xref: /openbmc/linux/fs/btrfs/disk-io.c (revision a213501153fd66e2359e091b1612841305ba6551)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34 #include "async-thread.h"
35 #include "locking.h"
36 
37 #if 0
38 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
39 {
40 	if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
41 		printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
42 		       (unsigned long long)extent_buffer_blocknr(buf),
43 		       (unsigned long long)btrfs_header_blocknr(buf));
44 		return 1;
45 	}
46 	return 0;
47 }
48 #endif
49 
50 static struct extent_io_ops btree_extent_io_ops;
51 static void end_workqueue_fn(struct btrfs_work *work);
52 
53 struct end_io_wq {
54 	struct bio *bio;
55 	bio_end_io_t *end_io;
56 	void *private;
57 	struct btrfs_fs_info *info;
58 	int error;
59 	int metadata;
60 	struct list_head list;
61 	struct btrfs_work work;
62 };
63 
64 struct async_submit_bio {
65 	struct inode *inode;
66 	struct bio *bio;
67 	struct list_head list;
68 	extent_submit_bio_hook_t *submit_bio_hook;
69 	int rw;
70 	int mirror_num;
71 	struct btrfs_work work;
72 };
73 
74 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
75 				    size_t page_offset, u64 start, u64 len,
76 				    int create)
77 {
78 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
79 	struct extent_map *em;
80 	int ret;
81 
82 	spin_lock(&em_tree->lock);
83 	em = lookup_extent_mapping(em_tree, start, len);
84 	if (em) {
85 		em->bdev =
86 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
87 		spin_unlock(&em_tree->lock);
88 		goto out;
89 	}
90 	spin_unlock(&em_tree->lock);
91 
92 	em = alloc_extent_map(GFP_NOFS);
93 	if (!em) {
94 		em = ERR_PTR(-ENOMEM);
95 		goto out;
96 	}
97 	em->start = 0;
98 	em->len = (u64)-1;
99 	em->block_start = 0;
100 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
101 
102 	spin_lock(&em_tree->lock);
103 	ret = add_extent_mapping(em_tree, em);
104 	if (ret == -EEXIST) {
105 		u64 failed_start = em->start;
106 		u64 failed_len = em->len;
107 
108 		printk("failed to insert %Lu %Lu -> %Lu into tree\n",
109 		       em->start, em->len, em->block_start);
110 		free_extent_map(em);
111 		em = lookup_extent_mapping(em_tree, start, len);
112 		if (em) {
113 			printk("after failing, found %Lu %Lu %Lu\n",
114 			       em->start, em->len, em->block_start);
115 			ret = 0;
116 		} else {
117 			em = lookup_extent_mapping(em_tree, failed_start,
118 						   failed_len);
119 			if (em) {
120 				printk("double failure lookup gives us "
121 				       "%Lu %Lu -> %Lu\n", em->start,
122 				       em->len, em->block_start);
123 				free_extent_map(em);
124 			}
125 			ret = -EIO;
126 		}
127 	} else if (ret) {
128 		free_extent_map(em);
129 		em = NULL;
130 	}
131 	spin_unlock(&em_tree->lock);
132 
133 	if (ret)
134 		em = ERR_PTR(ret);
135 out:
136 	return em;
137 }
138 
139 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
140 {
141 	return btrfs_crc32c(seed, data, len);
142 }
143 
144 void btrfs_csum_final(u32 crc, char *result)
145 {
146 	*(__le32 *)result = ~cpu_to_le32(crc);
147 }
148 
149 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
150 			   int verify)
151 {
152 	char result[BTRFS_CRC32_SIZE];
153 	unsigned long len;
154 	unsigned long cur_len;
155 	unsigned long offset = BTRFS_CSUM_SIZE;
156 	char *map_token = NULL;
157 	char *kaddr;
158 	unsigned long map_start;
159 	unsigned long map_len;
160 	int err;
161 	u32 crc = ~(u32)0;
162 
163 	len = buf->len - offset;
164 	while(len > 0) {
165 		err = map_private_extent_buffer(buf, offset, 32,
166 					&map_token, &kaddr,
167 					&map_start, &map_len, KM_USER0);
168 		if (err) {
169 			printk("failed to map extent buffer! %lu\n",
170 			       offset);
171 			return 1;
172 		}
173 		cur_len = min(len, map_len - (offset - map_start));
174 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
175 				      crc, cur_len);
176 		len -= cur_len;
177 		offset += cur_len;
178 		unmap_extent_buffer(buf, map_token, KM_USER0);
179 	}
180 	btrfs_csum_final(crc, result);
181 
182 	if (verify) {
183 		int from_this_trans = 0;
184 
185 		if (root->fs_info->running_transaction &&
186 		    btrfs_header_generation(buf) ==
187 		    root->fs_info->running_transaction->transid)
188 			from_this_trans = 1;
189 
190 		/* FIXME, this is not good */
191 		if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
192 			u32 val;
193 			u32 found = 0;
194 			memcpy(&found, result, BTRFS_CRC32_SIZE);
195 
196 			read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
197 			printk("btrfs: %s checksum verify failed on %llu "
198 			       "wanted %X found %X from_this_trans %d "
199 			       "level %d\n",
200 			       root->fs_info->sb->s_id,
201 			       buf->start, val, found, from_this_trans,
202 			       btrfs_header_level(buf));
203 			return 1;
204 		}
205 	} else {
206 		write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
207 	}
208 	return 0;
209 }
210 
211 static int verify_parent_transid(struct extent_io_tree *io_tree,
212 				 struct extent_buffer *eb, u64 parent_transid)
213 {
214 	int ret;
215 
216 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
217 		return 0;
218 
219 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
220 	if (extent_buffer_uptodate(io_tree, eb) &&
221 	    btrfs_header_generation(eb) == parent_transid) {
222 		ret = 0;
223 		goto out;
224 	}
225 	printk("parent transid verify failed on %llu wanted %llu found %llu\n",
226 	       (unsigned long long)eb->start,
227 	       (unsigned long long)parent_transid,
228 	       (unsigned long long)btrfs_header_generation(eb));
229 	ret = 1;
230 out:
231 	clear_extent_buffer_uptodate(io_tree, eb);
232 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
233 		      GFP_NOFS);
234 	return ret;
235 
236 }
237 
238 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
239 					  struct extent_buffer *eb,
240 					  u64 start, u64 parent_transid)
241 {
242 	struct extent_io_tree *io_tree;
243 	int ret;
244 	int num_copies = 0;
245 	int mirror_num = 0;
246 
247 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
248 	while (1) {
249 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
250 					       btree_get_extent, mirror_num);
251 		if (!ret &&
252 		    !verify_parent_transid(io_tree, eb, parent_transid))
253 			return ret;
254 
255 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
256 					      eb->start, eb->len);
257 		if (num_copies == 1)
258 			return ret;
259 
260 		mirror_num++;
261 		if (mirror_num > num_copies)
262 			return ret;
263 	}
264 	return -EIO;
265 }
266 
267 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
268 {
269 	struct extent_io_tree *tree;
270 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
271 	u64 found_start;
272 	int found_level;
273 	unsigned long len;
274 	struct extent_buffer *eb;
275 	int ret;
276 
277 	tree = &BTRFS_I(page->mapping->host)->io_tree;
278 
279 	if (page->private == EXTENT_PAGE_PRIVATE)
280 		goto out;
281 	if (!page->private)
282 		goto out;
283 	len = page->private >> 2;
284 	if (len == 0) {
285 		WARN_ON(1);
286 	}
287 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
288 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
289 					     btrfs_header_generation(eb));
290 	BUG_ON(ret);
291 	btrfs_clear_buffer_defrag(eb);
292 	found_start = btrfs_header_bytenr(eb);
293 	if (found_start != start) {
294 		printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
295 		       start, found_start, len);
296 		WARN_ON(1);
297 		goto err;
298 	}
299 	if (eb->first_page != page) {
300 		printk("bad first page %lu %lu\n", eb->first_page->index,
301 		       page->index);
302 		WARN_ON(1);
303 		goto err;
304 	}
305 	if (!PageUptodate(page)) {
306 		printk("csum not up to date page %lu\n", page->index);
307 		WARN_ON(1);
308 		goto err;
309 	}
310 	found_level = btrfs_header_level(eb);
311 	spin_lock(&root->fs_info->hash_lock);
312 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
313 	spin_unlock(&root->fs_info->hash_lock);
314 	csum_tree_block(root, eb, 0);
315 err:
316 	free_extent_buffer(eb);
317 out:
318 	return 0;
319 }
320 
321 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
322 {
323 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
324 
325 	csum_dirty_buffer(root, page);
326 	return 0;
327 }
328 
329 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
330 			       struct extent_state *state)
331 {
332 	struct extent_io_tree *tree;
333 	u64 found_start;
334 	int found_level;
335 	unsigned long len;
336 	struct extent_buffer *eb;
337 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
338 	int ret = 0;
339 
340 	tree = &BTRFS_I(page->mapping->host)->io_tree;
341 	if (page->private == EXTENT_PAGE_PRIVATE)
342 		goto out;
343 	if (!page->private)
344 		goto out;
345 	len = page->private >> 2;
346 	if (len == 0) {
347 		WARN_ON(1);
348 	}
349 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
350 
351 	btrfs_clear_buffer_defrag(eb);
352 	found_start = btrfs_header_bytenr(eb);
353 	if (found_start != start) {
354 		ret = -EIO;
355 		goto err;
356 	}
357 	if (eb->first_page != page) {
358 		printk("bad first page %lu %lu\n", eb->first_page->index,
359 		       page->index);
360 		WARN_ON(1);
361 		ret = -EIO;
362 		goto err;
363 	}
364 	if (memcmp_extent_buffer(eb, root->fs_info->fsid,
365 				 (unsigned long)btrfs_header_fsid(eb),
366 				 BTRFS_FSID_SIZE)) {
367 		printk("bad fsid on block %Lu\n", eb->start);
368 		ret = -EIO;
369 		goto err;
370 	}
371 	found_level = btrfs_header_level(eb);
372 
373 	ret = csum_tree_block(root, eb, 1);
374 	if (ret)
375 		ret = -EIO;
376 
377 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
378 	end = eb->start + end - 1;
379 	release_extent_buffer_tail_pages(eb);
380 err:
381 	free_extent_buffer(eb);
382 out:
383 	return ret;
384 }
385 
386 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
387 static void end_workqueue_bio(struct bio *bio, int err)
388 #else
389 static int end_workqueue_bio(struct bio *bio,
390 				   unsigned int bytes_done, int err)
391 #endif
392 {
393 	struct end_io_wq *end_io_wq = bio->bi_private;
394 	struct btrfs_fs_info *fs_info;
395 
396 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
397 	if (bio->bi_size)
398 		return 1;
399 #endif
400 
401 	fs_info = end_io_wq->info;
402 	end_io_wq->error = err;
403 	end_io_wq->work.func = end_workqueue_fn;
404 	end_io_wq->work.flags = 0;
405 	btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
406 
407 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
408 	return 0;
409 #endif
410 }
411 
412 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
413 			int metadata)
414 {
415 	struct end_io_wq *end_io_wq;
416 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
417 	if (!end_io_wq)
418 		return -ENOMEM;
419 
420 	end_io_wq->private = bio->bi_private;
421 	end_io_wq->end_io = bio->bi_end_io;
422 	end_io_wq->info = info;
423 	end_io_wq->error = 0;
424 	end_io_wq->bio = bio;
425 	end_io_wq->metadata = metadata;
426 
427 	bio->bi_private = end_io_wq;
428 	bio->bi_end_io = end_workqueue_bio;
429 	return 0;
430 }
431 
432 static void run_one_async_submit(struct btrfs_work *work)
433 {
434 	struct btrfs_fs_info *fs_info;
435 	struct async_submit_bio *async;
436 
437 	async = container_of(work, struct  async_submit_bio, work);
438 	fs_info = BTRFS_I(async->inode)->root->fs_info;
439 	atomic_dec(&fs_info->nr_async_submits);
440 	async->submit_bio_hook(async->inode, async->rw, async->bio,
441 			       async->mirror_num);
442 	kfree(async);
443 }
444 
445 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
446 			int rw, struct bio *bio, int mirror_num,
447 			extent_submit_bio_hook_t *submit_bio_hook)
448 {
449 	struct async_submit_bio *async;
450 
451 	async = kmalloc(sizeof(*async), GFP_NOFS);
452 	if (!async)
453 		return -ENOMEM;
454 
455 	async->inode = inode;
456 	async->rw = rw;
457 	async->bio = bio;
458 	async->mirror_num = mirror_num;
459 	async->submit_bio_hook = submit_bio_hook;
460 	async->work.func = run_one_async_submit;
461 	async->work.flags = 0;
462 	atomic_inc(&fs_info->nr_async_submits);
463 	btrfs_queue_worker(&fs_info->workers, &async->work);
464 	return 0;
465 }
466 
467 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
468 				 int mirror_num)
469 {
470 	struct btrfs_root *root = BTRFS_I(inode)->root;
471 	u64 offset;
472 	int ret;
473 
474 	offset = bio->bi_sector << 9;
475 
476 	/*
477 	 * when we're called for a write, we're already in the async
478 	 * submission context.  Just jump ingo btrfs_map_bio
479 	 */
480 	if (rw & (1 << BIO_RW)) {
481 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
482 				     mirror_num, 0);
483 	}
484 
485 	/*
486 	 * called for a read, do the setup so that checksum validation
487 	 * can happen in the async kernel threads
488 	 */
489 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
490 	BUG_ON(ret);
491 
492 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
493 }
494 
495 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
496 				 int mirror_num)
497 {
498 	/*
499 	 * kthread helpers are used to submit writes so that checksumming
500 	 * can happen in parallel across all CPUs
501 	 */
502 	if (!(rw & (1 << BIO_RW))) {
503 		return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
504 	}
505 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
506 				   inode, rw, bio, mirror_num,
507 				   __btree_submit_bio_hook);
508 }
509 
510 static int btree_writepage(struct page *page, struct writeback_control *wbc)
511 {
512 	struct extent_io_tree *tree;
513 	tree = &BTRFS_I(page->mapping->host)->io_tree;
514 	return extent_write_full_page(tree, page, btree_get_extent, wbc);
515 }
516 
517 static int btree_writepages(struct address_space *mapping,
518 			    struct writeback_control *wbc)
519 {
520 	struct extent_io_tree *tree;
521 	tree = &BTRFS_I(mapping->host)->io_tree;
522 	if (wbc->sync_mode == WB_SYNC_NONE) {
523 		u64 num_dirty;
524 		u64 start = 0;
525 		unsigned long thresh = 96 * 1024 * 1024;
526 
527 		if (wbc->for_kupdate)
528 			return 0;
529 
530 		if (current_is_pdflush()) {
531 			thresh = 96 * 1024 * 1024;
532 		} else {
533 			thresh = 8 * 1024 * 1024;
534 		}
535 		num_dirty = count_range_bits(tree, &start, (u64)-1,
536 					     thresh, EXTENT_DIRTY);
537 		if (num_dirty < thresh) {
538 			return 0;
539 		}
540 	}
541 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
542 }
543 
544 int btree_readpage(struct file *file, struct page *page)
545 {
546 	struct extent_io_tree *tree;
547 	tree = &BTRFS_I(page->mapping->host)->io_tree;
548 	return extent_read_full_page(tree, page, btree_get_extent);
549 }
550 
551 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
552 {
553 	struct extent_io_tree *tree;
554 	struct extent_map_tree *map;
555 	int ret;
556 
557 	if (page_count(page) > 3) {
558 		/* once for page->private, once for the caller, once
559 		 * once for the page cache
560 		 */
561 		return 0;
562 	}
563 	tree = &BTRFS_I(page->mapping->host)->io_tree;
564 	map = &BTRFS_I(page->mapping->host)->extent_tree;
565 	ret = try_release_extent_state(map, tree, page, gfp_flags);
566 	if (ret == 1) {
567 		invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
568 		ClearPagePrivate(page);
569 		set_page_private(page, 0);
570 		page_cache_release(page);
571 	}
572 	return ret;
573 }
574 
575 static void btree_invalidatepage(struct page *page, unsigned long offset)
576 {
577 	struct extent_io_tree *tree;
578 	tree = &BTRFS_I(page->mapping->host)->io_tree;
579 	extent_invalidatepage(tree, page, offset);
580 	btree_releasepage(page, GFP_NOFS);
581 	if (PagePrivate(page)) {
582 		invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
583 		ClearPagePrivate(page);
584 		set_page_private(page, 0);
585 		page_cache_release(page);
586 	}
587 }
588 
589 #if 0
590 static int btree_writepage(struct page *page, struct writeback_control *wbc)
591 {
592 	struct buffer_head *bh;
593 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
594 	struct buffer_head *head;
595 	if (!page_has_buffers(page)) {
596 		create_empty_buffers(page, root->fs_info->sb->s_blocksize,
597 					(1 << BH_Dirty)|(1 << BH_Uptodate));
598 	}
599 	head = page_buffers(page);
600 	bh = head;
601 	do {
602 		if (buffer_dirty(bh))
603 			csum_tree_block(root, bh, 0);
604 		bh = bh->b_this_page;
605 	} while (bh != head);
606 	return block_write_full_page(page, btree_get_block, wbc);
607 }
608 #endif
609 
610 static struct address_space_operations btree_aops = {
611 	.readpage	= btree_readpage,
612 	.writepage	= btree_writepage,
613 	.writepages	= btree_writepages,
614 	.releasepage	= btree_releasepage,
615 	.invalidatepage = btree_invalidatepage,
616 	.sync_page	= block_sync_page,
617 };
618 
619 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
620 			 u64 parent_transid)
621 {
622 	struct extent_buffer *buf = NULL;
623 	struct inode *btree_inode = root->fs_info->btree_inode;
624 	int ret = 0;
625 
626 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
627 	if (!buf)
628 		return 0;
629 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
630 				 buf, 0, 0, btree_get_extent, 0);
631 	free_extent_buffer(buf);
632 	return ret;
633 }
634 
635 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
636 					    u64 bytenr, u32 blocksize)
637 {
638 	struct inode *btree_inode = root->fs_info->btree_inode;
639 	struct extent_buffer *eb;
640 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
641 				bytenr, blocksize, GFP_NOFS);
642 	return eb;
643 }
644 
645 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
646 						 u64 bytenr, u32 blocksize)
647 {
648 	struct inode *btree_inode = root->fs_info->btree_inode;
649 	struct extent_buffer *eb;
650 
651 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
652 				 bytenr, blocksize, NULL, GFP_NOFS);
653 	return eb;
654 }
655 
656 
657 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
658 				      u32 blocksize, u64 parent_transid)
659 {
660 	struct extent_buffer *buf = NULL;
661 	struct inode *btree_inode = root->fs_info->btree_inode;
662 	struct extent_io_tree *io_tree;
663 	int ret;
664 
665 	io_tree = &BTRFS_I(btree_inode)->io_tree;
666 
667 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
668 	if (!buf)
669 		return NULL;
670 
671 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
672 
673 	if (ret == 0) {
674 		buf->flags |= EXTENT_UPTODATE;
675 	}
676 	return buf;
677 
678 }
679 
680 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
681 		     struct extent_buffer *buf)
682 {
683 	struct inode *btree_inode = root->fs_info->btree_inode;
684 	if (btrfs_header_generation(buf) ==
685 	    root->fs_info->running_transaction->transid) {
686 		WARN_ON(!btrfs_tree_locked(buf));
687 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
688 					  buf);
689 	}
690 	return 0;
691 }
692 
693 int wait_on_tree_block_writeback(struct btrfs_root *root,
694 				 struct extent_buffer *buf)
695 {
696 	struct inode *btree_inode = root->fs_info->btree_inode;
697 	wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
698 					buf);
699 	return 0;
700 }
701 
702 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
703 			u32 stripesize, struct btrfs_root *root,
704 			struct btrfs_fs_info *fs_info,
705 			u64 objectid)
706 {
707 	root->node = NULL;
708 	root->inode = NULL;
709 	root->commit_root = NULL;
710 	root->sectorsize = sectorsize;
711 	root->nodesize = nodesize;
712 	root->leafsize = leafsize;
713 	root->stripesize = stripesize;
714 	root->ref_cows = 0;
715 	root->track_dirty = 0;
716 
717 	root->fs_info = fs_info;
718 	root->objectid = objectid;
719 	root->last_trans = 0;
720 	root->highest_inode = 0;
721 	root->last_inode_alloc = 0;
722 	root->name = NULL;
723 	root->in_sysfs = 0;
724 
725 	INIT_LIST_HEAD(&root->dirty_list);
726 	spin_lock_init(&root->node_lock);
727 	mutex_init(&root->objectid_mutex);
728 	memset(&root->root_key, 0, sizeof(root->root_key));
729 	memset(&root->root_item, 0, sizeof(root->root_item));
730 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
731 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
732 	init_completion(&root->kobj_unregister);
733 	root->defrag_running = 0;
734 	root->defrag_level = 0;
735 	root->root_key.objectid = objectid;
736 	return 0;
737 }
738 
739 static int find_and_setup_root(struct btrfs_root *tree_root,
740 			       struct btrfs_fs_info *fs_info,
741 			       u64 objectid,
742 			       struct btrfs_root *root)
743 {
744 	int ret;
745 	u32 blocksize;
746 
747 	__setup_root(tree_root->nodesize, tree_root->leafsize,
748 		     tree_root->sectorsize, tree_root->stripesize,
749 		     root, fs_info, objectid);
750 	ret = btrfs_find_last_root(tree_root, objectid,
751 				   &root->root_item, &root->root_key);
752 	BUG_ON(ret);
753 
754 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
755 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
756 				     blocksize, 0);
757 	BUG_ON(!root->node);
758 	return 0;
759 }
760 
761 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
762 					       struct btrfs_key *location)
763 {
764 	struct btrfs_root *root;
765 	struct btrfs_root *tree_root = fs_info->tree_root;
766 	struct btrfs_path *path;
767 	struct extent_buffer *l;
768 	u64 highest_inode;
769 	u32 blocksize;
770 	int ret = 0;
771 
772 	root = kzalloc(sizeof(*root), GFP_NOFS);
773 	if (!root)
774 		return ERR_PTR(-ENOMEM);
775 	if (location->offset == (u64)-1) {
776 		ret = find_and_setup_root(tree_root, fs_info,
777 					  location->objectid, root);
778 		if (ret) {
779 			kfree(root);
780 			return ERR_PTR(ret);
781 		}
782 		goto insert;
783 	}
784 
785 	__setup_root(tree_root->nodesize, tree_root->leafsize,
786 		     tree_root->sectorsize, tree_root->stripesize,
787 		     root, fs_info, location->objectid);
788 
789 	path = btrfs_alloc_path();
790 	BUG_ON(!path);
791 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
792 	if (ret != 0) {
793 		if (ret > 0)
794 			ret = -ENOENT;
795 		goto out;
796 	}
797 	l = path->nodes[0];
798 	read_extent_buffer(l, &root->root_item,
799 	       btrfs_item_ptr_offset(l, path->slots[0]),
800 	       sizeof(root->root_item));
801 	memcpy(&root->root_key, location, sizeof(*location));
802 	ret = 0;
803 out:
804 	btrfs_release_path(root, path);
805 	btrfs_free_path(path);
806 	if (ret) {
807 		kfree(root);
808 		return ERR_PTR(ret);
809 	}
810 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
811 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
812 				     blocksize, 0);
813 	BUG_ON(!root->node);
814 insert:
815 	root->ref_cows = 1;
816 	ret = btrfs_find_highest_inode(root, &highest_inode);
817 	if (ret == 0) {
818 		root->highest_inode = highest_inode;
819 		root->last_inode_alloc = highest_inode;
820 	}
821 	return root;
822 }
823 
824 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
825 					u64 root_objectid)
826 {
827 	struct btrfs_root *root;
828 
829 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
830 		return fs_info->tree_root;
831 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
832 		return fs_info->extent_root;
833 
834 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
835 				 (unsigned long)root_objectid);
836 	return root;
837 }
838 
839 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
840 					      struct btrfs_key *location)
841 {
842 	struct btrfs_root *root;
843 	int ret;
844 
845 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
846 		return fs_info->tree_root;
847 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
848 		return fs_info->extent_root;
849 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
850 		return fs_info->chunk_root;
851 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
852 		return fs_info->dev_root;
853 
854 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
855 				 (unsigned long)location->objectid);
856 	if (root)
857 		return root;
858 
859 	root = btrfs_read_fs_root_no_radix(fs_info, location);
860 	if (IS_ERR(root))
861 		return root;
862 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
863 				(unsigned long)root->root_key.objectid,
864 				root);
865 	if (ret) {
866 		free_extent_buffer(root->node);
867 		kfree(root);
868 		return ERR_PTR(ret);
869 	}
870 	ret = btrfs_find_dead_roots(fs_info->tree_root,
871 				    root->root_key.objectid, root);
872 	BUG_ON(ret);
873 
874 	return root;
875 }
876 
877 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
878 				      struct btrfs_key *location,
879 				      const char *name, int namelen)
880 {
881 	struct btrfs_root *root;
882 	int ret;
883 
884 	root = btrfs_read_fs_root_no_name(fs_info, location);
885 	if (!root)
886 		return NULL;
887 
888 	if (root->in_sysfs)
889 		return root;
890 
891 	ret = btrfs_set_root_name(root, name, namelen);
892 	if (ret) {
893 		free_extent_buffer(root->node);
894 		kfree(root);
895 		return ERR_PTR(ret);
896 	}
897 
898 	ret = btrfs_sysfs_add_root(root);
899 	if (ret) {
900 		free_extent_buffer(root->node);
901 		kfree(root->name);
902 		kfree(root);
903 		return ERR_PTR(ret);
904 	}
905 	root->in_sysfs = 1;
906 	return root;
907 }
908 #if 0
909 static int add_hasher(struct btrfs_fs_info *info, char *type) {
910 	struct btrfs_hasher *hasher;
911 
912 	hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
913 	if (!hasher)
914 		return -ENOMEM;
915 	hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
916 	if (!hasher->hash_tfm) {
917 		kfree(hasher);
918 		return -EINVAL;
919 	}
920 	spin_lock(&info->hash_lock);
921 	list_add(&hasher->list, &info->hashers);
922 	spin_unlock(&info->hash_lock);
923 	return 0;
924 }
925 #endif
926 
927 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
928 {
929 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
930 	int ret = 0;
931 	int limit = 256 * info->fs_devices->open_devices;
932 	struct list_head *cur;
933 	struct btrfs_device *device;
934 	struct backing_dev_info *bdi;
935 
936 	if ((bdi_bits & (1 << BDI_write_congested)) &&
937 	    atomic_read(&info->nr_async_submits) > limit) {
938 		return 1;
939 	}
940 
941 	list_for_each(cur, &info->fs_devices->devices) {
942 		device = list_entry(cur, struct btrfs_device, dev_list);
943 		if (!device->bdev)
944 			continue;
945 		bdi = blk_get_backing_dev_info(device->bdev);
946 		if (bdi && bdi_congested(bdi, bdi_bits)) {
947 			ret = 1;
948 			break;
949 		}
950 	}
951 	return ret;
952 }
953 
954 /*
955  * this unplugs every device on the box, and it is only used when page
956  * is null
957  */
958 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
959 {
960 	struct list_head *cur;
961 	struct btrfs_device *device;
962 	struct btrfs_fs_info *info;
963 
964 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
965 	list_for_each(cur, &info->fs_devices->devices) {
966 		device = list_entry(cur, struct btrfs_device, dev_list);
967 		bdi = blk_get_backing_dev_info(device->bdev);
968 		if (bdi->unplug_io_fn) {
969 			bdi->unplug_io_fn(bdi, page);
970 		}
971 	}
972 }
973 
974 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
975 {
976 	struct inode *inode;
977 	struct extent_map_tree *em_tree;
978 	struct extent_map *em;
979 	struct address_space *mapping;
980 	u64 offset;
981 
982 	/* the generic O_DIRECT read code does this */
983 	if (!page) {
984 		__unplug_io_fn(bdi, page);
985 		return;
986 	}
987 
988 	/*
989 	 * page->mapping may change at any time.  Get a consistent copy
990 	 * and use that for everything below
991 	 */
992 	smp_mb();
993 	mapping = page->mapping;
994 	if (!mapping)
995 		return;
996 
997 	inode = mapping->host;
998 	offset = page_offset(page);
999 
1000 	em_tree = &BTRFS_I(inode)->extent_tree;
1001 	spin_lock(&em_tree->lock);
1002 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1003 	spin_unlock(&em_tree->lock);
1004 	if (!em)
1005 		return;
1006 
1007 	offset = offset - em->start;
1008 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1009 			  em->block_start + offset, page);
1010 	free_extent_map(em);
1011 }
1012 
1013 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1014 {
1015 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1016 	bdi_init(bdi);
1017 #endif
1018 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1019 	bdi->state		= 0;
1020 	bdi->capabilities	= default_backing_dev_info.capabilities;
1021 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1022 	bdi->unplug_io_data	= info;
1023 	bdi->congested_fn	= btrfs_congested_fn;
1024 	bdi->congested_data	= info;
1025 	return 0;
1026 }
1027 
1028 static int bio_ready_for_csum(struct bio *bio)
1029 {
1030 	u64 length = 0;
1031 	u64 buf_len = 0;
1032 	u64 start = 0;
1033 	struct page *page;
1034 	struct extent_io_tree *io_tree = NULL;
1035 	struct btrfs_fs_info *info = NULL;
1036 	struct bio_vec *bvec;
1037 	int i;
1038 	int ret;
1039 
1040 	bio_for_each_segment(bvec, bio, i) {
1041 		page = bvec->bv_page;
1042 		if (page->private == EXTENT_PAGE_PRIVATE) {
1043 			length += bvec->bv_len;
1044 			continue;
1045 		}
1046 		if (!page->private) {
1047 			length += bvec->bv_len;
1048 			continue;
1049 		}
1050 		length = bvec->bv_len;
1051 		buf_len = page->private >> 2;
1052 		start = page_offset(page) + bvec->bv_offset;
1053 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1054 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1055 	}
1056 	/* are we fully contained in this bio? */
1057 	if (buf_len <= length)
1058 		return 1;
1059 
1060 	ret = extent_range_uptodate(io_tree, start + length,
1061 				    start + buf_len - 1);
1062 	if (ret == 1)
1063 		return ret;
1064 	return ret;
1065 }
1066 
1067 /*
1068  * called by the kthread helper functions to finally call the bio end_io
1069  * functions.  This is where read checksum verification actually happens
1070  */
1071 static void end_workqueue_fn(struct btrfs_work *work)
1072 {
1073 	struct bio *bio;
1074 	struct end_io_wq *end_io_wq;
1075 	struct btrfs_fs_info *fs_info;
1076 	int error;
1077 
1078 	end_io_wq = container_of(work, struct end_io_wq, work);
1079 	bio = end_io_wq->bio;
1080 	fs_info = end_io_wq->info;
1081 
1082 	/* metadata bios are special because the whole tree block must
1083 	 * be checksummed at once.  This makes sure the entire block is in
1084 	 * ram and up to date before trying to verify things.  For
1085 	 * blocksize <= pagesize, it is basically a noop
1086 	 */
1087 	if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1088 		btrfs_queue_worker(&fs_info->endio_workers,
1089 				   &end_io_wq->work);
1090 		return;
1091 	}
1092 	error = end_io_wq->error;
1093 	bio->bi_private = end_io_wq->private;
1094 	bio->bi_end_io = end_io_wq->end_io;
1095 	kfree(end_io_wq);
1096 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1097 	bio_endio(bio, bio->bi_size, error);
1098 #else
1099 	bio_endio(bio, error);
1100 #endif
1101 }
1102 
1103 struct btrfs_root *open_ctree(struct super_block *sb,
1104 			      struct btrfs_fs_devices *fs_devices,
1105 			      char *options)
1106 {
1107 	u32 sectorsize;
1108 	u32 nodesize;
1109 	u32 leafsize;
1110 	u32 blocksize;
1111 	u32 stripesize;
1112 	struct buffer_head *bh;
1113 	struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1114 						 GFP_NOFS);
1115 	struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1116 					       GFP_NOFS);
1117 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1118 						GFP_NOFS);
1119 	struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1120 						GFP_NOFS);
1121 	struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1122 					      GFP_NOFS);
1123 	int ret;
1124 	int err = -EINVAL;
1125 
1126 	struct btrfs_super_block *disk_super;
1127 
1128 	if (!extent_root || !tree_root || !fs_info) {
1129 		err = -ENOMEM;
1130 		goto fail;
1131 	}
1132 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1133 	INIT_LIST_HEAD(&fs_info->trans_list);
1134 	INIT_LIST_HEAD(&fs_info->dead_roots);
1135 	INIT_LIST_HEAD(&fs_info->hashers);
1136 	spin_lock_init(&fs_info->hash_lock);
1137 	spin_lock_init(&fs_info->delalloc_lock);
1138 	spin_lock_init(&fs_info->new_trans_lock);
1139 
1140 	init_completion(&fs_info->kobj_unregister);
1141 	fs_info->tree_root = tree_root;
1142 	fs_info->extent_root = extent_root;
1143 	fs_info->chunk_root = chunk_root;
1144 	fs_info->dev_root = dev_root;
1145 	fs_info->fs_devices = fs_devices;
1146 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1147 	INIT_LIST_HEAD(&fs_info->space_info);
1148 	btrfs_mapping_init(&fs_info->mapping_tree);
1149 	atomic_set(&fs_info->nr_async_submits, 0);
1150 	atomic_set(&fs_info->throttles, 0);
1151 	fs_info->sb = sb;
1152 	fs_info->max_extent = (u64)-1;
1153 	fs_info->max_inline = 8192 * 1024;
1154 	setup_bdi(fs_info, &fs_info->bdi);
1155 	fs_info->btree_inode = new_inode(sb);
1156 	fs_info->btree_inode->i_ino = 1;
1157 	fs_info->btree_inode->i_nlink = 1;
1158 	fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1159 
1160 	sb->s_blocksize = 4096;
1161 	sb->s_blocksize_bits = blksize_bits(4096);
1162 
1163 	/*
1164 	 * we set the i_size on the btree inode to the max possible int.
1165 	 * the real end of the address space is determined by all of
1166 	 * the devices in the system
1167 	 */
1168 	fs_info->btree_inode->i_size = OFFSET_MAX;
1169 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1170 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1171 
1172 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1173 			     fs_info->btree_inode->i_mapping,
1174 			     GFP_NOFS);
1175 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1176 			     GFP_NOFS);
1177 
1178 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1179 
1180 	extent_io_tree_init(&fs_info->free_space_cache,
1181 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1182 	extent_io_tree_init(&fs_info->block_group_cache,
1183 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1184 	extent_io_tree_init(&fs_info->pinned_extents,
1185 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1186 	extent_io_tree_init(&fs_info->pending_del,
1187 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1188 	extent_io_tree_init(&fs_info->extent_ins,
1189 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1190 	fs_info->do_barriers = 1;
1191 
1192 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1193 	INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1194 #else
1195 	INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1196 #endif
1197 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1198 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1199 	       sizeof(struct btrfs_key));
1200 	insert_inode_hash(fs_info->btree_inode);
1201 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1202 
1203 	mutex_init(&fs_info->trans_mutex);
1204 	mutex_init(&fs_info->drop_mutex);
1205 	mutex_init(&fs_info->alloc_mutex);
1206 	mutex_init(&fs_info->chunk_mutex);
1207 
1208 #if 0
1209 	ret = add_hasher(fs_info, "crc32c");
1210 	if (ret) {
1211 		printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1212 		err = -ENOMEM;
1213 		goto fail_iput;
1214 	}
1215 #endif
1216 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1217 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1218 
1219 
1220 	bh = __bread(fs_devices->latest_bdev,
1221 		     BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1222 	if (!bh)
1223 		goto fail_iput;
1224 
1225 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1226 	brelse(bh);
1227 
1228 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1229 
1230 	disk_super = &fs_info->super_copy;
1231 	if (!btrfs_super_root(disk_super))
1232 		goto fail_sb_buffer;
1233 
1234 	err = btrfs_parse_options(tree_root, options);
1235 	if (err)
1236 		goto fail_sb_buffer;
1237 
1238 	/*
1239 	 * we need to start all the end_io workers up front because the
1240 	 * queue work function gets called at interrupt time, and so it
1241 	 * cannot dynamically grow.
1242 	 */
1243 	btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size);
1244 	btrfs_init_workers(&fs_info->submit_workers, fs_info->thread_pool_size);
1245 	btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1246 	btrfs_start_workers(&fs_info->workers, 1);
1247 	btrfs_start_workers(&fs_info->submit_workers, 1);
1248 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1249 
1250 
1251 	err = -EINVAL;
1252 	if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
1253 		printk("Btrfs: wanted %llu devices, but found %llu\n",
1254 		       (unsigned long long)btrfs_super_num_devices(disk_super),
1255 		       (unsigned long long)fs_devices->open_devices);
1256 		if (btrfs_test_opt(tree_root, DEGRADED))
1257 			printk("continuing in degraded mode\n");
1258 		else {
1259 			goto fail_sb_buffer;
1260 		}
1261 	}
1262 
1263 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1264 
1265 	nodesize = btrfs_super_nodesize(disk_super);
1266 	leafsize = btrfs_super_leafsize(disk_super);
1267 	sectorsize = btrfs_super_sectorsize(disk_super);
1268 	stripesize = btrfs_super_stripesize(disk_super);
1269 	tree_root->nodesize = nodesize;
1270 	tree_root->leafsize = leafsize;
1271 	tree_root->sectorsize = sectorsize;
1272 	tree_root->stripesize = stripesize;
1273 
1274 	sb->s_blocksize = sectorsize;
1275 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1276 
1277 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1278 		    sizeof(disk_super->magic))) {
1279 		printk("btrfs: valid FS not found on %s\n", sb->s_id);
1280 		goto fail_sb_buffer;
1281 	}
1282 
1283 	mutex_lock(&fs_info->chunk_mutex);
1284 	ret = btrfs_read_sys_array(tree_root);
1285 	mutex_unlock(&fs_info->chunk_mutex);
1286 	if (ret) {
1287 		printk("btrfs: failed to read the system array on %s\n",
1288 		       sb->s_id);
1289 		goto fail_sys_array;
1290 	}
1291 
1292 	blocksize = btrfs_level_size(tree_root,
1293 				     btrfs_super_chunk_root_level(disk_super));
1294 
1295 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1296 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1297 
1298 	chunk_root->node = read_tree_block(chunk_root,
1299 					   btrfs_super_chunk_root(disk_super),
1300 					   blocksize, 0);
1301 	BUG_ON(!chunk_root->node);
1302 
1303 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1304 	         (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1305 		 BTRFS_UUID_SIZE);
1306 
1307 	mutex_lock(&fs_info->chunk_mutex);
1308 	ret = btrfs_read_chunk_tree(chunk_root);
1309 	mutex_unlock(&fs_info->chunk_mutex);
1310 	BUG_ON(ret);
1311 
1312 	btrfs_close_extra_devices(fs_devices);
1313 
1314 	blocksize = btrfs_level_size(tree_root,
1315 				     btrfs_super_root_level(disk_super));
1316 
1317 
1318 	tree_root->node = read_tree_block(tree_root,
1319 					  btrfs_super_root(disk_super),
1320 					  blocksize, 0);
1321 	if (!tree_root->node)
1322 		goto fail_sb_buffer;
1323 
1324 
1325 	ret = find_and_setup_root(tree_root, fs_info,
1326 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1327 	if (ret)
1328 		goto fail_tree_root;
1329 	extent_root->track_dirty = 1;
1330 
1331 	ret = find_and_setup_root(tree_root, fs_info,
1332 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1333 	dev_root->track_dirty = 1;
1334 
1335 	if (ret)
1336 		goto fail_extent_root;
1337 
1338 	btrfs_read_block_groups(extent_root);
1339 
1340 	fs_info->generation = btrfs_super_generation(disk_super) + 1;
1341 	fs_info->data_alloc_profile = (u64)-1;
1342 	fs_info->metadata_alloc_profile = (u64)-1;
1343 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1344 
1345 	return tree_root;
1346 
1347 fail_extent_root:
1348 	free_extent_buffer(extent_root->node);
1349 fail_tree_root:
1350 	free_extent_buffer(tree_root->node);
1351 fail_sys_array:
1352 fail_sb_buffer:
1353 	extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1354 	btrfs_stop_workers(&fs_info->workers);
1355 	btrfs_stop_workers(&fs_info->endio_workers);
1356 	btrfs_stop_workers(&fs_info->submit_workers);
1357 fail_iput:
1358 	iput(fs_info->btree_inode);
1359 fail:
1360 	btrfs_close_devices(fs_info->fs_devices);
1361 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1362 
1363 	kfree(extent_root);
1364 	kfree(tree_root);
1365 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1366 	bdi_destroy(&fs_info->bdi);
1367 #endif
1368 	kfree(fs_info);
1369 	return ERR_PTR(err);
1370 }
1371 
1372 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1373 {
1374 	char b[BDEVNAME_SIZE];
1375 
1376 	if (uptodate) {
1377 		set_buffer_uptodate(bh);
1378 	} else {
1379 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1380 			printk(KERN_WARNING "lost page write due to "
1381 					"I/O error on %s\n",
1382 				       bdevname(bh->b_bdev, b));
1383 		}
1384 		/* note, we dont' set_buffer_write_io_error because we have
1385 		 * our own ways of dealing with the IO errors
1386 		 */
1387 		clear_buffer_uptodate(bh);
1388 	}
1389 	unlock_buffer(bh);
1390 	put_bh(bh);
1391 }
1392 
1393 int write_all_supers(struct btrfs_root *root)
1394 {
1395 	struct list_head *cur;
1396 	struct list_head *head = &root->fs_info->fs_devices->devices;
1397 	struct btrfs_device *dev;
1398 	struct btrfs_super_block *sb;
1399 	struct btrfs_dev_item *dev_item;
1400 	struct buffer_head *bh;
1401 	int ret;
1402 	int do_barriers;
1403 	int max_errors;
1404 	int total_errors = 0;
1405 	u32 crc;
1406 	u64 flags;
1407 
1408 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1409 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
1410 
1411 	sb = &root->fs_info->super_for_commit;
1412 	dev_item = &sb->dev_item;
1413 	list_for_each(cur, head) {
1414 		dev = list_entry(cur, struct btrfs_device, dev_list);
1415 		if (!dev->bdev) {
1416 			total_errors++;
1417 			continue;
1418 		}
1419 		if (!dev->in_fs_metadata)
1420 			continue;
1421 
1422 		btrfs_set_stack_device_type(dev_item, dev->type);
1423 		btrfs_set_stack_device_id(dev_item, dev->devid);
1424 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1425 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1426 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1427 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1428 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1429 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1430 		flags = btrfs_super_flags(sb);
1431 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1432 
1433 
1434 		crc = ~(u32)0;
1435 		crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1436 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1437 		btrfs_csum_final(crc, sb->csum);
1438 
1439 		bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1440 			      BTRFS_SUPER_INFO_SIZE);
1441 
1442 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1443 		dev->pending_io = bh;
1444 
1445 		get_bh(bh);
1446 		set_buffer_uptodate(bh);
1447 		lock_buffer(bh);
1448 		bh->b_end_io = btrfs_end_buffer_write_sync;
1449 
1450 		if (do_barriers && dev->barriers) {
1451 			ret = submit_bh(WRITE_BARRIER, bh);
1452 			if (ret == -EOPNOTSUPP) {
1453 				printk("btrfs: disabling barriers on dev %s\n",
1454 				       dev->name);
1455 				set_buffer_uptodate(bh);
1456 				dev->barriers = 0;
1457 				get_bh(bh);
1458 				lock_buffer(bh);
1459 				ret = submit_bh(WRITE, bh);
1460 			}
1461 		} else {
1462 			ret = submit_bh(WRITE, bh);
1463 		}
1464 		if (ret)
1465 			total_errors++;
1466 	}
1467 	if (total_errors > max_errors) {
1468 		printk("btrfs: %d errors while writing supers\n", total_errors);
1469 		BUG();
1470 	}
1471 	total_errors = 0;
1472 
1473 	list_for_each(cur, head) {
1474 		dev = list_entry(cur, struct btrfs_device, dev_list);
1475 		if (!dev->bdev)
1476 			continue;
1477 		if (!dev->in_fs_metadata)
1478 			continue;
1479 
1480 		BUG_ON(!dev->pending_io);
1481 		bh = dev->pending_io;
1482 		wait_on_buffer(bh);
1483 		if (!buffer_uptodate(dev->pending_io)) {
1484 			if (do_barriers && dev->barriers) {
1485 				printk("btrfs: disabling barriers on dev %s\n",
1486 				       dev->name);
1487 				set_buffer_uptodate(bh);
1488 				get_bh(bh);
1489 				lock_buffer(bh);
1490 				dev->barriers = 0;
1491 				ret = submit_bh(WRITE, bh);
1492 				BUG_ON(ret);
1493 				wait_on_buffer(bh);
1494 				if (!buffer_uptodate(bh))
1495 					total_errors++;
1496 			} else {
1497 				total_errors++;
1498 			}
1499 
1500 		}
1501 		dev->pending_io = NULL;
1502 		brelse(bh);
1503 	}
1504 	if (total_errors > max_errors) {
1505 		printk("btrfs: %d errors while writing supers\n", total_errors);
1506 		BUG();
1507 	}
1508 	return 0;
1509 }
1510 
1511 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1512 		      *root)
1513 {
1514 	int ret;
1515 
1516 	ret = write_all_supers(root);
1517 	return ret;
1518 }
1519 
1520 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1521 {
1522 	radix_tree_delete(&fs_info->fs_roots_radix,
1523 			  (unsigned long)root->root_key.objectid);
1524 	if (root->in_sysfs)
1525 		btrfs_sysfs_del_root(root);
1526 	if (root->inode)
1527 		iput(root->inode);
1528 	if (root->node)
1529 		free_extent_buffer(root->node);
1530 	if (root->commit_root)
1531 		free_extent_buffer(root->commit_root);
1532 	if (root->name)
1533 		kfree(root->name);
1534 	kfree(root);
1535 	return 0;
1536 }
1537 
1538 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1539 {
1540 	int ret;
1541 	struct btrfs_root *gang[8];
1542 	int i;
1543 
1544 	while(1) {
1545 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1546 					     (void **)gang, 0,
1547 					     ARRAY_SIZE(gang));
1548 		if (!ret)
1549 			break;
1550 		for (i = 0; i < ret; i++)
1551 			btrfs_free_fs_root(fs_info, gang[i]);
1552 	}
1553 	return 0;
1554 }
1555 
1556 int close_ctree(struct btrfs_root *root)
1557 {
1558 	int ret;
1559 	struct btrfs_trans_handle *trans;
1560 	struct btrfs_fs_info *fs_info = root->fs_info;
1561 
1562 	fs_info->closing = 1;
1563 	smp_mb();
1564 
1565 	btrfs_transaction_flush_work(root);
1566 	btrfs_defrag_dirty_roots(root->fs_info);
1567 	trans = btrfs_start_transaction(root, 1);
1568 	ret = btrfs_commit_transaction(trans, root);
1569 	/* run commit again to  drop the original snapshot */
1570 	trans = btrfs_start_transaction(root, 1);
1571 	btrfs_commit_transaction(trans, root);
1572 	ret = btrfs_write_and_wait_transaction(NULL, root);
1573 	BUG_ON(ret);
1574 
1575 	write_ctree_super(NULL, root);
1576 
1577 	btrfs_transaction_flush_work(root);
1578 
1579 	if (fs_info->delalloc_bytes) {
1580 		printk("btrfs: at unmount delalloc count %Lu\n",
1581 		       fs_info->delalloc_bytes);
1582 	}
1583 	if (fs_info->extent_root->node)
1584 		free_extent_buffer(fs_info->extent_root->node);
1585 
1586 	if (fs_info->tree_root->node)
1587 		free_extent_buffer(fs_info->tree_root->node);
1588 
1589 	if (root->fs_info->chunk_root->node);
1590 		free_extent_buffer(root->fs_info->chunk_root->node);
1591 
1592 	if (root->fs_info->dev_root->node);
1593 		free_extent_buffer(root->fs_info->dev_root->node);
1594 
1595 	btrfs_free_block_groups(root->fs_info);
1596 	del_fs_roots(fs_info);
1597 
1598 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1599 
1600 	extent_io_tree_empty_lru(&fs_info->free_space_cache);
1601 	extent_io_tree_empty_lru(&fs_info->block_group_cache);
1602 	extent_io_tree_empty_lru(&fs_info->pinned_extents);
1603 	extent_io_tree_empty_lru(&fs_info->pending_del);
1604 	extent_io_tree_empty_lru(&fs_info->extent_ins);
1605 	extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1606 
1607 	truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1608 
1609 	btrfs_stop_workers(&fs_info->workers);
1610 	btrfs_stop_workers(&fs_info->endio_workers);
1611 	btrfs_stop_workers(&fs_info->submit_workers);
1612 
1613 	iput(fs_info->btree_inode);
1614 #if 0
1615 	while(!list_empty(&fs_info->hashers)) {
1616 		struct btrfs_hasher *hasher;
1617 		hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1618 				    hashers);
1619 		list_del(&hasher->hashers);
1620 		crypto_free_hash(&fs_info->hash_tfm);
1621 		kfree(hasher);
1622 	}
1623 #endif
1624 	btrfs_close_devices(fs_info->fs_devices);
1625 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1626 
1627 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1628 	bdi_destroy(&fs_info->bdi);
1629 #endif
1630 
1631 	kfree(fs_info->extent_root);
1632 	kfree(fs_info->tree_root);
1633 	kfree(fs_info->chunk_root);
1634 	kfree(fs_info->dev_root);
1635 	return 0;
1636 }
1637 
1638 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1639 {
1640 	int ret;
1641 	struct inode *btree_inode = buf->first_page->mapping->host;
1642 
1643 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1644 	if (!ret)
1645 		return ret;
1646 
1647 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
1648 				    parent_transid);
1649 	return !ret;
1650 }
1651 
1652 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1653 {
1654 	struct inode *btree_inode = buf->first_page->mapping->host;
1655 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1656 					  buf);
1657 }
1658 
1659 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1660 {
1661 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1662 	u64 transid = btrfs_header_generation(buf);
1663 	struct inode *btree_inode = root->fs_info->btree_inode;
1664 
1665 	WARN_ON(!btrfs_tree_locked(buf));
1666 	if (transid != root->fs_info->generation) {
1667 		printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1668 			(unsigned long long)buf->start,
1669 			transid, root->fs_info->generation);
1670 		WARN_ON(1);
1671 	}
1672 	set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1673 }
1674 
1675 void btrfs_throttle(struct btrfs_root *root)
1676 {
1677 	struct backing_dev_info *bdi;
1678 
1679 	bdi = &root->fs_info->bdi;
1680 	if (atomic_read(&root->fs_info->throttles) &&
1681 	    bdi_write_congested(bdi)) {
1682 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1683 		congestion_wait(WRITE, HZ/20);
1684 #else
1685 		blk_congestion_wait(WRITE, HZ/20);
1686 #endif
1687 	}
1688 }
1689 
1690 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1691 {
1692 	/*
1693 	 * looks as though older kernels can get into trouble with
1694 	 * this code, they end up stuck in balance_dirty_pages forever
1695 	 */
1696 	struct extent_io_tree *tree;
1697 	u64 num_dirty;
1698 	u64 start = 0;
1699 	unsigned long thresh = 16 * 1024 * 1024;
1700 	tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1701 
1702 	if (current_is_pdflush())
1703 		return;
1704 
1705 	num_dirty = count_range_bits(tree, &start, (u64)-1,
1706 				     thresh, EXTENT_DIRTY);
1707 	if (num_dirty > thresh) {
1708 		balance_dirty_pages_ratelimited_nr(
1709 				   root->fs_info->btree_inode->i_mapping, 1);
1710 	}
1711 	return;
1712 }
1713 
1714 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1715 {
1716 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1717 	struct inode *btree_inode = root->fs_info->btree_inode;
1718 	set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1719 			buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1720 }
1721 
1722 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1723 {
1724 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1725 	struct inode *btree_inode = root->fs_info->btree_inode;
1726 	set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1727 			buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1728 			GFP_NOFS);
1729 }
1730 
1731 int btrfs_buffer_defrag(struct extent_buffer *buf)
1732 {
1733 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1734 	struct inode *btree_inode = root->fs_info->btree_inode;
1735 	return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1736 		     buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1737 }
1738 
1739 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1740 {
1741 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1742 	struct inode *btree_inode = root->fs_info->btree_inode;
1743 	return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1744 		     buf->start, buf->start + buf->len - 1,
1745 		     EXTENT_DEFRAG_DONE, 0);
1746 }
1747 
1748 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1749 {
1750 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1751 	struct inode *btree_inode = root->fs_info->btree_inode;
1752 	return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1753 		     buf->start, buf->start + buf->len - 1,
1754 		     EXTENT_DEFRAG_DONE, GFP_NOFS);
1755 }
1756 
1757 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1758 {
1759 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1760 	struct inode *btree_inode = root->fs_info->btree_inode;
1761 	return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1762 		     buf->start, buf->start + buf->len - 1,
1763 		     EXTENT_DEFRAG, GFP_NOFS);
1764 }
1765 
1766 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
1767 {
1768 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1769 	int ret;
1770 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1771 	if (ret == 0) {
1772 		buf->flags |= EXTENT_UPTODATE;
1773 	}
1774 	return ret;
1775 }
1776 
1777 static struct extent_io_ops btree_extent_io_ops = {
1778 	.writepage_io_hook = btree_writepage_io_hook,
1779 	.readpage_end_io_hook = btree_readpage_end_io_hook,
1780 	.submit_bio_hook = btree_submit_bio_hook,
1781 	/* note we're sharing with inode.c for the merge bio hook */
1782 	.merge_bio_hook = btrfs_merge_bio_hook,
1783 };
1784