1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_fs_info *fs_info); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 74 75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 76 { 77 if (fs_info->csum_shash) 78 crypto_free_shash(fs_info->csum_shash); 79 } 80 81 /* 82 * Compute the csum of a btree block and store the result to provided buffer. 83 */ 84 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 85 { 86 struct btrfs_fs_info *fs_info = buf->fs_info; 87 const int num_pages = num_extent_pages(buf); 88 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 89 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 90 char *kaddr; 91 int i; 92 93 shash->tfm = fs_info->csum_shash; 94 crypto_shash_init(shash); 95 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 100 kaddr = page_address(buf->pages[i]); 101 crypto_shash_update(shash, kaddr, PAGE_SIZE); 102 } 103 memset(result, 0, BTRFS_CSUM_SIZE); 104 crypto_shash_final(shash, result); 105 } 106 107 /* 108 * we can't consider a given block up to date unless the transid of the 109 * block matches the transid in the parent node's pointer. This is how we 110 * detect blocks that either didn't get written at all or got written 111 * in the wrong place. 112 */ 113 static int verify_parent_transid(struct extent_io_tree *io_tree, 114 struct extent_buffer *eb, u64 parent_transid, 115 int atomic) 116 { 117 struct extent_state *cached_state = NULL; 118 int ret; 119 120 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 121 return 0; 122 123 if (atomic) 124 return -EAGAIN; 125 126 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 127 if (extent_buffer_uptodate(eb) && 128 btrfs_header_generation(eb) == parent_transid) { 129 ret = 0; 130 goto out; 131 } 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 ret = 1; 137 clear_extent_buffer_uptodate(eb); 138 out: 139 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 140 &cached_state); 141 return ret; 142 } 143 144 static bool btrfs_supported_super_csum(u16 csum_type) 145 { 146 switch (csum_type) { 147 case BTRFS_CSUM_TYPE_CRC32: 148 case BTRFS_CSUM_TYPE_XXHASH: 149 case BTRFS_CSUM_TYPE_SHA256: 150 case BTRFS_CSUM_TYPE_BLAKE2: 151 return true; 152 default: 153 return false; 154 } 155 } 156 157 /* 158 * Return 0 if the superblock checksum type matches the checksum value of that 159 * algorithm. Pass the raw disk superblock data. 160 */ 161 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 162 const struct btrfs_super_block *disk_sb) 163 { 164 char result[BTRFS_CSUM_SIZE]; 165 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 166 167 shash->tfm = fs_info->csum_shash; 168 169 /* 170 * The super_block structure does not span the whole 171 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 172 * filled with zeros and is included in the checksum. 173 */ 174 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 175 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 176 177 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 178 return 1; 179 180 return 0; 181 } 182 183 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 184 struct btrfs_key *first_key, u64 parent_transid) 185 { 186 struct btrfs_fs_info *fs_info = eb->fs_info; 187 int found_level; 188 struct btrfs_key found_key; 189 int ret; 190 191 found_level = btrfs_header_level(eb); 192 if (found_level != level) { 193 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 194 KERN_ERR "BTRFS: tree level check failed\n"); 195 btrfs_err(fs_info, 196 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 197 eb->start, level, found_level); 198 return -EIO; 199 } 200 201 if (!first_key) 202 return 0; 203 204 /* 205 * For live tree block (new tree blocks in current transaction), 206 * we need proper lock context to avoid race, which is impossible here. 207 * So we only checks tree blocks which is read from disk, whose 208 * generation <= fs_info->last_trans_committed. 209 */ 210 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 211 return 0; 212 213 /* We have @first_key, so this @eb must have at least one item */ 214 if (btrfs_header_nritems(eb) == 0) { 215 btrfs_err(fs_info, 216 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 217 eb->start); 218 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 219 return -EUCLEAN; 220 } 221 222 if (found_level) 223 btrfs_node_key_to_cpu(eb, &found_key, 0); 224 else 225 btrfs_item_key_to_cpu(eb, &found_key, 0); 226 ret = btrfs_comp_cpu_keys(first_key, &found_key); 227 228 if (ret) { 229 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 230 KERN_ERR "BTRFS: tree first key check failed\n"); 231 btrfs_err(fs_info, 232 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 233 eb->start, parent_transid, first_key->objectid, 234 first_key->type, first_key->offset, 235 found_key.objectid, found_key.type, 236 found_key.offset); 237 } 238 return ret; 239 } 240 241 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 242 int mirror_num) 243 { 244 struct btrfs_fs_info *fs_info = eb->fs_info; 245 int i, num_pages = num_extent_pages(eb); 246 int ret = 0; 247 248 if (sb_rdonly(fs_info->sb)) 249 return -EROFS; 250 251 for (i = 0; i < num_pages; i++) { 252 struct page *p = eb->pages[i]; 253 u64 start = max_t(u64, eb->start, page_offset(p)); 254 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE); 255 u32 len = end - start; 256 257 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 258 start, p, offset_in_page(start), mirror_num); 259 if (ret) 260 break; 261 } 262 263 return ret; 264 } 265 266 /* 267 * helper to read a given tree block, doing retries as required when 268 * the checksums don't match and we have alternate mirrors to try. 269 * 270 * @check: expected tree parentness check, see the comments of the 271 * structure for details. 272 */ 273 int btrfs_read_extent_buffer(struct extent_buffer *eb, 274 struct btrfs_tree_parent_check *check) 275 { 276 struct btrfs_fs_info *fs_info = eb->fs_info; 277 int failed = 0; 278 int ret; 279 int num_copies = 0; 280 int mirror_num = 0; 281 int failed_mirror = 0; 282 283 ASSERT(check); 284 285 while (1) { 286 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 287 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 288 if (!ret) 289 break; 290 291 num_copies = btrfs_num_copies(fs_info, 292 eb->start, eb->len); 293 if (num_copies == 1) 294 break; 295 296 if (!failed_mirror) { 297 failed = 1; 298 failed_mirror = eb->read_mirror; 299 } 300 301 mirror_num++; 302 if (mirror_num == failed_mirror) 303 mirror_num++; 304 305 if (mirror_num > num_copies) 306 break; 307 } 308 309 if (failed && !ret && failed_mirror) 310 btrfs_repair_eb_io_failure(eb, failed_mirror); 311 312 return ret; 313 } 314 315 static int csum_one_extent_buffer(struct extent_buffer *eb) 316 { 317 struct btrfs_fs_info *fs_info = eb->fs_info; 318 u8 result[BTRFS_CSUM_SIZE]; 319 int ret; 320 321 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 322 offsetof(struct btrfs_header, fsid), 323 BTRFS_FSID_SIZE) == 0); 324 csum_tree_block(eb, result); 325 326 if (btrfs_header_level(eb)) 327 ret = btrfs_check_node(eb); 328 else 329 ret = btrfs_check_leaf(eb); 330 331 if (ret < 0) 332 goto error; 333 334 /* 335 * Also check the generation, the eb reached here must be newer than 336 * last committed. Or something seriously wrong happened. 337 */ 338 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 339 ret = -EUCLEAN; 340 btrfs_err(fs_info, 341 "block=%llu bad generation, have %llu expect > %llu", 342 eb->start, btrfs_header_generation(eb), 343 fs_info->last_trans_committed); 344 goto error; 345 } 346 write_extent_buffer(eb, result, 0, fs_info->csum_size); 347 348 return 0; 349 350 error: 351 btrfs_print_tree(eb, 0); 352 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 353 eb->start); 354 /* 355 * Be noisy if this is an extent buffer from a log tree. We don't abort 356 * a transaction in case there's a bad log tree extent buffer, we just 357 * fallback to a transaction commit. Still we want to know when there is 358 * a bad log tree extent buffer, as that may signal a bug somewhere. 359 */ 360 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 361 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 362 return ret; 363 } 364 365 /* Checksum all dirty extent buffers in one bio_vec */ 366 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 367 struct bio_vec *bvec) 368 { 369 struct page *page = bvec->bv_page; 370 u64 bvec_start = page_offset(page) + bvec->bv_offset; 371 u64 cur; 372 int ret = 0; 373 374 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 375 cur += fs_info->nodesize) { 376 struct extent_buffer *eb; 377 bool uptodate; 378 379 eb = find_extent_buffer(fs_info, cur); 380 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 381 fs_info->nodesize); 382 383 /* A dirty eb shouldn't disappear from buffer_radix */ 384 if (WARN_ON(!eb)) 385 return -EUCLEAN; 386 387 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 388 free_extent_buffer(eb); 389 return -EUCLEAN; 390 } 391 if (WARN_ON(!uptodate)) { 392 free_extent_buffer(eb); 393 return -EUCLEAN; 394 } 395 396 ret = csum_one_extent_buffer(eb); 397 free_extent_buffer(eb); 398 if (ret < 0) 399 return ret; 400 } 401 return ret; 402 } 403 404 /* 405 * Checksum a dirty tree block before IO. This has extra checks to make sure 406 * we only fill in the checksum field in the first page of a multi-page block. 407 * For subpage extent buffers we need bvec to also read the offset in the page. 408 */ 409 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 410 { 411 struct page *page = bvec->bv_page; 412 u64 start = page_offset(page); 413 u64 found_start; 414 struct extent_buffer *eb; 415 416 if (fs_info->nodesize < PAGE_SIZE) 417 return csum_dirty_subpage_buffers(fs_info, bvec); 418 419 eb = (struct extent_buffer *)page->private; 420 if (page != eb->pages[0]) 421 return 0; 422 423 found_start = btrfs_header_bytenr(eb); 424 425 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 426 WARN_ON(found_start != 0); 427 return 0; 428 } 429 430 /* 431 * Please do not consolidate these warnings into a single if. 432 * It is useful to know what went wrong. 433 */ 434 if (WARN_ON(found_start != start)) 435 return -EUCLEAN; 436 if (WARN_ON(!PageUptodate(page))) 437 return -EUCLEAN; 438 439 return csum_one_extent_buffer(eb); 440 } 441 442 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 443 { 444 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 445 struct bvec_iter iter; 446 struct bio_vec bv; 447 int ret = 0; 448 449 bio_for_each_segment(bv, &bbio->bio, iter) { 450 ret = csum_dirty_buffer(fs_info, &bv); 451 if (ret) 452 break; 453 } 454 455 return errno_to_blk_status(ret); 456 } 457 458 static int check_tree_block_fsid(struct extent_buffer *eb) 459 { 460 struct btrfs_fs_info *fs_info = eb->fs_info; 461 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 462 u8 fsid[BTRFS_FSID_SIZE]; 463 u8 *metadata_uuid; 464 465 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 466 BTRFS_FSID_SIZE); 467 /* 468 * Checking the incompat flag is only valid for the current fs. For 469 * seed devices it's forbidden to have their uuid changed so reading 470 * ->fsid in this case is fine 471 */ 472 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 473 metadata_uuid = fs_devices->metadata_uuid; 474 else 475 metadata_uuid = fs_devices->fsid; 476 477 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 478 return 0; 479 480 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 481 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 482 return 0; 483 484 return 1; 485 } 486 487 /* Do basic extent buffer checks at read time */ 488 static int validate_extent_buffer(struct extent_buffer *eb, 489 struct btrfs_tree_parent_check *check) 490 { 491 struct btrfs_fs_info *fs_info = eb->fs_info; 492 u64 found_start; 493 const u32 csum_size = fs_info->csum_size; 494 u8 found_level; 495 u8 result[BTRFS_CSUM_SIZE]; 496 const u8 *header_csum; 497 int ret = 0; 498 499 ASSERT(check); 500 501 found_start = btrfs_header_bytenr(eb); 502 if (found_start != eb->start) { 503 btrfs_err_rl(fs_info, 504 "bad tree block start, mirror %u want %llu have %llu", 505 eb->read_mirror, eb->start, found_start); 506 ret = -EIO; 507 goto out; 508 } 509 if (check_tree_block_fsid(eb)) { 510 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 511 eb->start, eb->read_mirror); 512 ret = -EIO; 513 goto out; 514 } 515 found_level = btrfs_header_level(eb); 516 if (found_level >= BTRFS_MAX_LEVEL) { 517 btrfs_err(fs_info, 518 "bad tree block level, mirror %u level %d on logical %llu", 519 eb->read_mirror, btrfs_header_level(eb), eb->start); 520 ret = -EIO; 521 goto out; 522 } 523 524 csum_tree_block(eb, result); 525 header_csum = page_address(eb->pages[0]) + 526 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 527 528 if (memcmp(result, header_csum, csum_size) != 0) { 529 btrfs_warn_rl(fs_info, 530 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 531 eb->start, eb->read_mirror, 532 CSUM_FMT_VALUE(csum_size, header_csum), 533 CSUM_FMT_VALUE(csum_size, result), 534 btrfs_header_level(eb)); 535 ret = -EUCLEAN; 536 goto out; 537 } 538 539 if (found_level != check->level) { 540 btrfs_err(fs_info, 541 "level verify failed on logical %llu mirror %u wanted %u found %u", 542 eb->start, eb->read_mirror, check->level, found_level); 543 ret = -EIO; 544 goto out; 545 } 546 if (unlikely(check->transid && 547 btrfs_header_generation(eb) != check->transid)) { 548 btrfs_err_rl(eb->fs_info, 549 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 550 eb->start, eb->read_mirror, check->transid, 551 btrfs_header_generation(eb)); 552 ret = -EIO; 553 goto out; 554 } 555 if (check->has_first_key) { 556 struct btrfs_key *expect_key = &check->first_key; 557 struct btrfs_key found_key; 558 559 if (found_level) 560 btrfs_node_key_to_cpu(eb, &found_key, 0); 561 else 562 btrfs_item_key_to_cpu(eb, &found_key, 0); 563 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 564 btrfs_err(fs_info, 565 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 566 eb->start, check->transid, 567 expect_key->objectid, 568 expect_key->type, expect_key->offset, 569 found_key.objectid, found_key.type, 570 found_key.offset); 571 ret = -EUCLEAN; 572 goto out; 573 } 574 } 575 if (check->owner_root) { 576 ret = btrfs_check_eb_owner(eb, check->owner_root); 577 if (ret < 0) 578 goto out; 579 } 580 581 /* 582 * If this is a leaf block and it is corrupt, set the corrupt bit so 583 * that we don't try and read the other copies of this block, just 584 * return -EIO. 585 */ 586 if (found_level == 0 && btrfs_check_leaf(eb)) { 587 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 588 ret = -EIO; 589 } 590 591 if (found_level > 0 && btrfs_check_node(eb)) 592 ret = -EIO; 593 594 if (!ret) 595 set_extent_buffer_uptodate(eb); 596 else 597 btrfs_err(fs_info, 598 "read time tree block corruption detected on logical %llu mirror %u", 599 eb->start, eb->read_mirror); 600 out: 601 return ret; 602 } 603 604 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 605 int mirror, struct btrfs_tree_parent_check *check) 606 { 607 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 608 struct extent_buffer *eb; 609 bool reads_done; 610 int ret = 0; 611 612 ASSERT(check); 613 614 /* 615 * We don't allow bio merge for subpage metadata read, so we should 616 * only get one eb for each endio hook. 617 */ 618 ASSERT(end == start + fs_info->nodesize - 1); 619 ASSERT(PagePrivate(page)); 620 621 eb = find_extent_buffer(fs_info, start); 622 /* 623 * When we are reading one tree block, eb must have been inserted into 624 * the radix tree. If not, something is wrong. 625 */ 626 ASSERT(eb); 627 628 reads_done = atomic_dec_and_test(&eb->io_pages); 629 /* Subpage read must finish in page read */ 630 ASSERT(reads_done); 631 632 eb->read_mirror = mirror; 633 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 634 ret = -EIO; 635 goto err; 636 } 637 ret = validate_extent_buffer(eb, check); 638 if (ret < 0) 639 goto err; 640 641 set_extent_buffer_uptodate(eb); 642 643 free_extent_buffer(eb); 644 return ret; 645 err: 646 /* 647 * end_bio_extent_readpage decrements io_pages in case of error, 648 * make sure it has something to decrement. 649 */ 650 atomic_inc(&eb->io_pages); 651 clear_extent_buffer_uptodate(eb); 652 free_extent_buffer(eb); 653 return ret; 654 } 655 656 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 657 struct page *page, u64 start, u64 end, 658 int mirror) 659 { 660 struct extent_buffer *eb; 661 int ret = 0; 662 int reads_done; 663 664 ASSERT(page->private); 665 666 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 667 return validate_subpage_buffer(page, start, end, mirror, 668 &bbio->parent_check); 669 670 eb = (struct extent_buffer *)page->private; 671 672 /* 673 * The pending IO might have been the only thing that kept this buffer 674 * in memory. Make sure we have a ref for all this other checks 675 */ 676 atomic_inc(&eb->refs); 677 678 reads_done = atomic_dec_and_test(&eb->io_pages); 679 if (!reads_done) 680 goto err; 681 682 eb->read_mirror = mirror; 683 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 684 ret = -EIO; 685 goto err; 686 } 687 ret = validate_extent_buffer(eb, &bbio->parent_check); 688 err: 689 if (ret) { 690 /* 691 * our io error hook is going to dec the io pages 692 * again, we have to make sure it has something 693 * to decrement 694 */ 695 atomic_inc(&eb->io_pages); 696 clear_extent_buffer_uptodate(eb); 697 } 698 free_extent_buffer(eb); 699 700 return ret; 701 } 702 703 #ifdef CONFIG_MIGRATION 704 static int btree_migrate_folio(struct address_space *mapping, 705 struct folio *dst, struct folio *src, enum migrate_mode mode) 706 { 707 /* 708 * we can't safely write a btree page from here, 709 * we haven't done the locking hook 710 */ 711 if (folio_test_dirty(src)) 712 return -EAGAIN; 713 /* 714 * Buffers may be managed in a filesystem specific way. 715 * We must have no buffers or drop them. 716 */ 717 if (folio_get_private(src) && 718 !filemap_release_folio(src, GFP_KERNEL)) 719 return -EAGAIN; 720 return migrate_folio(mapping, dst, src, mode); 721 } 722 #else 723 #define btree_migrate_folio NULL 724 #endif 725 726 static int btree_writepages(struct address_space *mapping, 727 struct writeback_control *wbc) 728 { 729 struct btrfs_fs_info *fs_info; 730 int ret; 731 732 if (wbc->sync_mode == WB_SYNC_NONE) { 733 734 if (wbc->for_kupdate) 735 return 0; 736 737 fs_info = BTRFS_I(mapping->host)->root->fs_info; 738 /* this is a bit racy, but that's ok */ 739 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 740 BTRFS_DIRTY_METADATA_THRESH, 741 fs_info->dirty_metadata_batch); 742 if (ret < 0) 743 return 0; 744 } 745 return btree_write_cache_pages(mapping, wbc); 746 } 747 748 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 749 { 750 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 751 return false; 752 753 return try_release_extent_buffer(&folio->page); 754 } 755 756 static void btree_invalidate_folio(struct folio *folio, size_t offset, 757 size_t length) 758 { 759 struct extent_io_tree *tree; 760 tree = &BTRFS_I(folio->mapping->host)->io_tree; 761 extent_invalidate_folio(tree, folio, offset); 762 btree_release_folio(folio, GFP_NOFS); 763 if (folio_get_private(folio)) { 764 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 765 "folio private not zero on folio %llu", 766 (unsigned long long)folio_pos(folio)); 767 folio_detach_private(folio); 768 } 769 } 770 771 #ifdef DEBUG 772 static bool btree_dirty_folio(struct address_space *mapping, 773 struct folio *folio) 774 { 775 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 776 struct btrfs_subpage *subpage; 777 struct extent_buffer *eb; 778 int cur_bit = 0; 779 u64 page_start = folio_pos(folio); 780 781 if (fs_info->sectorsize == PAGE_SIZE) { 782 eb = folio_get_private(folio); 783 BUG_ON(!eb); 784 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 785 BUG_ON(!atomic_read(&eb->refs)); 786 btrfs_assert_tree_write_locked(eb); 787 return filemap_dirty_folio(mapping, folio); 788 } 789 subpage = folio_get_private(folio); 790 791 ASSERT(subpage->dirty_bitmap); 792 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 793 unsigned long flags; 794 u64 cur; 795 u16 tmp = (1 << cur_bit); 796 797 spin_lock_irqsave(&subpage->lock, flags); 798 if (!(tmp & subpage->dirty_bitmap)) { 799 spin_unlock_irqrestore(&subpage->lock, flags); 800 cur_bit++; 801 continue; 802 } 803 spin_unlock_irqrestore(&subpage->lock, flags); 804 cur = page_start + cur_bit * fs_info->sectorsize; 805 806 eb = find_extent_buffer(fs_info, cur); 807 ASSERT(eb); 808 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 809 ASSERT(atomic_read(&eb->refs)); 810 btrfs_assert_tree_write_locked(eb); 811 free_extent_buffer(eb); 812 813 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 814 } 815 return filemap_dirty_folio(mapping, folio); 816 } 817 #else 818 #define btree_dirty_folio filemap_dirty_folio 819 #endif 820 821 static const struct address_space_operations btree_aops = { 822 .writepages = btree_writepages, 823 .release_folio = btree_release_folio, 824 .invalidate_folio = btree_invalidate_folio, 825 .migrate_folio = btree_migrate_folio, 826 .dirty_folio = btree_dirty_folio, 827 }; 828 829 struct extent_buffer *btrfs_find_create_tree_block( 830 struct btrfs_fs_info *fs_info, 831 u64 bytenr, u64 owner_root, 832 int level) 833 { 834 if (btrfs_is_testing(fs_info)) 835 return alloc_test_extent_buffer(fs_info, bytenr); 836 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 837 } 838 839 /* 840 * Read tree block at logical address @bytenr and do variant basic but critical 841 * verification. 842 * 843 * @check: expected tree parentness check, see comments of the 844 * structure for details. 845 */ 846 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 847 struct btrfs_tree_parent_check *check) 848 { 849 struct extent_buffer *buf = NULL; 850 int ret; 851 852 ASSERT(check); 853 854 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 855 check->level); 856 if (IS_ERR(buf)) 857 return buf; 858 859 ret = btrfs_read_extent_buffer(buf, check); 860 if (ret) { 861 free_extent_buffer_stale(buf); 862 return ERR_PTR(ret); 863 } 864 if (btrfs_check_eb_owner(buf, check->owner_root)) { 865 free_extent_buffer_stale(buf); 866 return ERR_PTR(-EUCLEAN); 867 } 868 return buf; 869 870 } 871 872 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 873 u64 objectid) 874 { 875 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 876 877 memset(&root->root_key, 0, sizeof(root->root_key)); 878 memset(&root->root_item, 0, sizeof(root->root_item)); 879 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 880 root->fs_info = fs_info; 881 root->root_key.objectid = objectid; 882 root->node = NULL; 883 root->commit_root = NULL; 884 root->state = 0; 885 RB_CLEAR_NODE(&root->rb_node); 886 887 root->last_trans = 0; 888 root->free_objectid = 0; 889 root->nr_delalloc_inodes = 0; 890 root->nr_ordered_extents = 0; 891 root->inode_tree = RB_ROOT; 892 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 893 894 btrfs_init_root_block_rsv(root); 895 896 INIT_LIST_HEAD(&root->dirty_list); 897 INIT_LIST_HEAD(&root->root_list); 898 INIT_LIST_HEAD(&root->delalloc_inodes); 899 INIT_LIST_HEAD(&root->delalloc_root); 900 INIT_LIST_HEAD(&root->ordered_extents); 901 INIT_LIST_HEAD(&root->ordered_root); 902 INIT_LIST_HEAD(&root->reloc_dirty_list); 903 INIT_LIST_HEAD(&root->logged_list[0]); 904 INIT_LIST_HEAD(&root->logged_list[1]); 905 spin_lock_init(&root->inode_lock); 906 spin_lock_init(&root->delalloc_lock); 907 spin_lock_init(&root->ordered_extent_lock); 908 spin_lock_init(&root->accounting_lock); 909 spin_lock_init(&root->log_extents_lock[0]); 910 spin_lock_init(&root->log_extents_lock[1]); 911 spin_lock_init(&root->qgroup_meta_rsv_lock); 912 mutex_init(&root->objectid_mutex); 913 mutex_init(&root->log_mutex); 914 mutex_init(&root->ordered_extent_mutex); 915 mutex_init(&root->delalloc_mutex); 916 init_waitqueue_head(&root->qgroup_flush_wait); 917 init_waitqueue_head(&root->log_writer_wait); 918 init_waitqueue_head(&root->log_commit_wait[0]); 919 init_waitqueue_head(&root->log_commit_wait[1]); 920 INIT_LIST_HEAD(&root->log_ctxs[0]); 921 INIT_LIST_HEAD(&root->log_ctxs[1]); 922 atomic_set(&root->log_commit[0], 0); 923 atomic_set(&root->log_commit[1], 0); 924 atomic_set(&root->log_writers, 0); 925 atomic_set(&root->log_batch, 0); 926 refcount_set(&root->refs, 1); 927 atomic_set(&root->snapshot_force_cow, 0); 928 atomic_set(&root->nr_swapfiles, 0); 929 root->log_transid = 0; 930 root->log_transid_committed = -1; 931 root->last_log_commit = 0; 932 root->anon_dev = 0; 933 if (!dummy) { 934 extent_io_tree_init(fs_info, &root->dirty_log_pages, 935 IO_TREE_ROOT_DIRTY_LOG_PAGES); 936 extent_io_tree_init(fs_info, &root->log_csum_range, 937 IO_TREE_LOG_CSUM_RANGE); 938 } 939 940 spin_lock_init(&root->root_item_lock); 941 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 942 #ifdef CONFIG_BTRFS_DEBUG 943 INIT_LIST_HEAD(&root->leak_list); 944 spin_lock(&fs_info->fs_roots_radix_lock); 945 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 946 spin_unlock(&fs_info->fs_roots_radix_lock); 947 #endif 948 } 949 950 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 951 u64 objectid, gfp_t flags) 952 { 953 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 954 if (root) 955 __setup_root(root, fs_info, objectid); 956 return root; 957 } 958 959 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 960 /* Should only be used by the testing infrastructure */ 961 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 962 { 963 struct btrfs_root *root; 964 965 if (!fs_info) 966 return ERR_PTR(-EINVAL); 967 968 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 969 if (!root) 970 return ERR_PTR(-ENOMEM); 971 972 /* We don't use the stripesize in selftest, set it as sectorsize */ 973 root->alloc_bytenr = 0; 974 975 return root; 976 } 977 #endif 978 979 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 980 { 981 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 982 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 983 984 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 985 } 986 987 static int global_root_key_cmp(const void *k, const struct rb_node *node) 988 { 989 const struct btrfs_key *key = k; 990 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 991 992 return btrfs_comp_cpu_keys(key, &root->root_key); 993 } 994 995 int btrfs_global_root_insert(struct btrfs_root *root) 996 { 997 struct btrfs_fs_info *fs_info = root->fs_info; 998 struct rb_node *tmp; 999 int ret = 0; 1000 1001 write_lock(&fs_info->global_root_lock); 1002 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1003 write_unlock(&fs_info->global_root_lock); 1004 1005 if (tmp) { 1006 ret = -EEXIST; 1007 btrfs_warn(fs_info, "global root %llu %llu already exists", 1008 root->root_key.objectid, root->root_key.offset); 1009 } 1010 return ret; 1011 } 1012 1013 void btrfs_global_root_delete(struct btrfs_root *root) 1014 { 1015 struct btrfs_fs_info *fs_info = root->fs_info; 1016 1017 write_lock(&fs_info->global_root_lock); 1018 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1019 write_unlock(&fs_info->global_root_lock); 1020 } 1021 1022 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1023 struct btrfs_key *key) 1024 { 1025 struct rb_node *node; 1026 struct btrfs_root *root = NULL; 1027 1028 read_lock(&fs_info->global_root_lock); 1029 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1030 if (node) 1031 root = container_of(node, struct btrfs_root, rb_node); 1032 read_unlock(&fs_info->global_root_lock); 1033 1034 return root; 1035 } 1036 1037 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1038 { 1039 struct btrfs_block_group *block_group; 1040 u64 ret; 1041 1042 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1043 return 0; 1044 1045 if (bytenr) 1046 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1047 else 1048 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1049 ASSERT(block_group); 1050 if (!block_group) 1051 return 0; 1052 ret = block_group->global_root_id; 1053 btrfs_put_block_group(block_group); 1054 1055 return ret; 1056 } 1057 1058 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1059 { 1060 struct btrfs_key key = { 1061 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1062 .type = BTRFS_ROOT_ITEM_KEY, 1063 .offset = btrfs_global_root_id(fs_info, bytenr), 1064 }; 1065 1066 return btrfs_global_root(fs_info, &key); 1067 } 1068 1069 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1070 { 1071 struct btrfs_key key = { 1072 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1073 .type = BTRFS_ROOT_ITEM_KEY, 1074 .offset = btrfs_global_root_id(fs_info, bytenr), 1075 }; 1076 1077 return btrfs_global_root(fs_info, &key); 1078 } 1079 1080 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1081 { 1082 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1083 return fs_info->block_group_root; 1084 return btrfs_extent_root(fs_info, 0); 1085 } 1086 1087 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1088 u64 objectid) 1089 { 1090 struct btrfs_fs_info *fs_info = trans->fs_info; 1091 struct extent_buffer *leaf; 1092 struct btrfs_root *tree_root = fs_info->tree_root; 1093 struct btrfs_root *root; 1094 struct btrfs_key key; 1095 unsigned int nofs_flag; 1096 int ret = 0; 1097 1098 /* 1099 * We're holding a transaction handle, so use a NOFS memory allocation 1100 * context to avoid deadlock if reclaim happens. 1101 */ 1102 nofs_flag = memalloc_nofs_save(); 1103 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1104 memalloc_nofs_restore(nofs_flag); 1105 if (!root) 1106 return ERR_PTR(-ENOMEM); 1107 1108 root->root_key.objectid = objectid; 1109 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1110 root->root_key.offset = 0; 1111 1112 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1113 BTRFS_NESTING_NORMAL); 1114 if (IS_ERR(leaf)) { 1115 ret = PTR_ERR(leaf); 1116 leaf = NULL; 1117 goto fail; 1118 } 1119 1120 root->node = leaf; 1121 btrfs_mark_buffer_dirty(leaf); 1122 1123 root->commit_root = btrfs_root_node(root); 1124 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1125 1126 btrfs_set_root_flags(&root->root_item, 0); 1127 btrfs_set_root_limit(&root->root_item, 0); 1128 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1129 btrfs_set_root_generation(&root->root_item, trans->transid); 1130 btrfs_set_root_level(&root->root_item, 0); 1131 btrfs_set_root_refs(&root->root_item, 1); 1132 btrfs_set_root_used(&root->root_item, leaf->len); 1133 btrfs_set_root_last_snapshot(&root->root_item, 0); 1134 btrfs_set_root_dirid(&root->root_item, 0); 1135 if (is_fstree(objectid)) 1136 generate_random_guid(root->root_item.uuid); 1137 else 1138 export_guid(root->root_item.uuid, &guid_null); 1139 btrfs_set_root_drop_level(&root->root_item, 0); 1140 1141 btrfs_tree_unlock(leaf); 1142 1143 key.objectid = objectid; 1144 key.type = BTRFS_ROOT_ITEM_KEY; 1145 key.offset = 0; 1146 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1147 if (ret) 1148 goto fail; 1149 1150 return root; 1151 1152 fail: 1153 btrfs_put_root(root); 1154 1155 return ERR_PTR(ret); 1156 } 1157 1158 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1159 struct btrfs_fs_info *fs_info) 1160 { 1161 struct btrfs_root *root; 1162 1163 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1164 if (!root) 1165 return ERR_PTR(-ENOMEM); 1166 1167 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1168 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1169 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1170 1171 return root; 1172 } 1173 1174 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1175 struct btrfs_root *root) 1176 { 1177 struct extent_buffer *leaf; 1178 1179 /* 1180 * DON'T set SHAREABLE bit for log trees. 1181 * 1182 * Log trees are not exposed to user space thus can't be snapshotted, 1183 * and they go away before a real commit is actually done. 1184 * 1185 * They do store pointers to file data extents, and those reference 1186 * counts still get updated (along with back refs to the log tree). 1187 */ 1188 1189 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1190 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1191 if (IS_ERR(leaf)) 1192 return PTR_ERR(leaf); 1193 1194 root->node = leaf; 1195 1196 btrfs_mark_buffer_dirty(root->node); 1197 btrfs_tree_unlock(root->node); 1198 1199 return 0; 1200 } 1201 1202 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1203 struct btrfs_fs_info *fs_info) 1204 { 1205 struct btrfs_root *log_root; 1206 1207 log_root = alloc_log_tree(trans, fs_info); 1208 if (IS_ERR(log_root)) 1209 return PTR_ERR(log_root); 1210 1211 if (!btrfs_is_zoned(fs_info)) { 1212 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1213 1214 if (ret) { 1215 btrfs_put_root(log_root); 1216 return ret; 1217 } 1218 } 1219 1220 WARN_ON(fs_info->log_root_tree); 1221 fs_info->log_root_tree = log_root; 1222 return 0; 1223 } 1224 1225 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1226 struct btrfs_root *root) 1227 { 1228 struct btrfs_fs_info *fs_info = root->fs_info; 1229 struct btrfs_root *log_root; 1230 struct btrfs_inode_item *inode_item; 1231 int ret; 1232 1233 log_root = alloc_log_tree(trans, fs_info); 1234 if (IS_ERR(log_root)) 1235 return PTR_ERR(log_root); 1236 1237 ret = btrfs_alloc_log_tree_node(trans, log_root); 1238 if (ret) { 1239 btrfs_put_root(log_root); 1240 return ret; 1241 } 1242 1243 log_root->last_trans = trans->transid; 1244 log_root->root_key.offset = root->root_key.objectid; 1245 1246 inode_item = &log_root->root_item.inode; 1247 btrfs_set_stack_inode_generation(inode_item, 1); 1248 btrfs_set_stack_inode_size(inode_item, 3); 1249 btrfs_set_stack_inode_nlink(inode_item, 1); 1250 btrfs_set_stack_inode_nbytes(inode_item, 1251 fs_info->nodesize); 1252 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1253 1254 btrfs_set_root_node(&log_root->root_item, log_root->node); 1255 1256 WARN_ON(root->log_root); 1257 root->log_root = log_root; 1258 root->log_transid = 0; 1259 root->log_transid_committed = -1; 1260 root->last_log_commit = 0; 1261 return 0; 1262 } 1263 1264 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1265 struct btrfs_path *path, 1266 struct btrfs_key *key) 1267 { 1268 struct btrfs_root *root; 1269 struct btrfs_tree_parent_check check = { 0 }; 1270 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1271 u64 generation; 1272 int ret; 1273 int level; 1274 1275 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1276 if (!root) 1277 return ERR_PTR(-ENOMEM); 1278 1279 ret = btrfs_find_root(tree_root, key, path, 1280 &root->root_item, &root->root_key); 1281 if (ret) { 1282 if (ret > 0) 1283 ret = -ENOENT; 1284 goto fail; 1285 } 1286 1287 generation = btrfs_root_generation(&root->root_item); 1288 level = btrfs_root_level(&root->root_item); 1289 check.level = level; 1290 check.transid = generation; 1291 check.owner_root = key->objectid; 1292 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1293 &check); 1294 if (IS_ERR(root->node)) { 1295 ret = PTR_ERR(root->node); 1296 root->node = NULL; 1297 goto fail; 1298 } 1299 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1300 ret = -EIO; 1301 goto fail; 1302 } 1303 1304 /* 1305 * For real fs, and not log/reloc trees, root owner must 1306 * match its root node owner 1307 */ 1308 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1309 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1310 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1311 root->root_key.objectid != btrfs_header_owner(root->node)) { 1312 btrfs_crit(fs_info, 1313 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1314 root->root_key.objectid, root->node->start, 1315 btrfs_header_owner(root->node), 1316 root->root_key.objectid); 1317 ret = -EUCLEAN; 1318 goto fail; 1319 } 1320 root->commit_root = btrfs_root_node(root); 1321 return root; 1322 fail: 1323 btrfs_put_root(root); 1324 return ERR_PTR(ret); 1325 } 1326 1327 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1328 struct btrfs_key *key) 1329 { 1330 struct btrfs_root *root; 1331 struct btrfs_path *path; 1332 1333 path = btrfs_alloc_path(); 1334 if (!path) 1335 return ERR_PTR(-ENOMEM); 1336 root = read_tree_root_path(tree_root, path, key); 1337 btrfs_free_path(path); 1338 1339 return root; 1340 } 1341 1342 /* 1343 * Initialize subvolume root in-memory structure 1344 * 1345 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1346 */ 1347 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1348 { 1349 int ret; 1350 1351 btrfs_drew_lock_init(&root->snapshot_lock); 1352 1353 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1354 !btrfs_is_data_reloc_root(root)) { 1355 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1356 btrfs_check_and_init_root_item(&root->root_item); 1357 } 1358 1359 /* 1360 * Don't assign anonymous block device to roots that are not exposed to 1361 * userspace, the id pool is limited to 1M 1362 */ 1363 if (is_fstree(root->root_key.objectid) && 1364 btrfs_root_refs(&root->root_item) > 0) { 1365 if (!anon_dev) { 1366 ret = get_anon_bdev(&root->anon_dev); 1367 if (ret) 1368 goto fail; 1369 } else { 1370 root->anon_dev = anon_dev; 1371 } 1372 } 1373 1374 mutex_lock(&root->objectid_mutex); 1375 ret = btrfs_init_root_free_objectid(root); 1376 if (ret) { 1377 mutex_unlock(&root->objectid_mutex); 1378 goto fail; 1379 } 1380 1381 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1382 1383 mutex_unlock(&root->objectid_mutex); 1384 1385 return 0; 1386 fail: 1387 /* The caller is responsible to call btrfs_free_fs_root */ 1388 return ret; 1389 } 1390 1391 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1392 u64 root_id) 1393 { 1394 struct btrfs_root *root; 1395 1396 spin_lock(&fs_info->fs_roots_radix_lock); 1397 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1398 (unsigned long)root_id); 1399 if (root) 1400 root = btrfs_grab_root(root); 1401 spin_unlock(&fs_info->fs_roots_radix_lock); 1402 return root; 1403 } 1404 1405 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1406 u64 objectid) 1407 { 1408 struct btrfs_key key = { 1409 .objectid = objectid, 1410 .type = BTRFS_ROOT_ITEM_KEY, 1411 .offset = 0, 1412 }; 1413 1414 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1415 return btrfs_grab_root(fs_info->tree_root); 1416 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1417 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1418 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1419 return btrfs_grab_root(fs_info->chunk_root); 1420 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1421 return btrfs_grab_root(fs_info->dev_root); 1422 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1423 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1424 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1425 return btrfs_grab_root(fs_info->quota_root) ? 1426 fs_info->quota_root : ERR_PTR(-ENOENT); 1427 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1428 return btrfs_grab_root(fs_info->uuid_root) ? 1429 fs_info->uuid_root : ERR_PTR(-ENOENT); 1430 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1431 return btrfs_grab_root(fs_info->block_group_root) ? 1432 fs_info->block_group_root : ERR_PTR(-ENOENT); 1433 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1434 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1435 1436 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1437 } 1438 return NULL; 1439 } 1440 1441 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1442 struct btrfs_root *root) 1443 { 1444 int ret; 1445 1446 ret = radix_tree_preload(GFP_NOFS); 1447 if (ret) 1448 return ret; 1449 1450 spin_lock(&fs_info->fs_roots_radix_lock); 1451 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1452 (unsigned long)root->root_key.objectid, 1453 root); 1454 if (ret == 0) { 1455 btrfs_grab_root(root); 1456 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1457 } 1458 spin_unlock(&fs_info->fs_roots_radix_lock); 1459 radix_tree_preload_end(); 1460 1461 return ret; 1462 } 1463 1464 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1465 { 1466 #ifdef CONFIG_BTRFS_DEBUG 1467 struct btrfs_root *root; 1468 1469 while (!list_empty(&fs_info->allocated_roots)) { 1470 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1471 1472 root = list_first_entry(&fs_info->allocated_roots, 1473 struct btrfs_root, leak_list); 1474 btrfs_err(fs_info, "leaked root %s refcount %d", 1475 btrfs_root_name(&root->root_key, buf), 1476 refcount_read(&root->refs)); 1477 while (refcount_read(&root->refs) > 1) 1478 btrfs_put_root(root); 1479 btrfs_put_root(root); 1480 } 1481 #endif 1482 } 1483 1484 static void free_global_roots(struct btrfs_fs_info *fs_info) 1485 { 1486 struct btrfs_root *root; 1487 struct rb_node *node; 1488 1489 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1490 root = rb_entry(node, struct btrfs_root, rb_node); 1491 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1492 btrfs_put_root(root); 1493 } 1494 } 1495 1496 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1497 { 1498 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1499 percpu_counter_destroy(&fs_info->delalloc_bytes); 1500 percpu_counter_destroy(&fs_info->ordered_bytes); 1501 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1502 btrfs_free_csum_hash(fs_info); 1503 btrfs_free_stripe_hash_table(fs_info); 1504 btrfs_free_ref_cache(fs_info); 1505 kfree(fs_info->balance_ctl); 1506 kfree(fs_info->delayed_root); 1507 free_global_roots(fs_info); 1508 btrfs_put_root(fs_info->tree_root); 1509 btrfs_put_root(fs_info->chunk_root); 1510 btrfs_put_root(fs_info->dev_root); 1511 btrfs_put_root(fs_info->quota_root); 1512 btrfs_put_root(fs_info->uuid_root); 1513 btrfs_put_root(fs_info->fs_root); 1514 btrfs_put_root(fs_info->data_reloc_root); 1515 btrfs_put_root(fs_info->block_group_root); 1516 btrfs_check_leaked_roots(fs_info); 1517 btrfs_extent_buffer_leak_debug_check(fs_info); 1518 kfree(fs_info->super_copy); 1519 kfree(fs_info->super_for_commit); 1520 kfree(fs_info->subpage_info); 1521 kvfree(fs_info); 1522 } 1523 1524 1525 /* 1526 * Get an in-memory reference of a root structure. 1527 * 1528 * For essential trees like root/extent tree, we grab it from fs_info directly. 1529 * For subvolume trees, we check the cached filesystem roots first. If not 1530 * found, then read it from disk and add it to cached fs roots. 1531 * 1532 * Caller should release the root by calling btrfs_put_root() after the usage. 1533 * 1534 * NOTE: Reloc and log trees can't be read by this function as they share the 1535 * same root objectid. 1536 * 1537 * @objectid: root id 1538 * @anon_dev: preallocated anonymous block device number for new roots, 1539 * pass 0 for new allocation. 1540 * @check_ref: whether to check root item references, If true, return -ENOENT 1541 * for orphan roots 1542 */ 1543 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1544 u64 objectid, dev_t anon_dev, 1545 bool check_ref) 1546 { 1547 struct btrfs_root *root; 1548 struct btrfs_path *path; 1549 struct btrfs_key key; 1550 int ret; 1551 1552 root = btrfs_get_global_root(fs_info, objectid); 1553 if (root) 1554 return root; 1555 again: 1556 root = btrfs_lookup_fs_root(fs_info, objectid); 1557 if (root) { 1558 /* Shouldn't get preallocated anon_dev for cached roots */ 1559 ASSERT(!anon_dev); 1560 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1561 btrfs_put_root(root); 1562 return ERR_PTR(-ENOENT); 1563 } 1564 return root; 1565 } 1566 1567 key.objectid = objectid; 1568 key.type = BTRFS_ROOT_ITEM_KEY; 1569 key.offset = (u64)-1; 1570 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1571 if (IS_ERR(root)) 1572 return root; 1573 1574 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1575 ret = -ENOENT; 1576 goto fail; 1577 } 1578 1579 ret = btrfs_init_fs_root(root, anon_dev); 1580 if (ret) 1581 goto fail; 1582 1583 path = btrfs_alloc_path(); 1584 if (!path) { 1585 ret = -ENOMEM; 1586 goto fail; 1587 } 1588 key.objectid = BTRFS_ORPHAN_OBJECTID; 1589 key.type = BTRFS_ORPHAN_ITEM_KEY; 1590 key.offset = objectid; 1591 1592 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1593 btrfs_free_path(path); 1594 if (ret < 0) 1595 goto fail; 1596 if (ret == 0) 1597 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1598 1599 ret = btrfs_insert_fs_root(fs_info, root); 1600 if (ret) { 1601 if (ret == -EEXIST) { 1602 btrfs_put_root(root); 1603 goto again; 1604 } 1605 goto fail; 1606 } 1607 return root; 1608 fail: 1609 /* 1610 * If our caller provided us an anonymous device, then it's his 1611 * responsibility to free it in case we fail. So we have to set our 1612 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1613 * and once again by our caller. 1614 */ 1615 if (anon_dev) 1616 root->anon_dev = 0; 1617 btrfs_put_root(root); 1618 return ERR_PTR(ret); 1619 } 1620 1621 /* 1622 * Get in-memory reference of a root structure 1623 * 1624 * @objectid: tree objectid 1625 * @check_ref: if set, verify that the tree exists and the item has at least 1626 * one reference 1627 */ 1628 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1629 u64 objectid, bool check_ref) 1630 { 1631 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1632 } 1633 1634 /* 1635 * Get in-memory reference of a root structure, created as new, optionally pass 1636 * the anonymous block device id 1637 * 1638 * @objectid: tree objectid 1639 * @anon_dev: if zero, allocate a new anonymous block device or use the 1640 * parameter value 1641 */ 1642 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1643 u64 objectid, dev_t anon_dev) 1644 { 1645 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1646 } 1647 1648 /* 1649 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1650 * @fs_info: the fs_info 1651 * @objectid: the objectid we need to lookup 1652 * 1653 * This is exclusively used for backref walking, and exists specifically because 1654 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1655 * creation time, which means we may have to read the tree_root in order to look 1656 * up a fs root that is not in memory. If the root is not in memory we will 1657 * read the tree root commit root and look up the fs root from there. This is a 1658 * temporary root, it will not be inserted into the radix tree as it doesn't 1659 * have the most uptodate information, it'll simply be discarded once the 1660 * backref code is finished using the root. 1661 */ 1662 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1663 struct btrfs_path *path, 1664 u64 objectid) 1665 { 1666 struct btrfs_root *root; 1667 struct btrfs_key key; 1668 1669 ASSERT(path->search_commit_root && path->skip_locking); 1670 1671 /* 1672 * This can return -ENOENT if we ask for a root that doesn't exist, but 1673 * since this is called via the backref walking code we won't be looking 1674 * up a root that doesn't exist, unless there's corruption. So if root 1675 * != NULL just return it. 1676 */ 1677 root = btrfs_get_global_root(fs_info, objectid); 1678 if (root) 1679 return root; 1680 1681 root = btrfs_lookup_fs_root(fs_info, objectid); 1682 if (root) 1683 return root; 1684 1685 key.objectid = objectid; 1686 key.type = BTRFS_ROOT_ITEM_KEY; 1687 key.offset = (u64)-1; 1688 root = read_tree_root_path(fs_info->tree_root, path, &key); 1689 btrfs_release_path(path); 1690 1691 return root; 1692 } 1693 1694 static int cleaner_kthread(void *arg) 1695 { 1696 struct btrfs_fs_info *fs_info = arg; 1697 int again; 1698 1699 while (1) { 1700 again = 0; 1701 1702 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1703 1704 /* Make the cleaner go to sleep early. */ 1705 if (btrfs_need_cleaner_sleep(fs_info)) 1706 goto sleep; 1707 1708 /* 1709 * Do not do anything if we might cause open_ctree() to block 1710 * before we have finished mounting the filesystem. 1711 */ 1712 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1713 goto sleep; 1714 1715 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1716 goto sleep; 1717 1718 /* 1719 * Avoid the problem that we change the status of the fs 1720 * during the above check and trylock. 1721 */ 1722 if (btrfs_need_cleaner_sleep(fs_info)) { 1723 mutex_unlock(&fs_info->cleaner_mutex); 1724 goto sleep; 1725 } 1726 1727 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1728 btrfs_sysfs_feature_update(fs_info); 1729 1730 btrfs_run_delayed_iputs(fs_info); 1731 1732 again = btrfs_clean_one_deleted_snapshot(fs_info); 1733 mutex_unlock(&fs_info->cleaner_mutex); 1734 1735 /* 1736 * The defragger has dealt with the R/O remount and umount, 1737 * needn't do anything special here. 1738 */ 1739 btrfs_run_defrag_inodes(fs_info); 1740 1741 /* 1742 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1743 * with relocation (btrfs_relocate_chunk) and relocation 1744 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1745 * after acquiring fs_info->reclaim_bgs_lock. So we 1746 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1747 * unused block groups. 1748 */ 1749 btrfs_delete_unused_bgs(fs_info); 1750 1751 /* 1752 * Reclaim block groups in the reclaim_bgs list after we deleted 1753 * all unused block_groups. This possibly gives us some more free 1754 * space. 1755 */ 1756 btrfs_reclaim_bgs(fs_info); 1757 sleep: 1758 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1759 if (kthread_should_park()) 1760 kthread_parkme(); 1761 if (kthread_should_stop()) 1762 return 0; 1763 if (!again) { 1764 set_current_state(TASK_INTERRUPTIBLE); 1765 schedule(); 1766 __set_current_state(TASK_RUNNING); 1767 } 1768 } 1769 } 1770 1771 static int transaction_kthread(void *arg) 1772 { 1773 struct btrfs_root *root = arg; 1774 struct btrfs_fs_info *fs_info = root->fs_info; 1775 struct btrfs_trans_handle *trans; 1776 struct btrfs_transaction *cur; 1777 u64 transid; 1778 time64_t delta; 1779 unsigned long delay; 1780 bool cannot_commit; 1781 1782 do { 1783 cannot_commit = false; 1784 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1785 mutex_lock(&fs_info->transaction_kthread_mutex); 1786 1787 spin_lock(&fs_info->trans_lock); 1788 cur = fs_info->running_transaction; 1789 if (!cur) { 1790 spin_unlock(&fs_info->trans_lock); 1791 goto sleep; 1792 } 1793 1794 delta = ktime_get_seconds() - cur->start_time; 1795 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1796 cur->state < TRANS_STATE_COMMIT_START && 1797 delta < fs_info->commit_interval) { 1798 spin_unlock(&fs_info->trans_lock); 1799 delay -= msecs_to_jiffies((delta - 1) * 1000); 1800 delay = min(delay, 1801 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1802 goto sleep; 1803 } 1804 transid = cur->transid; 1805 spin_unlock(&fs_info->trans_lock); 1806 1807 /* If the file system is aborted, this will always fail. */ 1808 trans = btrfs_attach_transaction(root); 1809 if (IS_ERR(trans)) { 1810 if (PTR_ERR(trans) != -ENOENT) 1811 cannot_commit = true; 1812 goto sleep; 1813 } 1814 if (transid == trans->transid) { 1815 btrfs_commit_transaction(trans); 1816 } else { 1817 btrfs_end_transaction(trans); 1818 } 1819 sleep: 1820 wake_up_process(fs_info->cleaner_kthread); 1821 mutex_unlock(&fs_info->transaction_kthread_mutex); 1822 1823 if (BTRFS_FS_ERROR(fs_info)) 1824 btrfs_cleanup_transaction(fs_info); 1825 if (!kthread_should_stop() && 1826 (!btrfs_transaction_blocked(fs_info) || 1827 cannot_commit)) 1828 schedule_timeout_interruptible(delay); 1829 } while (!kthread_should_stop()); 1830 return 0; 1831 } 1832 1833 /* 1834 * This will find the highest generation in the array of root backups. The 1835 * index of the highest array is returned, or -EINVAL if we can't find 1836 * anything. 1837 * 1838 * We check to make sure the array is valid by comparing the 1839 * generation of the latest root in the array with the generation 1840 * in the super block. If they don't match we pitch it. 1841 */ 1842 static int find_newest_super_backup(struct btrfs_fs_info *info) 1843 { 1844 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1845 u64 cur; 1846 struct btrfs_root_backup *root_backup; 1847 int i; 1848 1849 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1850 root_backup = info->super_copy->super_roots + i; 1851 cur = btrfs_backup_tree_root_gen(root_backup); 1852 if (cur == newest_gen) 1853 return i; 1854 } 1855 1856 return -EINVAL; 1857 } 1858 1859 /* 1860 * copy all the root pointers into the super backup array. 1861 * this will bump the backup pointer by one when it is 1862 * done 1863 */ 1864 static void backup_super_roots(struct btrfs_fs_info *info) 1865 { 1866 const int next_backup = info->backup_root_index; 1867 struct btrfs_root_backup *root_backup; 1868 1869 root_backup = info->super_for_commit->super_roots + next_backup; 1870 1871 /* 1872 * make sure all of our padding and empty slots get zero filled 1873 * regardless of which ones we use today 1874 */ 1875 memset(root_backup, 0, sizeof(*root_backup)); 1876 1877 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1878 1879 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1880 btrfs_set_backup_tree_root_gen(root_backup, 1881 btrfs_header_generation(info->tree_root->node)); 1882 1883 btrfs_set_backup_tree_root_level(root_backup, 1884 btrfs_header_level(info->tree_root->node)); 1885 1886 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1887 btrfs_set_backup_chunk_root_gen(root_backup, 1888 btrfs_header_generation(info->chunk_root->node)); 1889 btrfs_set_backup_chunk_root_level(root_backup, 1890 btrfs_header_level(info->chunk_root->node)); 1891 1892 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1893 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1894 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1895 1896 btrfs_set_backup_extent_root(root_backup, 1897 extent_root->node->start); 1898 btrfs_set_backup_extent_root_gen(root_backup, 1899 btrfs_header_generation(extent_root->node)); 1900 btrfs_set_backup_extent_root_level(root_backup, 1901 btrfs_header_level(extent_root->node)); 1902 1903 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1904 btrfs_set_backup_csum_root_gen(root_backup, 1905 btrfs_header_generation(csum_root->node)); 1906 btrfs_set_backup_csum_root_level(root_backup, 1907 btrfs_header_level(csum_root->node)); 1908 } 1909 1910 /* 1911 * we might commit during log recovery, which happens before we set 1912 * the fs_root. Make sure it is valid before we fill it in. 1913 */ 1914 if (info->fs_root && info->fs_root->node) { 1915 btrfs_set_backup_fs_root(root_backup, 1916 info->fs_root->node->start); 1917 btrfs_set_backup_fs_root_gen(root_backup, 1918 btrfs_header_generation(info->fs_root->node)); 1919 btrfs_set_backup_fs_root_level(root_backup, 1920 btrfs_header_level(info->fs_root->node)); 1921 } 1922 1923 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1924 btrfs_set_backup_dev_root_gen(root_backup, 1925 btrfs_header_generation(info->dev_root->node)); 1926 btrfs_set_backup_dev_root_level(root_backup, 1927 btrfs_header_level(info->dev_root->node)); 1928 1929 btrfs_set_backup_total_bytes(root_backup, 1930 btrfs_super_total_bytes(info->super_copy)); 1931 btrfs_set_backup_bytes_used(root_backup, 1932 btrfs_super_bytes_used(info->super_copy)); 1933 btrfs_set_backup_num_devices(root_backup, 1934 btrfs_super_num_devices(info->super_copy)); 1935 1936 /* 1937 * if we don't copy this out to the super_copy, it won't get remembered 1938 * for the next commit 1939 */ 1940 memcpy(&info->super_copy->super_roots, 1941 &info->super_for_commit->super_roots, 1942 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1943 } 1944 1945 /* 1946 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1947 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1948 * 1949 * fs_info - filesystem whose backup roots need to be read 1950 * priority - priority of backup root required 1951 * 1952 * Returns backup root index on success and -EINVAL otherwise. 1953 */ 1954 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1955 { 1956 int backup_index = find_newest_super_backup(fs_info); 1957 struct btrfs_super_block *super = fs_info->super_copy; 1958 struct btrfs_root_backup *root_backup; 1959 1960 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1961 if (priority == 0) 1962 return backup_index; 1963 1964 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1965 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1966 } else { 1967 return -EINVAL; 1968 } 1969 1970 root_backup = super->super_roots + backup_index; 1971 1972 btrfs_set_super_generation(super, 1973 btrfs_backup_tree_root_gen(root_backup)); 1974 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1975 btrfs_set_super_root_level(super, 1976 btrfs_backup_tree_root_level(root_backup)); 1977 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1978 1979 /* 1980 * Fixme: the total bytes and num_devices need to match or we should 1981 * need a fsck 1982 */ 1983 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1984 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1985 1986 return backup_index; 1987 } 1988 1989 /* helper to cleanup workers */ 1990 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1991 { 1992 btrfs_destroy_workqueue(fs_info->fixup_workers); 1993 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1994 btrfs_destroy_workqueue(fs_info->workers); 1995 if (fs_info->endio_workers) 1996 destroy_workqueue(fs_info->endio_workers); 1997 if (fs_info->rmw_workers) 1998 destroy_workqueue(fs_info->rmw_workers); 1999 if (fs_info->compressed_write_workers) 2000 destroy_workqueue(fs_info->compressed_write_workers); 2001 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2002 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2003 btrfs_destroy_workqueue(fs_info->delayed_workers); 2004 btrfs_destroy_workqueue(fs_info->caching_workers); 2005 btrfs_destroy_workqueue(fs_info->flush_workers); 2006 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2007 if (fs_info->discard_ctl.discard_workers) 2008 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2009 /* 2010 * Now that all other work queues are destroyed, we can safely destroy 2011 * the queues used for metadata I/O, since tasks from those other work 2012 * queues can do metadata I/O operations. 2013 */ 2014 if (fs_info->endio_meta_workers) 2015 destroy_workqueue(fs_info->endio_meta_workers); 2016 } 2017 2018 static void free_root_extent_buffers(struct btrfs_root *root) 2019 { 2020 if (root) { 2021 free_extent_buffer(root->node); 2022 free_extent_buffer(root->commit_root); 2023 root->node = NULL; 2024 root->commit_root = NULL; 2025 } 2026 } 2027 2028 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2029 { 2030 struct btrfs_root *root, *tmp; 2031 2032 rbtree_postorder_for_each_entry_safe(root, tmp, 2033 &fs_info->global_root_tree, 2034 rb_node) 2035 free_root_extent_buffers(root); 2036 } 2037 2038 /* helper to cleanup tree roots */ 2039 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2040 { 2041 free_root_extent_buffers(info->tree_root); 2042 2043 free_global_root_pointers(info); 2044 free_root_extent_buffers(info->dev_root); 2045 free_root_extent_buffers(info->quota_root); 2046 free_root_extent_buffers(info->uuid_root); 2047 free_root_extent_buffers(info->fs_root); 2048 free_root_extent_buffers(info->data_reloc_root); 2049 free_root_extent_buffers(info->block_group_root); 2050 if (free_chunk_root) 2051 free_root_extent_buffers(info->chunk_root); 2052 } 2053 2054 void btrfs_put_root(struct btrfs_root *root) 2055 { 2056 if (!root) 2057 return; 2058 2059 if (refcount_dec_and_test(&root->refs)) { 2060 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2061 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2062 if (root->anon_dev) 2063 free_anon_bdev(root->anon_dev); 2064 free_root_extent_buffers(root); 2065 #ifdef CONFIG_BTRFS_DEBUG 2066 spin_lock(&root->fs_info->fs_roots_radix_lock); 2067 list_del_init(&root->leak_list); 2068 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2069 #endif 2070 kfree(root); 2071 } 2072 } 2073 2074 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2075 { 2076 int ret; 2077 struct btrfs_root *gang[8]; 2078 int i; 2079 2080 while (!list_empty(&fs_info->dead_roots)) { 2081 gang[0] = list_entry(fs_info->dead_roots.next, 2082 struct btrfs_root, root_list); 2083 list_del(&gang[0]->root_list); 2084 2085 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2086 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2087 btrfs_put_root(gang[0]); 2088 } 2089 2090 while (1) { 2091 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2092 (void **)gang, 0, 2093 ARRAY_SIZE(gang)); 2094 if (!ret) 2095 break; 2096 for (i = 0; i < ret; i++) 2097 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2098 } 2099 } 2100 2101 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2102 { 2103 mutex_init(&fs_info->scrub_lock); 2104 atomic_set(&fs_info->scrubs_running, 0); 2105 atomic_set(&fs_info->scrub_pause_req, 0); 2106 atomic_set(&fs_info->scrubs_paused, 0); 2107 atomic_set(&fs_info->scrub_cancel_req, 0); 2108 init_waitqueue_head(&fs_info->scrub_pause_wait); 2109 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2110 } 2111 2112 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2113 { 2114 spin_lock_init(&fs_info->balance_lock); 2115 mutex_init(&fs_info->balance_mutex); 2116 atomic_set(&fs_info->balance_pause_req, 0); 2117 atomic_set(&fs_info->balance_cancel_req, 0); 2118 fs_info->balance_ctl = NULL; 2119 init_waitqueue_head(&fs_info->balance_wait_q); 2120 atomic_set(&fs_info->reloc_cancel_req, 0); 2121 } 2122 2123 static int btrfs_init_btree_inode(struct super_block *sb) 2124 { 2125 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2126 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2127 fs_info->tree_root); 2128 struct inode *inode; 2129 2130 inode = new_inode(sb); 2131 if (!inode) 2132 return -ENOMEM; 2133 2134 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2135 set_nlink(inode, 1); 2136 /* 2137 * we set the i_size on the btree inode to the max possible int. 2138 * the real end of the address space is determined by all of 2139 * the devices in the system 2140 */ 2141 inode->i_size = OFFSET_MAX; 2142 inode->i_mapping->a_ops = &btree_aops; 2143 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 2144 2145 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2146 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2147 IO_TREE_BTREE_INODE_IO); 2148 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2149 2150 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2151 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2152 BTRFS_I(inode)->location.type = 0; 2153 BTRFS_I(inode)->location.offset = 0; 2154 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2155 __insert_inode_hash(inode, hash); 2156 fs_info->btree_inode = inode; 2157 2158 return 0; 2159 } 2160 2161 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2162 { 2163 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2164 init_rwsem(&fs_info->dev_replace.rwsem); 2165 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2166 } 2167 2168 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2169 { 2170 spin_lock_init(&fs_info->qgroup_lock); 2171 mutex_init(&fs_info->qgroup_ioctl_lock); 2172 fs_info->qgroup_tree = RB_ROOT; 2173 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2174 fs_info->qgroup_seq = 1; 2175 fs_info->qgroup_ulist = NULL; 2176 fs_info->qgroup_rescan_running = false; 2177 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2178 mutex_init(&fs_info->qgroup_rescan_lock); 2179 } 2180 2181 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2182 { 2183 u32 max_active = fs_info->thread_pool_size; 2184 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2185 2186 fs_info->workers = 2187 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2188 2189 fs_info->delalloc_workers = 2190 btrfs_alloc_workqueue(fs_info, "delalloc", 2191 flags, max_active, 2); 2192 2193 fs_info->flush_workers = 2194 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2195 flags, max_active, 0); 2196 2197 fs_info->caching_workers = 2198 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2199 2200 fs_info->fixup_workers = 2201 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2202 2203 fs_info->endio_workers = 2204 alloc_workqueue("btrfs-endio", flags, max_active); 2205 fs_info->endio_meta_workers = 2206 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2207 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2208 fs_info->endio_write_workers = 2209 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2210 max_active, 2); 2211 fs_info->compressed_write_workers = 2212 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2213 fs_info->endio_freespace_worker = 2214 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2215 max_active, 0); 2216 fs_info->delayed_workers = 2217 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2218 max_active, 0); 2219 fs_info->qgroup_rescan_workers = 2220 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2221 fs_info->discard_ctl.discard_workers = 2222 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2223 2224 if (!(fs_info->workers && 2225 fs_info->delalloc_workers && fs_info->flush_workers && 2226 fs_info->endio_workers && fs_info->endio_meta_workers && 2227 fs_info->compressed_write_workers && 2228 fs_info->endio_write_workers && 2229 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2230 fs_info->caching_workers && fs_info->fixup_workers && 2231 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2232 fs_info->discard_ctl.discard_workers)) { 2233 return -ENOMEM; 2234 } 2235 2236 return 0; 2237 } 2238 2239 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2240 { 2241 struct crypto_shash *csum_shash; 2242 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2243 2244 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2245 2246 if (IS_ERR(csum_shash)) { 2247 btrfs_err(fs_info, "error allocating %s hash for checksum", 2248 csum_driver); 2249 return PTR_ERR(csum_shash); 2250 } 2251 2252 fs_info->csum_shash = csum_shash; 2253 2254 /* 2255 * Check if the checksum implementation is a fast accelerated one. 2256 * As-is this is a bit of a hack and should be replaced once the csum 2257 * implementations provide that information themselves. 2258 */ 2259 switch (csum_type) { 2260 case BTRFS_CSUM_TYPE_CRC32: 2261 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2262 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2263 break; 2264 default: 2265 break; 2266 } 2267 2268 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2269 btrfs_super_csum_name(csum_type), 2270 crypto_shash_driver_name(csum_shash)); 2271 return 0; 2272 } 2273 2274 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2275 struct btrfs_fs_devices *fs_devices) 2276 { 2277 int ret; 2278 struct btrfs_tree_parent_check check = { 0 }; 2279 struct btrfs_root *log_tree_root; 2280 struct btrfs_super_block *disk_super = fs_info->super_copy; 2281 u64 bytenr = btrfs_super_log_root(disk_super); 2282 int level = btrfs_super_log_root_level(disk_super); 2283 2284 if (fs_devices->rw_devices == 0) { 2285 btrfs_warn(fs_info, "log replay required on RO media"); 2286 return -EIO; 2287 } 2288 2289 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2290 GFP_KERNEL); 2291 if (!log_tree_root) 2292 return -ENOMEM; 2293 2294 check.level = level; 2295 check.transid = fs_info->generation + 1; 2296 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2297 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2298 if (IS_ERR(log_tree_root->node)) { 2299 btrfs_warn(fs_info, "failed to read log tree"); 2300 ret = PTR_ERR(log_tree_root->node); 2301 log_tree_root->node = NULL; 2302 btrfs_put_root(log_tree_root); 2303 return ret; 2304 } 2305 if (!extent_buffer_uptodate(log_tree_root->node)) { 2306 btrfs_err(fs_info, "failed to read log tree"); 2307 btrfs_put_root(log_tree_root); 2308 return -EIO; 2309 } 2310 2311 /* returns with log_tree_root freed on success */ 2312 ret = btrfs_recover_log_trees(log_tree_root); 2313 if (ret) { 2314 btrfs_handle_fs_error(fs_info, ret, 2315 "Failed to recover log tree"); 2316 btrfs_put_root(log_tree_root); 2317 return ret; 2318 } 2319 2320 if (sb_rdonly(fs_info->sb)) { 2321 ret = btrfs_commit_super(fs_info); 2322 if (ret) 2323 return ret; 2324 } 2325 2326 return 0; 2327 } 2328 2329 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2330 struct btrfs_path *path, u64 objectid, 2331 const char *name) 2332 { 2333 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2334 struct btrfs_root *root; 2335 u64 max_global_id = 0; 2336 int ret; 2337 struct btrfs_key key = { 2338 .objectid = objectid, 2339 .type = BTRFS_ROOT_ITEM_KEY, 2340 .offset = 0, 2341 }; 2342 bool found = false; 2343 2344 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2345 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2346 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2347 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2348 return 0; 2349 } 2350 2351 while (1) { 2352 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2353 if (ret < 0) 2354 break; 2355 2356 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2357 ret = btrfs_next_leaf(tree_root, path); 2358 if (ret) { 2359 if (ret > 0) 2360 ret = 0; 2361 break; 2362 } 2363 } 2364 ret = 0; 2365 2366 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2367 if (key.objectid != objectid) 2368 break; 2369 btrfs_release_path(path); 2370 2371 /* 2372 * Just worry about this for extent tree, it'll be the same for 2373 * everybody. 2374 */ 2375 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2376 max_global_id = max(max_global_id, key.offset); 2377 2378 found = true; 2379 root = read_tree_root_path(tree_root, path, &key); 2380 if (IS_ERR(root)) { 2381 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2382 ret = PTR_ERR(root); 2383 break; 2384 } 2385 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2386 ret = btrfs_global_root_insert(root); 2387 if (ret) { 2388 btrfs_put_root(root); 2389 break; 2390 } 2391 key.offset++; 2392 } 2393 btrfs_release_path(path); 2394 2395 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2396 fs_info->nr_global_roots = max_global_id + 1; 2397 2398 if (!found || ret) { 2399 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2400 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2401 2402 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2403 ret = ret ? ret : -ENOENT; 2404 else 2405 ret = 0; 2406 btrfs_err(fs_info, "failed to load root %s", name); 2407 } 2408 return ret; 2409 } 2410 2411 static int load_global_roots(struct btrfs_root *tree_root) 2412 { 2413 struct btrfs_path *path; 2414 int ret = 0; 2415 2416 path = btrfs_alloc_path(); 2417 if (!path) 2418 return -ENOMEM; 2419 2420 ret = load_global_roots_objectid(tree_root, path, 2421 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2422 if (ret) 2423 goto out; 2424 ret = load_global_roots_objectid(tree_root, path, 2425 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2426 if (ret) 2427 goto out; 2428 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2429 goto out; 2430 ret = load_global_roots_objectid(tree_root, path, 2431 BTRFS_FREE_SPACE_TREE_OBJECTID, 2432 "free space"); 2433 out: 2434 btrfs_free_path(path); 2435 return ret; 2436 } 2437 2438 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2439 { 2440 struct btrfs_root *tree_root = fs_info->tree_root; 2441 struct btrfs_root *root; 2442 struct btrfs_key location; 2443 int ret; 2444 2445 BUG_ON(!fs_info->tree_root); 2446 2447 ret = load_global_roots(tree_root); 2448 if (ret) 2449 return ret; 2450 2451 location.type = BTRFS_ROOT_ITEM_KEY; 2452 location.offset = 0; 2453 2454 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2455 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2456 root = btrfs_read_tree_root(tree_root, &location); 2457 if (IS_ERR(root)) { 2458 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2459 ret = PTR_ERR(root); 2460 goto out; 2461 } 2462 } else { 2463 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2464 fs_info->block_group_root = root; 2465 } 2466 } 2467 2468 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2469 root = btrfs_read_tree_root(tree_root, &location); 2470 if (IS_ERR(root)) { 2471 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2472 ret = PTR_ERR(root); 2473 goto out; 2474 } 2475 } else { 2476 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2477 fs_info->dev_root = root; 2478 } 2479 /* Initialize fs_info for all devices in any case */ 2480 ret = btrfs_init_devices_late(fs_info); 2481 if (ret) 2482 goto out; 2483 2484 /* 2485 * This tree can share blocks with some other fs tree during relocation 2486 * and we need a proper setup by btrfs_get_fs_root 2487 */ 2488 root = btrfs_get_fs_root(tree_root->fs_info, 2489 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2490 if (IS_ERR(root)) { 2491 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2492 ret = PTR_ERR(root); 2493 goto out; 2494 } 2495 } else { 2496 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2497 fs_info->data_reloc_root = root; 2498 } 2499 2500 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2501 root = btrfs_read_tree_root(tree_root, &location); 2502 if (!IS_ERR(root)) { 2503 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2504 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2505 fs_info->quota_root = root; 2506 } 2507 2508 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2509 root = btrfs_read_tree_root(tree_root, &location); 2510 if (IS_ERR(root)) { 2511 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2512 ret = PTR_ERR(root); 2513 if (ret != -ENOENT) 2514 goto out; 2515 } 2516 } else { 2517 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2518 fs_info->uuid_root = root; 2519 } 2520 2521 return 0; 2522 out: 2523 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2524 location.objectid, ret); 2525 return ret; 2526 } 2527 2528 /* 2529 * Real super block validation 2530 * NOTE: super csum type and incompat features will not be checked here. 2531 * 2532 * @sb: super block to check 2533 * @mirror_num: the super block number to check its bytenr: 2534 * 0 the primary (1st) sb 2535 * 1, 2 2nd and 3rd backup copy 2536 * -1 skip bytenr check 2537 */ 2538 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2539 struct btrfs_super_block *sb, int mirror_num) 2540 { 2541 u64 nodesize = btrfs_super_nodesize(sb); 2542 u64 sectorsize = btrfs_super_sectorsize(sb); 2543 int ret = 0; 2544 2545 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2546 btrfs_err(fs_info, "no valid FS found"); 2547 ret = -EINVAL; 2548 } 2549 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2550 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2551 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2552 ret = -EINVAL; 2553 } 2554 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2555 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2556 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2557 ret = -EINVAL; 2558 } 2559 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2560 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2561 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2562 ret = -EINVAL; 2563 } 2564 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2565 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2566 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2567 ret = -EINVAL; 2568 } 2569 2570 /* 2571 * Check sectorsize and nodesize first, other check will need it. 2572 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2573 */ 2574 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2575 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2576 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2577 ret = -EINVAL; 2578 } 2579 2580 /* 2581 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2582 * 2583 * We can support 16K sectorsize with 64K page size without problem, 2584 * but such sectorsize/pagesize combination doesn't make much sense. 2585 * 4K will be our future standard, PAGE_SIZE is supported from the very 2586 * beginning. 2587 */ 2588 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2589 btrfs_err(fs_info, 2590 "sectorsize %llu not yet supported for page size %lu", 2591 sectorsize, PAGE_SIZE); 2592 ret = -EINVAL; 2593 } 2594 2595 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2596 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2597 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2598 ret = -EINVAL; 2599 } 2600 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2601 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2602 le32_to_cpu(sb->__unused_leafsize), nodesize); 2603 ret = -EINVAL; 2604 } 2605 2606 /* Root alignment check */ 2607 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2608 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2609 btrfs_super_root(sb)); 2610 ret = -EINVAL; 2611 } 2612 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2613 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2614 btrfs_super_chunk_root(sb)); 2615 ret = -EINVAL; 2616 } 2617 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2618 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2619 btrfs_super_log_root(sb)); 2620 ret = -EINVAL; 2621 } 2622 2623 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2624 BTRFS_FSID_SIZE)) { 2625 btrfs_err(fs_info, 2626 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2627 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2628 ret = -EINVAL; 2629 } 2630 2631 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2632 memcmp(fs_info->fs_devices->metadata_uuid, 2633 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2634 btrfs_err(fs_info, 2635 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2636 fs_info->super_copy->metadata_uuid, 2637 fs_info->fs_devices->metadata_uuid); 2638 ret = -EINVAL; 2639 } 2640 2641 /* 2642 * Artificial requirement for block-group-tree to force newer features 2643 * (free-space-tree, no-holes) so the test matrix is smaller. 2644 */ 2645 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2646 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2647 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2648 btrfs_err(fs_info, 2649 "block-group-tree feature requires fres-space-tree and no-holes"); 2650 ret = -EINVAL; 2651 } 2652 2653 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2654 BTRFS_FSID_SIZE) != 0) { 2655 btrfs_err(fs_info, 2656 "dev_item UUID does not match metadata fsid: %pU != %pU", 2657 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2658 ret = -EINVAL; 2659 } 2660 2661 /* 2662 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2663 * done later 2664 */ 2665 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2666 btrfs_err(fs_info, "bytes_used is too small %llu", 2667 btrfs_super_bytes_used(sb)); 2668 ret = -EINVAL; 2669 } 2670 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2671 btrfs_err(fs_info, "invalid stripesize %u", 2672 btrfs_super_stripesize(sb)); 2673 ret = -EINVAL; 2674 } 2675 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2676 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2677 btrfs_super_num_devices(sb)); 2678 if (btrfs_super_num_devices(sb) == 0) { 2679 btrfs_err(fs_info, "number of devices is 0"); 2680 ret = -EINVAL; 2681 } 2682 2683 if (mirror_num >= 0 && 2684 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2685 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2686 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2687 ret = -EINVAL; 2688 } 2689 2690 /* 2691 * Obvious sys_chunk_array corruptions, it must hold at least one key 2692 * and one chunk 2693 */ 2694 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2695 btrfs_err(fs_info, "system chunk array too big %u > %u", 2696 btrfs_super_sys_array_size(sb), 2697 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2698 ret = -EINVAL; 2699 } 2700 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2701 + sizeof(struct btrfs_chunk)) { 2702 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2703 btrfs_super_sys_array_size(sb), 2704 sizeof(struct btrfs_disk_key) 2705 + sizeof(struct btrfs_chunk)); 2706 ret = -EINVAL; 2707 } 2708 2709 /* 2710 * The generation is a global counter, we'll trust it more than the others 2711 * but it's still possible that it's the one that's wrong. 2712 */ 2713 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2714 btrfs_warn(fs_info, 2715 "suspicious: generation < chunk_root_generation: %llu < %llu", 2716 btrfs_super_generation(sb), 2717 btrfs_super_chunk_root_generation(sb)); 2718 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2719 && btrfs_super_cache_generation(sb) != (u64)-1) 2720 btrfs_warn(fs_info, 2721 "suspicious: generation < cache_generation: %llu < %llu", 2722 btrfs_super_generation(sb), 2723 btrfs_super_cache_generation(sb)); 2724 2725 return ret; 2726 } 2727 2728 /* 2729 * Validation of super block at mount time. 2730 * Some checks already done early at mount time, like csum type and incompat 2731 * flags will be skipped. 2732 */ 2733 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2734 { 2735 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2736 } 2737 2738 /* 2739 * Validation of super block at write time. 2740 * Some checks like bytenr check will be skipped as their values will be 2741 * overwritten soon. 2742 * Extra checks like csum type and incompat flags will be done here. 2743 */ 2744 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2745 struct btrfs_super_block *sb) 2746 { 2747 int ret; 2748 2749 ret = btrfs_validate_super(fs_info, sb, -1); 2750 if (ret < 0) 2751 goto out; 2752 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2753 ret = -EUCLEAN; 2754 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2755 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2756 goto out; 2757 } 2758 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2759 ret = -EUCLEAN; 2760 btrfs_err(fs_info, 2761 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2762 btrfs_super_incompat_flags(sb), 2763 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2764 goto out; 2765 } 2766 out: 2767 if (ret < 0) 2768 btrfs_err(fs_info, 2769 "super block corruption detected before writing it to disk"); 2770 return ret; 2771 } 2772 2773 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2774 { 2775 struct btrfs_tree_parent_check check = { 2776 .level = level, 2777 .transid = gen, 2778 .owner_root = root->root_key.objectid 2779 }; 2780 int ret = 0; 2781 2782 root->node = read_tree_block(root->fs_info, bytenr, &check); 2783 if (IS_ERR(root->node)) { 2784 ret = PTR_ERR(root->node); 2785 root->node = NULL; 2786 return ret; 2787 } 2788 if (!extent_buffer_uptodate(root->node)) { 2789 free_extent_buffer(root->node); 2790 root->node = NULL; 2791 return -EIO; 2792 } 2793 2794 btrfs_set_root_node(&root->root_item, root->node); 2795 root->commit_root = btrfs_root_node(root); 2796 btrfs_set_root_refs(&root->root_item, 1); 2797 return ret; 2798 } 2799 2800 static int load_important_roots(struct btrfs_fs_info *fs_info) 2801 { 2802 struct btrfs_super_block *sb = fs_info->super_copy; 2803 u64 gen, bytenr; 2804 int level, ret; 2805 2806 bytenr = btrfs_super_root(sb); 2807 gen = btrfs_super_generation(sb); 2808 level = btrfs_super_root_level(sb); 2809 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2810 if (ret) { 2811 btrfs_warn(fs_info, "couldn't read tree root"); 2812 return ret; 2813 } 2814 return 0; 2815 } 2816 2817 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2818 { 2819 int backup_index = find_newest_super_backup(fs_info); 2820 struct btrfs_super_block *sb = fs_info->super_copy; 2821 struct btrfs_root *tree_root = fs_info->tree_root; 2822 bool handle_error = false; 2823 int ret = 0; 2824 int i; 2825 2826 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2827 if (handle_error) { 2828 if (!IS_ERR(tree_root->node)) 2829 free_extent_buffer(tree_root->node); 2830 tree_root->node = NULL; 2831 2832 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2833 break; 2834 2835 free_root_pointers(fs_info, 0); 2836 2837 /* 2838 * Don't use the log in recovery mode, it won't be 2839 * valid 2840 */ 2841 btrfs_set_super_log_root(sb, 0); 2842 2843 /* We can't trust the free space cache either */ 2844 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2845 2846 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2847 ret = read_backup_root(fs_info, i); 2848 backup_index = ret; 2849 if (ret < 0) 2850 return ret; 2851 } 2852 2853 ret = load_important_roots(fs_info); 2854 if (ret) { 2855 handle_error = true; 2856 continue; 2857 } 2858 2859 /* 2860 * No need to hold btrfs_root::objectid_mutex since the fs 2861 * hasn't been fully initialised and we are the only user 2862 */ 2863 ret = btrfs_init_root_free_objectid(tree_root); 2864 if (ret < 0) { 2865 handle_error = true; 2866 continue; 2867 } 2868 2869 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2870 2871 ret = btrfs_read_roots(fs_info); 2872 if (ret < 0) { 2873 handle_error = true; 2874 continue; 2875 } 2876 2877 /* All successful */ 2878 fs_info->generation = btrfs_header_generation(tree_root->node); 2879 fs_info->last_trans_committed = fs_info->generation; 2880 fs_info->last_reloc_trans = 0; 2881 2882 /* Always begin writing backup roots after the one being used */ 2883 if (backup_index < 0) { 2884 fs_info->backup_root_index = 0; 2885 } else { 2886 fs_info->backup_root_index = backup_index + 1; 2887 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2888 } 2889 break; 2890 } 2891 2892 return ret; 2893 } 2894 2895 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2896 { 2897 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2898 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2899 INIT_LIST_HEAD(&fs_info->trans_list); 2900 INIT_LIST_HEAD(&fs_info->dead_roots); 2901 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2902 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2903 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2904 spin_lock_init(&fs_info->delalloc_root_lock); 2905 spin_lock_init(&fs_info->trans_lock); 2906 spin_lock_init(&fs_info->fs_roots_radix_lock); 2907 spin_lock_init(&fs_info->delayed_iput_lock); 2908 spin_lock_init(&fs_info->defrag_inodes_lock); 2909 spin_lock_init(&fs_info->super_lock); 2910 spin_lock_init(&fs_info->buffer_lock); 2911 spin_lock_init(&fs_info->unused_bgs_lock); 2912 spin_lock_init(&fs_info->treelog_bg_lock); 2913 spin_lock_init(&fs_info->zone_active_bgs_lock); 2914 spin_lock_init(&fs_info->relocation_bg_lock); 2915 rwlock_init(&fs_info->tree_mod_log_lock); 2916 rwlock_init(&fs_info->global_root_lock); 2917 mutex_init(&fs_info->unused_bg_unpin_mutex); 2918 mutex_init(&fs_info->reclaim_bgs_lock); 2919 mutex_init(&fs_info->reloc_mutex); 2920 mutex_init(&fs_info->delalloc_root_mutex); 2921 mutex_init(&fs_info->zoned_meta_io_lock); 2922 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2923 seqlock_init(&fs_info->profiles_lock); 2924 2925 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2926 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2927 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2928 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2929 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2930 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2931 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2932 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2933 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2934 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2935 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2936 BTRFS_LOCKDEP_TRANS_COMPLETED); 2937 2938 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2939 INIT_LIST_HEAD(&fs_info->space_info); 2940 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2941 INIT_LIST_HEAD(&fs_info->unused_bgs); 2942 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2943 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2944 #ifdef CONFIG_BTRFS_DEBUG 2945 INIT_LIST_HEAD(&fs_info->allocated_roots); 2946 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2947 spin_lock_init(&fs_info->eb_leak_lock); 2948 #endif 2949 extent_map_tree_init(&fs_info->mapping_tree); 2950 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2951 BTRFS_BLOCK_RSV_GLOBAL); 2952 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2953 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2954 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2955 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2956 BTRFS_BLOCK_RSV_DELOPS); 2957 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2958 BTRFS_BLOCK_RSV_DELREFS); 2959 2960 atomic_set(&fs_info->async_delalloc_pages, 0); 2961 atomic_set(&fs_info->defrag_running, 0); 2962 atomic_set(&fs_info->nr_delayed_iputs, 0); 2963 atomic64_set(&fs_info->tree_mod_seq, 0); 2964 fs_info->global_root_tree = RB_ROOT; 2965 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2966 fs_info->metadata_ratio = 0; 2967 fs_info->defrag_inodes = RB_ROOT; 2968 atomic64_set(&fs_info->free_chunk_space, 0); 2969 fs_info->tree_mod_log = RB_ROOT; 2970 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2971 btrfs_init_ref_verify(fs_info); 2972 2973 fs_info->thread_pool_size = min_t(unsigned long, 2974 num_online_cpus() + 2, 8); 2975 2976 INIT_LIST_HEAD(&fs_info->ordered_roots); 2977 spin_lock_init(&fs_info->ordered_root_lock); 2978 2979 btrfs_init_scrub(fs_info); 2980 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2981 fs_info->check_integrity_print_mask = 0; 2982 #endif 2983 btrfs_init_balance(fs_info); 2984 btrfs_init_async_reclaim_work(fs_info); 2985 2986 rwlock_init(&fs_info->block_group_cache_lock); 2987 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2988 2989 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2990 IO_TREE_FS_EXCLUDED_EXTENTS); 2991 2992 mutex_init(&fs_info->ordered_operations_mutex); 2993 mutex_init(&fs_info->tree_log_mutex); 2994 mutex_init(&fs_info->chunk_mutex); 2995 mutex_init(&fs_info->transaction_kthread_mutex); 2996 mutex_init(&fs_info->cleaner_mutex); 2997 mutex_init(&fs_info->ro_block_group_mutex); 2998 init_rwsem(&fs_info->commit_root_sem); 2999 init_rwsem(&fs_info->cleanup_work_sem); 3000 init_rwsem(&fs_info->subvol_sem); 3001 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3002 3003 btrfs_init_dev_replace_locks(fs_info); 3004 btrfs_init_qgroup(fs_info); 3005 btrfs_discard_init(fs_info); 3006 3007 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3008 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3009 3010 init_waitqueue_head(&fs_info->transaction_throttle); 3011 init_waitqueue_head(&fs_info->transaction_wait); 3012 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3013 init_waitqueue_head(&fs_info->async_submit_wait); 3014 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3015 3016 /* Usable values until the real ones are cached from the superblock */ 3017 fs_info->nodesize = 4096; 3018 fs_info->sectorsize = 4096; 3019 fs_info->sectorsize_bits = ilog2(4096); 3020 fs_info->stripesize = 4096; 3021 3022 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3023 3024 spin_lock_init(&fs_info->swapfile_pins_lock); 3025 fs_info->swapfile_pins = RB_ROOT; 3026 3027 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3028 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3029 } 3030 3031 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3032 { 3033 int ret; 3034 3035 fs_info->sb = sb; 3036 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3037 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3038 3039 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3040 if (ret) 3041 return ret; 3042 3043 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3044 if (ret) 3045 return ret; 3046 3047 fs_info->dirty_metadata_batch = PAGE_SIZE * 3048 (1 + ilog2(nr_cpu_ids)); 3049 3050 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3051 if (ret) 3052 return ret; 3053 3054 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3055 GFP_KERNEL); 3056 if (ret) 3057 return ret; 3058 3059 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3060 GFP_KERNEL); 3061 if (!fs_info->delayed_root) 3062 return -ENOMEM; 3063 btrfs_init_delayed_root(fs_info->delayed_root); 3064 3065 if (sb_rdonly(sb)) 3066 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3067 3068 return btrfs_alloc_stripe_hash_table(fs_info); 3069 } 3070 3071 static int btrfs_uuid_rescan_kthread(void *data) 3072 { 3073 struct btrfs_fs_info *fs_info = data; 3074 int ret; 3075 3076 /* 3077 * 1st step is to iterate through the existing UUID tree and 3078 * to delete all entries that contain outdated data. 3079 * 2nd step is to add all missing entries to the UUID tree. 3080 */ 3081 ret = btrfs_uuid_tree_iterate(fs_info); 3082 if (ret < 0) { 3083 if (ret != -EINTR) 3084 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3085 ret); 3086 up(&fs_info->uuid_tree_rescan_sem); 3087 return ret; 3088 } 3089 return btrfs_uuid_scan_kthread(data); 3090 } 3091 3092 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3093 { 3094 struct task_struct *task; 3095 3096 down(&fs_info->uuid_tree_rescan_sem); 3097 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3098 if (IS_ERR(task)) { 3099 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3100 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3101 up(&fs_info->uuid_tree_rescan_sem); 3102 return PTR_ERR(task); 3103 } 3104 3105 return 0; 3106 } 3107 3108 /* 3109 * Some options only have meaning at mount time and shouldn't persist across 3110 * remounts, or be displayed. Clear these at the end of mount and remount 3111 * code paths. 3112 */ 3113 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3114 { 3115 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3116 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3117 } 3118 3119 /* 3120 * Mounting logic specific to read-write file systems. Shared by open_ctree 3121 * and btrfs_remount when remounting from read-only to read-write. 3122 */ 3123 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3124 { 3125 int ret; 3126 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3127 bool rebuild_free_space_tree = false; 3128 3129 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3130 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3131 rebuild_free_space_tree = true; 3132 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3133 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3134 btrfs_warn(fs_info, "free space tree is invalid"); 3135 rebuild_free_space_tree = true; 3136 } 3137 3138 if (rebuild_free_space_tree) { 3139 btrfs_info(fs_info, "rebuilding free space tree"); 3140 ret = btrfs_rebuild_free_space_tree(fs_info); 3141 if (ret) { 3142 btrfs_warn(fs_info, 3143 "failed to rebuild free space tree: %d", ret); 3144 goto out; 3145 } 3146 } 3147 3148 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3149 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3150 btrfs_info(fs_info, "disabling free space tree"); 3151 ret = btrfs_delete_free_space_tree(fs_info); 3152 if (ret) { 3153 btrfs_warn(fs_info, 3154 "failed to disable free space tree: %d", ret); 3155 goto out; 3156 } 3157 } 3158 3159 /* 3160 * btrfs_find_orphan_roots() is responsible for finding all the dead 3161 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3162 * them into the fs_info->fs_roots_radix tree. This must be done before 3163 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3164 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3165 * item before the root's tree is deleted - this means that if we unmount 3166 * or crash before the deletion completes, on the next mount we will not 3167 * delete what remains of the tree because the orphan item does not 3168 * exists anymore, which is what tells us we have a pending deletion. 3169 */ 3170 ret = btrfs_find_orphan_roots(fs_info); 3171 if (ret) 3172 goto out; 3173 3174 ret = btrfs_cleanup_fs_roots(fs_info); 3175 if (ret) 3176 goto out; 3177 3178 down_read(&fs_info->cleanup_work_sem); 3179 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3180 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3181 up_read(&fs_info->cleanup_work_sem); 3182 goto out; 3183 } 3184 up_read(&fs_info->cleanup_work_sem); 3185 3186 mutex_lock(&fs_info->cleaner_mutex); 3187 ret = btrfs_recover_relocation(fs_info); 3188 mutex_unlock(&fs_info->cleaner_mutex); 3189 if (ret < 0) { 3190 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3191 goto out; 3192 } 3193 3194 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3195 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3196 btrfs_info(fs_info, "creating free space tree"); 3197 ret = btrfs_create_free_space_tree(fs_info); 3198 if (ret) { 3199 btrfs_warn(fs_info, 3200 "failed to create free space tree: %d", ret); 3201 goto out; 3202 } 3203 } 3204 3205 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3206 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3207 if (ret) 3208 goto out; 3209 } 3210 3211 ret = btrfs_resume_balance_async(fs_info); 3212 if (ret) 3213 goto out; 3214 3215 ret = btrfs_resume_dev_replace_async(fs_info); 3216 if (ret) { 3217 btrfs_warn(fs_info, "failed to resume dev_replace"); 3218 goto out; 3219 } 3220 3221 btrfs_qgroup_rescan_resume(fs_info); 3222 3223 if (!fs_info->uuid_root) { 3224 btrfs_info(fs_info, "creating UUID tree"); 3225 ret = btrfs_create_uuid_tree(fs_info); 3226 if (ret) { 3227 btrfs_warn(fs_info, 3228 "failed to create the UUID tree %d", ret); 3229 goto out; 3230 } 3231 } 3232 3233 out: 3234 return ret; 3235 } 3236 3237 /* 3238 * Do various sanity and dependency checks of different features. 3239 * 3240 * @is_rw_mount: If the mount is read-write. 3241 * 3242 * This is the place for less strict checks (like for subpage or artificial 3243 * feature dependencies). 3244 * 3245 * For strict checks or possible corruption detection, see 3246 * btrfs_validate_super(). 3247 * 3248 * This should be called after btrfs_parse_options(), as some mount options 3249 * (space cache related) can modify on-disk format like free space tree and 3250 * screw up certain feature dependencies. 3251 */ 3252 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3253 { 3254 struct btrfs_super_block *disk_super = fs_info->super_copy; 3255 u64 incompat = btrfs_super_incompat_flags(disk_super); 3256 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3257 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3258 3259 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3260 btrfs_err(fs_info, 3261 "cannot mount because of unknown incompat features (0x%llx)", 3262 incompat); 3263 return -EINVAL; 3264 } 3265 3266 /* Runtime limitation for mixed block groups. */ 3267 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3268 (fs_info->sectorsize != fs_info->nodesize)) { 3269 btrfs_err(fs_info, 3270 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3271 fs_info->nodesize, fs_info->sectorsize); 3272 return -EINVAL; 3273 } 3274 3275 /* Mixed backref is an always-enabled feature. */ 3276 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3277 3278 /* Set compression related flags just in case. */ 3279 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3280 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3281 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3282 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3283 3284 /* 3285 * An ancient flag, which should really be marked deprecated. 3286 * Such runtime limitation doesn't really need a incompat flag. 3287 */ 3288 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3289 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3290 3291 if (compat_ro_unsupp && is_rw_mount) { 3292 btrfs_err(fs_info, 3293 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3294 compat_ro); 3295 return -EINVAL; 3296 } 3297 3298 /* 3299 * We have unsupported RO compat features, although RO mounted, we 3300 * should not cause any metadata writes, including log replay. 3301 * Or we could screw up whatever the new feature requires. 3302 */ 3303 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3304 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3305 btrfs_err(fs_info, 3306 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3307 compat_ro); 3308 return -EINVAL; 3309 } 3310 3311 /* 3312 * Artificial limitations for block group tree, to force 3313 * block-group-tree to rely on no-holes and free-space-tree. 3314 */ 3315 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3316 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3317 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3318 btrfs_err(fs_info, 3319 "block-group-tree feature requires no-holes and free-space-tree features"); 3320 return -EINVAL; 3321 } 3322 3323 /* 3324 * Subpage runtime limitation on v1 cache. 3325 * 3326 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3327 * we're already defaulting to v2 cache, no need to bother v1 as it's 3328 * going to be deprecated anyway. 3329 */ 3330 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3331 btrfs_warn(fs_info, 3332 "v1 space cache is not supported for page size %lu with sectorsize %u", 3333 PAGE_SIZE, fs_info->sectorsize); 3334 return -EINVAL; 3335 } 3336 3337 /* This can be called by remount, we need to protect the super block. */ 3338 spin_lock(&fs_info->super_lock); 3339 btrfs_set_super_incompat_flags(disk_super, incompat); 3340 spin_unlock(&fs_info->super_lock); 3341 3342 return 0; 3343 } 3344 3345 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3346 char *options) 3347 { 3348 u32 sectorsize; 3349 u32 nodesize; 3350 u32 stripesize; 3351 u64 generation; 3352 u64 features; 3353 u16 csum_type; 3354 struct btrfs_super_block *disk_super; 3355 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3356 struct btrfs_root *tree_root; 3357 struct btrfs_root *chunk_root; 3358 int ret; 3359 int level; 3360 3361 ret = init_mount_fs_info(fs_info, sb); 3362 if (ret) 3363 goto fail; 3364 3365 /* These need to be init'ed before we start creating inodes and such. */ 3366 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3367 GFP_KERNEL); 3368 fs_info->tree_root = tree_root; 3369 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3370 GFP_KERNEL); 3371 fs_info->chunk_root = chunk_root; 3372 if (!tree_root || !chunk_root) { 3373 ret = -ENOMEM; 3374 goto fail; 3375 } 3376 3377 ret = btrfs_init_btree_inode(sb); 3378 if (ret) 3379 goto fail; 3380 3381 invalidate_bdev(fs_devices->latest_dev->bdev); 3382 3383 /* 3384 * Read super block and check the signature bytes only 3385 */ 3386 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3387 if (IS_ERR(disk_super)) { 3388 ret = PTR_ERR(disk_super); 3389 goto fail_alloc; 3390 } 3391 3392 /* 3393 * Verify the type first, if that or the checksum value are 3394 * corrupted, we'll find out 3395 */ 3396 csum_type = btrfs_super_csum_type(disk_super); 3397 if (!btrfs_supported_super_csum(csum_type)) { 3398 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3399 csum_type); 3400 ret = -EINVAL; 3401 btrfs_release_disk_super(disk_super); 3402 goto fail_alloc; 3403 } 3404 3405 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3406 3407 ret = btrfs_init_csum_hash(fs_info, csum_type); 3408 if (ret) { 3409 btrfs_release_disk_super(disk_super); 3410 goto fail_alloc; 3411 } 3412 3413 /* 3414 * We want to check superblock checksum, the type is stored inside. 3415 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3416 */ 3417 if (btrfs_check_super_csum(fs_info, disk_super)) { 3418 btrfs_err(fs_info, "superblock checksum mismatch"); 3419 ret = -EINVAL; 3420 btrfs_release_disk_super(disk_super); 3421 goto fail_alloc; 3422 } 3423 3424 /* 3425 * super_copy is zeroed at allocation time and we never touch the 3426 * following bytes up to INFO_SIZE, the checksum is calculated from 3427 * the whole block of INFO_SIZE 3428 */ 3429 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3430 btrfs_release_disk_super(disk_super); 3431 3432 disk_super = fs_info->super_copy; 3433 3434 3435 features = btrfs_super_flags(disk_super); 3436 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3437 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3438 btrfs_set_super_flags(disk_super, features); 3439 btrfs_info(fs_info, 3440 "found metadata UUID change in progress flag, clearing"); 3441 } 3442 3443 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3444 sizeof(*fs_info->super_for_commit)); 3445 3446 ret = btrfs_validate_mount_super(fs_info); 3447 if (ret) { 3448 btrfs_err(fs_info, "superblock contains fatal errors"); 3449 ret = -EINVAL; 3450 goto fail_alloc; 3451 } 3452 3453 if (!btrfs_super_root(disk_super)) { 3454 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3455 ret = -EINVAL; 3456 goto fail_alloc; 3457 } 3458 3459 /* check FS state, whether FS is broken. */ 3460 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3461 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3462 3463 /* 3464 * In the long term, we'll store the compression type in the super 3465 * block, and it'll be used for per file compression control. 3466 */ 3467 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3468 3469 3470 /* Set up fs_info before parsing mount options */ 3471 nodesize = btrfs_super_nodesize(disk_super); 3472 sectorsize = btrfs_super_sectorsize(disk_super); 3473 stripesize = sectorsize; 3474 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3475 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3476 3477 fs_info->nodesize = nodesize; 3478 fs_info->sectorsize = sectorsize; 3479 fs_info->sectorsize_bits = ilog2(sectorsize); 3480 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3481 fs_info->stripesize = stripesize; 3482 3483 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3484 if (ret) 3485 goto fail_alloc; 3486 3487 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3488 if (ret < 0) 3489 goto fail_alloc; 3490 3491 if (sectorsize < PAGE_SIZE) { 3492 struct btrfs_subpage_info *subpage_info; 3493 3494 /* 3495 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3496 * going to be deprecated. 3497 * 3498 * Force to use v2 cache for subpage case. 3499 */ 3500 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3501 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3502 "forcing free space tree for sector size %u with page size %lu", 3503 sectorsize, PAGE_SIZE); 3504 3505 btrfs_warn(fs_info, 3506 "read-write for sector size %u with page size %lu is experimental", 3507 sectorsize, PAGE_SIZE); 3508 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3509 if (!subpage_info) { 3510 ret = -ENOMEM; 3511 goto fail_alloc; 3512 } 3513 btrfs_init_subpage_info(subpage_info, sectorsize); 3514 fs_info->subpage_info = subpage_info; 3515 } 3516 3517 ret = btrfs_init_workqueues(fs_info); 3518 if (ret) 3519 goto fail_sb_buffer; 3520 3521 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3522 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3523 3524 sb->s_blocksize = sectorsize; 3525 sb->s_blocksize_bits = blksize_bits(sectorsize); 3526 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3527 3528 mutex_lock(&fs_info->chunk_mutex); 3529 ret = btrfs_read_sys_array(fs_info); 3530 mutex_unlock(&fs_info->chunk_mutex); 3531 if (ret) { 3532 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3533 goto fail_sb_buffer; 3534 } 3535 3536 generation = btrfs_super_chunk_root_generation(disk_super); 3537 level = btrfs_super_chunk_root_level(disk_super); 3538 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3539 generation, level); 3540 if (ret) { 3541 btrfs_err(fs_info, "failed to read chunk root"); 3542 goto fail_tree_roots; 3543 } 3544 3545 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3546 offsetof(struct btrfs_header, chunk_tree_uuid), 3547 BTRFS_UUID_SIZE); 3548 3549 ret = btrfs_read_chunk_tree(fs_info); 3550 if (ret) { 3551 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3552 goto fail_tree_roots; 3553 } 3554 3555 /* 3556 * At this point we know all the devices that make this filesystem, 3557 * including the seed devices but we don't know yet if the replace 3558 * target is required. So free devices that are not part of this 3559 * filesystem but skip the replace target device which is checked 3560 * below in btrfs_init_dev_replace(). 3561 */ 3562 btrfs_free_extra_devids(fs_devices); 3563 if (!fs_devices->latest_dev->bdev) { 3564 btrfs_err(fs_info, "failed to read devices"); 3565 ret = -EIO; 3566 goto fail_tree_roots; 3567 } 3568 3569 ret = init_tree_roots(fs_info); 3570 if (ret) 3571 goto fail_tree_roots; 3572 3573 /* 3574 * Get zone type information of zoned block devices. This will also 3575 * handle emulation of a zoned filesystem if a regular device has the 3576 * zoned incompat feature flag set. 3577 */ 3578 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3579 if (ret) { 3580 btrfs_err(fs_info, 3581 "zoned: failed to read device zone info: %d", ret); 3582 goto fail_block_groups; 3583 } 3584 3585 /* 3586 * If we have a uuid root and we're not being told to rescan we need to 3587 * check the generation here so we can set the 3588 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3589 * transaction during a balance or the log replay without updating the 3590 * uuid generation, and then if we crash we would rescan the uuid tree, 3591 * even though it was perfectly fine. 3592 */ 3593 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3594 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3595 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3596 3597 ret = btrfs_verify_dev_extents(fs_info); 3598 if (ret) { 3599 btrfs_err(fs_info, 3600 "failed to verify dev extents against chunks: %d", 3601 ret); 3602 goto fail_block_groups; 3603 } 3604 ret = btrfs_recover_balance(fs_info); 3605 if (ret) { 3606 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3607 goto fail_block_groups; 3608 } 3609 3610 ret = btrfs_init_dev_stats(fs_info); 3611 if (ret) { 3612 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3613 goto fail_block_groups; 3614 } 3615 3616 ret = btrfs_init_dev_replace(fs_info); 3617 if (ret) { 3618 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3619 goto fail_block_groups; 3620 } 3621 3622 ret = btrfs_check_zoned_mode(fs_info); 3623 if (ret) { 3624 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3625 ret); 3626 goto fail_block_groups; 3627 } 3628 3629 ret = btrfs_sysfs_add_fsid(fs_devices); 3630 if (ret) { 3631 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3632 ret); 3633 goto fail_block_groups; 3634 } 3635 3636 ret = btrfs_sysfs_add_mounted(fs_info); 3637 if (ret) { 3638 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3639 goto fail_fsdev_sysfs; 3640 } 3641 3642 ret = btrfs_init_space_info(fs_info); 3643 if (ret) { 3644 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3645 goto fail_sysfs; 3646 } 3647 3648 ret = btrfs_read_block_groups(fs_info); 3649 if (ret) { 3650 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3651 goto fail_sysfs; 3652 } 3653 3654 btrfs_free_zone_cache(fs_info); 3655 3656 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3657 !btrfs_check_rw_degradable(fs_info, NULL)) { 3658 btrfs_warn(fs_info, 3659 "writable mount is not allowed due to too many missing devices"); 3660 ret = -EINVAL; 3661 goto fail_sysfs; 3662 } 3663 3664 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3665 "btrfs-cleaner"); 3666 if (IS_ERR(fs_info->cleaner_kthread)) { 3667 ret = PTR_ERR(fs_info->cleaner_kthread); 3668 goto fail_sysfs; 3669 } 3670 3671 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3672 tree_root, 3673 "btrfs-transaction"); 3674 if (IS_ERR(fs_info->transaction_kthread)) { 3675 ret = PTR_ERR(fs_info->transaction_kthread); 3676 goto fail_cleaner; 3677 } 3678 3679 if (!btrfs_test_opt(fs_info, NOSSD) && 3680 !fs_info->fs_devices->rotating) { 3681 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3682 } 3683 3684 /* 3685 * For devices supporting discard turn on discard=async automatically, 3686 * unless it's already set or disabled. This could be turned off by 3687 * nodiscard for the same mount. 3688 */ 3689 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3690 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3691 btrfs_test_opt(fs_info, NODISCARD)) && 3692 fs_info->fs_devices->discardable) { 3693 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3694 "auto enabling async discard"); 3695 } 3696 3697 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3698 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3699 ret = btrfsic_mount(fs_info, fs_devices, 3700 btrfs_test_opt(fs_info, 3701 CHECK_INTEGRITY_DATA) ? 1 : 0, 3702 fs_info->check_integrity_print_mask); 3703 if (ret) 3704 btrfs_warn(fs_info, 3705 "failed to initialize integrity check module: %d", 3706 ret); 3707 } 3708 #endif 3709 ret = btrfs_read_qgroup_config(fs_info); 3710 if (ret) 3711 goto fail_trans_kthread; 3712 3713 if (btrfs_build_ref_tree(fs_info)) 3714 btrfs_err(fs_info, "couldn't build ref tree"); 3715 3716 /* do not make disk changes in broken FS or nologreplay is given */ 3717 if (btrfs_super_log_root(disk_super) != 0 && 3718 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3719 btrfs_info(fs_info, "start tree-log replay"); 3720 ret = btrfs_replay_log(fs_info, fs_devices); 3721 if (ret) 3722 goto fail_qgroup; 3723 } 3724 3725 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3726 if (IS_ERR(fs_info->fs_root)) { 3727 ret = PTR_ERR(fs_info->fs_root); 3728 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3729 fs_info->fs_root = NULL; 3730 goto fail_qgroup; 3731 } 3732 3733 if (sb_rdonly(sb)) 3734 goto clear_oneshot; 3735 3736 ret = btrfs_start_pre_rw_mount(fs_info); 3737 if (ret) { 3738 close_ctree(fs_info); 3739 return ret; 3740 } 3741 btrfs_discard_resume(fs_info); 3742 3743 if (fs_info->uuid_root && 3744 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3745 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3746 btrfs_info(fs_info, "checking UUID tree"); 3747 ret = btrfs_check_uuid_tree(fs_info); 3748 if (ret) { 3749 btrfs_warn(fs_info, 3750 "failed to check the UUID tree: %d", ret); 3751 close_ctree(fs_info); 3752 return ret; 3753 } 3754 } 3755 3756 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3757 3758 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3759 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3760 wake_up_process(fs_info->cleaner_kthread); 3761 3762 clear_oneshot: 3763 btrfs_clear_oneshot_options(fs_info); 3764 return 0; 3765 3766 fail_qgroup: 3767 btrfs_free_qgroup_config(fs_info); 3768 fail_trans_kthread: 3769 kthread_stop(fs_info->transaction_kthread); 3770 btrfs_cleanup_transaction(fs_info); 3771 btrfs_free_fs_roots(fs_info); 3772 fail_cleaner: 3773 kthread_stop(fs_info->cleaner_kthread); 3774 3775 /* 3776 * make sure we're done with the btree inode before we stop our 3777 * kthreads 3778 */ 3779 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3780 3781 fail_sysfs: 3782 btrfs_sysfs_remove_mounted(fs_info); 3783 3784 fail_fsdev_sysfs: 3785 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3786 3787 fail_block_groups: 3788 btrfs_put_block_group_cache(fs_info); 3789 3790 fail_tree_roots: 3791 if (fs_info->data_reloc_root) 3792 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3793 free_root_pointers(fs_info, true); 3794 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3795 3796 fail_sb_buffer: 3797 btrfs_stop_all_workers(fs_info); 3798 btrfs_free_block_groups(fs_info); 3799 fail_alloc: 3800 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3801 3802 iput(fs_info->btree_inode); 3803 fail: 3804 btrfs_close_devices(fs_info->fs_devices); 3805 ASSERT(ret < 0); 3806 return ret; 3807 } 3808 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3809 3810 static void btrfs_end_super_write(struct bio *bio) 3811 { 3812 struct btrfs_device *device = bio->bi_private; 3813 struct bio_vec *bvec; 3814 struct bvec_iter_all iter_all; 3815 struct page *page; 3816 3817 bio_for_each_segment_all(bvec, bio, iter_all) { 3818 page = bvec->bv_page; 3819 3820 if (bio->bi_status) { 3821 btrfs_warn_rl_in_rcu(device->fs_info, 3822 "lost page write due to IO error on %s (%d)", 3823 btrfs_dev_name(device), 3824 blk_status_to_errno(bio->bi_status)); 3825 ClearPageUptodate(page); 3826 SetPageError(page); 3827 btrfs_dev_stat_inc_and_print(device, 3828 BTRFS_DEV_STAT_WRITE_ERRS); 3829 } else { 3830 SetPageUptodate(page); 3831 } 3832 3833 put_page(page); 3834 unlock_page(page); 3835 } 3836 3837 bio_put(bio); 3838 } 3839 3840 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3841 int copy_num, bool drop_cache) 3842 { 3843 struct btrfs_super_block *super; 3844 struct page *page; 3845 u64 bytenr, bytenr_orig; 3846 struct address_space *mapping = bdev->bd_inode->i_mapping; 3847 int ret; 3848 3849 bytenr_orig = btrfs_sb_offset(copy_num); 3850 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3851 if (ret == -ENOENT) 3852 return ERR_PTR(-EINVAL); 3853 else if (ret) 3854 return ERR_PTR(ret); 3855 3856 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3857 return ERR_PTR(-EINVAL); 3858 3859 if (drop_cache) { 3860 /* This should only be called with the primary sb. */ 3861 ASSERT(copy_num == 0); 3862 3863 /* 3864 * Drop the page of the primary superblock, so later read will 3865 * always read from the device. 3866 */ 3867 invalidate_inode_pages2_range(mapping, 3868 bytenr >> PAGE_SHIFT, 3869 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3870 } 3871 3872 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3873 if (IS_ERR(page)) 3874 return ERR_CAST(page); 3875 3876 super = page_address(page); 3877 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3878 btrfs_release_disk_super(super); 3879 return ERR_PTR(-ENODATA); 3880 } 3881 3882 if (btrfs_super_bytenr(super) != bytenr_orig) { 3883 btrfs_release_disk_super(super); 3884 return ERR_PTR(-EINVAL); 3885 } 3886 3887 return super; 3888 } 3889 3890 3891 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3892 { 3893 struct btrfs_super_block *super, *latest = NULL; 3894 int i; 3895 u64 transid = 0; 3896 3897 /* we would like to check all the supers, but that would make 3898 * a btrfs mount succeed after a mkfs from a different FS. 3899 * So, we need to add a special mount option to scan for 3900 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3901 */ 3902 for (i = 0; i < 1; i++) { 3903 super = btrfs_read_dev_one_super(bdev, i, false); 3904 if (IS_ERR(super)) 3905 continue; 3906 3907 if (!latest || btrfs_super_generation(super) > transid) { 3908 if (latest) 3909 btrfs_release_disk_super(super); 3910 3911 latest = super; 3912 transid = btrfs_super_generation(super); 3913 } 3914 } 3915 3916 return super; 3917 } 3918 3919 /* 3920 * Write superblock @sb to the @device. Do not wait for completion, all the 3921 * pages we use for writing are locked. 3922 * 3923 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3924 * the expected device size at commit time. Note that max_mirrors must be 3925 * same for write and wait phases. 3926 * 3927 * Return number of errors when page is not found or submission fails. 3928 */ 3929 static int write_dev_supers(struct btrfs_device *device, 3930 struct btrfs_super_block *sb, int max_mirrors) 3931 { 3932 struct btrfs_fs_info *fs_info = device->fs_info; 3933 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3934 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3935 int i; 3936 int errors = 0; 3937 int ret; 3938 u64 bytenr, bytenr_orig; 3939 3940 if (max_mirrors == 0) 3941 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3942 3943 shash->tfm = fs_info->csum_shash; 3944 3945 for (i = 0; i < max_mirrors; i++) { 3946 struct page *page; 3947 struct bio *bio; 3948 struct btrfs_super_block *disk_super; 3949 3950 bytenr_orig = btrfs_sb_offset(i); 3951 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3952 if (ret == -ENOENT) { 3953 continue; 3954 } else if (ret < 0) { 3955 btrfs_err(device->fs_info, 3956 "couldn't get super block location for mirror %d", 3957 i); 3958 errors++; 3959 continue; 3960 } 3961 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3962 device->commit_total_bytes) 3963 break; 3964 3965 btrfs_set_super_bytenr(sb, bytenr_orig); 3966 3967 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3968 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3969 sb->csum); 3970 3971 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3972 GFP_NOFS); 3973 if (!page) { 3974 btrfs_err(device->fs_info, 3975 "couldn't get super block page for bytenr %llu", 3976 bytenr); 3977 errors++; 3978 continue; 3979 } 3980 3981 /* Bump the refcount for wait_dev_supers() */ 3982 get_page(page); 3983 3984 disk_super = page_address(page); 3985 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3986 3987 /* 3988 * Directly use bios here instead of relying on the page cache 3989 * to do I/O, so we don't lose the ability to do integrity 3990 * checking. 3991 */ 3992 bio = bio_alloc(device->bdev, 1, 3993 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3994 GFP_NOFS); 3995 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3996 bio->bi_private = device; 3997 bio->bi_end_io = btrfs_end_super_write; 3998 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3999 offset_in_page(bytenr)); 4000 4001 /* 4002 * We FUA only the first super block. The others we allow to 4003 * go down lazy and there's a short window where the on-disk 4004 * copies might still contain the older version. 4005 */ 4006 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4007 bio->bi_opf |= REQ_FUA; 4008 4009 btrfsic_check_bio(bio); 4010 submit_bio(bio); 4011 4012 if (btrfs_advance_sb_log(device, i)) 4013 errors++; 4014 } 4015 return errors < i ? 0 : -1; 4016 } 4017 4018 /* 4019 * Wait for write completion of superblocks done by write_dev_supers, 4020 * @max_mirrors same for write and wait phases. 4021 * 4022 * Return number of errors when page is not found or not marked up to 4023 * date. 4024 */ 4025 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4026 { 4027 int i; 4028 int errors = 0; 4029 bool primary_failed = false; 4030 int ret; 4031 u64 bytenr; 4032 4033 if (max_mirrors == 0) 4034 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4035 4036 for (i = 0; i < max_mirrors; i++) { 4037 struct page *page; 4038 4039 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4040 if (ret == -ENOENT) { 4041 break; 4042 } else if (ret < 0) { 4043 errors++; 4044 if (i == 0) 4045 primary_failed = true; 4046 continue; 4047 } 4048 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4049 device->commit_total_bytes) 4050 break; 4051 4052 page = find_get_page(device->bdev->bd_inode->i_mapping, 4053 bytenr >> PAGE_SHIFT); 4054 if (!page) { 4055 errors++; 4056 if (i == 0) 4057 primary_failed = true; 4058 continue; 4059 } 4060 /* Page is submitted locked and unlocked once the IO completes */ 4061 wait_on_page_locked(page); 4062 if (PageError(page)) { 4063 errors++; 4064 if (i == 0) 4065 primary_failed = true; 4066 } 4067 4068 /* Drop our reference */ 4069 put_page(page); 4070 4071 /* Drop the reference from the writing run */ 4072 put_page(page); 4073 } 4074 4075 /* log error, force error return */ 4076 if (primary_failed) { 4077 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4078 device->devid); 4079 return -1; 4080 } 4081 4082 return errors < i ? 0 : -1; 4083 } 4084 4085 /* 4086 * endio for the write_dev_flush, this will wake anyone waiting 4087 * for the barrier when it is done 4088 */ 4089 static void btrfs_end_empty_barrier(struct bio *bio) 4090 { 4091 bio_uninit(bio); 4092 complete(bio->bi_private); 4093 } 4094 4095 /* 4096 * Submit a flush request to the device if it supports it. Error handling is 4097 * done in the waiting counterpart. 4098 */ 4099 static void write_dev_flush(struct btrfs_device *device) 4100 { 4101 struct bio *bio = &device->flush_bio; 4102 4103 device->last_flush_error = BLK_STS_OK; 4104 4105 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4106 /* 4107 * When a disk has write caching disabled, we skip submission of a bio 4108 * with flush and sync requests before writing the superblock, since 4109 * it's not needed. However when the integrity checker is enabled, this 4110 * results in reports that there are metadata blocks referred by a 4111 * superblock that were not properly flushed. So don't skip the bio 4112 * submission only when the integrity checker is enabled for the sake 4113 * of simplicity, since this is a debug tool and not meant for use in 4114 * non-debug builds. 4115 */ 4116 if (!bdev_write_cache(device->bdev)) 4117 return; 4118 #endif 4119 4120 bio_init(bio, device->bdev, NULL, 0, 4121 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4122 bio->bi_end_io = btrfs_end_empty_barrier; 4123 init_completion(&device->flush_wait); 4124 bio->bi_private = &device->flush_wait; 4125 4126 btrfsic_check_bio(bio); 4127 submit_bio(bio); 4128 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4129 } 4130 4131 /* 4132 * If the flush bio has been submitted by write_dev_flush, wait for it. 4133 * Return true for any error, and false otherwise. 4134 */ 4135 static bool wait_dev_flush(struct btrfs_device *device) 4136 { 4137 struct bio *bio = &device->flush_bio; 4138 4139 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4140 return false; 4141 4142 wait_for_completion_io(&device->flush_wait); 4143 4144 if (bio->bi_status) { 4145 device->last_flush_error = bio->bi_status; 4146 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 4147 return true; 4148 } 4149 4150 return false; 4151 } 4152 4153 /* 4154 * send an empty flush down to each device in parallel, 4155 * then wait for them 4156 */ 4157 static int barrier_all_devices(struct btrfs_fs_info *info) 4158 { 4159 struct list_head *head; 4160 struct btrfs_device *dev; 4161 int errors_wait = 0; 4162 4163 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4164 /* send down all the barriers */ 4165 head = &info->fs_devices->devices; 4166 list_for_each_entry(dev, head, dev_list) { 4167 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4168 continue; 4169 if (!dev->bdev) 4170 continue; 4171 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4172 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4173 continue; 4174 4175 write_dev_flush(dev); 4176 } 4177 4178 /* wait for all the barriers */ 4179 list_for_each_entry(dev, head, dev_list) { 4180 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4181 continue; 4182 if (!dev->bdev) { 4183 errors_wait++; 4184 continue; 4185 } 4186 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4187 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4188 continue; 4189 4190 if (wait_dev_flush(dev)) 4191 errors_wait++; 4192 } 4193 4194 /* 4195 * Checks last_flush_error of disks in order to determine the device 4196 * state. 4197 */ 4198 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 4199 return -EIO; 4200 4201 return 0; 4202 } 4203 4204 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4205 { 4206 int raid_type; 4207 int min_tolerated = INT_MAX; 4208 4209 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4210 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4211 min_tolerated = min_t(int, min_tolerated, 4212 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4213 tolerated_failures); 4214 4215 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4216 if (raid_type == BTRFS_RAID_SINGLE) 4217 continue; 4218 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4219 continue; 4220 min_tolerated = min_t(int, min_tolerated, 4221 btrfs_raid_array[raid_type]. 4222 tolerated_failures); 4223 } 4224 4225 if (min_tolerated == INT_MAX) { 4226 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4227 min_tolerated = 0; 4228 } 4229 4230 return min_tolerated; 4231 } 4232 4233 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4234 { 4235 struct list_head *head; 4236 struct btrfs_device *dev; 4237 struct btrfs_super_block *sb; 4238 struct btrfs_dev_item *dev_item; 4239 int ret; 4240 int do_barriers; 4241 int max_errors; 4242 int total_errors = 0; 4243 u64 flags; 4244 4245 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4246 4247 /* 4248 * max_mirrors == 0 indicates we're from commit_transaction, 4249 * not from fsync where the tree roots in fs_info have not 4250 * been consistent on disk. 4251 */ 4252 if (max_mirrors == 0) 4253 backup_super_roots(fs_info); 4254 4255 sb = fs_info->super_for_commit; 4256 dev_item = &sb->dev_item; 4257 4258 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4259 head = &fs_info->fs_devices->devices; 4260 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4261 4262 if (do_barriers) { 4263 ret = barrier_all_devices(fs_info); 4264 if (ret) { 4265 mutex_unlock( 4266 &fs_info->fs_devices->device_list_mutex); 4267 btrfs_handle_fs_error(fs_info, ret, 4268 "errors while submitting device barriers."); 4269 return ret; 4270 } 4271 } 4272 4273 list_for_each_entry(dev, head, dev_list) { 4274 if (!dev->bdev) { 4275 total_errors++; 4276 continue; 4277 } 4278 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4279 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4280 continue; 4281 4282 btrfs_set_stack_device_generation(dev_item, 0); 4283 btrfs_set_stack_device_type(dev_item, dev->type); 4284 btrfs_set_stack_device_id(dev_item, dev->devid); 4285 btrfs_set_stack_device_total_bytes(dev_item, 4286 dev->commit_total_bytes); 4287 btrfs_set_stack_device_bytes_used(dev_item, 4288 dev->commit_bytes_used); 4289 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4290 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4291 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4292 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4293 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4294 BTRFS_FSID_SIZE); 4295 4296 flags = btrfs_super_flags(sb); 4297 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4298 4299 ret = btrfs_validate_write_super(fs_info, sb); 4300 if (ret < 0) { 4301 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4302 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4303 "unexpected superblock corruption detected"); 4304 return -EUCLEAN; 4305 } 4306 4307 ret = write_dev_supers(dev, sb, max_mirrors); 4308 if (ret) 4309 total_errors++; 4310 } 4311 if (total_errors > max_errors) { 4312 btrfs_err(fs_info, "%d errors while writing supers", 4313 total_errors); 4314 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4315 4316 /* FUA is masked off if unsupported and can't be the reason */ 4317 btrfs_handle_fs_error(fs_info, -EIO, 4318 "%d errors while writing supers", 4319 total_errors); 4320 return -EIO; 4321 } 4322 4323 total_errors = 0; 4324 list_for_each_entry(dev, head, dev_list) { 4325 if (!dev->bdev) 4326 continue; 4327 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4328 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4329 continue; 4330 4331 ret = wait_dev_supers(dev, max_mirrors); 4332 if (ret) 4333 total_errors++; 4334 } 4335 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4336 if (total_errors > max_errors) { 4337 btrfs_handle_fs_error(fs_info, -EIO, 4338 "%d errors while writing supers", 4339 total_errors); 4340 return -EIO; 4341 } 4342 return 0; 4343 } 4344 4345 /* Drop a fs root from the radix tree and free it. */ 4346 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4347 struct btrfs_root *root) 4348 { 4349 bool drop_ref = false; 4350 4351 spin_lock(&fs_info->fs_roots_radix_lock); 4352 radix_tree_delete(&fs_info->fs_roots_radix, 4353 (unsigned long)root->root_key.objectid); 4354 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4355 drop_ref = true; 4356 spin_unlock(&fs_info->fs_roots_radix_lock); 4357 4358 if (BTRFS_FS_ERROR(fs_info)) { 4359 ASSERT(root->log_root == NULL); 4360 if (root->reloc_root) { 4361 btrfs_put_root(root->reloc_root); 4362 root->reloc_root = NULL; 4363 } 4364 } 4365 4366 if (drop_ref) 4367 btrfs_put_root(root); 4368 } 4369 4370 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4371 { 4372 u64 root_objectid = 0; 4373 struct btrfs_root *gang[8]; 4374 int i = 0; 4375 int err = 0; 4376 unsigned int ret = 0; 4377 4378 while (1) { 4379 spin_lock(&fs_info->fs_roots_radix_lock); 4380 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4381 (void **)gang, root_objectid, 4382 ARRAY_SIZE(gang)); 4383 if (!ret) { 4384 spin_unlock(&fs_info->fs_roots_radix_lock); 4385 break; 4386 } 4387 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4388 4389 for (i = 0; i < ret; i++) { 4390 /* Avoid to grab roots in dead_roots */ 4391 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4392 gang[i] = NULL; 4393 continue; 4394 } 4395 /* grab all the search result for later use */ 4396 gang[i] = btrfs_grab_root(gang[i]); 4397 } 4398 spin_unlock(&fs_info->fs_roots_radix_lock); 4399 4400 for (i = 0; i < ret; i++) { 4401 if (!gang[i]) 4402 continue; 4403 root_objectid = gang[i]->root_key.objectid; 4404 err = btrfs_orphan_cleanup(gang[i]); 4405 if (err) 4406 goto out; 4407 btrfs_put_root(gang[i]); 4408 } 4409 root_objectid++; 4410 } 4411 out: 4412 /* release the uncleaned roots due to error */ 4413 for (; i < ret; i++) { 4414 if (gang[i]) 4415 btrfs_put_root(gang[i]); 4416 } 4417 return err; 4418 } 4419 4420 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4421 { 4422 struct btrfs_root *root = fs_info->tree_root; 4423 struct btrfs_trans_handle *trans; 4424 4425 mutex_lock(&fs_info->cleaner_mutex); 4426 btrfs_run_delayed_iputs(fs_info); 4427 mutex_unlock(&fs_info->cleaner_mutex); 4428 wake_up_process(fs_info->cleaner_kthread); 4429 4430 /* wait until ongoing cleanup work done */ 4431 down_write(&fs_info->cleanup_work_sem); 4432 up_write(&fs_info->cleanup_work_sem); 4433 4434 trans = btrfs_join_transaction(root); 4435 if (IS_ERR(trans)) 4436 return PTR_ERR(trans); 4437 return btrfs_commit_transaction(trans); 4438 } 4439 4440 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4441 { 4442 struct btrfs_transaction *trans; 4443 struct btrfs_transaction *tmp; 4444 bool found = false; 4445 4446 if (list_empty(&fs_info->trans_list)) 4447 return; 4448 4449 /* 4450 * This function is only called at the very end of close_ctree(), 4451 * thus no other running transaction, no need to take trans_lock. 4452 */ 4453 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4454 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4455 struct extent_state *cached = NULL; 4456 u64 dirty_bytes = 0; 4457 u64 cur = 0; 4458 u64 found_start; 4459 u64 found_end; 4460 4461 found = true; 4462 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4463 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4464 dirty_bytes += found_end + 1 - found_start; 4465 cur = found_end + 1; 4466 } 4467 btrfs_warn(fs_info, 4468 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4469 trans->transid, dirty_bytes); 4470 btrfs_cleanup_one_transaction(trans, fs_info); 4471 4472 if (trans == fs_info->running_transaction) 4473 fs_info->running_transaction = NULL; 4474 list_del_init(&trans->list); 4475 4476 btrfs_put_transaction(trans); 4477 trace_btrfs_transaction_commit(fs_info); 4478 } 4479 ASSERT(!found); 4480 } 4481 4482 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4483 { 4484 int ret; 4485 4486 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4487 4488 /* 4489 * If we had UNFINISHED_DROPS we could still be processing them, so 4490 * clear that bit and wake up relocation so it can stop. 4491 * We must do this before stopping the block group reclaim task, because 4492 * at btrfs_relocate_block_group() we wait for this bit, and after the 4493 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4494 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4495 * return 1. 4496 */ 4497 btrfs_wake_unfinished_drop(fs_info); 4498 4499 /* 4500 * We may have the reclaim task running and relocating a data block group, 4501 * in which case it may create delayed iputs. So stop it before we park 4502 * the cleaner kthread otherwise we can get new delayed iputs after 4503 * parking the cleaner, and that can make the async reclaim task to hang 4504 * if it's waiting for delayed iputs to complete, since the cleaner is 4505 * parked and can not run delayed iputs - this will make us hang when 4506 * trying to stop the async reclaim task. 4507 */ 4508 cancel_work_sync(&fs_info->reclaim_bgs_work); 4509 /* 4510 * We don't want the cleaner to start new transactions, add more delayed 4511 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4512 * because that frees the task_struct, and the transaction kthread might 4513 * still try to wake up the cleaner. 4514 */ 4515 kthread_park(fs_info->cleaner_kthread); 4516 4517 /* wait for the qgroup rescan worker to stop */ 4518 btrfs_qgroup_wait_for_completion(fs_info, false); 4519 4520 /* wait for the uuid_scan task to finish */ 4521 down(&fs_info->uuid_tree_rescan_sem); 4522 /* avoid complains from lockdep et al., set sem back to initial state */ 4523 up(&fs_info->uuid_tree_rescan_sem); 4524 4525 /* pause restriper - we want to resume on mount */ 4526 btrfs_pause_balance(fs_info); 4527 4528 btrfs_dev_replace_suspend_for_unmount(fs_info); 4529 4530 btrfs_scrub_cancel(fs_info); 4531 4532 /* wait for any defraggers to finish */ 4533 wait_event(fs_info->transaction_wait, 4534 (atomic_read(&fs_info->defrag_running) == 0)); 4535 4536 /* clear out the rbtree of defraggable inodes */ 4537 btrfs_cleanup_defrag_inodes(fs_info); 4538 4539 /* 4540 * After we parked the cleaner kthread, ordered extents may have 4541 * completed and created new delayed iputs. If one of the async reclaim 4542 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4543 * can hang forever trying to stop it, because if a delayed iput is 4544 * added after it ran btrfs_run_delayed_iputs() and before it called 4545 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4546 * no one else to run iputs. 4547 * 4548 * So wait for all ongoing ordered extents to complete and then run 4549 * delayed iputs. This works because once we reach this point no one 4550 * can either create new ordered extents nor create delayed iputs 4551 * through some other means. 4552 * 4553 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4554 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4555 * but the delayed iput for the respective inode is made only when doing 4556 * the final btrfs_put_ordered_extent() (which must happen at 4557 * btrfs_finish_ordered_io() when we are unmounting). 4558 */ 4559 btrfs_flush_workqueue(fs_info->endio_write_workers); 4560 /* Ordered extents for free space inodes. */ 4561 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4562 btrfs_run_delayed_iputs(fs_info); 4563 4564 cancel_work_sync(&fs_info->async_reclaim_work); 4565 cancel_work_sync(&fs_info->async_data_reclaim_work); 4566 cancel_work_sync(&fs_info->preempt_reclaim_work); 4567 4568 /* Cancel or finish ongoing discard work */ 4569 btrfs_discard_cleanup(fs_info); 4570 4571 if (!sb_rdonly(fs_info->sb)) { 4572 /* 4573 * The cleaner kthread is stopped, so do one final pass over 4574 * unused block groups. 4575 */ 4576 btrfs_delete_unused_bgs(fs_info); 4577 4578 /* 4579 * There might be existing delayed inode workers still running 4580 * and holding an empty delayed inode item. We must wait for 4581 * them to complete first because they can create a transaction. 4582 * This happens when someone calls btrfs_balance_delayed_items() 4583 * and then a transaction commit runs the same delayed nodes 4584 * before any delayed worker has done something with the nodes. 4585 * We must wait for any worker here and not at transaction 4586 * commit time since that could cause a deadlock. 4587 * This is a very rare case. 4588 */ 4589 btrfs_flush_workqueue(fs_info->delayed_workers); 4590 4591 ret = btrfs_commit_super(fs_info); 4592 if (ret) 4593 btrfs_err(fs_info, "commit super ret %d", ret); 4594 } 4595 4596 if (BTRFS_FS_ERROR(fs_info)) 4597 btrfs_error_commit_super(fs_info); 4598 4599 kthread_stop(fs_info->transaction_kthread); 4600 kthread_stop(fs_info->cleaner_kthread); 4601 4602 ASSERT(list_empty(&fs_info->delayed_iputs)); 4603 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4604 4605 if (btrfs_check_quota_leak(fs_info)) { 4606 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4607 btrfs_err(fs_info, "qgroup reserved space leaked"); 4608 } 4609 4610 btrfs_free_qgroup_config(fs_info); 4611 ASSERT(list_empty(&fs_info->delalloc_roots)); 4612 4613 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4614 btrfs_info(fs_info, "at unmount delalloc count %lld", 4615 percpu_counter_sum(&fs_info->delalloc_bytes)); 4616 } 4617 4618 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4619 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4620 percpu_counter_sum(&fs_info->ordered_bytes)); 4621 4622 btrfs_sysfs_remove_mounted(fs_info); 4623 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4624 4625 btrfs_put_block_group_cache(fs_info); 4626 4627 /* 4628 * we must make sure there is not any read request to 4629 * submit after we stopping all workers. 4630 */ 4631 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4632 btrfs_stop_all_workers(fs_info); 4633 4634 /* We shouldn't have any transaction open at this point */ 4635 warn_about_uncommitted_trans(fs_info); 4636 4637 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4638 free_root_pointers(fs_info, true); 4639 btrfs_free_fs_roots(fs_info); 4640 4641 /* 4642 * We must free the block groups after dropping the fs_roots as we could 4643 * have had an IO error and have left over tree log blocks that aren't 4644 * cleaned up until the fs roots are freed. This makes the block group 4645 * accounting appear to be wrong because there's pending reserved bytes, 4646 * so make sure we do the block group cleanup afterwards. 4647 */ 4648 btrfs_free_block_groups(fs_info); 4649 4650 iput(fs_info->btree_inode); 4651 4652 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4653 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4654 btrfsic_unmount(fs_info->fs_devices); 4655 #endif 4656 4657 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4658 btrfs_close_devices(fs_info->fs_devices); 4659 } 4660 4661 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4662 int atomic) 4663 { 4664 int ret; 4665 struct inode *btree_inode = buf->pages[0]->mapping->host; 4666 4667 ret = extent_buffer_uptodate(buf); 4668 if (!ret) 4669 return ret; 4670 4671 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4672 parent_transid, atomic); 4673 if (ret == -EAGAIN) 4674 return ret; 4675 return !ret; 4676 } 4677 4678 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4679 { 4680 struct btrfs_fs_info *fs_info = buf->fs_info; 4681 u64 transid = btrfs_header_generation(buf); 4682 int was_dirty; 4683 4684 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4685 /* 4686 * This is a fast path so only do this check if we have sanity tests 4687 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4688 * outside of the sanity tests. 4689 */ 4690 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4691 return; 4692 #endif 4693 btrfs_assert_tree_write_locked(buf); 4694 if (transid != fs_info->generation) 4695 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4696 buf->start, transid, fs_info->generation); 4697 was_dirty = set_extent_buffer_dirty(buf); 4698 if (!was_dirty) 4699 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4700 buf->len, 4701 fs_info->dirty_metadata_batch); 4702 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4703 /* 4704 * btrfs_check_leaf() won't check item data if we don't have WRITTEN 4705 * set, so this will only validate the basic structure of the items. 4706 */ 4707 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) { 4708 btrfs_print_leaf(buf); 4709 ASSERT(0); 4710 } 4711 #endif 4712 } 4713 4714 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4715 int flush_delayed) 4716 { 4717 /* 4718 * looks as though older kernels can get into trouble with 4719 * this code, they end up stuck in balance_dirty_pages forever 4720 */ 4721 int ret; 4722 4723 if (current->flags & PF_MEMALLOC) 4724 return; 4725 4726 if (flush_delayed) 4727 btrfs_balance_delayed_items(fs_info); 4728 4729 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4730 BTRFS_DIRTY_METADATA_THRESH, 4731 fs_info->dirty_metadata_batch); 4732 if (ret > 0) { 4733 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4734 } 4735 } 4736 4737 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4738 { 4739 __btrfs_btree_balance_dirty(fs_info, 1); 4740 } 4741 4742 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4743 { 4744 __btrfs_btree_balance_dirty(fs_info, 0); 4745 } 4746 4747 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4748 { 4749 /* cleanup FS via transaction */ 4750 btrfs_cleanup_transaction(fs_info); 4751 4752 mutex_lock(&fs_info->cleaner_mutex); 4753 btrfs_run_delayed_iputs(fs_info); 4754 mutex_unlock(&fs_info->cleaner_mutex); 4755 4756 down_write(&fs_info->cleanup_work_sem); 4757 up_write(&fs_info->cleanup_work_sem); 4758 } 4759 4760 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4761 { 4762 struct btrfs_root *gang[8]; 4763 u64 root_objectid = 0; 4764 int ret; 4765 4766 spin_lock(&fs_info->fs_roots_radix_lock); 4767 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4768 (void **)gang, root_objectid, 4769 ARRAY_SIZE(gang))) != 0) { 4770 int i; 4771 4772 for (i = 0; i < ret; i++) 4773 gang[i] = btrfs_grab_root(gang[i]); 4774 spin_unlock(&fs_info->fs_roots_radix_lock); 4775 4776 for (i = 0; i < ret; i++) { 4777 if (!gang[i]) 4778 continue; 4779 root_objectid = gang[i]->root_key.objectid; 4780 btrfs_free_log(NULL, gang[i]); 4781 btrfs_put_root(gang[i]); 4782 } 4783 root_objectid++; 4784 spin_lock(&fs_info->fs_roots_radix_lock); 4785 } 4786 spin_unlock(&fs_info->fs_roots_radix_lock); 4787 btrfs_free_log_root_tree(NULL, fs_info); 4788 } 4789 4790 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4791 { 4792 struct btrfs_ordered_extent *ordered; 4793 4794 spin_lock(&root->ordered_extent_lock); 4795 /* 4796 * This will just short circuit the ordered completion stuff which will 4797 * make sure the ordered extent gets properly cleaned up. 4798 */ 4799 list_for_each_entry(ordered, &root->ordered_extents, 4800 root_extent_list) 4801 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4802 spin_unlock(&root->ordered_extent_lock); 4803 } 4804 4805 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4806 { 4807 struct btrfs_root *root; 4808 struct list_head splice; 4809 4810 INIT_LIST_HEAD(&splice); 4811 4812 spin_lock(&fs_info->ordered_root_lock); 4813 list_splice_init(&fs_info->ordered_roots, &splice); 4814 while (!list_empty(&splice)) { 4815 root = list_first_entry(&splice, struct btrfs_root, 4816 ordered_root); 4817 list_move_tail(&root->ordered_root, 4818 &fs_info->ordered_roots); 4819 4820 spin_unlock(&fs_info->ordered_root_lock); 4821 btrfs_destroy_ordered_extents(root); 4822 4823 cond_resched(); 4824 spin_lock(&fs_info->ordered_root_lock); 4825 } 4826 spin_unlock(&fs_info->ordered_root_lock); 4827 4828 /* 4829 * We need this here because if we've been flipped read-only we won't 4830 * get sync() from the umount, so we need to make sure any ordered 4831 * extents that haven't had their dirty pages IO start writeout yet 4832 * actually get run and error out properly. 4833 */ 4834 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4835 } 4836 4837 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4838 struct btrfs_fs_info *fs_info) 4839 { 4840 struct rb_node *node; 4841 struct btrfs_delayed_ref_root *delayed_refs; 4842 struct btrfs_delayed_ref_node *ref; 4843 int ret = 0; 4844 4845 delayed_refs = &trans->delayed_refs; 4846 4847 spin_lock(&delayed_refs->lock); 4848 if (atomic_read(&delayed_refs->num_entries) == 0) { 4849 spin_unlock(&delayed_refs->lock); 4850 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4851 return ret; 4852 } 4853 4854 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4855 struct btrfs_delayed_ref_head *head; 4856 struct rb_node *n; 4857 bool pin_bytes = false; 4858 4859 head = rb_entry(node, struct btrfs_delayed_ref_head, 4860 href_node); 4861 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4862 continue; 4863 4864 spin_lock(&head->lock); 4865 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4866 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4867 ref_node); 4868 ref->in_tree = 0; 4869 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4870 RB_CLEAR_NODE(&ref->ref_node); 4871 if (!list_empty(&ref->add_list)) 4872 list_del(&ref->add_list); 4873 atomic_dec(&delayed_refs->num_entries); 4874 btrfs_put_delayed_ref(ref); 4875 } 4876 if (head->must_insert_reserved) 4877 pin_bytes = true; 4878 btrfs_free_delayed_extent_op(head->extent_op); 4879 btrfs_delete_ref_head(delayed_refs, head); 4880 spin_unlock(&head->lock); 4881 spin_unlock(&delayed_refs->lock); 4882 mutex_unlock(&head->mutex); 4883 4884 if (pin_bytes) { 4885 struct btrfs_block_group *cache; 4886 4887 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4888 BUG_ON(!cache); 4889 4890 spin_lock(&cache->space_info->lock); 4891 spin_lock(&cache->lock); 4892 cache->pinned += head->num_bytes; 4893 btrfs_space_info_update_bytes_pinned(fs_info, 4894 cache->space_info, head->num_bytes); 4895 cache->reserved -= head->num_bytes; 4896 cache->space_info->bytes_reserved -= head->num_bytes; 4897 spin_unlock(&cache->lock); 4898 spin_unlock(&cache->space_info->lock); 4899 4900 btrfs_put_block_group(cache); 4901 4902 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4903 head->bytenr + head->num_bytes - 1); 4904 } 4905 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4906 btrfs_put_delayed_ref_head(head); 4907 cond_resched(); 4908 spin_lock(&delayed_refs->lock); 4909 } 4910 btrfs_qgroup_destroy_extent_records(trans); 4911 4912 spin_unlock(&delayed_refs->lock); 4913 4914 return ret; 4915 } 4916 4917 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4918 { 4919 struct btrfs_inode *btrfs_inode; 4920 struct list_head splice; 4921 4922 INIT_LIST_HEAD(&splice); 4923 4924 spin_lock(&root->delalloc_lock); 4925 list_splice_init(&root->delalloc_inodes, &splice); 4926 4927 while (!list_empty(&splice)) { 4928 struct inode *inode = NULL; 4929 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4930 delalloc_inodes); 4931 __btrfs_del_delalloc_inode(root, btrfs_inode); 4932 spin_unlock(&root->delalloc_lock); 4933 4934 /* 4935 * Make sure we get a live inode and that it'll not disappear 4936 * meanwhile. 4937 */ 4938 inode = igrab(&btrfs_inode->vfs_inode); 4939 if (inode) { 4940 unsigned int nofs_flag; 4941 4942 nofs_flag = memalloc_nofs_save(); 4943 invalidate_inode_pages2(inode->i_mapping); 4944 memalloc_nofs_restore(nofs_flag); 4945 iput(inode); 4946 } 4947 spin_lock(&root->delalloc_lock); 4948 } 4949 spin_unlock(&root->delalloc_lock); 4950 } 4951 4952 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4953 { 4954 struct btrfs_root *root; 4955 struct list_head splice; 4956 4957 INIT_LIST_HEAD(&splice); 4958 4959 spin_lock(&fs_info->delalloc_root_lock); 4960 list_splice_init(&fs_info->delalloc_roots, &splice); 4961 while (!list_empty(&splice)) { 4962 root = list_first_entry(&splice, struct btrfs_root, 4963 delalloc_root); 4964 root = btrfs_grab_root(root); 4965 BUG_ON(!root); 4966 spin_unlock(&fs_info->delalloc_root_lock); 4967 4968 btrfs_destroy_delalloc_inodes(root); 4969 btrfs_put_root(root); 4970 4971 spin_lock(&fs_info->delalloc_root_lock); 4972 } 4973 spin_unlock(&fs_info->delalloc_root_lock); 4974 } 4975 4976 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4977 struct extent_io_tree *dirty_pages, 4978 int mark) 4979 { 4980 int ret; 4981 struct extent_buffer *eb; 4982 u64 start = 0; 4983 u64 end; 4984 4985 while (1) { 4986 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4987 mark, NULL); 4988 if (ret) 4989 break; 4990 4991 clear_extent_bits(dirty_pages, start, end, mark); 4992 while (start <= end) { 4993 eb = find_extent_buffer(fs_info, start); 4994 start += fs_info->nodesize; 4995 if (!eb) 4996 continue; 4997 4998 btrfs_tree_lock(eb); 4999 wait_on_extent_buffer_writeback(eb); 5000 btrfs_clear_buffer_dirty(NULL, eb); 5001 btrfs_tree_unlock(eb); 5002 5003 free_extent_buffer_stale(eb); 5004 } 5005 } 5006 5007 return ret; 5008 } 5009 5010 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5011 struct extent_io_tree *unpin) 5012 { 5013 u64 start; 5014 u64 end; 5015 int ret; 5016 5017 while (1) { 5018 struct extent_state *cached_state = NULL; 5019 5020 /* 5021 * The btrfs_finish_extent_commit() may get the same range as 5022 * ours between find_first_extent_bit and clear_extent_dirty. 5023 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5024 * the same extent range. 5025 */ 5026 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5027 ret = find_first_extent_bit(unpin, 0, &start, &end, 5028 EXTENT_DIRTY, &cached_state); 5029 if (ret) { 5030 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5031 break; 5032 } 5033 5034 clear_extent_dirty(unpin, start, end, &cached_state); 5035 free_extent_state(cached_state); 5036 btrfs_error_unpin_extent_range(fs_info, start, end); 5037 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5038 cond_resched(); 5039 } 5040 5041 return 0; 5042 } 5043 5044 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5045 { 5046 struct inode *inode; 5047 5048 inode = cache->io_ctl.inode; 5049 if (inode) { 5050 unsigned int nofs_flag; 5051 5052 nofs_flag = memalloc_nofs_save(); 5053 invalidate_inode_pages2(inode->i_mapping); 5054 memalloc_nofs_restore(nofs_flag); 5055 5056 BTRFS_I(inode)->generation = 0; 5057 cache->io_ctl.inode = NULL; 5058 iput(inode); 5059 } 5060 ASSERT(cache->io_ctl.pages == NULL); 5061 btrfs_put_block_group(cache); 5062 } 5063 5064 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5065 struct btrfs_fs_info *fs_info) 5066 { 5067 struct btrfs_block_group *cache; 5068 5069 spin_lock(&cur_trans->dirty_bgs_lock); 5070 while (!list_empty(&cur_trans->dirty_bgs)) { 5071 cache = list_first_entry(&cur_trans->dirty_bgs, 5072 struct btrfs_block_group, 5073 dirty_list); 5074 5075 if (!list_empty(&cache->io_list)) { 5076 spin_unlock(&cur_trans->dirty_bgs_lock); 5077 list_del_init(&cache->io_list); 5078 btrfs_cleanup_bg_io(cache); 5079 spin_lock(&cur_trans->dirty_bgs_lock); 5080 } 5081 5082 list_del_init(&cache->dirty_list); 5083 spin_lock(&cache->lock); 5084 cache->disk_cache_state = BTRFS_DC_ERROR; 5085 spin_unlock(&cache->lock); 5086 5087 spin_unlock(&cur_trans->dirty_bgs_lock); 5088 btrfs_put_block_group(cache); 5089 btrfs_delayed_refs_rsv_release(fs_info, 1); 5090 spin_lock(&cur_trans->dirty_bgs_lock); 5091 } 5092 spin_unlock(&cur_trans->dirty_bgs_lock); 5093 5094 /* 5095 * Refer to the definition of io_bgs member for details why it's safe 5096 * to use it without any locking 5097 */ 5098 while (!list_empty(&cur_trans->io_bgs)) { 5099 cache = list_first_entry(&cur_trans->io_bgs, 5100 struct btrfs_block_group, 5101 io_list); 5102 5103 list_del_init(&cache->io_list); 5104 spin_lock(&cache->lock); 5105 cache->disk_cache_state = BTRFS_DC_ERROR; 5106 spin_unlock(&cache->lock); 5107 btrfs_cleanup_bg_io(cache); 5108 } 5109 } 5110 5111 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5112 struct btrfs_fs_info *fs_info) 5113 { 5114 struct btrfs_device *dev, *tmp; 5115 5116 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5117 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5118 ASSERT(list_empty(&cur_trans->io_bgs)); 5119 5120 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5121 post_commit_list) { 5122 list_del_init(&dev->post_commit_list); 5123 } 5124 5125 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5126 5127 cur_trans->state = TRANS_STATE_COMMIT_START; 5128 wake_up(&fs_info->transaction_blocked_wait); 5129 5130 cur_trans->state = TRANS_STATE_UNBLOCKED; 5131 wake_up(&fs_info->transaction_wait); 5132 5133 btrfs_destroy_delayed_inodes(fs_info); 5134 5135 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5136 EXTENT_DIRTY); 5137 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5138 5139 btrfs_free_redirty_list(cur_trans); 5140 5141 cur_trans->state =TRANS_STATE_COMPLETED; 5142 wake_up(&cur_trans->commit_wait); 5143 } 5144 5145 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5146 { 5147 struct btrfs_transaction *t; 5148 5149 mutex_lock(&fs_info->transaction_kthread_mutex); 5150 5151 spin_lock(&fs_info->trans_lock); 5152 while (!list_empty(&fs_info->trans_list)) { 5153 t = list_first_entry(&fs_info->trans_list, 5154 struct btrfs_transaction, list); 5155 if (t->state >= TRANS_STATE_COMMIT_START) { 5156 refcount_inc(&t->use_count); 5157 spin_unlock(&fs_info->trans_lock); 5158 btrfs_wait_for_commit(fs_info, t->transid); 5159 btrfs_put_transaction(t); 5160 spin_lock(&fs_info->trans_lock); 5161 continue; 5162 } 5163 if (t == fs_info->running_transaction) { 5164 t->state = TRANS_STATE_COMMIT_DOING; 5165 spin_unlock(&fs_info->trans_lock); 5166 /* 5167 * We wait for 0 num_writers since we don't hold a trans 5168 * handle open currently for this transaction. 5169 */ 5170 wait_event(t->writer_wait, 5171 atomic_read(&t->num_writers) == 0); 5172 } else { 5173 spin_unlock(&fs_info->trans_lock); 5174 } 5175 btrfs_cleanup_one_transaction(t, fs_info); 5176 5177 spin_lock(&fs_info->trans_lock); 5178 if (t == fs_info->running_transaction) 5179 fs_info->running_transaction = NULL; 5180 list_del_init(&t->list); 5181 spin_unlock(&fs_info->trans_lock); 5182 5183 btrfs_put_transaction(t); 5184 trace_btrfs_transaction_commit(fs_info); 5185 spin_lock(&fs_info->trans_lock); 5186 } 5187 spin_unlock(&fs_info->trans_lock); 5188 btrfs_destroy_all_ordered_extents(fs_info); 5189 btrfs_destroy_delayed_inodes(fs_info); 5190 btrfs_assert_delayed_root_empty(fs_info); 5191 btrfs_destroy_all_delalloc_inodes(fs_info); 5192 btrfs_drop_all_logs(fs_info); 5193 mutex_unlock(&fs_info->transaction_kthread_mutex); 5194 5195 return 0; 5196 } 5197 5198 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5199 { 5200 struct btrfs_path *path; 5201 int ret; 5202 struct extent_buffer *l; 5203 struct btrfs_key search_key; 5204 struct btrfs_key found_key; 5205 int slot; 5206 5207 path = btrfs_alloc_path(); 5208 if (!path) 5209 return -ENOMEM; 5210 5211 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5212 search_key.type = -1; 5213 search_key.offset = (u64)-1; 5214 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5215 if (ret < 0) 5216 goto error; 5217 BUG_ON(ret == 0); /* Corruption */ 5218 if (path->slots[0] > 0) { 5219 slot = path->slots[0] - 1; 5220 l = path->nodes[0]; 5221 btrfs_item_key_to_cpu(l, &found_key, slot); 5222 root->free_objectid = max_t(u64, found_key.objectid + 1, 5223 BTRFS_FIRST_FREE_OBJECTID); 5224 } else { 5225 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5226 } 5227 ret = 0; 5228 error: 5229 btrfs_free_path(path); 5230 return ret; 5231 } 5232 5233 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5234 { 5235 int ret; 5236 mutex_lock(&root->objectid_mutex); 5237 5238 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5239 btrfs_warn(root->fs_info, 5240 "the objectid of root %llu reaches its highest value", 5241 root->root_key.objectid); 5242 ret = -ENOSPC; 5243 goto out; 5244 } 5245 5246 *objectid = root->free_objectid++; 5247 ret = 0; 5248 out: 5249 mutex_unlock(&root->objectid_mutex); 5250 return ret; 5251 } 5252