1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 68 int read_only); 69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 71 struct btrfs_root *root); 72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 73 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 74 struct extent_io_tree *dirty_pages, 75 int mark); 76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 77 struct extent_io_tree *pinned_extents); 78 static int btrfs_cleanup_transaction(struct btrfs_root *root); 79 static void btrfs_error_commit_super(struct btrfs_root *root); 80 81 /* 82 * btrfs_end_io_wq structs are used to do processing in task context when an IO 83 * is complete. This is used during reads to verify checksums, and it is used 84 * by writes to insert metadata for new file extents after IO is complete. 85 */ 86 struct btrfs_end_io_wq { 87 struct bio *bio; 88 bio_end_io_t *end_io; 89 void *private; 90 struct btrfs_fs_info *info; 91 int error; 92 enum btrfs_wq_endio_type metadata; 93 struct list_head list; 94 struct btrfs_work work; 95 }; 96 97 static struct kmem_cache *btrfs_end_io_wq_cache; 98 99 int __init btrfs_end_io_wq_init(void) 100 { 101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 102 sizeof(struct btrfs_end_io_wq), 103 0, 104 SLAB_MEM_SPREAD, 105 NULL); 106 if (!btrfs_end_io_wq_cache) 107 return -ENOMEM; 108 return 0; 109 } 110 111 void btrfs_end_io_wq_exit(void) 112 { 113 kmem_cache_destroy(btrfs_end_io_wq_cache); 114 } 115 116 /* 117 * async submit bios are used to offload expensive checksumming 118 * onto the worker threads. They checksum file and metadata bios 119 * just before they are sent down the IO stack. 120 */ 121 struct async_submit_bio { 122 struct inode *inode; 123 struct bio *bio; 124 struct list_head list; 125 extent_submit_bio_hook_t *submit_bio_start; 126 extent_submit_bio_hook_t *submit_bio_done; 127 int mirror_num; 128 unsigned long bio_flags; 129 /* 130 * bio_offset is optional, can be used if the pages in the bio 131 * can't tell us where in the file the bio should go 132 */ 133 u64 bio_offset; 134 struct btrfs_work work; 135 int error; 136 }; 137 138 /* 139 * Lockdep class keys for extent_buffer->lock's in this root. For a given 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and 141 * the level the eb occupies in the tree. 142 * 143 * Different roots are used for different purposes and may nest inside each 144 * other and they require separate keysets. As lockdep keys should be 145 * static, assign keysets according to the purpose of the root as indicated 146 * by btrfs_root->objectid. This ensures that all special purpose roots 147 * have separate keysets. 148 * 149 * Lock-nesting across peer nodes is always done with the immediate parent 150 * node locked thus preventing deadlock. As lockdep doesn't know this, use 151 * subclass to avoid triggering lockdep warning in such cases. 152 * 153 * The key is set by the readpage_end_io_hook after the buffer has passed 154 * csum validation but before the pages are unlocked. It is also set by 155 * btrfs_init_new_buffer on freshly allocated blocks. 156 * 157 * We also add a check to make sure the highest level of the tree is the 158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 159 * needs update as well. 160 */ 161 #ifdef CONFIG_DEBUG_LOCK_ALLOC 162 # if BTRFS_MAX_LEVEL != 8 163 # error 164 # endif 165 166 static struct btrfs_lockdep_keyset { 167 u64 id; /* root objectid */ 168 const char *name_stem; /* lock name stem */ 169 char names[BTRFS_MAX_LEVEL + 1][20]; 170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 171 } btrfs_lockdep_keysets[] = { 172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 184 { .id = 0, .name_stem = "tree" }, 185 }; 186 187 void __init btrfs_init_lockdep(void) 188 { 189 int i, j; 190 191 /* initialize lockdep class names */ 192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 194 195 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 196 snprintf(ks->names[j], sizeof(ks->names[j]), 197 "btrfs-%s-%02d", ks->name_stem, j); 198 } 199 } 200 201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 202 int level) 203 { 204 struct btrfs_lockdep_keyset *ks; 205 206 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 207 208 /* find the matching keyset, id 0 is the default entry */ 209 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 210 if (ks->id == objectid) 211 break; 212 213 lockdep_set_class_and_name(&eb->lock, 214 &ks->keys[level], ks->names[level]); 215 } 216 217 #endif 218 219 /* 220 * extents on the btree inode are pretty simple, there's one extent 221 * that covers the entire device 222 */ 223 static struct extent_map *btree_get_extent(struct inode *inode, 224 struct page *page, size_t pg_offset, u64 start, u64 len, 225 int create) 226 { 227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 229 struct extent_map *em; 230 int ret; 231 232 read_lock(&em_tree->lock); 233 em = lookup_extent_mapping(em_tree, start, len); 234 if (em) { 235 em->bdev = fs_info->fs_devices->latest_bdev; 236 read_unlock(&em_tree->lock); 237 goto out; 238 } 239 read_unlock(&em_tree->lock); 240 241 em = alloc_extent_map(); 242 if (!em) { 243 em = ERR_PTR(-ENOMEM); 244 goto out; 245 } 246 em->start = 0; 247 em->len = (u64)-1; 248 em->block_len = (u64)-1; 249 em->block_start = 0; 250 em->bdev = fs_info->fs_devices->latest_bdev; 251 252 write_lock(&em_tree->lock); 253 ret = add_extent_mapping(em_tree, em, 0); 254 if (ret == -EEXIST) { 255 free_extent_map(em); 256 em = lookup_extent_mapping(em_tree, start, len); 257 if (!em) 258 em = ERR_PTR(-EIO); 259 } else if (ret) { 260 free_extent_map(em); 261 em = ERR_PTR(ret); 262 } 263 write_unlock(&em_tree->lock); 264 265 out: 266 return em; 267 } 268 269 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 270 { 271 return btrfs_crc32c(seed, data, len); 272 } 273 274 void btrfs_csum_final(u32 crc, u8 *result) 275 { 276 put_unaligned_le32(~crc, result); 277 } 278 279 /* 280 * compute the csum for a btree block, and either verify it or write it 281 * into the csum field of the block. 282 */ 283 static int csum_tree_block(struct btrfs_fs_info *fs_info, 284 struct extent_buffer *buf, 285 int verify) 286 { 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 288 char *result = NULL; 289 unsigned long len; 290 unsigned long cur_len; 291 unsigned long offset = BTRFS_CSUM_SIZE; 292 char *kaddr; 293 unsigned long map_start; 294 unsigned long map_len; 295 int err; 296 u32 crc = ~(u32)0; 297 unsigned long inline_result; 298 299 len = buf->len - offset; 300 while (len > 0) { 301 err = map_private_extent_buffer(buf, offset, 32, 302 &kaddr, &map_start, &map_len); 303 if (err) 304 return err; 305 cur_len = min(len, map_len - (offset - map_start)); 306 crc = btrfs_csum_data(kaddr + offset - map_start, 307 crc, cur_len); 308 len -= cur_len; 309 offset += cur_len; 310 } 311 if (csum_size > sizeof(inline_result)) { 312 result = kzalloc(csum_size, GFP_NOFS); 313 if (!result) 314 return -ENOMEM; 315 } else { 316 result = (char *)&inline_result; 317 } 318 319 btrfs_csum_final(crc, result); 320 321 if (verify) { 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 323 u32 val; 324 u32 found = 0; 325 memcpy(&found, result, csum_size); 326 327 read_extent_buffer(buf, &val, 0, csum_size); 328 btrfs_warn_rl(fs_info, 329 "%s checksum verify failed on %llu wanted %X found %X level %d", 330 fs_info->sb->s_id, buf->start, 331 val, found, btrfs_header_level(buf)); 332 if (result != (char *)&inline_result) 333 kfree(result); 334 return -EUCLEAN; 335 } 336 } else { 337 write_extent_buffer(buf, result, 0, csum_size); 338 } 339 if (result != (char *)&inline_result) 340 kfree(result); 341 return 0; 342 } 343 344 /* 345 * we can't consider a given block up to date unless the transid of the 346 * block matches the transid in the parent node's pointer. This is how we 347 * detect blocks that either didn't get written at all or got written 348 * in the wrong place. 349 */ 350 static int verify_parent_transid(struct extent_io_tree *io_tree, 351 struct extent_buffer *eb, u64 parent_transid, 352 int atomic) 353 { 354 struct extent_state *cached_state = NULL; 355 int ret; 356 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 357 358 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 359 return 0; 360 361 if (atomic) 362 return -EAGAIN; 363 364 if (need_lock) { 365 btrfs_tree_read_lock(eb); 366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 367 } 368 369 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 370 &cached_state); 371 if (extent_buffer_uptodate(eb) && 372 btrfs_header_generation(eb) == parent_transid) { 373 ret = 0; 374 goto out; 375 } 376 btrfs_err_rl(eb->fs_info, 377 "parent transid verify failed on %llu wanted %llu found %llu", 378 eb->start, 379 parent_transid, btrfs_header_generation(eb)); 380 ret = 1; 381 382 /* 383 * Things reading via commit roots that don't have normal protection, 384 * like send, can have a really old block in cache that may point at a 385 * block that has been freed and re-allocated. So don't clear uptodate 386 * if we find an eb that is under IO (dirty/writeback) because we could 387 * end up reading in the stale data and then writing it back out and 388 * making everybody very sad. 389 */ 390 if (!extent_buffer_under_io(eb)) 391 clear_extent_buffer_uptodate(eb); 392 out: 393 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 394 &cached_state, GFP_NOFS); 395 if (need_lock) 396 btrfs_tree_read_unlock_blocking(eb); 397 return ret; 398 } 399 400 /* 401 * Return 0 if the superblock checksum type matches the checksum value of that 402 * algorithm. Pass the raw disk superblock data. 403 */ 404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 405 char *raw_disk_sb) 406 { 407 struct btrfs_super_block *disk_sb = 408 (struct btrfs_super_block *)raw_disk_sb; 409 u16 csum_type = btrfs_super_csum_type(disk_sb); 410 int ret = 0; 411 412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 413 u32 crc = ~(u32)0; 414 const int csum_size = sizeof(crc); 415 char result[csum_size]; 416 417 /* 418 * The super_block structure does not span the whole 419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 420 * is filled with zeros and is included in the checksum. 421 */ 422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 424 btrfs_csum_final(crc, result); 425 426 if (memcmp(raw_disk_sb, result, csum_size)) 427 ret = 1; 428 } 429 430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 431 btrfs_err(fs_info, "unsupported checksum algorithm %u", 432 csum_type); 433 ret = 1; 434 } 435 436 return ret; 437 } 438 439 /* 440 * helper to read a given tree block, doing retries as required when 441 * the checksums don't match and we have alternate mirrors to try. 442 */ 443 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 444 struct extent_buffer *eb, 445 u64 parent_transid) 446 { 447 struct btrfs_fs_info *fs_info = root->fs_info; 448 struct extent_io_tree *io_tree; 449 int failed = 0; 450 int ret; 451 int num_copies = 0; 452 int mirror_num = 0; 453 int failed_mirror = 0; 454 455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 456 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 457 while (1) { 458 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 459 btree_get_extent, mirror_num); 460 if (!ret) { 461 if (!verify_parent_transid(io_tree, eb, 462 parent_transid, 0)) 463 break; 464 else 465 ret = -EIO; 466 } 467 468 /* 469 * This buffer's crc is fine, but its contents are corrupted, so 470 * there is no reason to read the other copies, they won't be 471 * any less wrong. 472 */ 473 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 474 break; 475 476 num_copies = btrfs_num_copies(fs_info, 477 eb->start, eb->len); 478 if (num_copies == 1) 479 break; 480 481 if (!failed_mirror) { 482 failed = 1; 483 failed_mirror = eb->read_mirror; 484 } 485 486 mirror_num++; 487 if (mirror_num == failed_mirror) 488 mirror_num++; 489 490 if (mirror_num > num_copies) 491 break; 492 } 493 494 if (failed && !ret && failed_mirror) 495 repair_eb_io_failure(root, eb, failed_mirror); 496 497 return ret; 498 } 499 500 /* 501 * checksum a dirty tree block before IO. This has extra checks to make sure 502 * we only fill in the checksum field in the first page of a multi-page block 503 */ 504 505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 506 { 507 u64 start = page_offset(page); 508 u64 found_start; 509 struct extent_buffer *eb; 510 511 eb = (struct extent_buffer *)page->private; 512 if (page != eb->pages[0]) 513 return 0; 514 515 found_start = btrfs_header_bytenr(eb); 516 /* 517 * Please do not consolidate these warnings into a single if. 518 * It is useful to know what went wrong. 519 */ 520 if (WARN_ON(found_start != start)) 521 return -EUCLEAN; 522 if (WARN_ON(!PageUptodate(page))) 523 return -EUCLEAN; 524 525 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 527 528 return csum_tree_block(fs_info, eb, 0); 529 } 530 531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 532 struct extent_buffer *eb) 533 { 534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 535 u8 fsid[BTRFS_UUID_SIZE]; 536 int ret = 1; 537 538 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 539 while (fs_devices) { 540 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 541 ret = 0; 542 break; 543 } 544 fs_devices = fs_devices->seed; 545 } 546 return ret; 547 } 548 549 #define CORRUPT(reason, eb, root, slot) \ 550 btrfs_crit(root->fs_info, \ 551 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \ 552 btrfs_header_level(eb) == 0 ? "leaf" : "node", \ 553 reason, btrfs_header_bytenr(eb), root->objectid, slot) 554 555 static noinline int check_leaf(struct btrfs_root *root, 556 struct extent_buffer *leaf) 557 { 558 struct btrfs_fs_info *fs_info = root->fs_info; 559 struct btrfs_key key; 560 struct btrfs_key leaf_key; 561 u32 nritems = btrfs_header_nritems(leaf); 562 int slot; 563 564 if (nritems == 0) { 565 struct btrfs_root *check_root; 566 567 key.objectid = btrfs_header_owner(leaf); 568 key.type = BTRFS_ROOT_ITEM_KEY; 569 key.offset = (u64)-1; 570 571 check_root = btrfs_get_fs_root(fs_info, &key, false); 572 /* 573 * The only reason we also check NULL here is that during 574 * open_ctree() some roots has not yet been set up. 575 */ 576 if (!IS_ERR_OR_NULL(check_root)) { 577 /* if leaf is the root, then it's fine */ 578 if (leaf->start != 579 btrfs_root_bytenr(&check_root->root_item)) { 580 CORRUPT("non-root leaf's nritems is 0", 581 leaf, root, 0); 582 return -EIO; 583 } 584 } 585 return 0; 586 } 587 588 /* Check the 0 item */ 589 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 590 BTRFS_LEAF_DATA_SIZE(fs_info)) { 591 CORRUPT("invalid item offset size pair", leaf, root, 0); 592 return -EIO; 593 } 594 595 /* 596 * Check to make sure each items keys are in the correct order and their 597 * offsets make sense. We only have to loop through nritems-1 because 598 * we check the current slot against the next slot, which verifies the 599 * next slot's offset+size makes sense and that the current's slot 600 * offset is correct. 601 */ 602 for (slot = 0; slot < nritems - 1; slot++) { 603 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 604 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 605 606 /* Make sure the keys are in the right order */ 607 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 608 CORRUPT("bad key order", leaf, root, slot); 609 return -EIO; 610 } 611 612 /* 613 * Make sure the offset and ends are right, remember that the 614 * item data starts at the end of the leaf and grows towards the 615 * front. 616 */ 617 if (btrfs_item_offset_nr(leaf, slot) != 618 btrfs_item_end_nr(leaf, slot + 1)) { 619 CORRUPT("slot offset bad", leaf, root, slot); 620 return -EIO; 621 } 622 623 /* 624 * Check to make sure that we don't point outside of the leaf, 625 * just in case all the items are consistent to each other, but 626 * all point outside of the leaf. 627 */ 628 if (btrfs_item_end_nr(leaf, slot) > 629 BTRFS_LEAF_DATA_SIZE(fs_info)) { 630 CORRUPT("slot end outside of leaf", leaf, root, slot); 631 return -EIO; 632 } 633 } 634 635 return 0; 636 } 637 638 static int check_node(struct btrfs_root *root, struct extent_buffer *node) 639 { 640 unsigned long nr = btrfs_header_nritems(node); 641 struct btrfs_key key, next_key; 642 int slot; 643 u64 bytenr; 644 int ret = 0; 645 646 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) { 647 btrfs_crit(root->fs_info, 648 "corrupt node: block %llu root %llu nritems %lu", 649 node->start, root->objectid, nr); 650 return -EIO; 651 } 652 653 for (slot = 0; slot < nr - 1; slot++) { 654 bytenr = btrfs_node_blockptr(node, slot); 655 btrfs_node_key_to_cpu(node, &key, slot); 656 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 657 658 if (!bytenr) { 659 CORRUPT("invalid item slot", node, root, slot); 660 ret = -EIO; 661 goto out; 662 } 663 664 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) { 665 CORRUPT("bad key order", node, root, slot); 666 ret = -EIO; 667 goto out; 668 } 669 } 670 out: 671 return ret; 672 } 673 674 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 675 u64 phy_offset, struct page *page, 676 u64 start, u64 end, int mirror) 677 { 678 u64 found_start; 679 int found_level; 680 struct extent_buffer *eb; 681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 682 struct btrfs_fs_info *fs_info = root->fs_info; 683 int ret = 0; 684 int reads_done; 685 686 if (!page->private) 687 goto out; 688 689 eb = (struct extent_buffer *)page->private; 690 691 /* the pending IO might have been the only thing that kept this buffer 692 * in memory. Make sure we have a ref for all this other checks 693 */ 694 extent_buffer_get(eb); 695 696 reads_done = atomic_dec_and_test(&eb->io_pages); 697 if (!reads_done) 698 goto err; 699 700 eb->read_mirror = mirror; 701 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 702 ret = -EIO; 703 goto err; 704 } 705 706 found_start = btrfs_header_bytenr(eb); 707 if (found_start != eb->start) { 708 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 709 found_start, eb->start); 710 ret = -EIO; 711 goto err; 712 } 713 if (check_tree_block_fsid(fs_info, eb)) { 714 btrfs_err_rl(fs_info, "bad fsid on block %llu", 715 eb->start); 716 ret = -EIO; 717 goto err; 718 } 719 found_level = btrfs_header_level(eb); 720 if (found_level >= BTRFS_MAX_LEVEL) { 721 btrfs_err(fs_info, "bad tree block level %d", 722 (int)btrfs_header_level(eb)); 723 ret = -EIO; 724 goto err; 725 } 726 727 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 728 eb, found_level); 729 730 ret = csum_tree_block(fs_info, eb, 1); 731 if (ret) 732 goto err; 733 734 /* 735 * If this is a leaf block and it is corrupt, set the corrupt bit so 736 * that we don't try and read the other copies of this block, just 737 * return -EIO. 738 */ 739 if (found_level == 0 && check_leaf(root, eb)) { 740 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 741 ret = -EIO; 742 } 743 744 if (found_level > 0 && check_node(root, eb)) 745 ret = -EIO; 746 747 if (!ret) 748 set_extent_buffer_uptodate(eb); 749 err: 750 if (reads_done && 751 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 752 btree_readahead_hook(fs_info, eb, ret); 753 754 if (ret) { 755 /* 756 * our io error hook is going to dec the io pages 757 * again, we have to make sure it has something 758 * to decrement 759 */ 760 atomic_inc(&eb->io_pages); 761 clear_extent_buffer_uptodate(eb); 762 } 763 free_extent_buffer(eb); 764 out: 765 return ret; 766 } 767 768 static int btree_io_failed_hook(struct page *page, int failed_mirror) 769 { 770 struct extent_buffer *eb; 771 772 eb = (struct extent_buffer *)page->private; 773 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 774 eb->read_mirror = failed_mirror; 775 atomic_dec(&eb->io_pages); 776 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 777 btree_readahead_hook(eb->fs_info, eb, -EIO); 778 return -EIO; /* we fixed nothing */ 779 } 780 781 static void end_workqueue_bio(struct bio *bio) 782 { 783 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 784 struct btrfs_fs_info *fs_info; 785 struct btrfs_workqueue *wq; 786 btrfs_work_func_t func; 787 788 fs_info = end_io_wq->info; 789 end_io_wq->error = bio->bi_error; 790 791 if (bio_op(bio) == REQ_OP_WRITE) { 792 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 793 wq = fs_info->endio_meta_write_workers; 794 func = btrfs_endio_meta_write_helper; 795 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 796 wq = fs_info->endio_freespace_worker; 797 func = btrfs_freespace_write_helper; 798 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 799 wq = fs_info->endio_raid56_workers; 800 func = btrfs_endio_raid56_helper; 801 } else { 802 wq = fs_info->endio_write_workers; 803 func = btrfs_endio_write_helper; 804 } 805 } else { 806 if (unlikely(end_io_wq->metadata == 807 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 808 wq = fs_info->endio_repair_workers; 809 func = btrfs_endio_repair_helper; 810 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 811 wq = fs_info->endio_raid56_workers; 812 func = btrfs_endio_raid56_helper; 813 } else if (end_io_wq->metadata) { 814 wq = fs_info->endio_meta_workers; 815 func = btrfs_endio_meta_helper; 816 } else { 817 wq = fs_info->endio_workers; 818 func = btrfs_endio_helper; 819 } 820 } 821 822 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 823 btrfs_queue_work(wq, &end_io_wq->work); 824 } 825 826 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 827 enum btrfs_wq_endio_type metadata) 828 { 829 struct btrfs_end_io_wq *end_io_wq; 830 831 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 832 if (!end_io_wq) 833 return -ENOMEM; 834 835 end_io_wq->private = bio->bi_private; 836 end_io_wq->end_io = bio->bi_end_io; 837 end_io_wq->info = info; 838 end_io_wq->error = 0; 839 end_io_wq->bio = bio; 840 end_io_wq->metadata = metadata; 841 842 bio->bi_private = end_io_wq; 843 bio->bi_end_io = end_workqueue_bio; 844 return 0; 845 } 846 847 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 848 { 849 unsigned long limit = min_t(unsigned long, 850 info->thread_pool_size, 851 info->fs_devices->open_devices); 852 return 256 * limit; 853 } 854 855 static void run_one_async_start(struct btrfs_work *work) 856 { 857 struct async_submit_bio *async; 858 int ret; 859 860 async = container_of(work, struct async_submit_bio, work); 861 ret = async->submit_bio_start(async->inode, async->bio, 862 async->mirror_num, async->bio_flags, 863 async->bio_offset); 864 if (ret) 865 async->error = ret; 866 } 867 868 static void run_one_async_done(struct btrfs_work *work) 869 { 870 struct btrfs_fs_info *fs_info; 871 struct async_submit_bio *async; 872 int limit; 873 874 async = container_of(work, struct async_submit_bio, work); 875 fs_info = BTRFS_I(async->inode)->root->fs_info; 876 877 limit = btrfs_async_submit_limit(fs_info); 878 limit = limit * 2 / 3; 879 880 /* 881 * atomic_dec_return implies a barrier for waitqueue_active 882 */ 883 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 884 waitqueue_active(&fs_info->async_submit_wait)) 885 wake_up(&fs_info->async_submit_wait); 886 887 /* If an error occurred we just want to clean up the bio and move on */ 888 if (async->error) { 889 async->bio->bi_error = async->error; 890 bio_endio(async->bio); 891 return; 892 } 893 894 async->submit_bio_done(async->inode, async->bio, async->mirror_num, 895 async->bio_flags, async->bio_offset); 896 } 897 898 static void run_one_async_free(struct btrfs_work *work) 899 { 900 struct async_submit_bio *async; 901 902 async = container_of(work, struct async_submit_bio, work); 903 kfree(async); 904 } 905 906 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 907 struct bio *bio, int mirror_num, 908 unsigned long bio_flags, 909 u64 bio_offset, 910 extent_submit_bio_hook_t *submit_bio_start, 911 extent_submit_bio_hook_t *submit_bio_done) 912 { 913 struct async_submit_bio *async; 914 915 async = kmalloc(sizeof(*async), GFP_NOFS); 916 if (!async) 917 return -ENOMEM; 918 919 async->inode = inode; 920 async->bio = bio; 921 async->mirror_num = mirror_num; 922 async->submit_bio_start = submit_bio_start; 923 async->submit_bio_done = submit_bio_done; 924 925 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 926 run_one_async_done, run_one_async_free); 927 928 async->bio_flags = bio_flags; 929 async->bio_offset = bio_offset; 930 931 async->error = 0; 932 933 atomic_inc(&fs_info->nr_async_submits); 934 935 if (bio->bi_opf & REQ_SYNC) 936 btrfs_set_work_high_priority(&async->work); 937 938 btrfs_queue_work(fs_info->workers, &async->work); 939 940 while (atomic_read(&fs_info->async_submit_draining) && 941 atomic_read(&fs_info->nr_async_submits)) { 942 wait_event(fs_info->async_submit_wait, 943 (atomic_read(&fs_info->nr_async_submits) == 0)); 944 } 945 946 return 0; 947 } 948 949 static int btree_csum_one_bio(struct bio *bio) 950 { 951 struct bio_vec *bvec; 952 struct btrfs_root *root; 953 int i, ret = 0; 954 955 bio_for_each_segment_all(bvec, bio, i) { 956 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 957 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 958 if (ret) 959 break; 960 } 961 962 return ret; 963 } 964 965 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio, 966 int mirror_num, unsigned long bio_flags, 967 u64 bio_offset) 968 { 969 /* 970 * when we're called for a write, we're already in the async 971 * submission context. Just jump into btrfs_map_bio 972 */ 973 return btree_csum_one_bio(bio); 974 } 975 976 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio, 977 int mirror_num, unsigned long bio_flags, 978 u64 bio_offset) 979 { 980 int ret; 981 982 /* 983 * when we're called for a write, we're already in the async 984 * submission context. Just jump into btrfs_map_bio 985 */ 986 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1); 987 if (ret) { 988 bio->bi_error = ret; 989 bio_endio(bio); 990 } 991 return ret; 992 } 993 994 static int check_async_write(struct inode *inode, unsigned long bio_flags) 995 { 996 if (bio_flags & EXTENT_BIO_TREE_LOG) 997 return 0; 998 #ifdef CONFIG_X86 999 if (static_cpu_has(X86_FEATURE_XMM4_2)) 1000 return 0; 1001 #endif 1002 return 1; 1003 } 1004 1005 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio, 1006 int mirror_num, unsigned long bio_flags, 1007 u64 bio_offset) 1008 { 1009 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1010 int async = check_async_write(inode, bio_flags); 1011 int ret; 1012 1013 if (bio_op(bio) != REQ_OP_WRITE) { 1014 /* 1015 * called for a read, do the setup so that checksum validation 1016 * can happen in the async kernel threads 1017 */ 1018 ret = btrfs_bio_wq_end_io(fs_info, bio, 1019 BTRFS_WQ_ENDIO_METADATA); 1020 if (ret) 1021 goto out_w_error; 1022 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0); 1023 } else if (!async) { 1024 ret = btree_csum_one_bio(bio); 1025 if (ret) 1026 goto out_w_error; 1027 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0); 1028 } else { 1029 /* 1030 * kthread helpers are used to submit writes so that 1031 * checksumming can happen in parallel across all CPUs 1032 */ 1033 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0, 1034 bio_offset, 1035 __btree_submit_bio_start, 1036 __btree_submit_bio_done); 1037 } 1038 1039 if (ret) 1040 goto out_w_error; 1041 return 0; 1042 1043 out_w_error: 1044 bio->bi_error = ret; 1045 bio_endio(bio); 1046 return ret; 1047 } 1048 1049 #ifdef CONFIG_MIGRATION 1050 static int btree_migratepage(struct address_space *mapping, 1051 struct page *newpage, struct page *page, 1052 enum migrate_mode mode) 1053 { 1054 /* 1055 * we can't safely write a btree page from here, 1056 * we haven't done the locking hook 1057 */ 1058 if (PageDirty(page)) 1059 return -EAGAIN; 1060 /* 1061 * Buffers may be managed in a filesystem specific way. 1062 * We must have no buffers or drop them. 1063 */ 1064 if (page_has_private(page) && 1065 !try_to_release_page(page, GFP_KERNEL)) 1066 return -EAGAIN; 1067 return migrate_page(mapping, newpage, page, mode); 1068 } 1069 #endif 1070 1071 1072 static int btree_writepages(struct address_space *mapping, 1073 struct writeback_control *wbc) 1074 { 1075 struct btrfs_fs_info *fs_info; 1076 int ret; 1077 1078 if (wbc->sync_mode == WB_SYNC_NONE) { 1079 1080 if (wbc->for_kupdate) 1081 return 0; 1082 1083 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1084 /* this is a bit racy, but that's ok */ 1085 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1086 BTRFS_DIRTY_METADATA_THRESH); 1087 if (ret < 0) 1088 return 0; 1089 } 1090 return btree_write_cache_pages(mapping, wbc); 1091 } 1092 1093 static int btree_readpage(struct file *file, struct page *page) 1094 { 1095 struct extent_io_tree *tree; 1096 tree = &BTRFS_I(page->mapping->host)->io_tree; 1097 return extent_read_full_page(tree, page, btree_get_extent, 0); 1098 } 1099 1100 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1101 { 1102 if (PageWriteback(page) || PageDirty(page)) 1103 return 0; 1104 1105 return try_release_extent_buffer(page); 1106 } 1107 1108 static void btree_invalidatepage(struct page *page, unsigned int offset, 1109 unsigned int length) 1110 { 1111 struct extent_io_tree *tree; 1112 tree = &BTRFS_I(page->mapping->host)->io_tree; 1113 extent_invalidatepage(tree, page, offset); 1114 btree_releasepage(page, GFP_NOFS); 1115 if (PagePrivate(page)) { 1116 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1117 "page private not zero on page %llu", 1118 (unsigned long long)page_offset(page)); 1119 ClearPagePrivate(page); 1120 set_page_private(page, 0); 1121 put_page(page); 1122 } 1123 } 1124 1125 static int btree_set_page_dirty(struct page *page) 1126 { 1127 #ifdef DEBUG 1128 struct extent_buffer *eb; 1129 1130 BUG_ON(!PagePrivate(page)); 1131 eb = (struct extent_buffer *)page->private; 1132 BUG_ON(!eb); 1133 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1134 BUG_ON(!atomic_read(&eb->refs)); 1135 btrfs_assert_tree_locked(eb); 1136 #endif 1137 return __set_page_dirty_nobuffers(page); 1138 } 1139 1140 static const struct address_space_operations btree_aops = { 1141 .readpage = btree_readpage, 1142 .writepages = btree_writepages, 1143 .releasepage = btree_releasepage, 1144 .invalidatepage = btree_invalidatepage, 1145 #ifdef CONFIG_MIGRATION 1146 .migratepage = btree_migratepage, 1147 #endif 1148 .set_page_dirty = btree_set_page_dirty, 1149 }; 1150 1151 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1152 { 1153 struct extent_buffer *buf = NULL; 1154 struct inode *btree_inode = root->fs_info->btree_inode; 1155 1156 buf = btrfs_find_create_tree_block(root, bytenr); 1157 if (IS_ERR(buf)) 1158 return; 1159 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1160 buf, WAIT_NONE, btree_get_extent, 0); 1161 free_extent_buffer(buf); 1162 } 1163 1164 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1165 int mirror_num, struct extent_buffer **eb) 1166 { 1167 struct extent_buffer *buf = NULL; 1168 struct inode *btree_inode = root->fs_info->btree_inode; 1169 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1170 int ret; 1171 1172 buf = btrfs_find_create_tree_block(root, bytenr); 1173 if (IS_ERR(buf)) 1174 return 0; 1175 1176 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1177 1178 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1179 btree_get_extent, mirror_num); 1180 if (ret) { 1181 free_extent_buffer(buf); 1182 return ret; 1183 } 1184 1185 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1186 free_extent_buffer(buf); 1187 return -EIO; 1188 } else if (extent_buffer_uptodate(buf)) { 1189 *eb = buf; 1190 } else { 1191 free_extent_buffer(buf); 1192 } 1193 return 0; 1194 } 1195 1196 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1197 u64 bytenr) 1198 { 1199 struct btrfs_fs_info *fs_info = root->fs_info; 1200 1201 if (btrfs_is_testing(fs_info)) 1202 return alloc_test_extent_buffer(fs_info, bytenr); 1203 return alloc_extent_buffer(fs_info, bytenr); 1204 } 1205 1206 1207 int btrfs_write_tree_block(struct extent_buffer *buf) 1208 { 1209 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1210 buf->start + buf->len - 1); 1211 } 1212 1213 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1214 { 1215 return filemap_fdatawait_range(buf->pages[0]->mapping, 1216 buf->start, buf->start + buf->len - 1); 1217 } 1218 1219 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1220 u64 parent_transid) 1221 { 1222 struct extent_buffer *buf = NULL; 1223 int ret; 1224 1225 buf = btrfs_find_create_tree_block(root, bytenr); 1226 if (IS_ERR(buf)) 1227 return buf; 1228 1229 ret = btree_read_extent_buffer_pages(root, buf, parent_transid); 1230 if (ret) { 1231 free_extent_buffer(buf); 1232 return ERR_PTR(ret); 1233 } 1234 return buf; 1235 1236 } 1237 1238 void clean_tree_block(struct btrfs_trans_handle *trans, 1239 struct btrfs_fs_info *fs_info, 1240 struct extent_buffer *buf) 1241 { 1242 if (btrfs_header_generation(buf) == 1243 fs_info->running_transaction->transid) { 1244 btrfs_assert_tree_locked(buf); 1245 1246 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1247 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1248 -buf->len, 1249 fs_info->dirty_metadata_batch); 1250 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1251 btrfs_set_lock_blocking(buf); 1252 clear_extent_buffer_dirty(buf); 1253 } 1254 } 1255 } 1256 1257 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1258 { 1259 struct btrfs_subvolume_writers *writers; 1260 int ret; 1261 1262 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1263 if (!writers) 1264 return ERR_PTR(-ENOMEM); 1265 1266 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1267 if (ret < 0) { 1268 kfree(writers); 1269 return ERR_PTR(ret); 1270 } 1271 1272 init_waitqueue_head(&writers->wait); 1273 return writers; 1274 } 1275 1276 static void 1277 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1278 { 1279 percpu_counter_destroy(&writers->counter); 1280 kfree(writers); 1281 } 1282 1283 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1284 u64 objectid) 1285 { 1286 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1287 root->node = NULL; 1288 root->commit_root = NULL; 1289 root->state = 0; 1290 root->orphan_cleanup_state = 0; 1291 1292 root->objectid = objectid; 1293 root->last_trans = 0; 1294 root->highest_objectid = 0; 1295 root->nr_delalloc_inodes = 0; 1296 root->nr_ordered_extents = 0; 1297 root->name = NULL; 1298 root->inode_tree = RB_ROOT; 1299 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1300 root->block_rsv = NULL; 1301 root->orphan_block_rsv = NULL; 1302 1303 INIT_LIST_HEAD(&root->dirty_list); 1304 INIT_LIST_HEAD(&root->root_list); 1305 INIT_LIST_HEAD(&root->delalloc_inodes); 1306 INIT_LIST_HEAD(&root->delalloc_root); 1307 INIT_LIST_HEAD(&root->ordered_extents); 1308 INIT_LIST_HEAD(&root->ordered_root); 1309 INIT_LIST_HEAD(&root->logged_list[0]); 1310 INIT_LIST_HEAD(&root->logged_list[1]); 1311 spin_lock_init(&root->orphan_lock); 1312 spin_lock_init(&root->inode_lock); 1313 spin_lock_init(&root->delalloc_lock); 1314 spin_lock_init(&root->ordered_extent_lock); 1315 spin_lock_init(&root->accounting_lock); 1316 spin_lock_init(&root->log_extents_lock[0]); 1317 spin_lock_init(&root->log_extents_lock[1]); 1318 mutex_init(&root->objectid_mutex); 1319 mutex_init(&root->log_mutex); 1320 mutex_init(&root->ordered_extent_mutex); 1321 mutex_init(&root->delalloc_mutex); 1322 init_waitqueue_head(&root->log_writer_wait); 1323 init_waitqueue_head(&root->log_commit_wait[0]); 1324 init_waitqueue_head(&root->log_commit_wait[1]); 1325 INIT_LIST_HEAD(&root->log_ctxs[0]); 1326 INIT_LIST_HEAD(&root->log_ctxs[1]); 1327 atomic_set(&root->log_commit[0], 0); 1328 atomic_set(&root->log_commit[1], 0); 1329 atomic_set(&root->log_writers, 0); 1330 atomic_set(&root->log_batch, 0); 1331 atomic_set(&root->orphan_inodes, 0); 1332 atomic_set(&root->refs, 1); 1333 atomic_set(&root->will_be_snapshoted, 0); 1334 atomic_set(&root->qgroup_meta_rsv, 0); 1335 root->log_transid = 0; 1336 root->log_transid_committed = -1; 1337 root->last_log_commit = 0; 1338 if (!dummy) 1339 extent_io_tree_init(&root->dirty_log_pages, 1340 fs_info->btree_inode->i_mapping); 1341 1342 memset(&root->root_key, 0, sizeof(root->root_key)); 1343 memset(&root->root_item, 0, sizeof(root->root_item)); 1344 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1345 if (!dummy) 1346 root->defrag_trans_start = fs_info->generation; 1347 else 1348 root->defrag_trans_start = 0; 1349 root->root_key.objectid = objectid; 1350 root->anon_dev = 0; 1351 1352 spin_lock_init(&root->root_item_lock); 1353 } 1354 1355 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1356 gfp_t flags) 1357 { 1358 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1359 if (root) 1360 root->fs_info = fs_info; 1361 return root; 1362 } 1363 1364 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1365 /* Should only be used by the testing infrastructure */ 1366 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1367 { 1368 struct btrfs_root *root; 1369 1370 if (!fs_info) 1371 return ERR_PTR(-EINVAL); 1372 1373 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1374 if (!root) 1375 return ERR_PTR(-ENOMEM); 1376 1377 /* We don't use the stripesize in selftest, set it as sectorsize */ 1378 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1379 root->alloc_bytenr = 0; 1380 1381 return root; 1382 } 1383 #endif 1384 1385 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1386 struct btrfs_fs_info *fs_info, 1387 u64 objectid) 1388 { 1389 struct extent_buffer *leaf; 1390 struct btrfs_root *tree_root = fs_info->tree_root; 1391 struct btrfs_root *root; 1392 struct btrfs_key key; 1393 int ret = 0; 1394 uuid_le uuid; 1395 1396 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1397 if (!root) 1398 return ERR_PTR(-ENOMEM); 1399 1400 __setup_root(root, fs_info, objectid); 1401 root->root_key.objectid = objectid; 1402 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1403 root->root_key.offset = 0; 1404 1405 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1406 if (IS_ERR(leaf)) { 1407 ret = PTR_ERR(leaf); 1408 leaf = NULL; 1409 goto fail; 1410 } 1411 1412 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1413 btrfs_set_header_bytenr(leaf, leaf->start); 1414 btrfs_set_header_generation(leaf, trans->transid); 1415 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1416 btrfs_set_header_owner(leaf, objectid); 1417 root->node = leaf; 1418 1419 write_extent_buffer_fsid(leaf, fs_info->fsid); 1420 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1421 btrfs_mark_buffer_dirty(leaf); 1422 1423 root->commit_root = btrfs_root_node(root); 1424 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1425 1426 root->root_item.flags = 0; 1427 root->root_item.byte_limit = 0; 1428 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1429 btrfs_set_root_generation(&root->root_item, trans->transid); 1430 btrfs_set_root_level(&root->root_item, 0); 1431 btrfs_set_root_refs(&root->root_item, 1); 1432 btrfs_set_root_used(&root->root_item, leaf->len); 1433 btrfs_set_root_last_snapshot(&root->root_item, 0); 1434 btrfs_set_root_dirid(&root->root_item, 0); 1435 uuid_le_gen(&uuid); 1436 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1437 root->root_item.drop_level = 0; 1438 1439 key.objectid = objectid; 1440 key.type = BTRFS_ROOT_ITEM_KEY; 1441 key.offset = 0; 1442 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1443 if (ret) 1444 goto fail; 1445 1446 btrfs_tree_unlock(leaf); 1447 1448 return root; 1449 1450 fail: 1451 if (leaf) { 1452 btrfs_tree_unlock(leaf); 1453 free_extent_buffer(root->commit_root); 1454 free_extent_buffer(leaf); 1455 } 1456 kfree(root); 1457 1458 return ERR_PTR(ret); 1459 } 1460 1461 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1462 struct btrfs_fs_info *fs_info) 1463 { 1464 struct btrfs_root *root; 1465 struct extent_buffer *leaf; 1466 1467 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1468 if (!root) 1469 return ERR_PTR(-ENOMEM); 1470 1471 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1472 1473 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1474 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1475 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1476 1477 /* 1478 * DON'T set REF_COWS for log trees 1479 * 1480 * log trees do not get reference counted because they go away 1481 * before a real commit is actually done. They do store pointers 1482 * to file data extents, and those reference counts still get 1483 * updated (along with back refs to the log tree). 1484 */ 1485 1486 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1487 NULL, 0, 0, 0); 1488 if (IS_ERR(leaf)) { 1489 kfree(root); 1490 return ERR_CAST(leaf); 1491 } 1492 1493 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1494 btrfs_set_header_bytenr(leaf, leaf->start); 1495 btrfs_set_header_generation(leaf, trans->transid); 1496 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1497 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1498 root->node = leaf; 1499 1500 write_extent_buffer_fsid(root->node, fs_info->fsid); 1501 btrfs_mark_buffer_dirty(root->node); 1502 btrfs_tree_unlock(root->node); 1503 return root; 1504 } 1505 1506 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1507 struct btrfs_fs_info *fs_info) 1508 { 1509 struct btrfs_root *log_root; 1510 1511 log_root = alloc_log_tree(trans, fs_info); 1512 if (IS_ERR(log_root)) 1513 return PTR_ERR(log_root); 1514 WARN_ON(fs_info->log_root_tree); 1515 fs_info->log_root_tree = log_root; 1516 return 0; 1517 } 1518 1519 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1520 struct btrfs_root *root) 1521 { 1522 struct btrfs_fs_info *fs_info = root->fs_info; 1523 struct btrfs_root *log_root; 1524 struct btrfs_inode_item *inode_item; 1525 1526 log_root = alloc_log_tree(trans, fs_info); 1527 if (IS_ERR(log_root)) 1528 return PTR_ERR(log_root); 1529 1530 log_root->last_trans = trans->transid; 1531 log_root->root_key.offset = root->root_key.objectid; 1532 1533 inode_item = &log_root->root_item.inode; 1534 btrfs_set_stack_inode_generation(inode_item, 1); 1535 btrfs_set_stack_inode_size(inode_item, 3); 1536 btrfs_set_stack_inode_nlink(inode_item, 1); 1537 btrfs_set_stack_inode_nbytes(inode_item, 1538 fs_info->nodesize); 1539 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1540 1541 btrfs_set_root_node(&log_root->root_item, log_root->node); 1542 1543 WARN_ON(root->log_root); 1544 root->log_root = log_root; 1545 root->log_transid = 0; 1546 root->log_transid_committed = -1; 1547 root->last_log_commit = 0; 1548 return 0; 1549 } 1550 1551 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1552 struct btrfs_key *key) 1553 { 1554 struct btrfs_root *root; 1555 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1556 struct btrfs_path *path; 1557 u64 generation; 1558 int ret; 1559 1560 path = btrfs_alloc_path(); 1561 if (!path) 1562 return ERR_PTR(-ENOMEM); 1563 1564 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1565 if (!root) { 1566 ret = -ENOMEM; 1567 goto alloc_fail; 1568 } 1569 1570 __setup_root(root, fs_info, key->objectid); 1571 1572 ret = btrfs_find_root(tree_root, key, path, 1573 &root->root_item, &root->root_key); 1574 if (ret) { 1575 if (ret > 0) 1576 ret = -ENOENT; 1577 goto find_fail; 1578 } 1579 1580 generation = btrfs_root_generation(&root->root_item); 1581 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1582 generation); 1583 if (IS_ERR(root->node)) { 1584 ret = PTR_ERR(root->node); 1585 goto find_fail; 1586 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1587 ret = -EIO; 1588 free_extent_buffer(root->node); 1589 goto find_fail; 1590 } 1591 root->commit_root = btrfs_root_node(root); 1592 out: 1593 btrfs_free_path(path); 1594 return root; 1595 1596 find_fail: 1597 kfree(root); 1598 alloc_fail: 1599 root = ERR_PTR(ret); 1600 goto out; 1601 } 1602 1603 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1604 struct btrfs_key *location) 1605 { 1606 struct btrfs_root *root; 1607 1608 root = btrfs_read_tree_root(tree_root, location); 1609 if (IS_ERR(root)) 1610 return root; 1611 1612 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1613 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1614 btrfs_check_and_init_root_item(&root->root_item); 1615 } 1616 1617 return root; 1618 } 1619 1620 int btrfs_init_fs_root(struct btrfs_root *root) 1621 { 1622 int ret; 1623 struct btrfs_subvolume_writers *writers; 1624 1625 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1626 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1627 GFP_NOFS); 1628 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1629 ret = -ENOMEM; 1630 goto fail; 1631 } 1632 1633 writers = btrfs_alloc_subvolume_writers(); 1634 if (IS_ERR(writers)) { 1635 ret = PTR_ERR(writers); 1636 goto fail; 1637 } 1638 root->subv_writers = writers; 1639 1640 btrfs_init_free_ino_ctl(root); 1641 spin_lock_init(&root->ino_cache_lock); 1642 init_waitqueue_head(&root->ino_cache_wait); 1643 1644 ret = get_anon_bdev(&root->anon_dev); 1645 if (ret) 1646 goto fail; 1647 1648 mutex_lock(&root->objectid_mutex); 1649 ret = btrfs_find_highest_objectid(root, 1650 &root->highest_objectid); 1651 if (ret) { 1652 mutex_unlock(&root->objectid_mutex); 1653 goto fail; 1654 } 1655 1656 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1657 1658 mutex_unlock(&root->objectid_mutex); 1659 1660 return 0; 1661 fail: 1662 /* the caller is responsible to call free_fs_root */ 1663 return ret; 1664 } 1665 1666 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1667 u64 root_id) 1668 { 1669 struct btrfs_root *root; 1670 1671 spin_lock(&fs_info->fs_roots_radix_lock); 1672 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1673 (unsigned long)root_id); 1674 spin_unlock(&fs_info->fs_roots_radix_lock); 1675 return root; 1676 } 1677 1678 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1679 struct btrfs_root *root) 1680 { 1681 int ret; 1682 1683 ret = radix_tree_preload(GFP_NOFS); 1684 if (ret) 1685 return ret; 1686 1687 spin_lock(&fs_info->fs_roots_radix_lock); 1688 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1689 (unsigned long)root->root_key.objectid, 1690 root); 1691 if (ret == 0) 1692 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1693 spin_unlock(&fs_info->fs_roots_radix_lock); 1694 radix_tree_preload_end(); 1695 1696 return ret; 1697 } 1698 1699 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1700 struct btrfs_key *location, 1701 bool check_ref) 1702 { 1703 struct btrfs_root *root; 1704 struct btrfs_path *path; 1705 struct btrfs_key key; 1706 int ret; 1707 1708 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1709 return fs_info->tree_root; 1710 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1711 return fs_info->extent_root; 1712 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1713 return fs_info->chunk_root; 1714 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1715 return fs_info->dev_root; 1716 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1717 return fs_info->csum_root; 1718 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1719 return fs_info->quota_root ? fs_info->quota_root : 1720 ERR_PTR(-ENOENT); 1721 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1722 return fs_info->uuid_root ? fs_info->uuid_root : 1723 ERR_PTR(-ENOENT); 1724 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1725 return fs_info->free_space_root ? fs_info->free_space_root : 1726 ERR_PTR(-ENOENT); 1727 again: 1728 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1729 if (root) { 1730 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1731 return ERR_PTR(-ENOENT); 1732 return root; 1733 } 1734 1735 root = btrfs_read_fs_root(fs_info->tree_root, location); 1736 if (IS_ERR(root)) 1737 return root; 1738 1739 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1740 ret = -ENOENT; 1741 goto fail; 1742 } 1743 1744 ret = btrfs_init_fs_root(root); 1745 if (ret) 1746 goto fail; 1747 1748 path = btrfs_alloc_path(); 1749 if (!path) { 1750 ret = -ENOMEM; 1751 goto fail; 1752 } 1753 key.objectid = BTRFS_ORPHAN_OBJECTID; 1754 key.type = BTRFS_ORPHAN_ITEM_KEY; 1755 key.offset = location->objectid; 1756 1757 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1758 btrfs_free_path(path); 1759 if (ret < 0) 1760 goto fail; 1761 if (ret == 0) 1762 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1763 1764 ret = btrfs_insert_fs_root(fs_info, root); 1765 if (ret) { 1766 if (ret == -EEXIST) { 1767 free_fs_root(root); 1768 goto again; 1769 } 1770 goto fail; 1771 } 1772 return root; 1773 fail: 1774 free_fs_root(root); 1775 return ERR_PTR(ret); 1776 } 1777 1778 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1779 { 1780 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1781 int ret = 0; 1782 struct btrfs_device *device; 1783 struct backing_dev_info *bdi; 1784 1785 rcu_read_lock(); 1786 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1787 if (!device->bdev) 1788 continue; 1789 bdi = blk_get_backing_dev_info(device->bdev); 1790 if (bdi_congested(bdi, bdi_bits)) { 1791 ret = 1; 1792 break; 1793 } 1794 } 1795 rcu_read_unlock(); 1796 return ret; 1797 } 1798 1799 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1800 { 1801 int err; 1802 1803 err = bdi_setup_and_register(bdi, "btrfs"); 1804 if (err) 1805 return err; 1806 1807 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 1808 bdi->congested_fn = btrfs_congested_fn; 1809 bdi->congested_data = info; 1810 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1811 return 0; 1812 } 1813 1814 /* 1815 * called by the kthread helper functions to finally call the bio end_io 1816 * functions. This is where read checksum verification actually happens 1817 */ 1818 static void end_workqueue_fn(struct btrfs_work *work) 1819 { 1820 struct bio *bio; 1821 struct btrfs_end_io_wq *end_io_wq; 1822 1823 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1824 bio = end_io_wq->bio; 1825 1826 bio->bi_error = end_io_wq->error; 1827 bio->bi_private = end_io_wq->private; 1828 bio->bi_end_io = end_io_wq->end_io; 1829 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1830 bio_endio(bio); 1831 } 1832 1833 static int cleaner_kthread(void *arg) 1834 { 1835 struct btrfs_root *root = arg; 1836 struct btrfs_fs_info *fs_info = root->fs_info; 1837 int again; 1838 struct btrfs_trans_handle *trans; 1839 1840 do { 1841 again = 0; 1842 1843 /* Make the cleaner go to sleep early. */ 1844 if (btrfs_need_cleaner_sleep(root)) 1845 goto sleep; 1846 1847 /* 1848 * Do not do anything if we might cause open_ctree() to block 1849 * before we have finished mounting the filesystem. 1850 */ 1851 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1852 goto sleep; 1853 1854 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1855 goto sleep; 1856 1857 /* 1858 * Avoid the problem that we change the status of the fs 1859 * during the above check and trylock. 1860 */ 1861 if (btrfs_need_cleaner_sleep(root)) { 1862 mutex_unlock(&fs_info->cleaner_mutex); 1863 goto sleep; 1864 } 1865 1866 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1867 btrfs_run_delayed_iputs(root); 1868 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1869 1870 again = btrfs_clean_one_deleted_snapshot(root); 1871 mutex_unlock(&fs_info->cleaner_mutex); 1872 1873 /* 1874 * The defragger has dealt with the R/O remount and umount, 1875 * needn't do anything special here. 1876 */ 1877 btrfs_run_defrag_inodes(fs_info); 1878 1879 /* 1880 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1881 * with relocation (btrfs_relocate_chunk) and relocation 1882 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1883 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1884 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1885 * unused block groups. 1886 */ 1887 btrfs_delete_unused_bgs(fs_info); 1888 sleep: 1889 if (!again) { 1890 set_current_state(TASK_INTERRUPTIBLE); 1891 if (!kthread_should_stop()) 1892 schedule(); 1893 __set_current_state(TASK_RUNNING); 1894 } 1895 } while (!kthread_should_stop()); 1896 1897 /* 1898 * Transaction kthread is stopped before us and wakes us up. 1899 * However we might have started a new transaction and COWed some 1900 * tree blocks when deleting unused block groups for example. So 1901 * make sure we commit the transaction we started to have a clean 1902 * shutdown when evicting the btree inode - if it has dirty pages 1903 * when we do the final iput() on it, eviction will trigger a 1904 * writeback for it which will fail with null pointer dereferences 1905 * since work queues and other resources were already released and 1906 * destroyed by the time the iput/eviction/writeback is made. 1907 */ 1908 trans = btrfs_attach_transaction(root); 1909 if (IS_ERR(trans)) { 1910 if (PTR_ERR(trans) != -ENOENT) 1911 btrfs_err(fs_info, 1912 "cleaner transaction attach returned %ld", 1913 PTR_ERR(trans)); 1914 } else { 1915 int ret; 1916 1917 ret = btrfs_commit_transaction(trans, root); 1918 if (ret) 1919 btrfs_err(fs_info, 1920 "cleaner open transaction commit returned %d", 1921 ret); 1922 } 1923 1924 return 0; 1925 } 1926 1927 static int transaction_kthread(void *arg) 1928 { 1929 struct btrfs_root *root = arg; 1930 struct btrfs_fs_info *fs_info = root->fs_info; 1931 struct btrfs_trans_handle *trans; 1932 struct btrfs_transaction *cur; 1933 u64 transid; 1934 unsigned long now; 1935 unsigned long delay; 1936 bool cannot_commit; 1937 1938 do { 1939 cannot_commit = false; 1940 delay = HZ * fs_info->commit_interval; 1941 mutex_lock(&fs_info->transaction_kthread_mutex); 1942 1943 spin_lock(&fs_info->trans_lock); 1944 cur = fs_info->running_transaction; 1945 if (!cur) { 1946 spin_unlock(&fs_info->trans_lock); 1947 goto sleep; 1948 } 1949 1950 now = get_seconds(); 1951 if (cur->state < TRANS_STATE_BLOCKED && 1952 (now < cur->start_time || 1953 now - cur->start_time < fs_info->commit_interval)) { 1954 spin_unlock(&fs_info->trans_lock); 1955 delay = HZ * 5; 1956 goto sleep; 1957 } 1958 transid = cur->transid; 1959 spin_unlock(&fs_info->trans_lock); 1960 1961 /* If the file system is aborted, this will always fail. */ 1962 trans = btrfs_attach_transaction(root); 1963 if (IS_ERR(trans)) { 1964 if (PTR_ERR(trans) != -ENOENT) 1965 cannot_commit = true; 1966 goto sleep; 1967 } 1968 if (transid == trans->transid) { 1969 btrfs_commit_transaction(trans, root); 1970 } else { 1971 btrfs_end_transaction(trans, root); 1972 } 1973 sleep: 1974 wake_up_process(fs_info->cleaner_kthread); 1975 mutex_unlock(&fs_info->transaction_kthread_mutex); 1976 1977 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1978 &fs_info->fs_state))) 1979 btrfs_cleanup_transaction(root); 1980 set_current_state(TASK_INTERRUPTIBLE); 1981 if (!kthread_should_stop() && 1982 (!btrfs_transaction_blocked(fs_info) || 1983 cannot_commit)) 1984 schedule_timeout(delay); 1985 __set_current_state(TASK_RUNNING); 1986 } while (!kthread_should_stop()); 1987 return 0; 1988 } 1989 1990 /* 1991 * this will find the highest generation in the array of 1992 * root backups. The index of the highest array is returned, 1993 * or -1 if we can't find anything. 1994 * 1995 * We check to make sure the array is valid by comparing the 1996 * generation of the latest root in the array with the generation 1997 * in the super block. If they don't match we pitch it. 1998 */ 1999 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 2000 { 2001 u64 cur; 2002 int newest_index = -1; 2003 struct btrfs_root_backup *root_backup; 2004 int i; 2005 2006 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2007 root_backup = info->super_copy->super_roots + i; 2008 cur = btrfs_backup_tree_root_gen(root_backup); 2009 if (cur == newest_gen) 2010 newest_index = i; 2011 } 2012 2013 /* check to see if we actually wrapped around */ 2014 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 2015 root_backup = info->super_copy->super_roots; 2016 cur = btrfs_backup_tree_root_gen(root_backup); 2017 if (cur == newest_gen) 2018 newest_index = 0; 2019 } 2020 return newest_index; 2021 } 2022 2023 2024 /* 2025 * find the oldest backup so we know where to store new entries 2026 * in the backup array. This will set the backup_root_index 2027 * field in the fs_info struct 2028 */ 2029 static void find_oldest_super_backup(struct btrfs_fs_info *info, 2030 u64 newest_gen) 2031 { 2032 int newest_index = -1; 2033 2034 newest_index = find_newest_super_backup(info, newest_gen); 2035 /* if there was garbage in there, just move along */ 2036 if (newest_index == -1) { 2037 info->backup_root_index = 0; 2038 } else { 2039 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 2040 } 2041 } 2042 2043 /* 2044 * copy all the root pointers into the super backup array. 2045 * this will bump the backup pointer by one when it is 2046 * done 2047 */ 2048 static void backup_super_roots(struct btrfs_fs_info *info) 2049 { 2050 int next_backup; 2051 struct btrfs_root_backup *root_backup; 2052 int last_backup; 2053 2054 next_backup = info->backup_root_index; 2055 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2056 BTRFS_NUM_BACKUP_ROOTS; 2057 2058 /* 2059 * just overwrite the last backup if we're at the same generation 2060 * this happens only at umount 2061 */ 2062 root_backup = info->super_for_commit->super_roots + last_backup; 2063 if (btrfs_backup_tree_root_gen(root_backup) == 2064 btrfs_header_generation(info->tree_root->node)) 2065 next_backup = last_backup; 2066 2067 root_backup = info->super_for_commit->super_roots + next_backup; 2068 2069 /* 2070 * make sure all of our padding and empty slots get zero filled 2071 * regardless of which ones we use today 2072 */ 2073 memset(root_backup, 0, sizeof(*root_backup)); 2074 2075 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2076 2077 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2078 btrfs_set_backup_tree_root_gen(root_backup, 2079 btrfs_header_generation(info->tree_root->node)); 2080 2081 btrfs_set_backup_tree_root_level(root_backup, 2082 btrfs_header_level(info->tree_root->node)); 2083 2084 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2085 btrfs_set_backup_chunk_root_gen(root_backup, 2086 btrfs_header_generation(info->chunk_root->node)); 2087 btrfs_set_backup_chunk_root_level(root_backup, 2088 btrfs_header_level(info->chunk_root->node)); 2089 2090 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2091 btrfs_set_backup_extent_root_gen(root_backup, 2092 btrfs_header_generation(info->extent_root->node)); 2093 btrfs_set_backup_extent_root_level(root_backup, 2094 btrfs_header_level(info->extent_root->node)); 2095 2096 /* 2097 * we might commit during log recovery, which happens before we set 2098 * the fs_root. Make sure it is valid before we fill it in. 2099 */ 2100 if (info->fs_root && info->fs_root->node) { 2101 btrfs_set_backup_fs_root(root_backup, 2102 info->fs_root->node->start); 2103 btrfs_set_backup_fs_root_gen(root_backup, 2104 btrfs_header_generation(info->fs_root->node)); 2105 btrfs_set_backup_fs_root_level(root_backup, 2106 btrfs_header_level(info->fs_root->node)); 2107 } 2108 2109 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2110 btrfs_set_backup_dev_root_gen(root_backup, 2111 btrfs_header_generation(info->dev_root->node)); 2112 btrfs_set_backup_dev_root_level(root_backup, 2113 btrfs_header_level(info->dev_root->node)); 2114 2115 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2116 btrfs_set_backup_csum_root_gen(root_backup, 2117 btrfs_header_generation(info->csum_root->node)); 2118 btrfs_set_backup_csum_root_level(root_backup, 2119 btrfs_header_level(info->csum_root->node)); 2120 2121 btrfs_set_backup_total_bytes(root_backup, 2122 btrfs_super_total_bytes(info->super_copy)); 2123 btrfs_set_backup_bytes_used(root_backup, 2124 btrfs_super_bytes_used(info->super_copy)); 2125 btrfs_set_backup_num_devices(root_backup, 2126 btrfs_super_num_devices(info->super_copy)); 2127 2128 /* 2129 * if we don't copy this out to the super_copy, it won't get remembered 2130 * for the next commit 2131 */ 2132 memcpy(&info->super_copy->super_roots, 2133 &info->super_for_commit->super_roots, 2134 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2135 } 2136 2137 /* 2138 * this copies info out of the root backup array and back into 2139 * the in-memory super block. It is meant to help iterate through 2140 * the array, so you send it the number of backups you've already 2141 * tried and the last backup index you used. 2142 * 2143 * this returns -1 when it has tried all the backups 2144 */ 2145 static noinline int next_root_backup(struct btrfs_fs_info *info, 2146 struct btrfs_super_block *super, 2147 int *num_backups_tried, int *backup_index) 2148 { 2149 struct btrfs_root_backup *root_backup; 2150 int newest = *backup_index; 2151 2152 if (*num_backups_tried == 0) { 2153 u64 gen = btrfs_super_generation(super); 2154 2155 newest = find_newest_super_backup(info, gen); 2156 if (newest == -1) 2157 return -1; 2158 2159 *backup_index = newest; 2160 *num_backups_tried = 1; 2161 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2162 /* we've tried all the backups, all done */ 2163 return -1; 2164 } else { 2165 /* jump to the next oldest backup */ 2166 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2167 BTRFS_NUM_BACKUP_ROOTS; 2168 *backup_index = newest; 2169 *num_backups_tried += 1; 2170 } 2171 root_backup = super->super_roots + newest; 2172 2173 btrfs_set_super_generation(super, 2174 btrfs_backup_tree_root_gen(root_backup)); 2175 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2176 btrfs_set_super_root_level(super, 2177 btrfs_backup_tree_root_level(root_backup)); 2178 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2179 2180 /* 2181 * fixme: the total bytes and num_devices need to match or we should 2182 * need a fsck 2183 */ 2184 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2185 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2186 return 0; 2187 } 2188 2189 /* helper to cleanup workers */ 2190 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2191 { 2192 btrfs_destroy_workqueue(fs_info->fixup_workers); 2193 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2194 btrfs_destroy_workqueue(fs_info->workers); 2195 btrfs_destroy_workqueue(fs_info->endio_workers); 2196 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2197 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2198 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2199 btrfs_destroy_workqueue(fs_info->rmw_workers); 2200 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2201 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2202 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2203 btrfs_destroy_workqueue(fs_info->submit_workers); 2204 btrfs_destroy_workqueue(fs_info->delayed_workers); 2205 btrfs_destroy_workqueue(fs_info->caching_workers); 2206 btrfs_destroy_workqueue(fs_info->readahead_workers); 2207 btrfs_destroy_workqueue(fs_info->flush_workers); 2208 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2209 btrfs_destroy_workqueue(fs_info->extent_workers); 2210 } 2211 2212 static void free_root_extent_buffers(struct btrfs_root *root) 2213 { 2214 if (root) { 2215 free_extent_buffer(root->node); 2216 free_extent_buffer(root->commit_root); 2217 root->node = NULL; 2218 root->commit_root = NULL; 2219 } 2220 } 2221 2222 /* helper to cleanup tree roots */ 2223 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2224 { 2225 free_root_extent_buffers(info->tree_root); 2226 2227 free_root_extent_buffers(info->dev_root); 2228 free_root_extent_buffers(info->extent_root); 2229 free_root_extent_buffers(info->csum_root); 2230 free_root_extent_buffers(info->quota_root); 2231 free_root_extent_buffers(info->uuid_root); 2232 if (chunk_root) 2233 free_root_extent_buffers(info->chunk_root); 2234 free_root_extent_buffers(info->free_space_root); 2235 } 2236 2237 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2238 { 2239 int ret; 2240 struct btrfs_root *gang[8]; 2241 int i; 2242 2243 while (!list_empty(&fs_info->dead_roots)) { 2244 gang[0] = list_entry(fs_info->dead_roots.next, 2245 struct btrfs_root, root_list); 2246 list_del(&gang[0]->root_list); 2247 2248 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2249 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2250 } else { 2251 free_extent_buffer(gang[0]->node); 2252 free_extent_buffer(gang[0]->commit_root); 2253 btrfs_put_fs_root(gang[0]); 2254 } 2255 } 2256 2257 while (1) { 2258 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2259 (void **)gang, 0, 2260 ARRAY_SIZE(gang)); 2261 if (!ret) 2262 break; 2263 for (i = 0; i < ret; i++) 2264 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2265 } 2266 2267 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2268 btrfs_free_log_root_tree(NULL, fs_info); 2269 btrfs_destroy_pinned_extent(fs_info->tree_root, 2270 fs_info->pinned_extents); 2271 } 2272 } 2273 2274 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2275 { 2276 mutex_init(&fs_info->scrub_lock); 2277 atomic_set(&fs_info->scrubs_running, 0); 2278 atomic_set(&fs_info->scrub_pause_req, 0); 2279 atomic_set(&fs_info->scrubs_paused, 0); 2280 atomic_set(&fs_info->scrub_cancel_req, 0); 2281 init_waitqueue_head(&fs_info->scrub_pause_wait); 2282 fs_info->scrub_workers_refcnt = 0; 2283 } 2284 2285 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2286 { 2287 spin_lock_init(&fs_info->balance_lock); 2288 mutex_init(&fs_info->balance_mutex); 2289 atomic_set(&fs_info->balance_running, 0); 2290 atomic_set(&fs_info->balance_pause_req, 0); 2291 atomic_set(&fs_info->balance_cancel_req, 0); 2292 fs_info->balance_ctl = NULL; 2293 init_waitqueue_head(&fs_info->balance_wait_q); 2294 } 2295 2296 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2297 { 2298 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2299 set_nlink(fs_info->btree_inode, 1); 2300 /* 2301 * we set the i_size on the btree inode to the max possible int. 2302 * the real end of the address space is determined by all of 2303 * the devices in the system 2304 */ 2305 fs_info->btree_inode->i_size = OFFSET_MAX; 2306 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2307 2308 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2309 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2310 fs_info->btree_inode->i_mapping); 2311 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2312 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2313 2314 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2315 2316 BTRFS_I(fs_info->btree_inode)->root = fs_info->tree_root; 2317 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2318 sizeof(struct btrfs_key)); 2319 set_bit(BTRFS_INODE_DUMMY, 2320 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2321 btrfs_insert_inode_hash(fs_info->btree_inode); 2322 } 2323 2324 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2325 { 2326 fs_info->dev_replace.lock_owner = 0; 2327 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2328 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2329 rwlock_init(&fs_info->dev_replace.lock); 2330 atomic_set(&fs_info->dev_replace.read_locks, 0); 2331 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2332 init_waitqueue_head(&fs_info->replace_wait); 2333 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2334 } 2335 2336 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2337 { 2338 spin_lock_init(&fs_info->qgroup_lock); 2339 mutex_init(&fs_info->qgroup_ioctl_lock); 2340 fs_info->qgroup_tree = RB_ROOT; 2341 fs_info->qgroup_op_tree = RB_ROOT; 2342 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2343 fs_info->qgroup_seq = 1; 2344 fs_info->qgroup_ulist = NULL; 2345 fs_info->qgroup_rescan_running = false; 2346 mutex_init(&fs_info->qgroup_rescan_lock); 2347 } 2348 2349 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2350 struct btrfs_fs_devices *fs_devices) 2351 { 2352 int max_active = fs_info->thread_pool_size; 2353 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2354 2355 fs_info->workers = 2356 btrfs_alloc_workqueue(fs_info, "worker", 2357 flags | WQ_HIGHPRI, max_active, 16); 2358 2359 fs_info->delalloc_workers = 2360 btrfs_alloc_workqueue(fs_info, "delalloc", 2361 flags, max_active, 2); 2362 2363 fs_info->flush_workers = 2364 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2365 flags, max_active, 0); 2366 2367 fs_info->caching_workers = 2368 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2369 2370 /* 2371 * a higher idle thresh on the submit workers makes it much more 2372 * likely that bios will be send down in a sane order to the 2373 * devices 2374 */ 2375 fs_info->submit_workers = 2376 btrfs_alloc_workqueue(fs_info, "submit", flags, 2377 min_t(u64, fs_devices->num_devices, 2378 max_active), 64); 2379 2380 fs_info->fixup_workers = 2381 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2382 2383 /* 2384 * endios are largely parallel and should have a very 2385 * low idle thresh 2386 */ 2387 fs_info->endio_workers = 2388 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2389 fs_info->endio_meta_workers = 2390 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2391 max_active, 4); 2392 fs_info->endio_meta_write_workers = 2393 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2394 max_active, 2); 2395 fs_info->endio_raid56_workers = 2396 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2397 max_active, 4); 2398 fs_info->endio_repair_workers = 2399 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2400 fs_info->rmw_workers = 2401 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2402 fs_info->endio_write_workers = 2403 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2404 max_active, 2); 2405 fs_info->endio_freespace_worker = 2406 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2407 max_active, 0); 2408 fs_info->delayed_workers = 2409 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2410 max_active, 0); 2411 fs_info->readahead_workers = 2412 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2413 max_active, 2); 2414 fs_info->qgroup_rescan_workers = 2415 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2416 fs_info->extent_workers = 2417 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2418 min_t(u64, fs_devices->num_devices, 2419 max_active), 8); 2420 2421 if (!(fs_info->workers && fs_info->delalloc_workers && 2422 fs_info->submit_workers && fs_info->flush_workers && 2423 fs_info->endio_workers && fs_info->endio_meta_workers && 2424 fs_info->endio_meta_write_workers && 2425 fs_info->endio_repair_workers && 2426 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2427 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2428 fs_info->caching_workers && fs_info->readahead_workers && 2429 fs_info->fixup_workers && fs_info->delayed_workers && 2430 fs_info->extent_workers && 2431 fs_info->qgroup_rescan_workers)) { 2432 return -ENOMEM; 2433 } 2434 2435 return 0; 2436 } 2437 2438 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2439 struct btrfs_fs_devices *fs_devices) 2440 { 2441 int ret; 2442 struct btrfs_root *tree_root = fs_info->tree_root; 2443 struct btrfs_root *log_tree_root; 2444 struct btrfs_super_block *disk_super = fs_info->super_copy; 2445 u64 bytenr = btrfs_super_log_root(disk_super); 2446 2447 if (fs_devices->rw_devices == 0) { 2448 btrfs_warn(fs_info, "log replay required on RO media"); 2449 return -EIO; 2450 } 2451 2452 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2453 if (!log_tree_root) 2454 return -ENOMEM; 2455 2456 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2457 2458 log_tree_root->node = read_tree_block(tree_root, bytenr, 2459 fs_info->generation + 1); 2460 if (IS_ERR(log_tree_root->node)) { 2461 btrfs_warn(fs_info, "failed to read log tree"); 2462 ret = PTR_ERR(log_tree_root->node); 2463 kfree(log_tree_root); 2464 return ret; 2465 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2466 btrfs_err(fs_info, "failed to read log tree"); 2467 free_extent_buffer(log_tree_root->node); 2468 kfree(log_tree_root); 2469 return -EIO; 2470 } 2471 /* returns with log_tree_root freed on success */ 2472 ret = btrfs_recover_log_trees(log_tree_root); 2473 if (ret) { 2474 btrfs_handle_fs_error(fs_info, ret, 2475 "Failed to recover log tree"); 2476 free_extent_buffer(log_tree_root->node); 2477 kfree(log_tree_root); 2478 return ret; 2479 } 2480 2481 if (fs_info->sb->s_flags & MS_RDONLY) { 2482 ret = btrfs_commit_super(fs_info); 2483 if (ret) 2484 return ret; 2485 } 2486 2487 return 0; 2488 } 2489 2490 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2491 { 2492 struct btrfs_root *tree_root = fs_info->tree_root; 2493 struct btrfs_root *root; 2494 struct btrfs_key location; 2495 int ret; 2496 2497 BUG_ON(!fs_info->tree_root); 2498 2499 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2500 location.type = BTRFS_ROOT_ITEM_KEY; 2501 location.offset = 0; 2502 2503 root = btrfs_read_tree_root(tree_root, &location); 2504 if (IS_ERR(root)) 2505 return PTR_ERR(root); 2506 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2507 fs_info->extent_root = root; 2508 2509 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2510 root = btrfs_read_tree_root(tree_root, &location); 2511 if (IS_ERR(root)) 2512 return PTR_ERR(root); 2513 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2514 fs_info->dev_root = root; 2515 btrfs_init_devices_late(fs_info); 2516 2517 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2518 root = btrfs_read_tree_root(tree_root, &location); 2519 if (IS_ERR(root)) 2520 return PTR_ERR(root); 2521 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2522 fs_info->csum_root = root; 2523 2524 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2525 root = btrfs_read_tree_root(tree_root, &location); 2526 if (!IS_ERR(root)) { 2527 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2528 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2529 fs_info->quota_root = root; 2530 } 2531 2532 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2533 root = btrfs_read_tree_root(tree_root, &location); 2534 if (IS_ERR(root)) { 2535 ret = PTR_ERR(root); 2536 if (ret != -ENOENT) 2537 return ret; 2538 } else { 2539 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2540 fs_info->uuid_root = root; 2541 } 2542 2543 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2544 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2545 root = btrfs_read_tree_root(tree_root, &location); 2546 if (IS_ERR(root)) 2547 return PTR_ERR(root); 2548 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2549 fs_info->free_space_root = root; 2550 } 2551 2552 return 0; 2553 } 2554 2555 int open_ctree(struct super_block *sb, 2556 struct btrfs_fs_devices *fs_devices, 2557 char *options) 2558 { 2559 u32 sectorsize; 2560 u32 nodesize; 2561 u32 stripesize; 2562 u64 generation; 2563 u64 features; 2564 struct btrfs_key location; 2565 struct buffer_head *bh; 2566 struct btrfs_super_block *disk_super; 2567 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2568 struct btrfs_root *tree_root; 2569 struct btrfs_root *chunk_root; 2570 int ret; 2571 int err = -EINVAL; 2572 int num_backups_tried = 0; 2573 int backup_index = 0; 2574 int max_active; 2575 int clear_free_space_tree = 0; 2576 2577 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2578 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2579 if (!tree_root || !chunk_root) { 2580 err = -ENOMEM; 2581 goto fail; 2582 } 2583 2584 ret = init_srcu_struct(&fs_info->subvol_srcu); 2585 if (ret) { 2586 err = ret; 2587 goto fail; 2588 } 2589 2590 ret = setup_bdi(fs_info, &fs_info->bdi); 2591 if (ret) { 2592 err = ret; 2593 goto fail_srcu; 2594 } 2595 2596 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2597 if (ret) { 2598 err = ret; 2599 goto fail_bdi; 2600 } 2601 fs_info->dirty_metadata_batch = PAGE_SIZE * 2602 (1 + ilog2(nr_cpu_ids)); 2603 2604 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2605 if (ret) { 2606 err = ret; 2607 goto fail_dirty_metadata_bytes; 2608 } 2609 2610 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2611 if (ret) { 2612 err = ret; 2613 goto fail_delalloc_bytes; 2614 } 2615 2616 fs_info->btree_inode = new_inode(sb); 2617 if (!fs_info->btree_inode) { 2618 err = -ENOMEM; 2619 goto fail_bio_counter; 2620 } 2621 2622 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2623 2624 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2625 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2626 INIT_LIST_HEAD(&fs_info->trans_list); 2627 INIT_LIST_HEAD(&fs_info->dead_roots); 2628 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2629 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2630 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2631 spin_lock_init(&fs_info->delalloc_root_lock); 2632 spin_lock_init(&fs_info->trans_lock); 2633 spin_lock_init(&fs_info->fs_roots_radix_lock); 2634 spin_lock_init(&fs_info->delayed_iput_lock); 2635 spin_lock_init(&fs_info->defrag_inodes_lock); 2636 spin_lock_init(&fs_info->free_chunk_lock); 2637 spin_lock_init(&fs_info->tree_mod_seq_lock); 2638 spin_lock_init(&fs_info->super_lock); 2639 spin_lock_init(&fs_info->qgroup_op_lock); 2640 spin_lock_init(&fs_info->buffer_lock); 2641 spin_lock_init(&fs_info->unused_bgs_lock); 2642 rwlock_init(&fs_info->tree_mod_log_lock); 2643 mutex_init(&fs_info->unused_bg_unpin_mutex); 2644 mutex_init(&fs_info->delete_unused_bgs_mutex); 2645 mutex_init(&fs_info->reloc_mutex); 2646 mutex_init(&fs_info->delalloc_root_mutex); 2647 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2648 seqlock_init(&fs_info->profiles_lock); 2649 2650 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2651 INIT_LIST_HEAD(&fs_info->space_info); 2652 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2653 INIT_LIST_HEAD(&fs_info->unused_bgs); 2654 btrfs_mapping_init(&fs_info->mapping_tree); 2655 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2656 BTRFS_BLOCK_RSV_GLOBAL); 2657 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2658 BTRFS_BLOCK_RSV_DELALLOC); 2659 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2660 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2661 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2662 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2663 BTRFS_BLOCK_RSV_DELOPS); 2664 atomic_set(&fs_info->nr_async_submits, 0); 2665 atomic_set(&fs_info->async_delalloc_pages, 0); 2666 atomic_set(&fs_info->async_submit_draining, 0); 2667 atomic_set(&fs_info->nr_async_bios, 0); 2668 atomic_set(&fs_info->defrag_running, 0); 2669 atomic_set(&fs_info->qgroup_op_seq, 0); 2670 atomic_set(&fs_info->reada_works_cnt, 0); 2671 atomic64_set(&fs_info->tree_mod_seq, 0); 2672 fs_info->fs_frozen = 0; 2673 fs_info->sb = sb; 2674 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2675 fs_info->metadata_ratio = 0; 2676 fs_info->defrag_inodes = RB_ROOT; 2677 fs_info->free_chunk_space = 0; 2678 fs_info->tree_mod_log = RB_ROOT; 2679 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2680 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2681 /* readahead state */ 2682 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2683 spin_lock_init(&fs_info->reada_lock); 2684 2685 fs_info->thread_pool_size = min_t(unsigned long, 2686 num_online_cpus() + 2, 8); 2687 2688 INIT_LIST_HEAD(&fs_info->ordered_roots); 2689 spin_lock_init(&fs_info->ordered_root_lock); 2690 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2691 GFP_KERNEL); 2692 if (!fs_info->delayed_root) { 2693 err = -ENOMEM; 2694 goto fail_iput; 2695 } 2696 btrfs_init_delayed_root(fs_info->delayed_root); 2697 2698 btrfs_init_scrub(fs_info); 2699 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2700 fs_info->check_integrity_print_mask = 0; 2701 #endif 2702 btrfs_init_balance(fs_info); 2703 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2704 2705 sb->s_blocksize = 4096; 2706 sb->s_blocksize_bits = blksize_bits(4096); 2707 sb->s_bdi = &fs_info->bdi; 2708 2709 btrfs_init_btree_inode(fs_info); 2710 2711 spin_lock_init(&fs_info->block_group_cache_lock); 2712 fs_info->block_group_cache_tree = RB_ROOT; 2713 fs_info->first_logical_byte = (u64)-1; 2714 2715 extent_io_tree_init(&fs_info->freed_extents[0], 2716 fs_info->btree_inode->i_mapping); 2717 extent_io_tree_init(&fs_info->freed_extents[1], 2718 fs_info->btree_inode->i_mapping); 2719 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2720 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2721 2722 mutex_init(&fs_info->ordered_operations_mutex); 2723 mutex_init(&fs_info->tree_log_mutex); 2724 mutex_init(&fs_info->chunk_mutex); 2725 mutex_init(&fs_info->transaction_kthread_mutex); 2726 mutex_init(&fs_info->cleaner_mutex); 2727 mutex_init(&fs_info->volume_mutex); 2728 mutex_init(&fs_info->ro_block_group_mutex); 2729 init_rwsem(&fs_info->commit_root_sem); 2730 init_rwsem(&fs_info->cleanup_work_sem); 2731 init_rwsem(&fs_info->subvol_sem); 2732 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2733 2734 btrfs_init_dev_replace_locks(fs_info); 2735 btrfs_init_qgroup(fs_info); 2736 2737 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2738 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2739 2740 init_waitqueue_head(&fs_info->transaction_throttle); 2741 init_waitqueue_head(&fs_info->transaction_wait); 2742 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2743 init_waitqueue_head(&fs_info->async_submit_wait); 2744 2745 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2746 2747 /* Usable values until the real ones are cached from the superblock */ 2748 fs_info->nodesize = 4096; 2749 fs_info->sectorsize = 4096; 2750 fs_info->stripesize = 4096; 2751 2752 ret = btrfs_alloc_stripe_hash_table(fs_info); 2753 if (ret) { 2754 err = ret; 2755 goto fail_alloc; 2756 } 2757 2758 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2759 2760 invalidate_bdev(fs_devices->latest_bdev); 2761 2762 /* 2763 * Read super block and check the signature bytes only 2764 */ 2765 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2766 if (IS_ERR(bh)) { 2767 err = PTR_ERR(bh); 2768 goto fail_alloc; 2769 } 2770 2771 /* 2772 * We want to check superblock checksum, the type is stored inside. 2773 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2774 */ 2775 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2776 btrfs_err(fs_info, "superblock checksum mismatch"); 2777 err = -EINVAL; 2778 brelse(bh); 2779 goto fail_alloc; 2780 } 2781 2782 /* 2783 * super_copy is zeroed at allocation time and we never touch the 2784 * following bytes up to INFO_SIZE, the checksum is calculated from 2785 * the whole block of INFO_SIZE 2786 */ 2787 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2788 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2789 sizeof(*fs_info->super_for_commit)); 2790 brelse(bh); 2791 2792 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2793 2794 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2795 if (ret) { 2796 btrfs_err(fs_info, "superblock contains fatal errors"); 2797 err = -EINVAL; 2798 goto fail_alloc; 2799 } 2800 2801 disk_super = fs_info->super_copy; 2802 if (!btrfs_super_root(disk_super)) 2803 goto fail_alloc; 2804 2805 /* check FS state, whether FS is broken. */ 2806 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2807 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2808 2809 /* 2810 * run through our array of backup supers and setup 2811 * our ring pointer to the oldest one 2812 */ 2813 generation = btrfs_super_generation(disk_super); 2814 find_oldest_super_backup(fs_info, generation); 2815 2816 /* 2817 * In the long term, we'll store the compression type in the super 2818 * block, and it'll be used for per file compression control. 2819 */ 2820 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2821 2822 ret = btrfs_parse_options(tree_root, options, sb->s_flags); 2823 if (ret) { 2824 err = ret; 2825 goto fail_alloc; 2826 } 2827 2828 features = btrfs_super_incompat_flags(disk_super) & 2829 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2830 if (features) { 2831 btrfs_err(fs_info, 2832 "cannot mount because of unsupported optional features (%llx)", 2833 features); 2834 err = -EINVAL; 2835 goto fail_alloc; 2836 } 2837 2838 features = btrfs_super_incompat_flags(disk_super); 2839 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2840 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2841 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2842 2843 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2844 btrfs_info(fs_info, "has skinny extents"); 2845 2846 /* 2847 * flag our filesystem as having big metadata blocks if 2848 * they are bigger than the page size 2849 */ 2850 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2851 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2852 btrfs_info(fs_info, 2853 "flagging fs with big metadata feature"); 2854 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2855 } 2856 2857 nodesize = btrfs_super_nodesize(disk_super); 2858 sectorsize = btrfs_super_sectorsize(disk_super); 2859 stripesize = sectorsize; 2860 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2861 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2862 2863 /* Cache block sizes */ 2864 fs_info->nodesize = nodesize; 2865 fs_info->sectorsize = sectorsize; 2866 fs_info->stripesize = stripesize; 2867 2868 /* 2869 * mixed block groups end up with duplicate but slightly offset 2870 * extent buffers for the same range. It leads to corruptions 2871 */ 2872 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2873 (sectorsize != nodesize)) { 2874 btrfs_err(fs_info, 2875 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2876 nodesize, sectorsize); 2877 goto fail_alloc; 2878 } 2879 2880 /* 2881 * Needn't use the lock because there is no other task which will 2882 * update the flag. 2883 */ 2884 btrfs_set_super_incompat_flags(disk_super, features); 2885 2886 features = btrfs_super_compat_ro_flags(disk_super) & 2887 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2888 if (!(sb->s_flags & MS_RDONLY) && features) { 2889 btrfs_err(fs_info, 2890 "cannot mount read-write because of unsupported optional features (%llx)", 2891 features); 2892 err = -EINVAL; 2893 goto fail_alloc; 2894 } 2895 2896 max_active = fs_info->thread_pool_size; 2897 2898 ret = btrfs_init_workqueues(fs_info, fs_devices); 2899 if (ret) { 2900 err = ret; 2901 goto fail_sb_buffer; 2902 } 2903 2904 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2905 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2906 SZ_4M / PAGE_SIZE); 2907 2908 sb->s_blocksize = sectorsize; 2909 sb->s_blocksize_bits = blksize_bits(sectorsize); 2910 2911 mutex_lock(&fs_info->chunk_mutex); 2912 ret = btrfs_read_sys_array(fs_info); 2913 mutex_unlock(&fs_info->chunk_mutex); 2914 if (ret) { 2915 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2916 goto fail_sb_buffer; 2917 } 2918 2919 generation = btrfs_super_chunk_root_generation(disk_super); 2920 2921 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2922 2923 chunk_root->node = read_tree_block(chunk_root, 2924 btrfs_super_chunk_root(disk_super), 2925 generation); 2926 if (IS_ERR(chunk_root->node) || 2927 !extent_buffer_uptodate(chunk_root->node)) { 2928 btrfs_err(fs_info, "failed to read chunk root"); 2929 if (!IS_ERR(chunk_root->node)) 2930 free_extent_buffer(chunk_root->node); 2931 chunk_root->node = NULL; 2932 goto fail_tree_roots; 2933 } 2934 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2935 chunk_root->commit_root = btrfs_root_node(chunk_root); 2936 2937 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2938 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2939 2940 ret = btrfs_read_chunk_tree(fs_info); 2941 if (ret) { 2942 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2943 goto fail_tree_roots; 2944 } 2945 2946 /* 2947 * keep the device that is marked to be the target device for the 2948 * dev_replace procedure 2949 */ 2950 btrfs_close_extra_devices(fs_devices, 0); 2951 2952 if (!fs_devices->latest_bdev) { 2953 btrfs_err(fs_info, "failed to read devices"); 2954 goto fail_tree_roots; 2955 } 2956 2957 retry_root_backup: 2958 generation = btrfs_super_generation(disk_super); 2959 2960 tree_root->node = read_tree_block(tree_root, 2961 btrfs_super_root(disk_super), 2962 generation); 2963 if (IS_ERR(tree_root->node) || 2964 !extent_buffer_uptodate(tree_root->node)) { 2965 btrfs_warn(fs_info, "failed to read tree root"); 2966 if (!IS_ERR(tree_root->node)) 2967 free_extent_buffer(tree_root->node); 2968 tree_root->node = NULL; 2969 goto recovery_tree_root; 2970 } 2971 2972 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2973 tree_root->commit_root = btrfs_root_node(tree_root); 2974 btrfs_set_root_refs(&tree_root->root_item, 1); 2975 2976 mutex_lock(&tree_root->objectid_mutex); 2977 ret = btrfs_find_highest_objectid(tree_root, 2978 &tree_root->highest_objectid); 2979 if (ret) { 2980 mutex_unlock(&tree_root->objectid_mutex); 2981 goto recovery_tree_root; 2982 } 2983 2984 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2985 2986 mutex_unlock(&tree_root->objectid_mutex); 2987 2988 ret = btrfs_read_roots(fs_info); 2989 if (ret) 2990 goto recovery_tree_root; 2991 2992 fs_info->generation = generation; 2993 fs_info->last_trans_committed = generation; 2994 2995 ret = btrfs_recover_balance(fs_info); 2996 if (ret) { 2997 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2998 goto fail_block_groups; 2999 } 3000 3001 ret = btrfs_init_dev_stats(fs_info); 3002 if (ret) { 3003 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3004 goto fail_block_groups; 3005 } 3006 3007 ret = btrfs_init_dev_replace(fs_info); 3008 if (ret) { 3009 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3010 goto fail_block_groups; 3011 } 3012 3013 btrfs_close_extra_devices(fs_devices, 1); 3014 3015 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3016 if (ret) { 3017 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3018 ret); 3019 goto fail_block_groups; 3020 } 3021 3022 ret = btrfs_sysfs_add_device(fs_devices); 3023 if (ret) { 3024 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3025 ret); 3026 goto fail_fsdev_sysfs; 3027 } 3028 3029 ret = btrfs_sysfs_add_mounted(fs_info); 3030 if (ret) { 3031 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3032 goto fail_fsdev_sysfs; 3033 } 3034 3035 ret = btrfs_init_space_info(fs_info); 3036 if (ret) { 3037 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3038 goto fail_sysfs; 3039 } 3040 3041 ret = btrfs_read_block_groups(fs_info); 3042 if (ret) { 3043 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3044 goto fail_sysfs; 3045 } 3046 fs_info->num_tolerated_disk_barrier_failures = 3047 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3048 if (fs_info->fs_devices->missing_devices > 3049 fs_info->num_tolerated_disk_barrier_failures && 3050 !(sb->s_flags & MS_RDONLY)) { 3051 btrfs_warn(fs_info, 3052 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 3053 fs_info->fs_devices->missing_devices, 3054 fs_info->num_tolerated_disk_barrier_failures); 3055 goto fail_sysfs; 3056 } 3057 3058 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3059 "btrfs-cleaner"); 3060 if (IS_ERR(fs_info->cleaner_kthread)) 3061 goto fail_sysfs; 3062 3063 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3064 tree_root, 3065 "btrfs-transaction"); 3066 if (IS_ERR(fs_info->transaction_kthread)) 3067 goto fail_cleaner; 3068 3069 if (!btrfs_test_opt(fs_info, SSD) && 3070 !btrfs_test_opt(fs_info, NOSSD) && 3071 !fs_info->fs_devices->rotating) { 3072 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3073 btrfs_set_opt(fs_info->mount_opt, SSD); 3074 } 3075 3076 /* 3077 * Mount does not set all options immediately, we can do it now and do 3078 * not have to wait for transaction commit 3079 */ 3080 btrfs_apply_pending_changes(fs_info); 3081 3082 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3083 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3084 ret = btrfsic_mount(tree_root, fs_devices, 3085 btrfs_test_opt(fs_info, 3086 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3087 1 : 0, 3088 fs_info->check_integrity_print_mask); 3089 if (ret) 3090 btrfs_warn(fs_info, 3091 "failed to initialize integrity check module: %d", 3092 ret); 3093 } 3094 #endif 3095 ret = btrfs_read_qgroup_config(fs_info); 3096 if (ret) 3097 goto fail_trans_kthread; 3098 3099 /* do not make disk changes in broken FS or nologreplay is given */ 3100 if (btrfs_super_log_root(disk_super) != 0 && 3101 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3102 ret = btrfs_replay_log(fs_info, fs_devices); 3103 if (ret) { 3104 err = ret; 3105 goto fail_qgroup; 3106 } 3107 } 3108 3109 ret = btrfs_find_orphan_roots(fs_info); 3110 if (ret) 3111 goto fail_qgroup; 3112 3113 if (!(sb->s_flags & MS_RDONLY)) { 3114 ret = btrfs_cleanup_fs_roots(fs_info); 3115 if (ret) 3116 goto fail_qgroup; 3117 3118 mutex_lock(&fs_info->cleaner_mutex); 3119 ret = btrfs_recover_relocation(tree_root); 3120 mutex_unlock(&fs_info->cleaner_mutex); 3121 if (ret < 0) { 3122 btrfs_warn(fs_info, "failed to recover relocation: %d", 3123 ret); 3124 err = -EINVAL; 3125 goto fail_qgroup; 3126 } 3127 } 3128 3129 location.objectid = BTRFS_FS_TREE_OBJECTID; 3130 location.type = BTRFS_ROOT_ITEM_KEY; 3131 location.offset = 0; 3132 3133 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3134 if (IS_ERR(fs_info->fs_root)) { 3135 err = PTR_ERR(fs_info->fs_root); 3136 goto fail_qgroup; 3137 } 3138 3139 if (sb->s_flags & MS_RDONLY) 3140 return 0; 3141 3142 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3143 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3144 clear_free_space_tree = 1; 3145 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3146 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3147 btrfs_warn(fs_info, "free space tree is invalid"); 3148 clear_free_space_tree = 1; 3149 } 3150 3151 if (clear_free_space_tree) { 3152 btrfs_info(fs_info, "clearing free space tree"); 3153 ret = btrfs_clear_free_space_tree(fs_info); 3154 if (ret) { 3155 btrfs_warn(fs_info, 3156 "failed to clear free space tree: %d", ret); 3157 close_ctree(fs_info); 3158 return ret; 3159 } 3160 } 3161 3162 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3163 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3164 btrfs_info(fs_info, "creating free space tree"); 3165 ret = btrfs_create_free_space_tree(fs_info); 3166 if (ret) { 3167 btrfs_warn(fs_info, 3168 "failed to create free space tree: %d", ret); 3169 close_ctree(fs_info); 3170 return ret; 3171 } 3172 } 3173 3174 down_read(&fs_info->cleanup_work_sem); 3175 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3176 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3177 up_read(&fs_info->cleanup_work_sem); 3178 close_ctree(fs_info); 3179 return ret; 3180 } 3181 up_read(&fs_info->cleanup_work_sem); 3182 3183 ret = btrfs_resume_balance_async(fs_info); 3184 if (ret) { 3185 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3186 close_ctree(fs_info); 3187 return ret; 3188 } 3189 3190 ret = btrfs_resume_dev_replace_async(fs_info); 3191 if (ret) { 3192 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3193 close_ctree(fs_info); 3194 return ret; 3195 } 3196 3197 btrfs_qgroup_rescan_resume(fs_info); 3198 3199 if (!fs_info->uuid_root) { 3200 btrfs_info(fs_info, "creating UUID tree"); 3201 ret = btrfs_create_uuid_tree(fs_info); 3202 if (ret) { 3203 btrfs_warn(fs_info, 3204 "failed to create the UUID tree: %d", ret); 3205 close_ctree(fs_info); 3206 return ret; 3207 } 3208 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3209 fs_info->generation != 3210 btrfs_super_uuid_tree_generation(disk_super)) { 3211 btrfs_info(fs_info, "checking UUID tree"); 3212 ret = btrfs_check_uuid_tree(fs_info); 3213 if (ret) { 3214 btrfs_warn(fs_info, 3215 "failed to check the UUID tree: %d", ret); 3216 close_ctree(fs_info); 3217 return ret; 3218 } 3219 } else { 3220 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3221 } 3222 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3223 3224 /* 3225 * backuproot only affect mount behavior, and if open_ctree succeeded, 3226 * no need to keep the flag 3227 */ 3228 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3229 3230 return 0; 3231 3232 fail_qgroup: 3233 btrfs_free_qgroup_config(fs_info); 3234 fail_trans_kthread: 3235 kthread_stop(fs_info->transaction_kthread); 3236 btrfs_cleanup_transaction(fs_info->tree_root); 3237 btrfs_free_fs_roots(fs_info); 3238 fail_cleaner: 3239 kthread_stop(fs_info->cleaner_kthread); 3240 3241 /* 3242 * make sure we're done with the btree inode before we stop our 3243 * kthreads 3244 */ 3245 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3246 3247 fail_sysfs: 3248 btrfs_sysfs_remove_mounted(fs_info); 3249 3250 fail_fsdev_sysfs: 3251 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3252 3253 fail_block_groups: 3254 btrfs_put_block_group_cache(fs_info); 3255 btrfs_free_block_groups(fs_info); 3256 3257 fail_tree_roots: 3258 free_root_pointers(fs_info, 1); 3259 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3260 3261 fail_sb_buffer: 3262 btrfs_stop_all_workers(fs_info); 3263 fail_alloc: 3264 fail_iput: 3265 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3266 3267 iput(fs_info->btree_inode); 3268 fail_bio_counter: 3269 percpu_counter_destroy(&fs_info->bio_counter); 3270 fail_delalloc_bytes: 3271 percpu_counter_destroy(&fs_info->delalloc_bytes); 3272 fail_dirty_metadata_bytes: 3273 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3274 fail_bdi: 3275 bdi_destroy(&fs_info->bdi); 3276 fail_srcu: 3277 cleanup_srcu_struct(&fs_info->subvol_srcu); 3278 fail: 3279 btrfs_free_stripe_hash_table(fs_info); 3280 btrfs_close_devices(fs_info->fs_devices); 3281 return err; 3282 3283 recovery_tree_root: 3284 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3285 goto fail_tree_roots; 3286 3287 free_root_pointers(fs_info, 0); 3288 3289 /* don't use the log in recovery mode, it won't be valid */ 3290 btrfs_set_super_log_root(disk_super, 0); 3291 3292 /* we can't trust the free space cache either */ 3293 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3294 3295 ret = next_root_backup(fs_info, fs_info->super_copy, 3296 &num_backups_tried, &backup_index); 3297 if (ret == -1) 3298 goto fail_block_groups; 3299 goto retry_root_backup; 3300 } 3301 3302 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3303 { 3304 if (uptodate) { 3305 set_buffer_uptodate(bh); 3306 } else { 3307 struct btrfs_device *device = (struct btrfs_device *) 3308 bh->b_private; 3309 3310 btrfs_warn_rl_in_rcu(device->fs_info, 3311 "lost page write due to IO error on %s", 3312 rcu_str_deref(device->name)); 3313 /* note, we don't set_buffer_write_io_error because we have 3314 * our own ways of dealing with the IO errors 3315 */ 3316 clear_buffer_uptodate(bh); 3317 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3318 } 3319 unlock_buffer(bh); 3320 put_bh(bh); 3321 } 3322 3323 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3324 struct buffer_head **bh_ret) 3325 { 3326 struct buffer_head *bh; 3327 struct btrfs_super_block *super; 3328 u64 bytenr; 3329 3330 bytenr = btrfs_sb_offset(copy_num); 3331 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3332 return -EINVAL; 3333 3334 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3335 /* 3336 * If we fail to read from the underlying devices, as of now 3337 * the best option we have is to mark it EIO. 3338 */ 3339 if (!bh) 3340 return -EIO; 3341 3342 super = (struct btrfs_super_block *)bh->b_data; 3343 if (btrfs_super_bytenr(super) != bytenr || 3344 btrfs_super_magic(super) != BTRFS_MAGIC) { 3345 brelse(bh); 3346 return -EINVAL; 3347 } 3348 3349 *bh_ret = bh; 3350 return 0; 3351 } 3352 3353 3354 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3355 { 3356 struct buffer_head *bh; 3357 struct buffer_head *latest = NULL; 3358 struct btrfs_super_block *super; 3359 int i; 3360 u64 transid = 0; 3361 int ret = -EINVAL; 3362 3363 /* we would like to check all the supers, but that would make 3364 * a btrfs mount succeed after a mkfs from a different FS. 3365 * So, we need to add a special mount option to scan for 3366 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3367 */ 3368 for (i = 0; i < 1; i++) { 3369 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3370 if (ret) 3371 continue; 3372 3373 super = (struct btrfs_super_block *)bh->b_data; 3374 3375 if (!latest || btrfs_super_generation(super) > transid) { 3376 brelse(latest); 3377 latest = bh; 3378 transid = btrfs_super_generation(super); 3379 } else { 3380 brelse(bh); 3381 } 3382 } 3383 3384 if (!latest) 3385 return ERR_PTR(ret); 3386 3387 return latest; 3388 } 3389 3390 /* 3391 * this should be called twice, once with wait == 0 and 3392 * once with wait == 1. When wait == 0 is done, all the buffer heads 3393 * we write are pinned. 3394 * 3395 * They are released when wait == 1 is done. 3396 * max_mirrors must be the same for both runs, and it indicates how 3397 * many supers on this one device should be written. 3398 * 3399 * max_mirrors == 0 means to write them all. 3400 */ 3401 static int write_dev_supers(struct btrfs_device *device, 3402 struct btrfs_super_block *sb, 3403 int do_barriers, int wait, int max_mirrors) 3404 { 3405 struct buffer_head *bh; 3406 int i; 3407 int ret; 3408 int errors = 0; 3409 u32 crc; 3410 u64 bytenr; 3411 3412 if (max_mirrors == 0) 3413 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3414 3415 for (i = 0; i < max_mirrors; i++) { 3416 bytenr = btrfs_sb_offset(i); 3417 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3418 device->commit_total_bytes) 3419 break; 3420 3421 if (wait) { 3422 bh = __find_get_block(device->bdev, bytenr / 4096, 3423 BTRFS_SUPER_INFO_SIZE); 3424 if (!bh) { 3425 errors++; 3426 continue; 3427 } 3428 wait_on_buffer(bh); 3429 if (!buffer_uptodate(bh)) 3430 errors++; 3431 3432 /* drop our reference */ 3433 brelse(bh); 3434 3435 /* drop the reference from the wait == 0 run */ 3436 brelse(bh); 3437 continue; 3438 } else { 3439 btrfs_set_super_bytenr(sb, bytenr); 3440 3441 crc = ~(u32)0; 3442 crc = btrfs_csum_data((char *)sb + 3443 BTRFS_CSUM_SIZE, crc, 3444 BTRFS_SUPER_INFO_SIZE - 3445 BTRFS_CSUM_SIZE); 3446 btrfs_csum_final(crc, sb->csum); 3447 3448 /* 3449 * one reference for us, and we leave it for the 3450 * caller 3451 */ 3452 bh = __getblk(device->bdev, bytenr / 4096, 3453 BTRFS_SUPER_INFO_SIZE); 3454 if (!bh) { 3455 btrfs_err(device->fs_info, 3456 "couldn't get super buffer head for bytenr %llu", 3457 bytenr); 3458 errors++; 3459 continue; 3460 } 3461 3462 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3463 3464 /* one reference for submit_bh */ 3465 get_bh(bh); 3466 3467 set_buffer_uptodate(bh); 3468 lock_buffer(bh); 3469 bh->b_end_io = btrfs_end_buffer_write_sync; 3470 bh->b_private = device; 3471 } 3472 3473 /* 3474 * we fua the first super. The others we allow 3475 * to go down lazy. 3476 */ 3477 if (i == 0) 3478 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh); 3479 else 3480 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh); 3481 if (ret) 3482 errors++; 3483 } 3484 return errors < i ? 0 : -1; 3485 } 3486 3487 /* 3488 * endio for the write_dev_flush, this will wake anyone waiting 3489 * for the barrier when it is done 3490 */ 3491 static void btrfs_end_empty_barrier(struct bio *bio) 3492 { 3493 if (bio->bi_private) 3494 complete(bio->bi_private); 3495 bio_put(bio); 3496 } 3497 3498 /* 3499 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3500 * sent down. With wait == 1, it waits for the previous flush. 3501 * 3502 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3503 * capable 3504 */ 3505 static int write_dev_flush(struct btrfs_device *device, int wait) 3506 { 3507 struct bio *bio; 3508 int ret = 0; 3509 3510 if (device->nobarriers) 3511 return 0; 3512 3513 if (wait) { 3514 bio = device->flush_bio; 3515 if (!bio) 3516 return 0; 3517 3518 wait_for_completion(&device->flush_wait); 3519 3520 if (bio->bi_error) { 3521 ret = bio->bi_error; 3522 btrfs_dev_stat_inc_and_print(device, 3523 BTRFS_DEV_STAT_FLUSH_ERRS); 3524 } 3525 3526 /* drop the reference from the wait == 0 run */ 3527 bio_put(bio); 3528 device->flush_bio = NULL; 3529 3530 return ret; 3531 } 3532 3533 /* 3534 * one reference for us, and we leave it for the 3535 * caller 3536 */ 3537 device->flush_bio = NULL; 3538 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3539 if (!bio) 3540 return -ENOMEM; 3541 3542 bio->bi_end_io = btrfs_end_empty_barrier; 3543 bio->bi_bdev = device->bdev; 3544 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 3545 init_completion(&device->flush_wait); 3546 bio->bi_private = &device->flush_wait; 3547 device->flush_bio = bio; 3548 3549 bio_get(bio); 3550 btrfsic_submit_bio(bio); 3551 3552 return 0; 3553 } 3554 3555 /* 3556 * send an empty flush down to each device in parallel, 3557 * then wait for them 3558 */ 3559 static int barrier_all_devices(struct btrfs_fs_info *info) 3560 { 3561 struct list_head *head; 3562 struct btrfs_device *dev; 3563 int errors_send = 0; 3564 int errors_wait = 0; 3565 int ret; 3566 3567 /* send down all the barriers */ 3568 head = &info->fs_devices->devices; 3569 list_for_each_entry_rcu(dev, head, dev_list) { 3570 if (dev->missing) 3571 continue; 3572 if (!dev->bdev) { 3573 errors_send++; 3574 continue; 3575 } 3576 if (!dev->in_fs_metadata || !dev->writeable) 3577 continue; 3578 3579 ret = write_dev_flush(dev, 0); 3580 if (ret) 3581 errors_send++; 3582 } 3583 3584 /* wait for all the barriers */ 3585 list_for_each_entry_rcu(dev, head, dev_list) { 3586 if (dev->missing) 3587 continue; 3588 if (!dev->bdev) { 3589 errors_wait++; 3590 continue; 3591 } 3592 if (!dev->in_fs_metadata || !dev->writeable) 3593 continue; 3594 3595 ret = write_dev_flush(dev, 1); 3596 if (ret) 3597 errors_wait++; 3598 } 3599 if (errors_send > info->num_tolerated_disk_barrier_failures || 3600 errors_wait > info->num_tolerated_disk_barrier_failures) 3601 return -EIO; 3602 return 0; 3603 } 3604 3605 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3606 { 3607 int raid_type; 3608 int min_tolerated = INT_MAX; 3609 3610 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3611 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3612 min_tolerated = min(min_tolerated, 3613 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3614 tolerated_failures); 3615 3616 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3617 if (raid_type == BTRFS_RAID_SINGLE) 3618 continue; 3619 if (!(flags & btrfs_raid_group[raid_type])) 3620 continue; 3621 min_tolerated = min(min_tolerated, 3622 btrfs_raid_array[raid_type]. 3623 tolerated_failures); 3624 } 3625 3626 if (min_tolerated == INT_MAX) { 3627 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3628 min_tolerated = 0; 3629 } 3630 3631 return min_tolerated; 3632 } 3633 3634 int btrfs_calc_num_tolerated_disk_barrier_failures( 3635 struct btrfs_fs_info *fs_info) 3636 { 3637 struct btrfs_ioctl_space_info space; 3638 struct btrfs_space_info *sinfo; 3639 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3640 BTRFS_BLOCK_GROUP_SYSTEM, 3641 BTRFS_BLOCK_GROUP_METADATA, 3642 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3643 int i; 3644 int c; 3645 int num_tolerated_disk_barrier_failures = 3646 (int)fs_info->fs_devices->num_devices; 3647 3648 for (i = 0; i < ARRAY_SIZE(types); i++) { 3649 struct btrfs_space_info *tmp; 3650 3651 sinfo = NULL; 3652 rcu_read_lock(); 3653 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3654 if (tmp->flags == types[i]) { 3655 sinfo = tmp; 3656 break; 3657 } 3658 } 3659 rcu_read_unlock(); 3660 3661 if (!sinfo) 3662 continue; 3663 3664 down_read(&sinfo->groups_sem); 3665 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3666 u64 flags; 3667 3668 if (list_empty(&sinfo->block_groups[c])) 3669 continue; 3670 3671 btrfs_get_block_group_info(&sinfo->block_groups[c], 3672 &space); 3673 if (space.total_bytes == 0 || space.used_bytes == 0) 3674 continue; 3675 flags = space.flags; 3676 3677 num_tolerated_disk_barrier_failures = min( 3678 num_tolerated_disk_barrier_failures, 3679 btrfs_get_num_tolerated_disk_barrier_failures( 3680 flags)); 3681 } 3682 up_read(&sinfo->groups_sem); 3683 } 3684 3685 return num_tolerated_disk_barrier_failures; 3686 } 3687 3688 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3689 { 3690 struct btrfs_fs_info *fs_info = root->fs_info; 3691 struct list_head *head; 3692 struct btrfs_device *dev; 3693 struct btrfs_super_block *sb; 3694 struct btrfs_dev_item *dev_item; 3695 int ret; 3696 int do_barriers; 3697 int max_errors; 3698 int total_errors = 0; 3699 u64 flags; 3700 3701 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3702 backup_super_roots(fs_info); 3703 3704 sb = fs_info->super_for_commit; 3705 dev_item = &sb->dev_item; 3706 3707 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3708 head = &fs_info->fs_devices->devices; 3709 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3710 3711 if (do_barriers) { 3712 ret = barrier_all_devices(fs_info); 3713 if (ret) { 3714 mutex_unlock( 3715 &fs_info->fs_devices->device_list_mutex); 3716 btrfs_handle_fs_error(fs_info, ret, 3717 "errors while submitting device barriers."); 3718 return ret; 3719 } 3720 } 3721 3722 list_for_each_entry_rcu(dev, head, dev_list) { 3723 if (!dev->bdev) { 3724 total_errors++; 3725 continue; 3726 } 3727 if (!dev->in_fs_metadata || !dev->writeable) 3728 continue; 3729 3730 btrfs_set_stack_device_generation(dev_item, 0); 3731 btrfs_set_stack_device_type(dev_item, dev->type); 3732 btrfs_set_stack_device_id(dev_item, dev->devid); 3733 btrfs_set_stack_device_total_bytes(dev_item, 3734 dev->commit_total_bytes); 3735 btrfs_set_stack_device_bytes_used(dev_item, 3736 dev->commit_bytes_used); 3737 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3738 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3739 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3740 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3741 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3742 3743 flags = btrfs_super_flags(sb); 3744 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3745 3746 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3747 if (ret) 3748 total_errors++; 3749 } 3750 if (total_errors > max_errors) { 3751 btrfs_err(fs_info, "%d errors while writing supers", 3752 total_errors); 3753 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3754 3755 /* FUA is masked off if unsupported and can't be the reason */ 3756 btrfs_handle_fs_error(fs_info, -EIO, 3757 "%d errors while writing supers", 3758 total_errors); 3759 return -EIO; 3760 } 3761 3762 total_errors = 0; 3763 list_for_each_entry_rcu(dev, head, dev_list) { 3764 if (!dev->bdev) 3765 continue; 3766 if (!dev->in_fs_metadata || !dev->writeable) 3767 continue; 3768 3769 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3770 if (ret) 3771 total_errors++; 3772 } 3773 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3774 if (total_errors > max_errors) { 3775 btrfs_handle_fs_error(fs_info, -EIO, 3776 "%d errors while writing supers", 3777 total_errors); 3778 return -EIO; 3779 } 3780 return 0; 3781 } 3782 3783 int write_ctree_super(struct btrfs_trans_handle *trans, 3784 struct btrfs_root *root, int max_mirrors) 3785 { 3786 return write_all_supers(root, max_mirrors); 3787 } 3788 3789 /* Drop a fs root from the radix tree and free it. */ 3790 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3791 struct btrfs_root *root) 3792 { 3793 spin_lock(&fs_info->fs_roots_radix_lock); 3794 radix_tree_delete(&fs_info->fs_roots_radix, 3795 (unsigned long)root->root_key.objectid); 3796 spin_unlock(&fs_info->fs_roots_radix_lock); 3797 3798 if (btrfs_root_refs(&root->root_item) == 0) 3799 synchronize_srcu(&fs_info->subvol_srcu); 3800 3801 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3802 btrfs_free_log(NULL, root); 3803 if (root->reloc_root) { 3804 free_extent_buffer(root->reloc_root->node); 3805 free_extent_buffer(root->reloc_root->commit_root); 3806 btrfs_put_fs_root(root->reloc_root); 3807 root->reloc_root = NULL; 3808 } 3809 } 3810 3811 if (root->free_ino_pinned) 3812 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3813 if (root->free_ino_ctl) 3814 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3815 free_fs_root(root); 3816 } 3817 3818 static void free_fs_root(struct btrfs_root *root) 3819 { 3820 iput(root->ino_cache_inode); 3821 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3822 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3823 root->orphan_block_rsv = NULL; 3824 if (root->anon_dev) 3825 free_anon_bdev(root->anon_dev); 3826 if (root->subv_writers) 3827 btrfs_free_subvolume_writers(root->subv_writers); 3828 free_extent_buffer(root->node); 3829 free_extent_buffer(root->commit_root); 3830 kfree(root->free_ino_ctl); 3831 kfree(root->free_ino_pinned); 3832 kfree(root->name); 3833 btrfs_put_fs_root(root); 3834 } 3835 3836 void btrfs_free_fs_root(struct btrfs_root *root) 3837 { 3838 free_fs_root(root); 3839 } 3840 3841 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3842 { 3843 u64 root_objectid = 0; 3844 struct btrfs_root *gang[8]; 3845 int i = 0; 3846 int err = 0; 3847 unsigned int ret = 0; 3848 int index; 3849 3850 while (1) { 3851 index = srcu_read_lock(&fs_info->subvol_srcu); 3852 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3853 (void **)gang, root_objectid, 3854 ARRAY_SIZE(gang)); 3855 if (!ret) { 3856 srcu_read_unlock(&fs_info->subvol_srcu, index); 3857 break; 3858 } 3859 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3860 3861 for (i = 0; i < ret; i++) { 3862 /* Avoid to grab roots in dead_roots */ 3863 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3864 gang[i] = NULL; 3865 continue; 3866 } 3867 /* grab all the search result for later use */ 3868 gang[i] = btrfs_grab_fs_root(gang[i]); 3869 } 3870 srcu_read_unlock(&fs_info->subvol_srcu, index); 3871 3872 for (i = 0; i < ret; i++) { 3873 if (!gang[i]) 3874 continue; 3875 root_objectid = gang[i]->root_key.objectid; 3876 err = btrfs_orphan_cleanup(gang[i]); 3877 if (err) 3878 break; 3879 btrfs_put_fs_root(gang[i]); 3880 } 3881 root_objectid++; 3882 } 3883 3884 /* release the uncleaned roots due to error */ 3885 for (; i < ret; i++) { 3886 if (gang[i]) 3887 btrfs_put_fs_root(gang[i]); 3888 } 3889 return err; 3890 } 3891 3892 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3893 { 3894 struct btrfs_root *root = fs_info->tree_root; 3895 struct btrfs_trans_handle *trans; 3896 3897 mutex_lock(&fs_info->cleaner_mutex); 3898 btrfs_run_delayed_iputs(root); 3899 mutex_unlock(&fs_info->cleaner_mutex); 3900 wake_up_process(fs_info->cleaner_kthread); 3901 3902 /* wait until ongoing cleanup work done */ 3903 down_write(&fs_info->cleanup_work_sem); 3904 up_write(&fs_info->cleanup_work_sem); 3905 3906 trans = btrfs_join_transaction(root); 3907 if (IS_ERR(trans)) 3908 return PTR_ERR(trans); 3909 return btrfs_commit_transaction(trans, root); 3910 } 3911 3912 void close_ctree(struct btrfs_fs_info *fs_info) 3913 { 3914 struct btrfs_root *root = fs_info->tree_root; 3915 int ret; 3916 3917 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3918 3919 /* wait for the qgroup rescan worker to stop */ 3920 btrfs_qgroup_wait_for_completion(fs_info, false); 3921 3922 /* wait for the uuid_scan task to finish */ 3923 down(&fs_info->uuid_tree_rescan_sem); 3924 /* avoid complains from lockdep et al., set sem back to initial state */ 3925 up(&fs_info->uuid_tree_rescan_sem); 3926 3927 /* pause restriper - we want to resume on mount */ 3928 btrfs_pause_balance(fs_info); 3929 3930 btrfs_dev_replace_suspend_for_unmount(fs_info); 3931 3932 btrfs_scrub_cancel(fs_info); 3933 3934 /* wait for any defraggers to finish */ 3935 wait_event(fs_info->transaction_wait, 3936 (atomic_read(&fs_info->defrag_running) == 0)); 3937 3938 /* clear out the rbtree of defraggable inodes */ 3939 btrfs_cleanup_defrag_inodes(fs_info); 3940 3941 cancel_work_sync(&fs_info->async_reclaim_work); 3942 3943 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3944 /* 3945 * If the cleaner thread is stopped and there are 3946 * block groups queued for removal, the deletion will be 3947 * skipped when we quit the cleaner thread. 3948 */ 3949 btrfs_delete_unused_bgs(fs_info); 3950 3951 ret = btrfs_commit_super(fs_info); 3952 if (ret) 3953 btrfs_err(fs_info, "commit super ret %d", ret); 3954 } 3955 3956 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3957 btrfs_error_commit_super(root); 3958 3959 kthread_stop(fs_info->transaction_kthread); 3960 kthread_stop(fs_info->cleaner_kthread); 3961 3962 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3963 3964 btrfs_free_qgroup_config(fs_info); 3965 3966 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3967 btrfs_info(fs_info, "at unmount delalloc count %lld", 3968 percpu_counter_sum(&fs_info->delalloc_bytes)); 3969 } 3970 3971 btrfs_sysfs_remove_mounted(fs_info); 3972 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3973 3974 btrfs_free_fs_roots(fs_info); 3975 3976 btrfs_put_block_group_cache(fs_info); 3977 3978 btrfs_free_block_groups(fs_info); 3979 3980 /* 3981 * we must make sure there is not any read request to 3982 * submit after we stopping all workers. 3983 */ 3984 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3985 btrfs_stop_all_workers(fs_info); 3986 3987 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3988 free_root_pointers(fs_info, 1); 3989 3990 iput(fs_info->btree_inode); 3991 3992 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3993 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 3994 btrfsic_unmount(root, fs_info->fs_devices); 3995 #endif 3996 3997 btrfs_close_devices(fs_info->fs_devices); 3998 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3999 4000 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4001 percpu_counter_destroy(&fs_info->delalloc_bytes); 4002 percpu_counter_destroy(&fs_info->bio_counter); 4003 bdi_destroy(&fs_info->bdi); 4004 cleanup_srcu_struct(&fs_info->subvol_srcu); 4005 4006 btrfs_free_stripe_hash_table(fs_info); 4007 4008 __btrfs_free_block_rsv(root->orphan_block_rsv); 4009 root->orphan_block_rsv = NULL; 4010 4011 lock_chunks(fs_info); 4012 while (!list_empty(&fs_info->pinned_chunks)) { 4013 struct extent_map *em; 4014 4015 em = list_first_entry(&fs_info->pinned_chunks, 4016 struct extent_map, list); 4017 list_del_init(&em->list); 4018 free_extent_map(em); 4019 } 4020 unlock_chunks(fs_info); 4021 } 4022 4023 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4024 int atomic) 4025 { 4026 int ret; 4027 struct inode *btree_inode = buf->pages[0]->mapping->host; 4028 4029 ret = extent_buffer_uptodate(buf); 4030 if (!ret) 4031 return ret; 4032 4033 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4034 parent_transid, atomic); 4035 if (ret == -EAGAIN) 4036 return ret; 4037 return !ret; 4038 } 4039 4040 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4041 { 4042 struct btrfs_fs_info *fs_info; 4043 struct btrfs_root *root; 4044 u64 transid = btrfs_header_generation(buf); 4045 int was_dirty; 4046 4047 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4048 /* 4049 * This is a fast path so only do this check if we have sanity tests 4050 * enabled. Normal people shouldn't be marking dummy buffers as dirty 4051 * outside of the sanity tests. 4052 */ 4053 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 4054 return; 4055 #endif 4056 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4057 fs_info = root->fs_info; 4058 btrfs_assert_tree_locked(buf); 4059 if (transid != fs_info->generation) 4060 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4061 buf->start, transid, fs_info->generation); 4062 was_dirty = set_extent_buffer_dirty(buf); 4063 if (!was_dirty) 4064 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 4065 buf->len, 4066 fs_info->dirty_metadata_batch); 4067 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4068 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 4069 btrfs_print_leaf(root, buf); 4070 ASSERT(0); 4071 } 4072 #endif 4073 } 4074 4075 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 4076 int flush_delayed) 4077 { 4078 struct btrfs_fs_info *fs_info = root->fs_info; 4079 /* 4080 * looks as though older kernels can get into trouble with 4081 * this code, they end up stuck in balance_dirty_pages forever 4082 */ 4083 int ret; 4084 4085 if (current->flags & PF_MEMALLOC) 4086 return; 4087 4088 if (flush_delayed) 4089 btrfs_balance_delayed_items(root); 4090 4091 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4092 BTRFS_DIRTY_METADATA_THRESH); 4093 if (ret > 0) { 4094 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4095 } 4096 } 4097 4098 void btrfs_btree_balance_dirty(struct btrfs_root *root) 4099 { 4100 __btrfs_btree_balance_dirty(root, 1); 4101 } 4102 4103 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 4104 { 4105 __btrfs_btree_balance_dirty(root, 0); 4106 } 4107 4108 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4109 { 4110 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4111 return btree_read_extent_buffer_pages(root, buf, parent_transid); 4112 } 4113 4114 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 4115 int read_only) 4116 { 4117 struct btrfs_super_block *sb = fs_info->super_copy; 4118 u64 nodesize = btrfs_super_nodesize(sb); 4119 u64 sectorsize = btrfs_super_sectorsize(sb); 4120 int ret = 0; 4121 4122 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4123 btrfs_err(fs_info, "no valid FS found"); 4124 ret = -EINVAL; 4125 } 4126 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4127 btrfs_warn(fs_info, "unrecognized super flag: %llu", 4128 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4129 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4130 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 4131 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4132 ret = -EINVAL; 4133 } 4134 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4135 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 4136 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4137 ret = -EINVAL; 4138 } 4139 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4140 btrfs_err(fs_info, "log_root level too big: %d >= %d", 4141 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4142 ret = -EINVAL; 4143 } 4144 4145 /* 4146 * Check sectorsize and nodesize first, other check will need it. 4147 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4148 */ 4149 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4150 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4151 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 4152 ret = -EINVAL; 4153 } 4154 /* Only PAGE SIZE is supported yet */ 4155 if (sectorsize != PAGE_SIZE) { 4156 btrfs_err(fs_info, 4157 "sectorsize %llu not supported yet, only support %lu", 4158 sectorsize, PAGE_SIZE); 4159 ret = -EINVAL; 4160 } 4161 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4162 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4163 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 4164 ret = -EINVAL; 4165 } 4166 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4167 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 4168 le32_to_cpu(sb->__unused_leafsize), nodesize); 4169 ret = -EINVAL; 4170 } 4171 4172 /* Root alignment check */ 4173 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4174 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 4175 btrfs_super_root(sb)); 4176 ret = -EINVAL; 4177 } 4178 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4179 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 4180 btrfs_super_chunk_root(sb)); 4181 ret = -EINVAL; 4182 } 4183 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4184 btrfs_warn(fs_info, "log_root block unaligned: %llu", 4185 btrfs_super_log_root(sb)); 4186 ret = -EINVAL; 4187 } 4188 4189 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4190 btrfs_err(fs_info, 4191 "dev_item UUID does not match fsid: %pU != %pU", 4192 fs_info->fsid, sb->dev_item.fsid); 4193 ret = -EINVAL; 4194 } 4195 4196 /* 4197 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4198 * done later 4199 */ 4200 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4201 btrfs_err(fs_info, "bytes_used is too small %llu", 4202 btrfs_super_bytes_used(sb)); 4203 ret = -EINVAL; 4204 } 4205 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4206 btrfs_err(fs_info, "invalid stripesize %u", 4207 btrfs_super_stripesize(sb)); 4208 ret = -EINVAL; 4209 } 4210 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4211 btrfs_warn(fs_info, "suspicious number of devices: %llu", 4212 btrfs_super_num_devices(sb)); 4213 if (btrfs_super_num_devices(sb) == 0) { 4214 btrfs_err(fs_info, "number of devices is 0"); 4215 ret = -EINVAL; 4216 } 4217 4218 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4219 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4220 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4221 ret = -EINVAL; 4222 } 4223 4224 /* 4225 * Obvious sys_chunk_array corruptions, it must hold at least one key 4226 * and one chunk 4227 */ 4228 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4229 btrfs_err(fs_info, "system chunk array too big %u > %u", 4230 btrfs_super_sys_array_size(sb), 4231 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4232 ret = -EINVAL; 4233 } 4234 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4235 + sizeof(struct btrfs_chunk)) { 4236 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4237 btrfs_super_sys_array_size(sb), 4238 sizeof(struct btrfs_disk_key) 4239 + sizeof(struct btrfs_chunk)); 4240 ret = -EINVAL; 4241 } 4242 4243 /* 4244 * The generation is a global counter, we'll trust it more than the others 4245 * but it's still possible that it's the one that's wrong. 4246 */ 4247 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4248 btrfs_warn(fs_info, 4249 "suspicious: generation < chunk_root_generation: %llu < %llu", 4250 btrfs_super_generation(sb), 4251 btrfs_super_chunk_root_generation(sb)); 4252 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4253 && btrfs_super_cache_generation(sb) != (u64)-1) 4254 btrfs_warn(fs_info, 4255 "suspicious: generation < cache_generation: %llu < %llu", 4256 btrfs_super_generation(sb), 4257 btrfs_super_cache_generation(sb)); 4258 4259 return ret; 4260 } 4261 4262 static void btrfs_error_commit_super(struct btrfs_root *root) 4263 { 4264 struct btrfs_fs_info *fs_info = root->fs_info; 4265 4266 mutex_lock(&fs_info->cleaner_mutex); 4267 btrfs_run_delayed_iputs(root); 4268 mutex_unlock(&fs_info->cleaner_mutex); 4269 4270 down_write(&fs_info->cleanup_work_sem); 4271 up_write(&fs_info->cleanup_work_sem); 4272 4273 /* cleanup FS via transaction */ 4274 btrfs_cleanup_transaction(root); 4275 } 4276 4277 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4278 { 4279 struct btrfs_ordered_extent *ordered; 4280 4281 spin_lock(&root->ordered_extent_lock); 4282 /* 4283 * This will just short circuit the ordered completion stuff which will 4284 * make sure the ordered extent gets properly cleaned up. 4285 */ 4286 list_for_each_entry(ordered, &root->ordered_extents, 4287 root_extent_list) 4288 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4289 spin_unlock(&root->ordered_extent_lock); 4290 } 4291 4292 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4293 { 4294 struct btrfs_root *root; 4295 struct list_head splice; 4296 4297 INIT_LIST_HEAD(&splice); 4298 4299 spin_lock(&fs_info->ordered_root_lock); 4300 list_splice_init(&fs_info->ordered_roots, &splice); 4301 while (!list_empty(&splice)) { 4302 root = list_first_entry(&splice, struct btrfs_root, 4303 ordered_root); 4304 list_move_tail(&root->ordered_root, 4305 &fs_info->ordered_roots); 4306 4307 spin_unlock(&fs_info->ordered_root_lock); 4308 btrfs_destroy_ordered_extents(root); 4309 4310 cond_resched(); 4311 spin_lock(&fs_info->ordered_root_lock); 4312 } 4313 spin_unlock(&fs_info->ordered_root_lock); 4314 } 4315 4316 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4317 struct btrfs_root *root) 4318 { 4319 struct btrfs_fs_info *fs_info = root->fs_info; 4320 struct rb_node *node; 4321 struct btrfs_delayed_ref_root *delayed_refs; 4322 struct btrfs_delayed_ref_node *ref; 4323 int ret = 0; 4324 4325 delayed_refs = &trans->delayed_refs; 4326 4327 spin_lock(&delayed_refs->lock); 4328 if (atomic_read(&delayed_refs->num_entries) == 0) { 4329 spin_unlock(&delayed_refs->lock); 4330 btrfs_info(fs_info, "delayed_refs has NO entry"); 4331 return ret; 4332 } 4333 4334 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4335 struct btrfs_delayed_ref_head *head; 4336 struct btrfs_delayed_ref_node *tmp; 4337 bool pin_bytes = false; 4338 4339 head = rb_entry(node, struct btrfs_delayed_ref_head, 4340 href_node); 4341 if (!mutex_trylock(&head->mutex)) { 4342 atomic_inc(&head->node.refs); 4343 spin_unlock(&delayed_refs->lock); 4344 4345 mutex_lock(&head->mutex); 4346 mutex_unlock(&head->mutex); 4347 btrfs_put_delayed_ref(&head->node); 4348 spin_lock(&delayed_refs->lock); 4349 continue; 4350 } 4351 spin_lock(&head->lock); 4352 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4353 list) { 4354 ref->in_tree = 0; 4355 list_del(&ref->list); 4356 if (!list_empty(&ref->add_list)) 4357 list_del(&ref->add_list); 4358 atomic_dec(&delayed_refs->num_entries); 4359 btrfs_put_delayed_ref(ref); 4360 } 4361 if (head->must_insert_reserved) 4362 pin_bytes = true; 4363 btrfs_free_delayed_extent_op(head->extent_op); 4364 delayed_refs->num_heads--; 4365 if (head->processing == 0) 4366 delayed_refs->num_heads_ready--; 4367 atomic_dec(&delayed_refs->num_entries); 4368 head->node.in_tree = 0; 4369 rb_erase(&head->href_node, &delayed_refs->href_root); 4370 spin_unlock(&head->lock); 4371 spin_unlock(&delayed_refs->lock); 4372 mutex_unlock(&head->mutex); 4373 4374 if (pin_bytes) 4375 btrfs_pin_extent(root, head->node.bytenr, 4376 head->node.num_bytes, 1); 4377 btrfs_put_delayed_ref(&head->node); 4378 cond_resched(); 4379 spin_lock(&delayed_refs->lock); 4380 } 4381 4382 spin_unlock(&delayed_refs->lock); 4383 4384 return ret; 4385 } 4386 4387 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4388 { 4389 struct btrfs_inode *btrfs_inode; 4390 struct list_head splice; 4391 4392 INIT_LIST_HEAD(&splice); 4393 4394 spin_lock(&root->delalloc_lock); 4395 list_splice_init(&root->delalloc_inodes, &splice); 4396 4397 while (!list_empty(&splice)) { 4398 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4399 delalloc_inodes); 4400 4401 list_del_init(&btrfs_inode->delalloc_inodes); 4402 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4403 &btrfs_inode->runtime_flags); 4404 spin_unlock(&root->delalloc_lock); 4405 4406 btrfs_invalidate_inodes(btrfs_inode->root); 4407 4408 spin_lock(&root->delalloc_lock); 4409 } 4410 4411 spin_unlock(&root->delalloc_lock); 4412 } 4413 4414 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4415 { 4416 struct btrfs_root *root; 4417 struct list_head splice; 4418 4419 INIT_LIST_HEAD(&splice); 4420 4421 spin_lock(&fs_info->delalloc_root_lock); 4422 list_splice_init(&fs_info->delalloc_roots, &splice); 4423 while (!list_empty(&splice)) { 4424 root = list_first_entry(&splice, struct btrfs_root, 4425 delalloc_root); 4426 list_del_init(&root->delalloc_root); 4427 root = btrfs_grab_fs_root(root); 4428 BUG_ON(!root); 4429 spin_unlock(&fs_info->delalloc_root_lock); 4430 4431 btrfs_destroy_delalloc_inodes(root); 4432 btrfs_put_fs_root(root); 4433 4434 spin_lock(&fs_info->delalloc_root_lock); 4435 } 4436 spin_unlock(&fs_info->delalloc_root_lock); 4437 } 4438 4439 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4440 struct extent_io_tree *dirty_pages, 4441 int mark) 4442 { 4443 struct btrfs_fs_info *fs_info = root->fs_info; 4444 int ret; 4445 struct extent_buffer *eb; 4446 u64 start = 0; 4447 u64 end; 4448 4449 while (1) { 4450 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4451 mark, NULL); 4452 if (ret) 4453 break; 4454 4455 clear_extent_bits(dirty_pages, start, end, mark); 4456 while (start <= end) { 4457 eb = find_extent_buffer(fs_info, start); 4458 start += fs_info->nodesize; 4459 if (!eb) 4460 continue; 4461 wait_on_extent_buffer_writeback(eb); 4462 4463 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4464 &eb->bflags)) 4465 clear_extent_buffer_dirty(eb); 4466 free_extent_buffer_stale(eb); 4467 } 4468 } 4469 4470 return ret; 4471 } 4472 4473 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4474 struct extent_io_tree *pinned_extents) 4475 { 4476 struct btrfs_fs_info *fs_info = root->fs_info; 4477 struct extent_io_tree *unpin; 4478 u64 start; 4479 u64 end; 4480 int ret; 4481 bool loop = true; 4482 4483 unpin = pinned_extents; 4484 again: 4485 while (1) { 4486 ret = find_first_extent_bit(unpin, 0, &start, &end, 4487 EXTENT_DIRTY, NULL); 4488 if (ret) 4489 break; 4490 4491 clear_extent_dirty(unpin, start, end); 4492 btrfs_error_unpin_extent_range(root, start, end); 4493 cond_resched(); 4494 } 4495 4496 if (loop) { 4497 if (unpin == &fs_info->freed_extents[0]) 4498 unpin = &fs_info->freed_extents[1]; 4499 else 4500 unpin = &fs_info->freed_extents[0]; 4501 loop = false; 4502 goto again; 4503 } 4504 4505 return 0; 4506 } 4507 4508 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4509 { 4510 struct inode *inode; 4511 4512 inode = cache->io_ctl.inode; 4513 if (inode) { 4514 invalidate_inode_pages2(inode->i_mapping); 4515 BTRFS_I(inode)->generation = 0; 4516 cache->io_ctl.inode = NULL; 4517 iput(inode); 4518 } 4519 btrfs_put_block_group(cache); 4520 } 4521 4522 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4523 struct btrfs_root *root) 4524 { 4525 struct btrfs_fs_info *fs_info = root->fs_info; 4526 struct btrfs_block_group_cache *cache; 4527 4528 spin_lock(&cur_trans->dirty_bgs_lock); 4529 while (!list_empty(&cur_trans->dirty_bgs)) { 4530 cache = list_first_entry(&cur_trans->dirty_bgs, 4531 struct btrfs_block_group_cache, 4532 dirty_list); 4533 if (!cache) { 4534 btrfs_err(fs_info, "orphan block group dirty_bgs list"); 4535 spin_unlock(&cur_trans->dirty_bgs_lock); 4536 return; 4537 } 4538 4539 if (!list_empty(&cache->io_list)) { 4540 spin_unlock(&cur_trans->dirty_bgs_lock); 4541 list_del_init(&cache->io_list); 4542 btrfs_cleanup_bg_io(cache); 4543 spin_lock(&cur_trans->dirty_bgs_lock); 4544 } 4545 4546 list_del_init(&cache->dirty_list); 4547 spin_lock(&cache->lock); 4548 cache->disk_cache_state = BTRFS_DC_ERROR; 4549 spin_unlock(&cache->lock); 4550 4551 spin_unlock(&cur_trans->dirty_bgs_lock); 4552 btrfs_put_block_group(cache); 4553 spin_lock(&cur_trans->dirty_bgs_lock); 4554 } 4555 spin_unlock(&cur_trans->dirty_bgs_lock); 4556 4557 while (!list_empty(&cur_trans->io_bgs)) { 4558 cache = list_first_entry(&cur_trans->io_bgs, 4559 struct btrfs_block_group_cache, 4560 io_list); 4561 if (!cache) { 4562 btrfs_err(fs_info, "orphan block group on io_bgs list"); 4563 return; 4564 } 4565 4566 list_del_init(&cache->io_list); 4567 spin_lock(&cache->lock); 4568 cache->disk_cache_state = BTRFS_DC_ERROR; 4569 spin_unlock(&cache->lock); 4570 btrfs_cleanup_bg_io(cache); 4571 } 4572 } 4573 4574 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4575 struct btrfs_root *root) 4576 { 4577 struct btrfs_fs_info *fs_info = root->fs_info; 4578 btrfs_cleanup_dirty_bgs(cur_trans, root); 4579 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4580 ASSERT(list_empty(&cur_trans->io_bgs)); 4581 4582 btrfs_destroy_delayed_refs(cur_trans, root); 4583 4584 cur_trans->state = TRANS_STATE_COMMIT_START; 4585 wake_up(&fs_info->transaction_blocked_wait); 4586 4587 cur_trans->state = TRANS_STATE_UNBLOCKED; 4588 wake_up(&fs_info->transaction_wait); 4589 4590 btrfs_destroy_delayed_inodes(fs_info); 4591 btrfs_assert_delayed_root_empty(fs_info); 4592 4593 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4594 EXTENT_DIRTY); 4595 btrfs_destroy_pinned_extent(root, 4596 fs_info->pinned_extents); 4597 4598 cur_trans->state =TRANS_STATE_COMPLETED; 4599 wake_up(&cur_trans->commit_wait); 4600 4601 /* 4602 memset(cur_trans, 0, sizeof(*cur_trans)); 4603 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4604 */ 4605 } 4606 4607 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4608 { 4609 struct btrfs_fs_info *fs_info = root->fs_info; 4610 struct btrfs_transaction *t; 4611 4612 mutex_lock(&fs_info->transaction_kthread_mutex); 4613 4614 spin_lock(&fs_info->trans_lock); 4615 while (!list_empty(&fs_info->trans_list)) { 4616 t = list_first_entry(&fs_info->trans_list, 4617 struct btrfs_transaction, list); 4618 if (t->state >= TRANS_STATE_COMMIT_START) { 4619 atomic_inc(&t->use_count); 4620 spin_unlock(&fs_info->trans_lock); 4621 btrfs_wait_for_commit(root, t->transid); 4622 btrfs_put_transaction(t); 4623 spin_lock(&fs_info->trans_lock); 4624 continue; 4625 } 4626 if (t == fs_info->running_transaction) { 4627 t->state = TRANS_STATE_COMMIT_DOING; 4628 spin_unlock(&fs_info->trans_lock); 4629 /* 4630 * We wait for 0 num_writers since we don't hold a trans 4631 * handle open currently for this transaction. 4632 */ 4633 wait_event(t->writer_wait, 4634 atomic_read(&t->num_writers) == 0); 4635 } else { 4636 spin_unlock(&fs_info->trans_lock); 4637 } 4638 btrfs_cleanup_one_transaction(t, root); 4639 4640 spin_lock(&fs_info->trans_lock); 4641 if (t == fs_info->running_transaction) 4642 fs_info->running_transaction = NULL; 4643 list_del_init(&t->list); 4644 spin_unlock(&fs_info->trans_lock); 4645 4646 btrfs_put_transaction(t); 4647 trace_btrfs_transaction_commit(root); 4648 spin_lock(&fs_info->trans_lock); 4649 } 4650 spin_unlock(&fs_info->trans_lock); 4651 btrfs_destroy_all_ordered_extents(fs_info); 4652 btrfs_destroy_delayed_inodes(fs_info); 4653 btrfs_assert_delayed_root_empty(fs_info); 4654 btrfs_destroy_pinned_extent(root, fs_info->pinned_extents); 4655 btrfs_destroy_all_delalloc_inodes(fs_info); 4656 mutex_unlock(&fs_info->transaction_kthread_mutex); 4657 4658 return 0; 4659 } 4660 4661 static const struct extent_io_ops btree_extent_io_ops = { 4662 .readpage_end_io_hook = btree_readpage_end_io_hook, 4663 .readpage_io_failed_hook = btree_io_failed_hook, 4664 .submit_bio_hook = btree_submit_bio_hook, 4665 /* note we're sharing with inode.c for the merge bio hook */ 4666 .merge_bio_hook = btrfs_merge_bio_hook, 4667 }; 4668