1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <linux/sched/mm.h> 21 #include <asm/unaligned.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 43 #ifdef CONFIG_X86 44 #include <asm/cpufeature.h> 45 #endif 46 47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 48 BTRFS_HEADER_FLAG_RELOC |\ 49 BTRFS_SUPER_FLAG_ERROR |\ 50 BTRFS_SUPER_FLAG_SEEDING |\ 51 BTRFS_SUPER_FLAG_METADUMP |\ 52 BTRFS_SUPER_FLAG_METADUMP_V2) 53 54 static const struct extent_io_ops btree_extent_io_ops; 55 static void end_workqueue_fn(struct btrfs_work *work); 56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 58 struct btrfs_fs_info *fs_info); 59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 61 struct extent_io_tree *dirty_pages, 62 int mark); 63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 64 struct extent_io_tree *pinned_extents); 65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 67 68 /* 69 * btrfs_end_io_wq structs are used to do processing in task context when an IO 70 * is complete. This is used during reads to verify checksums, and it is used 71 * by writes to insert metadata for new file extents after IO is complete. 72 */ 73 struct btrfs_end_io_wq { 74 struct bio *bio; 75 bio_end_io_t *end_io; 76 void *private; 77 struct btrfs_fs_info *info; 78 blk_status_t status; 79 enum btrfs_wq_endio_type metadata; 80 struct btrfs_work work; 81 }; 82 83 static struct kmem_cache *btrfs_end_io_wq_cache; 84 85 int __init btrfs_end_io_wq_init(void) 86 { 87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 88 sizeof(struct btrfs_end_io_wq), 89 0, 90 SLAB_MEM_SPREAD, 91 NULL); 92 if (!btrfs_end_io_wq_cache) 93 return -ENOMEM; 94 return 0; 95 } 96 97 void __cold btrfs_end_io_wq_exit(void) 98 { 99 kmem_cache_destroy(btrfs_end_io_wq_cache); 100 } 101 102 /* 103 * async submit bios are used to offload expensive checksumming 104 * onto the worker threads. They checksum file and metadata bios 105 * just before they are sent down the IO stack. 106 */ 107 struct async_submit_bio { 108 void *private_data; 109 struct bio *bio; 110 extent_submit_bio_start_t *submit_bio_start; 111 int mirror_num; 112 /* 113 * bio_offset is optional, can be used if the pages in the bio 114 * can't tell us where in the file the bio should go 115 */ 116 u64 bio_offset; 117 struct btrfs_work work; 118 blk_status_t status; 119 }; 120 121 /* 122 * Lockdep class keys for extent_buffer->lock's in this root. For a given 123 * eb, the lockdep key is determined by the btrfs_root it belongs to and 124 * the level the eb occupies in the tree. 125 * 126 * Different roots are used for different purposes and may nest inside each 127 * other and they require separate keysets. As lockdep keys should be 128 * static, assign keysets according to the purpose of the root as indicated 129 * by btrfs_root->root_key.objectid. This ensures that all special purpose 130 * roots have separate keysets. 131 * 132 * Lock-nesting across peer nodes is always done with the immediate parent 133 * node locked thus preventing deadlock. As lockdep doesn't know this, use 134 * subclass to avoid triggering lockdep warning in such cases. 135 * 136 * The key is set by the readpage_end_io_hook after the buffer has passed 137 * csum validation but before the pages are unlocked. It is also set by 138 * btrfs_init_new_buffer on freshly allocated blocks. 139 * 140 * We also add a check to make sure the highest level of the tree is the 141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 142 * needs update as well. 143 */ 144 #ifdef CONFIG_DEBUG_LOCK_ALLOC 145 # if BTRFS_MAX_LEVEL != 8 146 # error 147 # endif 148 149 static struct btrfs_lockdep_keyset { 150 u64 id; /* root objectid */ 151 const char *name_stem; /* lock name stem */ 152 char names[BTRFS_MAX_LEVEL + 1][20]; 153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 154 } btrfs_lockdep_keysets[] = { 155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 167 { .id = 0, .name_stem = "tree" }, 168 }; 169 170 void __init btrfs_init_lockdep(void) 171 { 172 int i, j; 173 174 /* initialize lockdep class names */ 175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 177 178 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 179 snprintf(ks->names[j], sizeof(ks->names[j]), 180 "btrfs-%s-%02d", ks->name_stem, j); 181 } 182 } 183 184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 185 int level) 186 { 187 struct btrfs_lockdep_keyset *ks; 188 189 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 190 191 /* find the matching keyset, id 0 is the default entry */ 192 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 193 if (ks->id == objectid) 194 break; 195 196 lockdep_set_class_and_name(&eb->lock, 197 &ks->keys[level], ks->names[level]); 198 } 199 200 #endif 201 202 /* 203 * extents on the btree inode are pretty simple, there's one extent 204 * that covers the entire device 205 */ 206 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 207 struct page *page, size_t pg_offset, u64 start, u64 len, 208 int create) 209 { 210 struct btrfs_fs_info *fs_info = inode->root->fs_info; 211 struct extent_map_tree *em_tree = &inode->extent_tree; 212 struct extent_map *em; 213 int ret; 214 215 read_lock(&em_tree->lock); 216 em = lookup_extent_mapping(em_tree, start, len); 217 if (em) { 218 em->bdev = fs_info->fs_devices->latest_bdev; 219 read_unlock(&em_tree->lock); 220 goto out; 221 } 222 read_unlock(&em_tree->lock); 223 224 em = alloc_extent_map(); 225 if (!em) { 226 em = ERR_PTR(-ENOMEM); 227 goto out; 228 } 229 em->start = 0; 230 em->len = (u64)-1; 231 em->block_len = (u64)-1; 232 em->block_start = 0; 233 em->bdev = fs_info->fs_devices->latest_bdev; 234 235 write_lock(&em_tree->lock); 236 ret = add_extent_mapping(em_tree, em, 0); 237 if (ret == -EEXIST) { 238 free_extent_map(em); 239 em = lookup_extent_mapping(em_tree, start, len); 240 if (!em) 241 em = ERR_PTR(-EIO); 242 } else if (ret) { 243 free_extent_map(em); 244 em = ERR_PTR(ret); 245 } 246 write_unlock(&em_tree->lock); 247 248 out: 249 return em; 250 } 251 252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 253 { 254 return crc32c(seed, data, len); 255 } 256 257 void btrfs_csum_final(u32 crc, u8 *result) 258 { 259 put_unaligned_le32(~crc, result); 260 } 261 262 /* 263 * Compute the csum of a btree block and store the result to provided buffer. 264 * 265 * Returns error if the extent buffer cannot be mapped. 266 */ 267 static int csum_tree_block(struct extent_buffer *buf, u8 *result) 268 { 269 unsigned long len; 270 unsigned long cur_len; 271 unsigned long offset = BTRFS_CSUM_SIZE; 272 char *kaddr; 273 unsigned long map_start; 274 unsigned long map_len; 275 int err; 276 u32 crc = ~(u32)0; 277 278 len = buf->len - offset; 279 while (len > 0) { 280 /* 281 * Note: we don't need to check for the err == 1 case here, as 282 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 283 * and 'min_len = 32' and the currently implemented mapping 284 * algorithm we cannot cross a page boundary. 285 */ 286 err = map_private_extent_buffer(buf, offset, 32, 287 &kaddr, &map_start, &map_len); 288 if (WARN_ON(err)) 289 return err; 290 cur_len = min(len, map_len - (offset - map_start)); 291 crc = btrfs_csum_data(kaddr + offset - map_start, 292 crc, cur_len); 293 len -= cur_len; 294 offset += cur_len; 295 } 296 memset(result, 0, BTRFS_CSUM_SIZE); 297 298 btrfs_csum_final(crc, result); 299 300 return 0; 301 } 302 303 /* 304 * we can't consider a given block up to date unless the transid of the 305 * block matches the transid in the parent node's pointer. This is how we 306 * detect blocks that either didn't get written at all or got written 307 * in the wrong place. 308 */ 309 static int verify_parent_transid(struct extent_io_tree *io_tree, 310 struct extent_buffer *eb, u64 parent_transid, 311 int atomic) 312 { 313 struct extent_state *cached_state = NULL; 314 int ret; 315 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 316 317 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 318 return 0; 319 320 if (atomic) 321 return -EAGAIN; 322 323 if (need_lock) { 324 btrfs_tree_read_lock(eb); 325 btrfs_set_lock_blocking_read(eb); 326 } 327 328 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 329 &cached_state); 330 if (extent_buffer_uptodate(eb) && 331 btrfs_header_generation(eb) == parent_transid) { 332 ret = 0; 333 goto out; 334 } 335 btrfs_err_rl(eb->fs_info, 336 "parent transid verify failed on %llu wanted %llu found %llu", 337 eb->start, 338 parent_transid, btrfs_header_generation(eb)); 339 ret = 1; 340 341 /* 342 * Things reading via commit roots that don't have normal protection, 343 * like send, can have a really old block in cache that may point at a 344 * block that has been freed and re-allocated. So don't clear uptodate 345 * if we find an eb that is under IO (dirty/writeback) because we could 346 * end up reading in the stale data and then writing it back out and 347 * making everybody very sad. 348 */ 349 if (!extent_buffer_under_io(eb)) 350 clear_extent_buffer_uptodate(eb); 351 out: 352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 353 &cached_state); 354 if (need_lock) 355 btrfs_tree_read_unlock_blocking(eb); 356 return ret; 357 } 358 359 /* 360 * Return 0 if the superblock checksum type matches the checksum value of that 361 * algorithm. Pass the raw disk superblock data. 362 */ 363 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 364 char *raw_disk_sb) 365 { 366 struct btrfs_super_block *disk_sb = 367 (struct btrfs_super_block *)raw_disk_sb; 368 u16 csum_type = btrfs_super_csum_type(disk_sb); 369 int ret = 0; 370 371 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 372 u32 crc = ~(u32)0; 373 char result[sizeof(crc)]; 374 375 /* 376 * The super_block structure does not span the whole 377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 378 * is filled with zeros and is included in the checksum. 379 */ 380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 382 btrfs_csum_final(crc, result); 383 384 if (memcmp(raw_disk_sb, result, sizeof(result))) 385 ret = 1; 386 } 387 388 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 389 btrfs_err(fs_info, "unsupported checksum algorithm %u", 390 csum_type); 391 ret = 1; 392 } 393 394 return ret; 395 } 396 397 static int verify_level_key(struct btrfs_fs_info *fs_info, 398 struct extent_buffer *eb, int level, 399 struct btrfs_key *first_key, u64 parent_transid) 400 { 401 int found_level; 402 struct btrfs_key found_key; 403 int ret; 404 405 found_level = btrfs_header_level(eb); 406 if (found_level != level) { 407 #ifdef CONFIG_BTRFS_DEBUG 408 WARN_ON(1); 409 btrfs_err(fs_info, 410 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 411 eb->start, level, found_level); 412 #endif 413 return -EIO; 414 } 415 416 if (!first_key) 417 return 0; 418 419 /* 420 * For live tree block (new tree blocks in current transaction), 421 * we need proper lock context to avoid race, which is impossible here. 422 * So we only checks tree blocks which is read from disk, whose 423 * generation <= fs_info->last_trans_committed. 424 */ 425 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 426 return 0; 427 if (found_level) 428 btrfs_node_key_to_cpu(eb, &found_key, 0); 429 else 430 btrfs_item_key_to_cpu(eb, &found_key, 0); 431 ret = btrfs_comp_cpu_keys(first_key, &found_key); 432 433 #ifdef CONFIG_BTRFS_DEBUG 434 if (ret) { 435 WARN_ON(1); 436 btrfs_err(fs_info, 437 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 438 eb->start, parent_transid, first_key->objectid, 439 first_key->type, first_key->offset, 440 found_key.objectid, found_key.type, 441 found_key.offset); 442 } 443 #endif 444 return ret; 445 } 446 447 /* 448 * helper to read a given tree block, doing retries as required when 449 * the checksums don't match and we have alternate mirrors to try. 450 * 451 * @parent_transid: expected transid, skip check if 0 452 * @level: expected level, mandatory check 453 * @first_key: expected key of first slot, skip check if NULL 454 */ 455 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 456 struct extent_buffer *eb, 457 u64 parent_transid, int level, 458 struct btrfs_key *first_key) 459 { 460 struct extent_io_tree *io_tree; 461 int failed = 0; 462 int ret; 463 int num_copies = 0; 464 int mirror_num = 0; 465 int failed_mirror = 0; 466 467 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 468 while (1) { 469 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 470 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 471 mirror_num); 472 if (!ret) { 473 if (verify_parent_transid(io_tree, eb, 474 parent_transid, 0)) 475 ret = -EIO; 476 else if (verify_level_key(fs_info, eb, level, 477 first_key, parent_transid)) 478 ret = -EUCLEAN; 479 else 480 break; 481 } 482 483 num_copies = btrfs_num_copies(fs_info, 484 eb->start, eb->len); 485 if (num_copies == 1) 486 break; 487 488 if (!failed_mirror) { 489 failed = 1; 490 failed_mirror = eb->read_mirror; 491 } 492 493 mirror_num++; 494 if (mirror_num == failed_mirror) 495 mirror_num++; 496 497 if (mirror_num > num_copies) 498 break; 499 } 500 501 if (failed && !ret && failed_mirror) 502 repair_eb_io_failure(fs_info, eb, failed_mirror); 503 504 return ret; 505 } 506 507 /* 508 * checksum a dirty tree block before IO. This has extra checks to make sure 509 * we only fill in the checksum field in the first page of a multi-page block 510 */ 511 512 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 513 { 514 u64 start = page_offset(page); 515 u64 found_start; 516 u8 result[BTRFS_CSUM_SIZE]; 517 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 518 struct extent_buffer *eb; 519 520 eb = (struct extent_buffer *)page->private; 521 if (page != eb->pages[0]) 522 return 0; 523 524 found_start = btrfs_header_bytenr(eb); 525 /* 526 * Please do not consolidate these warnings into a single if. 527 * It is useful to know what went wrong. 528 */ 529 if (WARN_ON(found_start != start)) 530 return -EUCLEAN; 531 if (WARN_ON(!PageUptodate(page))) 532 return -EUCLEAN; 533 534 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 535 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 536 537 if (csum_tree_block(eb, result)) 538 return -EINVAL; 539 540 write_extent_buffer(eb, result, 0, csum_size); 541 return 0; 542 } 543 544 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 545 struct extent_buffer *eb) 546 { 547 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 548 u8 fsid[BTRFS_FSID_SIZE]; 549 int ret = 1; 550 551 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 552 while (fs_devices) { 553 u8 *metadata_uuid; 554 555 /* 556 * Checking the incompat flag is only valid for the current 557 * fs. For seed devices it's forbidden to have their uuid 558 * changed so reading ->fsid in this case is fine 559 */ 560 if (fs_devices == fs_info->fs_devices && 561 btrfs_fs_incompat(fs_info, METADATA_UUID)) 562 metadata_uuid = fs_devices->metadata_uuid; 563 else 564 metadata_uuid = fs_devices->fsid; 565 566 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 567 ret = 0; 568 break; 569 } 570 fs_devices = fs_devices->seed; 571 } 572 return ret; 573 } 574 575 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 576 u64 phy_offset, struct page *page, 577 u64 start, u64 end, int mirror) 578 { 579 u64 found_start; 580 int found_level; 581 struct extent_buffer *eb; 582 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 583 struct btrfs_fs_info *fs_info = root->fs_info; 584 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 585 int ret = 0; 586 u8 result[BTRFS_CSUM_SIZE]; 587 int reads_done; 588 589 if (!page->private) 590 goto out; 591 592 eb = (struct extent_buffer *)page->private; 593 594 /* the pending IO might have been the only thing that kept this buffer 595 * in memory. Make sure we have a ref for all this other checks 596 */ 597 extent_buffer_get(eb); 598 599 reads_done = atomic_dec_and_test(&eb->io_pages); 600 if (!reads_done) 601 goto err; 602 603 eb->read_mirror = mirror; 604 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 605 ret = -EIO; 606 goto err; 607 } 608 609 found_start = btrfs_header_bytenr(eb); 610 if (found_start != eb->start) { 611 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 612 eb->start, found_start); 613 ret = -EIO; 614 goto err; 615 } 616 if (check_tree_block_fsid(fs_info, eb)) { 617 btrfs_err_rl(fs_info, "bad fsid on block %llu", 618 eb->start); 619 ret = -EIO; 620 goto err; 621 } 622 found_level = btrfs_header_level(eb); 623 if (found_level >= BTRFS_MAX_LEVEL) { 624 btrfs_err(fs_info, "bad tree block level %d on %llu", 625 (int)btrfs_header_level(eb), eb->start); 626 ret = -EIO; 627 goto err; 628 } 629 630 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 631 eb, found_level); 632 633 ret = csum_tree_block(eb, result); 634 if (ret) 635 goto err; 636 637 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 638 u32 val; 639 u32 found = 0; 640 641 memcpy(&found, result, csum_size); 642 643 read_extent_buffer(eb, &val, 0, csum_size); 644 btrfs_warn_rl(fs_info, 645 "%s checksum verify failed on %llu wanted %x found %x level %d", 646 fs_info->sb->s_id, eb->start, 647 val, found, btrfs_header_level(eb)); 648 ret = -EUCLEAN; 649 goto err; 650 } 651 652 /* 653 * If this is a leaf block and it is corrupt, set the corrupt bit so 654 * that we don't try and read the other copies of this block, just 655 * return -EIO. 656 */ 657 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 658 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 659 ret = -EIO; 660 } 661 662 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 663 ret = -EIO; 664 665 if (!ret) 666 set_extent_buffer_uptodate(eb); 667 err: 668 if (reads_done && 669 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 670 btree_readahead_hook(eb, ret); 671 672 if (ret) { 673 /* 674 * our io error hook is going to dec the io pages 675 * again, we have to make sure it has something 676 * to decrement 677 */ 678 atomic_inc(&eb->io_pages); 679 clear_extent_buffer_uptodate(eb); 680 } 681 free_extent_buffer(eb); 682 out: 683 return ret; 684 } 685 686 static void end_workqueue_bio(struct bio *bio) 687 { 688 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 689 struct btrfs_fs_info *fs_info; 690 struct btrfs_workqueue *wq; 691 btrfs_work_func_t func; 692 693 fs_info = end_io_wq->info; 694 end_io_wq->status = bio->bi_status; 695 696 if (bio_op(bio) == REQ_OP_WRITE) { 697 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 698 wq = fs_info->endio_meta_write_workers; 699 func = btrfs_endio_meta_write_helper; 700 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 701 wq = fs_info->endio_freespace_worker; 702 func = btrfs_freespace_write_helper; 703 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 704 wq = fs_info->endio_raid56_workers; 705 func = btrfs_endio_raid56_helper; 706 } else { 707 wq = fs_info->endio_write_workers; 708 func = btrfs_endio_write_helper; 709 } 710 } else { 711 if (unlikely(end_io_wq->metadata == 712 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 713 wq = fs_info->endio_repair_workers; 714 func = btrfs_endio_repair_helper; 715 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 716 wq = fs_info->endio_raid56_workers; 717 func = btrfs_endio_raid56_helper; 718 } else if (end_io_wq->metadata) { 719 wq = fs_info->endio_meta_workers; 720 func = btrfs_endio_meta_helper; 721 } else { 722 wq = fs_info->endio_workers; 723 func = btrfs_endio_helper; 724 } 725 } 726 727 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 728 btrfs_queue_work(wq, &end_io_wq->work); 729 } 730 731 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 732 enum btrfs_wq_endio_type metadata) 733 { 734 struct btrfs_end_io_wq *end_io_wq; 735 736 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 737 if (!end_io_wq) 738 return BLK_STS_RESOURCE; 739 740 end_io_wq->private = bio->bi_private; 741 end_io_wq->end_io = bio->bi_end_io; 742 end_io_wq->info = info; 743 end_io_wq->status = 0; 744 end_io_wq->bio = bio; 745 end_io_wq->metadata = metadata; 746 747 bio->bi_private = end_io_wq; 748 bio->bi_end_io = end_workqueue_bio; 749 return 0; 750 } 751 752 static void run_one_async_start(struct btrfs_work *work) 753 { 754 struct async_submit_bio *async; 755 blk_status_t ret; 756 757 async = container_of(work, struct async_submit_bio, work); 758 ret = async->submit_bio_start(async->private_data, async->bio, 759 async->bio_offset); 760 if (ret) 761 async->status = ret; 762 } 763 764 /* 765 * In order to insert checksums into the metadata in large chunks, we wait 766 * until bio submission time. All the pages in the bio are checksummed and 767 * sums are attached onto the ordered extent record. 768 * 769 * At IO completion time the csums attached on the ordered extent record are 770 * inserted into the tree. 771 */ 772 static void run_one_async_done(struct btrfs_work *work) 773 { 774 struct async_submit_bio *async; 775 struct inode *inode; 776 blk_status_t ret; 777 778 async = container_of(work, struct async_submit_bio, work); 779 inode = async->private_data; 780 781 /* If an error occurred we just want to clean up the bio and move on */ 782 if (async->status) { 783 async->bio->bi_status = async->status; 784 bio_endio(async->bio); 785 return; 786 } 787 788 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, 789 async->mirror_num, 1); 790 if (ret) { 791 async->bio->bi_status = ret; 792 bio_endio(async->bio); 793 } 794 } 795 796 static void run_one_async_free(struct btrfs_work *work) 797 { 798 struct async_submit_bio *async; 799 800 async = container_of(work, struct async_submit_bio, work); 801 kfree(async); 802 } 803 804 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 805 int mirror_num, unsigned long bio_flags, 806 u64 bio_offset, void *private_data, 807 extent_submit_bio_start_t *submit_bio_start) 808 { 809 struct async_submit_bio *async; 810 811 async = kmalloc(sizeof(*async), GFP_NOFS); 812 if (!async) 813 return BLK_STS_RESOURCE; 814 815 async->private_data = private_data; 816 async->bio = bio; 817 async->mirror_num = mirror_num; 818 async->submit_bio_start = submit_bio_start; 819 820 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 821 run_one_async_done, run_one_async_free); 822 823 async->bio_offset = bio_offset; 824 825 async->status = 0; 826 827 if (op_is_sync(bio->bi_opf)) 828 btrfs_set_work_high_priority(&async->work); 829 830 btrfs_queue_work(fs_info->workers, &async->work); 831 return 0; 832 } 833 834 static blk_status_t btree_csum_one_bio(struct bio *bio) 835 { 836 struct bio_vec *bvec; 837 struct btrfs_root *root; 838 int i, ret = 0; 839 struct bvec_iter_all iter_all; 840 841 ASSERT(!bio_flagged(bio, BIO_CLONED)); 842 bio_for_each_segment_all(bvec, bio, i, iter_all) { 843 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 844 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 845 if (ret) 846 break; 847 } 848 849 return errno_to_blk_status(ret); 850 } 851 852 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 853 u64 bio_offset) 854 { 855 /* 856 * when we're called for a write, we're already in the async 857 * submission context. Just jump into btrfs_map_bio 858 */ 859 return btree_csum_one_bio(bio); 860 } 861 862 static int check_async_write(struct btrfs_inode *bi) 863 { 864 if (atomic_read(&bi->sync_writers)) 865 return 0; 866 #ifdef CONFIG_X86 867 if (static_cpu_has(X86_FEATURE_XMM4_2)) 868 return 0; 869 #endif 870 return 1; 871 } 872 873 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 874 int mirror_num, unsigned long bio_flags, 875 u64 bio_offset) 876 { 877 struct inode *inode = private_data; 878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 879 int async = check_async_write(BTRFS_I(inode)); 880 blk_status_t ret; 881 882 if (bio_op(bio) != REQ_OP_WRITE) { 883 /* 884 * called for a read, do the setup so that checksum validation 885 * can happen in the async kernel threads 886 */ 887 ret = btrfs_bio_wq_end_io(fs_info, bio, 888 BTRFS_WQ_ENDIO_METADATA); 889 if (ret) 890 goto out_w_error; 891 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 892 } else if (!async) { 893 ret = btree_csum_one_bio(bio); 894 if (ret) 895 goto out_w_error; 896 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 897 } else { 898 /* 899 * kthread helpers are used to submit writes so that 900 * checksumming can happen in parallel across all CPUs 901 */ 902 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 903 bio_offset, private_data, 904 btree_submit_bio_start); 905 } 906 907 if (ret) 908 goto out_w_error; 909 return 0; 910 911 out_w_error: 912 bio->bi_status = ret; 913 bio_endio(bio); 914 return ret; 915 } 916 917 #ifdef CONFIG_MIGRATION 918 static int btree_migratepage(struct address_space *mapping, 919 struct page *newpage, struct page *page, 920 enum migrate_mode mode) 921 { 922 /* 923 * we can't safely write a btree page from here, 924 * we haven't done the locking hook 925 */ 926 if (PageDirty(page)) 927 return -EAGAIN; 928 /* 929 * Buffers may be managed in a filesystem specific way. 930 * We must have no buffers or drop them. 931 */ 932 if (page_has_private(page) && 933 !try_to_release_page(page, GFP_KERNEL)) 934 return -EAGAIN; 935 return migrate_page(mapping, newpage, page, mode); 936 } 937 #endif 938 939 940 static int btree_writepages(struct address_space *mapping, 941 struct writeback_control *wbc) 942 { 943 struct btrfs_fs_info *fs_info; 944 int ret; 945 946 if (wbc->sync_mode == WB_SYNC_NONE) { 947 948 if (wbc->for_kupdate) 949 return 0; 950 951 fs_info = BTRFS_I(mapping->host)->root->fs_info; 952 /* this is a bit racy, but that's ok */ 953 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 954 BTRFS_DIRTY_METADATA_THRESH, 955 fs_info->dirty_metadata_batch); 956 if (ret < 0) 957 return 0; 958 } 959 return btree_write_cache_pages(mapping, wbc); 960 } 961 962 static int btree_readpage(struct file *file, struct page *page) 963 { 964 struct extent_io_tree *tree; 965 tree = &BTRFS_I(page->mapping->host)->io_tree; 966 return extent_read_full_page(tree, page, btree_get_extent, 0); 967 } 968 969 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 970 { 971 if (PageWriteback(page) || PageDirty(page)) 972 return 0; 973 974 return try_release_extent_buffer(page); 975 } 976 977 static void btree_invalidatepage(struct page *page, unsigned int offset, 978 unsigned int length) 979 { 980 struct extent_io_tree *tree; 981 tree = &BTRFS_I(page->mapping->host)->io_tree; 982 extent_invalidatepage(tree, page, offset); 983 btree_releasepage(page, GFP_NOFS); 984 if (PagePrivate(page)) { 985 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 986 "page private not zero on page %llu", 987 (unsigned long long)page_offset(page)); 988 ClearPagePrivate(page); 989 set_page_private(page, 0); 990 put_page(page); 991 } 992 } 993 994 static int btree_set_page_dirty(struct page *page) 995 { 996 #ifdef DEBUG 997 struct extent_buffer *eb; 998 999 BUG_ON(!PagePrivate(page)); 1000 eb = (struct extent_buffer *)page->private; 1001 BUG_ON(!eb); 1002 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1003 BUG_ON(!atomic_read(&eb->refs)); 1004 btrfs_assert_tree_locked(eb); 1005 #endif 1006 return __set_page_dirty_nobuffers(page); 1007 } 1008 1009 static const struct address_space_operations btree_aops = { 1010 .readpage = btree_readpage, 1011 .writepages = btree_writepages, 1012 .releasepage = btree_releasepage, 1013 .invalidatepage = btree_invalidatepage, 1014 #ifdef CONFIG_MIGRATION 1015 .migratepage = btree_migratepage, 1016 #endif 1017 .set_page_dirty = btree_set_page_dirty, 1018 }; 1019 1020 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1021 { 1022 struct extent_buffer *buf = NULL; 1023 struct inode *btree_inode = fs_info->btree_inode; 1024 1025 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1026 if (IS_ERR(buf)) 1027 return; 1028 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1029 buf, WAIT_NONE, 0); 1030 free_extent_buffer(buf); 1031 } 1032 1033 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1034 int mirror_num, struct extent_buffer **eb) 1035 { 1036 struct extent_buffer *buf = NULL; 1037 struct inode *btree_inode = fs_info->btree_inode; 1038 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1039 int ret; 1040 1041 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1042 if (IS_ERR(buf)) 1043 return 0; 1044 1045 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1046 1047 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1048 mirror_num); 1049 if (ret) { 1050 free_extent_buffer(buf); 1051 return ret; 1052 } 1053 1054 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1055 free_extent_buffer(buf); 1056 return -EIO; 1057 } else if (extent_buffer_uptodate(buf)) { 1058 *eb = buf; 1059 } else { 1060 free_extent_buffer(buf); 1061 } 1062 return 0; 1063 } 1064 1065 struct extent_buffer *btrfs_find_create_tree_block( 1066 struct btrfs_fs_info *fs_info, 1067 u64 bytenr) 1068 { 1069 if (btrfs_is_testing(fs_info)) 1070 return alloc_test_extent_buffer(fs_info, bytenr); 1071 return alloc_extent_buffer(fs_info, bytenr); 1072 } 1073 1074 1075 int btrfs_write_tree_block(struct extent_buffer *buf) 1076 { 1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1078 buf->start + buf->len - 1); 1079 } 1080 1081 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1082 { 1083 filemap_fdatawait_range(buf->pages[0]->mapping, 1084 buf->start, buf->start + buf->len - 1); 1085 } 1086 1087 /* 1088 * Read tree block at logical address @bytenr and do variant basic but critical 1089 * verification. 1090 * 1091 * @parent_transid: expected transid of this tree block, skip check if 0 1092 * @level: expected level, mandatory check 1093 * @first_key: expected key in slot 0, skip check if NULL 1094 */ 1095 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1096 u64 parent_transid, int level, 1097 struct btrfs_key *first_key) 1098 { 1099 struct extent_buffer *buf = NULL; 1100 int ret; 1101 1102 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1103 if (IS_ERR(buf)) 1104 return buf; 1105 1106 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1107 level, first_key); 1108 if (ret) { 1109 free_extent_buffer(buf); 1110 return ERR_PTR(ret); 1111 } 1112 return buf; 1113 1114 } 1115 1116 void clean_tree_block(struct btrfs_fs_info *fs_info, 1117 struct extent_buffer *buf) 1118 { 1119 if (btrfs_header_generation(buf) == 1120 fs_info->running_transaction->transid) { 1121 btrfs_assert_tree_locked(buf); 1122 1123 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1124 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1125 -buf->len, 1126 fs_info->dirty_metadata_batch); 1127 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1128 btrfs_set_lock_blocking_write(buf); 1129 clear_extent_buffer_dirty(buf); 1130 } 1131 } 1132 } 1133 1134 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1135 { 1136 struct btrfs_subvolume_writers *writers; 1137 int ret; 1138 1139 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1140 if (!writers) 1141 return ERR_PTR(-ENOMEM); 1142 1143 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1144 if (ret < 0) { 1145 kfree(writers); 1146 return ERR_PTR(ret); 1147 } 1148 1149 init_waitqueue_head(&writers->wait); 1150 return writers; 1151 } 1152 1153 static void 1154 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1155 { 1156 percpu_counter_destroy(&writers->counter); 1157 kfree(writers); 1158 } 1159 1160 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1161 u64 objectid) 1162 { 1163 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1164 root->node = NULL; 1165 root->commit_root = NULL; 1166 root->state = 0; 1167 root->orphan_cleanup_state = 0; 1168 1169 root->last_trans = 0; 1170 root->highest_objectid = 0; 1171 root->nr_delalloc_inodes = 0; 1172 root->nr_ordered_extents = 0; 1173 root->inode_tree = RB_ROOT; 1174 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1175 root->block_rsv = NULL; 1176 1177 INIT_LIST_HEAD(&root->dirty_list); 1178 INIT_LIST_HEAD(&root->root_list); 1179 INIT_LIST_HEAD(&root->delalloc_inodes); 1180 INIT_LIST_HEAD(&root->delalloc_root); 1181 INIT_LIST_HEAD(&root->ordered_extents); 1182 INIT_LIST_HEAD(&root->ordered_root); 1183 INIT_LIST_HEAD(&root->reloc_dirty_list); 1184 INIT_LIST_HEAD(&root->logged_list[0]); 1185 INIT_LIST_HEAD(&root->logged_list[1]); 1186 spin_lock_init(&root->inode_lock); 1187 spin_lock_init(&root->delalloc_lock); 1188 spin_lock_init(&root->ordered_extent_lock); 1189 spin_lock_init(&root->accounting_lock); 1190 spin_lock_init(&root->log_extents_lock[0]); 1191 spin_lock_init(&root->log_extents_lock[1]); 1192 spin_lock_init(&root->qgroup_meta_rsv_lock); 1193 mutex_init(&root->objectid_mutex); 1194 mutex_init(&root->log_mutex); 1195 mutex_init(&root->ordered_extent_mutex); 1196 mutex_init(&root->delalloc_mutex); 1197 init_waitqueue_head(&root->log_writer_wait); 1198 init_waitqueue_head(&root->log_commit_wait[0]); 1199 init_waitqueue_head(&root->log_commit_wait[1]); 1200 INIT_LIST_HEAD(&root->log_ctxs[0]); 1201 INIT_LIST_HEAD(&root->log_ctxs[1]); 1202 atomic_set(&root->log_commit[0], 0); 1203 atomic_set(&root->log_commit[1], 0); 1204 atomic_set(&root->log_writers, 0); 1205 atomic_set(&root->log_batch, 0); 1206 refcount_set(&root->refs, 1); 1207 atomic_set(&root->will_be_snapshotted, 0); 1208 atomic_set(&root->snapshot_force_cow, 0); 1209 atomic_set(&root->nr_swapfiles, 0); 1210 root->log_transid = 0; 1211 root->log_transid_committed = -1; 1212 root->last_log_commit = 0; 1213 if (!dummy) 1214 extent_io_tree_init(fs_info, &root->dirty_log_pages, NULL); 1215 1216 memset(&root->root_key, 0, sizeof(root->root_key)); 1217 memset(&root->root_item, 0, sizeof(root->root_item)); 1218 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1219 if (!dummy) 1220 root->defrag_trans_start = fs_info->generation; 1221 else 1222 root->defrag_trans_start = 0; 1223 root->root_key.objectid = objectid; 1224 root->anon_dev = 0; 1225 1226 spin_lock_init(&root->root_item_lock); 1227 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1228 } 1229 1230 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1231 gfp_t flags) 1232 { 1233 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1234 if (root) 1235 root->fs_info = fs_info; 1236 return root; 1237 } 1238 1239 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1240 /* Should only be used by the testing infrastructure */ 1241 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1242 { 1243 struct btrfs_root *root; 1244 1245 if (!fs_info) 1246 return ERR_PTR(-EINVAL); 1247 1248 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1249 if (!root) 1250 return ERR_PTR(-ENOMEM); 1251 1252 /* We don't use the stripesize in selftest, set it as sectorsize */ 1253 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1254 root->alloc_bytenr = 0; 1255 1256 return root; 1257 } 1258 #endif 1259 1260 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1261 struct btrfs_fs_info *fs_info, 1262 u64 objectid) 1263 { 1264 struct extent_buffer *leaf; 1265 struct btrfs_root *tree_root = fs_info->tree_root; 1266 struct btrfs_root *root; 1267 struct btrfs_key key; 1268 unsigned int nofs_flag; 1269 int ret = 0; 1270 uuid_le uuid = NULL_UUID_LE; 1271 1272 /* 1273 * We're holding a transaction handle, so use a NOFS memory allocation 1274 * context to avoid deadlock if reclaim happens. 1275 */ 1276 nofs_flag = memalloc_nofs_save(); 1277 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1278 memalloc_nofs_restore(nofs_flag); 1279 if (!root) 1280 return ERR_PTR(-ENOMEM); 1281 1282 __setup_root(root, fs_info, objectid); 1283 root->root_key.objectid = objectid; 1284 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1285 root->root_key.offset = 0; 1286 1287 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1288 if (IS_ERR(leaf)) { 1289 ret = PTR_ERR(leaf); 1290 leaf = NULL; 1291 goto fail; 1292 } 1293 1294 root->node = leaf; 1295 btrfs_mark_buffer_dirty(leaf); 1296 1297 root->commit_root = btrfs_root_node(root); 1298 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1299 1300 root->root_item.flags = 0; 1301 root->root_item.byte_limit = 0; 1302 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1303 btrfs_set_root_generation(&root->root_item, trans->transid); 1304 btrfs_set_root_level(&root->root_item, 0); 1305 btrfs_set_root_refs(&root->root_item, 1); 1306 btrfs_set_root_used(&root->root_item, leaf->len); 1307 btrfs_set_root_last_snapshot(&root->root_item, 0); 1308 btrfs_set_root_dirid(&root->root_item, 0); 1309 if (is_fstree(objectid)) 1310 uuid_le_gen(&uuid); 1311 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1312 root->root_item.drop_level = 0; 1313 1314 key.objectid = objectid; 1315 key.type = BTRFS_ROOT_ITEM_KEY; 1316 key.offset = 0; 1317 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1318 if (ret) 1319 goto fail; 1320 1321 btrfs_tree_unlock(leaf); 1322 1323 return root; 1324 1325 fail: 1326 if (leaf) { 1327 btrfs_tree_unlock(leaf); 1328 free_extent_buffer(root->commit_root); 1329 free_extent_buffer(leaf); 1330 } 1331 kfree(root); 1332 1333 return ERR_PTR(ret); 1334 } 1335 1336 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1337 struct btrfs_fs_info *fs_info) 1338 { 1339 struct btrfs_root *root; 1340 struct extent_buffer *leaf; 1341 1342 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1343 if (!root) 1344 return ERR_PTR(-ENOMEM); 1345 1346 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1347 1348 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1349 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1350 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1351 1352 /* 1353 * DON'T set REF_COWS for log trees 1354 * 1355 * log trees do not get reference counted because they go away 1356 * before a real commit is actually done. They do store pointers 1357 * to file data extents, and those reference counts still get 1358 * updated (along with back refs to the log tree). 1359 */ 1360 1361 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1362 NULL, 0, 0, 0); 1363 if (IS_ERR(leaf)) { 1364 kfree(root); 1365 return ERR_CAST(leaf); 1366 } 1367 1368 root->node = leaf; 1369 1370 btrfs_mark_buffer_dirty(root->node); 1371 btrfs_tree_unlock(root->node); 1372 return root; 1373 } 1374 1375 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1376 struct btrfs_fs_info *fs_info) 1377 { 1378 struct btrfs_root *log_root; 1379 1380 log_root = alloc_log_tree(trans, fs_info); 1381 if (IS_ERR(log_root)) 1382 return PTR_ERR(log_root); 1383 WARN_ON(fs_info->log_root_tree); 1384 fs_info->log_root_tree = log_root; 1385 return 0; 1386 } 1387 1388 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1389 struct btrfs_root *root) 1390 { 1391 struct btrfs_fs_info *fs_info = root->fs_info; 1392 struct btrfs_root *log_root; 1393 struct btrfs_inode_item *inode_item; 1394 1395 log_root = alloc_log_tree(trans, fs_info); 1396 if (IS_ERR(log_root)) 1397 return PTR_ERR(log_root); 1398 1399 log_root->last_trans = trans->transid; 1400 log_root->root_key.offset = root->root_key.objectid; 1401 1402 inode_item = &log_root->root_item.inode; 1403 btrfs_set_stack_inode_generation(inode_item, 1); 1404 btrfs_set_stack_inode_size(inode_item, 3); 1405 btrfs_set_stack_inode_nlink(inode_item, 1); 1406 btrfs_set_stack_inode_nbytes(inode_item, 1407 fs_info->nodesize); 1408 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1409 1410 btrfs_set_root_node(&log_root->root_item, log_root->node); 1411 1412 WARN_ON(root->log_root); 1413 root->log_root = log_root; 1414 root->log_transid = 0; 1415 root->log_transid_committed = -1; 1416 root->last_log_commit = 0; 1417 return 0; 1418 } 1419 1420 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1421 struct btrfs_key *key) 1422 { 1423 struct btrfs_root *root; 1424 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1425 struct btrfs_path *path; 1426 u64 generation; 1427 int ret; 1428 int level; 1429 1430 path = btrfs_alloc_path(); 1431 if (!path) 1432 return ERR_PTR(-ENOMEM); 1433 1434 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1435 if (!root) { 1436 ret = -ENOMEM; 1437 goto alloc_fail; 1438 } 1439 1440 __setup_root(root, fs_info, key->objectid); 1441 1442 ret = btrfs_find_root(tree_root, key, path, 1443 &root->root_item, &root->root_key); 1444 if (ret) { 1445 if (ret > 0) 1446 ret = -ENOENT; 1447 goto find_fail; 1448 } 1449 1450 generation = btrfs_root_generation(&root->root_item); 1451 level = btrfs_root_level(&root->root_item); 1452 root->node = read_tree_block(fs_info, 1453 btrfs_root_bytenr(&root->root_item), 1454 generation, level, NULL); 1455 if (IS_ERR(root->node)) { 1456 ret = PTR_ERR(root->node); 1457 goto find_fail; 1458 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1459 ret = -EIO; 1460 free_extent_buffer(root->node); 1461 goto find_fail; 1462 } 1463 root->commit_root = btrfs_root_node(root); 1464 out: 1465 btrfs_free_path(path); 1466 return root; 1467 1468 find_fail: 1469 kfree(root); 1470 alloc_fail: 1471 root = ERR_PTR(ret); 1472 goto out; 1473 } 1474 1475 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1476 struct btrfs_key *location) 1477 { 1478 struct btrfs_root *root; 1479 1480 root = btrfs_read_tree_root(tree_root, location); 1481 if (IS_ERR(root)) 1482 return root; 1483 1484 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1485 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1486 btrfs_check_and_init_root_item(&root->root_item); 1487 } 1488 1489 return root; 1490 } 1491 1492 int btrfs_init_fs_root(struct btrfs_root *root) 1493 { 1494 int ret; 1495 struct btrfs_subvolume_writers *writers; 1496 1497 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1498 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1499 GFP_NOFS); 1500 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1501 ret = -ENOMEM; 1502 goto fail; 1503 } 1504 1505 writers = btrfs_alloc_subvolume_writers(); 1506 if (IS_ERR(writers)) { 1507 ret = PTR_ERR(writers); 1508 goto fail; 1509 } 1510 root->subv_writers = writers; 1511 1512 btrfs_init_free_ino_ctl(root); 1513 spin_lock_init(&root->ino_cache_lock); 1514 init_waitqueue_head(&root->ino_cache_wait); 1515 1516 ret = get_anon_bdev(&root->anon_dev); 1517 if (ret) 1518 goto fail; 1519 1520 mutex_lock(&root->objectid_mutex); 1521 ret = btrfs_find_highest_objectid(root, 1522 &root->highest_objectid); 1523 if (ret) { 1524 mutex_unlock(&root->objectid_mutex); 1525 goto fail; 1526 } 1527 1528 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1529 1530 mutex_unlock(&root->objectid_mutex); 1531 1532 return 0; 1533 fail: 1534 /* The caller is responsible to call btrfs_free_fs_root */ 1535 return ret; 1536 } 1537 1538 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1539 u64 root_id) 1540 { 1541 struct btrfs_root *root; 1542 1543 spin_lock(&fs_info->fs_roots_radix_lock); 1544 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1545 (unsigned long)root_id); 1546 spin_unlock(&fs_info->fs_roots_radix_lock); 1547 return root; 1548 } 1549 1550 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1551 struct btrfs_root *root) 1552 { 1553 int ret; 1554 1555 ret = radix_tree_preload(GFP_NOFS); 1556 if (ret) 1557 return ret; 1558 1559 spin_lock(&fs_info->fs_roots_radix_lock); 1560 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1561 (unsigned long)root->root_key.objectid, 1562 root); 1563 if (ret == 0) 1564 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1565 spin_unlock(&fs_info->fs_roots_radix_lock); 1566 radix_tree_preload_end(); 1567 1568 return ret; 1569 } 1570 1571 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1572 struct btrfs_key *location, 1573 bool check_ref) 1574 { 1575 struct btrfs_root *root; 1576 struct btrfs_path *path; 1577 struct btrfs_key key; 1578 int ret; 1579 1580 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1581 return fs_info->tree_root; 1582 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1583 return fs_info->extent_root; 1584 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1585 return fs_info->chunk_root; 1586 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1587 return fs_info->dev_root; 1588 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1589 return fs_info->csum_root; 1590 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1591 return fs_info->quota_root ? fs_info->quota_root : 1592 ERR_PTR(-ENOENT); 1593 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1594 return fs_info->uuid_root ? fs_info->uuid_root : 1595 ERR_PTR(-ENOENT); 1596 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1597 return fs_info->free_space_root ? fs_info->free_space_root : 1598 ERR_PTR(-ENOENT); 1599 again: 1600 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1601 if (root) { 1602 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1603 return ERR_PTR(-ENOENT); 1604 return root; 1605 } 1606 1607 root = btrfs_read_fs_root(fs_info->tree_root, location); 1608 if (IS_ERR(root)) 1609 return root; 1610 1611 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1612 ret = -ENOENT; 1613 goto fail; 1614 } 1615 1616 ret = btrfs_init_fs_root(root); 1617 if (ret) 1618 goto fail; 1619 1620 path = btrfs_alloc_path(); 1621 if (!path) { 1622 ret = -ENOMEM; 1623 goto fail; 1624 } 1625 key.objectid = BTRFS_ORPHAN_OBJECTID; 1626 key.type = BTRFS_ORPHAN_ITEM_KEY; 1627 key.offset = location->objectid; 1628 1629 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1630 btrfs_free_path(path); 1631 if (ret < 0) 1632 goto fail; 1633 if (ret == 0) 1634 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1635 1636 ret = btrfs_insert_fs_root(fs_info, root); 1637 if (ret) { 1638 if (ret == -EEXIST) { 1639 btrfs_free_fs_root(root); 1640 goto again; 1641 } 1642 goto fail; 1643 } 1644 return root; 1645 fail: 1646 btrfs_free_fs_root(root); 1647 return ERR_PTR(ret); 1648 } 1649 1650 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1651 { 1652 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1653 int ret = 0; 1654 struct btrfs_device *device; 1655 struct backing_dev_info *bdi; 1656 1657 rcu_read_lock(); 1658 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1659 if (!device->bdev) 1660 continue; 1661 bdi = device->bdev->bd_bdi; 1662 if (bdi_congested(bdi, bdi_bits)) { 1663 ret = 1; 1664 break; 1665 } 1666 } 1667 rcu_read_unlock(); 1668 return ret; 1669 } 1670 1671 /* 1672 * called by the kthread helper functions to finally call the bio end_io 1673 * functions. This is where read checksum verification actually happens 1674 */ 1675 static void end_workqueue_fn(struct btrfs_work *work) 1676 { 1677 struct bio *bio; 1678 struct btrfs_end_io_wq *end_io_wq; 1679 1680 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1681 bio = end_io_wq->bio; 1682 1683 bio->bi_status = end_io_wq->status; 1684 bio->bi_private = end_io_wq->private; 1685 bio->bi_end_io = end_io_wq->end_io; 1686 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1687 bio_endio(bio); 1688 } 1689 1690 static int cleaner_kthread(void *arg) 1691 { 1692 struct btrfs_root *root = arg; 1693 struct btrfs_fs_info *fs_info = root->fs_info; 1694 int again; 1695 1696 while (1) { 1697 again = 0; 1698 1699 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1700 1701 /* Make the cleaner go to sleep early. */ 1702 if (btrfs_need_cleaner_sleep(fs_info)) 1703 goto sleep; 1704 1705 /* 1706 * Do not do anything if we might cause open_ctree() to block 1707 * before we have finished mounting the filesystem. 1708 */ 1709 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1710 goto sleep; 1711 1712 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1713 goto sleep; 1714 1715 /* 1716 * Avoid the problem that we change the status of the fs 1717 * during the above check and trylock. 1718 */ 1719 if (btrfs_need_cleaner_sleep(fs_info)) { 1720 mutex_unlock(&fs_info->cleaner_mutex); 1721 goto sleep; 1722 } 1723 1724 btrfs_run_delayed_iputs(fs_info); 1725 1726 again = btrfs_clean_one_deleted_snapshot(root); 1727 mutex_unlock(&fs_info->cleaner_mutex); 1728 1729 /* 1730 * The defragger has dealt with the R/O remount and umount, 1731 * needn't do anything special here. 1732 */ 1733 btrfs_run_defrag_inodes(fs_info); 1734 1735 /* 1736 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1737 * with relocation (btrfs_relocate_chunk) and relocation 1738 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1739 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1740 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1741 * unused block groups. 1742 */ 1743 btrfs_delete_unused_bgs(fs_info); 1744 sleep: 1745 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1746 if (kthread_should_park()) 1747 kthread_parkme(); 1748 if (kthread_should_stop()) 1749 return 0; 1750 if (!again) { 1751 set_current_state(TASK_INTERRUPTIBLE); 1752 schedule(); 1753 __set_current_state(TASK_RUNNING); 1754 } 1755 } 1756 } 1757 1758 static int transaction_kthread(void *arg) 1759 { 1760 struct btrfs_root *root = arg; 1761 struct btrfs_fs_info *fs_info = root->fs_info; 1762 struct btrfs_trans_handle *trans; 1763 struct btrfs_transaction *cur; 1764 u64 transid; 1765 time64_t now; 1766 unsigned long delay; 1767 bool cannot_commit; 1768 1769 do { 1770 cannot_commit = false; 1771 delay = HZ * fs_info->commit_interval; 1772 mutex_lock(&fs_info->transaction_kthread_mutex); 1773 1774 spin_lock(&fs_info->trans_lock); 1775 cur = fs_info->running_transaction; 1776 if (!cur) { 1777 spin_unlock(&fs_info->trans_lock); 1778 goto sleep; 1779 } 1780 1781 now = ktime_get_seconds(); 1782 if (cur->state < TRANS_STATE_BLOCKED && 1783 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1784 (now < cur->start_time || 1785 now - cur->start_time < fs_info->commit_interval)) { 1786 spin_unlock(&fs_info->trans_lock); 1787 delay = HZ * 5; 1788 goto sleep; 1789 } 1790 transid = cur->transid; 1791 spin_unlock(&fs_info->trans_lock); 1792 1793 /* If the file system is aborted, this will always fail. */ 1794 trans = btrfs_attach_transaction(root); 1795 if (IS_ERR(trans)) { 1796 if (PTR_ERR(trans) != -ENOENT) 1797 cannot_commit = true; 1798 goto sleep; 1799 } 1800 if (transid == trans->transid) { 1801 btrfs_commit_transaction(trans); 1802 } else { 1803 btrfs_end_transaction(trans); 1804 } 1805 sleep: 1806 wake_up_process(fs_info->cleaner_kthread); 1807 mutex_unlock(&fs_info->transaction_kthread_mutex); 1808 1809 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1810 &fs_info->fs_state))) 1811 btrfs_cleanup_transaction(fs_info); 1812 if (!kthread_should_stop() && 1813 (!btrfs_transaction_blocked(fs_info) || 1814 cannot_commit)) 1815 schedule_timeout_interruptible(delay); 1816 } while (!kthread_should_stop()); 1817 return 0; 1818 } 1819 1820 /* 1821 * this will find the highest generation in the array of 1822 * root backups. The index of the highest array is returned, 1823 * or -1 if we can't find anything. 1824 * 1825 * We check to make sure the array is valid by comparing the 1826 * generation of the latest root in the array with the generation 1827 * in the super block. If they don't match we pitch it. 1828 */ 1829 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1830 { 1831 u64 cur; 1832 int newest_index = -1; 1833 struct btrfs_root_backup *root_backup; 1834 int i; 1835 1836 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1837 root_backup = info->super_copy->super_roots + i; 1838 cur = btrfs_backup_tree_root_gen(root_backup); 1839 if (cur == newest_gen) 1840 newest_index = i; 1841 } 1842 1843 /* check to see if we actually wrapped around */ 1844 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1845 root_backup = info->super_copy->super_roots; 1846 cur = btrfs_backup_tree_root_gen(root_backup); 1847 if (cur == newest_gen) 1848 newest_index = 0; 1849 } 1850 return newest_index; 1851 } 1852 1853 1854 /* 1855 * find the oldest backup so we know where to store new entries 1856 * in the backup array. This will set the backup_root_index 1857 * field in the fs_info struct 1858 */ 1859 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1860 u64 newest_gen) 1861 { 1862 int newest_index = -1; 1863 1864 newest_index = find_newest_super_backup(info, newest_gen); 1865 /* if there was garbage in there, just move along */ 1866 if (newest_index == -1) { 1867 info->backup_root_index = 0; 1868 } else { 1869 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1870 } 1871 } 1872 1873 /* 1874 * copy all the root pointers into the super backup array. 1875 * this will bump the backup pointer by one when it is 1876 * done 1877 */ 1878 static void backup_super_roots(struct btrfs_fs_info *info) 1879 { 1880 int next_backup; 1881 struct btrfs_root_backup *root_backup; 1882 int last_backup; 1883 1884 next_backup = info->backup_root_index; 1885 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1886 BTRFS_NUM_BACKUP_ROOTS; 1887 1888 /* 1889 * just overwrite the last backup if we're at the same generation 1890 * this happens only at umount 1891 */ 1892 root_backup = info->super_for_commit->super_roots + last_backup; 1893 if (btrfs_backup_tree_root_gen(root_backup) == 1894 btrfs_header_generation(info->tree_root->node)) 1895 next_backup = last_backup; 1896 1897 root_backup = info->super_for_commit->super_roots + next_backup; 1898 1899 /* 1900 * make sure all of our padding and empty slots get zero filled 1901 * regardless of which ones we use today 1902 */ 1903 memset(root_backup, 0, sizeof(*root_backup)); 1904 1905 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1906 1907 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1908 btrfs_set_backup_tree_root_gen(root_backup, 1909 btrfs_header_generation(info->tree_root->node)); 1910 1911 btrfs_set_backup_tree_root_level(root_backup, 1912 btrfs_header_level(info->tree_root->node)); 1913 1914 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1915 btrfs_set_backup_chunk_root_gen(root_backup, 1916 btrfs_header_generation(info->chunk_root->node)); 1917 btrfs_set_backup_chunk_root_level(root_backup, 1918 btrfs_header_level(info->chunk_root->node)); 1919 1920 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1921 btrfs_set_backup_extent_root_gen(root_backup, 1922 btrfs_header_generation(info->extent_root->node)); 1923 btrfs_set_backup_extent_root_level(root_backup, 1924 btrfs_header_level(info->extent_root->node)); 1925 1926 /* 1927 * we might commit during log recovery, which happens before we set 1928 * the fs_root. Make sure it is valid before we fill it in. 1929 */ 1930 if (info->fs_root && info->fs_root->node) { 1931 btrfs_set_backup_fs_root(root_backup, 1932 info->fs_root->node->start); 1933 btrfs_set_backup_fs_root_gen(root_backup, 1934 btrfs_header_generation(info->fs_root->node)); 1935 btrfs_set_backup_fs_root_level(root_backup, 1936 btrfs_header_level(info->fs_root->node)); 1937 } 1938 1939 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1940 btrfs_set_backup_dev_root_gen(root_backup, 1941 btrfs_header_generation(info->dev_root->node)); 1942 btrfs_set_backup_dev_root_level(root_backup, 1943 btrfs_header_level(info->dev_root->node)); 1944 1945 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1946 btrfs_set_backup_csum_root_gen(root_backup, 1947 btrfs_header_generation(info->csum_root->node)); 1948 btrfs_set_backup_csum_root_level(root_backup, 1949 btrfs_header_level(info->csum_root->node)); 1950 1951 btrfs_set_backup_total_bytes(root_backup, 1952 btrfs_super_total_bytes(info->super_copy)); 1953 btrfs_set_backup_bytes_used(root_backup, 1954 btrfs_super_bytes_used(info->super_copy)); 1955 btrfs_set_backup_num_devices(root_backup, 1956 btrfs_super_num_devices(info->super_copy)); 1957 1958 /* 1959 * if we don't copy this out to the super_copy, it won't get remembered 1960 * for the next commit 1961 */ 1962 memcpy(&info->super_copy->super_roots, 1963 &info->super_for_commit->super_roots, 1964 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1965 } 1966 1967 /* 1968 * this copies info out of the root backup array and back into 1969 * the in-memory super block. It is meant to help iterate through 1970 * the array, so you send it the number of backups you've already 1971 * tried and the last backup index you used. 1972 * 1973 * this returns -1 when it has tried all the backups 1974 */ 1975 static noinline int next_root_backup(struct btrfs_fs_info *info, 1976 struct btrfs_super_block *super, 1977 int *num_backups_tried, int *backup_index) 1978 { 1979 struct btrfs_root_backup *root_backup; 1980 int newest = *backup_index; 1981 1982 if (*num_backups_tried == 0) { 1983 u64 gen = btrfs_super_generation(super); 1984 1985 newest = find_newest_super_backup(info, gen); 1986 if (newest == -1) 1987 return -1; 1988 1989 *backup_index = newest; 1990 *num_backups_tried = 1; 1991 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1992 /* we've tried all the backups, all done */ 1993 return -1; 1994 } else { 1995 /* jump to the next oldest backup */ 1996 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1997 BTRFS_NUM_BACKUP_ROOTS; 1998 *backup_index = newest; 1999 *num_backups_tried += 1; 2000 } 2001 root_backup = super->super_roots + newest; 2002 2003 btrfs_set_super_generation(super, 2004 btrfs_backup_tree_root_gen(root_backup)); 2005 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2006 btrfs_set_super_root_level(super, 2007 btrfs_backup_tree_root_level(root_backup)); 2008 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2009 2010 /* 2011 * fixme: the total bytes and num_devices need to match or we should 2012 * need a fsck 2013 */ 2014 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2015 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2016 return 0; 2017 } 2018 2019 /* helper to cleanup workers */ 2020 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2021 { 2022 btrfs_destroy_workqueue(fs_info->fixup_workers); 2023 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2024 btrfs_destroy_workqueue(fs_info->workers); 2025 btrfs_destroy_workqueue(fs_info->endio_workers); 2026 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2027 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2028 btrfs_destroy_workqueue(fs_info->rmw_workers); 2029 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2030 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2031 btrfs_destroy_workqueue(fs_info->submit_workers); 2032 btrfs_destroy_workqueue(fs_info->delayed_workers); 2033 btrfs_destroy_workqueue(fs_info->caching_workers); 2034 btrfs_destroy_workqueue(fs_info->readahead_workers); 2035 btrfs_destroy_workqueue(fs_info->flush_workers); 2036 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2037 btrfs_destroy_workqueue(fs_info->extent_workers); 2038 /* 2039 * Now that all other work queues are destroyed, we can safely destroy 2040 * the queues used for metadata I/O, since tasks from those other work 2041 * queues can do metadata I/O operations. 2042 */ 2043 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2044 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2045 } 2046 2047 static void free_root_extent_buffers(struct btrfs_root *root) 2048 { 2049 if (root) { 2050 free_extent_buffer(root->node); 2051 free_extent_buffer(root->commit_root); 2052 root->node = NULL; 2053 root->commit_root = NULL; 2054 } 2055 } 2056 2057 /* helper to cleanup tree roots */ 2058 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2059 { 2060 free_root_extent_buffers(info->tree_root); 2061 2062 free_root_extent_buffers(info->dev_root); 2063 free_root_extent_buffers(info->extent_root); 2064 free_root_extent_buffers(info->csum_root); 2065 free_root_extent_buffers(info->quota_root); 2066 free_root_extent_buffers(info->uuid_root); 2067 if (chunk_root) 2068 free_root_extent_buffers(info->chunk_root); 2069 free_root_extent_buffers(info->free_space_root); 2070 } 2071 2072 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2073 { 2074 int ret; 2075 struct btrfs_root *gang[8]; 2076 int i; 2077 2078 while (!list_empty(&fs_info->dead_roots)) { 2079 gang[0] = list_entry(fs_info->dead_roots.next, 2080 struct btrfs_root, root_list); 2081 list_del(&gang[0]->root_list); 2082 2083 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2084 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2085 } else { 2086 free_extent_buffer(gang[0]->node); 2087 free_extent_buffer(gang[0]->commit_root); 2088 btrfs_put_fs_root(gang[0]); 2089 } 2090 } 2091 2092 while (1) { 2093 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2094 (void **)gang, 0, 2095 ARRAY_SIZE(gang)); 2096 if (!ret) 2097 break; 2098 for (i = 0; i < ret; i++) 2099 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2100 } 2101 2102 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2103 btrfs_free_log_root_tree(NULL, fs_info); 2104 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2105 } 2106 } 2107 2108 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2109 { 2110 mutex_init(&fs_info->scrub_lock); 2111 atomic_set(&fs_info->scrubs_running, 0); 2112 atomic_set(&fs_info->scrub_pause_req, 0); 2113 atomic_set(&fs_info->scrubs_paused, 0); 2114 atomic_set(&fs_info->scrub_cancel_req, 0); 2115 init_waitqueue_head(&fs_info->scrub_pause_wait); 2116 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2117 } 2118 2119 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2120 { 2121 spin_lock_init(&fs_info->balance_lock); 2122 mutex_init(&fs_info->balance_mutex); 2123 atomic_set(&fs_info->balance_pause_req, 0); 2124 atomic_set(&fs_info->balance_cancel_req, 0); 2125 fs_info->balance_ctl = NULL; 2126 init_waitqueue_head(&fs_info->balance_wait_q); 2127 } 2128 2129 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2130 { 2131 struct inode *inode = fs_info->btree_inode; 2132 2133 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2134 set_nlink(inode, 1); 2135 /* 2136 * we set the i_size on the btree inode to the max possible int. 2137 * the real end of the address space is determined by all of 2138 * the devices in the system 2139 */ 2140 inode->i_size = OFFSET_MAX; 2141 inode->i_mapping->a_ops = &btree_aops; 2142 2143 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2144 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, inode); 2145 BTRFS_I(inode)->io_tree.track_uptodate = false; 2146 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2147 2148 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2149 2150 BTRFS_I(inode)->root = fs_info->tree_root; 2151 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2152 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2153 btrfs_insert_inode_hash(inode); 2154 } 2155 2156 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2157 { 2158 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2159 init_rwsem(&fs_info->dev_replace.rwsem); 2160 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2161 } 2162 2163 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2164 { 2165 spin_lock_init(&fs_info->qgroup_lock); 2166 mutex_init(&fs_info->qgroup_ioctl_lock); 2167 fs_info->qgroup_tree = RB_ROOT; 2168 fs_info->qgroup_op_tree = RB_ROOT; 2169 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2170 fs_info->qgroup_seq = 1; 2171 fs_info->qgroup_ulist = NULL; 2172 fs_info->qgroup_rescan_running = false; 2173 mutex_init(&fs_info->qgroup_rescan_lock); 2174 } 2175 2176 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2177 struct btrfs_fs_devices *fs_devices) 2178 { 2179 u32 max_active = fs_info->thread_pool_size; 2180 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2181 2182 fs_info->workers = 2183 btrfs_alloc_workqueue(fs_info, "worker", 2184 flags | WQ_HIGHPRI, max_active, 16); 2185 2186 fs_info->delalloc_workers = 2187 btrfs_alloc_workqueue(fs_info, "delalloc", 2188 flags, max_active, 2); 2189 2190 fs_info->flush_workers = 2191 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2192 flags, max_active, 0); 2193 2194 fs_info->caching_workers = 2195 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2196 2197 /* 2198 * a higher idle thresh on the submit workers makes it much more 2199 * likely that bios will be send down in a sane order to the 2200 * devices 2201 */ 2202 fs_info->submit_workers = 2203 btrfs_alloc_workqueue(fs_info, "submit", flags, 2204 min_t(u64, fs_devices->num_devices, 2205 max_active), 64); 2206 2207 fs_info->fixup_workers = 2208 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2209 2210 /* 2211 * endios are largely parallel and should have a very 2212 * low idle thresh 2213 */ 2214 fs_info->endio_workers = 2215 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2216 fs_info->endio_meta_workers = 2217 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2218 max_active, 4); 2219 fs_info->endio_meta_write_workers = 2220 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2221 max_active, 2); 2222 fs_info->endio_raid56_workers = 2223 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2224 max_active, 4); 2225 fs_info->endio_repair_workers = 2226 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2227 fs_info->rmw_workers = 2228 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2229 fs_info->endio_write_workers = 2230 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2231 max_active, 2); 2232 fs_info->endio_freespace_worker = 2233 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2234 max_active, 0); 2235 fs_info->delayed_workers = 2236 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2237 max_active, 0); 2238 fs_info->readahead_workers = 2239 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2240 max_active, 2); 2241 fs_info->qgroup_rescan_workers = 2242 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2243 fs_info->extent_workers = 2244 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2245 min_t(u64, fs_devices->num_devices, 2246 max_active), 8); 2247 2248 if (!(fs_info->workers && fs_info->delalloc_workers && 2249 fs_info->submit_workers && fs_info->flush_workers && 2250 fs_info->endio_workers && fs_info->endio_meta_workers && 2251 fs_info->endio_meta_write_workers && 2252 fs_info->endio_repair_workers && 2253 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2254 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2255 fs_info->caching_workers && fs_info->readahead_workers && 2256 fs_info->fixup_workers && fs_info->delayed_workers && 2257 fs_info->extent_workers && 2258 fs_info->qgroup_rescan_workers)) { 2259 return -ENOMEM; 2260 } 2261 2262 return 0; 2263 } 2264 2265 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2266 struct btrfs_fs_devices *fs_devices) 2267 { 2268 int ret; 2269 struct btrfs_root *log_tree_root; 2270 struct btrfs_super_block *disk_super = fs_info->super_copy; 2271 u64 bytenr = btrfs_super_log_root(disk_super); 2272 int level = btrfs_super_log_root_level(disk_super); 2273 2274 if (fs_devices->rw_devices == 0) { 2275 btrfs_warn(fs_info, "log replay required on RO media"); 2276 return -EIO; 2277 } 2278 2279 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2280 if (!log_tree_root) 2281 return -ENOMEM; 2282 2283 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2284 2285 log_tree_root->node = read_tree_block(fs_info, bytenr, 2286 fs_info->generation + 1, 2287 level, NULL); 2288 if (IS_ERR(log_tree_root->node)) { 2289 btrfs_warn(fs_info, "failed to read log tree"); 2290 ret = PTR_ERR(log_tree_root->node); 2291 kfree(log_tree_root); 2292 return ret; 2293 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2294 btrfs_err(fs_info, "failed to read log tree"); 2295 free_extent_buffer(log_tree_root->node); 2296 kfree(log_tree_root); 2297 return -EIO; 2298 } 2299 /* returns with log_tree_root freed on success */ 2300 ret = btrfs_recover_log_trees(log_tree_root); 2301 if (ret) { 2302 btrfs_handle_fs_error(fs_info, ret, 2303 "Failed to recover log tree"); 2304 free_extent_buffer(log_tree_root->node); 2305 kfree(log_tree_root); 2306 return ret; 2307 } 2308 2309 if (sb_rdonly(fs_info->sb)) { 2310 ret = btrfs_commit_super(fs_info); 2311 if (ret) 2312 return ret; 2313 } 2314 2315 return 0; 2316 } 2317 2318 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2319 { 2320 struct btrfs_root *tree_root = fs_info->tree_root; 2321 struct btrfs_root *root; 2322 struct btrfs_key location; 2323 int ret; 2324 2325 BUG_ON(!fs_info->tree_root); 2326 2327 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2328 location.type = BTRFS_ROOT_ITEM_KEY; 2329 location.offset = 0; 2330 2331 root = btrfs_read_tree_root(tree_root, &location); 2332 if (IS_ERR(root)) { 2333 ret = PTR_ERR(root); 2334 goto out; 2335 } 2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2337 fs_info->extent_root = root; 2338 2339 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2340 root = btrfs_read_tree_root(tree_root, &location); 2341 if (IS_ERR(root)) { 2342 ret = PTR_ERR(root); 2343 goto out; 2344 } 2345 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2346 fs_info->dev_root = root; 2347 btrfs_init_devices_late(fs_info); 2348 2349 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2350 root = btrfs_read_tree_root(tree_root, &location); 2351 if (IS_ERR(root)) { 2352 ret = PTR_ERR(root); 2353 goto out; 2354 } 2355 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2356 fs_info->csum_root = root; 2357 2358 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2359 root = btrfs_read_tree_root(tree_root, &location); 2360 if (!IS_ERR(root)) { 2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2362 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2363 fs_info->quota_root = root; 2364 } 2365 2366 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2367 root = btrfs_read_tree_root(tree_root, &location); 2368 if (IS_ERR(root)) { 2369 ret = PTR_ERR(root); 2370 if (ret != -ENOENT) 2371 goto out; 2372 } else { 2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2374 fs_info->uuid_root = root; 2375 } 2376 2377 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2378 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2379 root = btrfs_read_tree_root(tree_root, &location); 2380 if (IS_ERR(root)) { 2381 ret = PTR_ERR(root); 2382 goto out; 2383 } 2384 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2385 fs_info->free_space_root = root; 2386 } 2387 2388 return 0; 2389 out: 2390 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2391 location.objectid, ret); 2392 return ret; 2393 } 2394 2395 /* 2396 * Real super block validation 2397 * NOTE: super csum type and incompat features will not be checked here. 2398 * 2399 * @sb: super block to check 2400 * @mirror_num: the super block number to check its bytenr: 2401 * 0 the primary (1st) sb 2402 * 1, 2 2nd and 3rd backup copy 2403 * -1 skip bytenr check 2404 */ 2405 static int validate_super(struct btrfs_fs_info *fs_info, 2406 struct btrfs_super_block *sb, int mirror_num) 2407 { 2408 u64 nodesize = btrfs_super_nodesize(sb); 2409 u64 sectorsize = btrfs_super_sectorsize(sb); 2410 int ret = 0; 2411 2412 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2413 btrfs_err(fs_info, "no valid FS found"); 2414 ret = -EINVAL; 2415 } 2416 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2417 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2418 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2419 ret = -EINVAL; 2420 } 2421 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2422 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2423 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2424 ret = -EINVAL; 2425 } 2426 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2427 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2428 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2429 ret = -EINVAL; 2430 } 2431 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2432 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2433 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2434 ret = -EINVAL; 2435 } 2436 2437 /* 2438 * Check sectorsize and nodesize first, other check will need it. 2439 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2440 */ 2441 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2442 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2443 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2444 ret = -EINVAL; 2445 } 2446 /* Only PAGE SIZE is supported yet */ 2447 if (sectorsize != PAGE_SIZE) { 2448 btrfs_err(fs_info, 2449 "sectorsize %llu not supported yet, only support %lu", 2450 sectorsize, PAGE_SIZE); 2451 ret = -EINVAL; 2452 } 2453 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2454 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2455 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2456 ret = -EINVAL; 2457 } 2458 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2459 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2460 le32_to_cpu(sb->__unused_leafsize), nodesize); 2461 ret = -EINVAL; 2462 } 2463 2464 /* Root alignment check */ 2465 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2466 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2467 btrfs_super_root(sb)); 2468 ret = -EINVAL; 2469 } 2470 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2471 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2472 btrfs_super_chunk_root(sb)); 2473 ret = -EINVAL; 2474 } 2475 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2476 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2477 btrfs_super_log_root(sb)); 2478 ret = -EINVAL; 2479 } 2480 2481 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2482 BTRFS_FSID_SIZE) != 0) { 2483 btrfs_err(fs_info, 2484 "dev_item UUID does not match metadata fsid: %pU != %pU", 2485 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2486 ret = -EINVAL; 2487 } 2488 2489 /* 2490 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2491 * done later 2492 */ 2493 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2494 btrfs_err(fs_info, "bytes_used is too small %llu", 2495 btrfs_super_bytes_used(sb)); 2496 ret = -EINVAL; 2497 } 2498 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2499 btrfs_err(fs_info, "invalid stripesize %u", 2500 btrfs_super_stripesize(sb)); 2501 ret = -EINVAL; 2502 } 2503 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2504 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2505 btrfs_super_num_devices(sb)); 2506 if (btrfs_super_num_devices(sb) == 0) { 2507 btrfs_err(fs_info, "number of devices is 0"); 2508 ret = -EINVAL; 2509 } 2510 2511 if (mirror_num >= 0 && 2512 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2513 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2514 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2515 ret = -EINVAL; 2516 } 2517 2518 /* 2519 * Obvious sys_chunk_array corruptions, it must hold at least one key 2520 * and one chunk 2521 */ 2522 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2523 btrfs_err(fs_info, "system chunk array too big %u > %u", 2524 btrfs_super_sys_array_size(sb), 2525 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2526 ret = -EINVAL; 2527 } 2528 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2529 + sizeof(struct btrfs_chunk)) { 2530 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2531 btrfs_super_sys_array_size(sb), 2532 sizeof(struct btrfs_disk_key) 2533 + sizeof(struct btrfs_chunk)); 2534 ret = -EINVAL; 2535 } 2536 2537 /* 2538 * The generation is a global counter, we'll trust it more than the others 2539 * but it's still possible that it's the one that's wrong. 2540 */ 2541 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2542 btrfs_warn(fs_info, 2543 "suspicious: generation < chunk_root_generation: %llu < %llu", 2544 btrfs_super_generation(sb), 2545 btrfs_super_chunk_root_generation(sb)); 2546 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2547 && btrfs_super_cache_generation(sb) != (u64)-1) 2548 btrfs_warn(fs_info, 2549 "suspicious: generation < cache_generation: %llu < %llu", 2550 btrfs_super_generation(sb), 2551 btrfs_super_cache_generation(sb)); 2552 2553 return ret; 2554 } 2555 2556 /* 2557 * Validation of super block at mount time. 2558 * Some checks already done early at mount time, like csum type and incompat 2559 * flags will be skipped. 2560 */ 2561 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2562 { 2563 return validate_super(fs_info, fs_info->super_copy, 0); 2564 } 2565 2566 /* 2567 * Validation of super block at write time. 2568 * Some checks like bytenr check will be skipped as their values will be 2569 * overwritten soon. 2570 * Extra checks like csum type and incompat flags will be done here. 2571 */ 2572 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2573 struct btrfs_super_block *sb) 2574 { 2575 int ret; 2576 2577 ret = validate_super(fs_info, sb, -1); 2578 if (ret < 0) 2579 goto out; 2580 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2581 ret = -EUCLEAN; 2582 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2583 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2584 goto out; 2585 } 2586 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2587 ret = -EUCLEAN; 2588 btrfs_err(fs_info, 2589 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2590 btrfs_super_incompat_flags(sb), 2591 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2592 goto out; 2593 } 2594 out: 2595 if (ret < 0) 2596 btrfs_err(fs_info, 2597 "super block corruption detected before writing it to disk"); 2598 return ret; 2599 } 2600 2601 int open_ctree(struct super_block *sb, 2602 struct btrfs_fs_devices *fs_devices, 2603 char *options) 2604 { 2605 u32 sectorsize; 2606 u32 nodesize; 2607 u32 stripesize; 2608 u64 generation; 2609 u64 features; 2610 struct btrfs_key location; 2611 struct buffer_head *bh; 2612 struct btrfs_super_block *disk_super; 2613 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2614 struct btrfs_root *tree_root; 2615 struct btrfs_root *chunk_root; 2616 int ret; 2617 int err = -EINVAL; 2618 int num_backups_tried = 0; 2619 int backup_index = 0; 2620 int clear_free_space_tree = 0; 2621 int level; 2622 2623 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2624 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2625 if (!tree_root || !chunk_root) { 2626 err = -ENOMEM; 2627 goto fail; 2628 } 2629 2630 ret = init_srcu_struct(&fs_info->subvol_srcu); 2631 if (ret) { 2632 err = ret; 2633 goto fail; 2634 } 2635 2636 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2637 if (ret) { 2638 err = ret; 2639 goto fail_srcu; 2640 } 2641 fs_info->dirty_metadata_batch = PAGE_SIZE * 2642 (1 + ilog2(nr_cpu_ids)); 2643 2644 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2645 if (ret) { 2646 err = ret; 2647 goto fail_dirty_metadata_bytes; 2648 } 2649 2650 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2651 GFP_KERNEL); 2652 if (ret) { 2653 err = ret; 2654 goto fail_delalloc_bytes; 2655 } 2656 2657 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2658 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2659 INIT_LIST_HEAD(&fs_info->trans_list); 2660 INIT_LIST_HEAD(&fs_info->dead_roots); 2661 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2662 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2663 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2664 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2665 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2666 spin_lock_init(&fs_info->delalloc_root_lock); 2667 spin_lock_init(&fs_info->trans_lock); 2668 spin_lock_init(&fs_info->fs_roots_radix_lock); 2669 spin_lock_init(&fs_info->delayed_iput_lock); 2670 spin_lock_init(&fs_info->defrag_inodes_lock); 2671 spin_lock_init(&fs_info->tree_mod_seq_lock); 2672 spin_lock_init(&fs_info->super_lock); 2673 spin_lock_init(&fs_info->qgroup_op_lock); 2674 spin_lock_init(&fs_info->buffer_lock); 2675 spin_lock_init(&fs_info->unused_bgs_lock); 2676 rwlock_init(&fs_info->tree_mod_log_lock); 2677 mutex_init(&fs_info->unused_bg_unpin_mutex); 2678 mutex_init(&fs_info->delete_unused_bgs_mutex); 2679 mutex_init(&fs_info->reloc_mutex); 2680 mutex_init(&fs_info->delalloc_root_mutex); 2681 seqlock_init(&fs_info->profiles_lock); 2682 2683 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2684 INIT_LIST_HEAD(&fs_info->space_info); 2685 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2686 INIT_LIST_HEAD(&fs_info->unused_bgs); 2687 btrfs_mapping_init(&fs_info->mapping_tree); 2688 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2689 BTRFS_BLOCK_RSV_GLOBAL); 2690 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2691 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2692 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2693 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2694 BTRFS_BLOCK_RSV_DELOPS); 2695 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2696 BTRFS_BLOCK_RSV_DELREFS); 2697 2698 atomic_set(&fs_info->async_delalloc_pages, 0); 2699 atomic_set(&fs_info->defrag_running, 0); 2700 atomic_set(&fs_info->qgroup_op_seq, 0); 2701 atomic_set(&fs_info->reada_works_cnt, 0); 2702 atomic_set(&fs_info->nr_delayed_iputs, 0); 2703 atomic64_set(&fs_info->tree_mod_seq, 0); 2704 fs_info->sb = sb; 2705 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2706 fs_info->metadata_ratio = 0; 2707 fs_info->defrag_inodes = RB_ROOT; 2708 atomic64_set(&fs_info->free_chunk_space, 0); 2709 fs_info->tree_mod_log = RB_ROOT; 2710 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2711 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2712 /* readahead state */ 2713 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2714 spin_lock_init(&fs_info->reada_lock); 2715 btrfs_init_ref_verify(fs_info); 2716 2717 fs_info->thread_pool_size = min_t(unsigned long, 2718 num_online_cpus() + 2, 8); 2719 2720 INIT_LIST_HEAD(&fs_info->ordered_roots); 2721 spin_lock_init(&fs_info->ordered_root_lock); 2722 2723 fs_info->btree_inode = new_inode(sb); 2724 if (!fs_info->btree_inode) { 2725 err = -ENOMEM; 2726 goto fail_bio_counter; 2727 } 2728 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2729 2730 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2731 GFP_KERNEL); 2732 if (!fs_info->delayed_root) { 2733 err = -ENOMEM; 2734 goto fail_iput; 2735 } 2736 btrfs_init_delayed_root(fs_info->delayed_root); 2737 2738 btrfs_init_scrub(fs_info); 2739 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2740 fs_info->check_integrity_print_mask = 0; 2741 #endif 2742 btrfs_init_balance(fs_info); 2743 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2744 2745 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2746 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2747 2748 btrfs_init_btree_inode(fs_info); 2749 2750 spin_lock_init(&fs_info->block_group_cache_lock); 2751 fs_info->block_group_cache_tree = RB_ROOT; 2752 fs_info->first_logical_byte = (u64)-1; 2753 2754 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], NULL); 2755 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], NULL); 2756 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2757 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2758 2759 mutex_init(&fs_info->ordered_operations_mutex); 2760 mutex_init(&fs_info->tree_log_mutex); 2761 mutex_init(&fs_info->chunk_mutex); 2762 mutex_init(&fs_info->transaction_kthread_mutex); 2763 mutex_init(&fs_info->cleaner_mutex); 2764 mutex_init(&fs_info->ro_block_group_mutex); 2765 init_rwsem(&fs_info->commit_root_sem); 2766 init_rwsem(&fs_info->cleanup_work_sem); 2767 init_rwsem(&fs_info->subvol_sem); 2768 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2769 2770 btrfs_init_dev_replace_locks(fs_info); 2771 btrfs_init_qgroup(fs_info); 2772 2773 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2774 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2775 2776 init_waitqueue_head(&fs_info->transaction_throttle); 2777 init_waitqueue_head(&fs_info->transaction_wait); 2778 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2779 init_waitqueue_head(&fs_info->async_submit_wait); 2780 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2781 2782 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2783 2784 /* Usable values until the real ones are cached from the superblock */ 2785 fs_info->nodesize = 4096; 2786 fs_info->sectorsize = 4096; 2787 fs_info->stripesize = 4096; 2788 2789 spin_lock_init(&fs_info->swapfile_pins_lock); 2790 fs_info->swapfile_pins = RB_ROOT; 2791 2792 ret = btrfs_alloc_stripe_hash_table(fs_info); 2793 if (ret) { 2794 err = ret; 2795 goto fail_alloc; 2796 } 2797 2798 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2799 2800 invalidate_bdev(fs_devices->latest_bdev); 2801 2802 /* 2803 * Read super block and check the signature bytes only 2804 */ 2805 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2806 if (IS_ERR(bh)) { 2807 err = PTR_ERR(bh); 2808 goto fail_alloc; 2809 } 2810 2811 /* 2812 * We want to check superblock checksum, the type is stored inside. 2813 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2814 */ 2815 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2816 btrfs_err(fs_info, "superblock checksum mismatch"); 2817 err = -EINVAL; 2818 brelse(bh); 2819 goto fail_alloc; 2820 } 2821 2822 /* 2823 * super_copy is zeroed at allocation time and we never touch the 2824 * following bytes up to INFO_SIZE, the checksum is calculated from 2825 * the whole block of INFO_SIZE 2826 */ 2827 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2828 brelse(bh); 2829 2830 disk_super = fs_info->super_copy; 2831 2832 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2833 BTRFS_FSID_SIZE)); 2834 2835 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2836 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2837 fs_info->super_copy->metadata_uuid, 2838 BTRFS_FSID_SIZE)); 2839 } 2840 2841 features = btrfs_super_flags(disk_super); 2842 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2843 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2844 btrfs_set_super_flags(disk_super, features); 2845 btrfs_info(fs_info, 2846 "found metadata UUID change in progress flag, clearing"); 2847 } 2848 2849 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2850 sizeof(*fs_info->super_for_commit)); 2851 2852 ret = btrfs_validate_mount_super(fs_info); 2853 if (ret) { 2854 btrfs_err(fs_info, "superblock contains fatal errors"); 2855 err = -EINVAL; 2856 goto fail_alloc; 2857 } 2858 2859 if (!btrfs_super_root(disk_super)) 2860 goto fail_alloc; 2861 2862 /* check FS state, whether FS is broken. */ 2863 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2864 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2865 2866 /* 2867 * run through our array of backup supers and setup 2868 * our ring pointer to the oldest one 2869 */ 2870 generation = btrfs_super_generation(disk_super); 2871 find_oldest_super_backup(fs_info, generation); 2872 2873 /* 2874 * In the long term, we'll store the compression type in the super 2875 * block, and it'll be used for per file compression control. 2876 */ 2877 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2878 2879 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2880 if (ret) { 2881 err = ret; 2882 goto fail_alloc; 2883 } 2884 2885 features = btrfs_super_incompat_flags(disk_super) & 2886 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2887 if (features) { 2888 btrfs_err(fs_info, 2889 "cannot mount because of unsupported optional features (%llx)", 2890 features); 2891 err = -EINVAL; 2892 goto fail_alloc; 2893 } 2894 2895 features = btrfs_super_incompat_flags(disk_super); 2896 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2897 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2898 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2899 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2900 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2901 2902 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2903 btrfs_info(fs_info, "has skinny extents"); 2904 2905 /* 2906 * flag our filesystem as having big metadata blocks if 2907 * they are bigger than the page size 2908 */ 2909 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2910 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2911 btrfs_info(fs_info, 2912 "flagging fs with big metadata feature"); 2913 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2914 } 2915 2916 nodesize = btrfs_super_nodesize(disk_super); 2917 sectorsize = btrfs_super_sectorsize(disk_super); 2918 stripesize = sectorsize; 2919 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2920 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2921 2922 /* Cache block sizes */ 2923 fs_info->nodesize = nodesize; 2924 fs_info->sectorsize = sectorsize; 2925 fs_info->stripesize = stripesize; 2926 2927 /* 2928 * mixed block groups end up with duplicate but slightly offset 2929 * extent buffers for the same range. It leads to corruptions 2930 */ 2931 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2932 (sectorsize != nodesize)) { 2933 btrfs_err(fs_info, 2934 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2935 nodesize, sectorsize); 2936 goto fail_alloc; 2937 } 2938 2939 /* 2940 * Needn't use the lock because there is no other task which will 2941 * update the flag. 2942 */ 2943 btrfs_set_super_incompat_flags(disk_super, features); 2944 2945 features = btrfs_super_compat_ro_flags(disk_super) & 2946 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2947 if (!sb_rdonly(sb) && features) { 2948 btrfs_err(fs_info, 2949 "cannot mount read-write because of unsupported optional features (%llx)", 2950 features); 2951 err = -EINVAL; 2952 goto fail_alloc; 2953 } 2954 2955 ret = btrfs_init_workqueues(fs_info, fs_devices); 2956 if (ret) { 2957 err = ret; 2958 goto fail_sb_buffer; 2959 } 2960 2961 sb->s_bdi->congested_fn = btrfs_congested_fn; 2962 sb->s_bdi->congested_data = fs_info; 2963 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2964 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 2965 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2966 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2967 2968 sb->s_blocksize = sectorsize; 2969 sb->s_blocksize_bits = blksize_bits(sectorsize); 2970 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 2971 2972 mutex_lock(&fs_info->chunk_mutex); 2973 ret = btrfs_read_sys_array(fs_info); 2974 mutex_unlock(&fs_info->chunk_mutex); 2975 if (ret) { 2976 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2977 goto fail_sb_buffer; 2978 } 2979 2980 generation = btrfs_super_chunk_root_generation(disk_super); 2981 level = btrfs_super_chunk_root_level(disk_super); 2982 2983 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2984 2985 chunk_root->node = read_tree_block(fs_info, 2986 btrfs_super_chunk_root(disk_super), 2987 generation, level, NULL); 2988 if (IS_ERR(chunk_root->node) || 2989 !extent_buffer_uptodate(chunk_root->node)) { 2990 btrfs_err(fs_info, "failed to read chunk root"); 2991 if (!IS_ERR(chunk_root->node)) 2992 free_extent_buffer(chunk_root->node); 2993 chunk_root->node = NULL; 2994 goto fail_tree_roots; 2995 } 2996 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2997 chunk_root->commit_root = btrfs_root_node(chunk_root); 2998 2999 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3000 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 3001 3002 ret = btrfs_read_chunk_tree(fs_info); 3003 if (ret) { 3004 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3005 goto fail_tree_roots; 3006 } 3007 3008 /* 3009 * Keep the devid that is marked to be the target device for the 3010 * device replace procedure 3011 */ 3012 btrfs_free_extra_devids(fs_devices, 0); 3013 3014 if (!fs_devices->latest_bdev) { 3015 btrfs_err(fs_info, "failed to read devices"); 3016 goto fail_tree_roots; 3017 } 3018 3019 retry_root_backup: 3020 generation = btrfs_super_generation(disk_super); 3021 level = btrfs_super_root_level(disk_super); 3022 3023 tree_root->node = read_tree_block(fs_info, 3024 btrfs_super_root(disk_super), 3025 generation, level, NULL); 3026 if (IS_ERR(tree_root->node) || 3027 !extent_buffer_uptodate(tree_root->node)) { 3028 btrfs_warn(fs_info, "failed to read tree root"); 3029 if (!IS_ERR(tree_root->node)) 3030 free_extent_buffer(tree_root->node); 3031 tree_root->node = NULL; 3032 goto recovery_tree_root; 3033 } 3034 3035 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3036 tree_root->commit_root = btrfs_root_node(tree_root); 3037 btrfs_set_root_refs(&tree_root->root_item, 1); 3038 3039 mutex_lock(&tree_root->objectid_mutex); 3040 ret = btrfs_find_highest_objectid(tree_root, 3041 &tree_root->highest_objectid); 3042 if (ret) { 3043 mutex_unlock(&tree_root->objectid_mutex); 3044 goto recovery_tree_root; 3045 } 3046 3047 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3048 3049 mutex_unlock(&tree_root->objectid_mutex); 3050 3051 ret = btrfs_read_roots(fs_info); 3052 if (ret) 3053 goto recovery_tree_root; 3054 3055 fs_info->generation = generation; 3056 fs_info->last_trans_committed = generation; 3057 3058 ret = btrfs_verify_dev_extents(fs_info); 3059 if (ret) { 3060 btrfs_err(fs_info, 3061 "failed to verify dev extents against chunks: %d", 3062 ret); 3063 goto fail_block_groups; 3064 } 3065 ret = btrfs_recover_balance(fs_info); 3066 if (ret) { 3067 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3068 goto fail_block_groups; 3069 } 3070 3071 ret = btrfs_init_dev_stats(fs_info); 3072 if (ret) { 3073 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3074 goto fail_block_groups; 3075 } 3076 3077 ret = btrfs_init_dev_replace(fs_info); 3078 if (ret) { 3079 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3080 goto fail_block_groups; 3081 } 3082 3083 btrfs_free_extra_devids(fs_devices, 1); 3084 3085 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3086 if (ret) { 3087 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3088 ret); 3089 goto fail_block_groups; 3090 } 3091 3092 ret = btrfs_sysfs_add_device(fs_devices); 3093 if (ret) { 3094 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3095 ret); 3096 goto fail_fsdev_sysfs; 3097 } 3098 3099 ret = btrfs_sysfs_add_mounted(fs_info); 3100 if (ret) { 3101 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3102 goto fail_fsdev_sysfs; 3103 } 3104 3105 ret = btrfs_init_space_info(fs_info); 3106 if (ret) { 3107 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3108 goto fail_sysfs; 3109 } 3110 3111 ret = btrfs_read_block_groups(fs_info); 3112 if (ret) { 3113 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3114 goto fail_sysfs; 3115 } 3116 3117 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3118 btrfs_warn(fs_info, 3119 "writable mount is not allowed due to too many missing devices"); 3120 goto fail_sysfs; 3121 } 3122 3123 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3124 "btrfs-cleaner"); 3125 if (IS_ERR(fs_info->cleaner_kthread)) 3126 goto fail_sysfs; 3127 3128 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3129 tree_root, 3130 "btrfs-transaction"); 3131 if (IS_ERR(fs_info->transaction_kthread)) 3132 goto fail_cleaner; 3133 3134 if (!btrfs_test_opt(fs_info, NOSSD) && 3135 !fs_info->fs_devices->rotating) { 3136 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3137 } 3138 3139 /* 3140 * Mount does not set all options immediately, we can do it now and do 3141 * not have to wait for transaction commit 3142 */ 3143 btrfs_apply_pending_changes(fs_info); 3144 3145 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3146 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3147 ret = btrfsic_mount(fs_info, fs_devices, 3148 btrfs_test_opt(fs_info, 3149 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3150 1 : 0, 3151 fs_info->check_integrity_print_mask); 3152 if (ret) 3153 btrfs_warn(fs_info, 3154 "failed to initialize integrity check module: %d", 3155 ret); 3156 } 3157 #endif 3158 ret = btrfs_read_qgroup_config(fs_info); 3159 if (ret) 3160 goto fail_trans_kthread; 3161 3162 if (btrfs_build_ref_tree(fs_info)) 3163 btrfs_err(fs_info, "couldn't build ref tree"); 3164 3165 /* do not make disk changes in broken FS or nologreplay is given */ 3166 if (btrfs_super_log_root(disk_super) != 0 && 3167 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3168 ret = btrfs_replay_log(fs_info, fs_devices); 3169 if (ret) { 3170 err = ret; 3171 goto fail_qgroup; 3172 } 3173 } 3174 3175 ret = btrfs_find_orphan_roots(fs_info); 3176 if (ret) 3177 goto fail_qgroup; 3178 3179 if (!sb_rdonly(sb)) { 3180 ret = btrfs_cleanup_fs_roots(fs_info); 3181 if (ret) 3182 goto fail_qgroup; 3183 3184 mutex_lock(&fs_info->cleaner_mutex); 3185 ret = btrfs_recover_relocation(tree_root); 3186 mutex_unlock(&fs_info->cleaner_mutex); 3187 if (ret < 0) { 3188 btrfs_warn(fs_info, "failed to recover relocation: %d", 3189 ret); 3190 err = -EINVAL; 3191 goto fail_qgroup; 3192 } 3193 } 3194 3195 location.objectid = BTRFS_FS_TREE_OBJECTID; 3196 location.type = BTRFS_ROOT_ITEM_KEY; 3197 location.offset = 0; 3198 3199 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3200 if (IS_ERR(fs_info->fs_root)) { 3201 err = PTR_ERR(fs_info->fs_root); 3202 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3203 goto fail_qgroup; 3204 } 3205 3206 if (sb_rdonly(sb)) 3207 return 0; 3208 3209 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3210 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3211 clear_free_space_tree = 1; 3212 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3213 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3214 btrfs_warn(fs_info, "free space tree is invalid"); 3215 clear_free_space_tree = 1; 3216 } 3217 3218 if (clear_free_space_tree) { 3219 btrfs_info(fs_info, "clearing free space tree"); 3220 ret = btrfs_clear_free_space_tree(fs_info); 3221 if (ret) { 3222 btrfs_warn(fs_info, 3223 "failed to clear free space tree: %d", ret); 3224 close_ctree(fs_info); 3225 return ret; 3226 } 3227 } 3228 3229 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3230 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3231 btrfs_info(fs_info, "creating free space tree"); 3232 ret = btrfs_create_free_space_tree(fs_info); 3233 if (ret) { 3234 btrfs_warn(fs_info, 3235 "failed to create free space tree: %d", ret); 3236 close_ctree(fs_info); 3237 return ret; 3238 } 3239 } 3240 3241 down_read(&fs_info->cleanup_work_sem); 3242 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3243 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3244 up_read(&fs_info->cleanup_work_sem); 3245 close_ctree(fs_info); 3246 return ret; 3247 } 3248 up_read(&fs_info->cleanup_work_sem); 3249 3250 ret = btrfs_resume_balance_async(fs_info); 3251 if (ret) { 3252 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3253 close_ctree(fs_info); 3254 return ret; 3255 } 3256 3257 ret = btrfs_resume_dev_replace_async(fs_info); 3258 if (ret) { 3259 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3260 close_ctree(fs_info); 3261 return ret; 3262 } 3263 3264 btrfs_qgroup_rescan_resume(fs_info); 3265 3266 if (!fs_info->uuid_root) { 3267 btrfs_info(fs_info, "creating UUID tree"); 3268 ret = btrfs_create_uuid_tree(fs_info); 3269 if (ret) { 3270 btrfs_warn(fs_info, 3271 "failed to create the UUID tree: %d", ret); 3272 close_ctree(fs_info); 3273 return ret; 3274 } 3275 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3276 fs_info->generation != 3277 btrfs_super_uuid_tree_generation(disk_super)) { 3278 btrfs_info(fs_info, "checking UUID tree"); 3279 ret = btrfs_check_uuid_tree(fs_info); 3280 if (ret) { 3281 btrfs_warn(fs_info, 3282 "failed to check the UUID tree: %d", ret); 3283 close_ctree(fs_info); 3284 return ret; 3285 } 3286 } else { 3287 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3288 } 3289 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3290 3291 /* 3292 * backuproot only affect mount behavior, and if open_ctree succeeded, 3293 * no need to keep the flag 3294 */ 3295 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3296 3297 return 0; 3298 3299 fail_qgroup: 3300 btrfs_free_qgroup_config(fs_info); 3301 fail_trans_kthread: 3302 kthread_stop(fs_info->transaction_kthread); 3303 btrfs_cleanup_transaction(fs_info); 3304 btrfs_free_fs_roots(fs_info); 3305 fail_cleaner: 3306 kthread_stop(fs_info->cleaner_kthread); 3307 3308 /* 3309 * make sure we're done with the btree inode before we stop our 3310 * kthreads 3311 */ 3312 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3313 3314 fail_sysfs: 3315 btrfs_sysfs_remove_mounted(fs_info); 3316 3317 fail_fsdev_sysfs: 3318 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3319 3320 fail_block_groups: 3321 btrfs_put_block_group_cache(fs_info); 3322 3323 fail_tree_roots: 3324 free_root_pointers(fs_info, 1); 3325 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3326 3327 fail_sb_buffer: 3328 btrfs_stop_all_workers(fs_info); 3329 btrfs_free_block_groups(fs_info); 3330 fail_alloc: 3331 fail_iput: 3332 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3333 3334 iput(fs_info->btree_inode); 3335 fail_bio_counter: 3336 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3337 fail_delalloc_bytes: 3338 percpu_counter_destroy(&fs_info->delalloc_bytes); 3339 fail_dirty_metadata_bytes: 3340 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3341 fail_srcu: 3342 cleanup_srcu_struct(&fs_info->subvol_srcu); 3343 fail: 3344 btrfs_free_stripe_hash_table(fs_info); 3345 btrfs_close_devices(fs_info->fs_devices); 3346 return err; 3347 3348 recovery_tree_root: 3349 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3350 goto fail_tree_roots; 3351 3352 free_root_pointers(fs_info, 0); 3353 3354 /* don't use the log in recovery mode, it won't be valid */ 3355 btrfs_set_super_log_root(disk_super, 0); 3356 3357 /* we can't trust the free space cache either */ 3358 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3359 3360 ret = next_root_backup(fs_info, fs_info->super_copy, 3361 &num_backups_tried, &backup_index); 3362 if (ret == -1) 3363 goto fail_block_groups; 3364 goto retry_root_backup; 3365 } 3366 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3367 3368 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3369 { 3370 if (uptodate) { 3371 set_buffer_uptodate(bh); 3372 } else { 3373 struct btrfs_device *device = (struct btrfs_device *) 3374 bh->b_private; 3375 3376 btrfs_warn_rl_in_rcu(device->fs_info, 3377 "lost page write due to IO error on %s", 3378 rcu_str_deref(device->name)); 3379 /* note, we don't set_buffer_write_io_error because we have 3380 * our own ways of dealing with the IO errors 3381 */ 3382 clear_buffer_uptodate(bh); 3383 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3384 } 3385 unlock_buffer(bh); 3386 put_bh(bh); 3387 } 3388 3389 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3390 struct buffer_head **bh_ret) 3391 { 3392 struct buffer_head *bh; 3393 struct btrfs_super_block *super; 3394 u64 bytenr; 3395 3396 bytenr = btrfs_sb_offset(copy_num); 3397 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3398 return -EINVAL; 3399 3400 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3401 /* 3402 * If we fail to read from the underlying devices, as of now 3403 * the best option we have is to mark it EIO. 3404 */ 3405 if (!bh) 3406 return -EIO; 3407 3408 super = (struct btrfs_super_block *)bh->b_data; 3409 if (btrfs_super_bytenr(super) != bytenr || 3410 btrfs_super_magic(super) != BTRFS_MAGIC) { 3411 brelse(bh); 3412 return -EINVAL; 3413 } 3414 3415 *bh_ret = bh; 3416 return 0; 3417 } 3418 3419 3420 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3421 { 3422 struct buffer_head *bh; 3423 struct buffer_head *latest = NULL; 3424 struct btrfs_super_block *super; 3425 int i; 3426 u64 transid = 0; 3427 int ret = -EINVAL; 3428 3429 /* we would like to check all the supers, but that would make 3430 * a btrfs mount succeed after a mkfs from a different FS. 3431 * So, we need to add a special mount option to scan for 3432 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3433 */ 3434 for (i = 0; i < 1; i++) { 3435 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3436 if (ret) 3437 continue; 3438 3439 super = (struct btrfs_super_block *)bh->b_data; 3440 3441 if (!latest || btrfs_super_generation(super) > transid) { 3442 brelse(latest); 3443 latest = bh; 3444 transid = btrfs_super_generation(super); 3445 } else { 3446 brelse(bh); 3447 } 3448 } 3449 3450 if (!latest) 3451 return ERR_PTR(ret); 3452 3453 return latest; 3454 } 3455 3456 /* 3457 * Write superblock @sb to the @device. Do not wait for completion, all the 3458 * buffer heads we write are pinned. 3459 * 3460 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3461 * the expected device size at commit time. Note that max_mirrors must be 3462 * same for write and wait phases. 3463 * 3464 * Return number of errors when buffer head is not found or submission fails. 3465 */ 3466 static int write_dev_supers(struct btrfs_device *device, 3467 struct btrfs_super_block *sb, int max_mirrors) 3468 { 3469 struct buffer_head *bh; 3470 int i; 3471 int ret; 3472 int errors = 0; 3473 u32 crc; 3474 u64 bytenr; 3475 int op_flags; 3476 3477 if (max_mirrors == 0) 3478 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3479 3480 for (i = 0; i < max_mirrors; i++) { 3481 bytenr = btrfs_sb_offset(i); 3482 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3483 device->commit_total_bytes) 3484 break; 3485 3486 btrfs_set_super_bytenr(sb, bytenr); 3487 3488 crc = ~(u32)0; 3489 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3490 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3491 btrfs_csum_final(crc, sb->csum); 3492 3493 /* One reference for us, and we leave it for the caller */ 3494 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3495 BTRFS_SUPER_INFO_SIZE); 3496 if (!bh) { 3497 btrfs_err(device->fs_info, 3498 "couldn't get super buffer head for bytenr %llu", 3499 bytenr); 3500 errors++; 3501 continue; 3502 } 3503 3504 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3505 3506 /* one reference for submit_bh */ 3507 get_bh(bh); 3508 3509 set_buffer_uptodate(bh); 3510 lock_buffer(bh); 3511 bh->b_end_io = btrfs_end_buffer_write_sync; 3512 bh->b_private = device; 3513 3514 /* 3515 * we fua the first super. The others we allow 3516 * to go down lazy. 3517 */ 3518 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3519 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3520 op_flags |= REQ_FUA; 3521 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3522 if (ret) 3523 errors++; 3524 } 3525 return errors < i ? 0 : -1; 3526 } 3527 3528 /* 3529 * Wait for write completion of superblocks done by write_dev_supers, 3530 * @max_mirrors same for write and wait phases. 3531 * 3532 * Return number of errors when buffer head is not found or not marked up to 3533 * date. 3534 */ 3535 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3536 { 3537 struct buffer_head *bh; 3538 int i; 3539 int errors = 0; 3540 bool primary_failed = false; 3541 u64 bytenr; 3542 3543 if (max_mirrors == 0) 3544 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3545 3546 for (i = 0; i < max_mirrors; i++) { 3547 bytenr = btrfs_sb_offset(i); 3548 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3549 device->commit_total_bytes) 3550 break; 3551 3552 bh = __find_get_block(device->bdev, 3553 bytenr / BTRFS_BDEV_BLOCKSIZE, 3554 BTRFS_SUPER_INFO_SIZE); 3555 if (!bh) { 3556 errors++; 3557 if (i == 0) 3558 primary_failed = true; 3559 continue; 3560 } 3561 wait_on_buffer(bh); 3562 if (!buffer_uptodate(bh)) { 3563 errors++; 3564 if (i == 0) 3565 primary_failed = true; 3566 } 3567 3568 /* drop our reference */ 3569 brelse(bh); 3570 3571 /* drop the reference from the writing run */ 3572 brelse(bh); 3573 } 3574 3575 /* log error, force error return */ 3576 if (primary_failed) { 3577 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3578 device->devid); 3579 return -1; 3580 } 3581 3582 return errors < i ? 0 : -1; 3583 } 3584 3585 /* 3586 * endio for the write_dev_flush, this will wake anyone waiting 3587 * for the barrier when it is done 3588 */ 3589 static void btrfs_end_empty_barrier(struct bio *bio) 3590 { 3591 complete(bio->bi_private); 3592 } 3593 3594 /* 3595 * Submit a flush request to the device if it supports it. Error handling is 3596 * done in the waiting counterpart. 3597 */ 3598 static void write_dev_flush(struct btrfs_device *device) 3599 { 3600 struct request_queue *q = bdev_get_queue(device->bdev); 3601 struct bio *bio = device->flush_bio; 3602 3603 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3604 return; 3605 3606 bio_reset(bio); 3607 bio->bi_end_io = btrfs_end_empty_barrier; 3608 bio_set_dev(bio, device->bdev); 3609 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3610 init_completion(&device->flush_wait); 3611 bio->bi_private = &device->flush_wait; 3612 3613 btrfsic_submit_bio(bio); 3614 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3615 } 3616 3617 /* 3618 * If the flush bio has been submitted by write_dev_flush, wait for it. 3619 */ 3620 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3621 { 3622 struct bio *bio = device->flush_bio; 3623 3624 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3625 return BLK_STS_OK; 3626 3627 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3628 wait_for_completion_io(&device->flush_wait); 3629 3630 return bio->bi_status; 3631 } 3632 3633 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3634 { 3635 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3636 return -EIO; 3637 return 0; 3638 } 3639 3640 /* 3641 * send an empty flush down to each device in parallel, 3642 * then wait for them 3643 */ 3644 static int barrier_all_devices(struct btrfs_fs_info *info) 3645 { 3646 struct list_head *head; 3647 struct btrfs_device *dev; 3648 int errors_wait = 0; 3649 blk_status_t ret; 3650 3651 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3652 /* send down all the barriers */ 3653 head = &info->fs_devices->devices; 3654 list_for_each_entry(dev, head, dev_list) { 3655 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3656 continue; 3657 if (!dev->bdev) 3658 continue; 3659 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3660 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3661 continue; 3662 3663 write_dev_flush(dev); 3664 dev->last_flush_error = BLK_STS_OK; 3665 } 3666 3667 /* wait for all the barriers */ 3668 list_for_each_entry(dev, head, dev_list) { 3669 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3670 continue; 3671 if (!dev->bdev) { 3672 errors_wait++; 3673 continue; 3674 } 3675 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3676 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3677 continue; 3678 3679 ret = wait_dev_flush(dev); 3680 if (ret) { 3681 dev->last_flush_error = ret; 3682 btrfs_dev_stat_inc_and_print(dev, 3683 BTRFS_DEV_STAT_FLUSH_ERRS); 3684 errors_wait++; 3685 } 3686 } 3687 3688 if (errors_wait) { 3689 /* 3690 * At some point we need the status of all disks 3691 * to arrive at the volume status. So error checking 3692 * is being pushed to a separate loop. 3693 */ 3694 return check_barrier_error(info); 3695 } 3696 return 0; 3697 } 3698 3699 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3700 { 3701 int raid_type; 3702 int min_tolerated = INT_MAX; 3703 3704 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3705 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3706 min_tolerated = min(min_tolerated, 3707 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3708 tolerated_failures); 3709 3710 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3711 if (raid_type == BTRFS_RAID_SINGLE) 3712 continue; 3713 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3714 continue; 3715 min_tolerated = min(min_tolerated, 3716 btrfs_raid_array[raid_type]. 3717 tolerated_failures); 3718 } 3719 3720 if (min_tolerated == INT_MAX) { 3721 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3722 min_tolerated = 0; 3723 } 3724 3725 return min_tolerated; 3726 } 3727 3728 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3729 { 3730 struct list_head *head; 3731 struct btrfs_device *dev; 3732 struct btrfs_super_block *sb; 3733 struct btrfs_dev_item *dev_item; 3734 int ret; 3735 int do_barriers; 3736 int max_errors; 3737 int total_errors = 0; 3738 u64 flags; 3739 3740 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3741 3742 /* 3743 * max_mirrors == 0 indicates we're from commit_transaction, 3744 * not from fsync where the tree roots in fs_info have not 3745 * been consistent on disk. 3746 */ 3747 if (max_mirrors == 0) 3748 backup_super_roots(fs_info); 3749 3750 sb = fs_info->super_for_commit; 3751 dev_item = &sb->dev_item; 3752 3753 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3754 head = &fs_info->fs_devices->devices; 3755 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3756 3757 if (do_barriers) { 3758 ret = barrier_all_devices(fs_info); 3759 if (ret) { 3760 mutex_unlock( 3761 &fs_info->fs_devices->device_list_mutex); 3762 btrfs_handle_fs_error(fs_info, ret, 3763 "errors while submitting device barriers."); 3764 return ret; 3765 } 3766 } 3767 3768 list_for_each_entry(dev, head, dev_list) { 3769 if (!dev->bdev) { 3770 total_errors++; 3771 continue; 3772 } 3773 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3774 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3775 continue; 3776 3777 btrfs_set_stack_device_generation(dev_item, 0); 3778 btrfs_set_stack_device_type(dev_item, dev->type); 3779 btrfs_set_stack_device_id(dev_item, dev->devid); 3780 btrfs_set_stack_device_total_bytes(dev_item, 3781 dev->commit_total_bytes); 3782 btrfs_set_stack_device_bytes_used(dev_item, 3783 dev->commit_bytes_used); 3784 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3785 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3786 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3787 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3788 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3789 BTRFS_FSID_SIZE); 3790 3791 flags = btrfs_super_flags(sb); 3792 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3793 3794 ret = btrfs_validate_write_super(fs_info, sb); 3795 if (ret < 0) { 3796 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3797 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3798 "unexpected superblock corruption detected"); 3799 return -EUCLEAN; 3800 } 3801 3802 ret = write_dev_supers(dev, sb, max_mirrors); 3803 if (ret) 3804 total_errors++; 3805 } 3806 if (total_errors > max_errors) { 3807 btrfs_err(fs_info, "%d errors while writing supers", 3808 total_errors); 3809 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3810 3811 /* FUA is masked off if unsupported and can't be the reason */ 3812 btrfs_handle_fs_error(fs_info, -EIO, 3813 "%d errors while writing supers", 3814 total_errors); 3815 return -EIO; 3816 } 3817 3818 total_errors = 0; 3819 list_for_each_entry(dev, head, dev_list) { 3820 if (!dev->bdev) 3821 continue; 3822 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3823 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3824 continue; 3825 3826 ret = wait_dev_supers(dev, max_mirrors); 3827 if (ret) 3828 total_errors++; 3829 } 3830 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3831 if (total_errors > max_errors) { 3832 btrfs_handle_fs_error(fs_info, -EIO, 3833 "%d errors while writing supers", 3834 total_errors); 3835 return -EIO; 3836 } 3837 return 0; 3838 } 3839 3840 /* Drop a fs root from the radix tree and free it. */ 3841 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3842 struct btrfs_root *root) 3843 { 3844 spin_lock(&fs_info->fs_roots_radix_lock); 3845 radix_tree_delete(&fs_info->fs_roots_radix, 3846 (unsigned long)root->root_key.objectid); 3847 spin_unlock(&fs_info->fs_roots_radix_lock); 3848 3849 if (btrfs_root_refs(&root->root_item) == 0) 3850 synchronize_srcu(&fs_info->subvol_srcu); 3851 3852 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3853 btrfs_free_log(NULL, root); 3854 if (root->reloc_root) { 3855 free_extent_buffer(root->reloc_root->node); 3856 free_extent_buffer(root->reloc_root->commit_root); 3857 btrfs_put_fs_root(root->reloc_root); 3858 root->reloc_root = NULL; 3859 } 3860 } 3861 3862 if (root->free_ino_pinned) 3863 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3864 if (root->free_ino_ctl) 3865 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3866 btrfs_free_fs_root(root); 3867 } 3868 3869 void btrfs_free_fs_root(struct btrfs_root *root) 3870 { 3871 iput(root->ino_cache_inode); 3872 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3873 if (root->anon_dev) 3874 free_anon_bdev(root->anon_dev); 3875 if (root->subv_writers) 3876 btrfs_free_subvolume_writers(root->subv_writers); 3877 free_extent_buffer(root->node); 3878 free_extent_buffer(root->commit_root); 3879 kfree(root->free_ino_ctl); 3880 kfree(root->free_ino_pinned); 3881 btrfs_put_fs_root(root); 3882 } 3883 3884 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3885 { 3886 u64 root_objectid = 0; 3887 struct btrfs_root *gang[8]; 3888 int i = 0; 3889 int err = 0; 3890 unsigned int ret = 0; 3891 int index; 3892 3893 while (1) { 3894 index = srcu_read_lock(&fs_info->subvol_srcu); 3895 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3896 (void **)gang, root_objectid, 3897 ARRAY_SIZE(gang)); 3898 if (!ret) { 3899 srcu_read_unlock(&fs_info->subvol_srcu, index); 3900 break; 3901 } 3902 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3903 3904 for (i = 0; i < ret; i++) { 3905 /* Avoid to grab roots in dead_roots */ 3906 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3907 gang[i] = NULL; 3908 continue; 3909 } 3910 /* grab all the search result for later use */ 3911 gang[i] = btrfs_grab_fs_root(gang[i]); 3912 } 3913 srcu_read_unlock(&fs_info->subvol_srcu, index); 3914 3915 for (i = 0; i < ret; i++) { 3916 if (!gang[i]) 3917 continue; 3918 root_objectid = gang[i]->root_key.objectid; 3919 err = btrfs_orphan_cleanup(gang[i]); 3920 if (err) 3921 break; 3922 btrfs_put_fs_root(gang[i]); 3923 } 3924 root_objectid++; 3925 } 3926 3927 /* release the uncleaned roots due to error */ 3928 for (; i < ret; i++) { 3929 if (gang[i]) 3930 btrfs_put_fs_root(gang[i]); 3931 } 3932 return err; 3933 } 3934 3935 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3936 { 3937 struct btrfs_root *root = fs_info->tree_root; 3938 struct btrfs_trans_handle *trans; 3939 3940 mutex_lock(&fs_info->cleaner_mutex); 3941 btrfs_run_delayed_iputs(fs_info); 3942 mutex_unlock(&fs_info->cleaner_mutex); 3943 wake_up_process(fs_info->cleaner_kthread); 3944 3945 /* wait until ongoing cleanup work done */ 3946 down_write(&fs_info->cleanup_work_sem); 3947 up_write(&fs_info->cleanup_work_sem); 3948 3949 trans = btrfs_join_transaction(root); 3950 if (IS_ERR(trans)) 3951 return PTR_ERR(trans); 3952 return btrfs_commit_transaction(trans); 3953 } 3954 3955 void close_ctree(struct btrfs_fs_info *fs_info) 3956 { 3957 int ret; 3958 3959 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3960 /* 3961 * We don't want the cleaner to start new transactions, add more delayed 3962 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3963 * because that frees the task_struct, and the transaction kthread might 3964 * still try to wake up the cleaner. 3965 */ 3966 kthread_park(fs_info->cleaner_kthread); 3967 3968 /* wait for the qgroup rescan worker to stop */ 3969 btrfs_qgroup_wait_for_completion(fs_info, false); 3970 3971 /* wait for the uuid_scan task to finish */ 3972 down(&fs_info->uuid_tree_rescan_sem); 3973 /* avoid complains from lockdep et al., set sem back to initial state */ 3974 up(&fs_info->uuid_tree_rescan_sem); 3975 3976 /* pause restriper - we want to resume on mount */ 3977 btrfs_pause_balance(fs_info); 3978 3979 btrfs_dev_replace_suspend_for_unmount(fs_info); 3980 3981 btrfs_scrub_cancel(fs_info); 3982 3983 /* wait for any defraggers to finish */ 3984 wait_event(fs_info->transaction_wait, 3985 (atomic_read(&fs_info->defrag_running) == 0)); 3986 3987 /* clear out the rbtree of defraggable inodes */ 3988 btrfs_cleanup_defrag_inodes(fs_info); 3989 3990 cancel_work_sync(&fs_info->async_reclaim_work); 3991 3992 if (!sb_rdonly(fs_info->sb)) { 3993 /* 3994 * The cleaner kthread is stopped, so do one final pass over 3995 * unused block groups. 3996 */ 3997 btrfs_delete_unused_bgs(fs_info); 3998 3999 ret = btrfs_commit_super(fs_info); 4000 if (ret) 4001 btrfs_err(fs_info, "commit super ret %d", ret); 4002 } 4003 4004 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4005 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4006 btrfs_error_commit_super(fs_info); 4007 4008 kthread_stop(fs_info->transaction_kthread); 4009 kthread_stop(fs_info->cleaner_kthread); 4010 4011 ASSERT(list_empty(&fs_info->delayed_iputs)); 4012 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4013 4014 btrfs_free_qgroup_config(fs_info); 4015 ASSERT(list_empty(&fs_info->delalloc_roots)); 4016 4017 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4018 btrfs_info(fs_info, "at unmount delalloc count %lld", 4019 percpu_counter_sum(&fs_info->delalloc_bytes)); 4020 } 4021 4022 btrfs_sysfs_remove_mounted(fs_info); 4023 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4024 4025 btrfs_free_fs_roots(fs_info); 4026 4027 btrfs_put_block_group_cache(fs_info); 4028 4029 /* 4030 * we must make sure there is not any read request to 4031 * submit after we stopping all workers. 4032 */ 4033 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4034 btrfs_stop_all_workers(fs_info); 4035 4036 btrfs_free_block_groups(fs_info); 4037 4038 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4039 free_root_pointers(fs_info, 1); 4040 4041 iput(fs_info->btree_inode); 4042 4043 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4044 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4045 btrfsic_unmount(fs_info->fs_devices); 4046 #endif 4047 4048 btrfs_close_devices(fs_info->fs_devices); 4049 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4050 4051 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4052 percpu_counter_destroy(&fs_info->delalloc_bytes); 4053 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4054 cleanup_srcu_struct(&fs_info->subvol_srcu); 4055 4056 btrfs_free_stripe_hash_table(fs_info); 4057 btrfs_free_ref_cache(fs_info); 4058 4059 while (!list_empty(&fs_info->pinned_chunks)) { 4060 struct extent_map *em; 4061 4062 em = list_first_entry(&fs_info->pinned_chunks, 4063 struct extent_map, list); 4064 list_del_init(&em->list); 4065 free_extent_map(em); 4066 } 4067 } 4068 4069 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4070 int atomic) 4071 { 4072 int ret; 4073 struct inode *btree_inode = buf->pages[0]->mapping->host; 4074 4075 ret = extent_buffer_uptodate(buf); 4076 if (!ret) 4077 return ret; 4078 4079 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4080 parent_transid, atomic); 4081 if (ret == -EAGAIN) 4082 return ret; 4083 return !ret; 4084 } 4085 4086 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4087 { 4088 struct btrfs_fs_info *fs_info; 4089 struct btrfs_root *root; 4090 u64 transid = btrfs_header_generation(buf); 4091 int was_dirty; 4092 4093 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4094 /* 4095 * This is a fast path so only do this check if we have sanity tests 4096 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4097 * outside of the sanity tests. 4098 */ 4099 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4100 return; 4101 #endif 4102 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4103 fs_info = root->fs_info; 4104 btrfs_assert_tree_locked(buf); 4105 if (transid != fs_info->generation) 4106 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4107 buf->start, transid, fs_info->generation); 4108 was_dirty = set_extent_buffer_dirty(buf); 4109 if (!was_dirty) 4110 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4111 buf->len, 4112 fs_info->dirty_metadata_batch); 4113 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4114 /* 4115 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4116 * but item data not updated. 4117 * So here we should only check item pointers, not item data. 4118 */ 4119 if (btrfs_header_level(buf) == 0 && 4120 btrfs_check_leaf_relaxed(fs_info, buf)) { 4121 btrfs_print_leaf(buf); 4122 ASSERT(0); 4123 } 4124 #endif 4125 } 4126 4127 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4128 int flush_delayed) 4129 { 4130 /* 4131 * looks as though older kernels can get into trouble with 4132 * this code, they end up stuck in balance_dirty_pages forever 4133 */ 4134 int ret; 4135 4136 if (current->flags & PF_MEMALLOC) 4137 return; 4138 4139 if (flush_delayed) 4140 btrfs_balance_delayed_items(fs_info); 4141 4142 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4143 BTRFS_DIRTY_METADATA_THRESH, 4144 fs_info->dirty_metadata_batch); 4145 if (ret > 0) { 4146 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4147 } 4148 } 4149 4150 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4151 { 4152 __btrfs_btree_balance_dirty(fs_info, 1); 4153 } 4154 4155 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4156 { 4157 __btrfs_btree_balance_dirty(fs_info, 0); 4158 } 4159 4160 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4161 struct btrfs_key *first_key) 4162 { 4163 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4164 struct btrfs_fs_info *fs_info = root->fs_info; 4165 4166 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4167 level, first_key); 4168 } 4169 4170 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4171 { 4172 /* cleanup FS via transaction */ 4173 btrfs_cleanup_transaction(fs_info); 4174 4175 mutex_lock(&fs_info->cleaner_mutex); 4176 btrfs_run_delayed_iputs(fs_info); 4177 mutex_unlock(&fs_info->cleaner_mutex); 4178 4179 down_write(&fs_info->cleanup_work_sem); 4180 up_write(&fs_info->cleanup_work_sem); 4181 } 4182 4183 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4184 { 4185 struct btrfs_ordered_extent *ordered; 4186 4187 spin_lock(&root->ordered_extent_lock); 4188 /* 4189 * This will just short circuit the ordered completion stuff which will 4190 * make sure the ordered extent gets properly cleaned up. 4191 */ 4192 list_for_each_entry(ordered, &root->ordered_extents, 4193 root_extent_list) 4194 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4195 spin_unlock(&root->ordered_extent_lock); 4196 } 4197 4198 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4199 { 4200 struct btrfs_root *root; 4201 struct list_head splice; 4202 4203 INIT_LIST_HEAD(&splice); 4204 4205 spin_lock(&fs_info->ordered_root_lock); 4206 list_splice_init(&fs_info->ordered_roots, &splice); 4207 while (!list_empty(&splice)) { 4208 root = list_first_entry(&splice, struct btrfs_root, 4209 ordered_root); 4210 list_move_tail(&root->ordered_root, 4211 &fs_info->ordered_roots); 4212 4213 spin_unlock(&fs_info->ordered_root_lock); 4214 btrfs_destroy_ordered_extents(root); 4215 4216 cond_resched(); 4217 spin_lock(&fs_info->ordered_root_lock); 4218 } 4219 spin_unlock(&fs_info->ordered_root_lock); 4220 4221 /* 4222 * We need this here because if we've been flipped read-only we won't 4223 * get sync() from the umount, so we need to make sure any ordered 4224 * extents that haven't had their dirty pages IO start writeout yet 4225 * actually get run and error out properly. 4226 */ 4227 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4228 } 4229 4230 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4231 struct btrfs_fs_info *fs_info) 4232 { 4233 struct rb_node *node; 4234 struct btrfs_delayed_ref_root *delayed_refs; 4235 struct btrfs_delayed_ref_node *ref; 4236 int ret = 0; 4237 4238 delayed_refs = &trans->delayed_refs; 4239 4240 spin_lock(&delayed_refs->lock); 4241 if (atomic_read(&delayed_refs->num_entries) == 0) { 4242 spin_unlock(&delayed_refs->lock); 4243 btrfs_info(fs_info, "delayed_refs has NO entry"); 4244 return ret; 4245 } 4246 4247 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4248 struct btrfs_delayed_ref_head *head; 4249 struct rb_node *n; 4250 bool pin_bytes = false; 4251 4252 head = rb_entry(node, struct btrfs_delayed_ref_head, 4253 href_node); 4254 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4255 continue; 4256 4257 spin_lock(&head->lock); 4258 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4259 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4260 ref_node); 4261 ref->in_tree = 0; 4262 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4263 RB_CLEAR_NODE(&ref->ref_node); 4264 if (!list_empty(&ref->add_list)) 4265 list_del(&ref->add_list); 4266 atomic_dec(&delayed_refs->num_entries); 4267 btrfs_put_delayed_ref(ref); 4268 } 4269 if (head->must_insert_reserved) 4270 pin_bytes = true; 4271 btrfs_free_delayed_extent_op(head->extent_op); 4272 btrfs_delete_ref_head(delayed_refs, head); 4273 spin_unlock(&head->lock); 4274 spin_unlock(&delayed_refs->lock); 4275 mutex_unlock(&head->mutex); 4276 4277 if (pin_bytes) 4278 btrfs_pin_extent(fs_info, head->bytenr, 4279 head->num_bytes, 1); 4280 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4281 btrfs_put_delayed_ref_head(head); 4282 cond_resched(); 4283 spin_lock(&delayed_refs->lock); 4284 } 4285 4286 spin_unlock(&delayed_refs->lock); 4287 4288 return ret; 4289 } 4290 4291 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4292 { 4293 struct btrfs_inode *btrfs_inode; 4294 struct list_head splice; 4295 4296 INIT_LIST_HEAD(&splice); 4297 4298 spin_lock(&root->delalloc_lock); 4299 list_splice_init(&root->delalloc_inodes, &splice); 4300 4301 while (!list_empty(&splice)) { 4302 struct inode *inode = NULL; 4303 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4304 delalloc_inodes); 4305 __btrfs_del_delalloc_inode(root, btrfs_inode); 4306 spin_unlock(&root->delalloc_lock); 4307 4308 /* 4309 * Make sure we get a live inode and that it'll not disappear 4310 * meanwhile. 4311 */ 4312 inode = igrab(&btrfs_inode->vfs_inode); 4313 if (inode) { 4314 invalidate_inode_pages2(inode->i_mapping); 4315 iput(inode); 4316 } 4317 spin_lock(&root->delalloc_lock); 4318 } 4319 spin_unlock(&root->delalloc_lock); 4320 } 4321 4322 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4323 { 4324 struct btrfs_root *root; 4325 struct list_head splice; 4326 4327 INIT_LIST_HEAD(&splice); 4328 4329 spin_lock(&fs_info->delalloc_root_lock); 4330 list_splice_init(&fs_info->delalloc_roots, &splice); 4331 while (!list_empty(&splice)) { 4332 root = list_first_entry(&splice, struct btrfs_root, 4333 delalloc_root); 4334 root = btrfs_grab_fs_root(root); 4335 BUG_ON(!root); 4336 spin_unlock(&fs_info->delalloc_root_lock); 4337 4338 btrfs_destroy_delalloc_inodes(root); 4339 btrfs_put_fs_root(root); 4340 4341 spin_lock(&fs_info->delalloc_root_lock); 4342 } 4343 spin_unlock(&fs_info->delalloc_root_lock); 4344 } 4345 4346 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4347 struct extent_io_tree *dirty_pages, 4348 int mark) 4349 { 4350 int ret; 4351 struct extent_buffer *eb; 4352 u64 start = 0; 4353 u64 end; 4354 4355 while (1) { 4356 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4357 mark, NULL); 4358 if (ret) 4359 break; 4360 4361 clear_extent_bits(dirty_pages, start, end, mark); 4362 while (start <= end) { 4363 eb = find_extent_buffer(fs_info, start); 4364 start += fs_info->nodesize; 4365 if (!eb) 4366 continue; 4367 wait_on_extent_buffer_writeback(eb); 4368 4369 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4370 &eb->bflags)) 4371 clear_extent_buffer_dirty(eb); 4372 free_extent_buffer_stale(eb); 4373 } 4374 } 4375 4376 return ret; 4377 } 4378 4379 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4380 struct extent_io_tree *pinned_extents) 4381 { 4382 struct extent_io_tree *unpin; 4383 u64 start; 4384 u64 end; 4385 int ret; 4386 bool loop = true; 4387 4388 unpin = pinned_extents; 4389 again: 4390 while (1) { 4391 struct extent_state *cached_state = NULL; 4392 4393 /* 4394 * The btrfs_finish_extent_commit() may get the same range as 4395 * ours between find_first_extent_bit and clear_extent_dirty. 4396 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4397 * the same extent range. 4398 */ 4399 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4400 ret = find_first_extent_bit(unpin, 0, &start, &end, 4401 EXTENT_DIRTY, &cached_state); 4402 if (ret) { 4403 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4404 break; 4405 } 4406 4407 clear_extent_dirty(unpin, start, end, &cached_state); 4408 free_extent_state(cached_state); 4409 btrfs_error_unpin_extent_range(fs_info, start, end); 4410 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4411 cond_resched(); 4412 } 4413 4414 if (loop) { 4415 if (unpin == &fs_info->freed_extents[0]) 4416 unpin = &fs_info->freed_extents[1]; 4417 else 4418 unpin = &fs_info->freed_extents[0]; 4419 loop = false; 4420 goto again; 4421 } 4422 4423 return 0; 4424 } 4425 4426 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4427 { 4428 struct inode *inode; 4429 4430 inode = cache->io_ctl.inode; 4431 if (inode) { 4432 invalidate_inode_pages2(inode->i_mapping); 4433 BTRFS_I(inode)->generation = 0; 4434 cache->io_ctl.inode = NULL; 4435 iput(inode); 4436 } 4437 btrfs_put_block_group(cache); 4438 } 4439 4440 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4441 struct btrfs_fs_info *fs_info) 4442 { 4443 struct btrfs_block_group_cache *cache; 4444 4445 spin_lock(&cur_trans->dirty_bgs_lock); 4446 while (!list_empty(&cur_trans->dirty_bgs)) { 4447 cache = list_first_entry(&cur_trans->dirty_bgs, 4448 struct btrfs_block_group_cache, 4449 dirty_list); 4450 4451 if (!list_empty(&cache->io_list)) { 4452 spin_unlock(&cur_trans->dirty_bgs_lock); 4453 list_del_init(&cache->io_list); 4454 btrfs_cleanup_bg_io(cache); 4455 spin_lock(&cur_trans->dirty_bgs_lock); 4456 } 4457 4458 list_del_init(&cache->dirty_list); 4459 spin_lock(&cache->lock); 4460 cache->disk_cache_state = BTRFS_DC_ERROR; 4461 spin_unlock(&cache->lock); 4462 4463 spin_unlock(&cur_trans->dirty_bgs_lock); 4464 btrfs_put_block_group(cache); 4465 btrfs_delayed_refs_rsv_release(fs_info, 1); 4466 spin_lock(&cur_trans->dirty_bgs_lock); 4467 } 4468 spin_unlock(&cur_trans->dirty_bgs_lock); 4469 4470 /* 4471 * Refer to the definition of io_bgs member for details why it's safe 4472 * to use it without any locking 4473 */ 4474 while (!list_empty(&cur_trans->io_bgs)) { 4475 cache = list_first_entry(&cur_trans->io_bgs, 4476 struct btrfs_block_group_cache, 4477 io_list); 4478 4479 list_del_init(&cache->io_list); 4480 spin_lock(&cache->lock); 4481 cache->disk_cache_state = BTRFS_DC_ERROR; 4482 spin_unlock(&cache->lock); 4483 btrfs_cleanup_bg_io(cache); 4484 } 4485 } 4486 4487 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4488 struct btrfs_fs_info *fs_info) 4489 { 4490 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4491 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4492 ASSERT(list_empty(&cur_trans->io_bgs)); 4493 4494 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4495 4496 cur_trans->state = TRANS_STATE_COMMIT_START; 4497 wake_up(&fs_info->transaction_blocked_wait); 4498 4499 cur_trans->state = TRANS_STATE_UNBLOCKED; 4500 wake_up(&fs_info->transaction_wait); 4501 4502 btrfs_destroy_delayed_inodes(fs_info); 4503 btrfs_assert_delayed_root_empty(fs_info); 4504 4505 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4506 EXTENT_DIRTY); 4507 btrfs_destroy_pinned_extent(fs_info, 4508 fs_info->pinned_extents); 4509 4510 cur_trans->state =TRANS_STATE_COMPLETED; 4511 wake_up(&cur_trans->commit_wait); 4512 } 4513 4514 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4515 { 4516 struct btrfs_transaction *t; 4517 4518 mutex_lock(&fs_info->transaction_kthread_mutex); 4519 4520 spin_lock(&fs_info->trans_lock); 4521 while (!list_empty(&fs_info->trans_list)) { 4522 t = list_first_entry(&fs_info->trans_list, 4523 struct btrfs_transaction, list); 4524 if (t->state >= TRANS_STATE_COMMIT_START) { 4525 refcount_inc(&t->use_count); 4526 spin_unlock(&fs_info->trans_lock); 4527 btrfs_wait_for_commit(fs_info, t->transid); 4528 btrfs_put_transaction(t); 4529 spin_lock(&fs_info->trans_lock); 4530 continue; 4531 } 4532 if (t == fs_info->running_transaction) { 4533 t->state = TRANS_STATE_COMMIT_DOING; 4534 spin_unlock(&fs_info->trans_lock); 4535 /* 4536 * We wait for 0 num_writers since we don't hold a trans 4537 * handle open currently for this transaction. 4538 */ 4539 wait_event(t->writer_wait, 4540 atomic_read(&t->num_writers) == 0); 4541 } else { 4542 spin_unlock(&fs_info->trans_lock); 4543 } 4544 btrfs_cleanup_one_transaction(t, fs_info); 4545 4546 spin_lock(&fs_info->trans_lock); 4547 if (t == fs_info->running_transaction) 4548 fs_info->running_transaction = NULL; 4549 list_del_init(&t->list); 4550 spin_unlock(&fs_info->trans_lock); 4551 4552 btrfs_put_transaction(t); 4553 trace_btrfs_transaction_commit(fs_info->tree_root); 4554 spin_lock(&fs_info->trans_lock); 4555 } 4556 spin_unlock(&fs_info->trans_lock); 4557 btrfs_destroy_all_ordered_extents(fs_info); 4558 btrfs_destroy_delayed_inodes(fs_info); 4559 btrfs_assert_delayed_root_empty(fs_info); 4560 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4561 btrfs_destroy_all_delalloc_inodes(fs_info); 4562 mutex_unlock(&fs_info->transaction_kthread_mutex); 4563 4564 return 0; 4565 } 4566 4567 static const struct extent_io_ops btree_extent_io_ops = { 4568 /* mandatory callbacks */ 4569 .submit_bio_hook = btree_submit_bio_hook, 4570 .readpage_end_io_hook = btree_readpage_end_io_hook, 4571 }; 4572