772 extent_op = locked_ref->extent_op; 2773 locked_ref->extent_op = NULL; 2774 spin_unlock(&locked_ref->lock); 2775 2776 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2777 must_insert_reserved); 2778 2779 btrfs_free_delayed_extent_op(extent_op); 2780 if (ret) { 2781 unselect_delayed_ref_head(delayed_refs, locked_ref); 2782 btrfs_put_delayed_ref(ref); 2783 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2784 ret); 2785 return ret; 2786 } 2787 2788 btrfs_put_delayed_ref(ref); 2789 count++; 2790 cond_resched(); 2791 } 2792 2793 /* 2794 * We don't want to include ref heads since we can have empty ref heads 2795 * and those will drastically skew our runtime down since we just do 2796 * accounting, no actual extent tree updates. 2797 */ 2798 if (actual_count > 0) { 2799 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2800 u64 avg; 2801 2802 /* 2803 * We weigh the current average higher than our current runtime 2804 * to avoid large swings in the average. 2805 */ 2806 spin_lock(&delayed_refs->lock); 2807 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2808 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2809 spin_unlock(&delayed_refs->lock); 2810 } 2811 return 0; 2812 } 2813 2814 #ifdef SCRAMBLE_DELAYED_REFS 2815 /* 2816 * Normally delayed refs get processed in ascending bytenr order. This 2817 * correlates in most cases to the order added. To expose dependencies on this 2818 * order, we start to process the tree in the middle instead of the beginning 2819 */ 2820 static u64 find_middle(struct rb_root *root) 2821 { 2822 struct rb_node *n = root->rb_node; 2823 struct btrfs_delayed_ref_node *entry; 2824 int alt = 1; 2825 u64 middle; 2826 u64 first = 0, last = 0; 2827 2828 n = rb_first(root); 2829 if (n) { 2830 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2831 first = entry->bytenr; 2832 } 2833 n = rb_last(root); 2834 if (n) { 2835 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2836 last = entry->bytenr; 2837 } 2838 n = root->rb_node; 2839 2840 while (n) { 2841 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2842 WARN_ON(!entry->in_tree); 2843 2844 middle = entry->bytenr; 2845 2846 if (alt) 2847 n = n->rb_left; 2848 else 2849 n = n->rb_right; 2850 2851 alt = 1 - alt; 2852 } 2853 return middle; 2854 } 2855 #endif 2856 2857 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2858 { 2859 u64 num_bytes; 2860 2861 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2862 sizeof(struct btrfs_extent_inline_ref)); 2863 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2864 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2865 2866 /* 2867 * We don't ever fill up leaves all the way so multiply by 2 just to be 2868 * closer to what we're really going to want to use. 2869 */ 2870 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2871 } 2872 2873 /* 2874 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2875 * would require to store the csums for that many bytes. 2876 */ 2877 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2878 { 2879 u64 csum_size; 2880 u64 num_csums_per_leaf; 2881 u64 num_csums; 2882 2883 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2884 num_csums_per_leaf = div64_u64(csum_size, 2885 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2886 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2887 num_csums += num_csums_per_leaf - 1; 2888 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2889 return num_csums; 2890 } 2891 2892 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2893 struct btrfs_fs_info *fs_info) 2894 { 2895 struct btrfs_block_rsv *global_rsv; 2896 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2897 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2898 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; 2899 u64 num_bytes, num_dirty_bgs_bytes; 2900 int ret = 0; 2901 2902 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2903 num_heads = heads_to_leaves(fs_info, num_heads); 2904 if (num_heads > 1) 2905 num_bytes += (num_heads - 1) * fs_info->nodesize; 2906 num_bytes <<= 1; 2907 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2908 fs_info->nodesize; 2909 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2910 num_dirty_bgs); 2911 global_rsv = &fs_info->global_block_rsv; 2912 2913 /* 2914 * If we can't allocate any more chunks lets make sure we have _lots_ of 2915 * wiggle room since running delayed refs can create more delayed refs. 2916 */ 2917 if (global_rsv->space_info->full) { 2918 num_dirty_bgs_bytes <<= 1; 2919 num_bytes <<= 1; 2920 } 2921 2922 spin_lock(&global_rsv->lock); 2923 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2924 ret = 1; 2925 spin_unlock(&global_rsv->lock); 2926 return ret; 2927 } 2928 2929 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2930 struct btrfs_fs_info *fs_info) 2931 { 2932 u64 num_entries = 2933 atomic_read(&trans->transaction->delayed_refs.num_entries); 2934 u64 avg_runtime; 2935 u64 val; 2936 2937 smp_mb(); 2938 avg_runtime = fs_info->avg_delayed_ref_runtime; 2939 val = num_entries * avg_runtime; 2940 if (val >= NSEC_PER_SEC) 2941 return 1; 2942 if (val >= NSEC_PER_SEC / 2) 2943 return 2; 2944 2945 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2946 } 2947 2948 struct async_delayed_refs { 2949 struct btrfs_root *root; 2950 u64 transid; 2951 int count; 2952 int error; 2953 int sync; 2954 struct completion wait; 2955 struct btrfs_work work; 2956 }; 2957 2958 static inline struct async_delayed_refs * 2959 to_async_delayed_refs(struct btrfs_work *work) 2960 { 2961 return container_of(work, struct async_delayed_refs, work); 2962 } 2963 2964 static void delayed_ref_async_start(struct btrfs_work *work) 2965 { 2966 struct async_delayed_refs *async = to_async_delayed_refs(work); 2967 struct btrfs_trans_handle *trans; 2968 struct btrfs_fs_info *fs_info = async->root->fs_info; 2969 int ret; 2970 2971 /* if the commit is already started, we don't need to wait here */ 2972 if (btrfs_transaction_blocked(fs_info)) 2973 goto done; 2974 2975 trans = btrfs_join_transaction(async->root); 2976 if (IS_ERR(trans)) { 2977 async->error = PTR_ERR(trans); 2978 goto done; 2979 } 2980 2981 /* 2982 * trans->sync means that when we call end_transaction, we won't 2983 * wait on delayed refs 2984 */ 2985 trans->sync = true; 2986 2987 /* Don't bother flushing if we got into a different transaction */ 2988 if (trans->transid > async->transid) 2989 goto end; 2990 2991 ret = btrfs_run_delayed_refs(trans, async->count); 2992 if (ret) 2993 async->error = ret; 2994 end: 2995 ret = btrfs_end_transaction(trans); 2996 if (ret && !async->error) 2997 async->error = ret; 2998 done: 2999 if (async->sync) 3000 complete(&async->wait); 3001 else 3002 kfree(async); 3003 } 3004 3005 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 3006 unsigned long count, u64 transid, int wait) 3007 { 3008 struct async_delayed_refs *async; 3009 int ret; 3010 3011 async = kmalloc(sizeof(*async), GFP_NOFS); 3012 if (!async) 3013 return -ENOMEM; 3014 3015 async->root = fs_info->tree_root; 3016 async->count = count; 3017 async->error = 0; 3018 async->transid = transid; 3019 if (wait) 3020 async->sync = 1; 3021 else 3022 async->sync = 0; 3023 init_completion(&async->wait); 3024 3025 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3026 delayed_ref_async_start, NULL, NULL); 3027 3028 btrfs_queue_work(fs_info->extent_workers, &async->work); 3029 3030 if (wait) { 3031 wait_for_completion(&async->wait); 3032 ret = async->error; 3033 kfree(async); 3034 return ret; 3035 } 3036 return 0; 3037 } 3038 3039 /* 3040 * this starts processing the delayed reference count updates and 3041 * extent insertions we have queued up so far. count can be 3042 * 0, which means to process everything in the tree at the start 3043 * of the run (but not newly added entries), or it can be some target 3044 * number you'd like to process. 3045 * 3046 * Returns 0 on success or if called with an aborted transaction 3047 * Returns <0 on error and aborts the transaction 3048 */ 3049 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3050 unsigned long count) 3051 { 3052 struct btrfs_fs_info *fs_info = trans->fs_info; 3053 struct rb_node *node; 3054 struct btrfs_delayed_ref_root *delayed_refs; 3055 struct btrfs_delayed_ref_head *head; 3056 int ret; 3057 int run_all = count == (unsigned long)-1; 3058 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3059 3060 /* We'll clean this up in btrfs_cleanup_transaction */ 3061 if (trans->aborted) 3062 return 0; 3063 3064 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3065 return 0; 3066 3067 delayed_refs = &trans->transaction->delayed_refs; 3068 if (count == 0) 3069 count = atomic_read(&delayed_refs->num_entries) * 2; 3070 3071 again: 3072 #ifdef SCRAMBLE_DELAYED_REFS 3073 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3074 #endif 3075 trans->can_flush_pending_bgs = false; 3076 ret = __btrfs_run_delayed_refs(trans, count); 3077 if (ret < 0) { 3078 btrfs_abort_transaction(trans, ret); 3079 return ret; 3080 } 3081 3082 if (run_all) { 3083 if (!list_empty(&trans->new_bgs)) 3084 btrfs_create_pending_block_groups(trans); 3085 3086 spin_lock(&delayed_refs->lock); 3087 node = rb_first(&delayed_refs->href_root); 3088 if (!node) { 3089 spin_unlock(&delayed_refs->lock); 3090 goto out; 3091 } 3092 head = rb_entry(node, struct btrfs_delayed_ref_head, 3093 href_node); 3094 refcount_inc(&head->refs); 3095 spin_unlock(&delayed_refs->lock); 3096 3097 /* Mutex was contended, block until it's released and retry. */ 3098 mutex_lock(&head->mutex); 3099 mutex_unlock(&head->mutex); 3100 3101 btrfs_put_delayed_ref_head(head); 3102 cond_resched(); 3103 goto again; 3104 } 3105 out: 3106 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3107 return 0; 3108 } 3109 3110 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3111 struct btrfs_fs_info *fs_info, 3112 u64 bytenr, u64 num_bytes, u64 flags, 3113 int level, int is_data) 3114 { 3115 struct btrfs_delayed_extent_op *extent_op; 3116 int ret; 3117 3118 extent_op = btrfs_alloc_delayed_extent_op(); 3119 if (!extent_op) 3120 return -ENOMEM; 3121 3122 extent_op->flags_to_set = flags; 3123 extent_op->update_flags = true; 3124 extent_op->update_key = false; 3125 extent_op->is_data = is_data ? true : false; 3126 extent_op->level = level; 3127 3128 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3129 num_bytes, extent_op); 3130 if (ret) 3131 btrfs_free_delayed_extent_op(extent_op); 3132 return ret; 3133 } 3134 3135 static noinline int check_delayed_ref(struct btrfs_root *root, 3136 struct btrfs_path *path, 3137 u64 objectid, u64 offset, u64 bytenr) 3138 { 3139 struct btrfs_delayed_ref_head *head; 3140 struct btrfs_delayed_ref_node *ref; 3141 struct btrfs_delayed_data_ref *data_ref; 3142 struct btrfs_delayed_ref_root *delayed_refs; 3143 struct btrfs_transaction *cur_trans; 3144 struct rb_node *node; 3145 int ret = 0; 3146 3147 spin_lock(&root->fs_info->trans_lock); 3148 cur_trans = root->fs_info->running_transaction; 3149 if (cur_trans) 3150 refcount_inc(&cur_trans->use_count); 3151 spin_unlock(&root->fs_info->trans_lock); 3152 if (!cur_trans) 3153 return 0; 3154 3155 delayed_refs = &cur_trans->delayed_refs; 3156 spin_lock(&delayed_refs->lock); 3157 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3158 if (!head) { 3159 spin_unlock(&delayed_refs->lock); 3160 btrfs_put_transaction(cur_trans); 3161 return 0; 3162 } 3163 3164 if (!mutex_trylock(&head->mutex)) { 3165 refcount_inc(&head->refs); 3166 spin_unlock(&delayed_refs->lock); 3167 3168 btrfs_release_path(path); 3169 3170 /* 3171 * Mutex was contended, block until it's released and let 3172 * caller try again 3173 */ 3174 mutex_lock(&head->mutex); 3175 mutex_unlock(&head->mutex); 3176 btrfs_put_delayed_ref_head(head); 3177 btrfs_put_transaction(cur_trans); 3178 return -EAGAIN; 3179 } 3180 spin_unlock(&delayed_refs->lock); 3181 3182 spin_lock(&head->lock); 3183 /* 3184 * XXX: We should replace this with a proper search function in the 3185 * future. 3186 */ 3187 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { 3188 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3189 /* If it's a shared ref we know a cross reference exists */ 3190 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3191 ret = 1; 3192 break; 3193 } 3194 3195 data_ref = btrfs_delayed_node_to_data_ref(ref); 3196 3197 /* 3198 * If our ref doesn't match the one we're currently looking at 3199 * then we have a cross reference. 3200 */ 3201 if (data_ref->root != root->root_key.objectid || 3202 data_ref->objectid != objectid || 3203 data_ref->offset != offset) { 3204 ret = 1; 3205 break; 3206 } 3207 } 3208 spin_unlock(&head->lock); 3209 mutex_unlock(&head->mutex); 3210 btrfs_put_transaction(cur_trans); 3211 return ret; 3212 } 3213 3214 static noinline int check_committed_ref(struct btrfs_root *root, 3215 struct btrfs_path *path, 3216 u64 objectid, u64 offset, u64 bytenr) 3217 { 3218 struct btrfs_fs_info *fs_info = root->fs_info; 3219 struct btrfs_root *extent_root = fs_info->extent_root; 3220 struct extent_buffer *leaf; 3221 struct btrfs_extent_data_ref *ref; 3222 struct btrfs_extent_inline_ref *iref; 3223 struct btrfs_extent_item *ei; 3224 struct btrfs_key key; 3225 u32 item_size; 3226 int type; 3227 int ret; 3228 3229 key.objectid = bytenr; 3230 key.offset = (u64)-1; 3231 key.type = BTRFS_EXTENT_ITEM_KEY; 3232 3233 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3234 if (ret < 0) 3235 goto out; 3236 BUG_ON(ret == 0); /* Corruption */ 3237 3238 ret = -ENOENT; 3239 if (path->slots[0] == 0) 3240 goto out; 3241 3242 path->slots[0]--; 3243 leaf = path->nodes[0]; 3244 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3245 3246 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3247 goto out; 3248 3249 ret = 1; 3250 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3251 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3252 if (item_size < sizeof(*ei)) { 3253 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3254 goto out; 3255 } 3256 #endif 3257 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3258 3259 if (item_size != sizeof(*ei) + 3260 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3261 goto out; 3262 3263 if (btrfs_extent_generation(leaf, ei) <= 3264 btrfs_root_last_snapshot(&root->root_item)) 3265 goto out; 3266 3267 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3268 3269 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3270 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3271 goto out; 3272 3273 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3274 if (btrfs_extent_refs(leaf, ei) != 3275 btrfs_extent_data_ref_count(leaf, ref) || 3276 btrfs_extent_data_ref_root(leaf, ref) != 3277 root->root_key.objectid || 3278 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3279 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3280 goto out; 3281 3282 ret = 0; 3283 out: 3284 return ret; 3285 } 3286 3287 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3288 u64 bytenr) 3289 { 3290 struct btrfs_path *path; 3291 int ret; 3292 int ret2; 3293 3294 path = btrfs_alloc_path(); 3295 if (!path) 3296 return -ENOENT; 3297 3298 do { 3299 ret = check_committed_ref(root, path, objectid, 3300 offset, bytenr); 3301 if (ret && ret != -ENOENT) 3302 goto out; 3303 3304 ret2 = check_delayed_ref(root, path, objectid, 3305 offset, bytenr); 3306 } while (ret2 == -EAGAIN); 3307 3308 if (ret2 && ret2 != -ENOENT) { 3309 ret = ret2; 3310 goto out; 3311 } 3312 3313 if (ret != -ENOENT || ret2 != -ENOENT) 3314 ret = 0; 3315 out: 3316 btrfs_free_path(path); 3317 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3318 WARN_ON(ret > 0); 3319 return ret; 3320 } 3321 3322 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3323 struct btrfs_root *root, 3324 struct extent_buffer *buf, 3325 int full_backref, int inc) 3326 { 3327 struct btrfs_fs_info *fs_info = root->fs_info; 3328 u64 bytenr; 3329 u64 num_bytes; 3330 u64 parent; 3331 u64 ref_root; 3332 u32 nritems; 3333 struct btrfs_key key; 3334 struct btrfs_file_extent_item *fi; 3335 int i; 3336 int level; 3337 int ret = 0; 3338 int (*process_func)(struct btrfs_trans_handle *, 3339 struct btrfs_root *, 3340 u64, u64, u64, u64, u64, u64); 3341 3342 3343 if (btrfs_is_testing(fs_info)) 3344 return 0; 3345 3346 ref_root = btrfs_header_owner(buf); 3347 nritems = btrfs_header_nritems(buf); 3348 level = btrfs_header_level(buf); 3349 3350 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3351 return 0; 3352 3353 if (inc) 3354 process_func = btrfs_inc_extent_ref; 3355 else 3356 process_func = btrfs_free_extent; 3357 3358 if (full_backref) 3359 parent = buf->start; 3360 else 3361 parent = 0; 3362 3363 for (i = 0; i < nritems; i++) { 3364 if (level == 0) { 3365 btrfs_item_key_to_cpu(buf, &key, i); 3366 if (key.type != BTRFS_EXTENT_DATA_KEY) 3367 continue; 3368 fi = btrfs_item_ptr(buf, i, 3369 struct btrfs_file_extent_item); 3370 if (btrfs_file_extent_type(buf, fi) == 3371 BTRFS_FILE_EXTENT_INLINE) 3372 continue; 3373 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3374 if (bytenr == 0) 3375 continue; 3376 3377 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3378 key.offset -= btrfs_file_extent_offset(buf, fi); 3379 ret = process_func(trans, root, bytenr, num_bytes, 3380 parent, ref_root, key.objectid, 3381 key.offset); 3382 if (ret) 3383 goto fail; 3384 } else { 3385 bytenr = btrfs_node_blockptr(buf, i); 3386 num_bytes = fs_info->nodesize; 3387 ret = process_func(trans, root, bytenr, num_bytes, 3388 parent, ref_root, level - 1, 0); 3389 if (ret) 3390 goto fail; 3391 } 3392 } 3393 return 0; 3394 fail: 3395 return ret; 3396 } 3397 3398 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3399 struct extent_buffer *buf, int full_backref) 3400 { 3401 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3402 } 3403 3404 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3405 struct extent_buffer *buf, int full_backref) 3406 { 3407 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3408 } 3409 3410 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3411 struct btrfs_fs_info *fs_info, 3412 struct btrfs_path *path, 3413 struct btrfs_block_group_cache *cache) 3414 { 3415 int ret; 3416 struct btrfs_root *extent_root = fs_info->extent_root; 3417 unsigned long bi; 3418 struct extent_buffer *leaf; 3419 3420 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3421 if (ret) { 3422 if (ret > 0) 3423 ret = -ENOENT; 3424 goto fail; 3425 } 3426 3427 leaf = path->nodes[0]; 3428 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3429 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3430 btrfs_mark_buffer_dirty(leaf); 3431 fail: 3432 btrfs_release_path(path); 3433 return ret; 3434 3435 } 3436 3437 static struct btrfs_block_group_cache * 3438 next_block_group(struct btrfs_fs_info *fs_info, 3439 struct btrfs_block_group_cache *cache) 3440 { 3441 struct rb_node *node; 3442 3443 spin_lock(&fs_info->block_group_cache_lock); 3444 3445 /* If our block group was removed, we need a full search. */ 3446 if (RB_EMPTY_NODE(&cache->cache_node)) { 3447 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3448 3449 spin_unlock(&fs_info->block_group_cache_lock); 3450 btrfs_put_block_group(cache); 3451 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3452 } 3453 node = rb_next(&cache->cache_node); 3454 btrfs_put_block_group(cache); 3455 if (node) { 3456 cache = rb_entry(node, struct btrfs_block_group_cache, 3457 cache_node); 3458 btrfs_get_block_group(cache); 3459 } else 3460 cache = NULL; 3461 spin_unlock(&fs_info->block_group_cache_lock); 3462 return cache; 3463 } 3464 3465 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3466 struct btrfs_trans_handle *trans, 3467 struct btrfs_path *path) 3468 { 3469 struct btrfs_fs_info *fs_info = block_group->fs_info; 3470 struct btrfs_root *root = fs_info->tree_root; 3471 struct inode *inode = NULL; 3472 struct extent_changeset *data_reserved = NULL; 3473 u64 alloc_hint = 0; 3474 int dcs = BTRFS_DC_ERROR; 3475 u64 num_pages = 0; 3476 int retries = 0; 3477 int ret = 0; 3478 3479 /* 3480 * If this block group is smaller than 100 megs don't bother caching the 3481 * block group. 3482 */ 3483 if (block_group->key.offset < (100 * SZ_1M)) { 3484 spin_lock(&block_group->lock); 3485 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3486 spin_unlock(&block_group->lock); 3487 return 0; 3488 } 3489 3490 if (trans->aborted) 3491 return 0; 3492 again: 3493 inode = lookup_free_space_inode(fs_info, block_group, path); 3494 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3495 ret = PTR_ERR(inode); 3496 btrfs_release_path(path); 3497 goto out; 3498 } 3499 3500 if (IS_ERR(inode)) { 3501 BUG_ON(retries); 3502 retries++; 3503 3504 if (block_group->ro) 3505 goto out_free; 3506 3507 ret = create_free_space_inode(fs_info, trans, block_group, 3508 path); 3509 if (ret) 3510 goto out_free; 3511 goto again; 3512 } 3513 3514 /* 3515 * We want to set the generation to 0, that way if anything goes wrong 3516 * from here on out we know not to trust this cache when we load up next 3517 * time. 3518 */ 3519 BTRFS_I(inode)->generation = 0; 3520 ret = btrfs_update_inode(trans, root, inode); 3521 if (ret) { 3522 /* 3523 * So theoretically we could recover from this, simply set the 3524 * super cache generation to 0 so we know to invalidate the 3525 * cache, but then we'd have to keep track of the block groups 3526 * that fail this way so we know we _have_ to reset this cache 3527 * before the next commit or risk reading stale cache. So to 3528 * limit our exposure to horrible edge cases lets just abort the 3529 * transaction, this only happens in really bad situations 3530 * anyway. 3531 */ 3532 btrfs_abort_transaction(trans, ret); 3533 goto out_put; 3534 } 3535 WARN_ON(ret); 3536 3537 /* We've already setup this transaction, go ahead and exit */ 3538 if (block_group->cache_generation == trans->transid && 3539 i_size_read(inode)) { 3540 dcs = BTRFS_DC_SETUP; 3541 goto out_put; 3542 } 3543 3544 if (i_size_read(inode) > 0) { 3545 ret = btrfs_check_trunc_cache_free_space(fs_info, 3546 &fs_info->global_block_rsv); 3547 if (ret) 3548 goto out_put; 3549 3550 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3551 if (ret) 3552 goto out_put; 3553 } 3554 3555 spin_lock(&block_group->lock); 3556 if (block_group->cached != BTRFS_CACHE_FINISHED || 3557 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3558 /* 3559 * don't bother trying to write stuff out _if_ 3560 * a) we're not cached, 3561 * b) we're with nospace_cache mount option, 3562 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3563 */ 3564 dcs = BTRFS_DC_WRITTEN; 3565 spin_unlock(&block_group->lock); 3566 goto out_put; 3567 } 3568 spin_unlock(&block_group->lock); 3569 3570 /* 3571 * We hit an ENOSPC when setting up the cache in this transaction, just 3572 * skip doing the setup, we've already cleared the cache so we're safe. 3573 */ 3574 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3575 ret = -ENOSPC; 3576 goto out_put; 3577 } 3578 3579 /* 3580 * Try to preallocate enough space based on how big the block group is. 3581 * Keep in mind this has to include any pinned space which could end up 3582 * taking up quite a bit since it's not folded into the other space 3583 * cache. 3584 */ 3585 num_pages = div_u64(block_group->key.offset, SZ_256M); 3586 if (!num_pages) 3587 num_pages = 1; 3588 3589 num_pages *= 16; 3590 num_pages *= PAGE_SIZE; 3591 3592 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3593 if (ret) 3594 goto out_put; 3595 3596 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3597 num_pages, num_pages, 3598 &alloc_hint); 3599 /* 3600 * Our cache requires contiguous chunks so that we don't modify a bunch 3601 * of metadata or split extents when writing the cache out, which means 3602 * we can enospc if we are heavily fragmented in addition to just normal 3603 * out of space conditions. So if we hit this just skip setting up any 3604 * other block groups for this transaction, maybe we'll unpin enough 3605 * space the next time around. 3606 */ 3607 if (!ret) 3608 dcs = BTRFS_DC_SETUP; 3609 else if (ret == -ENOSPC) 3610 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3611 3612 out_put: 3613 iput(inode); 3614 out_free: 3615 btrfs_release_path(path); 3616 out: 3617 spin_lock(&block_group->lock); 3618 if (!ret && dcs == BTRFS_DC_SETUP) 3619 block_group->cache_generation = trans->transid; 3620 block_group->disk_cache_state = dcs; 3621 spin_unlock(&block_group->lock); 3622 3623 extent_changeset_free(data_reserved); 3624 return ret; 3625 } 3626 3627 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3628 struct btrfs_fs_info *fs_info) 3629 { 3630 struct btrfs_block_group_cache *cache, *tmp; 3631 struct btrfs_transaction *cur_trans = trans->transaction; 3632 struct btrfs_path *path; 3633 3634 if (list_empty(&cur_trans->dirty_bgs) || 3635 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3636 return 0; 3637 3638 path = btrfs_alloc_path(); 3639 if (!path) 3640 return -ENOMEM; 3641 3642 /* Could add new block groups, use _safe just in case */ 3643 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3644 dirty_list) { 3645 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3646 cache_save_setup(cache, trans, path); 3647 } 3648 3649 btrfs_free_path(path); 3650 return 0; 3651 } 3652 3653 /* 3654 * transaction commit does final block group cache writeback during a 3655 * critical section where nothing is allowed to change the FS. This is 3656 * required in order for the cache to actually match the block group, 3657 * but can introduce a lot of latency into the commit. 3658 * 3659 * So, btrfs_start_dirty_block_groups is here to kick off block group 3660 * cache IO. There's a chance we'll have to redo some of it if the 3661 * block group changes again during the commit, but it greatly reduces 3662 * the commit latency by getting rid of the easy block groups while 3663 * we're still allowing others to join the commit. 3664 */ 3665 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) 3666 { 3667 struct btrfs_fs_info *fs_info = trans->fs_info; 3668 struct btrfs_block_group_cache *cache; 3669 struct btrfs_transaction *cur_trans = trans->transaction; 3670 int ret = 0; 3671 int should_put; 3672 struct btrfs_path *path = NULL; 3673 LIST_HEAD(dirty); 3674 struct list_head *io = &cur_trans->io_bgs; 3675 int num_started = 0; 3676 int loops = 0; 3677 3678 spin_lock(&cur_trans->dirty_bgs_lock); 3679 if (list_empty(&cur_trans->dirty_bgs)) { 3680 spin_unlock(&cur_trans->dirty_bgs_lock); 3681 return 0; 3682 } 3683 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3684 spin_unlock(&cur_trans->dirty_bgs_lock); 3685 3686 again: 3687 /* 3688 * make sure all the block groups on our dirty list actually 3689 * exist 3690 */ 3691 btrfs_create_pending_block_groups(trans); 3692 3693 if (!path) { 3694 path = btrfs_alloc_path(); 3695 if (!path) 3696 return -ENOMEM; 3697 } 3698 3699 /* 3700 * cache_write_mutex is here only to save us from balance or automatic 3701 * removal of empty block groups deleting this block group while we are 3702 * writing out the cache 3703 */ 3704 mutex_lock(&trans->transaction->cache_write_mutex); 3705 while (!list_empty(&dirty)) { 3706 cache = list_first_entry(&dirty, 3707 struct btrfs_block_group_cache, 3708 dirty_list); 3709 /* 3710 * this can happen if something re-dirties a block 3711 * group that is already under IO. Just wait for it to 3712 * finish and then do it all again 3713 */ 3714 if (!list_empty(&cache->io_list)) { 3715 list_del_init(&cache->io_list); 3716 btrfs_wait_cache_io(trans, cache, path); 3717 btrfs_put_block_group(cache); 3718 } 3719 3720 3721 /* 3722 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3723 * if it should update the cache_state. Don't delete 3724 * until after we wait. 3725 * 3726 * Since we're not running in the commit critical section 3727 * we need the dirty_bgs_lock to protect from update_block_group 3728 */ 3729 spin_lock(&cur_trans->dirty_bgs_lock); 3730 list_del_init(&cache->dirty_list); 3731 spin_unlock(&cur_trans->dirty_bgs_lock); 3732 3733 should_put = 1; 3734 3735 cache_save_setup(cache, trans, path); 3736 3737 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3738 cache->io_ctl.inode = NULL; 3739 ret = btrfs_write_out_cache(fs_info, trans, 3740 cache, path); 3741 if (ret == 0 && cache->io_ctl.inode) { 3742 num_started++; 3743 should_put = 0; 3744 3745 /* 3746 * The cache_write_mutex is protecting the 3747 * io_list, also refer to the definition of 3748 * btrfs_transaction::io_bgs for more details 3749 */ 3750 list_add_tail(&cache->io_list, io); 3751 } else { 3752 /* 3753 * if we failed to write the cache, the 3754 * generation will be bad and life goes on 3755 */ 3756 ret = 0; 3757 } 3758 } 3759 if (!ret) { 3760 ret = write_one_cache_group(trans, fs_info, 3761 path, cache); 3762 /* 3763 * Our block group might still be attached to the list 3764 * of new block groups in the transaction handle of some 3765 * other task (struct btrfs_trans_handle->new_bgs). This 3766 * means its block group item isn't yet in the extent 3767 * tree. If this happens ignore the error, as we will 3768 * try again later in the critical section of the 3769 * transaction commit. 3770 */ 3771 if (ret == -ENOENT) { 3772 ret = 0; 3773 spin_lock(&cur_trans->dirty_bgs_lock); 3774 if (list_empty(&cache->dirty_list)) { 3775 list_add_tail(&cache->dirty_list, 3776 &cur_trans->dirty_bgs); 3777 btrfs_get_block_group(cache); 3778 } 3779 spin_unlock(&cur_trans->dirty_bgs_lock); 3780 } else if (ret) { 3781 btrfs_abort_transaction(trans, ret); 3782 } 3783 } 3784 3785 /* if its not on the io list, we need to put the block group */ 3786 if (should_put) 3787 btrfs_put_block_group(cache); 3788 3789 if (ret) 3790 break; 3791 3792 /* 3793 * Avoid blocking other tasks for too long. It might even save 3794 * us from writing caches for block groups that are going to be 3795 * removed. 3796 */ 3797 mutex_unlock(&trans->transaction->cache_write_mutex); 3798 mutex_lock(&trans->transaction->cache_write_mutex); 3799 } 3800 mutex_unlock(&trans->transaction->cache_write_mutex); 3801 3802 /* 3803 * go through delayed refs for all the stuff we've just kicked off 3804 * and then loop back (just once) 3805 */ 3806 ret = btrfs_run_delayed_refs(trans, 0); 3807 if (!ret && loops == 0) { 3808 loops++; 3809 spin_lock(&cur_trans->dirty_bgs_lock); 3810 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3811 /* 3812 * dirty_bgs_lock protects us from concurrent block group 3813 * deletes too (not just cache_write_mutex). 3814 */ 3815 if (!list_empty(&dirty)) { 3816 spin_unlock(&cur_trans->dirty_bgs_lock); 3817 goto again; 3818 } 3819 spin_unlock(&cur_trans->dirty_bgs_lock); 3820 } else if (ret < 0) { 3821 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3822 } 3823 3824 btrfs_free_path(path); 3825 return ret; 3826 } 3827 3828 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3829 struct btrfs_fs_info *fs_info) 3830 { 3831 struct btrfs_block_group_cache *cache; 3832 struct btrfs_transaction *cur_trans = trans->transaction; 3833 int ret = 0; 3834 int should_put; 3835 struct btrfs_path *path; 3836 struct list_head *io = &cur_trans->io_bgs; 3837 int num_started = 0; 3838 3839 path = btrfs_alloc_path(); 3840 if (!path) 3841 return -ENOMEM; 3842 3843 /* 3844 * Even though we are in the critical section of the transaction commit, 3845 * we can still have concurrent tasks adding elements to this 3846 * transaction's list of dirty block groups. These tasks correspond to 3847 * endio free space workers started when writeback finishes for a 3848 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3849 * allocate new block groups as a result of COWing nodes of the root 3850 * tree when updating the free space inode. The writeback for the space 3851 * caches is triggered by an earlier call to 3852 * btrfs_start_dirty_block_groups() and iterations of the following 3853 * loop. 3854 * Also we want to do the cache_save_setup first and then run the 3855 * delayed refs to make sure we have the best chance at doing this all 3856 * in one shot. 3857 */ 3858 spin_lock(&cur_trans->dirty_bgs_lock); 3859 while (!list_empty(&cur_trans->dirty_bgs)) { 3860 cache = list_first_entry(&cur_trans->dirty_bgs, 3861 struct btrfs_block_group_cache, 3862 dirty_list); 3863 3864 /* 3865 * this can happen if cache_save_setup re-dirties a block 3866 * group that is already under IO. Just wait for it to 3867 * finish and then do it all again 3868 */ 3869 if (!list_empty(&cache->io_list)) { 3870 spin_unlock(&cur_trans->dirty_bgs_lock); 3871 list_del_init(&cache->io_list); 3872 btrfs_wait_cache_io(trans, cache, path); 3873 btrfs_put_block_group(cache); 3874 spin_lock(&cur_trans->dirty_bgs_lock); 3875 } 3876 3877 /* 3878 * don't remove from the dirty list until after we've waited 3879 * on any pending IO 3880 */ 3881 list_del_init(&cache->dirty_list); 3882 spin_unlock(&cur_trans->dirty_bgs_lock); 3883 should_put = 1; 3884 3885 cache_save_setup(cache, trans, path); 3886 3887 if (!ret) 3888 ret = btrfs_run_delayed_refs(trans, 3889 (unsigned long) -1); 3890 3891 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3892 cache->io_ctl.inode = NULL; 3893 ret = btrfs_write_out_cache(fs_info, trans, 3894 cache, path); 3895 if (ret == 0 && cache->io_ctl.inode) { 3896 num_started++; 3897 should_put = 0; 3898 list_add_tail(&cache->io_list, io); 3899 } else { 3900 /* 3901 * if we failed to write the cache, the 3902 * generation will be bad and life goes on 3903 */ 3904 ret = 0; 3905 } 3906 } 3907 if (!ret) { 3908 ret = write_one_cache_group(trans, fs_info, 3909 path, cache); 3910 /* 3911 * One of the free space endio workers might have 3912 * created a new block group while updating a free space 3913 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3914 * and hasn't released its transaction handle yet, in 3915 * which case the new block group is still attached to 3916 * its transaction handle and its creation has not 3917 * finished yet (no block group item in the extent tree 3918 * yet, etc). If this is the case, wait for all free 3919 * space endio workers to finish and retry. This is a 3920 * a very rare case so no need for a more efficient and 3921 * complex approach. 3922 */ 3923 if (ret == -ENOENT) { 3924 wait_event(cur_trans->writer_wait, 3925 atomic_read(&cur_trans->num_writers) == 1); 3926 ret = write_one_cache_group(trans, fs_info, 3927 path, cache); 3928 } 3929 if (ret) 3930 btrfs_abort_transaction(trans, ret); 3931 } 3932 3933 /* if its not on the io list, we need to put the block group */ 3934 if (should_put) 3935 btrfs_put_block_group(cache); 3936 spin_lock(&cur_trans->dirty_bgs_lock); 3937 } 3938 spin_unlock(&cur_trans->dirty_bgs_lock); 3939 3940 /* 3941 * Refer to the definition of io_bgs member for details why it's safe 3942 * to use it without any locking 3943 */ 3944 while (!list_empty(io)) { 3945 cache = list_first_entry(io, struct btrfs_block_group_cache, 3946 io_list); 3947 list_del_init(&cache->io_list); 3948 btrfs_wait_cache_io(trans, cache, path); 3949 btrfs_put_block_group(cache); 3950 } 3951 3952 btrfs_free_path(path); 3953 return ret; 3954 } 3955 3956 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3957 { 3958 struct btrfs_block_group_cache *block_group; 3959 int readonly = 0; 3960 3961 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3962 if (!block_group || block_group->ro) 3963 readonly = 1; 3964 if (block_group) 3965 btrfs_put_block_group(block_group); 3966 return readonly; 3967 } 3968 3969 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3970 { 3971 struct btrfs_block_group_cache *bg; 3972 bool ret = true; 3973 3974 bg = btrfs_lookup_block_group(fs_info, bytenr); 3975 if (!bg) 3976 return false; 3977 3978 spin_lock(&bg->lock); 3979 if (bg->ro) 3980 ret = false; 3981 else 3982 atomic_inc(&bg->nocow_writers); 3983 spin_unlock(&bg->lock); 3984 3985 /* no put on block group, done by btrfs_dec_nocow_writers */ 3986 if (!ret) 3987 btrfs_put_block_group(bg); 3988 3989 return ret; 3990 3991 } 3992 3993 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3994 { 3995 struct btrfs_block_group_cache *bg; 3996 3997 bg = btrfs_lookup_block_group(fs_info, bytenr); 3998 ASSERT(bg); 3999 if (atomic_dec_and_test(&bg->nocow_writers)) 4000 wake_up_var(&bg->nocow_writers); 4001 /* 4002 * Once for our lookup and once for the lookup done by a previous call 4003 * to btrfs_inc_nocow_writers() 4004 */ 4005 btrfs_put_block_group(bg); 4006 btrfs_put_block_group(bg); 4007 } 4008 4009 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 4010 { 4011 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 4012 } 4013 4014 static const char *alloc_name(u64 flags) 4015 { 4016 switch (flags) { 4017 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 4018 return "mixed"; 4019 case BTRFS_BLOCK_GROUP_METADATA: 4020 return "metadata"; 4021 case BTRFS_BLOCK_GROUP_DATA: 4022 return "data"; 4023 case BTRFS_BLOCK_GROUP_SYSTEM: 4024 return "system"; 4025 default: 4026 WARN_ON(1); 4027 return "invalid-combination"; 4028 }; 4029 } 4030 4031 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 4032 struct btrfs_space_info **new) 4033 { 4034 4035 struct btrfs_space_info *space_info; 4036 int i; 4037 int ret; 4038 4039 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4040 if (!space_info) 4041 return -ENOMEM; 4042 4043 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4044 GFP_KERNEL); 4045 if (ret) { 4046 kfree(space_info); 4047 return ret; 4048 } 4049 4050 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4051 INIT_LIST_HEAD(&space_info->block_groups[i]); 4052 init_rwsem(&space_info->groups_sem); 4053 spin_lock_init(&space_info->lock); 4054 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4055 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4056 init_waitqueue_head(&space_info->wait); 4057 INIT_LIST_HEAD(&space_info->ro_bgs); 4058 INIT_LIST_HEAD(&space_info->tickets); 4059 INIT_LIST_HEAD(&space_info->priority_tickets); 4060 4061 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4062 info->space_info_kobj, "%s", 4063 alloc_name(space_info->flags)); 4064 if (ret) { 4065 percpu_counter_destroy(&space_info->total_bytes_pinned); 4066 kfree(space_info); 4067 return ret; 4068 } 4069 4070 *new = space_info; 4071 list_add_rcu(&space_info->list, &info->space_info); 4072 if (flags & BTRFS_BLOCK_GROUP_DATA) 4073 info->data_sinfo = space_info; 4074 4075 return ret; 4076 } 4077 4078 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4079 u64 total_bytes, u64 bytes_used, 4080 u64 bytes_readonly, 4081 struct btrfs_space_info **space_info) 4082 { 4083 struct btrfs_space_info *found; 4084 int factor; 4085 4086 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4087 BTRFS_BLOCK_GROUP_RAID10)) 4088 factor = 2; 4089 else 4090 factor = 1; 4091 4092 found = __find_space_info(info, flags); 4093 ASSERT(found); 4094 spin_lock(&found->lock); 4095 found->total_bytes += total_bytes; 4096 found->disk_total += total_bytes * factor; 4097 found->bytes_used += bytes_used; 4098 found->disk_used += bytes_used * factor; 4099 found->bytes_readonly += bytes_readonly; 4100 if (total_bytes > 0) 4101 found->full = 0; 4102 space_info_add_new_bytes(info, found, total_bytes - 4103 bytes_used - bytes_readonly); 4104 spin_unlock(&found->lock); 4105 *space_info = found; 4106 } 4107 4108 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4109 { 4110 u64 extra_flags = chunk_to_extended(flags) & 4111 BTRFS_EXTENDED_PROFILE_MASK; 4112 4113 write_seqlock(&fs_info->profiles_lock); 4114 if (flags & BTRFS_BLOCK_GROUP_DATA) 4115 fs_info->avail_data_alloc_bits |= extra_flags; 4116 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4117 fs_info->avail_metadata_alloc_bits |= extra_flags; 4118 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4119 fs_info->avail_system_alloc_bits |= extra_flags; 4120 write_sequnlock(&fs_info->profiles_lock); 4121 } 4122 4123 /* 4124 * returns target flags in extended format or 0 if restripe for this 4125 * chunk_type is not in progress 4126 * 4127 * should be called with balance_lock held 4128 */ 4129 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4130 { 4131 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4132 u64 target = 0; 4133 4134 if (!bctl) 4135 return 0; 4136 4137 if (flags & BTRFS_BLOCK_GROUP_DATA && 4138 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4139 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4140 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4141 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4142 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4143 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4144 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4145 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4146 } 4147 4148 return target; 4149 } 4150 4151 /* 4152 * @flags: available profiles in extended format (see ctree.h) 4153 * 4154 * Returns reduced profile in chunk format. If profile changing is in 4155 * progress (either running or paused) picks the target profile (if it's 4156 * already available), otherwise falls back to plain reducing. 4157 */ 4158 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4159 { 4160 u64 num_devices = fs_info->fs_devices->rw_devices; 4161 u64 target; 4162 u64 raid_type; 4163 u64 allowed = 0; 4164 4165 /* 4166 * see if restripe for this chunk_type is in progress, if so 4167 * try to reduce to the target profile 4168 */ 4169 spin_lock(&fs_info->balance_lock); 4170 target = get_restripe_target(fs_info, flags); 4171 if (target) { 4172 /* pick target profile only if it's already available */ 4173 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4174 spin_unlock(&fs_info->balance_lock); 4175 return extended_to_chunk(target); 4176 } 4177 } 4178 spin_unlock(&fs_info->balance_lock); 4179 4180 /* First, mask out the RAID levels which aren't possible */ 4181 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4182 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4183 allowed |= btrfs_raid_array[raid_type].bg_flag; 4184 } 4185 allowed &= flags; 4186 4187 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4188 allowed = BTRFS_BLOCK_GROUP_RAID6; 4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4190 allowed = BTRFS_BLOCK_GROUP_RAID5; 4191 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4192 allowed = BTRFS_BLOCK_GROUP_RAID10; 4193 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4194 allowed = BTRFS_BLOCK_GROUP_RAID1; 4195 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4196 allowed = BTRFS_BLOCK_GROUP_RAID0; 4197 4198 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4199 4200 return extended_to_chunk(flags | allowed); 4201 } 4202 4203 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4204 { 4205 unsigned seq; 4206 u64 flags; 4207 4208 do { 4209 flags = orig_flags; 4210 seq = read_seqbegin(&fs_info->profiles_lock); 4211 4212 if (flags & BTRFS_BLOCK_GROUP_DATA) 4213 flags |= fs_info->avail_data_alloc_bits; 4214 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4215 flags |= fs_info->avail_system_alloc_bits; 4216 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4217 flags |= fs_info->avail_metadata_alloc_bits; 4218 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4219 4220 return btrfs_reduce_alloc_profile(fs_info, flags); 4221 } 4222 4223 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4224 { 4225 struct btrfs_fs_info *fs_info = root->fs_info; 4226 u64 flags; 4227 u64 ret; 4228 4229 if (data) 4230 flags = BTRFS_BLOCK_GROUP_DATA; 4231 else if (root == fs_info->chunk_root) 4232 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4233 else 4234 flags = BTRFS_BLOCK_GROUP_METADATA; 4235 4236 ret = get_alloc_profile(fs_info, flags); 4237 return ret; 4238 } 4239 4240 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4241 { 4242 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4243 } 4244 4245 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4246 { 4247 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4248 } 4249 4250 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4251 { 4252 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4253 } 4254 4255 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4256 bool may_use_included) 4257 { 4258 ASSERT(s_info); 4259 return s_info->bytes_used + s_info->bytes_reserved + 4260 s_info->bytes_pinned + s_info->bytes_readonly + 4261 (may_use_included ? s_info->bytes_may_use : 0); 4262 } 4263 4264 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4265 { 4266 struct btrfs_root *root = inode->root; 4267 struct btrfs_fs_info *fs_info = root->fs_info; 4268 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4269 u64 used; 4270 int ret = 0; 4271 int need_commit = 2; 4272 int have_pinned_space; 4273 4274 /* make sure bytes are sectorsize aligned */ 4275 bytes = ALIGN(bytes, fs_info->sectorsize); 4276 4277 if (btrfs_is_free_space_inode(inode)) { 4278 need_commit = 0; 4279 ASSERT(current->journal_info); 4280 } 4281 4282 again: 4283 /* make sure we have enough space to handle the data first */ 4284 spin_lock(&data_sinfo->lock); 4285 used = btrfs_space_info_used(data_sinfo, true); 4286 4287 if (used + bytes > data_sinfo->total_bytes) { 4288 struct btrfs_trans_handle *trans; 4289 4290 /* 4291 * if we don't have enough free bytes in this space then we need 4292 * to alloc a new chunk. 4293 */ 4294 if (!data_sinfo->full) { 4295 u64 alloc_target; 4296 4297 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4298 spin_unlock(&data_sinfo->lock); 4299 4300 alloc_target = btrfs_data_alloc_profile(fs_info); 4301 /* 4302 * It is ugly that we don't call nolock join 4303 * transaction for the free space inode case here. 4304 * But it is safe because we only do the data space 4305 * reservation for the free space cache in the 4306 * transaction context, the common join transaction 4307 * just increase the counter of the current transaction 4308 * handler, doesn't try to acquire the trans_lock of 4309 * the fs. 4310 */ 4311 trans = btrfs_join_transaction(root); 4312 if (IS_ERR(trans)) 4313 return PTR_ERR(trans); 4314 4315 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4316 CHUNK_ALLOC_NO_FORCE); 4317 btrfs_end_transaction(trans); 4318 if (ret < 0) { 4319 if (ret != -ENOSPC) 4320 return ret; 4321 else { 4322 have_pinned_space = 1; 4323 goto commit_trans; 4324 } 4325 } 4326 4327 goto again; 4328 } 4329 4330 /* 4331 * If we don't have enough pinned space to deal with this 4332 * allocation, and no removed chunk in current transaction, 4333 * don't bother committing the transaction. 4334 */ 4335 have_pinned_space = percpu_counter_compare( 4336 &data_sinfo->total_bytes_pinned, 4337 used + bytes - data_sinfo->total_bytes); 4338 spin_unlock(&data_sinfo->lock); 4339 4340 /* commit the current transaction and try again */ 4341 commit_trans: 4342 if (need_commit) { 4343 need_commit--; 4344 4345 if (need_commit > 0) { 4346 btrfs_start_delalloc_roots(fs_info, -1); 4347 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4348 (u64)-1); 4349 } 4350 4351 trans = btrfs_join_transaction(root); 4352 if (IS_ERR(trans)) 4353 return PTR_ERR(trans); 4354 if (have_pinned_space >= 0 || 4355 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4356 &trans->transaction->flags) || 4357 need_commit > 0) { 4358 ret = btrfs_commit_transaction(trans); 4359 if (ret) 4360 return ret; 4361 /* 4362 * The cleaner kthread might still be doing iput 4363 * operations. Wait for it to finish so that 4364 * more space is released. 4365 */ 4366 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4367 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4368 goto again; 4369 } else { 4370 btrfs_end_transaction(trans); 4371 } 4372 } 4373 4374 trace_btrfs_space_reservation(fs_info, 4375 "space_info:enospc", 4376 data_sinfo->flags, bytes, 1); 4377 return -ENOSPC; 4378 } 4379 data_sinfo->bytes_may_use += bytes; 4380 trace_btrfs_space_reservation(fs_info, "space_info", 4381 data_sinfo->flags, bytes, 1); 4382 spin_unlock(&data_sinfo->lock); 4383 4384 return ret; 4385 } 4386 4387 int btrfs_check_data_free_space(struct inode *inode, 4388 struct extent_changeset **reserved, u64 start, u64 len) 4389 { 4390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4391 int ret; 4392 4393 /* align the range */ 4394 len = round_up(start + len, fs_info->sectorsize) - 4395 round_down(start, fs_info->sectorsize); 4396 start = round_down(start, fs_info->sectorsize); 4397 4398 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4399 if (ret < 0) 4400 return ret; 4401 4402 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4403 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4404 if (ret < 0) 4405 btrfs_free_reserved_data_space_noquota(inode, start, len); 4406 else 4407 ret = 0; 4408 return ret; 4409 } 4410 4411 /* 4412 * Called if we need to clear a data reservation for this inode 4413 * Normally in a error case. 4414 * 4415 * This one will *NOT* use accurate qgroup reserved space API, just for case 4416 * which we can't sleep and is sure it won't affect qgroup reserved space. 4417 * Like clear_bit_hook(). 4418 */ 4419 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4420 u64 len) 4421 { 4422 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4423 struct btrfs_space_info *data_sinfo; 4424 4425 /* Make sure the range is aligned to sectorsize */ 4426 len = round_up(start + len, fs_info->sectorsize) - 4427 round_down(start, fs_info->sectorsize); 4428 start = round_down(start, fs_info->sectorsize); 4429 4430 data_sinfo = fs_info->data_sinfo; 4431 spin_lock(&data_sinfo->lock); 4432 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4433 data_sinfo->bytes_may_use = 0; 4434 else 4435 data_sinfo->bytes_may_use -= len; 4436 trace_btrfs_space_reservation(fs_info, "space_info", 4437 data_sinfo->flags, len, 0); 4438 spin_unlock(&data_sinfo->lock); 4439 } 4440 4441 /* 4442 * Called if we need to clear a data reservation for this inode 4443 * Normally in a error case. 4444 * 4445 * This one will handle the per-inode data rsv map for accurate reserved 4446 * space framework. 4447 */ 4448 void btrfs_free_reserved_data_space(struct inode *inode, 4449 struct extent_changeset *reserved, u64 start, u64 len) 4450 { 4451 struct btrfs_root *root = BTRFS_I(inode)->root; 4452 4453 /* Make sure the range is aligned to sectorsize */ 4454 len = round_up(start + len, root->fs_info->sectorsize) - 4455 round_down(start, root->fs_info->sectorsize); 4456 start = round_down(start, root->fs_info->sectorsize); 4457 4458 btrfs_free_reserved_data_space_noquota(inode, start, len); 4459 btrfs_qgroup_free_data(inode, reserved, start, len); 4460 } 4461 4462 static void force_metadata_allocation(struct btrfs_fs_info *info) 4463 { 4464 struct list_head *head = &info->space_info; 4465 struct btrfs_space_info *found; 4466 4467 rcu_read_lock(); 4468 list_for_each_entry_rcu(found, head, list) { 4469 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4470 found->force_alloc = CHUNK_ALLOC_FORCE; 4471 } 4472 rcu_read_unlock(); 4473 } 4474 4475 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4476 { 4477 return (global->size << 1); 4478 } 4479 4480 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4481 struct btrfs_space_info *sinfo, int force) 4482 { 4483 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4484 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4485 u64 thresh; 4486 4487 if (force == CHUNK_ALLOC_FORCE) 4488 return 1; 4489 4490 /* 4491 * We need to take into account the global rsv because for all intents 4492 * and purposes it's used space. Don't worry about locking the 4493 * global_rsv, it doesn't change except when the transaction commits. 4494 */ 4495 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4496 bytes_used += calc_global_rsv_need_space(global_rsv); 4497 4498 /* 4499 * in limited mode, we want to have some free space up to 4500 * about 1% of the FS size. 4501 */ 4502 if (force == CHUNK_ALLOC_LIMITED) { 4503 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4504 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4505 4506 if (sinfo->total_bytes - bytes_used < thresh) 4507 return 1; 4508 } 4509 4510 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4511 return 0; 4512 return 1; 4513 } 4514 4515 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4516 { 4517 u64 num_dev; 4518 4519 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4520 BTRFS_BLOCK_GROUP_RAID0 | 4521 BTRFS_BLOCK_GROUP_RAID5 | 4522 BTRFS_BLOCK_GROUP_RAID6)) 4523 num_dev = fs_info->fs_devices->rw_devices; 4524 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4525 num_dev = 2; 4526 else 4527 num_dev = 1; /* DUP or single */ 4528 4529 return num_dev; 4530 } 4531 4532 /* 4533 * If @is_allocation is true, reserve space in the system space info necessary 4534 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4535 * removing a chunk. 4536 */ 4537 void check_system_chunk(struct btrfs_trans_handle *trans, 4538 struct btrfs_fs_info *fs_info, u64 type) 4539 { 4540 struct btrfs_space_info *info; 4541 u64 left; 4542 u64 thresh; 4543 int ret = 0; 4544 u64 num_devs; 4545 4546 /* 4547 * Needed because we can end up allocating a system chunk and for an 4548 * atomic and race free space reservation in the chunk block reserve. 4549 */ 4550 lockdep_assert_held(&fs_info->chunk_mutex); 4551 4552 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4553 spin_lock(&info->lock); 4554 left = info->total_bytes - btrfs_space_info_used(info, true); 4555 spin_unlock(&info->lock); 4556 4557 num_devs = get_profile_num_devs(fs_info, type); 4558 4559 /* num_devs device items to update and 1 chunk item to add or remove */ 4560 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4561 btrfs_calc_trans_metadata_size(fs_info, 1); 4562 4563 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4564 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4565 left, thresh, type); 4566 dump_space_info(fs_info, info, 0, 0); 4567 } 4568 4569 if (left < thresh) { 4570 u64 flags = btrfs_system_alloc_profile(fs_info); 4571 4572 /* 4573 * Ignore failure to create system chunk. We might end up not 4574 * needing it, as we might not need to COW all nodes/leafs from 4575 * the paths we visit in the chunk tree (they were already COWed 4576 * or created in the current transaction for example). 4577 */ 4578 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4579 } 4580 4581 if (!ret) { 4582 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4583 &fs_info->chunk_block_rsv, 4584 thresh, BTRFS_RESERVE_NO_FLUSH); 4585 if (!ret) 4586 trans->chunk_bytes_reserved += thresh; 4587 } 4588 } 4589 4590 /* 4591 * If force is CHUNK_ALLOC_FORCE: 4592 * - return 1 if it successfully allocates a chunk, 4593 * - return errors including -ENOSPC otherwise. 4594 * If force is NOT CHUNK_ALLOC_FORCE: 4595 * - return 0 if it doesn't need to allocate a new chunk, 4596 * - return 1 if it successfully allocates a chunk, 4597 * - return errors including -ENOSPC otherwise. 4598 */ 4599 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4600 struct btrfs_fs_info *fs_info, u64 flags, int force) 4601 { 4602 struct btrfs_space_info *space_info; 4603 int wait_for_alloc = 0; 4604 int ret = 0; 4605 4606 /* Don't re-enter if we're already allocating a chunk */ 4607 if (trans->allocating_chunk) 4608 return -ENOSPC; 4609 4610 space_info = __find_space_info(fs_info, flags); 4611 ASSERT(space_info); 4612 4613 again: 4614 spin_lock(&space_info->lock); 4615 if (force < space_info->force_alloc) 4616 force = space_info->force_alloc; 4617 if (space_info->full) { 4618 if (should_alloc_chunk(fs_info, space_info, force)) 4619 ret = -ENOSPC; 4620 else 4621 ret = 0; 4622 spin_unlock(&space_info->lock); 4623 return ret; 4624 } 4625 4626 if (!should_alloc_chunk(fs_info, space_info, force)) { 4627 spin_unlock(&space_info->lock); 4628 return 0; 4629 } else if (space_info->chunk_alloc) { 4630 wait_for_alloc = 1; 4631 } else { 4632 space_info->chunk_alloc = 1; 4633 } 4634 4635 spin_unlock(&space_info->lock); 4636 4637 mutex_lock(&fs_info->chunk_mutex); 4638 4639 /* 4640 * The chunk_mutex is held throughout the entirety of a chunk 4641 * allocation, so once we've acquired the chunk_mutex we know that the 4642 * other guy is done and we need to recheck and see if we should 4643 * allocate. 4644 */ 4645 if (wait_for_alloc) { 4646 mutex_unlock(&fs_info->chunk_mutex); 4647 wait_for_alloc = 0; 4648 cond_resched(); 4649 goto again; 4650 } 4651 4652 trans->allocating_chunk = true; 4653 4654 /* 4655 * If we have mixed data/metadata chunks we want to make sure we keep 4656 * allocating mixed chunks instead of individual chunks. 4657 */ 4658 if (btrfs_mixed_space_info(space_info)) 4659 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4660 4661 /* 4662 * if we're doing a data chunk, go ahead and make sure that 4663 * we keep a reasonable number of metadata chunks allocated in the 4664 * FS as well. 4665 */ 4666 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4667 fs_info->data_chunk_allocations++; 4668 if (!(fs_info->data_chunk_allocations % 4669 fs_info->metadata_ratio)) 4670 force_metadata_allocation(fs_info); 4671 } 4672 4673 /* 4674 * Check if we have enough space in SYSTEM chunk because we may need 4675 * to update devices. 4676 */ 4677 check_system_chunk(trans, fs_info, flags); 4678 4679 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4680 trans->allocating_chunk = false; 4681 4682 spin_lock(&space_info->lock); 4683 if (ret < 0) { 4684 if (ret == -ENOSPC) 4685 space_info->full = 1; 4686 else 4687 goto out; 4688 } else { 4689 ret = 1; 4690 } 4691 4692 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4693 out: 4694 space_info->chunk_alloc = 0; 4695 spin_unlock(&space_info->lock); 4696 mutex_unlock(&fs_info->chunk_mutex); 4697 /* 4698 * When we allocate a new chunk we reserve space in the chunk block 4699 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4700 * add new nodes/leafs to it if we end up needing to do it when 4701 * inserting the chunk item and updating device items as part of the 4702 * second phase of chunk allocation, performed by 4703 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4704 * large number of new block groups to create in our transaction 4705 * handle's new_bgs list to avoid exhausting the chunk block reserve 4706 * in extreme cases - like having a single transaction create many new 4707 * block groups when starting to write out the free space caches of all 4708 * the block groups that were made dirty during the lifetime of the 4709 * transaction. 4710 */ 4711 if (trans->can_flush_pending_bgs && 4712 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4713 btrfs_create_pending_block_groups(trans); 4714 btrfs_trans_release_chunk_metadata(trans); 4715 } 4716 return ret; 4717 } 4718 4719 static int can_overcommit(struct btrfs_fs_info *fs_info, 4720 struct btrfs_space_info *space_info, u64 bytes, 4721 enum btrfs_reserve_flush_enum flush, 4722 bool system_chunk) 4723 { 4724 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4725 u64 profile; 4726 u64 space_size; 4727 u64 avail; 4728 u64 used; 4729 4730 /* Don't overcommit when in mixed mode. */ 4731 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4732 return 0; 4733 4734 if (system_chunk) 4735 profile = btrfs_system_alloc_profile(fs_info); 4736 else 4737 profile = btrfs_metadata_alloc_profile(fs_info); 4738 4739 used = btrfs_space_info_used(space_info, false); 4740 4741 /* 4742 * We only want to allow over committing if we have lots of actual space 4743 * free, but if we don't have enough space to handle the global reserve 4744 * space then we could end up having a real enospc problem when trying 4745 * to allocate a chunk or some other such important allocation. 4746 */ 4747 spin_lock(&global_rsv->lock); 4748 space_size = calc_global_rsv_need_space(global_rsv); 4749 spin_unlock(&global_rsv->lock); 4750 if (used + space_size >= space_info->total_bytes) 4751 return 0; 4752 4753 used += space_info->bytes_may_use; 4754 4755 avail = atomic64_read(&fs_info->free_chunk_space); 4756 4757 /* 4758 * If we have dup, raid1 or raid10 then only half of the free 4759 * space is actually useable. For raid56, the space info used 4760 * doesn't include the parity drive, so we don't have to 4761 * change the math 4762 */ 4763 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4764 BTRFS_BLOCK_GROUP_RAID1 | 4765 BTRFS_BLOCK_GROUP_RAID10)) 4766 avail >>= 1; 4767 4768 /* 4769 * If we aren't flushing all things, let us overcommit up to 4770 * 1/2th of the space. If we can flush, don't let us overcommit 4771 * too much, let it overcommit up to 1/8 of the space. 4772 */ 4773 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4774 avail >>= 3; 4775 else 4776 avail >>= 1; 4777 4778 if (used + bytes < space_info->total_bytes + avail) 4779 return 1; 4780 return 0; 4781 } 4782 4783 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4784 unsigned long nr_pages, int nr_items) 4785 { 4786 struct super_block *sb = fs_info->sb; 4787 4788 if (down_read_trylock(&sb->s_umount)) { 4789 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4790 up_read(&sb->s_umount); 4791 } else { 4792 /* 4793 * We needn't worry the filesystem going from r/w to r/o though 4794 * we don't acquire ->s_umount mutex, because the filesystem 4795 * should guarantee the delalloc inodes list be empty after 4796 * the filesystem is readonly(all dirty pages are written to 4797 * the disk). 4798 */ 4799 btrfs_start_delalloc_roots(fs_info, nr_items); 4800 if (!current->journal_info) 4801 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4802 } 4803 } 4804 4805 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4806 u64 to_reclaim) 4807 { 4808 u64 bytes; 4809 u64 nr; 4810 4811 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4812 nr = div64_u64(to_reclaim, bytes); 4813 if (!nr) 4814 nr = 1; 4815 return nr; 4816 } 4817 4818 #define EXTENT_SIZE_PER_ITEM SZ_256K 4819 4820 /* 4821 * shrink metadata reservation for delalloc 4822 */ 4823 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4824 u64 orig, bool wait_ordered) 4825 { 4826 struct btrfs_space_info *space_info; 4827 struct btrfs_trans_handle *trans; 4828 u64 delalloc_bytes; 4829 u64 max_reclaim; 4830 u64 items; 4831 long time_left; 4832 unsigned long nr_pages; 4833 int loops; 4834 4835 /* Calc the number of the pages we need flush for space reservation */ 4836 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4837 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4838 4839 trans = (struct btrfs_trans_handle *)current->journal_info; 4840 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4841 4842 delalloc_bytes = percpu_counter_sum_positive( 4843 &fs_info->delalloc_bytes); 4844 if (delalloc_bytes == 0) { 4845 if (trans) 4846 return; 4847 if (wait_ordered) 4848 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4849 return; 4850 } 4851 4852 loops = 0; 4853 while (delalloc_bytes && loops < 3) { 4854 max_reclaim = min(delalloc_bytes, to_reclaim); 4855 nr_pages = max_reclaim >> PAGE_SHIFT; 4856 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4857 /* 4858 * We need to wait for the async pages to actually start before 4859 * we do anything. 4860 */ 4861 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4862 if (!max_reclaim) 4863 goto skip_async; 4864 4865 if (max_reclaim <= nr_pages) 4866 max_reclaim = 0; 4867 else 4868 max_reclaim -= nr_pages; 4869 4870 wait_event(fs_info->async_submit_wait, 4871 atomic_read(&fs_info->async_delalloc_pages) <= 4872 (int)max_reclaim); 4873 skip_async: 4874 spin_lock(&space_info->lock); 4875 if (list_empty(&space_info->tickets) && 4876 list_empty(&space_info->priority_tickets)) { 4877 spin_unlock(&space_info->lock); 4878 break; 4879 } 4880 spin_unlock(&space_info->lock); 4881 4882 loops++; 4883 if (wait_ordered && !trans) { 4884 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4885 } else { 4886 time_left = schedule_timeout_killable(1); 4887 if (time_left) 4888 break; 4889 } 4890 delalloc_bytes = percpu_counter_sum_positive( 4891 &fs_info->delalloc_bytes); 4892 } 4893 } 4894 4895 struct reserve_ticket { 4896 u64 bytes; 4897 int error; 4898 struct list_head list; 4899 wait_queue_head_t wait; 4900 }; 4901 4902 /** 4903 * maybe_commit_transaction - possibly commit the transaction if its ok to 4904 * @root - the root we're allocating for 4905 * @bytes - the number of bytes we want to reserve 4906 * @force - force the commit 4907 * 4908 * This will check to make sure that committing the transaction will actually 4909 * get us somewhere and then commit the transaction if it does. Otherwise it 4910 * will return -ENOSPC. 4911 */ 4912 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4913 struct btrfs_space_info *space_info) 4914 { 4915 struct reserve_ticket *ticket = NULL; 4916 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4917 struct btrfs_trans_handle *trans; 4918 u64 bytes; 4919 4920 trans = (struct btrfs_trans_handle *)current->journal_info; 4921 if (trans) 4922 return -EAGAIN; 4923 4924 spin_lock(&space_info->lock); 4925 if (!list_empty(&space_info->priority_tickets)) 4926 ticket = list_first_entry(&space_info->priority_tickets, 4927 struct reserve_ticket, list); 4928 else if (!list_empty(&space_info->tickets)) 4929 ticket = list_first_entry(&space_info->tickets, 4930 struct reserve_ticket, list); 4931 bytes = (ticket) ? ticket->bytes : 0; 4932 spin_unlock(&space_info->lock); 4933 4934 if (!bytes) 4935 return 0; 4936 4937 /* See if there is enough pinned space to make this reservation */ 4938 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4939 bytes) >= 0) 4940 goto commit; 4941 4942 /* 4943 * See if there is some space in the delayed insertion reservation for 4944 * this reservation. 4945 */ 4946 if (space_info != delayed_rsv->space_info) 4947 return -ENOSPC; 4948 4949 spin_lock(&delayed_rsv->lock); 4950 if (delayed_rsv->size > bytes) 4951 bytes = 0; 4952 else 4953 bytes -= delayed_rsv->size; 4954 spin_unlock(&delayed_rsv->lock); 4955 4956 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4957 bytes) < 0) { 4958 return -ENOSPC; 4959 } 4960 4961 commit: 4962 trans = btrfs_join_transaction(fs_info->extent_root); 4963 if (IS_ERR(trans)) 4964 return -ENOSPC; 4965 4966 return btrfs_commit_transaction(trans); 4967 } 4968 4969 /* 4970 * Try to flush some data based on policy set by @state. This is only advisory 4971 * and may fail for various reasons. The caller is supposed to examine the 4972 * state of @space_info to detect the outcome. 4973 */ 4974 static void flush_space(struct btrfs_fs_info *fs_info, 4975 struct btrfs_space_info *space_info, u64 num_bytes, 4976 int state) 4977 { 4978 struct btrfs_root *root = fs_info->extent_root; 4979 struct btrfs_trans_handle *trans; 4980 int nr; 4981 int ret = 0; 4982 4983 switch (state) { 4984 case FLUSH_DELAYED_ITEMS_NR: 4985 case FLUSH_DELAYED_ITEMS: 4986 if (state == FLUSH_DELAYED_ITEMS_NR) 4987 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4988 else 4989 nr = -1; 4990 4991 trans = btrfs_join_transaction(root); 4992 if (IS_ERR(trans)) { 4993 ret = PTR_ERR(trans); 4994 break; 4995 } 4996 ret = btrfs_run_delayed_items_nr(trans, nr); 4997 btrfs_end_transaction(trans); 4998 break; 4999 case FLUSH_DELALLOC: 5000 case FLUSH_DELALLOC_WAIT: 5001 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 5002 state == FLUSH_DELALLOC_WAIT); 5003 break; 5004 case ALLOC_CHUNK: 5005 trans = btrfs_join_transaction(root); 5006 if (IS_ERR(trans)) { 5007 ret = PTR_ERR(trans); 5008 break; 5009 } 5010 ret = do_chunk_alloc(trans, fs_info, 5011 btrfs_metadata_alloc_profile(fs_info), 5012 CHUNK_ALLOC_NO_FORCE); 5013 btrfs_end_transaction(trans); 5014 if (ret > 0 || ret == -ENOSPC) 5015 ret = 0; 5016 break; 5017 case COMMIT_TRANS: 5018 ret = may_commit_transaction(fs_info, space_info); 5019 break; 5020 default: 5021 ret = -ENOSPC; 5022 break; 5023 } 5024 5025 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5026 ret); 5027 return; 5028 } 5029 5030 static inline u64 5031 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5032 struct btrfs_space_info *space_info, 5033 bool system_chunk) 5034 { 5035 struct reserve_ticket *ticket; 5036 u64 used; 5037 u64 expected; 5038 u64 to_reclaim = 0; 5039 5040 list_for_each_entry(ticket, &space_info->tickets, list) 5041 to_reclaim += ticket->bytes; 5042 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5043 to_reclaim += ticket->bytes; 5044 if (to_reclaim) 5045 return to_reclaim; 5046 5047 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5048 if (can_overcommit(fs_info, space_info, to_reclaim, 5049 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5050 return 0; 5051 5052 used = btrfs_space_info_used(space_info, true); 5053 5054 if (can_overcommit(fs_info, space_info, SZ_1M, 5055 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5056 expected = div_factor_fine(space_info->total_bytes, 95); 5057 else 5058 expected = div_factor_fine(space_info->total_bytes, 90); 5059 5060 if (used > expected) 5061 to_reclaim = used - expected; 5062 else 5063 to_reclaim = 0; 5064 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5065 space_info->bytes_reserved); 5066 return to_reclaim; 5067 } 5068 5069 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5070 struct btrfs_space_info *space_info, 5071 u64 used, bool system_chunk) 5072 { 5073 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5074 5075 /* If we're just plain full then async reclaim just slows us down. */ 5076 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5077 return 0; 5078 5079 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5080 system_chunk)) 5081 return 0; 5082 5083 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5084 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5085 } 5086 5087 static void wake_all_tickets(struct list_head *head) 5088 { 5089 struct reserve_ticket *ticket; 5090 5091 while (!list_empty(head)) { 5092 ticket = list_first_entry(head, struct reserve_ticket, list); 5093 list_del_init(&ticket->list); 5094 ticket->error = -ENOSPC; 5095 wake_up(&ticket->wait); 5096 } 5097 } 5098 5099 /* 5100 * This is for normal flushers, we can wait all goddamned day if we want to. We 5101 * will loop and continuously try to flush as long as we are making progress. 5102 * We count progress as clearing off tickets each time we have to loop. 5103 */ 5104 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5105 { 5106 struct btrfs_fs_info *fs_info; 5107 struct btrfs_space_info *space_info; 5108 u64 to_reclaim; 5109 int flush_state; 5110 int commit_cycles = 0; 5111 u64 last_tickets_id; 5112 5113 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5114 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5115 5116 spin_lock(&space_info->lock); 5117 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5118 false); 5119 if (!to_reclaim) { 5120 space_info->flush = 0; 5121 spin_unlock(&space_info->lock); 5122 return; 5123 } 5124 last_tickets_id = space_info->tickets_id; 5125 spin_unlock(&space_info->lock); 5126 5127 flush_state = FLUSH_DELAYED_ITEMS_NR; 5128 do { 5129 flush_space(fs_info, space_info, to_reclaim, flush_state); 5130 spin_lock(&space_info->lock); 5131 if (list_empty(&space_info->tickets)) { 5132 space_info->flush = 0; 5133 spin_unlock(&space_info->lock); 5134 return; 5135 } 5136 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5137 space_info, 5138 false); 5139 if (last_tickets_id == space_info->tickets_id) { 5140 flush_state++; 5141 } else { 5142 last_tickets_id = space_info->tickets_id; 5143 flush_state = FLUSH_DELAYED_ITEMS_NR; 5144 if (commit_cycles) 5145 commit_cycles--; 5146 } 5147 5148 if (flush_state > COMMIT_TRANS) { 5149 commit_cycles++; 5150 if (commit_cycles > 2) { 5151 wake_all_tickets(&space_info->tickets); 5152 space_info->flush = 0; 5153 } else { 5154 flush_state = FLUSH_DELAYED_ITEMS_NR; 5155 } 5156 } 5157 spin_unlock(&space_info->lock); 5158 } while (flush_state <= COMMIT_TRANS); 5159 } 5160 5161 void btrfs_init_async_reclaim_work(struct work_struct *work) 5162 { 5163 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5164 } 5165 5166 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5167 struct btrfs_space_info *space_info, 5168 struct reserve_ticket *ticket) 5169 { 5170 u64 to_reclaim; 5171 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5172 5173 spin_lock(&space_info->lock); 5174 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5175 false); 5176 if (!to_reclaim) { 5177 spin_unlock(&space_info->lock); 5178 return; 5179 } 5180 spin_unlock(&space_info->lock); 5181 5182 do { 5183 flush_space(fs_info, space_info, to_reclaim, flush_state); 5184 flush_state++; 5185 spin_lock(&space_info->lock); 5186 if (ticket->bytes == 0) { 5187 spin_unlock(&space_info->lock); 5188 return; 5189 } 5190 spin_unlock(&space_info->lock); 5191 5192 /* 5193 * Priority flushers can't wait on delalloc without 5194 * deadlocking. 5195 */ 5196 if (flush_state == FLUSH_DELALLOC || 5197 flush_state == FLUSH_DELALLOC_WAIT) 5198 flush_state = ALLOC_CHUNK; 5199 } while (flush_state < COMMIT_TRANS); 5200 } 5201 5202 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5203 struct btrfs_space_info *space_info, 5204 struct reserve_ticket *ticket, u64 orig_bytes) 5205 5206 { 5207 DEFINE_WAIT(wait); 5208 int ret = 0; 5209 5210 spin_lock(&space_info->lock); 5211 while (ticket->bytes > 0 && ticket->error == 0) { 5212 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5213 if (ret) { 5214 ret = -EINTR; 5215 break; 5216 } 5217 spin_unlock(&space_info->lock); 5218 5219 schedule(); 5220 5221 finish_wait(&ticket->wait, &wait); 5222 spin_lock(&space_info->lock); 5223 } 5224 if (!ret) 5225 ret = ticket->error; 5226 if (!list_empty(&ticket->list)) 5227 list_del_init(&ticket->list); 5228 if (ticket->bytes && ticket->bytes < orig_bytes) { 5229 u64 num_bytes = orig_bytes - ticket->bytes; 5230 space_info->bytes_may_use -= num_bytes; 5231 trace_btrfs_space_reservation(fs_info, "space_info", 5232 space_info->flags, num_bytes, 0); 5233 } 5234 spin_unlock(&space_info->lock); 5235 5236 return ret; 5237 } 5238 5239 /** 5240 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5241 * @root - the root we're allocating for 5242 * @space_info - the space info we want to allocate from 5243 * @orig_bytes - the number of bytes we want 5244 * @flush - whether or not we can flush to make our reservation 5245 * 5246 * This will reserve orig_bytes number of bytes from the space info associated 5247 * with the block_rsv. If there is not enough space it will make an attempt to 5248 * flush out space to make room. It will do this by flushing delalloc if 5249 * possible or committing the transaction. If flush is 0 then no attempts to 5250 * regain reservations will be made and this will fail if there is not enough 5251 * space already. 5252 */ 5253 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5254 struct btrfs_space_info *space_info, 5255 u64 orig_bytes, 5256 enum btrfs_reserve_flush_enum flush, 5257 bool system_chunk) 5258 { 5259 struct reserve_ticket ticket; 5260 u64 used; 5261 int ret = 0; 5262 5263 ASSERT(orig_bytes); 5264 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5265 5266 spin_lock(&space_info->lock); 5267 ret = -ENOSPC; 5268 used = btrfs_space_info_used(space_info, true); 5269 5270 /* 5271 * If we have enough space then hooray, make our reservation and carry 5272 * on. If not see if we can overcommit, and if we can, hooray carry on. 5273 * If not things get more complicated. 5274 */ 5275 if (used + orig_bytes <= space_info->total_bytes) { 5276 space_info->bytes_may_use += orig_bytes; 5277 trace_btrfs_space_reservation(fs_info, "space_info", 5278 space_info->flags, orig_bytes, 1); 5279 ret = 0; 5280 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5281 system_chunk)) { 5282 space_info->bytes_may_use += orig_bytes; 5283 trace_btrfs_space_reservation(fs_info, "space_info", 5284 space_info->flags, orig_bytes, 1); 5285 ret = 0; 5286 } 5287 5288 /* 5289 * If we couldn't make a reservation then setup our reservation ticket 5290 * and kick the async worker if it's not already running. 5291 * 5292 * If we are a priority flusher then we just need to add our ticket to 5293 * the list and we will do our own flushing further down. 5294 */ 5295 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5296 ticket.bytes = orig_bytes; 5297 ticket.error = 0; 5298 init_waitqueue_head(&ticket.wait); 5299 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5300 list_add_tail(&ticket.list, &space_info->tickets); 5301 if (!space_info->flush) { 5302 space_info->flush = 1; 5303 trace_btrfs_trigger_flush(fs_info, 5304 space_info->flags, 5305 orig_bytes, flush, 5306 "enospc"); 5307 queue_work(system_unbound_wq, 5308 &fs_info->async_reclaim_work); 5309 } 5310 } else { 5311 list_add_tail(&ticket.list, 5312 &space_info->priority_tickets); 5313 } 5314 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5315 used += orig_bytes; 5316 /* 5317 * We will do the space reservation dance during log replay, 5318 * which means we won't have fs_info->fs_root set, so don't do 5319 * the async reclaim as we will panic. 5320 */ 5321 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5322 need_do_async_reclaim(fs_info, space_info, 5323 used, system_chunk) && 5324 !work_busy(&fs_info->async_reclaim_work)) { 5325 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5326 orig_bytes, flush, "preempt"); 5327 queue_work(system_unbound_wq, 5328 &fs_info->async_reclaim_work); 5329 } 5330 } 5331 spin_unlock(&space_info->lock); 5332 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5333 return ret; 5334 5335 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5336 return wait_reserve_ticket(fs_info, space_info, &ticket, 5337 orig_bytes); 5338 5339 ret = 0; 5340 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5341 spin_lock(&space_info->lock); 5342 if (ticket.bytes) { 5343 if (ticket.bytes < orig_bytes) { 5344 u64 num_bytes = orig_bytes - ticket.bytes; 5345 space_info->bytes_may_use -= num_bytes; 5346 trace_btrfs_space_reservation(fs_info, "space_info", 5347 space_info->flags, 5348 num_bytes, 0); 5349 5350 } 5351 list_del_init(&ticket.list); 5352 ret = -ENOSPC; 5353 } 5354 spin_unlock(&space_info->lock); 5355 ASSERT(list_empty(&ticket.list)); 5356 return ret; 5357 } 5358 5359 /** 5360 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5361 * @root - the root we're allocating for 5362 * @block_rsv - the block_rsv we're allocating for 5363 * @orig_bytes - the number of bytes we want 5364 * @flush - whether or not we can flush to make our reservation 5365 * 5366 * This will reserve orgi_bytes number of bytes from the space info associated 5367 * with the block_rsv. If there is not enough space it will make an attempt to 5368 * flush out space to make room. It will do this by flushing delalloc if 5369 * possible or committing the transaction. If flush is 0 then no attempts to 5370 * regain reservations will be made and this will fail if there is not enough 5371 * space already. 5372 */ 5373 static int reserve_metadata_bytes(struct btrfs_root *root, 5374 struct btrfs_block_rsv *block_rsv, 5375 u64 orig_bytes, 5376 enum btrfs_reserve_flush_enum flush) 5377 { 5378 struct btrfs_fs_info *fs_info = root->fs_info; 5379 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5380 int ret; 5381 bool system_chunk = (root == fs_info->chunk_root); 5382 5383 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5384 orig_bytes, flush, system_chunk); 5385 if (ret == -ENOSPC && 5386 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5387 if (block_rsv != global_rsv && 5388 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5389 ret = 0; 5390 } 5391 if (ret == -ENOSPC) { 5392 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5393 block_rsv->space_info->flags, 5394 orig_bytes, 1); 5395 5396 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) 5397 dump_space_info(fs_info, block_rsv->space_info, 5398 orig_bytes, 0); 5399 } 5400 return ret; 5401 } 5402 5403 static struct btrfs_block_rsv *get_block_rsv( 5404 const struct btrfs_trans_handle *trans, 5405 const struct btrfs_root *root) 5406 { 5407 struct btrfs_fs_info *fs_info = root->fs_info; 5408 struct btrfs_block_rsv *block_rsv = NULL; 5409 5410 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5411 (root == fs_info->csum_root && trans->adding_csums) || 5412 (root == fs_info->uuid_root)) 5413 block_rsv = trans->block_rsv; 5414 5415 if (!block_rsv) 5416 block_rsv = root->block_rsv; 5417 5418 if (!block_rsv) 5419 block_rsv = &fs_info->empty_block_rsv; 5420 5421 return block_rsv; 5422 } 5423 5424 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5425 u64 num_bytes) 5426 { 5427 int ret = -ENOSPC; 5428 spin_lock(&block_rsv->lock); 5429 if (block_rsv->reserved >= num_bytes) { 5430 block_rsv->reserved -= num_bytes; 5431 if (block_rsv->reserved < block_rsv->size) 5432 block_rsv->full = 0; 5433 ret = 0; 5434 } 5435 spin_unlock(&block_rsv->lock); 5436 return ret; 5437 } 5438 5439 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5440 u64 num_bytes, int update_size) 5441 { 5442 spin_lock(&block_rsv->lock); 5443 block_rsv->reserved += num_bytes; 5444 if (update_size) 5445 block_rsv->size += num_bytes; 5446 else if (block_rsv->reserved >= block_rsv->size) 5447 block_rsv->full = 1; 5448 spin_unlock(&block_rsv->lock); 5449 } 5450 5451 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5452 struct btrfs_block_rsv *dest, u64 num_bytes, 5453 int min_factor) 5454 { 5455 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5456 u64 min_bytes; 5457 5458 if (global_rsv->space_info != dest->space_info) 5459 return -ENOSPC; 5460 5461 spin_lock(&global_rsv->lock); 5462 min_bytes = div_factor(global_rsv->size, min_factor); 5463 if (global_rsv->reserved < min_bytes + num_bytes) { 5464 spin_unlock(&global_rsv->lock); 5465 return -ENOSPC; 5466 } 5467 global_rsv->reserved -= num_bytes; 5468 if (global_rsv->reserved < global_rsv->size) 5469 global_rsv->full = 0; 5470 spin_unlock(&global_rsv->lock); 5471 5472 block_rsv_add_bytes(dest, num_bytes, 1); 5473 return 0; 5474 } 5475 5476 /* 5477 * This is for space we already have accounted in space_info->bytes_may_use, so 5478 * basically when we're returning space from block_rsv's. 5479 */ 5480 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5481 struct btrfs_space_info *space_info, 5482 u64 num_bytes) 5483 { 5484 struct reserve_ticket *ticket; 5485 struct list_head *head; 5486 u64 used; 5487 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5488 bool check_overcommit = false; 5489 5490 spin_lock(&space_info->lock); 5491 head = &space_info->priority_tickets; 5492 5493 /* 5494 * If we are over our limit then we need to check and see if we can 5495 * overcommit, and if we can't then we just need to free up our space 5496 * and not satisfy any requests. 5497 */ 5498 used = btrfs_space_info_used(space_info, true); 5499 if (used - num_bytes >= space_info->total_bytes) 5500 check_overcommit = true; 5501 again: 5502 while (!list_empty(head) && num_bytes) { 5503 ticket = list_first_entry(head, struct reserve_ticket, 5504 list); 5505 /* 5506 * We use 0 bytes because this space is already reserved, so 5507 * adding the ticket space would be a double count. 5508 */ 5509 if (check_overcommit && 5510 !can_overcommit(fs_info, space_info, 0, flush, false)) 5511 break; 5512 if (num_bytes >= ticket->bytes) { 5513 list_del_init(&ticket->list); 5514 num_bytes -= ticket->bytes; 5515 ticket->bytes = 0; 5516 space_info->tickets_id++; 5517 wake_up(&ticket->wait); 5518 } else { 5519 ticket->bytes -= num_bytes; 5520 num_bytes = 0; 5521 } 5522 } 5523 5524 if (num_bytes && head == &space_info->priority_tickets) { 5525 head = &space_info->tickets; 5526 flush = BTRFS_RESERVE_FLUSH_ALL; 5527 goto again; 5528 } 5529 space_info->bytes_may_use -= num_bytes; 5530 trace_btrfs_space_reservation(fs_info, "space_info", 5531 space_info->flags, num_bytes, 0); 5532 spin_unlock(&space_info->lock); 5533 } 5534 5535 /* 5536 * This is for newly allocated space that isn't accounted in 5537 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5538 * we use this helper. 5539 */ 5540 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5541 struct btrfs_space_info *space_info, 5542 u64 num_bytes) 5543 { 5544 struct reserve_ticket *ticket; 5545 struct list_head *head = &space_info->priority_tickets; 5546 5547 again: 5548 while (!list_empty(head) && num_bytes) { 5549 ticket = list_first_entry(head, struct reserve_ticket, 5550 list); 5551 if (num_bytes >= ticket->bytes) { 5552 trace_btrfs_space_reservation(fs_info, "space_info", 5553 space_info->flags, 5554 ticket->bytes, 1); 5555 list_del_init(&ticket->list); 5556 num_bytes -= ticket->bytes; 5557 space_info->bytes_may_use += ticket->bytes; 5558 ticket->bytes = 0; 5559 space_info->tickets_id++; 5560 wake_up(&ticket->wait); 5561 } else { 5562 trace_btrfs_space_reservation(fs_info, "space_info", 5563 space_info->flags, 5564 num_bytes, 1); 5565 space_info->bytes_may_use += num_bytes; 5566 ticket->bytes -= num_bytes; 5567 num_bytes = 0; 5568 } 5569 } 5570 5571 if (num_bytes && head == &space_info->priority_tickets) { 5572 head = &space_info->tickets; 5573 goto again; 5574 } 5575 } 5576 5577 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5578 struct btrfs_block_rsv *block_rsv, 5579 struct btrfs_block_rsv *dest, u64 num_bytes, 5580 u64 *qgroup_to_release_ret) 5581 { 5582 struct btrfs_space_info *space_info = block_rsv->space_info; 5583 u64 qgroup_to_release = 0; 5584 u64 ret; 5585 5586 spin_lock(&block_rsv->lock); 5587 if (num_bytes == (u64)-1) { 5588 num_bytes = block_rsv->size; 5589 qgroup_to_release = block_rsv->qgroup_rsv_size; 5590 } 5591 block_rsv->size -= num_bytes; 5592 if (block_rsv->reserved >= block_rsv->size) { 5593 num_bytes = block_rsv->reserved - block_rsv->size; 5594 block_rsv->reserved = block_rsv->size; 5595 block_rsv->full = 1; 5596 } else { 5597 num_bytes = 0; 5598 } 5599 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 5600 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 5601 block_rsv->qgroup_rsv_size; 5602 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 5603 } else { 5604 qgroup_to_release = 0; 5605 } 5606 spin_unlock(&block_rsv->lock); 5607 5608 ret = num_bytes; 5609 if (num_bytes > 0) { 5610 if (dest) { 5611 spin_lock(&dest->lock); 5612 if (!dest->full) { 5613 u64 bytes_to_add; 5614 5615 bytes_to_add = dest->size - dest->reserved; 5616 bytes_to_add = min(num_bytes, bytes_to_add); 5617 dest->reserved += bytes_to_add; 5618 if (dest->reserved >= dest->size) 5619 dest->full = 1; 5620 num_bytes -= bytes_to_add; 5621 } 5622 spin_unlock(&dest->lock); 5623 } 5624 if (num_bytes) 5625 space_info_add_old_bytes(fs_info, space_info, 5626 num_bytes); 5627 } 5628 if (qgroup_to_release_ret) 5629 *qgroup_to_release_ret = qgroup_to_release; 5630 return ret; 5631 } 5632 5633 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5634 struct btrfs_block_rsv *dst, u64 num_bytes, 5635 int update_size) 5636 { 5637 int ret; 5638 5639 ret = block_rsv_use_bytes(src, num_bytes); 5640 if (ret) 5641 return ret; 5642 5643 block_rsv_add_bytes(dst, num_bytes, update_size); 5644 return 0; 5645 } 5646 5647 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5648 { 5649 memset(rsv, 0, sizeof(*rsv)); 5650 spin_lock_init(&rsv->lock); 5651 rsv->type = type; 5652 } 5653 5654 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5655 struct btrfs_block_rsv *rsv, 5656 unsigned short type) 5657 { 5658 btrfs_init_block_rsv(rsv, type); 5659 rsv->space_info = __find_space_info(fs_info, 5660 BTRFS_BLOCK_GROUP_METADATA); 5661 } 5662 5663 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5664 unsigned short type) 5665 { 5666 struct btrfs_block_rsv *block_rsv; 5667 5668 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5669 if (!block_rsv) 5670 return NULL; 5671 5672 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5673 return block_rsv; 5674 } 5675 5676 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5677 struct btrfs_block_rsv *rsv) 5678 { 5679 if (!rsv) 5680 return; 5681 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5682 kfree(rsv); 5683 } 5684 5685 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5686 { 5687 kfree(rsv); 5688 } 5689 5690 int btrfs_block_rsv_add(struct btrfs_root *root, 5691 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5692 enum btrfs_reserve_flush_enum flush) 5693 { 5694 int ret; 5695 5696 if (num_bytes == 0) 5697 return 0; 5698 5699 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5700 if (!ret) { 5701 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5702 return 0; 5703 } 5704 5705 return ret; 5706 } 5707 5708 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5709 { 5710 u64 num_bytes = 0; 5711 int ret = -ENOSPC; 5712 5713 if (!block_rsv) 5714 return 0; 5715 5716 spin_lock(&block_rsv->lock); 5717 num_bytes = div_factor(block_rsv->size, min_factor); 5718 if (block_rsv->reserved >= num_bytes) 5719 ret = 0; 5720 spin_unlock(&block_rsv->lock); 5721 5722 return ret; 5723 } 5724 5725 int btrfs_block_rsv_refill(struct btrfs_root *root, 5726 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5727 enum btrfs_reserve_flush_enum flush) 5728 { 5729 u64 num_bytes = 0; 5730 int ret = -ENOSPC; 5731 5732 if (!block_rsv) 5733 return 0; 5734 5735 spin_lock(&block_rsv->lock); 5736 num_bytes = min_reserved; 5737 if (block_rsv->reserved >= num_bytes) 5738 ret = 0; 5739 else 5740 num_bytes -= block_rsv->reserved; 5741 spin_unlock(&block_rsv->lock); 5742 5743 if (!ret) 5744 return 0; 5745 5746 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5747 if (!ret) { 5748 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5749 return 0; 5750 } 5751 5752 return ret; 5753 } 5754 5755 /** 5756 * btrfs_inode_rsv_refill - refill the inode block rsv. 5757 * @inode - the inode we are refilling. 5758 * @flush - the flusing restriction. 5759 * 5760 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5761 * block_rsv->size as the minimum size. We'll either refill the missing amount 5762 * or return if we already have enough space. This will also handle the resreve 5763 * tracepoint for the reserved amount. 5764 */ 5765 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5766 enum btrfs_reserve_flush_enum flush) 5767 { 5768 struct btrfs_root *root = inode->root; 5769 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5770 u64 num_bytes = 0; 5771 u64 qgroup_num_bytes = 0; 5772 int ret = -ENOSPC; 5773 5774 spin_lock(&block_rsv->lock); 5775 if (block_rsv->reserved < block_rsv->size) 5776 num_bytes = block_rsv->size - block_rsv->reserved; 5777 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size) 5778 qgroup_num_bytes = block_rsv->qgroup_rsv_size - 5779 block_rsv->qgroup_rsv_reserved; 5780 spin_unlock(&block_rsv->lock); 5781 5782 if (num_bytes == 0) 5783 return 0; 5784 5785 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true); 5786 if (ret) 5787 return ret; 5788 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5789 if (!ret) { 5790 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5791 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5792 btrfs_ino(inode), num_bytes, 1); 5793 5794 /* Don't forget to increase qgroup_rsv_reserved */ 5795 spin_lock(&block_rsv->lock); 5796 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes; 5797 spin_unlock(&block_rsv->lock); 5798 } else 5799 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); 5800 return ret; 5801 } 5802 5803 /** 5804 * btrfs_inode_rsv_release - release any excessive reservation. 5805 * @inode - the inode we need to release from. 5806 * @qgroup_free - free or convert qgroup meta. 5807 * Unlike normal operation, qgroup meta reservation needs to know if we are 5808 * freeing qgroup reservation or just converting it into per-trans. Normally 5809 * @qgroup_free is true for error handling, and false for normal release. 5810 * 5811 * This is the same as btrfs_block_rsv_release, except that it handles the 5812 * tracepoint for the reservation. 5813 */ 5814 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 5815 { 5816 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5817 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5818 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5819 u64 released = 0; 5820 u64 qgroup_to_release = 0; 5821 5822 /* 5823 * Since we statically set the block_rsv->size we just want to say we 5824 * are releasing 0 bytes, and then we'll just get the reservation over 5825 * the size free'd. 5826 */ 5827 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0, 5828 &qgroup_to_release); 5829 if (released > 0) 5830 trace_btrfs_space_reservation(fs_info, "delalloc", 5831 btrfs_ino(inode), released, 0); 5832 if (qgroup_free) 5833 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 5834 else 5835 btrfs_qgroup_convert_reserved_meta(inode->root, 5836 qgroup_to_release); 5837 } 5838 5839 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5840 struct btrfs_block_rsv *block_rsv, 5841 u64 num_bytes) 5842 { 5843 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5844 5845 if (global_rsv == block_rsv || 5846 block_rsv->space_info != global_rsv->space_info) 5847 global_rsv = NULL; 5848 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL); 5849 } 5850 5851 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5852 { 5853 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5854 struct btrfs_space_info *sinfo = block_rsv->space_info; 5855 u64 num_bytes; 5856 5857 /* 5858 * The global block rsv is based on the size of the extent tree, the 5859 * checksum tree and the root tree. If the fs is empty we want to set 5860 * it to a minimal amount for safety. 5861 */ 5862 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5863 btrfs_root_used(&fs_info->csum_root->root_item) + 5864 btrfs_root_used(&fs_info->tree_root->root_item); 5865 num_bytes = max_t(u64, num_bytes, SZ_16M); 5866 5867 spin_lock(&sinfo->lock); 5868 spin_lock(&block_rsv->lock); 5869 5870 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5871 5872 if (block_rsv->reserved < block_rsv->size) { 5873 num_bytes = btrfs_space_info_used(sinfo, true); 5874 if (sinfo->total_bytes > num_bytes) { 5875 num_bytes = sinfo->total_bytes - num_bytes; 5876 num_bytes = min(num_bytes, 5877 block_rsv->size - block_rsv->reserved); 5878 block_rsv->reserved += num_bytes; 5879 sinfo->bytes_may_use += num_bytes; 5880 trace_btrfs_space_reservation(fs_info, "space_info", 5881 sinfo->flags, num_bytes, 5882 1); 5883 } 5884 } else if (block_rsv->reserved > block_rsv->size) { 5885 num_bytes = block_rsv->reserved - block_rsv->size; 5886 sinfo->bytes_may_use -= num_bytes; 5887 trace_btrfs_space_reservation(fs_info, "space_info", 5888 sinfo->flags, num_bytes, 0); 5889 block_rsv->reserved = block_rsv->size; 5890 } 5891 5892 if (block_rsv->reserved == block_rsv->size) 5893 block_rsv->full = 1; 5894 else 5895 block_rsv->full = 0; 5896 5897 spin_unlock(&block_rsv->lock); 5898 spin_unlock(&sinfo->lock); 5899 } 5900 5901 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5902 { 5903 struct btrfs_space_info *space_info; 5904 5905 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5906 fs_info->chunk_block_rsv.space_info = space_info; 5907 5908 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5909 fs_info->global_block_rsv.space_info = space_info; 5910 fs_info->trans_block_rsv.space_info = space_info; 5911 fs_info->empty_block_rsv.space_info = space_info; 5912 fs_info->delayed_block_rsv.space_info = space_info; 5913 5914 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5915 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5916 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5917 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5918 if (fs_info->quota_root) 5919 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5920 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5921 5922 update_global_block_rsv(fs_info); 5923 } 5924 5925 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5926 { 5927 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5928 (u64)-1, NULL); 5929 WARN_ON(fs_info->trans_block_rsv.size > 0); 5930 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5931 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5932 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5933 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5934 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5935 } 5936 5937 5938 /* 5939 * To be called after all the new block groups attached to the transaction 5940 * handle have been created (btrfs_create_pending_block_groups()). 5941 */ 5942 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5943 { 5944 struct btrfs_fs_info *fs_info = trans->fs_info; 5945 5946 if (!trans->chunk_bytes_reserved) 5947 return; 5948 5949 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5950 5951 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5952 trans->chunk_bytes_reserved, NULL); 5953 trans->chunk_bytes_reserved = 0; 5954 } 5955 5956 /* Can only return 0 or -ENOSPC */ 5957 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5958 struct btrfs_inode *inode) 5959 { 5960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5961 struct btrfs_root *root = inode->root; 5962 /* 5963 * We always use trans->block_rsv here as we will have reserved space 5964 * for our orphan when starting the transaction, using get_block_rsv() 5965 * here will sometimes make us choose the wrong block rsv as we could be 5966 * doing a reloc inode for a non refcounted root. 5967 */ 5968 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5969 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5970 5971 /* 5972 * We need to hold space in order to delete our orphan item once we've 5973 * added it, so this takes the reservation so we can release it later 5974 * when we are truly done with the orphan item. 5975 */ 5976 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5977 5978 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5979 num_bytes, 1); 5980 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5981 } 5982 5983 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5984 { 5985 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5986 struct btrfs_root *root = inode->root; 5987 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5988 5989 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5990 num_bytes, 0); 5991 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5992 } 5993 5994 /* 5995 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5996 * root: the root of the parent directory 5997 * rsv: block reservation 5998 * items: the number of items that we need do reservation 5999 * qgroup_reserved: used to return the reserved size in qgroup 6000 * 6001 * This function is used to reserve the space for snapshot/subvolume 6002 * creation and deletion. Those operations are different with the 6003 * common file/directory operations, they change two fs/file trees 6004 * and root tree, the number of items that the qgroup reserves is 6005 * different with the free space reservation. So we can not use 6006 * the space reservation mechanism in start_transaction(). 6007 */ 6008 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 6009 struct btrfs_block_rsv *rsv, 6010 int items, 6011 u64 *qgroup_reserved, 6012 bool use_global_rsv) 6013 { 6014 u64 num_bytes; 6015 int ret; 6016 struct btrfs_fs_info *fs_info = root->fs_info; 6017 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6018 6019 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 6020 /* One for parent inode, two for dir entries */ 6021 num_bytes = 3 * fs_info->nodesize; 6022 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 6023 if (ret) 6024 return ret; 6025 } else { 6026 num_bytes = 0; 6027 } 6028 6029 *qgroup_reserved = num_bytes; 6030 6031 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 6032 rsv->space_info = __find_space_info(fs_info, 6033 BTRFS_BLOCK_GROUP_METADATA); 6034 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 6035 BTRFS_RESERVE_FLUSH_ALL); 6036 6037 if (ret == -ENOSPC && use_global_rsv) 6038 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 6039 6040 if (ret && *qgroup_reserved) 6041 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved); 6042 6043 return ret; 6044 } 6045 6046 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 6047 struct btrfs_block_rsv *rsv) 6048 { 6049 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 6050 } 6051 6052 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 6053 struct btrfs_inode *inode) 6054 { 6055 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 6056 u64 reserve_size = 0; 6057 u64 qgroup_rsv_size = 0; 6058 u64 csum_leaves; 6059 unsigned outstanding_extents; 6060 6061 lockdep_assert_held(&inode->lock); 6062 outstanding_extents = inode->outstanding_extents; 6063 if (outstanding_extents) 6064 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 6065 outstanding_extents + 1); 6066 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 6067 inode->csum_bytes); 6068 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 6069 csum_leaves); 6070 /* 6071 * For qgroup rsv, the calculation is very simple: 6072 * account one nodesize for each outstanding extent 6073 * 6074 * This is overestimating in most cases. 6075 */ 6076 qgroup_rsv_size = outstanding_extents * fs_info->nodesize; 6077 6078 spin_lock(&block_rsv->lock); 6079 block_rsv->size = reserve_size; 6080 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 6081 spin_unlock(&block_rsv->lock); 6082 } 6083 6084 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6085 { 6086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6087 unsigned nr_extents; 6088 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6089 int ret = 0; 6090 bool delalloc_lock = true; 6091 6092 /* If we are a free space inode we need to not flush since we will be in 6093 * the middle of a transaction commit. We also don't need the delalloc 6094 * mutex since we won't race with anybody. We need this mostly to make 6095 * lockdep shut its filthy mouth. 6096 * 6097 * If we have a transaction open (can happen if we call truncate_block 6098 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6099 */ 6100 if (btrfs_is_free_space_inode(inode)) { 6101 flush = BTRFS_RESERVE_NO_FLUSH; 6102 delalloc_lock = false; 6103 } else { 6104 if (current->journal_info) 6105 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6106 6107 if (btrfs_transaction_in_commit(fs_info)) 6108 schedule_timeout(1); 6109 } 6110 6111 if (delalloc_lock) 6112 mutex_lock(&inode->delalloc_mutex); 6113 6114 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6115 6116 /* Add our new extents and calculate the new rsv size. */ 6117 spin_lock(&inode->lock); 6118 nr_extents = count_max_extents(num_bytes); 6119 btrfs_mod_outstanding_extents(inode, nr_extents); 6120 inode->csum_bytes += num_bytes; 6121 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6122 spin_unlock(&inode->lock); 6123 6124 ret = btrfs_inode_rsv_refill(inode, flush); 6125 if (unlikely(ret)) 6126 goto out_fail; 6127 6128 if (delalloc_lock) 6129 mutex_unlock(&inode->delalloc_mutex); 6130 return 0; 6131 6132 out_fail: 6133 spin_lock(&inode->lock); 6134 nr_extents = count_max_extents(num_bytes); 6135 btrfs_mod_outstanding_extents(inode, -nr_extents); 6136 inode->csum_bytes -= num_bytes; 6137 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6138 spin_unlock(&inode->lock); 6139 6140 btrfs_inode_rsv_release(inode, true); 6141 if (delalloc_lock) 6142 mutex_unlock(&inode->delalloc_mutex); 6143 return ret; 6144 } 6145 6146 /** 6147 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6148 * @inode: the inode to release the reservation for. 6149 * @num_bytes: the number of bytes we are releasing. 6150 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 6151 * 6152 * This will release the metadata reservation for an inode. This can be called 6153 * once we complete IO for a given set of bytes to release their metadata 6154 * reservations, or on error for the same reason. 6155 */ 6156 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 6157 bool qgroup_free) 6158 { 6159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6160 6161 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6162 spin_lock(&inode->lock); 6163 inode->csum_bytes -= num_bytes; 6164 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6165 spin_unlock(&inode->lock); 6166 6167 if (btrfs_is_testing(fs_info)) 6168 return; 6169 6170 btrfs_inode_rsv_release(inode, qgroup_free); 6171 } 6172 6173 /** 6174 * btrfs_delalloc_release_extents - release our outstanding_extents 6175 * @inode: the inode to balance the reservation for. 6176 * @num_bytes: the number of bytes we originally reserved with 6177 * @qgroup_free: do we need to free qgroup meta reservation or convert them. 6178 * 6179 * When we reserve space we increase outstanding_extents for the extents we may 6180 * add. Once we've set the range as delalloc or created our ordered extents we 6181 * have outstanding_extents to track the real usage, so we use this to free our 6182 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6183 * with btrfs_delalloc_reserve_metadata. 6184 */ 6185 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes, 6186 bool qgroup_free) 6187 { 6188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6189 unsigned num_extents; 6190 6191 spin_lock(&inode->lock); 6192 num_extents = count_max_extents(num_bytes); 6193 btrfs_mod_outstanding_extents(inode, -num_extents); 6194 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6195 spin_unlock(&inode->lock); 6196 6197 if (btrfs_is_testing(fs_info)) 6198 return; 6199 6200 btrfs_inode_rsv_release(inode, qgroup_free); 6201 } 6202 6203 /** 6204 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6205 * delalloc 6206 * @inode: inode we're writing to 6207 * @start: start range we are writing to 6208 * @len: how long the range we are writing to 6209 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6210 * current reservation. 6211 * 6212 * This will do the following things 6213 * 6214 * o reserve space in data space info for num bytes 6215 * and reserve precious corresponding qgroup space 6216 * (Done in check_data_free_space) 6217 * 6218 * o reserve space for metadata space, based on the number of outstanding 6219 * extents and how much csums will be needed 6220 * also reserve metadata space in a per root over-reserve method. 6221 * o add to the inodes->delalloc_bytes 6222 * o add it to the fs_info's delalloc inodes list. 6223 * (Above 3 all done in delalloc_reserve_metadata) 6224 * 6225 * Return 0 for success 6226 * Return <0 for error(-ENOSPC or -EQUOT) 6227 */ 6228 int btrfs_delalloc_reserve_space(struct inode *inode, 6229 struct extent_changeset **reserved, u64 start, u64 len) 6230 { 6231 int ret; 6232 6233 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6234 if (ret < 0) 6235 return ret; 6236 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6237 if (ret < 0) 6238 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6239 return ret; 6240 } 6241 6242 /** 6243 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6244 * @inode: inode we're releasing space for 6245 * @start: start position of the space already reserved 6246 * @len: the len of the space already reserved 6247 * @release_bytes: the len of the space we consumed or didn't use 6248 * 6249 * This function will release the metadata space that was not used and will 6250 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6251 * list if there are no delalloc bytes left. 6252 * Also it will handle the qgroup reserved space. 6253 */ 6254 void btrfs_delalloc_release_space(struct inode *inode, 6255 struct extent_changeset *reserved, 6256 u64 start, u64 len, bool qgroup_free) 6257 { 6258 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); 6259 btrfs_free_reserved_data_space(inode, reserved, start, len); 6260 } 6261 6262 static int update_block_group(struct btrfs_trans_handle *trans, 6263 struct btrfs_fs_info *info, u64 bytenr, 6264 u64 num_bytes, int alloc) 6265 { 6266 struct btrfs_block_group_cache *cache = NULL; 6267 u64 total = num_bytes; 6268 u64 old_val; 6269 u64 byte_in_group; 6270 int factor; 6271 6272 /* block accounting for super block */ 6273 spin_lock(&info->delalloc_root_lock); 6274 old_val = btrfs_super_bytes_used(info->super_copy); 6275 if (alloc) 6276 old_val += num_bytes; 6277 else 6278 old_val -= num_bytes; 6279 btrfs_set_super_bytes_used(info->super_copy, old_val); 6280 spin_unlock(&info->delalloc_root_lock); 6281 6282 while (total) { 6283 cache = btrfs_lookup_block_group(info, bytenr); 6284 if (!cache) 6285 return -ENOENT; 6286 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6287 BTRFS_BLOCK_GROUP_RAID1 | 6288 BTRFS_BLOCK_GROUP_RAID10)) 6289 factor = 2; 6290 else 6291 factor = 1; 6292 /* 6293 * If this block group has free space cache written out, we 6294 * need to make sure to load it if we are removing space. This 6295 * is because we need the unpinning stage to actually add the 6296 * space back to the block group, otherwise we will leak space. 6297 */ 6298 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6299 cache_block_group(cache, 1); 6300 6301 byte_in_group = bytenr - cache->key.objectid; 6302 WARN_ON(byte_in_group > cache->key.offset); 6303 6304 spin_lock(&cache->space_info->lock); 6305 spin_lock(&cache->lock); 6306 6307 if (btrfs_test_opt(info, SPACE_CACHE) && 6308 cache->disk_cache_state < BTRFS_DC_CLEAR) 6309 cache->disk_cache_state = BTRFS_DC_CLEAR; 6310 6311 old_val = btrfs_block_group_used(&cache->item); 6312 num_bytes = min(total, cache->key.offset - byte_in_group); 6313 if (alloc) { 6314 old_val += num_bytes; 6315 btrfs_set_block_group_used(&cache->item, old_val); 6316 cache->reserved -= num_bytes; 6317 cache->space_info->bytes_reserved -= num_bytes; 6318 cache->space_info->bytes_used += num_bytes; 6319 cache->space_info->disk_used += num_bytes * factor; 6320 spin_unlock(&cache->lock); 6321 spin_unlock(&cache->space_info->lock); 6322 } else { 6323 old_val -= num_bytes; 6324 btrfs_set_block_group_used(&cache->item, old_val); 6325 cache->pinned += num_bytes; 6326 cache->space_info->bytes_pinned += num_bytes; 6327 cache->space_info->bytes_used -= num_bytes; 6328 cache->space_info->disk_used -= num_bytes * factor; 6329 spin_unlock(&cache->lock); 6330 spin_unlock(&cache->space_info->lock); 6331 6332 trace_btrfs_space_reservation(info, "pinned", 6333 cache->space_info->flags, 6334 num_bytes, 1); 6335 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6336 num_bytes); 6337 set_extent_dirty(info->pinned_extents, 6338 bytenr, bytenr + num_bytes - 1, 6339 GFP_NOFS | __GFP_NOFAIL); 6340 } 6341 6342 spin_lock(&trans->transaction->dirty_bgs_lock); 6343 if (list_empty(&cache->dirty_list)) { 6344 list_add_tail(&cache->dirty_list, 6345 &trans->transaction->dirty_bgs); 6346 trans->transaction->num_dirty_bgs++; 6347 btrfs_get_block_group(cache); 6348 } 6349 spin_unlock(&trans->transaction->dirty_bgs_lock); 6350 6351 /* 6352 * No longer have used bytes in this block group, queue it for 6353 * deletion. We do this after adding the block group to the 6354 * dirty list to avoid races between cleaner kthread and space 6355 * cache writeout. 6356 */ 6357 if (!alloc && old_val == 0) { 6358 spin_lock(&info->unused_bgs_lock); 6359 if (list_empty(&cache->bg_list)) { 6360 btrfs_get_block_group(cache); 6361 trace_btrfs_add_unused_block_group(cache); 6362 list_add_tail(&cache->bg_list, 6363 &info->unused_bgs); 6364 } 6365 spin_unlock(&info->unused_bgs_lock); 6366 } 6367 6368 btrfs_put_block_group(cache); 6369 total -= num_bytes; 6370 bytenr += num_bytes; 6371 } 6372 return 0; 6373 } 6374 6375 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6376 { 6377 struct btrfs_block_group_cache *cache; 6378 u64 bytenr; 6379 6380 spin_lock(&fs_info->block_group_cache_lock); 6381 bytenr = fs_info->first_logical_byte; 6382 spin_unlock(&fs_info->block_group_cache_lock); 6383 6384 if (bytenr < (u64)-1) 6385 return bytenr; 6386 6387 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6388 if (!cache) 6389 return 0; 6390 6391 bytenr = cache->key.objectid; 6392 btrfs_put_block_group(cache); 6393 6394 return bytenr; 6395 } 6396 6397 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6398 struct btrfs_block_group_cache *cache, 6399 u64 bytenr, u64 num_bytes, int reserved) 6400 { 6401 spin_lock(&cache->space_info->lock); 6402 spin_lock(&cache->lock); 6403 cache->pinned += num_bytes; 6404 cache->space_info->bytes_pinned += num_bytes; 6405 if (reserved) { 6406 cache->reserved -= num_bytes; 6407 cache->space_info->bytes_reserved -= num_bytes; 6408 } 6409 spin_unlock(&cache->lock); 6410 spin_unlock(&cache->space_info->lock); 6411 6412 trace_btrfs_space_reservation(fs_info, "pinned", 6413 cache->space_info->flags, num_bytes, 1); 6414 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6415 set_extent_dirty(fs_info->pinned_extents, bytenr, 6416 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6417 return 0; 6418 } 6419 6420 /* 6421 * this function must be called within transaction 6422 */ 6423 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6424 u64 bytenr, u64 num_bytes, int reserved) 6425 { 6426 struct btrfs_block_group_cache *cache; 6427 6428 cache = btrfs_lookup_block_group(fs_info, bytenr); 6429 BUG_ON(!cache); /* Logic error */ 6430 6431 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6432 6433 btrfs_put_block_group(cache); 6434 return 0; 6435 } 6436 6437 /* 6438 * this function must be called within transaction 6439 */ 6440 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6441 u64 bytenr, u64 num_bytes) 6442 { 6443 struct btrfs_block_group_cache *cache; 6444 int ret; 6445 6446 cache = btrfs_lookup_block_group(fs_info, bytenr); 6447 if (!cache) 6448 return -EINVAL; 6449 6450 /* 6451 * pull in the free space cache (if any) so that our pin 6452 * removes the free space from the cache. We have load_only set 6453 * to one because the slow code to read in the free extents does check 6454 * the pinned extents. 6455 */ 6456 cache_block_group(cache, 1); 6457 6458 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6459 6460 /* remove us from the free space cache (if we're there at all) */ 6461 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6462 btrfs_put_block_group(cache); 6463 return ret; 6464 } 6465 6466 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6467 u64 start, u64 num_bytes) 6468 { 6469 int ret; 6470 struct btrfs_block_group_cache *block_group; 6471 struct btrfs_caching_control *caching_ctl; 6472 6473 block_group = btrfs_lookup_block_group(fs_info, start); 6474 if (!block_group) 6475 return -EINVAL; 6476 6477 cache_block_group(block_group, 0); 6478 caching_ctl = get_caching_control(block_group); 6479 6480 if (!caching_ctl) { 6481 /* Logic error */ 6482 BUG_ON(!block_group_cache_done(block_group)); 6483 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6484 } else { 6485 mutex_lock(&caching_ctl->mutex); 6486 6487 if (start >= caching_ctl->progress) { 6488 ret = add_excluded_extent(fs_info, start, num_bytes); 6489 } else if (start + num_bytes <= caching_ctl->progress) { 6490 ret = btrfs_remove_free_space(block_group, 6491 start, num_bytes); 6492 } else { 6493 num_bytes = caching_ctl->progress - start; 6494 ret = btrfs_remove_free_space(block_group, 6495 start, num_bytes); 6496 if (ret) 6497 goto out_lock; 6498 6499 num_bytes = (start + num_bytes) - 6500 caching_ctl->progress; 6501 start = caching_ctl->progress; 6502 ret = add_excluded_extent(fs_info, start, num_bytes); 6503 } 6504 out_lock: 6505 mutex_unlock(&caching_ctl->mutex); 6506 put_caching_control(caching_ctl); 6507 } 6508 btrfs_put_block_group(block_group); 6509 return ret; 6510 } 6511 6512 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6513 struct extent_buffer *eb) 6514 { 6515 struct btrfs_file_extent_item *item; 6516 struct btrfs_key key; 6517 int found_type; 6518 int i; 6519 6520 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6521 return 0; 6522 6523 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6524 btrfs_item_key_to_cpu(eb, &key, i); 6525 if (key.type != BTRFS_EXTENT_DATA_KEY) 6526 continue; 6527 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6528 found_type = btrfs_file_extent_type(eb, item); 6529 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6530 continue; 6531 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6532 continue; 6533 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6534 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6535 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6536 } 6537 6538 return 0; 6539 } 6540 6541 static void 6542 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6543 { 6544 atomic_inc(&bg->reservations); 6545 } 6546 6547 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6548 const u64 start) 6549 { 6550 struct btrfs_block_group_cache *bg; 6551 6552 bg = btrfs_lookup_block_group(fs_info, start); 6553 ASSERT(bg); 6554 if (atomic_dec_and_test(&bg->reservations)) 6555 wake_up_var(&bg->reservations); 6556 btrfs_put_block_group(bg); 6557 } 6558 6559 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6560 { 6561 struct btrfs_space_info *space_info = bg->space_info; 6562 6563 ASSERT(bg->ro); 6564 6565 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6566 return; 6567 6568 /* 6569 * Our block group is read only but before we set it to read only, 6570 * some task might have had allocated an extent from it already, but it 6571 * has not yet created a respective ordered extent (and added it to a 6572 * root's list of ordered extents). 6573 * Therefore wait for any task currently allocating extents, since the 6574 * block group's reservations counter is incremented while a read lock 6575 * on the groups' semaphore is held and decremented after releasing 6576 * the read access on that semaphore and creating the ordered extent. 6577 */ 6578 down_write(&space_info->groups_sem); 6579 up_write(&space_info->groups_sem); 6580 6581 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 6582 } 6583 6584 /** 6585 * btrfs_add_reserved_bytes - update the block_group and space info counters 6586 * @cache: The cache we are manipulating 6587 * @ram_bytes: The number of bytes of file content, and will be same to 6588 * @num_bytes except for the compress path. 6589 * @num_bytes: The number of bytes in question 6590 * @delalloc: The blocks are allocated for the delalloc write 6591 * 6592 * This is called by the allocator when it reserves space. If this is a 6593 * reservation and the block group has become read only we cannot make the 6594 * reservation and return -EAGAIN, otherwise this function always succeeds. 6595 */ 6596 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6597 u64 ram_bytes, u64 num_bytes, int delalloc) 6598 { 6599 struct btrfs_space_info *space_info = cache->space_info; 6600 int ret = 0; 6601 6602 spin_lock(&space_info->lock); 6603 spin_lock(&cache->lock); 6604 if (cache->ro) { 6605 ret = -EAGAIN; 6606 } else { 6607 cache->reserved += num_bytes; 6608 space_info->bytes_reserved += num_bytes; 6609 6610 trace_btrfs_space_reservation(cache->fs_info, 6611 "space_info", space_info->flags, 6612 ram_bytes, 0); 6613 space_info->bytes_may_use -= ram_bytes; 6614 if (delalloc) 6615 cache->delalloc_bytes += num_bytes; 6616 } 6617 spin_unlock(&cache->lock); 6618 spin_unlock(&space_info->lock); 6619 return ret; 6620 } 6621 6622 /** 6623 * btrfs_free_reserved_bytes - update the block_group and space info counters 6624 * @cache: The cache we are manipulating 6625 * @num_bytes: The number of bytes in question 6626 * @delalloc: The blocks are allocated for the delalloc write 6627 * 6628 * This is called by somebody who is freeing space that was never actually used 6629 * on disk. For example if you reserve some space for a new leaf in transaction 6630 * A and before transaction A commits you free that leaf, you call this with 6631 * reserve set to 0 in order to clear the reservation. 6632 */ 6633 6634 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6635 u64 num_bytes, int delalloc) 6636 { 6637 struct btrfs_space_info *space_info = cache->space_info; 6638 int ret = 0; 6639 6640 spin_lock(&space_info->lock); 6641 spin_lock(&cache->lock); 6642 if (cache->ro) 6643 space_info->bytes_readonly += num_bytes; 6644 cache->reserved -= num_bytes; 6645 space_info->bytes_reserved -= num_bytes; 6646 6647 if (delalloc) 6648 cache->delalloc_bytes -= num_bytes; 6649 spin_unlock(&cache->lock); 6650 spin_unlock(&space_info->lock); 6651 return ret; 6652 } 6653 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6654 { 6655 struct btrfs_caching_control *next; 6656 struct btrfs_caching_control *caching_ctl; 6657 struct btrfs_block_group_cache *cache; 6658 6659 down_write(&fs_info->commit_root_sem); 6660 6661 list_for_each_entry_safe(caching_ctl, next, 6662 &fs_info->caching_block_groups, list) { 6663 cache = caching_ctl->block_group; 6664 if (block_group_cache_done(cache)) { 6665 cache->last_byte_to_unpin = (u64)-1; 6666 list_del_init(&caching_ctl->list); 6667 put_caching_control(caching_ctl); 6668 } else { 6669 cache->last_byte_to_unpin = caching_ctl->progress; 6670 } 6671 } 6672 6673 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6674 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6675 else 6676 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6677 6678 up_write(&fs_info->commit_root_sem); 6679 6680 update_global_block_rsv(fs_info); 6681 } 6682 6683 /* 6684 * Returns the free cluster for the given space info and sets empty_cluster to 6685 * what it should be based on the mount options. 6686 */ 6687 static struct btrfs_free_cluster * 6688 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6689 struct btrfs_space_info *space_info, u64 *empty_cluster) 6690 { 6691 struct btrfs_free_cluster *ret = NULL; 6692 6693 *empty_cluster = 0; 6694 if (btrfs_mixed_space_info(space_info)) 6695 return ret; 6696 6697 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6698 ret = &fs_info->meta_alloc_cluster; 6699 if (btrfs_test_opt(fs_info, SSD)) 6700 *empty_cluster = SZ_2M; 6701 else 6702 *empty_cluster = SZ_64K; 6703 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6704 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6705 *empty_cluster = SZ_2M; 6706 ret = &fs_info->data_alloc_cluster; 6707 } 6708 6709 return ret; 6710 } 6711 6712 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6713 u64 start, u64 end, 6714 const bool return_free_space) 6715 { 6716 struct btrfs_block_group_cache *cache = NULL; 6717 struct btrfs_space_info *space_info; 6718 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6719 struct btrfs_free_cluster *cluster = NULL; 6720 u64 len; 6721 u64 total_unpinned = 0; 6722 u64 empty_cluster = 0; 6723 bool readonly; 6724 6725 while (start <= end) { 6726 readonly = false; 6727 if (!cache || 6728 start >= cache->key.objectid + cache->key.offset) { 6729 if (cache) 6730 btrfs_put_block_group(cache); 6731 total_unpinned = 0; 6732 cache = btrfs_lookup_block_group(fs_info, start); 6733 BUG_ON(!cache); /* Logic error */ 6734 6735 cluster = fetch_cluster_info(fs_info, 6736 cache->space_info, 6737 &empty_cluster); 6738 empty_cluster <<= 1; 6739 } 6740 6741 len = cache->key.objectid + cache->key.offset - start; 6742 len = min(len, end + 1 - start); 6743 6744 if (start < cache->last_byte_to_unpin) { 6745 len = min(len, cache->last_byte_to_unpin - start); 6746 if (return_free_space) 6747 btrfs_add_free_space(cache, start, len); 6748 } 6749 6750 start += len; 6751 total_unpinned += len; 6752 space_info = cache->space_info; 6753 6754 /* 6755 * If this space cluster has been marked as fragmented and we've 6756 * unpinned enough in this block group to potentially allow a 6757 * cluster to be created inside of it go ahead and clear the 6758 * fragmented check. 6759 */ 6760 if (cluster && cluster->fragmented && 6761 total_unpinned > empty_cluster) { 6762 spin_lock(&cluster->lock); 6763 cluster->fragmented = 0; 6764 spin_unlock(&cluster->lock); 6765 } 6766 6767 spin_lock(&space_info->lock); 6768 spin_lock(&cache->lock); 6769 cache->pinned -= len; 6770 space_info->bytes_pinned -= len; 6771 6772 trace_btrfs_space_reservation(fs_info, "pinned", 6773 space_info->flags, len, 0); 6774 space_info->max_extent_size = 0; 6775 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6776 if (cache->ro) { 6777 space_info->bytes_readonly += len; 6778 readonly = true; 6779 } 6780 spin_unlock(&cache->lock); 6781 if (!readonly && return_free_space && 6782 global_rsv->space_info == space_info) { 6783 u64 to_add = len; 6784 6785 spin_lock(&global_rsv->lock); 6786 if (!global_rsv->full) { 6787 to_add = min(len, global_rsv->size - 6788 global_rsv->reserved); 6789 global_rsv->reserved += to_add; 6790 space_info->bytes_may_use += to_add; 6791 if (global_rsv->reserved >= global_rsv->size) 6792 global_rsv->full = 1; 6793 trace_btrfs_space_reservation(fs_info, 6794 "space_info", 6795 space_info->flags, 6796 to_add, 1); 6797 len -= to_add; 6798 } 6799 spin_unlock(&global_rsv->lock); 6800 /* Add to any tickets we may have */ 6801 if (len) 6802 space_info_add_new_bytes(fs_info, space_info, 6803 len); 6804 } 6805 spin_unlock(&space_info->lock); 6806 } 6807 6808 if (cache) 6809 btrfs_put_block_group(cache); 6810 return 0; 6811 } 6812 6813 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 6814 { 6815 struct btrfs_fs_info *fs_info = trans->fs_info; 6816 struct btrfs_block_group_cache *block_group, *tmp; 6817 struct list_head *deleted_bgs; 6818 struct extent_io_tree *unpin; 6819 u64 start; 6820 u64 end; 6821 int ret; 6822 6823 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6824 unpin = &fs_info->freed_extents[1]; 6825 else 6826 unpin = &fs_info->freed_extents[0]; 6827 6828 while (!trans->aborted) { 6829 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6830 ret = find_first_extent_bit(unpin, 0, &start, &end, 6831 EXTENT_DIRTY, NULL); 6832 if (ret) { 6833 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6834 break; 6835 } 6836 6837 if (btrfs_test_opt(fs_info, DISCARD)) 6838 ret = btrfs_discard_extent(fs_info, start, 6839 end + 1 - start, NULL); 6840 6841 clear_extent_dirty(unpin, start, end); 6842 unpin_extent_range(fs_info, start, end, true); 6843 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6844 cond_resched(); 6845 } 6846 6847 /* 6848 * Transaction is finished. We don't need the lock anymore. We 6849 * do need to clean up the block groups in case of a transaction 6850 * abort. 6851 */ 6852 deleted_bgs = &trans->transaction->deleted_bgs; 6853 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6854 u64 trimmed = 0; 6855 6856 ret = -EROFS; 6857 if (!trans->aborted) 6858 ret = btrfs_discard_extent(fs_info, 6859 block_group->key.objectid, 6860 block_group->key.offset, 6861 &trimmed); 6862 6863 list_del_init(&block_group->bg_list); 6864 btrfs_put_block_group_trimming(block_group); 6865 btrfs_put_block_group(block_group); 6866 6867 if (ret) { 6868 const char *errstr = btrfs_decode_error(ret); 6869 btrfs_warn(fs_info, 6870 "discard failed while removing blockgroup: errno=%d %s", 6871 ret, errstr); 6872 } 6873 } 6874 6875 return 0; 6876 } 6877 6878 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6879 struct btrfs_fs_info *info, 6880 struct btrfs_delayed_ref_node *node, u64 parent, 6881 u64 root_objectid, u64 owner_objectid, 6882 u64 owner_offset, int refs_to_drop, 6883 struct btrfs_delayed_extent_op *extent_op) 6884 { 6885 struct btrfs_key key; 6886 struct btrfs_path *path; 6887 struct btrfs_root *extent_root = info->extent_root; 6888 struct extent_buffer *leaf; 6889 struct btrfs_extent_item *ei; 6890 struct btrfs_extent_inline_ref *iref; 6891 int ret; 6892 int is_data; 6893 int extent_slot = 0; 6894 int found_extent = 0; 6895 int num_to_del = 1; 6896 u32 item_size; 6897 u64 refs; 6898 u64 bytenr = node->bytenr; 6899 u64 num_bytes = node->num_bytes; 6900 int last_ref = 0; 6901 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6902 6903 path = btrfs_alloc_path(); 6904 if (!path) 6905 return -ENOMEM; 6906 6907 path->reada = READA_FORWARD; 6908 path->leave_spinning = 1; 6909 6910 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6911 BUG_ON(!is_data && refs_to_drop != 1); 6912 6913 if (is_data) 6914 skinny_metadata = false; 6915 6916 ret = lookup_extent_backref(trans, info, path, &iref, 6917 bytenr, num_bytes, parent, 6918 root_objectid, owner_objectid, 6919 owner_offset); 6920 if (ret == 0) { 6921 extent_slot = path->slots[0]; 6922 while (extent_slot >= 0) { 6923 btrfs_item_key_to_cpu(path->nodes[0], &key, 6924 extent_slot); 6925 if (key.objectid != bytenr) 6926 break; 6927 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6928 key.offset == num_bytes) { 6929 found_extent = 1; 6930 break; 6931 } 6932 if (key.type == BTRFS_METADATA_ITEM_KEY && 6933 key.offset == owner_objectid) { 6934 found_extent = 1; 6935 break; 6936 } 6937 if (path->slots[0] - extent_slot > 5) 6938 break; 6939 extent_slot--; 6940 } 6941 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6942 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6943 if (found_extent && item_size < sizeof(*ei)) 6944 found_extent = 0; 6945 #endif 6946 if (!found_extent) { 6947 BUG_ON(iref); 6948 ret = remove_extent_backref(trans, info, path, NULL, 6949 refs_to_drop, 6950 is_data, &last_ref); 6951 if (ret) { 6952 btrfs_abort_transaction(trans, ret); 6953 goto out; 6954 } 6955 btrfs_release_path(path); 6956 path->leave_spinning = 1; 6957 6958 key.objectid = bytenr; 6959 key.type = BTRFS_EXTENT_ITEM_KEY; 6960 key.offset = num_bytes; 6961 6962 if (!is_data && skinny_metadata) { 6963 key.type = BTRFS_METADATA_ITEM_KEY; 6964 key.offset = owner_objectid; 6965 } 6966 6967 ret = btrfs_search_slot(trans, extent_root, 6968 &key, path, -1, 1); 6969 if (ret > 0 && skinny_metadata && path->slots[0]) { 6970 /* 6971 * Couldn't find our skinny metadata item, 6972 * see if we have ye olde extent item. 6973 */ 6974 path->slots[0]--; 6975 btrfs_item_key_to_cpu(path->nodes[0], &key, 6976 path->slots[0]); 6977 if (key.objectid == bytenr && 6978 key.type == BTRFS_EXTENT_ITEM_KEY && 6979 key.offset == num_bytes) 6980 ret = 0; 6981 } 6982 6983 if (ret > 0 && skinny_metadata) { 6984 skinny_metadata = false; 6985 key.objectid = bytenr; 6986 key.type = BTRFS_EXTENT_ITEM_KEY; 6987 key.offset = num_bytes; 6988 btrfs_release_path(path); 6989 ret = btrfs_search_slot(trans, extent_root, 6990 &key, path, -1, 1); 6991 } 6992 6993 if (ret) { 6994 btrfs_err(info, 6995 "umm, got %d back from search, was looking for %llu", 6996 ret, bytenr); 6997 if (ret > 0) 6998 btrfs_print_leaf(path->nodes[0]); 6999 } 7000 if (ret < 0) { 7001 btrfs_abort_transaction(trans, ret); 7002 goto out; 7003 } 7004 extent_slot = path->slots[0]; 7005 } 7006 } else if (WARN_ON(ret == -ENOENT)) { 7007 btrfs_print_leaf(path->nodes[0]); 7008 btrfs_err(info, 7009 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 7010 bytenr, parent, root_objectid, owner_objectid, 7011 owner_offset); 7012 btrfs_abort_transaction(trans, ret); 7013 goto out; 7014 } else { 7015 btrfs_abort_transaction(trans, ret); 7016 goto out; 7017 } 7018 7019 leaf = path->nodes[0]; 7020 item_size = btrfs_item_size_nr(leaf, extent_slot); 7021 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 7022 if (item_size < sizeof(*ei)) { 7023 BUG_ON(found_extent || extent_slot != path->slots[0]); 7024 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 7025 0); 7026 if (ret < 0) { 7027 btrfs_abort_transaction(trans, ret); 7028 goto out; 7029 } 7030 7031 btrfs_release_path(path); 7032 path->leave_spinning = 1; 7033 7034 key.objectid = bytenr; 7035 key.type = BTRFS_EXTENT_ITEM_KEY; 7036 key.offset = num_bytes; 7037 7038 ret = btrfs_search_slot(trans, extent_root, &key, path, 7039 -1, 1); 7040 if (ret) { 7041 btrfs_err(info, 7042 "umm, got %d back from search, was looking for %llu", 7043 ret, bytenr); 7044 btrfs_print_leaf(path->nodes[0]); 7045 } 7046 if (ret < 0) { 7047 btrfs_abort_transaction(trans, ret); 7048 goto out; 7049 } 7050 7051 extent_slot = path->slots[0]; 7052 leaf = path->nodes[0]; 7053 item_size = btrfs_item_size_nr(leaf, extent_slot); 7054 } 7055 #endif 7056 BUG_ON(item_size < sizeof(*ei)); 7057 ei = btrfs_item_ptr(leaf, extent_slot, 7058 struct btrfs_extent_item); 7059 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7060 key.type == BTRFS_EXTENT_ITEM_KEY) { 7061 struct btrfs_tree_block_info *bi; 7062 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7063 bi = (struct btrfs_tree_block_info *)(ei + 1); 7064 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7065 } 7066 7067 refs = btrfs_extent_refs(leaf, ei); 7068 if (refs < refs_to_drop) { 7069 btrfs_err(info, 7070 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7071 refs_to_drop, refs, bytenr); 7072 ret = -EINVAL; 7073 btrfs_abort_transaction(trans, ret); 7074 goto out; 7075 } 7076 refs -= refs_to_drop; 7077 7078 if (refs > 0) { 7079 if (extent_op) 7080 __run_delayed_extent_op(extent_op, leaf, ei); 7081 /* 7082 * In the case of inline back ref, reference count will 7083 * be updated by remove_extent_backref 7084 */ 7085 if (iref) { 7086 BUG_ON(!found_extent); 7087 } else { 7088 btrfs_set_extent_refs(leaf, ei, refs); 7089 btrfs_mark_buffer_dirty(leaf); 7090 } 7091 if (found_extent) { 7092 ret = remove_extent_backref(trans, info, path, 7093 iref, refs_to_drop, 7094 is_data, &last_ref); 7095 if (ret) { 7096 btrfs_abort_transaction(trans, ret); 7097 goto out; 7098 } 7099 } 7100 } else { 7101 if (found_extent) { 7102 BUG_ON(is_data && refs_to_drop != 7103 extent_data_ref_count(path, iref)); 7104 if (iref) { 7105 BUG_ON(path->slots[0] != extent_slot); 7106 } else { 7107 BUG_ON(path->slots[0] != extent_slot + 1); 7108 path->slots[0] = extent_slot; 7109 num_to_del = 2; 7110 } 7111 } 7112 7113 last_ref = 1; 7114 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7115 num_to_del); 7116 if (ret) { 7117 btrfs_abort_transaction(trans, ret); 7118 goto out; 7119 } 7120 btrfs_release_path(path); 7121 7122 if (is_data) { 7123 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7124 if (ret) { 7125 btrfs_abort_transaction(trans, ret); 7126 goto out; 7127 } 7128 } 7129 7130 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7131 if (ret) { 7132 btrfs_abort_transaction(trans, ret); 7133 goto out; 7134 } 7135 7136 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7137 if (ret) { 7138 btrfs_abort_transaction(trans, ret); 7139 goto out; 7140 } 7141 } 7142 btrfs_release_path(path); 7143 7144 out: 7145 btrfs_free_path(path); 7146 return ret; 7147 } 7148 7149 /* 7150 * when we free an block, it is possible (and likely) that we free the last 7151 * delayed ref for that extent as well. This searches the delayed ref tree for 7152 * a given extent, and if there are no other delayed refs to be processed, it 7153 * removes it from the tree. 7154 */ 7155 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7156 u64 bytenr) 7157 { 7158 struct btrfs_delayed_ref_head *head; 7159 struct btrfs_delayed_ref_root *delayed_refs; 7160 int ret = 0; 7161 7162 delayed_refs = &trans->transaction->delayed_refs; 7163 spin_lock(&delayed_refs->lock); 7164 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7165 if (!head) 7166 goto out_delayed_unlock; 7167 7168 spin_lock(&head->lock); 7169 if (!RB_EMPTY_ROOT(&head->ref_tree)) 7170 goto out; 7171 7172 if (head->extent_op) { 7173 if (!head->must_insert_reserved) 7174 goto out; 7175 btrfs_free_delayed_extent_op(head->extent_op); 7176 head->extent_op = NULL; 7177 } 7178 7179 /* 7180 * waiting for the lock here would deadlock. If someone else has it 7181 * locked they are already in the process of dropping it anyway 7182 */ 7183 if (!mutex_trylock(&head->mutex)) 7184 goto out; 7185 7186 /* 7187 * at this point we have a head with no other entries. Go 7188 * ahead and process it. 7189 */ 7190 rb_erase(&head->href_node, &delayed_refs->href_root); 7191 RB_CLEAR_NODE(&head->href_node); 7192 atomic_dec(&delayed_refs->num_entries); 7193 7194 /* 7195 * we don't take a ref on the node because we're removing it from the 7196 * tree, so we just steal the ref the tree was holding. 7197 */ 7198 delayed_refs->num_heads--; 7199 if (head->processing == 0) 7200 delayed_refs->num_heads_ready--; 7201 head->processing = 0; 7202 spin_unlock(&head->lock); 7203 spin_unlock(&delayed_refs->lock); 7204 7205 BUG_ON(head->extent_op); 7206 if (head->must_insert_reserved) 7207 ret = 1; 7208 7209 mutex_unlock(&head->mutex); 7210 btrfs_put_delayed_ref_head(head); 7211 return ret; 7212 out: 7213 spin_unlock(&head->lock); 7214 7215 out_delayed_unlock: 7216 spin_unlock(&delayed_refs->lock); 7217 return 0; 7218 } 7219 7220 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7221 struct btrfs_root *root, 7222 struct extent_buffer *buf, 7223 u64 parent, int last_ref) 7224 { 7225 struct btrfs_fs_info *fs_info = root->fs_info; 7226 int pin = 1; 7227 int ret; 7228 7229 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7230 int old_ref_mod, new_ref_mod; 7231 7232 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7233 root->root_key.objectid, 7234 btrfs_header_level(buf), 0, 7235 BTRFS_DROP_DELAYED_REF); 7236 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7237 buf->len, parent, 7238 root->root_key.objectid, 7239 btrfs_header_level(buf), 7240 BTRFS_DROP_DELAYED_REF, NULL, 7241 &old_ref_mod, &new_ref_mod); 7242 BUG_ON(ret); /* -ENOMEM */ 7243 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7244 } 7245 7246 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7247 struct btrfs_block_group_cache *cache; 7248 7249 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7250 ret = check_ref_cleanup(trans, buf->start); 7251 if (!ret) 7252 goto out; 7253 } 7254 7255 pin = 0; 7256 cache = btrfs_lookup_block_group(fs_info, buf->start); 7257 7258 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7259 pin_down_extent(fs_info, cache, buf->start, 7260 buf->len, 1); 7261 btrfs_put_block_group(cache); 7262 goto out; 7263 } 7264 7265 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7266 7267 btrfs_add_free_space(cache, buf->start, buf->len); 7268 btrfs_free_reserved_bytes(cache, buf->len, 0); 7269 btrfs_put_block_group(cache); 7270 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7271 } 7272 out: 7273 if (pin) 7274 add_pinned_bytes(fs_info, buf->len, true, 7275 root->root_key.objectid); 7276 7277 if (last_ref) { 7278 /* 7279 * Deleting the buffer, clear the corrupt flag since it doesn't 7280 * matter anymore. 7281 */ 7282 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7283 } 7284 } 7285 7286 /* Can return -ENOMEM */ 7287 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7288 struct btrfs_root *root, 7289 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7290 u64 owner, u64 offset) 7291 { 7292 struct btrfs_fs_info *fs_info = root->fs_info; 7293 int old_ref_mod, new_ref_mod; 7294 int ret; 7295 7296 if (btrfs_is_testing(fs_info)) 7297 return 0; 7298 7299 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7300 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7301 root_objectid, owner, offset, 7302 BTRFS_DROP_DELAYED_REF); 7303 7304 /* 7305 * tree log blocks never actually go into the extent allocation 7306 * tree, just update pinning info and exit early. 7307 */ 7308 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7309 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7310 /* unlocks the pinned mutex */ 7311 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7312 old_ref_mod = new_ref_mod = 0; 7313 ret = 0; 7314 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7315 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7316 num_bytes, parent, 7317 root_objectid, (int)owner, 7318 BTRFS_DROP_DELAYED_REF, NULL, 7319 &old_ref_mod, &new_ref_mod); 7320 } else { 7321 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7322 num_bytes, parent, 7323 root_objectid, owner, offset, 7324 0, BTRFS_DROP_DELAYED_REF, 7325 &old_ref_mod, &new_ref_mod); 7326 } 7327 7328 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) { 7329 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; 7330 7331 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid); 7332 } 7333 7334 return ret; 7335 } 7336 7337 /* 7338 * when we wait for progress in the block group caching, its because 7339 * our allocation attempt failed at least once. So, we must sleep 7340 * and let some progress happen before we try again. 7341 * 7342 * This function will sleep at least once waiting for new free space to 7343 * show up, and then it will check the block group free space numbers 7344 * for our min num_bytes. Another option is to have it go ahead 7345 * and look in the rbtree for a free extent of a given size, but this 7346 * is a good start. 7347 * 7348 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7349 * any of the information in this block group. 7350 */ 7351 static noinline void 7352 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7353 u64 num_bytes) 7354 { 7355 struct btrfs_caching_control *caching_ctl; 7356 7357 caching_ctl = get_caching_control(cache); 7358 if (!caching_ctl) 7359 return; 7360 7361 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7362 (cache->free_space_ctl->free_space >= num_bytes)); 7363 7364 put_caching_control(caching_ctl); 7365 } 7366 7367 static noinline int 7368 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7369 { 7370 struct btrfs_caching_control *caching_ctl; 7371 int ret = 0; 7372 7373 caching_ctl = get_caching_control(cache); 7374 if (!caching_ctl) 7375 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7376 7377 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7378 if (cache->cached == BTRFS_CACHE_ERROR) 7379 ret = -EIO; 7380 put_caching_control(caching_ctl); 7381 return ret; 7382 } 7383 7384 enum btrfs_loop_type { 7385 LOOP_CACHING_NOWAIT = 0, 7386 LOOP_CACHING_WAIT = 1, 7387 LOOP_ALLOC_CHUNK = 2, 7388 LOOP_NO_EMPTY_SIZE = 3, 7389 }; 7390 7391 static inline void 7392 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7393 int delalloc) 7394 { 7395 if (delalloc) 7396 down_read(&cache->data_rwsem); 7397 } 7398 7399 static inline void 7400 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7401 int delalloc) 7402 { 7403 btrfs_get_block_group(cache); 7404 if (delalloc) 7405 down_read(&cache->data_rwsem); 7406 } 7407 7408 static struct btrfs_block_group_cache * 7409 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7410 struct btrfs_free_cluster *cluster, 7411 int delalloc) 7412 { 7413 struct btrfs_block_group_cache *used_bg = NULL; 7414 7415 spin_lock(&cluster->refill_lock); 7416 while (1) { 7417 used_bg = cluster->block_group; 7418 if (!used_bg) 7419 return NULL; 7420 7421 if (used_bg == block_group) 7422 return used_bg; 7423 7424 btrfs_get_block_group(used_bg); 7425 7426 if (!delalloc) 7427 return used_bg; 7428 7429 if (down_read_trylock(&used_bg->data_rwsem)) 7430 return used_bg; 7431 7432 spin_unlock(&cluster->refill_lock); 7433 7434 /* We should only have one-level nested. */ 7435 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7436 7437 spin_lock(&cluster->refill_lock); 7438 if (used_bg == cluster->block_group) 7439 return used_bg; 7440 7441 up_read(&used_bg->data_rwsem); 7442 btrfs_put_block_group(used_bg); 7443 } 7444 } 7445 7446 static inline void 7447 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7448 int delalloc) 7449 { 7450 if (delalloc) 7451 up_read(&cache->data_rwsem); 7452 btrfs_put_block_group(cache); 7453 } 7454 7455 /* 7456 * walks the btree of allocated extents and find a hole of a given size. 7457 * The key ins is changed to record the hole: 7458 * ins->objectid == start position 7459 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7460 * ins->offset == the size of the hole. 7461 * Any available blocks before search_start are skipped. 7462 * 7463 * If there is no suitable free space, we will record the max size of 7464 * the free space extent currently. 7465 */ 7466 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7467 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7468 u64 hint_byte, struct btrfs_key *ins, 7469 u64 flags, int delalloc) 7470 { 7471 int ret = 0; 7472 struct btrfs_root *root = fs_info->extent_root; 7473 struct btrfs_free_cluster *last_ptr = NULL; 7474 struct btrfs_block_group_cache *block_group = NULL; 7475 u64 search_start = 0; 7476 u64 max_extent_size = 0; 7477 u64 empty_cluster = 0; 7478 struct btrfs_space_info *space_info; 7479 int loop = 0; 7480 int index = btrfs_bg_flags_to_raid_index(flags); 7481 bool failed_cluster_refill = false; 7482 bool failed_alloc = false; 7483 bool use_cluster = true; 7484 bool have_caching_bg = false; 7485 bool orig_have_caching_bg = false; 7486 bool full_search = false; 7487 7488 WARN_ON(num_bytes < fs_info->sectorsize); 7489 ins->type = BTRFS_EXTENT_ITEM_KEY; 7490 ins->objectid = 0; 7491 ins->offset = 0; 7492 7493 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7494 7495 space_info = __find_space_info(fs_info, flags); 7496 if (!space_info) { 7497 btrfs_err(fs_info, "No space info for %llu", flags); 7498 return -ENOSPC; 7499 } 7500 7501 /* 7502 * If our free space is heavily fragmented we may not be able to make 7503 * big contiguous allocations, so instead of doing the expensive search 7504 * for free space, simply return ENOSPC with our max_extent_size so we 7505 * can go ahead and search for a more manageable chunk. 7506 * 7507 * If our max_extent_size is large enough for our allocation simply 7508 * disable clustering since we will likely not be able to find enough 7509 * space to create a cluster and induce latency trying. 7510 */ 7511 if (unlikely(space_info->max_extent_size)) { 7512 spin_lock(&space_info->lock); 7513 if (space_info->max_extent_size && 7514 num_bytes > space_info->max_extent_size) { 7515 ins->offset = space_info->max_extent_size; 7516 spin_unlock(&space_info->lock); 7517 return -ENOSPC; 7518 } else if (space_info->max_extent_size) { 7519 use_cluster = false; 7520 } 7521 spin_unlock(&space_info->lock); 7522 } 7523 7524 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7525 if (last_ptr) { 7526 spin_lock(&last_ptr->lock); 7527 if (last_ptr->block_group) 7528 hint_byte = last_ptr->window_start; 7529 if (last_ptr->fragmented) { 7530 /* 7531 * We still set window_start so we can keep track of the 7532 * last place we found an allocation to try and save 7533 * some time. 7534 */ 7535 hint_byte = last_ptr->window_start; 7536 use_cluster = false; 7537 } 7538 spin_unlock(&last_ptr->lock); 7539 } 7540 7541 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7542 search_start = max(search_start, hint_byte); 7543 if (search_start == hint_byte) { 7544 block_group = btrfs_lookup_block_group(fs_info, search_start); 7545 /* 7546 * we don't want to use the block group if it doesn't match our 7547 * allocation bits, or if its not cached. 7548 * 7549 * However if we are re-searching with an ideal block group 7550 * picked out then we don't care that the block group is cached. 7551 */ 7552 if (block_group && block_group_bits(block_group, flags) && 7553 block_group->cached != BTRFS_CACHE_NO) { 7554 down_read(&space_info->groups_sem); 7555 if (list_empty(&block_group->list) || 7556 block_group->ro) { 7557 /* 7558 * someone is removing this block group, 7559 * we can't jump into the have_block_group 7560 * target because our list pointers are not 7561 * valid 7562 */ 7563 btrfs_put_block_group(block_group); 7564 up_read(&space_info->groups_sem); 7565 } else { 7566 index = btrfs_bg_flags_to_raid_index( 7567 block_group->flags); 7568 btrfs_lock_block_group(block_group, delalloc); 7569 goto have_block_group; 7570 } 7571 } else if (block_group) { 7572 btrfs_put_block_group(block_group); 7573 } 7574 } 7575 search: 7576 have_caching_bg = false; 7577 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags)) 7578 full_search = true; 7579 down_read(&space_info->groups_sem); 7580 list_for_each_entry(block_group, &space_info->block_groups[index], 7581 list) { 7582 u64 offset; 7583 int cached; 7584 7585 /* If the block group is read-only, we can skip it entirely. */ 7586 if (unlikely(block_group->ro)) 7587 continue; 7588 7589 btrfs_grab_block_group(block_group, delalloc); 7590 search_start = block_group->key.objectid; 7591 7592 /* 7593 * this can happen if we end up cycling through all the 7594 * raid types, but we want to make sure we only allocate 7595 * for the proper type. 7596 */ 7597 if (!block_group_bits(block_group, flags)) { 7598 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7599 BTRFS_BLOCK_GROUP_RAID1 | 7600 BTRFS_BLOCK_GROUP_RAID5 | 7601 BTRFS_BLOCK_GROUP_RAID6 | 7602 BTRFS_BLOCK_GROUP_RAID10; 7603 7604 /* 7605 * if they asked for extra copies and this block group 7606 * doesn't provide them, bail. This does allow us to 7607 * fill raid0 from raid1. 7608 */ 7609 if ((flags & extra) && !(block_group->flags & extra)) 7610 goto loop; 7611 } 7612 7613 have_block_group: 7614 cached = block_group_cache_done(block_group); 7615 if (unlikely(!cached)) { 7616 have_caching_bg = true; 7617 ret = cache_block_group(block_group, 0); 7618 BUG_ON(ret < 0); 7619 ret = 0; 7620 } 7621 7622 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7623 goto loop; 7624 7625 /* 7626 * Ok we want to try and use the cluster allocator, so 7627 * lets look there 7628 */ 7629 if (last_ptr && use_cluster) { 7630 struct btrfs_block_group_cache *used_block_group; 7631 unsigned long aligned_cluster; 7632 /* 7633 * the refill lock keeps out other 7634 * people trying to start a new cluster 7635 */ 7636 used_block_group = btrfs_lock_cluster(block_group, 7637 last_ptr, 7638 delalloc); 7639 if (!used_block_group) 7640 goto refill_cluster; 7641 7642 if (used_block_group != block_group && 7643 (used_block_group->ro || 7644 !block_group_bits(used_block_group, flags))) 7645 goto release_cluster; 7646 7647 offset = btrfs_alloc_from_cluster(used_block_group, 7648 last_ptr, 7649 num_bytes, 7650 used_block_group->key.objectid, 7651 &max_extent_size); 7652 if (offset) { 7653 /* we have a block, we're done */ 7654 spin_unlock(&last_ptr->refill_lock); 7655 trace_btrfs_reserve_extent_cluster( 7656 used_block_group, 7657 search_start, num_bytes); 7658 if (used_block_group != block_group) { 7659 btrfs_release_block_group(block_group, 7660 delalloc); 7661 block_group = used_block_group; 7662 } 7663 goto checks; 7664 } 7665 7666 WARN_ON(last_ptr->block_group != used_block_group); 7667 release_cluster: 7668 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7669 * set up a new clusters, so lets just skip it 7670 * and let the allocator find whatever block 7671 * it can find. If we reach this point, we 7672 * will have tried the cluster allocator 7673 * plenty of times and not have found 7674 * anything, so we are likely way too 7675 * fragmented for the clustering stuff to find 7676 * anything. 7677 * 7678 * However, if the cluster is taken from the 7679 * current block group, release the cluster 7680 * first, so that we stand a better chance of 7681 * succeeding in the unclustered 7682 * allocation. */ 7683 if (loop >= LOOP_NO_EMPTY_SIZE && 7684 used_block_group != block_group) { 7685 spin_unlock(&last_ptr->refill_lock); 7686 btrfs_release_block_group(used_block_group, 7687 delalloc); 7688 goto unclustered_alloc; 7689 } 7690 7691 /* 7692 * this cluster didn't work out, free it and 7693 * start over 7694 */ 7695 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7696 7697 if (used_block_group != block_group) 7698 btrfs_release_block_group(used_block_group, 7699 delalloc); 7700 refill_cluster: 7701 if (loop >= LOOP_NO_EMPTY_SIZE) { 7702 spin_unlock(&last_ptr->refill_lock); 7703 goto unclustered_alloc; 7704 } 7705 7706 aligned_cluster = max_t(unsigned long, 7707 empty_cluster + empty_size, 7708 block_group->full_stripe_len); 7709 7710 /* allocate a cluster in this block group */ 7711 ret = btrfs_find_space_cluster(fs_info, block_group, 7712 last_ptr, search_start, 7713 num_bytes, 7714 aligned_cluster); 7715 if (ret == 0) { 7716 /* 7717 * now pull our allocation out of this 7718 * cluster 7719 */ 7720 offset = btrfs_alloc_from_cluster(block_group, 7721 last_ptr, 7722 num_bytes, 7723 search_start, 7724 &max_extent_size); 7725 if (offset) { 7726 /* we found one, proceed */ 7727 spin_unlock(&last_ptr->refill_lock); 7728 trace_btrfs_reserve_extent_cluster( 7729 block_group, search_start, 7730 num_bytes); 7731 goto checks; 7732 } 7733 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7734 && !failed_cluster_refill) { 7735 spin_unlock(&last_ptr->refill_lock); 7736 7737 failed_cluster_refill = true; 7738 wait_block_group_cache_progress(block_group, 7739 num_bytes + empty_cluster + empty_size); 7740 goto have_block_group; 7741 } 7742 7743 /* 7744 * at this point we either didn't find a cluster 7745 * or we weren't able to allocate a block from our 7746 * cluster. Free the cluster we've been trying 7747 * to use, and go to the next block group 7748 */ 7749 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7750 spin_unlock(&last_ptr->refill_lock); 7751 goto loop; 7752 } 7753 7754 unclustered_alloc: 7755 /* 7756 * We are doing an unclustered alloc, set the fragmented flag so 7757 * we don't bother trying to setup a cluster again until we get 7758 * more space. 7759 */ 7760 if (unlikely(last_ptr)) { 7761 spin_lock(&last_ptr->lock); 7762 last_ptr->fragmented = 1; 7763 spin_unlock(&last_ptr->lock); 7764 } 7765 if (cached) { 7766 struct btrfs_free_space_ctl *ctl = 7767 block_group->free_space_ctl; 7768 7769 spin_lock(&ctl->tree_lock); 7770 if (ctl->free_space < 7771 num_bytes + empty_cluster + empty_size) { 7772 if (ctl->free_space > max_extent_size) 7773 max_extent_size = ctl->free_space; 7774 spin_unlock(&ctl->tree_lock); 7775 goto loop; 7776 } 7777 spin_unlock(&ctl->tree_lock); 7778 } 7779 7780 offset = btrfs_find_space_for_alloc(block_group, search_start, 7781 num_bytes, empty_size, 7782 &max_extent_size); 7783 /* 7784 * If we didn't find a chunk, and we haven't failed on this 7785 * block group before, and this block group is in the middle of 7786 * caching and we are ok with waiting, then go ahead and wait 7787 * for progress to be made, and set failed_alloc to true. 7788 * 7789 * If failed_alloc is true then we've already waited on this 7790 * block group once and should move on to the next block group. 7791 */ 7792 if (!offset && !failed_alloc && !cached && 7793 loop > LOOP_CACHING_NOWAIT) { 7794 wait_block_group_cache_progress(block_group, 7795 num_bytes + empty_size); 7796 failed_alloc = true; 7797 goto have_block_group; 7798 } else if (!offset) { 7799 goto loop; 7800 } 7801 checks: 7802 search_start = ALIGN(offset, fs_info->stripesize); 7803 7804 /* move on to the next group */ 7805 if (search_start + num_bytes > 7806 block_group->key.objectid + block_group->key.offset) { 7807 btrfs_add_free_space(block_group, offset, num_bytes); 7808 goto loop; 7809 } 7810 7811 if (offset < search_start) 7812 btrfs_add_free_space(block_group, offset, 7813 search_start - offset); 7814 BUG_ON(offset > search_start); 7815 7816 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7817 num_bytes, delalloc); 7818 if (ret == -EAGAIN) { 7819 btrfs_add_free_space(block_group, offset, num_bytes); 7820 goto loop; 7821 } 7822 btrfs_inc_block_group_reservations(block_group); 7823 7824 /* we are all good, lets return */ 7825 ins->objectid = search_start; 7826 ins->offset = num_bytes; 7827 7828 trace_btrfs_reserve_extent(block_group, search_start, num_bytes); 7829 btrfs_release_block_group(block_group, delalloc); 7830 break; 7831 loop: 7832 failed_cluster_refill = false; 7833 failed_alloc = false; 7834 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 7835 index); 7836 btrfs_release_block_group(block_group, delalloc); 7837 cond_resched(); 7838 } 7839 up_read(&space_info->groups_sem); 7840 7841 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7842 && !orig_have_caching_bg) 7843 orig_have_caching_bg = true; 7844 7845 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7846 goto search; 7847 7848 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7849 goto search; 7850 7851 /* 7852 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7853 * caching kthreads as we move along 7854 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7855 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7856 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7857 * again 7858 */ 7859 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7860 index = 0; 7861 if (loop == LOOP_CACHING_NOWAIT) { 7862 /* 7863 * We want to skip the LOOP_CACHING_WAIT step if we 7864 * don't have any uncached bgs and we've already done a 7865 * full search through. 7866 */ 7867 if (orig_have_caching_bg || !full_search) 7868 loop = LOOP_CACHING_WAIT; 7869 else 7870 loop = LOOP_ALLOC_CHUNK; 7871 } else { 7872 loop++; 7873 } 7874 7875 if (loop == LOOP_ALLOC_CHUNK) { 7876 struct btrfs_trans_handle *trans; 7877 int exist = 0; 7878 7879 trans = current->journal_info; 7880 if (trans) 7881 exist = 1; 7882 else 7883 trans = btrfs_join_transaction(root); 7884 7885 if (IS_ERR(trans)) { 7886 ret = PTR_ERR(trans); 7887 goto out; 7888 } 7889 7890 ret = do_chunk_alloc(trans, fs_info, flags, 7891 CHUNK_ALLOC_FORCE); 7892 7893 /* 7894 * If we can't allocate a new chunk we've already looped 7895 * through at least once, move on to the NO_EMPTY_SIZE 7896 * case. 7897 */ 7898 if (ret == -ENOSPC) 7899 loop = LOOP_NO_EMPTY_SIZE; 7900 7901 /* 7902 * Do not bail out on ENOSPC since we 7903 * can do more things. 7904 */ 7905 if (ret < 0 && ret != -ENOSPC) 7906 btrfs_abort_transaction(trans, ret); 7907 else 7908 ret = 0; 7909 if (!exist) 7910 btrfs_end_transaction(trans); 7911 if (ret) 7912 goto out; 7913 } 7914 7915 if (loop == LOOP_NO_EMPTY_SIZE) { 7916 /* 7917 * Don't loop again if we already have no empty_size and 7918 * no empty_cluster. 7919 */ 7920 if (empty_size == 0 && 7921 empty_cluster == 0) { 7922 ret = -ENOSPC; 7923 goto out; 7924 } 7925 empty_size = 0; 7926 empty_cluster = 0; 7927 } 7928 7929 goto search; 7930 } else if (!ins->objectid) { 7931 ret = -ENOSPC; 7932 } else if (ins->objectid) { 7933 if (!use_cluster && last_ptr) { 7934 spin_lock(&last_ptr->lock); 7935 last_ptr->window_start = ins->objectid; 7936 spin_unlock(&last_ptr->lock); 7937 } 7938 ret = 0; 7939 } 7940 out: 7941 if (ret == -ENOSPC) { 7942 spin_lock(&space_info->lock); 7943 space_info->max_extent_size = max_extent_size; 7944 spin_unlock(&space_info->lock); 7945 ins->offset = max_extent_size; 7946 } 7947 return ret; 7948 } 7949 7950 static void dump_space_info(struct btrfs_fs_info *fs_info, 7951 struct btrfs_space_info *info, u64 bytes, 7952 int dump_block_groups) 7953 { 7954 struct btrfs_block_group_cache *cache; 7955 int index = 0; 7956 7957 spin_lock(&info->lock); 7958 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7959 info->flags, 7960 info->total_bytes - btrfs_space_info_used(info, true), 7961 info->full ? "" : "not "); 7962 btrfs_info(fs_info, 7963 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7964 info->total_bytes, info->bytes_used, info->bytes_pinned, 7965 info->bytes_reserved, info->bytes_may_use, 7966 info->bytes_readonly); 7967 spin_unlock(&info->lock); 7968 7969 if (!dump_block_groups) 7970 return; 7971 7972 down_read(&info->groups_sem); 7973 again: 7974 list_for_each_entry(cache, &info->block_groups[index], list) { 7975 spin_lock(&cache->lock); 7976 btrfs_info(fs_info, 7977 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7978 cache->key.objectid, cache->key.offset, 7979 btrfs_block_group_used(&cache->item), cache->pinned, 7980 cache->reserved, cache->ro ? "[readonly]" : ""); 7981 btrfs_dump_free_space(cache, bytes); 7982 spin_unlock(&cache->lock); 7983 } 7984 if (++index < BTRFS_NR_RAID_TYPES) 7985 goto again; 7986 up_read(&info->groups_sem); 7987 } 7988 7989 /* 7990 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 7991 * hole that is at least as big as @num_bytes. 7992 * 7993 * @root - The root that will contain this extent 7994 * 7995 * @ram_bytes - The amount of space in ram that @num_bytes take. This 7996 * is used for accounting purposes. This value differs 7997 * from @num_bytes only in the case of compressed extents. 7998 * 7999 * @num_bytes - Number of bytes to allocate on-disk. 8000 * 8001 * @min_alloc_size - Indicates the minimum amount of space that the 8002 * allocator should try to satisfy. In some cases 8003 * @num_bytes may be larger than what is required and if 8004 * the filesystem is fragmented then allocation fails. 8005 * However, the presence of @min_alloc_size gives a 8006 * chance to try and satisfy the smaller allocation. 8007 * 8008 * @empty_size - A hint that you plan on doing more COW. This is the 8009 * size in bytes the allocator should try to find free 8010 * next to the block it returns. This is just a hint and 8011 * may be ignored by the allocator. 8012 * 8013 * @hint_byte - Hint to the allocator to start searching above the byte 8014 * address passed. It might be ignored. 8015 * 8016 * @ins - This key is modified to record the found hole. It will 8017 * have the following values: 8018 * ins->objectid == start position 8019 * ins->flags = BTRFS_EXTENT_ITEM_KEY 8020 * ins->offset == the size of the hole. 8021 * 8022 * @is_data - Boolean flag indicating whether an extent is 8023 * allocated for data (true) or metadata (false) 8024 * 8025 * @delalloc - Boolean flag indicating whether this allocation is for 8026 * delalloc or not. If 'true' data_rwsem of block groups 8027 * is going to be acquired. 8028 * 8029 * 8030 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 8031 * case -ENOSPC is returned then @ins->offset will contain the size of the 8032 * largest available hole the allocator managed to find. 8033 */ 8034 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 8035 u64 num_bytes, u64 min_alloc_size, 8036 u64 empty_size, u64 hint_byte, 8037 struct btrfs_key *ins, int is_data, int delalloc) 8038 { 8039 struct btrfs_fs_info *fs_info = root->fs_info; 8040 bool final_tried = num_bytes == min_alloc_size; 8041 u64 flags; 8042 int ret; 8043 8044 flags = get_alloc_profile_by_root(root, is_data); 8045 again: 8046 WARN_ON(num_bytes < fs_info->sectorsize); 8047 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8048 hint_byte, ins, flags, delalloc); 8049 if (!ret && !is_data) { 8050 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8051 } else if (ret == -ENOSPC) { 8052 if (!final_tried && ins->offset) { 8053 num_bytes = min(num_bytes >> 1, ins->offset); 8054 num_bytes = round_down(num_bytes, 8055 fs_info->sectorsize); 8056 num_bytes = max(num_bytes, min_alloc_size); 8057 ram_bytes = num_bytes; 8058 if (num_bytes == min_alloc_size) 8059 final_tried = true; 8060 goto again; 8061 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8062 struct btrfs_space_info *sinfo; 8063 8064 sinfo = __find_space_info(fs_info, flags); 8065 btrfs_err(fs_info, 8066 "allocation failed flags %llu, wanted %llu", 8067 flags, num_bytes); 8068 if (sinfo) 8069 dump_space_info(fs_info, sinfo, num_bytes, 1); 8070 } 8071 } 8072 8073 return ret; 8074 } 8075 8076 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8077 u64 start, u64 len, 8078 int pin, int delalloc) 8079 { 8080 struct btrfs_block_group_cache *cache; 8081 int ret = 0; 8082 8083 cache = btrfs_lookup_block_group(fs_info, start); 8084 if (!cache) { 8085 btrfs_err(fs_info, "Unable to find block group for %llu", 8086 start); 8087 return -ENOSPC; 8088 } 8089 8090 if (pin) 8091 pin_down_extent(fs_info, cache, start, len, 1); 8092 else { 8093 if (btrfs_test_opt(fs_info, DISCARD)) 8094 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8095 btrfs_add_free_space(cache, start, len); 8096 btrfs_free_reserved_bytes(cache, len, delalloc); 8097 trace_btrfs_reserved_extent_free(fs_info, start, len); 8098 } 8099 8100 btrfs_put_block_group(cache); 8101 return ret; 8102 } 8103 8104 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8105 u64 start, u64 len, int delalloc) 8106 { 8107 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8108 } 8109 8110 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8111 u64 start, u64 len) 8112 { 8113 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8114 } 8115 8116 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8117 struct btrfs_fs_info *fs_info, 8118 u64 parent, u64 root_objectid, 8119 u64 flags, u64 owner, u64 offset, 8120 struct btrfs_key *ins, int ref_mod) 8121 { 8122 int ret; 8123 struct btrfs_extent_item *extent_item; 8124 struct btrfs_extent_inline_ref *iref; 8125 struct btrfs_path *path; 8126 struct extent_buffer *leaf; 8127 int type; 8128 u32 size; 8129 8130 if (parent > 0) 8131 type = BTRFS_SHARED_DATA_REF_KEY; 8132 else 8133 type = BTRFS_EXTENT_DATA_REF_KEY; 8134 8135 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8136 8137 path = btrfs_alloc_path(); 8138 if (!path) 8139 return -ENOMEM; 8140 8141 path->leave_spinning = 1; 8142 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8143 ins, size); 8144 if (ret) { 8145 btrfs_free_path(path); 8146 return ret; 8147 } 8148 8149 leaf = path->nodes[0]; 8150 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8151 struct btrfs_extent_item); 8152 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8153 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8154 btrfs_set_extent_flags(leaf, extent_item, 8155 flags | BTRFS_EXTENT_FLAG_DATA); 8156 8157 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8158 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8159 if (parent > 0) { 8160 struct btrfs_shared_data_ref *ref; 8161 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8162 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8163 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8164 } else { 8165 struct btrfs_extent_data_ref *ref; 8166 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8167 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8168 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8169 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8170 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8171 } 8172 8173 btrfs_mark_buffer_dirty(path->nodes[0]); 8174 btrfs_free_path(path); 8175 8176 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8177 ins->offset); 8178 if (ret) 8179 return ret; 8180 8181 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8182 if (ret) { /* -ENOENT, logic error */ 8183 btrfs_err(fs_info, "update block group failed for %llu %llu", 8184 ins->objectid, ins->offset); 8185 BUG(); 8186 } 8187 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8188 return ret; 8189 } 8190 8191 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8192 struct btrfs_fs_info *fs_info, 8193 u64 parent, u64 root_objectid, 8194 u64 flags, struct btrfs_disk_key *key, 8195 int level, struct btrfs_key *ins) 8196 { 8197 int ret; 8198 struct btrfs_extent_item *extent_item; 8199 struct btrfs_tree_block_info *block_info; 8200 struct btrfs_extent_inline_ref *iref; 8201 struct btrfs_path *path; 8202 struct extent_buffer *leaf; 8203 u32 size = sizeof(*extent_item) + sizeof(*iref); 8204 u64 num_bytes = ins->offset; 8205 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8206 8207 if (!skinny_metadata) 8208 size += sizeof(*block_info); 8209 8210 path = btrfs_alloc_path(); 8211 if (!path) { 8212 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8213 fs_info->nodesize); 8214 return -ENOMEM; 8215 } 8216 8217 path->leave_spinning = 1; 8218 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8219 ins, size); 8220 if (ret) { 8221 btrfs_free_path(path); 8222 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8223 fs_info->nodesize); 8224 return ret; 8225 } 8226 8227 leaf = path->nodes[0]; 8228 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8229 struct btrfs_extent_item); 8230 btrfs_set_extent_refs(leaf, extent_item, 1); 8231 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8232 btrfs_set_extent_flags(leaf, extent_item, 8233 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8234 8235 if (skinny_metadata) { 8236 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8237 num_bytes = fs_info->nodesize; 8238 } else { 8239 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8240 btrfs_set_tree_block_key(leaf, block_info, key); 8241 btrfs_set_tree_block_level(leaf, block_info, level); 8242 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8243 } 8244 8245 if (parent > 0) { 8246 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8247 btrfs_set_extent_inline_ref_type(leaf, iref, 8248 BTRFS_SHARED_BLOCK_REF_KEY); 8249 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8250 } else { 8251 btrfs_set_extent_inline_ref_type(leaf, iref, 8252 BTRFS_TREE_BLOCK_REF_KEY); 8253 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8254 } 8255 8256 btrfs_mark_buffer_dirty(leaf); 8257 btrfs_free_path(path); 8258 8259 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8260 num_bytes); 8261 if (ret) 8262 return ret; 8263 8264 ret = update_block_group(trans, fs_info, ins->objectid, 8265 fs_info->nodesize, 1); 8266 if (ret) { /* -ENOENT, logic error */ 8267 btrfs_err(fs_info, "update block group failed for %llu %llu", 8268 ins->objectid, ins->offset); 8269 BUG(); 8270 } 8271 8272 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8273 fs_info->nodesize); 8274 return ret; 8275 } 8276 8277 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8278 struct btrfs_root *root, u64 owner, 8279 u64 offset, u64 ram_bytes, 8280 struct btrfs_key *ins) 8281 { 8282 struct btrfs_fs_info *fs_info = root->fs_info; 8283 int ret; 8284 8285 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8286 8287 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8288 root->root_key.objectid, owner, offset, 8289 BTRFS_ADD_DELAYED_EXTENT); 8290 8291 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8292 ins->offset, 0, 8293 root->root_key.objectid, owner, 8294 offset, ram_bytes, 8295 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8296 return ret; 8297 } 8298 8299 /* 8300 * this is used by the tree logging recovery code. It records that 8301 * an extent has been allocated and makes sure to clear the free 8302 * space cache bits as well 8303 */ 8304 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8305 struct btrfs_fs_info *fs_info, 8306 u64 root_objectid, u64 owner, u64 offset, 8307 struct btrfs_key *ins) 8308 { 8309 int ret; 8310 struct btrfs_block_group_cache *block_group; 8311 struct btrfs_space_info *space_info; 8312 8313 /* 8314 * Mixed block groups will exclude before processing the log so we only 8315 * need to do the exclude dance if this fs isn't mixed. 8316 */ 8317 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8318 ret = __exclude_logged_extent(fs_info, ins->objectid, 8319 ins->offset); 8320 if (ret) 8321 return ret; 8322 } 8323 8324 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8325 if (!block_group) 8326 return -EINVAL; 8327 8328 space_info = block_group->space_info; 8329 spin_lock(&space_info->lock); 8330 spin_lock(&block_group->lock); 8331 space_info->bytes_reserved += ins->offset; 8332 block_group->reserved += ins->offset; 8333 spin_unlock(&block_group->lock); 8334 spin_unlock(&space_info->lock); 8335 8336 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8337 0, owner, offset, ins, 1); 8338 btrfs_put_block_group(block_group); 8339 return ret; 8340 } 8341 8342 static struct extent_buffer * 8343 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8344 u64 bytenr, int level) 8345 { 8346 struct btrfs_fs_info *fs_info = root->fs_info; 8347 struct extent_buffer *buf; 8348 8349 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8350 if (IS_ERR(buf)) 8351 return buf; 8352 8353 btrfs_set_header_generation(buf, trans->transid); 8354 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8355 btrfs_tree_lock(buf); 8356 clean_tree_block(fs_info, buf); 8357 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8358 8359 btrfs_set_lock_blocking(buf); 8360 set_extent_buffer_uptodate(buf); 8361 8362 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8363 buf->log_index = root->log_transid % 2; 8364 /* 8365 * we allow two log transactions at a time, use different 8366 * EXENT bit to differentiate dirty pages. 8367 */ 8368 if (buf->log_index == 0) 8369 set_extent_dirty(&root->dirty_log_pages, buf->start, 8370 buf->start + buf->len - 1, GFP_NOFS); 8371 else 8372 set_extent_new(&root->dirty_log_pages, buf->start, 8373 buf->start + buf->len - 1); 8374 } else { 8375 buf->log_index = -1; 8376 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8377 buf->start + buf->len - 1, GFP_NOFS); 8378 } 8379 trans->dirty = true; 8380 /* this returns a buffer locked for blocking */ 8381 return buf; 8382 } 8383 8384 static struct btrfs_block_rsv * 8385 use_block_rsv(struct btrfs_trans_handle *trans, 8386 struct btrfs_root *root, u32 blocksize) 8387 { 8388 struct btrfs_fs_info *fs_info = root->fs_info; 8389 struct btrfs_block_rsv *block_rsv; 8390 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8391 int ret; 8392 bool global_updated = false; 8393 8394 block_rsv = get_block_rsv(trans, root); 8395 8396 if (unlikely(block_rsv->size == 0)) 8397 goto try_reserve; 8398 again: 8399 ret = block_rsv_use_bytes(block_rsv, blocksize); 8400 if (!ret) 8401 return block_rsv; 8402 8403 if (block_rsv->failfast) 8404 return ERR_PTR(ret); 8405 8406 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8407 global_updated = true; 8408 update_global_block_rsv(fs_info); 8409 goto again; 8410 } 8411 8412 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8413 static DEFINE_RATELIMIT_STATE(_rs, 8414 DEFAULT_RATELIMIT_INTERVAL * 10, 8415 /*DEFAULT_RATELIMIT_BURST*/ 1); 8416 if (__ratelimit(&_rs)) 8417 WARN(1, KERN_DEBUG 8418 "BTRFS: block rsv returned %d\n", ret); 8419 } 8420 try_reserve: 8421 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8422 BTRFS_RESERVE_NO_FLUSH); 8423 if (!ret) 8424 return block_rsv; 8425 /* 8426 * If we couldn't reserve metadata bytes try and use some from 8427 * the global reserve if its space type is the same as the global 8428 * reservation. 8429 */ 8430 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8431 block_rsv->space_info == global_rsv->space_info) { 8432 ret = block_rsv_use_bytes(global_rsv, blocksize); 8433 if (!ret) 8434 return global_rsv; 8435 } 8436 return ERR_PTR(ret); 8437 } 8438 8439 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8440 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8441 { 8442 block_rsv_add_bytes(block_rsv, blocksize, 0); 8443 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL); 8444 } 8445 8446 /* 8447 * finds a free extent and does all the dirty work required for allocation 8448 * returns the tree buffer or an ERR_PTR on error. 8449 */ 8450 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8451 struct btrfs_root *root, 8452 u64 parent, u64 root_objectid, 8453 const struct btrfs_disk_key *key, 8454 int level, u64 hint, 8455 u64 empty_size) 8456 { 8457 struct btrfs_fs_info *fs_info = root->fs_info; 8458 struct btrfs_key ins; 8459 struct btrfs_block_rsv *block_rsv; 8460 struct extent_buffer *buf; 8461 struct btrfs_delayed_extent_op *extent_op; 8462 u64 flags = 0; 8463 int ret; 8464 u32 blocksize = fs_info->nodesize; 8465 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8466 8467 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8468 if (btrfs_is_testing(fs_info)) { 8469 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8470 level); 8471 if (!IS_ERR(buf)) 8472 root->alloc_bytenr += blocksize; 8473 return buf; 8474 } 8475 #endif 8476 8477 block_rsv = use_block_rsv(trans, root, blocksize); 8478 if (IS_ERR(block_rsv)) 8479 return ERR_CAST(block_rsv); 8480 8481 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8482 empty_size, hint, &ins, 0, 0); 8483 if (ret) 8484 goto out_unuse; 8485 8486 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8487 if (IS_ERR(buf)) { 8488 ret = PTR_ERR(buf); 8489 goto out_free_reserved; 8490 } 8491 8492 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8493 if (parent == 0) 8494 parent = ins.objectid; 8495 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8496 } else 8497 BUG_ON(parent > 0); 8498 8499 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8500 extent_op = btrfs_alloc_delayed_extent_op(); 8501 if (!extent_op) { 8502 ret = -ENOMEM; 8503 goto out_free_buf; 8504 } 8505 if (key) 8506 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8507 else 8508 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8509 extent_op->flags_to_set = flags; 8510 extent_op->update_key = skinny_metadata ? false : true; 8511 extent_op->update_flags = true; 8512 extent_op->is_data = false; 8513 extent_op->level = level; 8514 8515 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8516 root_objectid, level, 0, 8517 BTRFS_ADD_DELAYED_EXTENT); 8518 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8519 ins.offset, parent, 8520 root_objectid, level, 8521 BTRFS_ADD_DELAYED_EXTENT, 8522 extent_op, NULL, NULL); 8523 if (ret) 8524 goto out_free_delayed; 8525 } 8526 return buf; 8527 8528 out_free_delayed: 8529 btrfs_free_delayed_extent_op(extent_op); 8530 out_free_buf: 8531 free_extent_buffer(buf); 8532 out_free_reserved: 8533 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8534 out_unuse: 8535 unuse_block_rsv(fs_info, block_rsv, blocksize); 8536 return ERR_PTR(ret); 8537 } 8538 8539 struct walk_control { 8540 u64 refs[BTRFS_MAX_LEVEL]; 8541 u64 flags[BTRFS_MAX_LEVEL]; 8542 struct btrfs_key update_progress; 8543 int stage; 8544 int level; 8545 int shared_level; 8546 int update_ref; 8547 int keep_locks; 8548 int reada_slot; 8549 int reada_count; 8550 int for_reloc; 8551 }; 8552 8553 #define DROP_REFERENCE 1 8554 #define UPDATE_BACKREF 2 8555 8556 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8557 struct btrfs_root *root, 8558 struct walk_control *wc, 8559 struct btrfs_path *path) 8560 { 8561 struct btrfs_fs_info *fs_info = root->fs_info; 8562 u64 bytenr; 8563 u64 generation; 8564 u64 refs; 8565 u64 flags; 8566 u32 nritems; 8567 struct btrfs_key key; 8568 struct extent_buffer *eb; 8569 int ret; 8570 int slot; 8571 int nread = 0; 8572 8573 if (path->slots[wc->level] < wc->reada_slot) { 8574 wc->reada_count = wc->reada_count * 2 / 3; 8575 wc->reada_count = max(wc->reada_count, 2); 8576 } else { 8577 wc->reada_count = wc->reada_count * 3 / 2; 8578 wc->reada_count = min_t(int, wc->reada_count, 8579 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8580 } 8581 8582 eb = path->nodes[wc->level]; 8583 nritems = btrfs_header_nritems(eb); 8584 8585 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8586 if (nread >= wc->reada_count) 8587 break; 8588 8589 cond_resched(); 8590 bytenr = btrfs_node_blockptr(eb, slot); 8591 generation = btrfs_node_ptr_generation(eb, slot); 8592 8593 if (slot == path->slots[wc->level]) 8594 goto reada; 8595 8596 if (wc->stage == UPDATE_BACKREF && 8597 generation <= root->root_key.offset) 8598 continue; 8599 8600 /* We don't lock the tree block, it's OK to be racy here */ 8601 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8602 wc->level - 1, 1, &refs, 8603 &flags); 8604 /* We don't care about errors in readahead. */ 8605 if (ret < 0) 8606 continue; 8607 BUG_ON(refs == 0); 8608 8609 if (wc->stage == DROP_REFERENCE) { 8610 if (refs == 1) 8611 goto reada; 8612 8613 if (wc->level == 1 && 8614 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8615 continue; 8616 if (!wc->update_ref || 8617 generation <= root->root_key.offset) 8618 continue; 8619 btrfs_node_key_to_cpu(eb, &key, slot); 8620 ret = btrfs_comp_cpu_keys(&key, 8621 &wc->update_progress); 8622 if (ret < 0) 8623 continue; 8624 } else { 8625 if (wc->level == 1 && 8626 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8627 continue; 8628 } 8629 reada: 8630 readahead_tree_block(fs_info, bytenr); 8631 nread++; 8632 } 8633 wc->reada_slot = slot; 8634 } 8635 8636 /* 8637 * helper to process tree block while walking down the tree. 8638 * 8639 * when wc->stage == UPDATE_BACKREF, this function updates 8640 * back refs for pointers in the block. 8641 * 8642 * NOTE: return value 1 means we should stop walking down. 8643 */ 8644 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8645 struct btrfs_root *root, 8646 struct btrfs_path *path, 8647 struct walk_control *wc, int lookup_info) 8648 { 8649 struct btrfs_fs_info *fs_info = root->fs_info; 8650 int level = wc->level; 8651 struct extent_buffer *eb = path->nodes[level]; 8652 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8653 int ret; 8654 8655 if (wc->stage == UPDATE_BACKREF && 8656 btrfs_header_owner(eb) != root->root_key.objectid) 8657 return 1; 8658 8659 /* 8660 * when reference count of tree block is 1, it won't increase 8661 * again. once full backref flag is set, we never clear it. 8662 */ 8663 if (lookup_info && 8664 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8665 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8666 BUG_ON(!path->locks[level]); 8667 ret = btrfs_lookup_extent_info(trans, fs_info, 8668 eb->start, level, 1, 8669 &wc->refs[level], 8670 &wc->flags[level]); 8671 BUG_ON(ret == -ENOMEM); 8672 if (ret) 8673 return ret; 8674 BUG_ON(wc->refs[level] == 0); 8675 } 8676 8677 if (wc->stage == DROP_REFERENCE) { 8678 if (wc->refs[level] > 1) 8679 return 1; 8680 8681 if (path->locks[level] && !wc->keep_locks) { 8682 btrfs_tree_unlock_rw(eb, path->locks[level]); 8683 path->locks[level] = 0; 8684 } 8685 return 0; 8686 } 8687 8688 /* wc->stage == UPDATE_BACKREF */ 8689 if (!(wc->flags[level] & flag)) { 8690 BUG_ON(!path->locks[level]); 8691 ret = btrfs_inc_ref(trans, root, eb, 1); 8692 BUG_ON(ret); /* -ENOMEM */ 8693 ret = btrfs_dec_ref(trans, root, eb, 0); 8694 BUG_ON(ret); /* -ENOMEM */ 8695 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8696 eb->len, flag, 8697 btrfs_header_level(eb), 0); 8698 BUG_ON(ret); /* -ENOMEM */ 8699 wc->flags[level] |= flag; 8700 } 8701 8702 /* 8703 * the block is shared by multiple trees, so it's not good to 8704 * keep the tree lock 8705 */ 8706 if (path->locks[level] && level > 0) { 8707 btrfs_tree_unlock_rw(eb, path->locks[level]); 8708 path->locks[level] = 0; 8709 } 8710 return 0; 8711 } 8712 8713 /* 8714 * helper to process tree block pointer. 8715 * 8716 * when wc->stage == DROP_REFERENCE, this function checks 8717 * reference count of the block pointed to. if the block 8718 * is shared and we need update back refs for the subtree 8719 * rooted at the block, this function changes wc->stage to 8720 * UPDATE_BACKREF. if the block is shared and there is no 8721 * need to update back, this function drops the reference 8722 * to the block. 8723 * 8724 * NOTE: return value 1 means we should stop walking down. 8725 */ 8726 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8727 struct btrfs_root *root, 8728 struct btrfs_path *path, 8729 struct walk_control *wc, int *lookup_info) 8730 { 8731 struct btrfs_fs_info *fs_info = root->fs_info; 8732 u64 bytenr; 8733 u64 generation; 8734 u64 parent; 8735 u32 blocksize; 8736 struct btrfs_key key; 8737 struct btrfs_key first_key; 8738 struct extent_buffer *next; 8739 int level = wc->level; 8740 int reada = 0; 8741 int ret = 0; 8742 bool need_account = false; 8743 8744 generation = btrfs_node_ptr_generation(path->nodes[level], 8745 path->slots[level]); 8746 /* 8747 * if the lower level block was created before the snapshot 8748 * was created, we know there is no need to update back refs 8749 * for the subtree 8750 */ 8751 if (wc->stage == UPDATE_BACKREF && 8752 generation <= root->root_key.offset) { 8753 *lookup_info = 1; 8754 return 1; 8755 } 8756 8757 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8758 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 8759 path->slots[level]); 8760 blocksize = fs_info->nodesize; 8761 8762 next = find_extent_buffer(fs_info, bytenr); 8763 if (!next) { 8764 next = btrfs_find_create_tree_block(fs_info, bytenr); 8765 if (IS_ERR(next)) 8766 return PTR_ERR(next); 8767 8768 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8769 level - 1); 8770 reada = 1; 8771 } 8772 btrfs_tree_lock(next); 8773 btrfs_set_lock_blocking(next); 8774 8775 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8776 &wc->refs[level - 1], 8777 &wc->flags[level - 1]); 8778 if (ret < 0) 8779 goto out_unlock; 8780 8781 if (unlikely(wc->refs[level - 1] == 0)) { 8782 btrfs_err(fs_info, "Missing references."); 8783 ret = -EIO; 8784 goto out_unlock; 8785 } 8786 *lookup_info = 0; 8787 8788 if (wc->stage == DROP_REFERENCE) { 8789 if (wc->refs[level - 1] > 1) { 8790 need_account = true; 8791 if (level == 1 && 8792 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8793 goto skip; 8794 8795 if (!wc->update_ref || 8796 generation <= root->root_key.offset) 8797 goto skip; 8798 8799 btrfs_node_key_to_cpu(path->nodes[level], &key, 8800 path->slots[level]); 8801 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8802 if (ret < 0) 8803 goto skip; 8804 8805 wc->stage = UPDATE_BACKREF; 8806 wc->shared_level = level - 1; 8807 } 8808 } else { 8809 if (level == 1 && 8810 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8811 goto skip; 8812 } 8813 8814 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8815 btrfs_tree_unlock(next); 8816 free_extent_buffer(next); 8817 next = NULL; 8818 *lookup_info = 1; 8819 } 8820 8821 if (!next) { 8822 if (reada && level == 1) 8823 reada_walk_down(trans, root, wc, path); 8824 next = read_tree_block(fs_info, bytenr, generation, level - 1, 8825 &first_key); 8826 if (IS_ERR(next)) { 8827 return PTR_ERR(next); 8828 } else if (!extent_buffer_uptodate(next)) { 8829 free_extent_buffer(next); 8830 return -EIO; 8831 } 8832 btrfs_tree_lock(next); 8833 btrfs_set_lock_blocking(next); 8834 } 8835 8836 level--; 8837 ASSERT(level == btrfs_header_level(next)); 8838 if (level != btrfs_header_level(next)) { 8839 btrfs_err(root->fs_info, "mismatched level"); 8840 ret = -EIO; 8841 goto out_unlock; 8842 } 8843 path->nodes[level] = next; 8844 path->slots[level] = 0; 8845 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8846 wc->level = level; 8847 if (wc->level == 1) 8848 wc->reada_slot = 0; 8849 return 0; 8850 skip: 8851 wc->refs[level - 1] = 0; 8852 wc->flags[level - 1] = 0; 8853 if (wc->stage == DROP_REFERENCE) { 8854 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8855 parent = path->nodes[level]->start; 8856 } else { 8857 ASSERT(root->root_key.objectid == 8858 btrfs_header_owner(path->nodes[level])); 8859 if (root->root_key.objectid != 8860 btrfs_header_owner(path->nodes[level])) { 8861 btrfs_err(root->fs_info, 8862 "mismatched block owner"); 8863 ret = -EIO; 8864 goto out_unlock; 8865 } 8866 parent = 0; 8867 } 8868 8869 if (need_account) { 8870 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8871 generation, level - 1); 8872 if (ret) { 8873 btrfs_err_rl(fs_info, 8874 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8875 ret); 8876 } 8877 } 8878 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8879 parent, root->root_key.objectid, 8880 level - 1, 0); 8881 if (ret) 8882 goto out_unlock; 8883 } 8884 8885 *lookup_info = 1; 8886 ret = 1; 8887 8888 out_unlock: 8889 btrfs_tree_unlock(next); 8890 free_extent_buffer(next); 8891 8892 return ret; 8893 } 8894 8895 /* 8896 * helper to process tree block while walking up the tree. 8897 * 8898 * when wc->stage == DROP_REFERENCE, this function drops 8899 * reference count on the block. 8900 * 8901 * when wc->stage == UPDATE_BACKREF, this function changes 8902 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8903 * to UPDATE_BACKREF previously while processing the block. 8904 * 8905 * NOTE: return value 1 means we should stop walking up. 8906 */ 8907 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8908 struct btrfs_root *root, 8909 struct btrfs_path *path, 8910 struct walk_control *wc) 8911 { 8912 struct btrfs_fs_info *fs_info = root->fs_info; 8913 int ret; 8914 int level = wc->level; 8915 struct extent_buffer *eb = path->nodes[level]; 8916 u64 parent = 0; 8917 8918 if (wc->stage == UPDATE_BACKREF) { 8919 BUG_ON(wc->shared_level < level); 8920 if (level < wc->shared_level) 8921 goto out; 8922 8923 ret = find_next_key(path, level + 1, &wc->update_progress); 8924 if (ret > 0) 8925 wc->update_ref = 0; 8926 8927 wc->stage = DROP_REFERENCE; 8928 wc->shared_level = -1; 8929 path->slots[level] = 0; 8930 8931 /* 8932 * check reference count again if the block isn't locked. 8933 * we should start walking down the tree again if reference 8934 * count is one. 8935 */ 8936 if (!path->locks[level]) { 8937 BUG_ON(level == 0); 8938 btrfs_tree_lock(eb); 8939 btrfs_set_lock_blocking(eb); 8940 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8941 8942 ret = btrfs_lookup_extent_info(trans, fs_info, 8943 eb->start, level, 1, 8944 &wc->refs[level], 8945 &wc->flags[level]); 8946 if (ret < 0) { 8947 btrfs_tree_unlock_rw(eb, path->locks[level]); 8948 path->locks[level] = 0; 8949 return ret; 8950 } 8951 BUG_ON(wc->refs[level] == 0); 8952 if (wc->refs[level] == 1) { 8953 btrfs_tree_unlock_rw(eb, path->locks[level]); 8954 path->locks[level] = 0; 8955 return 1; 8956 } 8957 } 8958 } 8959 8960 /* wc->stage == DROP_REFERENCE */ 8961 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8962 8963 if (wc->refs[level] == 1) { 8964 if (level == 0) { 8965 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8966 ret = btrfs_dec_ref(trans, root, eb, 1); 8967 else 8968 ret = btrfs_dec_ref(trans, root, eb, 0); 8969 BUG_ON(ret); /* -ENOMEM */ 8970 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8971 if (ret) { 8972 btrfs_err_rl(fs_info, 8973 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8974 ret); 8975 } 8976 } 8977 /* make block locked assertion in clean_tree_block happy */ 8978 if (!path->locks[level] && 8979 btrfs_header_generation(eb) == trans->transid) { 8980 btrfs_tree_lock(eb); 8981 btrfs_set_lock_blocking(eb); 8982 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8983 } 8984 clean_tree_block(fs_info, eb); 8985 } 8986 8987 if (eb == root->node) { 8988 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8989 parent = eb->start; 8990 else 8991 BUG_ON(root->root_key.objectid != 8992 btrfs_header_owner(eb)); 8993 } else { 8994 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8995 parent = path->nodes[level + 1]->start; 8996 else 8997 BUG_ON(root->root_key.objectid != 8998 btrfs_header_owner(path->nodes[level + 1])); 8999 } 9000 9001 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 9002 out: 9003 wc->refs[level] = 0; 9004 wc->flags[level] = 0; 9005 return 0; 9006 } 9007 9008 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 9009 struct btrfs_root *root, 9010 struct btrfs_path *path, 9011 struct walk_control *wc) 9012 { 9013 int level = wc->level; 9014 int lookup_info = 1; 9015 int ret; 9016 9017 while (level >= 0) { 9018 ret = walk_down_proc(trans, root, path, wc, lookup_info); 9019 if (ret > 0) 9020 break; 9021 9022 if (level == 0) 9023 break; 9024 9025 if (path->slots[level] >= 9026 btrfs_header_nritems(path->nodes[level])) 9027 break; 9028 9029 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9030 if (ret > 0) { 9031 path->slots[level]++; 9032 continue; 9033 } else if (ret < 0) 9034 return ret; 9035 level = wc->level; 9036 } 9037 return 0; 9038 } 9039 9040 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9041 struct btrfs_root *root, 9042 struct btrfs_path *path, 9043 struct walk_control *wc, int max_level) 9044 { 9045 int level = wc->level; 9046 int ret; 9047 9048 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9049 while (level < max_level && path->nodes[level]) { 9050 wc->level = level; 9051 if (path->slots[level] + 1 < 9052 btrfs_header_nritems(path->nodes[level])) { 9053 path->slots[level]++; 9054 return 0; 9055 } else { 9056 ret = walk_up_proc(trans, root, path, wc); 9057 if (ret > 0) 9058 return 0; 9059 9060 if (path->locks[level]) { 9061 btrfs_tree_unlock_rw(path->nodes[level], 9062 path->locks[level]); 9063 path->locks[level] = 0; 9064 } 9065 free_extent_buffer(path->nodes[level]); 9066 path->nodes[level] = NULL; 9067 level++; 9068 } 9069 } 9070 return 1; 9071 } 9072 9073 /* 9074 * drop a subvolume tree. 9075 * 9076 * this function traverses the tree freeing any blocks that only 9077 * referenced by the tree. 9078 * 9079 * when a shared tree block is found. this function decreases its 9080 * reference count by one. if update_ref is true, this function 9081 * also make sure backrefs for the shared block and all lower level 9082 * blocks are properly updated. 9083 * 9084 * If called with for_reloc == 0, may exit early with -EAGAIN 9085 */ 9086 int btrfs_drop_snapshot(struct btrfs_root *root, 9087 struct btrfs_block_rsv *block_rsv, int update_ref, 9088 int for_reloc) 9089 { 9090 struct btrfs_fs_info *fs_info = root->fs_info; 9091 struct btrfs_path *path; 9092 struct btrfs_trans_handle *trans; 9093 struct btrfs_root *tree_root = fs_info->tree_root; 9094 struct btrfs_root_item *root_item = &root->root_item; 9095 struct walk_control *wc; 9096 struct btrfs_key key; 9097 int err = 0; 9098 int ret; 9099 int level; 9100 bool root_dropped = false; 9101 9102 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9103 9104 path = btrfs_alloc_path(); 9105 if (!path) { 9106 err = -ENOMEM; 9107 goto out; 9108 } 9109 9110 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9111 if (!wc) { 9112 btrfs_free_path(path); 9113 err = -ENOMEM; 9114 goto out; 9115 } 9116 9117 trans = btrfs_start_transaction(tree_root, 0); 9118 if (IS_ERR(trans)) { 9119 err = PTR_ERR(trans); 9120 goto out_free; 9121 } 9122 9123 if (block_rsv) 9124 trans->block_rsv = block_rsv; 9125 9126 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9127 level = btrfs_header_level(root->node); 9128 path->nodes[level] = btrfs_lock_root_node(root); 9129 btrfs_set_lock_blocking(path->nodes[level]); 9130 path->slots[level] = 0; 9131 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9132 memset(&wc->update_progress, 0, 9133 sizeof(wc->update_progress)); 9134 } else { 9135 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9136 memcpy(&wc->update_progress, &key, 9137 sizeof(wc->update_progress)); 9138 9139 level = root_item->drop_level; 9140 BUG_ON(level == 0); 9141 path->lowest_level = level; 9142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9143 path->lowest_level = 0; 9144 if (ret < 0) { 9145 err = ret; 9146 goto out_end_trans; 9147 } 9148 WARN_ON(ret > 0); 9149 9150 /* 9151 * unlock our path, this is safe because only this 9152 * function is allowed to delete this snapshot 9153 */ 9154 btrfs_unlock_up_safe(path, 0); 9155 9156 level = btrfs_header_level(root->node); 9157 while (1) { 9158 btrfs_tree_lock(path->nodes[level]); 9159 btrfs_set_lock_blocking(path->nodes[level]); 9160 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9161 9162 ret = btrfs_lookup_extent_info(trans, fs_info, 9163 path->nodes[level]->start, 9164 level, 1, &wc->refs[level], 9165 &wc->flags[level]); 9166 if (ret < 0) { 9167 err = ret; 9168 goto out_end_trans; 9169 } 9170 BUG_ON(wc->refs[level] == 0); 9171 9172 if (level == root_item->drop_level) 9173 break; 9174 9175 btrfs_tree_unlock(path->nodes[level]); 9176 path->locks[level] = 0; 9177 WARN_ON(wc->refs[level] != 1); 9178 level--; 9179 } 9180 } 9181 9182 wc->level = level; 9183 wc->shared_level = -1; 9184 wc->stage = DROP_REFERENCE; 9185 wc->update_ref = update_ref; 9186 wc->keep_locks = 0; 9187 wc->for_reloc = for_reloc; 9188 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9189 9190 while (1) { 9191 9192 ret = walk_down_tree(trans, root, path, wc); 9193 if (ret < 0) { 9194 err = ret; 9195 break; 9196 } 9197 9198 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9199 if (ret < 0) { 9200 err = ret; 9201 break; 9202 } 9203 9204 if (ret > 0) { 9205 BUG_ON(wc->stage != DROP_REFERENCE); 9206 break; 9207 } 9208 9209 if (wc->stage == DROP_REFERENCE) { 9210 level = wc->level; 9211 btrfs_node_key(path->nodes[level], 9212 &root_item->drop_progress, 9213 path->slots[level]); 9214 root_item->drop_level = level; 9215 } 9216 9217 BUG_ON(wc->level == 0); 9218 if (btrfs_should_end_transaction(trans) || 9219 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9220 ret = btrfs_update_root(trans, tree_root, 9221 &root->root_key, 9222 root_item); 9223 if (ret) { 9224 btrfs_abort_transaction(trans, ret); 9225 err = ret; 9226 goto out_end_trans; 9227 } 9228 9229 btrfs_end_transaction_throttle(trans); 9230 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9231 btrfs_debug(fs_info, 9232 "drop snapshot early exit"); 9233 err = -EAGAIN; 9234 goto out_free; 9235 } 9236 9237 trans = btrfs_start_transaction(tree_root, 0); 9238 if (IS_ERR(trans)) { 9239 err = PTR_ERR(trans); 9240 goto out_free; 9241 } 9242 if (block_rsv) 9243 trans->block_rsv = block_rsv; 9244 } 9245 } 9246 btrfs_release_path(path); 9247 if (err) 9248 goto out_end_trans; 9249 9250 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9251 if (ret) { 9252 btrfs_abort_transaction(trans, ret); 9253 err = ret; 9254 goto out_end_trans; 9255 } 9256 9257 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9258 ret = btrfs_find_root(tree_root, &root->root_key, path, 9259 NULL, NULL); 9260 if (ret < 0) { 9261 btrfs_abort_transaction(trans, ret); 9262 err = ret; 9263 goto out_end_trans; 9264 } else if (ret > 0) { 9265 /* if we fail to delete the orphan item this time 9266 * around, it'll get picked up the next time. 9267 * 9268 * The most common failure here is just -ENOENT. 9269 */ 9270 btrfs_del_orphan_item(trans, tree_root, 9271 root->root_key.objectid); 9272 } 9273 } 9274 9275 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9276 btrfs_add_dropped_root(trans, root); 9277 } else { 9278 free_extent_buffer(root->node); 9279 free_extent_buffer(root->commit_root); 9280 btrfs_put_fs_root(root); 9281 } 9282 root_dropped = true; 9283 out_end_trans: 9284 btrfs_end_transaction_throttle(trans); 9285 out_free: 9286 kfree(wc); 9287 btrfs_free_path(path); 9288 out: 9289 /* 9290 * So if we need to stop dropping the snapshot for whatever reason we 9291 * need to make sure to add it back to the dead root list so that we 9292 * keep trying to do the work later. This also cleans up roots if we 9293 * don't have it in the radix (like when we recover after a power fail 9294 * or unmount) so we don't leak memory. 9295 */ 9296 if (!for_reloc && !root_dropped) 9297 btrfs_add_dead_root(root); 9298 if (err && err != -EAGAIN) 9299 btrfs_handle_fs_error(fs_info, err, NULL); 9300 return err; 9301 } 9302 9303 /* 9304 * drop subtree rooted at tree block 'node'. 9305 * 9306 * NOTE: this function will unlock and release tree block 'node' 9307 * only used by relocation code 9308 */ 9309 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9310 struct btrfs_root *root, 9311 struct extent_buffer *node, 9312 struct extent_buffer *parent) 9313 { 9314 struct btrfs_fs_info *fs_info = root->fs_info; 9315 struct btrfs_path *path; 9316 struct walk_control *wc; 9317 int level; 9318 int parent_level; 9319 int ret = 0; 9320 int wret; 9321 9322 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9323 9324 path = btrfs_alloc_path(); 9325 if (!path) 9326 return -ENOMEM; 9327 9328 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9329 if (!wc) { 9330 btrfs_free_path(path); 9331 return -ENOMEM; 9332 } 9333 9334 btrfs_assert_tree_locked(parent); 9335 parent_level = btrfs_header_level(parent); 9336 extent_buffer_get(parent); 9337 path->nodes[parent_level] = parent; 9338 path->slots[parent_level] = btrfs_header_nritems(parent); 9339 9340 btrfs_assert_tree_locked(node); 9341 level = btrfs_header_level(node); 9342 path->nodes[level] = node; 9343 path->slots[level] = 0; 9344 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9345 9346 wc->refs[parent_level] = 1; 9347 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9348 wc->level = level; 9349 wc->shared_level = -1; 9350 wc->stage = DROP_REFERENCE; 9351 wc->update_ref = 0; 9352 wc->keep_locks = 1; 9353 wc->for_reloc = 1; 9354 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9355 9356 while (1) { 9357 wret = walk_down_tree(trans, root, path, wc); 9358 if (wret < 0) { 9359 ret = wret; 9360 break; 9361 } 9362 9363 wret = walk_up_tree(trans, root, path, wc, parent_level); 9364 if (wret < 0) 9365 ret = wret; 9366 if (wret != 0) 9367 break; 9368 } 9369 9370 kfree(wc); 9371 btrfs_free_path(path); 9372 return ret; 9373 } 9374 9375 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9376 { 9377 u64 num_devices; 9378 u64 stripped; 9379 9380 /* 9381 * if restripe for this chunk_type is on pick target profile and 9382 * return, otherwise do the usual balance 9383 */ 9384 stripped = get_restripe_target(fs_info, flags); 9385 if (stripped) 9386 return extended_to_chunk(stripped); 9387 9388 num_devices = fs_info->fs_devices->rw_devices; 9389 9390 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9391 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9392 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9393 9394 if (num_devices == 1) { 9395 stripped |= BTRFS_BLOCK_GROUP_DUP; 9396 stripped = flags & ~stripped; 9397 9398 /* turn raid0 into single device chunks */ 9399 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9400 return stripped; 9401 9402 /* turn mirroring into duplication */ 9403 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9404 BTRFS_BLOCK_GROUP_RAID10)) 9405 return stripped | BTRFS_BLOCK_GROUP_DUP; 9406 } else { 9407 /* they already had raid on here, just return */ 9408 if (flags & stripped) 9409 return flags; 9410 9411 stripped |= BTRFS_BLOCK_GROUP_DUP; 9412 stripped = flags & ~stripped; 9413 9414 /* switch duplicated blocks with raid1 */ 9415 if (flags & BTRFS_BLOCK_GROUP_DUP) 9416 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9417 9418 /* this is drive concat, leave it alone */ 9419 } 9420 9421 return flags; 9422 } 9423 9424 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9425 { 9426 struct btrfs_space_info *sinfo = cache->space_info; 9427 u64 num_bytes; 9428 u64 min_allocable_bytes; 9429 int ret = -ENOSPC; 9430 9431 /* 9432 * We need some metadata space and system metadata space for 9433 * allocating chunks in some corner cases until we force to set 9434 * it to be readonly. 9435 */ 9436 if ((sinfo->flags & 9437 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9438 !force) 9439 min_allocable_bytes = SZ_1M; 9440 else 9441 min_allocable_bytes = 0; 9442 9443 spin_lock(&sinfo->lock); 9444 spin_lock(&cache->lock); 9445 9446 if (cache->ro) { 9447 cache->ro++; 9448 ret = 0; 9449 goto out; 9450 } 9451 9452 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9453 cache->bytes_super - btrfs_block_group_used(&cache->item); 9454 9455 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9456 min_allocable_bytes <= sinfo->total_bytes) { 9457 sinfo->bytes_readonly += num_bytes; 9458 cache->ro++; 9459 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9460 ret = 0; 9461 } 9462 out: 9463 spin_unlock(&cache->lock); 9464 spin_unlock(&sinfo->lock); 9465 return ret; 9466 } 9467 9468 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9469 struct btrfs_block_group_cache *cache) 9470 9471 { 9472 struct btrfs_trans_handle *trans; 9473 u64 alloc_flags; 9474 int ret; 9475 9476 again: 9477 trans = btrfs_join_transaction(fs_info->extent_root); 9478 if (IS_ERR(trans)) 9479 return PTR_ERR(trans); 9480 9481 /* 9482 * we're not allowed to set block groups readonly after the dirty 9483 * block groups cache has started writing. If it already started, 9484 * back off and let this transaction commit 9485 */ 9486 mutex_lock(&fs_info->ro_block_group_mutex); 9487 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9488 u64 transid = trans->transid; 9489 9490 mutex_unlock(&fs_info->ro_block_group_mutex); 9491 btrfs_end_transaction(trans); 9492 9493 ret = btrfs_wait_for_commit(fs_info, transid); 9494 if (ret) 9495 return ret; 9496 goto again; 9497 } 9498 9499 /* 9500 * if we are changing raid levels, try to allocate a corresponding 9501 * block group with the new raid level. 9502 */ 9503 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9504 if (alloc_flags != cache->flags) { 9505 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9506 CHUNK_ALLOC_FORCE); 9507 /* 9508 * ENOSPC is allowed here, we may have enough space 9509 * already allocated at the new raid level to 9510 * carry on 9511 */ 9512 if (ret == -ENOSPC) 9513 ret = 0; 9514 if (ret < 0) 9515 goto out; 9516 } 9517 9518 ret = inc_block_group_ro(cache, 0); 9519 if (!ret) 9520 goto out; 9521 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9522 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9523 CHUNK_ALLOC_FORCE); 9524 if (ret < 0) 9525 goto out; 9526 ret = inc_block_group_ro(cache, 0); 9527 out: 9528 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9529 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9530 mutex_lock(&fs_info->chunk_mutex); 9531 check_system_chunk(trans, fs_info, alloc_flags); 9532 mutex_unlock(&fs_info->chunk_mutex); 9533 } 9534 mutex_unlock(&fs_info->ro_block_group_mutex); 9535 9536 btrfs_end_transaction(trans); 9537 return ret; 9538 } 9539 9540 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9541 struct btrfs_fs_info *fs_info, u64 type) 9542 { 9543 u64 alloc_flags = get_alloc_profile(fs_info, type); 9544 9545 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9546 } 9547 9548 /* 9549 * helper to account the unused space of all the readonly block group in the 9550 * space_info. takes mirrors into account. 9551 */ 9552 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9553 { 9554 struct btrfs_block_group_cache *block_group; 9555 u64 free_bytes = 0; 9556 int factor; 9557 9558 /* It's df, we don't care if it's racy */ 9559 if (list_empty(&sinfo->ro_bgs)) 9560 return 0; 9561 9562 spin_lock(&sinfo->lock); 9563 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9564 spin_lock(&block_group->lock); 9565 9566 if (!block_group->ro) { 9567 spin_unlock(&block_group->lock); 9568 continue; 9569 } 9570 9571 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9572 BTRFS_BLOCK_GROUP_RAID10 | 9573 BTRFS_BLOCK_GROUP_DUP)) 9574 factor = 2; 9575 else 9576 factor = 1; 9577 9578 free_bytes += (block_group->key.offset - 9579 btrfs_block_group_used(&block_group->item)) * 9580 factor; 9581 9582 spin_unlock(&block_group->lock); 9583 } 9584 spin_unlock(&sinfo->lock); 9585 9586 return free_bytes; 9587 } 9588 9589 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9590 { 9591 struct btrfs_space_info *sinfo = cache->space_info; 9592 u64 num_bytes; 9593 9594 BUG_ON(!cache->ro); 9595 9596 spin_lock(&sinfo->lock); 9597 spin_lock(&cache->lock); 9598 if (!--cache->ro) { 9599 num_bytes = cache->key.offset - cache->reserved - 9600 cache->pinned - cache->bytes_super - 9601 btrfs_block_group_used(&cache->item); 9602 sinfo->bytes_readonly -= num_bytes; 9603 list_del_init(&cache->ro_list); 9604 } 9605 spin_unlock(&cache->lock); 9606 spin_unlock(&sinfo->lock); 9607 } 9608 9609 /* 9610 * checks to see if its even possible to relocate this block group. 9611 * 9612 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9613 * ok to go ahead and try. 9614 */ 9615 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9616 { 9617 struct btrfs_root *root = fs_info->extent_root; 9618 struct btrfs_block_group_cache *block_group; 9619 struct btrfs_space_info *space_info; 9620 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9621 struct btrfs_device *device; 9622 struct btrfs_trans_handle *trans; 9623 u64 min_free; 9624 u64 dev_min = 1; 9625 u64 dev_nr = 0; 9626 u64 target; 9627 int debug; 9628 int index; 9629 int full = 0; 9630 int ret = 0; 9631 9632 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9633 9634 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9635 9636 /* odd, couldn't find the block group, leave it alone */ 9637 if (!block_group) { 9638 if (debug) 9639 btrfs_warn(fs_info, 9640 "can't find block group for bytenr %llu", 9641 bytenr); 9642 return -1; 9643 } 9644 9645 min_free = btrfs_block_group_used(&block_group->item); 9646 9647 /* no bytes used, we're good */ 9648 if (!min_free) 9649 goto out; 9650 9651 space_info = block_group->space_info; 9652 spin_lock(&space_info->lock); 9653 9654 full = space_info->full; 9655 9656 /* 9657 * if this is the last block group we have in this space, we can't 9658 * relocate it unless we're able to allocate a new chunk below. 9659 * 9660 * Otherwise, we need to make sure we have room in the space to handle 9661 * all of the extents from this block group. If we can, we're good 9662 */ 9663 if ((space_info->total_bytes != block_group->key.offset) && 9664 (btrfs_space_info_used(space_info, false) + min_free < 9665 space_info->total_bytes)) { 9666 spin_unlock(&space_info->lock); 9667 goto out; 9668 } 9669 spin_unlock(&space_info->lock); 9670 9671 /* 9672 * ok we don't have enough space, but maybe we have free space on our 9673 * devices to allocate new chunks for relocation, so loop through our 9674 * alloc devices and guess if we have enough space. if this block 9675 * group is going to be restriped, run checks against the target 9676 * profile instead of the current one. 9677 */ 9678 ret = -1; 9679 9680 /* 9681 * index: 9682 * 0: raid10 9683 * 1: raid1 9684 * 2: dup 9685 * 3: raid0 9686 * 4: single 9687 */ 9688 target = get_restripe_target(fs_info, block_group->flags); 9689 if (target) { 9690 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); 9691 } else { 9692 /* 9693 * this is just a balance, so if we were marked as full 9694 * we know there is no space for a new chunk 9695 */ 9696 if (full) { 9697 if (debug) 9698 btrfs_warn(fs_info, 9699 "no space to alloc new chunk for block group %llu", 9700 block_group->key.objectid); 9701 goto out; 9702 } 9703 9704 index = btrfs_bg_flags_to_raid_index(block_group->flags); 9705 } 9706 9707 if (index == BTRFS_RAID_RAID10) { 9708 dev_min = 4; 9709 /* Divide by 2 */ 9710 min_free >>= 1; 9711 } else if (index == BTRFS_RAID_RAID1) { 9712 dev_min = 2; 9713 } else if (index == BTRFS_RAID_DUP) { 9714 /* Multiply by 2 */ 9715 min_free <<= 1; 9716 } else if (index == BTRFS_RAID_RAID0) { 9717 dev_min = fs_devices->rw_devices; 9718 min_free = div64_u64(min_free, dev_min); 9719 } 9720 9721 /* We need to do this so that we can look at pending chunks */ 9722 trans = btrfs_join_transaction(root); 9723 if (IS_ERR(trans)) { 9724 ret = PTR_ERR(trans); 9725 goto out; 9726 } 9727 9728 mutex_lock(&fs_info->chunk_mutex); 9729 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9730 u64 dev_offset; 9731 9732 /* 9733 * check to make sure we can actually find a chunk with enough 9734 * space to fit our block group in. 9735 */ 9736 if (device->total_bytes > device->bytes_used + min_free && 9737 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 9738 ret = find_free_dev_extent(trans, device, min_free, 9739 &dev_offset, NULL); 9740 if (!ret) 9741 dev_nr++; 9742 9743 if (dev_nr >= dev_min) 9744 break; 9745 9746 ret = -1; 9747 } 9748 } 9749 if (debug && ret == -1) 9750 btrfs_warn(fs_info, 9751 "no space to allocate a new chunk for block group %llu", 9752 block_group->key.objectid); 9753 mutex_unlock(&fs_info->chunk_mutex); 9754 btrfs_end_transaction(trans); 9755 out: 9756 btrfs_put_block_group(block_group); 9757 return ret; 9758 } 9759 9760 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9761 struct btrfs_path *path, 9762 struct btrfs_key *key) 9763 { 9764 struct btrfs_root *root = fs_info->extent_root; 9765 int ret = 0; 9766 struct btrfs_key found_key; 9767 struct extent_buffer *leaf; 9768 int slot; 9769 9770 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9771 if (ret < 0) 9772 goto out; 9773 9774 while (1) { 9775 slot = path->slots[0]; 9776 leaf = path->nodes[0]; 9777 if (slot >= btrfs_header_nritems(leaf)) { 9778 ret = btrfs_next_leaf(root, path); 9779 if (ret == 0) 9780 continue; 9781 if (ret < 0) 9782 goto out; 9783 break; 9784 } 9785 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9786 9787 if (found_key.objectid >= key->objectid && 9788 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9789 struct extent_map_tree *em_tree; 9790 struct extent_map *em; 9791 9792 em_tree = &root->fs_info->mapping_tree.map_tree; 9793 read_lock(&em_tree->lock); 9794 em = lookup_extent_mapping(em_tree, found_key.objectid, 9795 found_key.offset); 9796 read_unlock(&em_tree->lock); 9797 if (!em) { 9798 btrfs_err(fs_info, 9799 "logical %llu len %llu found bg but no related chunk", 9800 found_key.objectid, found_key.offset); 9801 ret = -ENOENT; 9802 } else { 9803 ret = 0; 9804 } 9805 free_extent_map(em); 9806 goto out; 9807 } 9808 path->slots[0]++; 9809 } 9810 out: 9811 return ret; 9812 } 9813 9814 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9815 { 9816 struct btrfs_block_group_cache *block_group; 9817 u64 last = 0; 9818 9819 while (1) { 9820 struct inode *inode; 9821 9822 block_group = btrfs_lookup_first_block_group(info, last); 9823 while (block_group) { 9824 spin_lock(&block_group->lock); 9825 if (block_group->iref) 9826 break; 9827 spin_unlock(&block_group->lock); 9828 block_group = next_block_group(info, block_group); 9829 } 9830 if (!block_group) { 9831 if (last == 0) 9832 break; 9833 last = 0; 9834 continue; 9835 } 9836 9837 inode = block_group->inode; 9838 block_group->iref = 0; 9839 block_group->inode = NULL; 9840 spin_unlock(&block_group->lock); 9841 ASSERT(block_group->io_ctl.inode == NULL); 9842 iput(inode); 9843 last = block_group->key.objectid + block_group->key.offset; 9844 btrfs_put_block_group(block_group); 9845 } 9846 } 9847 9848 /* 9849 * Must be called only after stopping all workers, since we could have block 9850 * group caching kthreads running, and therefore they could race with us if we 9851 * freed the block groups before stopping them. 9852 */ 9853 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9854 { 9855 struct btrfs_block_group_cache *block_group; 9856 struct btrfs_space_info *space_info; 9857 struct btrfs_caching_control *caching_ctl; 9858 struct rb_node *n; 9859 9860 down_write(&info->commit_root_sem); 9861 while (!list_empty(&info->caching_block_groups)) { 9862 caching_ctl = list_entry(info->caching_block_groups.next, 9863 struct btrfs_caching_control, list); 9864 list_del(&caching_ctl->list); 9865 put_caching_control(caching_ctl); 9866 } 9867 up_write(&info->commit_root_sem); 9868 9869 spin_lock(&info->unused_bgs_lock); 9870 while (!list_empty(&info->unused_bgs)) { 9871 block_group = list_first_entry(&info->unused_bgs, 9872 struct btrfs_block_group_cache, 9873 bg_list); 9874 list_del_init(&block_group->bg_list); 9875 btrfs_put_block_group(block_group); 9876 } 9877 spin_unlock(&info->unused_bgs_lock); 9878 9879 spin_lock(&info->block_group_cache_lock); 9880 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9881 block_group = rb_entry(n, struct btrfs_block_group_cache, 9882 cache_node); 9883 rb_erase(&block_group->cache_node, 9884 &info->block_group_cache_tree); 9885 RB_CLEAR_NODE(&block_group->cache_node); 9886 spin_unlock(&info->block_group_cache_lock); 9887 9888 down_write(&block_group->space_info->groups_sem); 9889 list_del(&block_group->list); 9890 up_write(&block_group->space_info->groups_sem); 9891 9892 /* 9893 * We haven't cached this block group, which means we could 9894 * possibly have excluded extents on this block group. 9895 */ 9896 if (block_group->cached == BTRFS_CACHE_NO || 9897 block_group->cached == BTRFS_CACHE_ERROR) 9898 free_excluded_extents(info, block_group); 9899 9900 btrfs_remove_free_space_cache(block_group); 9901 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9902 ASSERT(list_empty(&block_group->dirty_list)); 9903 ASSERT(list_empty(&block_group->io_list)); 9904 ASSERT(list_empty(&block_group->bg_list)); 9905 ASSERT(atomic_read(&block_group->count) == 1); 9906 btrfs_put_block_group(block_group); 9907 9908 spin_lock(&info->block_group_cache_lock); 9909 } 9910 spin_unlock(&info->block_group_cache_lock); 9911 9912 /* now that all the block groups are freed, go through and 9913 * free all the space_info structs. This is only called during 9914 * the final stages of unmount, and so we know nobody is 9915 * using them. We call synchronize_rcu() once before we start, 9916 * just to be on the safe side. 9917 */ 9918 synchronize_rcu(); 9919 9920 release_global_block_rsv(info); 9921 9922 while (!list_empty(&info->space_info)) { 9923 int i; 9924 9925 space_info = list_entry(info->space_info.next, 9926 struct btrfs_space_info, 9927 list); 9928 9929 /* 9930 * Do not hide this behind enospc_debug, this is actually 9931 * important and indicates a real bug if this happens. 9932 */ 9933 if (WARN_ON(space_info->bytes_pinned > 0 || 9934 space_info->bytes_reserved > 0 || 9935 space_info->bytes_may_use > 0)) 9936 dump_space_info(info, space_info, 0, 0); 9937 list_del(&space_info->list); 9938 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9939 struct kobject *kobj; 9940 kobj = space_info->block_group_kobjs[i]; 9941 space_info->block_group_kobjs[i] = NULL; 9942 if (kobj) { 9943 kobject_del(kobj); 9944 kobject_put(kobj); 9945 } 9946 } 9947 kobject_del(&space_info->kobj); 9948 kobject_put(&space_info->kobj); 9949 } 9950 return 0; 9951 } 9952 9953 /* link_block_group will queue up kobjects to add when we're reclaim-safe */ 9954 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) 9955 { 9956 struct btrfs_space_info *space_info; 9957 struct raid_kobject *rkobj; 9958 LIST_HEAD(list); 9959 int index; 9960 int ret = 0; 9961 9962 spin_lock(&fs_info->pending_raid_kobjs_lock); 9963 list_splice_init(&fs_info->pending_raid_kobjs, &list); 9964 spin_unlock(&fs_info->pending_raid_kobjs_lock); 9965 9966 list_for_each_entry(rkobj, &list, list) { 9967 space_info = __find_space_info(fs_info, rkobj->flags); 9968 index = btrfs_bg_flags_to_raid_index(rkobj->flags); 9969 9970 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9971 "%s", get_raid_name(index)); 9972 if (ret) { 9973 kobject_put(&rkobj->kobj); 9974 break; 9975 } 9976 } 9977 if (ret) 9978 btrfs_warn(fs_info, 9979 "failed to add kobject for block cache, ignoring"); 9980 } 9981 9982 static void link_block_group(struct btrfs_block_group_cache *cache) 9983 { 9984 struct btrfs_space_info *space_info = cache->space_info; 9985 struct btrfs_fs_info *fs_info = cache->fs_info; 9986 int index = btrfs_bg_flags_to_raid_index(cache->flags); 9987 bool first = false; 9988 9989 down_write(&space_info->groups_sem); 9990 if (list_empty(&space_info->block_groups[index])) 9991 first = true; 9992 list_add_tail(&cache->list, &space_info->block_groups[index]); 9993 up_write(&space_info->groups_sem); 9994 9995 if (first) { 9996 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9997 if (!rkobj) { 9998 btrfs_warn(cache->fs_info, 9999 "couldn't alloc memory for raid level kobject"); 10000 return; 10001 } 10002 rkobj->flags = cache->flags; 10003 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 10004 10005 spin_lock(&fs_info->pending_raid_kobjs_lock); 10006 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); 10007 spin_unlock(&fs_info->pending_raid_kobjs_lock); 10008 space_info->block_group_kobjs[index] = &rkobj->kobj; 10009 } 10010 } 10011 10012 static struct btrfs_block_group_cache * 10013 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 10014 u64 start, u64 size) 10015 { 10016 struct btrfs_block_group_cache *cache; 10017 10018 cache = kzalloc(sizeof(*cache), GFP_NOFS); 10019 if (!cache) 10020 return NULL; 10021 10022 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 10023 GFP_NOFS); 10024 if (!cache->free_space_ctl) { 10025 kfree(cache); 10026 return NULL; 10027 } 10028 10029 cache->key.objectid = start; 10030 cache->key.offset = size; 10031 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10032 10033 cache->fs_info = fs_info; 10034 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 10035 set_free_space_tree_thresholds(cache); 10036 10037 atomic_set(&cache->count, 1); 10038 spin_lock_init(&cache->lock); 10039 init_rwsem(&cache->data_rwsem); 10040 INIT_LIST_HEAD(&cache->list); 10041 INIT_LIST_HEAD(&cache->cluster_list); 10042 INIT_LIST_HEAD(&cache->bg_list); 10043 INIT_LIST_HEAD(&cache->ro_list); 10044 INIT_LIST_HEAD(&cache->dirty_list); 10045 INIT_LIST_HEAD(&cache->io_list); 10046 btrfs_init_free_space_ctl(cache); 10047 atomic_set(&cache->trimming, 0); 10048 mutex_init(&cache->free_space_lock); 10049 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 10050 10051 return cache; 10052 } 10053 10054 int btrfs_read_block_groups(struct btrfs_fs_info *info) 10055 { 10056 struct btrfs_path *path; 10057 int ret; 10058 struct btrfs_block_group_cache *cache; 10059 struct btrfs_space_info *space_info; 10060 struct btrfs_key key; 10061 struct btrfs_key found_key; 10062 struct extent_buffer *leaf; 10063 int need_clear = 0; 10064 u64 cache_gen; 10065 u64 feature; 10066 int mixed; 10067 10068 feature = btrfs_super_incompat_flags(info->super_copy); 10069 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10070 10071 key.objectid = 0; 10072 key.offset = 0; 10073 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10074 path = btrfs_alloc_path(); 10075 if (!path) 10076 return -ENOMEM; 10077 path->reada = READA_FORWARD; 10078 10079 cache_gen = btrfs_super_cache_generation(info->super_copy); 10080 if (btrfs_test_opt(info, SPACE_CACHE) && 10081 btrfs_super_generation(info->super_copy) != cache_gen) 10082 need_clear = 1; 10083 if (btrfs_test_opt(info, CLEAR_CACHE)) 10084 need_clear = 1; 10085 10086 while (1) { 10087 ret = find_first_block_group(info, path, &key); 10088 if (ret > 0) 10089 break; 10090 if (ret != 0) 10091 goto error; 10092 10093 leaf = path->nodes[0]; 10094 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10095 10096 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10097 found_key.offset); 10098 if (!cache) { 10099 ret = -ENOMEM; 10100 goto error; 10101 } 10102 10103 if (need_clear) { 10104 /* 10105 * When we mount with old space cache, we need to 10106 * set BTRFS_DC_CLEAR and set dirty flag. 10107 * 10108 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10109 * truncate the old free space cache inode and 10110 * setup a new one. 10111 * b) Setting 'dirty flag' makes sure that we flush 10112 * the new space cache info onto disk. 10113 */ 10114 if (btrfs_test_opt(info, SPACE_CACHE)) 10115 cache->disk_cache_state = BTRFS_DC_CLEAR; 10116 } 10117 10118 read_extent_buffer(leaf, &cache->item, 10119 btrfs_item_ptr_offset(leaf, path->slots[0]), 10120 sizeof(cache->item)); 10121 cache->flags = btrfs_block_group_flags(&cache->item); 10122 if (!mixed && 10123 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10124 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10125 btrfs_err(info, 10126 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10127 cache->key.objectid); 10128 ret = -EINVAL; 10129 goto error; 10130 } 10131 10132 key.objectid = found_key.objectid + found_key.offset; 10133 btrfs_release_path(path); 10134 10135 /* 10136 * We need to exclude the super stripes now so that the space 10137 * info has super bytes accounted for, otherwise we'll think 10138 * we have more space than we actually do. 10139 */ 10140 ret = exclude_super_stripes(info, cache); 10141 if (ret) { 10142 /* 10143 * We may have excluded something, so call this just in 10144 * case. 10145 */ 10146 free_excluded_extents(info, cache); 10147 btrfs_put_block_group(cache); 10148 goto error; 10149 } 10150 10151 /* 10152 * check for two cases, either we are full, and therefore 10153 * don't need to bother with the caching work since we won't 10154 * find any space, or we are empty, and we can just add all 10155 * the space in and be done with it. This saves us _alot_ of 10156 * time, particularly in the full case. 10157 */ 10158 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10159 cache->last_byte_to_unpin = (u64)-1; 10160 cache->cached = BTRFS_CACHE_FINISHED; 10161 free_excluded_extents(info, cache); 10162 } else if (btrfs_block_group_used(&cache->item) == 0) { 10163 cache->last_byte_to_unpin = (u64)-1; 10164 cache->cached = BTRFS_CACHE_FINISHED; 10165 add_new_free_space(cache, found_key.objectid, 10166 found_key.objectid + 10167 found_key.offset); 10168 free_excluded_extents(info, cache); 10169 } 10170 10171 ret = btrfs_add_block_group_cache(info, cache); 10172 if (ret) { 10173 btrfs_remove_free_space_cache(cache); 10174 btrfs_put_block_group(cache); 10175 goto error; 10176 } 10177 10178 trace_btrfs_add_block_group(info, cache, 0); 10179 update_space_info(info, cache->flags, found_key.offset, 10180 btrfs_block_group_used(&cache->item), 10181 cache->bytes_super, &space_info); 10182 10183 cache->space_info = space_info; 10184 10185 link_block_group(cache); 10186 10187 set_avail_alloc_bits(info, cache->flags); 10188 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10189 inc_block_group_ro(cache, 1); 10190 } else if (btrfs_block_group_used(&cache->item) == 0) { 10191 spin_lock(&info->unused_bgs_lock); 10192 /* Should always be true but just in case. */ 10193 if (list_empty(&cache->bg_list)) { 10194 btrfs_get_block_group(cache); 10195 trace_btrfs_add_unused_block_group(cache); 10196 list_add_tail(&cache->bg_list, 10197 &info->unused_bgs); 10198 } 10199 spin_unlock(&info->unused_bgs_lock); 10200 } 10201 } 10202 10203 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10204 if (!(get_alloc_profile(info, space_info->flags) & 10205 (BTRFS_BLOCK_GROUP_RAID10 | 10206 BTRFS_BLOCK_GROUP_RAID1 | 10207 BTRFS_BLOCK_GROUP_RAID5 | 10208 BTRFS_BLOCK_GROUP_RAID6 | 10209 BTRFS_BLOCK_GROUP_DUP))) 10210 continue; 10211 /* 10212 * avoid allocating from un-mirrored block group if there are 10213 * mirrored block groups. 10214 */ 10215 list_for_each_entry(cache, 10216 &space_info->block_groups[BTRFS_RAID_RAID0], 10217 list) 10218 inc_block_group_ro(cache, 1); 10219 list_for_each_entry(cache, 10220 &space_info->block_groups[BTRFS_RAID_SINGLE], 10221 list) 10222 inc_block_group_ro(cache, 1); 10223 } 10224 10225 btrfs_add_raid_kobjects(info); 10226 init_global_block_rsv(info); 10227 ret = 0; 10228 error: 10229 btrfs_free_path(path); 10230 return ret; 10231 } 10232 10233 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) 10234 { 10235 struct btrfs_fs_info *fs_info = trans->fs_info; 10236 struct btrfs_block_group_cache *block_group, *tmp; 10237 struct btrfs_root *extent_root = fs_info->extent_root; 10238 struct btrfs_block_group_item item; 10239 struct btrfs_key key; 10240 int ret = 0; 10241 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10242 10243 trans->can_flush_pending_bgs = false; 10244 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10245 if (ret) 10246 goto next; 10247 10248 spin_lock(&block_group->lock); 10249 memcpy(&item, &block_group->item, sizeof(item)); 10250 memcpy(&key, &block_group->key, sizeof(key)); 10251 spin_unlock(&block_group->lock); 10252 10253 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10254 sizeof(item)); 10255 if (ret) 10256 btrfs_abort_transaction(trans, ret); 10257 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10258 key.offset); 10259 if (ret) 10260 btrfs_abort_transaction(trans, ret); 10261 add_block_group_free_space(trans, block_group); 10262 /* already aborted the transaction if it failed. */ 10263 next: 10264 list_del_init(&block_group->bg_list); 10265 } 10266 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10267 } 10268 10269 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10270 struct btrfs_fs_info *fs_info, u64 bytes_used, 10271 u64 type, u64 chunk_offset, u64 size) 10272 { 10273 struct btrfs_block_group_cache *cache; 10274 int ret; 10275 10276 btrfs_set_log_full_commit(fs_info, trans); 10277 10278 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10279 if (!cache) 10280 return -ENOMEM; 10281 10282 btrfs_set_block_group_used(&cache->item, bytes_used); 10283 btrfs_set_block_group_chunk_objectid(&cache->item, 10284 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10285 btrfs_set_block_group_flags(&cache->item, type); 10286 10287 cache->flags = type; 10288 cache->last_byte_to_unpin = (u64)-1; 10289 cache->cached = BTRFS_CACHE_FINISHED; 10290 cache->needs_free_space = 1; 10291 ret = exclude_super_stripes(fs_info, cache); 10292 if (ret) { 10293 /* 10294 * We may have excluded something, so call this just in 10295 * case. 10296 */ 10297 free_excluded_extents(fs_info, cache); 10298 btrfs_put_block_group(cache); 10299 return ret; 10300 } 10301 10302 add_new_free_space(cache, chunk_offset, chunk_offset + size); 10303 10304 free_excluded_extents(fs_info, cache); 10305 10306 #ifdef CONFIG_BTRFS_DEBUG 10307 if (btrfs_should_fragment_free_space(cache)) { 10308 u64 new_bytes_used = size - bytes_used; 10309 10310 bytes_used += new_bytes_used >> 1; 10311 fragment_free_space(cache); 10312 } 10313 #endif 10314 /* 10315 * Ensure the corresponding space_info object is created and 10316 * assigned to our block group. We want our bg to be added to the rbtree 10317 * with its ->space_info set. 10318 */ 10319 cache->space_info = __find_space_info(fs_info, cache->flags); 10320 ASSERT(cache->space_info); 10321 10322 ret = btrfs_add_block_group_cache(fs_info, cache); 10323 if (ret) { 10324 btrfs_remove_free_space_cache(cache); 10325 btrfs_put_block_group(cache); 10326 return ret; 10327 } 10328 10329 /* 10330 * Now that our block group has its ->space_info set and is inserted in 10331 * the rbtree, update the space info's counters. 10332 */ 10333 trace_btrfs_add_block_group(fs_info, cache, 1); 10334 update_space_info(fs_info, cache->flags, size, bytes_used, 10335 cache->bytes_super, &cache->space_info); 10336 update_global_block_rsv(fs_info); 10337 10338 link_block_group(cache); 10339 10340 list_add_tail(&cache->bg_list, &trans->new_bgs); 10341 10342 set_avail_alloc_bits(fs_info, type); 10343 return 0; 10344 } 10345 10346 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10347 { 10348 u64 extra_flags = chunk_to_extended(flags) & 10349 BTRFS_EXTENDED_PROFILE_MASK; 10350 10351 write_seqlock(&fs_info->profiles_lock); 10352 if (flags & BTRFS_BLOCK_GROUP_DATA) 10353 fs_info->avail_data_alloc_bits &= ~extra_flags; 10354 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10355 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10356 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10357 fs_info->avail_system_alloc_bits &= ~extra_flags; 10358 write_sequnlock(&fs_info->profiles_lock); 10359 } 10360 10361 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10362 struct btrfs_fs_info *fs_info, u64 group_start, 10363 struct extent_map *em) 10364 { 10365 struct btrfs_root *root = fs_info->extent_root; 10366 struct btrfs_path *path; 10367 struct btrfs_block_group_cache *block_group; 10368 struct btrfs_free_cluster *cluster; 10369 struct btrfs_root *tree_root = fs_info->tree_root; 10370 struct btrfs_key key; 10371 struct inode *inode; 10372 struct kobject *kobj = NULL; 10373 int ret; 10374 int index; 10375 int factor; 10376 struct btrfs_caching_control *caching_ctl = NULL; 10377 bool remove_em; 10378 10379 block_group = btrfs_lookup_block_group(fs_info, group_start); 10380 BUG_ON(!block_group); 10381 BUG_ON(!block_group->ro); 10382 10383 trace_btrfs_remove_block_group(block_group); 10384 /* 10385 * Free the reserved super bytes from this block group before 10386 * remove it. 10387 */ 10388 free_excluded_extents(fs_info, block_group); 10389 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10390 block_group->key.offset); 10391 10392 memcpy(&key, &block_group->key, sizeof(key)); 10393 index = btrfs_bg_flags_to_raid_index(block_group->flags); 10394 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10395 BTRFS_BLOCK_GROUP_RAID1 | 10396 BTRFS_BLOCK_GROUP_RAID10)) 10397 factor = 2; 10398 else 10399 factor = 1; 10400 10401 /* make sure this block group isn't part of an allocation cluster */ 10402 cluster = &fs_info->data_alloc_cluster; 10403 spin_lock(&cluster->refill_lock); 10404 btrfs_return_cluster_to_free_space(block_group, cluster); 10405 spin_unlock(&cluster->refill_lock); 10406 10407 /* 10408 * make sure this block group isn't part of a metadata 10409 * allocation cluster 10410 */ 10411 cluster = &fs_info->meta_alloc_cluster; 10412 spin_lock(&cluster->refill_lock); 10413 btrfs_return_cluster_to_free_space(block_group, cluster); 10414 spin_unlock(&cluster->refill_lock); 10415 10416 path = btrfs_alloc_path(); 10417 if (!path) { 10418 ret = -ENOMEM; 10419 goto out; 10420 } 10421 10422 /* 10423 * get the inode first so any iput calls done for the io_list 10424 * aren't the final iput (no unlinks allowed now) 10425 */ 10426 inode = lookup_free_space_inode(fs_info, block_group, path); 10427 10428 mutex_lock(&trans->transaction->cache_write_mutex); 10429 /* 10430 * make sure our free spache cache IO is done before remove the 10431 * free space inode 10432 */ 10433 spin_lock(&trans->transaction->dirty_bgs_lock); 10434 if (!list_empty(&block_group->io_list)) { 10435 list_del_init(&block_group->io_list); 10436 10437 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10438 10439 spin_unlock(&trans->transaction->dirty_bgs_lock); 10440 btrfs_wait_cache_io(trans, block_group, path); 10441 btrfs_put_block_group(block_group); 10442 spin_lock(&trans->transaction->dirty_bgs_lock); 10443 } 10444 10445 if (!list_empty(&block_group->dirty_list)) { 10446 list_del_init(&block_group->dirty_list); 10447 btrfs_put_block_group(block_group); 10448 } 10449 spin_unlock(&trans->transaction->dirty_bgs_lock); 10450 mutex_unlock(&trans->transaction->cache_write_mutex); 10451 10452 if (!IS_ERR(inode)) { 10453 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10454 if (ret) { 10455 btrfs_add_delayed_iput(inode); 10456 goto out; 10457 } 10458 clear_nlink(inode); 10459 /* One for the block groups ref */ 10460 spin_lock(&block_group->lock); 10461 if (block_group->iref) { 10462 block_group->iref = 0; 10463 block_group->inode = NULL; 10464 spin_unlock(&block_group->lock); 10465 iput(inode); 10466 } else { 10467 spin_unlock(&block_group->lock); 10468 } 10469 /* One for our lookup ref */ 10470 btrfs_add_delayed_iput(inode); 10471 } 10472 10473 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10474 key.offset = block_group->key.objectid; 10475 key.type = 0; 10476 10477 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10478 if (ret < 0) 10479 goto out; 10480 if (ret > 0) 10481 btrfs_release_path(path); 10482 if (ret == 0) { 10483 ret = btrfs_del_item(trans, tree_root, path); 10484 if (ret) 10485 goto out; 10486 btrfs_release_path(path); 10487 } 10488 10489 spin_lock(&fs_info->block_group_cache_lock); 10490 rb_erase(&block_group->cache_node, 10491 &fs_info->block_group_cache_tree); 10492 RB_CLEAR_NODE(&block_group->cache_node); 10493 10494 if (fs_info->first_logical_byte == block_group->key.objectid) 10495 fs_info->first_logical_byte = (u64)-1; 10496 spin_unlock(&fs_info->block_group_cache_lock); 10497 10498 down_write(&block_group->space_info->groups_sem); 10499 /* 10500 * we must use list_del_init so people can check to see if they 10501 * are still on the list after taking the semaphore 10502 */ 10503 list_del_init(&block_group->list); 10504 if (list_empty(&block_group->space_info->block_groups[index])) { 10505 kobj = block_group->space_info->block_group_kobjs[index]; 10506 block_group->space_info->block_group_kobjs[index] = NULL; 10507 clear_avail_alloc_bits(fs_info, block_group->flags); 10508 } 10509 up_write(&block_group->space_info->groups_sem); 10510 if (kobj) { 10511 kobject_del(kobj); 10512 kobject_put(kobj); 10513 } 10514 10515 if (block_group->has_caching_ctl) 10516 caching_ctl = get_caching_control(block_group); 10517 if (block_group->cached == BTRFS_CACHE_STARTED) 10518 wait_block_group_cache_done(block_group); 10519 if (block_group->has_caching_ctl) { 10520 down_write(&fs_info->commit_root_sem); 10521 if (!caching_ctl) { 10522 struct btrfs_caching_control *ctl; 10523 10524 list_for_each_entry(ctl, 10525 &fs_info->caching_block_groups, list) 10526 if (ctl->block_group == block_group) { 10527 caching_ctl = ctl; 10528 refcount_inc(&caching_ctl->count); 10529 break; 10530 } 10531 } 10532 if (caching_ctl) 10533 list_del_init(&caching_ctl->list); 10534 up_write(&fs_info->commit_root_sem); 10535 if (caching_ctl) { 10536 /* Once for the caching bgs list and once for us. */ 10537 put_caching_control(caching_ctl); 10538 put_caching_control(caching_ctl); 10539 } 10540 } 10541 10542 spin_lock(&trans->transaction->dirty_bgs_lock); 10543 if (!list_empty(&block_group->dirty_list)) { 10544 WARN_ON(1); 10545 } 10546 if (!list_empty(&block_group->io_list)) { 10547 WARN_ON(1); 10548 } 10549 spin_unlock(&trans->transaction->dirty_bgs_lock); 10550 btrfs_remove_free_space_cache(block_group); 10551 10552 spin_lock(&block_group->space_info->lock); 10553 list_del_init(&block_group->ro_list); 10554 10555 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10556 WARN_ON(block_group->space_info->total_bytes 10557 < block_group->key.offset); 10558 WARN_ON(block_group->space_info->bytes_readonly 10559 < block_group->key.offset); 10560 WARN_ON(block_group->space_info->disk_total 10561 < block_group->key.offset * factor); 10562 } 10563 block_group->space_info->total_bytes -= block_group->key.offset; 10564 block_group->space_info->bytes_readonly -= block_group->key.offset; 10565 block_group->space_info->disk_total -= block_group->key.offset * factor; 10566 10567 spin_unlock(&block_group->space_info->lock); 10568 10569 memcpy(&key, &block_group->key, sizeof(key)); 10570 10571 mutex_lock(&fs_info->chunk_mutex); 10572 if (!list_empty(&em->list)) { 10573 /* We're in the transaction->pending_chunks list. */ 10574 free_extent_map(em); 10575 } 10576 spin_lock(&block_group->lock); 10577 block_group->removed = 1; 10578 /* 10579 * At this point trimming can't start on this block group, because we 10580 * removed the block group from the tree fs_info->block_group_cache_tree 10581 * so no one can't find it anymore and even if someone already got this 10582 * block group before we removed it from the rbtree, they have already 10583 * incremented block_group->trimming - if they didn't, they won't find 10584 * any free space entries because we already removed them all when we 10585 * called btrfs_remove_free_space_cache(). 10586 * 10587 * And we must not remove the extent map from the fs_info->mapping_tree 10588 * to prevent the same logical address range and physical device space 10589 * ranges from being reused for a new block group. This is because our 10590 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10591 * completely transactionless, so while it is trimming a range the 10592 * currently running transaction might finish and a new one start, 10593 * allowing for new block groups to be created that can reuse the same 10594 * physical device locations unless we take this special care. 10595 * 10596 * There may also be an implicit trim operation if the file system 10597 * is mounted with -odiscard. The same protections must remain 10598 * in place until the extents have been discarded completely when 10599 * the transaction commit has completed. 10600 */ 10601 remove_em = (atomic_read(&block_group->trimming) == 0); 10602 /* 10603 * Make sure a trimmer task always sees the em in the pinned_chunks list 10604 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10605 * before checking block_group->removed). 10606 */ 10607 if (!remove_em) { 10608 /* 10609 * Our em might be in trans->transaction->pending_chunks which 10610 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10611 * and so is the fs_info->pinned_chunks list. 10612 * 10613 * So at this point we must be holding the chunk_mutex to avoid 10614 * any races with chunk allocation (more specifically at 10615 * volumes.c:contains_pending_extent()), to ensure it always 10616 * sees the em, either in the pending_chunks list or in the 10617 * pinned_chunks list. 10618 */ 10619 list_move_tail(&em->list, &fs_info->pinned_chunks); 10620 } 10621 spin_unlock(&block_group->lock); 10622 10623 if (remove_em) { 10624 struct extent_map_tree *em_tree; 10625 10626 em_tree = &fs_info->mapping_tree.map_tree; 10627 write_lock(&em_tree->lock); 10628 /* 10629 * The em might be in the pending_chunks list, so make sure the 10630 * chunk mutex is locked, since remove_extent_mapping() will 10631 * delete us from that list. 10632 */ 10633 remove_extent_mapping(em_tree, em); 10634 write_unlock(&em_tree->lock); 10635 /* once for the tree */ 10636 free_extent_map(em); 10637 } 10638 10639 mutex_unlock(&fs_info->chunk_mutex); 10640 10641 ret = remove_block_group_free_space(trans, fs_info, block_group); 10642 if (ret) 10643 goto out; 10644 10645 btrfs_put_block_group(block_group); 10646 btrfs_put_block_group(block_group); 10647 10648 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10649 if (ret > 0) 10650 ret = -EIO; 10651 if (ret < 0) 10652 goto out; 10653 10654 ret = btrfs_del_item(trans, root, path); 10655 out: 10656 btrfs_free_path(path); 10657 return ret; 10658 } 10659 10660 struct btrfs_trans_handle * 10661 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10662 const u64 chunk_offset) 10663 { 10664 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10665 struct extent_map *em; 10666 struct map_lookup *map; 10667 unsigned int num_items; 10668 10669 read_lock(&em_tree->lock); 10670 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10671 read_unlock(&em_tree->lock); 10672 ASSERT(em && em->start == chunk_offset); 10673 10674 /* 10675 * We need to reserve 3 + N units from the metadata space info in order 10676 * to remove a block group (done at btrfs_remove_chunk() and at 10677 * btrfs_remove_block_group()), which are used for: 10678 * 10679 * 1 unit for adding the free space inode's orphan (located in the tree 10680 * of tree roots). 10681 * 1 unit for deleting the block group item (located in the extent 10682 * tree). 10683 * 1 unit for deleting the free space item (located in tree of tree 10684 * roots). 10685 * N units for deleting N device extent items corresponding to each 10686 * stripe (located in the device tree). 10687 * 10688 * In order to remove a block group we also need to reserve units in the 10689 * system space info in order to update the chunk tree (update one or 10690 * more device items and remove one chunk item), but this is done at 10691 * btrfs_remove_chunk() through a call to check_system_chunk(). 10692 */ 10693 map = em->map_lookup; 10694 num_items = 3 + map->num_stripes; 10695 free_extent_map(em); 10696 10697 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10698 num_items, 1); 10699 } 10700 10701 /* 10702 * Process the unused_bgs list and remove any that don't have any allocated 10703 * space inside of them. 10704 */ 10705 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10706 { 10707 struct btrfs_block_group_cache *block_group; 10708 struct btrfs_space_info *space_info; 10709 struct btrfs_trans_handle *trans; 10710 int ret = 0; 10711 10712 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10713 return; 10714 10715 spin_lock(&fs_info->unused_bgs_lock); 10716 while (!list_empty(&fs_info->unused_bgs)) { 10717 u64 start, end; 10718 int trimming; 10719 10720 block_group = list_first_entry(&fs_info->unused_bgs, 10721 struct btrfs_block_group_cache, 10722 bg_list); 10723 list_del_init(&block_group->bg_list); 10724 10725 space_info = block_group->space_info; 10726 10727 if (ret || btrfs_mixed_space_info(space_info)) { 10728 btrfs_put_block_group(block_group); 10729 continue; 10730 } 10731 spin_unlock(&fs_info->unused_bgs_lock); 10732 10733 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10734 10735 /* Don't want to race with allocators so take the groups_sem */ 10736 down_write(&space_info->groups_sem); 10737 spin_lock(&block_group->lock); 10738 if (block_group->reserved || 10739 btrfs_block_group_used(&block_group->item) || 10740 block_group->ro || 10741 list_is_singular(&block_group->list)) { 10742 /* 10743 * We want to bail if we made new allocations or have 10744 * outstanding allocations in this block group. We do 10745 * the ro check in case balance is currently acting on 10746 * this block group. 10747 */ 10748 trace_btrfs_skip_unused_block_group(block_group); 10749 spin_unlock(&block_group->lock); 10750 up_write(&space_info->groups_sem); 10751 goto next; 10752 } 10753 spin_unlock(&block_group->lock); 10754 10755 /* We don't want to force the issue, only flip if it's ok. */ 10756 ret = inc_block_group_ro(block_group, 0); 10757 up_write(&space_info->groups_sem); 10758 if (ret < 0) { 10759 ret = 0; 10760 goto next; 10761 } 10762 10763 /* 10764 * Want to do this before we do anything else so we can recover 10765 * properly if we fail to join the transaction. 10766 */ 10767 trans = btrfs_start_trans_remove_block_group(fs_info, 10768 block_group->key.objectid); 10769 if (IS_ERR(trans)) { 10770 btrfs_dec_block_group_ro(block_group); 10771 ret = PTR_ERR(trans); 10772 goto next; 10773 } 10774 10775 /* 10776 * We could have pending pinned extents for this block group, 10777 * just delete them, we don't care about them anymore. 10778 */ 10779 start = block_group->key.objectid; 10780 end = start + block_group->key.offset - 1; 10781 /* 10782 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10783 * btrfs_finish_extent_commit(). If we are at transaction N, 10784 * another task might be running finish_extent_commit() for the 10785 * previous transaction N - 1, and have seen a range belonging 10786 * to the block group in freed_extents[] before we were able to 10787 * clear the whole block group range from freed_extents[]. This 10788 * means that task can lookup for the block group after we 10789 * unpinned it from freed_extents[] and removed it, leading to 10790 * a BUG_ON() at btrfs_unpin_extent_range(). 10791 */ 10792 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10793 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10794 EXTENT_DIRTY); 10795 if (ret) { 10796 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10797 btrfs_dec_block_group_ro(block_group); 10798 goto end_trans; 10799 } 10800 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10801 EXTENT_DIRTY); 10802 if (ret) { 10803 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10804 btrfs_dec_block_group_ro(block_group); 10805 goto end_trans; 10806 } 10807 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10808 10809 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10810 spin_lock(&space_info->lock); 10811 spin_lock(&block_group->lock); 10812 10813 space_info->bytes_pinned -= block_group->pinned; 10814 space_info->bytes_readonly += block_group->pinned; 10815 percpu_counter_add(&space_info->total_bytes_pinned, 10816 -block_group->pinned); 10817 block_group->pinned = 0; 10818 10819 spin_unlock(&block_group->lock); 10820 spin_unlock(&space_info->lock); 10821 10822 /* DISCARD can flip during remount */ 10823 trimming = btrfs_test_opt(fs_info, DISCARD); 10824 10825 /* Implicit trim during transaction commit. */ 10826 if (trimming) 10827 btrfs_get_block_group_trimming(block_group); 10828 10829 /* 10830 * Btrfs_remove_chunk will abort the transaction if things go 10831 * horribly wrong. 10832 */ 10833 ret = btrfs_remove_chunk(trans, fs_info, 10834 block_group->key.objectid); 10835 10836 if (ret) { 10837 if (trimming) 10838 btrfs_put_block_group_trimming(block_group); 10839 goto end_trans; 10840 } 10841 10842 /* 10843 * If we're not mounted with -odiscard, we can just forget 10844 * about this block group. Otherwise we'll need to wait 10845 * until transaction commit to do the actual discard. 10846 */ 10847 if (trimming) { 10848 spin_lock(&fs_info->unused_bgs_lock); 10849 /* 10850 * A concurrent scrub might have added us to the list 10851 * fs_info->unused_bgs, so use a list_move operation 10852 * to add the block group to the deleted_bgs list. 10853 */ 10854 list_move(&block_group->bg_list, 10855 &trans->transaction->deleted_bgs); 10856 spin_unlock(&fs_info->unused_bgs_lock); 10857 btrfs_get_block_group(block_group); 10858 } 10859 end_trans: 10860 btrfs_end_transaction(trans); 10861 next: 10862 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10863 btrfs_put_block_group(block_group); 10864 spin_lock(&fs_info->unused_bgs_lock); 10865 } 10866 spin_unlock(&fs_info->unused_bgs_lock); 10867 } 10868 10869 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10870 { 10871 struct btrfs_space_info *space_info; 10872 struct btrfs_super_block *disk_super; 10873 u64 features; 10874 u64 flags; 10875 int mixed = 0; 10876 int ret; 10877 10878 disk_super = fs_info->super_copy; 10879 if (!btrfs_super_root(disk_super)) 10880 return -EINVAL; 10881 10882 features = btrfs_super_incompat_flags(disk_super); 10883 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10884 mixed = 1; 10885 10886 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10887 ret = create_space_info(fs_info, flags, &space_info); 10888 if (ret) 10889 goto out; 10890 10891 if (mixed) { 10892 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10893 ret = create_space_info(fs_info, flags, &space_info); 10894 } else { 10895 flags = BTRFS_BLOCK_GROUP_METADATA; 10896 ret = create_space_info(fs_info, flags, &space_info); 10897 if (ret) 10898 goto out; 10899 10900 flags = BTRFS_BLOCK_GROUP_DATA; 10901 ret = create_space_info(fs_info, flags, &space_info); 10902 } 10903 out: 10904 return ret; 10905 } 10906 10907 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10908 u64 start, u64 end) 10909 { 10910 return unpin_extent_range(fs_info, start, end, false); 10911 } 10912 10913 /* 10914 * It used to be that old block groups would be left around forever. 10915 * Iterating over them would be enough to trim unused space. Since we 10916 * now automatically remove them, we also need to iterate over unallocated 10917 * space. 10918 * 10919 * We don't want a transaction for this since the discard may take a 10920 * substantial amount of time. We don't require that a transaction be 10921 * running, but we do need to take a running transaction into account 10922 * to ensure that we're not discarding chunks that were released in 10923 * the current transaction. 10924 * 10925 * Holding the chunks lock will prevent other threads from allocating 10926 * or releasing chunks, but it won't prevent a running transaction 10927 * from committing and releasing the memory that the pending chunks 10928 * list head uses. For that, we need to take a reference to the 10929 * transaction. 10930 */ 10931 static int btrfs_trim_free_extents(struct btrfs_device *device, 10932 u64 minlen, u64 *trimmed) 10933 { 10934 u64 start = 0, len = 0; 10935 int ret; 10936 10937 *trimmed = 0; 10938 10939 /* Not writeable = nothing to do. */ 10940 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 10941 return 0; 10942 10943 /* No free space = nothing to do. */ 10944 if (device->total_bytes <= device->bytes_used) 10945 return 0; 10946 10947 ret = 0; 10948 10949 while (1) { 10950 struct btrfs_fs_info *fs_info = device->fs_info; 10951 struct btrfs_transaction *trans; 10952 u64 bytes; 10953 10954 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10955 if (ret) 10956 return ret; 10957 10958 down_read(&fs_info->commit_root_sem); 10959 10960 spin_lock(&fs_info->trans_lock); 10961 trans = fs_info->running_transaction; 10962 if (trans) 10963 refcount_inc(&trans->use_count); 10964 spin_unlock(&fs_info->trans_lock); 10965 10966 ret = find_free_dev_extent_start(trans, device, minlen, start, 10967 &start, &len); 10968 if (trans) 10969 btrfs_put_transaction(trans); 10970 10971 if (ret) { 10972 up_read(&fs_info->commit_root_sem); 10973 mutex_unlock(&fs_info->chunk_mutex); 10974 if (ret == -ENOSPC) 10975 ret = 0; 10976 break; 10977 } 10978 10979 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10980 up_read(&fs_info->commit_root_sem); 10981 mutex_unlock(&fs_info->chunk_mutex); 10982 10983 if (ret) 10984 break; 10985 10986 start += len; 10987 *trimmed += bytes; 10988 10989 if (fatal_signal_pending(current)) { 10990 ret = -ERESTARTSYS; 10991 break; 10992 } 10993 10994 cond_resched(); 10995 } 10996 10997 return ret; 10998 } 10999 11000 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 11001 { 11002 struct btrfs_block_group_cache *cache = NULL; 11003 struct btrfs_device *device; 11004 struct list_head *devices; 11005 u64 group_trimmed; 11006 u64 start; 11007 u64 end; 11008 u64 trimmed = 0; 11009 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 11010 int ret = 0; 11011 11012 /* 11013 * try to trim all FS space, our block group may start from non-zero. 11014 */ 11015 if (range->len == total_bytes) 11016 cache = btrfs_lookup_first_block_group(fs_info, range->start); 11017 else 11018 cache = btrfs_lookup_block_group(fs_info, range->start); 11019 11020 while (cache) { 11021 if (cache->key.objectid >= (range->start + range->len)) { 11022 btrfs_put_block_group(cache); 11023 break; 11024 } 11025 11026 start = max(range->start, cache->key.objectid); 11027 end = min(range->start + range->len, 11028 cache->key.objectid + cache->key.offset); 11029 11030 if (end - start >= range->minlen) { 11031 if (!block_group_cache_done(cache)) { 11032 ret = cache_block_group(cache, 0); 11033 if (ret) { 11034 btrfs_put_block_group(cache); 11035 break; 11036 } 11037 ret = wait_block_group_cache_done(cache); 11038 if (ret) { 11039 btrfs_put_block_group(cache); 11040 break; 11041 } 11042 } 11043 ret = btrfs_trim_block_group(cache, 11044 &group_trimmed, 11045 start, 11046 end, 11047 range->minlen); 11048 11049 trimmed += group_trimmed; 11050 if (ret) { 11051 btrfs_put_block_group(cache); 11052 break; 11053 } 11054 } 11055 11056 cache = next_block_group(fs_info, cache); 11057 } 11058 11059 mutex_lock(&fs_info->fs_devices->device_list_mutex); 11060 devices = &fs_info->fs_devices->alloc_list; 11061 list_for_each_entry(device, devices, dev_alloc_list) { 11062 ret = btrfs_trim_free_extents(device, range->minlen, 11063 &group_trimmed); 11064 if (ret) 11065 break; 11066 11067 trimmed += group_trimmed; 11068 } 11069 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11070 11071 range->len = trimmed; 11072 return ret; 11073 } 11074 11075 /* 11076 * btrfs_{start,end}_write_no_snapshotting() are similar to 11077 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11078 * data into the page cache through nocow before the subvolume is snapshoted, 11079 * but flush the data into disk after the snapshot creation, or to prevent 11080 * operations while snapshotting is ongoing and that cause the snapshot to be 11081 * inconsistent (writes followed by expanding truncates for example). 11082 */ 11083 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11084 { 11085 percpu_counter_dec(&root->subv_writers->counter); 11086 /* 11087 * Make sure counter is updated before we wake up waiters. 11088 */ 11089 smp_mb(); 11090 if (waitqueue_active(&root->subv_writers->wait)) 11091 wake_up(&root->subv_writers->wait); 11092 } 11093 11094 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11095 { 11096 if (atomic_read(&root->will_be_snapshotted)) 11097 return 0; 11098 11099 percpu_counter_inc(&root->subv_writers->counter); 11100 /* 11101 * Make sure counter is updated before we check for snapshot creation. 11102 */ 11103 smp_mb(); 11104 if (atomic_read(&root->will_be_snapshotted)) { 11105 btrfs_end_write_no_snapshotting(root); 11106 return 0; 11107 } 11108 return 1; 11109 } 11110 11111 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11112 { 11113 while (true) { 11114 int ret; 11115 11116 ret = btrfs_start_write_no_snapshotting(root); 11117 if (ret) 11118 break; 11119 wait_var_event(&root->will_be_snapshotted, 11120 !atomic_read(&root->will_be_snapshotted)); 11121 } 11122 } 11123