xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 24af7dd1881f9f5c13c7d82e22d7858137383766)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "math.h"
38 #include "sysfs.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86 				    struct extent_buffer *leaf,
87 				    struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89 				      struct btrfs_root *root,
90 				      u64 parent, u64 root_objectid,
91 				      u64 flags, u64 owner, u64 offset,
92 				      struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94 				     struct btrfs_root *root,
95 				     u64 parent, u64 root_objectid,
96 				     u64 flags, struct btrfs_disk_key *key,
97 				     int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99 			  struct btrfs_root *extent_root, u64 flags,
100 			  int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102 			 struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104 			    int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106 				       u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108 			       u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110 		     u64 bytenr, u64 num_bytes, int reserved);
111 
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 	smp_mb();
116 	return cache->cached == BTRFS_CACHE_FINISHED ||
117 		cache->cached == BTRFS_CACHE_ERROR;
118 }
119 
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 	return (cache->flags & bits) == bits;
123 }
124 
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 	atomic_inc(&cache->count);
128 }
129 
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 	if (atomic_dec_and_test(&cache->count)) {
133 		WARN_ON(cache->pinned > 0);
134 		WARN_ON(cache->reserved > 0);
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_root *root,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&root->fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE, GFP_NOFS);
232 	set_extent_bits(&root->fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE, GFP_NOFS);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_root *root,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&root->fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
247 	clear_extent_bits(&root->fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_root *root,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(root, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271 				       cache->key.objectid, bytenr,
272 				       0, &logical, &nr, &stripe_len);
273 		if (ret)
274 			return ret;
275 
276 		while (nr--) {
277 			u64 start, len;
278 
279 			if (logical[nr] > cache->key.objectid +
280 			    cache->key.offset)
281 				continue;
282 
283 			if (logical[nr] + stripe_len <= cache->key.objectid)
284 				continue;
285 
286 			start = logical[nr];
287 			if (start < cache->key.objectid) {
288 				start = cache->key.objectid;
289 				len = (logical[nr] + stripe_len) - start;
290 			} else {
291 				len = min_t(u64, stripe_len,
292 					    cache->key.objectid +
293 					    cache->key.offset - start);
294 			}
295 
296 			cache->bytes_super += len;
297 			ret = add_excluded_extent(root, start, len);
298 			if (ret) {
299 				kfree(logical);
300 				return ret;
301 			}
302 		}
303 
304 		kfree(logical);
305 	}
306 	return 0;
307 }
308 
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312 	struct btrfs_caching_control *ctl;
313 
314 	spin_lock(&cache->lock);
315 	if (cache->cached != BTRFS_CACHE_STARTED) {
316 		spin_unlock(&cache->lock);
317 		return NULL;
318 	}
319 
320 	/* We're loading it the fast way, so we don't have a caching_ctl. */
321 	if (!cache->caching_ctl) {
322 		spin_unlock(&cache->lock);
323 		return NULL;
324 	}
325 
326 	ctl = cache->caching_ctl;
327 	atomic_inc(&ctl->count);
328 	spin_unlock(&cache->lock);
329 	return ctl;
330 }
331 
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334 	if (atomic_dec_and_test(&ctl->count))
335 		kfree(ctl);
336 }
337 
338 /*
339  * this is only called by cache_block_group, since we could have freed extents
340  * we need to check the pinned_extents for any extents that can't be used yet
341  * since their free space will be released as soon as the transaction commits.
342  */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344 			      struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346 	u64 extent_start, extent_end, size, total_added = 0;
347 	int ret;
348 
349 	while (start < end) {
350 		ret = find_first_extent_bit(info->pinned_extents, start,
351 					    &extent_start, &extent_end,
352 					    EXTENT_DIRTY | EXTENT_UPTODATE,
353 					    NULL);
354 		if (ret)
355 			break;
356 
357 		if (extent_start <= start) {
358 			start = extent_end + 1;
359 		} else if (extent_start > start && extent_start < end) {
360 			size = extent_start - start;
361 			total_added += size;
362 			ret = btrfs_add_free_space(block_group, start,
363 						   size);
364 			BUG_ON(ret); /* -ENOMEM or logic error */
365 			start = extent_end + 1;
366 		} else {
367 			break;
368 		}
369 	}
370 
371 	if (start < end) {
372 		size = end - start;
373 		total_added += size;
374 		ret = btrfs_add_free_space(block_group, start, size);
375 		BUG_ON(ret); /* -ENOMEM or logic error */
376 	}
377 
378 	return total_added;
379 }
380 
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383 	struct btrfs_block_group_cache *block_group;
384 	struct btrfs_fs_info *fs_info;
385 	struct btrfs_caching_control *caching_ctl;
386 	struct btrfs_root *extent_root;
387 	struct btrfs_path *path;
388 	struct extent_buffer *leaf;
389 	struct btrfs_key key;
390 	u64 total_found = 0;
391 	u64 last = 0;
392 	u32 nritems;
393 	int ret = -ENOMEM;
394 
395 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
396 	block_group = caching_ctl->block_group;
397 	fs_info = block_group->fs_info;
398 	extent_root = fs_info->extent_root;
399 
400 	path = btrfs_alloc_path();
401 	if (!path)
402 		goto out;
403 
404 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405 
406 	/*
407 	 * We don't want to deadlock with somebody trying to allocate a new
408 	 * extent for the extent root while also trying to search the extent
409 	 * root to add free space.  So we skip locking and search the commit
410 	 * root, since its read-only
411 	 */
412 	path->skip_locking = 1;
413 	path->search_commit_root = 1;
414 	path->reada = 1;
415 
416 	key.objectid = last;
417 	key.offset = 0;
418 	key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420 	mutex_lock(&caching_ctl->mutex);
421 	/* need to make sure the commit_root doesn't disappear */
422 	down_read(&fs_info->extent_commit_sem);
423 
424 next:
425 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426 	if (ret < 0)
427 		goto err;
428 
429 	leaf = path->nodes[0];
430 	nritems = btrfs_header_nritems(leaf);
431 
432 	while (1) {
433 		if (btrfs_fs_closing(fs_info) > 1) {
434 			last = (u64)-1;
435 			break;
436 		}
437 
438 		if (path->slots[0] < nritems) {
439 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440 		} else {
441 			ret = find_next_key(path, 0, &key);
442 			if (ret)
443 				break;
444 
445 			if (need_resched() ||
446 			    rwsem_is_contended(&fs_info->extent_commit_sem)) {
447 				caching_ctl->progress = last;
448 				btrfs_release_path(path);
449 				up_read(&fs_info->extent_commit_sem);
450 				mutex_unlock(&caching_ctl->mutex);
451 				cond_resched();
452 				goto again;
453 			}
454 
455 			ret = btrfs_next_leaf(extent_root, path);
456 			if (ret < 0)
457 				goto err;
458 			if (ret)
459 				break;
460 			leaf = path->nodes[0];
461 			nritems = btrfs_header_nritems(leaf);
462 			continue;
463 		}
464 
465 		if (key.objectid < last) {
466 			key.objectid = last;
467 			key.offset = 0;
468 			key.type = BTRFS_EXTENT_ITEM_KEY;
469 
470 			caching_ctl->progress = last;
471 			btrfs_release_path(path);
472 			goto next;
473 		}
474 
475 		if (key.objectid < block_group->key.objectid) {
476 			path->slots[0]++;
477 			continue;
478 		}
479 
480 		if (key.objectid >= block_group->key.objectid +
481 		    block_group->key.offset)
482 			break;
483 
484 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
485 		    key.type == BTRFS_METADATA_ITEM_KEY) {
486 			total_found += add_new_free_space(block_group,
487 							  fs_info, last,
488 							  key.objectid);
489 			if (key.type == BTRFS_METADATA_ITEM_KEY)
490 				last = key.objectid +
491 					fs_info->tree_root->leafsize;
492 			else
493 				last = key.objectid + key.offset;
494 
495 			if (total_found > (1024 * 1024 * 2)) {
496 				total_found = 0;
497 				wake_up(&caching_ctl->wait);
498 			}
499 		}
500 		path->slots[0]++;
501 	}
502 	ret = 0;
503 
504 	total_found += add_new_free_space(block_group, fs_info, last,
505 					  block_group->key.objectid +
506 					  block_group->key.offset);
507 	caching_ctl->progress = (u64)-1;
508 
509 	spin_lock(&block_group->lock);
510 	block_group->caching_ctl = NULL;
511 	block_group->cached = BTRFS_CACHE_FINISHED;
512 	spin_unlock(&block_group->lock);
513 
514 err:
515 	btrfs_free_path(path);
516 	up_read(&fs_info->extent_commit_sem);
517 
518 	free_excluded_extents(extent_root, block_group);
519 
520 	mutex_unlock(&caching_ctl->mutex);
521 out:
522 	if (ret) {
523 		spin_lock(&block_group->lock);
524 		block_group->caching_ctl = NULL;
525 		block_group->cached = BTRFS_CACHE_ERROR;
526 		spin_unlock(&block_group->lock);
527 	}
528 	wake_up(&caching_ctl->wait);
529 
530 	put_caching_control(caching_ctl);
531 	btrfs_put_block_group(block_group);
532 }
533 
534 static int cache_block_group(struct btrfs_block_group_cache *cache,
535 			     int load_cache_only)
536 {
537 	DEFINE_WAIT(wait);
538 	struct btrfs_fs_info *fs_info = cache->fs_info;
539 	struct btrfs_caching_control *caching_ctl;
540 	int ret = 0;
541 
542 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
543 	if (!caching_ctl)
544 		return -ENOMEM;
545 
546 	INIT_LIST_HEAD(&caching_ctl->list);
547 	mutex_init(&caching_ctl->mutex);
548 	init_waitqueue_head(&caching_ctl->wait);
549 	caching_ctl->block_group = cache;
550 	caching_ctl->progress = cache->key.objectid;
551 	atomic_set(&caching_ctl->count, 1);
552 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
553 
554 	spin_lock(&cache->lock);
555 	/*
556 	 * This should be a rare occasion, but this could happen I think in the
557 	 * case where one thread starts to load the space cache info, and then
558 	 * some other thread starts a transaction commit which tries to do an
559 	 * allocation while the other thread is still loading the space cache
560 	 * info.  The previous loop should have kept us from choosing this block
561 	 * group, but if we've moved to the state where we will wait on caching
562 	 * block groups we need to first check if we're doing a fast load here,
563 	 * so we can wait for it to finish, otherwise we could end up allocating
564 	 * from a block group who's cache gets evicted for one reason or
565 	 * another.
566 	 */
567 	while (cache->cached == BTRFS_CACHE_FAST) {
568 		struct btrfs_caching_control *ctl;
569 
570 		ctl = cache->caching_ctl;
571 		atomic_inc(&ctl->count);
572 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
573 		spin_unlock(&cache->lock);
574 
575 		schedule();
576 
577 		finish_wait(&ctl->wait, &wait);
578 		put_caching_control(ctl);
579 		spin_lock(&cache->lock);
580 	}
581 
582 	if (cache->cached != BTRFS_CACHE_NO) {
583 		spin_unlock(&cache->lock);
584 		kfree(caching_ctl);
585 		return 0;
586 	}
587 	WARN_ON(cache->caching_ctl);
588 	cache->caching_ctl = caching_ctl;
589 	cache->cached = BTRFS_CACHE_FAST;
590 	spin_unlock(&cache->lock);
591 
592 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
593 		ret = load_free_space_cache(fs_info, cache);
594 
595 		spin_lock(&cache->lock);
596 		if (ret == 1) {
597 			cache->caching_ctl = NULL;
598 			cache->cached = BTRFS_CACHE_FINISHED;
599 			cache->last_byte_to_unpin = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 			}
607 		}
608 		spin_unlock(&cache->lock);
609 		wake_up(&caching_ctl->wait);
610 		if (ret == 1) {
611 			put_caching_control(caching_ctl);
612 			free_excluded_extents(fs_info->extent_root, cache);
613 			return 0;
614 		}
615 	} else {
616 		/*
617 		 * We are not going to do the fast caching, set cached to the
618 		 * appropriate value and wakeup any waiters.
619 		 */
620 		spin_lock(&cache->lock);
621 		if (load_cache_only) {
622 			cache->caching_ctl = NULL;
623 			cache->cached = BTRFS_CACHE_NO;
624 		} else {
625 			cache->cached = BTRFS_CACHE_STARTED;
626 		}
627 		spin_unlock(&cache->lock);
628 		wake_up(&caching_ctl->wait);
629 	}
630 
631 	if (load_cache_only) {
632 		put_caching_control(caching_ctl);
633 		return 0;
634 	}
635 
636 	down_write(&fs_info->extent_commit_sem);
637 	atomic_inc(&caching_ctl->count);
638 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
639 	up_write(&fs_info->extent_commit_sem);
640 
641 	btrfs_get_block_group(cache);
642 
643 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
644 
645 	return ret;
646 }
647 
648 /*
649  * return the block group that starts at or after bytenr
650  */
651 static struct btrfs_block_group_cache *
652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
653 {
654 	struct btrfs_block_group_cache *cache;
655 
656 	cache = block_group_cache_tree_search(info, bytenr, 0);
657 
658 	return cache;
659 }
660 
661 /*
662  * return the block group that contains the given bytenr
663  */
664 struct btrfs_block_group_cache *btrfs_lookup_block_group(
665 						 struct btrfs_fs_info *info,
666 						 u64 bytenr)
667 {
668 	struct btrfs_block_group_cache *cache;
669 
670 	cache = block_group_cache_tree_search(info, bytenr, 1);
671 
672 	return cache;
673 }
674 
675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
676 						  u64 flags)
677 {
678 	struct list_head *head = &info->space_info;
679 	struct btrfs_space_info *found;
680 
681 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
682 
683 	rcu_read_lock();
684 	list_for_each_entry_rcu(found, head, list) {
685 		if (found->flags & flags) {
686 			rcu_read_unlock();
687 			return found;
688 		}
689 	}
690 	rcu_read_unlock();
691 	return NULL;
692 }
693 
694 /*
695  * after adding space to the filesystem, we need to clear the full flags
696  * on all the space infos.
697  */
698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
699 {
700 	struct list_head *head = &info->space_info;
701 	struct btrfs_space_info *found;
702 
703 	rcu_read_lock();
704 	list_for_each_entry_rcu(found, head, list)
705 		found->full = 0;
706 	rcu_read_unlock();
707 }
708 
709 /* simple helper to search for an existing extent at a given offset */
710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
711 {
712 	int ret;
713 	struct btrfs_key key;
714 	struct btrfs_path *path;
715 
716 	path = btrfs_alloc_path();
717 	if (!path)
718 		return -ENOMEM;
719 
720 	key.objectid = start;
721 	key.offset = len;
722 	key.type = BTRFS_EXTENT_ITEM_KEY;
723 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
724 				0, 0);
725 	if (ret > 0) {
726 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
727 		if (key.objectid == start &&
728 		    key.type == BTRFS_METADATA_ITEM_KEY)
729 			ret = 0;
730 	}
731 	btrfs_free_path(path);
732 	return ret;
733 }
734 
735 /*
736  * helper function to lookup reference count and flags of a tree block.
737  *
738  * the head node for delayed ref is used to store the sum of all the
739  * reference count modifications queued up in the rbtree. the head
740  * node may also store the extent flags to set. This way you can check
741  * to see what the reference count and extent flags would be if all of
742  * the delayed refs are not processed.
743  */
744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
745 			     struct btrfs_root *root, u64 bytenr,
746 			     u64 offset, int metadata, u64 *refs, u64 *flags)
747 {
748 	struct btrfs_delayed_ref_head *head;
749 	struct btrfs_delayed_ref_root *delayed_refs;
750 	struct btrfs_path *path;
751 	struct btrfs_extent_item *ei;
752 	struct extent_buffer *leaf;
753 	struct btrfs_key key;
754 	u32 item_size;
755 	u64 num_refs;
756 	u64 extent_flags;
757 	int ret;
758 
759 	/*
760 	 * If we don't have skinny metadata, don't bother doing anything
761 	 * different
762 	 */
763 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
764 		offset = root->leafsize;
765 		metadata = 0;
766 	}
767 
768 	path = btrfs_alloc_path();
769 	if (!path)
770 		return -ENOMEM;
771 
772 	if (!trans) {
773 		path->skip_locking = 1;
774 		path->search_commit_root = 1;
775 	}
776 
777 search_again:
778 	key.objectid = bytenr;
779 	key.offset = offset;
780 	if (metadata)
781 		key.type = BTRFS_METADATA_ITEM_KEY;
782 	else
783 		key.type = BTRFS_EXTENT_ITEM_KEY;
784 
785 again:
786 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787 				&key, path, 0, 0);
788 	if (ret < 0)
789 		goto out_free;
790 
791 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792 		if (path->slots[0]) {
793 			path->slots[0]--;
794 			btrfs_item_key_to_cpu(path->nodes[0], &key,
795 					      path->slots[0]);
796 			if (key.objectid == bytenr &&
797 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
798 			    key.offset == root->leafsize)
799 				ret = 0;
800 		}
801 		if (ret) {
802 			key.objectid = bytenr;
803 			key.type = BTRFS_EXTENT_ITEM_KEY;
804 			key.offset = root->leafsize;
805 			btrfs_release_path(path);
806 			goto again;
807 		}
808 	}
809 
810 	if (ret == 0) {
811 		leaf = path->nodes[0];
812 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
813 		if (item_size >= sizeof(*ei)) {
814 			ei = btrfs_item_ptr(leaf, path->slots[0],
815 					    struct btrfs_extent_item);
816 			num_refs = btrfs_extent_refs(leaf, ei);
817 			extent_flags = btrfs_extent_flags(leaf, ei);
818 		} else {
819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
820 			struct btrfs_extent_item_v0 *ei0;
821 			BUG_ON(item_size != sizeof(*ei0));
822 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
823 					     struct btrfs_extent_item_v0);
824 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
825 			/* FIXME: this isn't correct for data */
826 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
827 #else
828 			BUG();
829 #endif
830 		}
831 		BUG_ON(num_refs == 0);
832 	} else {
833 		num_refs = 0;
834 		extent_flags = 0;
835 		ret = 0;
836 	}
837 
838 	if (!trans)
839 		goto out;
840 
841 	delayed_refs = &trans->transaction->delayed_refs;
842 	spin_lock(&delayed_refs->lock);
843 	head = btrfs_find_delayed_ref_head(trans, bytenr);
844 	if (head) {
845 		if (!mutex_trylock(&head->mutex)) {
846 			atomic_inc(&head->node.refs);
847 			spin_unlock(&delayed_refs->lock);
848 
849 			btrfs_release_path(path);
850 
851 			/*
852 			 * Mutex was contended, block until it's released and try
853 			 * again
854 			 */
855 			mutex_lock(&head->mutex);
856 			mutex_unlock(&head->mutex);
857 			btrfs_put_delayed_ref(&head->node);
858 			goto search_again;
859 		}
860 		spin_lock(&head->lock);
861 		if (head->extent_op && head->extent_op->update_flags)
862 			extent_flags |= head->extent_op->flags_to_set;
863 		else
864 			BUG_ON(num_refs == 0);
865 
866 		num_refs += head->node.ref_mod;
867 		spin_unlock(&head->lock);
868 		mutex_unlock(&head->mutex);
869 	}
870 	spin_unlock(&delayed_refs->lock);
871 out:
872 	WARN_ON(num_refs == 0);
873 	if (refs)
874 		*refs = num_refs;
875 	if (flags)
876 		*flags = extent_flags;
877 out_free:
878 	btrfs_free_path(path);
879 	return ret;
880 }
881 
882 /*
883  * Back reference rules.  Back refs have three main goals:
884  *
885  * 1) differentiate between all holders of references to an extent so that
886  *    when a reference is dropped we can make sure it was a valid reference
887  *    before freeing the extent.
888  *
889  * 2) Provide enough information to quickly find the holders of an extent
890  *    if we notice a given block is corrupted or bad.
891  *
892  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
893  *    maintenance.  This is actually the same as #2, but with a slightly
894  *    different use case.
895  *
896  * There are two kinds of back refs. The implicit back refs is optimized
897  * for pointers in non-shared tree blocks. For a given pointer in a block,
898  * back refs of this kind provide information about the block's owner tree
899  * and the pointer's key. These information allow us to find the block by
900  * b-tree searching. The full back refs is for pointers in tree blocks not
901  * referenced by their owner trees. The location of tree block is recorded
902  * in the back refs. Actually the full back refs is generic, and can be
903  * used in all cases the implicit back refs is used. The major shortcoming
904  * of the full back refs is its overhead. Every time a tree block gets
905  * COWed, we have to update back refs entry for all pointers in it.
906  *
907  * For a newly allocated tree block, we use implicit back refs for
908  * pointers in it. This means most tree related operations only involve
909  * implicit back refs. For a tree block created in old transaction, the
910  * only way to drop a reference to it is COW it. So we can detect the
911  * event that tree block loses its owner tree's reference and do the
912  * back refs conversion.
913  *
914  * When a tree block is COW'd through a tree, there are four cases:
915  *
916  * The reference count of the block is one and the tree is the block's
917  * owner tree. Nothing to do in this case.
918  *
919  * The reference count of the block is one and the tree is not the
920  * block's owner tree. In this case, full back refs is used for pointers
921  * in the block. Remove these full back refs, add implicit back refs for
922  * every pointers in the new block.
923  *
924  * The reference count of the block is greater than one and the tree is
925  * the block's owner tree. In this case, implicit back refs is used for
926  * pointers in the block. Add full back refs for every pointers in the
927  * block, increase lower level extents' reference counts. The original
928  * implicit back refs are entailed to the new block.
929  *
930  * The reference count of the block is greater than one and the tree is
931  * not the block's owner tree. Add implicit back refs for every pointer in
932  * the new block, increase lower level extents' reference count.
933  *
934  * Back Reference Key composing:
935  *
936  * The key objectid corresponds to the first byte in the extent,
937  * The key type is used to differentiate between types of back refs.
938  * There are different meanings of the key offset for different types
939  * of back refs.
940  *
941  * File extents can be referenced by:
942  *
943  * - multiple snapshots, subvolumes, or different generations in one subvol
944  * - different files inside a single subvolume
945  * - different offsets inside a file (bookend extents in file.c)
946  *
947  * The extent ref structure for the implicit back refs has fields for:
948  *
949  * - Objectid of the subvolume root
950  * - objectid of the file holding the reference
951  * - original offset in the file
952  * - how many bookend extents
953  *
954  * The key offset for the implicit back refs is hash of the first
955  * three fields.
956  *
957  * The extent ref structure for the full back refs has field for:
958  *
959  * - number of pointers in the tree leaf
960  *
961  * The key offset for the implicit back refs is the first byte of
962  * the tree leaf
963  *
964  * When a file extent is allocated, The implicit back refs is used.
965  * the fields are filled in:
966  *
967  *     (root_key.objectid, inode objectid, offset in file, 1)
968  *
969  * When a file extent is removed file truncation, we find the
970  * corresponding implicit back refs and check the following fields:
971  *
972  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
973  *
974  * Btree extents can be referenced by:
975  *
976  * - Different subvolumes
977  *
978  * Both the implicit back refs and the full back refs for tree blocks
979  * only consist of key. The key offset for the implicit back refs is
980  * objectid of block's owner tree. The key offset for the full back refs
981  * is the first byte of parent block.
982  *
983  * When implicit back refs is used, information about the lowest key and
984  * level of the tree block are required. These information are stored in
985  * tree block info structure.
986  */
987 
988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
990 				  struct btrfs_root *root,
991 				  struct btrfs_path *path,
992 				  u64 owner, u32 extra_size)
993 {
994 	struct btrfs_extent_item *item;
995 	struct btrfs_extent_item_v0 *ei0;
996 	struct btrfs_extent_ref_v0 *ref0;
997 	struct btrfs_tree_block_info *bi;
998 	struct extent_buffer *leaf;
999 	struct btrfs_key key;
1000 	struct btrfs_key found_key;
1001 	u32 new_size = sizeof(*item);
1002 	u64 refs;
1003 	int ret;
1004 
1005 	leaf = path->nodes[0];
1006 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1007 
1008 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1009 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1010 			     struct btrfs_extent_item_v0);
1011 	refs = btrfs_extent_refs_v0(leaf, ei0);
1012 
1013 	if (owner == (u64)-1) {
1014 		while (1) {
1015 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1016 				ret = btrfs_next_leaf(root, path);
1017 				if (ret < 0)
1018 					return ret;
1019 				BUG_ON(ret > 0); /* Corruption */
1020 				leaf = path->nodes[0];
1021 			}
1022 			btrfs_item_key_to_cpu(leaf, &found_key,
1023 					      path->slots[0]);
1024 			BUG_ON(key.objectid != found_key.objectid);
1025 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1026 				path->slots[0]++;
1027 				continue;
1028 			}
1029 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1030 					      struct btrfs_extent_ref_v0);
1031 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1032 			break;
1033 		}
1034 	}
1035 	btrfs_release_path(path);
1036 
1037 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1038 		new_size += sizeof(*bi);
1039 
1040 	new_size -= sizeof(*ei0);
1041 	ret = btrfs_search_slot(trans, root, &key, path,
1042 				new_size + extra_size, 1);
1043 	if (ret < 0)
1044 		return ret;
1045 	BUG_ON(ret); /* Corruption */
1046 
1047 	btrfs_extend_item(root, path, new_size);
1048 
1049 	leaf = path->nodes[0];
1050 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1051 	btrfs_set_extent_refs(leaf, item, refs);
1052 	/* FIXME: get real generation */
1053 	btrfs_set_extent_generation(leaf, item, 0);
1054 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1055 		btrfs_set_extent_flags(leaf, item,
1056 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1057 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1058 		bi = (struct btrfs_tree_block_info *)(item + 1);
1059 		/* FIXME: get first key of the block */
1060 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1061 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1062 	} else {
1063 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1064 	}
1065 	btrfs_mark_buffer_dirty(leaf);
1066 	return 0;
1067 }
1068 #endif
1069 
1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1071 {
1072 	u32 high_crc = ~(u32)0;
1073 	u32 low_crc = ~(u32)0;
1074 	__le64 lenum;
1075 
1076 	lenum = cpu_to_le64(root_objectid);
1077 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1078 	lenum = cpu_to_le64(owner);
1079 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1080 	lenum = cpu_to_le64(offset);
1081 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1082 
1083 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1084 }
1085 
1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1087 				     struct btrfs_extent_data_ref *ref)
1088 {
1089 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1090 				    btrfs_extent_data_ref_objectid(leaf, ref),
1091 				    btrfs_extent_data_ref_offset(leaf, ref));
1092 }
1093 
1094 static int match_extent_data_ref(struct extent_buffer *leaf,
1095 				 struct btrfs_extent_data_ref *ref,
1096 				 u64 root_objectid, u64 owner, u64 offset)
1097 {
1098 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1099 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1100 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1101 		return 0;
1102 	return 1;
1103 }
1104 
1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1106 					   struct btrfs_root *root,
1107 					   struct btrfs_path *path,
1108 					   u64 bytenr, u64 parent,
1109 					   u64 root_objectid,
1110 					   u64 owner, u64 offset)
1111 {
1112 	struct btrfs_key key;
1113 	struct btrfs_extent_data_ref *ref;
1114 	struct extent_buffer *leaf;
1115 	u32 nritems;
1116 	int ret;
1117 	int recow;
1118 	int err = -ENOENT;
1119 
1120 	key.objectid = bytenr;
1121 	if (parent) {
1122 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1123 		key.offset = parent;
1124 	} else {
1125 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1126 		key.offset = hash_extent_data_ref(root_objectid,
1127 						  owner, offset);
1128 	}
1129 again:
1130 	recow = 0;
1131 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1132 	if (ret < 0) {
1133 		err = ret;
1134 		goto fail;
1135 	}
1136 
1137 	if (parent) {
1138 		if (!ret)
1139 			return 0;
1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1141 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1142 		btrfs_release_path(path);
1143 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1144 		if (ret < 0) {
1145 			err = ret;
1146 			goto fail;
1147 		}
1148 		if (!ret)
1149 			return 0;
1150 #endif
1151 		goto fail;
1152 	}
1153 
1154 	leaf = path->nodes[0];
1155 	nritems = btrfs_header_nritems(leaf);
1156 	while (1) {
1157 		if (path->slots[0] >= nritems) {
1158 			ret = btrfs_next_leaf(root, path);
1159 			if (ret < 0)
1160 				err = ret;
1161 			if (ret)
1162 				goto fail;
1163 
1164 			leaf = path->nodes[0];
1165 			nritems = btrfs_header_nritems(leaf);
1166 			recow = 1;
1167 		}
1168 
1169 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1170 		if (key.objectid != bytenr ||
1171 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1172 			goto fail;
1173 
1174 		ref = btrfs_item_ptr(leaf, path->slots[0],
1175 				     struct btrfs_extent_data_ref);
1176 
1177 		if (match_extent_data_ref(leaf, ref, root_objectid,
1178 					  owner, offset)) {
1179 			if (recow) {
1180 				btrfs_release_path(path);
1181 				goto again;
1182 			}
1183 			err = 0;
1184 			break;
1185 		}
1186 		path->slots[0]++;
1187 	}
1188 fail:
1189 	return err;
1190 }
1191 
1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1193 					   struct btrfs_root *root,
1194 					   struct btrfs_path *path,
1195 					   u64 bytenr, u64 parent,
1196 					   u64 root_objectid, u64 owner,
1197 					   u64 offset, int refs_to_add)
1198 {
1199 	struct btrfs_key key;
1200 	struct extent_buffer *leaf;
1201 	u32 size;
1202 	u32 num_refs;
1203 	int ret;
1204 
1205 	key.objectid = bytenr;
1206 	if (parent) {
1207 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1208 		key.offset = parent;
1209 		size = sizeof(struct btrfs_shared_data_ref);
1210 	} else {
1211 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1212 		key.offset = hash_extent_data_ref(root_objectid,
1213 						  owner, offset);
1214 		size = sizeof(struct btrfs_extent_data_ref);
1215 	}
1216 
1217 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1218 	if (ret && ret != -EEXIST)
1219 		goto fail;
1220 
1221 	leaf = path->nodes[0];
1222 	if (parent) {
1223 		struct btrfs_shared_data_ref *ref;
1224 		ref = btrfs_item_ptr(leaf, path->slots[0],
1225 				     struct btrfs_shared_data_ref);
1226 		if (ret == 0) {
1227 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1228 		} else {
1229 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1230 			num_refs += refs_to_add;
1231 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1232 		}
1233 	} else {
1234 		struct btrfs_extent_data_ref *ref;
1235 		while (ret == -EEXIST) {
1236 			ref = btrfs_item_ptr(leaf, path->slots[0],
1237 					     struct btrfs_extent_data_ref);
1238 			if (match_extent_data_ref(leaf, ref, root_objectid,
1239 						  owner, offset))
1240 				break;
1241 			btrfs_release_path(path);
1242 			key.offset++;
1243 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1244 						      size);
1245 			if (ret && ret != -EEXIST)
1246 				goto fail;
1247 
1248 			leaf = path->nodes[0];
1249 		}
1250 		ref = btrfs_item_ptr(leaf, path->slots[0],
1251 				     struct btrfs_extent_data_ref);
1252 		if (ret == 0) {
1253 			btrfs_set_extent_data_ref_root(leaf, ref,
1254 						       root_objectid);
1255 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1256 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1257 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1258 		} else {
1259 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1260 			num_refs += refs_to_add;
1261 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1262 		}
1263 	}
1264 	btrfs_mark_buffer_dirty(leaf);
1265 	ret = 0;
1266 fail:
1267 	btrfs_release_path(path);
1268 	return ret;
1269 }
1270 
1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1272 					   struct btrfs_root *root,
1273 					   struct btrfs_path *path,
1274 					   int refs_to_drop)
1275 {
1276 	struct btrfs_key key;
1277 	struct btrfs_extent_data_ref *ref1 = NULL;
1278 	struct btrfs_shared_data_ref *ref2 = NULL;
1279 	struct extent_buffer *leaf;
1280 	u32 num_refs = 0;
1281 	int ret = 0;
1282 
1283 	leaf = path->nodes[0];
1284 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1285 
1286 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1287 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_data_ref);
1289 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1290 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1291 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1292 				      struct btrfs_shared_data_ref);
1293 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1295 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1296 		struct btrfs_extent_ref_v0 *ref0;
1297 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1298 				      struct btrfs_extent_ref_v0);
1299 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1300 #endif
1301 	} else {
1302 		BUG();
1303 	}
1304 
1305 	BUG_ON(num_refs < refs_to_drop);
1306 	num_refs -= refs_to_drop;
1307 
1308 	if (num_refs == 0) {
1309 		ret = btrfs_del_item(trans, root, path);
1310 	} else {
1311 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1312 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1313 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1314 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1316 		else {
1317 			struct btrfs_extent_ref_v0 *ref0;
1318 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1319 					struct btrfs_extent_ref_v0);
1320 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1321 		}
1322 #endif
1323 		btrfs_mark_buffer_dirty(leaf);
1324 	}
1325 	return ret;
1326 }
1327 
1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1329 					  struct btrfs_path *path,
1330 					  struct btrfs_extent_inline_ref *iref)
1331 {
1332 	struct btrfs_key key;
1333 	struct extent_buffer *leaf;
1334 	struct btrfs_extent_data_ref *ref1;
1335 	struct btrfs_shared_data_ref *ref2;
1336 	u32 num_refs = 0;
1337 
1338 	leaf = path->nodes[0];
1339 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1340 	if (iref) {
1341 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1342 		    BTRFS_EXTENT_DATA_REF_KEY) {
1343 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1344 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 		} else {
1346 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1347 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 		}
1349 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1350 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1351 				      struct btrfs_extent_data_ref);
1352 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1353 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1354 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1355 				      struct btrfs_shared_data_ref);
1356 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1359 		struct btrfs_extent_ref_v0 *ref0;
1360 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1361 				      struct btrfs_extent_ref_v0);
1362 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1363 #endif
1364 	} else {
1365 		WARN_ON(1);
1366 	}
1367 	return num_refs;
1368 }
1369 
1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1371 					  struct btrfs_root *root,
1372 					  struct btrfs_path *path,
1373 					  u64 bytenr, u64 parent,
1374 					  u64 root_objectid)
1375 {
1376 	struct btrfs_key key;
1377 	int ret;
1378 
1379 	key.objectid = bytenr;
1380 	if (parent) {
1381 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1382 		key.offset = parent;
1383 	} else {
1384 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1385 		key.offset = root_objectid;
1386 	}
1387 
1388 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1389 	if (ret > 0)
1390 		ret = -ENOENT;
1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1392 	if (ret == -ENOENT && parent) {
1393 		btrfs_release_path(path);
1394 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1395 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1396 		if (ret > 0)
1397 			ret = -ENOENT;
1398 	}
1399 #endif
1400 	return ret;
1401 }
1402 
1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1404 					  struct btrfs_root *root,
1405 					  struct btrfs_path *path,
1406 					  u64 bytenr, u64 parent,
1407 					  u64 root_objectid)
1408 {
1409 	struct btrfs_key key;
1410 	int ret;
1411 
1412 	key.objectid = bytenr;
1413 	if (parent) {
1414 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1415 		key.offset = parent;
1416 	} else {
1417 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1418 		key.offset = root_objectid;
1419 	}
1420 
1421 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1422 	btrfs_release_path(path);
1423 	return ret;
1424 }
1425 
1426 static inline int extent_ref_type(u64 parent, u64 owner)
1427 {
1428 	int type;
1429 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1430 		if (parent > 0)
1431 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1432 		else
1433 			type = BTRFS_TREE_BLOCK_REF_KEY;
1434 	} else {
1435 		if (parent > 0)
1436 			type = BTRFS_SHARED_DATA_REF_KEY;
1437 		else
1438 			type = BTRFS_EXTENT_DATA_REF_KEY;
1439 	}
1440 	return type;
1441 }
1442 
1443 static int find_next_key(struct btrfs_path *path, int level,
1444 			 struct btrfs_key *key)
1445 
1446 {
1447 	for (; level < BTRFS_MAX_LEVEL; level++) {
1448 		if (!path->nodes[level])
1449 			break;
1450 		if (path->slots[level] + 1 >=
1451 		    btrfs_header_nritems(path->nodes[level]))
1452 			continue;
1453 		if (level == 0)
1454 			btrfs_item_key_to_cpu(path->nodes[level], key,
1455 					      path->slots[level] + 1);
1456 		else
1457 			btrfs_node_key_to_cpu(path->nodes[level], key,
1458 					      path->slots[level] + 1);
1459 		return 0;
1460 	}
1461 	return 1;
1462 }
1463 
1464 /*
1465  * look for inline back ref. if back ref is found, *ref_ret is set
1466  * to the address of inline back ref, and 0 is returned.
1467  *
1468  * if back ref isn't found, *ref_ret is set to the address where it
1469  * should be inserted, and -ENOENT is returned.
1470  *
1471  * if insert is true and there are too many inline back refs, the path
1472  * points to the extent item, and -EAGAIN is returned.
1473  *
1474  * NOTE: inline back refs are ordered in the same way that back ref
1475  *	 items in the tree are ordered.
1476  */
1477 static noinline_for_stack
1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1479 				 struct btrfs_root *root,
1480 				 struct btrfs_path *path,
1481 				 struct btrfs_extent_inline_ref **ref_ret,
1482 				 u64 bytenr, u64 num_bytes,
1483 				 u64 parent, u64 root_objectid,
1484 				 u64 owner, u64 offset, int insert)
1485 {
1486 	struct btrfs_key key;
1487 	struct extent_buffer *leaf;
1488 	struct btrfs_extent_item *ei;
1489 	struct btrfs_extent_inline_ref *iref;
1490 	u64 flags;
1491 	u64 item_size;
1492 	unsigned long ptr;
1493 	unsigned long end;
1494 	int extra_size;
1495 	int type;
1496 	int want;
1497 	int ret;
1498 	int err = 0;
1499 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1500 						 SKINNY_METADATA);
1501 
1502 	key.objectid = bytenr;
1503 	key.type = BTRFS_EXTENT_ITEM_KEY;
1504 	key.offset = num_bytes;
1505 
1506 	want = extent_ref_type(parent, owner);
1507 	if (insert) {
1508 		extra_size = btrfs_extent_inline_ref_size(want);
1509 		path->keep_locks = 1;
1510 	} else
1511 		extra_size = -1;
1512 
1513 	/*
1514 	 * Owner is our parent level, so we can just add one to get the level
1515 	 * for the block we are interested in.
1516 	 */
1517 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 		key.type = BTRFS_METADATA_ITEM_KEY;
1519 		key.offset = owner;
1520 	}
1521 
1522 again:
1523 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1524 	if (ret < 0) {
1525 		err = ret;
1526 		goto out;
1527 	}
1528 
1529 	/*
1530 	 * We may be a newly converted file system which still has the old fat
1531 	 * extent entries for metadata, so try and see if we have one of those.
1532 	 */
1533 	if (ret > 0 && skinny_metadata) {
1534 		skinny_metadata = false;
1535 		if (path->slots[0]) {
1536 			path->slots[0]--;
1537 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1538 					      path->slots[0]);
1539 			if (key.objectid == bytenr &&
1540 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1541 			    key.offset == num_bytes)
1542 				ret = 0;
1543 		}
1544 		if (ret) {
1545 			key.type = BTRFS_EXTENT_ITEM_KEY;
1546 			key.offset = num_bytes;
1547 			btrfs_release_path(path);
1548 			goto again;
1549 		}
1550 	}
1551 
1552 	if (ret && !insert) {
1553 		err = -ENOENT;
1554 		goto out;
1555 	} else if (WARN_ON(ret)) {
1556 		err = -EIO;
1557 		goto out;
1558 	}
1559 
1560 	leaf = path->nodes[0];
1561 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563 	if (item_size < sizeof(*ei)) {
1564 		if (!insert) {
1565 			err = -ENOENT;
1566 			goto out;
1567 		}
1568 		ret = convert_extent_item_v0(trans, root, path, owner,
1569 					     extra_size);
1570 		if (ret < 0) {
1571 			err = ret;
1572 			goto out;
1573 		}
1574 		leaf = path->nodes[0];
1575 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576 	}
1577 #endif
1578 	BUG_ON(item_size < sizeof(*ei));
1579 
1580 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581 	flags = btrfs_extent_flags(leaf, ei);
1582 
1583 	ptr = (unsigned long)(ei + 1);
1584 	end = (unsigned long)ei + item_size;
1585 
1586 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587 		ptr += sizeof(struct btrfs_tree_block_info);
1588 		BUG_ON(ptr > end);
1589 	}
1590 
1591 	err = -ENOENT;
1592 	while (1) {
1593 		if (ptr >= end) {
1594 			WARN_ON(ptr > end);
1595 			break;
1596 		}
1597 		iref = (struct btrfs_extent_inline_ref *)ptr;
1598 		type = btrfs_extent_inline_ref_type(leaf, iref);
1599 		if (want < type)
1600 			break;
1601 		if (want > type) {
1602 			ptr += btrfs_extent_inline_ref_size(type);
1603 			continue;
1604 		}
1605 
1606 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607 			struct btrfs_extent_data_ref *dref;
1608 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609 			if (match_extent_data_ref(leaf, dref, root_objectid,
1610 						  owner, offset)) {
1611 				err = 0;
1612 				break;
1613 			}
1614 			if (hash_extent_data_ref_item(leaf, dref) <
1615 			    hash_extent_data_ref(root_objectid, owner, offset))
1616 				break;
1617 		} else {
1618 			u64 ref_offset;
1619 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620 			if (parent > 0) {
1621 				if (parent == ref_offset) {
1622 					err = 0;
1623 					break;
1624 				}
1625 				if (ref_offset < parent)
1626 					break;
1627 			} else {
1628 				if (root_objectid == ref_offset) {
1629 					err = 0;
1630 					break;
1631 				}
1632 				if (ref_offset < root_objectid)
1633 					break;
1634 			}
1635 		}
1636 		ptr += btrfs_extent_inline_ref_size(type);
1637 	}
1638 	if (err == -ENOENT && insert) {
1639 		if (item_size + extra_size >=
1640 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641 			err = -EAGAIN;
1642 			goto out;
1643 		}
1644 		/*
1645 		 * To add new inline back ref, we have to make sure
1646 		 * there is no corresponding back ref item.
1647 		 * For simplicity, we just do not add new inline back
1648 		 * ref if there is any kind of item for this block
1649 		 */
1650 		if (find_next_key(path, 0, &key) == 0 &&
1651 		    key.objectid == bytenr &&
1652 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653 			err = -EAGAIN;
1654 			goto out;
1655 		}
1656 	}
1657 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659 	if (insert) {
1660 		path->keep_locks = 0;
1661 		btrfs_unlock_up_safe(path, 1);
1662 	}
1663 	return err;
1664 }
1665 
1666 /*
1667  * helper to add new inline back ref
1668  */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671 				 struct btrfs_path *path,
1672 				 struct btrfs_extent_inline_ref *iref,
1673 				 u64 parent, u64 root_objectid,
1674 				 u64 owner, u64 offset, int refs_to_add,
1675 				 struct btrfs_delayed_extent_op *extent_op)
1676 {
1677 	struct extent_buffer *leaf;
1678 	struct btrfs_extent_item *ei;
1679 	unsigned long ptr;
1680 	unsigned long end;
1681 	unsigned long item_offset;
1682 	u64 refs;
1683 	int size;
1684 	int type;
1685 
1686 	leaf = path->nodes[0];
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	item_offset = (unsigned long)iref - (unsigned long)ei;
1689 
1690 	type = extent_ref_type(parent, owner);
1691 	size = btrfs_extent_inline_ref_size(type);
1692 
1693 	btrfs_extend_item(root, path, size);
1694 
1695 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696 	refs = btrfs_extent_refs(leaf, ei);
1697 	refs += refs_to_add;
1698 	btrfs_set_extent_refs(leaf, ei, refs);
1699 	if (extent_op)
1700 		__run_delayed_extent_op(extent_op, leaf, ei);
1701 
1702 	ptr = (unsigned long)ei + item_offset;
1703 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704 	if (ptr < end - size)
1705 		memmove_extent_buffer(leaf, ptr + size, ptr,
1706 				      end - size - ptr);
1707 
1708 	iref = (struct btrfs_extent_inline_ref *)ptr;
1709 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711 		struct btrfs_extent_data_ref *dref;
1712 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718 		struct btrfs_shared_data_ref *sref;
1719 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724 	} else {
1725 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726 	}
1727 	btrfs_mark_buffer_dirty(leaf);
1728 }
1729 
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731 				 struct btrfs_root *root,
1732 				 struct btrfs_path *path,
1733 				 struct btrfs_extent_inline_ref **ref_ret,
1734 				 u64 bytenr, u64 num_bytes, u64 parent,
1735 				 u64 root_objectid, u64 owner, u64 offset)
1736 {
1737 	int ret;
1738 
1739 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740 					   bytenr, num_bytes, parent,
1741 					   root_objectid, owner, offset, 0);
1742 	if (ret != -ENOENT)
1743 		return ret;
1744 
1745 	btrfs_release_path(path);
1746 	*ref_ret = NULL;
1747 
1748 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750 					    root_objectid);
1751 	} else {
1752 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753 					     root_objectid, owner, offset);
1754 	}
1755 	return ret;
1756 }
1757 
1758 /*
1759  * helper to update/remove inline back ref
1760  */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763 				  struct btrfs_path *path,
1764 				  struct btrfs_extent_inline_ref *iref,
1765 				  int refs_to_mod,
1766 				  struct btrfs_delayed_extent_op *extent_op)
1767 {
1768 	struct extent_buffer *leaf;
1769 	struct btrfs_extent_item *ei;
1770 	struct btrfs_extent_data_ref *dref = NULL;
1771 	struct btrfs_shared_data_ref *sref = NULL;
1772 	unsigned long ptr;
1773 	unsigned long end;
1774 	u32 item_size;
1775 	int size;
1776 	int type;
1777 	u64 refs;
1778 
1779 	leaf = path->nodes[0];
1780 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781 	refs = btrfs_extent_refs(leaf, ei);
1782 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783 	refs += refs_to_mod;
1784 	btrfs_set_extent_refs(leaf, ei, refs);
1785 	if (extent_op)
1786 		__run_delayed_extent_op(extent_op, leaf, ei);
1787 
1788 	type = btrfs_extent_inline_ref_type(leaf, iref);
1789 
1790 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 		refs = btrfs_extent_data_ref_count(leaf, dref);
1793 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 		refs = btrfs_shared_data_ref_count(leaf, sref);
1796 	} else {
1797 		refs = 1;
1798 		BUG_ON(refs_to_mod != -1);
1799 	}
1800 
1801 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 	refs += refs_to_mod;
1803 
1804 	if (refs > 0) {
1805 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 		else
1808 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 	} else {
1810 		size =  btrfs_extent_inline_ref_size(type);
1811 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812 		ptr = (unsigned long)iref;
1813 		end = (unsigned long)ei + item_size;
1814 		if (ptr + size < end)
1815 			memmove_extent_buffer(leaf, ptr, ptr + size,
1816 					      end - ptr - size);
1817 		item_size -= size;
1818 		btrfs_truncate_item(root, path, item_size, 1);
1819 	}
1820 	btrfs_mark_buffer_dirty(leaf);
1821 }
1822 
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825 				 struct btrfs_root *root,
1826 				 struct btrfs_path *path,
1827 				 u64 bytenr, u64 num_bytes, u64 parent,
1828 				 u64 root_objectid, u64 owner,
1829 				 u64 offset, int refs_to_add,
1830 				 struct btrfs_delayed_extent_op *extent_op)
1831 {
1832 	struct btrfs_extent_inline_ref *iref;
1833 	int ret;
1834 
1835 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836 					   bytenr, num_bytes, parent,
1837 					   root_objectid, owner, offset, 1);
1838 	if (ret == 0) {
1839 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840 		update_inline_extent_backref(root, path, iref,
1841 					     refs_to_add, extent_op);
1842 	} else if (ret == -ENOENT) {
1843 		setup_inline_extent_backref(root, path, iref, parent,
1844 					    root_objectid, owner, offset,
1845 					    refs_to_add, extent_op);
1846 		ret = 0;
1847 	}
1848 	return ret;
1849 }
1850 
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852 				 struct btrfs_root *root,
1853 				 struct btrfs_path *path,
1854 				 u64 bytenr, u64 parent, u64 root_objectid,
1855 				 u64 owner, u64 offset, int refs_to_add)
1856 {
1857 	int ret;
1858 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859 		BUG_ON(refs_to_add != 1);
1860 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1861 					    parent, root_objectid);
1862 	} else {
1863 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1864 					     parent, root_objectid,
1865 					     owner, offset, refs_to_add);
1866 	}
1867 	return ret;
1868 }
1869 
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871 				 struct btrfs_root *root,
1872 				 struct btrfs_path *path,
1873 				 struct btrfs_extent_inline_ref *iref,
1874 				 int refs_to_drop, int is_data)
1875 {
1876 	int ret = 0;
1877 
1878 	BUG_ON(!is_data && refs_to_drop != 1);
1879 	if (iref) {
1880 		update_inline_extent_backref(root, path, iref,
1881 					     -refs_to_drop, NULL);
1882 	} else if (is_data) {
1883 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884 	} else {
1885 		ret = btrfs_del_item(trans, root, path);
1886 	}
1887 	return ret;
1888 }
1889 
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891 				u64 start, u64 len)
1892 {
1893 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895 
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897 				u64 num_bytes, u64 *actual_bytes)
1898 {
1899 	int ret;
1900 	u64 discarded_bytes = 0;
1901 	struct btrfs_bio *bbio = NULL;
1902 
1903 
1904 	/* Tell the block device(s) that the sectors can be discarded */
1905 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906 			      bytenr, &num_bytes, &bbio, 0);
1907 	/* Error condition is -ENOMEM */
1908 	if (!ret) {
1909 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1910 		int i;
1911 
1912 
1913 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914 			if (!stripe->dev->can_discard)
1915 				continue;
1916 
1917 			ret = btrfs_issue_discard(stripe->dev->bdev,
1918 						  stripe->physical,
1919 						  stripe->length);
1920 			if (!ret)
1921 				discarded_bytes += stripe->length;
1922 			else if (ret != -EOPNOTSUPP)
1923 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924 
1925 			/*
1926 			 * Just in case we get back EOPNOTSUPP for some reason,
1927 			 * just ignore the return value so we don't screw up
1928 			 * people calling discard_extent.
1929 			 */
1930 			ret = 0;
1931 		}
1932 		kfree(bbio);
1933 	}
1934 
1935 	if (actual_bytes)
1936 		*actual_bytes = discarded_bytes;
1937 
1938 
1939 	if (ret == -EOPNOTSUPP)
1940 		ret = 0;
1941 	return ret;
1942 }
1943 
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946 			 struct btrfs_root *root,
1947 			 u64 bytenr, u64 num_bytes, u64 parent,
1948 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950 	int ret;
1951 	struct btrfs_fs_info *fs_info = root->fs_info;
1952 
1953 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955 
1956 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958 					num_bytes,
1959 					parent, root_objectid, (int)owner,
1960 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961 	} else {
1962 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963 					num_bytes,
1964 					parent, root_objectid, owner, offset,
1965 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966 	}
1967 	return ret;
1968 }
1969 
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971 				  struct btrfs_root *root,
1972 				  u64 bytenr, u64 num_bytes,
1973 				  u64 parent, u64 root_objectid,
1974 				  u64 owner, u64 offset, int refs_to_add,
1975 				  struct btrfs_delayed_extent_op *extent_op)
1976 {
1977 	struct btrfs_path *path;
1978 	struct extent_buffer *leaf;
1979 	struct btrfs_extent_item *item;
1980 	u64 refs;
1981 	int ret;
1982 
1983 	path = btrfs_alloc_path();
1984 	if (!path)
1985 		return -ENOMEM;
1986 
1987 	path->reada = 1;
1988 	path->leave_spinning = 1;
1989 	/* this will setup the path even if it fails to insert the back ref */
1990 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1991 					   path, bytenr, num_bytes, parent,
1992 					   root_objectid, owner, offset,
1993 					   refs_to_add, extent_op);
1994 	if (ret != -EAGAIN)
1995 		goto out;
1996 
1997 	leaf = path->nodes[0];
1998 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1999 	refs = btrfs_extent_refs(leaf, item);
2000 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2001 	if (extent_op)
2002 		__run_delayed_extent_op(extent_op, leaf, item);
2003 
2004 	btrfs_mark_buffer_dirty(leaf);
2005 	btrfs_release_path(path);
2006 
2007 	path->reada = 1;
2008 	path->leave_spinning = 1;
2009 
2010 	/* now insert the actual backref */
2011 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2012 				    path, bytenr, parent, root_objectid,
2013 				    owner, offset, refs_to_add);
2014 	if (ret)
2015 		btrfs_abort_transaction(trans, root, ret);
2016 out:
2017 	btrfs_free_path(path);
2018 	return ret;
2019 }
2020 
2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2022 				struct btrfs_root *root,
2023 				struct btrfs_delayed_ref_node *node,
2024 				struct btrfs_delayed_extent_op *extent_op,
2025 				int insert_reserved)
2026 {
2027 	int ret = 0;
2028 	struct btrfs_delayed_data_ref *ref;
2029 	struct btrfs_key ins;
2030 	u64 parent = 0;
2031 	u64 ref_root = 0;
2032 	u64 flags = 0;
2033 
2034 	ins.objectid = node->bytenr;
2035 	ins.offset = node->num_bytes;
2036 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2037 
2038 	ref = btrfs_delayed_node_to_data_ref(node);
2039 	trace_run_delayed_data_ref(node, ref, node->action);
2040 
2041 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2042 		parent = ref->parent;
2043 	else
2044 		ref_root = ref->root;
2045 
2046 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2047 		if (extent_op)
2048 			flags |= extent_op->flags_to_set;
2049 		ret = alloc_reserved_file_extent(trans, root,
2050 						 parent, ref_root, flags,
2051 						 ref->objectid, ref->offset,
2052 						 &ins, node->ref_mod);
2053 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2054 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2055 					     node->num_bytes, parent,
2056 					     ref_root, ref->objectid,
2057 					     ref->offset, node->ref_mod,
2058 					     extent_op);
2059 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2060 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2061 					  node->num_bytes, parent,
2062 					  ref_root, ref->objectid,
2063 					  ref->offset, node->ref_mod,
2064 					  extent_op);
2065 	} else {
2066 		BUG();
2067 	}
2068 	return ret;
2069 }
2070 
2071 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2072 				    struct extent_buffer *leaf,
2073 				    struct btrfs_extent_item *ei)
2074 {
2075 	u64 flags = btrfs_extent_flags(leaf, ei);
2076 	if (extent_op->update_flags) {
2077 		flags |= extent_op->flags_to_set;
2078 		btrfs_set_extent_flags(leaf, ei, flags);
2079 	}
2080 
2081 	if (extent_op->update_key) {
2082 		struct btrfs_tree_block_info *bi;
2083 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2084 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2085 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2086 	}
2087 }
2088 
2089 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2090 				 struct btrfs_root *root,
2091 				 struct btrfs_delayed_ref_node *node,
2092 				 struct btrfs_delayed_extent_op *extent_op)
2093 {
2094 	struct btrfs_key key;
2095 	struct btrfs_path *path;
2096 	struct btrfs_extent_item *ei;
2097 	struct extent_buffer *leaf;
2098 	u32 item_size;
2099 	int ret;
2100 	int err = 0;
2101 	int metadata = !extent_op->is_data;
2102 
2103 	if (trans->aborted)
2104 		return 0;
2105 
2106 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2107 		metadata = 0;
2108 
2109 	path = btrfs_alloc_path();
2110 	if (!path)
2111 		return -ENOMEM;
2112 
2113 	key.objectid = node->bytenr;
2114 
2115 	if (metadata) {
2116 		key.type = BTRFS_METADATA_ITEM_KEY;
2117 		key.offset = extent_op->level;
2118 	} else {
2119 		key.type = BTRFS_EXTENT_ITEM_KEY;
2120 		key.offset = node->num_bytes;
2121 	}
2122 
2123 again:
2124 	path->reada = 1;
2125 	path->leave_spinning = 1;
2126 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2127 				path, 0, 1);
2128 	if (ret < 0) {
2129 		err = ret;
2130 		goto out;
2131 	}
2132 	if (ret > 0) {
2133 		if (metadata) {
2134 			if (path->slots[0] > 0) {
2135 				path->slots[0]--;
2136 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2137 						      path->slots[0]);
2138 				if (key.objectid == node->bytenr &&
2139 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2140 				    key.offset == node->num_bytes)
2141 					ret = 0;
2142 			}
2143 			if (ret > 0) {
2144 				btrfs_release_path(path);
2145 				metadata = 0;
2146 
2147 				key.objectid = node->bytenr;
2148 				key.offset = node->num_bytes;
2149 				key.type = BTRFS_EXTENT_ITEM_KEY;
2150 				goto again;
2151 			}
2152 		} else {
2153 			err = -EIO;
2154 			goto out;
2155 		}
2156 	}
2157 
2158 	leaf = path->nodes[0];
2159 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2160 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2161 	if (item_size < sizeof(*ei)) {
2162 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2163 					     path, (u64)-1, 0);
2164 		if (ret < 0) {
2165 			err = ret;
2166 			goto out;
2167 		}
2168 		leaf = path->nodes[0];
2169 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2170 	}
2171 #endif
2172 	BUG_ON(item_size < sizeof(*ei));
2173 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2174 	__run_delayed_extent_op(extent_op, leaf, ei);
2175 
2176 	btrfs_mark_buffer_dirty(leaf);
2177 out:
2178 	btrfs_free_path(path);
2179 	return err;
2180 }
2181 
2182 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2183 				struct btrfs_root *root,
2184 				struct btrfs_delayed_ref_node *node,
2185 				struct btrfs_delayed_extent_op *extent_op,
2186 				int insert_reserved)
2187 {
2188 	int ret = 0;
2189 	struct btrfs_delayed_tree_ref *ref;
2190 	struct btrfs_key ins;
2191 	u64 parent = 0;
2192 	u64 ref_root = 0;
2193 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2194 						 SKINNY_METADATA);
2195 
2196 	ref = btrfs_delayed_node_to_tree_ref(node);
2197 	trace_run_delayed_tree_ref(node, ref, node->action);
2198 
2199 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2200 		parent = ref->parent;
2201 	else
2202 		ref_root = ref->root;
2203 
2204 	ins.objectid = node->bytenr;
2205 	if (skinny_metadata) {
2206 		ins.offset = ref->level;
2207 		ins.type = BTRFS_METADATA_ITEM_KEY;
2208 	} else {
2209 		ins.offset = node->num_bytes;
2210 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2211 	}
2212 
2213 	BUG_ON(node->ref_mod != 1);
2214 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2215 		BUG_ON(!extent_op || !extent_op->update_flags);
2216 		ret = alloc_reserved_tree_block(trans, root,
2217 						parent, ref_root,
2218 						extent_op->flags_to_set,
2219 						&extent_op->key,
2220 						ref->level, &ins);
2221 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2222 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2223 					     node->num_bytes, parent, ref_root,
2224 					     ref->level, 0, 1, extent_op);
2225 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2226 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2227 					  node->num_bytes, parent, ref_root,
2228 					  ref->level, 0, 1, extent_op);
2229 	} else {
2230 		BUG();
2231 	}
2232 	return ret;
2233 }
2234 
2235 /* helper function to actually process a single delayed ref entry */
2236 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2237 			       struct btrfs_root *root,
2238 			       struct btrfs_delayed_ref_node *node,
2239 			       struct btrfs_delayed_extent_op *extent_op,
2240 			       int insert_reserved)
2241 {
2242 	int ret = 0;
2243 
2244 	if (trans->aborted) {
2245 		if (insert_reserved)
2246 			btrfs_pin_extent(root, node->bytenr,
2247 					 node->num_bytes, 1);
2248 		return 0;
2249 	}
2250 
2251 	if (btrfs_delayed_ref_is_head(node)) {
2252 		struct btrfs_delayed_ref_head *head;
2253 		/*
2254 		 * we've hit the end of the chain and we were supposed
2255 		 * to insert this extent into the tree.  But, it got
2256 		 * deleted before we ever needed to insert it, so all
2257 		 * we have to do is clean up the accounting
2258 		 */
2259 		BUG_ON(extent_op);
2260 		head = btrfs_delayed_node_to_head(node);
2261 		trace_run_delayed_ref_head(node, head, node->action);
2262 
2263 		if (insert_reserved) {
2264 			btrfs_pin_extent(root, node->bytenr,
2265 					 node->num_bytes, 1);
2266 			if (head->is_data) {
2267 				ret = btrfs_del_csums(trans, root,
2268 						      node->bytenr,
2269 						      node->num_bytes);
2270 			}
2271 		}
2272 		return ret;
2273 	}
2274 
2275 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2276 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2277 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2278 					   insert_reserved);
2279 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2280 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2281 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2282 					   insert_reserved);
2283 	else
2284 		BUG();
2285 	return ret;
2286 }
2287 
2288 static noinline struct btrfs_delayed_ref_node *
2289 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2290 {
2291 	struct rb_node *node;
2292 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2293 
2294 	/*
2295 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2296 	 * this prevents ref count from going down to zero when
2297 	 * there still are pending delayed ref.
2298 	 */
2299 	node = rb_first(&head->ref_root);
2300 	while (node) {
2301 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2302 				rb_node);
2303 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2304 			return ref;
2305 		else if (last == NULL)
2306 			last = ref;
2307 		node = rb_next(node);
2308 	}
2309 	return last;
2310 }
2311 
2312 /*
2313  * Returns 0 on success or if called with an already aborted transaction.
2314  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2315  */
2316 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2317 					     struct btrfs_root *root,
2318 					     unsigned long nr)
2319 {
2320 	struct btrfs_delayed_ref_root *delayed_refs;
2321 	struct btrfs_delayed_ref_node *ref;
2322 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2323 	struct btrfs_delayed_extent_op *extent_op;
2324 	struct btrfs_fs_info *fs_info = root->fs_info;
2325 	ktime_t start = ktime_get();
2326 	int ret;
2327 	unsigned long count = 0;
2328 	unsigned long actual_count = 0;
2329 	int must_insert_reserved = 0;
2330 
2331 	delayed_refs = &trans->transaction->delayed_refs;
2332 	while (1) {
2333 		if (!locked_ref) {
2334 			if (count >= nr)
2335 				break;
2336 
2337 			spin_lock(&delayed_refs->lock);
2338 			locked_ref = btrfs_select_ref_head(trans);
2339 			if (!locked_ref) {
2340 				spin_unlock(&delayed_refs->lock);
2341 				break;
2342 			}
2343 
2344 			/* grab the lock that says we are going to process
2345 			 * all the refs for this head */
2346 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2347 			spin_unlock(&delayed_refs->lock);
2348 			/*
2349 			 * we may have dropped the spin lock to get the head
2350 			 * mutex lock, and that might have given someone else
2351 			 * time to free the head.  If that's true, it has been
2352 			 * removed from our list and we can move on.
2353 			 */
2354 			if (ret == -EAGAIN) {
2355 				locked_ref = NULL;
2356 				count++;
2357 				continue;
2358 			}
2359 		}
2360 
2361 		/*
2362 		 * We need to try and merge add/drops of the same ref since we
2363 		 * can run into issues with relocate dropping the implicit ref
2364 		 * and then it being added back again before the drop can
2365 		 * finish.  If we merged anything we need to re-loop so we can
2366 		 * get a good ref.
2367 		 */
2368 		spin_lock(&locked_ref->lock);
2369 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2370 					 locked_ref);
2371 
2372 		/*
2373 		 * locked_ref is the head node, so we have to go one
2374 		 * node back for any delayed ref updates
2375 		 */
2376 		ref = select_delayed_ref(locked_ref);
2377 
2378 		if (ref && ref->seq &&
2379 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2380 			spin_unlock(&locked_ref->lock);
2381 			btrfs_delayed_ref_unlock(locked_ref);
2382 			spin_lock(&delayed_refs->lock);
2383 			locked_ref->processing = 0;
2384 			delayed_refs->num_heads_ready++;
2385 			spin_unlock(&delayed_refs->lock);
2386 			locked_ref = NULL;
2387 			cond_resched();
2388 			count++;
2389 			continue;
2390 		}
2391 
2392 		/*
2393 		 * record the must insert reserved flag before we
2394 		 * drop the spin lock.
2395 		 */
2396 		must_insert_reserved = locked_ref->must_insert_reserved;
2397 		locked_ref->must_insert_reserved = 0;
2398 
2399 		extent_op = locked_ref->extent_op;
2400 		locked_ref->extent_op = NULL;
2401 
2402 		if (!ref) {
2403 
2404 
2405 			/* All delayed refs have been processed, Go ahead
2406 			 * and send the head node to run_one_delayed_ref,
2407 			 * so that any accounting fixes can happen
2408 			 */
2409 			ref = &locked_ref->node;
2410 
2411 			if (extent_op && must_insert_reserved) {
2412 				btrfs_free_delayed_extent_op(extent_op);
2413 				extent_op = NULL;
2414 			}
2415 
2416 			if (extent_op) {
2417 				spin_unlock(&locked_ref->lock);
2418 				ret = run_delayed_extent_op(trans, root,
2419 							    ref, extent_op);
2420 				btrfs_free_delayed_extent_op(extent_op);
2421 
2422 				if (ret) {
2423 					/*
2424 					 * Need to reset must_insert_reserved if
2425 					 * there was an error so the abort stuff
2426 					 * can cleanup the reserved space
2427 					 * properly.
2428 					 */
2429 					if (must_insert_reserved)
2430 						locked_ref->must_insert_reserved = 1;
2431 					locked_ref->processing = 0;
2432 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2433 					btrfs_delayed_ref_unlock(locked_ref);
2434 					return ret;
2435 				}
2436 				continue;
2437 			}
2438 
2439 			/*
2440 			 * Need to drop our head ref lock and re-aqcuire the
2441 			 * delayed ref lock and then re-check to make sure
2442 			 * nobody got added.
2443 			 */
2444 			spin_unlock(&locked_ref->lock);
2445 			spin_lock(&delayed_refs->lock);
2446 			spin_lock(&locked_ref->lock);
2447 			if (rb_first(&locked_ref->ref_root)) {
2448 				spin_unlock(&locked_ref->lock);
2449 				spin_unlock(&delayed_refs->lock);
2450 				continue;
2451 			}
2452 			ref->in_tree = 0;
2453 			delayed_refs->num_heads--;
2454 			rb_erase(&locked_ref->href_node,
2455 				 &delayed_refs->href_root);
2456 			spin_unlock(&delayed_refs->lock);
2457 		} else {
2458 			actual_count++;
2459 			ref->in_tree = 0;
2460 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2461 		}
2462 		atomic_dec(&delayed_refs->num_entries);
2463 
2464 		if (!btrfs_delayed_ref_is_head(ref)) {
2465 			/*
2466 			 * when we play the delayed ref, also correct the
2467 			 * ref_mod on head
2468 			 */
2469 			switch (ref->action) {
2470 			case BTRFS_ADD_DELAYED_REF:
2471 			case BTRFS_ADD_DELAYED_EXTENT:
2472 				locked_ref->node.ref_mod -= ref->ref_mod;
2473 				break;
2474 			case BTRFS_DROP_DELAYED_REF:
2475 				locked_ref->node.ref_mod += ref->ref_mod;
2476 				break;
2477 			default:
2478 				WARN_ON(1);
2479 			}
2480 		}
2481 		spin_unlock(&locked_ref->lock);
2482 
2483 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2484 					  must_insert_reserved);
2485 
2486 		btrfs_free_delayed_extent_op(extent_op);
2487 		if (ret) {
2488 			locked_ref->processing = 0;
2489 			btrfs_delayed_ref_unlock(locked_ref);
2490 			btrfs_put_delayed_ref(ref);
2491 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2492 			return ret;
2493 		}
2494 
2495 		/*
2496 		 * If this node is a head, that means all the refs in this head
2497 		 * have been dealt with, and we will pick the next head to deal
2498 		 * with, so we must unlock the head and drop it from the cluster
2499 		 * list before we release it.
2500 		 */
2501 		if (btrfs_delayed_ref_is_head(ref)) {
2502 			btrfs_delayed_ref_unlock(locked_ref);
2503 			locked_ref = NULL;
2504 		}
2505 		btrfs_put_delayed_ref(ref);
2506 		count++;
2507 		cond_resched();
2508 	}
2509 
2510 	/*
2511 	 * We don't want to include ref heads since we can have empty ref heads
2512 	 * and those will drastically skew our runtime down since we just do
2513 	 * accounting, no actual extent tree updates.
2514 	 */
2515 	if (actual_count > 0) {
2516 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2517 		u64 avg;
2518 
2519 		/*
2520 		 * We weigh the current average higher than our current runtime
2521 		 * to avoid large swings in the average.
2522 		 */
2523 		spin_lock(&delayed_refs->lock);
2524 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2525 		avg = div64_u64(avg, 4);
2526 		fs_info->avg_delayed_ref_runtime = avg;
2527 		spin_unlock(&delayed_refs->lock);
2528 	}
2529 	return 0;
2530 }
2531 
2532 #ifdef SCRAMBLE_DELAYED_REFS
2533 /*
2534  * Normally delayed refs get processed in ascending bytenr order. This
2535  * correlates in most cases to the order added. To expose dependencies on this
2536  * order, we start to process the tree in the middle instead of the beginning
2537  */
2538 static u64 find_middle(struct rb_root *root)
2539 {
2540 	struct rb_node *n = root->rb_node;
2541 	struct btrfs_delayed_ref_node *entry;
2542 	int alt = 1;
2543 	u64 middle;
2544 	u64 first = 0, last = 0;
2545 
2546 	n = rb_first(root);
2547 	if (n) {
2548 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2549 		first = entry->bytenr;
2550 	}
2551 	n = rb_last(root);
2552 	if (n) {
2553 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2554 		last = entry->bytenr;
2555 	}
2556 	n = root->rb_node;
2557 
2558 	while (n) {
2559 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2560 		WARN_ON(!entry->in_tree);
2561 
2562 		middle = entry->bytenr;
2563 
2564 		if (alt)
2565 			n = n->rb_left;
2566 		else
2567 			n = n->rb_right;
2568 
2569 		alt = 1 - alt;
2570 	}
2571 	return middle;
2572 }
2573 #endif
2574 
2575 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2576 					 struct btrfs_fs_info *fs_info)
2577 {
2578 	struct qgroup_update *qgroup_update;
2579 	int ret = 0;
2580 
2581 	if (list_empty(&trans->qgroup_ref_list) !=
2582 	    !trans->delayed_ref_elem.seq) {
2583 		/* list without seq or seq without list */
2584 		btrfs_err(fs_info,
2585 			"qgroup accounting update error, list is%s empty, seq is %#x.%x",
2586 			list_empty(&trans->qgroup_ref_list) ? "" : " not",
2587 			(u32)(trans->delayed_ref_elem.seq >> 32),
2588 			(u32)trans->delayed_ref_elem.seq);
2589 		BUG();
2590 	}
2591 
2592 	if (!trans->delayed_ref_elem.seq)
2593 		return 0;
2594 
2595 	while (!list_empty(&trans->qgroup_ref_list)) {
2596 		qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2597 						 struct qgroup_update, list);
2598 		list_del(&qgroup_update->list);
2599 		if (!ret)
2600 			ret = btrfs_qgroup_account_ref(
2601 					trans, fs_info, qgroup_update->node,
2602 					qgroup_update->extent_op);
2603 		kfree(qgroup_update);
2604 	}
2605 
2606 	btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2607 
2608 	return ret;
2609 }
2610 
2611 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2612 {
2613 	u64 num_bytes;
2614 
2615 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2616 			     sizeof(struct btrfs_extent_inline_ref));
2617 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2618 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2619 
2620 	/*
2621 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2622 	 * closer to what we're really going to want to ouse.
2623 	 */
2624 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2625 }
2626 
2627 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2628 				       struct btrfs_root *root)
2629 {
2630 	struct btrfs_block_rsv *global_rsv;
2631 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2632 	u64 num_bytes;
2633 	int ret = 0;
2634 
2635 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2636 	num_heads = heads_to_leaves(root, num_heads);
2637 	if (num_heads > 1)
2638 		num_bytes += (num_heads - 1) * root->leafsize;
2639 	num_bytes <<= 1;
2640 	global_rsv = &root->fs_info->global_block_rsv;
2641 
2642 	/*
2643 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2644 	 * wiggle room since running delayed refs can create more delayed refs.
2645 	 */
2646 	if (global_rsv->space_info->full)
2647 		num_bytes <<= 1;
2648 
2649 	spin_lock(&global_rsv->lock);
2650 	if (global_rsv->reserved <= num_bytes)
2651 		ret = 1;
2652 	spin_unlock(&global_rsv->lock);
2653 	return ret;
2654 }
2655 
2656 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2657 				       struct btrfs_root *root)
2658 {
2659 	struct btrfs_fs_info *fs_info = root->fs_info;
2660 	u64 num_entries =
2661 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2662 	u64 avg_runtime;
2663 
2664 	smp_mb();
2665 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2666 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2667 		return 1;
2668 
2669 	return btrfs_check_space_for_delayed_refs(trans, root);
2670 }
2671 
2672 /*
2673  * this starts processing the delayed reference count updates and
2674  * extent insertions we have queued up so far.  count can be
2675  * 0, which means to process everything in the tree at the start
2676  * of the run (but not newly added entries), or it can be some target
2677  * number you'd like to process.
2678  *
2679  * Returns 0 on success or if called with an aborted transaction
2680  * Returns <0 on error and aborts the transaction
2681  */
2682 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2683 			   struct btrfs_root *root, unsigned long count)
2684 {
2685 	struct rb_node *node;
2686 	struct btrfs_delayed_ref_root *delayed_refs;
2687 	struct btrfs_delayed_ref_head *head;
2688 	int ret;
2689 	int run_all = count == (unsigned long)-1;
2690 	int run_most = 0;
2691 
2692 	/* We'll clean this up in btrfs_cleanup_transaction */
2693 	if (trans->aborted)
2694 		return 0;
2695 
2696 	if (root == root->fs_info->extent_root)
2697 		root = root->fs_info->tree_root;
2698 
2699 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2700 
2701 	delayed_refs = &trans->transaction->delayed_refs;
2702 	if (count == 0) {
2703 		count = atomic_read(&delayed_refs->num_entries) * 2;
2704 		run_most = 1;
2705 	}
2706 
2707 again:
2708 #ifdef SCRAMBLE_DELAYED_REFS
2709 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2710 #endif
2711 	ret = __btrfs_run_delayed_refs(trans, root, count);
2712 	if (ret < 0) {
2713 		btrfs_abort_transaction(trans, root, ret);
2714 		return ret;
2715 	}
2716 
2717 	if (run_all) {
2718 		if (!list_empty(&trans->new_bgs))
2719 			btrfs_create_pending_block_groups(trans, root);
2720 
2721 		spin_lock(&delayed_refs->lock);
2722 		node = rb_first(&delayed_refs->href_root);
2723 		if (!node) {
2724 			spin_unlock(&delayed_refs->lock);
2725 			goto out;
2726 		}
2727 		count = (unsigned long)-1;
2728 
2729 		while (node) {
2730 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2731 					href_node);
2732 			if (btrfs_delayed_ref_is_head(&head->node)) {
2733 				struct btrfs_delayed_ref_node *ref;
2734 
2735 				ref = &head->node;
2736 				atomic_inc(&ref->refs);
2737 
2738 				spin_unlock(&delayed_refs->lock);
2739 				/*
2740 				 * Mutex was contended, block until it's
2741 				 * released and try again
2742 				 */
2743 				mutex_lock(&head->mutex);
2744 				mutex_unlock(&head->mutex);
2745 
2746 				btrfs_put_delayed_ref(ref);
2747 				cond_resched();
2748 				goto again;
2749 			} else {
2750 				WARN_ON(1);
2751 			}
2752 			node = rb_next(node);
2753 		}
2754 		spin_unlock(&delayed_refs->lock);
2755 		cond_resched();
2756 		goto again;
2757 	}
2758 out:
2759 	assert_qgroups_uptodate(trans);
2760 	return 0;
2761 }
2762 
2763 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2764 				struct btrfs_root *root,
2765 				u64 bytenr, u64 num_bytes, u64 flags,
2766 				int level, int is_data)
2767 {
2768 	struct btrfs_delayed_extent_op *extent_op;
2769 	int ret;
2770 
2771 	extent_op = btrfs_alloc_delayed_extent_op();
2772 	if (!extent_op)
2773 		return -ENOMEM;
2774 
2775 	extent_op->flags_to_set = flags;
2776 	extent_op->update_flags = 1;
2777 	extent_op->update_key = 0;
2778 	extent_op->is_data = is_data ? 1 : 0;
2779 	extent_op->level = level;
2780 
2781 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2782 					  num_bytes, extent_op);
2783 	if (ret)
2784 		btrfs_free_delayed_extent_op(extent_op);
2785 	return ret;
2786 }
2787 
2788 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2789 				      struct btrfs_root *root,
2790 				      struct btrfs_path *path,
2791 				      u64 objectid, u64 offset, u64 bytenr)
2792 {
2793 	struct btrfs_delayed_ref_head *head;
2794 	struct btrfs_delayed_ref_node *ref;
2795 	struct btrfs_delayed_data_ref *data_ref;
2796 	struct btrfs_delayed_ref_root *delayed_refs;
2797 	struct rb_node *node;
2798 	int ret = 0;
2799 
2800 	delayed_refs = &trans->transaction->delayed_refs;
2801 	spin_lock(&delayed_refs->lock);
2802 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2803 	if (!head) {
2804 		spin_unlock(&delayed_refs->lock);
2805 		return 0;
2806 	}
2807 
2808 	if (!mutex_trylock(&head->mutex)) {
2809 		atomic_inc(&head->node.refs);
2810 		spin_unlock(&delayed_refs->lock);
2811 
2812 		btrfs_release_path(path);
2813 
2814 		/*
2815 		 * Mutex was contended, block until it's released and let
2816 		 * caller try again
2817 		 */
2818 		mutex_lock(&head->mutex);
2819 		mutex_unlock(&head->mutex);
2820 		btrfs_put_delayed_ref(&head->node);
2821 		return -EAGAIN;
2822 	}
2823 	spin_unlock(&delayed_refs->lock);
2824 
2825 	spin_lock(&head->lock);
2826 	node = rb_first(&head->ref_root);
2827 	while (node) {
2828 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2829 		node = rb_next(node);
2830 
2831 		/* If it's a shared ref we know a cross reference exists */
2832 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2833 			ret = 1;
2834 			break;
2835 		}
2836 
2837 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2838 
2839 		/*
2840 		 * If our ref doesn't match the one we're currently looking at
2841 		 * then we have a cross reference.
2842 		 */
2843 		if (data_ref->root != root->root_key.objectid ||
2844 		    data_ref->objectid != objectid ||
2845 		    data_ref->offset != offset) {
2846 			ret = 1;
2847 			break;
2848 		}
2849 	}
2850 	spin_unlock(&head->lock);
2851 	mutex_unlock(&head->mutex);
2852 	return ret;
2853 }
2854 
2855 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2856 					struct btrfs_root *root,
2857 					struct btrfs_path *path,
2858 					u64 objectid, u64 offset, u64 bytenr)
2859 {
2860 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2861 	struct extent_buffer *leaf;
2862 	struct btrfs_extent_data_ref *ref;
2863 	struct btrfs_extent_inline_ref *iref;
2864 	struct btrfs_extent_item *ei;
2865 	struct btrfs_key key;
2866 	u32 item_size;
2867 	int ret;
2868 
2869 	key.objectid = bytenr;
2870 	key.offset = (u64)-1;
2871 	key.type = BTRFS_EXTENT_ITEM_KEY;
2872 
2873 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2874 	if (ret < 0)
2875 		goto out;
2876 	BUG_ON(ret == 0); /* Corruption */
2877 
2878 	ret = -ENOENT;
2879 	if (path->slots[0] == 0)
2880 		goto out;
2881 
2882 	path->slots[0]--;
2883 	leaf = path->nodes[0];
2884 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2885 
2886 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2887 		goto out;
2888 
2889 	ret = 1;
2890 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2891 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2892 	if (item_size < sizeof(*ei)) {
2893 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2894 		goto out;
2895 	}
2896 #endif
2897 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2898 
2899 	if (item_size != sizeof(*ei) +
2900 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2901 		goto out;
2902 
2903 	if (btrfs_extent_generation(leaf, ei) <=
2904 	    btrfs_root_last_snapshot(&root->root_item))
2905 		goto out;
2906 
2907 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2908 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2909 	    BTRFS_EXTENT_DATA_REF_KEY)
2910 		goto out;
2911 
2912 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2913 	if (btrfs_extent_refs(leaf, ei) !=
2914 	    btrfs_extent_data_ref_count(leaf, ref) ||
2915 	    btrfs_extent_data_ref_root(leaf, ref) !=
2916 	    root->root_key.objectid ||
2917 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2918 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2919 		goto out;
2920 
2921 	ret = 0;
2922 out:
2923 	return ret;
2924 }
2925 
2926 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2927 			  struct btrfs_root *root,
2928 			  u64 objectid, u64 offset, u64 bytenr)
2929 {
2930 	struct btrfs_path *path;
2931 	int ret;
2932 	int ret2;
2933 
2934 	path = btrfs_alloc_path();
2935 	if (!path)
2936 		return -ENOENT;
2937 
2938 	do {
2939 		ret = check_committed_ref(trans, root, path, objectid,
2940 					  offset, bytenr);
2941 		if (ret && ret != -ENOENT)
2942 			goto out;
2943 
2944 		ret2 = check_delayed_ref(trans, root, path, objectid,
2945 					 offset, bytenr);
2946 	} while (ret2 == -EAGAIN);
2947 
2948 	if (ret2 && ret2 != -ENOENT) {
2949 		ret = ret2;
2950 		goto out;
2951 	}
2952 
2953 	if (ret != -ENOENT || ret2 != -ENOENT)
2954 		ret = 0;
2955 out:
2956 	btrfs_free_path(path);
2957 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2958 		WARN_ON(ret > 0);
2959 	return ret;
2960 }
2961 
2962 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2963 			   struct btrfs_root *root,
2964 			   struct extent_buffer *buf,
2965 			   int full_backref, int inc, int for_cow)
2966 {
2967 	u64 bytenr;
2968 	u64 num_bytes;
2969 	u64 parent;
2970 	u64 ref_root;
2971 	u32 nritems;
2972 	struct btrfs_key key;
2973 	struct btrfs_file_extent_item *fi;
2974 	int i;
2975 	int level;
2976 	int ret = 0;
2977 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2978 			    u64, u64, u64, u64, u64, u64, int);
2979 
2980 	ref_root = btrfs_header_owner(buf);
2981 	nritems = btrfs_header_nritems(buf);
2982 	level = btrfs_header_level(buf);
2983 
2984 	if (!root->ref_cows && level == 0)
2985 		return 0;
2986 
2987 	if (inc)
2988 		process_func = btrfs_inc_extent_ref;
2989 	else
2990 		process_func = btrfs_free_extent;
2991 
2992 	if (full_backref)
2993 		parent = buf->start;
2994 	else
2995 		parent = 0;
2996 
2997 	for (i = 0; i < nritems; i++) {
2998 		if (level == 0) {
2999 			btrfs_item_key_to_cpu(buf, &key, i);
3000 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3001 				continue;
3002 			fi = btrfs_item_ptr(buf, i,
3003 					    struct btrfs_file_extent_item);
3004 			if (btrfs_file_extent_type(buf, fi) ==
3005 			    BTRFS_FILE_EXTENT_INLINE)
3006 				continue;
3007 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3008 			if (bytenr == 0)
3009 				continue;
3010 
3011 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3012 			key.offset -= btrfs_file_extent_offset(buf, fi);
3013 			ret = process_func(trans, root, bytenr, num_bytes,
3014 					   parent, ref_root, key.objectid,
3015 					   key.offset, for_cow);
3016 			if (ret)
3017 				goto fail;
3018 		} else {
3019 			bytenr = btrfs_node_blockptr(buf, i);
3020 			num_bytes = btrfs_level_size(root, level - 1);
3021 			ret = process_func(trans, root, bytenr, num_bytes,
3022 					   parent, ref_root, level - 1, 0,
3023 					   for_cow);
3024 			if (ret)
3025 				goto fail;
3026 		}
3027 	}
3028 	return 0;
3029 fail:
3030 	return ret;
3031 }
3032 
3033 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3034 		  struct extent_buffer *buf, int full_backref, int for_cow)
3035 {
3036 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3037 }
3038 
3039 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3040 		  struct extent_buffer *buf, int full_backref, int for_cow)
3041 {
3042 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3043 }
3044 
3045 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3046 				 struct btrfs_root *root,
3047 				 struct btrfs_path *path,
3048 				 struct btrfs_block_group_cache *cache)
3049 {
3050 	int ret;
3051 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3052 	unsigned long bi;
3053 	struct extent_buffer *leaf;
3054 
3055 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3056 	if (ret < 0)
3057 		goto fail;
3058 	BUG_ON(ret); /* Corruption */
3059 
3060 	leaf = path->nodes[0];
3061 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3062 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3063 	btrfs_mark_buffer_dirty(leaf);
3064 	btrfs_release_path(path);
3065 fail:
3066 	if (ret) {
3067 		btrfs_abort_transaction(trans, root, ret);
3068 		return ret;
3069 	}
3070 	return 0;
3071 
3072 }
3073 
3074 static struct btrfs_block_group_cache *
3075 next_block_group(struct btrfs_root *root,
3076 		 struct btrfs_block_group_cache *cache)
3077 {
3078 	struct rb_node *node;
3079 	spin_lock(&root->fs_info->block_group_cache_lock);
3080 	node = rb_next(&cache->cache_node);
3081 	btrfs_put_block_group(cache);
3082 	if (node) {
3083 		cache = rb_entry(node, struct btrfs_block_group_cache,
3084 				 cache_node);
3085 		btrfs_get_block_group(cache);
3086 	} else
3087 		cache = NULL;
3088 	spin_unlock(&root->fs_info->block_group_cache_lock);
3089 	return cache;
3090 }
3091 
3092 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3093 			    struct btrfs_trans_handle *trans,
3094 			    struct btrfs_path *path)
3095 {
3096 	struct btrfs_root *root = block_group->fs_info->tree_root;
3097 	struct inode *inode = NULL;
3098 	u64 alloc_hint = 0;
3099 	int dcs = BTRFS_DC_ERROR;
3100 	int num_pages = 0;
3101 	int retries = 0;
3102 	int ret = 0;
3103 
3104 	/*
3105 	 * If this block group is smaller than 100 megs don't bother caching the
3106 	 * block group.
3107 	 */
3108 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3109 		spin_lock(&block_group->lock);
3110 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3111 		spin_unlock(&block_group->lock);
3112 		return 0;
3113 	}
3114 
3115 again:
3116 	inode = lookup_free_space_inode(root, block_group, path);
3117 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3118 		ret = PTR_ERR(inode);
3119 		btrfs_release_path(path);
3120 		goto out;
3121 	}
3122 
3123 	if (IS_ERR(inode)) {
3124 		BUG_ON(retries);
3125 		retries++;
3126 
3127 		if (block_group->ro)
3128 			goto out_free;
3129 
3130 		ret = create_free_space_inode(root, trans, block_group, path);
3131 		if (ret)
3132 			goto out_free;
3133 		goto again;
3134 	}
3135 
3136 	/* We've already setup this transaction, go ahead and exit */
3137 	if (block_group->cache_generation == trans->transid &&
3138 	    i_size_read(inode)) {
3139 		dcs = BTRFS_DC_SETUP;
3140 		goto out_put;
3141 	}
3142 
3143 	/*
3144 	 * We want to set the generation to 0, that way if anything goes wrong
3145 	 * from here on out we know not to trust this cache when we load up next
3146 	 * time.
3147 	 */
3148 	BTRFS_I(inode)->generation = 0;
3149 	ret = btrfs_update_inode(trans, root, inode);
3150 	WARN_ON(ret);
3151 
3152 	if (i_size_read(inode) > 0) {
3153 		ret = btrfs_check_trunc_cache_free_space(root,
3154 					&root->fs_info->global_block_rsv);
3155 		if (ret)
3156 			goto out_put;
3157 
3158 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3159 		if (ret)
3160 			goto out_put;
3161 	}
3162 
3163 	spin_lock(&block_group->lock);
3164 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3165 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3166 		/*
3167 		 * don't bother trying to write stuff out _if_
3168 		 * a) we're not cached,
3169 		 * b) we're with nospace_cache mount option.
3170 		 */
3171 		dcs = BTRFS_DC_WRITTEN;
3172 		spin_unlock(&block_group->lock);
3173 		goto out_put;
3174 	}
3175 	spin_unlock(&block_group->lock);
3176 
3177 	/*
3178 	 * Try to preallocate enough space based on how big the block group is.
3179 	 * Keep in mind this has to include any pinned space which could end up
3180 	 * taking up quite a bit since it's not folded into the other space
3181 	 * cache.
3182 	 */
3183 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3184 	if (!num_pages)
3185 		num_pages = 1;
3186 
3187 	num_pages *= 16;
3188 	num_pages *= PAGE_CACHE_SIZE;
3189 
3190 	ret = btrfs_check_data_free_space(inode, num_pages);
3191 	if (ret)
3192 		goto out_put;
3193 
3194 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3195 					      num_pages, num_pages,
3196 					      &alloc_hint);
3197 	if (!ret)
3198 		dcs = BTRFS_DC_SETUP;
3199 	btrfs_free_reserved_data_space(inode, num_pages);
3200 
3201 out_put:
3202 	iput(inode);
3203 out_free:
3204 	btrfs_release_path(path);
3205 out:
3206 	spin_lock(&block_group->lock);
3207 	if (!ret && dcs == BTRFS_DC_SETUP)
3208 		block_group->cache_generation = trans->transid;
3209 	block_group->disk_cache_state = dcs;
3210 	spin_unlock(&block_group->lock);
3211 
3212 	return ret;
3213 }
3214 
3215 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3216 				   struct btrfs_root *root)
3217 {
3218 	struct btrfs_block_group_cache *cache;
3219 	int err = 0;
3220 	struct btrfs_path *path;
3221 	u64 last = 0;
3222 
3223 	path = btrfs_alloc_path();
3224 	if (!path)
3225 		return -ENOMEM;
3226 
3227 again:
3228 	while (1) {
3229 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3230 		while (cache) {
3231 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3232 				break;
3233 			cache = next_block_group(root, cache);
3234 		}
3235 		if (!cache) {
3236 			if (last == 0)
3237 				break;
3238 			last = 0;
3239 			continue;
3240 		}
3241 		err = cache_save_setup(cache, trans, path);
3242 		last = cache->key.objectid + cache->key.offset;
3243 		btrfs_put_block_group(cache);
3244 	}
3245 
3246 	while (1) {
3247 		if (last == 0) {
3248 			err = btrfs_run_delayed_refs(trans, root,
3249 						     (unsigned long)-1);
3250 			if (err) /* File system offline */
3251 				goto out;
3252 		}
3253 
3254 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3255 		while (cache) {
3256 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3257 				btrfs_put_block_group(cache);
3258 				goto again;
3259 			}
3260 
3261 			if (cache->dirty)
3262 				break;
3263 			cache = next_block_group(root, cache);
3264 		}
3265 		if (!cache) {
3266 			if (last == 0)
3267 				break;
3268 			last = 0;
3269 			continue;
3270 		}
3271 
3272 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3273 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3274 		cache->dirty = 0;
3275 		last = cache->key.objectid + cache->key.offset;
3276 
3277 		err = write_one_cache_group(trans, root, path, cache);
3278 		btrfs_put_block_group(cache);
3279 		if (err) /* File system offline */
3280 			goto out;
3281 	}
3282 
3283 	while (1) {
3284 		/*
3285 		 * I don't think this is needed since we're just marking our
3286 		 * preallocated extent as written, but just in case it can't
3287 		 * hurt.
3288 		 */
3289 		if (last == 0) {
3290 			err = btrfs_run_delayed_refs(trans, root,
3291 						     (unsigned long)-1);
3292 			if (err) /* File system offline */
3293 				goto out;
3294 		}
3295 
3296 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3297 		while (cache) {
3298 			/*
3299 			 * Really this shouldn't happen, but it could if we
3300 			 * couldn't write the entire preallocated extent and
3301 			 * splitting the extent resulted in a new block.
3302 			 */
3303 			if (cache->dirty) {
3304 				btrfs_put_block_group(cache);
3305 				goto again;
3306 			}
3307 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3308 				break;
3309 			cache = next_block_group(root, cache);
3310 		}
3311 		if (!cache) {
3312 			if (last == 0)
3313 				break;
3314 			last = 0;
3315 			continue;
3316 		}
3317 
3318 		err = btrfs_write_out_cache(root, trans, cache, path);
3319 
3320 		/*
3321 		 * If we didn't have an error then the cache state is still
3322 		 * NEED_WRITE, so we can set it to WRITTEN.
3323 		 */
3324 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3325 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3326 		last = cache->key.objectid + cache->key.offset;
3327 		btrfs_put_block_group(cache);
3328 	}
3329 out:
3330 
3331 	btrfs_free_path(path);
3332 	return err;
3333 }
3334 
3335 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3336 {
3337 	struct btrfs_block_group_cache *block_group;
3338 	int readonly = 0;
3339 
3340 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3341 	if (!block_group || block_group->ro)
3342 		readonly = 1;
3343 	if (block_group)
3344 		btrfs_put_block_group(block_group);
3345 	return readonly;
3346 }
3347 
3348 static const char *alloc_name(u64 flags)
3349 {
3350 	switch (flags) {
3351 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3352 		return "mixed";
3353 	case BTRFS_BLOCK_GROUP_METADATA:
3354 		return "metadata";
3355 	case BTRFS_BLOCK_GROUP_DATA:
3356 		return "data";
3357 	case BTRFS_BLOCK_GROUP_SYSTEM:
3358 		return "system";
3359 	default:
3360 		WARN_ON(1);
3361 		return "invalid-combination";
3362 	};
3363 }
3364 
3365 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3366 			     u64 total_bytes, u64 bytes_used,
3367 			     struct btrfs_space_info **space_info)
3368 {
3369 	struct btrfs_space_info *found;
3370 	int i;
3371 	int factor;
3372 	int ret;
3373 
3374 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3375 		     BTRFS_BLOCK_GROUP_RAID10))
3376 		factor = 2;
3377 	else
3378 		factor = 1;
3379 
3380 	found = __find_space_info(info, flags);
3381 	if (found) {
3382 		spin_lock(&found->lock);
3383 		found->total_bytes += total_bytes;
3384 		found->disk_total += total_bytes * factor;
3385 		found->bytes_used += bytes_used;
3386 		found->disk_used += bytes_used * factor;
3387 		found->full = 0;
3388 		spin_unlock(&found->lock);
3389 		*space_info = found;
3390 		return 0;
3391 	}
3392 	found = kzalloc(sizeof(*found), GFP_NOFS);
3393 	if (!found)
3394 		return -ENOMEM;
3395 
3396 	ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3397 	if (ret) {
3398 		kfree(found);
3399 		return ret;
3400 	}
3401 
3402 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
3403 		INIT_LIST_HEAD(&found->block_groups[i]);
3404 		kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype);
3405 	}
3406 	init_rwsem(&found->groups_sem);
3407 	spin_lock_init(&found->lock);
3408 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3409 	found->total_bytes = total_bytes;
3410 	found->disk_total = total_bytes * factor;
3411 	found->bytes_used = bytes_used;
3412 	found->disk_used = bytes_used * factor;
3413 	found->bytes_pinned = 0;
3414 	found->bytes_reserved = 0;
3415 	found->bytes_readonly = 0;
3416 	found->bytes_may_use = 0;
3417 	found->full = 0;
3418 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3419 	found->chunk_alloc = 0;
3420 	found->flush = 0;
3421 	init_waitqueue_head(&found->wait);
3422 
3423 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3424 				    info->space_info_kobj, "%s",
3425 				    alloc_name(found->flags));
3426 	if (ret) {
3427 		kfree(found);
3428 		return ret;
3429 	}
3430 
3431 	*space_info = found;
3432 	list_add_rcu(&found->list, &info->space_info);
3433 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3434 		info->data_sinfo = found;
3435 
3436 	return ret;
3437 }
3438 
3439 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3440 {
3441 	u64 extra_flags = chunk_to_extended(flags) &
3442 				BTRFS_EXTENDED_PROFILE_MASK;
3443 
3444 	write_seqlock(&fs_info->profiles_lock);
3445 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3446 		fs_info->avail_data_alloc_bits |= extra_flags;
3447 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3448 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3449 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3450 		fs_info->avail_system_alloc_bits |= extra_flags;
3451 	write_sequnlock(&fs_info->profiles_lock);
3452 }
3453 
3454 /*
3455  * returns target flags in extended format or 0 if restripe for this
3456  * chunk_type is not in progress
3457  *
3458  * should be called with either volume_mutex or balance_lock held
3459  */
3460 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3461 {
3462 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3463 	u64 target = 0;
3464 
3465 	if (!bctl)
3466 		return 0;
3467 
3468 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3469 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3470 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3471 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3472 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3473 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3474 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3475 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3476 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3477 	}
3478 
3479 	return target;
3480 }
3481 
3482 /*
3483  * @flags: available profiles in extended format (see ctree.h)
3484  *
3485  * Returns reduced profile in chunk format.  If profile changing is in
3486  * progress (either running or paused) picks the target profile (if it's
3487  * already available), otherwise falls back to plain reducing.
3488  */
3489 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3490 {
3491 	/*
3492 	 * we add in the count of missing devices because we want
3493 	 * to make sure that any RAID levels on a degraded FS
3494 	 * continue to be honored.
3495 	 */
3496 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3497 		root->fs_info->fs_devices->missing_devices;
3498 	u64 target;
3499 	u64 tmp;
3500 
3501 	/*
3502 	 * see if restripe for this chunk_type is in progress, if so
3503 	 * try to reduce to the target profile
3504 	 */
3505 	spin_lock(&root->fs_info->balance_lock);
3506 	target = get_restripe_target(root->fs_info, flags);
3507 	if (target) {
3508 		/* pick target profile only if it's already available */
3509 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3510 			spin_unlock(&root->fs_info->balance_lock);
3511 			return extended_to_chunk(target);
3512 		}
3513 	}
3514 	spin_unlock(&root->fs_info->balance_lock);
3515 
3516 	/* First, mask out the RAID levels which aren't possible */
3517 	if (num_devices == 1)
3518 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3519 			   BTRFS_BLOCK_GROUP_RAID5);
3520 	if (num_devices < 3)
3521 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3522 	if (num_devices < 4)
3523 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3524 
3525 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3526 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3527 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3528 	flags &= ~tmp;
3529 
3530 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3531 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3532 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3533 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3534 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3535 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3536 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3537 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3538 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3539 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3540 
3541 	return extended_to_chunk(flags | tmp);
3542 }
3543 
3544 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3545 {
3546 	unsigned seq;
3547 
3548 	do {
3549 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3550 
3551 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3552 			flags |= root->fs_info->avail_data_alloc_bits;
3553 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3554 			flags |= root->fs_info->avail_system_alloc_bits;
3555 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3556 			flags |= root->fs_info->avail_metadata_alloc_bits;
3557 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3558 
3559 	return btrfs_reduce_alloc_profile(root, flags);
3560 }
3561 
3562 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3563 {
3564 	u64 flags;
3565 	u64 ret;
3566 
3567 	if (data)
3568 		flags = BTRFS_BLOCK_GROUP_DATA;
3569 	else if (root == root->fs_info->chunk_root)
3570 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3571 	else
3572 		flags = BTRFS_BLOCK_GROUP_METADATA;
3573 
3574 	ret = get_alloc_profile(root, flags);
3575 	return ret;
3576 }
3577 
3578 /*
3579  * This will check the space that the inode allocates from to make sure we have
3580  * enough space for bytes.
3581  */
3582 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3583 {
3584 	struct btrfs_space_info *data_sinfo;
3585 	struct btrfs_root *root = BTRFS_I(inode)->root;
3586 	struct btrfs_fs_info *fs_info = root->fs_info;
3587 	u64 used;
3588 	int ret = 0, committed = 0, alloc_chunk = 1;
3589 
3590 	/* make sure bytes are sectorsize aligned */
3591 	bytes = ALIGN(bytes, root->sectorsize);
3592 
3593 	if (btrfs_is_free_space_inode(inode)) {
3594 		committed = 1;
3595 		ASSERT(current->journal_info);
3596 	}
3597 
3598 	data_sinfo = fs_info->data_sinfo;
3599 	if (!data_sinfo)
3600 		goto alloc;
3601 
3602 again:
3603 	/* make sure we have enough space to handle the data first */
3604 	spin_lock(&data_sinfo->lock);
3605 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3606 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3607 		data_sinfo->bytes_may_use;
3608 
3609 	if (used + bytes > data_sinfo->total_bytes) {
3610 		struct btrfs_trans_handle *trans;
3611 
3612 		/*
3613 		 * if we don't have enough free bytes in this space then we need
3614 		 * to alloc a new chunk.
3615 		 */
3616 		if (!data_sinfo->full && alloc_chunk) {
3617 			u64 alloc_target;
3618 
3619 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3620 			spin_unlock(&data_sinfo->lock);
3621 alloc:
3622 			alloc_target = btrfs_get_alloc_profile(root, 1);
3623 			/*
3624 			 * It is ugly that we don't call nolock join
3625 			 * transaction for the free space inode case here.
3626 			 * But it is safe because we only do the data space
3627 			 * reservation for the free space cache in the
3628 			 * transaction context, the common join transaction
3629 			 * just increase the counter of the current transaction
3630 			 * handler, doesn't try to acquire the trans_lock of
3631 			 * the fs.
3632 			 */
3633 			trans = btrfs_join_transaction(root);
3634 			if (IS_ERR(trans))
3635 				return PTR_ERR(trans);
3636 
3637 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3638 					     alloc_target,
3639 					     CHUNK_ALLOC_NO_FORCE);
3640 			btrfs_end_transaction(trans, root);
3641 			if (ret < 0) {
3642 				if (ret != -ENOSPC)
3643 					return ret;
3644 				else
3645 					goto commit_trans;
3646 			}
3647 
3648 			if (!data_sinfo)
3649 				data_sinfo = fs_info->data_sinfo;
3650 
3651 			goto again;
3652 		}
3653 
3654 		/*
3655 		 * If we don't have enough pinned space to deal with this
3656 		 * allocation don't bother committing the transaction.
3657 		 */
3658 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3659 					   bytes) < 0)
3660 			committed = 1;
3661 		spin_unlock(&data_sinfo->lock);
3662 
3663 		/* commit the current transaction and try again */
3664 commit_trans:
3665 		if (!committed &&
3666 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3667 			committed = 1;
3668 
3669 			trans = btrfs_join_transaction(root);
3670 			if (IS_ERR(trans))
3671 				return PTR_ERR(trans);
3672 			ret = btrfs_commit_transaction(trans, root);
3673 			if (ret)
3674 				return ret;
3675 			goto again;
3676 		}
3677 
3678 		trace_btrfs_space_reservation(root->fs_info,
3679 					      "space_info:enospc",
3680 					      data_sinfo->flags, bytes, 1);
3681 		return -ENOSPC;
3682 	}
3683 	data_sinfo->bytes_may_use += bytes;
3684 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3685 				      data_sinfo->flags, bytes, 1);
3686 	spin_unlock(&data_sinfo->lock);
3687 
3688 	return 0;
3689 }
3690 
3691 /*
3692  * Called if we need to clear a data reservation for this inode.
3693  */
3694 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3695 {
3696 	struct btrfs_root *root = BTRFS_I(inode)->root;
3697 	struct btrfs_space_info *data_sinfo;
3698 
3699 	/* make sure bytes are sectorsize aligned */
3700 	bytes = ALIGN(bytes, root->sectorsize);
3701 
3702 	data_sinfo = root->fs_info->data_sinfo;
3703 	spin_lock(&data_sinfo->lock);
3704 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3705 	data_sinfo->bytes_may_use -= bytes;
3706 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3707 				      data_sinfo->flags, bytes, 0);
3708 	spin_unlock(&data_sinfo->lock);
3709 }
3710 
3711 static void force_metadata_allocation(struct btrfs_fs_info *info)
3712 {
3713 	struct list_head *head = &info->space_info;
3714 	struct btrfs_space_info *found;
3715 
3716 	rcu_read_lock();
3717 	list_for_each_entry_rcu(found, head, list) {
3718 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3719 			found->force_alloc = CHUNK_ALLOC_FORCE;
3720 	}
3721 	rcu_read_unlock();
3722 }
3723 
3724 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3725 {
3726 	return (global->size << 1);
3727 }
3728 
3729 static int should_alloc_chunk(struct btrfs_root *root,
3730 			      struct btrfs_space_info *sinfo, int force)
3731 {
3732 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3733 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3734 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3735 	u64 thresh;
3736 
3737 	if (force == CHUNK_ALLOC_FORCE)
3738 		return 1;
3739 
3740 	/*
3741 	 * We need to take into account the global rsv because for all intents
3742 	 * and purposes it's used space.  Don't worry about locking the
3743 	 * global_rsv, it doesn't change except when the transaction commits.
3744 	 */
3745 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3746 		num_allocated += calc_global_rsv_need_space(global_rsv);
3747 
3748 	/*
3749 	 * in limited mode, we want to have some free space up to
3750 	 * about 1% of the FS size.
3751 	 */
3752 	if (force == CHUNK_ALLOC_LIMITED) {
3753 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3754 		thresh = max_t(u64, 64 * 1024 * 1024,
3755 			       div_factor_fine(thresh, 1));
3756 
3757 		if (num_bytes - num_allocated < thresh)
3758 			return 1;
3759 	}
3760 
3761 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3762 		return 0;
3763 	return 1;
3764 }
3765 
3766 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3767 {
3768 	u64 num_dev;
3769 
3770 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3771 		    BTRFS_BLOCK_GROUP_RAID0 |
3772 		    BTRFS_BLOCK_GROUP_RAID5 |
3773 		    BTRFS_BLOCK_GROUP_RAID6))
3774 		num_dev = root->fs_info->fs_devices->rw_devices;
3775 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3776 		num_dev = 2;
3777 	else
3778 		num_dev = 1;	/* DUP or single */
3779 
3780 	/* metadata for updaing devices and chunk tree */
3781 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3782 }
3783 
3784 static void check_system_chunk(struct btrfs_trans_handle *trans,
3785 			       struct btrfs_root *root, u64 type)
3786 {
3787 	struct btrfs_space_info *info;
3788 	u64 left;
3789 	u64 thresh;
3790 
3791 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3792 	spin_lock(&info->lock);
3793 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3794 		info->bytes_reserved - info->bytes_readonly;
3795 	spin_unlock(&info->lock);
3796 
3797 	thresh = get_system_chunk_thresh(root, type);
3798 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3799 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3800 			left, thresh, type);
3801 		dump_space_info(info, 0, 0);
3802 	}
3803 
3804 	if (left < thresh) {
3805 		u64 flags;
3806 
3807 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3808 		btrfs_alloc_chunk(trans, root, flags);
3809 	}
3810 }
3811 
3812 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3813 			  struct btrfs_root *extent_root, u64 flags, int force)
3814 {
3815 	struct btrfs_space_info *space_info;
3816 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3817 	int wait_for_alloc = 0;
3818 	int ret = 0;
3819 
3820 	/* Don't re-enter if we're already allocating a chunk */
3821 	if (trans->allocating_chunk)
3822 		return -ENOSPC;
3823 
3824 	space_info = __find_space_info(extent_root->fs_info, flags);
3825 	if (!space_info) {
3826 		ret = update_space_info(extent_root->fs_info, flags,
3827 					0, 0, &space_info);
3828 		BUG_ON(ret); /* -ENOMEM */
3829 	}
3830 	BUG_ON(!space_info); /* Logic error */
3831 
3832 again:
3833 	spin_lock(&space_info->lock);
3834 	if (force < space_info->force_alloc)
3835 		force = space_info->force_alloc;
3836 	if (space_info->full) {
3837 		if (should_alloc_chunk(extent_root, space_info, force))
3838 			ret = -ENOSPC;
3839 		else
3840 			ret = 0;
3841 		spin_unlock(&space_info->lock);
3842 		return ret;
3843 	}
3844 
3845 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3846 		spin_unlock(&space_info->lock);
3847 		return 0;
3848 	} else if (space_info->chunk_alloc) {
3849 		wait_for_alloc = 1;
3850 	} else {
3851 		space_info->chunk_alloc = 1;
3852 	}
3853 
3854 	spin_unlock(&space_info->lock);
3855 
3856 	mutex_lock(&fs_info->chunk_mutex);
3857 
3858 	/*
3859 	 * The chunk_mutex is held throughout the entirety of a chunk
3860 	 * allocation, so once we've acquired the chunk_mutex we know that the
3861 	 * other guy is done and we need to recheck and see if we should
3862 	 * allocate.
3863 	 */
3864 	if (wait_for_alloc) {
3865 		mutex_unlock(&fs_info->chunk_mutex);
3866 		wait_for_alloc = 0;
3867 		goto again;
3868 	}
3869 
3870 	trans->allocating_chunk = true;
3871 
3872 	/*
3873 	 * If we have mixed data/metadata chunks we want to make sure we keep
3874 	 * allocating mixed chunks instead of individual chunks.
3875 	 */
3876 	if (btrfs_mixed_space_info(space_info))
3877 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3878 
3879 	/*
3880 	 * if we're doing a data chunk, go ahead and make sure that
3881 	 * we keep a reasonable number of metadata chunks allocated in the
3882 	 * FS as well.
3883 	 */
3884 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3885 		fs_info->data_chunk_allocations++;
3886 		if (!(fs_info->data_chunk_allocations %
3887 		      fs_info->metadata_ratio))
3888 			force_metadata_allocation(fs_info);
3889 	}
3890 
3891 	/*
3892 	 * Check if we have enough space in SYSTEM chunk because we may need
3893 	 * to update devices.
3894 	 */
3895 	check_system_chunk(trans, extent_root, flags);
3896 
3897 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3898 	trans->allocating_chunk = false;
3899 
3900 	spin_lock(&space_info->lock);
3901 	if (ret < 0 && ret != -ENOSPC)
3902 		goto out;
3903 	if (ret)
3904 		space_info->full = 1;
3905 	else
3906 		ret = 1;
3907 
3908 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3909 out:
3910 	space_info->chunk_alloc = 0;
3911 	spin_unlock(&space_info->lock);
3912 	mutex_unlock(&fs_info->chunk_mutex);
3913 	return ret;
3914 }
3915 
3916 static int can_overcommit(struct btrfs_root *root,
3917 			  struct btrfs_space_info *space_info, u64 bytes,
3918 			  enum btrfs_reserve_flush_enum flush)
3919 {
3920 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3921 	u64 profile = btrfs_get_alloc_profile(root, 0);
3922 	u64 space_size;
3923 	u64 avail;
3924 	u64 used;
3925 
3926 	used = space_info->bytes_used + space_info->bytes_reserved +
3927 		space_info->bytes_pinned + space_info->bytes_readonly;
3928 
3929 	/*
3930 	 * We only want to allow over committing if we have lots of actual space
3931 	 * free, but if we don't have enough space to handle the global reserve
3932 	 * space then we could end up having a real enospc problem when trying
3933 	 * to allocate a chunk or some other such important allocation.
3934 	 */
3935 	spin_lock(&global_rsv->lock);
3936 	space_size = calc_global_rsv_need_space(global_rsv);
3937 	spin_unlock(&global_rsv->lock);
3938 	if (used + space_size >= space_info->total_bytes)
3939 		return 0;
3940 
3941 	used += space_info->bytes_may_use;
3942 
3943 	spin_lock(&root->fs_info->free_chunk_lock);
3944 	avail = root->fs_info->free_chunk_space;
3945 	spin_unlock(&root->fs_info->free_chunk_lock);
3946 
3947 	/*
3948 	 * If we have dup, raid1 or raid10 then only half of the free
3949 	 * space is actually useable.  For raid56, the space info used
3950 	 * doesn't include the parity drive, so we don't have to
3951 	 * change the math
3952 	 */
3953 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
3954 		       BTRFS_BLOCK_GROUP_RAID1 |
3955 		       BTRFS_BLOCK_GROUP_RAID10))
3956 		avail >>= 1;
3957 
3958 	/*
3959 	 * If we aren't flushing all things, let us overcommit up to
3960 	 * 1/2th of the space. If we can flush, don't let us overcommit
3961 	 * too much, let it overcommit up to 1/8 of the space.
3962 	 */
3963 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
3964 		avail >>= 3;
3965 	else
3966 		avail >>= 1;
3967 
3968 	if (used + bytes < space_info->total_bytes + avail)
3969 		return 1;
3970 	return 0;
3971 }
3972 
3973 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3974 					 unsigned long nr_pages)
3975 {
3976 	struct super_block *sb = root->fs_info->sb;
3977 
3978 	if (down_read_trylock(&sb->s_umount)) {
3979 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3980 		up_read(&sb->s_umount);
3981 	} else {
3982 		/*
3983 		 * We needn't worry the filesystem going from r/w to r/o though
3984 		 * we don't acquire ->s_umount mutex, because the filesystem
3985 		 * should guarantee the delalloc inodes list be empty after
3986 		 * the filesystem is readonly(all dirty pages are written to
3987 		 * the disk).
3988 		 */
3989 		btrfs_start_delalloc_roots(root->fs_info, 0);
3990 		if (!current->journal_info)
3991 			btrfs_wait_ordered_roots(root->fs_info, -1);
3992 	}
3993 }
3994 
3995 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
3996 {
3997 	u64 bytes;
3998 	int nr;
3999 
4000 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4001 	nr = (int)div64_u64(to_reclaim, bytes);
4002 	if (!nr)
4003 		nr = 1;
4004 	return nr;
4005 }
4006 
4007 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4008 
4009 /*
4010  * shrink metadata reservation for delalloc
4011  */
4012 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4013 			    bool wait_ordered)
4014 {
4015 	struct btrfs_block_rsv *block_rsv;
4016 	struct btrfs_space_info *space_info;
4017 	struct btrfs_trans_handle *trans;
4018 	u64 delalloc_bytes;
4019 	u64 max_reclaim;
4020 	long time_left;
4021 	unsigned long nr_pages;
4022 	int loops;
4023 	int items;
4024 	enum btrfs_reserve_flush_enum flush;
4025 
4026 	/* Calc the number of the pages we need flush for space reservation */
4027 	items = calc_reclaim_items_nr(root, to_reclaim);
4028 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4029 
4030 	trans = (struct btrfs_trans_handle *)current->journal_info;
4031 	block_rsv = &root->fs_info->delalloc_block_rsv;
4032 	space_info = block_rsv->space_info;
4033 
4034 	delalloc_bytes = percpu_counter_sum_positive(
4035 						&root->fs_info->delalloc_bytes);
4036 	if (delalloc_bytes == 0) {
4037 		if (trans)
4038 			return;
4039 		if (wait_ordered)
4040 			btrfs_wait_ordered_roots(root->fs_info, items);
4041 		return;
4042 	}
4043 
4044 	loops = 0;
4045 	while (delalloc_bytes && loops < 3) {
4046 		max_reclaim = min(delalloc_bytes, to_reclaim);
4047 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4048 		btrfs_writeback_inodes_sb_nr(root, nr_pages);
4049 		/*
4050 		 * We need to wait for the async pages to actually start before
4051 		 * we do anything.
4052 		 */
4053 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4054 		if (!max_reclaim)
4055 			goto skip_async;
4056 
4057 		if (max_reclaim <= nr_pages)
4058 			max_reclaim = 0;
4059 		else
4060 			max_reclaim -= nr_pages;
4061 
4062 		wait_event(root->fs_info->async_submit_wait,
4063 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4064 			   (int)max_reclaim);
4065 skip_async:
4066 		if (!trans)
4067 			flush = BTRFS_RESERVE_FLUSH_ALL;
4068 		else
4069 			flush = BTRFS_RESERVE_NO_FLUSH;
4070 		spin_lock(&space_info->lock);
4071 		if (can_overcommit(root, space_info, orig, flush)) {
4072 			spin_unlock(&space_info->lock);
4073 			break;
4074 		}
4075 		spin_unlock(&space_info->lock);
4076 
4077 		loops++;
4078 		if (wait_ordered && !trans) {
4079 			btrfs_wait_ordered_roots(root->fs_info, items);
4080 		} else {
4081 			time_left = schedule_timeout_killable(1);
4082 			if (time_left)
4083 				break;
4084 		}
4085 		delalloc_bytes = percpu_counter_sum_positive(
4086 						&root->fs_info->delalloc_bytes);
4087 	}
4088 }
4089 
4090 /**
4091  * maybe_commit_transaction - possibly commit the transaction if its ok to
4092  * @root - the root we're allocating for
4093  * @bytes - the number of bytes we want to reserve
4094  * @force - force the commit
4095  *
4096  * This will check to make sure that committing the transaction will actually
4097  * get us somewhere and then commit the transaction if it does.  Otherwise it
4098  * will return -ENOSPC.
4099  */
4100 static int may_commit_transaction(struct btrfs_root *root,
4101 				  struct btrfs_space_info *space_info,
4102 				  u64 bytes, int force)
4103 {
4104 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4105 	struct btrfs_trans_handle *trans;
4106 
4107 	trans = (struct btrfs_trans_handle *)current->journal_info;
4108 	if (trans)
4109 		return -EAGAIN;
4110 
4111 	if (force)
4112 		goto commit;
4113 
4114 	/* See if there is enough pinned space to make this reservation */
4115 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4116 				   bytes) >= 0)
4117 		goto commit;
4118 
4119 	/*
4120 	 * See if there is some space in the delayed insertion reservation for
4121 	 * this reservation.
4122 	 */
4123 	if (space_info != delayed_rsv->space_info)
4124 		return -ENOSPC;
4125 
4126 	spin_lock(&delayed_rsv->lock);
4127 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4128 				   bytes - delayed_rsv->size) >= 0) {
4129 		spin_unlock(&delayed_rsv->lock);
4130 		return -ENOSPC;
4131 	}
4132 	spin_unlock(&delayed_rsv->lock);
4133 
4134 commit:
4135 	trans = btrfs_join_transaction(root);
4136 	if (IS_ERR(trans))
4137 		return -ENOSPC;
4138 
4139 	return btrfs_commit_transaction(trans, root);
4140 }
4141 
4142 enum flush_state {
4143 	FLUSH_DELAYED_ITEMS_NR	=	1,
4144 	FLUSH_DELAYED_ITEMS	=	2,
4145 	FLUSH_DELALLOC		=	3,
4146 	FLUSH_DELALLOC_WAIT	=	4,
4147 	ALLOC_CHUNK		=	5,
4148 	COMMIT_TRANS		=	6,
4149 };
4150 
4151 static int flush_space(struct btrfs_root *root,
4152 		       struct btrfs_space_info *space_info, u64 num_bytes,
4153 		       u64 orig_bytes, int state)
4154 {
4155 	struct btrfs_trans_handle *trans;
4156 	int nr;
4157 	int ret = 0;
4158 
4159 	switch (state) {
4160 	case FLUSH_DELAYED_ITEMS_NR:
4161 	case FLUSH_DELAYED_ITEMS:
4162 		if (state == FLUSH_DELAYED_ITEMS_NR)
4163 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4164 		else
4165 			nr = -1;
4166 
4167 		trans = btrfs_join_transaction(root);
4168 		if (IS_ERR(trans)) {
4169 			ret = PTR_ERR(trans);
4170 			break;
4171 		}
4172 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4173 		btrfs_end_transaction(trans, root);
4174 		break;
4175 	case FLUSH_DELALLOC:
4176 	case FLUSH_DELALLOC_WAIT:
4177 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4178 				state == FLUSH_DELALLOC_WAIT);
4179 		break;
4180 	case ALLOC_CHUNK:
4181 		trans = btrfs_join_transaction(root);
4182 		if (IS_ERR(trans)) {
4183 			ret = PTR_ERR(trans);
4184 			break;
4185 		}
4186 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4187 				     btrfs_get_alloc_profile(root, 0),
4188 				     CHUNK_ALLOC_NO_FORCE);
4189 		btrfs_end_transaction(trans, root);
4190 		if (ret == -ENOSPC)
4191 			ret = 0;
4192 		break;
4193 	case COMMIT_TRANS:
4194 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4195 		break;
4196 	default:
4197 		ret = -ENOSPC;
4198 		break;
4199 	}
4200 
4201 	return ret;
4202 }
4203 /**
4204  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4205  * @root - the root we're allocating for
4206  * @block_rsv - the block_rsv we're allocating for
4207  * @orig_bytes - the number of bytes we want
4208  * @flush - whether or not we can flush to make our reservation
4209  *
4210  * This will reserve orgi_bytes number of bytes from the space info associated
4211  * with the block_rsv.  If there is not enough space it will make an attempt to
4212  * flush out space to make room.  It will do this by flushing delalloc if
4213  * possible or committing the transaction.  If flush is 0 then no attempts to
4214  * regain reservations will be made and this will fail if there is not enough
4215  * space already.
4216  */
4217 static int reserve_metadata_bytes(struct btrfs_root *root,
4218 				  struct btrfs_block_rsv *block_rsv,
4219 				  u64 orig_bytes,
4220 				  enum btrfs_reserve_flush_enum flush)
4221 {
4222 	struct btrfs_space_info *space_info = block_rsv->space_info;
4223 	u64 used;
4224 	u64 num_bytes = orig_bytes;
4225 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4226 	int ret = 0;
4227 	bool flushing = false;
4228 
4229 again:
4230 	ret = 0;
4231 	spin_lock(&space_info->lock);
4232 	/*
4233 	 * We only want to wait if somebody other than us is flushing and we
4234 	 * are actually allowed to flush all things.
4235 	 */
4236 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4237 	       space_info->flush) {
4238 		spin_unlock(&space_info->lock);
4239 		/*
4240 		 * If we have a trans handle we can't wait because the flusher
4241 		 * may have to commit the transaction, which would mean we would
4242 		 * deadlock since we are waiting for the flusher to finish, but
4243 		 * hold the current transaction open.
4244 		 */
4245 		if (current->journal_info)
4246 			return -EAGAIN;
4247 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4248 		/* Must have been killed, return */
4249 		if (ret)
4250 			return -EINTR;
4251 
4252 		spin_lock(&space_info->lock);
4253 	}
4254 
4255 	ret = -ENOSPC;
4256 	used = space_info->bytes_used + space_info->bytes_reserved +
4257 		space_info->bytes_pinned + space_info->bytes_readonly +
4258 		space_info->bytes_may_use;
4259 
4260 	/*
4261 	 * The idea here is that we've not already over-reserved the block group
4262 	 * then we can go ahead and save our reservation first and then start
4263 	 * flushing if we need to.  Otherwise if we've already overcommitted
4264 	 * lets start flushing stuff first and then come back and try to make
4265 	 * our reservation.
4266 	 */
4267 	if (used <= space_info->total_bytes) {
4268 		if (used + orig_bytes <= space_info->total_bytes) {
4269 			space_info->bytes_may_use += orig_bytes;
4270 			trace_btrfs_space_reservation(root->fs_info,
4271 				"space_info", space_info->flags, orig_bytes, 1);
4272 			ret = 0;
4273 		} else {
4274 			/*
4275 			 * Ok set num_bytes to orig_bytes since we aren't
4276 			 * overocmmitted, this way we only try and reclaim what
4277 			 * we need.
4278 			 */
4279 			num_bytes = orig_bytes;
4280 		}
4281 	} else {
4282 		/*
4283 		 * Ok we're over committed, set num_bytes to the overcommitted
4284 		 * amount plus the amount of bytes that we need for this
4285 		 * reservation.
4286 		 */
4287 		num_bytes = used - space_info->total_bytes +
4288 			(orig_bytes * 2);
4289 	}
4290 
4291 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4292 		space_info->bytes_may_use += orig_bytes;
4293 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4294 					      space_info->flags, orig_bytes,
4295 					      1);
4296 		ret = 0;
4297 	}
4298 
4299 	/*
4300 	 * Couldn't make our reservation, save our place so while we're trying
4301 	 * to reclaim space we can actually use it instead of somebody else
4302 	 * stealing it from us.
4303 	 *
4304 	 * We make the other tasks wait for the flush only when we can flush
4305 	 * all things.
4306 	 */
4307 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4308 		flushing = true;
4309 		space_info->flush = 1;
4310 	}
4311 
4312 	spin_unlock(&space_info->lock);
4313 
4314 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4315 		goto out;
4316 
4317 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4318 			  flush_state);
4319 	flush_state++;
4320 
4321 	/*
4322 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4323 	 * would happen. So skip delalloc flush.
4324 	 */
4325 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4326 	    (flush_state == FLUSH_DELALLOC ||
4327 	     flush_state == FLUSH_DELALLOC_WAIT))
4328 		flush_state = ALLOC_CHUNK;
4329 
4330 	if (!ret)
4331 		goto again;
4332 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4333 		 flush_state < COMMIT_TRANS)
4334 		goto again;
4335 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4336 		 flush_state <= COMMIT_TRANS)
4337 		goto again;
4338 
4339 out:
4340 	if (ret == -ENOSPC &&
4341 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4342 		struct btrfs_block_rsv *global_rsv =
4343 			&root->fs_info->global_block_rsv;
4344 
4345 		if (block_rsv != global_rsv &&
4346 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4347 			ret = 0;
4348 	}
4349 	if (ret == -ENOSPC)
4350 		trace_btrfs_space_reservation(root->fs_info,
4351 					      "space_info:enospc",
4352 					      space_info->flags, orig_bytes, 1);
4353 	if (flushing) {
4354 		spin_lock(&space_info->lock);
4355 		space_info->flush = 0;
4356 		wake_up_all(&space_info->wait);
4357 		spin_unlock(&space_info->lock);
4358 	}
4359 	return ret;
4360 }
4361 
4362 static struct btrfs_block_rsv *get_block_rsv(
4363 					const struct btrfs_trans_handle *trans,
4364 					const struct btrfs_root *root)
4365 {
4366 	struct btrfs_block_rsv *block_rsv = NULL;
4367 
4368 	if (root->ref_cows)
4369 		block_rsv = trans->block_rsv;
4370 
4371 	if (root == root->fs_info->csum_root && trans->adding_csums)
4372 		block_rsv = trans->block_rsv;
4373 
4374 	if (root == root->fs_info->uuid_root)
4375 		block_rsv = trans->block_rsv;
4376 
4377 	if (!block_rsv)
4378 		block_rsv = root->block_rsv;
4379 
4380 	if (!block_rsv)
4381 		block_rsv = &root->fs_info->empty_block_rsv;
4382 
4383 	return block_rsv;
4384 }
4385 
4386 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4387 			       u64 num_bytes)
4388 {
4389 	int ret = -ENOSPC;
4390 	spin_lock(&block_rsv->lock);
4391 	if (block_rsv->reserved >= num_bytes) {
4392 		block_rsv->reserved -= num_bytes;
4393 		if (block_rsv->reserved < block_rsv->size)
4394 			block_rsv->full = 0;
4395 		ret = 0;
4396 	}
4397 	spin_unlock(&block_rsv->lock);
4398 	return ret;
4399 }
4400 
4401 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4402 				u64 num_bytes, int update_size)
4403 {
4404 	spin_lock(&block_rsv->lock);
4405 	block_rsv->reserved += num_bytes;
4406 	if (update_size)
4407 		block_rsv->size += num_bytes;
4408 	else if (block_rsv->reserved >= block_rsv->size)
4409 		block_rsv->full = 1;
4410 	spin_unlock(&block_rsv->lock);
4411 }
4412 
4413 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4414 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4415 			     int min_factor)
4416 {
4417 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4418 	u64 min_bytes;
4419 
4420 	if (global_rsv->space_info != dest->space_info)
4421 		return -ENOSPC;
4422 
4423 	spin_lock(&global_rsv->lock);
4424 	min_bytes = div_factor(global_rsv->size, min_factor);
4425 	if (global_rsv->reserved < min_bytes + num_bytes) {
4426 		spin_unlock(&global_rsv->lock);
4427 		return -ENOSPC;
4428 	}
4429 	global_rsv->reserved -= num_bytes;
4430 	if (global_rsv->reserved < global_rsv->size)
4431 		global_rsv->full = 0;
4432 	spin_unlock(&global_rsv->lock);
4433 
4434 	block_rsv_add_bytes(dest, num_bytes, 1);
4435 	return 0;
4436 }
4437 
4438 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4439 				    struct btrfs_block_rsv *block_rsv,
4440 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4441 {
4442 	struct btrfs_space_info *space_info = block_rsv->space_info;
4443 
4444 	spin_lock(&block_rsv->lock);
4445 	if (num_bytes == (u64)-1)
4446 		num_bytes = block_rsv->size;
4447 	block_rsv->size -= num_bytes;
4448 	if (block_rsv->reserved >= block_rsv->size) {
4449 		num_bytes = block_rsv->reserved - block_rsv->size;
4450 		block_rsv->reserved = block_rsv->size;
4451 		block_rsv->full = 1;
4452 	} else {
4453 		num_bytes = 0;
4454 	}
4455 	spin_unlock(&block_rsv->lock);
4456 
4457 	if (num_bytes > 0) {
4458 		if (dest) {
4459 			spin_lock(&dest->lock);
4460 			if (!dest->full) {
4461 				u64 bytes_to_add;
4462 
4463 				bytes_to_add = dest->size - dest->reserved;
4464 				bytes_to_add = min(num_bytes, bytes_to_add);
4465 				dest->reserved += bytes_to_add;
4466 				if (dest->reserved >= dest->size)
4467 					dest->full = 1;
4468 				num_bytes -= bytes_to_add;
4469 			}
4470 			spin_unlock(&dest->lock);
4471 		}
4472 		if (num_bytes) {
4473 			spin_lock(&space_info->lock);
4474 			space_info->bytes_may_use -= num_bytes;
4475 			trace_btrfs_space_reservation(fs_info, "space_info",
4476 					space_info->flags, num_bytes, 0);
4477 			spin_unlock(&space_info->lock);
4478 		}
4479 	}
4480 }
4481 
4482 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4483 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4484 {
4485 	int ret;
4486 
4487 	ret = block_rsv_use_bytes(src, num_bytes);
4488 	if (ret)
4489 		return ret;
4490 
4491 	block_rsv_add_bytes(dst, num_bytes, 1);
4492 	return 0;
4493 }
4494 
4495 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4496 {
4497 	memset(rsv, 0, sizeof(*rsv));
4498 	spin_lock_init(&rsv->lock);
4499 	rsv->type = type;
4500 }
4501 
4502 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4503 					      unsigned short type)
4504 {
4505 	struct btrfs_block_rsv *block_rsv;
4506 	struct btrfs_fs_info *fs_info = root->fs_info;
4507 
4508 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4509 	if (!block_rsv)
4510 		return NULL;
4511 
4512 	btrfs_init_block_rsv(block_rsv, type);
4513 	block_rsv->space_info = __find_space_info(fs_info,
4514 						  BTRFS_BLOCK_GROUP_METADATA);
4515 	return block_rsv;
4516 }
4517 
4518 void btrfs_free_block_rsv(struct btrfs_root *root,
4519 			  struct btrfs_block_rsv *rsv)
4520 {
4521 	if (!rsv)
4522 		return;
4523 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4524 	kfree(rsv);
4525 }
4526 
4527 int btrfs_block_rsv_add(struct btrfs_root *root,
4528 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4529 			enum btrfs_reserve_flush_enum flush)
4530 {
4531 	int ret;
4532 
4533 	if (num_bytes == 0)
4534 		return 0;
4535 
4536 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4537 	if (!ret) {
4538 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4539 		return 0;
4540 	}
4541 
4542 	return ret;
4543 }
4544 
4545 int btrfs_block_rsv_check(struct btrfs_root *root,
4546 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4547 {
4548 	u64 num_bytes = 0;
4549 	int ret = -ENOSPC;
4550 
4551 	if (!block_rsv)
4552 		return 0;
4553 
4554 	spin_lock(&block_rsv->lock);
4555 	num_bytes = div_factor(block_rsv->size, min_factor);
4556 	if (block_rsv->reserved >= num_bytes)
4557 		ret = 0;
4558 	spin_unlock(&block_rsv->lock);
4559 
4560 	return ret;
4561 }
4562 
4563 int btrfs_block_rsv_refill(struct btrfs_root *root,
4564 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4565 			   enum btrfs_reserve_flush_enum flush)
4566 {
4567 	u64 num_bytes = 0;
4568 	int ret = -ENOSPC;
4569 
4570 	if (!block_rsv)
4571 		return 0;
4572 
4573 	spin_lock(&block_rsv->lock);
4574 	num_bytes = min_reserved;
4575 	if (block_rsv->reserved >= num_bytes)
4576 		ret = 0;
4577 	else
4578 		num_bytes -= block_rsv->reserved;
4579 	spin_unlock(&block_rsv->lock);
4580 
4581 	if (!ret)
4582 		return 0;
4583 
4584 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4585 	if (!ret) {
4586 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4587 		return 0;
4588 	}
4589 
4590 	return ret;
4591 }
4592 
4593 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4594 			    struct btrfs_block_rsv *dst_rsv,
4595 			    u64 num_bytes)
4596 {
4597 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4598 }
4599 
4600 void btrfs_block_rsv_release(struct btrfs_root *root,
4601 			     struct btrfs_block_rsv *block_rsv,
4602 			     u64 num_bytes)
4603 {
4604 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4605 	if (global_rsv == block_rsv ||
4606 	    block_rsv->space_info != global_rsv->space_info)
4607 		global_rsv = NULL;
4608 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4609 				num_bytes);
4610 }
4611 
4612 /*
4613  * helper to calculate size of global block reservation.
4614  * the desired value is sum of space used by extent tree,
4615  * checksum tree and root tree
4616  */
4617 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4618 {
4619 	struct btrfs_space_info *sinfo;
4620 	u64 num_bytes;
4621 	u64 meta_used;
4622 	u64 data_used;
4623 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4624 
4625 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4626 	spin_lock(&sinfo->lock);
4627 	data_used = sinfo->bytes_used;
4628 	spin_unlock(&sinfo->lock);
4629 
4630 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4631 	spin_lock(&sinfo->lock);
4632 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4633 		data_used = 0;
4634 	meta_used = sinfo->bytes_used;
4635 	spin_unlock(&sinfo->lock);
4636 
4637 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4638 		    csum_size * 2;
4639 	num_bytes += div64_u64(data_used + meta_used, 50);
4640 
4641 	if (num_bytes * 3 > meta_used)
4642 		num_bytes = div64_u64(meta_used, 3);
4643 
4644 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4645 }
4646 
4647 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4648 {
4649 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4650 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4651 	u64 num_bytes;
4652 
4653 	num_bytes = calc_global_metadata_size(fs_info);
4654 
4655 	spin_lock(&sinfo->lock);
4656 	spin_lock(&block_rsv->lock);
4657 
4658 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4659 
4660 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4661 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4662 		    sinfo->bytes_may_use;
4663 
4664 	if (sinfo->total_bytes > num_bytes) {
4665 		num_bytes = sinfo->total_bytes - num_bytes;
4666 		block_rsv->reserved += num_bytes;
4667 		sinfo->bytes_may_use += num_bytes;
4668 		trace_btrfs_space_reservation(fs_info, "space_info",
4669 				      sinfo->flags, num_bytes, 1);
4670 	}
4671 
4672 	if (block_rsv->reserved >= block_rsv->size) {
4673 		num_bytes = block_rsv->reserved - block_rsv->size;
4674 		sinfo->bytes_may_use -= num_bytes;
4675 		trace_btrfs_space_reservation(fs_info, "space_info",
4676 				      sinfo->flags, num_bytes, 0);
4677 		block_rsv->reserved = block_rsv->size;
4678 		block_rsv->full = 1;
4679 	}
4680 
4681 	spin_unlock(&block_rsv->lock);
4682 	spin_unlock(&sinfo->lock);
4683 }
4684 
4685 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4686 {
4687 	struct btrfs_space_info *space_info;
4688 
4689 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4690 	fs_info->chunk_block_rsv.space_info = space_info;
4691 
4692 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4693 	fs_info->global_block_rsv.space_info = space_info;
4694 	fs_info->delalloc_block_rsv.space_info = space_info;
4695 	fs_info->trans_block_rsv.space_info = space_info;
4696 	fs_info->empty_block_rsv.space_info = space_info;
4697 	fs_info->delayed_block_rsv.space_info = space_info;
4698 
4699 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4700 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4701 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4702 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4703 	if (fs_info->quota_root)
4704 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4705 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4706 
4707 	update_global_block_rsv(fs_info);
4708 }
4709 
4710 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4711 {
4712 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4713 				(u64)-1);
4714 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4715 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4716 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4717 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4718 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4719 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4720 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4721 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4722 }
4723 
4724 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4725 				  struct btrfs_root *root)
4726 {
4727 	if (!trans->block_rsv)
4728 		return;
4729 
4730 	if (!trans->bytes_reserved)
4731 		return;
4732 
4733 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4734 				      trans->transid, trans->bytes_reserved, 0);
4735 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4736 	trans->bytes_reserved = 0;
4737 }
4738 
4739 /* Can only return 0 or -ENOSPC */
4740 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4741 				  struct inode *inode)
4742 {
4743 	struct btrfs_root *root = BTRFS_I(inode)->root;
4744 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4745 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4746 
4747 	/*
4748 	 * We need to hold space in order to delete our orphan item once we've
4749 	 * added it, so this takes the reservation so we can release it later
4750 	 * when we are truly done with the orphan item.
4751 	 */
4752 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4753 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4754 				      btrfs_ino(inode), num_bytes, 1);
4755 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4756 }
4757 
4758 void btrfs_orphan_release_metadata(struct inode *inode)
4759 {
4760 	struct btrfs_root *root = BTRFS_I(inode)->root;
4761 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4762 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4763 				      btrfs_ino(inode), num_bytes, 0);
4764 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4765 }
4766 
4767 /*
4768  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4769  * root: the root of the parent directory
4770  * rsv: block reservation
4771  * items: the number of items that we need do reservation
4772  * qgroup_reserved: used to return the reserved size in qgroup
4773  *
4774  * This function is used to reserve the space for snapshot/subvolume
4775  * creation and deletion. Those operations are different with the
4776  * common file/directory operations, they change two fs/file trees
4777  * and root tree, the number of items that the qgroup reserves is
4778  * different with the free space reservation. So we can not use
4779  * the space reseravtion mechanism in start_transaction().
4780  */
4781 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4782 				     struct btrfs_block_rsv *rsv,
4783 				     int items,
4784 				     u64 *qgroup_reserved,
4785 				     bool use_global_rsv)
4786 {
4787 	u64 num_bytes;
4788 	int ret;
4789 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4790 
4791 	if (root->fs_info->quota_enabled) {
4792 		/* One for parent inode, two for dir entries */
4793 		num_bytes = 3 * root->leafsize;
4794 		ret = btrfs_qgroup_reserve(root, num_bytes);
4795 		if (ret)
4796 			return ret;
4797 	} else {
4798 		num_bytes = 0;
4799 	}
4800 
4801 	*qgroup_reserved = num_bytes;
4802 
4803 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
4804 	rsv->space_info = __find_space_info(root->fs_info,
4805 					    BTRFS_BLOCK_GROUP_METADATA);
4806 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4807 				  BTRFS_RESERVE_FLUSH_ALL);
4808 
4809 	if (ret == -ENOSPC && use_global_rsv)
4810 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4811 
4812 	if (ret) {
4813 		if (*qgroup_reserved)
4814 			btrfs_qgroup_free(root, *qgroup_reserved);
4815 	}
4816 
4817 	return ret;
4818 }
4819 
4820 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4821 				      struct btrfs_block_rsv *rsv,
4822 				      u64 qgroup_reserved)
4823 {
4824 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4825 	if (qgroup_reserved)
4826 		btrfs_qgroup_free(root, qgroup_reserved);
4827 }
4828 
4829 /**
4830  * drop_outstanding_extent - drop an outstanding extent
4831  * @inode: the inode we're dropping the extent for
4832  *
4833  * This is called when we are freeing up an outstanding extent, either called
4834  * after an error or after an extent is written.  This will return the number of
4835  * reserved extents that need to be freed.  This must be called with
4836  * BTRFS_I(inode)->lock held.
4837  */
4838 static unsigned drop_outstanding_extent(struct inode *inode)
4839 {
4840 	unsigned drop_inode_space = 0;
4841 	unsigned dropped_extents = 0;
4842 
4843 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4844 	BTRFS_I(inode)->outstanding_extents--;
4845 
4846 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4847 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4848 			       &BTRFS_I(inode)->runtime_flags))
4849 		drop_inode_space = 1;
4850 
4851 	/*
4852 	 * If we have more or the same amount of outsanding extents than we have
4853 	 * reserved then we need to leave the reserved extents count alone.
4854 	 */
4855 	if (BTRFS_I(inode)->outstanding_extents >=
4856 	    BTRFS_I(inode)->reserved_extents)
4857 		return drop_inode_space;
4858 
4859 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4860 		BTRFS_I(inode)->outstanding_extents;
4861 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4862 	return dropped_extents + drop_inode_space;
4863 }
4864 
4865 /**
4866  * calc_csum_metadata_size - return the amount of metada space that must be
4867  *	reserved/free'd for the given bytes.
4868  * @inode: the inode we're manipulating
4869  * @num_bytes: the number of bytes in question
4870  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4871  *
4872  * This adjusts the number of csum_bytes in the inode and then returns the
4873  * correct amount of metadata that must either be reserved or freed.  We
4874  * calculate how many checksums we can fit into one leaf and then divide the
4875  * number of bytes that will need to be checksumed by this value to figure out
4876  * how many checksums will be required.  If we are adding bytes then the number
4877  * may go up and we will return the number of additional bytes that must be
4878  * reserved.  If it is going down we will return the number of bytes that must
4879  * be freed.
4880  *
4881  * This must be called with BTRFS_I(inode)->lock held.
4882  */
4883 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4884 				   int reserve)
4885 {
4886 	struct btrfs_root *root = BTRFS_I(inode)->root;
4887 	u64 csum_size;
4888 	int num_csums_per_leaf;
4889 	int num_csums;
4890 	int old_csums;
4891 
4892 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4893 	    BTRFS_I(inode)->csum_bytes == 0)
4894 		return 0;
4895 
4896 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4897 	if (reserve)
4898 		BTRFS_I(inode)->csum_bytes += num_bytes;
4899 	else
4900 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4901 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4902 	num_csums_per_leaf = (int)div64_u64(csum_size,
4903 					    sizeof(struct btrfs_csum_item) +
4904 					    sizeof(struct btrfs_disk_key));
4905 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4906 	num_csums = num_csums + num_csums_per_leaf - 1;
4907 	num_csums = num_csums / num_csums_per_leaf;
4908 
4909 	old_csums = old_csums + num_csums_per_leaf - 1;
4910 	old_csums = old_csums / num_csums_per_leaf;
4911 
4912 	/* No change, no need to reserve more */
4913 	if (old_csums == num_csums)
4914 		return 0;
4915 
4916 	if (reserve)
4917 		return btrfs_calc_trans_metadata_size(root,
4918 						      num_csums - old_csums);
4919 
4920 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4921 }
4922 
4923 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4924 {
4925 	struct btrfs_root *root = BTRFS_I(inode)->root;
4926 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4927 	u64 to_reserve = 0;
4928 	u64 csum_bytes;
4929 	unsigned nr_extents = 0;
4930 	int extra_reserve = 0;
4931 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4932 	int ret = 0;
4933 	bool delalloc_lock = true;
4934 	u64 to_free = 0;
4935 	unsigned dropped;
4936 
4937 	/* If we are a free space inode we need to not flush since we will be in
4938 	 * the middle of a transaction commit.  We also don't need the delalloc
4939 	 * mutex since we won't race with anybody.  We need this mostly to make
4940 	 * lockdep shut its filthy mouth.
4941 	 */
4942 	if (btrfs_is_free_space_inode(inode)) {
4943 		flush = BTRFS_RESERVE_NO_FLUSH;
4944 		delalloc_lock = false;
4945 	}
4946 
4947 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
4948 	    btrfs_transaction_in_commit(root->fs_info))
4949 		schedule_timeout(1);
4950 
4951 	if (delalloc_lock)
4952 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4953 
4954 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4955 
4956 	spin_lock(&BTRFS_I(inode)->lock);
4957 	BTRFS_I(inode)->outstanding_extents++;
4958 
4959 	if (BTRFS_I(inode)->outstanding_extents >
4960 	    BTRFS_I(inode)->reserved_extents)
4961 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4962 			BTRFS_I(inode)->reserved_extents;
4963 
4964 	/*
4965 	 * Add an item to reserve for updating the inode when we complete the
4966 	 * delalloc io.
4967 	 */
4968 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4969 		      &BTRFS_I(inode)->runtime_flags)) {
4970 		nr_extents++;
4971 		extra_reserve = 1;
4972 	}
4973 
4974 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4975 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4976 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4977 	spin_unlock(&BTRFS_I(inode)->lock);
4978 
4979 	if (root->fs_info->quota_enabled) {
4980 		ret = btrfs_qgroup_reserve(root, num_bytes +
4981 					   nr_extents * root->leafsize);
4982 		if (ret)
4983 			goto out_fail;
4984 	}
4985 
4986 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4987 	if (unlikely(ret)) {
4988 		if (root->fs_info->quota_enabled)
4989 			btrfs_qgroup_free(root, num_bytes +
4990 						nr_extents * root->leafsize);
4991 		goto out_fail;
4992 	}
4993 
4994 	spin_lock(&BTRFS_I(inode)->lock);
4995 	if (extra_reserve) {
4996 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4997 			&BTRFS_I(inode)->runtime_flags);
4998 		nr_extents--;
4999 	}
5000 	BTRFS_I(inode)->reserved_extents += nr_extents;
5001 	spin_unlock(&BTRFS_I(inode)->lock);
5002 
5003 	if (delalloc_lock)
5004 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5005 
5006 	if (to_reserve)
5007 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5008 					      btrfs_ino(inode), to_reserve, 1);
5009 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5010 
5011 	return 0;
5012 
5013 out_fail:
5014 	spin_lock(&BTRFS_I(inode)->lock);
5015 	dropped = drop_outstanding_extent(inode);
5016 	/*
5017 	 * If the inodes csum_bytes is the same as the original
5018 	 * csum_bytes then we know we haven't raced with any free()ers
5019 	 * so we can just reduce our inodes csum bytes and carry on.
5020 	 */
5021 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5022 		calc_csum_metadata_size(inode, num_bytes, 0);
5023 	} else {
5024 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5025 		u64 bytes;
5026 
5027 		/*
5028 		 * This is tricky, but first we need to figure out how much we
5029 		 * free'd from any free-ers that occured during this
5030 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5031 		 * before we dropped our lock, and then call the free for the
5032 		 * number of bytes that were freed while we were trying our
5033 		 * reservation.
5034 		 */
5035 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5036 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5037 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5038 
5039 
5040 		/*
5041 		 * Now we need to see how much we would have freed had we not
5042 		 * been making this reservation and our ->csum_bytes were not
5043 		 * artificially inflated.
5044 		 */
5045 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5046 		bytes = csum_bytes - orig_csum_bytes;
5047 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5048 
5049 		/*
5050 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5051 		 * more than to_free then we would have free'd more space had we
5052 		 * not had an artificially high ->csum_bytes, so we need to free
5053 		 * the remainder.  If bytes is the same or less then we don't
5054 		 * need to do anything, the other free-ers did the correct
5055 		 * thing.
5056 		 */
5057 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5058 		if (bytes > to_free)
5059 			to_free = bytes - to_free;
5060 		else
5061 			to_free = 0;
5062 	}
5063 	spin_unlock(&BTRFS_I(inode)->lock);
5064 	if (dropped)
5065 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5066 
5067 	if (to_free) {
5068 		btrfs_block_rsv_release(root, block_rsv, to_free);
5069 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5070 					      btrfs_ino(inode), to_free, 0);
5071 	}
5072 	if (delalloc_lock)
5073 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5074 	return ret;
5075 }
5076 
5077 /**
5078  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5079  * @inode: the inode to release the reservation for
5080  * @num_bytes: the number of bytes we're releasing
5081  *
5082  * This will release the metadata reservation for an inode.  This can be called
5083  * once we complete IO for a given set of bytes to release their metadata
5084  * reservations.
5085  */
5086 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5087 {
5088 	struct btrfs_root *root = BTRFS_I(inode)->root;
5089 	u64 to_free = 0;
5090 	unsigned dropped;
5091 
5092 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5093 	spin_lock(&BTRFS_I(inode)->lock);
5094 	dropped = drop_outstanding_extent(inode);
5095 
5096 	if (num_bytes)
5097 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5098 	spin_unlock(&BTRFS_I(inode)->lock);
5099 	if (dropped > 0)
5100 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5101 
5102 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5103 				      btrfs_ino(inode), to_free, 0);
5104 	if (root->fs_info->quota_enabled) {
5105 		btrfs_qgroup_free(root, num_bytes +
5106 					dropped * root->leafsize);
5107 	}
5108 
5109 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5110 				to_free);
5111 }
5112 
5113 /**
5114  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5115  * @inode: inode we're writing to
5116  * @num_bytes: the number of bytes we want to allocate
5117  *
5118  * This will do the following things
5119  *
5120  * o reserve space in the data space info for num_bytes
5121  * o reserve space in the metadata space info based on number of outstanding
5122  *   extents and how much csums will be needed
5123  * o add to the inodes ->delalloc_bytes
5124  * o add it to the fs_info's delalloc inodes list.
5125  *
5126  * This will return 0 for success and -ENOSPC if there is no space left.
5127  */
5128 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5129 {
5130 	int ret;
5131 
5132 	ret = btrfs_check_data_free_space(inode, num_bytes);
5133 	if (ret)
5134 		return ret;
5135 
5136 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5137 	if (ret) {
5138 		btrfs_free_reserved_data_space(inode, num_bytes);
5139 		return ret;
5140 	}
5141 
5142 	return 0;
5143 }
5144 
5145 /**
5146  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5147  * @inode: inode we're releasing space for
5148  * @num_bytes: the number of bytes we want to free up
5149  *
5150  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5151  * called in the case that we don't need the metadata AND data reservations
5152  * anymore.  So if there is an error or we insert an inline extent.
5153  *
5154  * This function will release the metadata space that was not used and will
5155  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5156  * list if there are no delalloc bytes left.
5157  */
5158 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5159 {
5160 	btrfs_delalloc_release_metadata(inode, num_bytes);
5161 	btrfs_free_reserved_data_space(inode, num_bytes);
5162 }
5163 
5164 static int update_block_group(struct btrfs_root *root,
5165 			      u64 bytenr, u64 num_bytes, int alloc)
5166 {
5167 	struct btrfs_block_group_cache *cache = NULL;
5168 	struct btrfs_fs_info *info = root->fs_info;
5169 	u64 total = num_bytes;
5170 	u64 old_val;
5171 	u64 byte_in_group;
5172 	int factor;
5173 
5174 	/* block accounting for super block */
5175 	spin_lock(&info->delalloc_root_lock);
5176 	old_val = btrfs_super_bytes_used(info->super_copy);
5177 	if (alloc)
5178 		old_val += num_bytes;
5179 	else
5180 		old_val -= num_bytes;
5181 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5182 	spin_unlock(&info->delalloc_root_lock);
5183 
5184 	while (total) {
5185 		cache = btrfs_lookup_block_group(info, bytenr);
5186 		if (!cache)
5187 			return -ENOENT;
5188 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5189 				    BTRFS_BLOCK_GROUP_RAID1 |
5190 				    BTRFS_BLOCK_GROUP_RAID10))
5191 			factor = 2;
5192 		else
5193 			factor = 1;
5194 		/*
5195 		 * If this block group has free space cache written out, we
5196 		 * need to make sure to load it if we are removing space.  This
5197 		 * is because we need the unpinning stage to actually add the
5198 		 * space back to the block group, otherwise we will leak space.
5199 		 */
5200 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5201 			cache_block_group(cache, 1);
5202 
5203 		byte_in_group = bytenr - cache->key.objectid;
5204 		WARN_ON(byte_in_group > cache->key.offset);
5205 
5206 		spin_lock(&cache->space_info->lock);
5207 		spin_lock(&cache->lock);
5208 
5209 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5210 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5211 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5212 
5213 		cache->dirty = 1;
5214 		old_val = btrfs_block_group_used(&cache->item);
5215 		num_bytes = min(total, cache->key.offset - byte_in_group);
5216 		if (alloc) {
5217 			old_val += num_bytes;
5218 			btrfs_set_block_group_used(&cache->item, old_val);
5219 			cache->reserved -= num_bytes;
5220 			cache->space_info->bytes_reserved -= num_bytes;
5221 			cache->space_info->bytes_used += num_bytes;
5222 			cache->space_info->disk_used += num_bytes * factor;
5223 			spin_unlock(&cache->lock);
5224 			spin_unlock(&cache->space_info->lock);
5225 		} else {
5226 			old_val -= num_bytes;
5227 			btrfs_set_block_group_used(&cache->item, old_val);
5228 			cache->pinned += num_bytes;
5229 			cache->space_info->bytes_pinned += num_bytes;
5230 			cache->space_info->bytes_used -= num_bytes;
5231 			cache->space_info->disk_used -= num_bytes * factor;
5232 			spin_unlock(&cache->lock);
5233 			spin_unlock(&cache->space_info->lock);
5234 
5235 			set_extent_dirty(info->pinned_extents,
5236 					 bytenr, bytenr + num_bytes - 1,
5237 					 GFP_NOFS | __GFP_NOFAIL);
5238 		}
5239 		btrfs_put_block_group(cache);
5240 		total -= num_bytes;
5241 		bytenr += num_bytes;
5242 	}
5243 	return 0;
5244 }
5245 
5246 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5247 {
5248 	struct btrfs_block_group_cache *cache;
5249 	u64 bytenr;
5250 
5251 	spin_lock(&root->fs_info->block_group_cache_lock);
5252 	bytenr = root->fs_info->first_logical_byte;
5253 	spin_unlock(&root->fs_info->block_group_cache_lock);
5254 
5255 	if (bytenr < (u64)-1)
5256 		return bytenr;
5257 
5258 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5259 	if (!cache)
5260 		return 0;
5261 
5262 	bytenr = cache->key.objectid;
5263 	btrfs_put_block_group(cache);
5264 
5265 	return bytenr;
5266 }
5267 
5268 static int pin_down_extent(struct btrfs_root *root,
5269 			   struct btrfs_block_group_cache *cache,
5270 			   u64 bytenr, u64 num_bytes, int reserved)
5271 {
5272 	spin_lock(&cache->space_info->lock);
5273 	spin_lock(&cache->lock);
5274 	cache->pinned += num_bytes;
5275 	cache->space_info->bytes_pinned += num_bytes;
5276 	if (reserved) {
5277 		cache->reserved -= num_bytes;
5278 		cache->space_info->bytes_reserved -= num_bytes;
5279 	}
5280 	spin_unlock(&cache->lock);
5281 	spin_unlock(&cache->space_info->lock);
5282 
5283 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5284 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5285 	if (reserved)
5286 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5287 	return 0;
5288 }
5289 
5290 /*
5291  * this function must be called within transaction
5292  */
5293 int btrfs_pin_extent(struct btrfs_root *root,
5294 		     u64 bytenr, u64 num_bytes, int reserved)
5295 {
5296 	struct btrfs_block_group_cache *cache;
5297 
5298 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5299 	BUG_ON(!cache); /* Logic error */
5300 
5301 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5302 
5303 	btrfs_put_block_group(cache);
5304 	return 0;
5305 }
5306 
5307 /*
5308  * this function must be called within transaction
5309  */
5310 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5311 				    u64 bytenr, u64 num_bytes)
5312 {
5313 	struct btrfs_block_group_cache *cache;
5314 	int ret;
5315 
5316 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5317 	if (!cache)
5318 		return -EINVAL;
5319 
5320 	/*
5321 	 * pull in the free space cache (if any) so that our pin
5322 	 * removes the free space from the cache.  We have load_only set
5323 	 * to one because the slow code to read in the free extents does check
5324 	 * the pinned extents.
5325 	 */
5326 	cache_block_group(cache, 1);
5327 
5328 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5329 
5330 	/* remove us from the free space cache (if we're there at all) */
5331 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5332 	btrfs_put_block_group(cache);
5333 	return ret;
5334 }
5335 
5336 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5337 {
5338 	int ret;
5339 	struct btrfs_block_group_cache *block_group;
5340 	struct btrfs_caching_control *caching_ctl;
5341 
5342 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5343 	if (!block_group)
5344 		return -EINVAL;
5345 
5346 	cache_block_group(block_group, 0);
5347 	caching_ctl = get_caching_control(block_group);
5348 
5349 	if (!caching_ctl) {
5350 		/* Logic error */
5351 		BUG_ON(!block_group_cache_done(block_group));
5352 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5353 	} else {
5354 		mutex_lock(&caching_ctl->mutex);
5355 
5356 		if (start >= caching_ctl->progress) {
5357 			ret = add_excluded_extent(root, start, num_bytes);
5358 		} else if (start + num_bytes <= caching_ctl->progress) {
5359 			ret = btrfs_remove_free_space(block_group,
5360 						      start, num_bytes);
5361 		} else {
5362 			num_bytes = caching_ctl->progress - start;
5363 			ret = btrfs_remove_free_space(block_group,
5364 						      start, num_bytes);
5365 			if (ret)
5366 				goto out_lock;
5367 
5368 			num_bytes = (start + num_bytes) -
5369 				caching_ctl->progress;
5370 			start = caching_ctl->progress;
5371 			ret = add_excluded_extent(root, start, num_bytes);
5372 		}
5373 out_lock:
5374 		mutex_unlock(&caching_ctl->mutex);
5375 		put_caching_control(caching_ctl);
5376 	}
5377 	btrfs_put_block_group(block_group);
5378 	return ret;
5379 }
5380 
5381 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5382 				 struct extent_buffer *eb)
5383 {
5384 	struct btrfs_file_extent_item *item;
5385 	struct btrfs_key key;
5386 	int found_type;
5387 	int i;
5388 
5389 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5390 		return 0;
5391 
5392 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5393 		btrfs_item_key_to_cpu(eb, &key, i);
5394 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5395 			continue;
5396 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5397 		found_type = btrfs_file_extent_type(eb, item);
5398 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5399 			continue;
5400 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5401 			continue;
5402 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5403 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5404 		__exclude_logged_extent(log, key.objectid, key.offset);
5405 	}
5406 
5407 	return 0;
5408 }
5409 
5410 /**
5411  * btrfs_update_reserved_bytes - update the block_group and space info counters
5412  * @cache:	The cache we are manipulating
5413  * @num_bytes:	The number of bytes in question
5414  * @reserve:	One of the reservation enums
5415  *
5416  * This is called by the allocator when it reserves space, or by somebody who is
5417  * freeing space that was never actually used on disk.  For example if you
5418  * reserve some space for a new leaf in transaction A and before transaction A
5419  * commits you free that leaf, you call this with reserve set to 0 in order to
5420  * clear the reservation.
5421  *
5422  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5423  * ENOSPC accounting.  For data we handle the reservation through clearing the
5424  * delalloc bits in the io_tree.  We have to do this since we could end up
5425  * allocating less disk space for the amount of data we have reserved in the
5426  * case of compression.
5427  *
5428  * If this is a reservation and the block group has become read only we cannot
5429  * make the reservation and return -EAGAIN, otherwise this function always
5430  * succeeds.
5431  */
5432 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5433 				       u64 num_bytes, int reserve)
5434 {
5435 	struct btrfs_space_info *space_info = cache->space_info;
5436 	int ret = 0;
5437 
5438 	spin_lock(&space_info->lock);
5439 	spin_lock(&cache->lock);
5440 	if (reserve != RESERVE_FREE) {
5441 		if (cache->ro) {
5442 			ret = -EAGAIN;
5443 		} else {
5444 			cache->reserved += num_bytes;
5445 			space_info->bytes_reserved += num_bytes;
5446 			if (reserve == RESERVE_ALLOC) {
5447 				trace_btrfs_space_reservation(cache->fs_info,
5448 						"space_info", space_info->flags,
5449 						num_bytes, 0);
5450 				space_info->bytes_may_use -= num_bytes;
5451 			}
5452 		}
5453 	} else {
5454 		if (cache->ro)
5455 			space_info->bytes_readonly += num_bytes;
5456 		cache->reserved -= num_bytes;
5457 		space_info->bytes_reserved -= num_bytes;
5458 	}
5459 	spin_unlock(&cache->lock);
5460 	spin_unlock(&space_info->lock);
5461 	return ret;
5462 }
5463 
5464 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5465 				struct btrfs_root *root)
5466 {
5467 	struct btrfs_fs_info *fs_info = root->fs_info;
5468 	struct btrfs_caching_control *next;
5469 	struct btrfs_caching_control *caching_ctl;
5470 	struct btrfs_block_group_cache *cache;
5471 	struct btrfs_space_info *space_info;
5472 
5473 	down_write(&fs_info->extent_commit_sem);
5474 
5475 	list_for_each_entry_safe(caching_ctl, next,
5476 				 &fs_info->caching_block_groups, list) {
5477 		cache = caching_ctl->block_group;
5478 		if (block_group_cache_done(cache)) {
5479 			cache->last_byte_to_unpin = (u64)-1;
5480 			list_del_init(&caching_ctl->list);
5481 			put_caching_control(caching_ctl);
5482 		} else {
5483 			cache->last_byte_to_unpin = caching_ctl->progress;
5484 		}
5485 	}
5486 
5487 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5488 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5489 	else
5490 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5491 
5492 	up_write(&fs_info->extent_commit_sem);
5493 
5494 	list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5495 		percpu_counter_set(&space_info->total_bytes_pinned, 0);
5496 
5497 	update_global_block_rsv(fs_info);
5498 }
5499 
5500 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5501 {
5502 	struct btrfs_fs_info *fs_info = root->fs_info;
5503 	struct btrfs_block_group_cache *cache = NULL;
5504 	struct btrfs_space_info *space_info;
5505 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5506 	u64 len;
5507 	bool readonly;
5508 
5509 	while (start <= end) {
5510 		readonly = false;
5511 		if (!cache ||
5512 		    start >= cache->key.objectid + cache->key.offset) {
5513 			if (cache)
5514 				btrfs_put_block_group(cache);
5515 			cache = btrfs_lookup_block_group(fs_info, start);
5516 			BUG_ON(!cache); /* Logic error */
5517 		}
5518 
5519 		len = cache->key.objectid + cache->key.offset - start;
5520 		len = min(len, end + 1 - start);
5521 
5522 		if (start < cache->last_byte_to_unpin) {
5523 			len = min(len, cache->last_byte_to_unpin - start);
5524 			btrfs_add_free_space(cache, start, len);
5525 		}
5526 
5527 		start += len;
5528 		space_info = cache->space_info;
5529 
5530 		spin_lock(&space_info->lock);
5531 		spin_lock(&cache->lock);
5532 		cache->pinned -= len;
5533 		space_info->bytes_pinned -= len;
5534 		if (cache->ro) {
5535 			space_info->bytes_readonly += len;
5536 			readonly = true;
5537 		}
5538 		spin_unlock(&cache->lock);
5539 		if (!readonly && global_rsv->space_info == space_info) {
5540 			spin_lock(&global_rsv->lock);
5541 			if (!global_rsv->full) {
5542 				len = min(len, global_rsv->size -
5543 					  global_rsv->reserved);
5544 				global_rsv->reserved += len;
5545 				space_info->bytes_may_use += len;
5546 				if (global_rsv->reserved >= global_rsv->size)
5547 					global_rsv->full = 1;
5548 			}
5549 			spin_unlock(&global_rsv->lock);
5550 		}
5551 		spin_unlock(&space_info->lock);
5552 	}
5553 
5554 	if (cache)
5555 		btrfs_put_block_group(cache);
5556 	return 0;
5557 }
5558 
5559 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5560 			       struct btrfs_root *root)
5561 {
5562 	struct btrfs_fs_info *fs_info = root->fs_info;
5563 	struct extent_io_tree *unpin;
5564 	u64 start;
5565 	u64 end;
5566 	int ret;
5567 
5568 	if (trans->aborted)
5569 		return 0;
5570 
5571 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5572 		unpin = &fs_info->freed_extents[1];
5573 	else
5574 		unpin = &fs_info->freed_extents[0];
5575 
5576 	while (1) {
5577 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5578 					    EXTENT_DIRTY, NULL);
5579 		if (ret)
5580 			break;
5581 
5582 		if (btrfs_test_opt(root, DISCARD))
5583 			ret = btrfs_discard_extent(root, start,
5584 						   end + 1 - start, NULL);
5585 
5586 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5587 		unpin_extent_range(root, start, end);
5588 		cond_resched();
5589 	}
5590 
5591 	return 0;
5592 }
5593 
5594 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5595 			     u64 owner, u64 root_objectid)
5596 {
5597 	struct btrfs_space_info *space_info;
5598 	u64 flags;
5599 
5600 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5601 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5602 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5603 		else
5604 			flags = BTRFS_BLOCK_GROUP_METADATA;
5605 	} else {
5606 		flags = BTRFS_BLOCK_GROUP_DATA;
5607 	}
5608 
5609 	space_info = __find_space_info(fs_info, flags);
5610 	BUG_ON(!space_info); /* Logic bug */
5611 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5612 }
5613 
5614 
5615 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5616 				struct btrfs_root *root,
5617 				u64 bytenr, u64 num_bytes, u64 parent,
5618 				u64 root_objectid, u64 owner_objectid,
5619 				u64 owner_offset, int refs_to_drop,
5620 				struct btrfs_delayed_extent_op *extent_op)
5621 {
5622 	struct btrfs_key key;
5623 	struct btrfs_path *path;
5624 	struct btrfs_fs_info *info = root->fs_info;
5625 	struct btrfs_root *extent_root = info->extent_root;
5626 	struct extent_buffer *leaf;
5627 	struct btrfs_extent_item *ei;
5628 	struct btrfs_extent_inline_ref *iref;
5629 	int ret;
5630 	int is_data;
5631 	int extent_slot = 0;
5632 	int found_extent = 0;
5633 	int num_to_del = 1;
5634 	u32 item_size;
5635 	u64 refs;
5636 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5637 						 SKINNY_METADATA);
5638 
5639 	path = btrfs_alloc_path();
5640 	if (!path)
5641 		return -ENOMEM;
5642 
5643 	path->reada = 1;
5644 	path->leave_spinning = 1;
5645 
5646 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5647 	BUG_ON(!is_data && refs_to_drop != 1);
5648 
5649 	if (is_data)
5650 		skinny_metadata = 0;
5651 
5652 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5653 				    bytenr, num_bytes, parent,
5654 				    root_objectid, owner_objectid,
5655 				    owner_offset);
5656 	if (ret == 0) {
5657 		extent_slot = path->slots[0];
5658 		while (extent_slot >= 0) {
5659 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5660 					      extent_slot);
5661 			if (key.objectid != bytenr)
5662 				break;
5663 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5664 			    key.offset == num_bytes) {
5665 				found_extent = 1;
5666 				break;
5667 			}
5668 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5669 			    key.offset == owner_objectid) {
5670 				found_extent = 1;
5671 				break;
5672 			}
5673 			if (path->slots[0] - extent_slot > 5)
5674 				break;
5675 			extent_slot--;
5676 		}
5677 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5678 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5679 		if (found_extent && item_size < sizeof(*ei))
5680 			found_extent = 0;
5681 #endif
5682 		if (!found_extent) {
5683 			BUG_ON(iref);
5684 			ret = remove_extent_backref(trans, extent_root, path,
5685 						    NULL, refs_to_drop,
5686 						    is_data);
5687 			if (ret) {
5688 				btrfs_abort_transaction(trans, extent_root, ret);
5689 				goto out;
5690 			}
5691 			btrfs_release_path(path);
5692 			path->leave_spinning = 1;
5693 
5694 			key.objectid = bytenr;
5695 			key.type = BTRFS_EXTENT_ITEM_KEY;
5696 			key.offset = num_bytes;
5697 
5698 			if (!is_data && skinny_metadata) {
5699 				key.type = BTRFS_METADATA_ITEM_KEY;
5700 				key.offset = owner_objectid;
5701 			}
5702 
5703 			ret = btrfs_search_slot(trans, extent_root,
5704 						&key, path, -1, 1);
5705 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5706 				/*
5707 				 * Couldn't find our skinny metadata item,
5708 				 * see if we have ye olde extent item.
5709 				 */
5710 				path->slots[0]--;
5711 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5712 						      path->slots[0]);
5713 				if (key.objectid == bytenr &&
5714 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5715 				    key.offset == num_bytes)
5716 					ret = 0;
5717 			}
5718 
5719 			if (ret > 0 && skinny_metadata) {
5720 				skinny_metadata = false;
5721 				key.type = BTRFS_EXTENT_ITEM_KEY;
5722 				key.offset = num_bytes;
5723 				btrfs_release_path(path);
5724 				ret = btrfs_search_slot(trans, extent_root,
5725 							&key, path, -1, 1);
5726 			}
5727 
5728 			if (ret) {
5729 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5730 					ret, bytenr);
5731 				if (ret > 0)
5732 					btrfs_print_leaf(extent_root,
5733 							 path->nodes[0]);
5734 			}
5735 			if (ret < 0) {
5736 				btrfs_abort_transaction(trans, extent_root, ret);
5737 				goto out;
5738 			}
5739 			extent_slot = path->slots[0];
5740 		}
5741 	} else if (WARN_ON(ret == -ENOENT)) {
5742 		btrfs_print_leaf(extent_root, path->nodes[0]);
5743 		btrfs_err(info,
5744 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5745 			bytenr, parent, root_objectid, owner_objectid,
5746 			owner_offset);
5747 	} else {
5748 		btrfs_abort_transaction(trans, extent_root, ret);
5749 		goto out;
5750 	}
5751 
5752 	leaf = path->nodes[0];
5753 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5754 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5755 	if (item_size < sizeof(*ei)) {
5756 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5757 		ret = convert_extent_item_v0(trans, extent_root, path,
5758 					     owner_objectid, 0);
5759 		if (ret < 0) {
5760 			btrfs_abort_transaction(trans, extent_root, ret);
5761 			goto out;
5762 		}
5763 
5764 		btrfs_release_path(path);
5765 		path->leave_spinning = 1;
5766 
5767 		key.objectid = bytenr;
5768 		key.type = BTRFS_EXTENT_ITEM_KEY;
5769 		key.offset = num_bytes;
5770 
5771 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5772 					-1, 1);
5773 		if (ret) {
5774 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5775 				ret, bytenr);
5776 			btrfs_print_leaf(extent_root, path->nodes[0]);
5777 		}
5778 		if (ret < 0) {
5779 			btrfs_abort_transaction(trans, extent_root, ret);
5780 			goto out;
5781 		}
5782 
5783 		extent_slot = path->slots[0];
5784 		leaf = path->nodes[0];
5785 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5786 	}
5787 #endif
5788 	BUG_ON(item_size < sizeof(*ei));
5789 	ei = btrfs_item_ptr(leaf, extent_slot,
5790 			    struct btrfs_extent_item);
5791 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5792 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
5793 		struct btrfs_tree_block_info *bi;
5794 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5795 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5796 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5797 	}
5798 
5799 	refs = btrfs_extent_refs(leaf, ei);
5800 	if (refs < refs_to_drop) {
5801 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5802 			  "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5803 		ret = -EINVAL;
5804 		btrfs_abort_transaction(trans, extent_root, ret);
5805 		goto out;
5806 	}
5807 	refs -= refs_to_drop;
5808 
5809 	if (refs > 0) {
5810 		if (extent_op)
5811 			__run_delayed_extent_op(extent_op, leaf, ei);
5812 		/*
5813 		 * In the case of inline back ref, reference count will
5814 		 * be updated by remove_extent_backref
5815 		 */
5816 		if (iref) {
5817 			BUG_ON(!found_extent);
5818 		} else {
5819 			btrfs_set_extent_refs(leaf, ei, refs);
5820 			btrfs_mark_buffer_dirty(leaf);
5821 		}
5822 		if (found_extent) {
5823 			ret = remove_extent_backref(trans, extent_root, path,
5824 						    iref, refs_to_drop,
5825 						    is_data);
5826 			if (ret) {
5827 				btrfs_abort_transaction(trans, extent_root, ret);
5828 				goto out;
5829 			}
5830 		}
5831 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5832 				 root_objectid);
5833 	} else {
5834 		if (found_extent) {
5835 			BUG_ON(is_data && refs_to_drop !=
5836 			       extent_data_ref_count(root, path, iref));
5837 			if (iref) {
5838 				BUG_ON(path->slots[0] != extent_slot);
5839 			} else {
5840 				BUG_ON(path->slots[0] != extent_slot + 1);
5841 				path->slots[0] = extent_slot;
5842 				num_to_del = 2;
5843 			}
5844 		}
5845 
5846 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5847 				      num_to_del);
5848 		if (ret) {
5849 			btrfs_abort_transaction(trans, extent_root, ret);
5850 			goto out;
5851 		}
5852 		btrfs_release_path(path);
5853 
5854 		if (is_data) {
5855 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5856 			if (ret) {
5857 				btrfs_abort_transaction(trans, extent_root, ret);
5858 				goto out;
5859 			}
5860 		}
5861 
5862 		ret = update_block_group(root, bytenr, num_bytes, 0);
5863 		if (ret) {
5864 			btrfs_abort_transaction(trans, extent_root, ret);
5865 			goto out;
5866 		}
5867 	}
5868 out:
5869 	btrfs_free_path(path);
5870 	return ret;
5871 }
5872 
5873 /*
5874  * when we free an block, it is possible (and likely) that we free the last
5875  * delayed ref for that extent as well.  This searches the delayed ref tree for
5876  * a given extent, and if there are no other delayed refs to be processed, it
5877  * removes it from the tree.
5878  */
5879 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5880 				      struct btrfs_root *root, u64 bytenr)
5881 {
5882 	struct btrfs_delayed_ref_head *head;
5883 	struct btrfs_delayed_ref_root *delayed_refs;
5884 	int ret = 0;
5885 
5886 	delayed_refs = &trans->transaction->delayed_refs;
5887 	spin_lock(&delayed_refs->lock);
5888 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5889 	if (!head)
5890 		goto out_delayed_unlock;
5891 
5892 	spin_lock(&head->lock);
5893 	if (rb_first(&head->ref_root))
5894 		goto out;
5895 
5896 	if (head->extent_op) {
5897 		if (!head->must_insert_reserved)
5898 			goto out;
5899 		btrfs_free_delayed_extent_op(head->extent_op);
5900 		head->extent_op = NULL;
5901 	}
5902 
5903 	/*
5904 	 * waiting for the lock here would deadlock.  If someone else has it
5905 	 * locked they are already in the process of dropping it anyway
5906 	 */
5907 	if (!mutex_trylock(&head->mutex))
5908 		goto out;
5909 
5910 	/*
5911 	 * at this point we have a head with no other entries.  Go
5912 	 * ahead and process it.
5913 	 */
5914 	head->node.in_tree = 0;
5915 	rb_erase(&head->href_node, &delayed_refs->href_root);
5916 
5917 	atomic_dec(&delayed_refs->num_entries);
5918 
5919 	/*
5920 	 * we don't take a ref on the node because we're removing it from the
5921 	 * tree, so we just steal the ref the tree was holding.
5922 	 */
5923 	delayed_refs->num_heads--;
5924 	if (head->processing == 0)
5925 		delayed_refs->num_heads_ready--;
5926 	head->processing = 0;
5927 	spin_unlock(&head->lock);
5928 	spin_unlock(&delayed_refs->lock);
5929 
5930 	BUG_ON(head->extent_op);
5931 	if (head->must_insert_reserved)
5932 		ret = 1;
5933 
5934 	mutex_unlock(&head->mutex);
5935 	btrfs_put_delayed_ref(&head->node);
5936 	return ret;
5937 out:
5938 	spin_unlock(&head->lock);
5939 
5940 out_delayed_unlock:
5941 	spin_unlock(&delayed_refs->lock);
5942 	return 0;
5943 }
5944 
5945 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5946 			   struct btrfs_root *root,
5947 			   struct extent_buffer *buf,
5948 			   u64 parent, int last_ref)
5949 {
5950 	struct btrfs_block_group_cache *cache = NULL;
5951 	int pin = 1;
5952 	int ret;
5953 
5954 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5955 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5956 					buf->start, buf->len,
5957 					parent, root->root_key.objectid,
5958 					btrfs_header_level(buf),
5959 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5960 		BUG_ON(ret); /* -ENOMEM */
5961 	}
5962 
5963 	if (!last_ref)
5964 		return;
5965 
5966 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5967 
5968 	if (btrfs_header_generation(buf) == trans->transid) {
5969 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5970 			ret = check_ref_cleanup(trans, root, buf->start);
5971 			if (!ret)
5972 				goto out;
5973 		}
5974 
5975 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5976 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5977 			goto out;
5978 		}
5979 
5980 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5981 
5982 		btrfs_add_free_space(cache, buf->start, buf->len);
5983 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5984 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
5985 		pin = 0;
5986 	}
5987 out:
5988 	if (pin)
5989 		add_pinned_bytes(root->fs_info, buf->len,
5990 				 btrfs_header_level(buf),
5991 				 root->root_key.objectid);
5992 
5993 	/*
5994 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5995 	 * anymore.
5996 	 */
5997 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5998 	btrfs_put_block_group(cache);
5999 }
6000 
6001 /* Can return -ENOMEM */
6002 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6003 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6004 		      u64 owner, u64 offset, int for_cow)
6005 {
6006 	int ret;
6007 	struct btrfs_fs_info *fs_info = root->fs_info;
6008 
6009 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6010 
6011 	/*
6012 	 * tree log blocks never actually go into the extent allocation
6013 	 * tree, just update pinning info and exit early.
6014 	 */
6015 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6016 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6017 		/* unlocks the pinned mutex */
6018 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6019 		ret = 0;
6020 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6021 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6022 					num_bytes,
6023 					parent, root_objectid, (int)owner,
6024 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6025 	} else {
6026 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6027 						num_bytes,
6028 						parent, root_objectid, owner,
6029 						offset, BTRFS_DROP_DELAYED_REF,
6030 						NULL, for_cow);
6031 	}
6032 	return ret;
6033 }
6034 
6035 static u64 stripe_align(struct btrfs_root *root,
6036 			struct btrfs_block_group_cache *cache,
6037 			u64 val, u64 num_bytes)
6038 {
6039 	u64 ret = ALIGN(val, root->stripesize);
6040 	return ret;
6041 }
6042 
6043 /*
6044  * when we wait for progress in the block group caching, its because
6045  * our allocation attempt failed at least once.  So, we must sleep
6046  * and let some progress happen before we try again.
6047  *
6048  * This function will sleep at least once waiting for new free space to
6049  * show up, and then it will check the block group free space numbers
6050  * for our min num_bytes.  Another option is to have it go ahead
6051  * and look in the rbtree for a free extent of a given size, but this
6052  * is a good start.
6053  *
6054  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6055  * any of the information in this block group.
6056  */
6057 static noinline void
6058 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6059 				u64 num_bytes)
6060 {
6061 	struct btrfs_caching_control *caching_ctl;
6062 
6063 	caching_ctl = get_caching_control(cache);
6064 	if (!caching_ctl)
6065 		return;
6066 
6067 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6068 		   (cache->free_space_ctl->free_space >= num_bytes));
6069 
6070 	put_caching_control(caching_ctl);
6071 }
6072 
6073 static noinline int
6074 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6075 {
6076 	struct btrfs_caching_control *caching_ctl;
6077 	int ret = 0;
6078 
6079 	caching_ctl = get_caching_control(cache);
6080 	if (!caching_ctl)
6081 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6082 
6083 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6084 	if (cache->cached == BTRFS_CACHE_ERROR)
6085 		ret = -EIO;
6086 	put_caching_control(caching_ctl);
6087 	return ret;
6088 }
6089 
6090 int __get_raid_index(u64 flags)
6091 {
6092 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6093 		return BTRFS_RAID_RAID10;
6094 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6095 		return BTRFS_RAID_RAID1;
6096 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6097 		return BTRFS_RAID_DUP;
6098 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6099 		return BTRFS_RAID_RAID0;
6100 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6101 		return BTRFS_RAID_RAID5;
6102 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6103 		return BTRFS_RAID_RAID6;
6104 
6105 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6106 }
6107 
6108 int get_block_group_index(struct btrfs_block_group_cache *cache)
6109 {
6110 	return __get_raid_index(cache->flags);
6111 }
6112 
6113 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6114 	[BTRFS_RAID_RAID10]	= "raid10",
6115 	[BTRFS_RAID_RAID1]	= "raid1",
6116 	[BTRFS_RAID_DUP]	= "dup",
6117 	[BTRFS_RAID_RAID0]	= "raid0",
6118 	[BTRFS_RAID_SINGLE]	= "single",
6119 	[BTRFS_RAID_RAID5]	= "raid5",
6120 	[BTRFS_RAID_RAID6]	= "raid6",
6121 };
6122 
6123 static const char *get_raid_name(enum btrfs_raid_types type)
6124 {
6125 	if (type >= BTRFS_NR_RAID_TYPES)
6126 		return NULL;
6127 
6128 	return btrfs_raid_type_names[type];
6129 }
6130 
6131 enum btrfs_loop_type {
6132 	LOOP_CACHING_NOWAIT = 0,
6133 	LOOP_CACHING_WAIT = 1,
6134 	LOOP_ALLOC_CHUNK = 2,
6135 	LOOP_NO_EMPTY_SIZE = 3,
6136 };
6137 
6138 /*
6139  * walks the btree of allocated extents and find a hole of a given size.
6140  * The key ins is changed to record the hole:
6141  * ins->objectid == start position
6142  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6143  * ins->offset == the size of the hole.
6144  * Any available blocks before search_start are skipped.
6145  *
6146  * If there is no suitable free space, we will record the max size of
6147  * the free space extent currently.
6148  */
6149 static noinline int find_free_extent(struct btrfs_root *orig_root,
6150 				     u64 num_bytes, u64 empty_size,
6151 				     u64 hint_byte, struct btrfs_key *ins,
6152 				     u64 flags)
6153 {
6154 	int ret = 0;
6155 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6156 	struct btrfs_free_cluster *last_ptr = NULL;
6157 	struct btrfs_block_group_cache *block_group = NULL;
6158 	u64 search_start = 0;
6159 	u64 max_extent_size = 0;
6160 	int empty_cluster = 2 * 1024 * 1024;
6161 	struct btrfs_space_info *space_info;
6162 	int loop = 0;
6163 	int index = __get_raid_index(flags);
6164 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6165 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6166 	bool failed_cluster_refill = false;
6167 	bool failed_alloc = false;
6168 	bool use_cluster = true;
6169 	bool have_caching_bg = false;
6170 
6171 	WARN_ON(num_bytes < root->sectorsize);
6172 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6173 	ins->objectid = 0;
6174 	ins->offset = 0;
6175 
6176 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6177 
6178 	space_info = __find_space_info(root->fs_info, flags);
6179 	if (!space_info) {
6180 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6181 		return -ENOSPC;
6182 	}
6183 
6184 	/*
6185 	 * If the space info is for both data and metadata it means we have a
6186 	 * small filesystem and we can't use the clustering stuff.
6187 	 */
6188 	if (btrfs_mixed_space_info(space_info))
6189 		use_cluster = false;
6190 
6191 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6192 		last_ptr = &root->fs_info->meta_alloc_cluster;
6193 		if (!btrfs_test_opt(root, SSD))
6194 			empty_cluster = 64 * 1024;
6195 	}
6196 
6197 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6198 	    btrfs_test_opt(root, SSD)) {
6199 		last_ptr = &root->fs_info->data_alloc_cluster;
6200 	}
6201 
6202 	if (last_ptr) {
6203 		spin_lock(&last_ptr->lock);
6204 		if (last_ptr->block_group)
6205 			hint_byte = last_ptr->window_start;
6206 		spin_unlock(&last_ptr->lock);
6207 	}
6208 
6209 	search_start = max(search_start, first_logical_byte(root, 0));
6210 	search_start = max(search_start, hint_byte);
6211 
6212 	if (!last_ptr)
6213 		empty_cluster = 0;
6214 
6215 	if (search_start == hint_byte) {
6216 		block_group = btrfs_lookup_block_group(root->fs_info,
6217 						       search_start);
6218 		/*
6219 		 * we don't want to use the block group if it doesn't match our
6220 		 * allocation bits, or if its not cached.
6221 		 *
6222 		 * However if we are re-searching with an ideal block group
6223 		 * picked out then we don't care that the block group is cached.
6224 		 */
6225 		if (block_group && block_group_bits(block_group, flags) &&
6226 		    block_group->cached != BTRFS_CACHE_NO) {
6227 			down_read(&space_info->groups_sem);
6228 			if (list_empty(&block_group->list) ||
6229 			    block_group->ro) {
6230 				/*
6231 				 * someone is removing this block group,
6232 				 * we can't jump into the have_block_group
6233 				 * target because our list pointers are not
6234 				 * valid
6235 				 */
6236 				btrfs_put_block_group(block_group);
6237 				up_read(&space_info->groups_sem);
6238 			} else {
6239 				index = get_block_group_index(block_group);
6240 				goto have_block_group;
6241 			}
6242 		} else if (block_group) {
6243 			btrfs_put_block_group(block_group);
6244 		}
6245 	}
6246 search:
6247 	have_caching_bg = false;
6248 	down_read(&space_info->groups_sem);
6249 	list_for_each_entry(block_group, &space_info->block_groups[index],
6250 			    list) {
6251 		u64 offset;
6252 		int cached;
6253 
6254 		btrfs_get_block_group(block_group);
6255 		search_start = block_group->key.objectid;
6256 
6257 		/*
6258 		 * this can happen if we end up cycling through all the
6259 		 * raid types, but we want to make sure we only allocate
6260 		 * for the proper type.
6261 		 */
6262 		if (!block_group_bits(block_group, flags)) {
6263 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6264 				BTRFS_BLOCK_GROUP_RAID1 |
6265 				BTRFS_BLOCK_GROUP_RAID5 |
6266 				BTRFS_BLOCK_GROUP_RAID6 |
6267 				BTRFS_BLOCK_GROUP_RAID10;
6268 
6269 			/*
6270 			 * if they asked for extra copies and this block group
6271 			 * doesn't provide them, bail.  This does allow us to
6272 			 * fill raid0 from raid1.
6273 			 */
6274 			if ((flags & extra) && !(block_group->flags & extra))
6275 				goto loop;
6276 		}
6277 
6278 have_block_group:
6279 		cached = block_group_cache_done(block_group);
6280 		if (unlikely(!cached)) {
6281 			ret = cache_block_group(block_group, 0);
6282 			BUG_ON(ret < 0);
6283 			ret = 0;
6284 		}
6285 
6286 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6287 			goto loop;
6288 		if (unlikely(block_group->ro))
6289 			goto loop;
6290 
6291 		/*
6292 		 * Ok we want to try and use the cluster allocator, so
6293 		 * lets look there
6294 		 */
6295 		if (last_ptr) {
6296 			struct btrfs_block_group_cache *used_block_group;
6297 			unsigned long aligned_cluster;
6298 			/*
6299 			 * the refill lock keeps out other
6300 			 * people trying to start a new cluster
6301 			 */
6302 			spin_lock(&last_ptr->refill_lock);
6303 			used_block_group = last_ptr->block_group;
6304 			if (used_block_group != block_group &&
6305 			    (!used_block_group ||
6306 			     used_block_group->ro ||
6307 			     !block_group_bits(used_block_group, flags)))
6308 				goto refill_cluster;
6309 
6310 			if (used_block_group != block_group)
6311 				btrfs_get_block_group(used_block_group);
6312 
6313 			offset = btrfs_alloc_from_cluster(used_block_group,
6314 						last_ptr,
6315 						num_bytes,
6316 						used_block_group->key.objectid,
6317 						&max_extent_size);
6318 			if (offset) {
6319 				/* we have a block, we're done */
6320 				spin_unlock(&last_ptr->refill_lock);
6321 				trace_btrfs_reserve_extent_cluster(root,
6322 						used_block_group,
6323 						search_start, num_bytes);
6324 				if (used_block_group != block_group) {
6325 					btrfs_put_block_group(block_group);
6326 					block_group = used_block_group;
6327 				}
6328 				goto checks;
6329 			}
6330 
6331 			WARN_ON(last_ptr->block_group != used_block_group);
6332 			if (used_block_group != block_group)
6333 				btrfs_put_block_group(used_block_group);
6334 refill_cluster:
6335 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6336 			 * set up a new clusters, so lets just skip it
6337 			 * and let the allocator find whatever block
6338 			 * it can find.  If we reach this point, we
6339 			 * will have tried the cluster allocator
6340 			 * plenty of times and not have found
6341 			 * anything, so we are likely way too
6342 			 * fragmented for the clustering stuff to find
6343 			 * anything.
6344 			 *
6345 			 * However, if the cluster is taken from the
6346 			 * current block group, release the cluster
6347 			 * first, so that we stand a better chance of
6348 			 * succeeding in the unclustered
6349 			 * allocation.  */
6350 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6351 			    last_ptr->block_group != block_group) {
6352 				spin_unlock(&last_ptr->refill_lock);
6353 				goto unclustered_alloc;
6354 			}
6355 
6356 			/*
6357 			 * this cluster didn't work out, free it and
6358 			 * start over
6359 			 */
6360 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6361 
6362 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6363 				spin_unlock(&last_ptr->refill_lock);
6364 				goto unclustered_alloc;
6365 			}
6366 
6367 			aligned_cluster = max_t(unsigned long,
6368 						empty_cluster + empty_size,
6369 					      block_group->full_stripe_len);
6370 
6371 			/* allocate a cluster in this block group */
6372 			ret = btrfs_find_space_cluster(root, block_group,
6373 						       last_ptr, search_start,
6374 						       num_bytes,
6375 						       aligned_cluster);
6376 			if (ret == 0) {
6377 				/*
6378 				 * now pull our allocation out of this
6379 				 * cluster
6380 				 */
6381 				offset = btrfs_alloc_from_cluster(block_group,
6382 							last_ptr,
6383 							num_bytes,
6384 							search_start,
6385 							&max_extent_size);
6386 				if (offset) {
6387 					/* we found one, proceed */
6388 					spin_unlock(&last_ptr->refill_lock);
6389 					trace_btrfs_reserve_extent_cluster(root,
6390 						block_group, search_start,
6391 						num_bytes);
6392 					goto checks;
6393 				}
6394 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6395 				   && !failed_cluster_refill) {
6396 				spin_unlock(&last_ptr->refill_lock);
6397 
6398 				failed_cluster_refill = true;
6399 				wait_block_group_cache_progress(block_group,
6400 				       num_bytes + empty_cluster + empty_size);
6401 				goto have_block_group;
6402 			}
6403 
6404 			/*
6405 			 * at this point we either didn't find a cluster
6406 			 * or we weren't able to allocate a block from our
6407 			 * cluster.  Free the cluster we've been trying
6408 			 * to use, and go to the next block group
6409 			 */
6410 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6411 			spin_unlock(&last_ptr->refill_lock);
6412 			goto loop;
6413 		}
6414 
6415 unclustered_alloc:
6416 		spin_lock(&block_group->free_space_ctl->tree_lock);
6417 		if (cached &&
6418 		    block_group->free_space_ctl->free_space <
6419 		    num_bytes + empty_cluster + empty_size) {
6420 			if (block_group->free_space_ctl->free_space >
6421 			    max_extent_size)
6422 				max_extent_size =
6423 					block_group->free_space_ctl->free_space;
6424 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6425 			goto loop;
6426 		}
6427 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6428 
6429 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6430 						    num_bytes, empty_size,
6431 						    &max_extent_size);
6432 		/*
6433 		 * If we didn't find a chunk, and we haven't failed on this
6434 		 * block group before, and this block group is in the middle of
6435 		 * caching and we are ok with waiting, then go ahead and wait
6436 		 * for progress to be made, and set failed_alloc to true.
6437 		 *
6438 		 * If failed_alloc is true then we've already waited on this
6439 		 * block group once and should move on to the next block group.
6440 		 */
6441 		if (!offset && !failed_alloc && !cached &&
6442 		    loop > LOOP_CACHING_NOWAIT) {
6443 			wait_block_group_cache_progress(block_group,
6444 						num_bytes + empty_size);
6445 			failed_alloc = true;
6446 			goto have_block_group;
6447 		} else if (!offset) {
6448 			if (!cached)
6449 				have_caching_bg = true;
6450 			goto loop;
6451 		}
6452 checks:
6453 		search_start = stripe_align(root, block_group,
6454 					    offset, num_bytes);
6455 
6456 		/* move on to the next group */
6457 		if (search_start + num_bytes >
6458 		    block_group->key.objectid + block_group->key.offset) {
6459 			btrfs_add_free_space(block_group, offset, num_bytes);
6460 			goto loop;
6461 		}
6462 
6463 		if (offset < search_start)
6464 			btrfs_add_free_space(block_group, offset,
6465 					     search_start - offset);
6466 		BUG_ON(offset > search_start);
6467 
6468 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6469 						  alloc_type);
6470 		if (ret == -EAGAIN) {
6471 			btrfs_add_free_space(block_group, offset, num_bytes);
6472 			goto loop;
6473 		}
6474 
6475 		/* we are all good, lets return */
6476 		ins->objectid = search_start;
6477 		ins->offset = num_bytes;
6478 
6479 		trace_btrfs_reserve_extent(orig_root, block_group,
6480 					   search_start, num_bytes);
6481 		btrfs_put_block_group(block_group);
6482 		break;
6483 loop:
6484 		failed_cluster_refill = false;
6485 		failed_alloc = false;
6486 		BUG_ON(index != get_block_group_index(block_group));
6487 		btrfs_put_block_group(block_group);
6488 	}
6489 	up_read(&space_info->groups_sem);
6490 
6491 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6492 		goto search;
6493 
6494 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6495 		goto search;
6496 
6497 	/*
6498 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6499 	 *			caching kthreads as we move along
6500 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6501 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6502 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6503 	 *			again
6504 	 */
6505 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6506 		index = 0;
6507 		loop++;
6508 		if (loop == LOOP_ALLOC_CHUNK) {
6509 			struct btrfs_trans_handle *trans;
6510 
6511 			trans = btrfs_join_transaction(root);
6512 			if (IS_ERR(trans)) {
6513 				ret = PTR_ERR(trans);
6514 				goto out;
6515 			}
6516 
6517 			ret = do_chunk_alloc(trans, root, flags,
6518 					     CHUNK_ALLOC_FORCE);
6519 			/*
6520 			 * Do not bail out on ENOSPC since we
6521 			 * can do more things.
6522 			 */
6523 			if (ret < 0 && ret != -ENOSPC)
6524 				btrfs_abort_transaction(trans,
6525 							root, ret);
6526 			else
6527 				ret = 0;
6528 			btrfs_end_transaction(trans, root);
6529 			if (ret)
6530 				goto out;
6531 		}
6532 
6533 		if (loop == LOOP_NO_EMPTY_SIZE) {
6534 			empty_size = 0;
6535 			empty_cluster = 0;
6536 		}
6537 
6538 		goto search;
6539 	} else if (!ins->objectid) {
6540 		ret = -ENOSPC;
6541 	} else if (ins->objectid) {
6542 		ret = 0;
6543 	}
6544 out:
6545 	if (ret == -ENOSPC)
6546 		ins->offset = max_extent_size;
6547 	return ret;
6548 }
6549 
6550 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6551 			    int dump_block_groups)
6552 {
6553 	struct btrfs_block_group_cache *cache;
6554 	int index = 0;
6555 
6556 	spin_lock(&info->lock);
6557 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6558 	       info->flags,
6559 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6560 	       info->bytes_reserved - info->bytes_readonly,
6561 	       (info->full) ? "" : "not ");
6562 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6563 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6564 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6565 	       info->bytes_reserved, info->bytes_may_use,
6566 	       info->bytes_readonly);
6567 	spin_unlock(&info->lock);
6568 
6569 	if (!dump_block_groups)
6570 		return;
6571 
6572 	down_read(&info->groups_sem);
6573 again:
6574 	list_for_each_entry(cache, &info->block_groups[index], list) {
6575 		spin_lock(&cache->lock);
6576 		printk(KERN_INFO "BTRFS: "
6577 			   "block group %llu has %llu bytes, "
6578 			   "%llu used %llu pinned %llu reserved %s\n",
6579 		       cache->key.objectid, cache->key.offset,
6580 		       btrfs_block_group_used(&cache->item), cache->pinned,
6581 		       cache->reserved, cache->ro ? "[readonly]" : "");
6582 		btrfs_dump_free_space(cache, bytes);
6583 		spin_unlock(&cache->lock);
6584 	}
6585 	if (++index < BTRFS_NR_RAID_TYPES)
6586 		goto again;
6587 	up_read(&info->groups_sem);
6588 }
6589 
6590 int btrfs_reserve_extent(struct btrfs_root *root,
6591 			 u64 num_bytes, u64 min_alloc_size,
6592 			 u64 empty_size, u64 hint_byte,
6593 			 struct btrfs_key *ins, int is_data)
6594 {
6595 	bool final_tried = false;
6596 	u64 flags;
6597 	int ret;
6598 
6599 	flags = btrfs_get_alloc_profile(root, is_data);
6600 again:
6601 	WARN_ON(num_bytes < root->sectorsize);
6602 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6603 			       flags);
6604 
6605 	if (ret == -ENOSPC) {
6606 		if (!final_tried && ins->offset) {
6607 			num_bytes = min(num_bytes >> 1, ins->offset);
6608 			num_bytes = round_down(num_bytes, root->sectorsize);
6609 			num_bytes = max(num_bytes, min_alloc_size);
6610 			if (num_bytes == min_alloc_size)
6611 				final_tried = true;
6612 			goto again;
6613 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6614 			struct btrfs_space_info *sinfo;
6615 
6616 			sinfo = __find_space_info(root->fs_info, flags);
6617 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6618 				flags, num_bytes);
6619 			if (sinfo)
6620 				dump_space_info(sinfo, num_bytes, 1);
6621 		}
6622 	}
6623 
6624 	return ret;
6625 }
6626 
6627 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6628 					u64 start, u64 len, int pin)
6629 {
6630 	struct btrfs_block_group_cache *cache;
6631 	int ret = 0;
6632 
6633 	cache = btrfs_lookup_block_group(root->fs_info, start);
6634 	if (!cache) {
6635 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6636 			start);
6637 		return -ENOSPC;
6638 	}
6639 
6640 	if (btrfs_test_opt(root, DISCARD))
6641 		ret = btrfs_discard_extent(root, start, len, NULL);
6642 
6643 	if (pin)
6644 		pin_down_extent(root, cache, start, len, 1);
6645 	else {
6646 		btrfs_add_free_space(cache, start, len);
6647 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6648 	}
6649 	btrfs_put_block_group(cache);
6650 
6651 	trace_btrfs_reserved_extent_free(root, start, len);
6652 
6653 	return ret;
6654 }
6655 
6656 int btrfs_free_reserved_extent(struct btrfs_root *root,
6657 					u64 start, u64 len)
6658 {
6659 	return __btrfs_free_reserved_extent(root, start, len, 0);
6660 }
6661 
6662 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6663 				       u64 start, u64 len)
6664 {
6665 	return __btrfs_free_reserved_extent(root, start, len, 1);
6666 }
6667 
6668 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6669 				      struct btrfs_root *root,
6670 				      u64 parent, u64 root_objectid,
6671 				      u64 flags, u64 owner, u64 offset,
6672 				      struct btrfs_key *ins, int ref_mod)
6673 {
6674 	int ret;
6675 	struct btrfs_fs_info *fs_info = root->fs_info;
6676 	struct btrfs_extent_item *extent_item;
6677 	struct btrfs_extent_inline_ref *iref;
6678 	struct btrfs_path *path;
6679 	struct extent_buffer *leaf;
6680 	int type;
6681 	u32 size;
6682 
6683 	if (parent > 0)
6684 		type = BTRFS_SHARED_DATA_REF_KEY;
6685 	else
6686 		type = BTRFS_EXTENT_DATA_REF_KEY;
6687 
6688 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6689 
6690 	path = btrfs_alloc_path();
6691 	if (!path)
6692 		return -ENOMEM;
6693 
6694 	path->leave_spinning = 1;
6695 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6696 				      ins, size);
6697 	if (ret) {
6698 		btrfs_free_path(path);
6699 		return ret;
6700 	}
6701 
6702 	leaf = path->nodes[0];
6703 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6704 				     struct btrfs_extent_item);
6705 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6706 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6707 	btrfs_set_extent_flags(leaf, extent_item,
6708 			       flags | BTRFS_EXTENT_FLAG_DATA);
6709 
6710 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6711 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
6712 	if (parent > 0) {
6713 		struct btrfs_shared_data_ref *ref;
6714 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
6715 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6716 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6717 	} else {
6718 		struct btrfs_extent_data_ref *ref;
6719 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6720 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6721 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6722 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6723 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6724 	}
6725 
6726 	btrfs_mark_buffer_dirty(path->nodes[0]);
6727 	btrfs_free_path(path);
6728 
6729 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
6730 	if (ret) { /* -ENOENT, logic error */
6731 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6732 			ins->objectid, ins->offset);
6733 		BUG();
6734 	}
6735 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6736 	return ret;
6737 }
6738 
6739 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6740 				     struct btrfs_root *root,
6741 				     u64 parent, u64 root_objectid,
6742 				     u64 flags, struct btrfs_disk_key *key,
6743 				     int level, struct btrfs_key *ins)
6744 {
6745 	int ret;
6746 	struct btrfs_fs_info *fs_info = root->fs_info;
6747 	struct btrfs_extent_item *extent_item;
6748 	struct btrfs_tree_block_info *block_info;
6749 	struct btrfs_extent_inline_ref *iref;
6750 	struct btrfs_path *path;
6751 	struct extent_buffer *leaf;
6752 	u32 size = sizeof(*extent_item) + sizeof(*iref);
6753 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6754 						 SKINNY_METADATA);
6755 
6756 	if (!skinny_metadata)
6757 		size += sizeof(*block_info);
6758 
6759 	path = btrfs_alloc_path();
6760 	if (!path) {
6761 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6762 						   root->leafsize);
6763 		return -ENOMEM;
6764 	}
6765 
6766 	path->leave_spinning = 1;
6767 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6768 				      ins, size);
6769 	if (ret) {
6770 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
6771 						   root->leafsize);
6772 		btrfs_free_path(path);
6773 		return ret;
6774 	}
6775 
6776 	leaf = path->nodes[0];
6777 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6778 				     struct btrfs_extent_item);
6779 	btrfs_set_extent_refs(leaf, extent_item, 1);
6780 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6781 	btrfs_set_extent_flags(leaf, extent_item,
6782 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6783 
6784 	if (skinny_metadata) {
6785 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6786 	} else {
6787 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6788 		btrfs_set_tree_block_key(leaf, block_info, key);
6789 		btrfs_set_tree_block_level(leaf, block_info, level);
6790 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6791 	}
6792 
6793 	if (parent > 0) {
6794 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6795 		btrfs_set_extent_inline_ref_type(leaf, iref,
6796 						 BTRFS_SHARED_BLOCK_REF_KEY);
6797 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6798 	} else {
6799 		btrfs_set_extent_inline_ref_type(leaf, iref,
6800 						 BTRFS_TREE_BLOCK_REF_KEY);
6801 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6802 	}
6803 
6804 	btrfs_mark_buffer_dirty(leaf);
6805 	btrfs_free_path(path);
6806 
6807 	ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6808 	if (ret) { /* -ENOENT, logic error */
6809 		btrfs_err(fs_info, "update block group failed for %llu %llu",
6810 			ins->objectid, ins->offset);
6811 		BUG();
6812 	}
6813 
6814 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize);
6815 	return ret;
6816 }
6817 
6818 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6819 				     struct btrfs_root *root,
6820 				     u64 root_objectid, u64 owner,
6821 				     u64 offset, struct btrfs_key *ins)
6822 {
6823 	int ret;
6824 
6825 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6826 
6827 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6828 					 ins->offset, 0,
6829 					 root_objectid, owner, offset,
6830 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6831 	return ret;
6832 }
6833 
6834 /*
6835  * this is used by the tree logging recovery code.  It records that
6836  * an extent has been allocated and makes sure to clear the free
6837  * space cache bits as well
6838  */
6839 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6840 				   struct btrfs_root *root,
6841 				   u64 root_objectid, u64 owner, u64 offset,
6842 				   struct btrfs_key *ins)
6843 {
6844 	int ret;
6845 	struct btrfs_block_group_cache *block_group;
6846 
6847 	/*
6848 	 * Mixed block groups will exclude before processing the log so we only
6849 	 * need to do the exlude dance if this fs isn't mixed.
6850 	 */
6851 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6852 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6853 		if (ret)
6854 			return ret;
6855 	}
6856 
6857 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6858 	if (!block_group)
6859 		return -EINVAL;
6860 
6861 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6862 					  RESERVE_ALLOC_NO_ACCOUNT);
6863 	BUG_ON(ret); /* logic error */
6864 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6865 					 0, owner, offset, ins, 1);
6866 	btrfs_put_block_group(block_group);
6867 	return ret;
6868 }
6869 
6870 static struct extent_buffer *
6871 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6872 		      u64 bytenr, u32 blocksize, int level)
6873 {
6874 	struct extent_buffer *buf;
6875 
6876 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6877 	if (!buf)
6878 		return ERR_PTR(-ENOMEM);
6879 	btrfs_set_header_generation(buf, trans->transid);
6880 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6881 	btrfs_tree_lock(buf);
6882 	clean_tree_block(trans, root, buf);
6883 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6884 
6885 	btrfs_set_lock_blocking(buf);
6886 	btrfs_set_buffer_uptodate(buf);
6887 
6888 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6889 		/*
6890 		 * we allow two log transactions at a time, use different
6891 		 * EXENT bit to differentiate dirty pages.
6892 		 */
6893 		if (root->log_transid % 2 == 0)
6894 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6895 					buf->start + buf->len - 1, GFP_NOFS);
6896 		else
6897 			set_extent_new(&root->dirty_log_pages, buf->start,
6898 					buf->start + buf->len - 1, GFP_NOFS);
6899 	} else {
6900 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6901 			 buf->start + buf->len - 1, GFP_NOFS);
6902 	}
6903 	trans->blocks_used++;
6904 	/* this returns a buffer locked for blocking */
6905 	return buf;
6906 }
6907 
6908 static struct btrfs_block_rsv *
6909 use_block_rsv(struct btrfs_trans_handle *trans,
6910 	      struct btrfs_root *root, u32 blocksize)
6911 {
6912 	struct btrfs_block_rsv *block_rsv;
6913 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6914 	int ret;
6915 	bool global_updated = false;
6916 
6917 	block_rsv = get_block_rsv(trans, root);
6918 
6919 	if (unlikely(block_rsv->size == 0))
6920 		goto try_reserve;
6921 again:
6922 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6923 	if (!ret)
6924 		return block_rsv;
6925 
6926 	if (block_rsv->failfast)
6927 		return ERR_PTR(ret);
6928 
6929 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6930 		global_updated = true;
6931 		update_global_block_rsv(root->fs_info);
6932 		goto again;
6933 	}
6934 
6935 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6936 		static DEFINE_RATELIMIT_STATE(_rs,
6937 				DEFAULT_RATELIMIT_INTERVAL * 10,
6938 				/*DEFAULT_RATELIMIT_BURST*/ 1);
6939 		if (__ratelimit(&_rs))
6940 			WARN(1, KERN_DEBUG
6941 				"BTRFS: block rsv returned %d\n", ret);
6942 	}
6943 try_reserve:
6944 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6945 				     BTRFS_RESERVE_NO_FLUSH);
6946 	if (!ret)
6947 		return block_rsv;
6948 	/*
6949 	 * If we couldn't reserve metadata bytes try and use some from
6950 	 * the global reserve if its space type is the same as the global
6951 	 * reservation.
6952 	 */
6953 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6954 	    block_rsv->space_info == global_rsv->space_info) {
6955 		ret = block_rsv_use_bytes(global_rsv, blocksize);
6956 		if (!ret)
6957 			return global_rsv;
6958 	}
6959 	return ERR_PTR(ret);
6960 }
6961 
6962 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6963 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6964 {
6965 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6966 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6967 }
6968 
6969 /*
6970  * finds a free extent and does all the dirty work required for allocation
6971  * returns the key for the extent through ins, and a tree buffer for
6972  * the first block of the extent through buf.
6973  *
6974  * returns the tree buffer or NULL.
6975  */
6976 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6977 					struct btrfs_root *root, u32 blocksize,
6978 					u64 parent, u64 root_objectid,
6979 					struct btrfs_disk_key *key, int level,
6980 					u64 hint, u64 empty_size)
6981 {
6982 	struct btrfs_key ins;
6983 	struct btrfs_block_rsv *block_rsv;
6984 	struct extent_buffer *buf;
6985 	u64 flags = 0;
6986 	int ret;
6987 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6988 						 SKINNY_METADATA);
6989 
6990 	block_rsv = use_block_rsv(trans, root, blocksize);
6991 	if (IS_ERR(block_rsv))
6992 		return ERR_CAST(block_rsv);
6993 
6994 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
6995 				   empty_size, hint, &ins, 0);
6996 	if (ret) {
6997 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6998 		return ERR_PTR(ret);
6999 	}
7000 
7001 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7002 				    blocksize, level);
7003 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7004 
7005 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7006 		if (parent == 0)
7007 			parent = ins.objectid;
7008 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7009 	} else
7010 		BUG_ON(parent > 0);
7011 
7012 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7013 		struct btrfs_delayed_extent_op *extent_op;
7014 		extent_op = btrfs_alloc_delayed_extent_op();
7015 		BUG_ON(!extent_op); /* -ENOMEM */
7016 		if (key)
7017 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7018 		else
7019 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7020 		extent_op->flags_to_set = flags;
7021 		if (skinny_metadata)
7022 			extent_op->update_key = 0;
7023 		else
7024 			extent_op->update_key = 1;
7025 		extent_op->update_flags = 1;
7026 		extent_op->is_data = 0;
7027 		extent_op->level = level;
7028 
7029 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7030 					ins.objectid,
7031 					ins.offset, parent, root_objectid,
7032 					level, BTRFS_ADD_DELAYED_EXTENT,
7033 					extent_op, 0);
7034 		BUG_ON(ret); /* -ENOMEM */
7035 	}
7036 	return buf;
7037 }
7038 
7039 struct walk_control {
7040 	u64 refs[BTRFS_MAX_LEVEL];
7041 	u64 flags[BTRFS_MAX_LEVEL];
7042 	struct btrfs_key update_progress;
7043 	int stage;
7044 	int level;
7045 	int shared_level;
7046 	int update_ref;
7047 	int keep_locks;
7048 	int reada_slot;
7049 	int reada_count;
7050 	int for_reloc;
7051 };
7052 
7053 #define DROP_REFERENCE	1
7054 #define UPDATE_BACKREF	2
7055 
7056 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7057 				     struct btrfs_root *root,
7058 				     struct walk_control *wc,
7059 				     struct btrfs_path *path)
7060 {
7061 	u64 bytenr;
7062 	u64 generation;
7063 	u64 refs;
7064 	u64 flags;
7065 	u32 nritems;
7066 	u32 blocksize;
7067 	struct btrfs_key key;
7068 	struct extent_buffer *eb;
7069 	int ret;
7070 	int slot;
7071 	int nread = 0;
7072 
7073 	if (path->slots[wc->level] < wc->reada_slot) {
7074 		wc->reada_count = wc->reada_count * 2 / 3;
7075 		wc->reada_count = max(wc->reada_count, 2);
7076 	} else {
7077 		wc->reada_count = wc->reada_count * 3 / 2;
7078 		wc->reada_count = min_t(int, wc->reada_count,
7079 					BTRFS_NODEPTRS_PER_BLOCK(root));
7080 	}
7081 
7082 	eb = path->nodes[wc->level];
7083 	nritems = btrfs_header_nritems(eb);
7084 	blocksize = btrfs_level_size(root, wc->level - 1);
7085 
7086 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7087 		if (nread >= wc->reada_count)
7088 			break;
7089 
7090 		cond_resched();
7091 		bytenr = btrfs_node_blockptr(eb, slot);
7092 		generation = btrfs_node_ptr_generation(eb, slot);
7093 
7094 		if (slot == path->slots[wc->level])
7095 			goto reada;
7096 
7097 		if (wc->stage == UPDATE_BACKREF &&
7098 		    generation <= root->root_key.offset)
7099 			continue;
7100 
7101 		/* We don't lock the tree block, it's OK to be racy here */
7102 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7103 					       wc->level - 1, 1, &refs,
7104 					       &flags);
7105 		/* We don't care about errors in readahead. */
7106 		if (ret < 0)
7107 			continue;
7108 		BUG_ON(refs == 0);
7109 
7110 		if (wc->stage == DROP_REFERENCE) {
7111 			if (refs == 1)
7112 				goto reada;
7113 
7114 			if (wc->level == 1 &&
7115 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7116 				continue;
7117 			if (!wc->update_ref ||
7118 			    generation <= root->root_key.offset)
7119 				continue;
7120 			btrfs_node_key_to_cpu(eb, &key, slot);
7121 			ret = btrfs_comp_cpu_keys(&key,
7122 						  &wc->update_progress);
7123 			if (ret < 0)
7124 				continue;
7125 		} else {
7126 			if (wc->level == 1 &&
7127 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7128 				continue;
7129 		}
7130 reada:
7131 		ret = readahead_tree_block(root, bytenr, blocksize,
7132 					   generation);
7133 		if (ret)
7134 			break;
7135 		nread++;
7136 	}
7137 	wc->reada_slot = slot;
7138 }
7139 
7140 /*
7141  * helper to process tree block while walking down the tree.
7142  *
7143  * when wc->stage == UPDATE_BACKREF, this function updates
7144  * back refs for pointers in the block.
7145  *
7146  * NOTE: return value 1 means we should stop walking down.
7147  */
7148 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7149 				   struct btrfs_root *root,
7150 				   struct btrfs_path *path,
7151 				   struct walk_control *wc, int lookup_info)
7152 {
7153 	int level = wc->level;
7154 	struct extent_buffer *eb = path->nodes[level];
7155 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7156 	int ret;
7157 
7158 	if (wc->stage == UPDATE_BACKREF &&
7159 	    btrfs_header_owner(eb) != root->root_key.objectid)
7160 		return 1;
7161 
7162 	/*
7163 	 * when reference count of tree block is 1, it won't increase
7164 	 * again. once full backref flag is set, we never clear it.
7165 	 */
7166 	if (lookup_info &&
7167 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7168 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7169 		BUG_ON(!path->locks[level]);
7170 		ret = btrfs_lookup_extent_info(trans, root,
7171 					       eb->start, level, 1,
7172 					       &wc->refs[level],
7173 					       &wc->flags[level]);
7174 		BUG_ON(ret == -ENOMEM);
7175 		if (ret)
7176 			return ret;
7177 		BUG_ON(wc->refs[level] == 0);
7178 	}
7179 
7180 	if (wc->stage == DROP_REFERENCE) {
7181 		if (wc->refs[level] > 1)
7182 			return 1;
7183 
7184 		if (path->locks[level] && !wc->keep_locks) {
7185 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7186 			path->locks[level] = 0;
7187 		}
7188 		return 0;
7189 	}
7190 
7191 	/* wc->stage == UPDATE_BACKREF */
7192 	if (!(wc->flags[level] & flag)) {
7193 		BUG_ON(!path->locks[level]);
7194 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7195 		BUG_ON(ret); /* -ENOMEM */
7196 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7197 		BUG_ON(ret); /* -ENOMEM */
7198 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7199 						  eb->len, flag,
7200 						  btrfs_header_level(eb), 0);
7201 		BUG_ON(ret); /* -ENOMEM */
7202 		wc->flags[level] |= flag;
7203 	}
7204 
7205 	/*
7206 	 * the block is shared by multiple trees, so it's not good to
7207 	 * keep the tree lock
7208 	 */
7209 	if (path->locks[level] && level > 0) {
7210 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7211 		path->locks[level] = 0;
7212 	}
7213 	return 0;
7214 }
7215 
7216 /*
7217  * helper to process tree block pointer.
7218  *
7219  * when wc->stage == DROP_REFERENCE, this function checks
7220  * reference count of the block pointed to. if the block
7221  * is shared and we need update back refs for the subtree
7222  * rooted at the block, this function changes wc->stage to
7223  * UPDATE_BACKREF. if the block is shared and there is no
7224  * need to update back, this function drops the reference
7225  * to the block.
7226  *
7227  * NOTE: return value 1 means we should stop walking down.
7228  */
7229 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7230 				 struct btrfs_root *root,
7231 				 struct btrfs_path *path,
7232 				 struct walk_control *wc, int *lookup_info)
7233 {
7234 	u64 bytenr;
7235 	u64 generation;
7236 	u64 parent;
7237 	u32 blocksize;
7238 	struct btrfs_key key;
7239 	struct extent_buffer *next;
7240 	int level = wc->level;
7241 	int reada = 0;
7242 	int ret = 0;
7243 
7244 	generation = btrfs_node_ptr_generation(path->nodes[level],
7245 					       path->slots[level]);
7246 	/*
7247 	 * if the lower level block was created before the snapshot
7248 	 * was created, we know there is no need to update back refs
7249 	 * for the subtree
7250 	 */
7251 	if (wc->stage == UPDATE_BACKREF &&
7252 	    generation <= root->root_key.offset) {
7253 		*lookup_info = 1;
7254 		return 1;
7255 	}
7256 
7257 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7258 	blocksize = btrfs_level_size(root, level - 1);
7259 
7260 	next = btrfs_find_tree_block(root, bytenr, blocksize);
7261 	if (!next) {
7262 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7263 		if (!next)
7264 			return -ENOMEM;
7265 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7266 					       level - 1);
7267 		reada = 1;
7268 	}
7269 	btrfs_tree_lock(next);
7270 	btrfs_set_lock_blocking(next);
7271 
7272 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7273 				       &wc->refs[level - 1],
7274 				       &wc->flags[level - 1]);
7275 	if (ret < 0) {
7276 		btrfs_tree_unlock(next);
7277 		return ret;
7278 	}
7279 
7280 	if (unlikely(wc->refs[level - 1] == 0)) {
7281 		btrfs_err(root->fs_info, "Missing references.");
7282 		BUG();
7283 	}
7284 	*lookup_info = 0;
7285 
7286 	if (wc->stage == DROP_REFERENCE) {
7287 		if (wc->refs[level - 1] > 1) {
7288 			if (level == 1 &&
7289 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7290 				goto skip;
7291 
7292 			if (!wc->update_ref ||
7293 			    generation <= root->root_key.offset)
7294 				goto skip;
7295 
7296 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7297 					      path->slots[level]);
7298 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7299 			if (ret < 0)
7300 				goto skip;
7301 
7302 			wc->stage = UPDATE_BACKREF;
7303 			wc->shared_level = level - 1;
7304 		}
7305 	} else {
7306 		if (level == 1 &&
7307 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7308 			goto skip;
7309 	}
7310 
7311 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7312 		btrfs_tree_unlock(next);
7313 		free_extent_buffer(next);
7314 		next = NULL;
7315 		*lookup_info = 1;
7316 	}
7317 
7318 	if (!next) {
7319 		if (reada && level == 1)
7320 			reada_walk_down(trans, root, wc, path);
7321 		next = read_tree_block(root, bytenr, blocksize, generation);
7322 		if (!next || !extent_buffer_uptodate(next)) {
7323 			free_extent_buffer(next);
7324 			return -EIO;
7325 		}
7326 		btrfs_tree_lock(next);
7327 		btrfs_set_lock_blocking(next);
7328 	}
7329 
7330 	level--;
7331 	BUG_ON(level != btrfs_header_level(next));
7332 	path->nodes[level] = next;
7333 	path->slots[level] = 0;
7334 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7335 	wc->level = level;
7336 	if (wc->level == 1)
7337 		wc->reada_slot = 0;
7338 	return 0;
7339 skip:
7340 	wc->refs[level - 1] = 0;
7341 	wc->flags[level - 1] = 0;
7342 	if (wc->stage == DROP_REFERENCE) {
7343 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7344 			parent = path->nodes[level]->start;
7345 		} else {
7346 			BUG_ON(root->root_key.objectid !=
7347 			       btrfs_header_owner(path->nodes[level]));
7348 			parent = 0;
7349 		}
7350 
7351 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7352 				root->root_key.objectid, level - 1, 0, 0);
7353 		BUG_ON(ret); /* -ENOMEM */
7354 	}
7355 	btrfs_tree_unlock(next);
7356 	free_extent_buffer(next);
7357 	*lookup_info = 1;
7358 	return 1;
7359 }
7360 
7361 /*
7362  * helper to process tree block while walking up the tree.
7363  *
7364  * when wc->stage == DROP_REFERENCE, this function drops
7365  * reference count on the block.
7366  *
7367  * when wc->stage == UPDATE_BACKREF, this function changes
7368  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7369  * to UPDATE_BACKREF previously while processing the block.
7370  *
7371  * NOTE: return value 1 means we should stop walking up.
7372  */
7373 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7374 				 struct btrfs_root *root,
7375 				 struct btrfs_path *path,
7376 				 struct walk_control *wc)
7377 {
7378 	int ret;
7379 	int level = wc->level;
7380 	struct extent_buffer *eb = path->nodes[level];
7381 	u64 parent = 0;
7382 
7383 	if (wc->stage == UPDATE_BACKREF) {
7384 		BUG_ON(wc->shared_level < level);
7385 		if (level < wc->shared_level)
7386 			goto out;
7387 
7388 		ret = find_next_key(path, level + 1, &wc->update_progress);
7389 		if (ret > 0)
7390 			wc->update_ref = 0;
7391 
7392 		wc->stage = DROP_REFERENCE;
7393 		wc->shared_level = -1;
7394 		path->slots[level] = 0;
7395 
7396 		/*
7397 		 * check reference count again if the block isn't locked.
7398 		 * we should start walking down the tree again if reference
7399 		 * count is one.
7400 		 */
7401 		if (!path->locks[level]) {
7402 			BUG_ON(level == 0);
7403 			btrfs_tree_lock(eb);
7404 			btrfs_set_lock_blocking(eb);
7405 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7406 
7407 			ret = btrfs_lookup_extent_info(trans, root,
7408 						       eb->start, level, 1,
7409 						       &wc->refs[level],
7410 						       &wc->flags[level]);
7411 			if (ret < 0) {
7412 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7413 				path->locks[level] = 0;
7414 				return ret;
7415 			}
7416 			BUG_ON(wc->refs[level] == 0);
7417 			if (wc->refs[level] == 1) {
7418 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7419 				path->locks[level] = 0;
7420 				return 1;
7421 			}
7422 		}
7423 	}
7424 
7425 	/* wc->stage == DROP_REFERENCE */
7426 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7427 
7428 	if (wc->refs[level] == 1) {
7429 		if (level == 0) {
7430 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7431 				ret = btrfs_dec_ref(trans, root, eb, 1,
7432 						    wc->for_reloc);
7433 			else
7434 				ret = btrfs_dec_ref(trans, root, eb, 0,
7435 						    wc->for_reloc);
7436 			BUG_ON(ret); /* -ENOMEM */
7437 		}
7438 		/* make block locked assertion in clean_tree_block happy */
7439 		if (!path->locks[level] &&
7440 		    btrfs_header_generation(eb) == trans->transid) {
7441 			btrfs_tree_lock(eb);
7442 			btrfs_set_lock_blocking(eb);
7443 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7444 		}
7445 		clean_tree_block(trans, root, eb);
7446 	}
7447 
7448 	if (eb == root->node) {
7449 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7450 			parent = eb->start;
7451 		else
7452 			BUG_ON(root->root_key.objectid !=
7453 			       btrfs_header_owner(eb));
7454 	} else {
7455 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7456 			parent = path->nodes[level + 1]->start;
7457 		else
7458 			BUG_ON(root->root_key.objectid !=
7459 			       btrfs_header_owner(path->nodes[level + 1]));
7460 	}
7461 
7462 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7463 out:
7464 	wc->refs[level] = 0;
7465 	wc->flags[level] = 0;
7466 	return 0;
7467 }
7468 
7469 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7470 				   struct btrfs_root *root,
7471 				   struct btrfs_path *path,
7472 				   struct walk_control *wc)
7473 {
7474 	int level = wc->level;
7475 	int lookup_info = 1;
7476 	int ret;
7477 
7478 	while (level >= 0) {
7479 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
7480 		if (ret > 0)
7481 			break;
7482 
7483 		if (level == 0)
7484 			break;
7485 
7486 		if (path->slots[level] >=
7487 		    btrfs_header_nritems(path->nodes[level]))
7488 			break;
7489 
7490 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
7491 		if (ret > 0) {
7492 			path->slots[level]++;
7493 			continue;
7494 		} else if (ret < 0)
7495 			return ret;
7496 		level = wc->level;
7497 	}
7498 	return 0;
7499 }
7500 
7501 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7502 				 struct btrfs_root *root,
7503 				 struct btrfs_path *path,
7504 				 struct walk_control *wc, int max_level)
7505 {
7506 	int level = wc->level;
7507 	int ret;
7508 
7509 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7510 	while (level < max_level && path->nodes[level]) {
7511 		wc->level = level;
7512 		if (path->slots[level] + 1 <
7513 		    btrfs_header_nritems(path->nodes[level])) {
7514 			path->slots[level]++;
7515 			return 0;
7516 		} else {
7517 			ret = walk_up_proc(trans, root, path, wc);
7518 			if (ret > 0)
7519 				return 0;
7520 
7521 			if (path->locks[level]) {
7522 				btrfs_tree_unlock_rw(path->nodes[level],
7523 						     path->locks[level]);
7524 				path->locks[level] = 0;
7525 			}
7526 			free_extent_buffer(path->nodes[level]);
7527 			path->nodes[level] = NULL;
7528 			level++;
7529 		}
7530 	}
7531 	return 1;
7532 }
7533 
7534 /*
7535  * drop a subvolume tree.
7536  *
7537  * this function traverses the tree freeing any blocks that only
7538  * referenced by the tree.
7539  *
7540  * when a shared tree block is found. this function decreases its
7541  * reference count by one. if update_ref is true, this function
7542  * also make sure backrefs for the shared block and all lower level
7543  * blocks are properly updated.
7544  *
7545  * If called with for_reloc == 0, may exit early with -EAGAIN
7546  */
7547 int btrfs_drop_snapshot(struct btrfs_root *root,
7548 			 struct btrfs_block_rsv *block_rsv, int update_ref,
7549 			 int for_reloc)
7550 {
7551 	struct btrfs_path *path;
7552 	struct btrfs_trans_handle *trans;
7553 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7554 	struct btrfs_root_item *root_item = &root->root_item;
7555 	struct walk_control *wc;
7556 	struct btrfs_key key;
7557 	int err = 0;
7558 	int ret;
7559 	int level;
7560 	bool root_dropped = false;
7561 
7562 	path = btrfs_alloc_path();
7563 	if (!path) {
7564 		err = -ENOMEM;
7565 		goto out;
7566 	}
7567 
7568 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7569 	if (!wc) {
7570 		btrfs_free_path(path);
7571 		err = -ENOMEM;
7572 		goto out;
7573 	}
7574 
7575 	trans = btrfs_start_transaction(tree_root, 0);
7576 	if (IS_ERR(trans)) {
7577 		err = PTR_ERR(trans);
7578 		goto out_free;
7579 	}
7580 
7581 	if (block_rsv)
7582 		trans->block_rsv = block_rsv;
7583 
7584 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7585 		level = btrfs_header_level(root->node);
7586 		path->nodes[level] = btrfs_lock_root_node(root);
7587 		btrfs_set_lock_blocking(path->nodes[level]);
7588 		path->slots[level] = 0;
7589 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7590 		memset(&wc->update_progress, 0,
7591 		       sizeof(wc->update_progress));
7592 	} else {
7593 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7594 		memcpy(&wc->update_progress, &key,
7595 		       sizeof(wc->update_progress));
7596 
7597 		level = root_item->drop_level;
7598 		BUG_ON(level == 0);
7599 		path->lowest_level = level;
7600 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7601 		path->lowest_level = 0;
7602 		if (ret < 0) {
7603 			err = ret;
7604 			goto out_end_trans;
7605 		}
7606 		WARN_ON(ret > 0);
7607 
7608 		/*
7609 		 * unlock our path, this is safe because only this
7610 		 * function is allowed to delete this snapshot
7611 		 */
7612 		btrfs_unlock_up_safe(path, 0);
7613 
7614 		level = btrfs_header_level(root->node);
7615 		while (1) {
7616 			btrfs_tree_lock(path->nodes[level]);
7617 			btrfs_set_lock_blocking(path->nodes[level]);
7618 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7619 
7620 			ret = btrfs_lookup_extent_info(trans, root,
7621 						path->nodes[level]->start,
7622 						level, 1, &wc->refs[level],
7623 						&wc->flags[level]);
7624 			if (ret < 0) {
7625 				err = ret;
7626 				goto out_end_trans;
7627 			}
7628 			BUG_ON(wc->refs[level] == 0);
7629 
7630 			if (level == root_item->drop_level)
7631 				break;
7632 
7633 			btrfs_tree_unlock(path->nodes[level]);
7634 			path->locks[level] = 0;
7635 			WARN_ON(wc->refs[level] != 1);
7636 			level--;
7637 		}
7638 	}
7639 
7640 	wc->level = level;
7641 	wc->shared_level = -1;
7642 	wc->stage = DROP_REFERENCE;
7643 	wc->update_ref = update_ref;
7644 	wc->keep_locks = 0;
7645 	wc->for_reloc = for_reloc;
7646 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7647 
7648 	while (1) {
7649 
7650 		ret = walk_down_tree(trans, root, path, wc);
7651 		if (ret < 0) {
7652 			err = ret;
7653 			break;
7654 		}
7655 
7656 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7657 		if (ret < 0) {
7658 			err = ret;
7659 			break;
7660 		}
7661 
7662 		if (ret > 0) {
7663 			BUG_ON(wc->stage != DROP_REFERENCE);
7664 			break;
7665 		}
7666 
7667 		if (wc->stage == DROP_REFERENCE) {
7668 			level = wc->level;
7669 			btrfs_node_key(path->nodes[level],
7670 				       &root_item->drop_progress,
7671 				       path->slots[level]);
7672 			root_item->drop_level = level;
7673 		}
7674 
7675 		BUG_ON(wc->level == 0);
7676 		if (btrfs_should_end_transaction(trans, tree_root) ||
7677 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7678 			ret = btrfs_update_root(trans, tree_root,
7679 						&root->root_key,
7680 						root_item);
7681 			if (ret) {
7682 				btrfs_abort_transaction(trans, tree_root, ret);
7683 				err = ret;
7684 				goto out_end_trans;
7685 			}
7686 
7687 			btrfs_end_transaction_throttle(trans, tree_root);
7688 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7689 				pr_debug("BTRFS: drop snapshot early exit\n");
7690 				err = -EAGAIN;
7691 				goto out_free;
7692 			}
7693 
7694 			trans = btrfs_start_transaction(tree_root, 0);
7695 			if (IS_ERR(trans)) {
7696 				err = PTR_ERR(trans);
7697 				goto out_free;
7698 			}
7699 			if (block_rsv)
7700 				trans->block_rsv = block_rsv;
7701 		}
7702 	}
7703 	btrfs_release_path(path);
7704 	if (err)
7705 		goto out_end_trans;
7706 
7707 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
7708 	if (ret) {
7709 		btrfs_abort_transaction(trans, tree_root, ret);
7710 		goto out_end_trans;
7711 	}
7712 
7713 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7714 		ret = btrfs_find_root(tree_root, &root->root_key, path,
7715 				      NULL, NULL);
7716 		if (ret < 0) {
7717 			btrfs_abort_transaction(trans, tree_root, ret);
7718 			err = ret;
7719 			goto out_end_trans;
7720 		} else if (ret > 0) {
7721 			/* if we fail to delete the orphan item this time
7722 			 * around, it'll get picked up the next time.
7723 			 *
7724 			 * The most common failure here is just -ENOENT.
7725 			 */
7726 			btrfs_del_orphan_item(trans, tree_root,
7727 					      root->root_key.objectid);
7728 		}
7729 	}
7730 
7731 	if (root->in_radix) {
7732 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7733 	} else {
7734 		free_extent_buffer(root->node);
7735 		free_extent_buffer(root->commit_root);
7736 		btrfs_put_fs_root(root);
7737 	}
7738 	root_dropped = true;
7739 out_end_trans:
7740 	btrfs_end_transaction_throttle(trans, tree_root);
7741 out_free:
7742 	kfree(wc);
7743 	btrfs_free_path(path);
7744 out:
7745 	/*
7746 	 * So if we need to stop dropping the snapshot for whatever reason we
7747 	 * need to make sure to add it back to the dead root list so that we
7748 	 * keep trying to do the work later.  This also cleans up roots if we
7749 	 * don't have it in the radix (like when we recover after a power fail
7750 	 * or unmount) so we don't leak memory.
7751 	 */
7752 	if (!for_reloc && root_dropped == false)
7753 		btrfs_add_dead_root(root);
7754 	if (err && err != -EAGAIN)
7755 		btrfs_std_error(root->fs_info, err);
7756 	return err;
7757 }
7758 
7759 /*
7760  * drop subtree rooted at tree block 'node'.
7761  *
7762  * NOTE: this function will unlock and release tree block 'node'
7763  * only used by relocation code
7764  */
7765 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7766 			struct btrfs_root *root,
7767 			struct extent_buffer *node,
7768 			struct extent_buffer *parent)
7769 {
7770 	struct btrfs_path *path;
7771 	struct walk_control *wc;
7772 	int level;
7773 	int parent_level;
7774 	int ret = 0;
7775 	int wret;
7776 
7777 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7778 
7779 	path = btrfs_alloc_path();
7780 	if (!path)
7781 		return -ENOMEM;
7782 
7783 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7784 	if (!wc) {
7785 		btrfs_free_path(path);
7786 		return -ENOMEM;
7787 	}
7788 
7789 	btrfs_assert_tree_locked(parent);
7790 	parent_level = btrfs_header_level(parent);
7791 	extent_buffer_get(parent);
7792 	path->nodes[parent_level] = parent;
7793 	path->slots[parent_level] = btrfs_header_nritems(parent);
7794 
7795 	btrfs_assert_tree_locked(node);
7796 	level = btrfs_header_level(node);
7797 	path->nodes[level] = node;
7798 	path->slots[level] = 0;
7799 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7800 
7801 	wc->refs[parent_level] = 1;
7802 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7803 	wc->level = level;
7804 	wc->shared_level = -1;
7805 	wc->stage = DROP_REFERENCE;
7806 	wc->update_ref = 0;
7807 	wc->keep_locks = 1;
7808 	wc->for_reloc = 1;
7809 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7810 
7811 	while (1) {
7812 		wret = walk_down_tree(trans, root, path, wc);
7813 		if (wret < 0) {
7814 			ret = wret;
7815 			break;
7816 		}
7817 
7818 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7819 		if (wret < 0)
7820 			ret = wret;
7821 		if (wret != 0)
7822 			break;
7823 	}
7824 
7825 	kfree(wc);
7826 	btrfs_free_path(path);
7827 	return ret;
7828 }
7829 
7830 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7831 {
7832 	u64 num_devices;
7833 	u64 stripped;
7834 
7835 	/*
7836 	 * if restripe for this chunk_type is on pick target profile and
7837 	 * return, otherwise do the usual balance
7838 	 */
7839 	stripped = get_restripe_target(root->fs_info, flags);
7840 	if (stripped)
7841 		return extended_to_chunk(stripped);
7842 
7843 	/*
7844 	 * we add in the count of missing devices because we want
7845 	 * to make sure that any RAID levels on a degraded FS
7846 	 * continue to be honored.
7847 	 */
7848 	num_devices = root->fs_info->fs_devices->rw_devices +
7849 		root->fs_info->fs_devices->missing_devices;
7850 
7851 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7852 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7853 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7854 
7855 	if (num_devices == 1) {
7856 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7857 		stripped = flags & ~stripped;
7858 
7859 		/* turn raid0 into single device chunks */
7860 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7861 			return stripped;
7862 
7863 		/* turn mirroring into duplication */
7864 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7865 			     BTRFS_BLOCK_GROUP_RAID10))
7866 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7867 	} else {
7868 		/* they already had raid on here, just return */
7869 		if (flags & stripped)
7870 			return flags;
7871 
7872 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7873 		stripped = flags & ~stripped;
7874 
7875 		/* switch duplicated blocks with raid1 */
7876 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7877 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7878 
7879 		/* this is drive concat, leave it alone */
7880 	}
7881 
7882 	return flags;
7883 }
7884 
7885 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7886 {
7887 	struct btrfs_space_info *sinfo = cache->space_info;
7888 	u64 num_bytes;
7889 	u64 min_allocable_bytes;
7890 	int ret = -ENOSPC;
7891 
7892 
7893 	/*
7894 	 * We need some metadata space and system metadata space for
7895 	 * allocating chunks in some corner cases until we force to set
7896 	 * it to be readonly.
7897 	 */
7898 	if ((sinfo->flags &
7899 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7900 	    !force)
7901 		min_allocable_bytes = 1 * 1024 * 1024;
7902 	else
7903 		min_allocable_bytes = 0;
7904 
7905 	spin_lock(&sinfo->lock);
7906 	spin_lock(&cache->lock);
7907 
7908 	if (cache->ro) {
7909 		ret = 0;
7910 		goto out;
7911 	}
7912 
7913 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7914 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7915 
7916 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7917 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7918 	    min_allocable_bytes <= sinfo->total_bytes) {
7919 		sinfo->bytes_readonly += num_bytes;
7920 		cache->ro = 1;
7921 		ret = 0;
7922 	}
7923 out:
7924 	spin_unlock(&cache->lock);
7925 	spin_unlock(&sinfo->lock);
7926 	return ret;
7927 }
7928 
7929 int btrfs_set_block_group_ro(struct btrfs_root *root,
7930 			     struct btrfs_block_group_cache *cache)
7931 
7932 {
7933 	struct btrfs_trans_handle *trans;
7934 	u64 alloc_flags;
7935 	int ret;
7936 
7937 	BUG_ON(cache->ro);
7938 
7939 	trans = btrfs_join_transaction(root);
7940 	if (IS_ERR(trans))
7941 		return PTR_ERR(trans);
7942 
7943 	alloc_flags = update_block_group_flags(root, cache->flags);
7944 	if (alloc_flags != cache->flags) {
7945 		ret = do_chunk_alloc(trans, root, alloc_flags,
7946 				     CHUNK_ALLOC_FORCE);
7947 		if (ret < 0)
7948 			goto out;
7949 	}
7950 
7951 	ret = set_block_group_ro(cache, 0);
7952 	if (!ret)
7953 		goto out;
7954 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7955 	ret = do_chunk_alloc(trans, root, alloc_flags,
7956 			     CHUNK_ALLOC_FORCE);
7957 	if (ret < 0)
7958 		goto out;
7959 	ret = set_block_group_ro(cache, 0);
7960 out:
7961 	btrfs_end_transaction(trans, root);
7962 	return ret;
7963 }
7964 
7965 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7966 			    struct btrfs_root *root, u64 type)
7967 {
7968 	u64 alloc_flags = get_alloc_profile(root, type);
7969 	return do_chunk_alloc(trans, root, alloc_flags,
7970 			      CHUNK_ALLOC_FORCE);
7971 }
7972 
7973 /*
7974  * helper to account the unused space of all the readonly block group in the
7975  * list. takes mirrors into account.
7976  */
7977 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7978 {
7979 	struct btrfs_block_group_cache *block_group;
7980 	u64 free_bytes = 0;
7981 	int factor;
7982 
7983 	list_for_each_entry(block_group, groups_list, list) {
7984 		spin_lock(&block_group->lock);
7985 
7986 		if (!block_group->ro) {
7987 			spin_unlock(&block_group->lock);
7988 			continue;
7989 		}
7990 
7991 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7992 					  BTRFS_BLOCK_GROUP_RAID10 |
7993 					  BTRFS_BLOCK_GROUP_DUP))
7994 			factor = 2;
7995 		else
7996 			factor = 1;
7997 
7998 		free_bytes += (block_group->key.offset -
7999 			       btrfs_block_group_used(&block_group->item)) *
8000 			       factor;
8001 
8002 		spin_unlock(&block_group->lock);
8003 	}
8004 
8005 	return free_bytes;
8006 }
8007 
8008 /*
8009  * helper to account the unused space of all the readonly block group in the
8010  * space_info. takes mirrors into account.
8011  */
8012 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8013 {
8014 	int i;
8015 	u64 free_bytes = 0;
8016 
8017 	spin_lock(&sinfo->lock);
8018 
8019 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8020 		if (!list_empty(&sinfo->block_groups[i]))
8021 			free_bytes += __btrfs_get_ro_block_group_free_space(
8022 						&sinfo->block_groups[i]);
8023 
8024 	spin_unlock(&sinfo->lock);
8025 
8026 	return free_bytes;
8027 }
8028 
8029 void btrfs_set_block_group_rw(struct btrfs_root *root,
8030 			      struct btrfs_block_group_cache *cache)
8031 {
8032 	struct btrfs_space_info *sinfo = cache->space_info;
8033 	u64 num_bytes;
8034 
8035 	BUG_ON(!cache->ro);
8036 
8037 	spin_lock(&sinfo->lock);
8038 	spin_lock(&cache->lock);
8039 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8040 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8041 	sinfo->bytes_readonly -= num_bytes;
8042 	cache->ro = 0;
8043 	spin_unlock(&cache->lock);
8044 	spin_unlock(&sinfo->lock);
8045 }
8046 
8047 /*
8048  * checks to see if its even possible to relocate this block group.
8049  *
8050  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8051  * ok to go ahead and try.
8052  */
8053 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8054 {
8055 	struct btrfs_block_group_cache *block_group;
8056 	struct btrfs_space_info *space_info;
8057 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8058 	struct btrfs_device *device;
8059 	struct btrfs_trans_handle *trans;
8060 	u64 min_free;
8061 	u64 dev_min = 1;
8062 	u64 dev_nr = 0;
8063 	u64 target;
8064 	int index;
8065 	int full = 0;
8066 	int ret = 0;
8067 
8068 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8069 
8070 	/* odd, couldn't find the block group, leave it alone */
8071 	if (!block_group)
8072 		return -1;
8073 
8074 	min_free = btrfs_block_group_used(&block_group->item);
8075 
8076 	/* no bytes used, we're good */
8077 	if (!min_free)
8078 		goto out;
8079 
8080 	space_info = block_group->space_info;
8081 	spin_lock(&space_info->lock);
8082 
8083 	full = space_info->full;
8084 
8085 	/*
8086 	 * if this is the last block group we have in this space, we can't
8087 	 * relocate it unless we're able to allocate a new chunk below.
8088 	 *
8089 	 * Otherwise, we need to make sure we have room in the space to handle
8090 	 * all of the extents from this block group.  If we can, we're good
8091 	 */
8092 	if ((space_info->total_bytes != block_group->key.offset) &&
8093 	    (space_info->bytes_used + space_info->bytes_reserved +
8094 	     space_info->bytes_pinned + space_info->bytes_readonly +
8095 	     min_free < space_info->total_bytes)) {
8096 		spin_unlock(&space_info->lock);
8097 		goto out;
8098 	}
8099 	spin_unlock(&space_info->lock);
8100 
8101 	/*
8102 	 * ok we don't have enough space, but maybe we have free space on our
8103 	 * devices to allocate new chunks for relocation, so loop through our
8104 	 * alloc devices and guess if we have enough space.  if this block
8105 	 * group is going to be restriped, run checks against the target
8106 	 * profile instead of the current one.
8107 	 */
8108 	ret = -1;
8109 
8110 	/*
8111 	 * index:
8112 	 *      0: raid10
8113 	 *      1: raid1
8114 	 *      2: dup
8115 	 *      3: raid0
8116 	 *      4: single
8117 	 */
8118 	target = get_restripe_target(root->fs_info, block_group->flags);
8119 	if (target) {
8120 		index = __get_raid_index(extended_to_chunk(target));
8121 	} else {
8122 		/*
8123 		 * this is just a balance, so if we were marked as full
8124 		 * we know there is no space for a new chunk
8125 		 */
8126 		if (full)
8127 			goto out;
8128 
8129 		index = get_block_group_index(block_group);
8130 	}
8131 
8132 	if (index == BTRFS_RAID_RAID10) {
8133 		dev_min = 4;
8134 		/* Divide by 2 */
8135 		min_free >>= 1;
8136 	} else if (index == BTRFS_RAID_RAID1) {
8137 		dev_min = 2;
8138 	} else if (index == BTRFS_RAID_DUP) {
8139 		/* Multiply by 2 */
8140 		min_free <<= 1;
8141 	} else if (index == BTRFS_RAID_RAID0) {
8142 		dev_min = fs_devices->rw_devices;
8143 		do_div(min_free, dev_min);
8144 	}
8145 
8146 	/* We need to do this so that we can look at pending chunks */
8147 	trans = btrfs_join_transaction(root);
8148 	if (IS_ERR(trans)) {
8149 		ret = PTR_ERR(trans);
8150 		goto out;
8151 	}
8152 
8153 	mutex_lock(&root->fs_info->chunk_mutex);
8154 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8155 		u64 dev_offset;
8156 
8157 		/*
8158 		 * check to make sure we can actually find a chunk with enough
8159 		 * space to fit our block group in.
8160 		 */
8161 		if (device->total_bytes > device->bytes_used + min_free &&
8162 		    !device->is_tgtdev_for_dev_replace) {
8163 			ret = find_free_dev_extent(trans, device, min_free,
8164 						   &dev_offset, NULL);
8165 			if (!ret)
8166 				dev_nr++;
8167 
8168 			if (dev_nr >= dev_min)
8169 				break;
8170 
8171 			ret = -1;
8172 		}
8173 	}
8174 	mutex_unlock(&root->fs_info->chunk_mutex);
8175 	btrfs_end_transaction(trans, root);
8176 out:
8177 	btrfs_put_block_group(block_group);
8178 	return ret;
8179 }
8180 
8181 static int find_first_block_group(struct btrfs_root *root,
8182 		struct btrfs_path *path, struct btrfs_key *key)
8183 {
8184 	int ret = 0;
8185 	struct btrfs_key found_key;
8186 	struct extent_buffer *leaf;
8187 	int slot;
8188 
8189 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8190 	if (ret < 0)
8191 		goto out;
8192 
8193 	while (1) {
8194 		slot = path->slots[0];
8195 		leaf = path->nodes[0];
8196 		if (slot >= btrfs_header_nritems(leaf)) {
8197 			ret = btrfs_next_leaf(root, path);
8198 			if (ret == 0)
8199 				continue;
8200 			if (ret < 0)
8201 				goto out;
8202 			break;
8203 		}
8204 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8205 
8206 		if (found_key.objectid >= key->objectid &&
8207 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8208 			ret = 0;
8209 			goto out;
8210 		}
8211 		path->slots[0]++;
8212 	}
8213 out:
8214 	return ret;
8215 }
8216 
8217 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8218 {
8219 	struct btrfs_block_group_cache *block_group;
8220 	u64 last = 0;
8221 
8222 	while (1) {
8223 		struct inode *inode;
8224 
8225 		block_group = btrfs_lookup_first_block_group(info, last);
8226 		while (block_group) {
8227 			spin_lock(&block_group->lock);
8228 			if (block_group->iref)
8229 				break;
8230 			spin_unlock(&block_group->lock);
8231 			block_group = next_block_group(info->tree_root,
8232 						       block_group);
8233 		}
8234 		if (!block_group) {
8235 			if (last == 0)
8236 				break;
8237 			last = 0;
8238 			continue;
8239 		}
8240 
8241 		inode = block_group->inode;
8242 		block_group->iref = 0;
8243 		block_group->inode = NULL;
8244 		spin_unlock(&block_group->lock);
8245 		iput(inode);
8246 		last = block_group->key.objectid + block_group->key.offset;
8247 		btrfs_put_block_group(block_group);
8248 	}
8249 }
8250 
8251 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8252 {
8253 	struct btrfs_block_group_cache *block_group;
8254 	struct btrfs_space_info *space_info;
8255 	struct btrfs_caching_control *caching_ctl;
8256 	struct rb_node *n;
8257 
8258 	down_write(&info->extent_commit_sem);
8259 	while (!list_empty(&info->caching_block_groups)) {
8260 		caching_ctl = list_entry(info->caching_block_groups.next,
8261 					 struct btrfs_caching_control, list);
8262 		list_del(&caching_ctl->list);
8263 		put_caching_control(caching_ctl);
8264 	}
8265 	up_write(&info->extent_commit_sem);
8266 
8267 	spin_lock(&info->block_group_cache_lock);
8268 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8269 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8270 				       cache_node);
8271 		rb_erase(&block_group->cache_node,
8272 			 &info->block_group_cache_tree);
8273 		spin_unlock(&info->block_group_cache_lock);
8274 
8275 		down_write(&block_group->space_info->groups_sem);
8276 		list_del(&block_group->list);
8277 		up_write(&block_group->space_info->groups_sem);
8278 
8279 		if (block_group->cached == BTRFS_CACHE_STARTED)
8280 			wait_block_group_cache_done(block_group);
8281 
8282 		/*
8283 		 * We haven't cached this block group, which means we could
8284 		 * possibly have excluded extents on this block group.
8285 		 */
8286 		if (block_group->cached == BTRFS_CACHE_NO ||
8287 		    block_group->cached == BTRFS_CACHE_ERROR)
8288 			free_excluded_extents(info->extent_root, block_group);
8289 
8290 		btrfs_remove_free_space_cache(block_group);
8291 		btrfs_put_block_group(block_group);
8292 
8293 		spin_lock(&info->block_group_cache_lock);
8294 	}
8295 	spin_unlock(&info->block_group_cache_lock);
8296 
8297 	/* now that all the block groups are freed, go through and
8298 	 * free all the space_info structs.  This is only called during
8299 	 * the final stages of unmount, and so we know nobody is
8300 	 * using them.  We call synchronize_rcu() once before we start,
8301 	 * just to be on the safe side.
8302 	 */
8303 	synchronize_rcu();
8304 
8305 	release_global_block_rsv(info);
8306 
8307 	while (!list_empty(&info->space_info)) {
8308 		int i;
8309 
8310 		space_info = list_entry(info->space_info.next,
8311 					struct btrfs_space_info,
8312 					list);
8313 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8314 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8315 			    space_info->bytes_reserved > 0 ||
8316 			    space_info->bytes_may_use > 0)) {
8317 				dump_space_info(space_info, 0, 0);
8318 			}
8319 		}
8320 		list_del(&space_info->list);
8321 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8322 			struct kobject *kobj;
8323 			kobj = &space_info->block_group_kobjs[i];
8324 			if (kobj->parent) {
8325 				kobject_del(kobj);
8326 				kobject_put(kobj);
8327 			}
8328 		}
8329 		kobject_del(&space_info->kobj);
8330 		kobject_put(&space_info->kobj);
8331 	}
8332 	return 0;
8333 }
8334 
8335 static void __link_block_group(struct btrfs_space_info *space_info,
8336 			       struct btrfs_block_group_cache *cache)
8337 {
8338 	int index = get_block_group_index(cache);
8339 
8340 	down_write(&space_info->groups_sem);
8341 	if (list_empty(&space_info->block_groups[index])) {
8342 		struct kobject *kobj = &space_info->block_group_kobjs[index];
8343 		int ret;
8344 
8345 		kobject_get(&space_info->kobj); /* put in release */
8346 		ret = kobject_add(kobj, &space_info->kobj, "%s",
8347 				  get_raid_name(index));
8348 		if (ret) {
8349 			pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8350 			kobject_put(&space_info->kobj);
8351 		}
8352 	}
8353 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8354 	up_write(&space_info->groups_sem);
8355 }
8356 
8357 static struct btrfs_block_group_cache *
8358 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8359 {
8360 	struct btrfs_block_group_cache *cache;
8361 
8362 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8363 	if (!cache)
8364 		return NULL;
8365 
8366 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8367 					GFP_NOFS);
8368 	if (!cache->free_space_ctl) {
8369 		kfree(cache);
8370 		return NULL;
8371 	}
8372 
8373 	cache->key.objectid = start;
8374 	cache->key.offset = size;
8375 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8376 
8377 	cache->sectorsize = root->sectorsize;
8378 	cache->fs_info = root->fs_info;
8379 	cache->full_stripe_len = btrfs_full_stripe_len(root,
8380 					       &root->fs_info->mapping_tree,
8381 					       start);
8382 	atomic_set(&cache->count, 1);
8383 	spin_lock_init(&cache->lock);
8384 	INIT_LIST_HEAD(&cache->list);
8385 	INIT_LIST_HEAD(&cache->cluster_list);
8386 	INIT_LIST_HEAD(&cache->new_bg_list);
8387 	btrfs_init_free_space_ctl(cache);
8388 
8389 	return cache;
8390 }
8391 
8392 int btrfs_read_block_groups(struct btrfs_root *root)
8393 {
8394 	struct btrfs_path *path;
8395 	int ret;
8396 	struct btrfs_block_group_cache *cache;
8397 	struct btrfs_fs_info *info = root->fs_info;
8398 	struct btrfs_space_info *space_info;
8399 	struct btrfs_key key;
8400 	struct btrfs_key found_key;
8401 	struct extent_buffer *leaf;
8402 	int need_clear = 0;
8403 	u64 cache_gen;
8404 
8405 	root = info->extent_root;
8406 	key.objectid = 0;
8407 	key.offset = 0;
8408 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8409 	path = btrfs_alloc_path();
8410 	if (!path)
8411 		return -ENOMEM;
8412 	path->reada = 1;
8413 
8414 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8415 	if (btrfs_test_opt(root, SPACE_CACHE) &&
8416 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8417 		need_clear = 1;
8418 	if (btrfs_test_opt(root, CLEAR_CACHE))
8419 		need_clear = 1;
8420 
8421 	while (1) {
8422 		ret = find_first_block_group(root, path, &key);
8423 		if (ret > 0)
8424 			break;
8425 		if (ret != 0)
8426 			goto error;
8427 
8428 		leaf = path->nodes[0];
8429 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8430 
8431 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
8432 						       found_key.offset);
8433 		if (!cache) {
8434 			ret = -ENOMEM;
8435 			goto error;
8436 		}
8437 
8438 		if (need_clear) {
8439 			/*
8440 			 * When we mount with old space cache, we need to
8441 			 * set BTRFS_DC_CLEAR and set dirty flag.
8442 			 *
8443 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8444 			 *    truncate the old free space cache inode and
8445 			 *    setup a new one.
8446 			 * b) Setting 'dirty flag' makes sure that we flush
8447 			 *    the new space cache info onto disk.
8448 			 */
8449 			cache->disk_cache_state = BTRFS_DC_CLEAR;
8450 			if (btrfs_test_opt(root, SPACE_CACHE))
8451 				cache->dirty = 1;
8452 		}
8453 
8454 		read_extent_buffer(leaf, &cache->item,
8455 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
8456 				   sizeof(cache->item));
8457 		cache->flags = btrfs_block_group_flags(&cache->item);
8458 
8459 		key.objectid = found_key.objectid + found_key.offset;
8460 		btrfs_release_path(path);
8461 
8462 		/*
8463 		 * We need to exclude the super stripes now so that the space
8464 		 * info has super bytes accounted for, otherwise we'll think
8465 		 * we have more space than we actually do.
8466 		 */
8467 		ret = exclude_super_stripes(root, cache);
8468 		if (ret) {
8469 			/*
8470 			 * We may have excluded something, so call this just in
8471 			 * case.
8472 			 */
8473 			free_excluded_extents(root, cache);
8474 			btrfs_put_block_group(cache);
8475 			goto error;
8476 		}
8477 
8478 		/*
8479 		 * check for two cases, either we are full, and therefore
8480 		 * don't need to bother with the caching work since we won't
8481 		 * find any space, or we are empty, and we can just add all
8482 		 * the space in and be done with it.  This saves us _alot_ of
8483 		 * time, particularly in the full case.
8484 		 */
8485 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8486 			cache->last_byte_to_unpin = (u64)-1;
8487 			cache->cached = BTRFS_CACHE_FINISHED;
8488 			free_excluded_extents(root, cache);
8489 		} else if (btrfs_block_group_used(&cache->item) == 0) {
8490 			cache->last_byte_to_unpin = (u64)-1;
8491 			cache->cached = BTRFS_CACHE_FINISHED;
8492 			add_new_free_space(cache, root->fs_info,
8493 					   found_key.objectid,
8494 					   found_key.objectid +
8495 					   found_key.offset);
8496 			free_excluded_extents(root, cache);
8497 		}
8498 
8499 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
8500 		if (ret) {
8501 			btrfs_remove_free_space_cache(cache);
8502 			btrfs_put_block_group(cache);
8503 			goto error;
8504 		}
8505 
8506 		ret = update_space_info(info, cache->flags, found_key.offset,
8507 					btrfs_block_group_used(&cache->item),
8508 					&space_info);
8509 		if (ret) {
8510 			btrfs_remove_free_space_cache(cache);
8511 			spin_lock(&info->block_group_cache_lock);
8512 			rb_erase(&cache->cache_node,
8513 				 &info->block_group_cache_tree);
8514 			spin_unlock(&info->block_group_cache_lock);
8515 			btrfs_put_block_group(cache);
8516 			goto error;
8517 		}
8518 
8519 		cache->space_info = space_info;
8520 		spin_lock(&cache->space_info->lock);
8521 		cache->space_info->bytes_readonly += cache->bytes_super;
8522 		spin_unlock(&cache->space_info->lock);
8523 
8524 		__link_block_group(space_info, cache);
8525 
8526 		set_avail_alloc_bits(root->fs_info, cache->flags);
8527 		if (btrfs_chunk_readonly(root, cache->key.objectid))
8528 			set_block_group_ro(cache, 1);
8529 	}
8530 
8531 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8532 		if (!(get_alloc_profile(root, space_info->flags) &
8533 		      (BTRFS_BLOCK_GROUP_RAID10 |
8534 		       BTRFS_BLOCK_GROUP_RAID1 |
8535 		       BTRFS_BLOCK_GROUP_RAID5 |
8536 		       BTRFS_BLOCK_GROUP_RAID6 |
8537 		       BTRFS_BLOCK_GROUP_DUP)))
8538 			continue;
8539 		/*
8540 		 * avoid allocating from un-mirrored block group if there are
8541 		 * mirrored block groups.
8542 		 */
8543 		list_for_each_entry(cache,
8544 				&space_info->block_groups[BTRFS_RAID_RAID0],
8545 				list)
8546 			set_block_group_ro(cache, 1);
8547 		list_for_each_entry(cache,
8548 				&space_info->block_groups[BTRFS_RAID_SINGLE],
8549 				list)
8550 			set_block_group_ro(cache, 1);
8551 	}
8552 
8553 	init_global_block_rsv(info);
8554 	ret = 0;
8555 error:
8556 	btrfs_free_path(path);
8557 	return ret;
8558 }
8559 
8560 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8561 				       struct btrfs_root *root)
8562 {
8563 	struct btrfs_block_group_cache *block_group, *tmp;
8564 	struct btrfs_root *extent_root = root->fs_info->extent_root;
8565 	struct btrfs_block_group_item item;
8566 	struct btrfs_key key;
8567 	int ret = 0;
8568 
8569 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8570 				 new_bg_list) {
8571 		list_del_init(&block_group->new_bg_list);
8572 
8573 		if (ret)
8574 			continue;
8575 
8576 		spin_lock(&block_group->lock);
8577 		memcpy(&item, &block_group->item, sizeof(item));
8578 		memcpy(&key, &block_group->key, sizeof(key));
8579 		spin_unlock(&block_group->lock);
8580 
8581 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
8582 					sizeof(item));
8583 		if (ret)
8584 			btrfs_abort_transaction(trans, extent_root, ret);
8585 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
8586 					       key.objectid, key.offset);
8587 		if (ret)
8588 			btrfs_abort_transaction(trans, extent_root, ret);
8589 	}
8590 }
8591 
8592 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8593 			   struct btrfs_root *root, u64 bytes_used,
8594 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
8595 			   u64 size)
8596 {
8597 	int ret;
8598 	struct btrfs_root *extent_root;
8599 	struct btrfs_block_group_cache *cache;
8600 
8601 	extent_root = root->fs_info->extent_root;
8602 
8603 	root->fs_info->last_trans_log_full_commit = trans->transid;
8604 
8605 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
8606 	if (!cache)
8607 		return -ENOMEM;
8608 
8609 	btrfs_set_block_group_used(&cache->item, bytes_used);
8610 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8611 	btrfs_set_block_group_flags(&cache->item, type);
8612 
8613 	cache->flags = type;
8614 	cache->last_byte_to_unpin = (u64)-1;
8615 	cache->cached = BTRFS_CACHE_FINISHED;
8616 	ret = exclude_super_stripes(root, cache);
8617 	if (ret) {
8618 		/*
8619 		 * We may have excluded something, so call this just in
8620 		 * case.
8621 		 */
8622 		free_excluded_extents(root, cache);
8623 		btrfs_put_block_group(cache);
8624 		return ret;
8625 	}
8626 
8627 	add_new_free_space(cache, root->fs_info, chunk_offset,
8628 			   chunk_offset + size);
8629 
8630 	free_excluded_extents(root, cache);
8631 
8632 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
8633 	if (ret) {
8634 		btrfs_remove_free_space_cache(cache);
8635 		btrfs_put_block_group(cache);
8636 		return ret;
8637 	}
8638 
8639 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8640 				&cache->space_info);
8641 	if (ret) {
8642 		btrfs_remove_free_space_cache(cache);
8643 		spin_lock(&root->fs_info->block_group_cache_lock);
8644 		rb_erase(&cache->cache_node,
8645 			 &root->fs_info->block_group_cache_tree);
8646 		spin_unlock(&root->fs_info->block_group_cache_lock);
8647 		btrfs_put_block_group(cache);
8648 		return ret;
8649 	}
8650 	update_global_block_rsv(root->fs_info);
8651 
8652 	spin_lock(&cache->space_info->lock);
8653 	cache->space_info->bytes_readonly += cache->bytes_super;
8654 	spin_unlock(&cache->space_info->lock);
8655 
8656 	__link_block_group(cache->space_info, cache);
8657 
8658 	list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8659 
8660 	set_avail_alloc_bits(extent_root->fs_info, type);
8661 
8662 	return 0;
8663 }
8664 
8665 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8666 {
8667 	u64 extra_flags = chunk_to_extended(flags) &
8668 				BTRFS_EXTENDED_PROFILE_MASK;
8669 
8670 	write_seqlock(&fs_info->profiles_lock);
8671 	if (flags & BTRFS_BLOCK_GROUP_DATA)
8672 		fs_info->avail_data_alloc_bits &= ~extra_flags;
8673 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
8674 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8675 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8676 		fs_info->avail_system_alloc_bits &= ~extra_flags;
8677 	write_sequnlock(&fs_info->profiles_lock);
8678 }
8679 
8680 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8681 			     struct btrfs_root *root, u64 group_start)
8682 {
8683 	struct btrfs_path *path;
8684 	struct btrfs_block_group_cache *block_group;
8685 	struct btrfs_free_cluster *cluster;
8686 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8687 	struct btrfs_key key;
8688 	struct inode *inode;
8689 	int ret;
8690 	int index;
8691 	int factor;
8692 
8693 	root = root->fs_info->extent_root;
8694 
8695 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8696 	BUG_ON(!block_group);
8697 	BUG_ON(!block_group->ro);
8698 
8699 	/*
8700 	 * Free the reserved super bytes from this block group before
8701 	 * remove it.
8702 	 */
8703 	free_excluded_extents(root, block_group);
8704 
8705 	memcpy(&key, &block_group->key, sizeof(key));
8706 	index = get_block_group_index(block_group);
8707 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8708 				  BTRFS_BLOCK_GROUP_RAID1 |
8709 				  BTRFS_BLOCK_GROUP_RAID10))
8710 		factor = 2;
8711 	else
8712 		factor = 1;
8713 
8714 	/* make sure this block group isn't part of an allocation cluster */
8715 	cluster = &root->fs_info->data_alloc_cluster;
8716 	spin_lock(&cluster->refill_lock);
8717 	btrfs_return_cluster_to_free_space(block_group, cluster);
8718 	spin_unlock(&cluster->refill_lock);
8719 
8720 	/*
8721 	 * make sure this block group isn't part of a metadata
8722 	 * allocation cluster
8723 	 */
8724 	cluster = &root->fs_info->meta_alloc_cluster;
8725 	spin_lock(&cluster->refill_lock);
8726 	btrfs_return_cluster_to_free_space(block_group, cluster);
8727 	spin_unlock(&cluster->refill_lock);
8728 
8729 	path = btrfs_alloc_path();
8730 	if (!path) {
8731 		ret = -ENOMEM;
8732 		goto out;
8733 	}
8734 
8735 	inode = lookup_free_space_inode(tree_root, block_group, path);
8736 	if (!IS_ERR(inode)) {
8737 		ret = btrfs_orphan_add(trans, inode);
8738 		if (ret) {
8739 			btrfs_add_delayed_iput(inode);
8740 			goto out;
8741 		}
8742 		clear_nlink(inode);
8743 		/* One for the block groups ref */
8744 		spin_lock(&block_group->lock);
8745 		if (block_group->iref) {
8746 			block_group->iref = 0;
8747 			block_group->inode = NULL;
8748 			spin_unlock(&block_group->lock);
8749 			iput(inode);
8750 		} else {
8751 			spin_unlock(&block_group->lock);
8752 		}
8753 		/* One for our lookup ref */
8754 		btrfs_add_delayed_iput(inode);
8755 	}
8756 
8757 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8758 	key.offset = block_group->key.objectid;
8759 	key.type = 0;
8760 
8761 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8762 	if (ret < 0)
8763 		goto out;
8764 	if (ret > 0)
8765 		btrfs_release_path(path);
8766 	if (ret == 0) {
8767 		ret = btrfs_del_item(trans, tree_root, path);
8768 		if (ret)
8769 			goto out;
8770 		btrfs_release_path(path);
8771 	}
8772 
8773 	spin_lock(&root->fs_info->block_group_cache_lock);
8774 	rb_erase(&block_group->cache_node,
8775 		 &root->fs_info->block_group_cache_tree);
8776 
8777 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
8778 		root->fs_info->first_logical_byte = (u64)-1;
8779 	spin_unlock(&root->fs_info->block_group_cache_lock);
8780 
8781 	down_write(&block_group->space_info->groups_sem);
8782 	/*
8783 	 * we must use list_del_init so people can check to see if they
8784 	 * are still on the list after taking the semaphore
8785 	 */
8786 	list_del_init(&block_group->list);
8787 	if (list_empty(&block_group->space_info->block_groups[index])) {
8788 		kobject_del(&block_group->space_info->block_group_kobjs[index]);
8789 		kobject_put(&block_group->space_info->block_group_kobjs[index]);
8790 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
8791 	}
8792 	up_write(&block_group->space_info->groups_sem);
8793 
8794 	if (block_group->cached == BTRFS_CACHE_STARTED)
8795 		wait_block_group_cache_done(block_group);
8796 
8797 	btrfs_remove_free_space_cache(block_group);
8798 
8799 	spin_lock(&block_group->space_info->lock);
8800 	block_group->space_info->total_bytes -= block_group->key.offset;
8801 	block_group->space_info->bytes_readonly -= block_group->key.offset;
8802 	block_group->space_info->disk_total -= block_group->key.offset * factor;
8803 	spin_unlock(&block_group->space_info->lock);
8804 
8805 	memcpy(&key, &block_group->key, sizeof(key));
8806 
8807 	btrfs_clear_space_info_full(root->fs_info);
8808 
8809 	btrfs_put_block_group(block_group);
8810 	btrfs_put_block_group(block_group);
8811 
8812 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8813 	if (ret > 0)
8814 		ret = -EIO;
8815 	if (ret < 0)
8816 		goto out;
8817 
8818 	ret = btrfs_del_item(trans, root, path);
8819 out:
8820 	btrfs_free_path(path);
8821 	return ret;
8822 }
8823 
8824 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8825 {
8826 	struct btrfs_space_info *space_info;
8827 	struct btrfs_super_block *disk_super;
8828 	u64 features;
8829 	u64 flags;
8830 	int mixed = 0;
8831 	int ret;
8832 
8833 	disk_super = fs_info->super_copy;
8834 	if (!btrfs_super_root(disk_super))
8835 		return 1;
8836 
8837 	features = btrfs_super_incompat_flags(disk_super);
8838 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8839 		mixed = 1;
8840 
8841 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
8842 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8843 	if (ret)
8844 		goto out;
8845 
8846 	if (mixed) {
8847 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8848 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8849 	} else {
8850 		flags = BTRFS_BLOCK_GROUP_METADATA;
8851 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8852 		if (ret)
8853 			goto out;
8854 
8855 		flags = BTRFS_BLOCK_GROUP_DATA;
8856 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8857 	}
8858 out:
8859 	return ret;
8860 }
8861 
8862 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8863 {
8864 	return unpin_extent_range(root, start, end);
8865 }
8866 
8867 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8868 			       u64 num_bytes, u64 *actual_bytes)
8869 {
8870 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8871 }
8872 
8873 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8874 {
8875 	struct btrfs_fs_info *fs_info = root->fs_info;
8876 	struct btrfs_block_group_cache *cache = NULL;
8877 	u64 group_trimmed;
8878 	u64 start;
8879 	u64 end;
8880 	u64 trimmed = 0;
8881 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8882 	int ret = 0;
8883 
8884 	/*
8885 	 * try to trim all FS space, our block group may start from non-zero.
8886 	 */
8887 	if (range->len == total_bytes)
8888 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
8889 	else
8890 		cache = btrfs_lookup_block_group(fs_info, range->start);
8891 
8892 	while (cache) {
8893 		if (cache->key.objectid >= (range->start + range->len)) {
8894 			btrfs_put_block_group(cache);
8895 			break;
8896 		}
8897 
8898 		start = max(range->start, cache->key.objectid);
8899 		end = min(range->start + range->len,
8900 				cache->key.objectid + cache->key.offset);
8901 
8902 		if (end - start >= range->minlen) {
8903 			if (!block_group_cache_done(cache)) {
8904 				ret = cache_block_group(cache, 0);
8905 				if (ret) {
8906 					btrfs_put_block_group(cache);
8907 					break;
8908 				}
8909 				ret = wait_block_group_cache_done(cache);
8910 				if (ret) {
8911 					btrfs_put_block_group(cache);
8912 					break;
8913 				}
8914 			}
8915 			ret = btrfs_trim_block_group(cache,
8916 						     &group_trimmed,
8917 						     start,
8918 						     end,
8919 						     range->minlen);
8920 
8921 			trimmed += group_trimmed;
8922 			if (ret) {
8923 				btrfs_put_block_group(cache);
8924 				break;
8925 			}
8926 		}
8927 
8928 		cache = next_block_group(fs_info->tree_root, cache);
8929 	}
8930 
8931 	range->len = trimmed;
8932 	return ret;
8933 }
8934 
8935 /*
8936  * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
8937  * they are used to prevent the some tasks writing data into the page cache
8938  * by nocow before the subvolume is snapshoted, but flush the data into
8939  * the disk after the snapshot creation.
8940  */
8941 void btrfs_end_nocow_write(struct btrfs_root *root)
8942 {
8943 	percpu_counter_dec(&root->subv_writers->counter);
8944 	/*
8945 	 * Make sure counter is updated before we wake up
8946 	 * waiters.
8947 	 */
8948 	smp_mb();
8949 	if (waitqueue_active(&root->subv_writers->wait))
8950 		wake_up(&root->subv_writers->wait);
8951 }
8952 
8953 int btrfs_start_nocow_write(struct btrfs_root *root)
8954 {
8955 	if (unlikely(atomic_read(&root->will_be_snapshoted)))
8956 		return 0;
8957 
8958 	percpu_counter_inc(&root->subv_writers->counter);
8959 	/*
8960 	 * Make sure counter is updated before we check for snapshot creation.
8961 	 */
8962 	smp_mb();
8963 	if (unlikely(atomic_read(&root->will_be_snapshoted))) {
8964 		btrfs_end_nocow_write(root);
8965 		return 0;
8966 	}
8967 	return 1;
8968 }
8969