1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <linux/uuid.h> 34 #include <linux/semaphore.h> 35 #include <asm/unaligned.h> 36 #include "compat.h" 37 #include "ctree.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "btrfs_inode.h" 41 #include "volumes.h" 42 #include "print-tree.h" 43 #include "async-thread.h" 44 #include "locking.h" 45 #include "tree-log.h" 46 #include "free-space-cache.h" 47 #include "inode-map.h" 48 #include "check-integrity.h" 49 #include "rcu-string.h" 50 #include "dev-replace.h" 51 #include "raid56.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 63 struct btrfs_root *root); 64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 66 struct btrfs_root *root); 67 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t); 68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 69 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 70 struct extent_io_tree *dirty_pages, 71 int mark); 72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 73 struct extent_io_tree *pinned_extents); 74 static int btrfs_cleanup_transaction(struct btrfs_root *root); 75 static void btrfs_error_commit_super(struct btrfs_root *root); 76 77 /* 78 * end_io_wq structs are used to do processing in task context when an IO is 79 * complete. This is used during reads to verify checksums, and it is used 80 * by writes to insert metadata for new file extents after IO is complete. 81 */ 82 struct end_io_wq { 83 struct bio *bio; 84 bio_end_io_t *end_io; 85 void *private; 86 struct btrfs_fs_info *info; 87 int error; 88 int metadata; 89 struct list_head list; 90 struct btrfs_work work; 91 }; 92 93 /* 94 * async submit bios are used to offload expensive checksumming 95 * onto the worker threads. They checksum file and metadata bios 96 * just before they are sent down the IO stack. 97 */ 98 struct async_submit_bio { 99 struct inode *inode; 100 struct bio *bio; 101 struct list_head list; 102 extent_submit_bio_hook_t *submit_bio_start; 103 extent_submit_bio_hook_t *submit_bio_done; 104 int rw; 105 int mirror_num; 106 unsigned long bio_flags; 107 /* 108 * bio_offset is optional, can be used if the pages in the bio 109 * can't tell us where in the file the bio should go 110 */ 111 u64 bio_offset; 112 struct btrfs_work work; 113 int error; 114 }; 115 116 /* 117 * Lockdep class keys for extent_buffer->lock's in this root. For a given 118 * eb, the lockdep key is determined by the btrfs_root it belongs to and 119 * the level the eb occupies in the tree. 120 * 121 * Different roots are used for different purposes and may nest inside each 122 * other and they require separate keysets. As lockdep keys should be 123 * static, assign keysets according to the purpose of the root as indicated 124 * by btrfs_root->objectid. This ensures that all special purpose roots 125 * have separate keysets. 126 * 127 * Lock-nesting across peer nodes is always done with the immediate parent 128 * node locked thus preventing deadlock. As lockdep doesn't know this, use 129 * subclass to avoid triggering lockdep warning in such cases. 130 * 131 * The key is set by the readpage_end_io_hook after the buffer has passed 132 * csum validation but before the pages are unlocked. It is also set by 133 * btrfs_init_new_buffer on freshly allocated blocks. 134 * 135 * We also add a check to make sure the highest level of the tree is the 136 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 137 * needs update as well. 138 */ 139 #ifdef CONFIG_DEBUG_LOCK_ALLOC 140 # if BTRFS_MAX_LEVEL != 8 141 # error 142 # endif 143 144 static struct btrfs_lockdep_keyset { 145 u64 id; /* root objectid */ 146 const char *name_stem; /* lock name stem */ 147 char names[BTRFS_MAX_LEVEL + 1][20]; 148 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 149 } btrfs_lockdep_keysets[] = { 150 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 151 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 152 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 153 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 154 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 155 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 156 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 157 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 158 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 159 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 160 { .id = 0, .name_stem = "tree" }, 161 }; 162 163 void __init btrfs_init_lockdep(void) 164 { 165 int i, j; 166 167 /* initialize lockdep class names */ 168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 170 171 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 172 snprintf(ks->names[j], sizeof(ks->names[j]), 173 "btrfs-%s-%02d", ks->name_stem, j); 174 } 175 } 176 177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 178 int level) 179 { 180 struct btrfs_lockdep_keyset *ks; 181 182 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 183 184 /* find the matching keyset, id 0 is the default entry */ 185 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 186 if (ks->id == objectid) 187 break; 188 189 lockdep_set_class_and_name(&eb->lock, 190 &ks->keys[level], ks->names[level]); 191 } 192 193 #endif 194 195 /* 196 * extents on the btree inode are pretty simple, there's one extent 197 * that covers the entire device 198 */ 199 static struct extent_map *btree_get_extent(struct inode *inode, 200 struct page *page, size_t pg_offset, u64 start, u64 len, 201 int create) 202 { 203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 204 struct extent_map *em; 205 int ret; 206 207 read_lock(&em_tree->lock); 208 em = lookup_extent_mapping(em_tree, start, len); 209 if (em) { 210 em->bdev = 211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 212 read_unlock(&em_tree->lock); 213 goto out; 214 } 215 read_unlock(&em_tree->lock); 216 217 em = alloc_extent_map(); 218 if (!em) { 219 em = ERR_PTR(-ENOMEM); 220 goto out; 221 } 222 em->start = 0; 223 em->len = (u64)-1; 224 em->block_len = (u64)-1; 225 em->block_start = 0; 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 227 228 write_lock(&em_tree->lock); 229 ret = add_extent_mapping(em_tree, em, 0); 230 if (ret == -EEXIST) { 231 free_extent_map(em); 232 em = lookup_extent_mapping(em_tree, start, len); 233 if (!em) 234 em = ERR_PTR(-EIO); 235 } else if (ret) { 236 free_extent_map(em); 237 em = ERR_PTR(ret); 238 } 239 write_unlock(&em_tree->lock); 240 241 out: 242 return em; 243 } 244 245 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 246 { 247 return crc32c(seed, data, len); 248 } 249 250 void btrfs_csum_final(u32 crc, char *result) 251 { 252 put_unaligned_le32(~crc, result); 253 } 254 255 /* 256 * compute the csum for a btree block, and either verify it or write it 257 * into the csum field of the block. 258 */ 259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 260 int verify) 261 { 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 263 char *result = NULL; 264 unsigned long len; 265 unsigned long cur_len; 266 unsigned long offset = BTRFS_CSUM_SIZE; 267 char *kaddr; 268 unsigned long map_start; 269 unsigned long map_len; 270 int err; 271 u32 crc = ~(u32)0; 272 unsigned long inline_result; 273 274 len = buf->len - offset; 275 while (len > 0) { 276 err = map_private_extent_buffer(buf, offset, 32, 277 &kaddr, &map_start, &map_len); 278 if (err) 279 return 1; 280 cur_len = min(len, map_len - (offset - map_start)); 281 crc = btrfs_csum_data(kaddr + offset - map_start, 282 crc, cur_len); 283 len -= cur_len; 284 offset += cur_len; 285 } 286 if (csum_size > sizeof(inline_result)) { 287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 288 if (!result) 289 return 1; 290 } else { 291 result = (char *)&inline_result; 292 } 293 294 btrfs_csum_final(crc, result); 295 296 if (verify) { 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 298 u32 val; 299 u32 found = 0; 300 memcpy(&found, result, csum_size); 301 302 read_extent_buffer(buf, &val, 0, csum_size); 303 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 304 "failed on %llu wanted %X found %X " 305 "level %d\n", 306 root->fs_info->sb->s_id, buf->start, 307 val, found, btrfs_header_level(buf)); 308 if (result != (char *)&inline_result) 309 kfree(result); 310 return 1; 311 } 312 } else { 313 write_extent_buffer(buf, result, 0, csum_size); 314 } 315 if (result != (char *)&inline_result) 316 kfree(result); 317 return 0; 318 } 319 320 /* 321 * we can't consider a given block up to date unless the transid of the 322 * block matches the transid in the parent node's pointer. This is how we 323 * detect blocks that either didn't get written at all or got written 324 * in the wrong place. 325 */ 326 static int verify_parent_transid(struct extent_io_tree *io_tree, 327 struct extent_buffer *eb, u64 parent_transid, 328 int atomic) 329 { 330 struct extent_state *cached_state = NULL; 331 int ret; 332 333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 334 return 0; 335 336 if (atomic) 337 return -EAGAIN; 338 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 340 0, &cached_state); 341 if (extent_buffer_uptodate(eb) && 342 btrfs_header_generation(eb) == parent_transid) { 343 ret = 0; 344 goto out; 345 } 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 347 "found %llu\n", 348 eb->start, parent_transid, btrfs_header_generation(eb)); 349 ret = 1; 350 clear_extent_buffer_uptodate(eb); 351 out: 352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 353 &cached_state, GFP_NOFS); 354 return ret; 355 } 356 357 /* 358 * Return 0 if the superblock checksum type matches the checksum value of that 359 * algorithm. Pass the raw disk superblock data. 360 */ 361 static int btrfs_check_super_csum(char *raw_disk_sb) 362 { 363 struct btrfs_super_block *disk_sb = 364 (struct btrfs_super_block *)raw_disk_sb; 365 u16 csum_type = btrfs_super_csum_type(disk_sb); 366 int ret = 0; 367 368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 369 u32 crc = ~(u32)0; 370 const int csum_size = sizeof(crc); 371 char result[csum_size]; 372 373 /* 374 * The super_block structure does not span the whole 375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 376 * is filled with zeros and is included in the checkum. 377 */ 378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 380 btrfs_csum_final(crc, result); 381 382 if (memcmp(raw_disk_sb, result, csum_size)) 383 ret = 1; 384 385 if (ret && btrfs_super_generation(disk_sb) < 10) { 386 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n"); 387 ret = 0; 388 } 389 } 390 391 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 392 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n", 393 csum_type); 394 ret = 1; 395 } 396 397 return ret; 398 } 399 400 /* 401 * helper to read a given tree block, doing retries as required when 402 * the checksums don't match and we have alternate mirrors to try. 403 */ 404 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 405 struct extent_buffer *eb, 406 u64 start, u64 parent_transid) 407 { 408 struct extent_io_tree *io_tree; 409 int failed = 0; 410 int ret; 411 int num_copies = 0; 412 int mirror_num = 0; 413 int failed_mirror = 0; 414 415 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 416 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 417 while (1) { 418 ret = read_extent_buffer_pages(io_tree, eb, start, 419 WAIT_COMPLETE, 420 btree_get_extent, mirror_num); 421 if (!ret) { 422 if (!verify_parent_transid(io_tree, eb, 423 parent_transid, 0)) 424 break; 425 else 426 ret = -EIO; 427 } 428 429 /* 430 * This buffer's crc is fine, but its contents are corrupted, so 431 * there is no reason to read the other copies, they won't be 432 * any less wrong. 433 */ 434 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 435 break; 436 437 num_copies = btrfs_num_copies(root->fs_info, 438 eb->start, eb->len); 439 if (num_copies == 1) 440 break; 441 442 if (!failed_mirror) { 443 failed = 1; 444 failed_mirror = eb->read_mirror; 445 } 446 447 mirror_num++; 448 if (mirror_num == failed_mirror) 449 mirror_num++; 450 451 if (mirror_num > num_copies) 452 break; 453 } 454 455 if (failed && !ret && failed_mirror) 456 repair_eb_io_failure(root, eb, failed_mirror); 457 458 return ret; 459 } 460 461 /* 462 * checksum a dirty tree block before IO. This has extra checks to make sure 463 * we only fill in the checksum field in the first page of a multi-page block 464 */ 465 466 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 467 { 468 struct extent_io_tree *tree; 469 u64 start = page_offset(page); 470 u64 found_start; 471 struct extent_buffer *eb; 472 473 tree = &BTRFS_I(page->mapping->host)->io_tree; 474 475 eb = (struct extent_buffer *)page->private; 476 if (page != eb->pages[0]) 477 return 0; 478 found_start = btrfs_header_bytenr(eb); 479 if (found_start != start) { 480 WARN_ON(1); 481 return 0; 482 } 483 if (!PageUptodate(page)) { 484 WARN_ON(1); 485 return 0; 486 } 487 csum_tree_block(root, eb, 0); 488 return 0; 489 } 490 491 static int check_tree_block_fsid(struct btrfs_root *root, 492 struct extent_buffer *eb) 493 { 494 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 495 u8 fsid[BTRFS_UUID_SIZE]; 496 int ret = 1; 497 498 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 499 BTRFS_FSID_SIZE); 500 while (fs_devices) { 501 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 502 ret = 0; 503 break; 504 } 505 fs_devices = fs_devices->seed; 506 } 507 return ret; 508 } 509 510 #define CORRUPT(reason, eb, root, slot) \ 511 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 512 "root=%llu, slot=%d\n", reason, \ 513 btrfs_header_bytenr(eb), root->objectid, slot) 514 515 static noinline int check_leaf(struct btrfs_root *root, 516 struct extent_buffer *leaf) 517 { 518 struct btrfs_key key; 519 struct btrfs_key leaf_key; 520 u32 nritems = btrfs_header_nritems(leaf); 521 int slot; 522 523 if (nritems == 0) 524 return 0; 525 526 /* Check the 0 item */ 527 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 528 BTRFS_LEAF_DATA_SIZE(root)) { 529 CORRUPT("invalid item offset size pair", leaf, root, 0); 530 return -EIO; 531 } 532 533 /* 534 * Check to make sure each items keys are in the correct order and their 535 * offsets make sense. We only have to loop through nritems-1 because 536 * we check the current slot against the next slot, which verifies the 537 * next slot's offset+size makes sense and that the current's slot 538 * offset is correct. 539 */ 540 for (slot = 0; slot < nritems - 1; slot++) { 541 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 542 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 543 544 /* Make sure the keys are in the right order */ 545 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 546 CORRUPT("bad key order", leaf, root, slot); 547 return -EIO; 548 } 549 550 /* 551 * Make sure the offset and ends are right, remember that the 552 * item data starts at the end of the leaf and grows towards the 553 * front. 554 */ 555 if (btrfs_item_offset_nr(leaf, slot) != 556 btrfs_item_end_nr(leaf, slot + 1)) { 557 CORRUPT("slot offset bad", leaf, root, slot); 558 return -EIO; 559 } 560 561 /* 562 * Check to make sure that we don't point outside of the leaf, 563 * just incase all the items are consistent to eachother, but 564 * all point outside of the leaf. 565 */ 566 if (btrfs_item_end_nr(leaf, slot) > 567 BTRFS_LEAF_DATA_SIZE(root)) { 568 CORRUPT("slot end outside of leaf", leaf, root, slot); 569 return -EIO; 570 } 571 } 572 573 return 0; 574 } 575 576 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 577 u64 phy_offset, struct page *page, 578 u64 start, u64 end, int mirror) 579 { 580 struct extent_io_tree *tree; 581 u64 found_start; 582 int found_level; 583 struct extent_buffer *eb; 584 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 585 int ret = 0; 586 int reads_done; 587 588 if (!page->private) 589 goto out; 590 591 tree = &BTRFS_I(page->mapping->host)->io_tree; 592 eb = (struct extent_buffer *)page->private; 593 594 /* the pending IO might have been the only thing that kept this buffer 595 * in memory. Make sure we have a ref for all this other checks 596 */ 597 extent_buffer_get(eb); 598 599 reads_done = atomic_dec_and_test(&eb->io_pages); 600 if (!reads_done) 601 goto err; 602 603 eb->read_mirror = mirror; 604 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 605 ret = -EIO; 606 goto err; 607 } 608 609 found_start = btrfs_header_bytenr(eb); 610 if (found_start != eb->start) { 611 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 612 "%llu %llu\n", 613 found_start, eb->start); 614 ret = -EIO; 615 goto err; 616 } 617 if (check_tree_block_fsid(root, eb)) { 618 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 619 eb->start); 620 ret = -EIO; 621 goto err; 622 } 623 found_level = btrfs_header_level(eb); 624 if (found_level >= BTRFS_MAX_LEVEL) { 625 btrfs_info(root->fs_info, "bad tree block level %d\n", 626 (int)btrfs_header_level(eb)); 627 ret = -EIO; 628 goto err; 629 } 630 631 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 632 eb, found_level); 633 634 ret = csum_tree_block(root, eb, 1); 635 if (ret) { 636 ret = -EIO; 637 goto err; 638 } 639 640 /* 641 * If this is a leaf block and it is corrupt, set the corrupt bit so 642 * that we don't try and read the other copies of this block, just 643 * return -EIO. 644 */ 645 if (found_level == 0 && check_leaf(root, eb)) { 646 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 647 ret = -EIO; 648 } 649 650 if (!ret) 651 set_extent_buffer_uptodate(eb); 652 err: 653 if (reads_done && 654 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 655 btree_readahead_hook(root, eb, eb->start, ret); 656 657 if (ret) { 658 /* 659 * our io error hook is going to dec the io pages 660 * again, we have to make sure it has something 661 * to decrement 662 */ 663 atomic_inc(&eb->io_pages); 664 clear_extent_buffer_uptodate(eb); 665 } 666 free_extent_buffer(eb); 667 out: 668 return ret; 669 } 670 671 static int btree_io_failed_hook(struct page *page, int failed_mirror) 672 { 673 struct extent_buffer *eb; 674 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 675 676 eb = (struct extent_buffer *)page->private; 677 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 678 eb->read_mirror = failed_mirror; 679 atomic_dec(&eb->io_pages); 680 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 681 btree_readahead_hook(root, eb, eb->start, -EIO); 682 return -EIO; /* we fixed nothing */ 683 } 684 685 static void end_workqueue_bio(struct bio *bio, int err) 686 { 687 struct end_io_wq *end_io_wq = bio->bi_private; 688 struct btrfs_fs_info *fs_info; 689 690 fs_info = end_io_wq->info; 691 end_io_wq->error = err; 692 end_io_wq->work.func = end_workqueue_fn; 693 end_io_wq->work.flags = 0; 694 695 if (bio->bi_rw & REQ_WRITE) { 696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 697 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 698 &end_io_wq->work); 699 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 700 btrfs_queue_worker(&fs_info->endio_freespace_worker, 701 &end_io_wq->work); 702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 703 btrfs_queue_worker(&fs_info->endio_raid56_workers, 704 &end_io_wq->work); 705 else 706 btrfs_queue_worker(&fs_info->endio_write_workers, 707 &end_io_wq->work); 708 } else { 709 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 710 btrfs_queue_worker(&fs_info->endio_raid56_workers, 711 &end_io_wq->work); 712 else if (end_io_wq->metadata) 713 btrfs_queue_worker(&fs_info->endio_meta_workers, 714 &end_io_wq->work); 715 else 716 btrfs_queue_worker(&fs_info->endio_workers, 717 &end_io_wq->work); 718 } 719 } 720 721 /* 722 * For the metadata arg you want 723 * 724 * 0 - if data 725 * 1 - if normal metadta 726 * 2 - if writing to the free space cache area 727 * 3 - raid parity work 728 */ 729 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 730 int metadata) 731 { 732 struct end_io_wq *end_io_wq; 733 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 734 if (!end_io_wq) 735 return -ENOMEM; 736 737 end_io_wq->private = bio->bi_private; 738 end_io_wq->end_io = bio->bi_end_io; 739 end_io_wq->info = info; 740 end_io_wq->error = 0; 741 end_io_wq->bio = bio; 742 end_io_wq->metadata = metadata; 743 744 bio->bi_private = end_io_wq; 745 bio->bi_end_io = end_workqueue_bio; 746 return 0; 747 } 748 749 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 750 { 751 unsigned long limit = min_t(unsigned long, 752 info->workers.max_workers, 753 info->fs_devices->open_devices); 754 return 256 * limit; 755 } 756 757 static void run_one_async_start(struct btrfs_work *work) 758 { 759 struct async_submit_bio *async; 760 int ret; 761 762 async = container_of(work, struct async_submit_bio, work); 763 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 764 async->mirror_num, async->bio_flags, 765 async->bio_offset); 766 if (ret) 767 async->error = ret; 768 } 769 770 static void run_one_async_done(struct btrfs_work *work) 771 { 772 struct btrfs_fs_info *fs_info; 773 struct async_submit_bio *async; 774 int limit; 775 776 async = container_of(work, struct async_submit_bio, work); 777 fs_info = BTRFS_I(async->inode)->root->fs_info; 778 779 limit = btrfs_async_submit_limit(fs_info); 780 limit = limit * 2 / 3; 781 782 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 783 waitqueue_active(&fs_info->async_submit_wait)) 784 wake_up(&fs_info->async_submit_wait); 785 786 /* If an error occured we just want to clean up the bio and move on */ 787 if (async->error) { 788 bio_endio(async->bio, async->error); 789 return; 790 } 791 792 async->submit_bio_done(async->inode, async->rw, async->bio, 793 async->mirror_num, async->bio_flags, 794 async->bio_offset); 795 } 796 797 static void run_one_async_free(struct btrfs_work *work) 798 { 799 struct async_submit_bio *async; 800 801 async = container_of(work, struct async_submit_bio, work); 802 kfree(async); 803 } 804 805 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 806 int rw, struct bio *bio, int mirror_num, 807 unsigned long bio_flags, 808 u64 bio_offset, 809 extent_submit_bio_hook_t *submit_bio_start, 810 extent_submit_bio_hook_t *submit_bio_done) 811 { 812 struct async_submit_bio *async; 813 814 async = kmalloc(sizeof(*async), GFP_NOFS); 815 if (!async) 816 return -ENOMEM; 817 818 async->inode = inode; 819 async->rw = rw; 820 async->bio = bio; 821 async->mirror_num = mirror_num; 822 async->submit_bio_start = submit_bio_start; 823 async->submit_bio_done = submit_bio_done; 824 825 async->work.func = run_one_async_start; 826 async->work.ordered_func = run_one_async_done; 827 async->work.ordered_free = run_one_async_free; 828 829 async->work.flags = 0; 830 async->bio_flags = bio_flags; 831 async->bio_offset = bio_offset; 832 833 async->error = 0; 834 835 atomic_inc(&fs_info->nr_async_submits); 836 837 if (rw & REQ_SYNC) 838 btrfs_set_work_high_prio(&async->work); 839 840 btrfs_queue_worker(&fs_info->workers, &async->work); 841 842 while (atomic_read(&fs_info->async_submit_draining) && 843 atomic_read(&fs_info->nr_async_submits)) { 844 wait_event(fs_info->async_submit_wait, 845 (atomic_read(&fs_info->nr_async_submits) == 0)); 846 } 847 848 return 0; 849 } 850 851 static int btree_csum_one_bio(struct bio *bio) 852 { 853 struct bio_vec *bvec = bio->bi_io_vec; 854 int bio_index = 0; 855 struct btrfs_root *root; 856 int ret = 0; 857 858 WARN_ON(bio->bi_vcnt <= 0); 859 while (bio_index < bio->bi_vcnt) { 860 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 861 ret = csum_dirty_buffer(root, bvec->bv_page); 862 if (ret) 863 break; 864 bio_index++; 865 bvec++; 866 } 867 return ret; 868 } 869 870 static int __btree_submit_bio_start(struct inode *inode, int rw, 871 struct bio *bio, int mirror_num, 872 unsigned long bio_flags, 873 u64 bio_offset) 874 { 875 /* 876 * when we're called for a write, we're already in the async 877 * submission context. Just jump into btrfs_map_bio 878 */ 879 return btree_csum_one_bio(bio); 880 } 881 882 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 883 int mirror_num, unsigned long bio_flags, 884 u64 bio_offset) 885 { 886 int ret; 887 888 /* 889 * when we're called for a write, we're already in the async 890 * submission context. Just jump into btrfs_map_bio 891 */ 892 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 893 if (ret) 894 bio_endio(bio, ret); 895 return ret; 896 } 897 898 static int check_async_write(struct inode *inode, unsigned long bio_flags) 899 { 900 if (bio_flags & EXTENT_BIO_TREE_LOG) 901 return 0; 902 #ifdef CONFIG_X86 903 if (cpu_has_xmm4_2) 904 return 0; 905 #endif 906 return 1; 907 } 908 909 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 910 int mirror_num, unsigned long bio_flags, 911 u64 bio_offset) 912 { 913 int async = check_async_write(inode, bio_flags); 914 int ret; 915 916 if (!(rw & REQ_WRITE)) { 917 /* 918 * called for a read, do the setup so that checksum validation 919 * can happen in the async kernel threads 920 */ 921 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 922 bio, 1); 923 if (ret) 924 goto out_w_error; 925 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 926 mirror_num, 0); 927 } else if (!async) { 928 ret = btree_csum_one_bio(bio); 929 if (ret) 930 goto out_w_error; 931 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 932 mirror_num, 0); 933 } else { 934 /* 935 * kthread helpers are used to submit writes so that 936 * checksumming can happen in parallel across all CPUs 937 */ 938 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 939 inode, rw, bio, mirror_num, 0, 940 bio_offset, 941 __btree_submit_bio_start, 942 __btree_submit_bio_done); 943 } 944 945 if (ret) { 946 out_w_error: 947 bio_endio(bio, ret); 948 } 949 return ret; 950 } 951 952 #ifdef CONFIG_MIGRATION 953 static int btree_migratepage(struct address_space *mapping, 954 struct page *newpage, struct page *page, 955 enum migrate_mode mode) 956 { 957 /* 958 * we can't safely write a btree page from here, 959 * we haven't done the locking hook 960 */ 961 if (PageDirty(page)) 962 return -EAGAIN; 963 /* 964 * Buffers may be managed in a filesystem specific way. 965 * We must have no buffers or drop them. 966 */ 967 if (page_has_private(page) && 968 !try_to_release_page(page, GFP_KERNEL)) 969 return -EAGAIN; 970 return migrate_page(mapping, newpage, page, mode); 971 } 972 #endif 973 974 975 static int btree_writepages(struct address_space *mapping, 976 struct writeback_control *wbc) 977 { 978 struct extent_io_tree *tree; 979 struct btrfs_fs_info *fs_info; 980 int ret; 981 982 tree = &BTRFS_I(mapping->host)->io_tree; 983 if (wbc->sync_mode == WB_SYNC_NONE) { 984 985 if (wbc->for_kupdate) 986 return 0; 987 988 fs_info = BTRFS_I(mapping->host)->root->fs_info; 989 /* this is a bit racy, but that's ok */ 990 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 991 BTRFS_DIRTY_METADATA_THRESH); 992 if (ret < 0) 993 return 0; 994 } 995 return btree_write_cache_pages(mapping, wbc); 996 } 997 998 static int btree_readpage(struct file *file, struct page *page) 999 { 1000 struct extent_io_tree *tree; 1001 tree = &BTRFS_I(page->mapping->host)->io_tree; 1002 return extent_read_full_page(tree, page, btree_get_extent, 0); 1003 } 1004 1005 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1006 { 1007 if (PageWriteback(page) || PageDirty(page)) 1008 return 0; 1009 1010 return try_release_extent_buffer(page); 1011 } 1012 1013 static void btree_invalidatepage(struct page *page, unsigned int offset, 1014 unsigned int length) 1015 { 1016 struct extent_io_tree *tree; 1017 tree = &BTRFS_I(page->mapping->host)->io_tree; 1018 extent_invalidatepage(tree, page, offset); 1019 btree_releasepage(page, GFP_NOFS); 1020 if (PagePrivate(page)) { 1021 printk(KERN_WARNING "btrfs warning page private not zero " 1022 "on page %llu\n", (unsigned long long)page_offset(page)); 1023 ClearPagePrivate(page); 1024 set_page_private(page, 0); 1025 page_cache_release(page); 1026 } 1027 } 1028 1029 static int btree_set_page_dirty(struct page *page) 1030 { 1031 #ifdef DEBUG 1032 struct extent_buffer *eb; 1033 1034 BUG_ON(!PagePrivate(page)); 1035 eb = (struct extent_buffer *)page->private; 1036 BUG_ON(!eb); 1037 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1038 BUG_ON(!atomic_read(&eb->refs)); 1039 btrfs_assert_tree_locked(eb); 1040 #endif 1041 return __set_page_dirty_nobuffers(page); 1042 } 1043 1044 static const struct address_space_operations btree_aops = { 1045 .readpage = btree_readpage, 1046 .writepages = btree_writepages, 1047 .releasepage = btree_releasepage, 1048 .invalidatepage = btree_invalidatepage, 1049 #ifdef CONFIG_MIGRATION 1050 .migratepage = btree_migratepage, 1051 #endif 1052 .set_page_dirty = btree_set_page_dirty, 1053 }; 1054 1055 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1056 u64 parent_transid) 1057 { 1058 struct extent_buffer *buf = NULL; 1059 struct inode *btree_inode = root->fs_info->btree_inode; 1060 int ret = 0; 1061 1062 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1063 if (!buf) 1064 return 0; 1065 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1066 buf, 0, WAIT_NONE, btree_get_extent, 0); 1067 free_extent_buffer(buf); 1068 return ret; 1069 } 1070 1071 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1072 int mirror_num, struct extent_buffer **eb) 1073 { 1074 struct extent_buffer *buf = NULL; 1075 struct inode *btree_inode = root->fs_info->btree_inode; 1076 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1077 int ret; 1078 1079 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1080 if (!buf) 1081 return 0; 1082 1083 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1084 1085 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1086 btree_get_extent, mirror_num); 1087 if (ret) { 1088 free_extent_buffer(buf); 1089 return ret; 1090 } 1091 1092 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1093 free_extent_buffer(buf); 1094 return -EIO; 1095 } else if (extent_buffer_uptodate(buf)) { 1096 *eb = buf; 1097 } else { 1098 free_extent_buffer(buf); 1099 } 1100 return 0; 1101 } 1102 1103 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1104 u64 bytenr, u32 blocksize) 1105 { 1106 struct inode *btree_inode = root->fs_info->btree_inode; 1107 struct extent_buffer *eb; 1108 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1109 bytenr, blocksize); 1110 return eb; 1111 } 1112 1113 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1114 u64 bytenr, u32 blocksize) 1115 { 1116 struct inode *btree_inode = root->fs_info->btree_inode; 1117 struct extent_buffer *eb; 1118 1119 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1120 bytenr, blocksize); 1121 return eb; 1122 } 1123 1124 1125 int btrfs_write_tree_block(struct extent_buffer *buf) 1126 { 1127 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1128 buf->start + buf->len - 1); 1129 } 1130 1131 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1132 { 1133 return filemap_fdatawait_range(buf->pages[0]->mapping, 1134 buf->start, buf->start + buf->len - 1); 1135 } 1136 1137 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1138 u32 blocksize, u64 parent_transid) 1139 { 1140 struct extent_buffer *buf = NULL; 1141 int ret; 1142 1143 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1144 if (!buf) 1145 return NULL; 1146 1147 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1148 if (ret) { 1149 free_extent_buffer(buf); 1150 return NULL; 1151 } 1152 return buf; 1153 1154 } 1155 1156 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1157 struct extent_buffer *buf) 1158 { 1159 struct btrfs_fs_info *fs_info = root->fs_info; 1160 1161 if (btrfs_header_generation(buf) == 1162 fs_info->running_transaction->transid) { 1163 btrfs_assert_tree_locked(buf); 1164 1165 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1166 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1167 -buf->len, 1168 fs_info->dirty_metadata_batch); 1169 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1170 btrfs_set_lock_blocking(buf); 1171 clear_extent_buffer_dirty(buf); 1172 } 1173 } 1174 } 1175 1176 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1177 u32 stripesize, struct btrfs_root *root, 1178 struct btrfs_fs_info *fs_info, 1179 u64 objectid) 1180 { 1181 root->node = NULL; 1182 root->commit_root = NULL; 1183 root->sectorsize = sectorsize; 1184 root->nodesize = nodesize; 1185 root->leafsize = leafsize; 1186 root->stripesize = stripesize; 1187 root->ref_cows = 0; 1188 root->track_dirty = 0; 1189 root->in_radix = 0; 1190 root->orphan_item_inserted = 0; 1191 root->orphan_cleanup_state = 0; 1192 1193 root->objectid = objectid; 1194 root->last_trans = 0; 1195 root->highest_objectid = 0; 1196 root->nr_delalloc_inodes = 0; 1197 root->nr_ordered_extents = 0; 1198 root->name = NULL; 1199 root->inode_tree = RB_ROOT; 1200 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1201 root->block_rsv = NULL; 1202 root->orphan_block_rsv = NULL; 1203 1204 INIT_LIST_HEAD(&root->dirty_list); 1205 INIT_LIST_HEAD(&root->root_list); 1206 INIT_LIST_HEAD(&root->delalloc_inodes); 1207 INIT_LIST_HEAD(&root->delalloc_root); 1208 INIT_LIST_HEAD(&root->ordered_extents); 1209 INIT_LIST_HEAD(&root->ordered_root); 1210 INIT_LIST_HEAD(&root->logged_list[0]); 1211 INIT_LIST_HEAD(&root->logged_list[1]); 1212 spin_lock_init(&root->orphan_lock); 1213 spin_lock_init(&root->inode_lock); 1214 spin_lock_init(&root->delalloc_lock); 1215 spin_lock_init(&root->ordered_extent_lock); 1216 spin_lock_init(&root->accounting_lock); 1217 spin_lock_init(&root->log_extents_lock[0]); 1218 spin_lock_init(&root->log_extents_lock[1]); 1219 mutex_init(&root->objectid_mutex); 1220 mutex_init(&root->log_mutex); 1221 init_waitqueue_head(&root->log_writer_wait); 1222 init_waitqueue_head(&root->log_commit_wait[0]); 1223 init_waitqueue_head(&root->log_commit_wait[1]); 1224 atomic_set(&root->log_commit[0], 0); 1225 atomic_set(&root->log_commit[1], 0); 1226 atomic_set(&root->log_writers, 0); 1227 atomic_set(&root->log_batch, 0); 1228 atomic_set(&root->orphan_inodes, 0); 1229 atomic_set(&root->refs, 1); 1230 root->log_transid = 0; 1231 root->last_log_commit = 0; 1232 extent_io_tree_init(&root->dirty_log_pages, 1233 fs_info->btree_inode->i_mapping); 1234 1235 memset(&root->root_key, 0, sizeof(root->root_key)); 1236 memset(&root->root_item, 0, sizeof(root->root_item)); 1237 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1238 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1239 root->defrag_trans_start = fs_info->generation; 1240 init_completion(&root->kobj_unregister); 1241 root->defrag_running = 0; 1242 root->root_key.objectid = objectid; 1243 root->anon_dev = 0; 1244 1245 spin_lock_init(&root->root_item_lock); 1246 } 1247 1248 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1249 { 1250 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1251 if (root) 1252 root->fs_info = fs_info; 1253 return root; 1254 } 1255 1256 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1257 struct btrfs_fs_info *fs_info, 1258 u64 objectid) 1259 { 1260 struct extent_buffer *leaf; 1261 struct btrfs_root *tree_root = fs_info->tree_root; 1262 struct btrfs_root *root; 1263 struct btrfs_key key; 1264 int ret = 0; 1265 u64 bytenr; 1266 uuid_le uuid; 1267 1268 root = btrfs_alloc_root(fs_info); 1269 if (!root) 1270 return ERR_PTR(-ENOMEM); 1271 1272 __setup_root(tree_root->nodesize, tree_root->leafsize, 1273 tree_root->sectorsize, tree_root->stripesize, 1274 root, fs_info, objectid); 1275 root->root_key.objectid = objectid; 1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1277 root->root_key.offset = 0; 1278 1279 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1280 0, objectid, NULL, 0, 0, 0); 1281 if (IS_ERR(leaf)) { 1282 ret = PTR_ERR(leaf); 1283 leaf = NULL; 1284 goto fail; 1285 } 1286 1287 bytenr = leaf->start; 1288 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1289 btrfs_set_header_bytenr(leaf, leaf->start); 1290 btrfs_set_header_generation(leaf, trans->transid); 1291 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1292 btrfs_set_header_owner(leaf, objectid); 1293 root->node = leaf; 1294 1295 write_extent_buffer(leaf, fs_info->fsid, 1296 (unsigned long)btrfs_header_fsid(leaf), 1297 BTRFS_FSID_SIZE); 1298 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1299 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1300 BTRFS_UUID_SIZE); 1301 btrfs_mark_buffer_dirty(leaf); 1302 1303 root->commit_root = btrfs_root_node(root); 1304 root->track_dirty = 1; 1305 1306 1307 root->root_item.flags = 0; 1308 root->root_item.byte_limit = 0; 1309 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1310 btrfs_set_root_generation(&root->root_item, trans->transid); 1311 btrfs_set_root_level(&root->root_item, 0); 1312 btrfs_set_root_refs(&root->root_item, 1); 1313 btrfs_set_root_used(&root->root_item, leaf->len); 1314 btrfs_set_root_last_snapshot(&root->root_item, 0); 1315 btrfs_set_root_dirid(&root->root_item, 0); 1316 uuid_le_gen(&uuid); 1317 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1318 root->root_item.drop_level = 0; 1319 1320 key.objectid = objectid; 1321 key.type = BTRFS_ROOT_ITEM_KEY; 1322 key.offset = 0; 1323 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1324 if (ret) 1325 goto fail; 1326 1327 btrfs_tree_unlock(leaf); 1328 1329 return root; 1330 1331 fail: 1332 if (leaf) { 1333 btrfs_tree_unlock(leaf); 1334 free_extent_buffer(leaf); 1335 } 1336 kfree(root); 1337 1338 return ERR_PTR(ret); 1339 } 1340 1341 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1342 struct btrfs_fs_info *fs_info) 1343 { 1344 struct btrfs_root *root; 1345 struct btrfs_root *tree_root = fs_info->tree_root; 1346 struct extent_buffer *leaf; 1347 1348 root = btrfs_alloc_root(fs_info); 1349 if (!root) 1350 return ERR_PTR(-ENOMEM); 1351 1352 __setup_root(tree_root->nodesize, tree_root->leafsize, 1353 tree_root->sectorsize, tree_root->stripesize, 1354 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1355 1356 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1357 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1358 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1359 /* 1360 * log trees do not get reference counted because they go away 1361 * before a real commit is actually done. They do store pointers 1362 * to file data extents, and those reference counts still get 1363 * updated (along with back refs to the log tree). 1364 */ 1365 root->ref_cows = 0; 1366 1367 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1368 BTRFS_TREE_LOG_OBJECTID, NULL, 1369 0, 0, 0); 1370 if (IS_ERR(leaf)) { 1371 kfree(root); 1372 return ERR_CAST(leaf); 1373 } 1374 1375 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1376 btrfs_set_header_bytenr(leaf, leaf->start); 1377 btrfs_set_header_generation(leaf, trans->transid); 1378 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1379 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1380 root->node = leaf; 1381 1382 write_extent_buffer(root->node, root->fs_info->fsid, 1383 (unsigned long)btrfs_header_fsid(root->node), 1384 BTRFS_FSID_SIZE); 1385 btrfs_mark_buffer_dirty(root->node); 1386 btrfs_tree_unlock(root->node); 1387 return root; 1388 } 1389 1390 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1391 struct btrfs_fs_info *fs_info) 1392 { 1393 struct btrfs_root *log_root; 1394 1395 log_root = alloc_log_tree(trans, fs_info); 1396 if (IS_ERR(log_root)) 1397 return PTR_ERR(log_root); 1398 WARN_ON(fs_info->log_root_tree); 1399 fs_info->log_root_tree = log_root; 1400 return 0; 1401 } 1402 1403 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1404 struct btrfs_root *root) 1405 { 1406 struct btrfs_root *log_root; 1407 struct btrfs_inode_item *inode_item; 1408 1409 log_root = alloc_log_tree(trans, root->fs_info); 1410 if (IS_ERR(log_root)) 1411 return PTR_ERR(log_root); 1412 1413 log_root->last_trans = trans->transid; 1414 log_root->root_key.offset = root->root_key.objectid; 1415 1416 inode_item = &log_root->root_item.inode; 1417 btrfs_set_stack_inode_generation(inode_item, 1); 1418 btrfs_set_stack_inode_size(inode_item, 3); 1419 btrfs_set_stack_inode_nlink(inode_item, 1); 1420 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 1421 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1422 1423 btrfs_set_root_node(&log_root->root_item, log_root->node); 1424 1425 WARN_ON(root->log_root); 1426 root->log_root = log_root; 1427 root->log_transid = 0; 1428 root->last_log_commit = 0; 1429 return 0; 1430 } 1431 1432 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1433 struct btrfs_key *key) 1434 { 1435 struct btrfs_root *root; 1436 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1437 struct btrfs_path *path; 1438 u64 generation; 1439 u32 blocksize; 1440 int ret; 1441 1442 path = btrfs_alloc_path(); 1443 if (!path) 1444 return ERR_PTR(-ENOMEM); 1445 1446 root = btrfs_alloc_root(fs_info); 1447 if (!root) { 1448 ret = -ENOMEM; 1449 goto alloc_fail; 1450 } 1451 1452 __setup_root(tree_root->nodesize, tree_root->leafsize, 1453 tree_root->sectorsize, tree_root->stripesize, 1454 root, fs_info, key->objectid); 1455 1456 ret = btrfs_find_root(tree_root, key, path, 1457 &root->root_item, &root->root_key); 1458 if (ret) { 1459 if (ret > 0) 1460 ret = -ENOENT; 1461 goto find_fail; 1462 } 1463 1464 generation = btrfs_root_generation(&root->root_item); 1465 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1466 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1467 blocksize, generation); 1468 if (!root->node) { 1469 ret = -ENOMEM; 1470 goto find_fail; 1471 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1472 ret = -EIO; 1473 goto read_fail; 1474 } 1475 root->commit_root = btrfs_root_node(root); 1476 out: 1477 btrfs_free_path(path); 1478 return root; 1479 1480 read_fail: 1481 free_extent_buffer(root->node); 1482 find_fail: 1483 kfree(root); 1484 alloc_fail: 1485 root = ERR_PTR(ret); 1486 goto out; 1487 } 1488 1489 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1490 struct btrfs_key *location) 1491 { 1492 struct btrfs_root *root; 1493 1494 root = btrfs_read_tree_root(tree_root, location); 1495 if (IS_ERR(root)) 1496 return root; 1497 1498 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1499 root->ref_cows = 1; 1500 btrfs_check_and_init_root_item(&root->root_item); 1501 } 1502 1503 return root; 1504 } 1505 1506 int btrfs_init_fs_root(struct btrfs_root *root) 1507 { 1508 int ret; 1509 1510 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1511 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1512 GFP_NOFS); 1513 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1514 ret = -ENOMEM; 1515 goto fail; 1516 } 1517 1518 btrfs_init_free_ino_ctl(root); 1519 mutex_init(&root->fs_commit_mutex); 1520 spin_lock_init(&root->cache_lock); 1521 init_waitqueue_head(&root->cache_wait); 1522 1523 ret = get_anon_bdev(&root->anon_dev); 1524 if (ret) 1525 goto fail; 1526 return 0; 1527 fail: 1528 kfree(root->free_ino_ctl); 1529 kfree(root->free_ino_pinned); 1530 return ret; 1531 } 1532 1533 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1534 u64 root_id) 1535 { 1536 struct btrfs_root *root; 1537 1538 spin_lock(&fs_info->fs_roots_radix_lock); 1539 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1540 (unsigned long)root_id); 1541 spin_unlock(&fs_info->fs_roots_radix_lock); 1542 return root; 1543 } 1544 1545 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1546 struct btrfs_root *root) 1547 { 1548 int ret; 1549 1550 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1551 if (ret) 1552 return ret; 1553 1554 spin_lock(&fs_info->fs_roots_radix_lock); 1555 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1556 (unsigned long)root->root_key.objectid, 1557 root); 1558 if (ret == 0) 1559 root->in_radix = 1; 1560 spin_unlock(&fs_info->fs_roots_radix_lock); 1561 radix_tree_preload_end(); 1562 1563 return ret; 1564 } 1565 1566 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1567 struct btrfs_key *location) 1568 { 1569 struct btrfs_root *root; 1570 int ret; 1571 1572 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1573 return fs_info->tree_root; 1574 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1575 return fs_info->extent_root; 1576 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1577 return fs_info->chunk_root; 1578 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1579 return fs_info->dev_root; 1580 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1581 return fs_info->csum_root; 1582 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1583 return fs_info->quota_root ? fs_info->quota_root : 1584 ERR_PTR(-ENOENT); 1585 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1586 return fs_info->uuid_root ? fs_info->uuid_root : 1587 ERR_PTR(-ENOENT); 1588 again: 1589 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1590 if (root) 1591 return root; 1592 1593 root = btrfs_read_fs_root(fs_info->tree_root, location); 1594 if (IS_ERR(root)) 1595 return root; 1596 1597 if (btrfs_root_refs(&root->root_item) == 0) { 1598 ret = -ENOENT; 1599 goto fail; 1600 } 1601 1602 ret = btrfs_init_fs_root(root); 1603 if (ret) 1604 goto fail; 1605 1606 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1607 if (ret < 0) 1608 goto fail; 1609 if (ret == 0) 1610 root->orphan_item_inserted = 1; 1611 1612 ret = btrfs_insert_fs_root(fs_info, root); 1613 if (ret) { 1614 if (ret == -EEXIST) { 1615 free_fs_root(root); 1616 goto again; 1617 } 1618 goto fail; 1619 } 1620 return root; 1621 fail: 1622 free_fs_root(root); 1623 return ERR_PTR(ret); 1624 } 1625 1626 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1627 { 1628 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1629 int ret = 0; 1630 struct btrfs_device *device; 1631 struct backing_dev_info *bdi; 1632 1633 rcu_read_lock(); 1634 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1635 if (!device->bdev) 1636 continue; 1637 bdi = blk_get_backing_dev_info(device->bdev); 1638 if (bdi && bdi_congested(bdi, bdi_bits)) { 1639 ret = 1; 1640 break; 1641 } 1642 } 1643 rcu_read_unlock(); 1644 return ret; 1645 } 1646 1647 /* 1648 * If this fails, caller must call bdi_destroy() to get rid of the 1649 * bdi again. 1650 */ 1651 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1652 { 1653 int err; 1654 1655 bdi->capabilities = BDI_CAP_MAP_COPY; 1656 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1657 if (err) 1658 return err; 1659 1660 bdi->ra_pages = default_backing_dev_info.ra_pages; 1661 bdi->congested_fn = btrfs_congested_fn; 1662 bdi->congested_data = info; 1663 return 0; 1664 } 1665 1666 /* 1667 * called by the kthread helper functions to finally call the bio end_io 1668 * functions. This is where read checksum verification actually happens 1669 */ 1670 static void end_workqueue_fn(struct btrfs_work *work) 1671 { 1672 struct bio *bio; 1673 struct end_io_wq *end_io_wq; 1674 struct btrfs_fs_info *fs_info; 1675 int error; 1676 1677 end_io_wq = container_of(work, struct end_io_wq, work); 1678 bio = end_io_wq->bio; 1679 fs_info = end_io_wq->info; 1680 1681 error = end_io_wq->error; 1682 bio->bi_private = end_io_wq->private; 1683 bio->bi_end_io = end_io_wq->end_io; 1684 kfree(end_io_wq); 1685 bio_endio(bio, error); 1686 } 1687 1688 static int cleaner_kthread(void *arg) 1689 { 1690 struct btrfs_root *root = arg; 1691 int again; 1692 1693 do { 1694 again = 0; 1695 1696 /* Make the cleaner go to sleep early. */ 1697 if (btrfs_need_cleaner_sleep(root)) 1698 goto sleep; 1699 1700 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1701 goto sleep; 1702 1703 /* 1704 * Avoid the problem that we change the status of the fs 1705 * during the above check and trylock. 1706 */ 1707 if (btrfs_need_cleaner_sleep(root)) { 1708 mutex_unlock(&root->fs_info->cleaner_mutex); 1709 goto sleep; 1710 } 1711 1712 btrfs_run_delayed_iputs(root); 1713 again = btrfs_clean_one_deleted_snapshot(root); 1714 mutex_unlock(&root->fs_info->cleaner_mutex); 1715 1716 /* 1717 * The defragger has dealt with the R/O remount and umount, 1718 * needn't do anything special here. 1719 */ 1720 btrfs_run_defrag_inodes(root->fs_info); 1721 sleep: 1722 if (!try_to_freeze() && !again) { 1723 set_current_state(TASK_INTERRUPTIBLE); 1724 if (!kthread_should_stop()) 1725 schedule(); 1726 __set_current_state(TASK_RUNNING); 1727 } 1728 } while (!kthread_should_stop()); 1729 return 0; 1730 } 1731 1732 static int transaction_kthread(void *arg) 1733 { 1734 struct btrfs_root *root = arg; 1735 struct btrfs_trans_handle *trans; 1736 struct btrfs_transaction *cur; 1737 u64 transid; 1738 unsigned long now; 1739 unsigned long delay; 1740 bool cannot_commit; 1741 1742 do { 1743 cannot_commit = false; 1744 delay = HZ * root->fs_info->commit_interval; 1745 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1746 1747 spin_lock(&root->fs_info->trans_lock); 1748 cur = root->fs_info->running_transaction; 1749 if (!cur) { 1750 spin_unlock(&root->fs_info->trans_lock); 1751 goto sleep; 1752 } 1753 1754 now = get_seconds(); 1755 if (cur->state < TRANS_STATE_BLOCKED && 1756 (now < cur->start_time || 1757 now - cur->start_time < root->fs_info->commit_interval)) { 1758 spin_unlock(&root->fs_info->trans_lock); 1759 delay = HZ * 5; 1760 goto sleep; 1761 } 1762 transid = cur->transid; 1763 spin_unlock(&root->fs_info->trans_lock); 1764 1765 /* If the file system is aborted, this will always fail. */ 1766 trans = btrfs_attach_transaction(root); 1767 if (IS_ERR(trans)) { 1768 if (PTR_ERR(trans) != -ENOENT) 1769 cannot_commit = true; 1770 goto sleep; 1771 } 1772 if (transid == trans->transid) { 1773 btrfs_commit_transaction(trans, root); 1774 } else { 1775 btrfs_end_transaction(trans, root); 1776 } 1777 sleep: 1778 wake_up_process(root->fs_info->cleaner_kthread); 1779 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1780 1781 if (!try_to_freeze()) { 1782 set_current_state(TASK_INTERRUPTIBLE); 1783 if (!kthread_should_stop() && 1784 (!btrfs_transaction_blocked(root->fs_info) || 1785 cannot_commit)) 1786 schedule_timeout(delay); 1787 __set_current_state(TASK_RUNNING); 1788 } 1789 } while (!kthread_should_stop()); 1790 return 0; 1791 } 1792 1793 /* 1794 * this will find the highest generation in the array of 1795 * root backups. The index of the highest array is returned, 1796 * or -1 if we can't find anything. 1797 * 1798 * We check to make sure the array is valid by comparing the 1799 * generation of the latest root in the array with the generation 1800 * in the super block. If they don't match we pitch it. 1801 */ 1802 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1803 { 1804 u64 cur; 1805 int newest_index = -1; 1806 struct btrfs_root_backup *root_backup; 1807 int i; 1808 1809 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1810 root_backup = info->super_copy->super_roots + i; 1811 cur = btrfs_backup_tree_root_gen(root_backup); 1812 if (cur == newest_gen) 1813 newest_index = i; 1814 } 1815 1816 /* check to see if we actually wrapped around */ 1817 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1818 root_backup = info->super_copy->super_roots; 1819 cur = btrfs_backup_tree_root_gen(root_backup); 1820 if (cur == newest_gen) 1821 newest_index = 0; 1822 } 1823 return newest_index; 1824 } 1825 1826 1827 /* 1828 * find the oldest backup so we know where to store new entries 1829 * in the backup array. This will set the backup_root_index 1830 * field in the fs_info struct 1831 */ 1832 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1833 u64 newest_gen) 1834 { 1835 int newest_index = -1; 1836 1837 newest_index = find_newest_super_backup(info, newest_gen); 1838 /* if there was garbage in there, just move along */ 1839 if (newest_index == -1) { 1840 info->backup_root_index = 0; 1841 } else { 1842 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1843 } 1844 } 1845 1846 /* 1847 * copy all the root pointers into the super backup array. 1848 * this will bump the backup pointer by one when it is 1849 * done 1850 */ 1851 static void backup_super_roots(struct btrfs_fs_info *info) 1852 { 1853 int next_backup; 1854 struct btrfs_root_backup *root_backup; 1855 int last_backup; 1856 1857 next_backup = info->backup_root_index; 1858 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1859 BTRFS_NUM_BACKUP_ROOTS; 1860 1861 /* 1862 * just overwrite the last backup if we're at the same generation 1863 * this happens only at umount 1864 */ 1865 root_backup = info->super_for_commit->super_roots + last_backup; 1866 if (btrfs_backup_tree_root_gen(root_backup) == 1867 btrfs_header_generation(info->tree_root->node)) 1868 next_backup = last_backup; 1869 1870 root_backup = info->super_for_commit->super_roots + next_backup; 1871 1872 /* 1873 * make sure all of our padding and empty slots get zero filled 1874 * regardless of which ones we use today 1875 */ 1876 memset(root_backup, 0, sizeof(*root_backup)); 1877 1878 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1879 1880 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1881 btrfs_set_backup_tree_root_gen(root_backup, 1882 btrfs_header_generation(info->tree_root->node)); 1883 1884 btrfs_set_backup_tree_root_level(root_backup, 1885 btrfs_header_level(info->tree_root->node)); 1886 1887 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1888 btrfs_set_backup_chunk_root_gen(root_backup, 1889 btrfs_header_generation(info->chunk_root->node)); 1890 btrfs_set_backup_chunk_root_level(root_backup, 1891 btrfs_header_level(info->chunk_root->node)); 1892 1893 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1894 btrfs_set_backup_extent_root_gen(root_backup, 1895 btrfs_header_generation(info->extent_root->node)); 1896 btrfs_set_backup_extent_root_level(root_backup, 1897 btrfs_header_level(info->extent_root->node)); 1898 1899 /* 1900 * we might commit during log recovery, which happens before we set 1901 * the fs_root. Make sure it is valid before we fill it in. 1902 */ 1903 if (info->fs_root && info->fs_root->node) { 1904 btrfs_set_backup_fs_root(root_backup, 1905 info->fs_root->node->start); 1906 btrfs_set_backup_fs_root_gen(root_backup, 1907 btrfs_header_generation(info->fs_root->node)); 1908 btrfs_set_backup_fs_root_level(root_backup, 1909 btrfs_header_level(info->fs_root->node)); 1910 } 1911 1912 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1913 btrfs_set_backup_dev_root_gen(root_backup, 1914 btrfs_header_generation(info->dev_root->node)); 1915 btrfs_set_backup_dev_root_level(root_backup, 1916 btrfs_header_level(info->dev_root->node)); 1917 1918 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1919 btrfs_set_backup_csum_root_gen(root_backup, 1920 btrfs_header_generation(info->csum_root->node)); 1921 btrfs_set_backup_csum_root_level(root_backup, 1922 btrfs_header_level(info->csum_root->node)); 1923 1924 btrfs_set_backup_total_bytes(root_backup, 1925 btrfs_super_total_bytes(info->super_copy)); 1926 btrfs_set_backup_bytes_used(root_backup, 1927 btrfs_super_bytes_used(info->super_copy)); 1928 btrfs_set_backup_num_devices(root_backup, 1929 btrfs_super_num_devices(info->super_copy)); 1930 1931 /* 1932 * if we don't copy this out to the super_copy, it won't get remembered 1933 * for the next commit 1934 */ 1935 memcpy(&info->super_copy->super_roots, 1936 &info->super_for_commit->super_roots, 1937 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1938 } 1939 1940 /* 1941 * this copies info out of the root backup array and back into 1942 * the in-memory super block. It is meant to help iterate through 1943 * the array, so you send it the number of backups you've already 1944 * tried and the last backup index you used. 1945 * 1946 * this returns -1 when it has tried all the backups 1947 */ 1948 static noinline int next_root_backup(struct btrfs_fs_info *info, 1949 struct btrfs_super_block *super, 1950 int *num_backups_tried, int *backup_index) 1951 { 1952 struct btrfs_root_backup *root_backup; 1953 int newest = *backup_index; 1954 1955 if (*num_backups_tried == 0) { 1956 u64 gen = btrfs_super_generation(super); 1957 1958 newest = find_newest_super_backup(info, gen); 1959 if (newest == -1) 1960 return -1; 1961 1962 *backup_index = newest; 1963 *num_backups_tried = 1; 1964 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1965 /* we've tried all the backups, all done */ 1966 return -1; 1967 } else { 1968 /* jump to the next oldest backup */ 1969 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1970 BTRFS_NUM_BACKUP_ROOTS; 1971 *backup_index = newest; 1972 *num_backups_tried += 1; 1973 } 1974 root_backup = super->super_roots + newest; 1975 1976 btrfs_set_super_generation(super, 1977 btrfs_backup_tree_root_gen(root_backup)); 1978 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1979 btrfs_set_super_root_level(super, 1980 btrfs_backup_tree_root_level(root_backup)); 1981 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1982 1983 /* 1984 * fixme: the total bytes and num_devices need to match or we should 1985 * need a fsck 1986 */ 1987 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1988 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1989 return 0; 1990 } 1991 1992 /* helper to cleanup workers */ 1993 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1994 { 1995 btrfs_stop_workers(&fs_info->generic_worker); 1996 btrfs_stop_workers(&fs_info->fixup_workers); 1997 btrfs_stop_workers(&fs_info->delalloc_workers); 1998 btrfs_stop_workers(&fs_info->workers); 1999 btrfs_stop_workers(&fs_info->endio_workers); 2000 btrfs_stop_workers(&fs_info->endio_meta_workers); 2001 btrfs_stop_workers(&fs_info->endio_raid56_workers); 2002 btrfs_stop_workers(&fs_info->rmw_workers); 2003 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2004 btrfs_stop_workers(&fs_info->endio_write_workers); 2005 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2006 btrfs_stop_workers(&fs_info->submit_workers); 2007 btrfs_stop_workers(&fs_info->delayed_workers); 2008 btrfs_stop_workers(&fs_info->caching_workers); 2009 btrfs_stop_workers(&fs_info->readahead_workers); 2010 btrfs_stop_workers(&fs_info->flush_workers); 2011 btrfs_stop_workers(&fs_info->qgroup_rescan_workers); 2012 } 2013 2014 /* helper to cleanup tree roots */ 2015 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2016 { 2017 free_extent_buffer(info->tree_root->node); 2018 free_extent_buffer(info->tree_root->commit_root); 2019 info->tree_root->node = NULL; 2020 info->tree_root->commit_root = NULL; 2021 2022 if (info->dev_root) { 2023 free_extent_buffer(info->dev_root->node); 2024 free_extent_buffer(info->dev_root->commit_root); 2025 info->dev_root->node = NULL; 2026 info->dev_root->commit_root = NULL; 2027 } 2028 if (info->extent_root) { 2029 free_extent_buffer(info->extent_root->node); 2030 free_extent_buffer(info->extent_root->commit_root); 2031 info->extent_root->node = NULL; 2032 info->extent_root->commit_root = NULL; 2033 } 2034 if (info->csum_root) { 2035 free_extent_buffer(info->csum_root->node); 2036 free_extent_buffer(info->csum_root->commit_root); 2037 info->csum_root->node = NULL; 2038 info->csum_root->commit_root = NULL; 2039 } 2040 if (info->quota_root) { 2041 free_extent_buffer(info->quota_root->node); 2042 free_extent_buffer(info->quota_root->commit_root); 2043 info->quota_root->node = NULL; 2044 info->quota_root->commit_root = NULL; 2045 } 2046 if (info->uuid_root) { 2047 free_extent_buffer(info->uuid_root->node); 2048 free_extent_buffer(info->uuid_root->commit_root); 2049 info->uuid_root->node = NULL; 2050 info->uuid_root->commit_root = NULL; 2051 } 2052 if (chunk_root) { 2053 free_extent_buffer(info->chunk_root->node); 2054 free_extent_buffer(info->chunk_root->commit_root); 2055 info->chunk_root->node = NULL; 2056 info->chunk_root->commit_root = NULL; 2057 } 2058 } 2059 2060 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2061 { 2062 int ret; 2063 struct btrfs_root *gang[8]; 2064 int i; 2065 2066 while (!list_empty(&fs_info->dead_roots)) { 2067 gang[0] = list_entry(fs_info->dead_roots.next, 2068 struct btrfs_root, root_list); 2069 list_del(&gang[0]->root_list); 2070 2071 if (gang[0]->in_radix) { 2072 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2073 } else { 2074 free_extent_buffer(gang[0]->node); 2075 free_extent_buffer(gang[0]->commit_root); 2076 btrfs_put_fs_root(gang[0]); 2077 } 2078 } 2079 2080 while (1) { 2081 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2082 (void **)gang, 0, 2083 ARRAY_SIZE(gang)); 2084 if (!ret) 2085 break; 2086 for (i = 0; i < ret; i++) 2087 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2088 } 2089 } 2090 2091 int open_ctree(struct super_block *sb, 2092 struct btrfs_fs_devices *fs_devices, 2093 char *options) 2094 { 2095 u32 sectorsize; 2096 u32 nodesize; 2097 u32 leafsize; 2098 u32 blocksize; 2099 u32 stripesize; 2100 u64 generation; 2101 u64 features; 2102 struct btrfs_key location; 2103 struct buffer_head *bh; 2104 struct btrfs_super_block *disk_super; 2105 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2106 struct btrfs_root *tree_root; 2107 struct btrfs_root *extent_root; 2108 struct btrfs_root *csum_root; 2109 struct btrfs_root *chunk_root; 2110 struct btrfs_root *dev_root; 2111 struct btrfs_root *quota_root; 2112 struct btrfs_root *uuid_root; 2113 struct btrfs_root *log_tree_root; 2114 int ret; 2115 int err = -EINVAL; 2116 int num_backups_tried = 0; 2117 int backup_index = 0; 2118 bool create_uuid_tree; 2119 bool check_uuid_tree; 2120 2121 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2122 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2123 if (!tree_root || !chunk_root) { 2124 err = -ENOMEM; 2125 goto fail; 2126 } 2127 2128 ret = init_srcu_struct(&fs_info->subvol_srcu); 2129 if (ret) { 2130 err = ret; 2131 goto fail; 2132 } 2133 2134 ret = setup_bdi(fs_info, &fs_info->bdi); 2135 if (ret) { 2136 err = ret; 2137 goto fail_srcu; 2138 } 2139 2140 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2141 if (ret) { 2142 err = ret; 2143 goto fail_bdi; 2144 } 2145 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2146 (1 + ilog2(nr_cpu_ids)); 2147 2148 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2149 if (ret) { 2150 err = ret; 2151 goto fail_dirty_metadata_bytes; 2152 } 2153 2154 fs_info->btree_inode = new_inode(sb); 2155 if (!fs_info->btree_inode) { 2156 err = -ENOMEM; 2157 goto fail_delalloc_bytes; 2158 } 2159 2160 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2161 2162 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2163 INIT_LIST_HEAD(&fs_info->trans_list); 2164 INIT_LIST_HEAD(&fs_info->dead_roots); 2165 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2166 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2167 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2168 spin_lock_init(&fs_info->delalloc_root_lock); 2169 spin_lock_init(&fs_info->trans_lock); 2170 spin_lock_init(&fs_info->fs_roots_radix_lock); 2171 spin_lock_init(&fs_info->delayed_iput_lock); 2172 spin_lock_init(&fs_info->defrag_inodes_lock); 2173 spin_lock_init(&fs_info->free_chunk_lock); 2174 spin_lock_init(&fs_info->tree_mod_seq_lock); 2175 spin_lock_init(&fs_info->super_lock); 2176 rwlock_init(&fs_info->tree_mod_log_lock); 2177 mutex_init(&fs_info->reloc_mutex); 2178 seqlock_init(&fs_info->profiles_lock); 2179 2180 init_completion(&fs_info->kobj_unregister); 2181 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2182 INIT_LIST_HEAD(&fs_info->space_info); 2183 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2184 btrfs_mapping_init(&fs_info->mapping_tree); 2185 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2186 BTRFS_BLOCK_RSV_GLOBAL); 2187 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2188 BTRFS_BLOCK_RSV_DELALLOC); 2189 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2190 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2191 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2192 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2193 BTRFS_BLOCK_RSV_DELOPS); 2194 atomic_set(&fs_info->nr_async_submits, 0); 2195 atomic_set(&fs_info->async_delalloc_pages, 0); 2196 atomic_set(&fs_info->async_submit_draining, 0); 2197 atomic_set(&fs_info->nr_async_bios, 0); 2198 atomic_set(&fs_info->defrag_running, 0); 2199 atomic64_set(&fs_info->tree_mod_seq, 0); 2200 fs_info->sb = sb; 2201 fs_info->max_inline = 8192 * 1024; 2202 fs_info->metadata_ratio = 0; 2203 fs_info->defrag_inodes = RB_ROOT; 2204 fs_info->free_chunk_space = 0; 2205 fs_info->tree_mod_log = RB_ROOT; 2206 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2207 2208 /* readahead state */ 2209 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2210 spin_lock_init(&fs_info->reada_lock); 2211 2212 fs_info->thread_pool_size = min_t(unsigned long, 2213 num_online_cpus() + 2, 8); 2214 2215 INIT_LIST_HEAD(&fs_info->ordered_roots); 2216 spin_lock_init(&fs_info->ordered_root_lock); 2217 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2218 GFP_NOFS); 2219 if (!fs_info->delayed_root) { 2220 err = -ENOMEM; 2221 goto fail_iput; 2222 } 2223 btrfs_init_delayed_root(fs_info->delayed_root); 2224 2225 mutex_init(&fs_info->scrub_lock); 2226 atomic_set(&fs_info->scrubs_running, 0); 2227 atomic_set(&fs_info->scrub_pause_req, 0); 2228 atomic_set(&fs_info->scrubs_paused, 0); 2229 atomic_set(&fs_info->scrub_cancel_req, 0); 2230 init_waitqueue_head(&fs_info->scrub_pause_wait); 2231 init_rwsem(&fs_info->scrub_super_lock); 2232 fs_info->scrub_workers_refcnt = 0; 2233 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2234 fs_info->check_integrity_print_mask = 0; 2235 #endif 2236 2237 spin_lock_init(&fs_info->balance_lock); 2238 mutex_init(&fs_info->balance_mutex); 2239 atomic_set(&fs_info->balance_running, 0); 2240 atomic_set(&fs_info->balance_pause_req, 0); 2241 atomic_set(&fs_info->balance_cancel_req, 0); 2242 fs_info->balance_ctl = NULL; 2243 init_waitqueue_head(&fs_info->balance_wait_q); 2244 2245 sb->s_blocksize = 4096; 2246 sb->s_blocksize_bits = blksize_bits(4096); 2247 sb->s_bdi = &fs_info->bdi; 2248 2249 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2250 set_nlink(fs_info->btree_inode, 1); 2251 /* 2252 * we set the i_size on the btree inode to the max possible int. 2253 * the real end of the address space is determined by all of 2254 * the devices in the system 2255 */ 2256 fs_info->btree_inode->i_size = OFFSET_MAX; 2257 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2258 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2259 2260 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2261 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2262 fs_info->btree_inode->i_mapping); 2263 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2264 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2265 2266 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2267 2268 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2269 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2270 sizeof(struct btrfs_key)); 2271 set_bit(BTRFS_INODE_DUMMY, 2272 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2273 insert_inode_hash(fs_info->btree_inode); 2274 2275 spin_lock_init(&fs_info->block_group_cache_lock); 2276 fs_info->block_group_cache_tree = RB_ROOT; 2277 fs_info->first_logical_byte = (u64)-1; 2278 2279 extent_io_tree_init(&fs_info->freed_extents[0], 2280 fs_info->btree_inode->i_mapping); 2281 extent_io_tree_init(&fs_info->freed_extents[1], 2282 fs_info->btree_inode->i_mapping); 2283 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2284 fs_info->do_barriers = 1; 2285 2286 2287 mutex_init(&fs_info->ordered_operations_mutex); 2288 mutex_init(&fs_info->ordered_extent_flush_mutex); 2289 mutex_init(&fs_info->tree_log_mutex); 2290 mutex_init(&fs_info->chunk_mutex); 2291 mutex_init(&fs_info->transaction_kthread_mutex); 2292 mutex_init(&fs_info->cleaner_mutex); 2293 mutex_init(&fs_info->volume_mutex); 2294 init_rwsem(&fs_info->extent_commit_sem); 2295 init_rwsem(&fs_info->cleanup_work_sem); 2296 init_rwsem(&fs_info->subvol_sem); 2297 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2298 fs_info->dev_replace.lock_owner = 0; 2299 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2300 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2301 mutex_init(&fs_info->dev_replace.lock_management_lock); 2302 mutex_init(&fs_info->dev_replace.lock); 2303 2304 spin_lock_init(&fs_info->qgroup_lock); 2305 mutex_init(&fs_info->qgroup_ioctl_lock); 2306 fs_info->qgroup_tree = RB_ROOT; 2307 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2308 fs_info->qgroup_seq = 1; 2309 fs_info->quota_enabled = 0; 2310 fs_info->pending_quota_state = 0; 2311 fs_info->qgroup_ulist = NULL; 2312 mutex_init(&fs_info->qgroup_rescan_lock); 2313 2314 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2315 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2316 2317 init_waitqueue_head(&fs_info->transaction_throttle); 2318 init_waitqueue_head(&fs_info->transaction_wait); 2319 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2320 init_waitqueue_head(&fs_info->async_submit_wait); 2321 2322 ret = btrfs_alloc_stripe_hash_table(fs_info); 2323 if (ret) { 2324 err = ret; 2325 goto fail_alloc; 2326 } 2327 2328 __setup_root(4096, 4096, 4096, 4096, tree_root, 2329 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2330 2331 invalidate_bdev(fs_devices->latest_bdev); 2332 2333 /* 2334 * Read super block and check the signature bytes only 2335 */ 2336 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2337 if (!bh) { 2338 err = -EINVAL; 2339 goto fail_alloc; 2340 } 2341 2342 /* 2343 * We want to check superblock checksum, the type is stored inside. 2344 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2345 */ 2346 if (btrfs_check_super_csum(bh->b_data)) { 2347 printk(KERN_ERR "btrfs: superblock checksum mismatch\n"); 2348 err = -EINVAL; 2349 goto fail_alloc; 2350 } 2351 2352 /* 2353 * super_copy is zeroed at allocation time and we never touch the 2354 * following bytes up to INFO_SIZE, the checksum is calculated from 2355 * the whole block of INFO_SIZE 2356 */ 2357 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2358 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2359 sizeof(*fs_info->super_for_commit)); 2360 brelse(bh); 2361 2362 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2363 2364 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2365 if (ret) { 2366 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2367 err = -EINVAL; 2368 goto fail_alloc; 2369 } 2370 2371 disk_super = fs_info->super_copy; 2372 if (!btrfs_super_root(disk_super)) 2373 goto fail_alloc; 2374 2375 /* check FS state, whether FS is broken. */ 2376 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2377 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2378 2379 /* 2380 * run through our array of backup supers and setup 2381 * our ring pointer to the oldest one 2382 */ 2383 generation = btrfs_super_generation(disk_super); 2384 find_oldest_super_backup(fs_info, generation); 2385 2386 /* 2387 * In the long term, we'll store the compression type in the super 2388 * block, and it'll be used for per file compression control. 2389 */ 2390 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2391 2392 ret = btrfs_parse_options(tree_root, options); 2393 if (ret) { 2394 err = ret; 2395 goto fail_alloc; 2396 } 2397 2398 features = btrfs_super_incompat_flags(disk_super) & 2399 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2400 if (features) { 2401 printk(KERN_ERR "BTRFS: couldn't mount because of " 2402 "unsupported optional features (%Lx).\n", 2403 features); 2404 err = -EINVAL; 2405 goto fail_alloc; 2406 } 2407 2408 if (btrfs_super_leafsize(disk_super) != 2409 btrfs_super_nodesize(disk_super)) { 2410 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2411 "blocksizes don't match. node %d leaf %d\n", 2412 btrfs_super_nodesize(disk_super), 2413 btrfs_super_leafsize(disk_super)); 2414 err = -EINVAL; 2415 goto fail_alloc; 2416 } 2417 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2418 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2419 "blocksize (%d) was too large\n", 2420 btrfs_super_leafsize(disk_super)); 2421 err = -EINVAL; 2422 goto fail_alloc; 2423 } 2424 2425 features = btrfs_super_incompat_flags(disk_super); 2426 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2427 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2428 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2429 2430 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2431 printk(KERN_ERR "btrfs: has skinny extents\n"); 2432 2433 /* 2434 * flag our filesystem as having big metadata blocks if 2435 * they are bigger than the page size 2436 */ 2437 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2438 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2439 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2440 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2441 } 2442 2443 nodesize = btrfs_super_nodesize(disk_super); 2444 leafsize = btrfs_super_leafsize(disk_super); 2445 sectorsize = btrfs_super_sectorsize(disk_super); 2446 stripesize = btrfs_super_stripesize(disk_super); 2447 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2448 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2449 2450 /* 2451 * mixed block groups end up with duplicate but slightly offset 2452 * extent buffers for the same range. It leads to corruptions 2453 */ 2454 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2455 (sectorsize != leafsize)) { 2456 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2457 "are not allowed for mixed block groups on %s\n", 2458 sb->s_id); 2459 goto fail_alloc; 2460 } 2461 2462 /* 2463 * Needn't use the lock because there is no other task which will 2464 * update the flag. 2465 */ 2466 btrfs_set_super_incompat_flags(disk_super, features); 2467 2468 features = btrfs_super_compat_ro_flags(disk_super) & 2469 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2470 if (!(sb->s_flags & MS_RDONLY) && features) { 2471 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2472 "unsupported option features (%Lx).\n", 2473 features); 2474 err = -EINVAL; 2475 goto fail_alloc; 2476 } 2477 2478 btrfs_init_workers(&fs_info->generic_worker, 2479 "genwork", 1, NULL); 2480 2481 btrfs_init_workers(&fs_info->workers, "worker", 2482 fs_info->thread_pool_size, 2483 &fs_info->generic_worker); 2484 2485 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2486 fs_info->thread_pool_size, 2487 &fs_info->generic_worker); 2488 2489 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", 2490 fs_info->thread_pool_size, 2491 &fs_info->generic_worker); 2492 2493 btrfs_init_workers(&fs_info->submit_workers, "submit", 2494 min_t(u64, fs_devices->num_devices, 2495 fs_info->thread_pool_size), 2496 &fs_info->generic_worker); 2497 2498 btrfs_init_workers(&fs_info->caching_workers, "cache", 2499 2, &fs_info->generic_worker); 2500 2501 /* a higher idle thresh on the submit workers makes it much more 2502 * likely that bios will be send down in a sane order to the 2503 * devices 2504 */ 2505 fs_info->submit_workers.idle_thresh = 64; 2506 2507 fs_info->workers.idle_thresh = 16; 2508 fs_info->workers.ordered = 1; 2509 2510 fs_info->delalloc_workers.idle_thresh = 2; 2511 fs_info->delalloc_workers.ordered = 1; 2512 2513 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2514 &fs_info->generic_worker); 2515 btrfs_init_workers(&fs_info->endio_workers, "endio", 2516 fs_info->thread_pool_size, 2517 &fs_info->generic_worker); 2518 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2519 fs_info->thread_pool_size, 2520 &fs_info->generic_worker); 2521 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2522 "endio-meta-write", fs_info->thread_pool_size, 2523 &fs_info->generic_worker); 2524 btrfs_init_workers(&fs_info->endio_raid56_workers, 2525 "endio-raid56", fs_info->thread_pool_size, 2526 &fs_info->generic_worker); 2527 btrfs_init_workers(&fs_info->rmw_workers, 2528 "rmw", fs_info->thread_pool_size, 2529 &fs_info->generic_worker); 2530 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2531 fs_info->thread_pool_size, 2532 &fs_info->generic_worker); 2533 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2534 1, &fs_info->generic_worker); 2535 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2536 fs_info->thread_pool_size, 2537 &fs_info->generic_worker); 2538 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2539 fs_info->thread_pool_size, 2540 &fs_info->generic_worker); 2541 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1, 2542 &fs_info->generic_worker); 2543 2544 /* 2545 * endios are largely parallel and should have a very 2546 * low idle thresh 2547 */ 2548 fs_info->endio_workers.idle_thresh = 4; 2549 fs_info->endio_meta_workers.idle_thresh = 4; 2550 fs_info->endio_raid56_workers.idle_thresh = 4; 2551 fs_info->rmw_workers.idle_thresh = 2; 2552 2553 fs_info->endio_write_workers.idle_thresh = 2; 2554 fs_info->endio_meta_write_workers.idle_thresh = 2; 2555 fs_info->readahead_workers.idle_thresh = 2; 2556 2557 /* 2558 * btrfs_start_workers can really only fail because of ENOMEM so just 2559 * return -ENOMEM if any of these fail. 2560 */ 2561 ret = btrfs_start_workers(&fs_info->workers); 2562 ret |= btrfs_start_workers(&fs_info->generic_worker); 2563 ret |= btrfs_start_workers(&fs_info->submit_workers); 2564 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2565 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2566 ret |= btrfs_start_workers(&fs_info->endio_workers); 2567 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2568 ret |= btrfs_start_workers(&fs_info->rmw_workers); 2569 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers); 2570 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2571 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2572 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2573 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2574 ret |= btrfs_start_workers(&fs_info->caching_workers); 2575 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2576 ret |= btrfs_start_workers(&fs_info->flush_workers); 2577 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers); 2578 if (ret) { 2579 err = -ENOMEM; 2580 goto fail_sb_buffer; 2581 } 2582 2583 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2584 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2585 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2586 2587 tree_root->nodesize = nodesize; 2588 tree_root->leafsize = leafsize; 2589 tree_root->sectorsize = sectorsize; 2590 tree_root->stripesize = stripesize; 2591 2592 sb->s_blocksize = sectorsize; 2593 sb->s_blocksize_bits = blksize_bits(sectorsize); 2594 2595 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2596 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2597 goto fail_sb_buffer; 2598 } 2599 2600 if (sectorsize != PAGE_SIZE) { 2601 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2602 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2603 goto fail_sb_buffer; 2604 } 2605 2606 mutex_lock(&fs_info->chunk_mutex); 2607 ret = btrfs_read_sys_array(tree_root); 2608 mutex_unlock(&fs_info->chunk_mutex); 2609 if (ret) { 2610 printk(KERN_WARNING "btrfs: failed to read the system " 2611 "array on %s\n", sb->s_id); 2612 goto fail_sb_buffer; 2613 } 2614 2615 blocksize = btrfs_level_size(tree_root, 2616 btrfs_super_chunk_root_level(disk_super)); 2617 generation = btrfs_super_chunk_root_generation(disk_super); 2618 2619 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2620 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2621 2622 chunk_root->node = read_tree_block(chunk_root, 2623 btrfs_super_chunk_root(disk_super), 2624 blocksize, generation); 2625 if (!chunk_root->node || 2626 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2627 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2628 sb->s_id); 2629 goto fail_tree_roots; 2630 } 2631 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2632 chunk_root->commit_root = btrfs_root_node(chunk_root); 2633 2634 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2635 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2636 BTRFS_UUID_SIZE); 2637 2638 ret = btrfs_read_chunk_tree(chunk_root); 2639 if (ret) { 2640 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2641 sb->s_id); 2642 goto fail_tree_roots; 2643 } 2644 2645 /* 2646 * keep the device that is marked to be the target device for the 2647 * dev_replace procedure 2648 */ 2649 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2650 2651 if (!fs_devices->latest_bdev) { 2652 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2653 sb->s_id); 2654 goto fail_tree_roots; 2655 } 2656 2657 retry_root_backup: 2658 blocksize = btrfs_level_size(tree_root, 2659 btrfs_super_root_level(disk_super)); 2660 generation = btrfs_super_generation(disk_super); 2661 2662 tree_root->node = read_tree_block(tree_root, 2663 btrfs_super_root(disk_super), 2664 blocksize, generation); 2665 if (!tree_root->node || 2666 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2667 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2668 sb->s_id); 2669 2670 goto recovery_tree_root; 2671 } 2672 2673 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2674 tree_root->commit_root = btrfs_root_node(tree_root); 2675 2676 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2677 location.type = BTRFS_ROOT_ITEM_KEY; 2678 location.offset = 0; 2679 2680 extent_root = btrfs_read_tree_root(tree_root, &location); 2681 if (IS_ERR(extent_root)) { 2682 ret = PTR_ERR(extent_root); 2683 goto recovery_tree_root; 2684 } 2685 extent_root->track_dirty = 1; 2686 fs_info->extent_root = extent_root; 2687 2688 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2689 dev_root = btrfs_read_tree_root(tree_root, &location); 2690 if (IS_ERR(dev_root)) { 2691 ret = PTR_ERR(dev_root); 2692 goto recovery_tree_root; 2693 } 2694 dev_root->track_dirty = 1; 2695 fs_info->dev_root = dev_root; 2696 btrfs_init_devices_late(fs_info); 2697 2698 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2699 csum_root = btrfs_read_tree_root(tree_root, &location); 2700 if (IS_ERR(csum_root)) { 2701 ret = PTR_ERR(csum_root); 2702 goto recovery_tree_root; 2703 } 2704 csum_root->track_dirty = 1; 2705 fs_info->csum_root = csum_root; 2706 2707 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2708 quota_root = btrfs_read_tree_root(tree_root, &location); 2709 if (!IS_ERR(quota_root)) { 2710 quota_root->track_dirty = 1; 2711 fs_info->quota_enabled = 1; 2712 fs_info->pending_quota_state = 1; 2713 fs_info->quota_root = quota_root; 2714 } 2715 2716 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2717 uuid_root = btrfs_read_tree_root(tree_root, &location); 2718 if (IS_ERR(uuid_root)) { 2719 ret = PTR_ERR(uuid_root); 2720 if (ret != -ENOENT) 2721 goto recovery_tree_root; 2722 create_uuid_tree = true; 2723 check_uuid_tree = false; 2724 } else { 2725 uuid_root->track_dirty = 1; 2726 fs_info->uuid_root = uuid_root; 2727 create_uuid_tree = false; 2728 check_uuid_tree = 2729 generation != btrfs_super_uuid_tree_generation(disk_super); 2730 } 2731 2732 fs_info->generation = generation; 2733 fs_info->last_trans_committed = generation; 2734 2735 ret = btrfs_recover_balance(fs_info); 2736 if (ret) { 2737 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2738 goto fail_block_groups; 2739 } 2740 2741 ret = btrfs_init_dev_stats(fs_info); 2742 if (ret) { 2743 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2744 ret); 2745 goto fail_block_groups; 2746 } 2747 2748 ret = btrfs_init_dev_replace(fs_info); 2749 if (ret) { 2750 pr_err("btrfs: failed to init dev_replace: %d\n", ret); 2751 goto fail_block_groups; 2752 } 2753 2754 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2755 2756 ret = btrfs_init_space_info(fs_info); 2757 if (ret) { 2758 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2759 goto fail_block_groups; 2760 } 2761 2762 ret = btrfs_read_block_groups(extent_root); 2763 if (ret) { 2764 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2765 goto fail_block_groups; 2766 } 2767 fs_info->num_tolerated_disk_barrier_failures = 2768 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2769 if (fs_info->fs_devices->missing_devices > 2770 fs_info->num_tolerated_disk_barrier_failures && 2771 !(sb->s_flags & MS_RDONLY)) { 2772 printk(KERN_WARNING 2773 "Btrfs: too many missing devices, writeable mount is not allowed\n"); 2774 goto fail_block_groups; 2775 } 2776 2777 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2778 "btrfs-cleaner"); 2779 if (IS_ERR(fs_info->cleaner_kthread)) 2780 goto fail_block_groups; 2781 2782 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2783 tree_root, 2784 "btrfs-transaction"); 2785 if (IS_ERR(fs_info->transaction_kthread)) 2786 goto fail_cleaner; 2787 2788 if (!btrfs_test_opt(tree_root, SSD) && 2789 !btrfs_test_opt(tree_root, NOSSD) && 2790 !fs_info->fs_devices->rotating) { 2791 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2792 "mode\n"); 2793 btrfs_set_opt(fs_info->mount_opt, SSD); 2794 } 2795 2796 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2797 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2798 ret = btrfsic_mount(tree_root, fs_devices, 2799 btrfs_test_opt(tree_root, 2800 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2801 1 : 0, 2802 fs_info->check_integrity_print_mask); 2803 if (ret) 2804 printk(KERN_WARNING "btrfs: failed to initialize" 2805 " integrity check module %s\n", sb->s_id); 2806 } 2807 #endif 2808 ret = btrfs_read_qgroup_config(fs_info); 2809 if (ret) 2810 goto fail_trans_kthread; 2811 2812 /* do not make disk changes in broken FS */ 2813 if (btrfs_super_log_root(disk_super) != 0) { 2814 u64 bytenr = btrfs_super_log_root(disk_super); 2815 2816 if (fs_devices->rw_devices == 0) { 2817 printk(KERN_WARNING "Btrfs log replay required " 2818 "on RO media\n"); 2819 err = -EIO; 2820 goto fail_qgroup; 2821 } 2822 blocksize = 2823 btrfs_level_size(tree_root, 2824 btrfs_super_log_root_level(disk_super)); 2825 2826 log_tree_root = btrfs_alloc_root(fs_info); 2827 if (!log_tree_root) { 2828 err = -ENOMEM; 2829 goto fail_qgroup; 2830 } 2831 2832 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2833 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2834 2835 log_tree_root->node = read_tree_block(tree_root, bytenr, 2836 blocksize, 2837 generation + 1); 2838 if (!log_tree_root->node || 2839 !extent_buffer_uptodate(log_tree_root->node)) { 2840 printk(KERN_ERR "btrfs: failed to read log tree\n"); 2841 free_extent_buffer(log_tree_root->node); 2842 kfree(log_tree_root); 2843 goto fail_trans_kthread; 2844 } 2845 /* returns with log_tree_root freed on success */ 2846 ret = btrfs_recover_log_trees(log_tree_root); 2847 if (ret) { 2848 btrfs_error(tree_root->fs_info, ret, 2849 "Failed to recover log tree"); 2850 free_extent_buffer(log_tree_root->node); 2851 kfree(log_tree_root); 2852 goto fail_trans_kthread; 2853 } 2854 2855 if (sb->s_flags & MS_RDONLY) { 2856 ret = btrfs_commit_super(tree_root); 2857 if (ret) 2858 goto fail_trans_kthread; 2859 } 2860 } 2861 2862 ret = btrfs_find_orphan_roots(tree_root); 2863 if (ret) 2864 goto fail_trans_kthread; 2865 2866 if (!(sb->s_flags & MS_RDONLY)) { 2867 ret = btrfs_cleanup_fs_roots(fs_info); 2868 if (ret) 2869 goto fail_trans_kthread; 2870 2871 ret = btrfs_recover_relocation(tree_root); 2872 if (ret < 0) { 2873 printk(KERN_WARNING 2874 "btrfs: failed to recover relocation\n"); 2875 err = -EINVAL; 2876 goto fail_qgroup; 2877 } 2878 } 2879 2880 location.objectid = BTRFS_FS_TREE_OBJECTID; 2881 location.type = BTRFS_ROOT_ITEM_KEY; 2882 location.offset = 0; 2883 2884 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2885 if (IS_ERR(fs_info->fs_root)) { 2886 err = PTR_ERR(fs_info->fs_root); 2887 goto fail_qgroup; 2888 } 2889 2890 if (sb->s_flags & MS_RDONLY) 2891 return 0; 2892 2893 down_read(&fs_info->cleanup_work_sem); 2894 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2895 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2896 up_read(&fs_info->cleanup_work_sem); 2897 close_ctree(tree_root); 2898 return ret; 2899 } 2900 up_read(&fs_info->cleanup_work_sem); 2901 2902 ret = btrfs_resume_balance_async(fs_info); 2903 if (ret) { 2904 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2905 close_ctree(tree_root); 2906 return ret; 2907 } 2908 2909 ret = btrfs_resume_dev_replace_async(fs_info); 2910 if (ret) { 2911 pr_warn("btrfs: failed to resume dev_replace\n"); 2912 close_ctree(tree_root); 2913 return ret; 2914 } 2915 2916 btrfs_qgroup_rescan_resume(fs_info); 2917 2918 if (create_uuid_tree) { 2919 pr_info("btrfs: creating UUID tree\n"); 2920 ret = btrfs_create_uuid_tree(fs_info); 2921 if (ret) { 2922 pr_warn("btrfs: failed to create the UUID tree %d\n", 2923 ret); 2924 close_ctree(tree_root); 2925 return ret; 2926 } 2927 } else if (check_uuid_tree || 2928 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2929 pr_info("btrfs: checking UUID tree\n"); 2930 ret = btrfs_check_uuid_tree(fs_info); 2931 if (ret) { 2932 pr_warn("btrfs: failed to check the UUID tree %d\n", 2933 ret); 2934 close_ctree(tree_root); 2935 return ret; 2936 } 2937 } else { 2938 fs_info->update_uuid_tree_gen = 1; 2939 } 2940 2941 return 0; 2942 2943 fail_qgroup: 2944 btrfs_free_qgroup_config(fs_info); 2945 fail_trans_kthread: 2946 kthread_stop(fs_info->transaction_kthread); 2947 btrfs_cleanup_transaction(fs_info->tree_root); 2948 del_fs_roots(fs_info); 2949 fail_cleaner: 2950 kthread_stop(fs_info->cleaner_kthread); 2951 2952 /* 2953 * make sure we're done with the btree inode before we stop our 2954 * kthreads 2955 */ 2956 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2957 2958 fail_block_groups: 2959 btrfs_put_block_group_cache(fs_info); 2960 btrfs_free_block_groups(fs_info); 2961 2962 fail_tree_roots: 2963 free_root_pointers(fs_info, 1); 2964 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2965 2966 fail_sb_buffer: 2967 btrfs_stop_all_workers(fs_info); 2968 fail_alloc: 2969 fail_iput: 2970 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2971 2972 iput(fs_info->btree_inode); 2973 fail_delalloc_bytes: 2974 percpu_counter_destroy(&fs_info->delalloc_bytes); 2975 fail_dirty_metadata_bytes: 2976 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 2977 fail_bdi: 2978 bdi_destroy(&fs_info->bdi); 2979 fail_srcu: 2980 cleanup_srcu_struct(&fs_info->subvol_srcu); 2981 fail: 2982 btrfs_free_stripe_hash_table(fs_info); 2983 btrfs_close_devices(fs_info->fs_devices); 2984 return err; 2985 2986 recovery_tree_root: 2987 if (!btrfs_test_opt(tree_root, RECOVERY)) 2988 goto fail_tree_roots; 2989 2990 free_root_pointers(fs_info, 0); 2991 2992 /* don't use the log in recovery mode, it won't be valid */ 2993 btrfs_set_super_log_root(disk_super, 0); 2994 2995 /* we can't trust the free space cache either */ 2996 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2997 2998 ret = next_root_backup(fs_info, fs_info->super_copy, 2999 &num_backups_tried, &backup_index); 3000 if (ret == -1) 3001 goto fail_block_groups; 3002 goto retry_root_backup; 3003 } 3004 3005 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3006 { 3007 if (uptodate) { 3008 set_buffer_uptodate(bh); 3009 } else { 3010 struct btrfs_device *device = (struct btrfs_device *) 3011 bh->b_private; 3012 3013 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 3014 "I/O error on %s\n", 3015 rcu_str_deref(device->name)); 3016 /* note, we dont' set_buffer_write_io_error because we have 3017 * our own ways of dealing with the IO errors 3018 */ 3019 clear_buffer_uptodate(bh); 3020 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3021 } 3022 unlock_buffer(bh); 3023 put_bh(bh); 3024 } 3025 3026 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3027 { 3028 struct buffer_head *bh; 3029 struct buffer_head *latest = NULL; 3030 struct btrfs_super_block *super; 3031 int i; 3032 u64 transid = 0; 3033 u64 bytenr; 3034 3035 /* we would like to check all the supers, but that would make 3036 * a btrfs mount succeed after a mkfs from a different FS. 3037 * So, we need to add a special mount option to scan for 3038 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3039 */ 3040 for (i = 0; i < 1; i++) { 3041 bytenr = btrfs_sb_offset(i); 3042 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3043 i_size_read(bdev->bd_inode)) 3044 break; 3045 bh = __bread(bdev, bytenr / 4096, 3046 BTRFS_SUPER_INFO_SIZE); 3047 if (!bh) 3048 continue; 3049 3050 super = (struct btrfs_super_block *)bh->b_data; 3051 if (btrfs_super_bytenr(super) != bytenr || 3052 btrfs_super_magic(super) != BTRFS_MAGIC) { 3053 brelse(bh); 3054 continue; 3055 } 3056 3057 if (!latest || btrfs_super_generation(super) > transid) { 3058 brelse(latest); 3059 latest = bh; 3060 transid = btrfs_super_generation(super); 3061 } else { 3062 brelse(bh); 3063 } 3064 } 3065 return latest; 3066 } 3067 3068 /* 3069 * this should be called twice, once with wait == 0 and 3070 * once with wait == 1. When wait == 0 is done, all the buffer heads 3071 * we write are pinned. 3072 * 3073 * They are released when wait == 1 is done. 3074 * max_mirrors must be the same for both runs, and it indicates how 3075 * many supers on this one device should be written. 3076 * 3077 * max_mirrors == 0 means to write them all. 3078 */ 3079 static int write_dev_supers(struct btrfs_device *device, 3080 struct btrfs_super_block *sb, 3081 int do_barriers, int wait, int max_mirrors) 3082 { 3083 struct buffer_head *bh; 3084 int i; 3085 int ret; 3086 int errors = 0; 3087 u32 crc; 3088 u64 bytenr; 3089 3090 if (max_mirrors == 0) 3091 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3092 3093 for (i = 0; i < max_mirrors; i++) { 3094 bytenr = btrfs_sb_offset(i); 3095 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 3096 break; 3097 3098 if (wait) { 3099 bh = __find_get_block(device->bdev, bytenr / 4096, 3100 BTRFS_SUPER_INFO_SIZE); 3101 if (!bh) { 3102 errors++; 3103 continue; 3104 } 3105 wait_on_buffer(bh); 3106 if (!buffer_uptodate(bh)) 3107 errors++; 3108 3109 /* drop our reference */ 3110 brelse(bh); 3111 3112 /* drop the reference from the wait == 0 run */ 3113 brelse(bh); 3114 continue; 3115 } else { 3116 btrfs_set_super_bytenr(sb, bytenr); 3117 3118 crc = ~(u32)0; 3119 crc = btrfs_csum_data((char *)sb + 3120 BTRFS_CSUM_SIZE, crc, 3121 BTRFS_SUPER_INFO_SIZE - 3122 BTRFS_CSUM_SIZE); 3123 btrfs_csum_final(crc, sb->csum); 3124 3125 /* 3126 * one reference for us, and we leave it for the 3127 * caller 3128 */ 3129 bh = __getblk(device->bdev, bytenr / 4096, 3130 BTRFS_SUPER_INFO_SIZE); 3131 if (!bh) { 3132 printk(KERN_ERR "btrfs: couldn't get super " 3133 "buffer head for bytenr %Lu\n", bytenr); 3134 errors++; 3135 continue; 3136 } 3137 3138 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3139 3140 /* one reference for submit_bh */ 3141 get_bh(bh); 3142 3143 set_buffer_uptodate(bh); 3144 lock_buffer(bh); 3145 bh->b_end_io = btrfs_end_buffer_write_sync; 3146 bh->b_private = device; 3147 } 3148 3149 /* 3150 * we fua the first super. The others we allow 3151 * to go down lazy. 3152 */ 3153 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3154 if (ret) 3155 errors++; 3156 } 3157 return errors < i ? 0 : -1; 3158 } 3159 3160 /* 3161 * endio for the write_dev_flush, this will wake anyone waiting 3162 * for the barrier when it is done 3163 */ 3164 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3165 { 3166 if (err) { 3167 if (err == -EOPNOTSUPP) 3168 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3169 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3170 } 3171 if (bio->bi_private) 3172 complete(bio->bi_private); 3173 bio_put(bio); 3174 } 3175 3176 /* 3177 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3178 * sent down. With wait == 1, it waits for the previous flush. 3179 * 3180 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3181 * capable 3182 */ 3183 static int write_dev_flush(struct btrfs_device *device, int wait) 3184 { 3185 struct bio *bio; 3186 int ret = 0; 3187 3188 if (device->nobarriers) 3189 return 0; 3190 3191 if (wait) { 3192 bio = device->flush_bio; 3193 if (!bio) 3194 return 0; 3195 3196 wait_for_completion(&device->flush_wait); 3197 3198 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3199 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 3200 rcu_str_deref(device->name)); 3201 device->nobarriers = 1; 3202 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3203 ret = -EIO; 3204 btrfs_dev_stat_inc_and_print(device, 3205 BTRFS_DEV_STAT_FLUSH_ERRS); 3206 } 3207 3208 /* drop the reference from the wait == 0 run */ 3209 bio_put(bio); 3210 device->flush_bio = NULL; 3211 3212 return ret; 3213 } 3214 3215 /* 3216 * one reference for us, and we leave it for the 3217 * caller 3218 */ 3219 device->flush_bio = NULL; 3220 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3221 if (!bio) 3222 return -ENOMEM; 3223 3224 bio->bi_end_io = btrfs_end_empty_barrier; 3225 bio->bi_bdev = device->bdev; 3226 init_completion(&device->flush_wait); 3227 bio->bi_private = &device->flush_wait; 3228 device->flush_bio = bio; 3229 3230 bio_get(bio); 3231 btrfsic_submit_bio(WRITE_FLUSH, bio); 3232 3233 return 0; 3234 } 3235 3236 /* 3237 * send an empty flush down to each device in parallel, 3238 * then wait for them 3239 */ 3240 static int barrier_all_devices(struct btrfs_fs_info *info) 3241 { 3242 struct list_head *head; 3243 struct btrfs_device *dev; 3244 int errors_send = 0; 3245 int errors_wait = 0; 3246 int ret; 3247 3248 /* send down all the barriers */ 3249 head = &info->fs_devices->devices; 3250 list_for_each_entry_rcu(dev, head, dev_list) { 3251 if (!dev->bdev) { 3252 errors_send++; 3253 continue; 3254 } 3255 if (!dev->in_fs_metadata || !dev->writeable) 3256 continue; 3257 3258 ret = write_dev_flush(dev, 0); 3259 if (ret) 3260 errors_send++; 3261 } 3262 3263 /* wait for all the barriers */ 3264 list_for_each_entry_rcu(dev, head, dev_list) { 3265 if (!dev->bdev) { 3266 errors_wait++; 3267 continue; 3268 } 3269 if (!dev->in_fs_metadata || !dev->writeable) 3270 continue; 3271 3272 ret = write_dev_flush(dev, 1); 3273 if (ret) 3274 errors_wait++; 3275 } 3276 if (errors_send > info->num_tolerated_disk_barrier_failures || 3277 errors_wait > info->num_tolerated_disk_barrier_failures) 3278 return -EIO; 3279 return 0; 3280 } 3281 3282 int btrfs_calc_num_tolerated_disk_barrier_failures( 3283 struct btrfs_fs_info *fs_info) 3284 { 3285 struct btrfs_ioctl_space_info space; 3286 struct btrfs_space_info *sinfo; 3287 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3288 BTRFS_BLOCK_GROUP_SYSTEM, 3289 BTRFS_BLOCK_GROUP_METADATA, 3290 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3291 int num_types = 4; 3292 int i; 3293 int c; 3294 int num_tolerated_disk_barrier_failures = 3295 (int)fs_info->fs_devices->num_devices; 3296 3297 for (i = 0; i < num_types; i++) { 3298 struct btrfs_space_info *tmp; 3299 3300 sinfo = NULL; 3301 rcu_read_lock(); 3302 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3303 if (tmp->flags == types[i]) { 3304 sinfo = tmp; 3305 break; 3306 } 3307 } 3308 rcu_read_unlock(); 3309 3310 if (!sinfo) 3311 continue; 3312 3313 down_read(&sinfo->groups_sem); 3314 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3315 if (!list_empty(&sinfo->block_groups[c])) { 3316 u64 flags; 3317 3318 btrfs_get_block_group_info( 3319 &sinfo->block_groups[c], &space); 3320 if (space.total_bytes == 0 || 3321 space.used_bytes == 0) 3322 continue; 3323 flags = space.flags; 3324 /* 3325 * return 3326 * 0: if dup, single or RAID0 is configured for 3327 * any of metadata, system or data, else 3328 * 1: if RAID5 is configured, or if RAID1 or 3329 * RAID10 is configured and only two mirrors 3330 * are used, else 3331 * 2: if RAID6 is configured, else 3332 * num_mirrors - 1: if RAID1 or RAID10 is 3333 * configured and more than 3334 * 2 mirrors are used. 3335 */ 3336 if (num_tolerated_disk_barrier_failures > 0 && 3337 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3338 BTRFS_BLOCK_GROUP_RAID0)) || 3339 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3340 == 0))) 3341 num_tolerated_disk_barrier_failures = 0; 3342 else if (num_tolerated_disk_barrier_failures > 1) { 3343 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3344 BTRFS_BLOCK_GROUP_RAID5 | 3345 BTRFS_BLOCK_GROUP_RAID10)) { 3346 num_tolerated_disk_barrier_failures = 1; 3347 } else if (flags & 3348 BTRFS_BLOCK_GROUP_RAID6) { 3349 num_tolerated_disk_barrier_failures = 2; 3350 } 3351 } 3352 } 3353 } 3354 up_read(&sinfo->groups_sem); 3355 } 3356 3357 return num_tolerated_disk_barrier_failures; 3358 } 3359 3360 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3361 { 3362 struct list_head *head; 3363 struct btrfs_device *dev; 3364 struct btrfs_super_block *sb; 3365 struct btrfs_dev_item *dev_item; 3366 int ret; 3367 int do_barriers; 3368 int max_errors; 3369 int total_errors = 0; 3370 u64 flags; 3371 3372 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3373 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3374 backup_super_roots(root->fs_info); 3375 3376 sb = root->fs_info->super_for_commit; 3377 dev_item = &sb->dev_item; 3378 3379 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3380 head = &root->fs_info->fs_devices->devices; 3381 3382 if (do_barriers) { 3383 ret = barrier_all_devices(root->fs_info); 3384 if (ret) { 3385 mutex_unlock( 3386 &root->fs_info->fs_devices->device_list_mutex); 3387 btrfs_error(root->fs_info, ret, 3388 "errors while submitting device barriers."); 3389 return ret; 3390 } 3391 } 3392 3393 list_for_each_entry_rcu(dev, head, dev_list) { 3394 if (!dev->bdev) { 3395 total_errors++; 3396 continue; 3397 } 3398 if (!dev->in_fs_metadata || !dev->writeable) 3399 continue; 3400 3401 btrfs_set_stack_device_generation(dev_item, 0); 3402 btrfs_set_stack_device_type(dev_item, dev->type); 3403 btrfs_set_stack_device_id(dev_item, dev->devid); 3404 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3405 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3406 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3407 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3408 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3409 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3410 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3411 3412 flags = btrfs_super_flags(sb); 3413 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3414 3415 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3416 if (ret) 3417 total_errors++; 3418 } 3419 if (total_errors > max_errors) { 3420 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3421 total_errors); 3422 3423 /* This shouldn't happen. FUA is masked off if unsupported */ 3424 BUG(); 3425 } 3426 3427 total_errors = 0; 3428 list_for_each_entry_rcu(dev, head, dev_list) { 3429 if (!dev->bdev) 3430 continue; 3431 if (!dev->in_fs_metadata || !dev->writeable) 3432 continue; 3433 3434 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3435 if (ret) 3436 total_errors++; 3437 } 3438 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3439 if (total_errors > max_errors) { 3440 btrfs_error(root->fs_info, -EIO, 3441 "%d errors while writing supers", total_errors); 3442 return -EIO; 3443 } 3444 return 0; 3445 } 3446 3447 int write_ctree_super(struct btrfs_trans_handle *trans, 3448 struct btrfs_root *root, int max_mirrors) 3449 { 3450 int ret; 3451 3452 ret = write_all_supers(root, max_mirrors); 3453 return ret; 3454 } 3455 3456 /* Drop a fs root from the radix tree and free it. */ 3457 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3458 struct btrfs_root *root) 3459 { 3460 spin_lock(&fs_info->fs_roots_radix_lock); 3461 radix_tree_delete(&fs_info->fs_roots_radix, 3462 (unsigned long)root->root_key.objectid); 3463 spin_unlock(&fs_info->fs_roots_radix_lock); 3464 3465 if (btrfs_root_refs(&root->root_item) == 0) 3466 synchronize_srcu(&fs_info->subvol_srcu); 3467 3468 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3469 btrfs_free_log(NULL, root); 3470 btrfs_free_log_root_tree(NULL, fs_info); 3471 } 3472 3473 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3474 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3475 free_fs_root(root); 3476 } 3477 3478 static void free_fs_root(struct btrfs_root *root) 3479 { 3480 iput(root->cache_inode); 3481 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3482 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3483 root->orphan_block_rsv = NULL; 3484 if (root->anon_dev) 3485 free_anon_bdev(root->anon_dev); 3486 free_extent_buffer(root->node); 3487 free_extent_buffer(root->commit_root); 3488 kfree(root->free_ino_ctl); 3489 kfree(root->free_ino_pinned); 3490 kfree(root->name); 3491 btrfs_put_fs_root(root); 3492 } 3493 3494 void btrfs_free_fs_root(struct btrfs_root *root) 3495 { 3496 free_fs_root(root); 3497 } 3498 3499 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3500 { 3501 u64 root_objectid = 0; 3502 struct btrfs_root *gang[8]; 3503 int i; 3504 int ret; 3505 3506 while (1) { 3507 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3508 (void **)gang, root_objectid, 3509 ARRAY_SIZE(gang)); 3510 if (!ret) 3511 break; 3512 3513 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3514 for (i = 0; i < ret; i++) { 3515 int err; 3516 3517 root_objectid = gang[i]->root_key.objectid; 3518 err = btrfs_orphan_cleanup(gang[i]); 3519 if (err) 3520 return err; 3521 } 3522 root_objectid++; 3523 } 3524 return 0; 3525 } 3526 3527 int btrfs_commit_super(struct btrfs_root *root) 3528 { 3529 struct btrfs_trans_handle *trans; 3530 int ret; 3531 3532 mutex_lock(&root->fs_info->cleaner_mutex); 3533 btrfs_run_delayed_iputs(root); 3534 mutex_unlock(&root->fs_info->cleaner_mutex); 3535 wake_up_process(root->fs_info->cleaner_kthread); 3536 3537 /* wait until ongoing cleanup work done */ 3538 down_write(&root->fs_info->cleanup_work_sem); 3539 up_write(&root->fs_info->cleanup_work_sem); 3540 3541 trans = btrfs_join_transaction(root); 3542 if (IS_ERR(trans)) 3543 return PTR_ERR(trans); 3544 ret = btrfs_commit_transaction(trans, root); 3545 if (ret) 3546 return ret; 3547 /* run commit again to drop the original snapshot */ 3548 trans = btrfs_join_transaction(root); 3549 if (IS_ERR(trans)) 3550 return PTR_ERR(trans); 3551 ret = btrfs_commit_transaction(trans, root); 3552 if (ret) 3553 return ret; 3554 ret = btrfs_write_and_wait_transaction(NULL, root); 3555 if (ret) { 3556 btrfs_error(root->fs_info, ret, 3557 "Failed to sync btree inode to disk."); 3558 return ret; 3559 } 3560 3561 ret = write_ctree_super(NULL, root, 0); 3562 return ret; 3563 } 3564 3565 int close_ctree(struct btrfs_root *root) 3566 { 3567 struct btrfs_fs_info *fs_info = root->fs_info; 3568 int ret; 3569 3570 fs_info->closing = 1; 3571 smp_mb(); 3572 3573 /* wait for the uuid_scan task to finish */ 3574 down(&fs_info->uuid_tree_rescan_sem); 3575 /* avoid complains from lockdep et al., set sem back to initial state */ 3576 up(&fs_info->uuid_tree_rescan_sem); 3577 3578 /* pause restriper - we want to resume on mount */ 3579 btrfs_pause_balance(fs_info); 3580 3581 btrfs_dev_replace_suspend_for_unmount(fs_info); 3582 3583 btrfs_scrub_cancel(fs_info); 3584 3585 /* wait for any defraggers to finish */ 3586 wait_event(fs_info->transaction_wait, 3587 (atomic_read(&fs_info->defrag_running) == 0)); 3588 3589 /* clear out the rbtree of defraggable inodes */ 3590 btrfs_cleanup_defrag_inodes(fs_info); 3591 3592 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3593 ret = btrfs_commit_super(root); 3594 if (ret) 3595 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3596 } 3597 3598 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3599 btrfs_error_commit_super(root); 3600 3601 btrfs_put_block_group_cache(fs_info); 3602 3603 kthread_stop(fs_info->transaction_kthread); 3604 kthread_stop(fs_info->cleaner_kthread); 3605 3606 fs_info->closing = 2; 3607 smp_mb(); 3608 3609 btrfs_free_qgroup_config(root->fs_info); 3610 3611 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3612 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n", 3613 percpu_counter_sum(&fs_info->delalloc_bytes)); 3614 } 3615 3616 btrfs_free_block_groups(fs_info); 3617 3618 btrfs_stop_all_workers(fs_info); 3619 3620 del_fs_roots(fs_info); 3621 3622 free_root_pointers(fs_info, 1); 3623 3624 iput(fs_info->btree_inode); 3625 3626 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3627 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3628 btrfsic_unmount(root, fs_info->fs_devices); 3629 #endif 3630 3631 btrfs_close_devices(fs_info->fs_devices); 3632 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3633 3634 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3635 percpu_counter_destroy(&fs_info->delalloc_bytes); 3636 bdi_destroy(&fs_info->bdi); 3637 cleanup_srcu_struct(&fs_info->subvol_srcu); 3638 3639 btrfs_free_stripe_hash_table(fs_info); 3640 3641 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3642 root->orphan_block_rsv = NULL; 3643 3644 return 0; 3645 } 3646 3647 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3648 int atomic) 3649 { 3650 int ret; 3651 struct inode *btree_inode = buf->pages[0]->mapping->host; 3652 3653 ret = extent_buffer_uptodate(buf); 3654 if (!ret) 3655 return ret; 3656 3657 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3658 parent_transid, atomic); 3659 if (ret == -EAGAIN) 3660 return ret; 3661 return !ret; 3662 } 3663 3664 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3665 { 3666 return set_extent_buffer_uptodate(buf); 3667 } 3668 3669 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3670 { 3671 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3672 u64 transid = btrfs_header_generation(buf); 3673 int was_dirty; 3674 3675 btrfs_assert_tree_locked(buf); 3676 if (transid != root->fs_info->generation) 3677 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3678 "found %llu running %llu\n", 3679 buf->start, transid, root->fs_info->generation); 3680 was_dirty = set_extent_buffer_dirty(buf); 3681 if (!was_dirty) 3682 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3683 buf->len, 3684 root->fs_info->dirty_metadata_batch); 3685 } 3686 3687 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3688 int flush_delayed) 3689 { 3690 /* 3691 * looks as though older kernels can get into trouble with 3692 * this code, they end up stuck in balance_dirty_pages forever 3693 */ 3694 int ret; 3695 3696 if (current->flags & PF_MEMALLOC) 3697 return; 3698 3699 if (flush_delayed) 3700 btrfs_balance_delayed_items(root); 3701 3702 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3703 BTRFS_DIRTY_METADATA_THRESH); 3704 if (ret > 0) { 3705 balance_dirty_pages_ratelimited( 3706 root->fs_info->btree_inode->i_mapping); 3707 } 3708 return; 3709 } 3710 3711 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3712 { 3713 __btrfs_btree_balance_dirty(root, 1); 3714 } 3715 3716 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3717 { 3718 __btrfs_btree_balance_dirty(root, 0); 3719 } 3720 3721 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3722 { 3723 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3724 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3725 } 3726 3727 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3728 int read_only) 3729 { 3730 /* 3731 * Placeholder for checks 3732 */ 3733 return 0; 3734 } 3735 3736 static void btrfs_error_commit_super(struct btrfs_root *root) 3737 { 3738 mutex_lock(&root->fs_info->cleaner_mutex); 3739 btrfs_run_delayed_iputs(root); 3740 mutex_unlock(&root->fs_info->cleaner_mutex); 3741 3742 down_write(&root->fs_info->cleanup_work_sem); 3743 up_write(&root->fs_info->cleanup_work_sem); 3744 3745 /* cleanup FS via transaction */ 3746 btrfs_cleanup_transaction(root); 3747 } 3748 3749 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 3750 struct btrfs_root *root) 3751 { 3752 struct btrfs_inode *btrfs_inode; 3753 struct list_head splice; 3754 3755 INIT_LIST_HEAD(&splice); 3756 3757 mutex_lock(&root->fs_info->ordered_operations_mutex); 3758 spin_lock(&root->fs_info->ordered_root_lock); 3759 3760 list_splice_init(&t->ordered_operations, &splice); 3761 while (!list_empty(&splice)) { 3762 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3763 ordered_operations); 3764 3765 list_del_init(&btrfs_inode->ordered_operations); 3766 spin_unlock(&root->fs_info->ordered_root_lock); 3767 3768 btrfs_invalidate_inodes(btrfs_inode->root); 3769 3770 spin_lock(&root->fs_info->ordered_root_lock); 3771 } 3772 3773 spin_unlock(&root->fs_info->ordered_root_lock); 3774 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3775 } 3776 3777 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3778 { 3779 struct btrfs_ordered_extent *ordered; 3780 3781 spin_lock(&root->ordered_extent_lock); 3782 /* 3783 * This will just short circuit the ordered completion stuff which will 3784 * make sure the ordered extent gets properly cleaned up. 3785 */ 3786 list_for_each_entry(ordered, &root->ordered_extents, 3787 root_extent_list) 3788 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3789 spin_unlock(&root->ordered_extent_lock); 3790 } 3791 3792 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3793 { 3794 struct btrfs_root *root; 3795 struct list_head splice; 3796 3797 INIT_LIST_HEAD(&splice); 3798 3799 spin_lock(&fs_info->ordered_root_lock); 3800 list_splice_init(&fs_info->ordered_roots, &splice); 3801 while (!list_empty(&splice)) { 3802 root = list_first_entry(&splice, struct btrfs_root, 3803 ordered_root); 3804 list_del_init(&root->ordered_root); 3805 3806 btrfs_destroy_ordered_extents(root); 3807 3808 cond_resched_lock(&fs_info->ordered_root_lock); 3809 } 3810 spin_unlock(&fs_info->ordered_root_lock); 3811 } 3812 3813 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3814 struct btrfs_root *root) 3815 { 3816 struct rb_node *node; 3817 struct btrfs_delayed_ref_root *delayed_refs; 3818 struct btrfs_delayed_ref_node *ref; 3819 int ret = 0; 3820 3821 delayed_refs = &trans->delayed_refs; 3822 3823 spin_lock(&delayed_refs->lock); 3824 if (delayed_refs->num_entries == 0) { 3825 spin_unlock(&delayed_refs->lock); 3826 printk(KERN_INFO "delayed_refs has NO entry\n"); 3827 return ret; 3828 } 3829 3830 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3831 struct btrfs_delayed_ref_head *head = NULL; 3832 bool pin_bytes = false; 3833 3834 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3835 atomic_set(&ref->refs, 1); 3836 if (btrfs_delayed_ref_is_head(ref)) { 3837 3838 head = btrfs_delayed_node_to_head(ref); 3839 if (!mutex_trylock(&head->mutex)) { 3840 atomic_inc(&ref->refs); 3841 spin_unlock(&delayed_refs->lock); 3842 3843 /* Need to wait for the delayed ref to run */ 3844 mutex_lock(&head->mutex); 3845 mutex_unlock(&head->mutex); 3846 btrfs_put_delayed_ref(ref); 3847 3848 spin_lock(&delayed_refs->lock); 3849 continue; 3850 } 3851 3852 if (head->must_insert_reserved) 3853 pin_bytes = true; 3854 btrfs_free_delayed_extent_op(head->extent_op); 3855 delayed_refs->num_heads--; 3856 if (list_empty(&head->cluster)) 3857 delayed_refs->num_heads_ready--; 3858 list_del_init(&head->cluster); 3859 } 3860 3861 ref->in_tree = 0; 3862 rb_erase(&ref->rb_node, &delayed_refs->root); 3863 delayed_refs->num_entries--; 3864 spin_unlock(&delayed_refs->lock); 3865 if (head) { 3866 if (pin_bytes) 3867 btrfs_pin_extent(root, ref->bytenr, 3868 ref->num_bytes, 1); 3869 mutex_unlock(&head->mutex); 3870 } 3871 btrfs_put_delayed_ref(ref); 3872 3873 cond_resched(); 3874 spin_lock(&delayed_refs->lock); 3875 } 3876 3877 spin_unlock(&delayed_refs->lock); 3878 3879 return ret; 3880 } 3881 3882 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t) 3883 { 3884 struct btrfs_pending_snapshot *snapshot; 3885 struct list_head splice; 3886 3887 INIT_LIST_HEAD(&splice); 3888 3889 list_splice_init(&t->pending_snapshots, &splice); 3890 3891 while (!list_empty(&splice)) { 3892 snapshot = list_entry(splice.next, 3893 struct btrfs_pending_snapshot, 3894 list); 3895 snapshot->error = -ECANCELED; 3896 list_del_init(&snapshot->list); 3897 } 3898 } 3899 3900 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3901 { 3902 struct btrfs_inode *btrfs_inode; 3903 struct list_head splice; 3904 3905 INIT_LIST_HEAD(&splice); 3906 3907 spin_lock(&root->delalloc_lock); 3908 list_splice_init(&root->delalloc_inodes, &splice); 3909 3910 while (!list_empty(&splice)) { 3911 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 3912 delalloc_inodes); 3913 3914 list_del_init(&btrfs_inode->delalloc_inodes); 3915 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3916 &btrfs_inode->runtime_flags); 3917 spin_unlock(&root->delalloc_lock); 3918 3919 btrfs_invalidate_inodes(btrfs_inode->root); 3920 3921 spin_lock(&root->delalloc_lock); 3922 } 3923 3924 spin_unlock(&root->delalloc_lock); 3925 } 3926 3927 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 3928 { 3929 struct btrfs_root *root; 3930 struct list_head splice; 3931 3932 INIT_LIST_HEAD(&splice); 3933 3934 spin_lock(&fs_info->delalloc_root_lock); 3935 list_splice_init(&fs_info->delalloc_roots, &splice); 3936 while (!list_empty(&splice)) { 3937 root = list_first_entry(&splice, struct btrfs_root, 3938 delalloc_root); 3939 list_del_init(&root->delalloc_root); 3940 root = btrfs_grab_fs_root(root); 3941 BUG_ON(!root); 3942 spin_unlock(&fs_info->delalloc_root_lock); 3943 3944 btrfs_destroy_delalloc_inodes(root); 3945 btrfs_put_fs_root(root); 3946 3947 spin_lock(&fs_info->delalloc_root_lock); 3948 } 3949 spin_unlock(&fs_info->delalloc_root_lock); 3950 } 3951 3952 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3953 struct extent_io_tree *dirty_pages, 3954 int mark) 3955 { 3956 int ret; 3957 struct extent_buffer *eb; 3958 u64 start = 0; 3959 u64 end; 3960 3961 while (1) { 3962 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3963 mark, NULL); 3964 if (ret) 3965 break; 3966 3967 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3968 while (start <= end) { 3969 eb = btrfs_find_tree_block(root, start, 3970 root->leafsize); 3971 start += root->leafsize; 3972 if (!eb) 3973 continue; 3974 wait_on_extent_buffer_writeback(eb); 3975 3976 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3977 &eb->bflags)) 3978 clear_extent_buffer_dirty(eb); 3979 free_extent_buffer_stale(eb); 3980 } 3981 } 3982 3983 return ret; 3984 } 3985 3986 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3987 struct extent_io_tree *pinned_extents) 3988 { 3989 struct extent_io_tree *unpin; 3990 u64 start; 3991 u64 end; 3992 int ret; 3993 bool loop = true; 3994 3995 unpin = pinned_extents; 3996 again: 3997 while (1) { 3998 ret = find_first_extent_bit(unpin, 0, &start, &end, 3999 EXTENT_DIRTY, NULL); 4000 if (ret) 4001 break; 4002 4003 /* opt_discard */ 4004 if (btrfs_test_opt(root, DISCARD)) 4005 ret = btrfs_error_discard_extent(root, start, 4006 end + 1 - start, 4007 NULL); 4008 4009 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4010 btrfs_error_unpin_extent_range(root, start, end); 4011 cond_resched(); 4012 } 4013 4014 if (loop) { 4015 if (unpin == &root->fs_info->freed_extents[0]) 4016 unpin = &root->fs_info->freed_extents[1]; 4017 else 4018 unpin = &root->fs_info->freed_extents[0]; 4019 loop = false; 4020 goto again; 4021 } 4022 4023 return 0; 4024 } 4025 4026 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4027 struct btrfs_root *root) 4028 { 4029 btrfs_destroy_delayed_refs(cur_trans, root); 4030 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 4031 cur_trans->dirty_pages.dirty_bytes); 4032 4033 cur_trans->state = TRANS_STATE_COMMIT_START; 4034 wake_up(&root->fs_info->transaction_blocked_wait); 4035 4036 btrfs_evict_pending_snapshots(cur_trans); 4037 4038 cur_trans->state = TRANS_STATE_UNBLOCKED; 4039 wake_up(&root->fs_info->transaction_wait); 4040 4041 btrfs_destroy_delayed_inodes(root); 4042 btrfs_assert_delayed_root_empty(root); 4043 4044 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4045 EXTENT_DIRTY); 4046 btrfs_destroy_pinned_extent(root, 4047 root->fs_info->pinned_extents); 4048 4049 cur_trans->state =TRANS_STATE_COMPLETED; 4050 wake_up(&cur_trans->commit_wait); 4051 4052 /* 4053 memset(cur_trans, 0, sizeof(*cur_trans)); 4054 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4055 */ 4056 } 4057 4058 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4059 { 4060 struct btrfs_transaction *t; 4061 LIST_HEAD(list); 4062 4063 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4064 4065 spin_lock(&root->fs_info->trans_lock); 4066 list_splice_init(&root->fs_info->trans_list, &list); 4067 root->fs_info->running_transaction = NULL; 4068 spin_unlock(&root->fs_info->trans_lock); 4069 4070 while (!list_empty(&list)) { 4071 t = list_entry(list.next, struct btrfs_transaction, list); 4072 4073 btrfs_destroy_ordered_operations(t, root); 4074 4075 btrfs_destroy_all_ordered_extents(root->fs_info); 4076 4077 btrfs_destroy_delayed_refs(t, root); 4078 4079 /* 4080 * FIXME: cleanup wait for commit 4081 * We needn't acquire the lock here, because we are during 4082 * the umount, there is no other task which will change it. 4083 */ 4084 t->state = TRANS_STATE_COMMIT_START; 4085 smp_mb(); 4086 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 4087 wake_up(&root->fs_info->transaction_blocked_wait); 4088 4089 btrfs_evict_pending_snapshots(t); 4090 4091 t->state = TRANS_STATE_UNBLOCKED; 4092 smp_mb(); 4093 if (waitqueue_active(&root->fs_info->transaction_wait)) 4094 wake_up(&root->fs_info->transaction_wait); 4095 4096 btrfs_destroy_delayed_inodes(root); 4097 btrfs_assert_delayed_root_empty(root); 4098 4099 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4100 4101 btrfs_destroy_marked_extents(root, &t->dirty_pages, 4102 EXTENT_DIRTY); 4103 4104 btrfs_destroy_pinned_extent(root, 4105 root->fs_info->pinned_extents); 4106 4107 t->state = TRANS_STATE_COMPLETED; 4108 smp_mb(); 4109 if (waitqueue_active(&t->commit_wait)) 4110 wake_up(&t->commit_wait); 4111 4112 atomic_set(&t->use_count, 0); 4113 list_del_init(&t->list); 4114 memset(t, 0, sizeof(*t)); 4115 kmem_cache_free(btrfs_transaction_cachep, t); 4116 } 4117 4118 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4119 4120 return 0; 4121 } 4122 4123 static struct extent_io_ops btree_extent_io_ops = { 4124 .readpage_end_io_hook = btree_readpage_end_io_hook, 4125 .readpage_io_failed_hook = btree_io_failed_hook, 4126 .submit_bio_hook = btree_submit_bio_hook, 4127 /* note we're sharing with inode.c for the merge bio hook */ 4128 .merge_bio_hook = btrfs_merge_bio_hook, 4129 }; 4130