xref: /openbmc/linux/fs/btrfs/extent-tree.c (revision 08ebb1c0da84bbec6df105a60b339e40fba241c9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 
43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
44 			       struct btrfs_delayed_ref_node *node, u64 parent,
45 			       u64 root_objectid, u64 owner_objectid,
46 			       u64 owner_offset, int refs_to_drop,
47 			       struct btrfs_delayed_extent_op *extra_op);
48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
49 				    struct extent_buffer *leaf,
50 				    struct btrfs_extent_item *ei);
51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
52 				      u64 parent, u64 root_objectid,
53 				      u64 flags, u64 owner, u64 offset,
54 				      struct btrfs_key *ins, int ref_mod);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
56 				     struct btrfs_delayed_ref_node *node,
57 				     struct btrfs_delayed_extent_op *extent_op);
58 static int find_next_key(struct btrfs_path *path, int level,
59 			 struct btrfs_key *key);
60 
61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
62 {
63 	return (cache->flags & bits) == bits;
64 }
65 
66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
67 			      u64 start, u64 num_bytes)
68 {
69 	u64 end = start + num_bytes - 1;
70 	set_extent_bits(&fs_info->excluded_extents, start, end,
71 			EXTENT_UPTODATE);
72 	return 0;
73 }
74 
75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
76 {
77 	struct btrfs_fs_info *fs_info = cache->fs_info;
78 	u64 start, end;
79 
80 	start = cache->start;
81 	end = start + cache->length - 1;
82 
83 	clear_extent_bits(&fs_info->excluded_extents, start, end,
84 			  EXTENT_UPTODATE);
85 }
86 
87 /* simple helper to search for an existing data extent at a given offset */
88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
89 {
90 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
91 	int ret;
92 	struct btrfs_key key;
93 	struct btrfs_path *path;
94 
95 	path = btrfs_alloc_path();
96 	if (!path)
97 		return -ENOMEM;
98 
99 	key.objectid = start;
100 	key.offset = len;
101 	key.type = BTRFS_EXTENT_ITEM_KEY;
102 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
103 	btrfs_free_path(path);
104 	return ret;
105 }
106 
107 /*
108  * helper function to lookup reference count and flags of a tree block.
109  *
110  * the head node for delayed ref is used to store the sum of all the
111  * reference count modifications queued up in the rbtree. the head
112  * node may also store the extent flags to set. This way you can check
113  * to see what the reference count and extent flags would be if all of
114  * the delayed refs are not processed.
115  */
116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
117 			     struct btrfs_fs_info *fs_info, u64 bytenr,
118 			     u64 offset, int metadata, u64 *refs, u64 *flags)
119 {
120 	struct btrfs_root *extent_root;
121 	struct btrfs_delayed_ref_head *head;
122 	struct btrfs_delayed_ref_root *delayed_refs;
123 	struct btrfs_path *path;
124 	struct btrfs_extent_item *ei;
125 	struct extent_buffer *leaf;
126 	struct btrfs_key key;
127 	u32 item_size;
128 	u64 num_refs;
129 	u64 extent_flags;
130 	int ret;
131 
132 	/*
133 	 * If we don't have skinny metadata, don't bother doing anything
134 	 * different
135 	 */
136 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
137 		offset = fs_info->nodesize;
138 		metadata = 0;
139 	}
140 
141 	path = btrfs_alloc_path();
142 	if (!path)
143 		return -ENOMEM;
144 
145 	if (!trans) {
146 		path->skip_locking = 1;
147 		path->search_commit_root = 1;
148 	}
149 
150 search_again:
151 	key.objectid = bytenr;
152 	key.offset = offset;
153 	if (metadata)
154 		key.type = BTRFS_METADATA_ITEM_KEY;
155 	else
156 		key.type = BTRFS_EXTENT_ITEM_KEY;
157 
158 	extent_root = btrfs_extent_root(fs_info, bytenr);
159 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
160 	if (ret < 0)
161 		goto out_free;
162 
163 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
164 		if (path->slots[0]) {
165 			path->slots[0]--;
166 			btrfs_item_key_to_cpu(path->nodes[0], &key,
167 					      path->slots[0]);
168 			if (key.objectid == bytenr &&
169 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
170 			    key.offset == fs_info->nodesize)
171 				ret = 0;
172 		}
173 	}
174 
175 	if (ret == 0) {
176 		leaf = path->nodes[0];
177 		item_size = btrfs_item_size(leaf, path->slots[0]);
178 		if (item_size >= sizeof(*ei)) {
179 			ei = btrfs_item_ptr(leaf, path->slots[0],
180 					    struct btrfs_extent_item);
181 			num_refs = btrfs_extent_refs(leaf, ei);
182 			extent_flags = btrfs_extent_flags(leaf, ei);
183 		} else {
184 			ret = -EINVAL;
185 			btrfs_print_v0_err(fs_info);
186 			if (trans)
187 				btrfs_abort_transaction(trans, ret);
188 			else
189 				btrfs_handle_fs_error(fs_info, ret, NULL);
190 
191 			goto out_free;
192 		}
193 
194 		BUG_ON(num_refs == 0);
195 	} else {
196 		num_refs = 0;
197 		extent_flags = 0;
198 		ret = 0;
199 	}
200 
201 	if (!trans)
202 		goto out;
203 
204 	delayed_refs = &trans->transaction->delayed_refs;
205 	spin_lock(&delayed_refs->lock);
206 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
207 	if (head) {
208 		if (!mutex_trylock(&head->mutex)) {
209 			refcount_inc(&head->refs);
210 			spin_unlock(&delayed_refs->lock);
211 
212 			btrfs_release_path(path);
213 
214 			/*
215 			 * Mutex was contended, block until it's released and try
216 			 * again
217 			 */
218 			mutex_lock(&head->mutex);
219 			mutex_unlock(&head->mutex);
220 			btrfs_put_delayed_ref_head(head);
221 			goto search_again;
222 		}
223 		spin_lock(&head->lock);
224 		if (head->extent_op && head->extent_op->update_flags)
225 			extent_flags |= head->extent_op->flags_to_set;
226 		else
227 			BUG_ON(num_refs == 0);
228 
229 		num_refs += head->ref_mod;
230 		spin_unlock(&head->lock);
231 		mutex_unlock(&head->mutex);
232 	}
233 	spin_unlock(&delayed_refs->lock);
234 out:
235 	WARN_ON(num_refs == 0);
236 	if (refs)
237 		*refs = num_refs;
238 	if (flags)
239 		*flags = extent_flags;
240 out_free:
241 	btrfs_free_path(path);
242 	return ret;
243 }
244 
245 /*
246  * Back reference rules.  Back refs have three main goals:
247  *
248  * 1) differentiate between all holders of references to an extent so that
249  *    when a reference is dropped we can make sure it was a valid reference
250  *    before freeing the extent.
251  *
252  * 2) Provide enough information to quickly find the holders of an extent
253  *    if we notice a given block is corrupted or bad.
254  *
255  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
256  *    maintenance.  This is actually the same as #2, but with a slightly
257  *    different use case.
258  *
259  * There are two kinds of back refs. The implicit back refs is optimized
260  * for pointers in non-shared tree blocks. For a given pointer in a block,
261  * back refs of this kind provide information about the block's owner tree
262  * and the pointer's key. These information allow us to find the block by
263  * b-tree searching. The full back refs is for pointers in tree blocks not
264  * referenced by their owner trees. The location of tree block is recorded
265  * in the back refs. Actually the full back refs is generic, and can be
266  * used in all cases the implicit back refs is used. The major shortcoming
267  * of the full back refs is its overhead. Every time a tree block gets
268  * COWed, we have to update back refs entry for all pointers in it.
269  *
270  * For a newly allocated tree block, we use implicit back refs for
271  * pointers in it. This means most tree related operations only involve
272  * implicit back refs. For a tree block created in old transaction, the
273  * only way to drop a reference to it is COW it. So we can detect the
274  * event that tree block loses its owner tree's reference and do the
275  * back refs conversion.
276  *
277  * When a tree block is COWed through a tree, there are four cases:
278  *
279  * The reference count of the block is one and the tree is the block's
280  * owner tree. Nothing to do in this case.
281  *
282  * The reference count of the block is one and the tree is not the
283  * block's owner tree. In this case, full back refs is used for pointers
284  * in the block. Remove these full back refs, add implicit back refs for
285  * every pointers in the new block.
286  *
287  * The reference count of the block is greater than one and the tree is
288  * the block's owner tree. In this case, implicit back refs is used for
289  * pointers in the block. Add full back refs for every pointers in the
290  * block, increase lower level extents' reference counts. The original
291  * implicit back refs are entailed to the new block.
292  *
293  * The reference count of the block is greater than one and the tree is
294  * not the block's owner tree. Add implicit back refs for every pointer in
295  * the new block, increase lower level extents' reference count.
296  *
297  * Back Reference Key composing:
298  *
299  * The key objectid corresponds to the first byte in the extent,
300  * The key type is used to differentiate between types of back refs.
301  * There are different meanings of the key offset for different types
302  * of back refs.
303  *
304  * File extents can be referenced by:
305  *
306  * - multiple snapshots, subvolumes, or different generations in one subvol
307  * - different files inside a single subvolume
308  * - different offsets inside a file (bookend extents in file.c)
309  *
310  * The extent ref structure for the implicit back refs has fields for:
311  *
312  * - Objectid of the subvolume root
313  * - objectid of the file holding the reference
314  * - original offset in the file
315  * - how many bookend extents
316  *
317  * The key offset for the implicit back refs is hash of the first
318  * three fields.
319  *
320  * The extent ref structure for the full back refs has field for:
321  *
322  * - number of pointers in the tree leaf
323  *
324  * The key offset for the implicit back refs is the first byte of
325  * the tree leaf
326  *
327  * When a file extent is allocated, The implicit back refs is used.
328  * the fields are filled in:
329  *
330  *     (root_key.objectid, inode objectid, offset in file, 1)
331  *
332  * When a file extent is removed file truncation, we find the
333  * corresponding implicit back refs and check the following fields:
334  *
335  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
336  *
337  * Btree extents can be referenced by:
338  *
339  * - Different subvolumes
340  *
341  * Both the implicit back refs and the full back refs for tree blocks
342  * only consist of key. The key offset for the implicit back refs is
343  * objectid of block's owner tree. The key offset for the full back refs
344  * is the first byte of parent block.
345  *
346  * When implicit back refs is used, information about the lowest key and
347  * level of the tree block are required. These information are stored in
348  * tree block info structure.
349  */
350 
351 /*
352  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
353  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
354  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
355  */
356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
357 				     struct btrfs_extent_inline_ref *iref,
358 				     enum btrfs_inline_ref_type is_data)
359 {
360 	int type = btrfs_extent_inline_ref_type(eb, iref);
361 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
362 
363 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
364 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
365 	    type == BTRFS_SHARED_DATA_REF_KEY ||
366 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
367 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
368 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
369 				return type;
370 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
371 				ASSERT(eb->fs_info);
372 				/*
373 				 * Every shared one has parent tree block,
374 				 * which must be aligned to sector size.
375 				 */
376 				if (offset &&
377 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 					return type;
379 			}
380 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
381 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 				return type;
383 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 				ASSERT(eb->fs_info);
385 				/*
386 				 * Every shared one has parent tree block,
387 				 * which must be aligned to sector size.
388 				 */
389 				if (offset &&
390 				    IS_ALIGNED(offset, eb->fs_info->sectorsize))
391 					return type;
392 			}
393 		} else {
394 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 			return type;
396 		}
397 	}
398 
399 	btrfs_print_leaf((struct extent_buffer *)eb);
400 	btrfs_err(eb->fs_info,
401 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
402 		  eb->start, (unsigned long)iref, type);
403 	WARN_ON(1);
404 
405 	return BTRFS_REF_TYPE_INVALID;
406 }
407 
408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409 {
410 	u32 high_crc = ~(u32)0;
411 	u32 low_crc = ~(u32)0;
412 	__le64 lenum;
413 
414 	lenum = cpu_to_le64(root_objectid);
415 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
416 	lenum = cpu_to_le64(owner);
417 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
418 	lenum = cpu_to_le64(offset);
419 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
420 
421 	return ((u64)high_crc << 31) ^ (u64)low_crc;
422 }
423 
424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 				     struct btrfs_extent_data_ref *ref)
426 {
427 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 				    btrfs_extent_data_ref_objectid(leaf, ref),
429 				    btrfs_extent_data_ref_offset(leaf, ref));
430 }
431 
432 static int match_extent_data_ref(struct extent_buffer *leaf,
433 				 struct btrfs_extent_data_ref *ref,
434 				 u64 root_objectid, u64 owner, u64 offset)
435 {
436 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 		return 0;
440 	return 1;
441 }
442 
443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 					   struct btrfs_path *path,
445 					   u64 bytenr, u64 parent,
446 					   u64 root_objectid,
447 					   u64 owner, u64 offset)
448 {
449 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 	struct btrfs_key key;
451 	struct btrfs_extent_data_ref *ref;
452 	struct extent_buffer *leaf;
453 	u32 nritems;
454 	int ret;
455 	int recow;
456 	int err = -ENOENT;
457 
458 	key.objectid = bytenr;
459 	if (parent) {
460 		key.type = BTRFS_SHARED_DATA_REF_KEY;
461 		key.offset = parent;
462 	} else {
463 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 		key.offset = hash_extent_data_ref(root_objectid,
465 						  owner, offset);
466 	}
467 again:
468 	recow = 0;
469 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 	if (ret < 0) {
471 		err = ret;
472 		goto fail;
473 	}
474 
475 	if (parent) {
476 		if (!ret)
477 			return 0;
478 		goto fail;
479 	}
480 
481 	leaf = path->nodes[0];
482 	nritems = btrfs_header_nritems(leaf);
483 	while (1) {
484 		if (path->slots[0] >= nritems) {
485 			ret = btrfs_next_leaf(root, path);
486 			if (ret < 0)
487 				err = ret;
488 			if (ret)
489 				goto fail;
490 
491 			leaf = path->nodes[0];
492 			nritems = btrfs_header_nritems(leaf);
493 			recow = 1;
494 		}
495 
496 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 		if (key.objectid != bytenr ||
498 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 			goto fail;
500 
501 		ref = btrfs_item_ptr(leaf, path->slots[0],
502 				     struct btrfs_extent_data_ref);
503 
504 		if (match_extent_data_ref(leaf, ref, root_objectid,
505 					  owner, offset)) {
506 			if (recow) {
507 				btrfs_release_path(path);
508 				goto again;
509 			}
510 			err = 0;
511 			break;
512 		}
513 		path->slots[0]++;
514 	}
515 fail:
516 	return err;
517 }
518 
519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 					   struct btrfs_path *path,
521 					   u64 bytenr, u64 parent,
522 					   u64 root_objectid, u64 owner,
523 					   u64 offset, int refs_to_add)
524 {
525 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 	struct btrfs_key key;
527 	struct extent_buffer *leaf;
528 	u32 size;
529 	u32 num_refs;
530 	int ret;
531 
532 	key.objectid = bytenr;
533 	if (parent) {
534 		key.type = BTRFS_SHARED_DATA_REF_KEY;
535 		key.offset = parent;
536 		size = sizeof(struct btrfs_shared_data_ref);
537 	} else {
538 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 		key.offset = hash_extent_data_ref(root_objectid,
540 						  owner, offset);
541 		size = sizeof(struct btrfs_extent_data_ref);
542 	}
543 
544 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 	if (ret && ret != -EEXIST)
546 		goto fail;
547 
548 	leaf = path->nodes[0];
549 	if (parent) {
550 		struct btrfs_shared_data_ref *ref;
551 		ref = btrfs_item_ptr(leaf, path->slots[0],
552 				     struct btrfs_shared_data_ref);
553 		if (ret == 0) {
554 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 		} else {
556 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 			num_refs += refs_to_add;
558 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 		}
560 	} else {
561 		struct btrfs_extent_data_ref *ref;
562 		while (ret == -EEXIST) {
563 			ref = btrfs_item_ptr(leaf, path->slots[0],
564 					     struct btrfs_extent_data_ref);
565 			if (match_extent_data_ref(leaf, ref, root_objectid,
566 						  owner, offset))
567 				break;
568 			btrfs_release_path(path);
569 			key.offset++;
570 			ret = btrfs_insert_empty_item(trans, root, path, &key,
571 						      size);
572 			if (ret && ret != -EEXIST)
573 				goto fail;
574 
575 			leaf = path->nodes[0];
576 		}
577 		ref = btrfs_item_ptr(leaf, path->slots[0],
578 				     struct btrfs_extent_data_ref);
579 		if (ret == 0) {
580 			btrfs_set_extent_data_ref_root(leaf, ref,
581 						       root_objectid);
582 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 		}
590 	}
591 	btrfs_mark_buffer_dirty(leaf);
592 	ret = 0;
593 fail:
594 	btrfs_release_path(path);
595 	return ret;
596 }
597 
598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 					   struct btrfs_root *root,
600 					   struct btrfs_path *path,
601 					   int refs_to_drop)
602 {
603 	struct btrfs_key key;
604 	struct btrfs_extent_data_ref *ref1 = NULL;
605 	struct btrfs_shared_data_ref *ref2 = NULL;
606 	struct extent_buffer *leaf;
607 	u32 num_refs = 0;
608 	int ret = 0;
609 
610 	leaf = path->nodes[0];
611 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612 
613 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_extent_data_ref);
616 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 				      struct btrfs_shared_data_ref);
620 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
622 		btrfs_print_v0_err(trans->fs_info);
623 		btrfs_abort_transaction(trans, -EINVAL);
624 		return -EINVAL;
625 	} else {
626 		BUG();
627 	}
628 
629 	BUG_ON(num_refs < refs_to_drop);
630 	num_refs -= refs_to_drop;
631 
632 	if (num_refs == 0) {
633 		ret = btrfs_del_item(trans, root, path);
634 	} else {
635 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 		btrfs_mark_buffer_dirty(leaf);
640 	}
641 	return ret;
642 }
643 
644 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 					  struct btrfs_extent_inline_ref *iref)
646 {
647 	struct btrfs_key key;
648 	struct extent_buffer *leaf;
649 	struct btrfs_extent_data_ref *ref1;
650 	struct btrfs_shared_data_ref *ref2;
651 	u32 num_refs = 0;
652 	int type;
653 
654 	leaf = path->nodes[0];
655 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656 
657 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
658 	if (iref) {
659 		/*
660 		 * If type is invalid, we should have bailed out earlier than
661 		 * this call.
662 		 */
663 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
664 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
665 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
666 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
667 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
668 		} else {
669 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
670 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
671 		}
672 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
673 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
674 				      struct btrfs_extent_data_ref);
675 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
676 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
677 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
678 				      struct btrfs_shared_data_ref);
679 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
680 	} else {
681 		WARN_ON(1);
682 	}
683 	return num_refs;
684 }
685 
686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
687 					  struct btrfs_path *path,
688 					  u64 bytenr, u64 parent,
689 					  u64 root_objectid)
690 {
691 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
692 	struct btrfs_key key;
693 	int ret;
694 
695 	key.objectid = bytenr;
696 	if (parent) {
697 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
698 		key.offset = parent;
699 	} else {
700 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
701 		key.offset = root_objectid;
702 	}
703 
704 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
705 	if (ret > 0)
706 		ret = -ENOENT;
707 	return ret;
708 }
709 
710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
711 					  struct btrfs_path *path,
712 					  u64 bytenr, u64 parent,
713 					  u64 root_objectid)
714 {
715 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
716 	struct btrfs_key key;
717 	int ret;
718 
719 	key.objectid = bytenr;
720 	if (parent) {
721 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
722 		key.offset = parent;
723 	} else {
724 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
725 		key.offset = root_objectid;
726 	}
727 
728 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
729 	btrfs_release_path(path);
730 	return ret;
731 }
732 
733 static inline int extent_ref_type(u64 parent, u64 owner)
734 {
735 	int type;
736 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
737 		if (parent > 0)
738 			type = BTRFS_SHARED_BLOCK_REF_KEY;
739 		else
740 			type = BTRFS_TREE_BLOCK_REF_KEY;
741 	} else {
742 		if (parent > 0)
743 			type = BTRFS_SHARED_DATA_REF_KEY;
744 		else
745 			type = BTRFS_EXTENT_DATA_REF_KEY;
746 	}
747 	return type;
748 }
749 
750 static int find_next_key(struct btrfs_path *path, int level,
751 			 struct btrfs_key *key)
752 
753 {
754 	for (; level < BTRFS_MAX_LEVEL; level++) {
755 		if (!path->nodes[level])
756 			break;
757 		if (path->slots[level] + 1 >=
758 		    btrfs_header_nritems(path->nodes[level]))
759 			continue;
760 		if (level == 0)
761 			btrfs_item_key_to_cpu(path->nodes[level], key,
762 					      path->slots[level] + 1);
763 		else
764 			btrfs_node_key_to_cpu(path->nodes[level], key,
765 					      path->slots[level] + 1);
766 		return 0;
767 	}
768 	return 1;
769 }
770 
771 /*
772  * look for inline back ref. if back ref is found, *ref_ret is set
773  * to the address of inline back ref, and 0 is returned.
774  *
775  * if back ref isn't found, *ref_ret is set to the address where it
776  * should be inserted, and -ENOENT is returned.
777  *
778  * if insert is true and there are too many inline back refs, the path
779  * points to the extent item, and -EAGAIN is returned.
780  *
781  * NOTE: inline back refs are ordered in the same way that back ref
782  *	 items in the tree are ordered.
783  */
784 static noinline_for_stack
785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
786 				 struct btrfs_path *path,
787 				 struct btrfs_extent_inline_ref **ref_ret,
788 				 u64 bytenr, u64 num_bytes,
789 				 u64 parent, u64 root_objectid,
790 				 u64 owner, u64 offset, int insert)
791 {
792 	struct btrfs_fs_info *fs_info = trans->fs_info;
793 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
794 	struct btrfs_key key;
795 	struct extent_buffer *leaf;
796 	struct btrfs_extent_item *ei;
797 	struct btrfs_extent_inline_ref *iref;
798 	u64 flags;
799 	u64 item_size;
800 	unsigned long ptr;
801 	unsigned long end;
802 	int extra_size;
803 	int type;
804 	int want;
805 	int ret;
806 	int err = 0;
807 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
808 	int needed;
809 
810 	key.objectid = bytenr;
811 	key.type = BTRFS_EXTENT_ITEM_KEY;
812 	key.offset = num_bytes;
813 
814 	want = extent_ref_type(parent, owner);
815 	if (insert) {
816 		extra_size = btrfs_extent_inline_ref_size(want);
817 		path->search_for_extension = 1;
818 		path->keep_locks = 1;
819 	} else
820 		extra_size = -1;
821 
822 	/*
823 	 * Owner is our level, so we can just add one to get the level for the
824 	 * block we are interested in.
825 	 */
826 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
827 		key.type = BTRFS_METADATA_ITEM_KEY;
828 		key.offset = owner;
829 	}
830 
831 again:
832 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
833 	if (ret < 0) {
834 		err = ret;
835 		goto out;
836 	}
837 
838 	/*
839 	 * We may be a newly converted file system which still has the old fat
840 	 * extent entries for metadata, so try and see if we have one of those.
841 	 */
842 	if (ret > 0 && skinny_metadata) {
843 		skinny_metadata = false;
844 		if (path->slots[0]) {
845 			path->slots[0]--;
846 			btrfs_item_key_to_cpu(path->nodes[0], &key,
847 					      path->slots[0]);
848 			if (key.objectid == bytenr &&
849 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
850 			    key.offset == num_bytes)
851 				ret = 0;
852 		}
853 		if (ret) {
854 			key.objectid = bytenr;
855 			key.type = BTRFS_EXTENT_ITEM_KEY;
856 			key.offset = num_bytes;
857 			btrfs_release_path(path);
858 			goto again;
859 		}
860 	}
861 
862 	if (ret && !insert) {
863 		err = -ENOENT;
864 		goto out;
865 	} else if (WARN_ON(ret)) {
866 		err = -EIO;
867 		goto out;
868 	}
869 
870 	leaf = path->nodes[0];
871 	item_size = btrfs_item_size(leaf, path->slots[0]);
872 	if (unlikely(item_size < sizeof(*ei))) {
873 		err = -EINVAL;
874 		btrfs_print_v0_err(fs_info);
875 		btrfs_abort_transaction(trans, err);
876 		goto out;
877 	}
878 
879 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
880 	flags = btrfs_extent_flags(leaf, ei);
881 
882 	ptr = (unsigned long)(ei + 1);
883 	end = (unsigned long)ei + item_size;
884 
885 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
886 		ptr += sizeof(struct btrfs_tree_block_info);
887 		BUG_ON(ptr > end);
888 	}
889 
890 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
891 		needed = BTRFS_REF_TYPE_DATA;
892 	else
893 		needed = BTRFS_REF_TYPE_BLOCK;
894 
895 	err = -ENOENT;
896 	while (1) {
897 		if (ptr >= end) {
898 			if (ptr > end) {
899 				err = -EUCLEAN;
900 				btrfs_print_leaf(path->nodes[0]);
901 				btrfs_crit(fs_info,
902 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
903 					path->slots[0], root_objectid, owner, offset, parent);
904 			}
905 			break;
906 		}
907 		iref = (struct btrfs_extent_inline_ref *)ptr;
908 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
909 		if (type == BTRFS_REF_TYPE_INVALID) {
910 			err = -EUCLEAN;
911 			goto out;
912 		}
913 
914 		if (want < type)
915 			break;
916 		if (want > type) {
917 			ptr += btrfs_extent_inline_ref_size(type);
918 			continue;
919 		}
920 
921 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
922 			struct btrfs_extent_data_ref *dref;
923 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
924 			if (match_extent_data_ref(leaf, dref, root_objectid,
925 						  owner, offset)) {
926 				err = 0;
927 				break;
928 			}
929 			if (hash_extent_data_ref_item(leaf, dref) <
930 			    hash_extent_data_ref(root_objectid, owner, offset))
931 				break;
932 		} else {
933 			u64 ref_offset;
934 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
935 			if (parent > 0) {
936 				if (parent == ref_offset) {
937 					err = 0;
938 					break;
939 				}
940 				if (ref_offset < parent)
941 					break;
942 			} else {
943 				if (root_objectid == ref_offset) {
944 					err = 0;
945 					break;
946 				}
947 				if (ref_offset < root_objectid)
948 					break;
949 			}
950 		}
951 		ptr += btrfs_extent_inline_ref_size(type);
952 	}
953 	if (err == -ENOENT && insert) {
954 		if (item_size + extra_size >=
955 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
956 			err = -EAGAIN;
957 			goto out;
958 		}
959 		/*
960 		 * To add new inline back ref, we have to make sure
961 		 * there is no corresponding back ref item.
962 		 * For simplicity, we just do not add new inline back
963 		 * ref if there is any kind of item for this block
964 		 */
965 		if (find_next_key(path, 0, &key) == 0 &&
966 		    key.objectid == bytenr &&
967 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
968 			err = -EAGAIN;
969 			goto out;
970 		}
971 	}
972 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
973 out:
974 	if (insert) {
975 		path->keep_locks = 0;
976 		path->search_for_extension = 0;
977 		btrfs_unlock_up_safe(path, 1);
978 	}
979 	return err;
980 }
981 
982 /*
983  * helper to add new inline back ref
984  */
985 static noinline_for_stack
986 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
987 				 struct btrfs_path *path,
988 				 struct btrfs_extent_inline_ref *iref,
989 				 u64 parent, u64 root_objectid,
990 				 u64 owner, u64 offset, int refs_to_add,
991 				 struct btrfs_delayed_extent_op *extent_op)
992 {
993 	struct extent_buffer *leaf;
994 	struct btrfs_extent_item *ei;
995 	unsigned long ptr;
996 	unsigned long end;
997 	unsigned long item_offset;
998 	u64 refs;
999 	int size;
1000 	int type;
1001 
1002 	leaf = path->nodes[0];
1003 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1004 	item_offset = (unsigned long)iref - (unsigned long)ei;
1005 
1006 	type = extent_ref_type(parent, owner);
1007 	size = btrfs_extent_inline_ref_size(type);
1008 
1009 	btrfs_extend_item(path, size);
1010 
1011 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 	refs = btrfs_extent_refs(leaf, ei);
1013 	refs += refs_to_add;
1014 	btrfs_set_extent_refs(leaf, ei, refs);
1015 	if (extent_op)
1016 		__run_delayed_extent_op(extent_op, leaf, ei);
1017 
1018 	ptr = (unsigned long)ei + item_offset;
1019 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1020 	if (ptr < end - size)
1021 		memmove_extent_buffer(leaf, ptr + size, ptr,
1022 				      end - size - ptr);
1023 
1024 	iref = (struct btrfs_extent_inline_ref *)ptr;
1025 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1026 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1027 		struct btrfs_extent_data_ref *dref;
1028 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1029 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1030 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1031 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1032 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1033 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1034 		struct btrfs_shared_data_ref *sref;
1035 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1036 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1037 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1038 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1039 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1040 	} else {
1041 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1042 	}
1043 	btrfs_mark_buffer_dirty(leaf);
1044 }
1045 
1046 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1047 				 struct btrfs_path *path,
1048 				 struct btrfs_extent_inline_ref **ref_ret,
1049 				 u64 bytenr, u64 num_bytes, u64 parent,
1050 				 u64 root_objectid, u64 owner, u64 offset)
1051 {
1052 	int ret;
1053 
1054 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1055 					   num_bytes, parent, root_objectid,
1056 					   owner, offset, 0);
1057 	if (ret != -ENOENT)
1058 		return ret;
1059 
1060 	btrfs_release_path(path);
1061 	*ref_ret = NULL;
1062 
1063 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1064 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1065 					    root_objectid);
1066 	} else {
1067 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1068 					     root_objectid, owner, offset);
1069 	}
1070 	return ret;
1071 }
1072 
1073 /*
1074  * helper to update/remove inline back ref
1075  */
1076 static noinline_for_stack
1077 void update_inline_extent_backref(struct btrfs_path *path,
1078 				  struct btrfs_extent_inline_ref *iref,
1079 				  int refs_to_mod,
1080 				  struct btrfs_delayed_extent_op *extent_op)
1081 {
1082 	struct extent_buffer *leaf = path->nodes[0];
1083 	struct btrfs_extent_item *ei;
1084 	struct btrfs_extent_data_ref *dref = NULL;
1085 	struct btrfs_shared_data_ref *sref = NULL;
1086 	unsigned long ptr;
1087 	unsigned long end;
1088 	u32 item_size;
1089 	int size;
1090 	int type;
1091 	u64 refs;
1092 
1093 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1094 	refs = btrfs_extent_refs(leaf, ei);
1095 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1096 	refs += refs_to_mod;
1097 	btrfs_set_extent_refs(leaf, ei, refs);
1098 	if (extent_op)
1099 		__run_delayed_extent_op(extent_op, leaf, ei);
1100 
1101 	/*
1102 	 * If type is invalid, we should have bailed out after
1103 	 * lookup_inline_extent_backref().
1104 	 */
1105 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1106 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1107 
1108 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1109 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1110 		refs = btrfs_extent_data_ref_count(leaf, dref);
1111 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1112 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1113 		refs = btrfs_shared_data_ref_count(leaf, sref);
1114 	} else {
1115 		refs = 1;
1116 		BUG_ON(refs_to_mod != -1);
1117 	}
1118 
1119 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1120 	refs += refs_to_mod;
1121 
1122 	if (refs > 0) {
1123 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1124 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1125 		else
1126 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1127 	} else {
1128 		size =  btrfs_extent_inline_ref_size(type);
1129 		item_size = btrfs_item_size(leaf, path->slots[0]);
1130 		ptr = (unsigned long)iref;
1131 		end = (unsigned long)ei + item_size;
1132 		if (ptr + size < end)
1133 			memmove_extent_buffer(leaf, ptr, ptr + size,
1134 					      end - ptr - size);
1135 		item_size -= size;
1136 		btrfs_truncate_item(path, item_size, 1);
1137 	}
1138 	btrfs_mark_buffer_dirty(leaf);
1139 }
1140 
1141 static noinline_for_stack
1142 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1143 				 struct btrfs_path *path,
1144 				 u64 bytenr, u64 num_bytes, u64 parent,
1145 				 u64 root_objectid, u64 owner,
1146 				 u64 offset, int refs_to_add,
1147 				 struct btrfs_delayed_extent_op *extent_op)
1148 {
1149 	struct btrfs_extent_inline_ref *iref;
1150 	int ret;
1151 
1152 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1153 					   num_bytes, parent, root_objectid,
1154 					   owner, offset, 1);
1155 	if (ret == 0) {
1156 		/*
1157 		 * We're adding refs to a tree block we already own, this
1158 		 * should not happen at all.
1159 		 */
1160 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1161 			btrfs_crit(trans->fs_info,
1162 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
1163 				   bytenr, num_bytes, root_objectid);
1164 			if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
1165 				WARN_ON(1);
1166 				btrfs_crit(trans->fs_info,
1167 			"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
1168 				btrfs_print_leaf(path->nodes[0]);
1169 			}
1170 			return -EUCLEAN;
1171 		}
1172 		update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1173 	} else if (ret == -ENOENT) {
1174 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1175 					    root_objectid, owner, offset,
1176 					    refs_to_add, extent_op);
1177 		ret = 0;
1178 	}
1179 	return ret;
1180 }
1181 
1182 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1183 				 struct btrfs_root *root,
1184 				 struct btrfs_path *path,
1185 				 struct btrfs_extent_inline_ref *iref,
1186 				 int refs_to_drop, int is_data)
1187 {
1188 	int ret = 0;
1189 
1190 	BUG_ON(!is_data && refs_to_drop != 1);
1191 	if (iref)
1192 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1193 	else if (is_data)
1194 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1195 	else
1196 		ret = btrfs_del_item(trans, root, path);
1197 	return ret;
1198 }
1199 
1200 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1201 			       u64 *discarded_bytes)
1202 {
1203 	int j, ret = 0;
1204 	u64 bytes_left, end;
1205 	u64 aligned_start = ALIGN(start, 1 << 9);
1206 
1207 	if (WARN_ON(start != aligned_start)) {
1208 		len -= aligned_start - start;
1209 		len = round_down(len, 1 << 9);
1210 		start = aligned_start;
1211 	}
1212 
1213 	*discarded_bytes = 0;
1214 
1215 	if (!len)
1216 		return 0;
1217 
1218 	end = start + len;
1219 	bytes_left = len;
1220 
1221 	/* Skip any superblocks on this device. */
1222 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1223 		u64 sb_start = btrfs_sb_offset(j);
1224 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1225 		u64 size = sb_start - start;
1226 
1227 		if (!in_range(sb_start, start, bytes_left) &&
1228 		    !in_range(sb_end, start, bytes_left) &&
1229 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1230 			continue;
1231 
1232 		/*
1233 		 * Superblock spans beginning of range.  Adjust start and
1234 		 * try again.
1235 		 */
1236 		if (sb_start <= start) {
1237 			start += sb_end - start;
1238 			if (start > end) {
1239 				bytes_left = 0;
1240 				break;
1241 			}
1242 			bytes_left = end - start;
1243 			continue;
1244 		}
1245 
1246 		if (size) {
1247 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1248 						   GFP_NOFS);
1249 			if (!ret)
1250 				*discarded_bytes += size;
1251 			else if (ret != -EOPNOTSUPP)
1252 				return ret;
1253 		}
1254 
1255 		start = sb_end;
1256 		if (start > end) {
1257 			bytes_left = 0;
1258 			break;
1259 		}
1260 		bytes_left = end - start;
1261 	}
1262 
1263 	if (bytes_left) {
1264 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1265 					   GFP_NOFS);
1266 		if (!ret)
1267 			*discarded_bytes += bytes_left;
1268 	}
1269 	return ret;
1270 }
1271 
1272 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1273 {
1274 	struct btrfs_device *dev = stripe->dev;
1275 	struct btrfs_fs_info *fs_info = dev->fs_info;
1276 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1277 	u64 phys = stripe->physical;
1278 	u64 len = stripe->length;
1279 	u64 discarded = 0;
1280 	int ret = 0;
1281 
1282 	/* Zone reset on a zoned filesystem */
1283 	if (btrfs_can_zone_reset(dev, phys, len)) {
1284 		u64 src_disc;
1285 
1286 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1287 		if (ret)
1288 			goto out;
1289 
1290 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1291 		    dev != dev_replace->srcdev)
1292 			goto out;
1293 
1294 		src_disc = discarded;
1295 
1296 		/* Send to replace target as well */
1297 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1298 					      &discarded);
1299 		discarded += src_disc;
1300 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1301 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1302 	} else {
1303 		ret = 0;
1304 		*bytes = 0;
1305 	}
1306 
1307 out:
1308 	*bytes = discarded;
1309 	return ret;
1310 }
1311 
1312 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1313 			 u64 num_bytes, u64 *actual_bytes)
1314 {
1315 	int ret = 0;
1316 	u64 discarded_bytes = 0;
1317 	u64 end = bytenr + num_bytes;
1318 	u64 cur = bytenr;
1319 
1320 	/*
1321 	 * Avoid races with device replace and make sure the devices in the
1322 	 * stripes don't go away while we are discarding.
1323 	 */
1324 	btrfs_bio_counter_inc_blocked(fs_info);
1325 	while (cur < end) {
1326 		struct btrfs_discard_stripe *stripes;
1327 		unsigned int num_stripes;
1328 		int i;
1329 
1330 		num_bytes = end - cur;
1331 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1332 		if (IS_ERR(stripes)) {
1333 			ret = PTR_ERR(stripes);
1334 			if (ret == -EOPNOTSUPP)
1335 				ret = 0;
1336 			break;
1337 		}
1338 
1339 		for (i = 0; i < num_stripes; i++) {
1340 			struct btrfs_discard_stripe *stripe = stripes + i;
1341 			u64 bytes;
1342 
1343 			if (!stripe->dev->bdev) {
1344 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1345 				continue;
1346 			}
1347 
1348 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1349 					&stripe->dev->dev_state))
1350 				continue;
1351 
1352 			ret = do_discard_extent(stripe, &bytes);
1353 			if (ret) {
1354 				/*
1355 				 * Keep going if discard is not supported by the
1356 				 * device.
1357 				 */
1358 				if (ret != -EOPNOTSUPP)
1359 					break;
1360 				ret = 0;
1361 			} else {
1362 				discarded_bytes += bytes;
1363 			}
1364 		}
1365 		kfree(stripes);
1366 		if (ret)
1367 			break;
1368 		cur += num_bytes;
1369 	}
1370 	btrfs_bio_counter_dec(fs_info);
1371 	if (actual_bytes)
1372 		*actual_bytes = discarded_bytes;
1373 	return ret;
1374 }
1375 
1376 /* Can return -ENOMEM */
1377 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1378 			 struct btrfs_ref *generic_ref)
1379 {
1380 	struct btrfs_fs_info *fs_info = trans->fs_info;
1381 	int ret;
1382 
1383 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1384 	       generic_ref->action);
1385 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1386 	       generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1387 
1388 	if (generic_ref->type == BTRFS_REF_METADATA)
1389 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1390 	else
1391 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1392 
1393 	btrfs_ref_tree_mod(fs_info, generic_ref);
1394 
1395 	return ret;
1396 }
1397 
1398 /*
1399  * __btrfs_inc_extent_ref - insert backreference for a given extent
1400  *
1401  * The counterpart is in __btrfs_free_extent(), with examples and more details
1402  * how it works.
1403  *
1404  * @trans:	    Handle of transaction
1405  *
1406  * @node:	    The delayed ref node used to get the bytenr/length for
1407  *		    extent whose references are incremented.
1408  *
1409  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1410  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1411  *		    bytenr of the parent block. Since new extents are always
1412  *		    created with indirect references, this will only be the case
1413  *		    when relocating a shared extent. In that case, root_objectid
1414  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1415  *		    be 0
1416  *
1417  * @root_objectid:  The id of the root where this modification has originated,
1418  *		    this can be either one of the well-known metadata trees or
1419  *		    the subvolume id which references this extent.
1420  *
1421  * @owner:	    For data extents it is the inode number of the owning file.
1422  *		    For metadata extents this parameter holds the level in the
1423  *		    tree of the extent.
1424  *
1425  * @offset:	    For metadata extents the offset is ignored and is currently
1426  *		    always passed as 0. For data extents it is the fileoffset
1427  *		    this extent belongs to.
1428  *
1429  * @refs_to_add     Number of references to add
1430  *
1431  * @extent_op       Pointer to a structure, holding information necessary when
1432  *                  updating a tree block's flags
1433  *
1434  */
1435 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1436 				  struct btrfs_delayed_ref_node *node,
1437 				  u64 parent, u64 root_objectid,
1438 				  u64 owner, u64 offset, int refs_to_add,
1439 				  struct btrfs_delayed_extent_op *extent_op)
1440 {
1441 	struct btrfs_path *path;
1442 	struct extent_buffer *leaf;
1443 	struct btrfs_extent_item *item;
1444 	struct btrfs_key key;
1445 	u64 bytenr = node->bytenr;
1446 	u64 num_bytes = node->num_bytes;
1447 	u64 refs;
1448 	int ret;
1449 
1450 	path = btrfs_alloc_path();
1451 	if (!path)
1452 		return -ENOMEM;
1453 
1454 	/* this will setup the path even if it fails to insert the back ref */
1455 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1456 					   parent, root_objectid, owner,
1457 					   offset, refs_to_add, extent_op);
1458 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1459 		goto out;
1460 
1461 	/*
1462 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1463 	 * inline extent ref, so just update the reference count and add a
1464 	 * normal backref.
1465 	 */
1466 	leaf = path->nodes[0];
1467 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1468 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1469 	refs = btrfs_extent_refs(leaf, item);
1470 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1471 	if (extent_op)
1472 		__run_delayed_extent_op(extent_op, leaf, item);
1473 
1474 	btrfs_mark_buffer_dirty(leaf);
1475 	btrfs_release_path(path);
1476 
1477 	/* now insert the actual backref */
1478 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1479 		BUG_ON(refs_to_add != 1);
1480 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1481 					    root_objectid);
1482 	} else {
1483 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1484 					     root_objectid, owner, offset,
1485 					     refs_to_add);
1486 	}
1487 	if (ret)
1488 		btrfs_abort_transaction(trans, ret);
1489 out:
1490 	btrfs_free_path(path);
1491 	return ret;
1492 }
1493 
1494 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1495 				struct btrfs_delayed_ref_node *node,
1496 				struct btrfs_delayed_extent_op *extent_op,
1497 				int insert_reserved)
1498 {
1499 	int ret = 0;
1500 	struct btrfs_delayed_data_ref *ref;
1501 	struct btrfs_key ins;
1502 	u64 parent = 0;
1503 	u64 ref_root = 0;
1504 	u64 flags = 0;
1505 
1506 	ins.objectid = node->bytenr;
1507 	ins.offset = node->num_bytes;
1508 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1509 
1510 	ref = btrfs_delayed_node_to_data_ref(node);
1511 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1512 
1513 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1514 		parent = ref->parent;
1515 	ref_root = ref->root;
1516 
1517 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1518 		if (extent_op)
1519 			flags |= extent_op->flags_to_set;
1520 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1521 						 flags, ref->objectid,
1522 						 ref->offset, &ins,
1523 						 node->ref_mod);
1524 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1525 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1526 					     ref->objectid, ref->offset,
1527 					     node->ref_mod, extent_op);
1528 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1529 		ret = __btrfs_free_extent(trans, node, parent,
1530 					  ref_root, ref->objectid,
1531 					  ref->offset, node->ref_mod,
1532 					  extent_op);
1533 	} else {
1534 		BUG();
1535 	}
1536 	return ret;
1537 }
1538 
1539 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1540 				    struct extent_buffer *leaf,
1541 				    struct btrfs_extent_item *ei)
1542 {
1543 	u64 flags = btrfs_extent_flags(leaf, ei);
1544 	if (extent_op->update_flags) {
1545 		flags |= extent_op->flags_to_set;
1546 		btrfs_set_extent_flags(leaf, ei, flags);
1547 	}
1548 
1549 	if (extent_op->update_key) {
1550 		struct btrfs_tree_block_info *bi;
1551 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1552 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1553 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1554 	}
1555 }
1556 
1557 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1558 				 struct btrfs_delayed_ref_head *head,
1559 				 struct btrfs_delayed_extent_op *extent_op)
1560 {
1561 	struct btrfs_fs_info *fs_info = trans->fs_info;
1562 	struct btrfs_root *root;
1563 	struct btrfs_key key;
1564 	struct btrfs_path *path;
1565 	struct btrfs_extent_item *ei;
1566 	struct extent_buffer *leaf;
1567 	u32 item_size;
1568 	int ret;
1569 	int err = 0;
1570 	int metadata = 1;
1571 
1572 	if (TRANS_ABORTED(trans))
1573 		return 0;
1574 
1575 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1576 		metadata = 0;
1577 
1578 	path = btrfs_alloc_path();
1579 	if (!path)
1580 		return -ENOMEM;
1581 
1582 	key.objectid = head->bytenr;
1583 
1584 	if (metadata) {
1585 		key.type = BTRFS_METADATA_ITEM_KEY;
1586 		key.offset = extent_op->level;
1587 	} else {
1588 		key.type = BTRFS_EXTENT_ITEM_KEY;
1589 		key.offset = head->num_bytes;
1590 	}
1591 
1592 	root = btrfs_extent_root(fs_info, key.objectid);
1593 again:
1594 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1595 	if (ret < 0) {
1596 		err = ret;
1597 		goto out;
1598 	}
1599 	if (ret > 0) {
1600 		if (metadata) {
1601 			if (path->slots[0] > 0) {
1602 				path->slots[0]--;
1603 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1604 						      path->slots[0]);
1605 				if (key.objectid == head->bytenr &&
1606 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1607 				    key.offset == head->num_bytes)
1608 					ret = 0;
1609 			}
1610 			if (ret > 0) {
1611 				btrfs_release_path(path);
1612 				metadata = 0;
1613 
1614 				key.objectid = head->bytenr;
1615 				key.offset = head->num_bytes;
1616 				key.type = BTRFS_EXTENT_ITEM_KEY;
1617 				goto again;
1618 			}
1619 		} else {
1620 			err = -EIO;
1621 			goto out;
1622 		}
1623 	}
1624 
1625 	leaf = path->nodes[0];
1626 	item_size = btrfs_item_size(leaf, path->slots[0]);
1627 
1628 	if (unlikely(item_size < sizeof(*ei))) {
1629 		err = -EINVAL;
1630 		btrfs_print_v0_err(fs_info);
1631 		btrfs_abort_transaction(trans, err);
1632 		goto out;
1633 	}
1634 
1635 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1636 	__run_delayed_extent_op(extent_op, leaf, ei);
1637 
1638 	btrfs_mark_buffer_dirty(leaf);
1639 out:
1640 	btrfs_free_path(path);
1641 	return err;
1642 }
1643 
1644 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1645 				struct btrfs_delayed_ref_node *node,
1646 				struct btrfs_delayed_extent_op *extent_op,
1647 				int insert_reserved)
1648 {
1649 	int ret = 0;
1650 	struct btrfs_delayed_tree_ref *ref;
1651 	u64 parent = 0;
1652 	u64 ref_root = 0;
1653 
1654 	ref = btrfs_delayed_node_to_tree_ref(node);
1655 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1656 
1657 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1658 		parent = ref->parent;
1659 	ref_root = ref->root;
1660 
1661 	if (node->ref_mod != 1) {
1662 		btrfs_err(trans->fs_info,
1663 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1664 			  node->bytenr, node->ref_mod, node->action, ref_root,
1665 			  parent);
1666 		return -EIO;
1667 	}
1668 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1669 		BUG_ON(!extent_op || !extent_op->update_flags);
1670 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1671 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1672 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1673 					     ref->level, 0, 1, extent_op);
1674 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1675 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1676 					  ref->level, 0, 1, extent_op);
1677 	} else {
1678 		BUG();
1679 	}
1680 	return ret;
1681 }
1682 
1683 /* helper function to actually process a single delayed ref entry */
1684 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1685 			       struct btrfs_delayed_ref_node *node,
1686 			       struct btrfs_delayed_extent_op *extent_op,
1687 			       int insert_reserved)
1688 {
1689 	int ret = 0;
1690 
1691 	if (TRANS_ABORTED(trans)) {
1692 		if (insert_reserved)
1693 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1694 		return 0;
1695 	}
1696 
1697 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1698 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1699 		ret = run_delayed_tree_ref(trans, node, extent_op,
1700 					   insert_reserved);
1701 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1702 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1703 		ret = run_delayed_data_ref(trans, node, extent_op,
1704 					   insert_reserved);
1705 	else
1706 		BUG();
1707 	if (ret && insert_reserved)
1708 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1709 	return ret;
1710 }
1711 
1712 static inline struct btrfs_delayed_ref_node *
1713 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1714 {
1715 	struct btrfs_delayed_ref_node *ref;
1716 
1717 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1718 		return NULL;
1719 
1720 	/*
1721 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1722 	 * This is to prevent a ref count from going down to zero, which deletes
1723 	 * the extent item from the extent tree, when there still are references
1724 	 * to add, which would fail because they would not find the extent item.
1725 	 */
1726 	if (!list_empty(&head->ref_add_list))
1727 		return list_first_entry(&head->ref_add_list,
1728 				struct btrfs_delayed_ref_node, add_list);
1729 
1730 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1731 		       struct btrfs_delayed_ref_node, ref_node);
1732 	ASSERT(list_empty(&ref->add_list));
1733 	return ref;
1734 }
1735 
1736 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1737 				      struct btrfs_delayed_ref_head *head)
1738 {
1739 	spin_lock(&delayed_refs->lock);
1740 	head->processing = 0;
1741 	delayed_refs->num_heads_ready++;
1742 	spin_unlock(&delayed_refs->lock);
1743 	btrfs_delayed_ref_unlock(head);
1744 }
1745 
1746 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1747 				struct btrfs_delayed_ref_head *head)
1748 {
1749 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1750 
1751 	if (!extent_op)
1752 		return NULL;
1753 
1754 	if (head->must_insert_reserved) {
1755 		head->extent_op = NULL;
1756 		btrfs_free_delayed_extent_op(extent_op);
1757 		return NULL;
1758 	}
1759 	return extent_op;
1760 }
1761 
1762 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1763 				     struct btrfs_delayed_ref_head *head)
1764 {
1765 	struct btrfs_delayed_extent_op *extent_op;
1766 	int ret;
1767 
1768 	extent_op = cleanup_extent_op(head);
1769 	if (!extent_op)
1770 		return 0;
1771 	head->extent_op = NULL;
1772 	spin_unlock(&head->lock);
1773 	ret = run_delayed_extent_op(trans, head, extent_op);
1774 	btrfs_free_delayed_extent_op(extent_op);
1775 	return ret ? ret : 1;
1776 }
1777 
1778 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1779 				  struct btrfs_delayed_ref_root *delayed_refs,
1780 				  struct btrfs_delayed_ref_head *head)
1781 {
1782 	int nr_items = 1;	/* Dropping this ref head update. */
1783 
1784 	/*
1785 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1786 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1787 	 */
1788 	if (head->total_ref_mod < 0 && head->is_data) {
1789 		spin_lock(&delayed_refs->lock);
1790 		delayed_refs->pending_csums -= head->num_bytes;
1791 		spin_unlock(&delayed_refs->lock);
1792 		nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1793 	}
1794 
1795 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1796 }
1797 
1798 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1799 			    struct btrfs_delayed_ref_head *head)
1800 {
1801 
1802 	struct btrfs_fs_info *fs_info = trans->fs_info;
1803 	struct btrfs_delayed_ref_root *delayed_refs;
1804 	int ret;
1805 
1806 	delayed_refs = &trans->transaction->delayed_refs;
1807 
1808 	ret = run_and_cleanup_extent_op(trans, head);
1809 	if (ret < 0) {
1810 		unselect_delayed_ref_head(delayed_refs, head);
1811 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1812 		return ret;
1813 	} else if (ret) {
1814 		return ret;
1815 	}
1816 
1817 	/*
1818 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1819 	 * and then re-check to make sure nobody got added.
1820 	 */
1821 	spin_unlock(&head->lock);
1822 	spin_lock(&delayed_refs->lock);
1823 	spin_lock(&head->lock);
1824 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1825 		spin_unlock(&head->lock);
1826 		spin_unlock(&delayed_refs->lock);
1827 		return 1;
1828 	}
1829 	btrfs_delete_ref_head(delayed_refs, head);
1830 	spin_unlock(&head->lock);
1831 	spin_unlock(&delayed_refs->lock);
1832 
1833 	if (head->must_insert_reserved) {
1834 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1835 		if (head->is_data) {
1836 			struct btrfs_root *csum_root;
1837 
1838 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1839 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1840 					      head->num_bytes);
1841 		}
1842 	}
1843 
1844 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1845 
1846 	trace_run_delayed_ref_head(fs_info, head, 0);
1847 	btrfs_delayed_ref_unlock(head);
1848 	btrfs_put_delayed_ref_head(head);
1849 	return ret;
1850 }
1851 
1852 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1853 					struct btrfs_trans_handle *trans)
1854 {
1855 	struct btrfs_delayed_ref_root *delayed_refs =
1856 		&trans->transaction->delayed_refs;
1857 	struct btrfs_delayed_ref_head *head = NULL;
1858 	int ret;
1859 
1860 	spin_lock(&delayed_refs->lock);
1861 	head = btrfs_select_ref_head(delayed_refs);
1862 	if (!head) {
1863 		spin_unlock(&delayed_refs->lock);
1864 		return head;
1865 	}
1866 
1867 	/*
1868 	 * Grab the lock that says we are going to process all the refs for
1869 	 * this head
1870 	 */
1871 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1872 	spin_unlock(&delayed_refs->lock);
1873 
1874 	/*
1875 	 * We may have dropped the spin lock to get the head mutex lock, and
1876 	 * that might have given someone else time to free the head.  If that's
1877 	 * true, it has been removed from our list and we can move on.
1878 	 */
1879 	if (ret == -EAGAIN)
1880 		head = ERR_PTR(-EAGAIN);
1881 
1882 	return head;
1883 }
1884 
1885 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1886 				    struct btrfs_delayed_ref_head *locked_ref,
1887 				    unsigned long *run_refs)
1888 {
1889 	struct btrfs_fs_info *fs_info = trans->fs_info;
1890 	struct btrfs_delayed_ref_root *delayed_refs;
1891 	struct btrfs_delayed_extent_op *extent_op;
1892 	struct btrfs_delayed_ref_node *ref;
1893 	int must_insert_reserved = 0;
1894 	int ret;
1895 
1896 	delayed_refs = &trans->transaction->delayed_refs;
1897 
1898 	lockdep_assert_held(&locked_ref->mutex);
1899 	lockdep_assert_held(&locked_ref->lock);
1900 
1901 	while ((ref = select_delayed_ref(locked_ref))) {
1902 		if (ref->seq &&
1903 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1904 			spin_unlock(&locked_ref->lock);
1905 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1906 			return -EAGAIN;
1907 		}
1908 
1909 		(*run_refs)++;
1910 		ref->in_tree = 0;
1911 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1912 		RB_CLEAR_NODE(&ref->ref_node);
1913 		if (!list_empty(&ref->add_list))
1914 			list_del(&ref->add_list);
1915 		/*
1916 		 * When we play the delayed ref, also correct the ref_mod on
1917 		 * head
1918 		 */
1919 		switch (ref->action) {
1920 		case BTRFS_ADD_DELAYED_REF:
1921 		case BTRFS_ADD_DELAYED_EXTENT:
1922 			locked_ref->ref_mod -= ref->ref_mod;
1923 			break;
1924 		case BTRFS_DROP_DELAYED_REF:
1925 			locked_ref->ref_mod += ref->ref_mod;
1926 			break;
1927 		default:
1928 			WARN_ON(1);
1929 		}
1930 		atomic_dec(&delayed_refs->num_entries);
1931 
1932 		/*
1933 		 * Record the must_insert_reserved flag before we drop the
1934 		 * spin lock.
1935 		 */
1936 		must_insert_reserved = locked_ref->must_insert_reserved;
1937 		locked_ref->must_insert_reserved = 0;
1938 
1939 		extent_op = locked_ref->extent_op;
1940 		locked_ref->extent_op = NULL;
1941 		spin_unlock(&locked_ref->lock);
1942 
1943 		ret = run_one_delayed_ref(trans, ref, extent_op,
1944 					  must_insert_reserved);
1945 
1946 		btrfs_free_delayed_extent_op(extent_op);
1947 		if (ret) {
1948 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1949 			btrfs_put_delayed_ref(ref);
1950 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1951 				    ret);
1952 			return ret;
1953 		}
1954 
1955 		btrfs_put_delayed_ref(ref);
1956 		cond_resched();
1957 
1958 		spin_lock(&locked_ref->lock);
1959 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 /*
1966  * Returns 0 on success or if called with an already aborted transaction.
1967  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1968  */
1969 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
1970 					     unsigned long nr)
1971 {
1972 	struct btrfs_fs_info *fs_info = trans->fs_info;
1973 	struct btrfs_delayed_ref_root *delayed_refs;
1974 	struct btrfs_delayed_ref_head *locked_ref = NULL;
1975 	ktime_t start = ktime_get();
1976 	int ret;
1977 	unsigned long count = 0;
1978 	unsigned long actual_count = 0;
1979 
1980 	delayed_refs = &trans->transaction->delayed_refs;
1981 	do {
1982 		if (!locked_ref) {
1983 			locked_ref = btrfs_obtain_ref_head(trans);
1984 			if (IS_ERR_OR_NULL(locked_ref)) {
1985 				if (PTR_ERR(locked_ref) == -EAGAIN) {
1986 					continue;
1987 				} else {
1988 					break;
1989 				}
1990 			}
1991 			count++;
1992 		}
1993 		/*
1994 		 * We need to try and merge add/drops of the same ref since we
1995 		 * can run into issues with relocate dropping the implicit ref
1996 		 * and then it being added back again before the drop can
1997 		 * finish.  If we merged anything we need to re-loop so we can
1998 		 * get a good ref.
1999 		 * Or we can get node references of the same type that weren't
2000 		 * merged when created due to bumps in the tree mod seq, and
2001 		 * we need to merge them to prevent adding an inline extent
2002 		 * backref before dropping it (triggering a BUG_ON at
2003 		 * insert_inline_extent_backref()).
2004 		 */
2005 		spin_lock(&locked_ref->lock);
2006 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2007 
2008 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2009 						      &actual_count);
2010 		if (ret < 0 && ret != -EAGAIN) {
2011 			/*
2012 			 * Error, btrfs_run_delayed_refs_for_head already
2013 			 * unlocked everything so just bail out
2014 			 */
2015 			return ret;
2016 		} else if (!ret) {
2017 			/*
2018 			 * Success, perform the usual cleanup of a processed
2019 			 * head
2020 			 */
2021 			ret = cleanup_ref_head(trans, locked_ref);
2022 			if (ret > 0 ) {
2023 				/* We dropped our lock, we need to loop. */
2024 				ret = 0;
2025 				continue;
2026 			} else if (ret) {
2027 				return ret;
2028 			}
2029 		}
2030 
2031 		/*
2032 		 * Either success case or btrfs_run_delayed_refs_for_head
2033 		 * returned -EAGAIN, meaning we need to select another head
2034 		 */
2035 
2036 		locked_ref = NULL;
2037 		cond_resched();
2038 	} while ((nr != -1 && count < nr) || locked_ref);
2039 
2040 	/*
2041 	 * We don't want to include ref heads since we can have empty ref heads
2042 	 * and those will drastically skew our runtime down since we just do
2043 	 * accounting, no actual extent tree updates.
2044 	 */
2045 	if (actual_count > 0) {
2046 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2047 		u64 avg;
2048 
2049 		/*
2050 		 * We weigh the current average higher than our current runtime
2051 		 * to avoid large swings in the average.
2052 		 */
2053 		spin_lock(&delayed_refs->lock);
2054 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2055 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2056 		spin_unlock(&delayed_refs->lock);
2057 	}
2058 	return 0;
2059 }
2060 
2061 #ifdef SCRAMBLE_DELAYED_REFS
2062 /*
2063  * Normally delayed refs get processed in ascending bytenr order. This
2064  * correlates in most cases to the order added. To expose dependencies on this
2065  * order, we start to process the tree in the middle instead of the beginning
2066  */
2067 static u64 find_middle(struct rb_root *root)
2068 {
2069 	struct rb_node *n = root->rb_node;
2070 	struct btrfs_delayed_ref_node *entry;
2071 	int alt = 1;
2072 	u64 middle;
2073 	u64 first = 0, last = 0;
2074 
2075 	n = rb_first(root);
2076 	if (n) {
2077 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2078 		first = entry->bytenr;
2079 	}
2080 	n = rb_last(root);
2081 	if (n) {
2082 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2083 		last = entry->bytenr;
2084 	}
2085 	n = root->rb_node;
2086 
2087 	while (n) {
2088 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2089 		WARN_ON(!entry->in_tree);
2090 
2091 		middle = entry->bytenr;
2092 
2093 		if (alt)
2094 			n = n->rb_left;
2095 		else
2096 			n = n->rb_right;
2097 
2098 		alt = 1 - alt;
2099 	}
2100 	return middle;
2101 }
2102 #endif
2103 
2104 /*
2105  * this starts processing the delayed reference count updates and
2106  * extent insertions we have queued up so far.  count can be
2107  * 0, which means to process everything in the tree at the start
2108  * of the run (but not newly added entries), or it can be some target
2109  * number you'd like to process.
2110  *
2111  * Returns 0 on success or if called with an aborted transaction
2112  * Returns <0 on error and aborts the transaction
2113  */
2114 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2115 			   unsigned long count)
2116 {
2117 	struct btrfs_fs_info *fs_info = trans->fs_info;
2118 	struct rb_node *node;
2119 	struct btrfs_delayed_ref_root *delayed_refs;
2120 	struct btrfs_delayed_ref_head *head;
2121 	int ret;
2122 	int run_all = count == (unsigned long)-1;
2123 
2124 	/* We'll clean this up in btrfs_cleanup_transaction */
2125 	if (TRANS_ABORTED(trans))
2126 		return 0;
2127 
2128 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2129 		return 0;
2130 
2131 	delayed_refs = &trans->transaction->delayed_refs;
2132 	if (count == 0)
2133 		count = delayed_refs->num_heads_ready;
2134 
2135 again:
2136 #ifdef SCRAMBLE_DELAYED_REFS
2137 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2138 #endif
2139 	ret = __btrfs_run_delayed_refs(trans, count);
2140 	if (ret < 0) {
2141 		btrfs_abort_transaction(trans, ret);
2142 		return ret;
2143 	}
2144 
2145 	if (run_all) {
2146 		btrfs_create_pending_block_groups(trans);
2147 
2148 		spin_lock(&delayed_refs->lock);
2149 		node = rb_first_cached(&delayed_refs->href_root);
2150 		if (!node) {
2151 			spin_unlock(&delayed_refs->lock);
2152 			goto out;
2153 		}
2154 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2155 				href_node);
2156 		refcount_inc(&head->refs);
2157 		spin_unlock(&delayed_refs->lock);
2158 
2159 		/* Mutex was contended, block until it's released and retry. */
2160 		mutex_lock(&head->mutex);
2161 		mutex_unlock(&head->mutex);
2162 
2163 		btrfs_put_delayed_ref_head(head);
2164 		cond_resched();
2165 		goto again;
2166 	}
2167 out:
2168 	return 0;
2169 }
2170 
2171 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2172 				struct extent_buffer *eb, u64 flags,
2173 				int level)
2174 {
2175 	struct btrfs_delayed_extent_op *extent_op;
2176 	int ret;
2177 
2178 	extent_op = btrfs_alloc_delayed_extent_op();
2179 	if (!extent_op)
2180 		return -ENOMEM;
2181 
2182 	extent_op->flags_to_set = flags;
2183 	extent_op->update_flags = true;
2184 	extent_op->update_key = false;
2185 	extent_op->level = level;
2186 
2187 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2188 	if (ret)
2189 		btrfs_free_delayed_extent_op(extent_op);
2190 	return ret;
2191 }
2192 
2193 static noinline int check_delayed_ref(struct btrfs_root *root,
2194 				      struct btrfs_path *path,
2195 				      u64 objectid, u64 offset, u64 bytenr)
2196 {
2197 	struct btrfs_delayed_ref_head *head;
2198 	struct btrfs_delayed_ref_node *ref;
2199 	struct btrfs_delayed_data_ref *data_ref;
2200 	struct btrfs_delayed_ref_root *delayed_refs;
2201 	struct btrfs_transaction *cur_trans;
2202 	struct rb_node *node;
2203 	int ret = 0;
2204 
2205 	spin_lock(&root->fs_info->trans_lock);
2206 	cur_trans = root->fs_info->running_transaction;
2207 	if (cur_trans)
2208 		refcount_inc(&cur_trans->use_count);
2209 	spin_unlock(&root->fs_info->trans_lock);
2210 	if (!cur_trans)
2211 		return 0;
2212 
2213 	delayed_refs = &cur_trans->delayed_refs;
2214 	spin_lock(&delayed_refs->lock);
2215 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2216 	if (!head) {
2217 		spin_unlock(&delayed_refs->lock);
2218 		btrfs_put_transaction(cur_trans);
2219 		return 0;
2220 	}
2221 
2222 	if (!mutex_trylock(&head->mutex)) {
2223 		refcount_inc(&head->refs);
2224 		spin_unlock(&delayed_refs->lock);
2225 
2226 		btrfs_release_path(path);
2227 
2228 		/*
2229 		 * Mutex was contended, block until it's released and let
2230 		 * caller try again
2231 		 */
2232 		mutex_lock(&head->mutex);
2233 		mutex_unlock(&head->mutex);
2234 		btrfs_put_delayed_ref_head(head);
2235 		btrfs_put_transaction(cur_trans);
2236 		return -EAGAIN;
2237 	}
2238 	spin_unlock(&delayed_refs->lock);
2239 
2240 	spin_lock(&head->lock);
2241 	/*
2242 	 * XXX: We should replace this with a proper search function in the
2243 	 * future.
2244 	 */
2245 	for (node = rb_first_cached(&head->ref_tree); node;
2246 	     node = rb_next(node)) {
2247 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2248 		/* If it's a shared ref we know a cross reference exists */
2249 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2250 			ret = 1;
2251 			break;
2252 		}
2253 
2254 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2255 
2256 		/*
2257 		 * If our ref doesn't match the one we're currently looking at
2258 		 * then we have a cross reference.
2259 		 */
2260 		if (data_ref->root != root->root_key.objectid ||
2261 		    data_ref->objectid != objectid ||
2262 		    data_ref->offset != offset) {
2263 			ret = 1;
2264 			break;
2265 		}
2266 	}
2267 	spin_unlock(&head->lock);
2268 	mutex_unlock(&head->mutex);
2269 	btrfs_put_transaction(cur_trans);
2270 	return ret;
2271 }
2272 
2273 static noinline int check_committed_ref(struct btrfs_root *root,
2274 					struct btrfs_path *path,
2275 					u64 objectid, u64 offset, u64 bytenr,
2276 					bool strict)
2277 {
2278 	struct btrfs_fs_info *fs_info = root->fs_info;
2279 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2280 	struct extent_buffer *leaf;
2281 	struct btrfs_extent_data_ref *ref;
2282 	struct btrfs_extent_inline_ref *iref;
2283 	struct btrfs_extent_item *ei;
2284 	struct btrfs_key key;
2285 	u32 item_size;
2286 	int type;
2287 	int ret;
2288 
2289 	key.objectid = bytenr;
2290 	key.offset = (u64)-1;
2291 	key.type = BTRFS_EXTENT_ITEM_KEY;
2292 
2293 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2294 	if (ret < 0)
2295 		goto out;
2296 	BUG_ON(ret == 0); /* Corruption */
2297 
2298 	ret = -ENOENT;
2299 	if (path->slots[0] == 0)
2300 		goto out;
2301 
2302 	path->slots[0]--;
2303 	leaf = path->nodes[0];
2304 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2305 
2306 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2307 		goto out;
2308 
2309 	ret = 1;
2310 	item_size = btrfs_item_size(leaf, path->slots[0]);
2311 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2312 
2313 	/* If extent item has more than 1 inline ref then it's shared */
2314 	if (item_size != sizeof(*ei) +
2315 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2316 		goto out;
2317 
2318 	/*
2319 	 * If extent created before last snapshot => it's shared unless the
2320 	 * snapshot has been deleted. Use the heuristic if strict is false.
2321 	 */
2322 	if (!strict &&
2323 	    (btrfs_extent_generation(leaf, ei) <=
2324 	     btrfs_root_last_snapshot(&root->root_item)))
2325 		goto out;
2326 
2327 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2328 
2329 	/* If this extent has SHARED_DATA_REF then it's shared */
2330 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2331 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2332 		goto out;
2333 
2334 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2335 	if (btrfs_extent_refs(leaf, ei) !=
2336 	    btrfs_extent_data_ref_count(leaf, ref) ||
2337 	    btrfs_extent_data_ref_root(leaf, ref) !=
2338 	    root->root_key.objectid ||
2339 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2340 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2341 		goto out;
2342 
2343 	ret = 0;
2344 out:
2345 	return ret;
2346 }
2347 
2348 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2349 			  u64 bytenr, bool strict, struct btrfs_path *path)
2350 {
2351 	int ret;
2352 
2353 	do {
2354 		ret = check_committed_ref(root, path, objectid,
2355 					  offset, bytenr, strict);
2356 		if (ret && ret != -ENOENT)
2357 			goto out;
2358 
2359 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2360 	} while (ret == -EAGAIN);
2361 
2362 out:
2363 	btrfs_release_path(path);
2364 	if (btrfs_is_data_reloc_root(root))
2365 		WARN_ON(ret > 0);
2366 	return ret;
2367 }
2368 
2369 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2370 			   struct btrfs_root *root,
2371 			   struct extent_buffer *buf,
2372 			   int full_backref, int inc)
2373 {
2374 	struct btrfs_fs_info *fs_info = root->fs_info;
2375 	u64 bytenr;
2376 	u64 num_bytes;
2377 	u64 parent;
2378 	u64 ref_root;
2379 	u32 nritems;
2380 	struct btrfs_key key;
2381 	struct btrfs_file_extent_item *fi;
2382 	struct btrfs_ref generic_ref = { 0 };
2383 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2384 	int i;
2385 	int action;
2386 	int level;
2387 	int ret = 0;
2388 
2389 	if (btrfs_is_testing(fs_info))
2390 		return 0;
2391 
2392 	ref_root = btrfs_header_owner(buf);
2393 	nritems = btrfs_header_nritems(buf);
2394 	level = btrfs_header_level(buf);
2395 
2396 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2397 		return 0;
2398 
2399 	if (full_backref)
2400 		parent = buf->start;
2401 	else
2402 		parent = 0;
2403 	if (inc)
2404 		action = BTRFS_ADD_DELAYED_REF;
2405 	else
2406 		action = BTRFS_DROP_DELAYED_REF;
2407 
2408 	for (i = 0; i < nritems; i++) {
2409 		if (level == 0) {
2410 			btrfs_item_key_to_cpu(buf, &key, i);
2411 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2412 				continue;
2413 			fi = btrfs_item_ptr(buf, i,
2414 					    struct btrfs_file_extent_item);
2415 			if (btrfs_file_extent_type(buf, fi) ==
2416 			    BTRFS_FILE_EXTENT_INLINE)
2417 				continue;
2418 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2419 			if (bytenr == 0)
2420 				continue;
2421 
2422 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2423 			key.offset -= btrfs_file_extent_offset(buf, fi);
2424 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2425 					       num_bytes, parent);
2426 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2427 					    key.offset, root->root_key.objectid,
2428 					    for_reloc);
2429 			if (inc)
2430 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2431 			else
2432 				ret = btrfs_free_extent(trans, &generic_ref);
2433 			if (ret)
2434 				goto fail;
2435 		} else {
2436 			bytenr = btrfs_node_blockptr(buf, i);
2437 			num_bytes = fs_info->nodesize;
2438 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2439 					       num_bytes, parent);
2440 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2441 					    root->root_key.objectid, for_reloc);
2442 			if (inc)
2443 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2444 			else
2445 				ret = btrfs_free_extent(trans, &generic_ref);
2446 			if (ret)
2447 				goto fail;
2448 		}
2449 	}
2450 	return 0;
2451 fail:
2452 	return ret;
2453 }
2454 
2455 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2456 		  struct extent_buffer *buf, int full_backref)
2457 {
2458 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2459 }
2460 
2461 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2462 		  struct extent_buffer *buf, int full_backref)
2463 {
2464 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2465 }
2466 
2467 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2468 {
2469 	struct btrfs_fs_info *fs_info = root->fs_info;
2470 	u64 flags;
2471 	u64 ret;
2472 
2473 	if (data)
2474 		flags = BTRFS_BLOCK_GROUP_DATA;
2475 	else if (root == fs_info->chunk_root)
2476 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2477 	else
2478 		flags = BTRFS_BLOCK_GROUP_METADATA;
2479 
2480 	ret = btrfs_get_alloc_profile(fs_info, flags);
2481 	return ret;
2482 }
2483 
2484 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2485 {
2486 	struct rb_node *leftmost;
2487 	u64 bytenr = 0;
2488 
2489 	read_lock(&fs_info->block_group_cache_lock);
2490 	/* Get the block group with the lowest logical start address. */
2491 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2492 	if (leftmost) {
2493 		struct btrfs_block_group *bg;
2494 
2495 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2496 		bytenr = bg->start;
2497 	}
2498 	read_unlock(&fs_info->block_group_cache_lock);
2499 
2500 	return bytenr;
2501 }
2502 
2503 static int pin_down_extent(struct btrfs_trans_handle *trans,
2504 			   struct btrfs_block_group *cache,
2505 			   u64 bytenr, u64 num_bytes, int reserved)
2506 {
2507 	struct btrfs_fs_info *fs_info = cache->fs_info;
2508 
2509 	spin_lock(&cache->space_info->lock);
2510 	spin_lock(&cache->lock);
2511 	cache->pinned += num_bytes;
2512 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2513 					     num_bytes);
2514 	if (reserved) {
2515 		cache->reserved -= num_bytes;
2516 		cache->space_info->bytes_reserved -= num_bytes;
2517 	}
2518 	spin_unlock(&cache->lock);
2519 	spin_unlock(&cache->space_info->lock);
2520 
2521 	set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
2522 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2523 	return 0;
2524 }
2525 
2526 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2527 		     u64 bytenr, u64 num_bytes, int reserved)
2528 {
2529 	struct btrfs_block_group *cache;
2530 
2531 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2532 	BUG_ON(!cache); /* Logic error */
2533 
2534 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2535 
2536 	btrfs_put_block_group(cache);
2537 	return 0;
2538 }
2539 
2540 /*
2541  * this function must be called within transaction
2542  */
2543 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2544 				    u64 bytenr, u64 num_bytes)
2545 {
2546 	struct btrfs_block_group *cache;
2547 	int ret;
2548 
2549 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2550 	if (!cache)
2551 		return -EINVAL;
2552 
2553 	/*
2554 	 * pull in the free space cache (if any) so that our pin
2555 	 * removes the free space from the cache.  We have load_only set
2556 	 * to one because the slow code to read in the free extents does check
2557 	 * the pinned extents.
2558 	 */
2559 	btrfs_cache_block_group(cache, 1);
2560 	/*
2561 	 * Make sure we wait until the cache is completely built in case it is
2562 	 * missing or is invalid and therefore needs to be rebuilt.
2563 	 */
2564 	ret = btrfs_wait_block_group_cache_done(cache);
2565 	if (ret)
2566 		goto out;
2567 
2568 	pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2569 
2570 	/* remove us from the free space cache (if we're there at all) */
2571 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2572 out:
2573 	btrfs_put_block_group(cache);
2574 	return ret;
2575 }
2576 
2577 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2578 				   u64 start, u64 num_bytes)
2579 {
2580 	int ret;
2581 	struct btrfs_block_group *block_group;
2582 
2583 	block_group = btrfs_lookup_block_group(fs_info, start);
2584 	if (!block_group)
2585 		return -EINVAL;
2586 
2587 	btrfs_cache_block_group(block_group, 1);
2588 	/*
2589 	 * Make sure we wait until the cache is completely built in case it is
2590 	 * missing or is invalid and therefore needs to be rebuilt.
2591 	 */
2592 	ret = btrfs_wait_block_group_cache_done(block_group);
2593 	if (ret)
2594 		goto out;
2595 
2596 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2597 out:
2598 	btrfs_put_block_group(block_group);
2599 	return ret;
2600 }
2601 
2602 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2603 {
2604 	struct btrfs_fs_info *fs_info = eb->fs_info;
2605 	struct btrfs_file_extent_item *item;
2606 	struct btrfs_key key;
2607 	int found_type;
2608 	int i;
2609 	int ret = 0;
2610 
2611 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2612 		return 0;
2613 
2614 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2615 		btrfs_item_key_to_cpu(eb, &key, i);
2616 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2617 			continue;
2618 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2619 		found_type = btrfs_file_extent_type(eb, item);
2620 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2621 			continue;
2622 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2623 			continue;
2624 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2625 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2626 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2627 		if (ret)
2628 			break;
2629 	}
2630 
2631 	return ret;
2632 }
2633 
2634 static void
2635 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2636 {
2637 	atomic_inc(&bg->reservations);
2638 }
2639 
2640 /*
2641  * Returns the free cluster for the given space info and sets empty_cluster to
2642  * what it should be based on the mount options.
2643  */
2644 static struct btrfs_free_cluster *
2645 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2646 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2647 {
2648 	struct btrfs_free_cluster *ret = NULL;
2649 
2650 	*empty_cluster = 0;
2651 	if (btrfs_mixed_space_info(space_info))
2652 		return ret;
2653 
2654 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2655 		ret = &fs_info->meta_alloc_cluster;
2656 		if (btrfs_test_opt(fs_info, SSD))
2657 			*empty_cluster = SZ_2M;
2658 		else
2659 			*empty_cluster = SZ_64K;
2660 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2661 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2662 		*empty_cluster = SZ_2M;
2663 		ret = &fs_info->data_alloc_cluster;
2664 	}
2665 
2666 	return ret;
2667 }
2668 
2669 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2670 			      u64 start, u64 end,
2671 			      const bool return_free_space)
2672 {
2673 	struct btrfs_block_group *cache = NULL;
2674 	struct btrfs_space_info *space_info;
2675 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2676 	struct btrfs_free_cluster *cluster = NULL;
2677 	u64 len;
2678 	u64 total_unpinned = 0;
2679 	u64 empty_cluster = 0;
2680 	bool readonly;
2681 
2682 	while (start <= end) {
2683 		readonly = false;
2684 		if (!cache ||
2685 		    start >= cache->start + cache->length) {
2686 			if (cache)
2687 				btrfs_put_block_group(cache);
2688 			total_unpinned = 0;
2689 			cache = btrfs_lookup_block_group(fs_info, start);
2690 			BUG_ON(!cache); /* Logic error */
2691 
2692 			cluster = fetch_cluster_info(fs_info,
2693 						     cache->space_info,
2694 						     &empty_cluster);
2695 			empty_cluster <<= 1;
2696 		}
2697 
2698 		len = cache->start + cache->length - start;
2699 		len = min(len, end + 1 - start);
2700 
2701 		down_read(&fs_info->commit_root_sem);
2702 		if (start < cache->last_byte_to_unpin && return_free_space) {
2703 			u64 add_len = min(len, cache->last_byte_to_unpin - start);
2704 
2705 			btrfs_add_free_space(cache, start, add_len);
2706 		}
2707 		up_read(&fs_info->commit_root_sem);
2708 
2709 		start += len;
2710 		total_unpinned += len;
2711 		space_info = cache->space_info;
2712 
2713 		/*
2714 		 * If this space cluster has been marked as fragmented and we've
2715 		 * unpinned enough in this block group to potentially allow a
2716 		 * cluster to be created inside of it go ahead and clear the
2717 		 * fragmented check.
2718 		 */
2719 		if (cluster && cluster->fragmented &&
2720 		    total_unpinned > empty_cluster) {
2721 			spin_lock(&cluster->lock);
2722 			cluster->fragmented = 0;
2723 			spin_unlock(&cluster->lock);
2724 		}
2725 
2726 		spin_lock(&space_info->lock);
2727 		spin_lock(&cache->lock);
2728 		cache->pinned -= len;
2729 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2730 		space_info->max_extent_size = 0;
2731 		if (cache->ro) {
2732 			space_info->bytes_readonly += len;
2733 			readonly = true;
2734 		} else if (btrfs_is_zoned(fs_info)) {
2735 			/* Need reset before reusing in a zoned block group */
2736 			space_info->bytes_zone_unusable += len;
2737 			readonly = true;
2738 		}
2739 		spin_unlock(&cache->lock);
2740 		if (!readonly && return_free_space &&
2741 		    global_rsv->space_info == space_info) {
2742 			spin_lock(&global_rsv->lock);
2743 			if (!global_rsv->full) {
2744 				u64 to_add = min(len, global_rsv->size -
2745 						      global_rsv->reserved);
2746 
2747 				global_rsv->reserved += to_add;
2748 				btrfs_space_info_update_bytes_may_use(fs_info,
2749 						space_info, to_add);
2750 				if (global_rsv->reserved >= global_rsv->size)
2751 					global_rsv->full = 1;
2752 				len -= to_add;
2753 			}
2754 			spin_unlock(&global_rsv->lock);
2755 		}
2756 		/* Add to any tickets we may have */
2757 		if (!readonly && return_free_space && len)
2758 			btrfs_try_granting_tickets(fs_info, space_info);
2759 		spin_unlock(&space_info->lock);
2760 	}
2761 
2762 	if (cache)
2763 		btrfs_put_block_group(cache);
2764 	return 0;
2765 }
2766 
2767 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2768 {
2769 	struct btrfs_fs_info *fs_info = trans->fs_info;
2770 	struct btrfs_block_group *block_group, *tmp;
2771 	struct list_head *deleted_bgs;
2772 	struct extent_io_tree *unpin;
2773 	u64 start;
2774 	u64 end;
2775 	int ret;
2776 
2777 	unpin = &trans->transaction->pinned_extents;
2778 
2779 	while (!TRANS_ABORTED(trans)) {
2780 		struct extent_state *cached_state = NULL;
2781 
2782 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2783 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2784 					    EXTENT_DIRTY, &cached_state);
2785 		if (ret) {
2786 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2787 			break;
2788 		}
2789 
2790 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2791 			ret = btrfs_discard_extent(fs_info, start,
2792 						   end + 1 - start, NULL);
2793 
2794 		clear_extent_dirty(unpin, start, end, &cached_state);
2795 		unpin_extent_range(fs_info, start, end, true);
2796 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2797 		free_extent_state(cached_state);
2798 		cond_resched();
2799 	}
2800 
2801 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2802 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2803 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2804 	}
2805 
2806 	/*
2807 	 * Transaction is finished.  We don't need the lock anymore.  We
2808 	 * do need to clean up the block groups in case of a transaction
2809 	 * abort.
2810 	 */
2811 	deleted_bgs = &trans->transaction->deleted_bgs;
2812 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2813 		u64 trimmed = 0;
2814 
2815 		ret = -EROFS;
2816 		if (!TRANS_ABORTED(trans))
2817 			ret = btrfs_discard_extent(fs_info,
2818 						   block_group->start,
2819 						   block_group->length,
2820 						   &trimmed);
2821 
2822 		list_del_init(&block_group->bg_list);
2823 		btrfs_unfreeze_block_group(block_group);
2824 		btrfs_put_block_group(block_group);
2825 
2826 		if (ret) {
2827 			const char *errstr = btrfs_decode_error(ret);
2828 			btrfs_warn(fs_info,
2829 			   "discard failed while removing blockgroup: errno=%d %s",
2830 				   ret, errstr);
2831 		}
2832 	}
2833 
2834 	return 0;
2835 }
2836 
2837 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2838 				     u64 bytenr, u64 num_bytes, bool is_data)
2839 {
2840 	int ret;
2841 
2842 	if (is_data) {
2843 		struct btrfs_root *csum_root;
2844 
2845 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2846 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2847 		if (ret) {
2848 			btrfs_abort_transaction(trans, ret);
2849 			return ret;
2850 		}
2851 	}
2852 
2853 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2854 	if (ret) {
2855 		btrfs_abort_transaction(trans, ret);
2856 		return ret;
2857 	}
2858 
2859 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2860 	if (ret)
2861 		btrfs_abort_transaction(trans, ret);
2862 
2863 	return ret;
2864 }
2865 
2866 /*
2867  * Drop one or more refs of @node.
2868  *
2869  * 1. Locate the extent refs.
2870  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2871  *    Locate it, then reduce the refs number or remove the ref line completely.
2872  *
2873  * 2. Update the refs count in EXTENT/METADATA_ITEM
2874  *
2875  * Inline backref case:
2876  *
2877  * in extent tree we have:
2878  *
2879  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2880  *		refs 2 gen 6 flags DATA
2881  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2882  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
2883  *
2884  * This function gets called with:
2885  *
2886  *    node->bytenr = 13631488
2887  *    node->num_bytes = 1048576
2888  *    root_objectid = FS_TREE
2889  *    owner_objectid = 257
2890  *    owner_offset = 0
2891  *    refs_to_drop = 1
2892  *
2893  * Then we should get some like:
2894  *
2895  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2896  *		refs 1 gen 6 flags DATA
2897  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
2898  *
2899  * Keyed backref case:
2900  *
2901  * in extent tree we have:
2902  *
2903  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2904  *		refs 754 gen 6 flags DATA
2905  *	[...]
2906  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2907  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
2908  *
2909  * This function get called with:
2910  *
2911  *    node->bytenr = 13631488
2912  *    node->num_bytes = 1048576
2913  *    root_objectid = FS_TREE
2914  *    owner_objectid = 866
2915  *    owner_offset = 0
2916  *    refs_to_drop = 1
2917  *
2918  * Then we should get some like:
2919  *
2920  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2921  *		refs 753 gen 6 flags DATA
2922  *
2923  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2924  */
2925 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2926 			       struct btrfs_delayed_ref_node *node, u64 parent,
2927 			       u64 root_objectid, u64 owner_objectid,
2928 			       u64 owner_offset, int refs_to_drop,
2929 			       struct btrfs_delayed_extent_op *extent_op)
2930 {
2931 	struct btrfs_fs_info *info = trans->fs_info;
2932 	struct btrfs_key key;
2933 	struct btrfs_path *path;
2934 	struct btrfs_root *extent_root;
2935 	struct extent_buffer *leaf;
2936 	struct btrfs_extent_item *ei;
2937 	struct btrfs_extent_inline_ref *iref;
2938 	int ret;
2939 	int is_data;
2940 	int extent_slot = 0;
2941 	int found_extent = 0;
2942 	int num_to_del = 1;
2943 	u32 item_size;
2944 	u64 refs;
2945 	u64 bytenr = node->bytenr;
2946 	u64 num_bytes = node->num_bytes;
2947 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2948 
2949 	extent_root = btrfs_extent_root(info, bytenr);
2950 	ASSERT(extent_root);
2951 
2952 	path = btrfs_alloc_path();
2953 	if (!path)
2954 		return -ENOMEM;
2955 
2956 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2957 
2958 	if (!is_data && refs_to_drop != 1) {
2959 		btrfs_crit(info,
2960 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2961 			   node->bytenr, refs_to_drop);
2962 		ret = -EINVAL;
2963 		btrfs_abort_transaction(trans, ret);
2964 		goto out;
2965 	}
2966 
2967 	if (is_data)
2968 		skinny_metadata = false;
2969 
2970 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2971 				    parent, root_objectid, owner_objectid,
2972 				    owner_offset);
2973 	if (ret == 0) {
2974 		/*
2975 		 * Either the inline backref or the SHARED_DATA_REF/
2976 		 * SHARED_BLOCK_REF is found
2977 		 *
2978 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2979 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2980 		 */
2981 		extent_slot = path->slots[0];
2982 		while (extent_slot >= 0) {
2983 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2984 					      extent_slot);
2985 			if (key.objectid != bytenr)
2986 				break;
2987 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
2988 			    key.offset == num_bytes) {
2989 				found_extent = 1;
2990 				break;
2991 			}
2992 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
2993 			    key.offset == owner_objectid) {
2994 				found_extent = 1;
2995 				break;
2996 			}
2997 
2998 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
2999 			if (path->slots[0] - extent_slot > 5)
3000 				break;
3001 			extent_slot--;
3002 		}
3003 
3004 		if (!found_extent) {
3005 			if (iref) {
3006 				btrfs_crit(info,
3007 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
3008 				btrfs_abort_transaction(trans, -EUCLEAN);
3009 				goto err_dump;
3010 			}
3011 			/* Must be SHARED_* item, remove the backref first */
3012 			ret = remove_extent_backref(trans, extent_root, path,
3013 						    NULL, refs_to_drop, is_data);
3014 			if (ret) {
3015 				btrfs_abort_transaction(trans, ret);
3016 				goto out;
3017 			}
3018 			btrfs_release_path(path);
3019 
3020 			/* Slow path to locate EXTENT/METADATA_ITEM */
3021 			key.objectid = bytenr;
3022 			key.type = BTRFS_EXTENT_ITEM_KEY;
3023 			key.offset = num_bytes;
3024 
3025 			if (!is_data && skinny_metadata) {
3026 				key.type = BTRFS_METADATA_ITEM_KEY;
3027 				key.offset = owner_objectid;
3028 			}
3029 
3030 			ret = btrfs_search_slot(trans, extent_root,
3031 						&key, path, -1, 1);
3032 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3033 				/*
3034 				 * Couldn't find our skinny metadata item,
3035 				 * see if we have ye olde extent item.
3036 				 */
3037 				path->slots[0]--;
3038 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3039 						      path->slots[0]);
3040 				if (key.objectid == bytenr &&
3041 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3042 				    key.offset == num_bytes)
3043 					ret = 0;
3044 			}
3045 
3046 			if (ret > 0 && skinny_metadata) {
3047 				skinny_metadata = false;
3048 				key.objectid = bytenr;
3049 				key.type = BTRFS_EXTENT_ITEM_KEY;
3050 				key.offset = num_bytes;
3051 				btrfs_release_path(path);
3052 				ret = btrfs_search_slot(trans, extent_root,
3053 							&key, path, -1, 1);
3054 			}
3055 
3056 			if (ret) {
3057 				btrfs_err(info,
3058 					  "umm, got %d back from search, was looking for %llu",
3059 					  ret, bytenr);
3060 				if (ret > 0)
3061 					btrfs_print_leaf(path->nodes[0]);
3062 			}
3063 			if (ret < 0) {
3064 				btrfs_abort_transaction(trans, ret);
3065 				goto out;
3066 			}
3067 			extent_slot = path->slots[0];
3068 		}
3069 	} else if (WARN_ON(ret == -ENOENT)) {
3070 		btrfs_print_leaf(path->nodes[0]);
3071 		btrfs_err(info,
3072 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3073 			bytenr, parent, root_objectid, owner_objectid,
3074 			owner_offset);
3075 		btrfs_abort_transaction(trans, ret);
3076 		goto out;
3077 	} else {
3078 		btrfs_abort_transaction(trans, ret);
3079 		goto out;
3080 	}
3081 
3082 	leaf = path->nodes[0];
3083 	item_size = btrfs_item_size(leaf, extent_slot);
3084 	if (unlikely(item_size < sizeof(*ei))) {
3085 		ret = -EINVAL;
3086 		btrfs_print_v0_err(info);
3087 		btrfs_abort_transaction(trans, ret);
3088 		goto out;
3089 	}
3090 	ei = btrfs_item_ptr(leaf, extent_slot,
3091 			    struct btrfs_extent_item);
3092 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3093 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3094 		struct btrfs_tree_block_info *bi;
3095 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3096 			btrfs_crit(info,
3097 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
3098 				   key.objectid, key.type, key.offset,
3099 				   owner_objectid, item_size,
3100 				   sizeof(*ei) + sizeof(*bi));
3101 			btrfs_abort_transaction(trans, -EUCLEAN);
3102 			goto err_dump;
3103 		}
3104 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3105 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3106 	}
3107 
3108 	refs = btrfs_extent_refs(leaf, ei);
3109 	if (refs < refs_to_drop) {
3110 		btrfs_crit(info,
3111 		"trying to drop %d refs but we only have %llu for bytenr %llu",
3112 			  refs_to_drop, refs, bytenr);
3113 		btrfs_abort_transaction(trans, -EUCLEAN);
3114 		goto err_dump;
3115 	}
3116 	refs -= refs_to_drop;
3117 
3118 	if (refs > 0) {
3119 		if (extent_op)
3120 			__run_delayed_extent_op(extent_op, leaf, ei);
3121 		/*
3122 		 * In the case of inline back ref, reference count will
3123 		 * be updated by remove_extent_backref
3124 		 */
3125 		if (iref) {
3126 			if (!found_extent) {
3127 				btrfs_crit(info,
3128 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
3129 				btrfs_abort_transaction(trans, -EUCLEAN);
3130 				goto err_dump;
3131 			}
3132 		} else {
3133 			btrfs_set_extent_refs(leaf, ei, refs);
3134 			btrfs_mark_buffer_dirty(leaf);
3135 		}
3136 		if (found_extent) {
3137 			ret = remove_extent_backref(trans, extent_root, path,
3138 						    iref, refs_to_drop, is_data);
3139 			if (ret) {
3140 				btrfs_abort_transaction(trans, ret);
3141 				goto out;
3142 			}
3143 		}
3144 	} else {
3145 		/* In this branch refs == 1 */
3146 		if (found_extent) {
3147 			if (is_data && refs_to_drop !=
3148 			    extent_data_ref_count(path, iref)) {
3149 				btrfs_crit(info,
3150 		"invalid refs_to_drop, current refs %u refs_to_drop %u",
3151 					   extent_data_ref_count(path, iref),
3152 					   refs_to_drop);
3153 				btrfs_abort_transaction(trans, -EUCLEAN);
3154 				goto err_dump;
3155 			}
3156 			if (iref) {
3157 				if (path->slots[0] != extent_slot) {
3158 					btrfs_crit(info,
3159 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
3160 						   key.objectid, key.type,
3161 						   key.offset);
3162 					btrfs_abort_transaction(trans, -EUCLEAN);
3163 					goto err_dump;
3164 				}
3165 			} else {
3166 				/*
3167 				 * No inline ref, we must be at SHARED_* item,
3168 				 * And it's single ref, it must be:
3169 				 * |	extent_slot	  ||extent_slot + 1|
3170 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3171 				 */
3172 				if (path->slots[0] != extent_slot + 1) {
3173 					btrfs_crit(info,
3174 	"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
3175 					btrfs_abort_transaction(trans, -EUCLEAN);
3176 					goto err_dump;
3177 				}
3178 				path->slots[0] = extent_slot;
3179 				num_to_del = 2;
3180 			}
3181 		}
3182 
3183 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3184 				      num_to_del);
3185 		if (ret) {
3186 			btrfs_abort_transaction(trans, ret);
3187 			goto out;
3188 		}
3189 		btrfs_release_path(path);
3190 
3191 		ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3192 	}
3193 	btrfs_release_path(path);
3194 
3195 out:
3196 	btrfs_free_path(path);
3197 	return ret;
3198 err_dump:
3199 	/*
3200 	 * Leaf dump can take up a lot of log buffer, so we only do full leaf
3201 	 * dump for debug build.
3202 	 */
3203 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
3204 		btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
3205 			   path->slots[0], extent_slot);
3206 		btrfs_print_leaf(path->nodes[0]);
3207 	}
3208 
3209 	btrfs_free_path(path);
3210 	return -EUCLEAN;
3211 }
3212 
3213 /*
3214  * when we free an block, it is possible (and likely) that we free the last
3215  * delayed ref for that extent as well.  This searches the delayed ref tree for
3216  * a given extent, and if there are no other delayed refs to be processed, it
3217  * removes it from the tree.
3218  */
3219 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3220 				      u64 bytenr)
3221 {
3222 	struct btrfs_delayed_ref_head *head;
3223 	struct btrfs_delayed_ref_root *delayed_refs;
3224 	int ret = 0;
3225 
3226 	delayed_refs = &trans->transaction->delayed_refs;
3227 	spin_lock(&delayed_refs->lock);
3228 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3229 	if (!head)
3230 		goto out_delayed_unlock;
3231 
3232 	spin_lock(&head->lock);
3233 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3234 		goto out;
3235 
3236 	if (cleanup_extent_op(head) != NULL)
3237 		goto out;
3238 
3239 	/*
3240 	 * waiting for the lock here would deadlock.  If someone else has it
3241 	 * locked they are already in the process of dropping it anyway
3242 	 */
3243 	if (!mutex_trylock(&head->mutex))
3244 		goto out;
3245 
3246 	btrfs_delete_ref_head(delayed_refs, head);
3247 	head->processing = 0;
3248 
3249 	spin_unlock(&head->lock);
3250 	spin_unlock(&delayed_refs->lock);
3251 
3252 	BUG_ON(head->extent_op);
3253 	if (head->must_insert_reserved)
3254 		ret = 1;
3255 
3256 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3257 	mutex_unlock(&head->mutex);
3258 	btrfs_put_delayed_ref_head(head);
3259 	return ret;
3260 out:
3261 	spin_unlock(&head->lock);
3262 
3263 out_delayed_unlock:
3264 	spin_unlock(&delayed_refs->lock);
3265 	return 0;
3266 }
3267 
3268 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3269 			   u64 root_id,
3270 			   struct extent_buffer *buf,
3271 			   u64 parent, int last_ref)
3272 {
3273 	struct btrfs_fs_info *fs_info = trans->fs_info;
3274 	struct btrfs_ref generic_ref = { 0 };
3275 	int ret;
3276 
3277 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3278 			       buf->start, buf->len, parent);
3279 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3280 			    root_id, 0, false);
3281 
3282 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3283 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3284 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3285 		BUG_ON(ret); /* -ENOMEM */
3286 	}
3287 
3288 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3289 		struct btrfs_block_group *cache;
3290 		bool must_pin = false;
3291 
3292 		if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3293 			ret = check_ref_cleanup(trans, buf->start);
3294 			if (!ret) {
3295 				btrfs_redirty_list_add(trans->transaction, buf);
3296 				goto out;
3297 			}
3298 		}
3299 
3300 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3301 
3302 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3303 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3304 			btrfs_put_block_group(cache);
3305 			goto out;
3306 		}
3307 
3308 		/*
3309 		 * If this is a leaf and there are tree mod log users, we may
3310 		 * have recorded mod log operations that point to this leaf.
3311 		 * So we must make sure no one reuses this leaf's extent before
3312 		 * mod log operations are applied to a node, otherwise after
3313 		 * rewinding a node using the mod log operations we get an
3314 		 * inconsistent btree, as the leaf's extent may now be used as
3315 		 * a node or leaf for another different btree.
3316 		 * We are safe from races here because at this point no other
3317 		 * node or root points to this extent buffer, so if after this
3318 		 * check a new tree mod log user joins, it will not be able to
3319 		 * find a node pointing to this leaf and record operations that
3320 		 * point to this leaf.
3321 		 */
3322 		if (btrfs_header_level(buf) == 0 &&
3323 		    test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3324 			must_pin = true;
3325 
3326 		if (must_pin || btrfs_is_zoned(fs_info)) {
3327 			btrfs_redirty_list_add(trans->transaction, buf);
3328 			pin_down_extent(trans, cache, buf->start, buf->len, 1);
3329 			btrfs_put_block_group(cache);
3330 			goto out;
3331 		}
3332 
3333 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3334 
3335 		btrfs_add_free_space(cache, buf->start, buf->len);
3336 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3337 		btrfs_put_block_group(cache);
3338 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3339 	}
3340 out:
3341 	if (last_ref) {
3342 		/*
3343 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3344 		 * matter anymore.
3345 		 */
3346 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3347 	}
3348 }
3349 
3350 /* Can return -ENOMEM */
3351 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3352 {
3353 	struct btrfs_fs_info *fs_info = trans->fs_info;
3354 	int ret;
3355 
3356 	if (btrfs_is_testing(fs_info))
3357 		return 0;
3358 
3359 	/*
3360 	 * tree log blocks never actually go into the extent allocation
3361 	 * tree, just update pinning info and exit early.
3362 	 */
3363 	if ((ref->type == BTRFS_REF_METADATA &&
3364 	     ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3365 	    (ref->type == BTRFS_REF_DATA &&
3366 	     ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3367 		/* unlocks the pinned mutex */
3368 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3369 		ret = 0;
3370 	} else if (ref->type == BTRFS_REF_METADATA) {
3371 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3372 	} else {
3373 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3374 	}
3375 
3376 	if (!((ref->type == BTRFS_REF_METADATA &&
3377 	       ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3378 	      (ref->type == BTRFS_REF_DATA &&
3379 	       ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3380 		btrfs_ref_tree_mod(fs_info, ref);
3381 
3382 	return ret;
3383 }
3384 
3385 enum btrfs_loop_type {
3386 	LOOP_CACHING_NOWAIT,
3387 	LOOP_CACHING_WAIT,
3388 	LOOP_ALLOC_CHUNK,
3389 	LOOP_NO_EMPTY_SIZE,
3390 };
3391 
3392 static inline void
3393 btrfs_lock_block_group(struct btrfs_block_group *cache,
3394 		       int delalloc)
3395 {
3396 	if (delalloc)
3397 		down_read(&cache->data_rwsem);
3398 }
3399 
3400 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3401 		       int delalloc)
3402 {
3403 	btrfs_get_block_group(cache);
3404 	if (delalloc)
3405 		down_read(&cache->data_rwsem);
3406 }
3407 
3408 static struct btrfs_block_group *btrfs_lock_cluster(
3409 		   struct btrfs_block_group *block_group,
3410 		   struct btrfs_free_cluster *cluster,
3411 		   int delalloc)
3412 	__acquires(&cluster->refill_lock)
3413 {
3414 	struct btrfs_block_group *used_bg = NULL;
3415 
3416 	spin_lock(&cluster->refill_lock);
3417 	while (1) {
3418 		used_bg = cluster->block_group;
3419 		if (!used_bg)
3420 			return NULL;
3421 
3422 		if (used_bg == block_group)
3423 			return used_bg;
3424 
3425 		btrfs_get_block_group(used_bg);
3426 
3427 		if (!delalloc)
3428 			return used_bg;
3429 
3430 		if (down_read_trylock(&used_bg->data_rwsem))
3431 			return used_bg;
3432 
3433 		spin_unlock(&cluster->refill_lock);
3434 
3435 		/* We should only have one-level nested. */
3436 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3437 
3438 		spin_lock(&cluster->refill_lock);
3439 		if (used_bg == cluster->block_group)
3440 			return used_bg;
3441 
3442 		up_read(&used_bg->data_rwsem);
3443 		btrfs_put_block_group(used_bg);
3444 	}
3445 }
3446 
3447 static inline void
3448 btrfs_release_block_group(struct btrfs_block_group *cache,
3449 			 int delalloc)
3450 {
3451 	if (delalloc)
3452 		up_read(&cache->data_rwsem);
3453 	btrfs_put_block_group(cache);
3454 }
3455 
3456 enum btrfs_extent_allocation_policy {
3457 	BTRFS_EXTENT_ALLOC_CLUSTERED,
3458 	BTRFS_EXTENT_ALLOC_ZONED,
3459 };
3460 
3461 /*
3462  * Structure used internally for find_free_extent() function.  Wraps needed
3463  * parameters.
3464  */
3465 struct find_free_extent_ctl {
3466 	/* Basic allocation info */
3467 	u64 ram_bytes;
3468 	u64 num_bytes;
3469 	u64 min_alloc_size;
3470 	u64 empty_size;
3471 	u64 flags;
3472 	int delalloc;
3473 
3474 	/* Where to start the search inside the bg */
3475 	u64 search_start;
3476 
3477 	/* For clustered allocation */
3478 	u64 empty_cluster;
3479 	struct btrfs_free_cluster *last_ptr;
3480 	bool use_cluster;
3481 
3482 	bool have_caching_bg;
3483 	bool orig_have_caching_bg;
3484 
3485 	/* Allocation is called for tree-log */
3486 	bool for_treelog;
3487 
3488 	/* Allocation is called for data relocation */
3489 	bool for_data_reloc;
3490 
3491 	/* RAID index, converted from flags */
3492 	int index;
3493 
3494 	/*
3495 	 * Current loop number, check find_free_extent_update_loop() for details
3496 	 */
3497 	int loop;
3498 
3499 	/*
3500 	 * Whether we're refilling a cluster, if true we need to re-search
3501 	 * current block group but don't try to refill the cluster again.
3502 	 */
3503 	bool retry_clustered;
3504 
3505 	/*
3506 	 * Whether we're updating free space cache, if true we need to re-search
3507 	 * current block group but don't try updating free space cache again.
3508 	 */
3509 	bool retry_unclustered;
3510 
3511 	/* If current block group is cached */
3512 	int cached;
3513 
3514 	/* Max contiguous hole found */
3515 	u64 max_extent_size;
3516 
3517 	/* Total free space from free space cache, not always contiguous */
3518 	u64 total_free_space;
3519 
3520 	/* Found result */
3521 	u64 found_offset;
3522 
3523 	/* Hint where to start looking for an empty space */
3524 	u64 hint_byte;
3525 
3526 	/* Allocation policy */
3527 	enum btrfs_extent_allocation_policy policy;
3528 };
3529 
3530 
3531 /*
3532  * Helper function for find_free_extent().
3533  *
3534  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3535  * Return -EAGAIN to inform caller that we need to re-search this block group
3536  * Return >0 to inform caller that we find nothing
3537  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3538  */
3539 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3540 				      struct find_free_extent_ctl *ffe_ctl,
3541 				      struct btrfs_block_group **cluster_bg_ret)
3542 {
3543 	struct btrfs_block_group *cluster_bg;
3544 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3545 	u64 aligned_cluster;
3546 	u64 offset;
3547 	int ret;
3548 
3549 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3550 	if (!cluster_bg)
3551 		goto refill_cluster;
3552 	if (cluster_bg != bg && (cluster_bg->ro ||
3553 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3554 		goto release_cluster;
3555 
3556 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3557 			ffe_ctl->num_bytes, cluster_bg->start,
3558 			&ffe_ctl->max_extent_size);
3559 	if (offset) {
3560 		/* We have a block, we're done */
3561 		spin_unlock(&last_ptr->refill_lock);
3562 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3563 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3564 		*cluster_bg_ret = cluster_bg;
3565 		ffe_ctl->found_offset = offset;
3566 		return 0;
3567 	}
3568 	WARN_ON(last_ptr->block_group != cluster_bg);
3569 
3570 release_cluster:
3571 	/*
3572 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3573 	 * lets just skip it and let the allocator find whatever block it can
3574 	 * find. If we reach this point, we will have tried the cluster
3575 	 * allocator plenty of times and not have found anything, so we are
3576 	 * likely way too fragmented for the clustering stuff to find anything.
3577 	 *
3578 	 * However, if the cluster is taken from the current block group,
3579 	 * release the cluster first, so that we stand a better chance of
3580 	 * succeeding in the unclustered allocation.
3581 	 */
3582 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3583 		spin_unlock(&last_ptr->refill_lock);
3584 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3585 		return -ENOENT;
3586 	}
3587 
3588 	/* This cluster didn't work out, free it and start over */
3589 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3590 
3591 	if (cluster_bg != bg)
3592 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3593 
3594 refill_cluster:
3595 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3596 		spin_unlock(&last_ptr->refill_lock);
3597 		return -ENOENT;
3598 	}
3599 
3600 	aligned_cluster = max_t(u64,
3601 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3602 			bg->full_stripe_len);
3603 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3604 			ffe_ctl->num_bytes, aligned_cluster);
3605 	if (ret == 0) {
3606 		/* Now pull our allocation out of this cluster */
3607 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3608 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3609 				&ffe_ctl->max_extent_size);
3610 		if (offset) {
3611 			/* We found one, proceed */
3612 			spin_unlock(&last_ptr->refill_lock);
3613 			trace_btrfs_reserve_extent_cluster(bg,
3614 					ffe_ctl->search_start,
3615 					ffe_ctl->num_bytes);
3616 			ffe_ctl->found_offset = offset;
3617 			return 0;
3618 		}
3619 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3620 		   !ffe_ctl->retry_clustered) {
3621 		spin_unlock(&last_ptr->refill_lock);
3622 
3623 		ffe_ctl->retry_clustered = true;
3624 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3625 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3626 		return -EAGAIN;
3627 	}
3628 	/*
3629 	 * At this point we either didn't find a cluster or we weren't able to
3630 	 * allocate a block from our cluster.  Free the cluster we've been
3631 	 * trying to use, and go to the next block group.
3632 	 */
3633 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3634 	spin_unlock(&last_ptr->refill_lock);
3635 	return 1;
3636 }
3637 
3638 /*
3639  * Return >0 to inform caller that we find nothing
3640  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3641  * Return -EAGAIN to inform caller that we need to re-search this block group
3642  */
3643 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3644 					struct find_free_extent_ctl *ffe_ctl)
3645 {
3646 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3647 	u64 offset;
3648 
3649 	/*
3650 	 * We are doing an unclustered allocation, set the fragmented flag so
3651 	 * we don't bother trying to setup a cluster again until we get more
3652 	 * space.
3653 	 */
3654 	if (unlikely(last_ptr)) {
3655 		spin_lock(&last_ptr->lock);
3656 		last_ptr->fragmented = 1;
3657 		spin_unlock(&last_ptr->lock);
3658 	}
3659 	if (ffe_ctl->cached) {
3660 		struct btrfs_free_space_ctl *free_space_ctl;
3661 
3662 		free_space_ctl = bg->free_space_ctl;
3663 		spin_lock(&free_space_ctl->tree_lock);
3664 		if (free_space_ctl->free_space <
3665 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3666 		    ffe_ctl->empty_size) {
3667 			ffe_ctl->total_free_space = max_t(u64,
3668 					ffe_ctl->total_free_space,
3669 					free_space_ctl->free_space);
3670 			spin_unlock(&free_space_ctl->tree_lock);
3671 			return 1;
3672 		}
3673 		spin_unlock(&free_space_ctl->tree_lock);
3674 	}
3675 
3676 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3677 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3678 			&ffe_ctl->max_extent_size);
3679 
3680 	/*
3681 	 * If we didn't find a chunk, and we haven't failed on this block group
3682 	 * before, and this block group is in the middle of caching and we are
3683 	 * ok with waiting, then go ahead and wait for progress to be made, and
3684 	 * set @retry_unclustered to true.
3685 	 *
3686 	 * If @retry_unclustered is true then we've already waited on this
3687 	 * block group once and should move on to the next block group.
3688 	 */
3689 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3690 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3691 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3692 						      ffe_ctl->empty_size);
3693 		ffe_ctl->retry_unclustered = true;
3694 		return -EAGAIN;
3695 	} else if (!offset) {
3696 		return 1;
3697 	}
3698 	ffe_ctl->found_offset = offset;
3699 	return 0;
3700 }
3701 
3702 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3703 				   struct find_free_extent_ctl *ffe_ctl,
3704 				   struct btrfs_block_group **bg_ret)
3705 {
3706 	int ret;
3707 
3708 	/* We want to try and use the cluster allocator, so lets look there */
3709 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3710 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3711 		if (ret >= 0 || ret == -EAGAIN)
3712 			return ret;
3713 		/* ret == -ENOENT case falls through */
3714 	}
3715 
3716 	return find_free_extent_unclustered(block_group, ffe_ctl);
3717 }
3718 
3719 /*
3720  * Tree-log block group locking
3721  * ============================
3722  *
3723  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3724  * indicates the starting address of a block group, which is reserved only
3725  * for tree-log metadata.
3726  *
3727  * Lock nesting
3728  * ============
3729  *
3730  * space_info::lock
3731  *   block_group::lock
3732  *     fs_info::treelog_bg_lock
3733  */
3734 
3735 /*
3736  * Simple allocator for sequential-only block group. It only allows sequential
3737  * allocation. No need to play with trees. This function also reserves the
3738  * bytes as in btrfs_add_reserved_bytes.
3739  */
3740 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3741 			       struct find_free_extent_ctl *ffe_ctl,
3742 			       struct btrfs_block_group **bg_ret)
3743 {
3744 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3745 	struct btrfs_space_info *space_info = block_group->space_info;
3746 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3747 	u64 start = block_group->start;
3748 	u64 num_bytes = ffe_ctl->num_bytes;
3749 	u64 avail;
3750 	u64 bytenr = block_group->start;
3751 	u64 log_bytenr;
3752 	u64 data_reloc_bytenr;
3753 	int ret = 0;
3754 	bool skip = false;
3755 
3756 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3757 
3758 	/*
3759 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3760 	 * group, and vice versa.
3761 	 */
3762 	spin_lock(&fs_info->treelog_bg_lock);
3763 	log_bytenr = fs_info->treelog_bg;
3764 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3765 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3766 		skip = true;
3767 	spin_unlock(&fs_info->treelog_bg_lock);
3768 	if (skip)
3769 		return 1;
3770 
3771 	/*
3772 	 * Do not allow non-relocation blocks in the dedicated relocation block
3773 	 * group, and vice versa.
3774 	 */
3775 	spin_lock(&fs_info->relocation_bg_lock);
3776 	data_reloc_bytenr = fs_info->data_reloc_bg;
3777 	if (data_reloc_bytenr &&
3778 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3779 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3780 		skip = true;
3781 	spin_unlock(&fs_info->relocation_bg_lock);
3782 	if (skip)
3783 		return 1;
3784 
3785 	/* Check RO and no space case before trying to activate it */
3786 	spin_lock(&block_group->lock);
3787 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3788 		ret = 1;
3789 		/*
3790 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3791 		 * Return the error after taking the locks.
3792 		 */
3793 	}
3794 	spin_unlock(&block_group->lock);
3795 
3796 	if (!ret && !btrfs_zone_activate(block_group)) {
3797 		ret = 1;
3798 		/*
3799 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3800 		 * Return the error after taking the locks.
3801 		 */
3802 	}
3803 
3804 	spin_lock(&space_info->lock);
3805 	spin_lock(&block_group->lock);
3806 	spin_lock(&fs_info->treelog_bg_lock);
3807 	spin_lock(&fs_info->relocation_bg_lock);
3808 
3809 	if (ret)
3810 		goto out;
3811 
3812 	ASSERT(!ffe_ctl->for_treelog ||
3813 	       block_group->start == fs_info->treelog_bg ||
3814 	       fs_info->treelog_bg == 0);
3815 	ASSERT(!ffe_ctl->for_data_reloc ||
3816 	       block_group->start == fs_info->data_reloc_bg ||
3817 	       fs_info->data_reloc_bg == 0);
3818 
3819 	if (block_group->ro || block_group->zoned_data_reloc_ongoing) {
3820 		ret = 1;
3821 		goto out;
3822 	}
3823 
3824 	/*
3825 	 * Do not allow currently using block group to be tree-log dedicated
3826 	 * block group.
3827 	 */
3828 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3829 	    (block_group->used || block_group->reserved)) {
3830 		ret = 1;
3831 		goto out;
3832 	}
3833 
3834 	/*
3835 	 * Do not allow currently used block group to be the data relocation
3836 	 * dedicated block group.
3837 	 */
3838 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3839 	    (block_group->used || block_group->reserved)) {
3840 		ret = 1;
3841 		goto out;
3842 	}
3843 
3844 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3845 	avail = block_group->zone_capacity - block_group->alloc_offset;
3846 	if (avail < num_bytes) {
3847 		if (ffe_ctl->max_extent_size < avail) {
3848 			/*
3849 			 * With sequential allocator, free space is always
3850 			 * contiguous
3851 			 */
3852 			ffe_ctl->max_extent_size = avail;
3853 			ffe_ctl->total_free_space = avail;
3854 		}
3855 		ret = 1;
3856 		goto out;
3857 	}
3858 
3859 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3860 		fs_info->treelog_bg = block_group->start;
3861 
3862 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
3863 		fs_info->data_reloc_bg = block_group->start;
3864 
3865 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3866 	block_group->alloc_offset += num_bytes;
3867 	spin_lock(&ctl->tree_lock);
3868 	ctl->free_space -= num_bytes;
3869 	spin_unlock(&ctl->tree_lock);
3870 
3871 	/*
3872 	 * We do not check if found_offset is aligned to stripesize. The
3873 	 * address is anyway rewritten when using zone append writing.
3874 	 */
3875 
3876 	ffe_ctl->search_start = ffe_ctl->found_offset;
3877 
3878 out:
3879 	if (ret && ffe_ctl->for_treelog)
3880 		fs_info->treelog_bg = 0;
3881 	if (ret && ffe_ctl->for_data_reloc &&
3882 	    fs_info->data_reloc_bg == block_group->start) {
3883 		/*
3884 		 * Do not allow further allocations from this block group.
3885 		 * Compared to increasing the ->ro, setting the
3886 		 * ->zoned_data_reloc_ongoing flag still allows nocow
3887 		 *  writers to come in. See btrfs_inc_nocow_writers().
3888 		 *
3889 		 * We need to disable an allocation to avoid an allocation of
3890 		 * regular (non-relocation data) extent. With mix of relocation
3891 		 * extents and regular extents, we can dispatch WRITE commands
3892 		 * (for relocation extents) and ZONE APPEND commands (for
3893 		 * regular extents) at the same time to the same zone, which
3894 		 * easily break the write pointer.
3895 		 */
3896 		block_group->zoned_data_reloc_ongoing = 1;
3897 		fs_info->data_reloc_bg = 0;
3898 	}
3899 	spin_unlock(&fs_info->relocation_bg_lock);
3900 	spin_unlock(&fs_info->treelog_bg_lock);
3901 	spin_unlock(&block_group->lock);
3902 	spin_unlock(&space_info->lock);
3903 	return ret;
3904 }
3905 
3906 static int do_allocation(struct btrfs_block_group *block_group,
3907 			 struct find_free_extent_ctl *ffe_ctl,
3908 			 struct btrfs_block_group **bg_ret)
3909 {
3910 	switch (ffe_ctl->policy) {
3911 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3912 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3913 	case BTRFS_EXTENT_ALLOC_ZONED:
3914 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3915 	default:
3916 		BUG();
3917 	}
3918 }
3919 
3920 static void release_block_group(struct btrfs_block_group *block_group,
3921 				struct find_free_extent_ctl *ffe_ctl,
3922 				int delalloc)
3923 {
3924 	switch (ffe_ctl->policy) {
3925 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3926 		ffe_ctl->retry_clustered = false;
3927 		ffe_ctl->retry_unclustered = false;
3928 		break;
3929 	case BTRFS_EXTENT_ALLOC_ZONED:
3930 		/* Nothing to do */
3931 		break;
3932 	default:
3933 		BUG();
3934 	}
3935 
3936 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3937 	       ffe_ctl->index);
3938 	btrfs_release_block_group(block_group, delalloc);
3939 }
3940 
3941 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3942 				   struct btrfs_key *ins)
3943 {
3944 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3945 
3946 	if (!ffe_ctl->use_cluster && last_ptr) {
3947 		spin_lock(&last_ptr->lock);
3948 		last_ptr->window_start = ins->objectid;
3949 		spin_unlock(&last_ptr->lock);
3950 	}
3951 }
3952 
3953 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3954 			 struct btrfs_key *ins)
3955 {
3956 	switch (ffe_ctl->policy) {
3957 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
3958 		found_extent_clustered(ffe_ctl, ins);
3959 		break;
3960 	case BTRFS_EXTENT_ALLOC_ZONED:
3961 		/* Nothing to do */
3962 		break;
3963 	default:
3964 		BUG();
3965 	}
3966 }
3967 
3968 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3969 				    struct find_free_extent_ctl *ffe_ctl)
3970 {
3971 	/* If we can activate new zone, just allocate a chunk and use it */
3972 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3973 		return 0;
3974 
3975 	/*
3976 	 * We already reached the max active zones. Try to finish one block
3977 	 * group to make a room for a new block group. This is only possible
3978 	 * for a data block group because btrfs_zone_finish() may need to wait
3979 	 * for a running transaction which can cause a deadlock for metadata
3980 	 * allocation.
3981 	 */
3982 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3983 		int ret = btrfs_zone_finish_one_bg(fs_info);
3984 
3985 		if (ret == 1)
3986 			return 0;
3987 		else if (ret < 0)
3988 			return ret;
3989 	}
3990 
3991 	/*
3992 	 * If we have enough free space left in an already active block group
3993 	 * and we can't activate any other zone now, do not allow allocating a
3994 	 * new chunk and let find_free_extent() retry with a smaller size.
3995 	 */
3996 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3997 		return -ENOSPC;
3998 
3999 	/*
4000 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4001 	 * activate a new block group, allocating it may not help. Let's tell a
4002 	 * caller to try again and hope it progress something by writing some
4003 	 * parts of the region. That is only possible for data block groups,
4004 	 * where a part of the region can be written.
4005 	 */
4006 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4007 		return -EAGAIN;
4008 
4009 	/*
4010 	 * We cannot activate a new block group and no enough space left in any
4011 	 * block groups. So, allocating a new block group may not help. But,
4012 	 * there is nothing to do anyway, so let's go with it.
4013 	 */
4014 	return 0;
4015 }
4016 
4017 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4018 			      struct find_free_extent_ctl *ffe_ctl)
4019 {
4020 	switch (ffe_ctl->policy) {
4021 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4022 		return 0;
4023 	case BTRFS_EXTENT_ALLOC_ZONED:
4024 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4025 	default:
4026 		BUG();
4027 	}
4028 }
4029 
4030 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
4031 {
4032 	switch (ffe_ctl->policy) {
4033 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4034 		/*
4035 		 * If we can't allocate a new chunk we've already looped through
4036 		 * at least once, move on to the NO_EMPTY_SIZE case.
4037 		 */
4038 		ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
4039 		return 0;
4040 	case BTRFS_EXTENT_ALLOC_ZONED:
4041 		/* Give up here */
4042 		return -ENOSPC;
4043 	default:
4044 		BUG();
4045 	}
4046 }
4047 
4048 /*
4049  * Return >0 means caller needs to re-search for free extent
4050  * Return 0 means we have the needed free extent.
4051  * Return <0 means we failed to locate any free extent.
4052  */
4053 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4054 					struct btrfs_key *ins,
4055 					struct find_free_extent_ctl *ffe_ctl,
4056 					bool full_search)
4057 {
4058 	struct btrfs_root *root = fs_info->chunk_root;
4059 	int ret;
4060 
4061 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4062 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4063 		ffe_ctl->orig_have_caching_bg = true;
4064 
4065 	if (ins->objectid) {
4066 		found_extent(ffe_ctl, ins);
4067 		return 0;
4068 	}
4069 
4070 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4071 		return 1;
4072 
4073 	ffe_ctl->index++;
4074 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4075 		return 1;
4076 
4077 	/*
4078 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
4079 	 *			caching kthreads as we move along
4080 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
4081 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
4082 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
4083 	 *		       again
4084 	 */
4085 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4086 		ffe_ctl->index = 0;
4087 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
4088 			/*
4089 			 * We want to skip the LOOP_CACHING_WAIT step if we
4090 			 * don't have any uncached bgs and we've already done a
4091 			 * full search through.
4092 			 */
4093 			if (ffe_ctl->orig_have_caching_bg || !full_search)
4094 				ffe_ctl->loop = LOOP_CACHING_WAIT;
4095 			else
4096 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
4097 		} else {
4098 			ffe_ctl->loop++;
4099 		}
4100 
4101 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4102 			struct btrfs_trans_handle *trans;
4103 			int exist = 0;
4104 
4105 			/*Check if allocation policy allows to create a new chunk */
4106 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4107 			if (ret)
4108 				return ret;
4109 
4110 			trans = current->journal_info;
4111 			if (trans)
4112 				exist = 1;
4113 			else
4114 				trans = btrfs_join_transaction(root);
4115 
4116 			if (IS_ERR(trans)) {
4117 				ret = PTR_ERR(trans);
4118 				return ret;
4119 			}
4120 
4121 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4122 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4123 
4124 			/* Do not bail out on ENOSPC since we can do more. */
4125 			if (ret == -ENOSPC)
4126 				ret = chunk_allocation_failed(ffe_ctl);
4127 			else if (ret < 0)
4128 				btrfs_abort_transaction(trans, ret);
4129 			else
4130 				ret = 0;
4131 			if (!exist)
4132 				btrfs_end_transaction(trans);
4133 			if (ret)
4134 				return ret;
4135 		}
4136 
4137 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4138 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4139 				return -ENOSPC;
4140 
4141 			/*
4142 			 * Don't loop again if we already have no empty_size and
4143 			 * no empty_cluster.
4144 			 */
4145 			if (ffe_ctl->empty_size == 0 &&
4146 			    ffe_ctl->empty_cluster == 0)
4147 				return -ENOSPC;
4148 			ffe_ctl->empty_size = 0;
4149 			ffe_ctl->empty_cluster = 0;
4150 		}
4151 		return 1;
4152 	}
4153 	return -ENOSPC;
4154 }
4155 
4156 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4157 					struct find_free_extent_ctl *ffe_ctl,
4158 					struct btrfs_space_info *space_info,
4159 					struct btrfs_key *ins)
4160 {
4161 	/*
4162 	 * If our free space is heavily fragmented we may not be able to make
4163 	 * big contiguous allocations, so instead of doing the expensive search
4164 	 * for free space, simply return ENOSPC with our max_extent_size so we
4165 	 * can go ahead and search for a more manageable chunk.
4166 	 *
4167 	 * If our max_extent_size is large enough for our allocation simply
4168 	 * disable clustering since we will likely not be able to find enough
4169 	 * space to create a cluster and induce latency trying.
4170 	 */
4171 	if (space_info->max_extent_size) {
4172 		spin_lock(&space_info->lock);
4173 		if (space_info->max_extent_size &&
4174 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4175 			ins->offset = space_info->max_extent_size;
4176 			spin_unlock(&space_info->lock);
4177 			return -ENOSPC;
4178 		} else if (space_info->max_extent_size) {
4179 			ffe_ctl->use_cluster = false;
4180 		}
4181 		spin_unlock(&space_info->lock);
4182 	}
4183 
4184 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4185 					       &ffe_ctl->empty_cluster);
4186 	if (ffe_ctl->last_ptr) {
4187 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4188 
4189 		spin_lock(&last_ptr->lock);
4190 		if (last_ptr->block_group)
4191 			ffe_ctl->hint_byte = last_ptr->window_start;
4192 		if (last_ptr->fragmented) {
4193 			/*
4194 			 * We still set window_start so we can keep track of the
4195 			 * last place we found an allocation to try and save
4196 			 * some time.
4197 			 */
4198 			ffe_ctl->hint_byte = last_ptr->window_start;
4199 			ffe_ctl->use_cluster = false;
4200 		}
4201 		spin_unlock(&last_ptr->lock);
4202 	}
4203 
4204 	return 0;
4205 }
4206 
4207 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4208 			      struct find_free_extent_ctl *ffe_ctl,
4209 			      struct btrfs_space_info *space_info,
4210 			      struct btrfs_key *ins)
4211 {
4212 	switch (ffe_ctl->policy) {
4213 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4214 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4215 						    space_info, ins);
4216 	case BTRFS_EXTENT_ALLOC_ZONED:
4217 		if (ffe_ctl->for_treelog) {
4218 			spin_lock(&fs_info->treelog_bg_lock);
4219 			if (fs_info->treelog_bg)
4220 				ffe_ctl->hint_byte = fs_info->treelog_bg;
4221 			spin_unlock(&fs_info->treelog_bg_lock);
4222 		}
4223 		if (ffe_ctl->for_data_reloc) {
4224 			spin_lock(&fs_info->relocation_bg_lock);
4225 			if (fs_info->data_reloc_bg)
4226 				ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4227 			spin_unlock(&fs_info->relocation_bg_lock);
4228 		}
4229 		return 0;
4230 	default:
4231 		BUG();
4232 	}
4233 }
4234 
4235 /*
4236  * walks the btree of allocated extents and find a hole of a given size.
4237  * The key ins is changed to record the hole:
4238  * ins->objectid == start position
4239  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4240  * ins->offset == the size of the hole.
4241  * Any available blocks before search_start are skipped.
4242  *
4243  * If there is no suitable free space, we will record the max size of
4244  * the free space extent currently.
4245  *
4246  * The overall logic and call chain:
4247  *
4248  * find_free_extent()
4249  * |- Iterate through all block groups
4250  * |  |- Get a valid block group
4251  * |  |- Try to do clustered allocation in that block group
4252  * |  |- Try to do unclustered allocation in that block group
4253  * |  |- Check if the result is valid
4254  * |  |  |- If valid, then exit
4255  * |  |- Jump to next block group
4256  * |
4257  * |- Push harder to find free extents
4258  *    |- If not found, re-iterate all block groups
4259  */
4260 static noinline int find_free_extent(struct btrfs_root *root,
4261 				     struct btrfs_key *ins,
4262 				     struct find_free_extent_ctl *ffe_ctl)
4263 {
4264 	struct btrfs_fs_info *fs_info = root->fs_info;
4265 	int ret = 0;
4266 	int cache_block_group_error = 0;
4267 	struct btrfs_block_group *block_group = NULL;
4268 	struct btrfs_space_info *space_info;
4269 	bool full_search = false;
4270 
4271 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4272 
4273 	ffe_ctl->search_start = 0;
4274 	/* For clustered allocation */
4275 	ffe_ctl->empty_cluster = 0;
4276 	ffe_ctl->last_ptr = NULL;
4277 	ffe_ctl->use_cluster = true;
4278 	ffe_ctl->have_caching_bg = false;
4279 	ffe_ctl->orig_have_caching_bg = false;
4280 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4281 	ffe_ctl->loop = 0;
4282 	/* For clustered allocation */
4283 	ffe_ctl->retry_clustered = false;
4284 	ffe_ctl->retry_unclustered = false;
4285 	ffe_ctl->cached = 0;
4286 	ffe_ctl->max_extent_size = 0;
4287 	ffe_ctl->total_free_space = 0;
4288 	ffe_ctl->found_offset = 0;
4289 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4290 
4291 	if (btrfs_is_zoned(fs_info))
4292 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4293 
4294 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4295 	ins->objectid = 0;
4296 	ins->offset = 0;
4297 
4298 	trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
4299 			       ffe_ctl->flags);
4300 
4301 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4302 	if (!space_info) {
4303 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4304 		return -ENOSPC;
4305 	}
4306 
4307 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4308 	if (ret < 0)
4309 		return ret;
4310 
4311 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4312 				    first_logical_byte(fs_info));
4313 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4314 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4315 		block_group = btrfs_lookup_block_group(fs_info,
4316 						       ffe_ctl->search_start);
4317 		/*
4318 		 * we don't want to use the block group if it doesn't match our
4319 		 * allocation bits, or if its not cached.
4320 		 *
4321 		 * However if we are re-searching with an ideal block group
4322 		 * picked out then we don't care that the block group is cached.
4323 		 */
4324 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4325 		    block_group->cached != BTRFS_CACHE_NO) {
4326 			down_read(&space_info->groups_sem);
4327 			if (list_empty(&block_group->list) ||
4328 			    block_group->ro) {
4329 				/*
4330 				 * someone is removing this block group,
4331 				 * we can't jump into the have_block_group
4332 				 * target because our list pointers are not
4333 				 * valid
4334 				 */
4335 				btrfs_put_block_group(block_group);
4336 				up_read(&space_info->groups_sem);
4337 			} else {
4338 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4339 							block_group->flags);
4340 				btrfs_lock_block_group(block_group,
4341 						       ffe_ctl->delalloc);
4342 				goto have_block_group;
4343 			}
4344 		} else if (block_group) {
4345 			btrfs_put_block_group(block_group);
4346 		}
4347 	}
4348 search:
4349 	ffe_ctl->have_caching_bg = false;
4350 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4351 	    ffe_ctl->index == 0)
4352 		full_search = true;
4353 	down_read(&space_info->groups_sem);
4354 	list_for_each_entry(block_group,
4355 			    &space_info->block_groups[ffe_ctl->index], list) {
4356 		struct btrfs_block_group *bg_ret;
4357 
4358 		/* If the block group is read-only, we can skip it entirely. */
4359 		if (unlikely(block_group->ro)) {
4360 			if (ffe_ctl->for_treelog)
4361 				btrfs_clear_treelog_bg(block_group);
4362 			if (ffe_ctl->for_data_reloc)
4363 				btrfs_clear_data_reloc_bg(block_group);
4364 			continue;
4365 		}
4366 
4367 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4368 		ffe_ctl->search_start = block_group->start;
4369 
4370 		/*
4371 		 * this can happen if we end up cycling through all the
4372 		 * raid types, but we want to make sure we only allocate
4373 		 * for the proper type.
4374 		 */
4375 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4376 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4377 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4378 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4379 				BTRFS_BLOCK_GROUP_RAID10;
4380 
4381 			/*
4382 			 * if they asked for extra copies and this block group
4383 			 * doesn't provide them, bail.  This does allow us to
4384 			 * fill raid0 from raid1.
4385 			 */
4386 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4387 				goto loop;
4388 
4389 			/*
4390 			 * This block group has different flags than we want.
4391 			 * It's possible that we have MIXED_GROUP flag but no
4392 			 * block group is mixed.  Just skip such block group.
4393 			 */
4394 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4395 			continue;
4396 		}
4397 
4398 have_block_group:
4399 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4400 		if (unlikely(!ffe_ctl->cached)) {
4401 			ffe_ctl->have_caching_bg = true;
4402 			ret = btrfs_cache_block_group(block_group, 0);
4403 
4404 			/*
4405 			 * If we get ENOMEM here or something else we want to
4406 			 * try other block groups, because it may not be fatal.
4407 			 * However if we can't find anything else we need to
4408 			 * save our return here so that we return the actual
4409 			 * error that caused problems, not ENOSPC.
4410 			 */
4411 			if (ret < 0) {
4412 				if (!cache_block_group_error)
4413 					cache_block_group_error = ret;
4414 				ret = 0;
4415 				goto loop;
4416 			}
4417 			ret = 0;
4418 		}
4419 
4420 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
4421 			goto loop;
4422 
4423 		bg_ret = NULL;
4424 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4425 		if (ret == 0) {
4426 			if (bg_ret && bg_ret != block_group) {
4427 				btrfs_release_block_group(block_group,
4428 							  ffe_ctl->delalloc);
4429 				block_group = bg_ret;
4430 			}
4431 		} else if (ret == -EAGAIN) {
4432 			goto have_block_group;
4433 		} else if (ret > 0) {
4434 			goto loop;
4435 		}
4436 
4437 		/* Checks */
4438 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4439 						 fs_info->stripesize);
4440 
4441 		/* move on to the next group */
4442 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4443 		    block_group->start + block_group->length) {
4444 			btrfs_add_free_space_unused(block_group,
4445 					    ffe_ctl->found_offset,
4446 					    ffe_ctl->num_bytes);
4447 			goto loop;
4448 		}
4449 
4450 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4451 			btrfs_add_free_space_unused(block_group,
4452 					ffe_ctl->found_offset,
4453 					ffe_ctl->search_start - ffe_ctl->found_offset);
4454 
4455 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4456 					       ffe_ctl->num_bytes,
4457 					       ffe_ctl->delalloc);
4458 		if (ret == -EAGAIN) {
4459 			btrfs_add_free_space_unused(block_group,
4460 					ffe_ctl->found_offset,
4461 					ffe_ctl->num_bytes);
4462 			goto loop;
4463 		}
4464 		btrfs_inc_block_group_reservations(block_group);
4465 
4466 		/* we are all good, lets return */
4467 		ins->objectid = ffe_ctl->search_start;
4468 		ins->offset = ffe_ctl->num_bytes;
4469 
4470 		trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
4471 					   ffe_ctl->num_bytes);
4472 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4473 		break;
4474 loop:
4475 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4476 		cond_resched();
4477 	}
4478 	up_read(&space_info->groups_sem);
4479 
4480 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4481 	if (ret > 0)
4482 		goto search;
4483 
4484 	if (ret == -ENOSPC && !cache_block_group_error) {
4485 		/*
4486 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4487 		 * any contiguous hole.
4488 		 */
4489 		if (!ffe_ctl->max_extent_size)
4490 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4491 		spin_lock(&space_info->lock);
4492 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4493 		spin_unlock(&space_info->lock);
4494 		ins->offset = ffe_ctl->max_extent_size;
4495 	} else if (ret == -ENOSPC) {
4496 		ret = cache_block_group_error;
4497 	}
4498 	return ret;
4499 }
4500 
4501 /*
4502  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4503  *			  hole that is at least as big as @num_bytes.
4504  *
4505  * @root           -	The root that will contain this extent
4506  *
4507  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4508  *			is used for accounting purposes. This value differs
4509  *			from @num_bytes only in the case of compressed extents.
4510  *
4511  * @num_bytes      -	Number of bytes to allocate on-disk.
4512  *
4513  * @min_alloc_size -	Indicates the minimum amount of space that the
4514  *			allocator should try to satisfy. In some cases
4515  *			@num_bytes may be larger than what is required and if
4516  *			the filesystem is fragmented then allocation fails.
4517  *			However, the presence of @min_alloc_size gives a
4518  *			chance to try and satisfy the smaller allocation.
4519  *
4520  * @empty_size     -	A hint that you plan on doing more COW. This is the
4521  *			size in bytes the allocator should try to find free
4522  *			next to the block it returns.  This is just a hint and
4523  *			may be ignored by the allocator.
4524  *
4525  * @hint_byte      -	Hint to the allocator to start searching above the byte
4526  *			address passed. It might be ignored.
4527  *
4528  * @ins            -	This key is modified to record the found hole. It will
4529  *			have the following values:
4530  *			ins->objectid == start position
4531  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4532  *			ins->offset == the size of the hole.
4533  *
4534  * @is_data        -	Boolean flag indicating whether an extent is
4535  *			allocated for data (true) or metadata (false)
4536  *
4537  * @delalloc       -	Boolean flag indicating whether this allocation is for
4538  *			delalloc or not. If 'true' data_rwsem of block groups
4539  *			is going to be acquired.
4540  *
4541  *
4542  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4543  * case -ENOSPC is returned then @ins->offset will contain the size of the
4544  * largest available hole the allocator managed to find.
4545  */
4546 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4547 			 u64 num_bytes, u64 min_alloc_size,
4548 			 u64 empty_size, u64 hint_byte,
4549 			 struct btrfs_key *ins, int is_data, int delalloc)
4550 {
4551 	struct btrfs_fs_info *fs_info = root->fs_info;
4552 	struct find_free_extent_ctl ffe_ctl = {};
4553 	bool final_tried = num_bytes == min_alloc_size;
4554 	u64 flags;
4555 	int ret;
4556 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4557 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4558 
4559 	flags = get_alloc_profile_by_root(root, is_data);
4560 again:
4561 	WARN_ON(num_bytes < fs_info->sectorsize);
4562 
4563 	ffe_ctl.ram_bytes = ram_bytes;
4564 	ffe_ctl.num_bytes = num_bytes;
4565 	ffe_ctl.min_alloc_size = min_alloc_size;
4566 	ffe_ctl.empty_size = empty_size;
4567 	ffe_ctl.flags = flags;
4568 	ffe_ctl.delalloc = delalloc;
4569 	ffe_ctl.hint_byte = hint_byte;
4570 	ffe_ctl.for_treelog = for_treelog;
4571 	ffe_ctl.for_data_reloc = for_data_reloc;
4572 
4573 	ret = find_free_extent(root, ins, &ffe_ctl);
4574 	if (!ret && !is_data) {
4575 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4576 	} else if (ret == -ENOSPC) {
4577 		if (!final_tried && ins->offset) {
4578 			num_bytes = min(num_bytes >> 1, ins->offset);
4579 			num_bytes = round_down(num_bytes,
4580 					       fs_info->sectorsize);
4581 			num_bytes = max(num_bytes, min_alloc_size);
4582 			ram_bytes = num_bytes;
4583 			if (num_bytes == min_alloc_size)
4584 				final_tried = true;
4585 			goto again;
4586 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4587 			struct btrfs_space_info *sinfo;
4588 
4589 			sinfo = btrfs_find_space_info(fs_info, flags);
4590 			btrfs_err(fs_info,
4591 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4592 				  flags, num_bytes, for_treelog, for_data_reloc);
4593 			if (sinfo)
4594 				btrfs_dump_space_info(fs_info, sinfo,
4595 						      num_bytes, 1);
4596 		}
4597 	}
4598 
4599 	return ret;
4600 }
4601 
4602 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4603 			       u64 start, u64 len, int delalloc)
4604 {
4605 	struct btrfs_block_group *cache;
4606 
4607 	cache = btrfs_lookup_block_group(fs_info, start);
4608 	if (!cache) {
4609 		btrfs_err(fs_info, "Unable to find block group for %llu",
4610 			  start);
4611 		return -ENOSPC;
4612 	}
4613 
4614 	btrfs_add_free_space(cache, start, len);
4615 	btrfs_free_reserved_bytes(cache, len, delalloc);
4616 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4617 
4618 	btrfs_put_block_group(cache);
4619 	return 0;
4620 }
4621 
4622 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4623 			      u64 len)
4624 {
4625 	struct btrfs_block_group *cache;
4626 	int ret = 0;
4627 
4628 	cache = btrfs_lookup_block_group(trans->fs_info, start);
4629 	if (!cache) {
4630 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4631 			  start);
4632 		return -ENOSPC;
4633 	}
4634 
4635 	ret = pin_down_extent(trans, cache, start, len, 1);
4636 	btrfs_put_block_group(cache);
4637 	return ret;
4638 }
4639 
4640 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4641 				 u64 num_bytes)
4642 {
4643 	struct btrfs_fs_info *fs_info = trans->fs_info;
4644 	int ret;
4645 
4646 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4647 	if (ret)
4648 		return ret;
4649 
4650 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4651 	if (ret) {
4652 		ASSERT(!ret);
4653 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4654 			  bytenr, num_bytes);
4655 		return ret;
4656 	}
4657 
4658 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4659 	return 0;
4660 }
4661 
4662 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4663 				      u64 parent, u64 root_objectid,
4664 				      u64 flags, u64 owner, u64 offset,
4665 				      struct btrfs_key *ins, int ref_mod)
4666 {
4667 	struct btrfs_fs_info *fs_info = trans->fs_info;
4668 	struct btrfs_root *extent_root;
4669 	int ret;
4670 	struct btrfs_extent_item *extent_item;
4671 	struct btrfs_extent_inline_ref *iref;
4672 	struct btrfs_path *path;
4673 	struct extent_buffer *leaf;
4674 	int type;
4675 	u32 size;
4676 
4677 	if (parent > 0)
4678 		type = BTRFS_SHARED_DATA_REF_KEY;
4679 	else
4680 		type = BTRFS_EXTENT_DATA_REF_KEY;
4681 
4682 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4683 
4684 	path = btrfs_alloc_path();
4685 	if (!path)
4686 		return -ENOMEM;
4687 
4688 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4689 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4690 	if (ret) {
4691 		btrfs_free_path(path);
4692 		return ret;
4693 	}
4694 
4695 	leaf = path->nodes[0];
4696 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4697 				     struct btrfs_extent_item);
4698 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4699 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4700 	btrfs_set_extent_flags(leaf, extent_item,
4701 			       flags | BTRFS_EXTENT_FLAG_DATA);
4702 
4703 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4704 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4705 	if (parent > 0) {
4706 		struct btrfs_shared_data_ref *ref;
4707 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4708 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4709 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4710 	} else {
4711 		struct btrfs_extent_data_ref *ref;
4712 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4713 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4714 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4715 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4716 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4717 	}
4718 
4719 	btrfs_mark_buffer_dirty(path->nodes[0]);
4720 	btrfs_free_path(path);
4721 
4722 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4723 }
4724 
4725 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4726 				     struct btrfs_delayed_ref_node *node,
4727 				     struct btrfs_delayed_extent_op *extent_op)
4728 {
4729 	struct btrfs_fs_info *fs_info = trans->fs_info;
4730 	struct btrfs_root *extent_root;
4731 	int ret;
4732 	struct btrfs_extent_item *extent_item;
4733 	struct btrfs_key extent_key;
4734 	struct btrfs_tree_block_info *block_info;
4735 	struct btrfs_extent_inline_ref *iref;
4736 	struct btrfs_path *path;
4737 	struct extent_buffer *leaf;
4738 	struct btrfs_delayed_tree_ref *ref;
4739 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4740 	u64 flags = extent_op->flags_to_set;
4741 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4742 
4743 	ref = btrfs_delayed_node_to_tree_ref(node);
4744 
4745 	extent_key.objectid = node->bytenr;
4746 	if (skinny_metadata) {
4747 		extent_key.offset = ref->level;
4748 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4749 	} else {
4750 		extent_key.offset = node->num_bytes;
4751 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4752 		size += sizeof(*block_info);
4753 	}
4754 
4755 	path = btrfs_alloc_path();
4756 	if (!path)
4757 		return -ENOMEM;
4758 
4759 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4760 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4761 				      size);
4762 	if (ret) {
4763 		btrfs_free_path(path);
4764 		return ret;
4765 	}
4766 
4767 	leaf = path->nodes[0];
4768 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4769 				     struct btrfs_extent_item);
4770 	btrfs_set_extent_refs(leaf, extent_item, 1);
4771 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4772 	btrfs_set_extent_flags(leaf, extent_item,
4773 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4774 
4775 	if (skinny_metadata) {
4776 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4777 	} else {
4778 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4779 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4780 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4781 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4782 	}
4783 
4784 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4785 		btrfs_set_extent_inline_ref_type(leaf, iref,
4786 						 BTRFS_SHARED_BLOCK_REF_KEY);
4787 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4788 	} else {
4789 		btrfs_set_extent_inline_ref_type(leaf, iref,
4790 						 BTRFS_TREE_BLOCK_REF_KEY);
4791 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4792 	}
4793 
4794 	btrfs_mark_buffer_dirty(leaf);
4795 	btrfs_free_path(path);
4796 
4797 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4798 }
4799 
4800 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4801 				     struct btrfs_root *root, u64 owner,
4802 				     u64 offset, u64 ram_bytes,
4803 				     struct btrfs_key *ins)
4804 {
4805 	struct btrfs_ref generic_ref = { 0 };
4806 
4807 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4808 
4809 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4810 			       ins->objectid, ins->offset, 0);
4811 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4812 			    offset, 0, false);
4813 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4814 
4815 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4816 }
4817 
4818 /*
4819  * this is used by the tree logging recovery code.  It records that
4820  * an extent has been allocated and makes sure to clear the free
4821  * space cache bits as well
4822  */
4823 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4824 				   u64 root_objectid, u64 owner, u64 offset,
4825 				   struct btrfs_key *ins)
4826 {
4827 	struct btrfs_fs_info *fs_info = trans->fs_info;
4828 	int ret;
4829 	struct btrfs_block_group *block_group;
4830 	struct btrfs_space_info *space_info;
4831 
4832 	/*
4833 	 * Mixed block groups will exclude before processing the log so we only
4834 	 * need to do the exclude dance if this fs isn't mixed.
4835 	 */
4836 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4837 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4838 					      ins->offset);
4839 		if (ret)
4840 			return ret;
4841 	}
4842 
4843 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4844 	if (!block_group)
4845 		return -EINVAL;
4846 
4847 	space_info = block_group->space_info;
4848 	spin_lock(&space_info->lock);
4849 	spin_lock(&block_group->lock);
4850 	space_info->bytes_reserved += ins->offset;
4851 	block_group->reserved += ins->offset;
4852 	spin_unlock(&block_group->lock);
4853 	spin_unlock(&space_info->lock);
4854 
4855 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4856 					 offset, ins, 1);
4857 	if (ret)
4858 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4859 	btrfs_put_block_group(block_group);
4860 	return ret;
4861 }
4862 
4863 static struct extent_buffer *
4864 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4865 		      u64 bytenr, int level, u64 owner,
4866 		      enum btrfs_lock_nesting nest)
4867 {
4868 	struct btrfs_fs_info *fs_info = root->fs_info;
4869 	struct extent_buffer *buf;
4870 
4871 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4872 	if (IS_ERR(buf))
4873 		return buf;
4874 
4875 	/*
4876 	 * Extra safety check in case the extent tree is corrupted and extent
4877 	 * allocator chooses to use a tree block which is already used and
4878 	 * locked.
4879 	 */
4880 	if (buf->lock_owner == current->pid) {
4881 		btrfs_err_rl(fs_info,
4882 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4883 			buf->start, btrfs_header_owner(buf), current->pid);
4884 		free_extent_buffer(buf);
4885 		return ERR_PTR(-EUCLEAN);
4886 	}
4887 
4888 	/*
4889 	 * This needs to stay, because we could allocate a freed block from an
4890 	 * old tree into a new tree, so we need to make sure this new block is
4891 	 * set to the appropriate level and owner.
4892 	 */
4893 	btrfs_set_buffer_lockdep_class(owner, buf, level);
4894 	__btrfs_tree_lock(buf, nest);
4895 	btrfs_clean_tree_block(buf);
4896 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4897 	clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4898 
4899 	set_extent_buffer_uptodate(buf);
4900 
4901 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4902 	btrfs_set_header_level(buf, level);
4903 	btrfs_set_header_bytenr(buf, buf->start);
4904 	btrfs_set_header_generation(buf, trans->transid);
4905 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4906 	btrfs_set_header_owner(buf, owner);
4907 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4908 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4909 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4910 		buf->log_index = root->log_transid % 2;
4911 		/*
4912 		 * we allow two log transactions at a time, use different
4913 		 * EXTENT bit to differentiate dirty pages.
4914 		 */
4915 		if (buf->log_index == 0)
4916 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4917 					buf->start + buf->len - 1, GFP_NOFS);
4918 		else
4919 			set_extent_new(&root->dirty_log_pages, buf->start,
4920 					buf->start + buf->len - 1);
4921 	} else {
4922 		buf->log_index = -1;
4923 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4924 			 buf->start + buf->len - 1, GFP_NOFS);
4925 	}
4926 	/* this returns a buffer locked for blocking */
4927 	return buf;
4928 }
4929 
4930 /*
4931  * finds a free extent and does all the dirty work required for allocation
4932  * returns the tree buffer or an ERR_PTR on error.
4933  */
4934 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4935 					     struct btrfs_root *root,
4936 					     u64 parent, u64 root_objectid,
4937 					     const struct btrfs_disk_key *key,
4938 					     int level, u64 hint,
4939 					     u64 empty_size,
4940 					     enum btrfs_lock_nesting nest)
4941 {
4942 	struct btrfs_fs_info *fs_info = root->fs_info;
4943 	struct btrfs_key ins;
4944 	struct btrfs_block_rsv *block_rsv;
4945 	struct extent_buffer *buf;
4946 	struct btrfs_delayed_extent_op *extent_op;
4947 	struct btrfs_ref generic_ref = { 0 };
4948 	u64 flags = 0;
4949 	int ret;
4950 	u32 blocksize = fs_info->nodesize;
4951 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4952 
4953 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4954 	if (btrfs_is_testing(fs_info)) {
4955 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4956 					    level, root_objectid, nest);
4957 		if (!IS_ERR(buf))
4958 			root->alloc_bytenr += blocksize;
4959 		return buf;
4960 	}
4961 #endif
4962 
4963 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4964 	if (IS_ERR(block_rsv))
4965 		return ERR_CAST(block_rsv);
4966 
4967 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4968 				   empty_size, hint, &ins, 0, 0);
4969 	if (ret)
4970 		goto out_unuse;
4971 
4972 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4973 				    root_objectid, nest);
4974 	if (IS_ERR(buf)) {
4975 		ret = PTR_ERR(buf);
4976 		goto out_free_reserved;
4977 	}
4978 
4979 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4980 		if (parent == 0)
4981 			parent = ins.objectid;
4982 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4983 	} else
4984 		BUG_ON(parent > 0);
4985 
4986 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4987 		extent_op = btrfs_alloc_delayed_extent_op();
4988 		if (!extent_op) {
4989 			ret = -ENOMEM;
4990 			goto out_free_buf;
4991 		}
4992 		if (key)
4993 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4994 		else
4995 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4996 		extent_op->flags_to_set = flags;
4997 		extent_op->update_key = skinny_metadata ? false : true;
4998 		extent_op->update_flags = true;
4999 		extent_op->level = level;
5000 
5001 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5002 				       ins.objectid, ins.offset, parent);
5003 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5004 				    root->root_key.objectid, false);
5005 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5006 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5007 		if (ret)
5008 			goto out_free_delayed;
5009 	}
5010 	return buf;
5011 
5012 out_free_delayed:
5013 	btrfs_free_delayed_extent_op(extent_op);
5014 out_free_buf:
5015 	btrfs_tree_unlock(buf);
5016 	free_extent_buffer(buf);
5017 out_free_reserved:
5018 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5019 out_unuse:
5020 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5021 	return ERR_PTR(ret);
5022 }
5023 
5024 struct walk_control {
5025 	u64 refs[BTRFS_MAX_LEVEL];
5026 	u64 flags[BTRFS_MAX_LEVEL];
5027 	struct btrfs_key update_progress;
5028 	struct btrfs_key drop_progress;
5029 	int drop_level;
5030 	int stage;
5031 	int level;
5032 	int shared_level;
5033 	int update_ref;
5034 	int keep_locks;
5035 	int reada_slot;
5036 	int reada_count;
5037 	int restarted;
5038 };
5039 
5040 #define DROP_REFERENCE	1
5041 #define UPDATE_BACKREF	2
5042 
5043 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5044 				     struct btrfs_root *root,
5045 				     struct walk_control *wc,
5046 				     struct btrfs_path *path)
5047 {
5048 	struct btrfs_fs_info *fs_info = root->fs_info;
5049 	u64 bytenr;
5050 	u64 generation;
5051 	u64 refs;
5052 	u64 flags;
5053 	u32 nritems;
5054 	struct btrfs_key key;
5055 	struct extent_buffer *eb;
5056 	int ret;
5057 	int slot;
5058 	int nread = 0;
5059 
5060 	if (path->slots[wc->level] < wc->reada_slot) {
5061 		wc->reada_count = wc->reada_count * 2 / 3;
5062 		wc->reada_count = max(wc->reada_count, 2);
5063 	} else {
5064 		wc->reada_count = wc->reada_count * 3 / 2;
5065 		wc->reada_count = min_t(int, wc->reada_count,
5066 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5067 	}
5068 
5069 	eb = path->nodes[wc->level];
5070 	nritems = btrfs_header_nritems(eb);
5071 
5072 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5073 		if (nread >= wc->reada_count)
5074 			break;
5075 
5076 		cond_resched();
5077 		bytenr = btrfs_node_blockptr(eb, slot);
5078 		generation = btrfs_node_ptr_generation(eb, slot);
5079 
5080 		if (slot == path->slots[wc->level])
5081 			goto reada;
5082 
5083 		if (wc->stage == UPDATE_BACKREF &&
5084 		    generation <= root->root_key.offset)
5085 			continue;
5086 
5087 		/* We don't lock the tree block, it's OK to be racy here */
5088 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5089 					       wc->level - 1, 1, &refs,
5090 					       &flags);
5091 		/* We don't care about errors in readahead. */
5092 		if (ret < 0)
5093 			continue;
5094 		BUG_ON(refs == 0);
5095 
5096 		if (wc->stage == DROP_REFERENCE) {
5097 			if (refs == 1)
5098 				goto reada;
5099 
5100 			if (wc->level == 1 &&
5101 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5102 				continue;
5103 			if (!wc->update_ref ||
5104 			    generation <= root->root_key.offset)
5105 				continue;
5106 			btrfs_node_key_to_cpu(eb, &key, slot);
5107 			ret = btrfs_comp_cpu_keys(&key,
5108 						  &wc->update_progress);
5109 			if (ret < 0)
5110 				continue;
5111 		} else {
5112 			if (wc->level == 1 &&
5113 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5114 				continue;
5115 		}
5116 reada:
5117 		btrfs_readahead_node_child(eb, slot);
5118 		nread++;
5119 	}
5120 	wc->reada_slot = slot;
5121 }
5122 
5123 /*
5124  * helper to process tree block while walking down the tree.
5125  *
5126  * when wc->stage == UPDATE_BACKREF, this function updates
5127  * back refs for pointers in the block.
5128  *
5129  * NOTE: return value 1 means we should stop walking down.
5130  */
5131 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5132 				   struct btrfs_root *root,
5133 				   struct btrfs_path *path,
5134 				   struct walk_control *wc, int lookup_info)
5135 {
5136 	struct btrfs_fs_info *fs_info = root->fs_info;
5137 	int level = wc->level;
5138 	struct extent_buffer *eb = path->nodes[level];
5139 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5140 	int ret;
5141 
5142 	if (wc->stage == UPDATE_BACKREF &&
5143 	    btrfs_header_owner(eb) != root->root_key.objectid)
5144 		return 1;
5145 
5146 	/*
5147 	 * when reference count of tree block is 1, it won't increase
5148 	 * again. once full backref flag is set, we never clear it.
5149 	 */
5150 	if (lookup_info &&
5151 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5152 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5153 		BUG_ON(!path->locks[level]);
5154 		ret = btrfs_lookup_extent_info(trans, fs_info,
5155 					       eb->start, level, 1,
5156 					       &wc->refs[level],
5157 					       &wc->flags[level]);
5158 		BUG_ON(ret == -ENOMEM);
5159 		if (ret)
5160 			return ret;
5161 		BUG_ON(wc->refs[level] == 0);
5162 	}
5163 
5164 	if (wc->stage == DROP_REFERENCE) {
5165 		if (wc->refs[level] > 1)
5166 			return 1;
5167 
5168 		if (path->locks[level] && !wc->keep_locks) {
5169 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5170 			path->locks[level] = 0;
5171 		}
5172 		return 0;
5173 	}
5174 
5175 	/* wc->stage == UPDATE_BACKREF */
5176 	if (!(wc->flags[level] & flag)) {
5177 		BUG_ON(!path->locks[level]);
5178 		ret = btrfs_inc_ref(trans, root, eb, 1);
5179 		BUG_ON(ret); /* -ENOMEM */
5180 		ret = btrfs_dec_ref(trans, root, eb, 0);
5181 		BUG_ON(ret); /* -ENOMEM */
5182 		ret = btrfs_set_disk_extent_flags(trans, eb, flag,
5183 						  btrfs_header_level(eb));
5184 		BUG_ON(ret); /* -ENOMEM */
5185 		wc->flags[level] |= flag;
5186 	}
5187 
5188 	/*
5189 	 * the block is shared by multiple trees, so it's not good to
5190 	 * keep the tree lock
5191 	 */
5192 	if (path->locks[level] && level > 0) {
5193 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5194 		path->locks[level] = 0;
5195 	}
5196 	return 0;
5197 }
5198 
5199 /*
5200  * This is used to verify a ref exists for this root to deal with a bug where we
5201  * would have a drop_progress key that hadn't been updated properly.
5202  */
5203 static int check_ref_exists(struct btrfs_trans_handle *trans,
5204 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5205 			    int level)
5206 {
5207 	struct btrfs_path *path;
5208 	struct btrfs_extent_inline_ref *iref;
5209 	int ret;
5210 
5211 	path = btrfs_alloc_path();
5212 	if (!path)
5213 		return -ENOMEM;
5214 
5215 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5216 				    root->fs_info->nodesize, parent,
5217 				    root->root_key.objectid, level, 0);
5218 	btrfs_free_path(path);
5219 	if (ret == -ENOENT)
5220 		return 0;
5221 	if (ret < 0)
5222 		return ret;
5223 	return 1;
5224 }
5225 
5226 /*
5227  * helper to process tree block pointer.
5228  *
5229  * when wc->stage == DROP_REFERENCE, this function checks
5230  * reference count of the block pointed to. if the block
5231  * is shared and we need update back refs for the subtree
5232  * rooted at the block, this function changes wc->stage to
5233  * UPDATE_BACKREF. if the block is shared and there is no
5234  * need to update back, this function drops the reference
5235  * to the block.
5236  *
5237  * NOTE: return value 1 means we should stop walking down.
5238  */
5239 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5240 				 struct btrfs_root *root,
5241 				 struct btrfs_path *path,
5242 				 struct walk_control *wc, int *lookup_info)
5243 {
5244 	struct btrfs_fs_info *fs_info = root->fs_info;
5245 	u64 bytenr;
5246 	u64 generation;
5247 	u64 parent;
5248 	struct btrfs_key key;
5249 	struct btrfs_key first_key;
5250 	struct btrfs_ref ref = { 0 };
5251 	struct extent_buffer *next;
5252 	int level = wc->level;
5253 	int reada = 0;
5254 	int ret = 0;
5255 	bool need_account = false;
5256 
5257 	generation = btrfs_node_ptr_generation(path->nodes[level],
5258 					       path->slots[level]);
5259 	/*
5260 	 * if the lower level block was created before the snapshot
5261 	 * was created, we know there is no need to update back refs
5262 	 * for the subtree
5263 	 */
5264 	if (wc->stage == UPDATE_BACKREF &&
5265 	    generation <= root->root_key.offset) {
5266 		*lookup_info = 1;
5267 		return 1;
5268 	}
5269 
5270 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5271 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
5272 			      path->slots[level]);
5273 
5274 	next = find_extent_buffer(fs_info, bytenr);
5275 	if (!next) {
5276 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5277 				root->root_key.objectid, level - 1);
5278 		if (IS_ERR(next))
5279 			return PTR_ERR(next);
5280 		reada = 1;
5281 	}
5282 	btrfs_tree_lock(next);
5283 
5284 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5285 				       &wc->refs[level - 1],
5286 				       &wc->flags[level - 1]);
5287 	if (ret < 0)
5288 		goto out_unlock;
5289 
5290 	if (unlikely(wc->refs[level - 1] == 0)) {
5291 		btrfs_err(fs_info, "Missing references.");
5292 		ret = -EIO;
5293 		goto out_unlock;
5294 	}
5295 	*lookup_info = 0;
5296 
5297 	if (wc->stage == DROP_REFERENCE) {
5298 		if (wc->refs[level - 1] > 1) {
5299 			need_account = true;
5300 			if (level == 1 &&
5301 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5302 				goto skip;
5303 
5304 			if (!wc->update_ref ||
5305 			    generation <= root->root_key.offset)
5306 				goto skip;
5307 
5308 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5309 					      path->slots[level]);
5310 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5311 			if (ret < 0)
5312 				goto skip;
5313 
5314 			wc->stage = UPDATE_BACKREF;
5315 			wc->shared_level = level - 1;
5316 		}
5317 	} else {
5318 		if (level == 1 &&
5319 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5320 			goto skip;
5321 	}
5322 
5323 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5324 		btrfs_tree_unlock(next);
5325 		free_extent_buffer(next);
5326 		next = NULL;
5327 		*lookup_info = 1;
5328 	}
5329 
5330 	if (!next) {
5331 		if (reada && level == 1)
5332 			reada_walk_down(trans, root, wc, path);
5333 		next = read_tree_block(fs_info, bytenr, root->root_key.objectid,
5334 				       generation, level - 1, &first_key);
5335 		if (IS_ERR(next)) {
5336 			return PTR_ERR(next);
5337 		} else if (!extent_buffer_uptodate(next)) {
5338 			free_extent_buffer(next);
5339 			return -EIO;
5340 		}
5341 		btrfs_tree_lock(next);
5342 	}
5343 
5344 	level--;
5345 	ASSERT(level == btrfs_header_level(next));
5346 	if (level != btrfs_header_level(next)) {
5347 		btrfs_err(root->fs_info, "mismatched level");
5348 		ret = -EIO;
5349 		goto out_unlock;
5350 	}
5351 	path->nodes[level] = next;
5352 	path->slots[level] = 0;
5353 	path->locks[level] = BTRFS_WRITE_LOCK;
5354 	wc->level = level;
5355 	if (wc->level == 1)
5356 		wc->reada_slot = 0;
5357 	return 0;
5358 skip:
5359 	wc->refs[level - 1] = 0;
5360 	wc->flags[level - 1] = 0;
5361 	if (wc->stage == DROP_REFERENCE) {
5362 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5363 			parent = path->nodes[level]->start;
5364 		} else {
5365 			ASSERT(root->root_key.objectid ==
5366 			       btrfs_header_owner(path->nodes[level]));
5367 			if (root->root_key.objectid !=
5368 			    btrfs_header_owner(path->nodes[level])) {
5369 				btrfs_err(root->fs_info,
5370 						"mismatched block owner");
5371 				ret = -EIO;
5372 				goto out_unlock;
5373 			}
5374 			parent = 0;
5375 		}
5376 
5377 		/*
5378 		 * If we had a drop_progress we need to verify the refs are set
5379 		 * as expected.  If we find our ref then we know that from here
5380 		 * on out everything should be correct, and we can clear the
5381 		 * ->restarted flag.
5382 		 */
5383 		if (wc->restarted) {
5384 			ret = check_ref_exists(trans, root, bytenr, parent,
5385 					       level - 1);
5386 			if (ret < 0)
5387 				goto out_unlock;
5388 			if (ret == 0)
5389 				goto no_delete;
5390 			ret = 0;
5391 			wc->restarted = 0;
5392 		}
5393 
5394 		/*
5395 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5396 		 * already accounted them at merge time (replace_path),
5397 		 * thus we could skip expensive subtree trace here.
5398 		 */
5399 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5400 		    need_account) {
5401 			ret = btrfs_qgroup_trace_subtree(trans, next,
5402 							 generation, level - 1);
5403 			if (ret) {
5404 				btrfs_err_rl(fs_info,
5405 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5406 					     ret);
5407 			}
5408 		}
5409 
5410 		/*
5411 		 * We need to update the next key in our walk control so we can
5412 		 * update the drop_progress key accordingly.  We don't care if
5413 		 * find_next_key doesn't find a key because that means we're at
5414 		 * the end and are going to clean up now.
5415 		 */
5416 		wc->drop_level = level;
5417 		find_next_key(path, level, &wc->drop_progress);
5418 
5419 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5420 				       fs_info->nodesize, parent);
5421 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5422 				    0, false);
5423 		ret = btrfs_free_extent(trans, &ref);
5424 		if (ret)
5425 			goto out_unlock;
5426 	}
5427 no_delete:
5428 	*lookup_info = 1;
5429 	ret = 1;
5430 
5431 out_unlock:
5432 	btrfs_tree_unlock(next);
5433 	free_extent_buffer(next);
5434 
5435 	return ret;
5436 }
5437 
5438 /*
5439  * helper to process tree block while walking up the tree.
5440  *
5441  * when wc->stage == DROP_REFERENCE, this function drops
5442  * reference count on the block.
5443  *
5444  * when wc->stage == UPDATE_BACKREF, this function changes
5445  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5446  * to UPDATE_BACKREF previously while processing the block.
5447  *
5448  * NOTE: return value 1 means we should stop walking up.
5449  */
5450 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5451 				 struct btrfs_root *root,
5452 				 struct btrfs_path *path,
5453 				 struct walk_control *wc)
5454 {
5455 	struct btrfs_fs_info *fs_info = root->fs_info;
5456 	int ret;
5457 	int level = wc->level;
5458 	struct extent_buffer *eb = path->nodes[level];
5459 	u64 parent = 0;
5460 
5461 	if (wc->stage == UPDATE_BACKREF) {
5462 		BUG_ON(wc->shared_level < level);
5463 		if (level < wc->shared_level)
5464 			goto out;
5465 
5466 		ret = find_next_key(path, level + 1, &wc->update_progress);
5467 		if (ret > 0)
5468 			wc->update_ref = 0;
5469 
5470 		wc->stage = DROP_REFERENCE;
5471 		wc->shared_level = -1;
5472 		path->slots[level] = 0;
5473 
5474 		/*
5475 		 * check reference count again if the block isn't locked.
5476 		 * we should start walking down the tree again if reference
5477 		 * count is one.
5478 		 */
5479 		if (!path->locks[level]) {
5480 			BUG_ON(level == 0);
5481 			btrfs_tree_lock(eb);
5482 			path->locks[level] = BTRFS_WRITE_LOCK;
5483 
5484 			ret = btrfs_lookup_extent_info(trans, fs_info,
5485 						       eb->start, level, 1,
5486 						       &wc->refs[level],
5487 						       &wc->flags[level]);
5488 			if (ret < 0) {
5489 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5490 				path->locks[level] = 0;
5491 				return ret;
5492 			}
5493 			BUG_ON(wc->refs[level] == 0);
5494 			if (wc->refs[level] == 1) {
5495 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5496 				path->locks[level] = 0;
5497 				return 1;
5498 			}
5499 		}
5500 	}
5501 
5502 	/* wc->stage == DROP_REFERENCE */
5503 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5504 
5505 	if (wc->refs[level] == 1) {
5506 		if (level == 0) {
5507 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5508 				ret = btrfs_dec_ref(trans, root, eb, 1);
5509 			else
5510 				ret = btrfs_dec_ref(trans, root, eb, 0);
5511 			BUG_ON(ret); /* -ENOMEM */
5512 			if (is_fstree(root->root_key.objectid)) {
5513 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5514 				if (ret) {
5515 					btrfs_err_rl(fs_info,
5516 	"error %d accounting leaf items, quota is out of sync, rescan required",
5517 					     ret);
5518 				}
5519 			}
5520 		}
5521 		/* make block locked assertion in btrfs_clean_tree_block happy */
5522 		if (!path->locks[level] &&
5523 		    btrfs_header_generation(eb) == trans->transid) {
5524 			btrfs_tree_lock(eb);
5525 			path->locks[level] = BTRFS_WRITE_LOCK;
5526 		}
5527 		btrfs_clean_tree_block(eb);
5528 	}
5529 
5530 	if (eb == root->node) {
5531 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5532 			parent = eb->start;
5533 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5534 			goto owner_mismatch;
5535 	} else {
5536 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5537 			parent = path->nodes[level + 1]->start;
5538 		else if (root->root_key.objectid !=
5539 			 btrfs_header_owner(path->nodes[level + 1]))
5540 			goto owner_mismatch;
5541 	}
5542 
5543 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5544 			      wc->refs[level] == 1);
5545 out:
5546 	wc->refs[level] = 0;
5547 	wc->flags[level] = 0;
5548 	return 0;
5549 
5550 owner_mismatch:
5551 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5552 		     btrfs_header_owner(eb), root->root_key.objectid);
5553 	return -EUCLEAN;
5554 }
5555 
5556 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5557 				   struct btrfs_root *root,
5558 				   struct btrfs_path *path,
5559 				   struct walk_control *wc)
5560 {
5561 	int level = wc->level;
5562 	int lookup_info = 1;
5563 	int ret;
5564 
5565 	while (level >= 0) {
5566 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5567 		if (ret > 0)
5568 			break;
5569 
5570 		if (level == 0)
5571 			break;
5572 
5573 		if (path->slots[level] >=
5574 		    btrfs_header_nritems(path->nodes[level]))
5575 			break;
5576 
5577 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5578 		if (ret > 0) {
5579 			path->slots[level]++;
5580 			continue;
5581 		} else if (ret < 0)
5582 			return ret;
5583 		level = wc->level;
5584 	}
5585 	return 0;
5586 }
5587 
5588 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5589 				 struct btrfs_root *root,
5590 				 struct btrfs_path *path,
5591 				 struct walk_control *wc, int max_level)
5592 {
5593 	int level = wc->level;
5594 	int ret;
5595 
5596 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5597 	while (level < max_level && path->nodes[level]) {
5598 		wc->level = level;
5599 		if (path->slots[level] + 1 <
5600 		    btrfs_header_nritems(path->nodes[level])) {
5601 			path->slots[level]++;
5602 			return 0;
5603 		} else {
5604 			ret = walk_up_proc(trans, root, path, wc);
5605 			if (ret > 0)
5606 				return 0;
5607 			if (ret < 0)
5608 				return ret;
5609 
5610 			if (path->locks[level]) {
5611 				btrfs_tree_unlock_rw(path->nodes[level],
5612 						     path->locks[level]);
5613 				path->locks[level] = 0;
5614 			}
5615 			free_extent_buffer(path->nodes[level]);
5616 			path->nodes[level] = NULL;
5617 			level++;
5618 		}
5619 	}
5620 	return 1;
5621 }
5622 
5623 /*
5624  * drop a subvolume tree.
5625  *
5626  * this function traverses the tree freeing any blocks that only
5627  * referenced by the tree.
5628  *
5629  * when a shared tree block is found. this function decreases its
5630  * reference count by one. if update_ref is true, this function
5631  * also make sure backrefs for the shared block and all lower level
5632  * blocks are properly updated.
5633  *
5634  * If called with for_reloc == 0, may exit early with -EAGAIN
5635  */
5636 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5637 {
5638 	struct btrfs_fs_info *fs_info = root->fs_info;
5639 	struct btrfs_path *path;
5640 	struct btrfs_trans_handle *trans;
5641 	struct btrfs_root *tree_root = fs_info->tree_root;
5642 	struct btrfs_root_item *root_item = &root->root_item;
5643 	struct walk_control *wc;
5644 	struct btrfs_key key;
5645 	int err = 0;
5646 	int ret;
5647 	int level;
5648 	bool root_dropped = false;
5649 	bool unfinished_drop = false;
5650 
5651 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5652 
5653 	path = btrfs_alloc_path();
5654 	if (!path) {
5655 		err = -ENOMEM;
5656 		goto out;
5657 	}
5658 
5659 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5660 	if (!wc) {
5661 		btrfs_free_path(path);
5662 		err = -ENOMEM;
5663 		goto out;
5664 	}
5665 
5666 	/*
5667 	 * Use join to avoid potential EINTR from transaction start. See
5668 	 * wait_reserve_ticket and the whole reservation callchain.
5669 	 */
5670 	if (for_reloc)
5671 		trans = btrfs_join_transaction(tree_root);
5672 	else
5673 		trans = btrfs_start_transaction(tree_root, 0);
5674 	if (IS_ERR(trans)) {
5675 		err = PTR_ERR(trans);
5676 		goto out_free;
5677 	}
5678 
5679 	err = btrfs_run_delayed_items(trans);
5680 	if (err)
5681 		goto out_end_trans;
5682 
5683 	/*
5684 	 * This will help us catch people modifying the fs tree while we're
5685 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5686 	 * dropped as we unlock the root node and parent nodes as we walk down
5687 	 * the tree, assuming nothing will change.  If something does change
5688 	 * then we'll have stale information and drop references to blocks we've
5689 	 * already dropped.
5690 	 */
5691 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5692 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5693 
5694 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5695 		level = btrfs_header_level(root->node);
5696 		path->nodes[level] = btrfs_lock_root_node(root);
5697 		path->slots[level] = 0;
5698 		path->locks[level] = BTRFS_WRITE_LOCK;
5699 		memset(&wc->update_progress, 0,
5700 		       sizeof(wc->update_progress));
5701 	} else {
5702 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5703 		memcpy(&wc->update_progress, &key,
5704 		       sizeof(wc->update_progress));
5705 
5706 		level = btrfs_root_drop_level(root_item);
5707 		BUG_ON(level == 0);
5708 		path->lowest_level = level;
5709 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5710 		path->lowest_level = 0;
5711 		if (ret < 0) {
5712 			err = ret;
5713 			goto out_end_trans;
5714 		}
5715 		WARN_ON(ret > 0);
5716 
5717 		/*
5718 		 * unlock our path, this is safe because only this
5719 		 * function is allowed to delete this snapshot
5720 		 */
5721 		btrfs_unlock_up_safe(path, 0);
5722 
5723 		level = btrfs_header_level(root->node);
5724 		while (1) {
5725 			btrfs_tree_lock(path->nodes[level]);
5726 			path->locks[level] = BTRFS_WRITE_LOCK;
5727 
5728 			ret = btrfs_lookup_extent_info(trans, fs_info,
5729 						path->nodes[level]->start,
5730 						level, 1, &wc->refs[level],
5731 						&wc->flags[level]);
5732 			if (ret < 0) {
5733 				err = ret;
5734 				goto out_end_trans;
5735 			}
5736 			BUG_ON(wc->refs[level] == 0);
5737 
5738 			if (level == btrfs_root_drop_level(root_item))
5739 				break;
5740 
5741 			btrfs_tree_unlock(path->nodes[level]);
5742 			path->locks[level] = 0;
5743 			WARN_ON(wc->refs[level] != 1);
5744 			level--;
5745 		}
5746 	}
5747 
5748 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5749 	wc->level = level;
5750 	wc->shared_level = -1;
5751 	wc->stage = DROP_REFERENCE;
5752 	wc->update_ref = update_ref;
5753 	wc->keep_locks = 0;
5754 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5755 
5756 	while (1) {
5757 
5758 		ret = walk_down_tree(trans, root, path, wc);
5759 		if (ret < 0) {
5760 			err = ret;
5761 			break;
5762 		}
5763 
5764 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5765 		if (ret < 0) {
5766 			err = ret;
5767 			break;
5768 		}
5769 
5770 		if (ret > 0) {
5771 			BUG_ON(wc->stage != DROP_REFERENCE);
5772 			break;
5773 		}
5774 
5775 		if (wc->stage == DROP_REFERENCE) {
5776 			wc->drop_level = wc->level;
5777 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5778 					      &wc->drop_progress,
5779 					      path->slots[wc->drop_level]);
5780 		}
5781 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5782 				      &wc->drop_progress);
5783 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5784 
5785 		BUG_ON(wc->level == 0);
5786 		if (btrfs_should_end_transaction(trans) ||
5787 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5788 			ret = btrfs_update_root(trans, tree_root,
5789 						&root->root_key,
5790 						root_item);
5791 			if (ret) {
5792 				btrfs_abort_transaction(trans, ret);
5793 				err = ret;
5794 				goto out_end_trans;
5795 			}
5796 
5797 			btrfs_end_transaction_throttle(trans);
5798 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5799 				btrfs_debug(fs_info,
5800 					    "drop snapshot early exit");
5801 				err = -EAGAIN;
5802 				goto out_free;
5803 			}
5804 
5805 		       /*
5806 			* Use join to avoid potential EINTR from transaction
5807 			* start. See wait_reserve_ticket and the whole
5808 			* reservation callchain.
5809 			*/
5810 			if (for_reloc)
5811 				trans = btrfs_join_transaction(tree_root);
5812 			else
5813 				trans = btrfs_start_transaction(tree_root, 0);
5814 			if (IS_ERR(trans)) {
5815 				err = PTR_ERR(trans);
5816 				goto out_free;
5817 			}
5818 		}
5819 	}
5820 	btrfs_release_path(path);
5821 	if (err)
5822 		goto out_end_trans;
5823 
5824 	ret = btrfs_del_root(trans, &root->root_key);
5825 	if (ret) {
5826 		btrfs_abort_transaction(trans, ret);
5827 		err = ret;
5828 		goto out_end_trans;
5829 	}
5830 
5831 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5832 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5833 				      NULL, NULL);
5834 		if (ret < 0) {
5835 			btrfs_abort_transaction(trans, ret);
5836 			err = ret;
5837 			goto out_end_trans;
5838 		} else if (ret > 0) {
5839 			/* if we fail to delete the orphan item this time
5840 			 * around, it'll get picked up the next time.
5841 			 *
5842 			 * The most common failure here is just -ENOENT.
5843 			 */
5844 			btrfs_del_orphan_item(trans, tree_root,
5845 					      root->root_key.objectid);
5846 		}
5847 	}
5848 
5849 	/*
5850 	 * This subvolume is going to be completely dropped, and won't be
5851 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5852 	 * commit transaction time.  So free it here manually.
5853 	 */
5854 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5855 	btrfs_qgroup_free_meta_all_pertrans(root);
5856 
5857 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5858 		btrfs_add_dropped_root(trans, root);
5859 	else
5860 		btrfs_put_root(root);
5861 	root_dropped = true;
5862 out_end_trans:
5863 	btrfs_end_transaction_throttle(trans);
5864 out_free:
5865 	kfree(wc);
5866 	btrfs_free_path(path);
5867 out:
5868 	/*
5869 	 * We were an unfinished drop root, check to see if there are any
5870 	 * pending, and if not clear and wake up any waiters.
5871 	 */
5872 	if (!err && unfinished_drop)
5873 		btrfs_maybe_wake_unfinished_drop(fs_info);
5874 
5875 	/*
5876 	 * So if we need to stop dropping the snapshot for whatever reason we
5877 	 * need to make sure to add it back to the dead root list so that we
5878 	 * keep trying to do the work later.  This also cleans up roots if we
5879 	 * don't have it in the radix (like when we recover after a power fail
5880 	 * or unmount) so we don't leak memory.
5881 	 */
5882 	if (!for_reloc && !root_dropped)
5883 		btrfs_add_dead_root(root);
5884 	return err;
5885 }
5886 
5887 /*
5888  * drop subtree rooted at tree block 'node'.
5889  *
5890  * NOTE: this function will unlock and release tree block 'node'
5891  * only used by relocation code
5892  */
5893 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5894 			struct btrfs_root *root,
5895 			struct extent_buffer *node,
5896 			struct extent_buffer *parent)
5897 {
5898 	struct btrfs_fs_info *fs_info = root->fs_info;
5899 	struct btrfs_path *path;
5900 	struct walk_control *wc;
5901 	int level;
5902 	int parent_level;
5903 	int ret = 0;
5904 	int wret;
5905 
5906 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5907 
5908 	path = btrfs_alloc_path();
5909 	if (!path)
5910 		return -ENOMEM;
5911 
5912 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5913 	if (!wc) {
5914 		btrfs_free_path(path);
5915 		return -ENOMEM;
5916 	}
5917 
5918 	btrfs_assert_tree_write_locked(parent);
5919 	parent_level = btrfs_header_level(parent);
5920 	atomic_inc(&parent->refs);
5921 	path->nodes[parent_level] = parent;
5922 	path->slots[parent_level] = btrfs_header_nritems(parent);
5923 
5924 	btrfs_assert_tree_write_locked(node);
5925 	level = btrfs_header_level(node);
5926 	path->nodes[level] = node;
5927 	path->slots[level] = 0;
5928 	path->locks[level] = BTRFS_WRITE_LOCK;
5929 
5930 	wc->refs[parent_level] = 1;
5931 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5932 	wc->level = level;
5933 	wc->shared_level = -1;
5934 	wc->stage = DROP_REFERENCE;
5935 	wc->update_ref = 0;
5936 	wc->keep_locks = 1;
5937 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5938 
5939 	while (1) {
5940 		wret = walk_down_tree(trans, root, path, wc);
5941 		if (wret < 0) {
5942 			ret = wret;
5943 			break;
5944 		}
5945 
5946 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5947 		if (wret < 0)
5948 			ret = wret;
5949 		if (wret != 0)
5950 			break;
5951 	}
5952 
5953 	kfree(wc);
5954 	btrfs_free_path(path);
5955 	return ret;
5956 }
5957 
5958 /*
5959  * helper to account the unused space of all the readonly block group in the
5960  * space_info. takes mirrors into account.
5961  */
5962 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5963 {
5964 	struct btrfs_block_group *block_group;
5965 	u64 free_bytes = 0;
5966 	int factor;
5967 
5968 	/* It's df, we don't care if it's racy */
5969 	if (list_empty(&sinfo->ro_bgs))
5970 		return 0;
5971 
5972 	spin_lock(&sinfo->lock);
5973 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5974 		spin_lock(&block_group->lock);
5975 
5976 		if (!block_group->ro) {
5977 			spin_unlock(&block_group->lock);
5978 			continue;
5979 		}
5980 
5981 		factor = btrfs_bg_type_to_factor(block_group->flags);
5982 		free_bytes += (block_group->length -
5983 			       block_group->used) * factor;
5984 
5985 		spin_unlock(&block_group->lock);
5986 	}
5987 	spin_unlock(&sinfo->lock);
5988 
5989 	return free_bytes;
5990 }
5991 
5992 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5993 				   u64 start, u64 end)
5994 {
5995 	return unpin_extent_range(fs_info, start, end, false);
5996 }
5997 
5998 /*
5999  * It used to be that old block groups would be left around forever.
6000  * Iterating over them would be enough to trim unused space.  Since we
6001  * now automatically remove them, we also need to iterate over unallocated
6002  * space.
6003  *
6004  * We don't want a transaction for this since the discard may take a
6005  * substantial amount of time.  We don't require that a transaction be
6006  * running, but we do need to take a running transaction into account
6007  * to ensure that we're not discarding chunks that were released or
6008  * allocated in the current transaction.
6009  *
6010  * Holding the chunks lock will prevent other threads from allocating
6011  * or releasing chunks, but it won't prevent a running transaction
6012  * from committing and releasing the memory that the pending chunks
6013  * list head uses.  For that, we need to take a reference to the
6014  * transaction and hold the commit root sem.  We only need to hold
6015  * it while performing the free space search since we have already
6016  * held back allocations.
6017  */
6018 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6019 {
6020 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6021 	int ret;
6022 
6023 	*trimmed = 0;
6024 
6025 	/* Discard not supported = nothing to do. */
6026 	if (!bdev_max_discard_sectors(device->bdev))
6027 		return 0;
6028 
6029 	/* Not writable = nothing to do. */
6030 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6031 		return 0;
6032 
6033 	/* No free space = nothing to do. */
6034 	if (device->total_bytes <= device->bytes_used)
6035 		return 0;
6036 
6037 	ret = 0;
6038 
6039 	while (1) {
6040 		struct btrfs_fs_info *fs_info = device->fs_info;
6041 		u64 bytes;
6042 
6043 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6044 		if (ret)
6045 			break;
6046 
6047 		find_first_clear_extent_bit(&device->alloc_state, start,
6048 					    &start, &end,
6049 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6050 
6051 		/* Check if there are any CHUNK_* bits left */
6052 		if (start > device->total_bytes) {
6053 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6054 			btrfs_warn_in_rcu(fs_info,
6055 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6056 					  start, end - start + 1,
6057 					  rcu_str_deref(device->name),
6058 					  device->total_bytes);
6059 			mutex_unlock(&fs_info->chunk_mutex);
6060 			ret = 0;
6061 			break;
6062 		}
6063 
6064 		/* Ensure we skip the reserved space on each device. */
6065 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6066 
6067 		/*
6068 		 * If find_first_clear_extent_bit find a range that spans the
6069 		 * end of the device it will set end to -1, in this case it's up
6070 		 * to the caller to trim the value to the size of the device.
6071 		 */
6072 		end = min(end, device->total_bytes - 1);
6073 
6074 		len = end - start + 1;
6075 
6076 		/* We didn't find any extents */
6077 		if (!len) {
6078 			mutex_unlock(&fs_info->chunk_mutex);
6079 			ret = 0;
6080 			break;
6081 		}
6082 
6083 		ret = btrfs_issue_discard(device->bdev, start, len,
6084 					  &bytes);
6085 		if (!ret)
6086 			set_extent_bits(&device->alloc_state, start,
6087 					start + bytes - 1,
6088 					CHUNK_TRIMMED);
6089 		mutex_unlock(&fs_info->chunk_mutex);
6090 
6091 		if (ret)
6092 			break;
6093 
6094 		start += len;
6095 		*trimmed += bytes;
6096 
6097 		if (fatal_signal_pending(current)) {
6098 			ret = -ERESTARTSYS;
6099 			break;
6100 		}
6101 
6102 		cond_resched();
6103 	}
6104 
6105 	return ret;
6106 }
6107 
6108 /*
6109  * Trim the whole filesystem by:
6110  * 1) trimming the free space in each block group
6111  * 2) trimming the unallocated space on each device
6112  *
6113  * This will also continue trimming even if a block group or device encounters
6114  * an error.  The return value will be the last error, or 0 if nothing bad
6115  * happens.
6116  */
6117 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6118 {
6119 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6120 	struct btrfs_block_group *cache = NULL;
6121 	struct btrfs_device *device;
6122 	u64 group_trimmed;
6123 	u64 range_end = U64_MAX;
6124 	u64 start;
6125 	u64 end;
6126 	u64 trimmed = 0;
6127 	u64 bg_failed = 0;
6128 	u64 dev_failed = 0;
6129 	int bg_ret = 0;
6130 	int dev_ret = 0;
6131 	int ret = 0;
6132 
6133 	if (range->start == U64_MAX)
6134 		return -EINVAL;
6135 
6136 	/*
6137 	 * Check range overflow if range->len is set.
6138 	 * The default range->len is U64_MAX.
6139 	 */
6140 	if (range->len != U64_MAX &&
6141 	    check_add_overflow(range->start, range->len, &range_end))
6142 		return -EINVAL;
6143 
6144 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6145 	for (; cache; cache = btrfs_next_block_group(cache)) {
6146 		if (cache->start >= range_end) {
6147 			btrfs_put_block_group(cache);
6148 			break;
6149 		}
6150 
6151 		start = max(range->start, cache->start);
6152 		end = min(range_end, cache->start + cache->length);
6153 
6154 		if (end - start >= range->minlen) {
6155 			if (!btrfs_block_group_done(cache)) {
6156 				ret = btrfs_cache_block_group(cache, 0);
6157 				if (ret) {
6158 					bg_failed++;
6159 					bg_ret = ret;
6160 					continue;
6161 				}
6162 				ret = btrfs_wait_block_group_cache_done(cache);
6163 				if (ret) {
6164 					bg_failed++;
6165 					bg_ret = ret;
6166 					continue;
6167 				}
6168 			}
6169 			ret = btrfs_trim_block_group(cache,
6170 						     &group_trimmed,
6171 						     start,
6172 						     end,
6173 						     range->minlen);
6174 
6175 			trimmed += group_trimmed;
6176 			if (ret) {
6177 				bg_failed++;
6178 				bg_ret = ret;
6179 				continue;
6180 			}
6181 		}
6182 	}
6183 
6184 	if (bg_failed)
6185 		btrfs_warn(fs_info,
6186 			"failed to trim %llu block group(s), last error %d",
6187 			bg_failed, bg_ret);
6188 
6189 	mutex_lock(&fs_devices->device_list_mutex);
6190 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6191 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6192 			continue;
6193 
6194 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6195 		if (ret) {
6196 			dev_failed++;
6197 			dev_ret = ret;
6198 			break;
6199 		}
6200 
6201 		trimmed += group_trimmed;
6202 	}
6203 	mutex_unlock(&fs_devices->device_list_mutex);
6204 
6205 	if (dev_failed)
6206 		btrfs_warn(fs_info,
6207 			"failed to trim %llu device(s), last error %d",
6208 			dev_failed, dev_ret);
6209 	range->len = trimmed;
6210 	if (bg_ret)
6211 		return bg_ret;
6212 	return dev_ret;
6213 }
6214