1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "raid56.h" 35 #include "locking.h" 36 #include "free-space-cache.h" 37 #include "math.h" 38 #include "sysfs.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op); 85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 86 struct extent_buffer *leaf, 87 struct btrfs_extent_item *ei); 88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 89 struct btrfs_root *root, 90 u64 parent, u64 root_objectid, 91 u64 flags, u64 owner, u64 offset, 92 struct btrfs_key *ins, int ref_mod); 93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 94 struct btrfs_root *root, 95 u64 parent, u64 root_objectid, 96 u64 flags, struct btrfs_disk_key *key, 97 int level, struct btrfs_key *ins); 98 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 99 struct btrfs_root *extent_root, u64 flags, 100 int force); 101 static int find_next_key(struct btrfs_path *path, int level, 102 struct btrfs_key *key); 103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 104 int dump_block_groups); 105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 106 u64 num_bytes, int reserve); 107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 108 u64 num_bytes); 109 int btrfs_pin_extent(struct btrfs_root *root, 110 u64 bytenr, u64 num_bytes, int reserved); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_root *root, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&root->fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE, GFP_NOFS); 232 set_extent_bits(&root->fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE, GFP_NOFS); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&root->fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE, GFP_NOFS); 247 clear_extent_bits(&root->fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE, GFP_NOFS); 249 } 250 251 static int exclude_super_stripes(struct btrfs_root *root, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 271 cache->key.objectid, bytenr, 272 0, &logical, &nr, &stripe_len); 273 if (ret) 274 return ret; 275 276 while (nr--) { 277 u64 start, len; 278 279 if (logical[nr] > cache->key.objectid + 280 cache->key.offset) 281 continue; 282 283 if (logical[nr] + stripe_len <= cache->key.objectid) 284 continue; 285 286 start = logical[nr]; 287 if (start < cache->key.objectid) { 288 start = cache->key.objectid; 289 len = (logical[nr] + stripe_len) - start; 290 } else { 291 len = min_t(u64, stripe_len, 292 cache->key.objectid + 293 cache->key.offset - start); 294 } 295 296 cache->bytes_super += len; 297 ret = add_excluded_extent(root, start, len); 298 if (ret) { 299 kfree(logical); 300 return ret; 301 } 302 } 303 304 kfree(logical); 305 } 306 return 0; 307 } 308 309 static struct btrfs_caching_control * 310 get_caching_control(struct btrfs_block_group_cache *cache) 311 { 312 struct btrfs_caching_control *ctl; 313 314 spin_lock(&cache->lock); 315 if (cache->cached != BTRFS_CACHE_STARTED) { 316 spin_unlock(&cache->lock); 317 return NULL; 318 } 319 320 /* We're loading it the fast way, so we don't have a caching_ctl. */ 321 if (!cache->caching_ctl) { 322 spin_unlock(&cache->lock); 323 return NULL; 324 } 325 326 ctl = cache->caching_ctl; 327 atomic_inc(&ctl->count); 328 spin_unlock(&cache->lock); 329 return ctl; 330 } 331 332 static void put_caching_control(struct btrfs_caching_control *ctl) 333 { 334 if (atomic_dec_and_test(&ctl->count)) 335 kfree(ctl); 336 } 337 338 /* 339 * this is only called by cache_block_group, since we could have freed extents 340 * we need to check the pinned_extents for any extents that can't be used yet 341 * since their free space will be released as soon as the transaction commits. 342 */ 343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 344 struct btrfs_fs_info *info, u64 start, u64 end) 345 { 346 u64 extent_start, extent_end, size, total_added = 0; 347 int ret; 348 349 while (start < end) { 350 ret = find_first_extent_bit(info->pinned_extents, start, 351 &extent_start, &extent_end, 352 EXTENT_DIRTY | EXTENT_UPTODATE, 353 NULL); 354 if (ret) 355 break; 356 357 if (extent_start <= start) { 358 start = extent_end + 1; 359 } else if (extent_start > start && extent_start < end) { 360 size = extent_start - start; 361 total_added += size; 362 ret = btrfs_add_free_space(block_group, start, 363 size); 364 BUG_ON(ret); /* -ENOMEM or logic error */ 365 start = extent_end + 1; 366 } else { 367 break; 368 } 369 } 370 371 if (start < end) { 372 size = end - start; 373 total_added += size; 374 ret = btrfs_add_free_space(block_group, start, size); 375 BUG_ON(ret); /* -ENOMEM or logic error */ 376 } 377 378 return total_added; 379 } 380 381 static noinline void caching_thread(struct btrfs_work *work) 382 { 383 struct btrfs_block_group_cache *block_group; 384 struct btrfs_fs_info *fs_info; 385 struct btrfs_caching_control *caching_ctl; 386 struct btrfs_root *extent_root; 387 struct btrfs_path *path; 388 struct extent_buffer *leaf; 389 struct btrfs_key key; 390 u64 total_found = 0; 391 u64 last = 0; 392 u32 nritems; 393 int ret = -ENOMEM; 394 395 caching_ctl = container_of(work, struct btrfs_caching_control, work); 396 block_group = caching_ctl->block_group; 397 fs_info = block_group->fs_info; 398 extent_root = fs_info->extent_root; 399 400 path = btrfs_alloc_path(); 401 if (!path) 402 goto out; 403 404 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 405 406 /* 407 * We don't want to deadlock with somebody trying to allocate a new 408 * extent for the extent root while also trying to search the extent 409 * root to add free space. So we skip locking and search the commit 410 * root, since its read-only 411 */ 412 path->skip_locking = 1; 413 path->search_commit_root = 1; 414 path->reada = 1; 415 416 key.objectid = last; 417 key.offset = 0; 418 key.type = BTRFS_EXTENT_ITEM_KEY; 419 again: 420 mutex_lock(&caching_ctl->mutex); 421 /* need to make sure the commit_root doesn't disappear */ 422 down_read(&fs_info->extent_commit_sem); 423 424 next: 425 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 426 if (ret < 0) 427 goto err; 428 429 leaf = path->nodes[0]; 430 nritems = btrfs_header_nritems(leaf); 431 432 while (1) { 433 if (btrfs_fs_closing(fs_info) > 1) { 434 last = (u64)-1; 435 break; 436 } 437 438 if (path->slots[0] < nritems) { 439 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 440 } else { 441 ret = find_next_key(path, 0, &key); 442 if (ret) 443 break; 444 445 if (need_resched() || 446 rwsem_is_contended(&fs_info->extent_commit_sem)) { 447 caching_ctl->progress = last; 448 btrfs_release_path(path); 449 up_read(&fs_info->extent_commit_sem); 450 mutex_unlock(&caching_ctl->mutex); 451 cond_resched(); 452 goto again; 453 } 454 455 ret = btrfs_next_leaf(extent_root, path); 456 if (ret < 0) 457 goto err; 458 if (ret) 459 break; 460 leaf = path->nodes[0]; 461 nritems = btrfs_header_nritems(leaf); 462 continue; 463 } 464 465 if (key.objectid < last) { 466 key.objectid = last; 467 key.offset = 0; 468 key.type = BTRFS_EXTENT_ITEM_KEY; 469 470 caching_ctl->progress = last; 471 btrfs_release_path(path); 472 goto next; 473 } 474 475 if (key.objectid < block_group->key.objectid) { 476 path->slots[0]++; 477 continue; 478 } 479 480 if (key.objectid >= block_group->key.objectid + 481 block_group->key.offset) 482 break; 483 484 if (key.type == BTRFS_EXTENT_ITEM_KEY || 485 key.type == BTRFS_METADATA_ITEM_KEY) { 486 total_found += add_new_free_space(block_group, 487 fs_info, last, 488 key.objectid); 489 if (key.type == BTRFS_METADATA_ITEM_KEY) 490 last = key.objectid + 491 fs_info->tree_root->leafsize; 492 else 493 last = key.objectid + key.offset; 494 495 if (total_found > (1024 * 1024 * 2)) { 496 total_found = 0; 497 wake_up(&caching_ctl->wait); 498 } 499 } 500 path->slots[0]++; 501 } 502 ret = 0; 503 504 total_found += add_new_free_space(block_group, fs_info, last, 505 block_group->key.objectid + 506 block_group->key.offset); 507 caching_ctl->progress = (u64)-1; 508 509 spin_lock(&block_group->lock); 510 block_group->caching_ctl = NULL; 511 block_group->cached = BTRFS_CACHE_FINISHED; 512 spin_unlock(&block_group->lock); 513 514 err: 515 btrfs_free_path(path); 516 up_read(&fs_info->extent_commit_sem); 517 518 free_excluded_extents(extent_root, block_group); 519 520 mutex_unlock(&caching_ctl->mutex); 521 out: 522 if (ret) { 523 spin_lock(&block_group->lock); 524 block_group->caching_ctl = NULL; 525 block_group->cached = BTRFS_CACHE_ERROR; 526 spin_unlock(&block_group->lock); 527 } 528 wake_up(&caching_ctl->wait); 529 530 put_caching_control(caching_ctl); 531 btrfs_put_block_group(block_group); 532 } 533 534 static int cache_block_group(struct btrfs_block_group_cache *cache, 535 int load_cache_only) 536 { 537 DEFINE_WAIT(wait); 538 struct btrfs_fs_info *fs_info = cache->fs_info; 539 struct btrfs_caching_control *caching_ctl; 540 int ret = 0; 541 542 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 543 if (!caching_ctl) 544 return -ENOMEM; 545 546 INIT_LIST_HEAD(&caching_ctl->list); 547 mutex_init(&caching_ctl->mutex); 548 init_waitqueue_head(&caching_ctl->wait); 549 caching_ctl->block_group = cache; 550 caching_ctl->progress = cache->key.objectid; 551 atomic_set(&caching_ctl->count, 1); 552 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL); 553 554 spin_lock(&cache->lock); 555 /* 556 * This should be a rare occasion, but this could happen I think in the 557 * case where one thread starts to load the space cache info, and then 558 * some other thread starts a transaction commit which tries to do an 559 * allocation while the other thread is still loading the space cache 560 * info. The previous loop should have kept us from choosing this block 561 * group, but if we've moved to the state where we will wait on caching 562 * block groups we need to first check if we're doing a fast load here, 563 * so we can wait for it to finish, otherwise we could end up allocating 564 * from a block group who's cache gets evicted for one reason or 565 * another. 566 */ 567 while (cache->cached == BTRFS_CACHE_FAST) { 568 struct btrfs_caching_control *ctl; 569 570 ctl = cache->caching_ctl; 571 atomic_inc(&ctl->count); 572 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 573 spin_unlock(&cache->lock); 574 575 schedule(); 576 577 finish_wait(&ctl->wait, &wait); 578 put_caching_control(ctl); 579 spin_lock(&cache->lock); 580 } 581 582 if (cache->cached != BTRFS_CACHE_NO) { 583 spin_unlock(&cache->lock); 584 kfree(caching_ctl); 585 return 0; 586 } 587 WARN_ON(cache->caching_ctl); 588 cache->caching_ctl = caching_ctl; 589 cache->cached = BTRFS_CACHE_FAST; 590 spin_unlock(&cache->lock); 591 592 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 593 ret = load_free_space_cache(fs_info, cache); 594 595 spin_lock(&cache->lock); 596 if (ret == 1) { 597 cache->caching_ctl = NULL; 598 cache->cached = BTRFS_CACHE_FINISHED; 599 cache->last_byte_to_unpin = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 } 607 } 608 spin_unlock(&cache->lock); 609 wake_up(&caching_ctl->wait); 610 if (ret == 1) { 611 put_caching_control(caching_ctl); 612 free_excluded_extents(fs_info->extent_root, cache); 613 return 0; 614 } 615 } else { 616 /* 617 * We are not going to do the fast caching, set cached to the 618 * appropriate value and wakeup any waiters. 619 */ 620 spin_lock(&cache->lock); 621 if (load_cache_only) { 622 cache->caching_ctl = NULL; 623 cache->cached = BTRFS_CACHE_NO; 624 } else { 625 cache->cached = BTRFS_CACHE_STARTED; 626 } 627 spin_unlock(&cache->lock); 628 wake_up(&caching_ctl->wait); 629 } 630 631 if (load_cache_only) { 632 put_caching_control(caching_ctl); 633 return 0; 634 } 635 636 down_write(&fs_info->extent_commit_sem); 637 atomic_inc(&caching_ctl->count); 638 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 639 up_write(&fs_info->extent_commit_sem); 640 641 btrfs_get_block_group(cache); 642 643 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 644 645 return ret; 646 } 647 648 /* 649 * return the block group that starts at or after bytenr 650 */ 651 static struct btrfs_block_group_cache * 652 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 653 { 654 struct btrfs_block_group_cache *cache; 655 656 cache = block_group_cache_tree_search(info, bytenr, 0); 657 658 return cache; 659 } 660 661 /* 662 * return the block group that contains the given bytenr 663 */ 664 struct btrfs_block_group_cache *btrfs_lookup_block_group( 665 struct btrfs_fs_info *info, 666 u64 bytenr) 667 { 668 struct btrfs_block_group_cache *cache; 669 670 cache = block_group_cache_tree_search(info, bytenr, 1); 671 672 return cache; 673 } 674 675 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 676 u64 flags) 677 { 678 struct list_head *head = &info->space_info; 679 struct btrfs_space_info *found; 680 681 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 682 683 rcu_read_lock(); 684 list_for_each_entry_rcu(found, head, list) { 685 if (found->flags & flags) { 686 rcu_read_unlock(); 687 return found; 688 } 689 } 690 rcu_read_unlock(); 691 return NULL; 692 } 693 694 /* 695 * after adding space to the filesystem, we need to clear the full flags 696 * on all the space infos. 697 */ 698 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 699 { 700 struct list_head *head = &info->space_info; 701 struct btrfs_space_info *found; 702 703 rcu_read_lock(); 704 list_for_each_entry_rcu(found, head, list) 705 found->full = 0; 706 rcu_read_unlock(); 707 } 708 709 /* simple helper to search for an existing extent at a given offset */ 710 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 711 { 712 int ret; 713 struct btrfs_key key; 714 struct btrfs_path *path; 715 716 path = btrfs_alloc_path(); 717 if (!path) 718 return -ENOMEM; 719 720 key.objectid = start; 721 key.offset = len; 722 key.type = BTRFS_EXTENT_ITEM_KEY; 723 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 724 0, 0); 725 if (ret > 0) { 726 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 727 if (key.objectid == start && 728 key.type == BTRFS_METADATA_ITEM_KEY) 729 ret = 0; 730 } 731 btrfs_free_path(path); 732 return ret; 733 } 734 735 /* 736 * helper function to lookup reference count and flags of a tree block. 737 * 738 * the head node for delayed ref is used to store the sum of all the 739 * reference count modifications queued up in the rbtree. the head 740 * node may also store the extent flags to set. This way you can check 741 * to see what the reference count and extent flags would be if all of 742 * the delayed refs are not processed. 743 */ 744 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 745 struct btrfs_root *root, u64 bytenr, 746 u64 offset, int metadata, u64 *refs, u64 *flags) 747 { 748 struct btrfs_delayed_ref_head *head; 749 struct btrfs_delayed_ref_root *delayed_refs; 750 struct btrfs_path *path; 751 struct btrfs_extent_item *ei; 752 struct extent_buffer *leaf; 753 struct btrfs_key key; 754 u32 item_size; 755 u64 num_refs; 756 u64 extent_flags; 757 int ret; 758 759 /* 760 * If we don't have skinny metadata, don't bother doing anything 761 * different 762 */ 763 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 764 offset = root->leafsize; 765 metadata = 0; 766 } 767 768 path = btrfs_alloc_path(); 769 if (!path) 770 return -ENOMEM; 771 772 if (!trans) { 773 path->skip_locking = 1; 774 path->search_commit_root = 1; 775 } 776 777 search_again: 778 key.objectid = bytenr; 779 key.offset = offset; 780 if (metadata) 781 key.type = BTRFS_METADATA_ITEM_KEY; 782 else 783 key.type = BTRFS_EXTENT_ITEM_KEY; 784 785 again: 786 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 787 &key, path, 0, 0); 788 if (ret < 0) 789 goto out_free; 790 791 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 792 if (path->slots[0]) { 793 path->slots[0]--; 794 btrfs_item_key_to_cpu(path->nodes[0], &key, 795 path->slots[0]); 796 if (key.objectid == bytenr && 797 key.type == BTRFS_EXTENT_ITEM_KEY && 798 key.offset == root->leafsize) 799 ret = 0; 800 } 801 if (ret) { 802 key.objectid = bytenr; 803 key.type = BTRFS_EXTENT_ITEM_KEY; 804 key.offset = root->leafsize; 805 btrfs_release_path(path); 806 goto again; 807 } 808 } 809 810 if (ret == 0) { 811 leaf = path->nodes[0]; 812 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 813 if (item_size >= sizeof(*ei)) { 814 ei = btrfs_item_ptr(leaf, path->slots[0], 815 struct btrfs_extent_item); 816 num_refs = btrfs_extent_refs(leaf, ei); 817 extent_flags = btrfs_extent_flags(leaf, ei); 818 } else { 819 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 820 struct btrfs_extent_item_v0 *ei0; 821 BUG_ON(item_size != sizeof(*ei0)); 822 ei0 = btrfs_item_ptr(leaf, path->slots[0], 823 struct btrfs_extent_item_v0); 824 num_refs = btrfs_extent_refs_v0(leaf, ei0); 825 /* FIXME: this isn't correct for data */ 826 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 827 #else 828 BUG(); 829 #endif 830 } 831 BUG_ON(num_refs == 0); 832 } else { 833 num_refs = 0; 834 extent_flags = 0; 835 ret = 0; 836 } 837 838 if (!trans) 839 goto out; 840 841 delayed_refs = &trans->transaction->delayed_refs; 842 spin_lock(&delayed_refs->lock); 843 head = btrfs_find_delayed_ref_head(trans, bytenr); 844 if (head) { 845 if (!mutex_trylock(&head->mutex)) { 846 atomic_inc(&head->node.refs); 847 spin_unlock(&delayed_refs->lock); 848 849 btrfs_release_path(path); 850 851 /* 852 * Mutex was contended, block until it's released and try 853 * again 854 */ 855 mutex_lock(&head->mutex); 856 mutex_unlock(&head->mutex); 857 btrfs_put_delayed_ref(&head->node); 858 goto search_again; 859 } 860 spin_lock(&head->lock); 861 if (head->extent_op && head->extent_op->update_flags) 862 extent_flags |= head->extent_op->flags_to_set; 863 else 864 BUG_ON(num_refs == 0); 865 866 num_refs += head->node.ref_mod; 867 spin_unlock(&head->lock); 868 mutex_unlock(&head->mutex); 869 } 870 spin_unlock(&delayed_refs->lock); 871 out: 872 WARN_ON(num_refs == 0); 873 if (refs) 874 *refs = num_refs; 875 if (flags) 876 *flags = extent_flags; 877 out_free: 878 btrfs_free_path(path); 879 return ret; 880 } 881 882 /* 883 * Back reference rules. Back refs have three main goals: 884 * 885 * 1) differentiate between all holders of references to an extent so that 886 * when a reference is dropped we can make sure it was a valid reference 887 * before freeing the extent. 888 * 889 * 2) Provide enough information to quickly find the holders of an extent 890 * if we notice a given block is corrupted or bad. 891 * 892 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 893 * maintenance. This is actually the same as #2, but with a slightly 894 * different use case. 895 * 896 * There are two kinds of back refs. The implicit back refs is optimized 897 * for pointers in non-shared tree blocks. For a given pointer in a block, 898 * back refs of this kind provide information about the block's owner tree 899 * and the pointer's key. These information allow us to find the block by 900 * b-tree searching. The full back refs is for pointers in tree blocks not 901 * referenced by their owner trees. The location of tree block is recorded 902 * in the back refs. Actually the full back refs is generic, and can be 903 * used in all cases the implicit back refs is used. The major shortcoming 904 * of the full back refs is its overhead. Every time a tree block gets 905 * COWed, we have to update back refs entry for all pointers in it. 906 * 907 * For a newly allocated tree block, we use implicit back refs for 908 * pointers in it. This means most tree related operations only involve 909 * implicit back refs. For a tree block created in old transaction, the 910 * only way to drop a reference to it is COW it. So we can detect the 911 * event that tree block loses its owner tree's reference and do the 912 * back refs conversion. 913 * 914 * When a tree block is COW'd through a tree, there are four cases: 915 * 916 * The reference count of the block is one and the tree is the block's 917 * owner tree. Nothing to do in this case. 918 * 919 * The reference count of the block is one and the tree is not the 920 * block's owner tree. In this case, full back refs is used for pointers 921 * in the block. Remove these full back refs, add implicit back refs for 922 * every pointers in the new block. 923 * 924 * The reference count of the block is greater than one and the tree is 925 * the block's owner tree. In this case, implicit back refs is used for 926 * pointers in the block. Add full back refs for every pointers in the 927 * block, increase lower level extents' reference counts. The original 928 * implicit back refs are entailed to the new block. 929 * 930 * The reference count of the block is greater than one and the tree is 931 * not the block's owner tree. Add implicit back refs for every pointer in 932 * the new block, increase lower level extents' reference count. 933 * 934 * Back Reference Key composing: 935 * 936 * The key objectid corresponds to the first byte in the extent, 937 * The key type is used to differentiate between types of back refs. 938 * There are different meanings of the key offset for different types 939 * of back refs. 940 * 941 * File extents can be referenced by: 942 * 943 * - multiple snapshots, subvolumes, or different generations in one subvol 944 * - different files inside a single subvolume 945 * - different offsets inside a file (bookend extents in file.c) 946 * 947 * The extent ref structure for the implicit back refs has fields for: 948 * 949 * - Objectid of the subvolume root 950 * - objectid of the file holding the reference 951 * - original offset in the file 952 * - how many bookend extents 953 * 954 * The key offset for the implicit back refs is hash of the first 955 * three fields. 956 * 957 * The extent ref structure for the full back refs has field for: 958 * 959 * - number of pointers in the tree leaf 960 * 961 * The key offset for the implicit back refs is the first byte of 962 * the tree leaf 963 * 964 * When a file extent is allocated, The implicit back refs is used. 965 * the fields are filled in: 966 * 967 * (root_key.objectid, inode objectid, offset in file, 1) 968 * 969 * When a file extent is removed file truncation, we find the 970 * corresponding implicit back refs and check the following fields: 971 * 972 * (btrfs_header_owner(leaf), inode objectid, offset in file) 973 * 974 * Btree extents can be referenced by: 975 * 976 * - Different subvolumes 977 * 978 * Both the implicit back refs and the full back refs for tree blocks 979 * only consist of key. The key offset for the implicit back refs is 980 * objectid of block's owner tree. The key offset for the full back refs 981 * is the first byte of parent block. 982 * 983 * When implicit back refs is used, information about the lowest key and 984 * level of the tree block are required. These information are stored in 985 * tree block info structure. 986 */ 987 988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 989 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 990 struct btrfs_root *root, 991 struct btrfs_path *path, 992 u64 owner, u32 extra_size) 993 { 994 struct btrfs_extent_item *item; 995 struct btrfs_extent_item_v0 *ei0; 996 struct btrfs_extent_ref_v0 *ref0; 997 struct btrfs_tree_block_info *bi; 998 struct extent_buffer *leaf; 999 struct btrfs_key key; 1000 struct btrfs_key found_key; 1001 u32 new_size = sizeof(*item); 1002 u64 refs; 1003 int ret; 1004 1005 leaf = path->nodes[0]; 1006 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1007 1008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1009 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1010 struct btrfs_extent_item_v0); 1011 refs = btrfs_extent_refs_v0(leaf, ei0); 1012 1013 if (owner == (u64)-1) { 1014 while (1) { 1015 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1016 ret = btrfs_next_leaf(root, path); 1017 if (ret < 0) 1018 return ret; 1019 BUG_ON(ret > 0); /* Corruption */ 1020 leaf = path->nodes[0]; 1021 } 1022 btrfs_item_key_to_cpu(leaf, &found_key, 1023 path->slots[0]); 1024 BUG_ON(key.objectid != found_key.objectid); 1025 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1026 path->slots[0]++; 1027 continue; 1028 } 1029 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1030 struct btrfs_extent_ref_v0); 1031 owner = btrfs_ref_objectid_v0(leaf, ref0); 1032 break; 1033 } 1034 } 1035 btrfs_release_path(path); 1036 1037 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1038 new_size += sizeof(*bi); 1039 1040 new_size -= sizeof(*ei0); 1041 ret = btrfs_search_slot(trans, root, &key, path, 1042 new_size + extra_size, 1); 1043 if (ret < 0) 1044 return ret; 1045 BUG_ON(ret); /* Corruption */ 1046 1047 btrfs_extend_item(root, path, new_size); 1048 1049 leaf = path->nodes[0]; 1050 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1051 btrfs_set_extent_refs(leaf, item, refs); 1052 /* FIXME: get real generation */ 1053 btrfs_set_extent_generation(leaf, item, 0); 1054 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1055 btrfs_set_extent_flags(leaf, item, 1056 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1057 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1058 bi = (struct btrfs_tree_block_info *)(item + 1); 1059 /* FIXME: get first key of the block */ 1060 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1061 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1062 } else { 1063 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1064 } 1065 btrfs_mark_buffer_dirty(leaf); 1066 return 0; 1067 } 1068 #endif 1069 1070 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1071 { 1072 u32 high_crc = ~(u32)0; 1073 u32 low_crc = ~(u32)0; 1074 __le64 lenum; 1075 1076 lenum = cpu_to_le64(root_objectid); 1077 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1078 lenum = cpu_to_le64(owner); 1079 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1080 lenum = cpu_to_le64(offset); 1081 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1082 1083 return ((u64)high_crc << 31) ^ (u64)low_crc; 1084 } 1085 1086 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1087 struct btrfs_extent_data_ref *ref) 1088 { 1089 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1090 btrfs_extent_data_ref_objectid(leaf, ref), 1091 btrfs_extent_data_ref_offset(leaf, ref)); 1092 } 1093 1094 static int match_extent_data_ref(struct extent_buffer *leaf, 1095 struct btrfs_extent_data_ref *ref, 1096 u64 root_objectid, u64 owner, u64 offset) 1097 { 1098 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1099 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1100 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1101 return 0; 1102 return 1; 1103 } 1104 1105 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1106 struct btrfs_root *root, 1107 struct btrfs_path *path, 1108 u64 bytenr, u64 parent, 1109 u64 root_objectid, 1110 u64 owner, u64 offset) 1111 { 1112 struct btrfs_key key; 1113 struct btrfs_extent_data_ref *ref; 1114 struct extent_buffer *leaf; 1115 u32 nritems; 1116 int ret; 1117 int recow; 1118 int err = -ENOENT; 1119 1120 key.objectid = bytenr; 1121 if (parent) { 1122 key.type = BTRFS_SHARED_DATA_REF_KEY; 1123 key.offset = parent; 1124 } else { 1125 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1126 key.offset = hash_extent_data_ref(root_objectid, 1127 owner, offset); 1128 } 1129 again: 1130 recow = 0; 1131 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1132 if (ret < 0) { 1133 err = ret; 1134 goto fail; 1135 } 1136 1137 if (parent) { 1138 if (!ret) 1139 return 0; 1140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1141 key.type = BTRFS_EXTENT_REF_V0_KEY; 1142 btrfs_release_path(path); 1143 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1144 if (ret < 0) { 1145 err = ret; 1146 goto fail; 1147 } 1148 if (!ret) 1149 return 0; 1150 #endif 1151 goto fail; 1152 } 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 while (1) { 1157 if (path->slots[0] >= nritems) { 1158 ret = btrfs_next_leaf(root, path); 1159 if (ret < 0) 1160 err = ret; 1161 if (ret) 1162 goto fail; 1163 1164 leaf = path->nodes[0]; 1165 nritems = btrfs_header_nritems(leaf); 1166 recow = 1; 1167 } 1168 1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1170 if (key.objectid != bytenr || 1171 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1172 goto fail; 1173 1174 ref = btrfs_item_ptr(leaf, path->slots[0], 1175 struct btrfs_extent_data_ref); 1176 1177 if (match_extent_data_ref(leaf, ref, root_objectid, 1178 owner, offset)) { 1179 if (recow) { 1180 btrfs_release_path(path); 1181 goto again; 1182 } 1183 err = 0; 1184 break; 1185 } 1186 path->slots[0]++; 1187 } 1188 fail: 1189 return err; 1190 } 1191 1192 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1193 struct btrfs_root *root, 1194 struct btrfs_path *path, 1195 u64 bytenr, u64 parent, 1196 u64 root_objectid, u64 owner, 1197 u64 offset, int refs_to_add) 1198 { 1199 struct btrfs_key key; 1200 struct extent_buffer *leaf; 1201 u32 size; 1202 u32 num_refs; 1203 int ret; 1204 1205 key.objectid = bytenr; 1206 if (parent) { 1207 key.type = BTRFS_SHARED_DATA_REF_KEY; 1208 key.offset = parent; 1209 size = sizeof(struct btrfs_shared_data_ref); 1210 } else { 1211 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1212 key.offset = hash_extent_data_ref(root_objectid, 1213 owner, offset); 1214 size = sizeof(struct btrfs_extent_data_ref); 1215 } 1216 1217 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1218 if (ret && ret != -EEXIST) 1219 goto fail; 1220 1221 leaf = path->nodes[0]; 1222 if (parent) { 1223 struct btrfs_shared_data_ref *ref; 1224 ref = btrfs_item_ptr(leaf, path->slots[0], 1225 struct btrfs_shared_data_ref); 1226 if (ret == 0) { 1227 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1228 } else { 1229 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1230 num_refs += refs_to_add; 1231 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1232 } 1233 } else { 1234 struct btrfs_extent_data_ref *ref; 1235 while (ret == -EEXIST) { 1236 ref = btrfs_item_ptr(leaf, path->slots[0], 1237 struct btrfs_extent_data_ref); 1238 if (match_extent_data_ref(leaf, ref, root_objectid, 1239 owner, offset)) 1240 break; 1241 btrfs_release_path(path); 1242 key.offset++; 1243 ret = btrfs_insert_empty_item(trans, root, path, &key, 1244 size); 1245 if (ret && ret != -EEXIST) 1246 goto fail; 1247 1248 leaf = path->nodes[0]; 1249 } 1250 ref = btrfs_item_ptr(leaf, path->slots[0], 1251 struct btrfs_extent_data_ref); 1252 if (ret == 0) { 1253 btrfs_set_extent_data_ref_root(leaf, ref, 1254 root_objectid); 1255 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1256 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1257 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1258 } else { 1259 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1260 num_refs += refs_to_add; 1261 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1262 } 1263 } 1264 btrfs_mark_buffer_dirty(leaf); 1265 ret = 0; 1266 fail: 1267 btrfs_release_path(path); 1268 return ret; 1269 } 1270 1271 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1272 struct btrfs_root *root, 1273 struct btrfs_path *path, 1274 int refs_to_drop) 1275 { 1276 struct btrfs_key key; 1277 struct btrfs_extent_data_ref *ref1 = NULL; 1278 struct btrfs_shared_data_ref *ref2 = NULL; 1279 struct extent_buffer *leaf; 1280 u32 num_refs = 0; 1281 int ret = 0; 1282 1283 leaf = path->nodes[0]; 1284 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1285 1286 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1287 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_data_ref); 1289 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1290 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1291 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1292 struct btrfs_shared_data_ref); 1293 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1295 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1296 struct btrfs_extent_ref_v0 *ref0; 1297 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1298 struct btrfs_extent_ref_v0); 1299 num_refs = btrfs_ref_count_v0(leaf, ref0); 1300 #endif 1301 } else { 1302 BUG(); 1303 } 1304 1305 BUG_ON(num_refs < refs_to_drop); 1306 num_refs -= refs_to_drop; 1307 1308 if (num_refs == 0) { 1309 ret = btrfs_del_item(trans, root, path); 1310 } else { 1311 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1312 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1313 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1314 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1316 else { 1317 struct btrfs_extent_ref_v0 *ref0; 1318 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1319 struct btrfs_extent_ref_v0); 1320 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1321 } 1322 #endif 1323 btrfs_mark_buffer_dirty(leaf); 1324 } 1325 return ret; 1326 } 1327 1328 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1329 struct btrfs_path *path, 1330 struct btrfs_extent_inline_ref *iref) 1331 { 1332 struct btrfs_key key; 1333 struct extent_buffer *leaf; 1334 struct btrfs_extent_data_ref *ref1; 1335 struct btrfs_shared_data_ref *ref2; 1336 u32 num_refs = 0; 1337 1338 leaf = path->nodes[0]; 1339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1340 if (iref) { 1341 if (btrfs_extent_inline_ref_type(leaf, iref) == 1342 BTRFS_EXTENT_DATA_REF_KEY) { 1343 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1345 } else { 1346 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1348 } 1349 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1350 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1351 struct btrfs_extent_data_ref); 1352 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1353 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1354 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1355 struct btrfs_shared_data_ref); 1356 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1358 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1359 struct btrfs_extent_ref_v0 *ref0; 1360 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1361 struct btrfs_extent_ref_v0); 1362 num_refs = btrfs_ref_count_v0(leaf, ref0); 1363 #endif 1364 } else { 1365 WARN_ON(1); 1366 } 1367 return num_refs; 1368 } 1369 1370 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_root *root, 1372 struct btrfs_path *path, 1373 u64 bytenr, u64 parent, 1374 u64 root_objectid) 1375 { 1376 struct btrfs_key key; 1377 int ret; 1378 1379 key.objectid = bytenr; 1380 if (parent) { 1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1382 key.offset = parent; 1383 } else { 1384 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1385 key.offset = root_objectid; 1386 } 1387 1388 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1389 if (ret > 0) 1390 ret = -ENOENT; 1391 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1392 if (ret == -ENOENT && parent) { 1393 btrfs_release_path(path); 1394 key.type = BTRFS_EXTENT_REF_V0_KEY; 1395 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1396 if (ret > 0) 1397 ret = -ENOENT; 1398 } 1399 #endif 1400 return ret; 1401 } 1402 1403 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1404 struct btrfs_root *root, 1405 struct btrfs_path *path, 1406 u64 bytenr, u64 parent, 1407 u64 root_objectid) 1408 { 1409 struct btrfs_key key; 1410 int ret; 1411 1412 key.objectid = bytenr; 1413 if (parent) { 1414 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1415 key.offset = parent; 1416 } else { 1417 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1418 key.offset = root_objectid; 1419 } 1420 1421 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1422 btrfs_release_path(path); 1423 return ret; 1424 } 1425 1426 static inline int extent_ref_type(u64 parent, u64 owner) 1427 { 1428 int type; 1429 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1430 if (parent > 0) 1431 type = BTRFS_SHARED_BLOCK_REF_KEY; 1432 else 1433 type = BTRFS_TREE_BLOCK_REF_KEY; 1434 } else { 1435 if (parent > 0) 1436 type = BTRFS_SHARED_DATA_REF_KEY; 1437 else 1438 type = BTRFS_EXTENT_DATA_REF_KEY; 1439 } 1440 return type; 1441 } 1442 1443 static int find_next_key(struct btrfs_path *path, int level, 1444 struct btrfs_key *key) 1445 1446 { 1447 for (; level < BTRFS_MAX_LEVEL; level++) { 1448 if (!path->nodes[level]) 1449 break; 1450 if (path->slots[level] + 1 >= 1451 btrfs_header_nritems(path->nodes[level])) 1452 continue; 1453 if (level == 0) 1454 btrfs_item_key_to_cpu(path->nodes[level], key, 1455 path->slots[level] + 1); 1456 else 1457 btrfs_node_key_to_cpu(path->nodes[level], key, 1458 path->slots[level] + 1); 1459 return 0; 1460 } 1461 return 1; 1462 } 1463 1464 /* 1465 * look for inline back ref. if back ref is found, *ref_ret is set 1466 * to the address of inline back ref, and 0 is returned. 1467 * 1468 * if back ref isn't found, *ref_ret is set to the address where it 1469 * should be inserted, and -ENOENT is returned. 1470 * 1471 * if insert is true and there are too many inline back refs, the path 1472 * points to the extent item, and -EAGAIN is returned. 1473 * 1474 * NOTE: inline back refs are ordered in the same way that back ref 1475 * items in the tree are ordered. 1476 */ 1477 static noinline_for_stack 1478 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1479 struct btrfs_root *root, 1480 struct btrfs_path *path, 1481 struct btrfs_extent_inline_ref **ref_ret, 1482 u64 bytenr, u64 num_bytes, 1483 u64 parent, u64 root_objectid, 1484 u64 owner, u64 offset, int insert) 1485 { 1486 struct btrfs_key key; 1487 struct extent_buffer *leaf; 1488 struct btrfs_extent_item *ei; 1489 struct btrfs_extent_inline_ref *iref; 1490 u64 flags; 1491 u64 item_size; 1492 unsigned long ptr; 1493 unsigned long end; 1494 int extra_size; 1495 int type; 1496 int want; 1497 int ret; 1498 int err = 0; 1499 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1500 SKINNY_METADATA); 1501 1502 key.objectid = bytenr; 1503 key.type = BTRFS_EXTENT_ITEM_KEY; 1504 key.offset = num_bytes; 1505 1506 want = extent_ref_type(parent, owner); 1507 if (insert) { 1508 extra_size = btrfs_extent_inline_ref_size(want); 1509 path->keep_locks = 1; 1510 } else 1511 extra_size = -1; 1512 1513 /* 1514 * Owner is our parent level, so we can just add one to get the level 1515 * for the block we are interested in. 1516 */ 1517 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1518 key.type = BTRFS_METADATA_ITEM_KEY; 1519 key.offset = owner; 1520 } 1521 1522 again: 1523 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1524 if (ret < 0) { 1525 err = ret; 1526 goto out; 1527 } 1528 1529 /* 1530 * We may be a newly converted file system which still has the old fat 1531 * extent entries for metadata, so try and see if we have one of those. 1532 */ 1533 if (ret > 0 && skinny_metadata) { 1534 skinny_metadata = false; 1535 if (path->slots[0]) { 1536 path->slots[0]--; 1537 btrfs_item_key_to_cpu(path->nodes[0], &key, 1538 path->slots[0]); 1539 if (key.objectid == bytenr && 1540 key.type == BTRFS_EXTENT_ITEM_KEY && 1541 key.offset == num_bytes) 1542 ret = 0; 1543 } 1544 if (ret) { 1545 key.type = BTRFS_EXTENT_ITEM_KEY; 1546 key.offset = num_bytes; 1547 btrfs_release_path(path); 1548 goto again; 1549 } 1550 } 1551 1552 if (ret && !insert) { 1553 err = -ENOENT; 1554 goto out; 1555 } else if (WARN_ON(ret)) { 1556 err = -EIO; 1557 goto out; 1558 } 1559 1560 leaf = path->nodes[0]; 1561 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1563 if (item_size < sizeof(*ei)) { 1564 if (!insert) { 1565 err = -ENOENT; 1566 goto out; 1567 } 1568 ret = convert_extent_item_v0(trans, root, path, owner, 1569 extra_size); 1570 if (ret < 0) { 1571 err = ret; 1572 goto out; 1573 } 1574 leaf = path->nodes[0]; 1575 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1576 } 1577 #endif 1578 BUG_ON(item_size < sizeof(*ei)); 1579 1580 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1581 flags = btrfs_extent_flags(leaf, ei); 1582 1583 ptr = (unsigned long)(ei + 1); 1584 end = (unsigned long)ei + item_size; 1585 1586 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1587 ptr += sizeof(struct btrfs_tree_block_info); 1588 BUG_ON(ptr > end); 1589 } 1590 1591 err = -ENOENT; 1592 while (1) { 1593 if (ptr >= end) { 1594 WARN_ON(ptr > end); 1595 break; 1596 } 1597 iref = (struct btrfs_extent_inline_ref *)ptr; 1598 type = btrfs_extent_inline_ref_type(leaf, iref); 1599 if (want < type) 1600 break; 1601 if (want > type) { 1602 ptr += btrfs_extent_inline_ref_size(type); 1603 continue; 1604 } 1605 1606 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1607 struct btrfs_extent_data_ref *dref; 1608 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1609 if (match_extent_data_ref(leaf, dref, root_objectid, 1610 owner, offset)) { 1611 err = 0; 1612 break; 1613 } 1614 if (hash_extent_data_ref_item(leaf, dref) < 1615 hash_extent_data_ref(root_objectid, owner, offset)) 1616 break; 1617 } else { 1618 u64 ref_offset; 1619 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1620 if (parent > 0) { 1621 if (parent == ref_offset) { 1622 err = 0; 1623 break; 1624 } 1625 if (ref_offset < parent) 1626 break; 1627 } else { 1628 if (root_objectid == ref_offset) { 1629 err = 0; 1630 break; 1631 } 1632 if (ref_offset < root_objectid) 1633 break; 1634 } 1635 } 1636 ptr += btrfs_extent_inline_ref_size(type); 1637 } 1638 if (err == -ENOENT && insert) { 1639 if (item_size + extra_size >= 1640 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1641 err = -EAGAIN; 1642 goto out; 1643 } 1644 /* 1645 * To add new inline back ref, we have to make sure 1646 * there is no corresponding back ref item. 1647 * For simplicity, we just do not add new inline back 1648 * ref if there is any kind of item for this block 1649 */ 1650 if (find_next_key(path, 0, &key) == 0 && 1651 key.objectid == bytenr && 1652 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1653 err = -EAGAIN; 1654 goto out; 1655 } 1656 } 1657 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1658 out: 1659 if (insert) { 1660 path->keep_locks = 0; 1661 btrfs_unlock_up_safe(path, 1); 1662 } 1663 return err; 1664 } 1665 1666 /* 1667 * helper to add new inline back ref 1668 */ 1669 static noinline_for_stack 1670 void setup_inline_extent_backref(struct btrfs_root *root, 1671 struct btrfs_path *path, 1672 struct btrfs_extent_inline_ref *iref, 1673 u64 parent, u64 root_objectid, 1674 u64 owner, u64 offset, int refs_to_add, 1675 struct btrfs_delayed_extent_op *extent_op) 1676 { 1677 struct extent_buffer *leaf; 1678 struct btrfs_extent_item *ei; 1679 unsigned long ptr; 1680 unsigned long end; 1681 unsigned long item_offset; 1682 u64 refs; 1683 int size; 1684 int type; 1685 1686 leaf = path->nodes[0]; 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 item_offset = (unsigned long)iref - (unsigned long)ei; 1689 1690 type = extent_ref_type(parent, owner); 1691 size = btrfs_extent_inline_ref_size(type); 1692 1693 btrfs_extend_item(root, path, size); 1694 1695 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1696 refs = btrfs_extent_refs(leaf, ei); 1697 refs += refs_to_add; 1698 btrfs_set_extent_refs(leaf, ei, refs); 1699 if (extent_op) 1700 __run_delayed_extent_op(extent_op, leaf, ei); 1701 1702 ptr = (unsigned long)ei + item_offset; 1703 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1704 if (ptr < end - size) 1705 memmove_extent_buffer(leaf, ptr + size, ptr, 1706 end - size - ptr); 1707 1708 iref = (struct btrfs_extent_inline_ref *)ptr; 1709 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1710 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1711 struct btrfs_extent_data_ref *dref; 1712 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1713 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1714 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1715 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1716 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1717 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1718 struct btrfs_shared_data_ref *sref; 1719 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1720 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1721 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1722 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1723 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1724 } else { 1725 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1726 } 1727 btrfs_mark_buffer_dirty(leaf); 1728 } 1729 1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1731 struct btrfs_root *root, 1732 struct btrfs_path *path, 1733 struct btrfs_extent_inline_ref **ref_ret, 1734 u64 bytenr, u64 num_bytes, u64 parent, 1735 u64 root_objectid, u64 owner, u64 offset) 1736 { 1737 int ret; 1738 1739 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1740 bytenr, num_bytes, parent, 1741 root_objectid, owner, offset, 0); 1742 if (ret != -ENOENT) 1743 return ret; 1744 1745 btrfs_release_path(path); 1746 *ref_ret = NULL; 1747 1748 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1749 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1750 root_objectid); 1751 } else { 1752 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1753 root_objectid, owner, offset); 1754 } 1755 return ret; 1756 } 1757 1758 /* 1759 * helper to update/remove inline back ref 1760 */ 1761 static noinline_for_stack 1762 void update_inline_extent_backref(struct btrfs_root *root, 1763 struct btrfs_path *path, 1764 struct btrfs_extent_inline_ref *iref, 1765 int refs_to_mod, 1766 struct btrfs_delayed_extent_op *extent_op) 1767 { 1768 struct extent_buffer *leaf; 1769 struct btrfs_extent_item *ei; 1770 struct btrfs_extent_data_ref *dref = NULL; 1771 struct btrfs_shared_data_ref *sref = NULL; 1772 unsigned long ptr; 1773 unsigned long end; 1774 u32 item_size; 1775 int size; 1776 int type; 1777 u64 refs; 1778 1779 leaf = path->nodes[0]; 1780 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1781 refs = btrfs_extent_refs(leaf, ei); 1782 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1783 refs += refs_to_mod; 1784 btrfs_set_extent_refs(leaf, ei, refs); 1785 if (extent_op) 1786 __run_delayed_extent_op(extent_op, leaf, ei); 1787 1788 type = btrfs_extent_inline_ref_type(leaf, iref); 1789 1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1792 refs = btrfs_extent_data_ref_count(leaf, dref); 1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1794 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1795 refs = btrfs_shared_data_ref_count(leaf, sref); 1796 } else { 1797 refs = 1; 1798 BUG_ON(refs_to_mod != -1); 1799 } 1800 1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1802 refs += refs_to_mod; 1803 1804 if (refs > 0) { 1805 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1806 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1807 else 1808 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1809 } else { 1810 size = btrfs_extent_inline_ref_size(type); 1811 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1812 ptr = (unsigned long)iref; 1813 end = (unsigned long)ei + item_size; 1814 if (ptr + size < end) 1815 memmove_extent_buffer(leaf, ptr, ptr + size, 1816 end - ptr - size); 1817 item_size -= size; 1818 btrfs_truncate_item(root, path, item_size, 1); 1819 } 1820 btrfs_mark_buffer_dirty(leaf); 1821 } 1822 1823 static noinline_for_stack 1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1825 struct btrfs_root *root, 1826 struct btrfs_path *path, 1827 u64 bytenr, u64 num_bytes, u64 parent, 1828 u64 root_objectid, u64 owner, 1829 u64 offset, int refs_to_add, 1830 struct btrfs_delayed_extent_op *extent_op) 1831 { 1832 struct btrfs_extent_inline_ref *iref; 1833 int ret; 1834 1835 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1836 bytenr, num_bytes, parent, 1837 root_objectid, owner, offset, 1); 1838 if (ret == 0) { 1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1840 update_inline_extent_backref(root, path, iref, 1841 refs_to_add, extent_op); 1842 } else if (ret == -ENOENT) { 1843 setup_inline_extent_backref(root, path, iref, parent, 1844 root_objectid, owner, offset, 1845 refs_to_add, extent_op); 1846 ret = 0; 1847 } 1848 return ret; 1849 } 1850 1851 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1852 struct btrfs_root *root, 1853 struct btrfs_path *path, 1854 u64 bytenr, u64 parent, u64 root_objectid, 1855 u64 owner, u64 offset, int refs_to_add) 1856 { 1857 int ret; 1858 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1859 BUG_ON(refs_to_add != 1); 1860 ret = insert_tree_block_ref(trans, root, path, bytenr, 1861 parent, root_objectid); 1862 } else { 1863 ret = insert_extent_data_ref(trans, root, path, bytenr, 1864 parent, root_objectid, 1865 owner, offset, refs_to_add); 1866 } 1867 return ret; 1868 } 1869 1870 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1871 struct btrfs_root *root, 1872 struct btrfs_path *path, 1873 struct btrfs_extent_inline_ref *iref, 1874 int refs_to_drop, int is_data) 1875 { 1876 int ret = 0; 1877 1878 BUG_ON(!is_data && refs_to_drop != 1); 1879 if (iref) { 1880 update_inline_extent_backref(root, path, iref, 1881 -refs_to_drop, NULL); 1882 } else if (is_data) { 1883 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1884 } else { 1885 ret = btrfs_del_item(trans, root, path); 1886 } 1887 return ret; 1888 } 1889 1890 static int btrfs_issue_discard(struct block_device *bdev, 1891 u64 start, u64 len) 1892 { 1893 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1894 } 1895 1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1897 u64 num_bytes, u64 *actual_bytes) 1898 { 1899 int ret; 1900 u64 discarded_bytes = 0; 1901 struct btrfs_bio *bbio = NULL; 1902 1903 1904 /* Tell the block device(s) that the sectors can be discarded */ 1905 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1906 bytenr, &num_bytes, &bbio, 0); 1907 /* Error condition is -ENOMEM */ 1908 if (!ret) { 1909 struct btrfs_bio_stripe *stripe = bbio->stripes; 1910 int i; 1911 1912 1913 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1914 if (!stripe->dev->can_discard) 1915 continue; 1916 1917 ret = btrfs_issue_discard(stripe->dev->bdev, 1918 stripe->physical, 1919 stripe->length); 1920 if (!ret) 1921 discarded_bytes += stripe->length; 1922 else if (ret != -EOPNOTSUPP) 1923 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1924 1925 /* 1926 * Just in case we get back EOPNOTSUPP for some reason, 1927 * just ignore the return value so we don't screw up 1928 * people calling discard_extent. 1929 */ 1930 ret = 0; 1931 } 1932 kfree(bbio); 1933 } 1934 1935 if (actual_bytes) 1936 *actual_bytes = discarded_bytes; 1937 1938 1939 if (ret == -EOPNOTSUPP) 1940 ret = 0; 1941 return ret; 1942 } 1943 1944 /* Can return -ENOMEM */ 1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1946 struct btrfs_root *root, 1947 u64 bytenr, u64 num_bytes, u64 parent, 1948 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1949 { 1950 int ret; 1951 struct btrfs_fs_info *fs_info = root->fs_info; 1952 1953 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1954 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1955 1956 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1957 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1958 num_bytes, 1959 parent, root_objectid, (int)owner, 1960 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1961 } else { 1962 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1963 num_bytes, 1964 parent, root_objectid, owner, offset, 1965 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1966 } 1967 return ret; 1968 } 1969 1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1971 struct btrfs_root *root, 1972 u64 bytenr, u64 num_bytes, 1973 u64 parent, u64 root_objectid, 1974 u64 owner, u64 offset, int refs_to_add, 1975 struct btrfs_delayed_extent_op *extent_op) 1976 { 1977 struct btrfs_path *path; 1978 struct extent_buffer *leaf; 1979 struct btrfs_extent_item *item; 1980 u64 refs; 1981 int ret; 1982 1983 path = btrfs_alloc_path(); 1984 if (!path) 1985 return -ENOMEM; 1986 1987 path->reada = 1; 1988 path->leave_spinning = 1; 1989 /* this will setup the path even if it fails to insert the back ref */ 1990 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1991 path, bytenr, num_bytes, parent, 1992 root_objectid, owner, offset, 1993 refs_to_add, extent_op); 1994 if (ret != -EAGAIN) 1995 goto out; 1996 1997 leaf = path->nodes[0]; 1998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1999 refs = btrfs_extent_refs(leaf, item); 2000 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2001 if (extent_op) 2002 __run_delayed_extent_op(extent_op, leaf, item); 2003 2004 btrfs_mark_buffer_dirty(leaf); 2005 btrfs_release_path(path); 2006 2007 path->reada = 1; 2008 path->leave_spinning = 1; 2009 2010 /* now insert the actual backref */ 2011 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2012 path, bytenr, parent, root_objectid, 2013 owner, offset, refs_to_add); 2014 if (ret) 2015 btrfs_abort_transaction(trans, root, ret); 2016 out: 2017 btrfs_free_path(path); 2018 return ret; 2019 } 2020 2021 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2022 struct btrfs_root *root, 2023 struct btrfs_delayed_ref_node *node, 2024 struct btrfs_delayed_extent_op *extent_op, 2025 int insert_reserved) 2026 { 2027 int ret = 0; 2028 struct btrfs_delayed_data_ref *ref; 2029 struct btrfs_key ins; 2030 u64 parent = 0; 2031 u64 ref_root = 0; 2032 u64 flags = 0; 2033 2034 ins.objectid = node->bytenr; 2035 ins.offset = node->num_bytes; 2036 ins.type = BTRFS_EXTENT_ITEM_KEY; 2037 2038 ref = btrfs_delayed_node_to_data_ref(node); 2039 trace_run_delayed_data_ref(node, ref, node->action); 2040 2041 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2042 parent = ref->parent; 2043 else 2044 ref_root = ref->root; 2045 2046 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2047 if (extent_op) 2048 flags |= extent_op->flags_to_set; 2049 ret = alloc_reserved_file_extent(trans, root, 2050 parent, ref_root, flags, 2051 ref->objectid, ref->offset, 2052 &ins, node->ref_mod); 2053 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2054 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2055 node->num_bytes, parent, 2056 ref_root, ref->objectid, 2057 ref->offset, node->ref_mod, 2058 extent_op); 2059 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2060 ret = __btrfs_free_extent(trans, root, node->bytenr, 2061 node->num_bytes, parent, 2062 ref_root, ref->objectid, 2063 ref->offset, node->ref_mod, 2064 extent_op); 2065 } else { 2066 BUG(); 2067 } 2068 return ret; 2069 } 2070 2071 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2072 struct extent_buffer *leaf, 2073 struct btrfs_extent_item *ei) 2074 { 2075 u64 flags = btrfs_extent_flags(leaf, ei); 2076 if (extent_op->update_flags) { 2077 flags |= extent_op->flags_to_set; 2078 btrfs_set_extent_flags(leaf, ei, flags); 2079 } 2080 2081 if (extent_op->update_key) { 2082 struct btrfs_tree_block_info *bi; 2083 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2084 bi = (struct btrfs_tree_block_info *)(ei + 1); 2085 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2086 } 2087 } 2088 2089 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2090 struct btrfs_root *root, 2091 struct btrfs_delayed_ref_node *node, 2092 struct btrfs_delayed_extent_op *extent_op) 2093 { 2094 struct btrfs_key key; 2095 struct btrfs_path *path; 2096 struct btrfs_extent_item *ei; 2097 struct extent_buffer *leaf; 2098 u32 item_size; 2099 int ret; 2100 int err = 0; 2101 int metadata = !extent_op->is_data; 2102 2103 if (trans->aborted) 2104 return 0; 2105 2106 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2107 metadata = 0; 2108 2109 path = btrfs_alloc_path(); 2110 if (!path) 2111 return -ENOMEM; 2112 2113 key.objectid = node->bytenr; 2114 2115 if (metadata) { 2116 key.type = BTRFS_METADATA_ITEM_KEY; 2117 key.offset = extent_op->level; 2118 } else { 2119 key.type = BTRFS_EXTENT_ITEM_KEY; 2120 key.offset = node->num_bytes; 2121 } 2122 2123 again: 2124 path->reada = 1; 2125 path->leave_spinning = 1; 2126 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2127 path, 0, 1); 2128 if (ret < 0) { 2129 err = ret; 2130 goto out; 2131 } 2132 if (ret > 0) { 2133 if (metadata) { 2134 if (path->slots[0] > 0) { 2135 path->slots[0]--; 2136 btrfs_item_key_to_cpu(path->nodes[0], &key, 2137 path->slots[0]); 2138 if (key.objectid == node->bytenr && 2139 key.type == BTRFS_EXTENT_ITEM_KEY && 2140 key.offset == node->num_bytes) 2141 ret = 0; 2142 } 2143 if (ret > 0) { 2144 btrfs_release_path(path); 2145 metadata = 0; 2146 2147 key.objectid = node->bytenr; 2148 key.offset = node->num_bytes; 2149 key.type = BTRFS_EXTENT_ITEM_KEY; 2150 goto again; 2151 } 2152 } else { 2153 err = -EIO; 2154 goto out; 2155 } 2156 } 2157 2158 leaf = path->nodes[0]; 2159 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2160 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2161 if (item_size < sizeof(*ei)) { 2162 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2163 path, (u64)-1, 0); 2164 if (ret < 0) { 2165 err = ret; 2166 goto out; 2167 } 2168 leaf = path->nodes[0]; 2169 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2170 } 2171 #endif 2172 BUG_ON(item_size < sizeof(*ei)); 2173 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2174 __run_delayed_extent_op(extent_op, leaf, ei); 2175 2176 btrfs_mark_buffer_dirty(leaf); 2177 out: 2178 btrfs_free_path(path); 2179 return err; 2180 } 2181 2182 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2183 struct btrfs_root *root, 2184 struct btrfs_delayed_ref_node *node, 2185 struct btrfs_delayed_extent_op *extent_op, 2186 int insert_reserved) 2187 { 2188 int ret = 0; 2189 struct btrfs_delayed_tree_ref *ref; 2190 struct btrfs_key ins; 2191 u64 parent = 0; 2192 u64 ref_root = 0; 2193 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2194 SKINNY_METADATA); 2195 2196 ref = btrfs_delayed_node_to_tree_ref(node); 2197 trace_run_delayed_tree_ref(node, ref, node->action); 2198 2199 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2200 parent = ref->parent; 2201 else 2202 ref_root = ref->root; 2203 2204 ins.objectid = node->bytenr; 2205 if (skinny_metadata) { 2206 ins.offset = ref->level; 2207 ins.type = BTRFS_METADATA_ITEM_KEY; 2208 } else { 2209 ins.offset = node->num_bytes; 2210 ins.type = BTRFS_EXTENT_ITEM_KEY; 2211 } 2212 2213 BUG_ON(node->ref_mod != 1); 2214 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2215 BUG_ON(!extent_op || !extent_op->update_flags); 2216 ret = alloc_reserved_tree_block(trans, root, 2217 parent, ref_root, 2218 extent_op->flags_to_set, 2219 &extent_op->key, 2220 ref->level, &ins); 2221 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2222 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2223 node->num_bytes, parent, ref_root, 2224 ref->level, 0, 1, extent_op); 2225 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2226 ret = __btrfs_free_extent(trans, root, node->bytenr, 2227 node->num_bytes, parent, ref_root, 2228 ref->level, 0, 1, extent_op); 2229 } else { 2230 BUG(); 2231 } 2232 return ret; 2233 } 2234 2235 /* helper function to actually process a single delayed ref entry */ 2236 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2237 struct btrfs_root *root, 2238 struct btrfs_delayed_ref_node *node, 2239 struct btrfs_delayed_extent_op *extent_op, 2240 int insert_reserved) 2241 { 2242 int ret = 0; 2243 2244 if (trans->aborted) { 2245 if (insert_reserved) 2246 btrfs_pin_extent(root, node->bytenr, 2247 node->num_bytes, 1); 2248 return 0; 2249 } 2250 2251 if (btrfs_delayed_ref_is_head(node)) { 2252 struct btrfs_delayed_ref_head *head; 2253 /* 2254 * we've hit the end of the chain and we were supposed 2255 * to insert this extent into the tree. But, it got 2256 * deleted before we ever needed to insert it, so all 2257 * we have to do is clean up the accounting 2258 */ 2259 BUG_ON(extent_op); 2260 head = btrfs_delayed_node_to_head(node); 2261 trace_run_delayed_ref_head(node, head, node->action); 2262 2263 if (insert_reserved) { 2264 btrfs_pin_extent(root, node->bytenr, 2265 node->num_bytes, 1); 2266 if (head->is_data) { 2267 ret = btrfs_del_csums(trans, root, 2268 node->bytenr, 2269 node->num_bytes); 2270 } 2271 } 2272 return ret; 2273 } 2274 2275 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2276 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2277 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2278 insert_reserved); 2279 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2280 node->type == BTRFS_SHARED_DATA_REF_KEY) 2281 ret = run_delayed_data_ref(trans, root, node, extent_op, 2282 insert_reserved); 2283 else 2284 BUG(); 2285 return ret; 2286 } 2287 2288 static noinline struct btrfs_delayed_ref_node * 2289 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2290 { 2291 struct rb_node *node; 2292 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2293 2294 /* 2295 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2296 * this prevents ref count from going down to zero when 2297 * there still are pending delayed ref. 2298 */ 2299 node = rb_first(&head->ref_root); 2300 while (node) { 2301 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2302 rb_node); 2303 if (ref->action == BTRFS_ADD_DELAYED_REF) 2304 return ref; 2305 else if (last == NULL) 2306 last = ref; 2307 node = rb_next(node); 2308 } 2309 return last; 2310 } 2311 2312 /* 2313 * Returns 0 on success or if called with an already aborted transaction. 2314 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2315 */ 2316 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2317 struct btrfs_root *root, 2318 unsigned long nr) 2319 { 2320 struct btrfs_delayed_ref_root *delayed_refs; 2321 struct btrfs_delayed_ref_node *ref; 2322 struct btrfs_delayed_ref_head *locked_ref = NULL; 2323 struct btrfs_delayed_extent_op *extent_op; 2324 struct btrfs_fs_info *fs_info = root->fs_info; 2325 ktime_t start = ktime_get(); 2326 int ret; 2327 unsigned long count = 0; 2328 unsigned long actual_count = 0; 2329 int must_insert_reserved = 0; 2330 2331 delayed_refs = &trans->transaction->delayed_refs; 2332 while (1) { 2333 if (!locked_ref) { 2334 if (count >= nr) 2335 break; 2336 2337 spin_lock(&delayed_refs->lock); 2338 locked_ref = btrfs_select_ref_head(trans); 2339 if (!locked_ref) { 2340 spin_unlock(&delayed_refs->lock); 2341 break; 2342 } 2343 2344 /* grab the lock that says we are going to process 2345 * all the refs for this head */ 2346 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2347 spin_unlock(&delayed_refs->lock); 2348 /* 2349 * we may have dropped the spin lock to get the head 2350 * mutex lock, and that might have given someone else 2351 * time to free the head. If that's true, it has been 2352 * removed from our list and we can move on. 2353 */ 2354 if (ret == -EAGAIN) { 2355 locked_ref = NULL; 2356 count++; 2357 continue; 2358 } 2359 } 2360 2361 /* 2362 * We need to try and merge add/drops of the same ref since we 2363 * can run into issues with relocate dropping the implicit ref 2364 * and then it being added back again before the drop can 2365 * finish. If we merged anything we need to re-loop so we can 2366 * get a good ref. 2367 */ 2368 spin_lock(&locked_ref->lock); 2369 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2370 locked_ref); 2371 2372 /* 2373 * locked_ref is the head node, so we have to go one 2374 * node back for any delayed ref updates 2375 */ 2376 ref = select_delayed_ref(locked_ref); 2377 2378 if (ref && ref->seq && 2379 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2380 spin_unlock(&locked_ref->lock); 2381 btrfs_delayed_ref_unlock(locked_ref); 2382 spin_lock(&delayed_refs->lock); 2383 locked_ref->processing = 0; 2384 delayed_refs->num_heads_ready++; 2385 spin_unlock(&delayed_refs->lock); 2386 locked_ref = NULL; 2387 cond_resched(); 2388 count++; 2389 continue; 2390 } 2391 2392 /* 2393 * record the must insert reserved flag before we 2394 * drop the spin lock. 2395 */ 2396 must_insert_reserved = locked_ref->must_insert_reserved; 2397 locked_ref->must_insert_reserved = 0; 2398 2399 extent_op = locked_ref->extent_op; 2400 locked_ref->extent_op = NULL; 2401 2402 if (!ref) { 2403 2404 2405 /* All delayed refs have been processed, Go ahead 2406 * and send the head node to run_one_delayed_ref, 2407 * so that any accounting fixes can happen 2408 */ 2409 ref = &locked_ref->node; 2410 2411 if (extent_op && must_insert_reserved) { 2412 btrfs_free_delayed_extent_op(extent_op); 2413 extent_op = NULL; 2414 } 2415 2416 if (extent_op) { 2417 spin_unlock(&locked_ref->lock); 2418 ret = run_delayed_extent_op(trans, root, 2419 ref, extent_op); 2420 btrfs_free_delayed_extent_op(extent_op); 2421 2422 if (ret) { 2423 /* 2424 * Need to reset must_insert_reserved if 2425 * there was an error so the abort stuff 2426 * can cleanup the reserved space 2427 * properly. 2428 */ 2429 if (must_insert_reserved) 2430 locked_ref->must_insert_reserved = 1; 2431 locked_ref->processing = 0; 2432 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2433 btrfs_delayed_ref_unlock(locked_ref); 2434 return ret; 2435 } 2436 continue; 2437 } 2438 2439 /* 2440 * Need to drop our head ref lock and re-aqcuire the 2441 * delayed ref lock and then re-check to make sure 2442 * nobody got added. 2443 */ 2444 spin_unlock(&locked_ref->lock); 2445 spin_lock(&delayed_refs->lock); 2446 spin_lock(&locked_ref->lock); 2447 if (rb_first(&locked_ref->ref_root)) { 2448 spin_unlock(&locked_ref->lock); 2449 spin_unlock(&delayed_refs->lock); 2450 continue; 2451 } 2452 ref->in_tree = 0; 2453 delayed_refs->num_heads--; 2454 rb_erase(&locked_ref->href_node, 2455 &delayed_refs->href_root); 2456 spin_unlock(&delayed_refs->lock); 2457 } else { 2458 actual_count++; 2459 ref->in_tree = 0; 2460 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2461 } 2462 atomic_dec(&delayed_refs->num_entries); 2463 2464 if (!btrfs_delayed_ref_is_head(ref)) { 2465 /* 2466 * when we play the delayed ref, also correct the 2467 * ref_mod on head 2468 */ 2469 switch (ref->action) { 2470 case BTRFS_ADD_DELAYED_REF: 2471 case BTRFS_ADD_DELAYED_EXTENT: 2472 locked_ref->node.ref_mod -= ref->ref_mod; 2473 break; 2474 case BTRFS_DROP_DELAYED_REF: 2475 locked_ref->node.ref_mod += ref->ref_mod; 2476 break; 2477 default: 2478 WARN_ON(1); 2479 } 2480 } 2481 spin_unlock(&locked_ref->lock); 2482 2483 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2484 must_insert_reserved); 2485 2486 btrfs_free_delayed_extent_op(extent_op); 2487 if (ret) { 2488 locked_ref->processing = 0; 2489 btrfs_delayed_ref_unlock(locked_ref); 2490 btrfs_put_delayed_ref(ref); 2491 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2492 return ret; 2493 } 2494 2495 /* 2496 * If this node is a head, that means all the refs in this head 2497 * have been dealt with, and we will pick the next head to deal 2498 * with, so we must unlock the head and drop it from the cluster 2499 * list before we release it. 2500 */ 2501 if (btrfs_delayed_ref_is_head(ref)) { 2502 btrfs_delayed_ref_unlock(locked_ref); 2503 locked_ref = NULL; 2504 } 2505 btrfs_put_delayed_ref(ref); 2506 count++; 2507 cond_resched(); 2508 } 2509 2510 /* 2511 * We don't want to include ref heads since we can have empty ref heads 2512 * and those will drastically skew our runtime down since we just do 2513 * accounting, no actual extent tree updates. 2514 */ 2515 if (actual_count > 0) { 2516 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2517 u64 avg; 2518 2519 /* 2520 * We weigh the current average higher than our current runtime 2521 * to avoid large swings in the average. 2522 */ 2523 spin_lock(&delayed_refs->lock); 2524 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2525 avg = div64_u64(avg, 4); 2526 fs_info->avg_delayed_ref_runtime = avg; 2527 spin_unlock(&delayed_refs->lock); 2528 } 2529 return 0; 2530 } 2531 2532 #ifdef SCRAMBLE_DELAYED_REFS 2533 /* 2534 * Normally delayed refs get processed in ascending bytenr order. This 2535 * correlates in most cases to the order added. To expose dependencies on this 2536 * order, we start to process the tree in the middle instead of the beginning 2537 */ 2538 static u64 find_middle(struct rb_root *root) 2539 { 2540 struct rb_node *n = root->rb_node; 2541 struct btrfs_delayed_ref_node *entry; 2542 int alt = 1; 2543 u64 middle; 2544 u64 first = 0, last = 0; 2545 2546 n = rb_first(root); 2547 if (n) { 2548 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2549 first = entry->bytenr; 2550 } 2551 n = rb_last(root); 2552 if (n) { 2553 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2554 last = entry->bytenr; 2555 } 2556 n = root->rb_node; 2557 2558 while (n) { 2559 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2560 WARN_ON(!entry->in_tree); 2561 2562 middle = entry->bytenr; 2563 2564 if (alt) 2565 n = n->rb_left; 2566 else 2567 n = n->rb_right; 2568 2569 alt = 1 - alt; 2570 } 2571 return middle; 2572 } 2573 #endif 2574 2575 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2576 struct btrfs_fs_info *fs_info) 2577 { 2578 struct qgroup_update *qgroup_update; 2579 int ret = 0; 2580 2581 if (list_empty(&trans->qgroup_ref_list) != 2582 !trans->delayed_ref_elem.seq) { 2583 /* list without seq or seq without list */ 2584 btrfs_err(fs_info, 2585 "qgroup accounting update error, list is%s empty, seq is %#x.%x", 2586 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2587 (u32)(trans->delayed_ref_elem.seq >> 32), 2588 (u32)trans->delayed_ref_elem.seq); 2589 BUG(); 2590 } 2591 2592 if (!trans->delayed_ref_elem.seq) 2593 return 0; 2594 2595 while (!list_empty(&trans->qgroup_ref_list)) { 2596 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2597 struct qgroup_update, list); 2598 list_del(&qgroup_update->list); 2599 if (!ret) 2600 ret = btrfs_qgroup_account_ref( 2601 trans, fs_info, qgroup_update->node, 2602 qgroup_update->extent_op); 2603 kfree(qgroup_update); 2604 } 2605 2606 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2607 2608 return ret; 2609 } 2610 2611 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2612 { 2613 u64 num_bytes; 2614 2615 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2616 sizeof(struct btrfs_extent_inline_ref)); 2617 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2618 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2619 2620 /* 2621 * We don't ever fill up leaves all the way so multiply by 2 just to be 2622 * closer to what we're really going to want to ouse. 2623 */ 2624 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2625 } 2626 2627 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2628 struct btrfs_root *root) 2629 { 2630 struct btrfs_block_rsv *global_rsv; 2631 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2632 u64 num_bytes; 2633 int ret = 0; 2634 2635 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2636 num_heads = heads_to_leaves(root, num_heads); 2637 if (num_heads > 1) 2638 num_bytes += (num_heads - 1) * root->leafsize; 2639 num_bytes <<= 1; 2640 global_rsv = &root->fs_info->global_block_rsv; 2641 2642 /* 2643 * If we can't allocate any more chunks lets make sure we have _lots_ of 2644 * wiggle room since running delayed refs can create more delayed refs. 2645 */ 2646 if (global_rsv->space_info->full) 2647 num_bytes <<= 1; 2648 2649 spin_lock(&global_rsv->lock); 2650 if (global_rsv->reserved <= num_bytes) 2651 ret = 1; 2652 spin_unlock(&global_rsv->lock); 2653 return ret; 2654 } 2655 2656 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2657 struct btrfs_root *root) 2658 { 2659 struct btrfs_fs_info *fs_info = root->fs_info; 2660 u64 num_entries = 2661 atomic_read(&trans->transaction->delayed_refs.num_entries); 2662 u64 avg_runtime; 2663 2664 smp_mb(); 2665 avg_runtime = fs_info->avg_delayed_ref_runtime; 2666 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2667 return 1; 2668 2669 return btrfs_check_space_for_delayed_refs(trans, root); 2670 } 2671 2672 /* 2673 * this starts processing the delayed reference count updates and 2674 * extent insertions we have queued up so far. count can be 2675 * 0, which means to process everything in the tree at the start 2676 * of the run (but not newly added entries), or it can be some target 2677 * number you'd like to process. 2678 * 2679 * Returns 0 on success or if called with an aborted transaction 2680 * Returns <0 on error and aborts the transaction 2681 */ 2682 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2683 struct btrfs_root *root, unsigned long count) 2684 { 2685 struct rb_node *node; 2686 struct btrfs_delayed_ref_root *delayed_refs; 2687 struct btrfs_delayed_ref_head *head; 2688 int ret; 2689 int run_all = count == (unsigned long)-1; 2690 int run_most = 0; 2691 2692 /* We'll clean this up in btrfs_cleanup_transaction */ 2693 if (trans->aborted) 2694 return 0; 2695 2696 if (root == root->fs_info->extent_root) 2697 root = root->fs_info->tree_root; 2698 2699 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2700 2701 delayed_refs = &trans->transaction->delayed_refs; 2702 if (count == 0) { 2703 count = atomic_read(&delayed_refs->num_entries) * 2; 2704 run_most = 1; 2705 } 2706 2707 again: 2708 #ifdef SCRAMBLE_DELAYED_REFS 2709 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2710 #endif 2711 ret = __btrfs_run_delayed_refs(trans, root, count); 2712 if (ret < 0) { 2713 btrfs_abort_transaction(trans, root, ret); 2714 return ret; 2715 } 2716 2717 if (run_all) { 2718 if (!list_empty(&trans->new_bgs)) 2719 btrfs_create_pending_block_groups(trans, root); 2720 2721 spin_lock(&delayed_refs->lock); 2722 node = rb_first(&delayed_refs->href_root); 2723 if (!node) { 2724 spin_unlock(&delayed_refs->lock); 2725 goto out; 2726 } 2727 count = (unsigned long)-1; 2728 2729 while (node) { 2730 head = rb_entry(node, struct btrfs_delayed_ref_head, 2731 href_node); 2732 if (btrfs_delayed_ref_is_head(&head->node)) { 2733 struct btrfs_delayed_ref_node *ref; 2734 2735 ref = &head->node; 2736 atomic_inc(&ref->refs); 2737 2738 spin_unlock(&delayed_refs->lock); 2739 /* 2740 * Mutex was contended, block until it's 2741 * released and try again 2742 */ 2743 mutex_lock(&head->mutex); 2744 mutex_unlock(&head->mutex); 2745 2746 btrfs_put_delayed_ref(ref); 2747 cond_resched(); 2748 goto again; 2749 } else { 2750 WARN_ON(1); 2751 } 2752 node = rb_next(node); 2753 } 2754 spin_unlock(&delayed_refs->lock); 2755 cond_resched(); 2756 goto again; 2757 } 2758 out: 2759 assert_qgroups_uptodate(trans); 2760 return 0; 2761 } 2762 2763 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2764 struct btrfs_root *root, 2765 u64 bytenr, u64 num_bytes, u64 flags, 2766 int level, int is_data) 2767 { 2768 struct btrfs_delayed_extent_op *extent_op; 2769 int ret; 2770 2771 extent_op = btrfs_alloc_delayed_extent_op(); 2772 if (!extent_op) 2773 return -ENOMEM; 2774 2775 extent_op->flags_to_set = flags; 2776 extent_op->update_flags = 1; 2777 extent_op->update_key = 0; 2778 extent_op->is_data = is_data ? 1 : 0; 2779 extent_op->level = level; 2780 2781 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2782 num_bytes, extent_op); 2783 if (ret) 2784 btrfs_free_delayed_extent_op(extent_op); 2785 return ret; 2786 } 2787 2788 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2789 struct btrfs_root *root, 2790 struct btrfs_path *path, 2791 u64 objectid, u64 offset, u64 bytenr) 2792 { 2793 struct btrfs_delayed_ref_head *head; 2794 struct btrfs_delayed_ref_node *ref; 2795 struct btrfs_delayed_data_ref *data_ref; 2796 struct btrfs_delayed_ref_root *delayed_refs; 2797 struct rb_node *node; 2798 int ret = 0; 2799 2800 delayed_refs = &trans->transaction->delayed_refs; 2801 spin_lock(&delayed_refs->lock); 2802 head = btrfs_find_delayed_ref_head(trans, bytenr); 2803 if (!head) { 2804 spin_unlock(&delayed_refs->lock); 2805 return 0; 2806 } 2807 2808 if (!mutex_trylock(&head->mutex)) { 2809 atomic_inc(&head->node.refs); 2810 spin_unlock(&delayed_refs->lock); 2811 2812 btrfs_release_path(path); 2813 2814 /* 2815 * Mutex was contended, block until it's released and let 2816 * caller try again 2817 */ 2818 mutex_lock(&head->mutex); 2819 mutex_unlock(&head->mutex); 2820 btrfs_put_delayed_ref(&head->node); 2821 return -EAGAIN; 2822 } 2823 spin_unlock(&delayed_refs->lock); 2824 2825 spin_lock(&head->lock); 2826 node = rb_first(&head->ref_root); 2827 while (node) { 2828 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2829 node = rb_next(node); 2830 2831 /* If it's a shared ref we know a cross reference exists */ 2832 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2833 ret = 1; 2834 break; 2835 } 2836 2837 data_ref = btrfs_delayed_node_to_data_ref(ref); 2838 2839 /* 2840 * If our ref doesn't match the one we're currently looking at 2841 * then we have a cross reference. 2842 */ 2843 if (data_ref->root != root->root_key.objectid || 2844 data_ref->objectid != objectid || 2845 data_ref->offset != offset) { 2846 ret = 1; 2847 break; 2848 } 2849 } 2850 spin_unlock(&head->lock); 2851 mutex_unlock(&head->mutex); 2852 return ret; 2853 } 2854 2855 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2856 struct btrfs_root *root, 2857 struct btrfs_path *path, 2858 u64 objectid, u64 offset, u64 bytenr) 2859 { 2860 struct btrfs_root *extent_root = root->fs_info->extent_root; 2861 struct extent_buffer *leaf; 2862 struct btrfs_extent_data_ref *ref; 2863 struct btrfs_extent_inline_ref *iref; 2864 struct btrfs_extent_item *ei; 2865 struct btrfs_key key; 2866 u32 item_size; 2867 int ret; 2868 2869 key.objectid = bytenr; 2870 key.offset = (u64)-1; 2871 key.type = BTRFS_EXTENT_ITEM_KEY; 2872 2873 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2874 if (ret < 0) 2875 goto out; 2876 BUG_ON(ret == 0); /* Corruption */ 2877 2878 ret = -ENOENT; 2879 if (path->slots[0] == 0) 2880 goto out; 2881 2882 path->slots[0]--; 2883 leaf = path->nodes[0]; 2884 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2885 2886 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2887 goto out; 2888 2889 ret = 1; 2890 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2891 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2892 if (item_size < sizeof(*ei)) { 2893 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2894 goto out; 2895 } 2896 #endif 2897 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2898 2899 if (item_size != sizeof(*ei) + 2900 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2901 goto out; 2902 2903 if (btrfs_extent_generation(leaf, ei) <= 2904 btrfs_root_last_snapshot(&root->root_item)) 2905 goto out; 2906 2907 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2908 if (btrfs_extent_inline_ref_type(leaf, iref) != 2909 BTRFS_EXTENT_DATA_REF_KEY) 2910 goto out; 2911 2912 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2913 if (btrfs_extent_refs(leaf, ei) != 2914 btrfs_extent_data_ref_count(leaf, ref) || 2915 btrfs_extent_data_ref_root(leaf, ref) != 2916 root->root_key.objectid || 2917 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2918 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2919 goto out; 2920 2921 ret = 0; 2922 out: 2923 return ret; 2924 } 2925 2926 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2927 struct btrfs_root *root, 2928 u64 objectid, u64 offset, u64 bytenr) 2929 { 2930 struct btrfs_path *path; 2931 int ret; 2932 int ret2; 2933 2934 path = btrfs_alloc_path(); 2935 if (!path) 2936 return -ENOENT; 2937 2938 do { 2939 ret = check_committed_ref(trans, root, path, objectid, 2940 offset, bytenr); 2941 if (ret && ret != -ENOENT) 2942 goto out; 2943 2944 ret2 = check_delayed_ref(trans, root, path, objectid, 2945 offset, bytenr); 2946 } while (ret2 == -EAGAIN); 2947 2948 if (ret2 && ret2 != -ENOENT) { 2949 ret = ret2; 2950 goto out; 2951 } 2952 2953 if (ret != -ENOENT || ret2 != -ENOENT) 2954 ret = 0; 2955 out: 2956 btrfs_free_path(path); 2957 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2958 WARN_ON(ret > 0); 2959 return ret; 2960 } 2961 2962 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2963 struct btrfs_root *root, 2964 struct extent_buffer *buf, 2965 int full_backref, int inc, int for_cow) 2966 { 2967 u64 bytenr; 2968 u64 num_bytes; 2969 u64 parent; 2970 u64 ref_root; 2971 u32 nritems; 2972 struct btrfs_key key; 2973 struct btrfs_file_extent_item *fi; 2974 int i; 2975 int level; 2976 int ret = 0; 2977 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2978 u64, u64, u64, u64, u64, u64, int); 2979 2980 ref_root = btrfs_header_owner(buf); 2981 nritems = btrfs_header_nritems(buf); 2982 level = btrfs_header_level(buf); 2983 2984 if (!root->ref_cows && level == 0) 2985 return 0; 2986 2987 if (inc) 2988 process_func = btrfs_inc_extent_ref; 2989 else 2990 process_func = btrfs_free_extent; 2991 2992 if (full_backref) 2993 parent = buf->start; 2994 else 2995 parent = 0; 2996 2997 for (i = 0; i < nritems; i++) { 2998 if (level == 0) { 2999 btrfs_item_key_to_cpu(buf, &key, i); 3000 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 3001 continue; 3002 fi = btrfs_item_ptr(buf, i, 3003 struct btrfs_file_extent_item); 3004 if (btrfs_file_extent_type(buf, fi) == 3005 BTRFS_FILE_EXTENT_INLINE) 3006 continue; 3007 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3008 if (bytenr == 0) 3009 continue; 3010 3011 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3012 key.offset -= btrfs_file_extent_offset(buf, fi); 3013 ret = process_func(trans, root, bytenr, num_bytes, 3014 parent, ref_root, key.objectid, 3015 key.offset, for_cow); 3016 if (ret) 3017 goto fail; 3018 } else { 3019 bytenr = btrfs_node_blockptr(buf, i); 3020 num_bytes = btrfs_level_size(root, level - 1); 3021 ret = process_func(trans, root, bytenr, num_bytes, 3022 parent, ref_root, level - 1, 0, 3023 for_cow); 3024 if (ret) 3025 goto fail; 3026 } 3027 } 3028 return 0; 3029 fail: 3030 return ret; 3031 } 3032 3033 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3034 struct extent_buffer *buf, int full_backref, int for_cow) 3035 { 3036 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 3037 } 3038 3039 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3040 struct extent_buffer *buf, int full_backref, int for_cow) 3041 { 3042 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 3043 } 3044 3045 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3046 struct btrfs_root *root, 3047 struct btrfs_path *path, 3048 struct btrfs_block_group_cache *cache) 3049 { 3050 int ret; 3051 struct btrfs_root *extent_root = root->fs_info->extent_root; 3052 unsigned long bi; 3053 struct extent_buffer *leaf; 3054 3055 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3056 if (ret < 0) 3057 goto fail; 3058 BUG_ON(ret); /* Corruption */ 3059 3060 leaf = path->nodes[0]; 3061 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3062 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3063 btrfs_mark_buffer_dirty(leaf); 3064 btrfs_release_path(path); 3065 fail: 3066 if (ret) { 3067 btrfs_abort_transaction(trans, root, ret); 3068 return ret; 3069 } 3070 return 0; 3071 3072 } 3073 3074 static struct btrfs_block_group_cache * 3075 next_block_group(struct btrfs_root *root, 3076 struct btrfs_block_group_cache *cache) 3077 { 3078 struct rb_node *node; 3079 spin_lock(&root->fs_info->block_group_cache_lock); 3080 node = rb_next(&cache->cache_node); 3081 btrfs_put_block_group(cache); 3082 if (node) { 3083 cache = rb_entry(node, struct btrfs_block_group_cache, 3084 cache_node); 3085 btrfs_get_block_group(cache); 3086 } else 3087 cache = NULL; 3088 spin_unlock(&root->fs_info->block_group_cache_lock); 3089 return cache; 3090 } 3091 3092 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3093 struct btrfs_trans_handle *trans, 3094 struct btrfs_path *path) 3095 { 3096 struct btrfs_root *root = block_group->fs_info->tree_root; 3097 struct inode *inode = NULL; 3098 u64 alloc_hint = 0; 3099 int dcs = BTRFS_DC_ERROR; 3100 int num_pages = 0; 3101 int retries = 0; 3102 int ret = 0; 3103 3104 /* 3105 * If this block group is smaller than 100 megs don't bother caching the 3106 * block group. 3107 */ 3108 if (block_group->key.offset < (100 * 1024 * 1024)) { 3109 spin_lock(&block_group->lock); 3110 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3111 spin_unlock(&block_group->lock); 3112 return 0; 3113 } 3114 3115 again: 3116 inode = lookup_free_space_inode(root, block_group, path); 3117 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3118 ret = PTR_ERR(inode); 3119 btrfs_release_path(path); 3120 goto out; 3121 } 3122 3123 if (IS_ERR(inode)) { 3124 BUG_ON(retries); 3125 retries++; 3126 3127 if (block_group->ro) 3128 goto out_free; 3129 3130 ret = create_free_space_inode(root, trans, block_group, path); 3131 if (ret) 3132 goto out_free; 3133 goto again; 3134 } 3135 3136 /* We've already setup this transaction, go ahead and exit */ 3137 if (block_group->cache_generation == trans->transid && 3138 i_size_read(inode)) { 3139 dcs = BTRFS_DC_SETUP; 3140 goto out_put; 3141 } 3142 3143 /* 3144 * We want to set the generation to 0, that way if anything goes wrong 3145 * from here on out we know not to trust this cache when we load up next 3146 * time. 3147 */ 3148 BTRFS_I(inode)->generation = 0; 3149 ret = btrfs_update_inode(trans, root, inode); 3150 WARN_ON(ret); 3151 3152 if (i_size_read(inode) > 0) { 3153 ret = btrfs_check_trunc_cache_free_space(root, 3154 &root->fs_info->global_block_rsv); 3155 if (ret) 3156 goto out_put; 3157 3158 ret = btrfs_truncate_free_space_cache(root, trans, inode); 3159 if (ret) 3160 goto out_put; 3161 } 3162 3163 spin_lock(&block_group->lock); 3164 if (block_group->cached != BTRFS_CACHE_FINISHED || 3165 !btrfs_test_opt(root, SPACE_CACHE)) { 3166 /* 3167 * don't bother trying to write stuff out _if_ 3168 * a) we're not cached, 3169 * b) we're with nospace_cache mount option. 3170 */ 3171 dcs = BTRFS_DC_WRITTEN; 3172 spin_unlock(&block_group->lock); 3173 goto out_put; 3174 } 3175 spin_unlock(&block_group->lock); 3176 3177 /* 3178 * Try to preallocate enough space based on how big the block group is. 3179 * Keep in mind this has to include any pinned space which could end up 3180 * taking up quite a bit since it's not folded into the other space 3181 * cache. 3182 */ 3183 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3184 if (!num_pages) 3185 num_pages = 1; 3186 3187 num_pages *= 16; 3188 num_pages *= PAGE_CACHE_SIZE; 3189 3190 ret = btrfs_check_data_free_space(inode, num_pages); 3191 if (ret) 3192 goto out_put; 3193 3194 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3195 num_pages, num_pages, 3196 &alloc_hint); 3197 if (!ret) 3198 dcs = BTRFS_DC_SETUP; 3199 btrfs_free_reserved_data_space(inode, num_pages); 3200 3201 out_put: 3202 iput(inode); 3203 out_free: 3204 btrfs_release_path(path); 3205 out: 3206 spin_lock(&block_group->lock); 3207 if (!ret && dcs == BTRFS_DC_SETUP) 3208 block_group->cache_generation = trans->transid; 3209 block_group->disk_cache_state = dcs; 3210 spin_unlock(&block_group->lock); 3211 3212 return ret; 3213 } 3214 3215 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3216 struct btrfs_root *root) 3217 { 3218 struct btrfs_block_group_cache *cache; 3219 int err = 0; 3220 struct btrfs_path *path; 3221 u64 last = 0; 3222 3223 path = btrfs_alloc_path(); 3224 if (!path) 3225 return -ENOMEM; 3226 3227 again: 3228 while (1) { 3229 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3230 while (cache) { 3231 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3232 break; 3233 cache = next_block_group(root, cache); 3234 } 3235 if (!cache) { 3236 if (last == 0) 3237 break; 3238 last = 0; 3239 continue; 3240 } 3241 err = cache_save_setup(cache, trans, path); 3242 last = cache->key.objectid + cache->key.offset; 3243 btrfs_put_block_group(cache); 3244 } 3245 3246 while (1) { 3247 if (last == 0) { 3248 err = btrfs_run_delayed_refs(trans, root, 3249 (unsigned long)-1); 3250 if (err) /* File system offline */ 3251 goto out; 3252 } 3253 3254 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3255 while (cache) { 3256 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3257 btrfs_put_block_group(cache); 3258 goto again; 3259 } 3260 3261 if (cache->dirty) 3262 break; 3263 cache = next_block_group(root, cache); 3264 } 3265 if (!cache) { 3266 if (last == 0) 3267 break; 3268 last = 0; 3269 continue; 3270 } 3271 3272 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3273 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3274 cache->dirty = 0; 3275 last = cache->key.objectid + cache->key.offset; 3276 3277 err = write_one_cache_group(trans, root, path, cache); 3278 btrfs_put_block_group(cache); 3279 if (err) /* File system offline */ 3280 goto out; 3281 } 3282 3283 while (1) { 3284 /* 3285 * I don't think this is needed since we're just marking our 3286 * preallocated extent as written, but just in case it can't 3287 * hurt. 3288 */ 3289 if (last == 0) { 3290 err = btrfs_run_delayed_refs(trans, root, 3291 (unsigned long)-1); 3292 if (err) /* File system offline */ 3293 goto out; 3294 } 3295 3296 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3297 while (cache) { 3298 /* 3299 * Really this shouldn't happen, but it could if we 3300 * couldn't write the entire preallocated extent and 3301 * splitting the extent resulted in a new block. 3302 */ 3303 if (cache->dirty) { 3304 btrfs_put_block_group(cache); 3305 goto again; 3306 } 3307 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3308 break; 3309 cache = next_block_group(root, cache); 3310 } 3311 if (!cache) { 3312 if (last == 0) 3313 break; 3314 last = 0; 3315 continue; 3316 } 3317 3318 err = btrfs_write_out_cache(root, trans, cache, path); 3319 3320 /* 3321 * If we didn't have an error then the cache state is still 3322 * NEED_WRITE, so we can set it to WRITTEN. 3323 */ 3324 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3325 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3326 last = cache->key.objectid + cache->key.offset; 3327 btrfs_put_block_group(cache); 3328 } 3329 out: 3330 3331 btrfs_free_path(path); 3332 return err; 3333 } 3334 3335 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3336 { 3337 struct btrfs_block_group_cache *block_group; 3338 int readonly = 0; 3339 3340 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3341 if (!block_group || block_group->ro) 3342 readonly = 1; 3343 if (block_group) 3344 btrfs_put_block_group(block_group); 3345 return readonly; 3346 } 3347 3348 static const char *alloc_name(u64 flags) 3349 { 3350 switch (flags) { 3351 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3352 return "mixed"; 3353 case BTRFS_BLOCK_GROUP_METADATA: 3354 return "metadata"; 3355 case BTRFS_BLOCK_GROUP_DATA: 3356 return "data"; 3357 case BTRFS_BLOCK_GROUP_SYSTEM: 3358 return "system"; 3359 default: 3360 WARN_ON(1); 3361 return "invalid-combination"; 3362 }; 3363 } 3364 3365 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3366 u64 total_bytes, u64 bytes_used, 3367 struct btrfs_space_info **space_info) 3368 { 3369 struct btrfs_space_info *found; 3370 int i; 3371 int factor; 3372 int ret; 3373 3374 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3375 BTRFS_BLOCK_GROUP_RAID10)) 3376 factor = 2; 3377 else 3378 factor = 1; 3379 3380 found = __find_space_info(info, flags); 3381 if (found) { 3382 spin_lock(&found->lock); 3383 found->total_bytes += total_bytes; 3384 found->disk_total += total_bytes * factor; 3385 found->bytes_used += bytes_used; 3386 found->disk_used += bytes_used * factor; 3387 found->full = 0; 3388 spin_unlock(&found->lock); 3389 *space_info = found; 3390 return 0; 3391 } 3392 found = kzalloc(sizeof(*found), GFP_NOFS); 3393 if (!found) 3394 return -ENOMEM; 3395 3396 ret = percpu_counter_init(&found->total_bytes_pinned, 0); 3397 if (ret) { 3398 kfree(found); 3399 return ret; 3400 } 3401 3402 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 3403 INIT_LIST_HEAD(&found->block_groups[i]); 3404 kobject_init(&found->block_group_kobjs[i], &btrfs_raid_ktype); 3405 } 3406 init_rwsem(&found->groups_sem); 3407 spin_lock_init(&found->lock); 3408 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3409 found->total_bytes = total_bytes; 3410 found->disk_total = total_bytes * factor; 3411 found->bytes_used = bytes_used; 3412 found->disk_used = bytes_used * factor; 3413 found->bytes_pinned = 0; 3414 found->bytes_reserved = 0; 3415 found->bytes_readonly = 0; 3416 found->bytes_may_use = 0; 3417 found->full = 0; 3418 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3419 found->chunk_alloc = 0; 3420 found->flush = 0; 3421 init_waitqueue_head(&found->wait); 3422 3423 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3424 info->space_info_kobj, "%s", 3425 alloc_name(found->flags)); 3426 if (ret) { 3427 kfree(found); 3428 return ret; 3429 } 3430 3431 *space_info = found; 3432 list_add_rcu(&found->list, &info->space_info); 3433 if (flags & BTRFS_BLOCK_GROUP_DATA) 3434 info->data_sinfo = found; 3435 3436 return ret; 3437 } 3438 3439 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3440 { 3441 u64 extra_flags = chunk_to_extended(flags) & 3442 BTRFS_EXTENDED_PROFILE_MASK; 3443 3444 write_seqlock(&fs_info->profiles_lock); 3445 if (flags & BTRFS_BLOCK_GROUP_DATA) 3446 fs_info->avail_data_alloc_bits |= extra_flags; 3447 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3448 fs_info->avail_metadata_alloc_bits |= extra_flags; 3449 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3450 fs_info->avail_system_alloc_bits |= extra_flags; 3451 write_sequnlock(&fs_info->profiles_lock); 3452 } 3453 3454 /* 3455 * returns target flags in extended format or 0 if restripe for this 3456 * chunk_type is not in progress 3457 * 3458 * should be called with either volume_mutex or balance_lock held 3459 */ 3460 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3461 { 3462 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3463 u64 target = 0; 3464 3465 if (!bctl) 3466 return 0; 3467 3468 if (flags & BTRFS_BLOCK_GROUP_DATA && 3469 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3470 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3471 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3472 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3473 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3474 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3475 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3476 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3477 } 3478 3479 return target; 3480 } 3481 3482 /* 3483 * @flags: available profiles in extended format (see ctree.h) 3484 * 3485 * Returns reduced profile in chunk format. If profile changing is in 3486 * progress (either running or paused) picks the target profile (if it's 3487 * already available), otherwise falls back to plain reducing. 3488 */ 3489 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3490 { 3491 /* 3492 * we add in the count of missing devices because we want 3493 * to make sure that any RAID levels on a degraded FS 3494 * continue to be honored. 3495 */ 3496 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3497 root->fs_info->fs_devices->missing_devices; 3498 u64 target; 3499 u64 tmp; 3500 3501 /* 3502 * see if restripe for this chunk_type is in progress, if so 3503 * try to reduce to the target profile 3504 */ 3505 spin_lock(&root->fs_info->balance_lock); 3506 target = get_restripe_target(root->fs_info, flags); 3507 if (target) { 3508 /* pick target profile only if it's already available */ 3509 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3510 spin_unlock(&root->fs_info->balance_lock); 3511 return extended_to_chunk(target); 3512 } 3513 } 3514 spin_unlock(&root->fs_info->balance_lock); 3515 3516 /* First, mask out the RAID levels which aren't possible */ 3517 if (num_devices == 1) 3518 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3519 BTRFS_BLOCK_GROUP_RAID5); 3520 if (num_devices < 3) 3521 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3522 if (num_devices < 4) 3523 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3524 3525 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3526 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3527 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3528 flags &= ~tmp; 3529 3530 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3531 tmp = BTRFS_BLOCK_GROUP_RAID6; 3532 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3533 tmp = BTRFS_BLOCK_GROUP_RAID5; 3534 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3535 tmp = BTRFS_BLOCK_GROUP_RAID10; 3536 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3537 tmp = BTRFS_BLOCK_GROUP_RAID1; 3538 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3539 tmp = BTRFS_BLOCK_GROUP_RAID0; 3540 3541 return extended_to_chunk(flags | tmp); 3542 } 3543 3544 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3545 { 3546 unsigned seq; 3547 3548 do { 3549 seq = read_seqbegin(&root->fs_info->profiles_lock); 3550 3551 if (flags & BTRFS_BLOCK_GROUP_DATA) 3552 flags |= root->fs_info->avail_data_alloc_bits; 3553 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3554 flags |= root->fs_info->avail_system_alloc_bits; 3555 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3556 flags |= root->fs_info->avail_metadata_alloc_bits; 3557 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3558 3559 return btrfs_reduce_alloc_profile(root, flags); 3560 } 3561 3562 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3563 { 3564 u64 flags; 3565 u64 ret; 3566 3567 if (data) 3568 flags = BTRFS_BLOCK_GROUP_DATA; 3569 else if (root == root->fs_info->chunk_root) 3570 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3571 else 3572 flags = BTRFS_BLOCK_GROUP_METADATA; 3573 3574 ret = get_alloc_profile(root, flags); 3575 return ret; 3576 } 3577 3578 /* 3579 * This will check the space that the inode allocates from to make sure we have 3580 * enough space for bytes. 3581 */ 3582 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3583 { 3584 struct btrfs_space_info *data_sinfo; 3585 struct btrfs_root *root = BTRFS_I(inode)->root; 3586 struct btrfs_fs_info *fs_info = root->fs_info; 3587 u64 used; 3588 int ret = 0, committed = 0, alloc_chunk = 1; 3589 3590 /* make sure bytes are sectorsize aligned */ 3591 bytes = ALIGN(bytes, root->sectorsize); 3592 3593 if (btrfs_is_free_space_inode(inode)) { 3594 committed = 1; 3595 ASSERT(current->journal_info); 3596 } 3597 3598 data_sinfo = fs_info->data_sinfo; 3599 if (!data_sinfo) 3600 goto alloc; 3601 3602 again: 3603 /* make sure we have enough space to handle the data first */ 3604 spin_lock(&data_sinfo->lock); 3605 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3606 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3607 data_sinfo->bytes_may_use; 3608 3609 if (used + bytes > data_sinfo->total_bytes) { 3610 struct btrfs_trans_handle *trans; 3611 3612 /* 3613 * if we don't have enough free bytes in this space then we need 3614 * to alloc a new chunk. 3615 */ 3616 if (!data_sinfo->full && alloc_chunk) { 3617 u64 alloc_target; 3618 3619 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3620 spin_unlock(&data_sinfo->lock); 3621 alloc: 3622 alloc_target = btrfs_get_alloc_profile(root, 1); 3623 /* 3624 * It is ugly that we don't call nolock join 3625 * transaction for the free space inode case here. 3626 * But it is safe because we only do the data space 3627 * reservation for the free space cache in the 3628 * transaction context, the common join transaction 3629 * just increase the counter of the current transaction 3630 * handler, doesn't try to acquire the trans_lock of 3631 * the fs. 3632 */ 3633 trans = btrfs_join_transaction(root); 3634 if (IS_ERR(trans)) 3635 return PTR_ERR(trans); 3636 3637 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3638 alloc_target, 3639 CHUNK_ALLOC_NO_FORCE); 3640 btrfs_end_transaction(trans, root); 3641 if (ret < 0) { 3642 if (ret != -ENOSPC) 3643 return ret; 3644 else 3645 goto commit_trans; 3646 } 3647 3648 if (!data_sinfo) 3649 data_sinfo = fs_info->data_sinfo; 3650 3651 goto again; 3652 } 3653 3654 /* 3655 * If we don't have enough pinned space to deal with this 3656 * allocation don't bother committing the transaction. 3657 */ 3658 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3659 bytes) < 0) 3660 committed = 1; 3661 spin_unlock(&data_sinfo->lock); 3662 3663 /* commit the current transaction and try again */ 3664 commit_trans: 3665 if (!committed && 3666 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3667 committed = 1; 3668 3669 trans = btrfs_join_transaction(root); 3670 if (IS_ERR(trans)) 3671 return PTR_ERR(trans); 3672 ret = btrfs_commit_transaction(trans, root); 3673 if (ret) 3674 return ret; 3675 goto again; 3676 } 3677 3678 trace_btrfs_space_reservation(root->fs_info, 3679 "space_info:enospc", 3680 data_sinfo->flags, bytes, 1); 3681 return -ENOSPC; 3682 } 3683 data_sinfo->bytes_may_use += bytes; 3684 trace_btrfs_space_reservation(root->fs_info, "space_info", 3685 data_sinfo->flags, bytes, 1); 3686 spin_unlock(&data_sinfo->lock); 3687 3688 return 0; 3689 } 3690 3691 /* 3692 * Called if we need to clear a data reservation for this inode. 3693 */ 3694 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3695 { 3696 struct btrfs_root *root = BTRFS_I(inode)->root; 3697 struct btrfs_space_info *data_sinfo; 3698 3699 /* make sure bytes are sectorsize aligned */ 3700 bytes = ALIGN(bytes, root->sectorsize); 3701 3702 data_sinfo = root->fs_info->data_sinfo; 3703 spin_lock(&data_sinfo->lock); 3704 WARN_ON(data_sinfo->bytes_may_use < bytes); 3705 data_sinfo->bytes_may_use -= bytes; 3706 trace_btrfs_space_reservation(root->fs_info, "space_info", 3707 data_sinfo->flags, bytes, 0); 3708 spin_unlock(&data_sinfo->lock); 3709 } 3710 3711 static void force_metadata_allocation(struct btrfs_fs_info *info) 3712 { 3713 struct list_head *head = &info->space_info; 3714 struct btrfs_space_info *found; 3715 3716 rcu_read_lock(); 3717 list_for_each_entry_rcu(found, head, list) { 3718 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3719 found->force_alloc = CHUNK_ALLOC_FORCE; 3720 } 3721 rcu_read_unlock(); 3722 } 3723 3724 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3725 { 3726 return (global->size << 1); 3727 } 3728 3729 static int should_alloc_chunk(struct btrfs_root *root, 3730 struct btrfs_space_info *sinfo, int force) 3731 { 3732 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3733 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3734 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3735 u64 thresh; 3736 3737 if (force == CHUNK_ALLOC_FORCE) 3738 return 1; 3739 3740 /* 3741 * We need to take into account the global rsv because for all intents 3742 * and purposes it's used space. Don't worry about locking the 3743 * global_rsv, it doesn't change except when the transaction commits. 3744 */ 3745 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3746 num_allocated += calc_global_rsv_need_space(global_rsv); 3747 3748 /* 3749 * in limited mode, we want to have some free space up to 3750 * about 1% of the FS size. 3751 */ 3752 if (force == CHUNK_ALLOC_LIMITED) { 3753 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3754 thresh = max_t(u64, 64 * 1024 * 1024, 3755 div_factor_fine(thresh, 1)); 3756 3757 if (num_bytes - num_allocated < thresh) 3758 return 1; 3759 } 3760 3761 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3762 return 0; 3763 return 1; 3764 } 3765 3766 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3767 { 3768 u64 num_dev; 3769 3770 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3771 BTRFS_BLOCK_GROUP_RAID0 | 3772 BTRFS_BLOCK_GROUP_RAID5 | 3773 BTRFS_BLOCK_GROUP_RAID6)) 3774 num_dev = root->fs_info->fs_devices->rw_devices; 3775 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3776 num_dev = 2; 3777 else 3778 num_dev = 1; /* DUP or single */ 3779 3780 /* metadata for updaing devices and chunk tree */ 3781 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3782 } 3783 3784 static void check_system_chunk(struct btrfs_trans_handle *trans, 3785 struct btrfs_root *root, u64 type) 3786 { 3787 struct btrfs_space_info *info; 3788 u64 left; 3789 u64 thresh; 3790 3791 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3792 spin_lock(&info->lock); 3793 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3794 info->bytes_reserved - info->bytes_readonly; 3795 spin_unlock(&info->lock); 3796 3797 thresh = get_system_chunk_thresh(root, type); 3798 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3799 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3800 left, thresh, type); 3801 dump_space_info(info, 0, 0); 3802 } 3803 3804 if (left < thresh) { 3805 u64 flags; 3806 3807 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3808 btrfs_alloc_chunk(trans, root, flags); 3809 } 3810 } 3811 3812 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3813 struct btrfs_root *extent_root, u64 flags, int force) 3814 { 3815 struct btrfs_space_info *space_info; 3816 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3817 int wait_for_alloc = 0; 3818 int ret = 0; 3819 3820 /* Don't re-enter if we're already allocating a chunk */ 3821 if (trans->allocating_chunk) 3822 return -ENOSPC; 3823 3824 space_info = __find_space_info(extent_root->fs_info, flags); 3825 if (!space_info) { 3826 ret = update_space_info(extent_root->fs_info, flags, 3827 0, 0, &space_info); 3828 BUG_ON(ret); /* -ENOMEM */ 3829 } 3830 BUG_ON(!space_info); /* Logic error */ 3831 3832 again: 3833 spin_lock(&space_info->lock); 3834 if (force < space_info->force_alloc) 3835 force = space_info->force_alloc; 3836 if (space_info->full) { 3837 if (should_alloc_chunk(extent_root, space_info, force)) 3838 ret = -ENOSPC; 3839 else 3840 ret = 0; 3841 spin_unlock(&space_info->lock); 3842 return ret; 3843 } 3844 3845 if (!should_alloc_chunk(extent_root, space_info, force)) { 3846 spin_unlock(&space_info->lock); 3847 return 0; 3848 } else if (space_info->chunk_alloc) { 3849 wait_for_alloc = 1; 3850 } else { 3851 space_info->chunk_alloc = 1; 3852 } 3853 3854 spin_unlock(&space_info->lock); 3855 3856 mutex_lock(&fs_info->chunk_mutex); 3857 3858 /* 3859 * The chunk_mutex is held throughout the entirety of a chunk 3860 * allocation, so once we've acquired the chunk_mutex we know that the 3861 * other guy is done and we need to recheck and see if we should 3862 * allocate. 3863 */ 3864 if (wait_for_alloc) { 3865 mutex_unlock(&fs_info->chunk_mutex); 3866 wait_for_alloc = 0; 3867 goto again; 3868 } 3869 3870 trans->allocating_chunk = true; 3871 3872 /* 3873 * If we have mixed data/metadata chunks we want to make sure we keep 3874 * allocating mixed chunks instead of individual chunks. 3875 */ 3876 if (btrfs_mixed_space_info(space_info)) 3877 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3878 3879 /* 3880 * if we're doing a data chunk, go ahead and make sure that 3881 * we keep a reasonable number of metadata chunks allocated in the 3882 * FS as well. 3883 */ 3884 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3885 fs_info->data_chunk_allocations++; 3886 if (!(fs_info->data_chunk_allocations % 3887 fs_info->metadata_ratio)) 3888 force_metadata_allocation(fs_info); 3889 } 3890 3891 /* 3892 * Check if we have enough space in SYSTEM chunk because we may need 3893 * to update devices. 3894 */ 3895 check_system_chunk(trans, extent_root, flags); 3896 3897 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3898 trans->allocating_chunk = false; 3899 3900 spin_lock(&space_info->lock); 3901 if (ret < 0 && ret != -ENOSPC) 3902 goto out; 3903 if (ret) 3904 space_info->full = 1; 3905 else 3906 ret = 1; 3907 3908 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3909 out: 3910 space_info->chunk_alloc = 0; 3911 spin_unlock(&space_info->lock); 3912 mutex_unlock(&fs_info->chunk_mutex); 3913 return ret; 3914 } 3915 3916 static int can_overcommit(struct btrfs_root *root, 3917 struct btrfs_space_info *space_info, u64 bytes, 3918 enum btrfs_reserve_flush_enum flush) 3919 { 3920 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3921 u64 profile = btrfs_get_alloc_profile(root, 0); 3922 u64 space_size; 3923 u64 avail; 3924 u64 used; 3925 3926 used = space_info->bytes_used + space_info->bytes_reserved + 3927 space_info->bytes_pinned + space_info->bytes_readonly; 3928 3929 /* 3930 * We only want to allow over committing if we have lots of actual space 3931 * free, but if we don't have enough space to handle the global reserve 3932 * space then we could end up having a real enospc problem when trying 3933 * to allocate a chunk or some other such important allocation. 3934 */ 3935 spin_lock(&global_rsv->lock); 3936 space_size = calc_global_rsv_need_space(global_rsv); 3937 spin_unlock(&global_rsv->lock); 3938 if (used + space_size >= space_info->total_bytes) 3939 return 0; 3940 3941 used += space_info->bytes_may_use; 3942 3943 spin_lock(&root->fs_info->free_chunk_lock); 3944 avail = root->fs_info->free_chunk_space; 3945 spin_unlock(&root->fs_info->free_chunk_lock); 3946 3947 /* 3948 * If we have dup, raid1 or raid10 then only half of the free 3949 * space is actually useable. For raid56, the space info used 3950 * doesn't include the parity drive, so we don't have to 3951 * change the math 3952 */ 3953 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3954 BTRFS_BLOCK_GROUP_RAID1 | 3955 BTRFS_BLOCK_GROUP_RAID10)) 3956 avail >>= 1; 3957 3958 /* 3959 * If we aren't flushing all things, let us overcommit up to 3960 * 1/2th of the space. If we can flush, don't let us overcommit 3961 * too much, let it overcommit up to 1/8 of the space. 3962 */ 3963 if (flush == BTRFS_RESERVE_FLUSH_ALL) 3964 avail >>= 3; 3965 else 3966 avail >>= 1; 3967 3968 if (used + bytes < space_info->total_bytes + avail) 3969 return 1; 3970 return 0; 3971 } 3972 3973 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 3974 unsigned long nr_pages) 3975 { 3976 struct super_block *sb = root->fs_info->sb; 3977 3978 if (down_read_trylock(&sb->s_umount)) { 3979 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 3980 up_read(&sb->s_umount); 3981 } else { 3982 /* 3983 * We needn't worry the filesystem going from r/w to r/o though 3984 * we don't acquire ->s_umount mutex, because the filesystem 3985 * should guarantee the delalloc inodes list be empty after 3986 * the filesystem is readonly(all dirty pages are written to 3987 * the disk). 3988 */ 3989 btrfs_start_delalloc_roots(root->fs_info, 0); 3990 if (!current->journal_info) 3991 btrfs_wait_ordered_roots(root->fs_info, -1); 3992 } 3993 } 3994 3995 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 3996 { 3997 u64 bytes; 3998 int nr; 3999 4000 bytes = btrfs_calc_trans_metadata_size(root, 1); 4001 nr = (int)div64_u64(to_reclaim, bytes); 4002 if (!nr) 4003 nr = 1; 4004 return nr; 4005 } 4006 4007 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4008 4009 /* 4010 * shrink metadata reservation for delalloc 4011 */ 4012 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4013 bool wait_ordered) 4014 { 4015 struct btrfs_block_rsv *block_rsv; 4016 struct btrfs_space_info *space_info; 4017 struct btrfs_trans_handle *trans; 4018 u64 delalloc_bytes; 4019 u64 max_reclaim; 4020 long time_left; 4021 unsigned long nr_pages; 4022 int loops; 4023 int items; 4024 enum btrfs_reserve_flush_enum flush; 4025 4026 /* Calc the number of the pages we need flush for space reservation */ 4027 items = calc_reclaim_items_nr(root, to_reclaim); 4028 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4029 4030 trans = (struct btrfs_trans_handle *)current->journal_info; 4031 block_rsv = &root->fs_info->delalloc_block_rsv; 4032 space_info = block_rsv->space_info; 4033 4034 delalloc_bytes = percpu_counter_sum_positive( 4035 &root->fs_info->delalloc_bytes); 4036 if (delalloc_bytes == 0) { 4037 if (trans) 4038 return; 4039 if (wait_ordered) 4040 btrfs_wait_ordered_roots(root->fs_info, items); 4041 return; 4042 } 4043 4044 loops = 0; 4045 while (delalloc_bytes && loops < 3) { 4046 max_reclaim = min(delalloc_bytes, to_reclaim); 4047 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4048 btrfs_writeback_inodes_sb_nr(root, nr_pages); 4049 /* 4050 * We need to wait for the async pages to actually start before 4051 * we do anything. 4052 */ 4053 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4054 if (!max_reclaim) 4055 goto skip_async; 4056 4057 if (max_reclaim <= nr_pages) 4058 max_reclaim = 0; 4059 else 4060 max_reclaim -= nr_pages; 4061 4062 wait_event(root->fs_info->async_submit_wait, 4063 atomic_read(&root->fs_info->async_delalloc_pages) <= 4064 (int)max_reclaim); 4065 skip_async: 4066 if (!trans) 4067 flush = BTRFS_RESERVE_FLUSH_ALL; 4068 else 4069 flush = BTRFS_RESERVE_NO_FLUSH; 4070 spin_lock(&space_info->lock); 4071 if (can_overcommit(root, space_info, orig, flush)) { 4072 spin_unlock(&space_info->lock); 4073 break; 4074 } 4075 spin_unlock(&space_info->lock); 4076 4077 loops++; 4078 if (wait_ordered && !trans) { 4079 btrfs_wait_ordered_roots(root->fs_info, items); 4080 } else { 4081 time_left = schedule_timeout_killable(1); 4082 if (time_left) 4083 break; 4084 } 4085 delalloc_bytes = percpu_counter_sum_positive( 4086 &root->fs_info->delalloc_bytes); 4087 } 4088 } 4089 4090 /** 4091 * maybe_commit_transaction - possibly commit the transaction if its ok to 4092 * @root - the root we're allocating for 4093 * @bytes - the number of bytes we want to reserve 4094 * @force - force the commit 4095 * 4096 * This will check to make sure that committing the transaction will actually 4097 * get us somewhere and then commit the transaction if it does. Otherwise it 4098 * will return -ENOSPC. 4099 */ 4100 static int may_commit_transaction(struct btrfs_root *root, 4101 struct btrfs_space_info *space_info, 4102 u64 bytes, int force) 4103 { 4104 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4105 struct btrfs_trans_handle *trans; 4106 4107 trans = (struct btrfs_trans_handle *)current->journal_info; 4108 if (trans) 4109 return -EAGAIN; 4110 4111 if (force) 4112 goto commit; 4113 4114 /* See if there is enough pinned space to make this reservation */ 4115 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4116 bytes) >= 0) 4117 goto commit; 4118 4119 /* 4120 * See if there is some space in the delayed insertion reservation for 4121 * this reservation. 4122 */ 4123 if (space_info != delayed_rsv->space_info) 4124 return -ENOSPC; 4125 4126 spin_lock(&delayed_rsv->lock); 4127 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4128 bytes - delayed_rsv->size) >= 0) { 4129 spin_unlock(&delayed_rsv->lock); 4130 return -ENOSPC; 4131 } 4132 spin_unlock(&delayed_rsv->lock); 4133 4134 commit: 4135 trans = btrfs_join_transaction(root); 4136 if (IS_ERR(trans)) 4137 return -ENOSPC; 4138 4139 return btrfs_commit_transaction(trans, root); 4140 } 4141 4142 enum flush_state { 4143 FLUSH_DELAYED_ITEMS_NR = 1, 4144 FLUSH_DELAYED_ITEMS = 2, 4145 FLUSH_DELALLOC = 3, 4146 FLUSH_DELALLOC_WAIT = 4, 4147 ALLOC_CHUNK = 5, 4148 COMMIT_TRANS = 6, 4149 }; 4150 4151 static int flush_space(struct btrfs_root *root, 4152 struct btrfs_space_info *space_info, u64 num_bytes, 4153 u64 orig_bytes, int state) 4154 { 4155 struct btrfs_trans_handle *trans; 4156 int nr; 4157 int ret = 0; 4158 4159 switch (state) { 4160 case FLUSH_DELAYED_ITEMS_NR: 4161 case FLUSH_DELAYED_ITEMS: 4162 if (state == FLUSH_DELAYED_ITEMS_NR) 4163 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4164 else 4165 nr = -1; 4166 4167 trans = btrfs_join_transaction(root); 4168 if (IS_ERR(trans)) { 4169 ret = PTR_ERR(trans); 4170 break; 4171 } 4172 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4173 btrfs_end_transaction(trans, root); 4174 break; 4175 case FLUSH_DELALLOC: 4176 case FLUSH_DELALLOC_WAIT: 4177 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4178 state == FLUSH_DELALLOC_WAIT); 4179 break; 4180 case ALLOC_CHUNK: 4181 trans = btrfs_join_transaction(root); 4182 if (IS_ERR(trans)) { 4183 ret = PTR_ERR(trans); 4184 break; 4185 } 4186 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4187 btrfs_get_alloc_profile(root, 0), 4188 CHUNK_ALLOC_NO_FORCE); 4189 btrfs_end_transaction(trans, root); 4190 if (ret == -ENOSPC) 4191 ret = 0; 4192 break; 4193 case COMMIT_TRANS: 4194 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4195 break; 4196 default: 4197 ret = -ENOSPC; 4198 break; 4199 } 4200 4201 return ret; 4202 } 4203 /** 4204 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4205 * @root - the root we're allocating for 4206 * @block_rsv - the block_rsv we're allocating for 4207 * @orig_bytes - the number of bytes we want 4208 * @flush - whether or not we can flush to make our reservation 4209 * 4210 * This will reserve orgi_bytes number of bytes from the space info associated 4211 * with the block_rsv. If there is not enough space it will make an attempt to 4212 * flush out space to make room. It will do this by flushing delalloc if 4213 * possible or committing the transaction. If flush is 0 then no attempts to 4214 * regain reservations will be made and this will fail if there is not enough 4215 * space already. 4216 */ 4217 static int reserve_metadata_bytes(struct btrfs_root *root, 4218 struct btrfs_block_rsv *block_rsv, 4219 u64 orig_bytes, 4220 enum btrfs_reserve_flush_enum flush) 4221 { 4222 struct btrfs_space_info *space_info = block_rsv->space_info; 4223 u64 used; 4224 u64 num_bytes = orig_bytes; 4225 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4226 int ret = 0; 4227 bool flushing = false; 4228 4229 again: 4230 ret = 0; 4231 spin_lock(&space_info->lock); 4232 /* 4233 * We only want to wait if somebody other than us is flushing and we 4234 * are actually allowed to flush all things. 4235 */ 4236 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4237 space_info->flush) { 4238 spin_unlock(&space_info->lock); 4239 /* 4240 * If we have a trans handle we can't wait because the flusher 4241 * may have to commit the transaction, which would mean we would 4242 * deadlock since we are waiting for the flusher to finish, but 4243 * hold the current transaction open. 4244 */ 4245 if (current->journal_info) 4246 return -EAGAIN; 4247 ret = wait_event_killable(space_info->wait, !space_info->flush); 4248 /* Must have been killed, return */ 4249 if (ret) 4250 return -EINTR; 4251 4252 spin_lock(&space_info->lock); 4253 } 4254 4255 ret = -ENOSPC; 4256 used = space_info->bytes_used + space_info->bytes_reserved + 4257 space_info->bytes_pinned + space_info->bytes_readonly + 4258 space_info->bytes_may_use; 4259 4260 /* 4261 * The idea here is that we've not already over-reserved the block group 4262 * then we can go ahead and save our reservation first and then start 4263 * flushing if we need to. Otherwise if we've already overcommitted 4264 * lets start flushing stuff first and then come back and try to make 4265 * our reservation. 4266 */ 4267 if (used <= space_info->total_bytes) { 4268 if (used + orig_bytes <= space_info->total_bytes) { 4269 space_info->bytes_may_use += orig_bytes; 4270 trace_btrfs_space_reservation(root->fs_info, 4271 "space_info", space_info->flags, orig_bytes, 1); 4272 ret = 0; 4273 } else { 4274 /* 4275 * Ok set num_bytes to orig_bytes since we aren't 4276 * overocmmitted, this way we only try and reclaim what 4277 * we need. 4278 */ 4279 num_bytes = orig_bytes; 4280 } 4281 } else { 4282 /* 4283 * Ok we're over committed, set num_bytes to the overcommitted 4284 * amount plus the amount of bytes that we need for this 4285 * reservation. 4286 */ 4287 num_bytes = used - space_info->total_bytes + 4288 (orig_bytes * 2); 4289 } 4290 4291 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4292 space_info->bytes_may_use += orig_bytes; 4293 trace_btrfs_space_reservation(root->fs_info, "space_info", 4294 space_info->flags, orig_bytes, 4295 1); 4296 ret = 0; 4297 } 4298 4299 /* 4300 * Couldn't make our reservation, save our place so while we're trying 4301 * to reclaim space we can actually use it instead of somebody else 4302 * stealing it from us. 4303 * 4304 * We make the other tasks wait for the flush only when we can flush 4305 * all things. 4306 */ 4307 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4308 flushing = true; 4309 space_info->flush = 1; 4310 } 4311 4312 spin_unlock(&space_info->lock); 4313 4314 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4315 goto out; 4316 4317 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4318 flush_state); 4319 flush_state++; 4320 4321 /* 4322 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4323 * would happen. So skip delalloc flush. 4324 */ 4325 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4326 (flush_state == FLUSH_DELALLOC || 4327 flush_state == FLUSH_DELALLOC_WAIT)) 4328 flush_state = ALLOC_CHUNK; 4329 4330 if (!ret) 4331 goto again; 4332 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4333 flush_state < COMMIT_TRANS) 4334 goto again; 4335 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4336 flush_state <= COMMIT_TRANS) 4337 goto again; 4338 4339 out: 4340 if (ret == -ENOSPC && 4341 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4342 struct btrfs_block_rsv *global_rsv = 4343 &root->fs_info->global_block_rsv; 4344 4345 if (block_rsv != global_rsv && 4346 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4347 ret = 0; 4348 } 4349 if (ret == -ENOSPC) 4350 trace_btrfs_space_reservation(root->fs_info, 4351 "space_info:enospc", 4352 space_info->flags, orig_bytes, 1); 4353 if (flushing) { 4354 spin_lock(&space_info->lock); 4355 space_info->flush = 0; 4356 wake_up_all(&space_info->wait); 4357 spin_unlock(&space_info->lock); 4358 } 4359 return ret; 4360 } 4361 4362 static struct btrfs_block_rsv *get_block_rsv( 4363 const struct btrfs_trans_handle *trans, 4364 const struct btrfs_root *root) 4365 { 4366 struct btrfs_block_rsv *block_rsv = NULL; 4367 4368 if (root->ref_cows) 4369 block_rsv = trans->block_rsv; 4370 4371 if (root == root->fs_info->csum_root && trans->adding_csums) 4372 block_rsv = trans->block_rsv; 4373 4374 if (root == root->fs_info->uuid_root) 4375 block_rsv = trans->block_rsv; 4376 4377 if (!block_rsv) 4378 block_rsv = root->block_rsv; 4379 4380 if (!block_rsv) 4381 block_rsv = &root->fs_info->empty_block_rsv; 4382 4383 return block_rsv; 4384 } 4385 4386 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4387 u64 num_bytes) 4388 { 4389 int ret = -ENOSPC; 4390 spin_lock(&block_rsv->lock); 4391 if (block_rsv->reserved >= num_bytes) { 4392 block_rsv->reserved -= num_bytes; 4393 if (block_rsv->reserved < block_rsv->size) 4394 block_rsv->full = 0; 4395 ret = 0; 4396 } 4397 spin_unlock(&block_rsv->lock); 4398 return ret; 4399 } 4400 4401 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4402 u64 num_bytes, int update_size) 4403 { 4404 spin_lock(&block_rsv->lock); 4405 block_rsv->reserved += num_bytes; 4406 if (update_size) 4407 block_rsv->size += num_bytes; 4408 else if (block_rsv->reserved >= block_rsv->size) 4409 block_rsv->full = 1; 4410 spin_unlock(&block_rsv->lock); 4411 } 4412 4413 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4414 struct btrfs_block_rsv *dest, u64 num_bytes, 4415 int min_factor) 4416 { 4417 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4418 u64 min_bytes; 4419 4420 if (global_rsv->space_info != dest->space_info) 4421 return -ENOSPC; 4422 4423 spin_lock(&global_rsv->lock); 4424 min_bytes = div_factor(global_rsv->size, min_factor); 4425 if (global_rsv->reserved < min_bytes + num_bytes) { 4426 spin_unlock(&global_rsv->lock); 4427 return -ENOSPC; 4428 } 4429 global_rsv->reserved -= num_bytes; 4430 if (global_rsv->reserved < global_rsv->size) 4431 global_rsv->full = 0; 4432 spin_unlock(&global_rsv->lock); 4433 4434 block_rsv_add_bytes(dest, num_bytes, 1); 4435 return 0; 4436 } 4437 4438 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4439 struct btrfs_block_rsv *block_rsv, 4440 struct btrfs_block_rsv *dest, u64 num_bytes) 4441 { 4442 struct btrfs_space_info *space_info = block_rsv->space_info; 4443 4444 spin_lock(&block_rsv->lock); 4445 if (num_bytes == (u64)-1) 4446 num_bytes = block_rsv->size; 4447 block_rsv->size -= num_bytes; 4448 if (block_rsv->reserved >= block_rsv->size) { 4449 num_bytes = block_rsv->reserved - block_rsv->size; 4450 block_rsv->reserved = block_rsv->size; 4451 block_rsv->full = 1; 4452 } else { 4453 num_bytes = 0; 4454 } 4455 spin_unlock(&block_rsv->lock); 4456 4457 if (num_bytes > 0) { 4458 if (dest) { 4459 spin_lock(&dest->lock); 4460 if (!dest->full) { 4461 u64 bytes_to_add; 4462 4463 bytes_to_add = dest->size - dest->reserved; 4464 bytes_to_add = min(num_bytes, bytes_to_add); 4465 dest->reserved += bytes_to_add; 4466 if (dest->reserved >= dest->size) 4467 dest->full = 1; 4468 num_bytes -= bytes_to_add; 4469 } 4470 spin_unlock(&dest->lock); 4471 } 4472 if (num_bytes) { 4473 spin_lock(&space_info->lock); 4474 space_info->bytes_may_use -= num_bytes; 4475 trace_btrfs_space_reservation(fs_info, "space_info", 4476 space_info->flags, num_bytes, 0); 4477 spin_unlock(&space_info->lock); 4478 } 4479 } 4480 } 4481 4482 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4483 struct btrfs_block_rsv *dst, u64 num_bytes) 4484 { 4485 int ret; 4486 4487 ret = block_rsv_use_bytes(src, num_bytes); 4488 if (ret) 4489 return ret; 4490 4491 block_rsv_add_bytes(dst, num_bytes, 1); 4492 return 0; 4493 } 4494 4495 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4496 { 4497 memset(rsv, 0, sizeof(*rsv)); 4498 spin_lock_init(&rsv->lock); 4499 rsv->type = type; 4500 } 4501 4502 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4503 unsigned short type) 4504 { 4505 struct btrfs_block_rsv *block_rsv; 4506 struct btrfs_fs_info *fs_info = root->fs_info; 4507 4508 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4509 if (!block_rsv) 4510 return NULL; 4511 4512 btrfs_init_block_rsv(block_rsv, type); 4513 block_rsv->space_info = __find_space_info(fs_info, 4514 BTRFS_BLOCK_GROUP_METADATA); 4515 return block_rsv; 4516 } 4517 4518 void btrfs_free_block_rsv(struct btrfs_root *root, 4519 struct btrfs_block_rsv *rsv) 4520 { 4521 if (!rsv) 4522 return; 4523 btrfs_block_rsv_release(root, rsv, (u64)-1); 4524 kfree(rsv); 4525 } 4526 4527 int btrfs_block_rsv_add(struct btrfs_root *root, 4528 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4529 enum btrfs_reserve_flush_enum flush) 4530 { 4531 int ret; 4532 4533 if (num_bytes == 0) 4534 return 0; 4535 4536 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4537 if (!ret) { 4538 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4539 return 0; 4540 } 4541 4542 return ret; 4543 } 4544 4545 int btrfs_block_rsv_check(struct btrfs_root *root, 4546 struct btrfs_block_rsv *block_rsv, int min_factor) 4547 { 4548 u64 num_bytes = 0; 4549 int ret = -ENOSPC; 4550 4551 if (!block_rsv) 4552 return 0; 4553 4554 spin_lock(&block_rsv->lock); 4555 num_bytes = div_factor(block_rsv->size, min_factor); 4556 if (block_rsv->reserved >= num_bytes) 4557 ret = 0; 4558 spin_unlock(&block_rsv->lock); 4559 4560 return ret; 4561 } 4562 4563 int btrfs_block_rsv_refill(struct btrfs_root *root, 4564 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4565 enum btrfs_reserve_flush_enum flush) 4566 { 4567 u64 num_bytes = 0; 4568 int ret = -ENOSPC; 4569 4570 if (!block_rsv) 4571 return 0; 4572 4573 spin_lock(&block_rsv->lock); 4574 num_bytes = min_reserved; 4575 if (block_rsv->reserved >= num_bytes) 4576 ret = 0; 4577 else 4578 num_bytes -= block_rsv->reserved; 4579 spin_unlock(&block_rsv->lock); 4580 4581 if (!ret) 4582 return 0; 4583 4584 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4585 if (!ret) { 4586 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4587 return 0; 4588 } 4589 4590 return ret; 4591 } 4592 4593 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4594 struct btrfs_block_rsv *dst_rsv, 4595 u64 num_bytes) 4596 { 4597 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4598 } 4599 4600 void btrfs_block_rsv_release(struct btrfs_root *root, 4601 struct btrfs_block_rsv *block_rsv, 4602 u64 num_bytes) 4603 { 4604 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4605 if (global_rsv == block_rsv || 4606 block_rsv->space_info != global_rsv->space_info) 4607 global_rsv = NULL; 4608 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4609 num_bytes); 4610 } 4611 4612 /* 4613 * helper to calculate size of global block reservation. 4614 * the desired value is sum of space used by extent tree, 4615 * checksum tree and root tree 4616 */ 4617 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4618 { 4619 struct btrfs_space_info *sinfo; 4620 u64 num_bytes; 4621 u64 meta_used; 4622 u64 data_used; 4623 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4624 4625 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4626 spin_lock(&sinfo->lock); 4627 data_used = sinfo->bytes_used; 4628 spin_unlock(&sinfo->lock); 4629 4630 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4631 spin_lock(&sinfo->lock); 4632 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4633 data_used = 0; 4634 meta_used = sinfo->bytes_used; 4635 spin_unlock(&sinfo->lock); 4636 4637 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4638 csum_size * 2; 4639 num_bytes += div64_u64(data_used + meta_used, 50); 4640 4641 if (num_bytes * 3 > meta_used) 4642 num_bytes = div64_u64(meta_used, 3); 4643 4644 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4645 } 4646 4647 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4648 { 4649 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4650 struct btrfs_space_info *sinfo = block_rsv->space_info; 4651 u64 num_bytes; 4652 4653 num_bytes = calc_global_metadata_size(fs_info); 4654 4655 spin_lock(&sinfo->lock); 4656 spin_lock(&block_rsv->lock); 4657 4658 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4659 4660 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4661 sinfo->bytes_reserved + sinfo->bytes_readonly + 4662 sinfo->bytes_may_use; 4663 4664 if (sinfo->total_bytes > num_bytes) { 4665 num_bytes = sinfo->total_bytes - num_bytes; 4666 block_rsv->reserved += num_bytes; 4667 sinfo->bytes_may_use += num_bytes; 4668 trace_btrfs_space_reservation(fs_info, "space_info", 4669 sinfo->flags, num_bytes, 1); 4670 } 4671 4672 if (block_rsv->reserved >= block_rsv->size) { 4673 num_bytes = block_rsv->reserved - block_rsv->size; 4674 sinfo->bytes_may_use -= num_bytes; 4675 trace_btrfs_space_reservation(fs_info, "space_info", 4676 sinfo->flags, num_bytes, 0); 4677 block_rsv->reserved = block_rsv->size; 4678 block_rsv->full = 1; 4679 } 4680 4681 spin_unlock(&block_rsv->lock); 4682 spin_unlock(&sinfo->lock); 4683 } 4684 4685 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4686 { 4687 struct btrfs_space_info *space_info; 4688 4689 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4690 fs_info->chunk_block_rsv.space_info = space_info; 4691 4692 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4693 fs_info->global_block_rsv.space_info = space_info; 4694 fs_info->delalloc_block_rsv.space_info = space_info; 4695 fs_info->trans_block_rsv.space_info = space_info; 4696 fs_info->empty_block_rsv.space_info = space_info; 4697 fs_info->delayed_block_rsv.space_info = space_info; 4698 4699 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4700 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4701 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4702 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4703 if (fs_info->quota_root) 4704 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4705 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4706 4707 update_global_block_rsv(fs_info); 4708 } 4709 4710 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4711 { 4712 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4713 (u64)-1); 4714 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4715 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4716 WARN_ON(fs_info->trans_block_rsv.size > 0); 4717 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4718 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4719 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4720 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4721 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4722 } 4723 4724 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4725 struct btrfs_root *root) 4726 { 4727 if (!trans->block_rsv) 4728 return; 4729 4730 if (!trans->bytes_reserved) 4731 return; 4732 4733 trace_btrfs_space_reservation(root->fs_info, "transaction", 4734 trans->transid, trans->bytes_reserved, 0); 4735 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4736 trans->bytes_reserved = 0; 4737 } 4738 4739 /* Can only return 0 or -ENOSPC */ 4740 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4741 struct inode *inode) 4742 { 4743 struct btrfs_root *root = BTRFS_I(inode)->root; 4744 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4745 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4746 4747 /* 4748 * We need to hold space in order to delete our orphan item once we've 4749 * added it, so this takes the reservation so we can release it later 4750 * when we are truly done with the orphan item. 4751 */ 4752 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4753 trace_btrfs_space_reservation(root->fs_info, "orphan", 4754 btrfs_ino(inode), num_bytes, 1); 4755 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4756 } 4757 4758 void btrfs_orphan_release_metadata(struct inode *inode) 4759 { 4760 struct btrfs_root *root = BTRFS_I(inode)->root; 4761 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4762 trace_btrfs_space_reservation(root->fs_info, "orphan", 4763 btrfs_ino(inode), num_bytes, 0); 4764 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4765 } 4766 4767 /* 4768 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4769 * root: the root of the parent directory 4770 * rsv: block reservation 4771 * items: the number of items that we need do reservation 4772 * qgroup_reserved: used to return the reserved size in qgroup 4773 * 4774 * This function is used to reserve the space for snapshot/subvolume 4775 * creation and deletion. Those operations are different with the 4776 * common file/directory operations, they change two fs/file trees 4777 * and root tree, the number of items that the qgroup reserves is 4778 * different with the free space reservation. So we can not use 4779 * the space reseravtion mechanism in start_transaction(). 4780 */ 4781 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4782 struct btrfs_block_rsv *rsv, 4783 int items, 4784 u64 *qgroup_reserved, 4785 bool use_global_rsv) 4786 { 4787 u64 num_bytes; 4788 int ret; 4789 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4790 4791 if (root->fs_info->quota_enabled) { 4792 /* One for parent inode, two for dir entries */ 4793 num_bytes = 3 * root->leafsize; 4794 ret = btrfs_qgroup_reserve(root, num_bytes); 4795 if (ret) 4796 return ret; 4797 } else { 4798 num_bytes = 0; 4799 } 4800 4801 *qgroup_reserved = num_bytes; 4802 4803 num_bytes = btrfs_calc_trans_metadata_size(root, items); 4804 rsv->space_info = __find_space_info(root->fs_info, 4805 BTRFS_BLOCK_GROUP_METADATA); 4806 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 4807 BTRFS_RESERVE_FLUSH_ALL); 4808 4809 if (ret == -ENOSPC && use_global_rsv) 4810 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 4811 4812 if (ret) { 4813 if (*qgroup_reserved) 4814 btrfs_qgroup_free(root, *qgroup_reserved); 4815 } 4816 4817 return ret; 4818 } 4819 4820 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 4821 struct btrfs_block_rsv *rsv, 4822 u64 qgroup_reserved) 4823 { 4824 btrfs_block_rsv_release(root, rsv, (u64)-1); 4825 if (qgroup_reserved) 4826 btrfs_qgroup_free(root, qgroup_reserved); 4827 } 4828 4829 /** 4830 * drop_outstanding_extent - drop an outstanding extent 4831 * @inode: the inode we're dropping the extent for 4832 * 4833 * This is called when we are freeing up an outstanding extent, either called 4834 * after an error or after an extent is written. This will return the number of 4835 * reserved extents that need to be freed. This must be called with 4836 * BTRFS_I(inode)->lock held. 4837 */ 4838 static unsigned drop_outstanding_extent(struct inode *inode) 4839 { 4840 unsigned drop_inode_space = 0; 4841 unsigned dropped_extents = 0; 4842 4843 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4844 BTRFS_I(inode)->outstanding_extents--; 4845 4846 if (BTRFS_I(inode)->outstanding_extents == 0 && 4847 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4848 &BTRFS_I(inode)->runtime_flags)) 4849 drop_inode_space = 1; 4850 4851 /* 4852 * If we have more or the same amount of outsanding extents than we have 4853 * reserved then we need to leave the reserved extents count alone. 4854 */ 4855 if (BTRFS_I(inode)->outstanding_extents >= 4856 BTRFS_I(inode)->reserved_extents) 4857 return drop_inode_space; 4858 4859 dropped_extents = BTRFS_I(inode)->reserved_extents - 4860 BTRFS_I(inode)->outstanding_extents; 4861 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4862 return dropped_extents + drop_inode_space; 4863 } 4864 4865 /** 4866 * calc_csum_metadata_size - return the amount of metada space that must be 4867 * reserved/free'd for the given bytes. 4868 * @inode: the inode we're manipulating 4869 * @num_bytes: the number of bytes in question 4870 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4871 * 4872 * This adjusts the number of csum_bytes in the inode and then returns the 4873 * correct amount of metadata that must either be reserved or freed. We 4874 * calculate how many checksums we can fit into one leaf and then divide the 4875 * number of bytes that will need to be checksumed by this value to figure out 4876 * how many checksums will be required. If we are adding bytes then the number 4877 * may go up and we will return the number of additional bytes that must be 4878 * reserved. If it is going down we will return the number of bytes that must 4879 * be freed. 4880 * 4881 * This must be called with BTRFS_I(inode)->lock held. 4882 */ 4883 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4884 int reserve) 4885 { 4886 struct btrfs_root *root = BTRFS_I(inode)->root; 4887 u64 csum_size; 4888 int num_csums_per_leaf; 4889 int num_csums; 4890 int old_csums; 4891 4892 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4893 BTRFS_I(inode)->csum_bytes == 0) 4894 return 0; 4895 4896 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4897 if (reserve) 4898 BTRFS_I(inode)->csum_bytes += num_bytes; 4899 else 4900 BTRFS_I(inode)->csum_bytes -= num_bytes; 4901 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4902 num_csums_per_leaf = (int)div64_u64(csum_size, 4903 sizeof(struct btrfs_csum_item) + 4904 sizeof(struct btrfs_disk_key)); 4905 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4906 num_csums = num_csums + num_csums_per_leaf - 1; 4907 num_csums = num_csums / num_csums_per_leaf; 4908 4909 old_csums = old_csums + num_csums_per_leaf - 1; 4910 old_csums = old_csums / num_csums_per_leaf; 4911 4912 /* No change, no need to reserve more */ 4913 if (old_csums == num_csums) 4914 return 0; 4915 4916 if (reserve) 4917 return btrfs_calc_trans_metadata_size(root, 4918 num_csums - old_csums); 4919 4920 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4921 } 4922 4923 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4924 { 4925 struct btrfs_root *root = BTRFS_I(inode)->root; 4926 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4927 u64 to_reserve = 0; 4928 u64 csum_bytes; 4929 unsigned nr_extents = 0; 4930 int extra_reserve = 0; 4931 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 4932 int ret = 0; 4933 bool delalloc_lock = true; 4934 u64 to_free = 0; 4935 unsigned dropped; 4936 4937 /* If we are a free space inode we need to not flush since we will be in 4938 * the middle of a transaction commit. We also don't need the delalloc 4939 * mutex since we won't race with anybody. We need this mostly to make 4940 * lockdep shut its filthy mouth. 4941 */ 4942 if (btrfs_is_free_space_inode(inode)) { 4943 flush = BTRFS_RESERVE_NO_FLUSH; 4944 delalloc_lock = false; 4945 } 4946 4947 if (flush != BTRFS_RESERVE_NO_FLUSH && 4948 btrfs_transaction_in_commit(root->fs_info)) 4949 schedule_timeout(1); 4950 4951 if (delalloc_lock) 4952 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4953 4954 num_bytes = ALIGN(num_bytes, root->sectorsize); 4955 4956 spin_lock(&BTRFS_I(inode)->lock); 4957 BTRFS_I(inode)->outstanding_extents++; 4958 4959 if (BTRFS_I(inode)->outstanding_extents > 4960 BTRFS_I(inode)->reserved_extents) 4961 nr_extents = BTRFS_I(inode)->outstanding_extents - 4962 BTRFS_I(inode)->reserved_extents; 4963 4964 /* 4965 * Add an item to reserve for updating the inode when we complete the 4966 * delalloc io. 4967 */ 4968 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4969 &BTRFS_I(inode)->runtime_flags)) { 4970 nr_extents++; 4971 extra_reserve = 1; 4972 } 4973 4974 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4975 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4976 csum_bytes = BTRFS_I(inode)->csum_bytes; 4977 spin_unlock(&BTRFS_I(inode)->lock); 4978 4979 if (root->fs_info->quota_enabled) { 4980 ret = btrfs_qgroup_reserve(root, num_bytes + 4981 nr_extents * root->leafsize); 4982 if (ret) 4983 goto out_fail; 4984 } 4985 4986 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4987 if (unlikely(ret)) { 4988 if (root->fs_info->quota_enabled) 4989 btrfs_qgroup_free(root, num_bytes + 4990 nr_extents * root->leafsize); 4991 goto out_fail; 4992 } 4993 4994 spin_lock(&BTRFS_I(inode)->lock); 4995 if (extra_reserve) { 4996 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4997 &BTRFS_I(inode)->runtime_flags); 4998 nr_extents--; 4999 } 5000 BTRFS_I(inode)->reserved_extents += nr_extents; 5001 spin_unlock(&BTRFS_I(inode)->lock); 5002 5003 if (delalloc_lock) 5004 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5005 5006 if (to_reserve) 5007 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5008 btrfs_ino(inode), to_reserve, 1); 5009 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5010 5011 return 0; 5012 5013 out_fail: 5014 spin_lock(&BTRFS_I(inode)->lock); 5015 dropped = drop_outstanding_extent(inode); 5016 /* 5017 * If the inodes csum_bytes is the same as the original 5018 * csum_bytes then we know we haven't raced with any free()ers 5019 * so we can just reduce our inodes csum bytes and carry on. 5020 */ 5021 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5022 calc_csum_metadata_size(inode, num_bytes, 0); 5023 } else { 5024 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5025 u64 bytes; 5026 5027 /* 5028 * This is tricky, but first we need to figure out how much we 5029 * free'd from any free-ers that occured during this 5030 * reservation, so we reset ->csum_bytes to the csum_bytes 5031 * before we dropped our lock, and then call the free for the 5032 * number of bytes that were freed while we were trying our 5033 * reservation. 5034 */ 5035 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5036 BTRFS_I(inode)->csum_bytes = csum_bytes; 5037 to_free = calc_csum_metadata_size(inode, bytes, 0); 5038 5039 5040 /* 5041 * Now we need to see how much we would have freed had we not 5042 * been making this reservation and our ->csum_bytes were not 5043 * artificially inflated. 5044 */ 5045 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5046 bytes = csum_bytes - orig_csum_bytes; 5047 bytes = calc_csum_metadata_size(inode, bytes, 0); 5048 5049 /* 5050 * Now reset ->csum_bytes to what it should be. If bytes is 5051 * more than to_free then we would have free'd more space had we 5052 * not had an artificially high ->csum_bytes, so we need to free 5053 * the remainder. If bytes is the same or less then we don't 5054 * need to do anything, the other free-ers did the correct 5055 * thing. 5056 */ 5057 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5058 if (bytes > to_free) 5059 to_free = bytes - to_free; 5060 else 5061 to_free = 0; 5062 } 5063 spin_unlock(&BTRFS_I(inode)->lock); 5064 if (dropped) 5065 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5066 5067 if (to_free) { 5068 btrfs_block_rsv_release(root, block_rsv, to_free); 5069 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5070 btrfs_ino(inode), to_free, 0); 5071 } 5072 if (delalloc_lock) 5073 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5074 return ret; 5075 } 5076 5077 /** 5078 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5079 * @inode: the inode to release the reservation for 5080 * @num_bytes: the number of bytes we're releasing 5081 * 5082 * This will release the metadata reservation for an inode. This can be called 5083 * once we complete IO for a given set of bytes to release their metadata 5084 * reservations. 5085 */ 5086 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5087 { 5088 struct btrfs_root *root = BTRFS_I(inode)->root; 5089 u64 to_free = 0; 5090 unsigned dropped; 5091 5092 num_bytes = ALIGN(num_bytes, root->sectorsize); 5093 spin_lock(&BTRFS_I(inode)->lock); 5094 dropped = drop_outstanding_extent(inode); 5095 5096 if (num_bytes) 5097 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5098 spin_unlock(&BTRFS_I(inode)->lock); 5099 if (dropped > 0) 5100 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5101 5102 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5103 btrfs_ino(inode), to_free, 0); 5104 if (root->fs_info->quota_enabled) { 5105 btrfs_qgroup_free(root, num_bytes + 5106 dropped * root->leafsize); 5107 } 5108 5109 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5110 to_free); 5111 } 5112 5113 /** 5114 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5115 * @inode: inode we're writing to 5116 * @num_bytes: the number of bytes we want to allocate 5117 * 5118 * This will do the following things 5119 * 5120 * o reserve space in the data space info for num_bytes 5121 * o reserve space in the metadata space info based on number of outstanding 5122 * extents and how much csums will be needed 5123 * o add to the inodes ->delalloc_bytes 5124 * o add it to the fs_info's delalloc inodes list. 5125 * 5126 * This will return 0 for success and -ENOSPC if there is no space left. 5127 */ 5128 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5129 { 5130 int ret; 5131 5132 ret = btrfs_check_data_free_space(inode, num_bytes); 5133 if (ret) 5134 return ret; 5135 5136 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5137 if (ret) { 5138 btrfs_free_reserved_data_space(inode, num_bytes); 5139 return ret; 5140 } 5141 5142 return 0; 5143 } 5144 5145 /** 5146 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5147 * @inode: inode we're releasing space for 5148 * @num_bytes: the number of bytes we want to free up 5149 * 5150 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5151 * called in the case that we don't need the metadata AND data reservations 5152 * anymore. So if there is an error or we insert an inline extent. 5153 * 5154 * This function will release the metadata space that was not used and will 5155 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5156 * list if there are no delalloc bytes left. 5157 */ 5158 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5159 { 5160 btrfs_delalloc_release_metadata(inode, num_bytes); 5161 btrfs_free_reserved_data_space(inode, num_bytes); 5162 } 5163 5164 static int update_block_group(struct btrfs_root *root, 5165 u64 bytenr, u64 num_bytes, int alloc) 5166 { 5167 struct btrfs_block_group_cache *cache = NULL; 5168 struct btrfs_fs_info *info = root->fs_info; 5169 u64 total = num_bytes; 5170 u64 old_val; 5171 u64 byte_in_group; 5172 int factor; 5173 5174 /* block accounting for super block */ 5175 spin_lock(&info->delalloc_root_lock); 5176 old_val = btrfs_super_bytes_used(info->super_copy); 5177 if (alloc) 5178 old_val += num_bytes; 5179 else 5180 old_val -= num_bytes; 5181 btrfs_set_super_bytes_used(info->super_copy, old_val); 5182 spin_unlock(&info->delalloc_root_lock); 5183 5184 while (total) { 5185 cache = btrfs_lookup_block_group(info, bytenr); 5186 if (!cache) 5187 return -ENOENT; 5188 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5189 BTRFS_BLOCK_GROUP_RAID1 | 5190 BTRFS_BLOCK_GROUP_RAID10)) 5191 factor = 2; 5192 else 5193 factor = 1; 5194 /* 5195 * If this block group has free space cache written out, we 5196 * need to make sure to load it if we are removing space. This 5197 * is because we need the unpinning stage to actually add the 5198 * space back to the block group, otherwise we will leak space. 5199 */ 5200 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5201 cache_block_group(cache, 1); 5202 5203 byte_in_group = bytenr - cache->key.objectid; 5204 WARN_ON(byte_in_group > cache->key.offset); 5205 5206 spin_lock(&cache->space_info->lock); 5207 spin_lock(&cache->lock); 5208 5209 if (btrfs_test_opt(root, SPACE_CACHE) && 5210 cache->disk_cache_state < BTRFS_DC_CLEAR) 5211 cache->disk_cache_state = BTRFS_DC_CLEAR; 5212 5213 cache->dirty = 1; 5214 old_val = btrfs_block_group_used(&cache->item); 5215 num_bytes = min(total, cache->key.offset - byte_in_group); 5216 if (alloc) { 5217 old_val += num_bytes; 5218 btrfs_set_block_group_used(&cache->item, old_val); 5219 cache->reserved -= num_bytes; 5220 cache->space_info->bytes_reserved -= num_bytes; 5221 cache->space_info->bytes_used += num_bytes; 5222 cache->space_info->disk_used += num_bytes * factor; 5223 spin_unlock(&cache->lock); 5224 spin_unlock(&cache->space_info->lock); 5225 } else { 5226 old_val -= num_bytes; 5227 btrfs_set_block_group_used(&cache->item, old_val); 5228 cache->pinned += num_bytes; 5229 cache->space_info->bytes_pinned += num_bytes; 5230 cache->space_info->bytes_used -= num_bytes; 5231 cache->space_info->disk_used -= num_bytes * factor; 5232 spin_unlock(&cache->lock); 5233 spin_unlock(&cache->space_info->lock); 5234 5235 set_extent_dirty(info->pinned_extents, 5236 bytenr, bytenr + num_bytes - 1, 5237 GFP_NOFS | __GFP_NOFAIL); 5238 } 5239 btrfs_put_block_group(cache); 5240 total -= num_bytes; 5241 bytenr += num_bytes; 5242 } 5243 return 0; 5244 } 5245 5246 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5247 { 5248 struct btrfs_block_group_cache *cache; 5249 u64 bytenr; 5250 5251 spin_lock(&root->fs_info->block_group_cache_lock); 5252 bytenr = root->fs_info->first_logical_byte; 5253 spin_unlock(&root->fs_info->block_group_cache_lock); 5254 5255 if (bytenr < (u64)-1) 5256 return bytenr; 5257 5258 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5259 if (!cache) 5260 return 0; 5261 5262 bytenr = cache->key.objectid; 5263 btrfs_put_block_group(cache); 5264 5265 return bytenr; 5266 } 5267 5268 static int pin_down_extent(struct btrfs_root *root, 5269 struct btrfs_block_group_cache *cache, 5270 u64 bytenr, u64 num_bytes, int reserved) 5271 { 5272 spin_lock(&cache->space_info->lock); 5273 spin_lock(&cache->lock); 5274 cache->pinned += num_bytes; 5275 cache->space_info->bytes_pinned += num_bytes; 5276 if (reserved) { 5277 cache->reserved -= num_bytes; 5278 cache->space_info->bytes_reserved -= num_bytes; 5279 } 5280 spin_unlock(&cache->lock); 5281 spin_unlock(&cache->space_info->lock); 5282 5283 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5284 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5285 if (reserved) 5286 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5287 return 0; 5288 } 5289 5290 /* 5291 * this function must be called within transaction 5292 */ 5293 int btrfs_pin_extent(struct btrfs_root *root, 5294 u64 bytenr, u64 num_bytes, int reserved) 5295 { 5296 struct btrfs_block_group_cache *cache; 5297 5298 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5299 BUG_ON(!cache); /* Logic error */ 5300 5301 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5302 5303 btrfs_put_block_group(cache); 5304 return 0; 5305 } 5306 5307 /* 5308 * this function must be called within transaction 5309 */ 5310 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5311 u64 bytenr, u64 num_bytes) 5312 { 5313 struct btrfs_block_group_cache *cache; 5314 int ret; 5315 5316 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5317 if (!cache) 5318 return -EINVAL; 5319 5320 /* 5321 * pull in the free space cache (if any) so that our pin 5322 * removes the free space from the cache. We have load_only set 5323 * to one because the slow code to read in the free extents does check 5324 * the pinned extents. 5325 */ 5326 cache_block_group(cache, 1); 5327 5328 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5329 5330 /* remove us from the free space cache (if we're there at all) */ 5331 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5332 btrfs_put_block_group(cache); 5333 return ret; 5334 } 5335 5336 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5337 { 5338 int ret; 5339 struct btrfs_block_group_cache *block_group; 5340 struct btrfs_caching_control *caching_ctl; 5341 5342 block_group = btrfs_lookup_block_group(root->fs_info, start); 5343 if (!block_group) 5344 return -EINVAL; 5345 5346 cache_block_group(block_group, 0); 5347 caching_ctl = get_caching_control(block_group); 5348 5349 if (!caching_ctl) { 5350 /* Logic error */ 5351 BUG_ON(!block_group_cache_done(block_group)); 5352 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5353 } else { 5354 mutex_lock(&caching_ctl->mutex); 5355 5356 if (start >= caching_ctl->progress) { 5357 ret = add_excluded_extent(root, start, num_bytes); 5358 } else if (start + num_bytes <= caching_ctl->progress) { 5359 ret = btrfs_remove_free_space(block_group, 5360 start, num_bytes); 5361 } else { 5362 num_bytes = caching_ctl->progress - start; 5363 ret = btrfs_remove_free_space(block_group, 5364 start, num_bytes); 5365 if (ret) 5366 goto out_lock; 5367 5368 num_bytes = (start + num_bytes) - 5369 caching_ctl->progress; 5370 start = caching_ctl->progress; 5371 ret = add_excluded_extent(root, start, num_bytes); 5372 } 5373 out_lock: 5374 mutex_unlock(&caching_ctl->mutex); 5375 put_caching_control(caching_ctl); 5376 } 5377 btrfs_put_block_group(block_group); 5378 return ret; 5379 } 5380 5381 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5382 struct extent_buffer *eb) 5383 { 5384 struct btrfs_file_extent_item *item; 5385 struct btrfs_key key; 5386 int found_type; 5387 int i; 5388 5389 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5390 return 0; 5391 5392 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5393 btrfs_item_key_to_cpu(eb, &key, i); 5394 if (key.type != BTRFS_EXTENT_DATA_KEY) 5395 continue; 5396 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5397 found_type = btrfs_file_extent_type(eb, item); 5398 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5399 continue; 5400 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5401 continue; 5402 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5403 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5404 __exclude_logged_extent(log, key.objectid, key.offset); 5405 } 5406 5407 return 0; 5408 } 5409 5410 /** 5411 * btrfs_update_reserved_bytes - update the block_group and space info counters 5412 * @cache: The cache we are manipulating 5413 * @num_bytes: The number of bytes in question 5414 * @reserve: One of the reservation enums 5415 * 5416 * This is called by the allocator when it reserves space, or by somebody who is 5417 * freeing space that was never actually used on disk. For example if you 5418 * reserve some space for a new leaf in transaction A and before transaction A 5419 * commits you free that leaf, you call this with reserve set to 0 in order to 5420 * clear the reservation. 5421 * 5422 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5423 * ENOSPC accounting. For data we handle the reservation through clearing the 5424 * delalloc bits in the io_tree. We have to do this since we could end up 5425 * allocating less disk space for the amount of data we have reserved in the 5426 * case of compression. 5427 * 5428 * If this is a reservation and the block group has become read only we cannot 5429 * make the reservation and return -EAGAIN, otherwise this function always 5430 * succeeds. 5431 */ 5432 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5433 u64 num_bytes, int reserve) 5434 { 5435 struct btrfs_space_info *space_info = cache->space_info; 5436 int ret = 0; 5437 5438 spin_lock(&space_info->lock); 5439 spin_lock(&cache->lock); 5440 if (reserve != RESERVE_FREE) { 5441 if (cache->ro) { 5442 ret = -EAGAIN; 5443 } else { 5444 cache->reserved += num_bytes; 5445 space_info->bytes_reserved += num_bytes; 5446 if (reserve == RESERVE_ALLOC) { 5447 trace_btrfs_space_reservation(cache->fs_info, 5448 "space_info", space_info->flags, 5449 num_bytes, 0); 5450 space_info->bytes_may_use -= num_bytes; 5451 } 5452 } 5453 } else { 5454 if (cache->ro) 5455 space_info->bytes_readonly += num_bytes; 5456 cache->reserved -= num_bytes; 5457 space_info->bytes_reserved -= num_bytes; 5458 } 5459 spin_unlock(&cache->lock); 5460 spin_unlock(&space_info->lock); 5461 return ret; 5462 } 5463 5464 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5465 struct btrfs_root *root) 5466 { 5467 struct btrfs_fs_info *fs_info = root->fs_info; 5468 struct btrfs_caching_control *next; 5469 struct btrfs_caching_control *caching_ctl; 5470 struct btrfs_block_group_cache *cache; 5471 struct btrfs_space_info *space_info; 5472 5473 down_write(&fs_info->extent_commit_sem); 5474 5475 list_for_each_entry_safe(caching_ctl, next, 5476 &fs_info->caching_block_groups, list) { 5477 cache = caching_ctl->block_group; 5478 if (block_group_cache_done(cache)) { 5479 cache->last_byte_to_unpin = (u64)-1; 5480 list_del_init(&caching_ctl->list); 5481 put_caching_control(caching_ctl); 5482 } else { 5483 cache->last_byte_to_unpin = caching_ctl->progress; 5484 } 5485 } 5486 5487 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5488 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5489 else 5490 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5491 5492 up_write(&fs_info->extent_commit_sem); 5493 5494 list_for_each_entry_rcu(space_info, &fs_info->space_info, list) 5495 percpu_counter_set(&space_info->total_bytes_pinned, 0); 5496 5497 update_global_block_rsv(fs_info); 5498 } 5499 5500 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5501 { 5502 struct btrfs_fs_info *fs_info = root->fs_info; 5503 struct btrfs_block_group_cache *cache = NULL; 5504 struct btrfs_space_info *space_info; 5505 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5506 u64 len; 5507 bool readonly; 5508 5509 while (start <= end) { 5510 readonly = false; 5511 if (!cache || 5512 start >= cache->key.objectid + cache->key.offset) { 5513 if (cache) 5514 btrfs_put_block_group(cache); 5515 cache = btrfs_lookup_block_group(fs_info, start); 5516 BUG_ON(!cache); /* Logic error */ 5517 } 5518 5519 len = cache->key.objectid + cache->key.offset - start; 5520 len = min(len, end + 1 - start); 5521 5522 if (start < cache->last_byte_to_unpin) { 5523 len = min(len, cache->last_byte_to_unpin - start); 5524 btrfs_add_free_space(cache, start, len); 5525 } 5526 5527 start += len; 5528 space_info = cache->space_info; 5529 5530 spin_lock(&space_info->lock); 5531 spin_lock(&cache->lock); 5532 cache->pinned -= len; 5533 space_info->bytes_pinned -= len; 5534 if (cache->ro) { 5535 space_info->bytes_readonly += len; 5536 readonly = true; 5537 } 5538 spin_unlock(&cache->lock); 5539 if (!readonly && global_rsv->space_info == space_info) { 5540 spin_lock(&global_rsv->lock); 5541 if (!global_rsv->full) { 5542 len = min(len, global_rsv->size - 5543 global_rsv->reserved); 5544 global_rsv->reserved += len; 5545 space_info->bytes_may_use += len; 5546 if (global_rsv->reserved >= global_rsv->size) 5547 global_rsv->full = 1; 5548 } 5549 spin_unlock(&global_rsv->lock); 5550 } 5551 spin_unlock(&space_info->lock); 5552 } 5553 5554 if (cache) 5555 btrfs_put_block_group(cache); 5556 return 0; 5557 } 5558 5559 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5560 struct btrfs_root *root) 5561 { 5562 struct btrfs_fs_info *fs_info = root->fs_info; 5563 struct extent_io_tree *unpin; 5564 u64 start; 5565 u64 end; 5566 int ret; 5567 5568 if (trans->aborted) 5569 return 0; 5570 5571 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5572 unpin = &fs_info->freed_extents[1]; 5573 else 5574 unpin = &fs_info->freed_extents[0]; 5575 5576 while (1) { 5577 ret = find_first_extent_bit(unpin, 0, &start, &end, 5578 EXTENT_DIRTY, NULL); 5579 if (ret) 5580 break; 5581 5582 if (btrfs_test_opt(root, DISCARD)) 5583 ret = btrfs_discard_extent(root, start, 5584 end + 1 - start, NULL); 5585 5586 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5587 unpin_extent_range(root, start, end); 5588 cond_resched(); 5589 } 5590 5591 return 0; 5592 } 5593 5594 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5595 u64 owner, u64 root_objectid) 5596 { 5597 struct btrfs_space_info *space_info; 5598 u64 flags; 5599 5600 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5601 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5602 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5603 else 5604 flags = BTRFS_BLOCK_GROUP_METADATA; 5605 } else { 5606 flags = BTRFS_BLOCK_GROUP_DATA; 5607 } 5608 5609 space_info = __find_space_info(fs_info, flags); 5610 BUG_ON(!space_info); /* Logic bug */ 5611 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5612 } 5613 5614 5615 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5616 struct btrfs_root *root, 5617 u64 bytenr, u64 num_bytes, u64 parent, 5618 u64 root_objectid, u64 owner_objectid, 5619 u64 owner_offset, int refs_to_drop, 5620 struct btrfs_delayed_extent_op *extent_op) 5621 { 5622 struct btrfs_key key; 5623 struct btrfs_path *path; 5624 struct btrfs_fs_info *info = root->fs_info; 5625 struct btrfs_root *extent_root = info->extent_root; 5626 struct extent_buffer *leaf; 5627 struct btrfs_extent_item *ei; 5628 struct btrfs_extent_inline_ref *iref; 5629 int ret; 5630 int is_data; 5631 int extent_slot = 0; 5632 int found_extent = 0; 5633 int num_to_del = 1; 5634 u32 item_size; 5635 u64 refs; 5636 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5637 SKINNY_METADATA); 5638 5639 path = btrfs_alloc_path(); 5640 if (!path) 5641 return -ENOMEM; 5642 5643 path->reada = 1; 5644 path->leave_spinning = 1; 5645 5646 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5647 BUG_ON(!is_data && refs_to_drop != 1); 5648 5649 if (is_data) 5650 skinny_metadata = 0; 5651 5652 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5653 bytenr, num_bytes, parent, 5654 root_objectid, owner_objectid, 5655 owner_offset); 5656 if (ret == 0) { 5657 extent_slot = path->slots[0]; 5658 while (extent_slot >= 0) { 5659 btrfs_item_key_to_cpu(path->nodes[0], &key, 5660 extent_slot); 5661 if (key.objectid != bytenr) 5662 break; 5663 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5664 key.offset == num_bytes) { 5665 found_extent = 1; 5666 break; 5667 } 5668 if (key.type == BTRFS_METADATA_ITEM_KEY && 5669 key.offset == owner_objectid) { 5670 found_extent = 1; 5671 break; 5672 } 5673 if (path->slots[0] - extent_slot > 5) 5674 break; 5675 extent_slot--; 5676 } 5677 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5678 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5679 if (found_extent && item_size < sizeof(*ei)) 5680 found_extent = 0; 5681 #endif 5682 if (!found_extent) { 5683 BUG_ON(iref); 5684 ret = remove_extent_backref(trans, extent_root, path, 5685 NULL, refs_to_drop, 5686 is_data); 5687 if (ret) { 5688 btrfs_abort_transaction(trans, extent_root, ret); 5689 goto out; 5690 } 5691 btrfs_release_path(path); 5692 path->leave_spinning = 1; 5693 5694 key.objectid = bytenr; 5695 key.type = BTRFS_EXTENT_ITEM_KEY; 5696 key.offset = num_bytes; 5697 5698 if (!is_data && skinny_metadata) { 5699 key.type = BTRFS_METADATA_ITEM_KEY; 5700 key.offset = owner_objectid; 5701 } 5702 5703 ret = btrfs_search_slot(trans, extent_root, 5704 &key, path, -1, 1); 5705 if (ret > 0 && skinny_metadata && path->slots[0]) { 5706 /* 5707 * Couldn't find our skinny metadata item, 5708 * see if we have ye olde extent item. 5709 */ 5710 path->slots[0]--; 5711 btrfs_item_key_to_cpu(path->nodes[0], &key, 5712 path->slots[0]); 5713 if (key.objectid == bytenr && 5714 key.type == BTRFS_EXTENT_ITEM_KEY && 5715 key.offset == num_bytes) 5716 ret = 0; 5717 } 5718 5719 if (ret > 0 && skinny_metadata) { 5720 skinny_metadata = false; 5721 key.type = BTRFS_EXTENT_ITEM_KEY; 5722 key.offset = num_bytes; 5723 btrfs_release_path(path); 5724 ret = btrfs_search_slot(trans, extent_root, 5725 &key, path, -1, 1); 5726 } 5727 5728 if (ret) { 5729 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5730 ret, bytenr); 5731 if (ret > 0) 5732 btrfs_print_leaf(extent_root, 5733 path->nodes[0]); 5734 } 5735 if (ret < 0) { 5736 btrfs_abort_transaction(trans, extent_root, ret); 5737 goto out; 5738 } 5739 extent_slot = path->slots[0]; 5740 } 5741 } else if (WARN_ON(ret == -ENOENT)) { 5742 btrfs_print_leaf(extent_root, path->nodes[0]); 5743 btrfs_err(info, 5744 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5745 bytenr, parent, root_objectid, owner_objectid, 5746 owner_offset); 5747 } else { 5748 btrfs_abort_transaction(trans, extent_root, ret); 5749 goto out; 5750 } 5751 5752 leaf = path->nodes[0]; 5753 item_size = btrfs_item_size_nr(leaf, extent_slot); 5754 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5755 if (item_size < sizeof(*ei)) { 5756 BUG_ON(found_extent || extent_slot != path->slots[0]); 5757 ret = convert_extent_item_v0(trans, extent_root, path, 5758 owner_objectid, 0); 5759 if (ret < 0) { 5760 btrfs_abort_transaction(trans, extent_root, ret); 5761 goto out; 5762 } 5763 5764 btrfs_release_path(path); 5765 path->leave_spinning = 1; 5766 5767 key.objectid = bytenr; 5768 key.type = BTRFS_EXTENT_ITEM_KEY; 5769 key.offset = num_bytes; 5770 5771 ret = btrfs_search_slot(trans, extent_root, &key, path, 5772 -1, 1); 5773 if (ret) { 5774 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5775 ret, bytenr); 5776 btrfs_print_leaf(extent_root, path->nodes[0]); 5777 } 5778 if (ret < 0) { 5779 btrfs_abort_transaction(trans, extent_root, ret); 5780 goto out; 5781 } 5782 5783 extent_slot = path->slots[0]; 5784 leaf = path->nodes[0]; 5785 item_size = btrfs_item_size_nr(leaf, extent_slot); 5786 } 5787 #endif 5788 BUG_ON(item_size < sizeof(*ei)); 5789 ei = btrfs_item_ptr(leaf, extent_slot, 5790 struct btrfs_extent_item); 5791 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 5792 key.type == BTRFS_EXTENT_ITEM_KEY) { 5793 struct btrfs_tree_block_info *bi; 5794 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5795 bi = (struct btrfs_tree_block_info *)(ei + 1); 5796 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5797 } 5798 5799 refs = btrfs_extent_refs(leaf, ei); 5800 if (refs < refs_to_drop) { 5801 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 5802 "for bytenr %Lu\n", refs_to_drop, refs, bytenr); 5803 ret = -EINVAL; 5804 btrfs_abort_transaction(trans, extent_root, ret); 5805 goto out; 5806 } 5807 refs -= refs_to_drop; 5808 5809 if (refs > 0) { 5810 if (extent_op) 5811 __run_delayed_extent_op(extent_op, leaf, ei); 5812 /* 5813 * In the case of inline back ref, reference count will 5814 * be updated by remove_extent_backref 5815 */ 5816 if (iref) { 5817 BUG_ON(!found_extent); 5818 } else { 5819 btrfs_set_extent_refs(leaf, ei, refs); 5820 btrfs_mark_buffer_dirty(leaf); 5821 } 5822 if (found_extent) { 5823 ret = remove_extent_backref(trans, extent_root, path, 5824 iref, refs_to_drop, 5825 is_data); 5826 if (ret) { 5827 btrfs_abort_transaction(trans, extent_root, ret); 5828 goto out; 5829 } 5830 } 5831 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 5832 root_objectid); 5833 } else { 5834 if (found_extent) { 5835 BUG_ON(is_data && refs_to_drop != 5836 extent_data_ref_count(root, path, iref)); 5837 if (iref) { 5838 BUG_ON(path->slots[0] != extent_slot); 5839 } else { 5840 BUG_ON(path->slots[0] != extent_slot + 1); 5841 path->slots[0] = extent_slot; 5842 num_to_del = 2; 5843 } 5844 } 5845 5846 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5847 num_to_del); 5848 if (ret) { 5849 btrfs_abort_transaction(trans, extent_root, ret); 5850 goto out; 5851 } 5852 btrfs_release_path(path); 5853 5854 if (is_data) { 5855 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5856 if (ret) { 5857 btrfs_abort_transaction(trans, extent_root, ret); 5858 goto out; 5859 } 5860 } 5861 5862 ret = update_block_group(root, bytenr, num_bytes, 0); 5863 if (ret) { 5864 btrfs_abort_transaction(trans, extent_root, ret); 5865 goto out; 5866 } 5867 } 5868 out: 5869 btrfs_free_path(path); 5870 return ret; 5871 } 5872 5873 /* 5874 * when we free an block, it is possible (and likely) that we free the last 5875 * delayed ref for that extent as well. This searches the delayed ref tree for 5876 * a given extent, and if there are no other delayed refs to be processed, it 5877 * removes it from the tree. 5878 */ 5879 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5880 struct btrfs_root *root, u64 bytenr) 5881 { 5882 struct btrfs_delayed_ref_head *head; 5883 struct btrfs_delayed_ref_root *delayed_refs; 5884 int ret = 0; 5885 5886 delayed_refs = &trans->transaction->delayed_refs; 5887 spin_lock(&delayed_refs->lock); 5888 head = btrfs_find_delayed_ref_head(trans, bytenr); 5889 if (!head) 5890 goto out_delayed_unlock; 5891 5892 spin_lock(&head->lock); 5893 if (rb_first(&head->ref_root)) 5894 goto out; 5895 5896 if (head->extent_op) { 5897 if (!head->must_insert_reserved) 5898 goto out; 5899 btrfs_free_delayed_extent_op(head->extent_op); 5900 head->extent_op = NULL; 5901 } 5902 5903 /* 5904 * waiting for the lock here would deadlock. If someone else has it 5905 * locked they are already in the process of dropping it anyway 5906 */ 5907 if (!mutex_trylock(&head->mutex)) 5908 goto out; 5909 5910 /* 5911 * at this point we have a head with no other entries. Go 5912 * ahead and process it. 5913 */ 5914 head->node.in_tree = 0; 5915 rb_erase(&head->href_node, &delayed_refs->href_root); 5916 5917 atomic_dec(&delayed_refs->num_entries); 5918 5919 /* 5920 * we don't take a ref on the node because we're removing it from the 5921 * tree, so we just steal the ref the tree was holding. 5922 */ 5923 delayed_refs->num_heads--; 5924 if (head->processing == 0) 5925 delayed_refs->num_heads_ready--; 5926 head->processing = 0; 5927 spin_unlock(&head->lock); 5928 spin_unlock(&delayed_refs->lock); 5929 5930 BUG_ON(head->extent_op); 5931 if (head->must_insert_reserved) 5932 ret = 1; 5933 5934 mutex_unlock(&head->mutex); 5935 btrfs_put_delayed_ref(&head->node); 5936 return ret; 5937 out: 5938 spin_unlock(&head->lock); 5939 5940 out_delayed_unlock: 5941 spin_unlock(&delayed_refs->lock); 5942 return 0; 5943 } 5944 5945 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5946 struct btrfs_root *root, 5947 struct extent_buffer *buf, 5948 u64 parent, int last_ref) 5949 { 5950 struct btrfs_block_group_cache *cache = NULL; 5951 int pin = 1; 5952 int ret; 5953 5954 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5955 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5956 buf->start, buf->len, 5957 parent, root->root_key.objectid, 5958 btrfs_header_level(buf), 5959 BTRFS_DROP_DELAYED_REF, NULL, 0); 5960 BUG_ON(ret); /* -ENOMEM */ 5961 } 5962 5963 if (!last_ref) 5964 return; 5965 5966 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5967 5968 if (btrfs_header_generation(buf) == trans->transid) { 5969 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5970 ret = check_ref_cleanup(trans, root, buf->start); 5971 if (!ret) 5972 goto out; 5973 } 5974 5975 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5976 pin_down_extent(root, cache, buf->start, buf->len, 1); 5977 goto out; 5978 } 5979 5980 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5981 5982 btrfs_add_free_space(cache, buf->start, buf->len); 5983 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5984 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 5985 pin = 0; 5986 } 5987 out: 5988 if (pin) 5989 add_pinned_bytes(root->fs_info, buf->len, 5990 btrfs_header_level(buf), 5991 root->root_key.objectid); 5992 5993 /* 5994 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5995 * anymore. 5996 */ 5997 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5998 btrfs_put_block_group(cache); 5999 } 6000 6001 /* Can return -ENOMEM */ 6002 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6003 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6004 u64 owner, u64 offset, int for_cow) 6005 { 6006 int ret; 6007 struct btrfs_fs_info *fs_info = root->fs_info; 6008 6009 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6010 6011 /* 6012 * tree log blocks never actually go into the extent allocation 6013 * tree, just update pinning info and exit early. 6014 */ 6015 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6016 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6017 /* unlocks the pinned mutex */ 6018 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6019 ret = 0; 6020 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6021 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6022 num_bytes, 6023 parent, root_objectid, (int)owner, 6024 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 6025 } else { 6026 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6027 num_bytes, 6028 parent, root_objectid, owner, 6029 offset, BTRFS_DROP_DELAYED_REF, 6030 NULL, for_cow); 6031 } 6032 return ret; 6033 } 6034 6035 static u64 stripe_align(struct btrfs_root *root, 6036 struct btrfs_block_group_cache *cache, 6037 u64 val, u64 num_bytes) 6038 { 6039 u64 ret = ALIGN(val, root->stripesize); 6040 return ret; 6041 } 6042 6043 /* 6044 * when we wait for progress in the block group caching, its because 6045 * our allocation attempt failed at least once. So, we must sleep 6046 * and let some progress happen before we try again. 6047 * 6048 * This function will sleep at least once waiting for new free space to 6049 * show up, and then it will check the block group free space numbers 6050 * for our min num_bytes. Another option is to have it go ahead 6051 * and look in the rbtree for a free extent of a given size, but this 6052 * is a good start. 6053 * 6054 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6055 * any of the information in this block group. 6056 */ 6057 static noinline void 6058 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6059 u64 num_bytes) 6060 { 6061 struct btrfs_caching_control *caching_ctl; 6062 6063 caching_ctl = get_caching_control(cache); 6064 if (!caching_ctl) 6065 return; 6066 6067 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6068 (cache->free_space_ctl->free_space >= num_bytes)); 6069 6070 put_caching_control(caching_ctl); 6071 } 6072 6073 static noinline int 6074 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6075 { 6076 struct btrfs_caching_control *caching_ctl; 6077 int ret = 0; 6078 6079 caching_ctl = get_caching_control(cache); 6080 if (!caching_ctl) 6081 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6082 6083 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6084 if (cache->cached == BTRFS_CACHE_ERROR) 6085 ret = -EIO; 6086 put_caching_control(caching_ctl); 6087 return ret; 6088 } 6089 6090 int __get_raid_index(u64 flags) 6091 { 6092 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6093 return BTRFS_RAID_RAID10; 6094 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6095 return BTRFS_RAID_RAID1; 6096 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6097 return BTRFS_RAID_DUP; 6098 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6099 return BTRFS_RAID_RAID0; 6100 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6101 return BTRFS_RAID_RAID5; 6102 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6103 return BTRFS_RAID_RAID6; 6104 6105 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6106 } 6107 6108 int get_block_group_index(struct btrfs_block_group_cache *cache) 6109 { 6110 return __get_raid_index(cache->flags); 6111 } 6112 6113 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6114 [BTRFS_RAID_RAID10] = "raid10", 6115 [BTRFS_RAID_RAID1] = "raid1", 6116 [BTRFS_RAID_DUP] = "dup", 6117 [BTRFS_RAID_RAID0] = "raid0", 6118 [BTRFS_RAID_SINGLE] = "single", 6119 [BTRFS_RAID_RAID5] = "raid5", 6120 [BTRFS_RAID_RAID6] = "raid6", 6121 }; 6122 6123 static const char *get_raid_name(enum btrfs_raid_types type) 6124 { 6125 if (type >= BTRFS_NR_RAID_TYPES) 6126 return NULL; 6127 6128 return btrfs_raid_type_names[type]; 6129 } 6130 6131 enum btrfs_loop_type { 6132 LOOP_CACHING_NOWAIT = 0, 6133 LOOP_CACHING_WAIT = 1, 6134 LOOP_ALLOC_CHUNK = 2, 6135 LOOP_NO_EMPTY_SIZE = 3, 6136 }; 6137 6138 /* 6139 * walks the btree of allocated extents and find a hole of a given size. 6140 * The key ins is changed to record the hole: 6141 * ins->objectid == start position 6142 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6143 * ins->offset == the size of the hole. 6144 * Any available blocks before search_start are skipped. 6145 * 6146 * If there is no suitable free space, we will record the max size of 6147 * the free space extent currently. 6148 */ 6149 static noinline int find_free_extent(struct btrfs_root *orig_root, 6150 u64 num_bytes, u64 empty_size, 6151 u64 hint_byte, struct btrfs_key *ins, 6152 u64 flags) 6153 { 6154 int ret = 0; 6155 struct btrfs_root *root = orig_root->fs_info->extent_root; 6156 struct btrfs_free_cluster *last_ptr = NULL; 6157 struct btrfs_block_group_cache *block_group = NULL; 6158 u64 search_start = 0; 6159 u64 max_extent_size = 0; 6160 int empty_cluster = 2 * 1024 * 1024; 6161 struct btrfs_space_info *space_info; 6162 int loop = 0; 6163 int index = __get_raid_index(flags); 6164 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6165 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6166 bool failed_cluster_refill = false; 6167 bool failed_alloc = false; 6168 bool use_cluster = true; 6169 bool have_caching_bg = false; 6170 6171 WARN_ON(num_bytes < root->sectorsize); 6172 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 6173 ins->objectid = 0; 6174 ins->offset = 0; 6175 6176 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6177 6178 space_info = __find_space_info(root->fs_info, flags); 6179 if (!space_info) { 6180 btrfs_err(root->fs_info, "No space info for %llu", flags); 6181 return -ENOSPC; 6182 } 6183 6184 /* 6185 * If the space info is for both data and metadata it means we have a 6186 * small filesystem and we can't use the clustering stuff. 6187 */ 6188 if (btrfs_mixed_space_info(space_info)) 6189 use_cluster = false; 6190 6191 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6192 last_ptr = &root->fs_info->meta_alloc_cluster; 6193 if (!btrfs_test_opt(root, SSD)) 6194 empty_cluster = 64 * 1024; 6195 } 6196 6197 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6198 btrfs_test_opt(root, SSD)) { 6199 last_ptr = &root->fs_info->data_alloc_cluster; 6200 } 6201 6202 if (last_ptr) { 6203 spin_lock(&last_ptr->lock); 6204 if (last_ptr->block_group) 6205 hint_byte = last_ptr->window_start; 6206 spin_unlock(&last_ptr->lock); 6207 } 6208 6209 search_start = max(search_start, first_logical_byte(root, 0)); 6210 search_start = max(search_start, hint_byte); 6211 6212 if (!last_ptr) 6213 empty_cluster = 0; 6214 6215 if (search_start == hint_byte) { 6216 block_group = btrfs_lookup_block_group(root->fs_info, 6217 search_start); 6218 /* 6219 * we don't want to use the block group if it doesn't match our 6220 * allocation bits, or if its not cached. 6221 * 6222 * However if we are re-searching with an ideal block group 6223 * picked out then we don't care that the block group is cached. 6224 */ 6225 if (block_group && block_group_bits(block_group, flags) && 6226 block_group->cached != BTRFS_CACHE_NO) { 6227 down_read(&space_info->groups_sem); 6228 if (list_empty(&block_group->list) || 6229 block_group->ro) { 6230 /* 6231 * someone is removing this block group, 6232 * we can't jump into the have_block_group 6233 * target because our list pointers are not 6234 * valid 6235 */ 6236 btrfs_put_block_group(block_group); 6237 up_read(&space_info->groups_sem); 6238 } else { 6239 index = get_block_group_index(block_group); 6240 goto have_block_group; 6241 } 6242 } else if (block_group) { 6243 btrfs_put_block_group(block_group); 6244 } 6245 } 6246 search: 6247 have_caching_bg = false; 6248 down_read(&space_info->groups_sem); 6249 list_for_each_entry(block_group, &space_info->block_groups[index], 6250 list) { 6251 u64 offset; 6252 int cached; 6253 6254 btrfs_get_block_group(block_group); 6255 search_start = block_group->key.objectid; 6256 6257 /* 6258 * this can happen if we end up cycling through all the 6259 * raid types, but we want to make sure we only allocate 6260 * for the proper type. 6261 */ 6262 if (!block_group_bits(block_group, flags)) { 6263 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6264 BTRFS_BLOCK_GROUP_RAID1 | 6265 BTRFS_BLOCK_GROUP_RAID5 | 6266 BTRFS_BLOCK_GROUP_RAID6 | 6267 BTRFS_BLOCK_GROUP_RAID10; 6268 6269 /* 6270 * if they asked for extra copies and this block group 6271 * doesn't provide them, bail. This does allow us to 6272 * fill raid0 from raid1. 6273 */ 6274 if ((flags & extra) && !(block_group->flags & extra)) 6275 goto loop; 6276 } 6277 6278 have_block_group: 6279 cached = block_group_cache_done(block_group); 6280 if (unlikely(!cached)) { 6281 ret = cache_block_group(block_group, 0); 6282 BUG_ON(ret < 0); 6283 ret = 0; 6284 } 6285 6286 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6287 goto loop; 6288 if (unlikely(block_group->ro)) 6289 goto loop; 6290 6291 /* 6292 * Ok we want to try and use the cluster allocator, so 6293 * lets look there 6294 */ 6295 if (last_ptr) { 6296 struct btrfs_block_group_cache *used_block_group; 6297 unsigned long aligned_cluster; 6298 /* 6299 * the refill lock keeps out other 6300 * people trying to start a new cluster 6301 */ 6302 spin_lock(&last_ptr->refill_lock); 6303 used_block_group = last_ptr->block_group; 6304 if (used_block_group != block_group && 6305 (!used_block_group || 6306 used_block_group->ro || 6307 !block_group_bits(used_block_group, flags))) 6308 goto refill_cluster; 6309 6310 if (used_block_group != block_group) 6311 btrfs_get_block_group(used_block_group); 6312 6313 offset = btrfs_alloc_from_cluster(used_block_group, 6314 last_ptr, 6315 num_bytes, 6316 used_block_group->key.objectid, 6317 &max_extent_size); 6318 if (offset) { 6319 /* we have a block, we're done */ 6320 spin_unlock(&last_ptr->refill_lock); 6321 trace_btrfs_reserve_extent_cluster(root, 6322 used_block_group, 6323 search_start, num_bytes); 6324 if (used_block_group != block_group) { 6325 btrfs_put_block_group(block_group); 6326 block_group = used_block_group; 6327 } 6328 goto checks; 6329 } 6330 6331 WARN_ON(last_ptr->block_group != used_block_group); 6332 if (used_block_group != block_group) 6333 btrfs_put_block_group(used_block_group); 6334 refill_cluster: 6335 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6336 * set up a new clusters, so lets just skip it 6337 * and let the allocator find whatever block 6338 * it can find. If we reach this point, we 6339 * will have tried the cluster allocator 6340 * plenty of times and not have found 6341 * anything, so we are likely way too 6342 * fragmented for the clustering stuff to find 6343 * anything. 6344 * 6345 * However, if the cluster is taken from the 6346 * current block group, release the cluster 6347 * first, so that we stand a better chance of 6348 * succeeding in the unclustered 6349 * allocation. */ 6350 if (loop >= LOOP_NO_EMPTY_SIZE && 6351 last_ptr->block_group != block_group) { 6352 spin_unlock(&last_ptr->refill_lock); 6353 goto unclustered_alloc; 6354 } 6355 6356 /* 6357 * this cluster didn't work out, free it and 6358 * start over 6359 */ 6360 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6361 6362 if (loop >= LOOP_NO_EMPTY_SIZE) { 6363 spin_unlock(&last_ptr->refill_lock); 6364 goto unclustered_alloc; 6365 } 6366 6367 aligned_cluster = max_t(unsigned long, 6368 empty_cluster + empty_size, 6369 block_group->full_stripe_len); 6370 6371 /* allocate a cluster in this block group */ 6372 ret = btrfs_find_space_cluster(root, block_group, 6373 last_ptr, search_start, 6374 num_bytes, 6375 aligned_cluster); 6376 if (ret == 0) { 6377 /* 6378 * now pull our allocation out of this 6379 * cluster 6380 */ 6381 offset = btrfs_alloc_from_cluster(block_group, 6382 last_ptr, 6383 num_bytes, 6384 search_start, 6385 &max_extent_size); 6386 if (offset) { 6387 /* we found one, proceed */ 6388 spin_unlock(&last_ptr->refill_lock); 6389 trace_btrfs_reserve_extent_cluster(root, 6390 block_group, search_start, 6391 num_bytes); 6392 goto checks; 6393 } 6394 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6395 && !failed_cluster_refill) { 6396 spin_unlock(&last_ptr->refill_lock); 6397 6398 failed_cluster_refill = true; 6399 wait_block_group_cache_progress(block_group, 6400 num_bytes + empty_cluster + empty_size); 6401 goto have_block_group; 6402 } 6403 6404 /* 6405 * at this point we either didn't find a cluster 6406 * or we weren't able to allocate a block from our 6407 * cluster. Free the cluster we've been trying 6408 * to use, and go to the next block group 6409 */ 6410 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6411 spin_unlock(&last_ptr->refill_lock); 6412 goto loop; 6413 } 6414 6415 unclustered_alloc: 6416 spin_lock(&block_group->free_space_ctl->tree_lock); 6417 if (cached && 6418 block_group->free_space_ctl->free_space < 6419 num_bytes + empty_cluster + empty_size) { 6420 if (block_group->free_space_ctl->free_space > 6421 max_extent_size) 6422 max_extent_size = 6423 block_group->free_space_ctl->free_space; 6424 spin_unlock(&block_group->free_space_ctl->tree_lock); 6425 goto loop; 6426 } 6427 spin_unlock(&block_group->free_space_ctl->tree_lock); 6428 6429 offset = btrfs_find_space_for_alloc(block_group, search_start, 6430 num_bytes, empty_size, 6431 &max_extent_size); 6432 /* 6433 * If we didn't find a chunk, and we haven't failed on this 6434 * block group before, and this block group is in the middle of 6435 * caching and we are ok with waiting, then go ahead and wait 6436 * for progress to be made, and set failed_alloc to true. 6437 * 6438 * If failed_alloc is true then we've already waited on this 6439 * block group once and should move on to the next block group. 6440 */ 6441 if (!offset && !failed_alloc && !cached && 6442 loop > LOOP_CACHING_NOWAIT) { 6443 wait_block_group_cache_progress(block_group, 6444 num_bytes + empty_size); 6445 failed_alloc = true; 6446 goto have_block_group; 6447 } else if (!offset) { 6448 if (!cached) 6449 have_caching_bg = true; 6450 goto loop; 6451 } 6452 checks: 6453 search_start = stripe_align(root, block_group, 6454 offset, num_bytes); 6455 6456 /* move on to the next group */ 6457 if (search_start + num_bytes > 6458 block_group->key.objectid + block_group->key.offset) { 6459 btrfs_add_free_space(block_group, offset, num_bytes); 6460 goto loop; 6461 } 6462 6463 if (offset < search_start) 6464 btrfs_add_free_space(block_group, offset, 6465 search_start - offset); 6466 BUG_ON(offset > search_start); 6467 6468 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 6469 alloc_type); 6470 if (ret == -EAGAIN) { 6471 btrfs_add_free_space(block_group, offset, num_bytes); 6472 goto loop; 6473 } 6474 6475 /* we are all good, lets return */ 6476 ins->objectid = search_start; 6477 ins->offset = num_bytes; 6478 6479 trace_btrfs_reserve_extent(orig_root, block_group, 6480 search_start, num_bytes); 6481 btrfs_put_block_group(block_group); 6482 break; 6483 loop: 6484 failed_cluster_refill = false; 6485 failed_alloc = false; 6486 BUG_ON(index != get_block_group_index(block_group)); 6487 btrfs_put_block_group(block_group); 6488 } 6489 up_read(&space_info->groups_sem); 6490 6491 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6492 goto search; 6493 6494 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6495 goto search; 6496 6497 /* 6498 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6499 * caching kthreads as we move along 6500 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6501 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6502 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6503 * again 6504 */ 6505 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6506 index = 0; 6507 loop++; 6508 if (loop == LOOP_ALLOC_CHUNK) { 6509 struct btrfs_trans_handle *trans; 6510 6511 trans = btrfs_join_transaction(root); 6512 if (IS_ERR(trans)) { 6513 ret = PTR_ERR(trans); 6514 goto out; 6515 } 6516 6517 ret = do_chunk_alloc(trans, root, flags, 6518 CHUNK_ALLOC_FORCE); 6519 /* 6520 * Do not bail out on ENOSPC since we 6521 * can do more things. 6522 */ 6523 if (ret < 0 && ret != -ENOSPC) 6524 btrfs_abort_transaction(trans, 6525 root, ret); 6526 else 6527 ret = 0; 6528 btrfs_end_transaction(trans, root); 6529 if (ret) 6530 goto out; 6531 } 6532 6533 if (loop == LOOP_NO_EMPTY_SIZE) { 6534 empty_size = 0; 6535 empty_cluster = 0; 6536 } 6537 6538 goto search; 6539 } else if (!ins->objectid) { 6540 ret = -ENOSPC; 6541 } else if (ins->objectid) { 6542 ret = 0; 6543 } 6544 out: 6545 if (ret == -ENOSPC) 6546 ins->offset = max_extent_size; 6547 return ret; 6548 } 6549 6550 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6551 int dump_block_groups) 6552 { 6553 struct btrfs_block_group_cache *cache; 6554 int index = 0; 6555 6556 spin_lock(&info->lock); 6557 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 6558 info->flags, 6559 info->total_bytes - info->bytes_used - info->bytes_pinned - 6560 info->bytes_reserved - info->bytes_readonly, 6561 (info->full) ? "" : "not "); 6562 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 6563 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6564 info->total_bytes, info->bytes_used, info->bytes_pinned, 6565 info->bytes_reserved, info->bytes_may_use, 6566 info->bytes_readonly); 6567 spin_unlock(&info->lock); 6568 6569 if (!dump_block_groups) 6570 return; 6571 6572 down_read(&info->groups_sem); 6573 again: 6574 list_for_each_entry(cache, &info->block_groups[index], list) { 6575 spin_lock(&cache->lock); 6576 printk(KERN_INFO "BTRFS: " 6577 "block group %llu has %llu bytes, " 6578 "%llu used %llu pinned %llu reserved %s\n", 6579 cache->key.objectid, cache->key.offset, 6580 btrfs_block_group_used(&cache->item), cache->pinned, 6581 cache->reserved, cache->ro ? "[readonly]" : ""); 6582 btrfs_dump_free_space(cache, bytes); 6583 spin_unlock(&cache->lock); 6584 } 6585 if (++index < BTRFS_NR_RAID_TYPES) 6586 goto again; 6587 up_read(&info->groups_sem); 6588 } 6589 6590 int btrfs_reserve_extent(struct btrfs_root *root, 6591 u64 num_bytes, u64 min_alloc_size, 6592 u64 empty_size, u64 hint_byte, 6593 struct btrfs_key *ins, int is_data) 6594 { 6595 bool final_tried = false; 6596 u64 flags; 6597 int ret; 6598 6599 flags = btrfs_get_alloc_profile(root, is_data); 6600 again: 6601 WARN_ON(num_bytes < root->sectorsize); 6602 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6603 flags); 6604 6605 if (ret == -ENOSPC) { 6606 if (!final_tried && ins->offset) { 6607 num_bytes = min(num_bytes >> 1, ins->offset); 6608 num_bytes = round_down(num_bytes, root->sectorsize); 6609 num_bytes = max(num_bytes, min_alloc_size); 6610 if (num_bytes == min_alloc_size) 6611 final_tried = true; 6612 goto again; 6613 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6614 struct btrfs_space_info *sinfo; 6615 6616 sinfo = __find_space_info(root->fs_info, flags); 6617 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6618 flags, num_bytes); 6619 if (sinfo) 6620 dump_space_info(sinfo, num_bytes, 1); 6621 } 6622 } 6623 6624 return ret; 6625 } 6626 6627 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6628 u64 start, u64 len, int pin) 6629 { 6630 struct btrfs_block_group_cache *cache; 6631 int ret = 0; 6632 6633 cache = btrfs_lookup_block_group(root->fs_info, start); 6634 if (!cache) { 6635 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6636 start); 6637 return -ENOSPC; 6638 } 6639 6640 if (btrfs_test_opt(root, DISCARD)) 6641 ret = btrfs_discard_extent(root, start, len, NULL); 6642 6643 if (pin) 6644 pin_down_extent(root, cache, start, len, 1); 6645 else { 6646 btrfs_add_free_space(cache, start, len); 6647 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6648 } 6649 btrfs_put_block_group(cache); 6650 6651 trace_btrfs_reserved_extent_free(root, start, len); 6652 6653 return ret; 6654 } 6655 6656 int btrfs_free_reserved_extent(struct btrfs_root *root, 6657 u64 start, u64 len) 6658 { 6659 return __btrfs_free_reserved_extent(root, start, len, 0); 6660 } 6661 6662 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6663 u64 start, u64 len) 6664 { 6665 return __btrfs_free_reserved_extent(root, start, len, 1); 6666 } 6667 6668 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6669 struct btrfs_root *root, 6670 u64 parent, u64 root_objectid, 6671 u64 flags, u64 owner, u64 offset, 6672 struct btrfs_key *ins, int ref_mod) 6673 { 6674 int ret; 6675 struct btrfs_fs_info *fs_info = root->fs_info; 6676 struct btrfs_extent_item *extent_item; 6677 struct btrfs_extent_inline_ref *iref; 6678 struct btrfs_path *path; 6679 struct extent_buffer *leaf; 6680 int type; 6681 u32 size; 6682 6683 if (parent > 0) 6684 type = BTRFS_SHARED_DATA_REF_KEY; 6685 else 6686 type = BTRFS_EXTENT_DATA_REF_KEY; 6687 6688 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6689 6690 path = btrfs_alloc_path(); 6691 if (!path) 6692 return -ENOMEM; 6693 6694 path->leave_spinning = 1; 6695 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6696 ins, size); 6697 if (ret) { 6698 btrfs_free_path(path); 6699 return ret; 6700 } 6701 6702 leaf = path->nodes[0]; 6703 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6704 struct btrfs_extent_item); 6705 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6706 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6707 btrfs_set_extent_flags(leaf, extent_item, 6708 flags | BTRFS_EXTENT_FLAG_DATA); 6709 6710 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6711 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6712 if (parent > 0) { 6713 struct btrfs_shared_data_ref *ref; 6714 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6716 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6717 } else { 6718 struct btrfs_extent_data_ref *ref; 6719 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6720 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6721 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6722 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6723 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6724 } 6725 6726 btrfs_mark_buffer_dirty(path->nodes[0]); 6727 btrfs_free_path(path); 6728 6729 ret = update_block_group(root, ins->objectid, ins->offset, 1); 6730 if (ret) { /* -ENOENT, logic error */ 6731 btrfs_err(fs_info, "update block group failed for %llu %llu", 6732 ins->objectid, ins->offset); 6733 BUG(); 6734 } 6735 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 6736 return ret; 6737 } 6738 6739 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6740 struct btrfs_root *root, 6741 u64 parent, u64 root_objectid, 6742 u64 flags, struct btrfs_disk_key *key, 6743 int level, struct btrfs_key *ins) 6744 { 6745 int ret; 6746 struct btrfs_fs_info *fs_info = root->fs_info; 6747 struct btrfs_extent_item *extent_item; 6748 struct btrfs_tree_block_info *block_info; 6749 struct btrfs_extent_inline_ref *iref; 6750 struct btrfs_path *path; 6751 struct extent_buffer *leaf; 6752 u32 size = sizeof(*extent_item) + sizeof(*iref); 6753 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6754 SKINNY_METADATA); 6755 6756 if (!skinny_metadata) 6757 size += sizeof(*block_info); 6758 6759 path = btrfs_alloc_path(); 6760 if (!path) { 6761 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6762 root->leafsize); 6763 return -ENOMEM; 6764 } 6765 6766 path->leave_spinning = 1; 6767 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6768 ins, size); 6769 if (ret) { 6770 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 6771 root->leafsize); 6772 btrfs_free_path(path); 6773 return ret; 6774 } 6775 6776 leaf = path->nodes[0]; 6777 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6778 struct btrfs_extent_item); 6779 btrfs_set_extent_refs(leaf, extent_item, 1); 6780 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6781 btrfs_set_extent_flags(leaf, extent_item, 6782 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6783 6784 if (skinny_metadata) { 6785 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6786 } else { 6787 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6788 btrfs_set_tree_block_key(leaf, block_info, key); 6789 btrfs_set_tree_block_level(leaf, block_info, level); 6790 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6791 } 6792 6793 if (parent > 0) { 6794 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6795 btrfs_set_extent_inline_ref_type(leaf, iref, 6796 BTRFS_SHARED_BLOCK_REF_KEY); 6797 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6798 } else { 6799 btrfs_set_extent_inline_ref_type(leaf, iref, 6800 BTRFS_TREE_BLOCK_REF_KEY); 6801 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6802 } 6803 6804 btrfs_mark_buffer_dirty(leaf); 6805 btrfs_free_path(path); 6806 6807 ret = update_block_group(root, ins->objectid, root->leafsize, 1); 6808 if (ret) { /* -ENOENT, logic error */ 6809 btrfs_err(fs_info, "update block group failed for %llu %llu", 6810 ins->objectid, ins->offset); 6811 BUG(); 6812 } 6813 6814 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->leafsize); 6815 return ret; 6816 } 6817 6818 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6819 struct btrfs_root *root, 6820 u64 root_objectid, u64 owner, 6821 u64 offset, struct btrfs_key *ins) 6822 { 6823 int ret; 6824 6825 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6826 6827 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6828 ins->offset, 0, 6829 root_objectid, owner, offset, 6830 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6831 return ret; 6832 } 6833 6834 /* 6835 * this is used by the tree logging recovery code. It records that 6836 * an extent has been allocated and makes sure to clear the free 6837 * space cache bits as well 6838 */ 6839 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6840 struct btrfs_root *root, 6841 u64 root_objectid, u64 owner, u64 offset, 6842 struct btrfs_key *ins) 6843 { 6844 int ret; 6845 struct btrfs_block_group_cache *block_group; 6846 6847 /* 6848 * Mixed block groups will exclude before processing the log so we only 6849 * need to do the exlude dance if this fs isn't mixed. 6850 */ 6851 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 6852 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 6853 if (ret) 6854 return ret; 6855 } 6856 6857 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6858 if (!block_group) 6859 return -EINVAL; 6860 6861 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6862 RESERVE_ALLOC_NO_ACCOUNT); 6863 BUG_ON(ret); /* logic error */ 6864 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6865 0, owner, offset, ins, 1); 6866 btrfs_put_block_group(block_group); 6867 return ret; 6868 } 6869 6870 static struct extent_buffer * 6871 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6872 u64 bytenr, u32 blocksize, int level) 6873 { 6874 struct extent_buffer *buf; 6875 6876 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6877 if (!buf) 6878 return ERR_PTR(-ENOMEM); 6879 btrfs_set_header_generation(buf, trans->transid); 6880 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6881 btrfs_tree_lock(buf); 6882 clean_tree_block(trans, root, buf); 6883 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6884 6885 btrfs_set_lock_blocking(buf); 6886 btrfs_set_buffer_uptodate(buf); 6887 6888 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6889 /* 6890 * we allow two log transactions at a time, use different 6891 * EXENT bit to differentiate dirty pages. 6892 */ 6893 if (root->log_transid % 2 == 0) 6894 set_extent_dirty(&root->dirty_log_pages, buf->start, 6895 buf->start + buf->len - 1, GFP_NOFS); 6896 else 6897 set_extent_new(&root->dirty_log_pages, buf->start, 6898 buf->start + buf->len - 1, GFP_NOFS); 6899 } else { 6900 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6901 buf->start + buf->len - 1, GFP_NOFS); 6902 } 6903 trans->blocks_used++; 6904 /* this returns a buffer locked for blocking */ 6905 return buf; 6906 } 6907 6908 static struct btrfs_block_rsv * 6909 use_block_rsv(struct btrfs_trans_handle *trans, 6910 struct btrfs_root *root, u32 blocksize) 6911 { 6912 struct btrfs_block_rsv *block_rsv; 6913 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6914 int ret; 6915 bool global_updated = false; 6916 6917 block_rsv = get_block_rsv(trans, root); 6918 6919 if (unlikely(block_rsv->size == 0)) 6920 goto try_reserve; 6921 again: 6922 ret = block_rsv_use_bytes(block_rsv, blocksize); 6923 if (!ret) 6924 return block_rsv; 6925 6926 if (block_rsv->failfast) 6927 return ERR_PTR(ret); 6928 6929 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 6930 global_updated = true; 6931 update_global_block_rsv(root->fs_info); 6932 goto again; 6933 } 6934 6935 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6936 static DEFINE_RATELIMIT_STATE(_rs, 6937 DEFAULT_RATELIMIT_INTERVAL * 10, 6938 /*DEFAULT_RATELIMIT_BURST*/ 1); 6939 if (__ratelimit(&_rs)) 6940 WARN(1, KERN_DEBUG 6941 "BTRFS: block rsv returned %d\n", ret); 6942 } 6943 try_reserve: 6944 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 6945 BTRFS_RESERVE_NO_FLUSH); 6946 if (!ret) 6947 return block_rsv; 6948 /* 6949 * If we couldn't reserve metadata bytes try and use some from 6950 * the global reserve if its space type is the same as the global 6951 * reservation. 6952 */ 6953 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 6954 block_rsv->space_info == global_rsv->space_info) { 6955 ret = block_rsv_use_bytes(global_rsv, blocksize); 6956 if (!ret) 6957 return global_rsv; 6958 } 6959 return ERR_PTR(ret); 6960 } 6961 6962 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6963 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6964 { 6965 block_rsv_add_bytes(block_rsv, blocksize, 0); 6966 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6967 } 6968 6969 /* 6970 * finds a free extent and does all the dirty work required for allocation 6971 * returns the key for the extent through ins, and a tree buffer for 6972 * the first block of the extent through buf. 6973 * 6974 * returns the tree buffer or NULL. 6975 */ 6976 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6977 struct btrfs_root *root, u32 blocksize, 6978 u64 parent, u64 root_objectid, 6979 struct btrfs_disk_key *key, int level, 6980 u64 hint, u64 empty_size) 6981 { 6982 struct btrfs_key ins; 6983 struct btrfs_block_rsv *block_rsv; 6984 struct extent_buffer *buf; 6985 u64 flags = 0; 6986 int ret; 6987 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6988 SKINNY_METADATA); 6989 6990 block_rsv = use_block_rsv(trans, root, blocksize); 6991 if (IS_ERR(block_rsv)) 6992 return ERR_CAST(block_rsv); 6993 6994 ret = btrfs_reserve_extent(root, blocksize, blocksize, 6995 empty_size, hint, &ins, 0); 6996 if (ret) { 6997 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6998 return ERR_PTR(ret); 6999 } 7000 7001 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 7002 blocksize, level); 7003 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 7004 7005 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7006 if (parent == 0) 7007 parent = ins.objectid; 7008 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7009 } else 7010 BUG_ON(parent > 0); 7011 7012 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7013 struct btrfs_delayed_extent_op *extent_op; 7014 extent_op = btrfs_alloc_delayed_extent_op(); 7015 BUG_ON(!extent_op); /* -ENOMEM */ 7016 if (key) 7017 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7018 else 7019 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7020 extent_op->flags_to_set = flags; 7021 if (skinny_metadata) 7022 extent_op->update_key = 0; 7023 else 7024 extent_op->update_key = 1; 7025 extent_op->update_flags = 1; 7026 extent_op->is_data = 0; 7027 extent_op->level = level; 7028 7029 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7030 ins.objectid, 7031 ins.offset, parent, root_objectid, 7032 level, BTRFS_ADD_DELAYED_EXTENT, 7033 extent_op, 0); 7034 BUG_ON(ret); /* -ENOMEM */ 7035 } 7036 return buf; 7037 } 7038 7039 struct walk_control { 7040 u64 refs[BTRFS_MAX_LEVEL]; 7041 u64 flags[BTRFS_MAX_LEVEL]; 7042 struct btrfs_key update_progress; 7043 int stage; 7044 int level; 7045 int shared_level; 7046 int update_ref; 7047 int keep_locks; 7048 int reada_slot; 7049 int reada_count; 7050 int for_reloc; 7051 }; 7052 7053 #define DROP_REFERENCE 1 7054 #define UPDATE_BACKREF 2 7055 7056 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7057 struct btrfs_root *root, 7058 struct walk_control *wc, 7059 struct btrfs_path *path) 7060 { 7061 u64 bytenr; 7062 u64 generation; 7063 u64 refs; 7064 u64 flags; 7065 u32 nritems; 7066 u32 blocksize; 7067 struct btrfs_key key; 7068 struct extent_buffer *eb; 7069 int ret; 7070 int slot; 7071 int nread = 0; 7072 7073 if (path->slots[wc->level] < wc->reada_slot) { 7074 wc->reada_count = wc->reada_count * 2 / 3; 7075 wc->reada_count = max(wc->reada_count, 2); 7076 } else { 7077 wc->reada_count = wc->reada_count * 3 / 2; 7078 wc->reada_count = min_t(int, wc->reada_count, 7079 BTRFS_NODEPTRS_PER_BLOCK(root)); 7080 } 7081 7082 eb = path->nodes[wc->level]; 7083 nritems = btrfs_header_nritems(eb); 7084 blocksize = btrfs_level_size(root, wc->level - 1); 7085 7086 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7087 if (nread >= wc->reada_count) 7088 break; 7089 7090 cond_resched(); 7091 bytenr = btrfs_node_blockptr(eb, slot); 7092 generation = btrfs_node_ptr_generation(eb, slot); 7093 7094 if (slot == path->slots[wc->level]) 7095 goto reada; 7096 7097 if (wc->stage == UPDATE_BACKREF && 7098 generation <= root->root_key.offset) 7099 continue; 7100 7101 /* We don't lock the tree block, it's OK to be racy here */ 7102 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7103 wc->level - 1, 1, &refs, 7104 &flags); 7105 /* We don't care about errors in readahead. */ 7106 if (ret < 0) 7107 continue; 7108 BUG_ON(refs == 0); 7109 7110 if (wc->stage == DROP_REFERENCE) { 7111 if (refs == 1) 7112 goto reada; 7113 7114 if (wc->level == 1 && 7115 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7116 continue; 7117 if (!wc->update_ref || 7118 generation <= root->root_key.offset) 7119 continue; 7120 btrfs_node_key_to_cpu(eb, &key, slot); 7121 ret = btrfs_comp_cpu_keys(&key, 7122 &wc->update_progress); 7123 if (ret < 0) 7124 continue; 7125 } else { 7126 if (wc->level == 1 && 7127 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7128 continue; 7129 } 7130 reada: 7131 ret = readahead_tree_block(root, bytenr, blocksize, 7132 generation); 7133 if (ret) 7134 break; 7135 nread++; 7136 } 7137 wc->reada_slot = slot; 7138 } 7139 7140 /* 7141 * helper to process tree block while walking down the tree. 7142 * 7143 * when wc->stage == UPDATE_BACKREF, this function updates 7144 * back refs for pointers in the block. 7145 * 7146 * NOTE: return value 1 means we should stop walking down. 7147 */ 7148 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7149 struct btrfs_root *root, 7150 struct btrfs_path *path, 7151 struct walk_control *wc, int lookup_info) 7152 { 7153 int level = wc->level; 7154 struct extent_buffer *eb = path->nodes[level]; 7155 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7156 int ret; 7157 7158 if (wc->stage == UPDATE_BACKREF && 7159 btrfs_header_owner(eb) != root->root_key.objectid) 7160 return 1; 7161 7162 /* 7163 * when reference count of tree block is 1, it won't increase 7164 * again. once full backref flag is set, we never clear it. 7165 */ 7166 if (lookup_info && 7167 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7168 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7169 BUG_ON(!path->locks[level]); 7170 ret = btrfs_lookup_extent_info(trans, root, 7171 eb->start, level, 1, 7172 &wc->refs[level], 7173 &wc->flags[level]); 7174 BUG_ON(ret == -ENOMEM); 7175 if (ret) 7176 return ret; 7177 BUG_ON(wc->refs[level] == 0); 7178 } 7179 7180 if (wc->stage == DROP_REFERENCE) { 7181 if (wc->refs[level] > 1) 7182 return 1; 7183 7184 if (path->locks[level] && !wc->keep_locks) { 7185 btrfs_tree_unlock_rw(eb, path->locks[level]); 7186 path->locks[level] = 0; 7187 } 7188 return 0; 7189 } 7190 7191 /* wc->stage == UPDATE_BACKREF */ 7192 if (!(wc->flags[level] & flag)) { 7193 BUG_ON(!path->locks[level]); 7194 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 7195 BUG_ON(ret); /* -ENOMEM */ 7196 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 7197 BUG_ON(ret); /* -ENOMEM */ 7198 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7199 eb->len, flag, 7200 btrfs_header_level(eb), 0); 7201 BUG_ON(ret); /* -ENOMEM */ 7202 wc->flags[level] |= flag; 7203 } 7204 7205 /* 7206 * the block is shared by multiple trees, so it's not good to 7207 * keep the tree lock 7208 */ 7209 if (path->locks[level] && level > 0) { 7210 btrfs_tree_unlock_rw(eb, path->locks[level]); 7211 path->locks[level] = 0; 7212 } 7213 return 0; 7214 } 7215 7216 /* 7217 * helper to process tree block pointer. 7218 * 7219 * when wc->stage == DROP_REFERENCE, this function checks 7220 * reference count of the block pointed to. if the block 7221 * is shared and we need update back refs for the subtree 7222 * rooted at the block, this function changes wc->stage to 7223 * UPDATE_BACKREF. if the block is shared and there is no 7224 * need to update back, this function drops the reference 7225 * to the block. 7226 * 7227 * NOTE: return value 1 means we should stop walking down. 7228 */ 7229 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7230 struct btrfs_root *root, 7231 struct btrfs_path *path, 7232 struct walk_control *wc, int *lookup_info) 7233 { 7234 u64 bytenr; 7235 u64 generation; 7236 u64 parent; 7237 u32 blocksize; 7238 struct btrfs_key key; 7239 struct extent_buffer *next; 7240 int level = wc->level; 7241 int reada = 0; 7242 int ret = 0; 7243 7244 generation = btrfs_node_ptr_generation(path->nodes[level], 7245 path->slots[level]); 7246 /* 7247 * if the lower level block was created before the snapshot 7248 * was created, we know there is no need to update back refs 7249 * for the subtree 7250 */ 7251 if (wc->stage == UPDATE_BACKREF && 7252 generation <= root->root_key.offset) { 7253 *lookup_info = 1; 7254 return 1; 7255 } 7256 7257 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7258 blocksize = btrfs_level_size(root, level - 1); 7259 7260 next = btrfs_find_tree_block(root, bytenr, blocksize); 7261 if (!next) { 7262 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7263 if (!next) 7264 return -ENOMEM; 7265 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7266 level - 1); 7267 reada = 1; 7268 } 7269 btrfs_tree_lock(next); 7270 btrfs_set_lock_blocking(next); 7271 7272 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7273 &wc->refs[level - 1], 7274 &wc->flags[level - 1]); 7275 if (ret < 0) { 7276 btrfs_tree_unlock(next); 7277 return ret; 7278 } 7279 7280 if (unlikely(wc->refs[level - 1] == 0)) { 7281 btrfs_err(root->fs_info, "Missing references."); 7282 BUG(); 7283 } 7284 *lookup_info = 0; 7285 7286 if (wc->stage == DROP_REFERENCE) { 7287 if (wc->refs[level - 1] > 1) { 7288 if (level == 1 && 7289 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7290 goto skip; 7291 7292 if (!wc->update_ref || 7293 generation <= root->root_key.offset) 7294 goto skip; 7295 7296 btrfs_node_key_to_cpu(path->nodes[level], &key, 7297 path->slots[level]); 7298 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7299 if (ret < 0) 7300 goto skip; 7301 7302 wc->stage = UPDATE_BACKREF; 7303 wc->shared_level = level - 1; 7304 } 7305 } else { 7306 if (level == 1 && 7307 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7308 goto skip; 7309 } 7310 7311 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7312 btrfs_tree_unlock(next); 7313 free_extent_buffer(next); 7314 next = NULL; 7315 *lookup_info = 1; 7316 } 7317 7318 if (!next) { 7319 if (reada && level == 1) 7320 reada_walk_down(trans, root, wc, path); 7321 next = read_tree_block(root, bytenr, blocksize, generation); 7322 if (!next || !extent_buffer_uptodate(next)) { 7323 free_extent_buffer(next); 7324 return -EIO; 7325 } 7326 btrfs_tree_lock(next); 7327 btrfs_set_lock_blocking(next); 7328 } 7329 7330 level--; 7331 BUG_ON(level != btrfs_header_level(next)); 7332 path->nodes[level] = next; 7333 path->slots[level] = 0; 7334 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7335 wc->level = level; 7336 if (wc->level == 1) 7337 wc->reada_slot = 0; 7338 return 0; 7339 skip: 7340 wc->refs[level - 1] = 0; 7341 wc->flags[level - 1] = 0; 7342 if (wc->stage == DROP_REFERENCE) { 7343 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7344 parent = path->nodes[level]->start; 7345 } else { 7346 BUG_ON(root->root_key.objectid != 7347 btrfs_header_owner(path->nodes[level])); 7348 parent = 0; 7349 } 7350 7351 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7352 root->root_key.objectid, level - 1, 0, 0); 7353 BUG_ON(ret); /* -ENOMEM */ 7354 } 7355 btrfs_tree_unlock(next); 7356 free_extent_buffer(next); 7357 *lookup_info = 1; 7358 return 1; 7359 } 7360 7361 /* 7362 * helper to process tree block while walking up the tree. 7363 * 7364 * when wc->stage == DROP_REFERENCE, this function drops 7365 * reference count on the block. 7366 * 7367 * when wc->stage == UPDATE_BACKREF, this function changes 7368 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7369 * to UPDATE_BACKREF previously while processing the block. 7370 * 7371 * NOTE: return value 1 means we should stop walking up. 7372 */ 7373 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7374 struct btrfs_root *root, 7375 struct btrfs_path *path, 7376 struct walk_control *wc) 7377 { 7378 int ret; 7379 int level = wc->level; 7380 struct extent_buffer *eb = path->nodes[level]; 7381 u64 parent = 0; 7382 7383 if (wc->stage == UPDATE_BACKREF) { 7384 BUG_ON(wc->shared_level < level); 7385 if (level < wc->shared_level) 7386 goto out; 7387 7388 ret = find_next_key(path, level + 1, &wc->update_progress); 7389 if (ret > 0) 7390 wc->update_ref = 0; 7391 7392 wc->stage = DROP_REFERENCE; 7393 wc->shared_level = -1; 7394 path->slots[level] = 0; 7395 7396 /* 7397 * check reference count again if the block isn't locked. 7398 * we should start walking down the tree again if reference 7399 * count is one. 7400 */ 7401 if (!path->locks[level]) { 7402 BUG_ON(level == 0); 7403 btrfs_tree_lock(eb); 7404 btrfs_set_lock_blocking(eb); 7405 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7406 7407 ret = btrfs_lookup_extent_info(trans, root, 7408 eb->start, level, 1, 7409 &wc->refs[level], 7410 &wc->flags[level]); 7411 if (ret < 0) { 7412 btrfs_tree_unlock_rw(eb, path->locks[level]); 7413 path->locks[level] = 0; 7414 return ret; 7415 } 7416 BUG_ON(wc->refs[level] == 0); 7417 if (wc->refs[level] == 1) { 7418 btrfs_tree_unlock_rw(eb, path->locks[level]); 7419 path->locks[level] = 0; 7420 return 1; 7421 } 7422 } 7423 } 7424 7425 /* wc->stage == DROP_REFERENCE */ 7426 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 7427 7428 if (wc->refs[level] == 1) { 7429 if (level == 0) { 7430 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7431 ret = btrfs_dec_ref(trans, root, eb, 1, 7432 wc->for_reloc); 7433 else 7434 ret = btrfs_dec_ref(trans, root, eb, 0, 7435 wc->for_reloc); 7436 BUG_ON(ret); /* -ENOMEM */ 7437 } 7438 /* make block locked assertion in clean_tree_block happy */ 7439 if (!path->locks[level] && 7440 btrfs_header_generation(eb) == trans->transid) { 7441 btrfs_tree_lock(eb); 7442 btrfs_set_lock_blocking(eb); 7443 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7444 } 7445 clean_tree_block(trans, root, eb); 7446 } 7447 7448 if (eb == root->node) { 7449 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7450 parent = eb->start; 7451 else 7452 BUG_ON(root->root_key.objectid != 7453 btrfs_header_owner(eb)); 7454 } else { 7455 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 7456 parent = path->nodes[level + 1]->start; 7457 else 7458 BUG_ON(root->root_key.objectid != 7459 btrfs_header_owner(path->nodes[level + 1])); 7460 } 7461 7462 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 7463 out: 7464 wc->refs[level] = 0; 7465 wc->flags[level] = 0; 7466 return 0; 7467 } 7468 7469 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 7470 struct btrfs_root *root, 7471 struct btrfs_path *path, 7472 struct walk_control *wc) 7473 { 7474 int level = wc->level; 7475 int lookup_info = 1; 7476 int ret; 7477 7478 while (level >= 0) { 7479 ret = walk_down_proc(trans, root, path, wc, lookup_info); 7480 if (ret > 0) 7481 break; 7482 7483 if (level == 0) 7484 break; 7485 7486 if (path->slots[level] >= 7487 btrfs_header_nritems(path->nodes[level])) 7488 break; 7489 7490 ret = do_walk_down(trans, root, path, wc, &lookup_info); 7491 if (ret > 0) { 7492 path->slots[level]++; 7493 continue; 7494 } else if (ret < 0) 7495 return ret; 7496 level = wc->level; 7497 } 7498 return 0; 7499 } 7500 7501 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 7502 struct btrfs_root *root, 7503 struct btrfs_path *path, 7504 struct walk_control *wc, int max_level) 7505 { 7506 int level = wc->level; 7507 int ret; 7508 7509 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 7510 while (level < max_level && path->nodes[level]) { 7511 wc->level = level; 7512 if (path->slots[level] + 1 < 7513 btrfs_header_nritems(path->nodes[level])) { 7514 path->slots[level]++; 7515 return 0; 7516 } else { 7517 ret = walk_up_proc(trans, root, path, wc); 7518 if (ret > 0) 7519 return 0; 7520 7521 if (path->locks[level]) { 7522 btrfs_tree_unlock_rw(path->nodes[level], 7523 path->locks[level]); 7524 path->locks[level] = 0; 7525 } 7526 free_extent_buffer(path->nodes[level]); 7527 path->nodes[level] = NULL; 7528 level++; 7529 } 7530 } 7531 return 1; 7532 } 7533 7534 /* 7535 * drop a subvolume tree. 7536 * 7537 * this function traverses the tree freeing any blocks that only 7538 * referenced by the tree. 7539 * 7540 * when a shared tree block is found. this function decreases its 7541 * reference count by one. if update_ref is true, this function 7542 * also make sure backrefs for the shared block and all lower level 7543 * blocks are properly updated. 7544 * 7545 * If called with for_reloc == 0, may exit early with -EAGAIN 7546 */ 7547 int btrfs_drop_snapshot(struct btrfs_root *root, 7548 struct btrfs_block_rsv *block_rsv, int update_ref, 7549 int for_reloc) 7550 { 7551 struct btrfs_path *path; 7552 struct btrfs_trans_handle *trans; 7553 struct btrfs_root *tree_root = root->fs_info->tree_root; 7554 struct btrfs_root_item *root_item = &root->root_item; 7555 struct walk_control *wc; 7556 struct btrfs_key key; 7557 int err = 0; 7558 int ret; 7559 int level; 7560 bool root_dropped = false; 7561 7562 path = btrfs_alloc_path(); 7563 if (!path) { 7564 err = -ENOMEM; 7565 goto out; 7566 } 7567 7568 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7569 if (!wc) { 7570 btrfs_free_path(path); 7571 err = -ENOMEM; 7572 goto out; 7573 } 7574 7575 trans = btrfs_start_transaction(tree_root, 0); 7576 if (IS_ERR(trans)) { 7577 err = PTR_ERR(trans); 7578 goto out_free; 7579 } 7580 7581 if (block_rsv) 7582 trans->block_rsv = block_rsv; 7583 7584 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 7585 level = btrfs_header_level(root->node); 7586 path->nodes[level] = btrfs_lock_root_node(root); 7587 btrfs_set_lock_blocking(path->nodes[level]); 7588 path->slots[level] = 0; 7589 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7590 memset(&wc->update_progress, 0, 7591 sizeof(wc->update_progress)); 7592 } else { 7593 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 7594 memcpy(&wc->update_progress, &key, 7595 sizeof(wc->update_progress)); 7596 7597 level = root_item->drop_level; 7598 BUG_ON(level == 0); 7599 path->lowest_level = level; 7600 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7601 path->lowest_level = 0; 7602 if (ret < 0) { 7603 err = ret; 7604 goto out_end_trans; 7605 } 7606 WARN_ON(ret > 0); 7607 7608 /* 7609 * unlock our path, this is safe because only this 7610 * function is allowed to delete this snapshot 7611 */ 7612 btrfs_unlock_up_safe(path, 0); 7613 7614 level = btrfs_header_level(root->node); 7615 while (1) { 7616 btrfs_tree_lock(path->nodes[level]); 7617 btrfs_set_lock_blocking(path->nodes[level]); 7618 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7619 7620 ret = btrfs_lookup_extent_info(trans, root, 7621 path->nodes[level]->start, 7622 level, 1, &wc->refs[level], 7623 &wc->flags[level]); 7624 if (ret < 0) { 7625 err = ret; 7626 goto out_end_trans; 7627 } 7628 BUG_ON(wc->refs[level] == 0); 7629 7630 if (level == root_item->drop_level) 7631 break; 7632 7633 btrfs_tree_unlock(path->nodes[level]); 7634 path->locks[level] = 0; 7635 WARN_ON(wc->refs[level] != 1); 7636 level--; 7637 } 7638 } 7639 7640 wc->level = level; 7641 wc->shared_level = -1; 7642 wc->stage = DROP_REFERENCE; 7643 wc->update_ref = update_ref; 7644 wc->keep_locks = 0; 7645 wc->for_reloc = for_reloc; 7646 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7647 7648 while (1) { 7649 7650 ret = walk_down_tree(trans, root, path, wc); 7651 if (ret < 0) { 7652 err = ret; 7653 break; 7654 } 7655 7656 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7657 if (ret < 0) { 7658 err = ret; 7659 break; 7660 } 7661 7662 if (ret > 0) { 7663 BUG_ON(wc->stage != DROP_REFERENCE); 7664 break; 7665 } 7666 7667 if (wc->stage == DROP_REFERENCE) { 7668 level = wc->level; 7669 btrfs_node_key(path->nodes[level], 7670 &root_item->drop_progress, 7671 path->slots[level]); 7672 root_item->drop_level = level; 7673 } 7674 7675 BUG_ON(wc->level == 0); 7676 if (btrfs_should_end_transaction(trans, tree_root) || 7677 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 7678 ret = btrfs_update_root(trans, tree_root, 7679 &root->root_key, 7680 root_item); 7681 if (ret) { 7682 btrfs_abort_transaction(trans, tree_root, ret); 7683 err = ret; 7684 goto out_end_trans; 7685 } 7686 7687 btrfs_end_transaction_throttle(trans, tree_root); 7688 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 7689 pr_debug("BTRFS: drop snapshot early exit\n"); 7690 err = -EAGAIN; 7691 goto out_free; 7692 } 7693 7694 trans = btrfs_start_transaction(tree_root, 0); 7695 if (IS_ERR(trans)) { 7696 err = PTR_ERR(trans); 7697 goto out_free; 7698 } 7699 if (block_rsv) 7700 trans->block_rsv = block_rsv; 7701 } 7702 } 7703 btrfs_release_path(path); 7704 if (err) 7705 goto out_end_trans; 7706 7707 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7708 if (ret) { 7709 btrfs_abort_transaction(trans, tree_root, ret); 7710 goto out_end_trans; 7711 } 7712 7713 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7714 ret = btrfs_find_root(tree_root, &root->root_key, path, 7715 NULL, NULL); 7716 if (ret < 0) { 7717 btrfs_abort_transaction(trans, tree_root, ret); 7718 err = ret; 7719 goto out_end_trans; 7720 } else if (ret > 0) { 7721 /* if we fail to delete the orphan item this time 7722 * around, it'll get picked up the next time. 7723 * 7724 * The most common failure here is just -ENOENT. 7725 */ 7726 btrfs_del_orphan_item(trans, tree_root, 7727 root->root_key.objectid); 7728 } 7729 } 7730 7731 if (root->in_radix) { 7732 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 7733 } else { 7734 free_extent_buffer(root->node); 7735 free_extent_buffer(root->commit_root); 7736 btrfs_put_fs_root(root); 7737 } 7738 root_dropped = true; 7739 out_end_trans: 7740 btrfs_end_transaction_throttle(trans, tree_root); 7741 out_free: 7742 kfree(wc); 7743 btrfs_free_path(path); 7744 out: 7745 /* 7746 * So if we need to stop dropping the snapshot for whatever reason we 7747 * need to make sure to add it back to the dead root list so that we 7748 * keep trying to do the work later. This also cleans up roots if we 7749 * don't have it in the radix (like when we recover after a power fail 7750 * or unmount) so we don't leak memory. 7751 */ 7752 if (!for_reloc && root_dropped == false) 7753 btrfs_add_dead_root(root); 7754 if (err && err != -EAGAIN) 7755 btrfs_std_error(root->fs_info, err); 7756 return err; 7757 } 7758 7759 /* 7760 * drop subtree rooted at tree block 'node'. 7761 * 7762 * NOTE: this function will unlock and release tree block 'node' 7763 * only used by relocation code 7764 */ 7765 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7766 struct btrfs_root *root, 7767 struct extent_buffer *node, 7768 struct extent_buffer *parent) 7769 { 7770 struct btrfs_path *path; 7771 struct walk_control *wc; 7772 int level; 7773 int parent_level; 7774 int ret = 0; 7775 int wret; 7776 7777 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7778 7779 path = btrfs_alloc_path(); 7780 if (!path) 7781 return -ENOMEM; 7782 7783 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7784 if (!wc) { 7785 btrfs_free_path(path); 7786 return -ENOMEM; 7787 } 7788 7789 btrfs_assert_tree_locked(parent); 7790 parent_level = btrfs_header_level(parent); 7791 extent_buffer_get(parent); 7792 path->nodes[parent_level] = parent; 7793 path->slots[parent_level] = btrfs_header_nritems(parent); 7794 7795 btrfs_assert_tree_locked(node); 7796 level = btrfs_header_level(node); 7797 path->nodes[level] = node; 7798 path->slots[level] = 0; 7799 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7800 7801 wc->refs[parent_level] = 1; 7802 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7803 wc->level = level; 7804 wc->shared_level = -1; 7805 wc->stage = DROP_REFERENCE; 7806 wc->update_ref = 0; 7807 wc->keep_locks = 1; 7808 wc->for_reloc = 1; 7809 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7810 7811 while (1) { 7812 wret = walk_down_tree(trans, root, path, wc); 7813 if (wret < 0) { 7814 ret = wret; 7815 break; 7816 } 7817 7818 wret = walk_up_tree(trans, root, path, wc, parent_level); 7819 if (wret < 0) 7820 ret = wret; 7821 if (wret != 0) 7822 break; 7823 } 7824 7825 kfree(wc); 7826 btrfs_free_path(path); 7827 return ret; 7828 } 7829 7830 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7831 { 7832 u64 num_devices; 7833 u64 stripped; 7834 7835 /* 7836 * if restripe for this chunk_type is on pick target profile and 7837 * return, otherwise do the usual balance 7838 */ 7839 stripped = get_restripe_target(root->fs_info, flags); 7840 if (stripped) 7841 return extended_to_chunk(stripped); 7842 7843 /* 7844 * we add in the count of missing devices because we want 7845 * to make sure that any RAID levels on a degraded FS 7846 * continue to be honored. 7847 */ 7848 num_devices = root->fs_info->fs_devices->rw_devices + 7849 root->fs_info->fs_devices->missing_devices; 7850 7851 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7852 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 7853 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7854 7855 if (num_devices == 1) { 7856 stripped |= BTRFS_BLOCK_GROUP_DUP; 7857 stripped = flags & ~stripped; 7858 7859 /* turn raid0 into single device chunks */ 7860 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7861 return stripped; 7862 7863 /* turn mirroring into duplication */ 7864 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7865 BTRFS_BLOCK_GROUP_RAID10)) 7866 return stripped | BTRFS_BLOCK_GROUP_DUP; 7867 } else { 7868 /* they already had raid on here, just return */ 7869 if (flags & stripped) 7870 return flags; 7871 7872 stripped |= BTRFS_BLOCK_GROUP_DUP; 7873 stripped = flags & ~stripped; 7874 7875 /* switch duplicated blocks with raid1 */ 7876 if (flags & BTRFS_BLOCK_GROUP_DUP) 7877 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7878 7879 /* this is drive concat, leave it alone */ 7880 } 7881 7882 return flags; 7883 } 7884 7885 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7886 { 7887 struct btrfs_space_info *sinfo = cache->space_info; 7888 u64 num_bytes; 7889 u64 min_allocable_bytes; 7890 int ret = -ENOSPC; 7891 7892 7893 /* 7894 * We need some metadata space and system metadata space for 7895 * allocating chunks in some corner cases until we force to set 7896 * it to be readonly. 7897 */ 7898 if ((sinfo->flags & 7899 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7900 !force) 7901 min_allocable_bytes = 1 * 1024 * 1024; 7902 else 7903 min_allocable_bytes = 0; 7904 7905 spin_lock(&sinfo->lock); 7906 spin_lock(&cache->lock); 7907 7908 if (cache->ro) { 7909 ret = 0; 7910 goto out; 7911 } 7912 7913 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7914 cache->bytes_super - btrfs_block_group_used(&cache->item); 7915 7916 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7917 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7918 min_allocable_bytes <= sinfo->total_bytes) { 7919 sinfo->bytes_readonly += num_bytes; 7920 cache->ro = 1; 7921 ret = 0; 7922 } 7923 out: 7924 spin_unlock(&cache->lock); 7925 spin_unlock(&sinfo->lock); 7926 return ret; 7927 } 7928 7929 int btrfs_set_block_group_ro(struct btrfs_root *root, 7930 struct btrfs_block_group_cache *cache) 7931 7932 { 7933 struct btrfs_trans_handle *trans; 7934 u64 alloc_flags; 7935 int ret; 7936 7937 BUG_ON(cache->ro); 7938 7939 trans = btrfs_join_transaction(root); 7940 if (IS_ERR(trans)) 7941 return PTR_ERR(trans); 7942 7943 alloc_flags = update_block_group_flags(root, cache->flags); 7944 if (alloc_flags != cache->flags) { 7945 ret = do_chunk_alloc(trans, root, alloc_flags, 7946 CHUNK_ALLOC_FORCE); 7947 if (ret < 0) 7948 goto out; 7949 } 7950 7951 ret = set_block_group_ro(cache, 0); 7952 if (!ret) 7953 goto out; 7954 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7955 ret = do_chunk_alloc(trans, root, alloc_flags, 7956 CHUNK_ALLOC_FORCE); 7957 if (ret < 0) 7958 goto out; 7959 ret = set_block_group_ro(cache, 0); 7960 out: 7961 btrfs_end_transaction(trans, root); 7962 return ret; 7963 } 7964 7965 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7966 struct btrfs_root *root, u64 type) 7967 { 7968 u64 alloc_flags = get_alloc_profile(root, type); 7969 return do_chunk_alloc(trans, root, alloc_flags, 7970 CHUNK_ALLOC_FORCE); 7971 } 7972 7973 /* 7974 * helper to account the unused space of all the readonly block group in the 7975 * list. takes mirrors into account. 7976 */ 7977 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7978 { 7979 struct btrfs_block_group_cache *block_group; 7980 u64 free_bytes = 0; 7981 int factor; 7982 7983 list_for_each_entry(block_group, groups_list, list) { 7984 spin_lock(&block_group->lock); 7985 7986 if (!block_group->ro) { 7987 spin_unlock(&block_group->lock); 7988 continue; 7989 } 7990 7991 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7992 BTRFS_BLOCK_GROUP_RAID10 | 7993 BTRFS_BLOCK_GROUP_DUP)) 7994 factor = 2; 7995 else 7996 factor = 1; 7997 7998 free_bytes += (block_group->key.offset - 7999 btrfs_block_group_used(&block_group->item)) * 8000 factor; 8001 8002 spin_unlock(&block_group->lock); 8003 } 8004 8005 return free_bytes; 8006 } 8007 8008 /* 8009 * helper to account the unused space of all the readonly block group in the 8010 * space_info. takes mirrors into account. 8011 */ 8012 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8013 { 8014 int i; 8015 u64 free_bytes = 0; 8016 8017 spin_lock(&sinfo->lock); 8018 8019 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 8020 if (!list_empty(&sinfo->block_groups[i])) 8021 free_bytes += __btrfs_get_ro_block_group_free_space( 8022 &sinfo->block_groups[i]); 8023 8024 spin_unlock(&sinfo->lock); 8025 8026 return free_bytes; 8027 } 8028 8029 void btrfs_set_block_group_rw(struct btrfs_root *root, 8030 struct btrfs_block_group_cache *cache) 8031 { 8032 struct btrfs_space_info *sinfo = cache->space_info; 8033 u64 num_bytes; 8034 8035 BUG_ON(!cache->ro); 8036 8037 spin_lock(&sinfo->lock); 8038 spin_lock(&cache->lock); 8039 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8040 cache->bytes_super - btrfs_block_group_used(&cache->item); 8041 sinfo->bytes_readonly -= num_bytes; 8042 cache->ro = 0; 8043 spin_unlock(&cache->lock); 8044 spin_unlock(&sinfo->lock); 8045 } 8046 8047 /* 8048 * checks to see if its even possible to relocate this block group. 8049 * 8050 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8051 * ok to go ahead and try. 8052 */ 8053 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8054 { 8055 struct btrfs_block_group_cache *block_group; 8056 struct btrfs_space_info *space_info; 8057 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8058 struct btrfs_device *device; 8059 struct btrfs_trans_handle *trans; 8060 u64 min_free; 8061 u64 dev_min = 1; 8062 u64 dev_nr = 0; 8063 u64 target; 8064 int index; 8065 int full = 0; 8066 int ret = 0; 8067 8068 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8069 8070 /* odd, couldn't find the block group, leave it alone */ 8071 if (!block_group) 8072 return -1; 8073 8074 min_free = btrfs_block_group_used(&block_group->item); 8075 8076 /* no bytes used, we're good */ 8077 if (!min_free) 8078 goto out; 8079 8080 space_info = block_group->space_info; 8081 spin_lock(&space_info->lock); 8082 8083 full = space_info->full; 8084 8085 /* 8086 * if this is the last block group we have in this space, we can't 8087 * relocate it unless we're able to allocate a new chunk below. 8088 * 8089 * Otherwise, we need to make sure we have room in the space to handle 8090 * all of the extents from this block group. If we can, we're good 8091 */ 8092 if ((space_info->total_bytes != block_group->key.offset) && 8093 (space_info->bytes_used + space_info->bytes_reserved + 8094 space_info->bytes_pinned + space_info->bytes_readonly + 8095 min_free < space_info->total_bytes)) { 8096 spin_unlock(&space_info->lock); 8097 goto out; 8098 } 8099 spin_unlock(&space_info->lock); 8100 8101 /* 8102 * ok we don't have enough space, but maybe we have free space on our 8103 * devices to allocate new chunks for relocation, so loop through our 8104 * alloc devices and guess if we have enough space. if this block 8105 * group is going to be restriped, run checks against the target 8106 * profile instead of the current one. 8107 */ 8108 ret = -1; 8109 8110 /* 8111 * index: 8112 * 0: raid10 8113 * 1: raid1 8114 * 2: dup 8115 * 3: raid0 8116 * 4: single 8117 */ 8118 target = get_restripe_target(root->fs_info, block_group->flags); 8119 if (target) { 8120 index = __get_raid_index(extended_to_chunk(target)); 8121 } else { 8122 /* 8123 * this is just a balance, so if we were marked as full 8124 * we know there is no space for a new chunk 8125 */ 8126 if (full) 8127 goto out; 8128 8129 index = get_block_group_index(block_group); 8130 } 8131 8132 if (index == BTRFS_RAID_RAID10) { 8133 dev_min = 4; 8134 /* Divide by 2 */ 8135 min_free >>= 1; 8136 } else if (index == BTRFS_RAID_RAID1) { 8137 dev_min = 2; 8138 } else if (index == BTRFS_RAID_DUP) { 8139 /* Multiply by 2 */ 8140 min_free <<= 1; 8141 } else if (index == BTRFS_RAID_RAID0) { 8142 dev_min = fs_devices->rw_devices; 8143 do_div(min_free, dev_min); 8144 } 8145 8146 /* We need to do this so that we can look at pending chunks */ 8147 trans = btrfs_join_transaction(root); 8148 if (IS_ERR(trans)) { 8149 ret = PTR_ERR(trans); 8150 goto out; 8151 } 8152 8153 mutex_lock(&root->fs_info->chunk_mutex); 8154 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8155 u64 dev_offset; 8156 8157 /* 8158 * check to make sure we can actually find a chunk with enough 8159 * space to fit our block group in. 8160 */ 8161 if (device->total_bytes > device->bytes_used + min_free && 8162 !device->is_tgtdev_for_dev_replace) { 8163 ret = find_free_dev_extent(trans, device, min_free, 8164 &dev_offset, NULL); 8165 if (!ret) 8166 dev_nr++; 8167 8168 if (dev_nr >= dev_min) 8169 break; 8170 8171 ret = -1; 8172 } 8173 } 8174 mutex_unlock(&root->fs_info->chunk_mutex); 8175 btrfs_end_transaction(trans, root); 8176 out: 8177 btrfs_put_block_group(block_group); 8178 return ret; 8179 } 8180 8181 static int find_first_block_group(struct btrfs_root *root, 8182 struct btrfs_path *path, struct btrfs_key *key) 8183 { 8184 int ret = 0; 8185 struct btrfs_key found_key; 8186 struct extent_buffer *leaf; 8187 int slot; 8188 8189 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8190 if (ret < 0) 8191 goto out; 8192 8193 while (1) { 8194 slot = path->slots[0]; 8195 leaf = path->nodes[0]; 8196 if (slot >= btrfs_header_nritems(leaf)) { 8197 ret = btrfs_next_leaf(root, path); 8198 if (ret == 0) 8199 continue; 8200 if (ret < 0) 8201 goto out; 8202 break; 8203 } 8204 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8205 8206 if (found_key.objectid >= key->objectid && 8207 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8208 ret = 0; 8209 goto out; 8210 } 8211 path->slots[0]++; 8212 } 8213 out: 8214 return ret; 8215 } 8216 8217 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8218 { 8219 struct btrfs_block_group_cache *block_group; 8220 u64 last = 0; 8221 8222 while (1) { 8223 struct inode *inode; 8224 8225 block_group = btrfs_lookup_first_block_group(info, last); 8226 while (block_group) { 8227 spin_lock(&block_group->lock); 8228 if (block_group->iref) 8229 break; 8230 spin_unlock(&block_group->lock); 8231 block_group = next_block_group(info->tree_root, 8232 block_group); 8233 } 8234 if (!block_group) { 8235 if (last == 0) 8236 break; 8237 last = 0; 8238 continue; 8239 } 8240 8241 inode = block_group->inode; 8242 block_group->iref = 0; 8243 block_group->inode = NULL; 8244 spin_unlock(&block_group->lock); 8245 iput(inode); 8246 last = block_group->key.objectid + block_group->key.offset; 8247 btrfs_put_block_group(block_group); 8248 } 8249 } 8250 8251 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8252 { 8253 struct btrfs_block_group_cache *block_group; 8254 struct btrfs_space_info *space_info; 8255 struct btrfs_caching_control *caching_ctl; 8256 struct rb_node *n; 8257 8258 down_write(&info->extent_commit_sem); 8259 while (!list_empty(&info->caching_block_groups)) { 8260 caching_ctl = list_entry(info->caching_block_groups.next, 8261 struct btrfs_caching_control, list); 8262 list_del(&caching_ctl->list); 8263 put_caching_control(caching_ctl); 8264 } 8265 up_write(&info->extent_commit_sem); 8266 8267 spin_lock(&info->block_group_cache_lock); 8268 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8269 block_group = rb_entry(n, struct btrfs_block_group_cache, 8270 cache_node); 8271 rb_erase(&block_group->cache_node, 8272 &info->block_group_cache_tree); 8273 spin_unlock(&info->block_group_cache_lock); 8274 8275 down_write(&block_group->space_info->groups_sem); 8276 list_del(&block_group->list); 8277 up_write(&block_group->space_info->groups_sem); 8278 8279 if (block_group->cached == BTRFS_CACHE_STARTED) 8280 wait_block_group_cache_done(block_group); 8281 8282 /* 8283 * We haven't cached this block group, which means we could 8284 * possibly have excluded extents on this block group. 8285 */ 8286 if (block_group->cached == BTRFS_CACHE_NO || 8287 block_group->cached == BTRFS_CACHE_ERROR) 8288 free_excluded_extents(info->extent_root, block_group); 8289 8290 btrfs_remove_free_space_cache(block_group); 8291 btrfs_put_block_group(block_group); 8292 8293 spin_lock(&info->block_group_cache_lock); 8294 } 8295 spin_unlock(&info->block_group_cache_lock); 8296 8297 /* now that all the block groups are freed, go through and 8298 * free all the space_info structs. This is only called during 8299 * the final stages of unmount, and so we know nobody is 8300 * using them. We call synchronize_rcu() once before we start, 8301 * just to be on the safe side. 8302 */ 8303 synchronize_rcu(); 8304 8305 release_global_block_rsv(info); 8306 8307 while (!list_empty(&info->space_info)) { 8308 int i; 8309 8310 space_info = list_entry(info->space_info.next, 8311 struct btrfs_space_info, 8312 list); 8313 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8314 if (WARN_ON(space_info->bytes_pinned > 0 || 8315 space_info->bytes_reserved > 0 || 8316 space_info->bytes_may_use > 0)) { 8317 dump_space_info(space_info, 0, 0); 8318 } 8319 } 8320 list_del(&space_info->list); 8321 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 8322 struct kobject *kobj; 8323 kobj = &space_info->block_group_kobjs[i]; 8324 if (kobj->parent) { 8325 kobject_del(kobj); 8326 kobject_put(kobj); 8327 } 8328 } 8329 kobject_del(&space_info->kobj); 8330 kobject_put(&space_info->kobj); 8331 } 8332 return 0; 8333 } 8334 8335 static void __link_block_group(struct btrfs_space_info *space_info, 8336 struct btrfs_block_group_cache *cache) 8337 { 8338 int index = get_block_group_index(cache); 8339 8340 down_write(&space_info->groups_sem); 8341 if (list_empty(&space_info->block_groups[index])) { 8342 struct kobject *kobj = &space_info->block_group_kobjs[index]; 8343 int ret; 8344 8345 kobject_get(&space_info->kobj); /* put in release */ 8346 ret = kobject_add(kobj, &space_info->kobj, "%s", 8347 get_raid_name(index)); 8348 if (ret) { 8349 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 8350 kobject_put(&space_info->kobj); 8351 } 8352 } 8353 list_add_tail(&cache->list, &space_info->block_groups[index]); 8354 up_write(&space_info->groups_sem); 8355 } 8356 8357 static struct btrfs_block_group_cache * 8358 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 8359 { 8360 struct btrfs_block_group_cache *cache; 8361 8362 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8363 if (!cache) 8364 return NULL; 8365 8366 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8367 GFP_NOFS); 8368 if (!cache->free_space_ctl) { 8369 kfree(cache); 8370 return NULL; 8371 } 8372 8373 cache->key.objectid = start; 8374 cache->key.offset = size; 8375 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 8376 8377 cache->sectorsize = root->sectorsize; 8378 cache->fs_info = root->fs_info; 8379 cache->full_stripe_len = btrfs_full_stripe_len(root, 8380 &root->fs_info->mapping_tree, 8381 start); 8382 atomic_set(&cache->count, 1); 8383 spin_lock_init(&cache->lock); 8384 INIT_LIST_HEAD(&cache->list); 8385 INIT_LIST_HEAD(&cache->cluster_list); 8386 INIT_LIST_HEAD(&cache->new_bg_list); 8387 btrfs_init_free_space_ctl(cache); 8388 8389 return cache; 8390 } 8391 8392 int btrfs_read_block_groups(struct btrfs_root *root) 8393 { 8394 struct btrfs_path *path; 8395 int ret; 8396 struct btrfs_block_group_cache *cache; 8397 struct btrfs_fs_info *info = root->fs_info; 8398 struct btrfs_space_info *space_info; 8399 struct btrfs_key key; 8400 struct btrfs_key found_key; 8401 struct extent_buffer *leaf; 8402 int need_clear = 0; 8403 u64 cache_gen; 8404 8405 root = info->extent_root; 8406 key.objectid = 0; 8407 key.offset = 0; 8408 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 8409 path = btrfs_alloc_path(); 8410 if (!path) 8411 return -ENOMEM; 8412 path->reada = 1; 8413 8414 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 8415 if (btrfs_test_opt(root, SPACE_CACHE) && 8416 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 8417 need_clear = 1; 8418 if (btrfs_test_opt(root, CLEAR_CACHE)) 8419 need_clear = 1; 8420 8421 while (1) { 8422 ret = find_first_block_group(root, path, &key); 8423 if (ret > 0) 8424 break; 8425 if (ret != 0) 8426 goto error; 8427 8428 leaf = path->nodes[0]; 8429 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 8430 8431 cache = btrfs_create_block_group_cache(root, found_key.objectid, 8432 found_key.offset); 8433 if (!cache) { 8434 ret = -ENOMEM; 8435 goto error; 8436 } 8437 8438 if (need_clear) { 8439 /* 8440 * When we mount with old space cache, we need to 8441 * set BTRFS_DC_CLEAR and set dirty flag. 8442 * 8443 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 8444 * truncate the old free space cache inode and 8445 * setup a new one. 8446 * b) Setting 'dirty flag' makes sure that we flush 8447 * the new space cache info onto disk. 8448 */ 8449 cache->disk_cache_state = BTRFS_DC_CLEAR; 8450 if (btrfs_test_opt(root, SPACE_CACHE)) 8451 cache->dirty = 1; 8452 } 8453 8454 read_extent_buffer(leaf, &cache->item, 8455 btrfs_item_ptr_offset(leaf, path->slots[0]), 8456 sizeof(cache->item)); 8457 cache->flags = btrfs_block_group_flags(&cache->item); 8458 8459 key.objectid = found_key.objectid + found_key.offset; 8460 btrfs_release_path(path); 8461 8462 /* 8463 * We need to exclude the super stripes now so that the space 8464 * info has super bytes accounted for, otherwise we'll think 8465 * we have more space than we actually do. 8466 */ 8467 ret = exclude_super_stripes(root, cache); 8468 if (ret) { 8469 /* 8470 * We may have excluded something, so call this just in 8471 * case. 8472 */ 8473 free_excluded_extents(root, cache); 8474 btrfs_put_block_group(cache); 8475 goto error; 8476 } 8477 8478 /* 8479 * check for two cases, either we are full, and therefore 8480 * don't need to bother with the caching work since we won't 8481 * find any space, or we are empty, and we can just add all 8482 * the space in and be done with it. This saves us _alot_ of 8483 * time, particularly in the full case. 8484 */ 8485 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 8486 cache->last_byte_to_unpin = (u64)-1; 8487 cache->cached = BTRFS_CACHE_FINISHED; 8488 free_excluded_extents(root, cache); 8489 } else if (btrfs_block_group_used(&cache->item) == 0) { 8490 cache->last_byte_to_unpin = (u64)-1; 8491 cache->cached = BTRFS_CACHE_FINISHED; 8492 add_new_free_space(cache, root->fs_info, 8493 found_key.objectid, 8494 found_key.objectid + 8495 found_key.offset); 8496 free_excluded_extents(root, cache); 8497 } 8498 8499 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8500 if (ret) { 8501 btrfs_remove_free_space_cache(cache); 8502 btrfs_put_block_group(cache); 8503 goto error; 8504 } 8505 8506 ret = update_space_info(info, cache->flags, found_key.offset, 8507 btrfs_block_group_used(&cache->item), 8508 &space_info); 8509 if (ret) { 8510 btrfs_remove_free_space_cache(cache); 8511 spin_lock(&info->block_group_cache_lock); 8512 rb_erase(&cache->cache_node, 8513 &info->block_group_cache_tree); 8514 spin_unlock(&info->block_group_cache_lock); 8515 btrfs_put_block_group(cache); 8516 goto error; 8517 } 8518 8519 cache->space_info = space_info; 8520 spin_lock(&cache->space_info->lock); 8521 cache->space_info->bytes_readonly += cache->bytes_super; 8522 spin_unlock(&cache->space_info->lock); 8523 8524 __link_block_group(space_info, cache); 8525 8526 set_avail_alloc_bits(root->fs_info, cache->flags); 8527 if (btrfs_chunk_readonly(root, cache->key.objectid)) 8528 set_block_group_ro(cache, 1); 8529 } 8530 8531 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 8532 if (!(get_alloc_profile(root, space_info->flags) & 8533 (BTRFS_BLOCK_GROUP_RAID10 | 8534 BTRFS_BLOCK_GROUP_RAID1 | 8535 BTRFS_BLOCK_GROUP_RAID5 | 8536 BTRFS_BLOCK_GROUP_RAID6 | 8537 BTRFS_BLOCK_GROUP_DUP))) 8538 continue; 8539 /* 8540 * avoid allocating from un-mirrored block group if there are 8541 * mirrored block groups. 8542 */ 8543 list_for_each_entry(cache, 8544 &space_info->block_groups[BTRFS_RAID_RAID0], 8545 list) 8546 set_block_group_ro(cache, 1); 8547 list_for_each_entry(cache, 8548 &space_info->block_groups[BTRFS_RAID_SINGLE], 8549 list) 8550 set_block_group_ro(cache, 1); 8551 } 8552 8553 init_global_block_rsv(info); 8554 ret = 0; 8555 error: 8556 btrfs_free_path(path); 8557 return ret; 8558 } 8559 8560 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 8561 struct btrfs_root *root) 8562 { 8563 struct btrfs_block_group_cache *block_group, *tmp; 8564 struct btrfs_root *extent_root = root->fs_info->extent_root; 8565 struct btrfs_block_group_item item; 8566 struct btrfs_key key; 8567 int ret = 0; 8568 8569 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, 8570 new_bg_list) { 8571 list_del_init(&block_group->new_bg_list); 8572 8573 if (ret) 8574 continue; 8575 8576 spin_lock(&block_group->lock); 8577 memcpy(&item, &block_group->item, sizeof(item)); 8578 memcpy(&key, &block_group->key, sizeof(key)); 8579 spin_unlock(&block_group->lock); 8580 8581 ret = btrfs_insert_item(trans, extent_root, &key, &item, 8582 sizeof(item)); 8583 if (ret) 8584 btrfs_abort_transaction(trans, extent_root, ret); 8585 ret = btrfs_finish_chunk_alloc(trans, extent_root, 8586 key.objectid, key.offset); 8587 if (ret) 8588 btrfs_abort_transaction(trans, extent_root, ret); 8589 } 8590 } 8591 8592 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 8593 struct btrfs_root *root, u64 bytes_used, 8594 u64 type, u64 chunk_objectid, u64 chunk_offset, 8595 u64 size) 8596 { 8597 int ret; 8598 struct btrfs_root *extent_root; 8599 struct btrfs_block_group_cache *cache; 8600 8601 extent_root = root->fs_info->extent_root; 8602 8603 root->fs_info->last_trans_log_full_commit = trans->transid; 8604 8605 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 8606 if (!cache) 8607 return -ENOMEM; 8608 8609 btrfs_set_block_group_used(&cache->item, bytes_used); 8610 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 8611 btrfs_set_block_group_flags(&cache->item, type); 8612 8613 cache->flags = type; 8614 cache->last_byte_to_unpin = (u64)-1; 8615 cache->cached = BTRFS_CACHE_FINISHED; 8616 ret = exclude_super_stripes(root, cache); 8617 if (ret) { 8618 /* 8619 * We may have excluded something, so call this just in 8620 * case. 8621 */ 8622 free_excluded_extents(root, cache); 8623 btrfs_put_block_group(cache); 8624 return ret; 8625 } 8626 8627 add_new_free_space(cache, root->fs_info, chunk_offset, 8628 chunk_offset + size); 8629 8630 free_excluded_extents(root, cache); 8631 8632 ret = btrfs_add_block_group_cache(root->fs_info, cache); 8633 if (ret) { 8634 btrfs_remove_free_space_cache(cache); 8635 btrfs_put_block_group(cache); 8636 return ret; 8637 } 8638 8639 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 8640 &cache->space_info); 8641 if (ret) { 8642 btrfs_remove_free_space_cache(cache); 8643 spin_lock(&root->fs_info->block_group_cache_lock); 8644 rb_erase(&cache->cache_node, 8645 &root->fs_info->block_group_cache_tree); 8646 spin_unlock(&root->fs_info->block_group_cache_lock); 8647 btrfs_put_block_group(cache); 8648 return ret; 8649 } 8650 update_global_block_rsv(root->fs_info); 8651 8652 spin_lock(&cache->space_info->lock); 8653 cache->space_info->bytes_readonly += cache->bytes_super; 8654 spin_unlock(&cache->space_info->lock); 8655 8656 __link_block_group(cache->space_info, cache); 8657 8658 list_add_tail(&cache->new_bg_list, &trans->new_bgs); 8659 8660 set_avail_alloc_bits(extent_root->fs_info, type); 8661 8662 return 0; 8663 } 8664 8665 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 8666 { 8667 u64 extra_flags = chunk_to_extended(flags) & 8668 BTRFS_EXTENDED_PROFILE_MASK; 8669 8670 write_seqlock(&fs_info->profiles_lock); 8671 if (flags & BTRFS_BLOCK_GROUP_DATA) 8672 fs_info->avail_data_alloc_bits &= ~extra_flags; 8673 if (flags & BTRFS_BLOCK_GROUP_METADATA) 8674 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 8675 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 8676 fs_info->avail_system_alloc_bits &= ~extra_flags; 8677 write_sequnlock(&fs_info->profiles_lock); 8678 } 8679 8680 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 8681 struct btrfs_root *root, u64 group_start) 8682 { 8683 struct btrfs_path *path; 8684 struct btrfs_block_group_cache *block_group; 8685 struct btrfs_free_cluster *cluster; 8686 struct btrfs_root *tree_root = root->fs_info->tree_root; 8687 struct btrfs_key key; 8688 struct inode *inode; 8689 int ret; 8690 int index; 8691 int factor; 8692 8693 root = root->fs_info->extent_root; 8694 8695 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 8696 BUG_ON(!block_group); 8697 BUG_ON(!block_group->ro); 8698 8699 /* 8700 * Free the reserved super bytes from this block group before 8701 * remove it. 8702 */ 8703 free_excluded_extents(root, block_group); 8704 8705 memcpy(&key, &block_group->key, sizeof(key)); 8706 index = get_block_group_index(block_group); 8707 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 8708 BTRFS_BLOCK_GROUP_RAID1 | 8709 BTRFS_BLOCK_GROUP_RAID10)) 8710 factor = 2; 8711 else 8712 factor = 1; 8713 8714 /* make sure this block group isn't part of an allocation cluster */ 8715 cluster = &root->fs_info->data_alloc_cluster; 8716 spin_lock(&cluster->refill_lock); 8717 btrfs_return_cluster_to_free_space(block_group, cluster); 8718 spin_unlock(&cluster->refill_lock); 8719 8720 /* 8721 * make sure this block group isn't part of a metadata 8722 * allocation cluster 8723 */ 8724 cluster = &root->fs_info->meta_alloc_cluster; 8725 spin_lock(&cluster->refill_lock); 8726 btrfs_return_cluster_to_free_space(block_group, cluster); 8727 spin_unlock(&cluster->refill_lock); 8728 8729 path = btrfs_alloc_path(); 8730 if (!path) { 8731 ret = -ENOMEM; 8732 goto out; 8733 } 8734 8735 inode = lookup_free_space_inode(tree_root, block_group, path); 8736 if (!IS_ERR(inode)) { 8737 ret = btrfs_orphan_add(trans, inode); 8738 if (ret) { 8739 btrfs_add_delayed_iput(inode); 8740 goto out; 8741 } 8742 clear_nlink(inode); 8743 /* One for the block groups ref */ 8744 spin_lock(&block_group->lock); 8745 if (block_group->iref) { 8746 block_group->iref = 0; 8747 block_group->inode = NULL; 8748 spin_unlock(&block_group->lock); 8749 iput(inode); 8750 } else { 8751 spin_unlock(&block_group->lock); 8752 } 8753 /* One for our lookup ref */ 8754 btrfs_add_delayed_iput(inode); 8755 } 8756 8757 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 8758 key.offset = block_group->key.objectid; 8759 key.type = 0; 8760 8761 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 8762 if (ret < 0) 8763 goto out; 8764 if (ret > 0) 8765 btrfs_release_path(path); 8766 if (ret == 0) { 8767 ret = btrfs_del_item(trans, tree_root, path); 8768 if (ret) 8769 goto out; 8770 btrfs_release_path(path); 8771 } 8772 8773 spin_lock(&root->fs_info->block_group_cache_lock); 8774 rb_erase(&block_group->cache_node, 8775 &root->fs_info->block_group_cache_tree); 8776 8777 if (root->fs_info->first_logical_byte == block_group->key.objectid) 8778 root->fs_info->first_logical_byte = (u64)-1; 8779 spin_unlock(&root->fs_info->block_group_cache_lock); 8780 8781 down_write(&block_group->space_info->groups_sem); 8782 /* 8783 * we must use list_del_init so people can check to see if they 8784 * are still on the list after taking the semaphore 8785 */ 8786 list_del_init(&block_group->list); 8787 if (list_empty(&block_group->space_info->block_groups[index])) { 8788 kobject_del(&block_group->space_info->block_group_kobjs[index]); 8789 kobject_put(&block_group->space_info->block_group_kobjs[index]); 8790 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8791 } 8792 up_write(&block_group->space_info->groups_sem); 8793 8794 if (block_group->cached == BTRFS_CACHE_STARTED) 8795 wait_block_group_cache_done(block_group); 8796 8797 btrfs_remove_free_space_cache(block_group); 8798 8799 spin_lock(&block_group->space_info->lock); 8800 block_group->space_info->total_bytes -= block_group->key.offset; 8801 block_group->space_info->bytes_readonly -= block_group->key.offset; 8802 block_group->space_info->disk_total -= block_group->key.offset * factor; 8803 spin_unlock(&block_group->space_info->lock); 8804 8805 memcpy(&key, &block_group->key, sizeof(key)); 8806 8807 btrfs_clear_space_info_full(root->fs_info); 8808 8809 btrfs_put_block_group(block_group); 8810 btrfs_put_block_group(block_group); 8811 8812 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8813 if (ret > 0) 8814 ret = -EIO; 8815 if (ret < 0) 8816 goto out; 8817 8818 ret = btrfs_del_item(trans, root, path); 8819 out: 8820 btrfs_free_path(path); 8821 return ret; 8822 } 8823 8824 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8825 { 8826 struct btrfs_space_info *space_info; 8827 struct btrfs_super_block *disk_super; 8828 u64 features; 8829 u64 flags; 8830 int mixed = 0; 8831 int ret; 8832 8833 disk_super = fs_info->super_copy; 8834 if (!btrfs_super_root(disk_super)) 8835 return 1; 8836 8837 features = btrfs_super_incompat_flags(disk_super); 8838 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8839 mixed = 1; 8840 8841 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8842 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8843 if (ret) 8844 goto out; 8845 8846 if (mixed) { 8847 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8848 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8849 } else { 8850 flags = BTRFS_BLOCK_GROUP_METADATA; 8851 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8852 if (ret) 8853 goto out; 8854 8855 flags = BTRFS_BLOCK_GROUP_DATA; 8856 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8857 } 8858 out: 8859 return ret; 8860 } 8861 8862 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8863 { 8864 return unpin_extent_range(root, start, end); 8865 } 8866 8867 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8868 u64 num_bytes, u64 *actual_bytes) 8869 { 8870 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8871 } 8872 8873 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8874 { 8875 struct btrfs_fs_info *fs_info = root->fs_info; 8876 struct btrfs_block_group_cache *cache = NULL; 8877 u64 group_trimmed; 8878 u64 start; 8879 u64 end; 8880 u64 trimmed = 0; 8881 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8882 int ret = 0; 8883 8884 /* 8885 * try to trim all FS space, our block group may start from non-zero. 8886 */ 8887 if (range->len == total_bytes) 8888 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8889 else 8890 cache = btrfs_lookup_block_group(fs_info, range->start); 8891 8892 while (cache) { 8893 if (cache->key.objectid >= (range->start + range->len)) { 8894 btrfs_put_block_group(cache); 8895 break; 8896 } 8897 8898 start = max(range->start, cache->key.objectid); 8899 end = min(range->start + range->len, 8900 cache->key.objectid + cache->key.offset); 8901 8902 if (end - start >= range->minlen) { 8903 if (!block_group_cache_done(cache)) { 8904 ret = cache_block_group(cache, 0); 8905 if (ret) { 8906 btrfs_put_block_group(cache); 8907 break; 8908 } 8909 ret = wait_block_group_cache_done(cache); 8910 if (ret) { 8911 btrfs_put_block_group(cache); 8912 break; 8913 } 8914 } 8915 ret = btrfs_trim_block_group(cache, 8916 &group_trimmed, 8917 start, 8918 end, 8919 range->minlen); 8920 8921 trimmed += group_trimmed; 8922 if (ret) { 8923 btrfs_put_block_group(cache); 8924 break; 8925 } 8926 } 8927 8928 cache = next_block_group(fs_info->tree_root, cache); 8929 } 8930 8931 range->len = trimmed; 8932 return ret; 8933 } 8934 8935 /* 8936 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(), 8937 * they are used to prevent the some tasks writing data into the page cache 8938 * by nocow before the subvolume is snapshoted, but flush the data into 8939 * the disk after the snapshot creation. 8940 */ 8941 void btrfs_end_nocow_write(struct btrfs_root *root) 8942 { 8943 percpu_counter_dec(&root->subv_writers->counter); 8944 /* 8945 * Make sure counter is updated before we wake up 8946 * waiters. 8947 */ 8948 smp_mb(); 8949 if (waitqueue_active(&root->subv_writers->wait)) 8950 wake_up(&root->subv_writers->wait); 8951 } 8952 8953 int btrfs_start_nocow_write(struct btrfs_root *root) 8954 { 8955 if (unlikely(atomic_read(&root->will_be_snapshoted))) 8956 return 0; 8957 8958 percpu_counter_inc(&root->subv_writers->counter); 8959 /* 8960 * Make sure counter is updated before we check for snapshot creation. 8961 */ 8962 smp_mb(); 8963 if (unlikely(atomic_read(&root->will_be_snapshoted))) { 8964 btrfs_end_nocow_write(root); 8965 return 0; 8966 } 8967 return 1; 8968 } 8969