xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 7b4397386fbdc606eb053bc2a1cfd985aea59916)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 
43 #ifdef CONFIG_X86
44 #include <asm/cpufeature.h>
45 #endif
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static const struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58 				      struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61 					struct extent_io_tree *dirty_pages,
62 					int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64 				       struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
67 
68 /*
69  * btrfs_end_io_wq structs are used to do processing in task context when an IO
70  * is complete.  This is used during reads to verify checksums, and it is used
71  * by writes to insert metadata for new file extents after IO is complete.
72  */
73 struct btrfs_end_io_wq {
74 	struct bio *bio;
75 	bio_end_io_t *end_io;
76 	void *private;
77 	struct btrfs_fs_info *info;
78 	blk_status_t status;
79 	enum btrfs_wq_endio_type metadata;
80 	struct btrfs_work work;
81 };
82 
83 static struct kmem_cache *btrfs_end_io_wq_cache;
84 
85 int __init btrfs_end_io_wq_init(void)
86 {
87 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 					sizeof(struct btrfs_end_io_wq),
89 					0,
90 					SLAB_MEM_SPREAD,
91 					NULL);
92 	if (!btrfs_end_io_wq_cache)
93 		return -ENOMEM;
94 	return 0;
95 }
96 
97 void __cold btrfs_end_io_wq_exit(void)
98 {
99 	kmem_cache_destroy(btrfs_end_io_wq_cache);
100 }
101 
102 /*
103  * async submit bios are used to offload expensive checksumming
104  * onto the worker threads.  They checksum file and metadata bios
105  * just before they are sent down the IO stack.
106  */
107 struct async_submit_bio {
108 	void *private_data;
109 	struct bio *bio;
110 	extent_submit_bio_start_t *submit_bio_start;
111 	int mirror_num;
112 	/*
113 	 * bio_offset is optional, can be used if the pages in the bio
114 	 * can't tell us where in the file the bio should go
115 	 */
116 	u64 bio_offset;
117 	struct btrfs_work work;
118 	blk_status_t status;
119 };
120 
121 /*
122  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
123  * eb, the lockdep key is determined by the btrfs_root it belongs to and
124  * the level the eb occupies in the tree.
125  *
126  * Different roots are used for different purposes and may nest inside each
127  * other and they require separate keysets.  As lockdep keys should be
128  * static, assign keysets according to the purpose of the root as indicated
129  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
130  * roots have separate keysets.
131  *
132  * Lock-nesting across peer nodes is always done with the immediate parent
133  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
134  * subclass to avoid triggering lockdep warning in such cases.
135  *
136  * The key is set by the readpage_end_io_hook after the buffer has passed
137  * csum validation but before the pages are unlocked.  It is also set by
138  * btrfs_init_new_buffer on freshly allocated blocks.
139  *
140  * We also add a check to make sure the highest level of the tree is the
141  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
142  * needs update as well.
143  */
144 #ifdef CONFIG_DEBUG_LOCK_ALLOC
145 # if BTRFS_MAX_LEVEL != 8
146 #  error
147 # endif
148 
149 static struct btrfs_lockdep_keyset {
150 	u64			id;		/* root objectid */
151 	const char		*name_stem;	/* lock name stem */
152 	char			names[BTRFS_MAX_LEVEL + 1][20];
153 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
154 } btrfs_lockdep_keysets[] = {
155 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
156 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
157 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
158 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
159 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
160 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
161 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
162 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
163 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
164 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
165 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
166 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
167 	{ .id = 0,				.name_stem = "tree"	},
168 };
169 
170 void __init btrfs_init_lockdep(void)
171 {
172 	int i, j;
173 
174 	/* initialize lockdep class names */
175 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177 
178 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 			snprintf(ks->names[j], sizeof(ks->names[j]),
180 				 "btrfs-%s-%02d", ks->name_stem, j);
181 	}
182 }
183 
184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 				    int level)
186 {
187 	struct btrfs_lockdep_keyset *ks;
188 
189 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
190 
191 	/* find the matching keyset, id 0 is the default entry */
192 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 		if (ks->id == objectid)
194 			break;
195 
196 	lockdep_set_class_and_name(&eb->lock,
197 				   &ks->keys[level], ks->names[level]);
198 }
199 
200 #endif
201 
202 /*
203  * extents on the btree inode are pretty simple, there's one extent
204  * that covers the entire device
205  */
206 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
207 		struct page *page, size_t pg_offset, u64 start, u64 len,
208 		int create)
209 {
210 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
211 	struct extent_map_tree *em_tree = &inode->extent_tree;
212 	struct extent_map *em;
213 	int ret;
214 
215 	read_lock(&em_tree->lock);
216 	em = lookup_extent_mapping(em_tree, start, len);
217 	if (em) {
218 		em->bdev = fs_info->fs_devices->latest_bdev;
219 		read_unlock(&em_tree->lock);
220 		goto out;
221 	}
222 	read_unlock(&em_tree->lock);
223 
224 	em = alloc_extent_map();
225 	if (!em) {
226 		em = ERR_PTR(-ENOMEM);
227 		goto out;
228 	}
229 	em->start = 0;
230 	em->len = (u64)-1;
231 	em->block_len = (u64)-1;
232 	em->block_start = 0;
233 	em->bdev = fs_info->fs_devices->latest_bdev;
234 
235 	write_lock(&em_tree->lock);
236 	ret = add_extent_mapping(em_tree, em, 0);
237 	if (ret == -EEXIST) {
238 		free_extent_map(em);
239 		em = lookup_extent_mapping(em_tree, start, len);
240 		if (!em)
241 			em = ERR_PTR(-EIO);
242 	} else if (ret) {
243 		free_extent_map(em);
244 		em = ERR_PTR(ret);
245 	}
246 	write_unlock(&em_tree->lock);
247 
248 out:
249 	return em;
250 }
251 
252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
253 {
254 	return crc32c(seed, data, len);
255 }
256 
257 void btrfs_csum_final(u32 crc, u8 *result)
258 {
259 	put_unaligned_le32(~crc, result);
260 }
261 
262 /*
263  * Compute the csum of a btree block and store the result to provided buffer.
264  *
265  * Returns error if the extent buffer cannot be mapped.
266  */
267 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
268 {
269 	unsigned long len;
270 	unsigned long cur_len;
271 	unsigned long offset = BTRFS_CSUM_SIZE;
272 	char *kaddr;
273 	unsigned long map_start;
274 	unsigned long map_len;
275 	int err;
276 	u32 crc = ~(u32)0;
277 
278 	len = buf->len - offset;
279 	while (len > 0) {
280 		/*
281 		 * Note: we don't need to check for the err == 1 case here, as
282 		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
283 		 * and 'min_len = 32' and the currently implemented mapping
284 		 * algorithm we cannot cross a page boundary.
285 		 */
286 		err = map_private_extent_buffer(buf, offset, 32,
287 					&kaddr, &map_start, &map_len);
288 		if (WARN_ON(err))
289 			return err;
290 		cur_len = min(len, map_len - (offset - map_start));
291 		crc = btrfs_csum_data(kaddr + offset - map_start,
292 				      crc, cur_len);
293 		len -= cur_len;
294 		offset += cur_len;
295 	}
296 	memset(result, 0, BTRFS_CSUM_SIZE);
297 
298 	btrfs_csum_final(crc, result);
299 
300 	return 0;
301 }
302 
303 /*
304  * we can't consider a given block up to date unless the transid of the
305  * block matches the transid in the parent node's pointer.  This is how we
306  * detect blocks that either didn't get written at all or got written
307  * in the wrong place.
308  */
309 static int verify_parent_transid(struct extent_io_tree *io_tree,
310 				 struct extent_buffer *eb, u64 parent_transid,
311 				 int atomic)
312 {
313 	struct extent_state *cached_state = NULL;
314 	int ret;
315 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
316 
317 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
318 		return 0;
319 
320 	if (atomic)
321 		return -EAGAIN;
322 
323 	if (need_lock) {
324 		btrfs_tree_read_lock(eb);
325 		btrfs_set_lock_blocking_read(eb);
326 	}
327 
328 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
329 			 &cached_state);
330 	if (extent_buffer_uptodate(eb) &&
331 	    btrfs_header_generation(eb) == parent_transid) {
332 		ret = 0;
333 		goto out;
334 	}
335 	btrfs_err_rl(eb->fs_info,
336 		"parent transid verify failed on %llu wanted %llu found %llu",
337 			eb->start,
338 			parent_transid, btrfs_header_generation(eb));
339 	ret = 1;
340 
341 	/*
342 	 * Things reading via commit roots that don't have normal protection,
343 	 * like send, can have a really old block in cache that may point at a
344 	 * block that has been freed and re-allocated.  So don't clear uptodate
345 	 * if we find an eb that is under IO (dirty/writeback) because we could
346 	 * end up reading in the stale data and then writing it back out and
347 	 * making everybody very sad.
348 	 */
349 	if (!extent_buffer_under_io(eb))
350 		clear_extent_buffer_uptodate(eb);
351 out:
352 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 			     &cached_state);
354 	if (need_lock)
355 		btrfs_tree_read_unlock_blocking(eb);
356 	return ret;
357 }
358 
359 /*
360  * Return 0 if the superblock checksum type matches the checksum value of that
361  * algorithm. Pass the raw disk superblock data.
362  */
363 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
364 				  char *raw_disk_sb)
365 {
366 	struct btrfs_super_block *disk_sb =
367 		(struct btrfs_super_block *)raw_disk_sb;
368 	u16 csum_type = btrfs_super_csum_type(disk_sb);
369 	int ret = 0;
370 
371 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
372 		u32 crc = ~(u32)0;
373 		char result[sizeof(crc)];
374 
375 		/*
376 		 * The super_block structure does not span the whole
377 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 		 * is filled with zeros and is included in the checksum.
379 		 */
380 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 		btrfs_csum_final(crc, result);
383 
384 		if (memcmp(raw_disk_sb, result, sizeof(result)))
385 			ret = 1;
386 	}
387 
388 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
389 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
390 				csum_type);
391 		ret = 1;
392 	}
393 
394 	return ret;
395 }
396 
397 static int verify_level_key(struct btrfs_fs_info *fs_info,
398 			    struct extent_buffer *eb, int level,
399 			    struct btrfs_key *first_key, u64 parent_transid)
400 {
401 	int found_level;
402 	struct btrfs_key found_key;
403 	int ret;
404 
405 	found_level = btrfs_header_level(eb);
406 	if (found_level != level) {
407 #ifdef CONFIG_BTRFS_DEBUG
408 		WARN_ON(1);
409 		btrfs_err(fs_info,
410 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
411 			  eb->start, level, found_level);
412 #endif
413 		return -EIO;
414 	}
415 
416 	if (!first_key)
417 		return 0;
418 
419 	/*
420 	 * For live tree block (new tree blocks in current transaction),
421 	 * we need proper lock context to avoid race, which is impossible here.
422 	 * So we only checks tree blocks which is read from disk, whose
423 	 * generation <= fs_info->last_trans_committed.
424 	 */
425 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
426 		return 0;
427 	if (found_level)
428 		btrfs_node_key_to_cpu(eb, &found_key, 0);
429 	else
430 		btrfs_item_key_to_cpu(eb, &found_key, 0);
431 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
432 
433 #ifdef CONFIG_BTRFS_DEBUG
434 	if (ret) {
435 		WARN_ON(1);
436 		btrfs_err(fs_info,
437 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438 			  eb->start, parent_transid, first_key->objectid,
439 			  first_key->type, first_key->offset,
440 			  found_key.objectid, found_key.type,
441 			  found_key.offset);
442 	}
443 #endif
444 	return ret;
445 }
446 
447 /*
448  * helper to read a given tree block, doing retries as required when
449  * the checksums don't match and we have alternate mirrors to try.
450  *
451  * @parent_transid:	expected transid, skip check if 0
452  * @level:		expected level, mandatory check
453  * @first_key:		expected key of first slot, skip check if NULL
454  */
455 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
456 					  struct extent_buffer *eb,
457 					  u64 parent_transid, int level,
458 					  struct btrfs_key *first_key)
459 {
460 	struct extent_io_tree *io_tree;
461 	int failed = 0;
462 	int ret;
463 	int num_copies = 0;
464 	int mirror_num = 0;
465 	int failed_mirror = 0;
466 
467 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
468 	while (1) {
469 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
470 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
471 					       mirror_num);
472 		if (!ret) {
473 			if (verify_parent_transid(io_tree, eb,
474 						   parent_transid, 0))
475 				ret = -EIO;
476 			else if (verify_level_key(fs_info, eb, level,
477 						  first_key, parent_transid))
478 				ret = -EUCLEAN;
479 			else
480 				break;
481 		}
482 
483 		num_copies = btrfs_num_copies(fs_info,
484 					      eb->start, eb->len);
485 		if (num_copies == 1)
486 			break;
487 
488 		if (!failed_mirror) {
489 			failed = 1;
490 			failed_mirror = eb->read_mirror;
491 		}
492 
493 		mirror_num++;
494 		if (mirror_num == failed_mirror)
495 			mirror_num++;
496 
497 		if (mirror_num > num_copies)
498 			break;
499 	}
500 
501 	if (failed && !ret && failed_mirror)
502 		repair_eb_io_failure(fs_info, eb, failed_mirror);
503 
504 	return ret;
505 }
506 
507 /*
508  * checksum a dirty tree block before IO.  This has extra checks to make sure
509  * we only fill in the checksum field in the first page of a multi-page block
510  */
511 
512 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
513 {
514 	u64 start = page_offset(page);
515 	u64 found_start;
516 	u8 result[BTRFS_CSUM_SIZE];
517 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
518 	struct extent_buffer *eb;
519 
520 	eb = (struct extent_buffer *)page->private;
521 	if (page != eb->pages[0])
522 		return 0;
523 
524 	found_start = btrfs_header_bytenr(eb);
525 	/*
526 	 * Please do not consolidate these warnings into a single if.
527 	 * It is useful to know what went wrong.
528 	 */
529 	if (WARN_ON(found_start != start))
530 		return -EUCLEAN;
531 	if (WARN_ON(!PageUptodate(page)))
532 		return -EUCLEAN;
533 
534 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
535 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
536 
537 	if (csum_tree_block(eb, result))
538 		return -EINVAL;
539 
540 	write_extent_buffer(eb, result, 0, csum_size);
541 	return 0;
542 }
543 
544 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
545 				 struct extent_buffer *eb)
546 {
547 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
548 	u8 fsid[BTRFS_FSID_SIZE];
549 	int ret = 1;
550 
551 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
552 	while (fs_devices) {
553 		u8 *metadata_uuid;
554 
555 		/*
556 		 * Checking the incompat flag is only valid for the current
557 		 * fs. For seed devices it's forbidden to have their uuid
558 		 * changed so reading ->fsid in this case is fine
559 		 */
560 		if (fs_devices == fs_info->fs_devices &&
561 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
562 			metadata_uuid = fs_devices->metadata_uuid;
563 		else
564 			metadata_uuid = fs_devices->fsid;
565 
566 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
567 			ret = 0;
568 			break;
569 		}
570 		fs_devices = fs_devices->seed;
571 	}
572 	return ret;
573 }
574 
575 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
576 				      u64 phy_offset, struct page *page,
577 				      u64 start, u64 end, int mirror)
578 {
579 	u64 found_start;
580 	int found_level;
581 	struct extent_buffer *eb;
582 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
583 	struct btrfs_fs_info *fs_info = root->fs_info;
584 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
585 	int ret = 0;
586 	u8 result[BTRFS_CSUM_SIZE];
587 	int reads_done;
588 
589 	if (!page->private)
590 		goto out;
591 
592 	eb = (struct extent_buffer *)page->private;
593 
594 	/* the pending IO might have been the only thing that kept this buffer
595 	 * in memory.  Make sure we have a ref for all this other checks
596 	 */
597 	extent_buffer_get(eb);
598 
599 	reads_done = atomic_dec_and_test(&eb->io_pages);
600 	if (!reads_done)
601 		goto err;
602 
603 	eb->read_mirror = mirror;
604 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
605 		ret = -EIO;
606 		goto err;
607 	}
608 
609 	found_start = btrfs_header_bytenr(eb);
610 	if (found_start != eb->start) {
611 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
612 			     eb->start, found_start);
613 		ret = -EIO;
614 		goto err;
615 	}
616 	if (check_tree_block_fsid(fs_info, eb)) {
617 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
618 			     eb->start);
619 		ret = -EIO;
620 		goto err;
621 	}
622 	found_level = btrfs_header_level(eb);
623 	if (found_level >= BTRFS_MAX_LEVEL) {
624 		btrfs_err(fs_info, "bad tree block level %d on %llu",
625 			  (int)btrfs_header_level(eb), eb->start);
626 		ret = -EIO;
627 		goto err;
628 	}
629 
630 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
631 				       eb, found_level);
632 
633 	ret = csum_tree_block(eb, result);
634 	if (ret)
635 		goto err;
636 
637 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
638 		u32 val;
639 		u32 found = 0;
640 
641 		memcpy(&found, result, csum_size);
642 
643 		read_extent_buffer(eb, &val, 0, csum_size);
644 		btrfs_warn_rl(fs_info,
645 		"%s checksum verify failed on %llu wanted %x found %x level %d",
646 			      fs_info->sb->s_id, eb->start,
647 			      val, found, btrfs_header_level(eb));
648 		ret = -EUCLEAN;
649 		goto err;
650 	}
651 
652 	/*
653 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
654 	 * that we don't try and read the other copies of this block, just
655 	 * return -EIO.
656 	 */
657 	if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
658 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
659 		ret = -EIO;
660 	}
661 
662 	if (found_level > 0 && btrfs_check_node(fs_info, eb))
663 		ret = -EIO;
664 
665 	if (!ret)
666 		set_extent_buffer_uptodate(eb);
667 err:
668 	if (reads_done &&
669 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670 		btree_readahead_hook(eb, ret);
671 
672 	if (ret) {
673 		/*
674 		 * our io error hook is going to dec the io pages
675 		 * again, we have to make sure it has something
676 		 * to decrement
677 		 */
678 		atomic_inc(&eb->io_pages);
679 		clear_extent_buffer_uptodate(eb);
680 	}
681 	free_extent_buffer(eb);
682 out:
683 	return ret;
684 }
685 
686 static void end_workqueue_bio(struct bio *bio)
687 {
688 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
689 	struct btrfs_fs_info *fs_info;
690 	struct btrfs_workqueue *wq;
691 	btrfs_work_func_t func;
692 
693 	fs_info = end_io_wq->info;
694 	end_io_wq->status = bio->bi_status;
695 
696 	if (bio_op(bio) == REQ_OP_WRITE) {
697 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
698 			wq = fs_info->endio_meta_write_workers;
699 			func = btrfs_endio_meta_write_helper;
700 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
701 			wq = fs_info->endio_freespace_worker;
702 			func = btrfs_freespace_write_helper;
703 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
704 			wq = fs_info->endio_raid56_workers;
705 			func = btrfs_endio_raid56_helper;
706 		} else {
707 			wq = fs_info->endio_write_workers;
708 			func = btrfs_endio_write_helper;
709 		}
710 	} else {
711 		if (unlikely(end_io_wq->metadata ==
712 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
713 			wq = fs_info->endio_repair_workers;
714 			func = btrfs_endio_repair_helper;
715 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
716 			wq = fs_info->endio_raid56_workers;
717 			func = btrfs_endio_raid56_helper;
718 		} else if (end_io_wq->metadata) {
719 			wq = fs_info->endio_meta_workers;
720 			func = btrfs_endio_meta_helper;
721 		} else {
722 			wq = fs_info->endio_workers;
723 			func = btrfs_endio_helper;
724 		}
725 	}
726 
727 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
728 	btrfs_queue_work(wq, &end_io_wq->work);
729 }
730 
731 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
732 			enum btrfs_wq_endio_type metadata)
733 {
734 	struct btrfs_end_io_wq *end_io_wq;
735 
736 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
737 	if (!end_io_wq)
738 		return BLK_STS_RESOURCE;
739 
740 	end_io_wq->private = bio->bi_private;
741 	end_io_wq->end_io = bio->bi_end_io;
742 	end_io_wq->info = info;
743 	end_io_wq->status = 0;
744 	end_io_wq->bio = bio;
745 	end_io_wq->metadata = metadata;
746 
747 	bio->bi_private = end_io_wq;
748 	bio->bi_end_io = end_workqueue_bio;
749 	return 0;
750 }
751 
752 static void run_one_async_start(struct btrfs_work *work)
753 {
754 	struct async_submit_bio *async;
755 	blk_status_t ret;
756 
757 	async = container_of(work, struct  async_submit_bio, work);
758 	ret = async->submit_bio_start(async->private_data, async->bio,
759 				      async->bio_offset);
760 	if (ret)
761 		async->status = ret;
762 }
763 
764 /*
765  * In order to insert checksums into the metadata in large chunks, we wait
766  * until bio submission time.   All the pages in the bio are checksummed and
767  * sums are attached onto the ordered extent record.
768  *
769  * At IO completion time the csums attached on the ordered extent record are
770  * inserted into the tree.
771  */
772 static void run_one_async_done(struct btrfs_work *work)
773 {
774 	struct async_submit_bio *async;
775 	struct inode *inode;
776 	blk_status_t ret;
777 
778 	async = container_of(work, struct  async_submit_bio, work);
779 	inode = async->private_data;
780 
781 	/* If an error occurred we just want to clean up the bio and move on */
782 	if (async->status) {
783 		async->bio->bi_status = async->status;
784 		bio_endio(async->bio);
785 		return;
786 	}
787 
788 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
789 			async->mirror_num, 1);
790 	if (ret) {
791 		async->bio->bi_status = ret;
792 		bio_endio(async->bio);
793 	}
794 }
795 
796 static void run_one_async_free(struct btrfs_work *work)
797 {
798 	struct async_submit_bio *async;
799 
800 	async = container_of(work, struct  async_submit_bio, work);
801 	kfree(async);
802 }
803 
804 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
805 				 int mirror_num, unsigned long bio_flags,
806 				 u64 bio_offset, void *private_data,
807 				 extent_submit_bio_start_t *submit_bio_start)
808 {
809 	struct async_submit_bio *async;
810 
811 	async = kmalloc(sizeof(*async), GFP_NOFS);
812 	if (!async)
813 		return BLK_STS_RESOURCE;
814 
815 	async->private_data = private_data;
816 	async->bio = bio;
817 	async->mirror_num = mirror_num;
818 	async->submit_bio_start = submit_bio_start;
819 
820 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
821 			run_one_async_done, run_one_async_free);
822 
823 	async->bio_offset = bio_offset;
824 
825 	async->status = 0;
826 
827 	if (op_is_sync(bio->bi_opf))
828 		btrfs_set_work_high_priority(&async->work);
829 
830 	btrfs_queue_work(fs_info->workers, &async->work);
831 	return 0;
832 }
833 
834 static blk_status_t btree_csum_one_bio(struct bio *bio)
835 {
836 	struct bio_vec *bvec;
837 	struct btrfs_root *root;
838 	int i, ret = 0;
839 	struct bvec_iter_all iter_all;
840 
841 	ASSERT(!bio_flagged(bio, BIO_CLONED));
842 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
843 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
844 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
845 		if (ret)
846 			break;
847 	}
848 
849 	return errno_to_blk_status(ret);
850 }
851 
852 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
853 					     u64 bio_offset)
854 {
855 	/*
856 	 * when we're called for a write, we're already in the async
857 	 * submission context.  Just jump into btrfs_map_bio
858 	 */
859 	return btree_csum_one_bio(bio);
860 }
861 
862 static int check_async_write(struct btrfs_inode *bi)
863 {
864 	if (atomic_read(&bi->sync_writers))
865 		return 0;
866 #ifdef CONFIG_X86
867 	if (static_cpu_has(X86_FEATURE_XMM4_2))
868 		return 0;
869 #endif
870 	return 1;
871 }
872 
873 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
874 					  int mirror_num, unsigned long bio_flags,
875 					  u64 bio_offset)
876 {
877 	struct inode *inode = private_data;
878 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
879 	int async = check_async_write(BTRFS_I(inode));
880 	blk_status_t ret;
881 
882 	if (bio_op(bio) != REQ_OP_WRITE) {
883 		/*
884 		 * called for a read, do the setup so that checksum validation
885 		 * can happen in the async kernel threads
886 		 */
887 		ret = btrfs_bio_wq_end_io(fs_info, bio,
888 					  BTRFS_WQ_ENDIO_METADATA);
889 		if (ret)
890 			goto out_w_error;
891 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
892 	} else if (!async) {
893 		ret = btree_csum_one_bio(bio);
894 		if (ret)
895 			goto out_w_error;
896 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
897 	} else {
898 		/*
899 		 * kthread helpers are used to submit writes so that
900 		 * checksumming can happen in parallel across all CPUs
901 		 */
902 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
903 					  bio_offset, private_data,
904 					  btree_submit_bio_start);
905 	}
906 
907 	if (ret)
908 		goto out_w_error;
909 	return 0;
910 
911 out_w_error:
912 	bio->bi_status = ret;
913 	bio_endio(bio);
914 	return ret;
915 }
916 
917 #ifdef CONFIG_MIGRATION
918 static int btree_migratepage(struct address_space *mapping,
919 			struct page *newpage, struct page *page,
920 			enum migrate_mode mode)
921 {
922 	/*
923 	 * we can't safely write a btree page from here,
924 	 * we haven't done the locking hook
925 	 */
926 	if (PageDirty(page))
927 		return -EAGAIN;
928 	/*
929 	 * Buffers may be managed in a filesystem specific way.
930 	 * We must have no buffers or drop them.
931 	 */
932 	if (page_has_private(page) &&
933 	    !try_to_release_page(page, GFP_KERNEL))
934 		return -EAGAIN;
935 	return migrate_page(mapping, newpage, page, mode);
936 }
937 #endif
938 
939 
940 static int btree_writepages(struct address_space *mapping,
941 			    struct writeback_control *wbc)
942 {
943 	struct btrfs_fs_info *fs_info;
944 	int ret;
945 
946 	if (wbc->sync_mode == WB_SYNC_NONE) {
947 
948 		if (wbc->for_kupdate)
949 			return 0;
950 
951 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
952 		/* this is a bit racy, but that's ok */
953 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
954 					     BTRFS_DIRTY_METADATA_THRESH,
955 					     fs_info->dirty_metadata_batch);
956 		if (ret < 0)
957 			return 0;
958 	}
959 	return btree_write_cache_pages(mapping, wbc);
960 }
961 
962 static int btree_readpage(struct file *file, struct page *page)
963 {
964 	struct extent_io_tree *tree;
965 	tree = &BTRFS_I(page->mapping->host)->io_tree;
966 	return extent_read_full_page(tree, page, btree_get_extent, 0);
967 }
968 
969 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
970 {
971 	if (PageWriteback(page) || PageDirty(page))
972 		return 0;
973 
974 	return try_release_extent_buffer(page);
975 }
976 
977 static void btree_invalidatepage(struct page *page, unsigned int offset,
978 				 unsigned int length)
979 {
980 	struct extent_io_tree *tree;
981 	tree = &BTRFS_I(page->mapping->host)->io_tree;
982 	extent_invalidatepage(tree, page, offset);
983 	btree_releasepage(page, GFP_NOFS);
984 	if (PagePrivate(page)) {
985 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
986 			   "page private not zero on page %llu",
987 			   (unsigned long long)page_offset(page));
988 		ClearPagePrivate(page);
989 		set_page_private(page, 0);
990 		put_page(page);
991 	}
992 }
993 
994 static int btree_set_page_dirty(struct page *page)
995 {
996 #ifdef DEBUG
997 	struct extent_buffer *eb;
998 
999 	BUG_ON(!PagePrivate(page));
1000 	eb = (struct extent_buffer *)page->private;
1001 	BUG_ON(!eb);
1002 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1003 	BUG_ON(!atomic_read(&eb->refs));
1004 	btrfs_assert_tree_locked(eb);
1005 #endif
1006 	return __set_page_dirty_nobuffers(page);
1007 }
1008 
1009 static const struct address_space_operations btree_aops = {
1010 	.readpage	= btree_readpage,
1011 	.writepages	= btree_writepages,
1012 	.releasepage	= btree_releasepage,
1013 	.invalidatepage = btree_invalidatepage,
1014 #ifdef CONFIG_MIGRATION
1015 	.migratepage	= btree_migratepage,
1016 #endif
1017 	.set_page_dirty = btree_set_page_dirty,
1018 };
1019 
1020 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1021 {
1022 	struct extent_buffer *buf = NULL;
1023 	struct inode *btree_inode = fs_info->btree_inode;
1024 
1025 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1026 	if (IS_ERR(buf))
1027 		return;
1028 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1029 				 buf, WAIT_NONE, 0);
1030 	free_extent_buffer(buf);
1031 }
1032 
1033 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1034 			 int mirror_num, struct extent_buffer **eb)
1035 {
1036 	struct extent_buffer *buf = NULL;
1037 	struct inode *btree_inode = fs_info->btree_inode;
1038 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1039 	int ret;
1040 
1041 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1042 	if (IS_ERR(buf))
1043 		return 0;
1044 
1045 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1046 
1047 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1048 				       mirror_num);
1049 	if (ret) {
1050 		free_extent_buffer(buf);
1051 		return ret;
1052 	}
1053 
1054 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1055 		free_extent_buffer(buf);
1056 		return -EIO;
1057 	} else if (extent_buffer_uptodate(buf)) {
1058 		*eb = buf;
1059 	} else {
1060 		free_extent_buffer(buf);
1061 	}
1062 	return 0;
1063 }
1064 
1065 struct extent_buffer *btrfs_find_create_tree_block(
1066 						struct btrfs_fs_info *fs_info,
1067 						u64 bytenr)
1068 {
1069 	if (btrfs_is_testing(fs_info))
1070 		return alloc_test_extent_buffer(fs_info, bytenr);
1071 	return alloc_extent_buffer(fs_info, bytenr);
1072 }
1073 
1074 
1075 int btrfs_write_tree_block(struct extent_buffer *buf)
1076 {
1077 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078 					buf->start + buf->len - 1);
1079 }
1080 
1081 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082 {
1083 	filemap_fdatawait_range(buf->pages[0]->mapping,
1084 			        buf->start, buf->start + buf->len - 1);
1085 }
1086 
1087 /*
1088  * Read tree block at logical address @bytenr and do variant basic but critical
1089  * verification.
1090  *
1091  * @parent_transid:	expected transid of this tree block, skip check if 0
1092  * @level:		expected level, mandatory check
1093  * @first_key:		expected key in slot 0, skip check if NULL
1094  */
1095 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1096 				      u64 parent_transid, int level,
1097 				      struct btrfs_key *first_key)
1098 {
1099 	struct extent_buffer *buf = NULL;
1100 	int ret;
1101 
1102 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1103 	if (IS_ERR(buf))
1104 		return buf;
1105 
1106 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1107 					     level, first_key);
1108 	if (ret) {
1109 		free_extent_buffer(buf);
1110 		return ERR_PTR(ret);
1111 	}
1112 	return buf;
1113 
1114 }
1115 
1116 void clean_tree_block(struct btrfs_fs_info *fs_info,
1117 		      struct extent_buffer *buf)
1118 {
1119 	if (btrfs_header_generation(buf) ==
1120 	    fs_info->running_transaction->transid) {
1121 		btrfs_assert_tree_locked(buf);
1122 
1123 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1124 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1125 						 -buf->len,
1126 						 fs_info->dirty_metadata_batch);
1127 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1128 			btrfs_set_lock_blocking_write(buf);
1129 			clear_extent_buffer_dirty(buf);
1130 		}
1131 	}
1132 }
1133 
1134 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1135 {
1136 	struct btrfs_subvolume_writers *writers;
1137 	int ret;
1138 
1139 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1140 	if (!writers)
1141 		return ERR_PTR(-ENOMEM);
1142 
1143 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1144 	if (ret < 0) {
1145 		kfree(writers);
1146 		return ERR_PTR(ret);
1147 	}
1148 
1149 	init_waitqueue_head(&writers->wait);
1150 	return writers;
1151 }
1152 
1153 static void
1154 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1155 {
1156 	percpu_counter_destroy(&writers->counter);
1157 	kfree(writers);
1158 }
1159 
1160 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1161 			 u64 objectid)
1162 {
1163 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1164 	root->node = NULL;
1165 	root->commit_root = NULL;
1166 	root->state = 0;
1167 	root->orphan_cleanup_state = 0;
1168 
1169 	root->last_trans = 0;
1170 	root->highest_objectid = 0;
1171 	root->nr_delalloc_inodes = 0;
1172 	root->nr_ordered_extents = 0;
1173 	root->inode_tree = RB_ROOT;
1174 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1175 	root->block_rsv = NULL;
1176 
1177 	INIT_LIST_HEAD(&root->dirty_list);
1178 	INIT_LIST_HEAD(&root->root_list);
1179 	INIT_LIST_HEAD(&root->delalloc_inodes);
1180 	INIT_LIST_HEAD(&root->delalloc_root);
1181 	INIT_LIST_HEAD(&root->ordered_extents);
1182 	INIT_LIST_HEAD(&root->ordered_root);
1183 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1184 	INIT_LIST_HEAD(&root->logged_list[0]);
1185 	INIT_LIST_HEAD(&root->logged_list[1]);
1186 	spin_lock_init(&root->inode_lock);
1187 	spin_lock_init(&root->delalloc_lock);
1188 	spin_lock_init(&root->ordered_extent_lock);
1189 	spin_lock_init(&root->accounting_lock);
1190 	spin_lock_init(&root->log_extents_lock[0]);
1191 	spin_lock_init(&root->log_extents_lock[1]);
1192 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1193 	mutex_init(&root->objectid_mutex);
1194 	mutex_init(&root->log_mutex);
1195 	mutex_init(&root->ordered_extent_mutex);
1196 	mutex_init(&root->delalloc_mutex);
1197 	init_waitqueue_head(&root->log_writer_wait);
1198 	init_waitqueue_head(&root->log_commit_wait[0]);
1199 	init_waitqueue_head(&root->log_commit_wait[1]);
1200 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1201 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1202 	atomic_set(&root->log_commit[0], 0);
1203 	atomic_set(&root->log_commit[1], 0);
1204 	atomic_set(&root->log_writers, 0);
1205 	atomic_set(&root->log_batch, 0);
1206 	refcount_set(&root->refs, 1);
1207 	atomic_set(&root->will_be_snapshotted, 0);
1208 	atomic_set(&root->snapshot_force_cow, 0);
1209 	atomic_set(&root->nr_swapfiles, 0);
1210 	root->log_transid = 0;
1211 	root->log_transid_committed = -1;
1212 	root->last_log_commit = 0;
1213 	if (!dummy)
1214 		extent_io_tree_init(fs_info, &root->dirty_log_pages, NULL);
1215 
1216 	memset(&root->root_key, 0, sizeof(root->root_key));
1217 	memset(&root->root_item, 0, sizeof(root->root_item));
1218 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1219 	if (!dummy)
1220 		root->defrag_trans_start = fs_info->generation;
1221 	else
1222 		root->defrag_trans_start = 0;
1223 	root->root_key.objectid = objectid;
1224 	root->anon_dev = 0;
1225 
1226 	spin_lock_init(&root->root_item_lock);
1227 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1228 }
1229 
1230 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1231 		gfp_t flags)
1232 {
1233 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1234 	if (root)
1235 		root->fs_info = fs_info;
1236 	return root;
1237 }
1238 
1239 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240 /* Should only be used by the testing infrastructure */
1241 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1242 {
1243 	struct btrfs_root *root;
1244 
1245 	if (!fs_info)
1246 		return ERR_PTR(-EINVAL);
1247 
1248 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1249 	if (!root)
1250 		return ERR_PTR(-ENOMEM);
1251 
1252 	/* We don't use the stripesize in selftest, set it as sectorsize */
1253 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1254 	root->alloc_bytenr = 0;
1255 
1256 	return root;
1257 }
1258 #endif
1259 
1260 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1261 				     struct btrfs_fs_info *fs_info,
1262 				     u64 objectid)
1263 {
1264 	struct extent_buffer *leaf;
1265 	struct btrfs_root *tree_root = fs_info->tree_root;
1266 	struct btrfs_root *root;
1267 	struct btrfs_key key;
1268 	unsigned int nofs_flag;
1269 	int ret = 0;
1270 	uuid_le uuid = NULL_UUID_LE;
1271 
1272 	/*
1273 	 * We're holding a transaction handle, so use a NOFS memory allocation
1274 	 * context to avoid deadlock if reclaim happens.
1275 	 */
1276 	nofs_flag = memalloc_nofs_save();
1277 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1278 	memalloc_nofs_restore(nofs_flag);
1279 	if (!root)
1280 		return ERR_PTR(-ENOMEM);
1281 
1282 	__setup_root(root, fs_info, objectid);
1283 	root->root_key.objectid = objectid;
1284 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1285 	root->root_key.offset = 0;
1286 
1287 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1288 	if (IS_ERR(leaf)) {
1289 		ret = PTR_ERR(leaf);
1290 		leaf = NULL;
1291 		goto fail;
1292 	}
1293 
1294 	root->node = leaf;
1295 	btrfs_mark_buffer_dirty(leaf);
1296 
1297 	root->commit_root = btrfs_root_node(root);
1298 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1299 
1300 	root->root_item.flags = 0;
1301 	root->root_item.byte_limit = 0;
1302 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303 	btrfs_set_root_generation(&root->root_item, trans->transid);
1304 	btrfs_set_root_level(&root->root_item, 0);
1305 	btrfs_set_root_refs(&root->root_item, 1);
1306 	btrfs_set_root_used(&root->root_item, leaf->len);
1307 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1308 	btrfs_set_root_dirid(&root->root_item, 0);
1309 	if (is_fstree(objectid))
1310 		uuid_le_gen(&uuid);
1311 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1312 	root->root_item.drop_level = 0;
1313 
1314 	key.objectid = objectid;
1315 	key.type = BTRFS_ROOT_ITEM_KEY;
1316 	key.offset = 0;
1317 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1318 	if (ret)
1319 		goto fail;
1320 
1321 	btrfs_tree_unlock(leaf);
1322 
1323 	return root;
1324 
1325 fail:
1326 	if (leaf) {
1327 		btrfs_tree_unlock(leaf);
1328 		free_extent_buffer(root->commit_root);
1329 		free_extent_buffer(leaf);
1330 	}
1331 	kfree(root);
1332 
1333 	return ERR_PTR(ret);
1334 }
1335 
1336 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1337 					 struct btrfs_fs_info *fs_info)
1338 {
1339 	struct btrfs_root *root;
1340 	struct extent_buffer *leaf;
1341 
1342 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1343 	if (!root)
1344 		return ERR_PTR(-ENOMEM);
1345 
1346 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1347 
1348 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1349 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1350 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1351 
1352 	/*
1353 	 * DON'T set REF_COWS for log trees
1354 	 *
1355 	 * log trees do not get reference counted because they go away
1356 	 * before a real commit is actually done.  They do store pointers
1357 	 * to file data extents, and those reference counts still get
1358 	 * updated (along with back refs to the log tree).
1359 	 */
1360 
1361 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1362 			NULL, 0, 0, 0);
1363 	if (IS_ERR(leaf)) {
1364 		kfree(root);
1365 		return ERR_CAST(leaf);
1366 	}
1367 
1368 	root->node = leaf;
1369 
1370 	btrfs_mark_buffer_dirty(root->node);
1371 	btrfs_tree_unlock(root->node);
1372 	return root;
1373 }
1374 
1375 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1376 			     struct btrfs_fs_info *fs_info)
1377 {
1378 	struct btrfs_root *log_root;
1379 
1380 	log_root = alloc_log_tree(trans, fs_info);
1381 	if (IS_ERR(log_root))
1382 		return PTR_ERR(log_root);
1383 	WARN_ON(fs_info->log_root_tree);
1384 	fs_info->log_root_tree = log_root;
1385 	return 0;
1386 }
1387 
1388 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1389 		       struct btrfs_root *root)
1390 {
1391 	struct btrfs_fs_info *fs_info = root->fs_info;
1392 	struct btrfs_root *log_root;
1393 	struct btrfs_inode_item *inode_item;
1394 
1395 	log_root = alloc_log_tree(trans, fs_info);
1396 	if (IS_ERR(log_root))
1397 		return PTR_ERR(log_root);
1398 
1399 	log_root->last_trans = trans->transid;
1400 	log_root->root_key.offset = root->root_key.objectid;
1401 
1402 	inode_item = &log_root->root_item.inode;
1403 	btrfs_set_stack_inode_generation(inode_item, 1);
1404 	btrfs_set_stack_inode_size(inode_item, 3);
1405 	btrfs_set_stack_inode_nlink(inode_item, 1);
1406 	btrfs_set_stack_inode_nbytes(inode_item,
1407 				     fs_info->nodesize);
1408 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1409 
1410 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1411 
1412 	WARN_ON(root->log_root);
1413 	root->log_root = log_root;
1414 	root->log_transid = 0;
1415 	root->log_transid_committed = -1;
1416 	root->last_log_commit = 0;
1417 	return 0;
1418 }
1419 
1420 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1421 					       struct btrfs_key *key)
1422 {
1423 	struct btrfs_root *root;
1424 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1425 	struct btrfs_path *path;
1426 	u64 generation;
1427 	int ret;
1428 	int level;
1429 
1430 	path = btrfs_alloc_path();
1431 	if (!path)
1432 		return ERR_PTR(-ENOMEM);
1433 
1434 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1435 	if (!root) {
1436 		ret = -ENOMEM;
1437 		goto alloc_fail;
1438 	}
1439 
1440 	__setup_root(root, fs_info, key->objectid);
1441 
1442 	ret = btrfs_find_root(tree_root, key, path,
1443 			      &root->root_item, &root->root_key);
1444 	if (ret) {
1445 		if (ret > 0)
1446 			ret = -ENOENT;
1447 		goto find_fail;
1448 	}
1449 
1450 	generation = btrfs_root_generation(&root->root_item);
1451 	level = btrfs_root_level(&root->root_item);
1452 	root->node = read_tree_block(fs_info,
1453 				     btrfs_root_bytenr(&root->root_item),
1454 				     generation, level, NULL);
1455 	if (IS_ERR(root->node)) {
1456 		ret = PTR_ERR(root->node);
1457 		goto find_fail;
1458 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1459 		ret = -EIO;
1460 		free_extent_buffer(root->node);
1461 		goto find_fail;
1462 	}
1463 	root->commit_root = btrfs_root_node(root);
1464 out:
1465 	btrfs_free_path(path);
1466 	return root;
1467 
1468 find_fail:
1469 	kfree(root);
1470 alloc_fail:
1471 	root = ERR_PTR(ret);
1472 	goto out;
1473 }
1474 
1475 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1476 				      struct btrfs_key *location)
1477 {
1478 	struct btrfs_root *root;
1479 
1480 	root = btrfs_read_tree_root(tree_root, location);
1481 	if (IS_ERR(root))
1482 		return root;
1483 
1484 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1485 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1486 		btrfs_check_and_init_root_item(&root->root_item);
1487 	}
1488 
1489 	return root;
1490 }
1491 
1492 int btrfs_init_fs_root(struct btrfs_root *root)
1493 {
1494 	int ret;
1495 	struct btrfs_subvolume_writers *writers;
1496 
1497 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1498 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1499 					GFP_NOFS);
1500 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1501 		ret = -ENOMEM;
1502 		goto fail;
1503 	}
1504 
1505 	writers = btrfs_alloc_subvolume_writers();
1506 	if (IS_ERR(writers)) {
1507 		ret = PTR_ERR(writers);
1508 		goto fail;
1509 	}
1510 	root->subv_writers = writers;
1511 
1512 	btrfs_init_free_ino_ctl(root);
1513 	spin_lock_init(&root->ino_cache_lock);
1514 	init_waitqueue_head(&root->ino_cache_wait);
1515 
1516 	ret = get_anon_bdev(&root->anon_dev);
1517 	if (ret)
1518 		goto fail;
1519 
1520 	mutex_lock(&root->objectid_mutex);
1521 	ret = btrfs_find_highest_objectid(root,
1522 					&root->highest_objectid);
1523 	if (ret) {
1524 		mutex_unlock(&root->objectid_mutex);
1525 		goto fail;
1526 	}
1527 
1528 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1529 
1530 	mutex_unlock(&root->objectid_mutex);
1531 
1532 	return 0;
1533 fail:
1534 	/* The caller is responsible to call btrfs_free_fs_root */
1535 	return ret;
1536 }
1537 
1538 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1539 					u64 root_id)
1540 {
1541 	struct btrfs_root *root;
1542 
1543 	spin_lock(&fs_info->fs_roots_radix_lock);
1544 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1545 				 (unsigned long)root_id);
1546 	spin_unlock(&fs_info->fs_roots_radix_lock);
1547 	return root;
1548 }
1549 
1550 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1551 			 struct btrfs_root *root)
1552 {
1553 	int ret;
1554 
1555 	ret = radix_tree_preload(GFP_NOFS);
1556 	if (ret)
1557 		return ret;
1558 
1559 	spin_lock(&fs_info->fs_roots_radix_lock);
1560 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1561 				(unsigned long)root->root_key.objectid,
1562 				root);
1563 	if (ret == 0)
1564 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1565 	spin_unlock(&fs_info->fs_roots_radix_lock);
1566 	radix_tree_preload_end();
1567 
1568 	return ret;
1569 }
1570 
1571 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1572 				     struct btrfs_key *location,
1573 				     bool check_ref)
1574 {
1575 	struct btrfs_root *root;
1576 	struct btrfs_path *path;
1577 	struct btrfs_key key;
1578 	int ret;
1579 
1580 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1581 		return fs_info->tree_root;
1582 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1583 		return fs_info->extent_root;
1584 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1585 		return fs_info->chunk_root;
1586 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1587 		return fs_info->dev_root;
1588 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1589 		return fs_info->csum_root;
1590 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1591 		return fs_info->quota_root ? fs_info->quota_root :
1592 					     ERR_PTR(-ENOENT);
1593 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1594 		return fs_info->uuid_root ? fs_info->uuid_root :
1595 					    ERR_PTR(-ENOENT);
1596 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1597 		return fs_info->free_space_root ? fs_info->free_space_root :
1598 						  ERR_PTR(-ENOENT);
1599 again:
1600 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1601 	if (root) {
1602 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1603 			return ERR_PTR(-ENOENT);
1604 		return root;
1605 	}
1606 
1607 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1608 	if (IS_ERR(root))
1609 		return root;
1610 
1611 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1612 		ret = -ENOENT;
1613 		goto fail;
1614 	}
1615 
1616 	ret = btrfs_init_fs_root(root);
1617 	if (ret)
1618 		goto fail;
1619 
1620 	path = btrfs_alloc_path();
1621 	if (!path) {
1622 		ret = -ENOMEM;
1623 		goto fail;
1624 	}
1625 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1626 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1627 	key.offset = location->objectid;
1628 
1629 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1630 	btrfs_free_path(path);
1631 	if (ret < 0)
1632 		goto fail;
1633 	if (ret == 0)
1634 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1635 
1636 	ret = btrfs_insert_fs_root(fs_info, root);
1637 	if (ret) {
1638 		if (ret == -EEXIST) {
1639 			btrfs_free_fs_root(root);
1640 			goto again;
1641 		}
1642 		goto fail;
1643 	}
1644 	return root;
1645 fail:
1646 	btrfs_free_fs_root(root);
1647 	return ERR_PTR(ret);
1648 }
1649 
1650 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1651 {
1652 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1653 	int ret = 0;
1654 	struct btrfs_device *device;
1655 	struct backing_dev_info *bdi;
1656 
1657 	rcu_read_lock();
1658 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1659 		if (!device->bdev)
1660 			continue;
1661 		bdi = device->bdev->bd_bdi;
1662 		if (bdi_congested(bdi, bdi_bits)) {
1663 			ret = 1;
1664 			break;
1665 		}
1666 	}
1667 	rcu_read_unlock();
1668 	return ret;
1669 }
1670 
1671 /*
1672  * called by the kthread helper functions to finally call the bio end_io
1673  * functions.  This is where read checksum verification actually happens
1674  */
1675 static void end_workqueue_fn(struct btrfs_work *work)
1676 {
1677 	struct bio *bio;
1678 	struct btrfs_end_io_wq *end_io_wq;
1679 
1680 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1681 	bio = end_io_wq->bio;
1682 
1683 	bio->bi_status = end_io_wq->status;
1684 	bio->bi_private = end_io_wq->private;
1685 	bio->bi_end_io = end_io_wq->end_io;
1686 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1687 	bio_endio(bio);
1688 }
1689 
1690 static int cleaner_kthread(void *arg)
1691 {
1692 	struct btrfs_root *root = arg;
1693 	struct btrfs_fs_info *fs_info = root->fs_info;
1694 	int again;
1695 
1696 	while (1) {
1697 		again = 0;
1698 
1699 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1700 
1701 		/* Make the cleaner go to sleep early. */
1702 		if (btrfs_need_cleaner_sleep(fs_info))
1703 			goto sleep;
1704 
1705 		/*
1706 		 * Do not do anything if we might cause open_ctree() to block
1707 		 * before we have finished mounting the filesystem.
1708 		 */
1709 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1710 			goto sleep;
1711 
1712 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1713 			goto sleep;
1714 
1715 		/*
1716 		 * Avoid the problem that we change the status of the fs
1717 		 * during the above check and trylock.
1718 		 */
1719 		if (btrfs_need_cleaner_sleep(fs_info)) {
1720 			mutex_unlock(&fs_info->cleaner_mutex);
1721 			goto sleep;
1722 		}
1723 
1724 		btrfs_run_delayed_iputs(fs_info);
1725 
1726 		again = btrfs_clean_one_deleted_snapshot(root);
1727 		mutex_unlock(&fs_info->cleaner_mutex);
1728 
1729 		/*
1730 		 * The defragger has dealt with the R/O remount and umount,
1731 		 * needn't do anything special here.
1732 		 */
1733 		btrfs_run_defrag_inodes(fs_info);
1734 
1735 		/*
1736 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1737 		 * with relocation (btrfs_relocate_chunk) and relocation
1738 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1739 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1740 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1741 		 * unused block groups.
1742 		 */
1743 		btrfs_delete_unused_bgs(fs_info);
1744 sleep:
1745 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1746 		if (kthread_should_park())
1747 			kthread_parkme();
1748 		if (kthread_should_stop())
1749 			return 0;
1750 		if (!again) {
1751 			set_current_state(TASK_INTERRUPTIBLE);
1752 			schedule();
1753 			__set_current_state(TASK_RUNNING);
1754 		}
1755 	}
1756 }
1757 
1758 static int transaction_kthread(void *arg)
1759 {
1760 	struct btrfs_root *root = arg;
1761 	struct btrfs_fs_info *fs_info = root->fs_info;
1762 	struct btrfs_trans_handle *trans;
1763 	struct btrfs_transaction *cur;
1764 	u64 transid;
1765 	time64_t now;
1766 	unsigned long delay;
1767 	bool cannot_commit;
1768 
1769 	do {
1770 		cannot_commit = false;
1771 		delay = HZ * fs_info->commit_interval;
1772 		mutex_lock(&fs_info->transaction_kthread_mutex);
1773 
1774 		spin_lock(&fs_info->trans_lock);
1775 		cur = fs_info->running_transaction;
1776 		if (!cur) {
1777 			spin_unlock(&fs_info->trans_lock);
1778 			goto sleep;
1779 		}
1780 
1781 		now = ktime_get_seconds();
1782 		if (cur->state < TRANS_STATE_BLOCKED &&
1783 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1784 		    (now < cur->start_time ||
1785 		     now - cur->start_time < fs_info->commit_interval)) {
1786 			spin_unlock(&fs_info->trans_lock);
1787 			delay = HZ * 5;
1788 			goto sleep;
1789 		}
1790 		transid = cur->transid;
1791 		spin_unlock(&fs_info->trans_lock);
1792 
1793 		/* If the file system is aborted, this will always fail. */
1794 		trans = btrfs_attach_transaction(root);
1795 		if (IS_ERR(trans)) {
1796 			if (PTR_ERR(trans) != -ENOENT)
1797 				cannot_commit = true;
1798 			goto sleep;
1799 		}
1800 		if (transid == trans->transid) {
1801 			btrfs_commit_transaction(trans);
1802 		} else {
1803 			btrfs_end_transaction(trans);
1804 		}
1805 sleep:
1806 		wake_up_process(fs_info->cleaner_kthread);
1807 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1808 
1809 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1810 				      &fs_info->fs_state)))
1811 			btrfs_cleanup_transaction(fs_info);
1812 		if (!kthread_should_stop() &&
1813 				(!btrfs_transaction_blocked(fs_info) ||
1814 				 cannot_commit))
1815 			schedule_timeout_interruptible(delay);
1816 	} while (!kthread_should_stop());
1817 	return 0;
1818 }
1819 
1820 /*
1821  * this will find the highest generation in the array of
1822  * root backups.  The index of the highest array is returned,
1823  * or -1 if we can't find anything.
1824  *
1825  * We check to make sure the array is valid by comparing the
1826  * generation of the latest  root in the array with the generation
1827  * in the super block.  If they don't match we pitch it.
1828  */
1829 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1830 {
1831 	u64 cur;
1832 	int newest_index = -1;
1833 	struct btrfs_root_backup *root_backup;
1834 	int i;
1835 
1836 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1837 		root_backup = info->super_copy->super_roots + i;
1838 		cur = btrfs_backup_tree_root_gen(root_backup);
1839 		if (cur == newest_gen)
1840 			newest_index = i;
1841 	}
1842 
1843 	/* check to see if we actually wrapped around */
1844 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1845 		root_backup = info->super_copy->super_roots;
1846 		cur = btrfs_backup_tree_root_gen(root_backup);
1847 		if (cur == newest_gen)
1848 			newest_index = 0;
1849 	}
1850 	return newest_index;
1851 }
1852 
1853 
1854 /*
1855  * find the oldest backup so we know where to store new entries
1856  * in the backup array.  This will set the backup_root_index
1857  * field in the fs_info struct
1858  */
1859 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1860 				     u64 newest_gen)
1861 {
1862 	int newest_index = -1;
1863 
1864 	newest_index = find_newest_super_backup(info, newest_gen);
1865 	/* if there was garbage in there, just move along */
1866 	if (newest_index == -1) {
1867 		info->backup_root_index = 0;
1868 	} else {
1869 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1870 	}
1871 }
1872 
1873 /*
1874  * copy all the root pointers into the super backup array.
1875  * this will bump the backup pointer by one when it is
1876  * done
1877  */
1878 static void backup_super_roots(struct btrfs_fs_info *info)
1879 {
1880 	int next_backup;
1881 	struct btrfs_root_backup *root_backup;
1882 	int last_backup;
1883 
1884 	next_backup = info->backup_root_index;
1885 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1886 		BTRFS_NUM_BACKUP_ROOTS;
1887 
1888 	/*
1889 	 * just overwrite the last backup if we're at the same generation
1890 	 * this happens only at umount
1891 	 */
1892 	root_backup = info->super_for_commit->super_roots + last_backup;
1893 	if (btrfs_backup_tree_root_gen(root_backup) ==
1894 	    btrfs_header_generation(info->tree_root->node))
1895 		next_backup = last_backup;
1896 
1897 	root_backup = info->super_for_commit->super_roots + next_backup;
1898 
1899 	/*
1900 	 * make sure all of our padding and empty slots get zero filled
1901 	 * regardless of which ones we use today
1902 	 */
1903 	memset(root_backup, 0, sizeof(*root_backup));
1904 
1905 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1906 
1907 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1908 	btrfs_set_backup_tree_root_gen(root_backup,
1909 			       btrfs_header_generation(info->tree_root->node));
1910 
1911 	btrfs_set_backup_tree_root_level(root_backup,
1912 			       btrfs_header_level(info->tree_root->node));
1913 
1914 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1915 	btrfs_set_backup_chunk_root_gen(root_backup,
1916 			       btrfs_header_generation(info->chunk_root->node));
1917 	btrfs_set_backup_chunk_root_level(root_backup,
1918 			       btrfs_header_level(info->chunk_root->node));
1919 
1920 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1921 	btrfs_set_backup_extent_root_gen(root_backup,
1922 			       btrfs_header_generation(info->extent_root->node));
1923 	btrfs_set_backup_extent_root_level(root_backup,
1924 			       btrfs_header_level(info->extent_root->node));
1925 
1926 	/*
1927 	 * we might commit during log recovery, which happens before we set
1928 	 * the fs_root.  Make sure it is valid before we fill it in.
1929 	 */
1930 	if (info->fs_root && info->fs_root->node) {
1931 		btrfs_set_backup_fs_root(root_backup,
1932 					 info->fs_root->node->start);
1933 		btrfs_set_backup_fs_root_gen(root_backup,
1934 			       btrfs_header_generation(info->fs_root->node));
1935 		btrfs_set_backup_fs_root_level(root_backup,
1936 			       btrfs_header_level(info->fs_root->node));
1937 	}
1938 
1939 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1940 	btrfs_set_backup_dev_root_gen(root_backup,
1941 			       btrfs_header_generation(info->dev_root->node));
1942 	btrfs_set_backup_dev_root_level(root_backup,
1943 				       btrfs_header_level(info->dev_root->node));
1944 
1945 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1946 	btrfs_set_backup_csum_root_gen(root_backup,
1947 			       btrfs_header_generation(info->csum_root->node));
1948 	btrfs_set_backup_csum_root_level(root_backup,
1949 			       btrfs_header_level(info->csum_root->node));
1950 
1951 	btrfs_set_backup_total_bytes(root_backup,
1952 			     btrfs_super_total_bytes(info->super_copy));
1953 	btrfs_set_backup_bytes_used(root_backup,
1954 			     btrfs_super_bytes_used(info->super_copy));
1955 	btrfs_set_backup_num_devices(root_backup,
1956 			     btrfs_super_num_devices(info->super_copy));
1957 
1958 	/*
1959 	 * if we don't copy this out to the super_copy, it won't get remembered
1960 	 * for the next commit
1961 	 */
1962 	memcpy(&info->super_copy->super_roots,
1963 	       &info->super_for_commit->super_roots,
1964 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1965 }
1966 
1967 /*
1968  * this copies info out of the root backup array and back into
1969  * the in-memory super block.  It is meant to help iterate through
1970  * the array, so you send it the number of backups you've already
1971  * tried and the last backup index you used.
1972  *
1973  * this returns -1 when it has tried all the backups
1974  */
1975 static noinline int next_root_backup(struct btrfs_fs_info *info,
1976 				     struct btrfs_super_block *super,
1977 				     int *num_backups_tried, int *backup_index)
1978 {
1979 	struct btrfs_root_backup *root_backup;
1980 	int newest = *backup_index;
1981 
1982 	if (*num_backups_tried == 0) {
1983 		u64 gen = btrfs_super_generation(super);
1984 
1985 		newest = find_newest_super_backup(info, gen);
1986 		if (newest == -1)
1987 			return -1;
1988 
1989 		*backup_index = newest;
1990 		*num_backups_tried = 1;
1991 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1992 		/* we've tried all the backups, all done */
1993 		return -1;
1994 	} else {
1995 		/* jump to the next oldest backup */
1996 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1997 			BTRFS_NUM_BACKUP_ROOTS;
1998 		*backup_index = newest;
1999 		*num_backups_tried += 1;
2000 	}
2001 	root_backup = super->super_roots + newest;
2002 
2003 	btrfs_set_super_generation(super,
2004 				   btrfs_backup_tree_root_gen(root_backup));
2005 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2006 	btrfs_set_super_root_level(super,
2007 				   btrfs_backup_tree_root_level(root_backup));
2008 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2009 
2010 	/*
2011 	 * fixme: the total bytes and num_devices need to match or we should
2012 	 * need a fsck
2013 	 */
2014 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2015 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2016 	return 0;
2017 }
2018 
2019 /* helper to cleanup workers */
2020 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2021 {
2022 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2023 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2024 	btrfs_destroy_workqueue(fs_info->workers);
2025 	btrfs_destroy_workqueue(fs_info->endio_workers);
2026 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2027 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2028 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2029 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2030 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2031 	btrfs_destroy_workqueue(fs_info->submit_workers);
2032 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2033 	btrfs_destroy_workqueue(fs_info->caching_workers);
2034 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2035 	btrfs_destroy_workqueue(fs_info->flush_workers);
2036 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2037 	btrfs_destroy_workqueue(fs_info->extent_workers);
2038 	/*
2039 	 * Now that all other work queues are destroyed, we can safely destroy
2040 	 * the queues used for metadata I/O, since tasks from those other work
2041 	 * queues can do metadata I/O operations.
2042 	 */
2043 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2044 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2045 }
2046 
2047 static void free_root_extent_buffers(struct btrfs_root *root)
2048 {
2049 	if (root) {
2050 		free_extent_buffer(root->node);
2051 		free_extent_buffer(root->commit_root);
2052 		root->node = NULL;
2053 		root->commit_root = NULL;
2054 	}
2055 }
2056 
2057 /* helper to cleanup tree roots */
2058 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2059 {
2060 	free_root_extent_buffers(info->tree_root);
2061 
2062 	free_root_extent_buffers(info->dev_root);
2063 	free_root_extent_buffers(info->extent_root);
2064 	free_root_extent_buffers(info->csum_root);
2065 	free_root_extent_buffers(info->quota_root);
2066 	free_root_extent_buffers(info->uuid_root);
2067 	if (chunk_root)
2068 		free_root_extent_buffers(info->chunk_root);
2069 	free_root_extent_buffers(info->free_space_root);
2070 }
2071 
2072 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2073 {
2074 	int ret;
2075 	struct btrfs_root *gang[8];
2076 	int i;
2077 
2078 	while (!list_empty(&fs_info->dead_roots)) {
2079 		gang[0] = list_entry(fs_info->dead_roots.next,
2080 				     struct btrfs_root, root_list);
2081 		list_del(&gang[0]->root_list);
2082 
2083 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2084 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2085 		} else {
2086 			free_extent_buffer(gang[0]->node);
2087 			free_extent_buffer(gang[0]->commit_root);
2088 			btrfs_put_fs_root(gang[0]);
2089 		}
2090 	}
2091 
2092 	while (1) {
2093 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094 					     (void **)gang, 0,
2095 					     ARRAY_SIZE(gang));
2096 		if (!ret)
2097 			break;
2098 		for (i = 0; i < ret; i++)
2099 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100 	}
2101 
2102 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2103 		btrfs_free_log_root_tree(NULL, fs_info);
2104 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2105 	}
2106 }
2107 
2108 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2109 {
2110 	mutex_init(&fs_info->scrub_lock);
2111 	atomic_set(&fs_info->scrubs_running, 0);
2112 	atomic_set(&fs_info->scrub_pause_req, 0);
2113 	atomic_set(&fs_info->scrubs_paused, 0);
2114 	atomic_set(&fs_info->scrub_cancel_req, 0);
2115 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2116 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2117 }
2118 
2119 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2120 {
2121 	spin_lock_init(&fs_info->balance_lock);
2122 	mutex_init(&fs_info->balance_mutex);
2123 	atomic_set(&fs_info->balance_pause_req, 0);
2124 	atomic_set(&fs_info->balance_cancel_req, 0);
2125 	fs_info->balance_ctl = NULL;
2126 	init_waitqueue_head(&fs_info->balance_wait_q);
2127 }
2128 
2129 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2130 {
2131 	struct inode *inode = fs_info->btree_inode;
2132 
2133 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2134 	set_nlink(inode, 1);
2135 	/*
2136 	 * we set the i_size on the btree inode to the max possible int.
2137 	 * the real end of the address space is determined by all of
2138 	 * the devices in the system
2139 	 */
2140 	inode->i_size = OFFSET_MAX;
2141 	inode->i_mapping->a_ops = &btree_aops;
2142 
2143 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2144 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, inode);
2145 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2146 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2147 
2148 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2149 
2150 	BTRFS_I(inode)->root = fs_info->tree_root;
2151 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2152 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2153 	btrfs_insert_inode_hash(inode);
2154 }
2155 
2156 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2157 {
2158 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2159 	init_rwsem(&fs_info->dev_replace.rwsem);
2160 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2161 }
2162 
2163 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2164 {
2165 	spin_lock_init(&fs_info->qgroup_lock);
2166 	mutex_init(&fs_info->qgroup_ioctl_lock);
2167 	fs_info->qgroup_tree = RB_ROOT;
2168 	fs_info->qgroup_op_tree = RB_ROOT;
2169 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2170 	fs_info->qgroup_seq = 1;
2171 	fs_info->qgroup_ulist = NULL;
2172 	fs_info->qgroup_rescan_running = false;
2173 	mutex_init(&fs_info->qgroup_rescan_lock);
2174 }
2175 
2176 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2177 		struct btrfs_fs_devices *fs_devices)
2178 {
2179 	u32 max_active = fs_info->thread_pool_size;
2180 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2181 
2182 	fs_info->workers =
2183 		btrfs_alloc_workqueue(fs_info, "worker",
2184 				      flags | WQ_HIGHPRI, max_active, 16);
2185 
2186 	fs_info->delalloc_workers =
2187 		btrfs_alloc_workqueue(fs_info, "delalloc",
2188 				      flags, max_active, 2);
2189 
2190 	fs_info->flush_workers =
2191 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2192 				      flags, max_active, 0);
2193 
2194 	fs_info->caching_workers =
2195 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2196 
2197 	/*
2198 	 * a higher idle thresh on the submit workers makes it much more
2199 	 * likely that bios will be send down in a sane order to the
2200 	 * devices
2201 	 */
2202 	fs_info->submit_workers =
2203 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2204 				      min_t(u64, fs_devices->num_devices,
2205 					    max_active), 64);
2206 
2207 	fs_info->fixup_workers =
2208 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2209 
2210 	/*
2211 	 * endios are largely parallel and should have a very
2212 	 * low idle thresh
2213 	 */
2214 	fs_info->endio_workers =
2215 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2216 	fs_info->endio_meta_workers =
2217 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2218 				      max_active, 4);
2219 	fs_info->endio_meta_write_workers =
2220 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2221 				      max_active, 2);
2222 	fs_info->endio_raid56_workers =
2223 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2224 				      max_active, 4);
2225 	fs_info->endio_repair_workers =
2226 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2227 	fs_info->rmw_workers =
2228 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2229 	fs_info->endio_write_workers =
2230 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2231 				      max_active, 2);
2232 	fs_info->endio_freespace_worker =
2233 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2234 				      max_active, 0);
2235 	fs_info->delayed_workers =
2236 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2237 				      max_active, 0);
2238 	fs_info->readahead_workers =
2239 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2240 				      max_active, 2);
2241 	fs_info->qgroup_rescan_workers =
2242 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2243 	fs_info->extent_workers =
2244 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2245 				      min_t(u64, fs_devices->num_devices,
2246 					    max_active), 8);
2247 
2248 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2249 	      fs_info->submit_workers && fs_info->flush_workers &&
2250 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2251 	      fs_info->endio_meta_write_workers &&
2252 	      fs_info->endio_repair_workers &&
2253 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2254 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2255 	      fs_info->caching_workers && fs_info->readahead_workers &&
2256 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2257 	      fs_info->extent_workers &&
2258 	      fs_info->qgroup_rescan_workers)) {
2259 		return -ENOMEM;
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2266 			    struct btrfs_fs_devices *fs_devices)
2267 {
2268 	int ret;
2269 	struct btrfs_root *log_tree_root;
2270 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2271 	u64 bytenr = btrfs_super_log_root(disk_super);
2272 	int level = btrfs_super_log_root_level(disk_super);
2273 
2274 	if (fs_devices->rw_devices == 0) {
2275 		btrfs_warn(fs_info, "log replay required on RO media");
2276 		return -EIO;
2277 	}
2278 
2279 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2280 	if (!log_tree_root)
2281 		return -ENOMEM;
2282 
2283 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2284 
2285 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2286 					      fs_info->generation + 1,
2287 					      level, NULL);
2288 	if (IS_ERR(log_tree_root->node)) {
2289 		btrfs_warn(fs_info, "failed to read log tree");
2290 		ret = PTR_ERR(log_tree_root->node);
2291 		kfree(log_tree_root);
2292 		return ret;
2293 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2294 		btrfs_err(fs_info, "failed to read log tree");
2295 		free_extent_buffer(log_tree_root->node);
2296 		kfree(log_tree_root);
2297 		return -EIO;
2298 	}
2299 	/* returns with log_tree_root freed on success */
2300 	ret = btrfs_recover_log_trees(log_tree_root);
2301 	if (ret) {
2302 		btrfs_handle_fs_error(fs_info, ret,
2303 				      "Failed to recover log tree");
2304 		free_extent_buffer(log_tree_root->node);
2305 		kfree(log_tree_root);
2306 		return ret;
2307 	}
2308 
2309 	if (sb_rdonly(fs_info->sb)) {
2310 		ret = btrfs_commit_super(fs_info);
2311 		if (ret)
2312 			return ret;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2319 {
2320 	struct btrfs_root *tree_root = fs_info->tree_root;
2321 	struct btrfs_root *root;
2322 	struct btrfs_key location;
2323 	int ret;
2324 
2325 	BUG_ON(!fs_info->tree_root);
2326 
2327 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2328 	location.type = BTRFS_ROOT_ITEM_KEY;
2329 	location.offset = 0;
2330 
2331 	root = btrfs_read_tree_root(tree_root, &location);
2332 	if (IS_ERR(root)) {
2333 		ret = PTR_ERR(root);
2334 		goto out;
2335 	}
2336 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337 	fs_info->extent_root = root;
2338 
2339 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2340 	root = btrfs_read_tree_root(tree_root, &location);
2341 	if (IS_ERR(root)) {
2342 		ret = PTR_ERR(root);
2343 		goto out;
2344 	}
2345 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2346 	fs_info->dev_root = root;
2347 	btrfs_init_devices_late(fs_info);
2348 
2349 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2350 	root = btrfs_read_tree_root(tree_root, &location);
2351 	if (IS_ERR(root)) {
2352 		ret = PTR_ERR(root);
2353 		goto out;
2354 	}
2355 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2356 	fs_info->csum_root = root;
2357 
2358 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2359 	root = btrfs_read_tree_root(tree_root, &location);
2360 	if (!IS_ERR(root)) {
2361 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2363 		fs_info->quota_root = root;
2364 	}
2365 
2366 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2367 	root = btrfs_read_tree_root(tree_root, &location);
2368 	if (IS_ERR(root)) {
2369 		ret = PTR_ERR(root);
2370 		if (ret != -ENOENT)
2371 			goto out;
2372 	} else {
2373 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 		fs_info->uuid_root = root;
2375 	}
2376 
2377 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2378 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2379 		root = btrfs_read_tree_root(tree_root, &location);
2380 		if (IS_ERR(root)) {
2381 			ret = PTR_ERR(root);
2382 			goto out;
2383 		}
2384 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 		fs_info->free_space_root = root;
2386 	}
2387 
2388 	return 0;
2389 out:
2390 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2391 		   location.objectid, ret);
2392 	return ret;
2393 }
2394 
2395 /*
2396  * Real super block validation
2397  * NOTE: super csum type and incompat features will not be checked here.
2398  *
2399  * @sb:		super block to check
2400  * @mirror_num:	the super block number to check its bytenr:
2401  * 		0	the primary (1st) sb
2402  * 		1, 2	2nd and 3rd backup copy
2403  * 	       -1	skip bytenr check
2404  */
2405 static int validate_super(struct btrfs_fs_info *fs_info,
2406 			    struct btrfs_super_block *sb, int mirror_num)
2407 {
2408 	u64 nodesize = btrfs_super_nodesize(sb);
2409 	u64 sectorsize = btrfs_super_sectorsize(sb);
2410 	int ret = 0;
2411 
2412 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2413 		btrfs_err(fs_info, "no valid FS found");
2414 		ret = -EINVAL;
2415 	}
2416 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2417 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2418 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2419 		ret = -EINVAL;
2420 	}
2421 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2422 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2423 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2424 		ret = -EINVAL;
2425 	}
2426 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2427 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2428 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2429 		ret = -EINVAL;
2430 	}
2431 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2432 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2433 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2434 		ret = -EINVAL;
2435 	}
2436 
2437 	/*
2438 	 * Check sectorsize and nodesize first, other check will need it.
2439 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2440 	 */
2441 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2442 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2443 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2444 		ret = -EINVAL;
2445 	}
2446 	/* Only PAGE SIZE is supported yet */
2447 	if (sectorsize != PAGE_SIZE) {
2448 		btrfs_err(fs_info,
2449 			"sectorsize %llu not supported yet, only support %lu",
2450 			sectorsize, PAGE_SIZE);
2451 		ret = -EINVAL;
2452 	}
2453 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2454 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2455 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2456 		ret = -EINVAL;
2457 	}
2458 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2459 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2460 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2461 		ret = -EINVAL;
2462 	}
2463 
2464 	/* Root alignment check */
2465 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2466 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2467 			   btrfs_super_root(sb));
2468 		ret = -EINVAL;
2469 	}
2470 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2471 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2472 			   btrfs_super_chunk_root(sb));
2473 		ret = -EINVAL;
2474 	}
2475 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2476 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2477 			   btrfs_super_log_root(sb));
2478 		ret = -EINVAL;
2479 	}
2480 
2481 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2482 		   BTRFS_FSID_SIZE) != 0) {
2483 		btrfs_err(fs_info,
2484 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2485 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2486 		ret = -EINVAL;
2487 	}
2488 
2489 	/*
2490 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2491 	 * done later
2492 	 */
2493 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2494 		btrfs_err(fs_info, "bytes_used is too small %llu",
2495 			  btrfs_super_bytes_used(sb));
2496 		ret = -EINVAL;
2497 	}
2498 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2499 		btrfs_err(fs_info, "invalid stripesize %u",
2500 			  btrfs_super_stripesize(sb));
2501 		ret = -EINVAL;
2502 	}
2503 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2504 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2505 			   btrfs_super_num_devices(sb));
2506 	if (btrfs_super_num_devices(sb) == 0) {
2507 		btrfs_err(fs_info, "number of devices is 0");
2508 		ret = -EINVAL;
2509 	}
2510 
2511 	if (mirror_num >= 0 &&
2512 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2513 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2514 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2515 		ret = -EINVAL;
2516 	}
2517 
2518 	/*
2519 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2520 	 * and one chunk
2521 	 */
2522 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2523 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2524 			  btrfs_super_sys_array_size(sb),
2525 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2526 		ret = -EINVAL;
2527 	}
2528 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2529 			+ sizeof(struct btrfs_chunk)) {
2530 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2531 			  btrfs_super_sys_array_size(sb),
2532 			  sizeof(struct btrfs_disk_key)
2533 			  + sizeof(struct btrfs_chunk));
2534 		ret = -EINVAL;
2535 	}
2536 
2537 	/*
2538 	 * The generation is a global counter, we'll trust it more than the others
2539 	 * but it's still possible that it's the one that's wrong.
2540 	 */
2541 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2542 		btrfs_warn(fs_info,
2543 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2544 			btrfs_super_generation(sb),
2545 			btrfs_super_chunk_root_generation(sb));
2546 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2547 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2548 		btrfs_warn(fs_info,
2549 			"suspicious: generation < cache_generation: %llu < %llu",
2550 			btrfs_super_generation(sb),
2551 			btrfs_super_cache_generation(sb));
2552 
2553 	return ret;
2554 }
2555 
2556 /*
2557  * Validation of super block at mount time.
2558  * Some checks already done early at mount time, like csum type and incompat
2559  * flags will be skipped.
2560  */
2561 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2562 {
2563 	return validate_super(fs_info, fs_info->super_copy, 0);
2564 }
2565 
2566 /*
2567  * Validation of super block at write time.
2568  * Some checks like bytenr check will be skipped as their values will be
2569  * overwritten soon.
2570  * Extra checks like csum type and incompat flags will be done here.
2571  */
2572 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2573 				      struct btrfs_super_block *sb)
2574 {
2575 	int ret;
2576 
2577 	ret = validate_super(fs_info, sb, -1);
2578 	if (ret < 0)
2579 		goto out;
2580 	if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2581 		ret = -EUCLEAN;
2582 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2583 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2584 		goto out;
2585 	}
2586 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2587 		ret = -EUCLEAN;
2588 		btrfs_err(fs_info,
2589 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2590 			  btrfs_super_incompat_flags(sb),
2591 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2592 		goto out;
2593 	}
2594 out:
2595 	if (ret < 0)
2596 		btrfs_err(fs_info,
2597 		"super block corruption detected before writing it to disk");
2598 	return ret;
2599 }
2600 
2601 int open_ctree(struct super_block *sb,
2602 	       struct btrfs_fs_devices *fs_devices,
2603 	       char *options)
2604 {
2605 	u32 sectorsize;
2606 	u32 nodesize;
2607 	u32 stripesize;
2608 	u64 generation;
2609 	u64 features;
2610 	struct btrfs_key location;
2611 	struct buffer_head *bh;
2612 	struct btrfs_super_block *disk_super;
2613 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2614 	struct btrfs_root *tree_root;
2615 	struct btrfs_root *chunk_root;
2616 	int ret;
2617 	int err = -EINVAL;
2618 	int num_backups_tried = 0;
2619 	int backup_index = 0;
2620 	int clear_free_space_tree = 0;
2621 	int level;
2622 
2623 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2624 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2625 	if (!tree_root || !chunk_root) {
2626 		err = -ENOMEM;
2627 		goto fail;
2628 	}
2629 
2630 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2631 	if (ret) {
2632 		err = ret;
2633 		goto fail;
2634 	}
2635 
2636 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2637 	if (ret) {
2638 		err = ret;
2639 		goto fail_srcu;
2640 	}
2641 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2642 					(1 + ilog2(nr_cpu_ids));
2643 
2644 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2645 	if (ret) {
2646 		err = ret;
2647 		goto fail_dirty_metadata_bytes;
2648 	}
2649 
2650 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2651 			GFP_KERNEL);
2652 	if (ret) {
2653 		err = ret;
2654 		goto fail_delalloc_bytes;
2655 	}
2656 
2657 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2658 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2659 	INIT_LIST_HEAD(&fs_info->trans_list);
2660 	INIT_LIST_HEAD(&fs_info->dead_roots);
2661 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2662 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2663 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2664 	INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2665 	spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2666 	spin_lock_init(&fs_info->delalloc_root_lock);
2667 	spin_lock_init(&fs_info->trans_lock);
2668 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2669 	spin_lock_init(&fs_info->delayed_iput_lock);
2670 	spin_lock_init(&fs_info->defrag_inodes_lock);
2671 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2672 	spin_lock_init(&fs_info->super_lock);
2673 	spin_lock_init(&fs_info->qgroup_op_lock);
2674 	spin_lock_init(&fs_info->buffer_lock);
2675 	spin_lock_init(&fs_info->unused_bgs_lock);
2676 	rwlock_init(&fs_info->tree_mod_log_lock);
2677 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2678 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2679 	mutex_init(&fs_info->reloc_mutex);
2680 	mutex_init(&fs_info->delalloc_root_mutex);
2681 	seqlock_init(&fs_info->profiles_lock);
2682 
2683 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2684 	INIT_LIST_HEAD(&fs_info->space_info);
2685 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2686 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2687 	btrfs_mapping_init(&fs_info->mapping_tree);
2688 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2689 			     BTRFS_BLOCK_RSV_GLOBAL);
2690 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2691 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2692 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2693 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2694 			     BTRFS_BLOCK_RSV_DELOPS);
2695 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2696 			     BTRFS_BLOCK_RSV_DELREFS);
2697 
2698 	atomic_set(&fs_info->async_delalloc_pages, 0);
2699 	atomic_set(&fs_info->defrag_running, 0);
2700 	atomic_set(&fs_info->qgroup_op_seq, 0);
2701 	atomic_set(&fs_info->reada_works_cnt, 0);
2702 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2703 	atomic64_set(&fs_info->tree_mod_seq, 0);
2704 	fs_info->sb = sb;
2705 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2706 	fs_info->metadata_ratio = 0;
2707 	fs_info->defrag_inodes = RB_ROOT;
2708 	atomic64_set(&fs_info->free_chunk_space, 0);
2709 	fs_info->tree_mod_log = RB_ROOT;
2710 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2711 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2712 	/* readahead state */
2713 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2714 	spin_lock_init(&fs_info->reada_lock);
2715 	btrfs_init_ref_verify(fs_info);
2716 
2717 	fs_info->thread_pool_size = min_t(unsigned long,
2718 					  num_online_cpus() + 2, 8);
2719 
2720 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2721 	spin_lock_init(&fs_info->ordered_root_lock);
2722 
2723 	fs_info->btree_inode = new_inode(sb);
2724 	if (!fs_info->btree_inode) {
2725 		err = -ENOMEM;
2726 		goto fail_bio_counter;
2727 	}
2728 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2729 
2730 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2731 					GFP_KERNEL);
2732 	if (!fs_info->delayed_root) {
2733 		err = -ENOMEM;
2734 		goto fail_iput;
2735 	}
2736 	btrfs_init_delayed_root(fs_info->delayed_root);
2737 
2738 	btrfs_init_scrub(fs_info);
2739 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2740 	fs_info->check_integrity_print_mask = 0;
2741 #endif
2742 	btrfs_init_balance(fs_info);
2743 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2744 
2745 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2746 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2747 
2748 	btrfs_init_btree_inode(fs_info);
2749 
2750 	spin_lock_init(&fs_info->block_group_cache_lock);
2751 	fs_info->block_group_cache_tree = RB_ROOT;
2752 	fs_info->first_logical_byte = (u64)-1;
2753 
2754 	extent_io_tree_init(fs_info, &fs_info->freed_extents[0], NULL);
2755 	extent_io_tree_init(fs_info, &fs_info->freed_extents[1], NULL);
2756 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2757 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2758 
2759 	mutex_init(&fs_info->ordered_operations_mutex);
2760 	mutex_init(&fs_info->tree_log_mutex);
2761 	mutex_init(&fs_info->chunk_mutex);
2762 	mutex_init(&fs_info->transaction_kthread_mutex);
2763 	mutex_init(&fs_info->cleaner_mutex);
2764 	mutex_init(&fs_info->ro_block_group_mutex);
2765 	init_rwsem(&fs_info->commit_root_sem);
2766 	init_rwsem(&fs_info->cleanup_work_sem);
2767 	init_rwsem(&fs_info->subvol_sem);
2768 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2769 
2770 	btrfs_init_dev_replace_locks(fs_info);
2771 	btrfs_init_qgroup(fs_info);
2772 
2773 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2774 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2775 
2776 	init_waitqueue_head(&fs_info->transaction_throttle);
2777 	init_waitqueue_head(&fs_info->transaction_wait);
2778 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2779 	init_waitqueue_head(&fs_info->async_submit_wait);
2780 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2781 
2782 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2783 
2784 	/* Usable values until the real ones are cached from the superblock */
2785 	fs_info->nodesize = 4096;
2786 	fs_info->sectorsize = 4096;
2787 	fs_info->stripesize = 4096;
2788 
2789 	spin_lock_init(&fs_info->swapfile_pins_lock);
2790 	fs_info->swapfile_pins = RB_ROOT;
2791 
2792 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2793 	if (ret) {
2794 		err = ret;
2795 		goto fail_alloc;
2796 	}
2797 
2798 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2799 
2800 	invalidate_bdev(fs_devices->latest_bdev);
2801 
2802 	/*
2803 	 * Read super block and check the signature bytes only
2804 	 */
2805 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2806 	if (IS_ERR(bh)) {
2807 		err = PTR_ERR(bh);
2808 		goto fail_alloc;
2809 	}
2810 
2811 	/*
2812 	 * We want to check superblock checksum, the type is stored inside.
2813 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2814 	 */
2815 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2816 		btrfs_err(fs_info, "superblock checksum mismatch");
2817 		err = -EINVAL;
2818 		brelse(bh);
2819 		goto fail_alloc;
2820 	}
2821 
2822 	/*
2823 	 * super_copy is zeroed at allocation time and we never touch the
2824 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2825 	 * the whole block of INFO_SIZE
2826 	 */
2827 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2828 	brelse(bh);
2829 
2830 	disk_super = fs_info->super_copy;
2831 
2832 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2833 		       BTRFS_FSID_SIZE));
2834 
2835 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2836 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2837 				fs_info->super_copy->metadata_uuid,
2838 				BTRFS_FSID_SIZE));
2839 	}
2840 
2841 	features = btrfs_super_flags(disk_super);
2842 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2843 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2844 		btrfs_set_super_flags(disk_super, features);
2845 		btrfs_info(fs_info,
2846 			"found metadata UUID change in progress flag, clearing");
2847 	}
2848 
2849 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2850 	       sizeof(*fs_info->super_for_commit));
2851 
2852 	ret = btrfs_validate_mount_super(fs_info);
2853 	if (ret) {
2854 		btrfs_err(fs_info, "superblock contains fatal errors");
2855 		err = -EINVAL;
2856 		goto fail_alloc;
2857 	}
2858 
2859 	if (!btrfs_super_root(disk_super))
2860 		goto fail_alloc;
2861 
2862 	/* check FS state, whether FS is broken. */
2863 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2864 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2865 
2866 	/*
2867 	 * run through our array of backup supers and setup
2868 	 * our ring pointer to the oldest one
2869 	 */
2870 	generation = btrfs_super_generation(disk_super);
2871 	find_oldest_super_backup(fs_info, generation);
2872 
2873 	/*
2874 	 * In the long term, we'll store the compression type in the super
2875 	 * block, and it'll be used for per file compression control.
2876 	 */
2877 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2878 
2879 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2880 	if (ret) {
2881 		err = ret;
2882 		goto fail_alloc;
2883 	}
2884 
2885 	features = btrfs_super_incompat_flags(disk_super) &
2886 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2887 	if (features) {
2888 		btrfs_err(fs_info,
2889 		    "cannot mount because of unsupported optional features (%llx)",
2890 		    features);
2891 		err = -EINVAL;
2892 		goto fail_alloc;
2893 	}
2894 
2895 	features = btrfs_super_incompat_flags(disk_super);
2896 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2897 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2898 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2899 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2900 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2901 
2902 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2903 		btrfs_info(fs_info, "has skinny extents");
2904 
2905 	/*
2906 	 * flag our filesystem as having big metadata blocks if
2907 	 * they are bigger than the page size
2908 	 */
2909 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2910 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2911 			btrfs_info(fs_info,
2912 				"flagging fs with big metadata feature");
2913 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2914 	}
2915 
2916 	nodesize = btrfs_super_nodesize(disk_super);
2917 	sectorsize = btrfs_super_sectorsize(disk_super);
2918 	stripesize = sectorsize;
2919 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2920 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2921 
2922 	/* Cache block sizes */
2923 	fs_info->nodesize = nodesize;
2924 	fs_info->sectorsize = sectorsize;
2925 	fs_info->stripesize = stripesize;
2926 
2927 	/*
2928 	 * mixed block groups end up with duplicate but slightly offset
2929 	 * extent buffers for the same range.  It leads to corruptions
2930 	 */
2931 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2932 	    (sectorsize != nodesize)) {
2933 		btrfs_err(fs_info,
2934 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2935 			nodesize, sectorsize);
2936 		goto fail_alloc;
2937 	}
2938 
2939 	/*
2940 	 * Needn't use the lock because there is no other task which will
2941 	 * update the flag.
2942 	 */
2943 	btrfs_set_super_incompat_flags(disk_super, features);
2944 
2945 	features = btrfs_super_compat_ro_flags(disk_super) &
2946 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2947 	if (!sb_rdonly(sb) && features) {
2948 		btrfs_err(fs_info,
2949 	"cannot mount read-write because of unsupported optional features (%llx)",
2950 		       features);
2951 		err = -EINVAL;
2952 		goto fail_alloc;
2953 	}
2954 
2955 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2956 	if (ret) {
2957 		err = ret;
2958 		goto fail_sb_buffer;
2959 	}
2960 
2961 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2962 	sb->s_bdi->congested_data = fs_info;
2963 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2964 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2965 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2966 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2967 
2968 	sb->s_blocksize = sectorsize;
2969 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2970 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2971 
2972 	mutex_lock(&fs_info->chunk_mutex);
2973 	ret = btrfs_read_sys_array(fs_info);
2974 	mutex_unlock(&fs_info->chunk_mutex);
2975 	if (ret) {
2976 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2977 		goto fail_sb_buffer;
2978 	}
2979 
2980 	generation = btrfs_super_chunk_root_generation(disk_super);
2981 	level = btrfs_super_chunk_root_level(disk_super);
2982 
2983 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2984 
2985 	chunk_root->node = read_tree_block(fs_info,
2986 					   btrfs_super_chunk_root(disk_super),
2987 					   generation, level, NULL);
2988 	if (IS_ERR(chunk_root->node) ||
2989 	    !extent_buffer_uptodate(chunk_root->node)) {
2990 		btrfs_err(fs_info, "failed to read chunk root");
2991 		if (!IS_ERR(chunk_root->node))
2992 			free_extent_buffer(chunk_root->node);
2993 		chunk_root->node = NULL;
2994 		goto fail_tree_roots;
2995 	}
2996 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2997 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2998 
2999 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3000 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3001 
3002 	ret = btrfs_read_chunk_tree(fs_info);
3003 	if (ret) {
3004 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3005 		goto fail_tree_roots;
3006 	}
3007 
3008 	/*
3009 	 * Keep the devid that is marked to be the target device for the
3010 	 * device replace procedure
3011 	 */
3012 	btrfs_free_extra_devids(fs_devices, 0);
3013 
3014 	if (!fs_devices->latest_bdev) {
3015 		btrfs_err(fs_info, "failed to read devices");
3016 		goto fail_tree_roots;
3017 	}
3018 
3019 retry_root_backup:
3020 	generation = btrfs_super_generation(disk_super);
3021 	level = btrfs_super_root_level(disk_super);
3022 
3023 	tree_root->node = read_tree_block(fs_info,
3024 					  btrfs_super_root(disk_super),
3025 					  generation, level, NULL);
3026 	if (IS_ERR(tree_root->node) ||
3027 	    !extent_buffer_uptodate(tree_root->node)) {
3028 		btrfs_warn(fs_info, "failed to read tree root");
3029 		if (!IS_ERR(tree_root->node))
3030 			free_extent_buffer(tree_root->node);
3031 		tree_root->node = NULL;
3032 		goto recovery_tree_root;
3033 	}
3034 
3035 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3036 	tree_root->commit_root = btrfs_root_node(tree_root);
3037 	btrfs_set_root_refs(&tree_root->root_item, 1);
3038 
3039 	mutex_lock(&tree_root->objectid_mutex);
3040 	ret = btrfs_find_highest_objectid(tree_root,
3041 					&tree_root->highest_objectid);
3042 	if (ret) {
3043 		mutex_unlock(&tree_root->objectid_mutex);
3044 		goto recovery_tree_root;
3045 	}
3046 
3047 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3048 
3049 	mutex_unlock(&tree_root->objectid_mutex);
3050 
3051 	ret = btrfs_read_roots(fs_info);
3052 	if (ret)
3053 		goto recovery_tree_root;
3054 
3055 	fs_info->generation = generation;
3056 	fs_info->last_trans_committed = generation;
3057 
3058 	ret = btrfs_verify_dev_extents(fs_info);
3059 	if (ret) {
3060 		btrfs_err(fs_info,
3061 			  "failed to verify dev extents against chunks: %d",
3062 			  ret);
3063 		goto fail_block_groups;
3064 	}
3065 	ret = btrfs_recover_balance(fs_info);
3066 	if (ret) {
3067 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3068 		goto fail_block_groups;
3069 	}
3070 
3071 	ret = btrfs_init_dev_stats(fs_info);
3072 	if (ret) {
3073 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3074 		goto fail_block_groups;
3075 	}
3076 
3077 	ret = btrfs_init_dev_replace(fs_info);
3078 	if (ret) {
3079 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3080 		goto fail_block_groups;
3081 	}
3082 
3083 	btrfs_free_extra_devids(fs_devices, 1);
3084 
3085 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3086 	if (ret) {
3087 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3088 				ret);
3089 		goto fail_block_groups;
3090 	}
3091 
3092 	ret = btrfs_sysfs_add_device(fs_devices);
3093 	if (ret) {
3094 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3095 				ret);
3096 		goto fail_fsdev_sysfs;
3097 	}
3098 
3099 	ret = btrfs_sysfs_add_mounted(fs_info);
3100 	if (ret) {
3101 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3102 		goto fail_fsdev_sysfs;
3103 	}
3104 
3105 	ret = btrfs_init_space_info(fs_info);
3106 	if (ret) {
3107 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3108 		goto fail_sysfs;
3109 	}
3110 
3111 	ret = btrfs_read_block_groups(fs_info);
3112 	if (ret) {
3113 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3114 		goto fail_sysfs;
3115 	}
3116 
3117 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3118 		btrfs_warn(fs_info,
3119 		"writable mount is not allowed due to too many missing devices");
3120 		goto fail_sysfs;
3121 	}
3122 
3123 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3124 					       "btrfs-cleaner");
3125 	if (IS_ERR(fs_info->cleaner_kthread))
3126 		goto fail_sysfs;
3127 
3128 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3129 						   tree_root,
3130 						   "btrfs-transaction");
3131 	if (IS_ERR(fs_info->transaction_kthread))
3132 		goto fail_cleaner;
3133 
3134 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3135 	    !fs_info->fs_devices->rotating) {
3136 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3137 	}
3138 
3139 	/*
3140 	 * Mount does not set all options immediately, we can do it now and do
3141 	 * not have to wait for transaction commit
3142 	 */
3143 	btrfs_apply_pending_changes(fs_info);
3144 
3145 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3146 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3147 		ret = btrfsic_mount(fs_info, fs_devices,
3148 				    btrfs_test_opt(fs_info,
3149 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3150 				    1 : 0,
3151 				    fs_info->check_integrity_print_mask);
3152 		if (ret)
3153 			btrfs_warn(fs_info,
3154 				"failed to initialize integrity check module: %d",
3155 				ret);
3156 	}
3157 #endif
3158 	ret = btrfs_read_qgroup_config(fs_info);
3159 	if (ret)
3160 		goto fail_trans_kthread;
3161 
3162 	if (btrfs_build_ref_tree(fs_info))
3163 		btrfs_err(fs_info, "couldn't build ref tree");
3164 
3165 	/* do not make disk changes in broken FS or nologreplay is given */
3166 	if (btrfs_super_log_root(disk_super) != 0 &&
3167 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3168 		ret = btrfs_replay_log(fs_info, fs_devices);
3169 		if (ret) {
3170 			err = ret;
3171 			goto fail_qgroup;
3172 		}
3173 	}
3174 
3175 	ret = btrfs_find_orphan_roots(fs_info);
3176 	if (ret)
3177 		goto fail_qgroup;
3178 
3179 	if (!sb_rdonly(sb)) {
3180 		ret = btrfs_cleanup_fs_roots(fs_info);
3181 		if (ret)
3182 			goto fail_qgroup;
3183 
3184 		mutex_lock(&fs_info->cleaner_mutex);
3185 		ret = btrfs_recover_relocation(tree_root);
3186 		mutex_unlock(&fs_info->cleaner_mutex);
3187 		if (ret < 0) {
3188 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3189 					ret);
3190 			err = -EINVAL;
3191 			goto fail_qgroup;
3192 		}
3193 	}
3194 
3195 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3196 	location.type = BTRFS_ROOT_ITEM_KEY;
3197 	location.offset = 0;
3198 
3199 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3200 	if (IS_ERR(fs_info->fs_root)) {
3201 		err = PTR_ERR(fs_info->fs_root);
3202 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3203 		goto fail_qgroup;
3204 	}
3205 
3206 	if (sb_rdonly(sb))
3207 		return 0;
3208 
3209 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3210 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3211 		clear_free_space_tree = 1;
3212 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3213 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3214 		btrfs_warn(fs_info, "free space tree is invalid");
3215 		clear_free_space_tree = 1;
3216 	}
3217 
3218 	if (clear_free_space_tree) {
3219 		btrfs_info(fs_info, "clearing free space tree");
3220 		ret = btrfs_clear_free_space_tree(fs_info);
3221 		if (ret) {
3222 			btrfs_warn(fs_info,
3223 				   "failed to clear free space tree: %d", ret);
3224 			close_ctree(fs_info);
3225 			return ret;
3226 		}
3227 	}
3228 
3229 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3230 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3231 		btrfs_info(fs_info, "creating free space tree");
3232 		ret = btrfs_create_free_space_tree(fs_info);
3233 		if (ret) {
3234 			btrfs_warn(fs_info,
3235 				"failed to create free space tree: %d", ret);
3236 			close_ctree(fs_info);
3237 			return ret;
3238 		}
3239 	}
3240 
3241 	down_read(&fs_info->cleanup_work_sem);
3242 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3243 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3244 		up_read(&fs_info->cleanup_work_sem);
3245 		close_ctree(fs_info);
3246 		return ret;
3247 	}
3248 	up_read(&fs_info->cleanup_work_sem);
3249 
3250 	ret = btrfs_resume_balance_async(fs_info);
3251 	if (ret) {
3252 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3253 		close_ctree(fs_info);
3254 		return ret;
3255 	}
3256 
3257 	ret = btrfs_resume_dev_replace_async(fs_info);
3258 	if (ret) {
3259 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3260 		close_ctree(fs_info);
3261 		return ret;
3262 	}
3263 
3264 	btrfs_qgroup_rescan_resume(fs_info);
3265 
3266 	if (!fs_info->uuid_root) {
3267 		btrfs_info(fs_info, "creating UUID tree");
3268 		ret = btrfs_create_uuid_tree(fs_info);
3269 		if (ret) {
3270 			btrfs_warn(fs_info,
3271 				"failed to create the UUID tree: %d", ret);
3272 			close_ctree(fs_info);
3273 			return ret;
3274 		}
3275 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3276 		   fs_info->generation !=
3277 				btrfs_super_uuid_tree_generation(disk_super)) {
3278 		btrfs_info(fs_info, "checking UUID tree");
3279 		ret = btrfs_check_uuid_tree(fs_info);
3280 		if (ret) {
3281 			btrfs_warn(fs_info,
3282 				"failed to check the UUID tree: %d", ret);
3283 			close_ctree(fs_info);
3284 			return ret;
3285 		}
3286 	} else {
3287 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3288 	}
3289 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3290 
3291 	/*
3292 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3293 	 * no need to keep the flag
3294 	 */
3295 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3296 
3297 	return 0;
3298 
3299 fail_qgroup:
3300 	btrfs_free_qgroup_config(fs_info);
3301 fail_trans_kthread:
3302 	kthread_stop(fs_info->transaction_kthread);
3303 	btrfs_cleanup_transaction(fs_info);
3304 	btrfs_free_fs_roots(fs_info);
3305 fail_cleaner:
3306 	kthread_stop(fs_info->cleaner_kthread);
3307 
3308 	/*
3309 	 * make sure we're done with the btree inode before we stop our
3310 	 * kthreads
3311 	 */
3312 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3313 
3314 fail_sysfs:
3315 	btrfs_sysfs_remove_mounted(fs_info);
3316 
3317 fail_fsdev_sysfs:
3318 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3319 
3320 fail_block_groups:
3321 	btrfs_put_block_group_cache(fs_info);
3322 
3323 fail_tree_roots:
3324 	free_root_pointers(fs_info, 1);
3325 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3326 
3327 fail_sb_buffer:
3328 	btrfs_stop_all_workers(fs_info);
3329 	btrfs_free_block_groups(fs_info);
3330 fail_alloc:
3331 fail_iput:
3332 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3333 
3334 	iput(fs_info->btree_inode);
3335 fail_bio_counter:
3336 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3337 fail_delalloc_bytes:
3338 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3339 fail_dirty_metadata_bytes:
3340 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3341 fail_srcu:
3342 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3343 fail:
3344 	btrfs_free_stripe_hash_table(fs_info);
3345 	btrfs_close_devices(fs_info->fs_devices);
3346 	return err;
3347 
3348 recovery_tree_root:
3349 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3350 		goto fail_tree_roots;
3351 
3352 	free_root_pointers(fs_info, 0);
3353 
3354 	/* don't use the log in recovery mode, it won't be valid */
3355 	btrfs_set_super_log_root(disk_super, 0);
3356 
3357 	/* we can't trust the free space cache either */
3358 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3359 
3360 	ret = next_root_backup(fs_info, fs_info->super_copy,
3361 			       &num_backups_tried, &backup_index);
3362 	if (ret == -1)
3363 		goto fail_block_groups;
3364 	goto retry_root_backup;
3365 }
3366 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3367 
3368 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3369 {
3370 	if (uptodate) {
3371 		set_buffer_uptodate(bh);
3372 	} else {
3373 		struct btrfs_device *device = (struct btrfs_device *)
3374 			bh->b_private;
3375 
3376 		btrfs_warn_rl_in_rcu(device->fs_info,
3377 				"lost page write due to IO error on %s",
3378 					  rcu_str_deref(device->name));
3379 		/* note, we don't set_buffer_write_io_error because we have
3380 		 * our own ways of dealing with the IO errors
3381 		 */
3382 		clear_buffer_uptodate(bh);
3383 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3384 	}
3385 	unlock_buffer(bh);
3386 	put_bh(bh);
3387 }
3388 
3389 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3390 			struct buffer_head **bh_ret)
3391 {
3392 	struct buffer_head *bh;
3393 	struct btrfs_super_block *super;
3394 	u64 bytenr;
3395 
3396 	bytenr = btrfs_sb_offset(copy_num);
3397 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3398 		return -EINVAL;
3399 
3400 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3401 	/*
3402 	 * If we fail to read from the underlying devices, as of now
3403 	 * the best option we have is to mark it EIO.
3404 	 */
3405 	if (!bh)
3406 		return -EIO;
3407 
3408 	super = (struct btrfs_super_block *)bh->b_data;
3409 	if (btrfs_super_bytenr(super) != bytenr ||
3410 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3411 		brelse(bh);
3412 		return -EINVAL;
3413 	}
3414 
3415 	*bh_ret = bh;
3416 	return 0;
3417 }
3418 
3419 
3420 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3421 {
3422 	struct buffer_head *bh;
3423 	struct buffer_head *latest = NULL;
3424 	struct btrfs_super_block *super;
3425 	int i;
3426 	u64 transid = 0;
3427 	int ret = -EINVAL;
3428 
3429 	/* we would like to check all the supers, but that would make
3430 	 * a btrfs mount succeed after a mkfs from a different FS.
3431 	 * So, we need to add a special mount option to scan for
3432 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3433 	 */
3434 	for (i = 0; i < 1; i++) {
3435 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3436 		if (ret)
3437 			continue;
3438 
3439 		super = (struct btrfs_super_block *)bh->b_data;
3440 
3441 		if (!latest || btrfs_super_generation(super) > transid) {
3442 			brelse(latest);
3443 			latest = bh;
3444 			transid = btrfs_super_generation(super);
3445 		} else {
3446 			brelse(bh);
3447 		}
3448 	}
3449 
3450 	if (!latest)
3451 		return ERR_PTR(ret);
3452 
3453 	return latest;
3454 }
3455 
3456 /*
3457  * Write superblock @sb to the @device. Do not wait for completion, all the
3458  * buffer heads we write are pinned.
3459  *
3460  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3461  * the expected device size at commit time. Note that max_mirrors must be
3462  * same for write and wait phases.
3463  *
3464  * Return number of errors when buffer head is not found or submission fails.
3465  */
3466 static int write_dev_supers(struct btrfs_device *device,
3467 			    struct btrfs_super_block *sb, int max_mirrors)
3468 {
3469 	struct buffer_head *bh;
3470 	int i;
3471 	int ret;
3472 	int errors = 0;
3473 	u32 crc;
3474 	u64 bytenr;
3475 	int op_flags;
3476 
3477 	if (max_mirrors == 0)
3478 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3479 
3480 	for (i = 0; i < max_mirrors; i++) {
3481 		bytenr = btrfs_sb_offset(i);
3482 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3483 		    device->commit_total_bytes)
3484 			break;
3485 
3486 		btrfs_set_super_bytenr(sb, bytenr);
3487 
3488 		crc = ~(u32)0;
3489 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3490 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3491 		btrfs_csum_final(crc, sb->csum);
3492 
3493 		/* One reference for us, and we leave it for the caller */
3494 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3495 			      BTRFS_SUPER_INFO_SIZE);
3496 		if (!bh) {
3497 			btrfs_err(device->fs_info,
3498 			    "couldn't get super buffer head for bytenr %llu",
3499 			    bytenr);
3500 			errors++;
3501 			continue;
3502 		}
3503 
3504 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3505 
3506 		/* one reference for submit_bh */
3507 		get_bh(bh);
3508 
3509 		set_buffer_uptodate(bh);
3510 		lock_buffer(bh);
3511 		bh->b_end_io = btrfs_end_buffer_write_sync;
3512 		bh->b_private = device;
3513 
3514 		/*
3515 		 * we fua the first super.  The others we allow
3516 		 * to go down lazy.
3517 		 */
3518 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3519 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3520 			op_flags |= REQ_FUA;
3521 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3522 		if (ret)
3523 			errors++;
3524 	}
3525 	return errors < i ? 0 : -1;
3526 }
3527 
3528 /*
3529  * Wait for write completion of superblocks done by write_dev_supers,
3530  * @max_mirrors same for write and wait phases.
3531  *
3532  * Return number of errors when buffer head is not found or not marked up to
3533  * date.
3534  */
3535 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3536 {
3537 	struct buffer_head *bh;
3538 	int i;
3539 	int errors = 0;
3540 	bool primary_failed = false;
3541 	u64 bytenr;
3542 
3543 	if (max_mirrors == 0)
3544 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3545 
3546 	for (i = 0; i < max_mirrors; i++) {
3547 		bytenr = btrfs_sb_offset(i);
3548 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3549 		    device->commit_total_bytes)
3550 			break;
3551 
3552 		bh = __find_get_block(device->bdev,
3553 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3554 				      BTRFS_SUPER_INFO_SIZE);
3555 		if (!bh) {
3556 			errors++;
3557 			if (i == 0)
3558 				primary_failed = true;
3559 			continue;
3560 		}
3561 		wait_on_buffer(bh);
3562 		if (!buffer_uptodate(bh)) {
3563 			errors++;
3564 			if (i == 0)
3565 				primary_failed = true;
3566 		}
3567 
3568 		/* drop our reference */
3569 		brelse(bh);
3570 
3571 		/* drop the reference from the writing run */
3572 		brelse(bh);
3573 	}
3574 
3575 	/* log error, force error return */
3576 	if (primary_failed) {
3577 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3578 			  device->devid);
3579 		return -1;
3580 	}
3581 
3582 	return errors < i ? 0 : -1;
3583 }
3584 
3585 /*
3586  * endio for the write_dev_flush, this will wake anyone waiting
3587  * for the barrier when it is done
3588  */
3589 static void btrfs_end_empty_barrier(struct bio *bio)
3590 {
3591 	complete(bio->bi_private);
3592 }
3593 
3594 /*
3595  * Submit a flush request to the device if it supports it. Error handling is
3596  * done in the waiting counterpart.
3597  */
3598 static void write_dev_flush(struct btrfs_device *device)
3599 {
3600 	struct request_queue *q = bdev_get_queue(device->bdev);
3601 	struct bio *bio = device->flush_bio;
3602 
3603 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3604 		return;
3605 
3606 	bio_reset(bio);
3607 	bio->bi_end_io = btrfs_end_empty_barrier;
3608 	bio_set_dev(bio, device->bdev);
3609 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3610 	init_completion(&device->flush_wait);
3611 	bio->bi_private = &device->flush_wait;
3612 
3613 	btrfsic_submit_bio(bio);
3614 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3615 }
3616 
3617 /*
3618  * If the flush bio has been submitted by write_dev_flush, wait for it.
3619  */
3620 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3621 {
3622 	struct bio *bio = device->flush_bio;
3623 
3624 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3625 		return BLK_STS_OK;
3626 
3627 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3628 	wait_for_completion_io(&device->flush_wait);
3629 
3630 	return bio->bi_status;
3631 }
3632 
3633 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3634 {
3635 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3636 		return -EIO;
3637 	return 0;
3638 }
3639 
3640 /*
3641  * send an empty flush down to each device in parallel,
3642  * then wait for them
3643  */
3644 static int barrier_all_devices(struct btrfs_fs_info *info)
3645 {
3646 	struct list_head *head;
3647 	struct btrfs_device *dev;
3648 	int errors_wait = 0;
3649 	blk_status_t ret;
3650 
3651 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3652 	/* send down all the barriers */
3653 	head = &info->fs_devices->devices;
3654 	list_for_each_entry(dev, head, dev_list) {
3655 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3656 			continue;
3657 		if (!dev->bdev)
3658 			continue;
3659 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3660 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3661 			continue;
3662 
3663 		write_dev_flush(dev);
3664 		dev->last_flush_error = BLK_STS_OK;
3665 	}
3666 
3667 	/* wait for all the barriers */
3668 	list_for_each_entry(dev, head, dev_list) {
3669 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3670 			continue;
3671 		if (!dev->bdev) {
3672 			errors_wait++;
3673 			continue;
3674 		}
3675 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3676 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3677 			continue;
3678 
3679 		ret = wait_dev_flush(dev);
3680 		if (ret) {
3681 			dev->last_flush_error = ret;
3682 			btrfs_dev_stat_inc_and_print(dev,
3683 					BTRFS_DEV_STAT_FLUSH_ERRS);
3684 			errors_wait++;
3685 		}
3686 	}
3687 
3688 	if (errors_wait) {
3689 		/*
3690 		 * At some point we need the status of all disks
3691 		 * to arrive at the volume status. So error checking
3692 		 * is being pushed to a separate loop.
3693 		 */
3694 		return check_barrier_error(info);
3695 	}
3696 	return 0;
3697 }
3698 
3699 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3700 {
3701 	int raid_type;
3702 	int min_tolerated = INT_MAX;
3703 
3704 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3705 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3706 		min_tolerated = min(min_tolerated,
3707 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3708 				    tolerated_failures);
3709 
3710 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3711 		if (raid_type == BTRFS_RAID_SINGLE)
3712 			continue;
3713 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3714 			continue;
3715 		min_tolerated = min(min_tolerated,
3716 				    btrfs_raid_array[raid_type].
3717 				    tolerated_failures);
3718 	}
3719 
3720 	if (min_tolerated == INT_MAX) {
3721 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3722 		min_tolerated = 0;
3723 	}
3724 
3725 	return min_tolerated;
3726 }
3727 
3728 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3729 {
3730 	struct list_head *head;
3731 	struct btrfs_device *dev;
3732 	struct btrfs_super_block *sb;
3733 	struct btrfs_dev_item *dev_item;
3734 	int ret;
3735 	int do_barriers;
3736 	int max_errors;
3737 	int total_errors = 0;
3738 	u64 flags;
3739 
3740 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3741 
3742 	/*
3743 	 * max_mirrors == 0 indicates we're from commit_transaction,
3744 	 * not from fsync where the tree roots in fs_info have not
3745 	 * been consistent on disk.
3746 	 */
3747 	if (max_mirrors == 0)
3748 		backup_super_roots(fs_info);
3749 
3750 	sb = fs_info->super_for_commit;
3751 	dev_item = &sb->dev_item;
3752 
3753 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3754 	head = &fs_info->fs_devices->devices;
3755 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3756 
3757 	if (do_barriers) {
3758 		ret = barrier_all_devices(fs_info);
3759 		if (ret) {
3760 			mutex_unlock(
3761 				&fs_info->fs_devices->device_list_mutex);
3762 			btrfs_handle_fs_error(fs_info, ret,
3763 					      "errors while submitting device barriers.");
3764 			return ret;
3765 		}
3766 	}
3767 
3768 	list_for_each_entry(dev, head, dev_list) {
3769 		if (!dev->bdev) {
3770 			total_errors++;
3771 			continue;
3772 		}
3773 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3774 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3775 			continue;
3776 
3777 		btrfs_set_stack_device_generation(dev_item, 0);
3778 		btrfs_set_stack_device_type(dev_item, dev->type);
3779 		btrfs_set_stack_device_id(dev_item, dev->devid);
3780 		btrfs_set_stack_device_total_bytes(dev_item,
3781 						   dev->commit_total_bytes);
3782 		btrfs_set_stack_device_bytes_used(dev_item,
3783 						  dev->commit_bytes_used);
3784 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3785 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3786 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3787 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3788 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3789 		       BTRFS_FSID_SIZE);
3790 
3791 		flags = btrfs_super_flags(sb);
3792 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3793 
3794 		ret = btrfs_validate_write_super(fs_info, sb);
3795 		if (ret < 0) {
3796 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3797 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3798 				"unexpected superblock corruption detected");
3799 			return -EUCLEAN;
3800 		}
3801 
3802 		ret = write_dev_supers(dev, sb, max_mirrors);
3803 		if (ret)
3804 			total_errors++;
3805 	}
3806 	if (total_errors > max_errors) {
3807 		btrfs_err(fs_info, "%d errors while writing supers",
3808 			  total_errors);
3809 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3810 
3811 		/* FUA is masked off if unsupported and can't be the reason */
3812 		btrfs_handle_fs_error(fs_info, -EIO,
3813 				      "%d errors while writing supers",
3814 				      total_errors);
3815 		return -EIO;
3816 	}
3817 
3818 	total_errors = 0;
3819 	list_for_each_entry(dev, head, dev_list) {
3820 		if (!dev->bdev)
3821 			continue;
3822 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3823 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3824 			continue;
3825 
3826 		ret = wait_dev_supers(dev, max_mirrors);
3827 		if (ret)
3828 			total_errors++;
3829 	}
3830 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3831 	if (total_errors > max_errors) {
3832 		btrfs_handle_fs_error(fs_info, -EIO,
3833 				      "%d errors while writing supers",
3834 				      total_errors);
3835 		return -EIO;
3836 	}
3837 	return 0;
3838 }
3839 
3840 /* Drop a fs root from the radix tree and free it. */
3841 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3842 				  struct btrfs_root *root)
3843 {
3844 	spin_lock(&fs_info->fs_roots_radix_lock);
3845 	radix_tree_delete(&fs_info->fs_roots_radix,
3846 			  (unsigned long)root->root_key.objectid);
3847 	spin_unlock(&fs_info->fs_roots_radix_lock);
3848 
3849 	if (btrfs_root_refs(&root->root_item) == 0)
3850 		synchronize_srcu(&fs_info->subvol_srcu);
3851 
3852 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3853 		btrfs_free_log(NULL, root);
3854 		if (root->reloc_root) {
3855 			free_extent_buffer(root->reloc_root->node);
3856 			free_extent_buffer(root->reloc_root->commit_root);
3857 			btrfs_put_fs_root(root->reloc_root);
3858 			root->reloc_root = NULL;
3859 		}
3860 	}
3861 
3862 	if (root->free_ino_pinned)
3863 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3864 	if (root->free_ino_ctl)
3865 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3866 	btrfs_free_fs_root(root);
3867 }
3868 
3869 void btrfs_free_fs_root(struct btrfs_root *root)
3870 {
3871 	iput(root->ino_cache_inode);
3872 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3873 	if (root->anon_dev)
3874 		free_anon_bdev(root->anon_dev);
3875 	if (root->subv_writers)
3876 		btrfs_free_subvolume_writers(root->subv_writers);
3877 	free_extent_buffer(root->node);
3878 	free_extent_buffer(root->commit_root);
3879 	kfree(root->free_ino_ctl);
3880 	kfree(root->free_ino_pinned);
3881 	btrfs_put_fs_root(root);
3882 }
3883 
3884 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3885 {
3886 	u64 root_objectid = 0;
3887 	struct btrfs_root *gang[8];
3888 	int i = 0;
3889 	int err = 0;
3890 	unsigned int ret = 0;
3891 	int index;
3892 
3893 	while (1) {
3894 		index = srcu_read_lock(&fs_info->subvol_srcu);
3895 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3896 					     (void **)gang, root_objectid,
3897 					     ARRAY_SIZE(gang));
3898 		if (!ret) {
3899 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3900 			break;
3901 		}
3902 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3903 
3904 		for (i = 0; i < ret; i++) {
3905 			/* Avoid to grab roots in dead_roots */
3906 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3907 				gang[i] = NULL;
3908 				continue;
3909 			}
3910 			/* grab all the search result for later use */
3911 			gang[i] = btrfs_grab_fs_root(gang[i]);
3912 		}
3913 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3914 
3915 		for (i = 0; i < ret; i++) {
3916 			if (!gang[i])
3917 				continue;
3918 			root_objectid = gang[i]->root_key.objectid;
3919 			err = btrfs_orphan_cleanup(gang[i]);
3920 			if (err)
3921 				break;
3922 			btrfs_put_fs_root(gang[i]);
3923 		}
3924 		root_objectid++;
3925 	}
3926 
3927 	/* release the uncleaned roots due to error */
3928 	for (; i < ret; i++) {
3929 		if (gang[i])
3930 			btrfs_put_fs_root(gang[i]);
3931 	}
3932 	return err;
3933 }
3934 
3935 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3936 {
3937 	struct btrfs_root *root = fs_info->tree_root;
3938 	struct btrfs_trans_handle *trans;
3939 
3940 	mutex_lock(&fs_info->cleaner_mutex);
3941 	btrfs_run_delayed_iputs(fs_info);
3942 	mutex_unlock(&fs_info->cleaner_mutex);
3943 	wake_up_process(fs_info->cleaner_kthread);
3944 
3945 	/* wait until ongoing cleanup work done */
3946 	down_write(&fs_info->cleanup_work_sem);
3947 	up_write(&fs_info->cleanup_work_sem);
3948 
3949 	trans = btrfs_join_transaction(root);
3950 	if (IS_ERR(trans))
3951 		return PTR_ERR(trans);
3952 	return btrfs_commit_transaction(trans);
3953 }
3954 
3955 void close_ctree(struct btrfs_fs_info *fs_info)
3956 {
3957 	int ret;
3958 
3959 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3960 	/*
3961 	 * We don't want the cleaner to start new transactions, add more delayed
3962 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3963 	 * because that frees the task_struct, and the transaction kthread might
3964 	 * still try to wake up the cleaner.
3965 	 */
3966 	kthread_park(fs_info->cleaner_kthread);
3967 
3968 	/* wait for the qgroup rescan worker to stop */
3969 	btrfs_qgroup_wait_for_completion(fs_info, false);
3970 
3971 	/* wait for the uuid_scan task to finish */
3972 	down(&fs_info->uuid_tree_rescan_sem);
3973 	/* avoid complains from lockdep et al., set sem back to initial state */
3974 	up(&fs_info->uuid_tree_rescan_sem);
3975 
3976 	/* pause restriper - we want to resume on mount */
3977 	btrfs_pause_balance(fs_info);
3978 
3979 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3980 
3981 	btrfs_scrub_cancel(fs_info);
3982 
3983 	/* wait for any defraggers to finish */
3984 	wait_event(fs_info->transaction_wait,
3985 		   (atomic_read(&fs_info->defrag_running) == 0));
3986 
3987 	/* clear out the rbtree of defraggable inodes */
3988 	btrfs_cleanup_defrag_inodes(fs_info);
3989 
3990 	cancel_work_sync(&fs_info->async_reclaim_work);
3991 
3992 	if (!sb_rdonly(fs_info->sb)) {
3993 		/*
3994 		 * The cleaner kthread is stopped, so do one final pass over
3995 		 * unused block groups.
3996 		 */
3997 		btrfs_delete_unused_bgs(fs_info);
3998 
3999 		ret = btrfs_commit_super(fs_info);
4000 		if (ret)
4001 			btrfs_err(fs_info, "commit super ret %d", ret);
4002 	}
4003 
4004 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4005 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4006 		btrfs_error_commit_super(fs_info);
4007 
4008 	kthread_stop(fs_info->transaction_kthread);
4009 	kthread_stop(fs_info->cleaner_kthread);
4010 
4011 	ASSERT(list_empty(&fs_info->delayed_iputs));
4012 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4013 
4014 	btrfs_free_qgroup_config(fs_info);
4015 	ASSERT(list_empty(&fs_info->delalloc_roots));
4016 
4017 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4018 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4019 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4020 	}
4021 
4022 	btrfs_sysfs_remove_mounted(fs_info);
4023 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4024 
4025 	btrfs_free_fs_roots(fs_info);
4026 
4027 	btrfs_put_block_group_cache(fs_info);
4028 
4029 	/*
4030 	 * we must make sure there is not any read request to
4031 	 * submit after we stopping all workers.
4032 	 */
4033 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4034 	btrfs_stop_all_workers(fs_info);
4035 
4036 	btrfs_free_block_groups(fs_info);
4037 
4038 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4039 	free_root_pointers(fs_info, 1);
4040 
4041 	iput(fs_info->btree_inode);
4042 
4043 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4044 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4045 		btrfsic_unmount(fs_info->fs_devices);
4046 #endif
4047 
4048 	btrfs_close_devices(fs_info->fs_devices);
4049 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4050 
4051 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4052 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4053 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4054 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4055 
4056 	btrfs_free_stripe_hash_table(fs_info);
4057 	btrfs_free_ref_cache(fs_info);
4058 
4059 	while (!list_empty(&fs_info->pinned_chunks)) {
4060 		struct extent_map *em;
4061 
4062 		em = list_first_entry(&fs_info->pinned_chunks,
4063 				      struct extent_map, list);
4064 		list_del_init(&em->list);
4065 		free_extent_map(em);
4066 	}
4067 }
4068 
4069 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4070 			  int atomic)
4071 {
4072 	int ret;
4073 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4074 
4075 	ret = extent_buffer_uptodate(buf);
4076 	if (!ret)
4077 		return ret;
4078 
4079 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4080 				    parent_transid, atomic);
4081 	if (ret == -EAGAIN)
4082 		return ret;
4083 	return !ret;
4084 }
4085 
4086 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4087 {
4088 	struct btrfs_fs_info *fs_info;
4089 	struct btrfs_root *root;
4090 	u64 transid = btrfs_header_generation(buf);
4091 	int was_dirty;
4092 
4093 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4094 	/*
4095 	 * This is a fast path so only do this check if we have sanity tests
4096 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4097 	 * outside of the sanity tests.
4098 	 */
4099 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4100 		return;
4101 #endif
4102 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4103 	fs_info = root->fs_info;
4104 	btrfs_assert_tree_locked(buf);
4105 	if (transid != fs_info->generation)
4106 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4107 			buf->start, transid, fs_info->generation);
4108 	was_dirty = set_extent_buffer_dirty(buf);
4109 	if (!was_dirty)
4110 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4111 					 buf->len,
4112 					 fs_info->dirty_metadata_batch);
4113 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4114 	/*
4115 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4116 	 * but item data not updated.
4117 	 * So here we should only check item pointers, not item data.
4118 	 */
4119 	if (btrfs_header_level(buf) == 0 &&
4120 	    btrfs_check_leaf_relaxed(fs_info, buf)) {
4121 		btrfs_print_leaf(buf);
4122 		ASSERT(0);
4123 	}
4124 #endif
4125 }
4126 
4127 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4128 					int flush_delayed)
4129 {
4130 	/*
4131 	 * looks as though older kernels can get into trouble with
4132 	 * this code, they end up stuck in balance_dirty_pages forever
4133 	 */
4134 	int ret;
4135 
4136 	if (current->flags & PF_MEMALLOC)
4137 		return;
4138 
4139 	if (flush_delayed)
4140 		btrfs_balance_delayed_items(fs_info);
4141 
4142 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4143 				     BTRFS_DIRTY_METADATA_THRESH,
4144 				     fs_info->dirty_metadata_batch);
4145 	if (ret > 0) {
4146 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4147 	}
4148 }
4149 
4150 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4151 {
4152 	__btrfs_btree_balance_dirty(fs_info, 1);
4153 }
4154 
4155 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4156 {
4157 	__btrfs_btree_balance_dirty(fs_info, 0);
4158 }
4159 
4160 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4161 		      struct btrfs_key *first_key)
4162 {
4163 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4164 	struct btrfs_fs_info *fs_info = root->fs_info;
4165 
4166 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4167 					      level, first_key);
4168 }
4169 
4170 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4171 {
4172 	/* cleanup FS via transaction */
4173 	btrfs_cleanup_transaction(fs_info);
4174 
4175 	mutex_lock(&fs_info->cleaner_mutex);
4176 	btrfs_run_delayed_iputs(fs_info);
4177 	mutex_unlock(&fs_info->cleaner_mutex);
4178 
4179 	down_write(&fs_info->cleanup_work_sem);
4180 	up_write(&fs_info->cleanup_work_sem);
4181 }
4182 
4183 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4184 {
4185 	struct btrfs_ordered_extent *ordered;
4186 
4187 	spin_lock(&root->ordered_extent_lock);
4188 	/*
4189 	 * This will just short circuit the ordered completion stuff which will
4190 	 * make sure the ordered extent gets properly cleaned up.
4191 	 */
4192 	list_for_each_entry(ordered, &root->ordered_extents,
4193 			    root_extent_list)
4194 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4195 	spin_unlock(&root->ordered_extent_lock);
4196 }
4197 
4198 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4199 {
4200 	struct btrfs_root *root;
4201 	struct list_head splice;
4202 
4203 	INIT_LIST_HEAD(&splice);
4204 
4205 	spin_lock(&fs_info->ordered_root_lock);
4206 	list_splice_init(&fs_info->ordered_roots, &splice);
4207 	while (!list_empty(&splice)) {
4208 		root = list_first_entry(&splice, struct btrfs_root,
4209 					ordered_root);
4210 		list_move_tail(&root->ordered_root,
4211 			       &fs_info->ordered_roots);
4212 
4213 		spin_unlock(&fs_info->ordered_root_lock);
4214 		btrfs_destroy_ordered_extents(root);
4215 
4216 		cond_resched();
4217 		spin_lock(&fs_info->ordered_root_lock);
4218 	}
4219 	spin_unlock(&fs_info->ordered_root_lock);
4220 
4221 	/*
4222 	 * We need this here because if we've been flipped read-only we won't
4223 	 * get sync() from the umount, so we need to make sure any ordered
4224 	 * extents that haven't had their dirty pages IO start writeout yet
4225 	 * actually get run and error out properly.
4226 	 */
4227 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4228 }
4229 
4230 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4231 				      struct btrfs_fs_info *fs_info)
4232 {
4233 	struct rb_node *node;
4234 	struct btrfs_delayed_ref_root *delayed_refs;
4235 	struct btrfs_delayed_ref_node *ref;
4236 	int ret = 0;
4237 
4238 	delayed_refs = &trans->delayed_refs;
4239 
4240 	spin_lock(&delayed_refs->lock);
4241 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4242 		spin_unlock(&delayed_refs->lock);
4243 		btrfs_info(fs_info, "delayed_refs has NO entry");
4244 		return ret;
4245 	}
4246 
4247 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4248 		struct btrfs_delayed_ref_head *head;
4249 		struct rb_node *n;
4250 		bool pin_bytes = false;
4251 
4252 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4253 				href_node);
4254 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4255 			continue;
4256 
4257 		spin_lock(&head->lock);
4258 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4259 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4260 				       ref_node);
4261 			ref->in_tree = 0;
4262 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4263 			RB_CLEAR_NODE(&ref->ref_node);
4264 			if (!list_empty(&ref->add_list))
4265 				list_del(&ref->add_list);
4266 			atomic_dec(&delayed_refs->num_entries);
4267 			btrfs_put_delayed_ref(ref);
4268 		}
4269 		if (head->must_insert_reserved)
4270 			pin_bytes = true;
4271 		btrfs_free_delayed_extent_op(head->extent_op);
4272 		btrfs_delete_ref_head(delayed_refs, head);
4273 		spin_unlock(&head->lock);
4274 		spin_unlock(&delayed_refs->lock);
4275 		mutex_unlock(&head->mutex);
4276 
4277 		if (pin_bytes)
4278 			btrfs_pin_extent(fs_info, head->bytenr,
4279 					 head->num_bytes, 1);
4280 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4281 		btrfs_put_delayed_ref_head(head);
4282 		cond_resched();
4283 		spin_lock(&delayed_refs->lock);
4284 	}
4285 
4286 	spin_unlock(&delayed_refs->lock);
4287 
4288 	return ret;
4289 }
4290 
4291 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4292 {
4293 	struct btrfs_inode *btrfs_inode;
4294 	struct list_head splice;
4295 
4296 	INIT_LIST_HEAD(&splice);
4297 
4298 	spin_lock(&root->delalloc_lock);
4299 	list_splice_init(&root->delalloc_inodes, &splice);
4300 
4301 	while (!list_empty(&splice)) {
4302 		struct inode *inode = NULL;
4303 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4304 					       delalloc_inodes);
4305 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4306 		spin_unlock(&root->delalloc_lock);
4307 
4308 		/*
4309 		 * Make sure we get a live inode and that it'll not disappear
4310 		 * meanwhile.
4311 		 */
4312 		inode = igrab(&btrfs_inode->vfs_inode);
4313 		if (inode) {
4314 			invalidate_inode_pages2(inode->i_mapping);
4315 			iput(inode);
4316 		}
4317 		spin_lock(&root->delalloc_lock);
4318 	}
4319 	spin_unlock(&root->delalloc_lock);
4320 }
4321 
4322 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4323 {
4324 	struct btrfs_root *root;
4325 	struct list_head splice;
4326 
4327 	INIT_LIST_HEAD(&splice);
4328 
4329 	spin_lock(&fs_info->delalloc_root_lock);
4330 	list_splice_init(&fs_info->delalloc_roots, &splice);
4331 	while (!list_empty(&splice)) {
4332 		root = list_first_entry(&splice, struct btrfs_root,
4333 					 delalloc_root);
4334 		root = btrfs_grab_fs_root(root);
4335 		BUG_ON(!root);
4336 		spin_unlock(&fs_info->delalloc_root_lock);
4337 
4338 		btrfs_destroy_delalloc_inodes(root);
4339 		btrfs_put_fs_root(root);
4340 
4341 		spin_lock(&fs_info->delalloc_root_lock);
4342 	}
4343 	spin_unlock(&fs_info->delalloc_root_lock);
4344 }
4345 
4346 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4347 					struct extent_io_tree *dirty_pages,
4348 					int mark)
4349 {
4350 	int ret;
4351 	struct extent_buffer *eb;
4352 	u64 start = 0;
4353 	u64 end;
4354 
4355 	while (1) {
4356 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4357 					    mark, NULL);
4358 		if (ret)
4359 			break;
4360 
4361 		clear_extent_bits(dirty_pages, start, end, mark);
4362 		while (start <= end) {
4363 			eb = find_extent_buffer(fs_info, start);
4364 			start += fs_info->nodesize;
4365 			if (!eb)
4366 				continue;
4367 			wait_on_extent_buffer_writeback(eb);
4368 
4369 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4370 					       &eb->bflags))
4371 				clear_extent_buffer_dirty(eb);
4372 			free_extent_buffer_stale(eb);
4373 		}
4374 	}
4375 
4376 	return ret;
4377 }
4378 
4379 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4380 				       struct extent_io_tree *pinned_extents)
4381 {
4382 	struct extent_io_tree *unpin;
4383 	u64 start;
4384 	u64 end;
4385 	int ret;
4386 	bool loop = true;
4387 
4388 	unpin = pinned_extents;
4389 again:
4390 	while (1) {
4391 		struct extent_state *cached_state = NULL;
4392 
4393 		/*
4394 		 * The btrfs_finish_extent_commit() may get the same range as
4395 		 * ours between find_first_extent_bit and clear_extent_dirty.
4396 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4397 		 * the same extent range.
4398 		 */
4399 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4400 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4401 					    EXTENT_DIRTY, &cached_state);
4402 		if (ret) {
4403 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4404 			break;
4405 		}
4406 
4407 		clear_extent_dirty(unpin, start, end, &cached_state);
4408 		free_extent_state(cached_state);
4409 		btrfs_error_unpin_extent_range(fs_info, start, end);
4410 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4411 		cond_resched();
4412 	}
4413 
4414 	if (loop) {
4415 		if (unpin == &fs_info->freed_extents[0])
4416 			unpin = &fs_info->freed_extents[1];
4417 		else
4418 			unpin = &fs_info->freed_extents[0];
4419 		loop = false;
4420 		goto again;
4421 	}
4422 
4423 	return 0;
4424 }
4425 
4426 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4427 {
4428 	struct inode *inode;
4429 
4430 	inode = cache->io_ctl.inode;
4431 	if (inode) {
4432 		invalidate_inode_pages2(inode->i_mapping);
4433 		BTRFS_I(inode)->generation = 0;
4434 		cache->io_ctl.inode = NULL;
4435 		iput(inode);
4436 	}
4437 	btrfs_put_block_group(cache);
4438 }
4439 
4440 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4441 			     struct btrfs_fs_info *fs_info)
4442 {
4443 	struct btrfs_block_group_cache *cache;
4444 
4445 	spin_lock(&cur_trans->dirty_bgs_lock);
4446 	while (!list_empty(&cur_trans->dirty_bgs)) {
4447 		cache = list_first_entry(&cur_trans->dirty_bgs,
4448 					 struct btrfs_block_group_cache,
4449 					 dirty_list);
4450 
4451 		if (!list_empty(&cache->io_list)) {
4452 			spin_unlock(&cur_trans->dirty_bgs_lock);
4453 			list_del_init(&cache->io_list);
4454 			btrfs_cleanup_bg_io(cache);
4455 			spin_lock(&cur_trans->dirty_bgs_lock);
4456 		}
4457 
4458 		list_del_init(&cache->dirty_list);
4459 		spin_lock(&cache->lock);
4460 		cache->disk_cache_state = BTRFS_DC_ERROR;
4461 		spin_unlock(&cache->lock);
4462 
4463 		spin_unlock(&cur_trans->dirty_bgs_lock);
4464 		btrfs_put_block_group(cache);
4465 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4466 		spin_lock(&cur_trans->dirty_bgs_lock);
4467 	}
4468 	spin_unlock(&cur_trans->dirty_bgs_lock);
4469 
4470 	/*
4471 	 * Refer to the definition of io_bgs member for details why it's safe
4472 	 * to use it without any locking
4473 	 */
4474 	while (!list_empty(&cur_trans->io_bgs)) {
4475 		cache = list_first_entry(&cur_trans->io_bgs,
4476 					 struct btrfs_block_group_cache,
4477 					 io_list);
4478 
4479 		list_del_init(&cache->io_list);
4480 		spin_lock(&cache->lock);
4481 		cache->disk_cache_state = BTRFS_DC_ERROR;
4482 		spin_unlock(&cache->lock);
4483 		btrfs_cleanup_bg_io(cache);
4484 	}
4485 }
4486 
4487 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4488 				   struct btrfs_fs_info *fs_info)
4489 {
4490 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4491 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4492 	ASSERT(list_empty(&cur_trans->io_bgs));
4493 
4494 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4495 
4496 	cur_trans->state = TRANS_STATE_COMMIT_START;
4497 	wake_up(&fs_info->transaction_blocked_wait);
4498 
4499 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4500 	wake_up(&fs_info->transaction_wait);
4501 
4502 	btrfs_destroy_delayed_inodes(fs_info);
4503 	btrfs_assert_delayed_root_empty(fs_info);
4504 
4505 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4506 				     EXTENT_DIRTY);
4507 	btrfs_destroy_pinned_extent(fs_info,
4508 				    fs_info->pinned_extents);
4509 
4510 	cur_trans->state =TRANS_STATE_COMPLETED;
4511 	wake_up(&cur_trans->commit_wait);
4512 }
4513 
4514 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4515 {
4516 	struct btrfs_transaction *t;
4517 
4518 	mutex_lock(&fs_info->transaction_kthread_mutex);
4519 
4520 	spin_lock(&fs_info->trans_lock);
4521 	while (!list_empty(&fs_info->trans_list)) {
4522 		t = list_first_entry(&fs_info->trans_list,
4523 				     struct btrfs_transaction, list);
4524 		if (t->state >= TRANS_STATE_COMMIT_START) {
4525 			refcount_inc(&t->use_count);
4526 			spin_unlock(&fs_info->trans_lock);
4527 			btrfs_wait_for_commit(fs_info, t->transid);
4528 			btrfs_put_transaction(t);
4529 			spin_lock(&fs_info->trans_lock);
4530 			continue;
4531 		}
4532 		if (t == fs_info->running_transaction) {
4533 			t->state = TRANS_STATE_COMMIT_DOING;
4534 			spin_unlock(&fs_info->trans_lock);
4535 			/*
4536 			 * We wait for 0 num_writers since we don't hold a trans
4537 			 * handle open currently for this transaction.
4538 			 */
4539 			wait_event(t->writer_wait,
4540 				   atomic_read(&t->num_writers) == 0);
4541 		} else {
4542 			spin_unlock(&fs_info->trans_lock);
4543 		}
4544 		btrfs_cleanup_one_transaction(t, fs_info);
4545 
4546 		spin_lock(&fs_info->trans_lock);
4547 		if (t == fs_info->running_transaction)
4548 			fs_info->running_transaction = NULL;
4549 		list_del_init(&t->list);
4550 		spin_unlock(&fs_info->trans_lock);
4551 
4552 		btrfs_put_transaction(t);
4553 		trace_btrfs_transaction_commit(fs_info->tree_root);
4554 		spin_lock(&fs_info->trans_lock);
4555 	}
4556 	spin_unlock(&fs_info->trans_lock);
4557 	btrfs_destroy_all_ordered_extents(fs_info);
4558 	btrfs_destroy_delayed_inodes(fs_info);
4559 	btrfs_assert_delayed_root_empty(fs_info);
4560 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4561 	btrfs_destroy_all_delalloc_inodes(fs_info);
4562 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4563 
4564 	return 0;
4565 }
4566 
4567 static const struct extent_io_ops btree_extent_io_ops = {
4568 	/* mandatory callbacks */
4569 	.submit_bio_hook = btree_submit_bio_hook,
4570 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4571 };
4572