xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 17ae8136549f512e3fbc78cb78402df6a211cfb5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 
46 #undef SCRAMBLE_DELAYED_REFS
47 
48 
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 			       struct btrfs_delayed_ref_node *node, u64 parent,
51 			       u64 root_objectid, u64 owner_objectid,
52 			       u64 owner_offset, int refs_to_drop,
53 			       struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 				    struct extent_buffer *leaf,
56 				    struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 				      u64 parent, u64 root_objectid,
59 				      u64 flags, u64 owner, u64 offset,
60 				      struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 				     struct btrfs_delayed_ref_node *node,
63 				     struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 			 struct btrfs_key *key);
66 
67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 	return (cache->flags & bits) == bits;
70 }
71 
72 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
73 			      u64 start, u64 num_bytes)
74 {
75 	u64 end = start + num_bytes - 1;
76 	set_extent_bits(&fs_info->excluded_extents, start, end,
77 			EXTENT_UPTODATE);
78 	return 0;
79 }
80 
81 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
82 {
83 	struct btrfs_fs_info *fs_info = cache->fs_info;
84 	u64 start, end;
85 
86 	start = cache->start;
87 	end = start + cache->length - 1;
88 
89 	clear_extent_bits(&fs_info->excluded_extents, start, end,
90 			  EXTENT_UPTODATE);
91 }
92 
93 /* simple helper to search for an existing data extent at a given offset */
94 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
95 {
96 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
97 	int ret;
98 	struct btrfs_key key;
99 	struct btrfs_path *path;
100 
101 	path = btrfs_alloc_path();
102 	if (!path)
103 		return -ENOMEM;
104 
105 	key.objectid = start;
106 	key.offset = len;
107 	key.type = BTRFS_EXTENT_ITEM_KEY;
108 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
109 	btrfs_free_path(path);
110 	return ret;
111 }
112 
113 /*
114  * helper function to lookup reference count and flags of a tree block.
115  *
116  * the head node for delayed ref is used to store the sum of all the
117  * reference count modifications queued up in the rbtree. the head
118  * node may also store the extent flags to set. This way you can check
119  * to see what the reference count and extent flags would be if all of
120  * the delayed refs are not processed.
121  */
122 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
123 			     struct btrfs_fs_info *fs_info, u64 bytenr,
124 			     u64 offset, int metadata, u64 *refs, u64 *flags)
125 {
126 	struct btrfs_root *extent_root;
127 	struct btrfs_delayed_ref_head *head;
128 	struct btrfs_delayed_ref_root *delayed_refs;
129 	struct btrfs_path *path;
130 	struct btrfs_extent_item *ei;
131 	struct extent_buffer *leaf;
132 	struct btrfs_key key;
133 	u32 item_size;
134 	u64 num_refs;
135 	u64 extent_flags;
136 	int ret;
137 
138 	/*
139 	 * If we don't have skinny metadata, don't bother doing anything
140 	 * different
141 	 */
142 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
143 		offset = fs_info->nodesize;
144 		metadata = 0;
145 	}
146 
147 	path = btrfs_alloc_path();
148 	if (!path)
149 		return -ENOMEM;
150 
151 	if (!trans) {
152 		path->skip_locking = 1;
153 		path->search_commit_root = 1;
154 	}
155 
156 search_again:
157 	key.objectid = bytenr;
158 	key.offset = offset;
159 	if (metadata)
160 		key.type = BTRFS_METADATA_ITEM_KEY;
161 	else
162 		key.type = BTRFS_EXTENT_ITEM_KEY;
163 
164 	extent_root = btrfs_extent_root(fs_info, bytenr);
165 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
166 	if (ret < 0)
167 		goto out_free;
168 
169 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
170 		if (path->slots[0]) {
171 			path->slots[0]--;
172 			btrfs_item_key_to_cpu(path->nodes[0], &key,
173 					      path->slots[0]);
174 			if (key.objectid == bytenr &&
175 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
176 			    key.offset == fs_info->nodesize)
177 				ret = 0;
178 		}
179 	}
180 
181 	if (ret == 0) {
182 		leaf = path->nodes[0];
183 		item_size = btrfs_item_size(leaf, path->slots[0]);
184 		if (item_size >= sizeof(*ei)) {
185 			ei = btrfs_item_ptr(leaf, path->slots[0],
186 					    struct btrfs_extent_item);
187 			num_refs = btrfs_extent_refs(leaf, ei);
188 			extent_flags = btrfs_extent_flags(leaf, ei);
189 		} else {
190 			ret = -EINVAL;
191 			btrfs_print_v0_err(fs_info);
192 			if (trans)
193 				btrfs_abort_transaction(trans, ret);
194 			else
195 				btrfs_handle_fs_error(fs_info, ret, NULL);
196 
197 			goto out_free;
198 		}
199 
200 		BUG_ON(num_refs == 0);
201 	} else {
202 		num_refs = 0;
203 		extent_flags = 0;
204 		ret = 0;
205 	}
206 
207 	if (!trans)
208 		goto out;
209 
210 	delayed_refs = &trans->transaction->delayed_refs;
211 	spin_lock(&delayed_refs->lock);
212 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
213 	if (head) {
214 		if (!mutex_trylock(&head->mutex)) {
215 			refcount_inc(&head->refs);
216 			spin_unlock(&delayed_refs->lock);
217 
218 			btrfs_release_path(path);
219 
220 			/*
221 			 * Mutex was contended, block until it's released and try
222 			 * again
223 			 */
224 			mutex_lock(&head->mutex);
225 			mutex_unlock(&head->mutex);
226 			btrfs_put_delayed_ref_head(head);
227 			goto search_again;
228 		}
229 		spin_lock(&head->lock);
230 		if (head->extent_op && head->extent_op->update_flags)
231 			extent_flags |= head->extent_op->flags_to_set;
232 		else
233 			BUG_ON(num_refs == 0);
234 
235 		num_refs += head->ref_mod;
236 		spin_unlock(&head->lock);
237 		mutex_unlock(&head->mutex);
238 	}
239 	spin_unlock(&delayed_refs->lock);
240 out:
241 	WARN_ON(num_refs == 0);
242 	if (refs)
243 		*refs = num_refs;
244 	if (flags)
245 		*flags = extent_flags;
246 out_free:
247 	btrfs_free_path(path);
248 	return ret;
249 }
250 
251 /*
252  * Back reference rules.  Back refs have three main goals:
253  *
254  * 1) differentiate between all holders of references to an extent so that
255  *    when a reference is dropped we can make sure it was a valid reference
256  *    before freeing the extent.
257  *
258  * 2) Provide enough information to quickly find the holders of an extent
259  *    if we notice a given block is corrupted or bad.
260  *
261  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
262  *    maintenance.  This is actually the same as #2, but with a slightly
263  *    different use case.
264  *
265  * There are two kinds of back refs. The implicit back refs is optimized
266  * for pointers in non-shared tree blocks. For a given pointer in a block,
267  * back refs of this kind provide information about the block's owner tree
268  * and the pointer's key. These information allow us to find the block by
269  * b-tree searching. The full back refs is for pointers in tree blocks not
270  * referenced by their owner trees. The location of tree block is recorded
271  * in the back refs. Actually the full back refs is generic, and can be
272  * used in all cases the implicit back refs is used. The major shortcoming
273  * of the full back refs is its overhead. Every time a tree block gets
274  * COWed, we have to update back refs entry for all pointers in it.
275  *
276  * For a newly allocated tree block, we use implicit back refs for
277  * pointers in it. This means most tree related operations only involve
278  * implicit back refs. For a tree block created in old transaction, the
279  * only way to drop a reference to it is COW it. So we can detect the
280  * event that tree block loses its owner tree's reference and do the
281  * back refs conversion.
282  *
283  * When a tree block is COWed through a tree, there are four cases:
284  *
285  * The reference count of the block is one and the tree is the block's
286  * owner tree. Nothing to do in this case.
287  *
288  * The reference count of the block is one and the tree is not the
289  * block's owner tree. In this case, full back refs is used for pointers
290  * in the block. Remove these full back refs, add implicit back refs for
291  * every pointers in the new block.
292  *
293  * The reference count of the block is greater than one and the tree is
294  * the block's owner tree. In this case, implicit back refs is used for
295  * pointers in the block. Add full back refs for every pointers in the
296  * block, increase lower level extents' reference counts. The original
297  * implicit back refs are entailed to the new block.
298  *
299  * The reference count of the block is greater than one and the tree is
300  * not the block's owner tree. Add implicit back refs for every pointer in
301  * the new block, increase lower level extents' reference count.
302  *
303  * Back Reference Key composing:
304  *
305  * The key objectid corresponds to the first byte in the extent,
306  * The key type is used to differentiate between types of back refs.
307  * There are different meanings of the key offset for different types
308  * of back refs.
309  *
310  * File extents can be referenced by:
311  *
312  * - multiple snapshots, subvolumes, or different generations in one subvol
313  * - different files inside a single subvolume
314  * - different offsets inside a file (bookend extents in file.c)
315  *
316  * The extent ref structure for the implicit back refs has fields for:
317  *
318  * - Objectid of the subvolume root
319  * - objectid of the file holding the reference
320  * - original offset in the file
321  * - how many bookend extents
322  *
323  * The key offset for the implicit back refs is hash of the first
324  * three fields.
325  *
326  * The extent ref structure for the full back refs has field for:
327  *
328  * - number of pointers in the tree leaf
329  *
330  * The key offset for the implicit back refs is the first byte of
331  * the tree leaf
332  *
333  * When a file extent is allocated, The implicit back refs is used.
334  * the fields are filled in:
335  *
336  *     (root_key.objectid, inode objectid, offset in file, 1)
337  *
338  * When a file extent is removed file truncation, we find the
339  * corresponding implicit back refs and check the following fields:
340  *
341  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
342  *
343  * Btree extents can be referenced by:
344  *
345  * - Different subvolumes
346  *
347  * Both the implicit back refs and the full back refs for tree blocks
348  * only consist of key. The key offset for the implicit back refs is
349  * objectid of block's owner tree. The key offset for the full back refs
350  * is the first byte of parent block.
351  *
352  * When implicit back refs is used, information about the lowest key and
353  * level of the tree block are required. These information are stored in
354  * tree block info structure.
355  */
356 
357 /*
358  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
359  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
360  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
361  */
362 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
363 				     struct btrfs_extent_inline_ref *iref,
364 				     enum btrfs_inline_ref_type is_data)
365 {
366 	int type = btrfs_extent_inline_ref_type(eb, iref);
367 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
368 
369 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
370 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
371 	    type == BTRFS_SHARED_DATA_REF_KEY ||
372 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
373 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
374 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
375 				return type;
376 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
377 				ASSERT(eb->fs_info);
378 				/*
379 				 * Every shared one has parent tree block,
380 				 * which must be aligned to sector size.
381 				 */
382 				if (offset &&
383 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
384 					return type;
385 			}
386 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
387 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
388 				return type;
389 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
390 				ASSERT(eb->fs_info);
391 				/*
392 				 * Every shared one has parent tree block,
393 				 * which must be aligned to sector size.
394 				 */
395 				if (offset &&
396 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
397 					return type;
398 			}
399 		} else {
400 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
401 			return type;
402 		}
403 	}
404 
405 	btrfs_print_leaf((struct extent_buffer *)eb);
406 	btrfs_err(eb->fs_info,
407 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
408 		  eb->start, (unsigned long)iref, type);
409 	WARN_ON(1);
410 
411 	return BTRFS_REF_TYPE_INVALID;
412 }
413 
414 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
415 {
416 	u32 high_crc = ~(u32)0;
417 	u32 low_crc = ~(u32)0;
418 	__le64 lenum;
419 
420 	lenum = cpu_to_le64(root_objectid);
421 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
422 	lenum = cpu_to_le64(owner);
423 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
424 	lenum = cpu_to_le64(offset);
425 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
426 
427 	return ((u64)high_crc << 31) ^ (u64)low_crc;
428 }
429 
430 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
431 				     struct btrfs_extent_data_ref *ref)
432 {
433 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
434 				    btrfs_extent_data_ref_objectid(leaf, ref),
435 				    btrfs_extent_data_ref_offset(leaf, ref));
436 }
437 
438 static int match_extent_data_ref(struct extent_buffer *leaf,
439 				 struct btrfs_extent_data_ref *ref,
440 				 u64 root_objectid, u64 owner, u64 offset)
441 {
442 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
443 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
444 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
445 		return 0;
446 	return 1;
447 }
448 
449 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
450 					   struct btrfs_path *path,
451 					   u64 bytenr, u64 parent,
452 					   u64 root_objectid,
453 					   u64 owner, u64 offset)
454 {
455 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
456 	struct btrfs_key key;
457 	struct btrfs_extent_data_ref *ref;
458 	struct extent_buffer *leaf;
459 	u32 nritems;
460 	int ret;
461 	int recow;
462 	int err = -ENOENT;
463 
464 	key.objectid = bytenr;
465 	if (parent) {
466 		key.type = BTRFS_SHARED_DATA_REF_KEY;
467 		key.offset = parent;
468 	} else {
469 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
470 		key.offset = hash_extent_data_ref(root_objectid,
471 						  owner, offset);
472 	}
473 again:
474 	recow = 0;
475 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
476 	if (ret < 0) {
477 		err = ret;
478 		goto fail;
479 	}
480 
481 	if (parent) {
482 		if (!ret)
483 			return 0;
484 		goto fail;
485 	}
486 
487 	leaf = path->nodes[0];
488 	nritems = btrfs_header_nritems(leaf);
489 	while (1) {
490 		if (path->slots[0] >= nritems) {
491 			ret = btrfs_next_leaf(root, path);
492 			if (ret < 0)
493 				err = ret;
494 			if (ret)
495 				goto fail;
496 
497 			leaf = path->nodes[0];
498 			nritems = btrfs_header_nritems(leaf);
499 			recow = 1;
500 		}
501 
502 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
503 		if (key.objectid != bytenr ||
504 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
505 			goto fail;
506 
507 		ref = btrfs_item_ptr(leaf, path->slots[0],
508 				     struct btrfs_extent_data_ref);
509 
510 		if (match_extent_data_ref(leaf, ref, root_objectid,
511 					  owner, offset)) {
512 			if (recow) {
513 				btrfs_release_path(path);
514 				goto again;
515 			}
516 			err = 0;
517 			break;
518 		}
519 		path->slots[0]++;
520 	}
521 fail:
522 	return err;
523 }
524 
525 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
526 					   struct btrfs_path *path,
527 					   u64 bytenr, u64 parent,
528 					   u64 root_objectid, u64 owner,
529 					   u64 offset, int refs_to_add)
530 {
531 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
532 	struct btrfs_key key;
533 	struct extent_buffer *leaf;
534 	u32 size;
535 	u32 num_refs;
536 	int ret;
537 
538 	key.objectid = bytenr;
539 	if (parent) {
540 		key.type = BTRFS_SHARED_DATA_REF_KEY;
541 		key.offset = parent;
542 		size = sizeof(struct btrfs_shared_data_ref);
543 	} else {
544 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
545 		key.offset = hash_extent_data_ref(root_objectid,
546 						  owner, offset);
547 		size = sizeof(struct btrfs_extent_data_ref);
548 	}
549 
550 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
551 	if (ret && ret != -EEXIST)
552 		goto fail;
553 
554 	leaf = path->nodes[0];
555 	if (parent) {
556 		struct btrfs_shared_data_ref *ref;
557 		ref = btrfs_item_ptr(leaf, path->slots[0],
558 				     struct btrfs_shared_data_ref);
559 		if (ret == 0) {
560 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
561 		} else {
562 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
563 			num_refs += refs_to_add;
564 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
565 		}
566 	} else {
567 		struct btrfs_extent_data_ref *ref;
568 		while (ret == -EEXIST) {
569 			ref = btrfs_item_ptr(leaf, path->slots[0],
570 					     struct btrfs_extent_data_ref);
571 			if (match_extent_data_ref(leaf, ref, root_objectid,
572 						  owner, offset))
573 				break;
574 			btrfs_release_path(path);
575 			key.offset++;
576 			ret = btrfs_insert_empty_item(trans, root, path, &key,
577 						      size);
578 			if (ret && ret != -EEXIST)
579 				goto fail;
580 
581 			leaf = path->nodes[0];
582 		}
583 		ref = btrfs_item_ptr(leaf, path->slots[0],
584 				     struct btrfs_extent_data_ref);
585 		if (ret == 0) {
586 			btrfs_set_extent_data_ref_root(leaf, ref,
587 						       root_objectid);
588 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
589 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
590 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
591 		} else {
592 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
593 			num_refs += refs_to_add;
594 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
595 		}
596 	}
597 	btrfs_mark_buffer_dirty(leaf);
598 	ret = 0;
599 fail:
600 	btrfs_release_path(path);
601 	return ret;
602 }
603 
604 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
605 					   struct btrfs_root *root,
606 					   struct btrfs_path *path,
607 					   int refs_to_drop)
608 {
609 	struct btrfs_key key;
610 	struct btrfs_extent_data_ref *ref1 = NULL;
611 	struct btrfs_shared_data_ref *ref2 = NULL;
612 	struct extent_buffer *leaf;
613 	u32 num_refs = 0;
614 	int ret = 0;
615 
616 	leaf = path->nodes[0];
617 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
618 
619 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
620 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
621 				      struct btrfs_extent_data_ref);
622 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
623 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
624 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
625 				      struct btrfs_shared_data_ref);
626 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
627 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
628 		btrfs_print_v0_err(trans->fs_info);
629 		btrfs_abort_transaction(trans, -EINVAL);
630 		return -EINVAL;
631 	} else {
632 		BUG();
633 	}
634 
635 	BUG_ON(num_refs < refs_to_drop);
636 	num_refs -= refs_to_drop;
637 
638 	if (num_refs == 0) {
639 		ret = btrfs_del_item(trans, root, path);
640 	} else {
641 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
642 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
643 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
644 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
645 		btrfs_mark_buffer_dirty(leaf);
646 	}
647 	return ret;
648 }
649 
650 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
651 					  struct btrfs_extent_inline_ref *iref)
652 {
653 	struct btrfs_key key;
654 	struct extent_buffer *leaf;
655 	struct btrfs_extent_data_ref *ref1;
656 	struct btrfs_shared_data_ref *ref2;
657 	u32 num_refs = 0;
658 	int type;
659 
660 	leaf = path->nodes[0];
661 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
662 
663 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
664 	if (iref) {
665 		/*
666 		 * If type is invalid, we should have bailed out earlier than
667 		 * this call.
668 		 */
669 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
670 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
671 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
672 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
673 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
674 		} else {
675 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
676 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
677 		}
678 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
679 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
680 				      struct btrfs_extent_data_ref);
681 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
682 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
683 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
684 				      struct btrfs_shared_data_ref);
685 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
686 	} else {
687 		WARN_ON(1);
688 	}
689 	return num_refs;
690 }
691 
692 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
693 					  struct btrfs_path *path,
694 					  u64 bytenr, u64 parent,
695 					  u64 root_objectid)
696 {
697 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
698 	struct btrfs_key key;
699 	int ret;
700 
701 	key.objectid = bytenr;
702 	if (parent) {
703 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
704 		key.offset = parent;
705 	} else {
706 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
707 		key.offset = root_objectid;
708 	}
709 
710 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
711 	if (ret > 0)
712 		ret = -ENOENT;
713 	return ret;
714 }
715 
716 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
717 					  struct btrfs_path *path,
718 					  u64 bytenr, u64 parent,
719 					  u64 root_objectid)
720 {
721 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
722 	struct btrfs_key key;
723 	int ret;
724 
725 	key.objectid = bytenr;
726 	if (parent) {
727 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
728 		key.offset = parent;
729 	} else {
730 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
731 		key.offset = root_objectid;
732 	}
733 
734 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
735 	btrfs_release_path(path);
736 	return ret;
737 }
738 
739 static inline int extent_ref_type(u64 parent, u64 owner)
740 {
741 	int type;
742 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
743 		if (parent > 0)
744 			type = BTRFS_SHARED_BLOCK_REF_KEY;
745 		else
746 			type = BTRFS_TREE_BLOCK_REF_KEY;
747 	} else {
748 		if (parent > 0)
749 			type = BTRFS_SHARED_DATA_REF_KEY;
750 		else
751 			type = BTRFS_EXTENT_DATA_REF_KEY;
752 	}
753 	return type;
754 }
755 
756 static int find_next_key(struct btrfs_path *path, int level,
757 			 struct btrfs_key *key)
758 
759 {
760 	for (; level < BTRFS_MAX_LEVEL; level++) {
761 		if (!path->nodes[level])
762 			break;
763 		if (path->slots[level] + 1 >=
764 		    btrfs_header_nritems(path->nodes[level]))
765 			continue;
766 		if (level == 0)
767 			btrfs_item_key_to_cpu(path->nodes[level], key,
768 					      path->slots[level] + 1);
769 		else
770 			btrfs_node_key_to_cpu(path->nodes[level], key,
771 					      path->slots[level] + 1);
772 		return 0;
773 	}
774 	return 1;
775 }
776 
777 /*
778  * look for inline back ref. if back ref is found, *ref_ret is set
779  * to the address of inline back ref, and 0 is returned.
780  *
781  * if back ref isn't found, *ref_ret is set to the address where it
782  * should be inserted, and -ENOENT is returned.
783  *
784  * if insert is true and there are too many inline back refs, the path
785  * points to the extent item, and -EAGAIN is returned.
786  *
787  * NOTE: inline back refs are ordered in the same way that back ref
788  *	 items in the tree are ordered.
789  */
790 static noinline_for_stack
791 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
792 				 struct btrfs_path *path,
793 				 struct btrfs_extent_inline_ref **ref_ret,
794 				 u64 bytenr, u64 num_bytes,
795 				 u64 parent, u64 root_objectid,
796 				 u64 owner, u64 offset, int insert)
797 {
798 	struct btrfs_fs_info *fs_info = trans->fs_info;
799 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
800 	struct btrfs_key key;
801 	struct extent_buffer *leaf;
802 	struct btrfs_extent_item *ei;
803 	struct btrfs_extent_inline_ref *iref;
804 	u64 flags;
805 	u64 item_size;
806 	unsigned long ptr;
807 	unsigned long end;
808 	int extra_size;
809 	int type;
810 	int want;
811 	int ret;
812 	int err = 0;
813 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
814 	int needed;
815 
816 	key.objectid = bytenr;
817 	key.type = BTRFS_EXTENT_ITEM_KEY;
818 	key.offset = num_bytes;
819 
820 	want = extent_ref_type(parent, owner);
821 	if (insert) {
822 		extra_size = btrfs_extent_inline_ref_size(want);
823 		path->search_for_extension = 1;
824 		path->keep_locks = 1;
825 	} else
826 		extra_size = -1;
827 
828 	/*
829 	 * Owner is our level, so we can just add one to get the level for the
830 	 * block we are interested in.
831 	 */
832 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
833 		key.type = BTRFS_METADATA_ITEM_KEY;
834 		key.offset = owner;
835 	}
836 
837 again:
838 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
839 	if (ret < 0) {
840 		err = ret;
841 		goto out;
842 	}
843 
844 	/*
845 	 * We may be a newly converted file system which still has the old fat
846 	 * extent entries for metadata, so try and see if we have one of those.
847 	 */
848 	if (ret > 0 && skinny_metadata) {
849 		skinny_metadata = false;
850 		if (path->slots[0]) {
851 			path->slots[0]--;
852 			btrfs_item_key_to_cpu(path->nodes[0], &key,
853 					      path->slots[0]);
854 			if (key.objectid == bytenr &&
855 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
856 			    key.offset == num_bytes)
857 				ret = 0;
858 		}
859 		if (ret) {
860 			key.objectid = bytenr;
861 			key.type = BTRFS_EXTENT_ITEM_KEY;
862 			key.offset = num_bytes;
863 			btrfs_release_path(path);
864 			goto again;
865 		}
866 	}
867 
868 	if (ret && !insert) {
869 		err = -ENOENT;
870 		goto out;
871 	} else if (WARN_ON(ret)) {
872 		err = -EIO;
873 		goto out;
874 	}
875 
876 	leaf = path->nodes[0];
877 	item_size = btrfs_item_size(leaf, path->slots[0]);
878 	if (unlikely(item_size < sizeof(*ei))) {
879 		err = -EINVAL;
880 		btrfs_print_v0_err(fs_info);
881 		btrfs_abort_transaction(trans, err);
882 		goto out;
883 	}
884 
885 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
886 	flags = btrfs_extent_flags(leaf, ei);
887 
888 	ptr = (unsigned long)(ei + 1);
889 	end = (unsigned long)ei + item_size;
890 
891 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
892 		ptr += sizeof(struct btrfs_tree_block_info);
893 		BUG_ON(ptr > end);
894 	}
895 
896 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
897 		needed = BTRFS_REF_TYPE_DATA;
898 	else
899 		needed = BTRFS_REF_TYPE_BLOCK;
900 
901 	err = -ENOENT;
902 	while (1) {
903 		if (ptr >= end) {
904 			if (ptr > end) {
905 				err = -EUCLEAN;
906 				btrfs_print_leaf(path->nodes[0]);
907 				btrfs_crit(fs_info,
908 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
909 					path->slots[0], root_objectid, owner, offset, parent);
910 			}
911 			break;
912 		}
913 		iref = (struct btrfs_extent_inline_ref *)ptr;
914 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
915 		if (type == BTRFS_REF_TYPE_INVALID) {
916 			err = -EUCLEAN;
917 			goto out;
918 		}
919 
920 		if (want < type)
921 			break;
922 		if (want > type) {
923 			ptr += btrfs_extent_inline_ref_size(type);
924 			continue;
925 		}
926 
927 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
928 			struct btrfs_extent_data_ref *dref;
929 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
930 			if (match_extent_data_ref(leaf, dref, root_objectid,
931 						  owner, offset)) {
932 				err = 0;
933 				break;
934 			}
935 			if (hash_extent_data_ref_item(leaf, dref) <
936 			    hash_extent_data_ref(root_objectid, owner, offset))
937 				break;
938 		} else {
939 			u64 ref_offset;
940 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
941 			if (parent > 0) {
942 				if (parent == ref_offset) {
943 					err = 0;
944 					break;
945 				}
946 				if (ref_offset < parent)
947 					break;
948 			} else {
949 				if (root_objectid == ref_offset) {
950 					err = 0;
951 					break;
952 				}
953 				if (ref_offset < root_objectid)
954 					break;
955 			}
956 		}
957 		ptr += btrfs_extent_inline_ref_size(type);
958 	}
959 	if (err == -ENOENT && insert) {
960 		if (item_size + extra_size >=
961 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
962 			err = -EAGAIN;
963 			goto out;
964 		}
965 		/*
966 		 * To add new inline back ref, we have to make sure
967 		 * there is no corresponding back ref item.
968 		 * For simplicity, we just do not add new inline back
969 		 * ref if there is any kind of item for this block
970 		 */
971 		if (find_next_key(path, 0, &key) == 0 &&
972 		    key.objectid == bytenr &&
973 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
974 			err = -EAGAIN;
975 			goto out;
976 		}
977 	}
978 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
979 out:
980 	if (insert) {
981 		path->keep_locks = 0;
982 		path->search_for_extension = 0;
983 		btrfs_unlock_up_safe(path, 1);
984 	}
985 	return err;
986 }
987 
988 /*
989  * helper to add new inline back ref
990  */
991 static noinline_for_stack
992 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
993 				 struct btrfs_path *path,
994 				 struct btrfs_extent_inline_ref *iref,
995 				 u64 parent, u64 root_objectid,
996 				 u64 owner, u64 offset, int refs_to_add,
997 				 struct btrfs_delayed_extent_op *extent_op)
998 {
999 	struct extent_buffer *leaf;
1000 	struct btrfs_extent_item *ei;
1001 	unsigned long ptr;
1002 	unsigned long end;
1003 	unsigned long item_offset;
1004 	u64 refs;
1005 	int size;
1006 	int type;
1007 
1008 	leaf = path->nodes[0];
1009 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1010 	item_offset = (unsigned long)iref - (unsigned long)ei;
1011 
1012 	type = extent_ref_type(parent, owner);
1013 	size = btrfs_extent_inline_ref_size(type);
1014 
1015 	btrfs_extend_item(path, size);
1016 
1017 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1018 	refs = btrfs_extent_refs(leaf, ei);
1019 	refs += refs_to_add;
1020 	btrfs_set_extent_refs(leaf, ei, refs);
1021 	if (extent_op)
1022 		__run_delayed_extent_op(extent_op, leaf, ei);
1023 
1024 	ptr = (unsigned long)ei + item_offset;
1025 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1026 	if (ptr < end - size)
1027 		memmove_extent_buffer(leaf, ptr + size, ptr,
1028 				      end - size - ptr);
1029 
1030 	iref = (struct btrfs_extent_inline_ref *)ptr;
1031 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1032 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1033 		struct btrfs_extent_data_ref *dref;
1034 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1035 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1036 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1037 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1038 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1039 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1040 		struct btrfs_shared_data_ref *sref;
1041 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1042 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1043 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1044 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1045 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 	} else {
1047 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1048 	}
1049 	btrfs_mark_buffer_dirty(leaf);
1050 }
1051 
1052 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1053 				 struct btrfs_path *path,
1054 				 struct btrfs_extent_inline_ref **ref_ret,
1055 				 u64 bytenr, u64 num_bytes, u64 parent,
1056 				 u64 root_objectid, u64 owner, u64 offset)
1057 {
1058 	int ret;
1059 
1060 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1061 					   num_bytes, parent, root_objectid,
1062 					   owner, offset, 0);
1063 	if (ret != -ENOENT)
1064 		return ret;
1065 
1066 	btrfs_release_path(path);
1067 	*ref_ret = NULL;
1068 
1069 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1070 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1071 					    root_objectid);
1072 	} else {
1073 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1074 					     root_objectid, owner, offset);
1075 	}
1076 	return ret;
1077 }
1078 
1079 /*
1080  * helper to update/remove inline back ref
1081  */
1082 static noinline_for_stack
1083 void update_inline_extent_backref(struct btrfs_path *path,
1084 				  struct btrfs_extent_inline_ref *iref,
1085 				  int refs_to_mod,
1086 				  struct btrfs_delayed_extent_op *extent_op)
1087 {
1088 	struct extent_buffer *leaf = path->nodes[0];
1089 	struct btrfs_extent_item *ei;
1090 	struct btrfs_extent_data_ref *dref = NULL;
1091 	struct btrfs_shared_data_ref *sref = NULL;
1092 	unsigned long ptr;
1093 	unsigned long end;
1094 	u32 item_size;
1095 	int size;
1096 	int type;
1097 	u64 refs;
1098 
1099 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1100 	refs = btrfs_extent_refs(leaf, ei);
1101 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1102 	refs += refs_to_mod;
1103 	btrfs_set_extent_refs(leaf, ei, refs);
1104 	if (extent_op)
1105 		__run_delayed_extent_op(extent_op, leaf, ei);
1106 
1107 	/*
1108 	 * If type is invalid, we should have bailed out after
1109 	 * lookup_inline_extent_backref().
1110 	 */
1111 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1112 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1113 
1114 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1115 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1116 		refs = btrfs_extent_data_ref_count(leaf, dref);
1117 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1118 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1119 		refs = btrfs_shared_data_ref_count(leaf, sref);
1120 	} else {
1121 		refs = 1;
1122 		BUG_ON(refs_to_mod != -1);
1123 	}
1124 
1125 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1126 	refs += refs_to_mod;
1127 
1128 	if (refs > 0) {
1129 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1130 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1131 		else
1132 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1133 	} else {
1134 		size =  btrfs_extent_inline_ref_size(type);
1135 		item_size = btrfs_item_size(leaf, path->slots[0]);
1136 		ptr = (unsigned long)iref;
1137 		end = (unsigned long)ei + item_size;
1138 		if (ptr + size < end)
1139 			memmove_extent_buffer(leaf, ptr, ptr + size,
1140 					      end - ptr - size);
1141 		item_size -= size;
1142 		btrfs_truncate_item(path, item_size, 1);
1143 	}
1144 	btrfs_mark_buffer_dirty(leaf);
1145 }
1146 
1147 static noinline_for_stack
1148 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1149 				 struct btrfs_path *path,
1150 				 u64 bytenr, u64 num_bytes, u64 parent,
1151 				 u64 root_objectid, u64 owner,
1152 				 u64 offset, int refs_to_add,
1153 				 struct btrfs_delayed_extent_op *extent_op)
1154 {
1155 	struct btrfs_extent_inline_ref *iref;
1156 	int ret;
1157 
1158 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1159 					   num_bytes, parent, root_objectid,
1160 					   owner, offset, 1);
1161 	if (ret == 0) {
1162 		/*
1163 		 * We're adding refs to a tree block we already own, this
1164 		 * should not happen at all.
1165 		 */
1166 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1167 			btrfs_crit(trans->fs_info,
1168 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1169 				   bytenr, num_bytes, root_objectid);
1170 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1171 				WARN_ON(1);
1172 				btrfs_crit(trans->fs_info,
1173 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1174 				btrfs_print_leaf(path->nodes[0]);
1175 			}
1176 			return -EUCLEAN;
1177 		}
1178 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1179 	} else if (ret == -ENOENT) {
1180 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1181 					    root_objectid, owner, offset,
1182 					    refs_to_add, extent_op);
1183 		ret = 0;
1184 	}
1185 	return ret;
1186 }
1187 
1188 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1189 				 struct btrfs_root *root,
1190 				 struct btrfs_path *path,
1191 				 struct btrfs_extent_inline_ref *iref,
1192 				 int refs_to_drop, int is_data)
1193 {
1194 	int ret = 0;
1195 
1196 	BUG_ON(!is_data && refs_to_drop != 1);
1197 	if (iref)
1198 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1199 	else if (is_data)
1200 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1201 	else
1202 		ret = btrfs_del_item(trans, root, path);
1203 	return ret;
1204 }
1205 
1206 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1207 			       u64 *discarded_bytes)
1208 {
1209 	int j, ret = 0;
1210 	u64 bytes_left, end;
1211 	u64 aligned_start = ALIGN(start, 1 << 9);
1212 
1213 	if (WARN_ON(start != aligned_start)) {
1214 		len -= aligned_start - start;
1215 		len = round_down(len, 1 << 9);
1216 		start = aligned_start;
1217 	}
1218 
1219 	*discarded_bytes = 0;
1220 
1221 	if (!len)
1222 		return 0;
1223 
1224 	end = start + len;
1225 	bytes_left = len;
1226 
1227 	/* Skip any superblocks on this device. */
1228 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1229 		u64 sb_start = btrfs_sb_offset(j);
1230 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1231 		u64 size = sb_start - start;
1232 
1233 		if (!in_range(sb_start, start, bytes_left) &&
1234 		    !in_range(sb_end, start, bytes_left) &&
1235 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1236 			continue;
1237 
1238 		/*
1239 		 * Superblock spans beginning of range.  Adjust start and
1240 		 * try again.
1241 		 */
1242 		if (sb_start <= start) {
1243 			start += sb_end - start;
1244 			if (start > end) {
1245 				bytes_left = 0;
1246 				break;
1247 			}
1248 			bytes_left = end - start;
1249 			continue;
1250 		}
1251 
1252 		if (size) {
1253 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1254 						   GFP_NOFS);
1255 			if (!ret)
1256 				*discarded_bytes += size;
1257 			else if (ret != -EOPNOTSUPP)
1258 				return ret;
1259 		}
1260 
1261 		start = sb_end;
1262 		if (start > end) {
1263 			bytes_left = 0;
1264 			break;
1265 		}
1266 		bytes_left = end - start;
1267 	}
1268 
1269 	if (bytes_left) {
1270 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1271 					   GFP_NOFS);
1272 		if (!ret)
1273 			*discarded_bytes += bytes_left;
1274 	}
1275 	return ret;
1276 }
1277 
1278 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1279 {
1280 	struct btrfs_device *dev = stripe->dev;
1281 	struct btrfs_fs_info *fs_info = dev->fs_info;
1282 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1283 	u64 phys = stripe->physical;
1284 	u64 len = stripe->length;
1285 	u64 discarded = 0;
1286 	int ret = 0;
1287 
1288 	/* Zone reset on a zoned filesystem */
1289 	if (btrfs_can_zone_reset(dev, phys, len)) {
1290 		u64 src_disc;
1291 
1292 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1293 		if (ret)
1294 			goto out;
1295 
1296 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1297 		    dev != dev_replace->srcdev)
1298 			goto out;
1299 
1300 		src_disc = discarded;
1301 
1302 		/* Send to replace target as well */
1303 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1304 					      &discarded);
1305 		discarded += src_disc;
1306 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1307 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1308 	} else {
1309 		ret = 0;
1310 		*bytes = 0;
1311 	}
1312 
1313 out:
1314 	*bytes = discarded;
1315 	return ret;
1316 }
1317 
1318 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1319 			 u64 num_bytes, u64 *actual_bytes)
1320 {
1321 	int ret = 0;
1322 	u64 discarded_bytes = 0;
1323 	u64 end = bytenr + num_bytes;
1324 	u64 cur = bytenr;
1325 
1326 	/*
1327 	 * Avoid races with device replace and make sure the devices in the
1328 	 * stripes don't go away while we are discarding.
1329 	 */
1330 	btrfs_bio_counter_inc_blocked(fs_info);
1331 	while (cur < end) {
1332 		struct btrfs_discard_stripe *stripes;
1333 		unsigned int num_stripes;
1334 		int i;
1335 
1336 		num_bytes = end - cur;
1337 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1338 		if (IS_ERR(stripes)) {
1339 			ret = PTR_ERR(stripes);
1340 			if (ret == -EOPNOTSUPP)
1341 				ret = 0;
1342 			break;
1343 		}
1344 
1345 		for (i = 0; i < num_stripes; i++) {
1346 			struct btrfs_discard_stripe *stripe = stripes + i;
1347 			u64 bytes;
1348 
1349 			if (!stripe->dev->bdev) {
1350 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1351 				continue;
1352 			}
1353 
1354 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1355 					&stripe->dev->dev_state))
1356 				continue;
1357 
1358 			ret = do_discard_extent(stripe, &bytes);
1359 			if (ret) {
1360 				/*
1361 				 * Keep going if discard is not supported by the
1362 				 * device.
1363 				 */
1364 				if (ret != -EOPNOTSUPP)
1365 					break;
1366 				ret = 0;
1367 			} else {
1368 				discarded_bytes += bytes;
1369 			}
1370 		}
1371 		kfree(stripes);
1372 		if (ret)
1373 			break;
1374 		cur += num_bytes;
1375 	}
1376 	btrfs_bio_counter_dec(fs_info);
1377 	if (actual_bytes)
1378 		*actual_bytes = discarded_bytes;
1379 	return ret;
1380 }
1381 
1382 /* Can return -ENOMEM */
1383 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1384 			 struct btrfs_ref *generic_ref)
1385 {
1386 	struct btrfs_fs_info *fs_info = trans->fs_info;
1387 	int ret;
1388 
1389 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1390 	       generic_ref->action);
1391 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1392 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1393 
1394 	if (generic_ref->type == BTRFS_REF_METADATA)
1395 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1396 	else
1397 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1398 
1399 	btrfs_ref_tree_mod(fs_info, generic_ref);
1400 
1401 	return ret;
1402 }
1403 
1404 /*
1405  * __btrfs_inc_extent_ref - insert backreference for a given extent
1406  *
1407  * The counterpart is in __btrfs_free_extent(), with examples and more details
1408  * how it works.
1409  *
1410  * @trans:	    Handle of transaction
1411  *
1412  * @node:	    The delayed ref node used to get the bytenr/length for
1413  *		    extent whose references are incremented.
1414  *
1415  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1416  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1417  *		    bytenr of the parent block. Since new extents are always
1418  *		    created with indirect references, this will only be the case
1419  *		    when relocating a shared extent. In that case, root_objectid
1420  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1421  *		    be 0
1422  *
1423  * @root_objectid:  The id of the root where this modification has originated,
1424  *		    this can be either one of the well-known metadata trees or
1425  *		    the subvolume id which references this extent.
1426  *
1427  * @owner:	    For data extents it is the inode number of the owning file.
1428  *		    For metadata extents this parameter holds the level in the
1429  *		    tree of the extent.
1430  *
1431  * @offset:	    For metadata extents the offset is ignored and is currently
1432  *		    always passed as 0. For data extents it is the fileoffset
1433  *		    this extent belongs to.
1434  *
1435  * @refs_to_add     Number of references to add
1436  *
1437  * @extent_op       Pointer to a structure, holding information necessary when
1438  *                  updating a tree block's flags
1439  *
1440  */
1441 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1442 				  struct btrfs_delayed_ref_node *node,
1443 				  u64 parent, u64 root_objectid,
1444 				  u64 owner, u64 offset, int refs_to_add,
1445 				  struct btrfs_delayed_extent_op *extent_op)
1446 {
1447 	struct btrfs_path *path;
1448 	struct extent_buffer *leaf;
1449 	struct btrfs_extent_item *item;
1450 	struct btrfs_key key;
1451 	u64 bytenr = node->bytenr;
1452 	u64 num_bytes = node->num_bytes;
1453 	u64 refs;
1454 	int ret;
1455 
1456 	path = btrfs_alloc_path();
1457 	if (!path)
1458 		return -ENOMEM;
1459 
1460 	/* this will setup the path even if it fails to insert the back ref */
1461 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1462 					   parent, root_objectid, owner,
1463 					   offset, refs_to_add, extent_op);
1464 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1465 		goto out;
1466 
1467 	/*
1468 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1469 	 * inline extent ref, so just update the reference count and add a
1470 	 * normal backref.
1471 	 */
1472 	leaf = path->nodes[0];
1473 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1474 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1475 	refs = btrfs_extent_refs(leaf, item);
1476 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1477 	if (extent_op)
1478 		__run_delayed_extent_op(extent_op, leaf, item);
1479 
1480 	btrfs_mark_buffer_dirty(leaf);
1481 	btrfs_release_path(path);
1482 
1483 	/* now insert the actual backref */
1484 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1485 		BUG_ON(refs_to_add != 1);
1486 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1487 					    root_objectid);
1488 	} else {
1489 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1490 					     root_objectid, owner, offset,
1491 					     refs_to_add);
1492 	}
1493 	if (ret)
1494 		btrfs_abort_transaction(trans, ret);
1495 out:
1496 	btrfs_free_path(path);
1497 	return ret;
1498 }
1499 
1500 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1501 				struct btrfs_delayed_ref_node *node,
1502 				struct btrfs_delayed_extent_op *extent_op,
1503 				int insert_reserved)
1504 {
1505 	int ret = 0;
1506 	struct btrfs_delayed_data_ref *ref;
1507 	struct btrfs_key ins;
1508 	u64 parent = 0;
1509 	u64 ref_root = 0;
1510 	u64 flags = 0;
1511 
1512 	ins.objectid = node->bytenr;
1513 	ins.offset = node->num_bytes;
1514 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1515 
1516 	ref = btrfs_delayed_node_to_data_ref(node);
1517 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1518 
1519 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1520 		parent = ref->parent;
1521 	ref_root = ref->root;
1522 
1523 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1524 		if (extent_op)
1525 			flags |= extent_op->flags_to_set;
1526 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1527 						 flags, ref->objectid,
1528 						 ref->offset, &ins,
1529 						 node->ref_mod);
1530 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1531 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1532 					     ref->objectid, ref->offset,
1533 					     node->ref_mod, extent_op);
1534 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1535 		ret = __btrfs_free_extent(trans, node, parent,
1536 					  ref_root, ref->objectid,
1537 					  ref->offset, node->ref_mod,
1538 					  extent_op);
1539 	} else {
1540 		BUG();
1541 	}
1542 	return ret;
1543 }
1544 
1545 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1546 				    struct extent_buffer *leaf,
1547 				    struct btrfs_extent_item *ei)
1548 {
1549 	u64 flags = btrfs_extent_flags(leaf, ei);
1550 	if (extent_op->update_flags) {
1551 		flags |= extent_op->flags_to_set;
1552 		btrfs_set_extent_flags(leaf, ei, flags);
1553 	}
1554 
1555 	if (extent_op->update_key) {
1556 		struct btrfs_tree_block_info *bi;
1557 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1558 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1559 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1560 	}
1561 }
1562 
1563 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1564 				 struct btrfs_delayed_ref_head *head,
1565 				 struct btrfs_delayed_extent_op *extent_op)
1566 {
1567 	struct btrfs_fs_info *fs_info = trans->fs_info;
1568 	struct btrfs_root *root;
1569 	struct btrfs_key key;
1570 	struct btrfs_path *path;
1571 	struct btrfs_extent_item *ei;
1572 	struct extent_buffer *leaf;
1573 	u32 item_size;
1574 	int ret;
1575 	int err = 0;
1576 	int metadata = 1;
1577 
1578 	if (TRANS_ABORTED(trans))
1579 		return 0;
1580 
1581 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1582 		metadata = 0;
1583 
1584 	path = btrfs_alloc_path();
1585 	if (!path)
1586 		return -ENOMEM;
1587 
1588 	key.objectid = head->bytenr;
1589 
1590 	if (metadata) {
1591 		key.type = BTRFS_METADATA_ITEM_KEY;
1592 		key.offset = extent_op->level;
1593 	} else {
1594 		key.type = BTRFS_EXTENT_ITEM_KEY;
1595 		key.offset = head->num_bytes;
1596 	}
1597 
1598 	root = btrfs_extent_root(fs_info, key.objectid);
1599 again:
1600 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1601 	if (ret < 0) {
1602 		err = ret;
1603 		goto out;
1604 	}
1605 	if (ret > 0) {
1606 		if (metadata) {
1607 			if (path->slots[0] > 0) {
1608 				path->slots[0]--;
1609 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1610 						      path->slots[0]);
1611 				if (key.objectid == head->bytenr &&
1612 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1613 				    key.offset == head->num_bytes)
1614 					ret = 0;
1615 			}
1616 			if (ret > 0) {
1617 				btrfs_release_path(path);
1618 				metadata = 0;
1619 
1620 				key.objectid = head->bytenr;
1621 				key.offset = head->num_bytes;
1622 				key.type = BTRFS_EXTENT_ITEM_KEY;
1623 				goto again;
1624 			}
1625 		} else {
1626 			err = -EIO;
1627 			goto out;
1628 		}
1629 	}
1630 
1631 	leaf = path->nodes[0];
1632 	item_size = btrfs_item_size(leaf, path->slots[0]);
1633 
1634 	if (unlikely(item_size < sizeof(*ei))) {
1635 		err = -EINVAL;
1636 		btrfs_print_v0_err(fs_info);
1637 		btrfs_abort_transaction(trans, err);
1638 		goto out;
1639 	}
1640 
1641 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1642 	__run_delayed_extent_op(extent_op, leaf, ei);
1643 
1644 	btrfs_mark_buffer_dirty(leaf);
1645 out:
1646 	btrfs_free_path(path);
1647 	return err;
1648 }
1649 
1650 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1651 				struct btrfs_delayed_ref_node *node,
1652 				struct btrfs_delayed_extent_op *extent_op,
1653 				int insert_reserved)
1654 {
1655 	int ret = 0;
1656 	struct btrfs_delayed_tree_ref *ref;
1657 	u64 parent = 0;
1658 	u64 ref_root = 0;
1659 
1660 	ref = btrfs_delayed_node_to_tree_ref(node);
1661 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1662 
1663 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1664 		parent = ref->parent;
1665 	ref_root = ref->root;
1666 
1667 	if (node->ref_mod != 1) {
1668 		btrfs_err(trans->fs_info,
1669 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1670 			  node->bytenr, node->ref_mod, node->action, ref_root,
1671 			  parent);
1672 		return -EIO;
1673 	}
1674 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1675 		BUG_ON(!extent_op || !extent_op->update_flags);
1676 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1677 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1678 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1679 					     ref->level, 0, 1, extent_op);
1680 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1681 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1682 					  ref->level, 0, 1, extent_op);
1683 	} else {
1684 		BUG();
1685 	}
1686 	return ret;
1687 }
1688 
1689 /* helper function to actually process a single delayed ref entry */
1690 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1691 			       struct btrfs_delayed_ref_node *node,
1692 			       struct btrfs_delayed_extent_op *extent_op,
1693 			       int insert_reserved)
1694 {
1695 	int ret = 0;
1696 
1697 	if (TRANS_ABORTED(trans)) {
1698 		if (insert_reserved)
1699 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1700 		return 0;
1701 	}
1702 
1703 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1704 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1705 		ret = run_delayed_tree_ref(trans, node, extent_op,
1706 					   insert_reserved);
1707 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1708 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1709 		ret = run_delayed_data_ref(trans, node, extent_op,
1710 					   insert_reserved);
1711 	else
1712 		BUG();
1713 	if (ret && insert_reserved)
1714 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1715 	if (ret < 0)
1716 		btrfs_err(trans->fs_info,
1717 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1718 			  node->bytenr, node->num_bytes, node->type,
1719 			  node->action, node->ref_mod, ret);
1720 	return ret;
1721 }
1722 
1723 static inline struct btrfs_delayed_ref_node *
1724 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1725 {
1726 	struct btrfs_delayed_ref_node *ref;
1727 
1728 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1729 		return NULL;
1730 
1731 	/*
1732 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1733 	 * This is to prevent a ref count from going down to zero, which deletes
1734 	 * the extent item from the extent tree, when there still are references
1735 	 * to add, which would fail because they would not find the extent item.
1736 	 */
1737 	if (!list_empty(&head->ref_add_list))
1738 		return list_first_entry(&head->ref_add_list,
1739 				struct btrfs_delayed_ref_node, add_list);
1740 
1741 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1742 		       struct btrfs_delayed_ref_node, ref_node);
1743 	ASSERT(list_empty(&ref->add_list));
1744 	return ref;
1745 }
1746 
1747 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1748 				      struct btrfs_delayed_ref_head *head)
1749 {
1750 	spin_lock(&delayed_refs->lock);
1751 	head->processing = 0;
1752 	delayed_refs->num_heads_ready++;
1753 	spin_unlock(&delayed_refs->lock);
1754 	btrfs_delayed_ref_unlock(head);
1755 }
1756 
1757 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1758 				struct btrfs_delayed_ref_head *head)
1759 {
1760 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1761 
1762 	if (!extent_op)
1763 		return NULL;
1764 
1765 	if (head->must_insert_reserved) {
1766 		head->extent_op = NULL;
1767 		btrfs_free_delayed_extent_op(extent_op);
1768 		return NULL;
1769 	}
1770 	return extent_op;
1771 }
1772 
1773 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1774 				     struct btrfs_delayed_ref_head *head)
1775 {
1776 	struct btrfs_delayed_extent_op *extent_op;
1777 	int ret;
1778 
1779 	extent_op = cleanup_extent_op(head);
1780 	if (!extent_op)
1781 		return 0;
1782 	head->extent_op = NULL;
1783 	spin_unlock(&head->lock);
1784 	ret = run_delayed_extent_op(trans, head, extent_op);
1785 	btrfs_free_delayed_extent_op(extent_op);
1786 	return ret ? ret : 1;
1787 }
1788 
1789 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1790 				  struct btrfs_delayed_ref_root *delayed_refs,
1791 				  struct btrfs_delayed_ref_head *head)
1792 {
1793 	int nr_items = 1;	/* Dropping this ref head update. */
1794 
1795 	/*
1796 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1797 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1798 	 */
1799 	if (head->total_ref_mod < 0 && head->is_data) {
1800 		spin_lock(&delayed_refs->lock);
1801 		delayed_refs->pending_csums -= head->num_bytes;
1802 		spin_unlock(&delayed_refs->lock);
1803 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1804 	}
1805 
1806 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1807 }
1808 
1809 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1810 			    struct btrfs_delayed_ref_head *head)
1811 {
1812 
1813 	struct btrfs_fs_info *fs_info = trans->fs_info;
1814 	struct btrfs_delayed_ref_root *delayed_refs;
1815 	int ret;
1816 
1817 	delayed_refs = &trans->transaction->delayed_refs;
1818 
1819 	ret = run_and_cleanup_extent_op(trans, head);
1820 	if (ret < 0) {
1821 		unselect_delayed_ref_head(delayed_refs, head);
1822 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1823 		return ret;
1824 	} else if (ret) {
1825 		return ret;
1826 	}
1827 
1828 	/*
1829 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1830 	 * and then re-check to make sure nobody got added.
1831 	 */
1832 	spin_unlock(&head->lock);
1833 	spin_lock(&delayed_refs->lock);
1834 	spin_lock(&head->lock);
1835 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1836 		spin_unlock(&head->lock);
1837 		spin_unlock(&delayed_refs->lock);
1838 		return 1;
1839 	}
1840 	btrfs_delete_ref_head(delayed_refs, head);
1841 	spin_unlock(&head->lock);
1842 	spin_unlock(&delayed_refs->lock);
1843 
1844 	if (head->must_insert_reserved) {
1845 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1846 		if (head->is_data) {
1847 			struct btrfs_root *csum_root;
1848 
1849 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1850 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1851 					      head->num_bytes);
1852 		}
1853 	}
1854 
1855 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1856 
1857 	trace_run_delayed_ref_head(fs_info, head, 0);
1858 	btrfs_delayed_ref_unlock(head);
1859 	btrfs_put_delayed_ref_head(head);
1860 	return ret;
1861 }
1862 
1863 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1864 					struct btrfs_trans_handle *trans)
1865 {
1866 	struct btrfs_delayed_ref_root *delayed_refs =
1867 		&trans->transaction->delayed_refs;
1868 	struct btrfs_delayed_ref_head *head = NULL;
1869 	int ret;
1870 
1871 	spin_lock(&delayed_refs->lock);
1872 	head = btrfs_select_ref_head(delayed_refs);
1873 	if (!head) {
1874 		spin_unlock(&delayed_refs->lock);
1875 		return head;
1876 	}
1877 
1878 	/*
1879 	 * Grab the lock that says we are going to process all the refs for
1880 	 * this head
1881 	 */
1882 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1883 	spin_unlock(&delayed_refs->lock);
1884 
1885 	/*
1886 	 * We may have dropped the spin lock to get the head mutex lock, and
1887 	 * that might have given someone else time to free the head.  If that's
1888 	 * true, it has been removed from our list and we can move on.
1889 	 */
1890 	if (ret == -EAGAIN)
1891 		head = ERR_PTR(-EAGAIN);
1892 
1893 	return head;
1894 }
1895 
1896 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1897 					   struct btrfs_delayed_ref_head *locked_ref)
1898 {
1899 	struct btrfs_fs_info *fs_info = trans->fs_info;
1900 	struct btrfs_delayed_ref_root *delayed_refs;
1901 	struct btrfs_delayed_extent_op *extent_op;
1902 	struct btrfs_delayed_ref_node *ref;
1903 	int must_insert_reserved = 0;
1904 	int ret;
1905 
1906 	delayed_refs = &trans->transaction->delayed_refs;
1907 
1908 	lockdep_assert_held(&locked_ref->mutex);
1909 	lockdep_assert_held(&locked_ref->lock);
1910 
1911 	while ((ref = select_delayed_ref(locked_ref))) {
1912 		if (ref->seq &&
1913 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1914 			spin_unlock(&locked_ref->lock);
1915 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1916 			return -EAGAIN;
1917 		}
1918 
1919 		ref->in_tree = 0;
1920 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1921 		RB_CLEAR_NODE(&ref->ref_node);
1922 		if (!list_empty(&ref->add_list))
1923 			list_del(&ref->add_list);
1924 		/*
1925 		 * When we play the delayed ref, also correct the ref_mod on
1926 		 * head
1927 		 */
1928 		switch (ref->action) {
1929 		case BTRFS_ADD_DELAYED_REF:
1930 		case BTRFS_ADD_DELAYED_EXTENT:
1931 			locked_ref->ref_mod -= ref->ref_mod;
1932 			break;
1933 		case BTRFS_DROP_DELAYED_REF:
1934 			locked_ref->ref_mod += ref->ref_mod;
1935 			break;
1936 		default:
1937 			WARN_ON(1);
1938 		}
1939 		atomic_dec(&delayed_refs->num_entries);
1940 
1941 		/*
1942 		 * Record the must_insert_reserved flag before we drop the
1943 		 * spin lock.
1944 		 */
1945 		must_insert_reserved = locked_ref->must_insert_reserved;
1946 		locked_ref->must_insert_reserved = 0;
1947 
1948 		extent_op = locked_ref->extent_op;
1949 		locked_ref->extent_op = NULL;
1950 		spin_unlock(&locked_ref->lock);
1951 
1952 		ret = run_one_delayed_ref(trans, ref, extent_op,
1953 					  must_insert_reserved);
1954 
1955 		btrfs_free_delayed_extent_op(extent_op);
1956 		if (ret) {
1957 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1958 			btrfs_put_delayed_ref(ref);
1959 			return ret;
1960 		}
1961 
1962 		btrfs_put_delayed_ref(ref);
1963 		cond_resched();
1964 
1965 		spin_lock(&locked_ref->lock);
1966 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 /*
1973  * Returns 0 on success or if called with an already aborted transaction.
1974  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1975  */
1976 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1977 					     unsigned long nr)
1978 {
1979 	struct btrfs_fs_info *fs_info = trans->fs_info;
1980 	struct btrfs_delayed_ref_root *delayed_refs;
1981 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1982 	int ret;
1983 	unsigned long count = 0;
1984 
1985 	delayed_refs = &trans->transaction->delayed_refs;
1986 	do {
1987 		if (!locked_ref) {
1988 			locked_ref = btrfs_obtain_ref_head(trans);
1989 			if (IS_ERR_OR_NULL(locked_ref)) {
1990 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1991 					continue;
1992 				} else {
1993 					break;
1994 				}
1995 			}
1996 			count++;
1997 		}
1998 		/*
1999 		 * We need to try and merge add/drops of the same ref since we
2000 		 * can run into issues with relocate dropping the implicit ref
2001 		 * and then it being added back again before the drop can
2002 		 * finish.  If we merged anything we need to re-loop so we can
2003 		 * get a good ref.
2004 		 * Or we can get node references of the same type that weren't
2005 		 * merged when created due to bumps in the tree mod seq, and
2006 		 * we need to merge them to prevent adding an inline extent
2007 		 * backref before dropping it (triggering a BUG_ON at
2008 		 * insert_inline_extent_backref()).
2009 		 */
2010 		spin_lock(&locked_ref->lock);
2011 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2012 
2013 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2014 		if (ret < 0 && ret != -EAGAIN) {
2015 			/*
2016 			 * Error, btrfs_run_delayed_refs_for_head already
2017 			 * unlocked everything so just bail out
2018 			 */
2019 			return ret;
2020 		} else if (!ret) {
2021 			/*
2022 			 * Success, perform the usual cleanup of a processed
2023 			 * head
2024 			 */
2025 			ret = cleanup_ref_head(trans, locked_ref);
2026 			if (ret > 0 ) {
2027 				/* We dropped our lock, we need to loop. */
2028 				ret = 0;
2029 				continue;
2030 			} else if (ret) {
2031 				return ret;
2032 			}
2033 		}
2034 
2035 		/*
2036 		 * Either success case or btrfs_run_delayed_refs_for_head
2037 		 * returned -EAGAIN, meaning we need to select another head
2038 		 */
2039 
2040 		locked_ref = NULL;
2041 		cond_resched();
2042 	} while ((nr != -1 && count < nr) || locked_ref);
2043 
2044 	return 0;
2045 }
2046 
2047 #ifdef SCRAMBLE_DELAYED_REFS
2048 /*
2049  * Normally delayed refs get processed in ascending bytenr order. This
2050  * correlates in most cases to the order added. To expose dependencies on this
2051  * order, we start to process the tree in the middle instead of the beginning
2052  */
2053 static u64 find_middle(struct rb_root *root)
2054 {
2055 	struct rb_node *n = root->rb_node;
2056 	struct btrfs_delayed_ref_node *entry;
2057 	int alt = 1;
2058 	u64 middle;
2059 	u64 first = 0, last = 0;
2060 
2061 	n = rb_first(root);
2062 	if (n) {
2063 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2064 		first = entry->bytenr;
2065 	}
2066 	n = rb_last(root);
2067 	if (n) {
2068 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2069 		last = entry->bytenr;
2070 	}
2071 	n = root->rb_node;
2072 
2073 	while (n) {
2074 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2075 		WARN_ON(!entry->in_tree);
2076 
2077 		middle = entry->bytenr;
2078 
2079 		if (alt)
2080 			n = n->rb_left;
2081 		else
2082 			n = n->rb_right;
2083 
2084 		alt = 1 - alt;
2085 	}
2086 	return middle;
2087 }
2088 #endif
2089 
2090 /*
2091  * this starts processing the delayed reference count updates and
2092  * extent insertions we have queued up so far.  count can be
2093  * 0, which means to process everything in the tree at the start
2094  * of the run (but not newly added entries), or it can be some target
2095  * number you'd like to process.
2096  *
2097  * Returns 0 on success or if called with an aborted transaction
2098  * Returns <0 on error and aborts the transaction
2099  */
2100 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2101 			   unsigned long count)
2102 {
2103 	struct btrfs_fs_info *fs_info = trans->fs_info;
2104 	struct rb_node *node;
2105 	struct btrfs_delayed_ref_root *delayed_refs;
2106 	struct btrfs_delayed_ref_head *head;
2107 	int ret;
2108 	int run_all = count == (unsigned long)-1;
2109 
2110 	/* We'll clean this up in btrfs_cleanup_transaction */
2111 	if (TRANS_ABORTED(trans))
2112 		return 0;
2113 
2114 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2115 		return 0;
2116 
2117 	delayed_refs = &trans->transaction->delayed_refs;
2118 	if (count == 0)
2119 		count = delayed_refs->num_heads_ready;
2120 
2121 again:
2122 #ifdef SCRAMBLE_DELAYED_REFS
2123 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2124 #endif
2125 	ret = __btrfs_run_delayed_refs(trans, count);
2126 	if (ret < 0) {
2127 		btrfs_abort_transaction(trans, ret);
2128 		return ret;
2129 	}
2130 
2131 	if (run_all) {
2132 		btrfs_create_pending_block_groups(trans);
2133 
2134 		spin_lock(&delayed_refs->lock);
2135 		node = rb_first_cached(&delayed_refs->href_root);
2136 		if (!node) {
2137 			spin_unlock(&delayed_refs->lock);
2138 			goto out;
2139 		}
2140 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2141 				href_node);
2142 		refcount_inc(&head->refs);
2143 		spin_unlock(&delayed_refs->lock);
2144 
2145 		/* Mutex was contended, block until it's released and retry. */
2146 		mutex_lock(&head->mutex);
2147 		mutex_unlock(&head->mutex);
2148 
2149 		btrfs_put_delayed_ref_head(head);
2150 		cond_resched();
2151 		goto again;
2152 	}
2153 out:
2154 	return 0;
2155 }
2156 
2157 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2158 				struct extent_buffer *eb, u64 flags,
2159 				int level)
2160 {
2161 	struct btrfs_delayed_extent_op *extent_op;
2162 	int ret;
2163 
2164 	extent_op = btrfs_alloc_delayed_extent_op();
2165 	if (!extent_op)
2166 		return -ENOMEM;
2167 
2168 	extent_op->flags_to_set = flags;
2169 	extent_op->update_flags = true;
2170 	extent_op->update_key = false;
2171 	extent_op->level = level;
2172 
2173 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2174 	if (ret)
2175 		btrfs_free_delayed_extent_op(extent_op);
2176 	return ret;
2177 }
2178 
2179 static noinline int check_delayed_ref(struct btrfs_root *root,
2180 				      struct btrfs_path *path,
2181 				      u64 objectid, u64 offset, u64 bytenr)
2182 {
2183 	struct btrfs_delayed_ref_head *head;
2184 	struct btrfs_delayed_ref_node *ref;
2185 	struct btrfs_delayed_data_ref *data_ref;
2186 	struct btrfs_delayed_ref_root *delayed_refs;
2187 	struct btrfs_transaction *cur_trans;
2188 	struct rb_node *node;
2189 	int ret = 0;
2190 
2191 	spin_lock(&root->fs_info->trans_lock);
2192 	cur_trans = root->fs_info->running_transaction;
2193 	if (cur_trans)
2194 		refcount_inc(&cur_trans->use_count);
2195 	spin_unlock(&root->fs_info->trans_lock);
2196 	if (!cur_trans)
2197 		return 0;
2198 
2199 	delayed_refs = &cur_trans->delayed_refs;
2200 	spin_lock(&delayed_refs->lock);
2201 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2202 	if (!head) {
2203 		spin_unlock(&delayed_refs->lock);
2204 		btrfs_put_transaction(cur_trans);
2205 		return 0;
2206 	}
2207 
2208 	if (!mutex_trylock(&head->mutex)) {
2209 		if (path->nowait) {
2210 			spin_unlock(&delayed_refs->lock);
2211 			btrfs_put_transaction(cur_trans);
2212 			return -EAGAIN;
2213 		}
2214 
2215 		refcount_inc(&head->refs);
2216 		spin_unlock(&delayed_refs->lock);
2217 
2218 		btrfs_release_path(path);
2219 
2220 		/*
2221 		 * Mutex was contended, block until it's released and let
2222 		 * caller try again
2223 		 */
2224 		mutex_lock(&head->mutex);
2225 		mutex_unlock(&head->mutex);
2226 		btrfs_put_delayed_ref_head(head);
2227 		btrfs_put_transaction(cur_trans);
2228 		return -EAGAIN;
2229 	}
2230 	spin_unlock(&delayed_refs->lock);
2231 
2232 	spin_lock(&head->lock);
2233 	/*
2234 	 * XXX: We should replace this with a proper search function in the
2235 	 * future.
2236 	 */
2237 	for (node = rb_first_cached(&head->ref_tree); node;
2238 	     node = rb_next(node)) {
2239 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2240 		/* If it's a shared ref we know a cross reference exists */
2241 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2242 			ret = 1;
2243 			break;
2244 		}
2245 
2246 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2247 
2248 		/*
2249 		 * If our ref doesn't match the one we're currently looking at
2250 		 * then we have a cross reference.
2251 		 */
2252 		if (data_ref->root != root->root_key.objectid ||
2253 		    data_ref->objectid != objectid ||
2254 		    data_ref->offset != offset) {
2255 			ret = 1;
2256 			break;
2257 		}
2258 	}
2259 	spin_unlock(&head->lock);
2260 	mutex_unlock(&head->mutex);
2261 	btrfs_put_transaction(cur_trans);
2262 	return ret;
2263 }
2264 
2265 static noinline int check_committed_ref(struct btrfs_root *root,
2266 					struct btrfs_path *path,
2267 					u64 objectid, u64 offset, u64 bytenr,
2268 					bool strict)
2269 {
2270 	struct btrfs_fs_info *fs_info = root->fs_info;
2271 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2272 	struct extent_buffer *leaf;
2273 	struct btrfs_extent_data_ref *ref;
2274 	struct btrfs_extent_inline_ref *iref;
2275 	struct btrfs_extent_item *ei;
2276 	struct btrfs_key key;
2277 	u32 item_size;
2278 	int type;
2279 	int ret;
2280 
2281 	key.objectid = bytenr;
2282 	key.offset = (u64)-1;
2283 	key.type = BTRFS_EXTENT_ITEM_KEY;
2284 
2285 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2286 	if (ret < 0)
2287 		goto out;
2288 	BUG_ON(ret == 0); /* Corruption */
2289 
2290 	ret = -ENOENT;
2291 	if (path->slots[0] == 0)
2292 		goto out;
2293 
2294 	path->slots[0]--;
2295 	leaf = path->nodes[0];
2296 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2297 
2298 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2299 		goto out;
2300 
2301 	ret = 1;
2302 	item_size = btrfs_item_size(leaf, path->slots[0]);
2303 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2304 
2305 	/* If extent item has more than 1 inline ref then it's shared */
2306 	if (item_size != sizeof(*ei) +
2307 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2308 		goto out;
2309 
2310 	/*
2311 	 * If extent created before last snapshot => it's shared unless the
2312 	 * snapshot has been deleted. Use the heuristic if strict is false.
2313 	 */
2314 	if (!strict &&
2315 	    (btrfs_extent_generation(leaf, ei) <=
2316 	     btrfs_root_last_snapshot(&root->root_item)))
2317 		goto out;
2318 
2319 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2320 
2321 	/* If this extent has SHARED_DATA_REF then it's shared */
2322 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2323 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2324 		goto out;
2325 
2326 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2327 	if (btrfs_extent_refs(leaf, ei) !=
2328 	    btrfs_extent_data_ref_count(leaf, ref) ||
2329 	    btrfs_extent_data_ref_root(leaf, ref) !=
2330 	    root->root_key.objectid ||
2331 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2332 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2333 		goto out;
2334 
2335 	ret = 0;
2336 out:
2337 	return ret;
2338 }
2339 
2340 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2341 			  u64 bytenr, bool strict, struct btrfs_path *path)
2342 {
2343 	int ret;
2344 
2345 	do {
2346 		ret = check_committed_ref(root, path, objectid,
2347 					  offset, bytenr, strict);
2348 		if (ret && ret != -ENOENT)
2349 			goto out;
2350 
2351 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2352 	} while (ret == -EAGAIN);
2353 
2354 out:
2355 	btrfs_release_path(path);
2356 	if (btrfs_is_data_reloc_root(root))
2357 		WARN_ON(ret > 0);
2358 	return ret;
2359 }
2360 
2361 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2362 			   struct btrfs_root *root,
2363 			   struct extent_buffer *buf,
2364 			   int full_backref, int inc)
2365 {
2366 	struct btrfs_fs_info *fs_info = root->fs_info;
2367 	u64 bytenr;
2368 	u64 num_bytes;
2369 	u64 parent;
2370 	u64 ref_root;
2371 	u32 nritems;
2372 	struct btrfs_key key;
2373 	struct btrfs_file_extent_item *fi;
2374 	struct btrfs_ref generic_ref = { 0 };
2375 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2376 	int i;
2377 	int action;
2378 	int level;
2379 	int ret = 0;
2380 
2381 	if (btrfs_is_testing(fs_info))
2382 		return 0;
2383 
2384 	ref_root = btrfs_header_owner(buf);
2385 	nritems = btrfs_header_nritems(buf);
2386 	level = btrfs_header_level(buf);
2387 
2388 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2389 		return 0;
2390 
2391 	if (full_backref)
2392 		parent = buf->start;
2393 	else
2394 		parent = 0;
2395 	if (inc)
2396 		action = BTRFS_ADD_DELAYED_REF;
2397 	else
2398 		action = BTRFS_DROP_DELAYED_REF;
2399 
2400 	for (i = 0; i < nritems; i++) {
2401 		if (level == 0) {
2402 			btrfs_item_key_to_cpu(buf, &key, i);
2403 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2404 				continue;
2405 			fi = btrfs_item_ptr(buf, i,
2406 					    struct btrfs_file_extent_item);
2407 			if (btrfs_file_extent_type(buf, fi) ==
2408 			    BTRFS_FILE_EXTENT_INLINE)
2409 				continue;
2410 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2411 			if (bytenr == 0)
2412 				continue;
2413 
2414 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2415 			key.offset -= btrfs_file_extent_offset(buf, fi);
2416 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2417 					       num_bytes, parent);
2418 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2419 					    key.offset, root->root_key.objectid,
2420 					    for_reloc);
2421 			if (inc)
2422 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2423 			else
2424 				ret = btrfs_free_extent(trans, &generic_ref);
2425 			if (ret)
2426 				goto fail;
2427 		} else {
2428 			bytenr = btrfs_node_blockptr(buf, i);
2429 			num_bytes = fs_info->nodesize;
2430 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2431 					       num_bytes, parent);
2432 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2433 					    root->root_key.objectid, for_reloc);
2434 			if (inc)
2435 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2436 			else
2437 				ret = btrfs_free_extent(trans, &generic_ref);
2438 			if (ret)
2439 				goto fail;
2440 		}
2441 	}
2442 	return 0;
2443 fail:
2444 	return ret;
2445 }
2446 
2447 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2448 		  struct extent_buffer *buf, int full_backref)
2449 {
2450 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2451 }
2452 
2453 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2454 		  struct extent_buffer *buf, int full_backref)
2455 {
2456 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2457 }
2458 
2459 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2460 {
2461 	struct btrfs_fs_info *fs_info = root->fs_info;
2462 	u64 flags;
2463 	u64 ret;
2464 
2465 	if (data)
2466 		flags = BTRFS_BLOCK_GROUP_DATA;
2467 	else if (root == fs_info->chunk_root)
2468 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2469 	else
2470 		flags = BTRFS_BLOCK_GROUP_METADATA;
2471 
2472 	ret = btrfs_get_alloc_profile(fs_info, flags);
2473 	return ret;
2474 }
2475 
2476 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2477 {
2478 	struct rb_node *leftmost;
2479 	u64 bytenr = 0;
2480 
2481 	read_lock(&fs_info->block_group_cache_lock);
2482 	/* Get the block group with the lowest logical start address. */
2483 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2484 	if (leftmost) {
2485 		struct btrfs_block_group *bg;
2486 
2487 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2488 		bytenr = bg->start;
2489 	}
2490 	read_unlock(&fs_info->block_group_cache_lock);
2491 
2492 	return bytenr;
2493 }
2494 
2495 static int pin_down_extent(struct btrfs_trans_handle *trans,
2496 			   struct btrfs_block_group *cache,
2497 			   u64 bytenr, u64 num_bytes, int reserved)
2498 {
2499 	struct btrfs_fs_info *fs_info = cache->fs_info;
2500 
2501 	spin_lock(&cache->space_info->lock);
2502 	spin_lock(&cache->lock);
2503 	cache->pinned += num_bytes;
2504 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2505 					     num_bytes);
2506 	if (reserved) {
2507 		cache->reserved -= num_bytes;
2508 		cache->space_info->bytes_reserved -= num_bytes;
2509 	}
2510 	spin_unlock(&cache->lock);
2511 	spin_unlock(&cache->space_info->lock);
2512 
2513 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2514 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2515 	return 0;
2516 }
2517 
2518 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2519 		     u64 bytenr, u64 num_bytes, int reserved)
2520 {
2521 	struct btrfs_block_group *cache;
2522 
2523 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2524 	BUG_ON(!cache); /* Logic error */
2525 
2526 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2527 
2528 	btrfs_put_block_group(cache);
2529 	return 0;
2530 }
2531 
2532 /*
2533  * this function must be called within transaction
2534  */
2535 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2536 				    u64 bytenr, u64 num_bytes)
2537 {
2538 	struct btrfs_block_group *cache;
2539 	int ret;
2540 
2541 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2542 	if (!cache)
2543 		return -EINVAL;
2544 
2545 	/*
2546 	 * Fully cache the free space first so that our pin removes the free space
2547 	 * from the cache.
2548 	 */
2549 	ret = btrfs_cache_block_group(cache, true);
2550 	if (ret)
2551 		goto out;
2552 
2553 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2554 
2555 	/* remove us from the free space cache (if we're there at all) */
2556 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2557 out:
2558 	btrfs_put_block_group(cache);
2559 	return ret;
2560 }
2561 
2562 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2563 				   u64 start, u64 num_bytes)
2564 {
2565 	int ret;
2566 	struct btrfs_block_group *block_group;
2567 
2568 	block_group = btrfs_lookup_block_group(fs_info, start);
2569 	if (!block_group)
2570 		return -EINVAL;
2571 
2572 	ret = btrfs_cache_block_group(block_group, true);
2573 	if (ret)
2574 		goto out;
2575 
2576 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2577 out:
2578 	btrfs_put_block_group(block_group);
2579 	return ret;
2580 }
2581 
2582 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2583 {
2584 	struct btrfs_fs_info *fs_info = eb->fs_info;
2585 	struct btrfs_file_extent_item *item;
2586 	struct btrfs_key key;
2587 	int found_type;
2588 	int i;
2589 	int ret = 0;
2590 
2591 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2592 		return 0;
2593 
2594 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2595 		btrfs_item_key_to_cpu(eb, &key, i);
2596 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2597 			continue;
2598 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2599 		found_type = btrfs_file_extent_type(eb, item);
2600 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2601 			continue;
2602 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2603 			continue;
2604 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2605 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2606 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2607 		if (ret)
2608 			break;
2609 	}
2610 
2611 	return ret;
2612 }
2613 
2614 static void
2615 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2616 {
2617 	atomic_inc(&bg->reservations);
2618 }
2619 
2620 /*
2621  * Returns the free cluster for the given space info and sets empty_cluster to
2622  * what it should be based on the mount options.
2623  */
2624 static struct btrfs_free_cluster *
2625 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2626 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2627 {
2628 	struct btrfs_free_cluster *ret = NULL;
2629 
2630 	*empty_cluster = 0;
2631 	if (btrfs_mixed_space_info(space_info))
2632 		return ret;
2633 
2634 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2635 		ret = &fs_info->meta_alloc_cluster;
2636 		if (btrfs_test_opt(fs_info, SSD))
2637 			*empty_cluster = SZ_2M;
2638 		else
2639 			*empty_cluster = SZ_64K;
2640 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2641 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2642 		*empty_cluster = SZ_2M;
2643 		ret = &fs_info->data_alloc_cluster;
2644 	}
2645 
2646 	return ret;
2647 }
2648 
2649 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2650 			      u64 start, u64 end,
2651 			      const bool return_free_space)
2652 {
2653 	struct btrfs_block_group *cache = NULL;
2654 	struct btrfs_space_info *space_info;
2655 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2656 	struct btrfs_free_cluster *cluster = NULL;
2657 	u64 len;
2658 	u64 total_unpinned = 0;
2659 	u64 empty_cluster = 0;
2660 	bool readonly;
2661 
2662 	while (start <= end) {
2663 		readonly = false;
2664 		if (!cache ||
2665 		    start >= cache->start + cache->length) {
2666 			if (cache)
2667 				btrfs_put_block_group(cache);
2668 			total_unpinned = 0;
2669 			cache = btrfs_lookup_block_group(fs_info, start);
2670 			BUG_ON(!cache); /* Logic error */
2671 
2672 			cluster = fetch_cluster_info(fs_info,
2673 						     cache->space_info,
2674 						     &empty_cluster);
2675 			empty_cluster <<= 1;
2676 		}
2677 
2678 		len = cache->start + cache->length - start;
2679 		len = min(len, end + 1 - start);
2680 
2681 		if (return_free_space)
2682 			btrfs_add_free_space(cache, start, len);
2683 
2684 		start += len;
2685 		total_unpinned += len;
2686 		space_info = cache->space_info;
2687 
2688 		/*
2689 		 * If this space cluster has been marked as fragmented and we've
2690 		 * unpinned enough in this block group to potentially allow a
2691 		 * cluster to be created inside of it go ahead and clear the
2692 		 * fragmented check.
2693 		 */
2694 		if (cluster && cluster->fragmented &&
2695 		    total_unpinned > empty_cluster) {
2696 			spin_lock(&cluster->lock);
2697 			cluster->fragmented = 0;
2698 			spin_unlock(&cluster->lock);
2699 		}
2700 
2701 		spin_lock(&space_info->lock);
2702 		spin_lock(&cache->lock);
2703 		cache->pinned -= len;
2704 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2705 		space_info->max_extent_size = 0;
2706 		if (cache->ro) {
2707 			space_info->bytes_readonly += len;
2708 			readonly = true;
2709 		} else if (btrfs_is_zoned(fs_info)) {
2710 			/* Need reset before reusing in a zoned block group */
2711 			space_info->bytes_zone_unusable += len;
2712 			readonly = true;
2713 		}
2714 		spin_unlock(&cache->lock);
2715 		if (!readonly && return_free_space &&
2716 		    global_rsv->space_info == space_info) {
2717 			spin_lock(&global_rsv->lock);
2718 			if (!global_rsv->full) {
2719 				u64 to_add = min(len, global_rsv->size -
2720 						      global_rsv->reserved);
2721 
2722 				global_rsv->reserved += to_add;
2723 				btrfs_space_info_update_bytes_may_use(fs_info,
2724 						space_info, to_add);
2725 				if (global_rsv->reserved >= global_rsv->size)
2726 					global_rsv->full = 1;
2727 				len -= to_add;
2728 			}
2729 			spin_unlock(&global_rsv->lock);
2730 		}
2731 		/* Add to any tickets we may have */
2732 		if (!readonly && return_free_space && len)
2733 			btrfs_try_granting_tickets(fs_info, space_info);
2734 		spin_unlock(&space_info->lock);
2735 	}
2736 
2737 	if (cache)
2738 		btrfs_put_block_group(cache);
2739 	return 0;
2740 }
2741 
2742 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2743 {
2744 	struct btrfs_fs_info *fs_info = trans->fs_info;
2745 	struct btrfs_block_group *block_group, *tmp;
2746 	struct list_head *deleted_bgs;
2747 	struct extent_io_tree *unpin;
2748 	u64 start;
2749 	u64 end;
2750 	int ret;
2751 
2752 	unpin = &trans->transaction->pinned_extents;
2753 
2754 	while (!TRANS_ABORTED(trans)) {
2755 		struct extent_state *cached_state = NULL;
2756 
2757 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2758 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2759 					    EXTENT_DIRTY, &cached_state);
2760 		if (ret) {
2761 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2762 			break;
2763 		}
2764 
2765 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2766 			ret = btrfs_discard_extent(fs_info, start,
2767 						   end + 1 - start, NULL);
2768 
2769 		clear_extent_dirty(unpin, start, end, &cached_state);
2770 		unpin_extent_range(fs_info, start, end, true);
2771 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2772 		free_extent_state(cached_state);
2773 		cond_resched();
2774 	}
2775 
2776 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2777 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2778 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2779 	}
2780 
2781 	/*
2782 	 * Transaction is finished.  We don't need the lock anymore.  We
2783 	 * do need to clean up the block groups in case of a transaction
2784 	 * abort.
2785 	 */
2786 	deleted_bgs = &trans->transaction->deleted_bgs;
2787 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2788 		u64 trimmed = 0;
2789 
2790 		ret = -EROFS;
2791 		if (!TRANS_ABORTED(trans))
2792 			ret = btrfs_discard_extent(fs_info,
2793 						   block_group->start,
2794 						   block_group->length,
2795 						   &trimmed);
2796 
2797 		list_del_init(&block_group->bg_list);
2798 		btrfs_unfreeze_block_group(block_group);
2799 		btrfs_put_block_group(block_group);
2800 
2801 		if (ret) {
2802 			const char *errstr = btrfs_decode_error(ret);
2803 			btrfs_warn(fs_info,
2804 			   "discard failed while removing blockgroup: errno=%d %s",
2805 				   ret, errstr);
2806 		}
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2813 				     u64 bytenr, u64 num_bytes, bool is_data)
2814 {
2815 	int ret;
2816 
2817 	if (is_data) {
2818 		struct btrfs_root *csum_root;
2819 
2820 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2821 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2822 		if (ret) {
2823 			btrfs_abort_transaction(trans, ret);
2824 			return ret;
2825 		}
2826 	}
2827 
2828 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2829 	if (ret) {
2830 		btrfs_abort_transaction(trans, ret);
2831 		return ret;
2832 	}
2833 
2834 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2835 	if (ret)
2836 		btrfs_abort_transaction(trans, ret);
2837 
2838 	return ret;
2839 }
2840 
2841 /*
2842  * Drop one or more refs of @node.
2843  *
2844  * 1. Locate the extent refs.
2845  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2846  *    Locate it, then reduce the refs number or remove the ref line completely.
2847  *
2848  * 2. Update the refs count in EXTENT/METADATA_ITEM
2849  *
2850  * Inline backref case:
2851  *
2852  * in extent tree we have:
2853  *
2854  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2855  *		refs 2 gen 6 flags DATA
2856  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2857  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2858  *
2859  * This function gets called with:
2860  *
2861  *    node->bytenr = 13631488
2862  *    node->num_bytes = 1048576
2863  *    root_objectid = FS_TREE
2864  *    owner_objectid = 257
2865  *    owner_offset = 0
2866  *    refs_to_drop = 1
2867  *
2868  * Then we should get some like:
2869  *
2870  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2871  *		refs 1 gen 6 flags DATA
2872  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2873  *
2874  * Keyed backref case:
2875  *
2876  * in extent tree we have:
2877  *
2878  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2879  *		refs 754 gen 6 flags DATA
2880  *	[...]
2881  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2882  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2883  *
2884  * This function get called with:
2885  *
2886  *    node->bytenr = 13631488
2887  *    node->num_bytes = 1048576
2888  *    root_objectid = FS_TREE
2889  *    owner_objectid = 866
2890  *    owner_offset = 0
2891  *    refs_to_drop = 1
2892  *
2893  * Then we should get some like:
2894  *
2895  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2896  *		refs 753 gen 6 flags DATA
2897  *
2898  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2899  */
2900 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2901 			       struct btrfs_delayed_ref_node *node, u64 parent,
2902 			       u64 root_objectid, u64 owner_objectid,
2903 			       u64 owner_offset, int refs_to_drop,
2904 			       struct btrfs_delayed_extent_op *extent_op)
2905 {
2906 	struct btrfs_fs_info *info = trans->fs_info;
2907 	struct btrfs_key key;
2908 	struct btrfs_path *path;
2909 	struct btrfs_root *extent_root;
2910 	struct extent_buffer *leaf;
2911 	struct btrfs_extent_item *ei;
2912 	struct btrfs_extent_inline_ref *iref;
2913 	int ret;
2914 	int is_data;
2915 	int extent_slot = 0;
2916 	int found_extent = 0;
2917 	int num_to_del = 1;
2918 	u32 item_size;
2919 	u64 refs;
2920 	u64 bytenr = node->bytenr;
2921 	u64 num_bytes = node->num_bytes;
2922 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2923 
2924 	extent_root = btrfs_extent_root(info, bytenr);
2925 	ASSERT(extent_root);
2926 
2927 	path = btrfs_alloc_path();
2928 	if (!path)
2929 		return -ENOMEM;
2930 
2931 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2932 
2933 	if (!is_data && refs_to_drop != 1) {
2934 		btrfs_crit(info,
2935 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2936 			   node->bytenr, refs_to_drop);
2937 		ret = -EINVAL;
2938 		btrfs_abort_transaction(trans, ret);
2939 		goto out;
2940 	}
2941 
2942 	if (is_data)
2943 		skinny_metadata = false;
2944 
2945 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2946 				    parent, root_objectid, owner_objectid,
2947 				    owner_offset);
2948 	if (ret == 0) {
2949 		/*
2950 		 * Either the inline backref or the SHARED_DATA_REF/
2951 		 * SHARED_BLOCK_REF is found
2952 		 *
2953 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2954 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2955 		 */
2956 		extent_slot = path->slots[0];
2957 		while (extent_slot >= 0) {
2958 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2959 					      extent_slot);
2960 			if (key.objectid != bytenr)
2961 				break;
2962 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2963 			    key.offset == num_bytes) {
2964 				found_extent = 1;
2965 				break;
2966 			}
2967 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2968 			    key.offset == owner_objectid) {
2969 				found_extent = 1;
2970 				break;
2971 			}
2972 
2973 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2974 			if (path->slots[0] - extent_slot > 5)
2975 				break;
2976 			extent_slot--;
2977 		}
2978 
2979 		if (!found_extent) {
2980 			if (iref) {
2981 				btrfs_crit(info,
2982 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
2983 				btrfs_abort_transaction(trans, -EUCLEAN);
2984 				goto err_dump;
2985 			}
2986 			/* Must be SHARED_* item, remove the backref first */
2987 			ret = remove_extent_backref(trans, extent_root, path,
2988 						    NULL, refs_to_drop, is_data);
2989 			if (ret) {
2990 				btrfs_abort_transaction(trans, ret);
2991 				goto out;
2992 			}
2993 			btrfs_release_path(path);
2994 
2995 			/* Slow path to locate EXTENT/METADATA_ITEM */
2996 			key.objectid = bytenr;
2997 			key.type = BTRFS_EXTENT_ITEM_KEY;
2998 			key.offset = num_bytes;
2999 
3000 			if (!is_data && skinny_metadata) {
3001 				key.type = BTRFS_METADATA_ITEM_KEY;
3002 				key.offset = owner_objectid;
3003 			}
3004 
3005 			ret = btrfs_search_slot(trans, extent_root,
3006 						&key, path, -1, 1);
3007 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3008 				/*
3009 				 * Couldn't find our skinny metadata item,
3010 				 * see if we have ye olde extent item.
3011 				 */
3012 				path->slots[0]--;
3013 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3014 						      path->slots[0]);
3015 				if (key.objectid == bytenr &&
3016 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3017 				    key.offset == num_bytes)
3018 					ret = 0;
3019 			}
3020 
3021 			if (ret > 0 && skinny_metadata) {
3022 				skinny_metadata = false;
3023 				key.objectid = bytenr;
3024 				key.type = BTRFS_EXTENT_ITEM_KEY;
3025 				key.offset = num_bytes;
3026 				btrfs_release_path(path);
3027 				ret = btrfs_search_slot(trans, extent_root,
3028 							&key, path, -1, 1);
3029 			}
3030 
3031 			if (ret) {
3032 				btrfs_err(info,
3033 					  "umm, got %d back from search, was looking for %llu",
3034 					  ret, bytenr);
3035 				if (ret > 0)
3036 					btrfs_print_leaf(path->nodes[0]);
3037 			}
3038 			if (ret < 0) {
3039 				btrfs_abort_transaction(trans, ret);
3040 				goto out;
3041 			}
3042 			extent_slot = path->slots[0];
3043 		}
3044 	} else if (WARN_ON(ret == -ENOENT)) {
3045 		btrfs_print_leaf(path->nodes[0]);
3046 		btrfs_err(info,
3047 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3048 			bytenr, parent, root_objectid, owner_objectid,
3049 			owner_offset);
3050 		btrfs_abort_transaction(trans, ret);
3051 		goto out;
3052 	} else {
3053 		btrfs_abort_transaction(trans, ret);
3054 		goto out;
3055 	}
3056 
3057 	leaf = path->nodes[0];
3058 	item_size = btrfs_item_size(leaf, extent_slot);
3059 	if (unlikely(item_size < sizeof(*ei))) {
3060 		ret = -EINVAL;
3061 		btrfs_print_v0_err(info);
3062 		btrfs_abort_transaction(trans, ret);
3063 		goto out;
3064 	}
3065 	ei = btrfs_item_ptr(leaf, extent_slot,
3066 			    struct btrfs_extent_item);
3067 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3068 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3069 		struct btrfs_tree_block_info *bi;
3070 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3071 			btrfs_crit(info,
3072 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3073 				   key.objectid, key.type, key.offset,
3074 				   owner_objectid, item_size,
3075 				   sizeof(*ei) + sizeof(*bi));
3076 			btrfs_abort_transaction(trans, -EUCLEAN);
3077 			goto err_dump;
3078 		}
3079 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3080 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3081 	}
3082 
3083 	refs = btrfs_extent_refs(leaf, ei);
3084 	if (refs < refs_to_drop) {
3085 		btrfs_crit(info,
3086 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3087 			  refs_to_drop, refs, bytenr);
3088 		btrfs_abort_transaction(trans, -EUCLEAN);
3089 		goto err_dump;
3090 	}
3091 	refs -= refs_to_drop;
3092 
3093 	if (refs > 0) {
3094 		if (extent_op)
3095 			__run_delayed_extent_op(extent_op, leaf, ei);
3096 		/*
3097 		 * In the case of inline back ref, reference count will
3098 		 * be updated by remove_extent_backref
3099 		 */
3100 		if (iref) {
3101 			if (!found_extent) {
3102 				btrfs_crit(info,
3103 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3104 				btrfs_abort_transaction(trans, -EUCLEAN);
3105 				goto err_dump;
3106 			}
3107 		} else {
3108 			btrfs_set_extent_refs(leaf, ei, refs);
3109 			btrfs_mark_buffer_dirty(leaf);
3110 		}
3111 		if (found_extent) {
3112 			ret = remove_extent_backref(trans, extent_root, path,
3113 						    iref, refs_to_drop, is_data);
3114 			if (ret) {
3115 				btrfs_abort_transaction(trans, ret);
3116 				goto out;
3117 			}
3118 		}
3119 	} else {
3120 		/* In this branch refs == 1 */
3121 		if (found_extent) {
3122 			if (is_data && refs_to_drop !=
3123 			    extent_data_ref_count(path, iref)) {
3124 				btrfs_crit(info,
3125 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3126 					   extent_data_ref_count(path, iref),
3127 					   refs_to_drop);
3128 				btrfs_abort_transaction(trans, -EUCLEAN);
3129 				goto err_dump;
3130 			}
3131 			if (iref) {
3132 				if (path->slots[0] != extent_slot) {
3133 					btrfs_crit(info,
3134 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3135 						   key.objectid, key.type,
3136 						   key.offset);
3137 					btrfs_abort_transaction(trans, -EUCLEAN);
3138 					goto err_dump;
3139 				}
3140 			} else {
3141 				/*
3142 				 * No inline ref, we must be at SHARED_* item,
3143 				 * And it's single ref, it must be:
3144 				 * |	extent_slot	  ||extent_slot + 1|
3145 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3146 				 */
3147 				if (path->slots[0] != extent_slot + 1) {
3148 					btrfs_crit(info,
3149 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3150 					btrfs_abort_transaction(trans, -EUCLEAN);
3151 					goto err_dump;
3152 				}
3153 				path->slots[0] = extent_slot;
3154 				num_to_del = 2;
3155 			}
3156 		}
3157 
3158 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3159 				      num_to_del);
3160 		if (ret) {
3161 			btrfs_abort_transaction(trans, ret);
3162 			goto out;
3163 		}
3164 		btrfs_release_path(path);
3165 
3166 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3167 	}
3168 	btrfs_release_path(path);
3169 
3170 out:
3171 	btrfs_free_path(path);
3172 	return ret;
3173 err_dump:
3174 	/*
3175 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3176 	 * dump for debug build.
3177 	 */
3178 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3179 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3180 			   path->slots[0], extent_slot);
3181 		btrfs_print_leaf(path->nodes[0]);
3182 	}
3183 
3184 	btrfs_free_path(path);
3185 	return -EUCLEAN;
3186 }
3187 
3188 /*
3189  * when we free an block, it is possible (and likely) that we free the last
3190  * delayed ref for that extent as well.  This searches the delayed ref tree for
3191  * a given extent, and if there are no other delayed refs to be processed, it
3192  * removes it from the tree.
3193  */
3194 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3195 				      u64 bytenr)
3196 {
3197 	struct btrfs_delayed_ref_head *head;
3198 	struct btrfs_delayed_ref_root *delayed_refs;
3199 	int ret = 0;
3200 
3201 	delayed_refs = &trans->transaction->delayed_refs;
3202 	spin_lock(&delayed_refs->lock);
3203 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3204 	if (!head)
3205 		goto out_delayed_unlock;
3206 
3207 	spin_lock(&head->lock);
3208 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3209 		goto out;
3210 
3211 	if (cleanup_extent_op(head) != NULL)
3212 		goto out;
3213 
3214 	/*
3215 	 * waiting for the lock here would deadlock.  If someone else has it
3216 	 * locked they are already in the process of dropping it anyway
3217 	 */
3218 	if (!mutex_trylock(&head->mutex))
3219 		goto out;
3220 
3221 	btrfs_delete_ref_head(delayed_refs, head);
3222 	head->processing = 0;
3223 
3224 	spin_unlock(&head->lock);
3225 	spin_unlock(&delayed_refs->lock);
3226 
3227 	BUG_ON(head->extent_op);
3228 	if (head->must_insert_reserved)
3229 		ret = 1;
3230 
3231 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3232 	mutex_unlock(&head->mutex);
3233 	btrfs_put_delayed_ref_head(head);
3234 	return ret;
3235 out:
3236 	spin_unlock(&head->lock);
3237 
3238 out_delayed_unlock:
3239 	spin_unlock(&delayed_refs->lock);
3240 	return 0;
3241 }
3242 
3243 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3244 			   u64 root_id,
3245 			   struct extent_buffer *buf,
3246 			   u64 parent, int last_ref)
3247 {
3248 	struct btrfs_fs_info *fs_info = trans->fs_info;
3249 	struct btrfs_ref generic_ref = { 0 };
3250 	int ret;
3251 
3252 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3253 			       buf->start, buf->len, parent);
3254 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3255 			    root_id, 0, false);
3256 
3257 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3258 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3259 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3260 		BUG_ON(ret); /* -ENOMEM */
3261 	}
3262 
3263 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3264 		struct btrfs_block_group *cache;
3265 		bool must_pin = false;
3266 
3267 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3268 			ret = check_ref_cleanup(trans, buf->start);
3269 			if (!ret) {
3270 				btrfs_redirty_list_add(trans->transaction, buf);
3271 				goto out;
3272 			}
3273 		}
3274 
3275 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3276 
3277 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3278 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3279 			btrfs_put_block_group(cache);
3280 			goto out;
3281 		}
3282 
3283 		/*
3284 		 * If there are tree mod log users we may have recorded mod log
3285 		 * operations for this node.  If we re-allocate this node we
3286 		 * could replay operations on this node that happened when it
3287 		 * existed in a completely different root.  For example if it
3288 		 * was part of root A, then was reallocated to root B, and we
3289 		 * are doing a btrfs_old_search_slot(root b), we could replay
3290 		 * operations that happened when the block was part of root A,
3291 		 * giving us an inconsistent view of the btree.
3292 		 *
3293 		 * We are safe from races here because at this point no other
3294 		 * node or root points to this extent buffer, so if after this
3295 		 * check a new tree mod log user joins we will not have an
3296 		 * existing log of operations on this node that we have to
3297 		 * contend with.
3298 		 */
3299 		if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3300 			must_pin = true;
3301 
3302 		if (must_pin || btrfs_is_zoned(fs_info)) {
3303 			btrfs_redirty_list_add(trans->transaction, buf);
3304 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3305 			btrfs_put_block_group(cache);
3306 			goto out;
3307 		}
3308 
3309 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3310 
3311 		btrfs_add_free_space(cache, buf->start, buf->len);
3312 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3313 		btrfs_put_block_group(cache);
3314 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3315 	}
3316 out:
3317 	if (last_ref) {
3318 		/*
3319 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3320 		 * matter anymore.
3321 		 */
3322 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3323 	}
3324 }
3325 
3326 /* Can return -ENOMEM */
3327 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3328 {
3329 	struct btrfs_fs_info *fs_info = trans->fs_info;
3330 	int ret;
3331 
3332 	if (btrfs_is_testing(fs_info))
3333 		return 0;
3334 
3335 	/*
3336 	 * tree log blocks never actually go into the extent allocation
3337 	 * tree, just update pinning info and exit early.
3338 	 */
3339 	if ((ref->type == BTRFS_REF_METADATA &&
3340 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3341 	    (ref->type == BTRFS_REF_DATA &&
3342 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3343 		/* unlocks the pinned mutex */
3344 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3345 		ret = 0;
3346 	} else if (ref->type == BTRFS_REF_METADATA) {
3347 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3348 	} else {
3349 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3350 	}
3351 
3352 	if (!((ref->type == BTRFS_REF_METADATA &&
3353 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3354 	      (ref->type == BTRFS_REF_DATA &&
3355 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3356 		btrfs_ref_tree_mod(fs_info, ref);
3357 
3358 	return ret;
3359 }
3360 
3361 enum btrfs_loop_type {
3362 	LOOP_CACHING_NOWAIT,
3363 	LOOP_CACHING_WAIT,
3364 	LOOP_UNSET_SIZE_CLASS,
3365 	LOOP_ALLOC_CHUNK,
3366 	LOOP_WRONG_SIZE_CLASS,
3367 	LOOP_NO_EMPTY_SIZE,
3368 };
3369 
3370 static inline void
3371 btrfs_lock_block_group(struct btrfs_block_group *cache,
3372 		       int delalloc)
3373 {
3374 	if (delalloc)
3375 		down_read(&cache->data_rwsem);
3376 }
3377 
3378 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3379 		       int delalloc)
3380 {
3381 	btrfs_get_block_group(cache);
3382 	if (delalloc)
3383 		down_read(&cache->data_rwsem);
3384 }
3385 
3386 static struct btrfs_block_group *btrfs_lock_cluster(
3387 		   struct btrfs_block_group *block_group,
3388 		   struct btrfs_free_cluster *cluster,
3389 		   int delalloc)
3390 	__acquires(&cluster->refill_lock)
3391 {
3392 	struct btrfs_block_group *used_bg = NULL;
3393 
3394 	spin_lock(&cluster->refill_lock);
3395 	while (1) {
3396 		used_bg = cluster->block_group;
3397 		if (!used_bg)
3398 			return NULL;
3399 
3400 		if (used_bg == block_group)
3401 			return used_bg;
3402 
3403 		btrfs_get_block_group(used_bg);
3404 
3405 		if (!delalloc)
3406 			return used_bg;
3407 
3408 		if (down_read_trylock(&used_bg->data_rwsem))
3409 			return used_bg;
3410 
3411 		spin_unlock(&cluster->refill_lock);
3412 
3413 		/* We should only have one-level nested. */
3414 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3415 
3416 		spin_lock(&cluster->refill_lock);
3417 		if (used_bg == cluster->block_group)
3418 			return used_bg;
3419 
3420 		up_read(&used_bg->data_rwsem);
3421 		btrfs_put_block_group(used_bg);
3422 	}
3423 }
3424 
3425 static inline void
3426 btrfs_release_block_group(struct btrfs_block_group *cache,
3427 			 int delalloc)
3428 {
3429 	if (delalloc)
3430 		up_read(&cache->data_rwsem);
3431 	btrfs_put_block_group(cache);
3432 }
3433 
3434 /*
3435  * Helper function for find_free_extent().
3436  *
3437  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3438  * Return -EAGAIN to inform caller that we need to re-search this block group
3439  * Return >0 to inform caller that we find nothing
3440  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3441  */
3442 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3443 				      struct find_free_extent_ctl *ffe_ctl,
3444 				      struct btrfs_block_group **cluster_bg_ret)
3445 {
3446 	struct btrfs_block_group *cluster_bg;
3447 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3448 	u64 aligned_cluster;
3449 	u64 offset;
3450 	int ret;
3451 
3452 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3453 	if (!cluster_bg)
3454 		goto refill_cluster;
3455 	if (cluster_bg != bg && (cluster_bg->ro ||
3456 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3457 		goto release_cluster;
3458 
3459 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3460 			ffe_ctl->num_bytes, cluster_bg->start,
3461 			&ffe_ctl->max_extent_size);
3462 	if (offset) {
3463 		/* We have a block, we're done */
3464 		spin_unlock(&last_ptr->refill_lock);
3465 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3466 		*cluster_bg_ret = cluster_bg;
3467 		ffe_ctl->found_offset = offset;
3468 		return 0;
3469 	}
3470 	WARN_ON(last_ptr->block_group != cluster_bg);
3471 
3472 release_cluster:
3473 	/*
3474 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3475 	 * lets just skip it and let the allocator find whatever block it can
3476 	 * find. If we reach this point, we will have tried the cluster
3477 	 * allocator plenty of times and not have found anything, so we are
3478 	 * likely way too fragmented for the clustering stuff to find anything.
3479 	 *
3480 	 * However, if the cluster is taken from the current block group,
3481 	 * release the cluster first, so that we stand a better chance of
3482 	 * succeeding in the unclustered allocation.
3483 	 */
3484 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3485 		spin_unlock(&last_ptr->refill_lock);
3486 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3487 		return -ENOENT;
3488 	}
3489 
3490 	/* This cluster didn't work out, free it and start over */
3491 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3492 
3493 	if (cluster_bg != bg)
3494 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3495 
3496 refill_cluster:
3497 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3498 		spin_unlock(&last_ptr->refill_lock);
3499 		return -ENOENT;
3500 	}
3501 
3502 	aligned_cluster = max_t(u64,
3503 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3504 			bg->full_stripe_len);
3505 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3506 			ffe_ctl->num_bytes, aligned_cluster);
3507 	if (ret == 0) {
3508 		/* Now pull our allocation out of this cluster */
3509 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3510 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3511 				&ffe_ctl->max_extent_size);
3512 		if (offset) {
3513 			/* We found one, proceed */
3514 			spin_unlock(&last_ptr->refill_lock);
3515 			ffe_ctl->found_offset = offset;
3516 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3517 			return 0;
3518 		}
3519 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3520 		   !ffe_ctl->retry_clustered) {
3521 		spin_unlock(&last_ptr->refill_lock);
3522 
3523 		ffe_ctl->retry_clustered = true;
3524 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3525 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3526 		return -EAGAIN;
3527 	}
3528 	/*
3529 	 * At this point we either didn't find a cluster or we weren't able to
3530 	 * allocate a block from our cluster.  Free the cluster we've been
3531 	 * trying to use, and go to the next block group.
3532 	 */
3533 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3534 	spin_unlock(&last_ptr->refill_lock);
3535 	return 1;
3536 }
3537 
3538 /*
3539  * Return >0 to inform caller that we find nothing
3540  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3541  * Return -EAGAIN to inform caller that we need to re-search this block group
3542  */
3543 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3544 					struct find_free_extent_ctl *ffe_ctl)
3545 {
3546 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3547 	u64 offset;
3548 
3549 	/*
3550 	 * We are doing an unclustered allocation, set the fragmented flag so
3551 	 * we don't bother trying to setup a cluster again until we get more
3552 	 * space.
3553 	 */
3554 	if (unlikely(last_ptr)) {
3555 		spin_lock(&last_ptr->lock);
3556 		last_ptr->fragmented = 1;
3557 		spin_unlock(&last_ptr->lock);
3558 	}
3559 	if (ffe_ctl->cached) {
3560 		struct btrfs_free_space_ctl *free_space_ctl;
3561 
3562 		free_space_ctl = bg->free_space_ctl;
3563 		spin_lock(&free_space_ctl->tree_lock);
3564 		if (free_space_ctl->free_space <
3565 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3566 		    ffe_ctl->empty_size) {
3567 			ffe_ctl->total_free_space = max_t(u64,
3568 					ffe_ctl->total_free_space,
3569 					free_space_ctl->free_space);
3570 			spin_unlock(&free_space_ctl->tree_lock);
3571 			return 1;
3572 		}
3573 		spin_unlock(&free_space_ctl->tree_lock);
3574 	}
3575 
3576 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3577 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3578 			&ffe_ctl->max_extent_size);
3579 
3580 	/*
3581 	 * If we didn't find a chunk, and we haven't failed on this block group
3582 	 * before, and this block group is in the middle of caching and we are
3583 	 * ok with waiting, then go ahead and wait for progress to be made, and
3584 	 * set @retry_unclustered to true.
3585 	 *
3586 	 * If @retry_unclustered is true then we've already waited on this
3587 	 * block group once and should move on to the next block group.
3588 	 */
3589 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3590 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3591 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3592 						      ffe_ctl->empty_size);
3593 		ffe_ctl->retry_unclustered = true;
3594 		return -EAGAIN;
3595 	} else if (!offset) {
3596 		return 1;
3597 	}
3598 	ffe_ctl->found_offset = offset;
3599 	return 0;
3600 }
3601 
3602 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3603 				   struct find_free_extent_ctl *ffe_ctl,
3604 				   struct btrfs_block_group **bg_ret)
3605 {
3606 	int ret;
3607 
3608 	/* We want to try and use the cluster allocator, so lets look there */
3609 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3610 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3611 		if (ret >= 0 || ret == -EAGAIN)
3612 			return ret;
3613 		/* ret == -ENOENT case falls through */
3614 	}
3615 
3616 	return find_free_extent_unclustered(block_group, ffe_ctl);
3617 }
3618 
3619 /*
3620  * Tree-log block group locking
3621  * ============================
3622  *
3623  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3624  * indicates the starting address of a block group, which is reserved only
3625  * for tree-log metadata.
3626  *
3627  * Lock nesting
3628  * ============
3629  *
3630  * space_info::lock
3631  *   block_group::lock
3632  *     fs_info::treelog_bg_lock
3633  */
3634 
3635 /*
3636  * Simple allocator for sequential-only block group. It only allows sequential
3637  * allocation. No need to play with trees. This function also reserves the
3638  * bytes as in btrfs_add_reserved_bytes.
3639  */
3640 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3641 			       struct find_free_extent_ctl *ffe_ctl,
3642 			       struct btrfs_block_group **bg_ret)
3643 {
3644 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3645 	struct btrfs_space_info *space_info = block_group->space_info;
3646 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3647 	u64 start = block_group->start;
3648 	u64 num_bytes = ffe_ctl->num_bytes;
3649 	u64 avail;
3650 	u64 bytenr = block_group->start;
3651 	u64 log_bytenr;
3652 	u64 data_reloc_bytenr;
3653 	int ret = 0;
3654 	bool skip = false;
3655 
3656 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3657 
3658 	/*
3659 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3660 	 * group, and vice versa.
3661 	 */
3662 	spin_lock(&fs_info->treelog_bg_lock);
3663 	log_bytenr = fs_info->treelog_bg;
3664 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3665 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3666 		skip = true;
3667 	spin_unlock(&fs_info->treelog_bg_lock);
3668 	if (skip)
3669 		return 1;
3670 
3671 	/*
3672 	 * Do not allow non-relocation blocks in the dedicated relocation block
3673 	 * group, and vice versa.
3674 	 */
3675 	spin_lock(&fs_info->relocation_bg_lock);
3676 	data_reloc_bytenr = fs_info->data_reloc_bg;
3677 	if (data_reloc_bytenr &&
3678 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3679 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3680 		skip = true;
3681 	spin_unlock(&fs_info->relocation_bg_lock);
3682 	if (skip)
3683 		return 1;
3684 
3685 	/* Check RO and no space case before trying to activate it */
3686 	spin_lock(&block_group->lock);
3687 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3688 		ret = 1;
3689 		/*
3690 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3691 		 * Return the error after taking the locks.
3692 		 */
3693 	}
3694 	spin_unlock(&block_group->lock);
3695 
3696 	if (!ret && !btrfs_zone_activate(block_group)) {
3697 		ret = 1;
3698 		/*
3699 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3700 		 * Return the error after taking the locks.
3701 		 */
3702 	}
3703 
3704 	spin_lock(&space_info->lock);
3705 	spin_lock(&block_group->lock);
3706 	spin_lock(&fs_info->treelog_bg_lock);
3707 	spin_lock(&fs_info->relocation_bg_lock);
3708 
3709 	if (ret)
3710 		goto out;
3711 
3712 	ASSERT(!ffe_ctl->for_treelog ||
3713 	       block_group->start == fs_info->treelog_bg ||
3714 	       fs_info->treelog_bg == 0);
3715 	ASSERT(!ffe_ctl->for_data_reloc ||
3716 	       block_group->start == fs_info->data_reloc_bg ||
3717 	       fs_info->data_reloc_bg == 0);
3718 
3719 	if (block_group->ro ||
3720 	    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
3721 		ret = 1;
3722 		goto out;
3723 	}
3724 
3725 	/*
3726 	 * Do not allow currently using block group to be tree-log dedicated
3727 	 * block group.
3728 	 */
3729 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3730 	    (block_group->used || block_group->reserved)) {
3731 		ret = 1;
3732 		goto out;
3733 	}
3734 
3735 	/*
3736 	 * Do not allow currently used block group to be the data relocation
3737 	 * dedicated block group.
3738 	 */
3739 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3740 	    (block_group->used || block_group->reserved)) {
3741 		ret = 1;
3742 		goto out;
3743 	}
3744 
3745 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3746 	avail = block_group->zone_capacity - block_group->alloc_offset;
3747 	if (avail < num_bytes) {
3748 		if (ffe_ctl->max_extent_size < avail) {
3749 			/*
3750 			 * With sequential allocator, free space is always
3751 			 * contiguous
3752 			 */
3753 			ffe_ctl->max_extent_size = avail;
3754 			ffe_ctl->total_free_space = avail;
3755 		}
3756 		ret = 1;
3757 		goto out;
3758 	}
3759 
3760 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3761 		fs_info->treelog_bg = block_group->start;
3762 
3763 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3764 		fs_info->data_reloc_bg = block_group->start;
3765 
3766 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3767 	block_group->alloc_offset += num_bytes;
3768 	spin_lock(&ctl->tree_lock);
3769 	ctl->free_space -= num_bytes;
3770 	spin_unlock(&ctl->tree_lock);
3771 
3772 	/*
3773 	 * We do not check if found_offset is aligned to stripesize. The
3774 	 * address is anyway rewritten when using zone append writing.
3775 	 */
3776 
3777 	ffe_ctl->search_start = ffe_ctl->found_offset;
3778 
3779 out:
3780 	if (ret && ffe_ctl->for_treelog)
3781 		fs_info->treelog_bg = 0;
3782 	if (ret && ffe_ctl->for_data_reloc &&
3783 	    fs_info->data_reloc_bg == block_group->start) {
3784 		/*
3785 		 * Do not allow further allocations from this block group.
3786 		 * Compared to increasing the ->ro, setting the
3787 		 * ->zoned_data_reloc_ongoing flag still allows nocow
3788 		 *  writers to come in. See btrfs_inc_nocow_writers().
3789 		 *
3790 		 * We need to disable an allocation to avoid an allocation of
3791 		 * regular (non-relocation data) extent. With mix of relocation
3792 		 * extents and regular extents, we can dispatch WRITE commands
3793 		 * (for relocation extents) and ZONE APPEND commands (for
3794 		 * regular extents) at the same time to the same zone, which
3795 		 * easily break the write pointer.
3796 		 */
3797 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3798 		fs_info->data_reloc_bg = 0;
3799 	}
3800 	spin_unlock(&fs_info->relocation_bg_lock);
3801 	spin_unlock(&fs_info->treelog_bg_lock);
3802 	spin_unlock(&block_group->lock);
3803 	spin_unlock(&space_info->lock);
3804 	return ret;
3805 }
3806 
3807 static int do_allocation(struct btrfs_block_group *block_group,
3808 			 struct find_free_extent_ctl *ffe_ctl,
3809 			 struct btrfs_block_group **bg_ret)
3810 {
3811 	switch (ffe_ctl->policy) {
3812 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3813 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3814 	case BTRFS_EXTENT_ALLOC_ZONED:
3815 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3816 	default:
3817 		BUG();
3818 	}
3819 }
3820 
3821 static void release_block_group(struct btrfs_block_group *block_group,
3822 				struct find_free_extent_ctl *ffe_ctl,
3823 				int delalloc)
3824 {
3825 	switch (ffe_ctl->policy) {
3826 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3827 		ffe_ctl->retry_clustered = false;
3828 		ffe_ctl->retry_unclustered = false;
3829 		break;
3830 	case BTRFS_EXTENT_ALLOC_ZONED:
3831 		/* Nothing to do */
3832 		break;
3833 	default:
3834 		BUG();
3835 	}
3836 
3837 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3838 	       ffe_ctl->index);
3839 	btrfs_release_block_group(block_group, delalloc);
3840 }
3841 
3842 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3843 				   struct btrfs_key *ins)
3844 {
3845 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3846 
3847 	if (!ffe_ctl->use_cluster && last_ptr) {
3848 		spin_lock(&last_ptr->lock);
3849 		last_ptr->window_start = ins->objectid;
3850 		spin_unlock(&last_ptr->lock);
3851 	}
3852 }
3853 
3854 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3855 			 struct btrfs_key *ins)
3856 {
3857 	switch (ffe_ctl->policy) {
3858 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3859 		found_extent_clustered(ffe_ctl, ins);
3860 		break;
3861 	case BTRFS_EXTENT_ALLOC_ZONED:
3862 		/* Nothing to do */
3863 		break;
3864 	default:
3865 		BUG();
3866 	}
3867 }
3868 
3869 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3870 				    struct find_free_extent_ctl *ffe_ctl)
3871 {
3872 	/* If we can activate new zone, just allocate a chunk and use it */
3873 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3874 		return 0;
3875 
3876 	/*
3877 	 * We already reached the max active zones. Try to finish one block
3878 	 * group to make a room for a new block group. This is only possible
3879 	 * for a data block group because btrfs_zone_finish() may need to wait
3880 	 * for a running transaction which can cause a deadlock for metadata
3881 	 * allocation.
3882 	 */
3883 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3884 		int ret = btrfs_zone_finish_one_bg(fs_info);
3885 
3886 		if (ret == 1)
3887 			return 0;
3888 		else if (ret < 0)
3889 			return ret;
3890 	}
3891 
3892 	/*
3893 	 * If we have enough free space left in an already active block group
3894 	 * and we can't activate any other zone now, do not allow allocating a
3895 	 * new chunk and let find_free_extent() retry with a smaller size.
3896 	 */
3897 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3898 		return -ENOSPC;
3899 
3900 	/*
3901 	 * Even min_alloc_size is not left in any block groups. Since we cannot
3902 	 * activate a new block group, allocating it may not help. Let's tell a
3903 	 * caller to try again and hope it progress something by writing some
3904 	 * parts of the region. That is only possible for data block groups,
3905 	 * where a part of the region can be written.
3906 	 */
3907 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3908 		return -EAGAIN;
3909 
3910 	/*
3911 	 * We cannot activate a new block group and no enough space left in any
3912 	 * block groups. So, allocating a new block group may not help. But,
3913 	 * there is nothing to do anyway, so let's go with it.
3914 	 */
3915 	return 0;
3916 }
3917 
3918 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3919 			      struct find_free_extent_ctl *ffe_ctl)
3920 {
3921 	switch (ffe_ctl->policy) {
3922 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3923 		return 0;
3924 	case BTRFS_EXTENT_ALLOC_ZONED:
3925 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3926 	default:
3927 		BUG();
3928 	}
3929 }
3930 
3931 /*
3932  * Return >0 means caller needs to re-search for free extent
3933  * Return 0 means we have the needed free extent.
3934  * Return <0 means we failed to locate any free extent.
3935  */
3936 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3937 					struct btrfs_key *ins,
3938 					struct find_free_extent_ctl *ffe_ctl,
3939 					bool full_search)
3940 {
3941 	struct btrfs_root *root = fs_info->chunk_root;
3942 	int ret;
3943 
3944 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3945 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3946 		ffe_ctl->orig_have_caching_bg = true;
3947 
3948 	if (ins->objectid) {
3949 		found_extent(ffe_ctl, ins);
3950 		return 0;
3951 	}
3952 
3953 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
3954 		return 1;
3955 
3956 	ffe_ctl->index++;
3957 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
3958 		return 1;
3959 
3960 	/*
3961 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3962 	 *			caching kthreads as we move along
3963 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3964 	 * LOOP_UNSET_SIZE_CLASS, allow unset size class
3965 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3966 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3967 	 *		       again
3968 	 */
3969 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3970 		ffe_ctl->index = 0;
3971 		/*
3972 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
3973 		 * any uncached bgs and we've already done a full search
3974 		 * through.
3975 		 */
3976 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
3977 		    (!ffe_ctl->orig_have_caching_bg && full_search))
3978 			ffe_ctl->loop++;
3979 		ffe_ctl->loop++;
3980 
3981 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3982 			struct btrfs_trans_handle *trans;
3983 			int exist = 0;
3984 
3985 			/* Check if allocation policy allows to create a new chunk */
3986 			ret = can_allocate_chunk(fs_info, ffe_ctl);
3987 			if (ret)
3988 				return ret;
3989 
3990 			trans = current->journal_info;
3991 			if (trans)
3992 				exist = 1;
3993 			else
3994 				trans = btrfs_join_transaction(root);
3995 
3996 			if (IS_ERR(trans)) {
3997 				ret = PTR_ERR(trans);
3998 				return ret;
3999 			}
4000 
4001 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4002 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4003 
4004 			/* Do not bail out on ENOSPC since we can do more. */
4005 			if (ret == -ENOSPC) {
4006 				ret = 0;
4007 				ffe_ctl->loop++;
4008 			}
4009 			else if (ret < 0)
4010 				btrfs_abort_transaction(trans, ret);
4011 			else
4012 				ret = 0;
4013 			if (!exist)
4014 				btrfs_end_transaction(trans);
4015 			if (ret)
4016 				return ret;
4017 		}
4018 
4019 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4020 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4021 				return -ENOSPC;
4022 
4023 			/*
4024 			 * Don't loop again if we already have no empty_size and
4025 			 * no empty_cluster.
4026 			 */
4027 			if (ffe_ctl->empty_size == 0 &&
4028 			    ffe_ctl->empty_cluster == 0)
4029 				return -ENOSPC;
4030 			ffe_ctl->empty_size = 0;
4031 			ffe_ctl->empty_cluster = 0;
4032 		}
4033 		return 1;
4034 	}
4035 	return -ENOSPC;
4036 }
4037 
4038 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4039 					      struct btrfs_block_group *bg)
4040 {
4041 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4042 		return true;
4043 	if (!btrfs_block_group_should_use_size_class(bg))
4044 		return true;
4045 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4046 		return true;
4047 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4048 	    bg->size_class == BTRFS_BG_SZ_NONE)
4049 		return true;
4050 	return ffe_ctl->size_class == bg->size_class;
4051 }
4052 
4053 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4054 					struct find_free_extent_ctl *ffe_ctl,
4055 					struct btrfs_space_info *space_info,
4056 					struct btrfs_key *ins)
4057 {
4058 	/*
4059 	 * If our free space is heavily fragmented we may not be able to make
4060 	 * big contiguous allocations, so instead of doing the expensive search
4061 	 * for free space, simply return ENOSPC with our max_extent_size so we
4062 	 * can go ahead and search for a more manageable chunk.
4063 	 *
4064 	 * If our max_extent_size is large enough for our allocation simply
4065 	 * disable clustering since we will likely not be able to find enough
4066 	 * space to create a cluster and induce latency trying.
4067 	 */
4068 	if (space_info->max_extent_size) {
4069 		spin_lock(&space_info->lock);
4070 		if (space_info->max_extent_size &&
4071 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4072 			ins->offset = space_info->max_extent_size;
4073 			spin_unlock(&space_info->lock);
4074 			return -ENOSPC;
4075 		} else if (space_info->max_extent_size) {
4076 			ffe_ctl->use_cluster = false;
4077 		}
4078 		spin_unlock(&space_info->lock);
4079 	}
4080 
4081 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4082 					       &ffe_ctl->empty_cluster);
4083 	if (ffe_ctl->last_ptr) {
4084 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4085 
4086 		spin_lock(&last_ptr->lock);
4087 		if (last_ptr->block_group)
4088 			ffe_ctl->hint_byte = last_ptr->window_start;
4089 		if (last_ptr->fragmented) {
4090 			/*
4091 			 * We still set window_start so we can keep track of the
4092 			 * last place we found an allocation to try and save
4093 			 * some time.
4094 			 */
4095 			ffe_ctl->hint_byte = last_ptr->window_start;
4096 			ffe_ctl->use_cluster = false;
4097 		}
4098 		spin_unlock(&last_ptr->lock);
4099 	}
4100 
4101 	return 0;
4102 }
4103 
4104 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4105 			      struct find_free_extent_ctl *ffe_ctl,
4106 			      struct btrfs_space_info *space_info,
4107 			      struct btrfs_key *ins)
4108 {
4109 	switch (ffe_ctl->policy) {
4110 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4111 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4112 						    space_info, ins);
4113 	case BTRFS_EXTENT_ALLOC_ZONED:
4114 		if (ffe_ctl->for_treelog) {
4115 			spin_lock(&fs_info->treelog_bg_lock);
4116 			if (fs_info->treelog_bg)
4117 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4118 			spin_unlock(&fs_info->treelog_bg_lock);
4119 		}
4120 		if (ffe_ctl->for_data_reloc) {
4121 			spin_lock(&fs_info->relocation_bg_lock);
4122 			if (fs_info->data_reloc_bg)
4123 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4124 			spin_unlock(&fs_info->relocation_bg_lock);
4125 		}
4126 		return 0;
4127 	default:
4128 		BUG();
4129 	}
4130 }
4131 
4132 /*
4133  * walks the btree of allocated extents and find a hole of a given size.
4134  * The key ins is changed to record the hole:
4135  * ins->objectid == start position
4136  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4137  * ins->offset == the size of the hole.
4138  * Any available blocks before search_start are skipped.
4139  *
4140  * If there is no suitable free space, we will record the max size of
4141  * the free space extent currently.
4142  *
4143  * The overall logic and call chain:
4144  *
4145  * find_free_extent()
4146  * |- Iterate through all block groups
4147  * |  |- Get a valid block group
4148  * |  |- Try to do clustered allocation in that block group
4149  * |  |- Try to do unclustered allocation in that block group
4150  * |  |- Check if the result is valid
4151  * |  |  |- If valid, then exit
4152  * |  |- Jump to next block group
4153  * |
4154  * |- Push harder to find free extents
4155  *    |- If not found, re-iterate all block groups
4156  */
4157 static noinline int find_free_extent(struct btrfs_root *root,
4158 				     struct btrfs_key *ins,
4159 				     struct find_free_extent_ctl *ffe_ctl)
4160 {
4161 	struct btrfs_fs_info *fs_info = root->fs_info;
4162 	int ret = 0;
4163 	int cache_block_group_error = 0;
4164 	struct btrfs_block_group *block_group = NULL;
4165 	struct btrfs_space_info *space_info;
4166 	bool full_search = false;
4167 
4168 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4169 
4170 	ffe_ctl->search_start = 0;
4171 	/* For clustered allocation */
4172 	ffe_ctl->empty_cluster = 0;
4173 	ffe_ctl->last_ptr = NULL;
4174 	ffe_ctl->use_cluster = true;
4175 	ffe_ctl->have_caching_bg = false;
4176 	ffe_ctl->orig_have_caching_bg = false;
4177 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4178 	ffe_ctl->loop = 0;
4179 	/* For clustered allocation */
4180 	ffe_ctl->retry_clustered = false;
4181 	ffe_ctl->retry_unclustered = false;
4182 	ffe_ctl->cached = 0;
4183 	ffe_ctl->max_extent_size = 0;
4184 	ffe_ctl->total_free_space = 0;
4185 	ffe_ctl->found_offset = 0;
4186 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4187 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4188 
4189 	if (btrfs_is_zoned(fs_info))
4190 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4191 
4192 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4193 	ins->objectid = 0;
4194 	ins->offset = 0;
4195 
4196 	trace_find_free_extent(root, ffe_ctl);
4197 
4198 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4199 	if (!space_info) {
4200 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4201 		return -ENOSPC;
4202 	}
4203 
4204 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4205 	if (ret < 0)
4206 		return ret;
4207 
4208 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4209 				    first_logical_byte(fs_info));
4210 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4211 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4212 		block_group = btrfs_lookup_block_group(fs_info,
4213 						       ffe_ctl->search_start);
4214 		/*
4215 		 * we don't want to use the block group if it doesn't match our
4216 		 * allocation bits, or if its not cached.
4217 		 *
4218 		 * However if we are re-searching with an ideal block group
4219 		 * picked out then we don't care that the block group is cached.
4220 		 */
4221 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4222 		    block_group->cached != BTRFS_CACHE_NO) {
4223 			down_read(&space_info->groups_sem);
4224 			if (list_empty(&block_group->list) ||
4225 			    block_group->ro) {
4226 				/*
4227 				 * someone is removing this block group,
4228 				 * we can't jump into the have_block_group
4229 				 * target because our list pointers are not
4230 				 * valid
4231 				 */
4232 				btrfs_put_block_group(block_group);
4233 				up_read(&space_info->groups_sem);
4234 			} else {
4235 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4236 							block_group->flags);
4237 				btrfs_lock_block_group(block_group,
4238 						       ffe_ctl->delalloc);
4239 				ffe_ctl->hinted = true;
4240 				goto have_block_group;
4241 			}
4242 		} else if (block_group) {
4243 			btrfs_put_block_group(block_group);
4244 		}
4245 	}
4246 search:
4247 	trace_find_free_extent_search_loop(root, ffe_ctl);
4248 	ffe_ctl->have_caching_bg = false;
4249 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4250 	    ffe_ctl->index == 0)
4251 		full_search = true;
4252 	down_read(&space_info->groups_sem);
4253 	list_for_each_entry(block_group,
4254 			    &space_info->block_groups[ffe_ctl->index], list) {
4255 		struct btrfs_block_group *bg_ret;
4256 
4257 		ffe_ctl->hinted = false;
4258 		/* If the block group is read-only, we can skip it entirely. */
4259 		if (unlikely(block_group->ro)) {
4260 			if (ffe_ctl->for_treelog)
4261 				btrfs_clear_treelog_bg(block_group);
4262 			if (ffe_ctl->for_data_reloc)
4263 				btrfs_clear_data_reloc_bg(block_group);
4264 			continue;
4265 		}
4266 
4267 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4268 		ffe_ctl->search_start = block_group->start;
4269 
4270 		/*
4271 		 * this can happen if we end up cycling through all the
4272 		 * raid types, but we want to make sure we only allocate
4273 		 * for the proper type.
4274 		 */
4275 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4276 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4277 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4278 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4279 				BTRFS_BLOCK_GROUP_RAID10;
4280 
4281 			/*
4282 			 * if they asked for extra copies and this block group
4283 			 * doesn't provide them, bail.  This does allow us to
4284 			 * fill raid0 from raid1.
4285 			 */
4286 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4287 				goto loop;
4288 
4289 			/*
4290 			 * This block group has different flags than we want.
4291 			 * It's possible that we have MIXED_GROUP flag but no
4292 			 * block group is mixed.  Just skip such block group.
4293 			 */
4294 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4295 			continue;
4296 		}
4297 
4298 have_block_group:
4299 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4300 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4301 		if (unlikely(!ffe_ctl->cached)) {
4302 			ffe_ctl->have_caching_bg = true;
4303 			ret = btrfs_cache_block_group(block_group, false);
4304 
4305 			/*
4306 			 * If we get ENOMEM here or something else we want to
4307 			 * try other block groups, because it may not be fatal.
4308 			 * However if we can't find anything else we need to
4309 			 * save our return here so that we return the actual
4310 			 * error that caused problems, not ENOSPC.
4311 			 */
4312 			if (ret < 0) {
4313 				if (!cache_block_group_error)
4314 					cache_block_group_error = ret;
4315 				ret = 0;
4316 				goto loop;
4317 			}
4318 			ret = 0;
4319 		}
4320 
4321 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4322 			goto loop;
4323 
4324 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4325 			goto loop;
4326 
4327 		bg_ret = NULL;
4328 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4329 		if (ret == 0) {
4330 			if (bg_ret && bg_ret != block_group) {
4331 				btrfs_release_block_group(block_group,
4332 							  ffe_ctl->delalloc);
4333 				block_group = bg_ret;
4334 			}
4335 		} else if (ret == -EAGAIN) {
4336 			goto have_block_group;
4337 		} else if (ret > 0) {
4338 			goto loop;
4339 		}
4340 
4341 		/* Checks */
4342 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4343 						 fs_info->stripesize);
4344 
4345 		/* move on to the next group */
4346 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4347 		    block_group->start + block_group->length) {
4348 			btrfs_add_free_space_unused(block_group,
4349 					    ffe_ctl->found_offset,
4350 					    ffe_ctl->num_bytes);
4351 			goto loop;
4352 		}
4353 
4354 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4355 			btrfs_add_free_space_unused(block_group,
4356 					ffe_ctl->found_offset,
4357 					ffe_ctl->search_start - ffe_ctl->found_offset);
4358 
4359 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4360 					       ffe_ctl->num_bytes,
4361 					       ffe_ctl->delalloc,
4362 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4363 		if (ret == -EAGAIN) {
4364 			btrfs_add_free_space_unused(block_group,
4365 					ffe_ctl->found_offset,
4366 					ffe_ctl->num_bytes);
4367 			goto loop;
4368 		}
4369 		btrfs_inc_block_group_reservations(block_group);
4370 
4371 		/* we are all good, lets return */
4372 		ins->objectid = ffe_ctl->search_start;
4373 		ins->offset = ffe_ctl->num_bytes;
4374 
4375 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4376 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4377 		break;
4378 loop:
4379 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4380 		cond_resched();
4381 	}
4382 	up_read(&space_info->groups_sem);
4383 
4384 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4385 	if (ret > 0)
4386 		goto search;
4387 
4388 	if (ret == -ENOSPC && !cache_block_group_error) {
4389 		/*
4390 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4391 		 * any contiguous hole.
4392 		 */
4393 		if (!ffe_ctl->max_extent_size)
4394 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4395 		spin_lock(&space_info->lock);
4396 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4397 		spin_unlock(&space_info->lock);
4398 		ins->offset = ffe_ctl->max_extent_size;
4399 	} else if (ret == -ENOSPC) {
4400 		ret = cache_block_group_error;
4401 	}
4402 	return ret;
4403 }
4404 
4405 /*
4406  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4407  *			  hole that is at least as big as @num_bytes.
4408  *
4409  * @root           -	The root that will contain this extent
4410  *
4411  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4412  *			is used for accounting purposes. This value differs
4413  *			from @num_bytes only in the case of compressed extents.
4414  *
4415  * @num_bytes      -	Number of bytes to allocate on-disk.
4416  *
4417  * @min_alloc_size -	Indicates the minimum amount of space that the
4418  *			allocator should try to satisfy. In some cases
4419  *			@num_bytes may be larger than what is required and if
4420  *			the filesystem is fragmented then allocation fails.
4421  *			However, the presence of @min_alloc_size gives a
4422  *			chance to try and satisfy the smaller allocation.
4423  *
4424  * @empty_size     -	A hint that you plan on doing more COW. This is the
4425  *			size in bytes the allocator should try to find free
4426  *			next to the block it returns.  This is just a hint and
4427  *			may be ignored by the allocator.
4428  *
4429  * @hint_byte      -	Hint to the allocator to start searching above the byte
4430  *			address passed. It might be ignored.
4431  *
4432  * @ins            -	This key is modified to record the found hole. It will
4433  *			have the following values:
4434  *			ins->objectid == start position
4435  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4436  *			ins->offset == the size of the hole.
4437  *
4438  * @is_data        -	Boolean flag indicating whether an extent is
4439  *			allocated for data (true) or metadata (false)
4440  *
4441  * @delalloc       -	Boolean flag indicating whether this allocation is for
4442  *			delalloc or not. If 'true' data_rwsem of block groups
4443  *			is going to be acquired.
4444  *
4445  *
4446  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4447  * case -ENOSPC is returned then @ins->offset will contain the size of the
4448  * largest available hole the allocator managed to find.
4449  */
4450 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4451 			 u64 num_bytes, u64 min_alloc_size,
4452 			 u64 empty_size, u64 hint_byte,
4453 			 struct btrfs_key *ins, int is_data, int delalloc)
4454 {
4455 	struct btrfs_fs_info *fs_info = root->fs_info;
4456 	struct find_free_extent_ctl ffe_ctl = {};
4457 	bool final_tried = num_bytes == min_alloc_size;
4458 	u64 flags;
4459 	int ret;
4460 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4461 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4462 
4463 	flags = get_alloc_profile_by_root(root, is_data);
4464 again:
4465 	WARN_ON(num_bytes < fs_info->sectorsize);
4466 
4467 	ffe_ctl.ram_bytes = ram_bytes;
4468 	ffe_ctl.num_bytes = num_bytes;
4469 	ffe_ctl.min_alloc_size = min_alloc_size;
4470 	ffe_ctl.empty_size = empty_size;
4471 	ffe_ctl.flags = flags;
4472 	ffe_ctl.delalloc = delalloc;
4473 	ffe_ctl.hint_byte = hint_byte;
4474 	ffe_ctl.for_treelog = for_treelog;
4475 	ffe_ctl.for_data_reloc = for_data_reloc;
4476 
4477 	ret = find_free_extent(root, ins, &ffe_ctl);
4478 	if (!ret && !is_data) {
4479 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4480 	} else if (ret == -ENOSPC) {
4481 		if (!final_tried && ins->offset) {
4482 			num_bytes = min(num_bytes >> 1, ins->offset);
4483 			num_bytes = round_down(num_bytes,
4484 					       fs_info->sectorsize);
4485 			num_bytes = max(num_bytes, min_alloc_size);
4486 			ram_bytes = num_bytes;
4487 			if (num_bytes == min_alloc_size)
4488 				final_tried = true;
4489 			goto again;
4490 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4491 			struct btrfs_space_info *sinfo;
4492 
4493 			sinfo = btrfs_find_space_info(fs_info, flags);
4494 			btrfs_err(fs_info,
4495 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4496 				  flags, num_bytes, for_treelog, for_data_reloc);
4497 			if (sinfo)
4498 				btrfs_dump_space_info(fs_info, sinfo,
4499 						      num_bytes, 1);
4500 		}
4501 	}
4502 
4503 	return ret;
4504 }
4505 
4506 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4507 			       u64 start, u64 len, int delalloc)
4508 {
4509 	struct btrfs_block_group *cache;
4510 
4511 	cache = btrfs_lookup_block_group(fs_info, start);
4512 	if (!cache) {
4513 		btrfs_err(fs_info, "Unable to find block group for %llu",
4514 			  start);
4515 		return -ENOSPC;
4516 	}
4517 
4518 	btrfs_add_free_space(cache, start, len);
4519 	btrfs_free_reserved_bytes(cache, len, delalloc);
4520 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4521 
4522 	btrfs_put_block_group(cache);
4523 	return 0;
4524 }
4525 
4526 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4527 			      u64 len)
4528 {
4529 	struct btrfs_block_group *cache;
4530 	int ret = 0;
4531 
4532 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4533 	if (!cache) {
4534 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4535 			  start);
4536 		return -ENOSPC;
4537 	}
4538 
4539 	ret = pin_down_extent(trans, cache, start, len, 1);
4540 	btrfs_put_block_group(cache);
4541 	return ret;
4542 }
4543 
4544 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4545 				 u64 num_bytes)
4546 {
4547 	struct btrfs_fs_info *fs_info = trans->fs_info;
4548 	int ret;
4549 
4550 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4551 	if (ret)
4552 		return ret;
4553 
4554 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4555 	if (ret) {
4556 		ASSERT(!ret);
4557 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4558 			  bytenr, num_bytes);
4559 		return ret;
4560 	}
4561 
4562 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4563 	return 0;
4564 }
4565 
4566 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4567 				      u64 parent, u64 root_objectid,
4568 				      u64 flags, u64 owner, u64 offset,
4569 				      struct btrfs_key *ins, int ref_mod)
4570 {
4571 	struct btrfs_fs_info *fs_info = trans->fs_info;
4572 	struct btrfs_root *extent_root;
4573 	int ret;
4574 	struct btrfs_extent_item *extent_item;
4575 	struct btrfs_extent_inline_ref *iref;
4576 	struct btrfs_path *path;
4577 	struct extent_buffer *leaf;
4578 	int type;
4579 	u32 size;
4580 
4581 	if (parent > 0)
4582 		type = BTRFS_SHARED_DATA_REF_KEY;
4583 	else
4584 		type = BTRFS_EXTENT_DATA_REF_KEY;
4585 
4586 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4587 
4588 	path = btrfs_alloc_path();
4589 	if (!path)
4590 		return -ENOMEM;
4591 
4592 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4593 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4594 	if (ret) {
4595 		btrfs_free_path(path);
4596 		return ret;
4597 	}
4598 
4599 	leaf = path->nodes[0];
4600 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4601 				     struct btrfs_extent_item);
4602 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4603 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4604 	btrfs_set_extent_flags(leaf, extent_item,
4605 			       flags | BTRFS_EXTENT_FLAG_DATA);
4606 
4607 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4608 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4609 	if (parent > 0) {
4610 		struct btrfs_shared_data_ref *ref;
4611 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4612 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4613 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4614 	} else {
4615 		struct btrfs_extent_data_ref *ref;
4616 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4617 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4618 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4619 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4620 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4621 	}
4622 
4623 	btrfs_mark_buffer_dirty(path->nodes[0]);
4624 	btrfs_free_path(path);
4625 
4626 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4627 }
4628 
4629 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4630 				     struct btrfs_delayed_ref_node *node,
4631 				     struct btrfs_delayed_extent_op *extent_op)
4632 {
4633 	struct btrfs_fs_info *fs_info = trans->fs_info;
4634 	struct btrfs_root *extent_root;
4635 	int ret;
4636 	struct btrfs_extent_item *extent_item;
4637 	struct btrfs_key extent_key;
4638 	struct btrfs_tree_block_info *block_info;
4639 	struct btrfs_extent_inline_ref *iref;
4640 	struct btrfs_path *path;
4641 	struct extent_buffer *leaf;
4642 	struct btrfs_delayed_tree_ref *ref;
4643 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4644 	u64 flags = extent_op->flags_to_set;
4645 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4646 
4647 	ref = btrfs_delayed_node_to_tree_ref(node);
4648 
4649 	extent_key.objectid = node->bytenr;
4650 	if (skinny_metadata) {
4651 		extent_key.offset = ref->level;
4652 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4653 	} else {
4654 		extent_key.offset = node->num_bytes;
4655 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4656 		size += sizeof(*block_info);
4657 	}
4658 
4659 	path = btrfs_alloc_path();
4660 	if (!path)
4661 		return -ENOMEM;
4662 
4663 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4664 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4665 				      size);
4666 	if (ret) {
4667 		btrfs_free_path(path);
4668 		return ret;
4669 	}
4670 
4671 	leaf = path->nodes[0];
4672 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4673 				     struct btrfs_extent_item);
4674 	btrfs_set_extent_refs(leaf, extent_item, 1);
4675 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4676 	btrfs_set_extent_flags(leaf, extent_item,
4677 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4678 
4679 	if (skinny_metadata) {
4680 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4681 	} else {
4682 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4683 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4684 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4685 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4686 	}
4687 
4688 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4689 		btrfs_set_extent_inline_ref_type(leaf, iref,
4690 						 BTRFS_SHARED_BLOCK_REF_KEY);
4691 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4692 	} else {
4693 		btrfs_set_extent_inline_ref_type(leaf, iref,
4694 						 BTRFS_TREE_BLOCK_REF_KEY);
4695 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4696 	}
4697 
4698 	btrfs_mark_buffer_dirty(leaf);
4699 	btrfs_free_path(path);
4700 
4701 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4702 }
4703 
4704 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4705 				     struct btrfs_root *root, u64 owner,
4706 				     u64 offset, u64 ram_bytes,
4707 				     struct btrfs_key *ins)
4708 {
4709 	struct btrfs_ref generic_ref = { 0 };
4710 
4711 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4712 
4713 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4714 			       ins->objectid, ins->offset, 0);
4715 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4716 			    offset, 0, false);
4717 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4718 
4719 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4720 }
4721 
4722 /*
4723  * this is used by the tree logging recovery code.  It records that
4724  * an extent has been allocated and makes sure to clear the free
4725  * space cache bits as well
4726  */
4727 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4728 				   u64 root_objectid, u64 owner, u64 offset,
4729 				   struct btrfs_key *ins)
4730 {
4731 	struct btrfs_fs_info *fs_info = trans->fs_info;
4732 	int ret;
4733 	struct btrfs_block_group *block_group;
4734 	struct btrfs_space_info *space_info;
4735 
4736 	/*
4737 	 * Mixed block groups will exclude before processing the log so we only
4738 	 * need to do the exclude dance if this fs isn't mixed.
4739 	 */
4740 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4741 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4742 					      ins->offset);
4743 		if (ret)
4744 			return ret;
4745 	}
4746 
4747 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4748 	if (!block_group)
4749 		return -EINVAL;
4750 
4751 	space_info = block_group->space_info;
4752 	spin_lock(&space_info->lock);
4753 	spin_lock(&block_group->lock);
4754 	space_info->bytes_reserved += ins->offset;
4755 	block_group->reserved += ins->offset;
4756 	spin_unlock(&block_group->lock);
4757 	spin_unlock(&space_info->lock);
4758 
4759 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4760 					 offset, ins, 1);
4761 	if (ret)
4762 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4763 	btrfs_put_block_group(block_group);
4764 	return ret;
4765 }
4766 
4767 static struct extent_buffer *
4768 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4769 		      u64 bytenr, int level, u64 owner,
4770 		      enum btrfs_lock_nesting nest)
4771 {
4772 	struct btrfs_fs_info *fs_info = root->fs_info;
4773 	struct extent_buffer *buf;
4774 	u64 lockdep_owner = owner;
4775 
4776 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4777 	if (IS_ERR(buf))
4778 		return buf;
4779 
4780 	/*
4781 	 * Extra safety check in case the extent tree is corrupted and extent
4782 	 * allocator chooses to use a tree block which is already used and
4783 	 * locked.
4784 	 */
4785 	if (buf->lock_owner == current->pid) {
4786 		btrfs_err_rl(fs_info,
4787 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4788 			buf->start, btrfs_header_owner(buf), current->pid);
4789 		free_extent_buffer(buf);
4790 		return ERR_PTR(-EUCLEAN);
4791 	}
4792 
4793 	/*
4794 	 * The reloc trees are just snapshots, so we need them to appear to be
4795 	 * just like any other fs tree WRT lockdep.
4796 	 *
4797 	 * The exception however is in replace_path() in relocation, where we
4798 	 * hold the lock on the original fs root and then search for the reloc
4799 	 * root.  At that point we need to make sure any reloc root buffers are
4800 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4801 	 * lockdep happy.
4802 	 */
4803 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4804 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4805 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4806 
4807 	/* btrfs_clean_tree_block() accesses generation field. */
4808 	btrfs_set_header_generation(buf, trans->transid);
4809 
4810 	/*
4811 	 * This needs to stay, because we could allocate a freed block from an
4812 	 * old tree into a new tree, so we need to make sure this new block is
4813 	 * set to the appropriate level and owner.
4814 	 */
4815 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4816 
4817 	__btrfs_tree_lock(buf, nest);
4818 	btrfs_clear_buffer_dirty(trans, buf);
4819 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4820 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4821 
4822 	set_extent_buffer_uptodate(buf);
4823 
4824 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4825 	btrfs_set_header_level(buf, level);
4826 	btrfs_set_header_bytenr(buf, buf->start);
4827 	btrfs_set_header_generation(buf, trans->transid);
4828 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4829 	btrfs_set_header_owner(buf, owner);
4830 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4831 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4832 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4833 		buf->log_index = root->log_transid % 2;
4834 		/*
4835 		 * we allow two log transactions at a time, use different
4836 		 * EXTENT bit to differentiate dirty pages.
4837 		 */
4838 		if (buf->log_index == 0)
4839 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4840 					buf->start + buf->len - 1, GFP_NOFS);
4841 		else
4842 			set_extent_new(&root->dirty_log_pages, buf->start,
4843 					buf->start + buf->len - 1);
4844 	} else {
4845 		buf->log_index = -1;
4846 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4847 			 buf->start + buf->len - 1, GFP_NOFS);
4848 	}
4849 	/* this returns a buffer locked for blocking */
4850 	return buf;
4851 }
4852 
4853 /*
4854  * finds a free extent and does all the dirty work required for allocation
4855  * returns the tree buffer or an ERR_PTR on error.
4856  */
4857 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4858 					     struct btrfs_root *root,
4859 					     u64 parent, u64 root_objectid,
4860 					     const struct btrfs_disk_key *key,
4861 					     int level, u64 hint,
4862 					     u64 empty_size,
4863 					     enum btrfs_lock_nesting nest)
4864 {
4865 	struct btrfs_fs_info *fs_info = root->fs_info;
4866 	struct btrfs_key ins;
4867 	struct btrfs_block_rsv *block_rsv;
4868 	struct extent_buffer *buf;
4869 	struct btrfs_delayed_extent_op *extent_op;
4870 	struct btrfs_ref generic_ref = { 0 };
4871 	u64 flags = 0;
4872 	int ret;
4873 	u32 blocksize = fs_info->nodesize;
4874 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4875 
4876 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4877 	if (btrfs_is_testing(fs_info)) {
4878 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4879 					    level, root_objectid, nest);
4880 		if (!IS_ERR(buf))
4881 			root->alloc_bytenr += blocksize;
4882 		return buf;
4883 	}
4884 #endif
4885 
4886 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4887 	if (IS_ERR(block_rsv))
4888 		return ERR_CAST(block_rsv);
4889 
4890 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4891 				   empty_size, hint, &ins, 0, 0);
4892 	if (ret)
4893 		goto out_unuse;
4894 
4895 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4896 				    root_objectid, nest);
4897 	if (IS_ERR(buf)) {
4898 		ret = PTR_ERR(buf);
4899 		goto out_free_reserved;
4900 	}
4901 
4902 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4903 		if (parent == 0)
4904 			parent = ins.objectid;
4905 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4906 	} else
4907 		BUG_ON(parent > 0);
4908 
4909 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4910 		extent_op = btrfs_alloc_delayed_extent_op();
4911 		if (!extent_op) {
4912 			ret = -ENOMEM;
4913 			goto out_free_buf;
4914 		}
4915 		if (key)
4916 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4917 		else
4918 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4919 		extent_op->flags_to_set = flags;
4920 		extent_op->update_key = skinny_metadata ? false : true;
4921 		extent_op->update_flags = true;
4922 		extent_op->level = level;
4923 
4924 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4925 				       ins.objectid, ins.offset, parent);
4926 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4927 				    root->root_key.objectid, false);
4928 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4929 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4930 		if (ret)
4931 			goto out_free_delayed;
4932 	}
4933 	return buf;
4934 
4935 out_free_delayed:
4936 	btrfs_free_delayed_extent_op(extent_op);
4937 out_free_buf:
4938 	btrfs_tree_unlock(buf);
4939 	free_extent_buffer(buf);
4940 out_free_reserved:
4941 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4942 out_unuse:
4943 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4944 	return ERR_PTR(ret);
4945 }
4946 
4947 struct walk_control {
4948 	u64 refs[BTRFS_MAX_LEVEL];
4949 	u64 flags[BTRFS_MAX_LEVEL];
4950 	struct btrfs_key update_progress;
4951 	struct btrfs_key drop_progress;
4952 	int drop_level;
4953 	int stage;
4954 	int level;
4955 	int shared_level;
4956 	int update_ref;
4957 	int keep_locks;
4958 	int reada_slot;
4959 	int reada_count;
4960 	int restarted;
4961 };
4962 
4963 #define DROP_REFERENCE	1
4964 #define UPDATE_BACKREF	2
4965 
4966 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4967 				     struct btrfs_root *root,
4968 				     struct walk_control *wc,
4969 				     struct btrfs_path *path)
4970 {
4971 	struct btrfs_fs_info *fs_info = root->fs_info;
4972 	u64 bytenr;
4973 	u64 generation;
4974 	u64 refs;
4975 	u64 flags;
4976 	u32 nritems;
4977 	struct btrfs_key key;
4978 	struct extent_buffer *eb;
4979 	int ret;
4980 	int slot;
4981 	int nread = 0;
4982 
4983 	if (path->slots[wc->level] < wc->reada_slot) {
4984 		wc->reada_count = wc->reada_count * 2 / 3;
4985 		wc->reada_count = max(wc->reada_count, 2);
4986 	} else {
4987 		wc->reada_count = wc->reada_count * 3 / 2;
4988 		wc->reada_count = min_t(int, wc->reada_count,
4989 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4990 	}
4991 
4992 	eb = path->nodes[wc->level];
4993 	nritems = btrfs_header_nritems(eb);
4994 
4995 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4996 		if (nread >= wc->reada_count)
4997 			break;
4998 
4999 		cond_resched();
5000 		bytenr = btrfs_node_blockptr(eb, slot);
5001 		generation = btrfs_node_ptr_generation(eb, slot);
5002 
5003 		if (slot == path->slots[wc->level])
5004 			goto reada;
5005 
5006 		if (wc->stage == UPDATE_BACKREF &&
5007 		    generation <= root->root_key.offset)
5008 			continue;
5009 
5010 		/* We don't lock the tree block, it's OK to be racy here */
5011 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5012 					       wc->level - 1, 1, &refs,
5013 					       &flags);
5014 		/* We don't care about errors in readahead. */
5015 		if (ret < 0)
5016 			continue;
5017 		BUG_ON(refs == 0);
5018 
5019 		if (wc->stage == DROP_REFERENCE) {
5020 			if (refs == 1)
5021 				goto reada;
5022 
5023 			if (wc->level == 1 &&
5024 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5025 				continue;
5026 			if (!wc->update_ref ||
5027 			    generation <= root->root_key.offset)
5028 				continue;
5029 			btrfs_node_key_to_cpu(eb, &key, slot);
5030 			ret = btrfs_comp_cpu_keys(&key,
5031 						  &wc->update_progress);
5032 			if (ret < 0)
5033 				continue;
5034 		} else {
5035 			if (wc->level == 1 &&
5036 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5037 				continue;
5038 		}
5039 reada:
5040 		btrfs_readahead_node_child(eb, slot);
5041 		nread++;
5042 	}
5043 	wc->reada_slot = slot;
5044 }
5045 
5046 /*
5047  * helper to process tree block while walking down the tree.
5048  *
5049  * when wc->stage == UPDATE_BACKREF, this function updates
5050  * back refs for pointers in the block.
5051  *
5052  * NOTE: return value 1 means we should stop walking down.
5053  */
5054 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5055 				   struct btrfs_root *root,
5056 				   struct btrfs_path *path,
5057 				   struct walk_control *wc, int lookup_info)
5058 {
5059 	struct btrfs_fs_info *fs_info = root->fs_info;
5060 	int level = wc->level;
5061 	struct extent_buffer *eb = path->nodes[level];
5062 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5063 	int ret;
5064 
5065 	if (wc->stage == UPDATE_BACKREF &&
5066 	    btrfs_header_owner(eb) != root->root_key.objectid)
5067 		return 1;
5068 
5069 	/*
5070 	 * when reference count of tree block is 1, it won't increase
5071 	 * again. once full backref flag is set, we never clear it.
5072 	 */
5073 	if (lookup_info &&
5074 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5075 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5076 		BUG_ON(!path->locks[level]);
5077 		ret = btrfs_lookup_extent_info(trans, fs_info,
5078 					       eb->start, level, 1,
5079 					       &wc->refs[level],
5080 					       &wc->flags[level]);
5081 		BUG_ON(ret == -ENOMEM);
5082 		if (ret)
5083 			return ret;
5084 		BUG_ON(wc->refs[level] == 0);
5085 	}
5086 
5087 	if (wc->stage == DROP_REFERENCE) {
5088 		if (wc->refs[level] > 1)
5089 			return 1;
5090 
5091 		if (path->locks[level] && !wc->keep_locks) {
5092 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5093 			path->locks[level] = 0;
5094 		}
5095 		return 0;
5096 	}
5097 
5098 	/* wc->stage == UPDATE_BACKREF */
5099 	if (!(wc->flags[level] & flag)) {
5100 		BUG_ON(!path->locks[level]);
5101 		ret = btrfs_inc_ref(trans, root, eb, 1);
5102 		BUG_ON(ret); /* -ENOMEM */
5103 		ret = btrfs_dec_ref(trans, root, eb, 0);
5104 		BUG_ON(ret); /* -ENOMEM */
5105 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5106 						  btrfs_header_level(eb));
5107 		BUG_ON(ret); /* -ENOMEM */
5108 		wc->flags[level] |= flag;
5109 	}
5110 
5111 	/*
5112 	 * the block is shared by multiple trees, so it's not good to
5113 	 * keep the tree lock
5114 	 */
5115 	if (path->locks[level] && level > 0) {
5116 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5117 		path->locks[level] = 0;
5118 	}
5119 	return 0;
5120 }
5121 
5122 /*
5123  * This is used to verify a ref exists for this root to deal with a bug where we
5124  * would have a drop_progress key that hadn't been updated properly.
5125  */
5126 static int check_ref_exists(struct btrfs_trans_handle *trans,
5127 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5128 			    int level)
5129 {
5130 	struct btrfs_path *path;
5131 	struct btrfs_extent_inline_ref *iref;
5132 	int ret;
5133 
5134 	path = btrfs_alloc_path();
5135 	if (!path)
5136 		return -ENOMEM;
5137 
5138 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5139 				    root->fs_info->nodesize, parent,
5140 				    root->root_key.objectid, level, 0);
5141 	btrfs_free_path(path);
5142 	if (ret == -ENOENT)
5143 		return 0;
5144 	if (ret < 0)
5145 		return ret;
5146 	return 1;
5147 }
5148 
5149 /*
5150  * helper to process tree block pointer.
5151  *
5152  * when wc->stage == DROP_REFERENCE, this function checks
5153  * reference count of the block pointed to. if the block
5154  * is shared and we need update back refs for the subtree
5155  * rooted at the block, this function changes wc->stage to
5156  * UPDATE_BACKREF. if the block is shared and there is no
5157  * need to update back, this function drops the reference
5158  * to the block.
5159  *
5160  * NOTE: return value 1 means we should stop walking down.
5161  */
5162 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5163 				 struct btrfs_root *root,
5164 				 struct btrfs_path *path,
5165 				 struct walk_control *wc, int *lookup_info)
5166 {
5167 	struct btrfs_fs_info *fs_info = root->fs_info;
5168 	u64 bytenr;
5169 	u64 generation;
5170 	u64 parent;
5171 	struct btrfs_tree_parent_check check = { 0 };
5172 	struct btrfs_key key;
5173 	struct btrfs_ref ref = { 0 };
5174 	struct extent_buffer *next;
5175 	int level = wc->level;
5176 	int reada = 0;
5177 	int ret = 0;
5178 	bool need_account = false;
5179 
5180 	generation = btrfs_node_ptr_generation(path->nodes[level],
5181 					       path->slots[level]);
5182 	/*
5183 	 * if the lower level block was created before the snapshot
5184 	 * was created, we know there is no need to update back refs
5185 	 * for the subtree
5186 	 */
5187 	if (wc->stage == UPDATE_BACKREF &&
5188 	    generation <= root->root_key.offset) {
5189 		*lookup_info = 1;
5190 		return 1;
5191 	}
5192 
5193 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5194 
5195 	check.level = level - 1;
5196 	check.transid = generation;
5197 	check.owner_root = root->root_key.objectid;
5198 	check.has_first_key = true;
5199 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5200 			      path->slots[level]);
5201 
5202 	next = find_extent_buffer(fs_info, bytenr);
5203 	if (!next) {
5204 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5205 				root->root_key.objectid, level - 1);
5206 		if (IS_ERR(next))
5207 			return PTR_ERR(next);
5208 		reada = 1;
5209 	}
5210 	btrfs_tree_lock(next);
5211 
5212 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5213 				       &wc->refs[level - 1],
5214 				       &wc->flags[level - 1]);
5215 	if (ret < 0)
5216 		goto out_unlock;
5217 
5218 	if (unlikely(wc->refs[level - 1] == 0)) {
5219 		btrfs_err(fs_info, "Missing references.");
5220 		ret = -EIO;
5221 		goto out_unlock;
5222 	}
5223 	*lookup_info = 0;
5224 
5225 	if (wc->stage == DROP_REFERENCE) {
5226 		if (wc->refs[level - 1] > 1) {
5227 			need_account = true;
5228 			if (level == 1 &&
5229 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5230 				goto skip;
5231 
5232 			if (!wc->update_ref ||
5233 			    generation <= root->root_key.offset)
5234 				goto skip;
5235 
5236 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5237 					      path->slots[level]);
5238 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5239 			if (ret < 0)
5240 				goto skip;
5241 
5242 			wc->stage = UPDATE_BACKREF;
5243 			wc->shared_level = level - 1;
5244 		}
5245 	} else {
5246 		if (level == 1 &&
5247 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5248 			goto skip;
5249 	}
5250 
5251 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5252 		btrfs_tree_unlock(next);
5253 		free_extent_buffer(next);
5254 		next = NULL;
5255 		*lookup_info = 1;
5256 	}
5257 
5258 	if (!next) {
5259 		if (reada && level == 1)
5260 			reada_walk_down(trans, root, wc, path);
5261 		next = read_tree_block(fs_info, bytenr, &check);
5262 		if (IS_ERR(next)) {
5263 			return PTR_ERR(next);
5264 		} else if (!extent_buffer_uptodate(next)) {
5265 			free_extent_buffer(next);
5266 			return -EIO;
5267 		}
5268 		btrfs_tree_lock(next);
5269 	}
5270 
5271 	level--;
5272 	ASSERT(level == btrfs_header_level(next));
5273 	if (level != btrfs_header_level(next)) {
5274 		btrfs_err(root->fs_info, "mismatched level");
5275 		ret = -EIO;
5276 		goto out_unlock;
5277 	}
5278 	path->nodes[level] = next;
5279 	path->slots[level] = 0;
5280 	path->locks[level] = BTRFS_WRITE_LOCK;
5281 	wc->level = level;
5282 	if (wc->level == 1)
5283 		wc->reada_slot = 0;
5284 	return 0;
5285 skip:
5286 	wc->refs[level - 1] = 0;
5287 	wc->flags[level - 1] = 0;
5288 	if (wc->stage == DROP_REFERENCE) {
5289 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5290 			parent = path->nodes[level]->start;
5291 		} else {
5292 			ASSERT(root->root_key.objectid ==
5293 			       btrfs_header_owner(path->nodes[level]));
5294 			if (root->root_key.objectid !=
5295 			    btrfs_header_owner(path->nodes[level])) {
5296 				btrfs_err(root->fs_info,
5297 						"mismatched block owner");
5298 				ret = -EIO;
5299 				goto out_unlock;
5300 			}
5301 			parent = 0;
5302 		}
5303 
5304 		/*
5305 		 * If we had a drop_progress we need to verify the refs are set
5306 		 * as expected.  If we find our ref then we know that from here
5307 		 * on out everything should be correct, and we can clear the
5308 		 * ->restarted flag.
5309 		 */
5310 		if (wc->restarted) {
5311 			ret = check_ref_exists(trans, root, bytenr, parent,
5312 					       level - 1);
5313 			if (ret < 0)
5314 				goto out_unlock;
5315 			if (ret == 0)
5316 				goto no_delete;
5317 			ret = 0;
5318 			wc->restarted = 0;
5319 		}
5320 
5321 		/*
5322 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5323 		 * already accounted them at merge time (replace_path),
5324 		 * thus we could skip expensive subtree trace here.
5325 		 */
5326 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5327 		    need_account) {
5328 			ret = btrfs_qgroup_trace_subtree(trans, next,
5329 							 generation, level - 1);
5330 			if (ret) {
5331 				btrfs_err_rl(fs_info,
5332 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5333 					     ret);
5334 			}
5335 		}
5336 
5337 		/*
5338 		 * We need to update the next key in our walk control so we can
5339 		 * update the drop_progress key accordingly.  We don't care if
5340 		 * find_next_key doesn't find a key because that means we're at
5341 		 * the end and are going to clean up now.
5342 		 */
5343 		wc->drop_level = level;
5344 		find_next_key(path, level, &wc->drop_progress);
5345 
5346 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5347 				       fs_info->nodesize, parent);
5348 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5349 				    0, false);
5350 		ret = btrfs_free_extent(trans, &ref);
5351 		if (ret)
5352 			goto out_unlock;
5353 	}
5354 no_delete:
5355 	*lookup_info = 1;
5356 	ret = 1;
5357 
5358 out_unlock:
5359 	btrfs_tree_unlock(next);
5360 	free_extent_buffer(next);
5361 
5362 	return ret;
5363 }
5364 
5365 /*
5366  * helper to process tree block while walking up the tree.
5367  *
5368  * when wc->stage == DROP_REFERENCE, this function drops
5369  * reference count on the block.
5370  *
5371  * when wc->stage == UPDATE_BACKREF, this function changes
5372  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5373  * to UPDATE_BACKREF previously while processing the block.
5374  *
5375  * NOTE: return value 1 means we should stop walking up.
5376  */
5377 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5378 				 struct btrfs_root *root,
5379 				 struct btrfs_path *path,
5380 				 struct walk_control *wc)
5381 {
5382 	struct btrfs_fs_info *fs_info = root->fs_info;
5383 	int ret;
5384 	int level = wc->level;
5385 	struct extent_buffer *eb = path->nodes[level];
5386 	u64 parent = 0;
5387 
5388 	if (wc->stage == UPDATE_BACKREF) {
5389 		BUG_ON(wc->shared_level < level);
5390 		if (level < wc->shared_level)
5391 			goto out;
5392 
5393 		ret = find_next_key(path, level + 1, &wc->update_progress);
5394 		if (ret > 0)
5395 			wc->update_ref = 0;
5396 
5397 		wc->stage = DROP_REFERENCE;
5398 		wc->shared_level = -1;
5399 		path->slots[level] = 0;
5400 
5401 		/*
5402 		 * check reference count again if the block isn't locked.
5403 		 * we should start walking down the tree again if reference
5404 		 * count is one.
5405 		 */
5406 		if (!path->locks[level]) {
5407 			BUG_ON(level == 0);
5408 			btrfs_tree_lock(eb);
5409 			path->locks[level] = BTRFS_WRITE_LOCK;
5410 
5411 			ret = btrfs_lookup_extent_info(trans, fs_info,
5412 						       eb->start, level, 1,
5413 						       &wc->refs[level],
5414 						       &wc->flags[level]);
5415 			if (ret < 0) {
5416 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5417 				path->locks[level] = 0;
5418 				return ret;
5419 			}
5420 			BUG_ON(wc->refs[level] == 0);
5421 			if (wc->refs[level] == 1) {
5422 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5423 				path->locks[level] = 0;
5424 				return 1;
5425 			}
5426 		}
5427 	}
5428 
5429 	/* wc->stage == DROP_REFERENCE */
5430 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5431 
5432 	if (wc->refs[level] == 1) {
5433 		if (level == 0) {
5434 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5435 				ret = btrfs_dec_ref(trans, root, eb, 1);
5436 			else
5437 				ret = btrfs_dec_ref(trans, root, eb, 0);
5438 			BUG_ON(ret); /* -ENOMEM */
5439 			if (is_fstree(root->root_key.objectid)) {
5440 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5441 				if (ret) {
5442 					btrfs_err_rl(fs_info,
5443 	"error %d accounting leaf items, quota is out of sync, rescan required",
5444 					     ret);
5445 				}
5446 			}
5447 		}
5448 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5449 		if (!path->locks[level]) {
5450 			btrfs_tree_lock(eb);
5451 			path->locks[level] = BTRFS_WRITE_LOCK;
5452 		}
5453 		btrfs_clear_buffer_dirty(trans, eb);
5454 	}
5455 
5456 	if (eb == root->node) {
5457 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5458 			parent = eb->start;
5459 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5460 			goto owner_mismatch;
5461 	} else {
5462 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5463 			parent = path->nodes[level + 1]->start;
5464 		else if (root->root_key.objectid !=
5465 			 btrfs_header_owner(path->nodes[level + 1]))
5466 			goto owner_mismatch;
5467 	}
5468 
5469 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5470 			      wc->refs[level] == 1);
5471 out:
5472 	wc->refs[level] = 0;
5473 	wc->flags[level] = 0;
5474 	return 0;
5475 
5476 owner_mismatch:
5477 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5478 		     btrfs_header_owner(eb), root->root_key.objectid);
5479 	return -EUCLEAN;
5480 }
5481 
5482 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5483 				   struct btrfs_root *root,
5484 				   struct btrfs_path *path,
5485 				   struct walk_control *wc)
5486 {
5487 	int level = wc->level;
5488 	int lookup_info = 1;
5489 	int ret = 0;
5490 
5491 	while (level >= 0) {
5492 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5493 		if (ret)
5494 			break;
5495 
5496 		if (level == 0)
5497 			break;
5498 
5499 		if (path->slots[level] >=
5500 		    btrfs_header_nritems(path->nodes[level]))
5501 			break;
5502 
5503 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5504 		if (ret > 0) {
5505 			path->slots[level]++;
5506 			continue;
5507 		} else if (ret < 0)
5508 			break;
5509 		level = wc->level;
5510 	}
5511 	return (ret == 1) ? 0 : ret;
5512 }
5513 
5514 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5515 				 struct btrfs_root *root,
5516 				 struct btrfs_path *path,
5517 				 struct walk_control *wc, int max_level)
5518 {
5519 	int level = wc->level;
5520 	int ret;
5521 
5522 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5523 	while (level < max_level && path->nodes[level]) {
5524 		wc->level = level;
5525 		if (path->slots[level] + 1 <
5526 		    btrfs_header_nritems(path->nodes[level])) {
5527 			path->slots[level]++;
5528 			return 0;
5529 		} else {
5530 			ret = walk_up_proc(trans, root, path, wc);
5531 			if (ret > 0)
5532 				return 0;
5533 			if (ret < 0)
5534 				return ret;
5535 
5536 			if (path->locks[level]) {
5537 				btrfs_tree_unlock_rw(path->nodes[level],
5538 						     path->locks[level]);
5539 				path->locks[level] = 0;
5540 			}
5541 			free_extent_buffer(path->nodes[level]);
5542 			path->nodes[level] = NULL;
5543 			level++;
5544 		}
5545 	}
5546 	return 1;
5547 }
5548 
5549 /*
5550  * drop a subvolume tree.
5551  *
5552  * this function traverses the tree freeing any blocks that only
5553  * referenced by the tree.
5554  *
5555  * when a shared tree block is found. this function decreases its
5556  * reference count by one. if update_ref is true, this function
5557  * also make sure backrefs for the shared block and all lower level
5558  * blocks are properly updated.
5559  *
5560  * If called with for_reloc == 0, may exit early with -EAGAIN
5561  */
5562 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5563 {
5564 	const bool is_reloc_root = (root->root_key.objectid ==
5565 				    BTRFS_TREE_RELOC_OBJECTID);
5566 	struct btrfs_fs_info *fs_info = root->fs_info;
5567 	struct btrfs_path *path;
5568 	struct btrfs_trans_handle *trans;
5569 	struct btrfs_root *tree_root = fs_info->tree_root;
5570 	struct btrfs_root_item *root_item = &root->root_item;
5571 	struct walk_control *wc;
5572 	struct btrfs_key key;
5573 	int err = 0;
5574 	int ret;
5575 	int level;
5576 	bool root_dropped = false;
5577 	bool unfinished_drop = false;
5578 
5579 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5580 
5581 	path = btrfs_alloc_path();
5582 	if (!path) {
5583 		err = -ENOMEM;
5584 		goto out;
5585 	}
5586 
5587 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5588 	if (!wc) {
5589 		btrfs_free_path(path);
5590 		err = -ENOMEM;
5591 		goto out;
5592 	}
5593 
5594 	/*
5595 	 * Use join to avoid potential EINTR from transaction start. See
5596 	 * wait_reserve_ticket and the whole reservation callchain.
5597 	 */
5598 	if (for_reloc)
5599 		trans = btrfs_join_transaction(tree_root);
5600 	else
5601 		trans = btrfs_start_transaction(tree_root, 0);
5602 	if (IS_ERR(trans)) {
5603 		err = PTR_ERR(trans);
5604 		goto out_free;
5605 	}
5606 
5607 	err = btrfs_run_delayed_items(trans);
5608 	if (err)
5609 		goto out_end_trans;
5610 
5611 	/*
5612 	 * This will help us catch people modifying the fs tree while we're
5613 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5614 	 * dropped as we unlock the root node and parent nodes as we walk down
5615 	 * the tree, assuming nothing will change.  If something does change
5616 	 * then we'll have stale information and drop references to blocks we've
5617 	 * already dropped.
5618 	 */
5619 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5620 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5621 
5622 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5623 		level = btrfs_header_level(root->node);
5624 		path->nodes[level] = btrfs_lock_root_node(root);
5625 		path->slots[level] = 0;
5626 		path->locks[level] = BTRFS_WRITE_LOCK;
5627 		memset(&wc->update_progress, 0,
5628 		       sizeof(wc->update_progress));
5629 	} else {
5630 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5631 		memcpy(&wc->update_progress, &key,
5632 		       sizeof(wc->update_progress));
5633 
5634 		level = btrfs_root_drop_level(root_item);
5635 		BUG_ON(level == 0);
5636 		path->lowest_level = level;
5637 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5638 		path->lowest_level = 0;
5639 		if (ret < 0) {
5640 			err = ret;
5641 			goto out_end_trans;
5642 		}
5643 		WARN_ON(ret > 0);
5644 
5645 		/*
5646 		 * unlock our path, this is safe because only this
5647 		 * function is allowed to delete this snapshot
5648 		 */
5649 		btrfs_unlock_up_safe(path, 0);
5650 
5651 		level = btrfs_header_level(root->node);
5652 		while (1) {
5653 			btrfs_tree_lock(path->nodes[level]);
5654 			path->locks[level] = BTRFS_WRITE_LOCK;
5655 
5656 			ret = btrfs_lookup_extent_info(trans, fs_info,
5657 						path->nodes[level]->start,
5658 						level, 1, &wc->refs[level],
5659 						&wc->flags[level]);
5660 			if (ret < 0) {
5661 				err = ret;
5662 				goto out_end_trans;
5663 			}
5664 			BUG_ON(wc->refs[level] == 0);
5665 
5666 			if (level == btrfs_root_drop_level(root_item))
5667 				break;
5668 
5669 			btrfs_tree_unlock(path->nodes[level]);
5670 			path->locks[level] = 0;
5671 			WARN_ON(wc->refs[level] != 1);
5672 			level--;
5673 		}
5674 	}
5675 
5676 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5677 	wc->level = level;
5678 	wc->shared_level = -1;
5679 	wc->stage = DROP_REFERENCE;
5680 	wc->update_ref = update_ref;
5681 	wc->keep_locks = 0;
5682 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5683 
5684 	while (1) {
5685 
5686 		ret = walk_down_tree(trans, root, path, wc);
5687 		if (ret < 0) {
5688 			btrfs_abort_transaction(trans, ret);
5689 			err = ret;
5690 			break;
5691 		}
5692 
5693 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5694 		if (ret < 0) {
5695 			btrfs_abort_transaction(trans, ret);
5696 			err = ret;
5697 			break;
5698 		}
5699 
5700 		if (ret > 0) {
5701 			BUG_ON(wc->stage != DROP_REFERENCE);
5702 			break;
5703 		}
5704 
5705 		if (wc->stage == DROP_REFERENCE) {
5706 			wc->drop_level = wc->level;
5707 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5708 					      &wc->drop_progress,
5709 					      path->slots[wc->drop_level]);
5710 		}
5711 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5712 				      &wc->drop_progress);
5713 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5714 
5715 		BUG_ON(wc->level == 0);
5716 		if (btrfs_should_end_transaction(trans) ||
5717 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5718 			ret = btrfs_update_root(trans, tree_root,
5719 						&root->root_key,
5720 						root_item);
5721 			if (ret) {
5722 				btrfs_abort_transaction(trans, ret);
5723 				err = ret;
5724 				goto out_end_trans;
5725 			}
5726 
5727 			if (!is_reloc_root)
5728 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5729 
5730 			btrfs_end_transaction_throttle(trans);
5731 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5732 				btrfs_debug(fs_info,
5733 					    "drop snapshot early exit");
5734 				err = -EAGAIN;
5735 				goto out_free;
5736 			}
5737 
5738 		       /*
5739 			* Use join to avoid potential EINTR from transaction
5740 			* start. See wait_reserve_ticket and the whole
5741 			* reservation callchain.
5742 			*/
5743 			if (for_reloc)
5744 				trans = btrfs_join_transaction(tree_root);
5745 			else
5746 				trans = btrfs_start_transaction(tree_root, 0);
5747 			if (IS_ERR(trans)) {
5748 				err = PTR_ERR(trans);
5749 				goto out_free;
5750 			}
5751 		}
5752 	}
5753 	btrfs_release_path(path);
5754 	if (err)
5755 		goto out_end_trans;
5756 
5757 	ret = btrfs_del_root(trans, &root->root_key);
5758 	if (ret) {
5759 		btrfs_abort_transaction(trans, ret);
5760 		err = ret;
5761 		goto out_end_trans;
5762 	}
5763 
5764 	if (!is_reloc_root) {
5765 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5766 				      NULL, NULL);
5767 		if (ret < 0) {
5768 			btrfs_abort_transaction(trans, ret);
5769 			err = ret;
5770 			goto out_end_trans;
5771 		} else if (ret > 0) {
5772 			/* if we fail to delete the orphan item this time
5773 			 * around, it'll get picked up the next time.
5774 			 *
5775 			 * The most common failure here is just -ENOENT.
5776 			 */
5777 			btrfs_del_orphan_item(trans, tree_root,
5778 					      root->root_key.objectid);
5779 		}
5780 	}
5781 
5782 	/*
5783 	 * This subvolume is going to be completely dropped, and won't be
5784 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5785 	 * commit transaction time.  So free it here manually.
5786 	 */
5787 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5788 	btrfs_qgroup_free_meta_all_pertrans(root);
5789 
5790 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5791 		btrfs_add_dropped_root(trans, root);
5792 	else
5793 		btrfs_put_root(root);
5794 	root_dropped = true;
5795 out_end_trans:
5796 	if (!is_reloc_root)
5797 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5798 
5799 	btrfs_end_transaction_throttle(trans);
5800 out_free:
5801 	kfree(wc);
5802 	btrfs_free_path(path);
5803 out:
5804 	/*
5805 	 * We were an unfinished drop root, check to see if there are any
5806 	 * pending, and if not clear and wake up any waiters.
5807 	 */
5808 	if (!err && unfinished_drop)
5809 		btrfs_maybe_wake_unfinished_drop(fs_info);
5810 
5811 	/*
5812 	 * So if we need to stop dropping the snapshot for whatever reason we
5813 	 * need to make sure to add it back to the dead root list so that we
5814 	 * keep trying to do the work later.  This also cleans up roots if we
5815 	 * don't have it in the radix (like when we recover after a power fail
5816 	 * or unmount) so we don't leak memory.
5817 	 */
5818 	if (!for_reloc && !root_dropped)
5819 		btrfs_add_dead_root(root);
5820 	return err;
5821 }
5822 
5823 /*
5824  * drop subtree rooted at tree block 'node'.
5825  *
5826  * NOTE: this function will unlock and release tree block 'node'
5827  * only used by relocation code
5828  */
5829 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5830 			struct btrfs_root *root,
5831 			struct extent_buffer *node,
5832 			struct extent_buffer *parent)
5833 {
5834 	struct btrfs_fs_info *fs_info = root->fs_info;
5835 	struct btrfs_path *path;
5836 	struct walk_control *wc;
5837 	int level;
5838 	int parent_level;
5839 	int ret = 0;
5840 	int wret;
5841 
5842 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5843 
5844 	path = btrfs_alloc_path();
5845 	if (!path)
5846 		return -ENOMEM;
5847 
5848 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5849 	if (!wc) {
5850 		btrfs_free_path(path);
5851 		return -ENOMEM;
5852 	}
5853 
5854 	btrfs_assert_tree_write_locked(parent);
5855 	parent_level = btrfs_header_level(parent);
5856 	atomic_inc(&parent->refs);
5857 	path->nodes[parent_level] = parent;
5858 	path->slots[parent_level] = btrfs_header_nritems(parent);
5859 
5860 	btrfs_assert_tree_write_locked(node);
5861 	level = btrfs_header_level(node);
5862 	path->nodes[level] = node;
5863 	path->slots[level] = 0;
5864 	path->locks[level] = BTRFS_WRITE_LOCK;
5865 
5866 	wc->refs[parent_level] = 1;
5867 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5868 	wc->level = level;
5869 	wc->shared_level = -1;
5870 	wc->stage = DROP_REFERENCE;
5871 	wc->update_ref = 0;
5872 	wc->keep_locks = 1;
5873 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5874 
5875 	while (1) {
5876 		wret = walk_down_tree(trans, root, path, wc);
5877 		if (wret < 0) {
5878 			ret = wret;
5879 			break;
5880 		}
5881 
5882 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5883 		if (wret < 0)
5884 			ret = wret;
5885 		if (wret != 0)
5886 			break;
5887 	}
5888 
5889 	kfree(wc);
5890 	btrfs_free_path(path);
5891 	return ret;
5892 }
5893 
5894 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5895 				   u64 start, u64 end)
5896 {
5897 	return unpin_extent_range(fs_info, start, end, false);
5898 }
5899 
5900 /*
5901  * It used to be that old block groups would be left around forever.
5902  * Iterating over them would be enough to trim unused space.  Since we
5903  * now automatically remove them, we also need to iterate over unallocated
5904  * space.
5905  *
5906  * We don't want a transaction for this since the discard may take a
5907  * substantial amount of time.  We don't require that a transaction be
5908  * running, but we do need to take a running transaction into account
5909  * to ensure that we're not discarding chunks that were released or
5910  * allocated in the current transaction.
5911  *
5912  * Holding the chunks lock will prevent other threads from allocating
5913  * or releasing chunks, but it won't prevent a running transaction
5914  * from committing and releasing the memory that the pending chunks
5915  * list head uses.  For that, we need to take a reference to the
5916  * transaction and hold the commit root sem.  We only need to hold
5917  * it while performing the free space search since we have already
5918  * held back allocations.
5919  */
5920 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5921 {
5922 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5923 	int ret;
5924 
5925 	*trimmed = 0;
5926 
5927 	/* Discard not supported = nothing to do. */
5928 	if (!bdev_max_discard_sectors(device->bdev))
5929 		return 0;
5930 
5931 	/* Not writable = nothing to do. */
5932 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5933 		return 0;
5934 
5935 	/* No free space = nothing to do. */
5936 	if (device->total_bytes <= device->bytes_used)
5937 		return 0;
5938 
5939 	ret = 0;
5940 
5941 	while (1) {
5942 		struct btrfs_fs_info *fs_info = device->fs_info;
5943 		u64 bytes;
5944 
5945 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5946 		if (ret)
5947 			break;
5948 
5949 		find_first_clear_extent_bit(&device->alloc_state, start,
5950 					    &start, &end,
5951 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5952 
5953 		/* Check if there are any CHUNK_* bits left */
5954 		if (start > device->total_bytes) {
5955 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5956 			btrfs_warn_in_rcu(fs_info,
5957 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5958 					  start, end - start + 1,
5959 					  btrfs_dev_name(device),
5960 					  device->total_bytes);
5961 			mutex_unlock(&fs_info->chunk_mutex);
5962 			ret = 0;
5963 			break;
5964 		}
5965 
5966 		/* Ensure we skip the reserved space on each device. */
5967 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
5968 
5969 		/*
5970 		 * If find_first_clear_extent_bit find a range that spans the
5971 		 * end of the device it will set end to -1, in this case it's up
5972 		 * to the caller to trim the value to the size of the device.
5973 		 */
5974 		end = min(end, device->total_bytes - 1);
5975 
5976 		len = end - start + 1;
5977 
5978 		/* We didn't find any extents */
5979 		if (!len) {
5980 			mutex_unlock(&fs_info->chunk_mutex);
5981 			ret = 0;
5982 			break;
5983 		}
5984 
5985 		ret = btrfs_issue_discard(device->bdev, start, len,
5986 					  &bytes);
5987 		if (!ret)
5988 			set_extent_bits(&device->alloc_state, start,
5989 					start + bytes - 1,
5990 					CHUNK_TRIMMED);
5991 		mutex_unlock(&fs_info->chunk_mutex);
5992 
5993 		if (ret)
5994 			break;
5995 
5996 		start += len;
5997 		*trimmed += bytes;
5998 
5999 		if (fatal_signal_pending(current)) {
6000 			ret = -ERESTARTSYS;
6001 			break;
6002 		}
6003 
6004 		cond_resched();
6005 	}
6006 
6007 	return ret;
6008 }
6009 
6010 /*
6011  * Trim the whole filesystem by:
6012  * 1) trimming the free space in each block group
6013  * 2) trimming the unallocated space on each device
6014  *
6015  * This will also continue trimming even if a block group or device encounters
6016  * an error.  The return value will be the last error, or 0 if nothing bad
6017  * happens.
6018  */
6019 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6020 {
6021 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6022 	struct btrfs_block_group *cache = NULL;
6023 	struct btrfs_device *device;
6024 	u64 group_trimmed;
6025 	u64 range_end = U64_MAX;
6026 	u64 start;
6027 	u64 end;
6028 	u64 trimmed = 0;
6029 	u64 bg_failed = 0;
6030 	u64 dev_failed = 0;
6031 	int bg_ret = 0;
6032 	int dev_ret = 0;
6033 	int ret = 0;
6034 
6035 	if (range->start == U64_MAX)
6036 		return -EINVAL;
6037 
6038 	/*
6039 	 * Check range overflow if range->len is set.
6040 	 * The default range->len is U64_MAX.
6041 	 */
6042 	if (range->len != U64_MAX &&
6043 	    check_add_overflow(range->start, range->len, &range_end))
6044 		return -EINVAL;
6045 
6046 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6047 	for (; cache; cache = btrfs_next_block_group(cache)) {
6048 		if (cache->start >= range_end) {
6049 			btrfs_put_block_group(cache);
6050 			break;
6051 		}
6052 
6053 		start = max(range->start, cache->start);
6054 		end = min(range_end, cache->start + cache->length);
6055 
6056 		if (end - start >= range->minlen) {
6057 			if (!btrfs_block_group_done(cache)) {
6058 				ret = btrfs_cache_block_group(cache, true);
6059 				if (ret) {
6060 					bg_failed++;
6061 					bg_ret = ret;
6062 					continue;
6063 				}
6064 			}
6065 			ret = btrfs_trim_block_group(cache,
6066 						     &group_trimmed,
6067 						     start,
6068 						     end,
6069 						     range->minlen);
6070 
6071 			trimmed += group_trimmed;
6072 			if (ret) {
6073 				bg_failed++;
6074 				bg_ret = ret;
6075 				continue;
6076 			}
6077 		}
6078 	}
6079 
6080 	if (bg_failed)
6081 		btrfs_warn(fs_info,
6082 			"failed to trim %llu block group(s), last error %d",
6083 			bg_failed, bg_ret);
6084 
6085 	mutex_lock(&fs_devices->device_list_mutex);
6086 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6087 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6088 			continue;
6089 
6090 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6091 		if (ret) {
6092 			dev_failed++;
6093 			dev_ret = ret;
6094 			break;
6095 		}
6096 
6097 		trimmed += group_trimmed;
6098 	}
6099 	mutex_unlock(&fs_devices->device_list_mutex);
6100 
6101 	if (dev_failed)
6102 		btrfs_warn(fs_info,
6103 			"failed to trim %llu device(s), last error %d",
6104 			dev_failed, dev_ret);
6105 	range->len = trimmed;
6106 	if (bg_ret)
6107 		return bg_ret;
6108 	return dev_ret;
6109 }
6110