xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 677074792a1d533232ec5517f23f78d64e6dffac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46 #include "fs.h"
47 #include "accessors.h"
48 #include "extent-tree.h"
49 #include "root-tree.h"
50 #include "defrag.h"
51 #include "uuid-tree.h"
52 #include "relocation.h"
53 
54 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
55 				 BTRFS_HEADER_FLAG_RELOC |\
56 				 BTRFS_SUPER_FLAG_ERROR |\
57 				 BTRFS_SUPER_FLAG_SEEDING |\
58 				 BTRFS_SUPER_FLAG_METADUMP |\
59 				 BTRFS_SUPER_FLAG_METADUMP_V2)
60 
61 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
62 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
63 				      struct btrfs_fs_info *fs_info);
64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
65 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
66 					struct extent_io_tree *dirty_pages,
67 					int mark);
68 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
69 				       struct extent_io_tree *pinned_extents);
70 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
71 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
72 
73 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
74 {
75 	if (fs_info->csum_shash)
76 		crypto_free_shash(fs_info->csum_shash);
77 }
78 
79 /*
80  * async submit bios are used to offload expensive checksumming
81  * onto the worker threads.  They checksum file and metadata bios
82  * just before they are sent down the IO stack.
83  */
84 struct async_submit_bio {
85 	struct inode *inode;
86 	struct bio *bio;
87 	extent_submit_bio_start_t *submit_bio_start;
88 	int mirror_num;
89 
90 	/* Optional parameter for submit_bio_start used by direct io */
91 	u64 dio_file_offset;
92 	struct btrfs_work work;
93 	blk_status_t status;
94 };
95 
96 /*
97  * Compute the csum of a btree block and store the result to provided buffer.
98  */
99 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
100 {
101 	struct btrfs_fs_info *fs_info = buf->fs_info;
102 	const int num_pages = num_extent_pages(buf);
103 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
104 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
105 	char *kaddr;
106 	int i;
107 
108 	shash->tfm = fs_info->csum_shash;
109 	crypto_shash_init(shash);
110 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
111 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
112 			    first_page_part - BTRFS_CSUM_SIZE);
113 
114 	for (i = 1; i < num_pages; i++) {
115 		kaddr = page_address(buf->pages[i]);
116 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
117 	}
118 	memset(result, 0, BTRFS_CSUM_SIZE);
119 	crypto_shash_final(shash, result);
120 }
121 
122 /*
123  * we can't consider a given block up to date unless the transid of the
124  * block matches the transid in the parent node's pointer.  This is how we
125  * detect blocks that either didn't get written at all or got written
126  * in the wrong place.
127  */
128 static int verify_parent_transid(struct extent_io_tree *io_tree,
129 				 struct extent_buffer *eb, u64 parent_transid,
130 				 int atomic)
131 {
132 	struct extent_state *cached_state = NULL;
133 	int ret;
134 
135 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
136 		return 0;
137 
138 	if (atomic)
139 		return -EAGAIN;
140 
141 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
142 	if (extent_buffer_uptodate(eb) &&
143 	    btrfs_header_generation(eb) == parent_transid) {
144 		ret = 0;
145 		goto out;
146 	}
147 	btrfs_err_rl(eb->fs_info,
148 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
149 			eb->start, eb->read_mirror,
150 			parent_transid, btrfs_header_generation(eb));
151 	ret = 1;
152 	clear_extent_buffer_uptodate(eb);
153 out:
154 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
155 		      &cached_state);
156 	return ret;
157 }
158 
159 static bool btrfs_supported_super_csum(u16 csum_type)
160 {
161 	switch (csum_type) {
162 	case BTRFS_CSUM_TYPE_CRC32:
163 	case BTRFS_CSUM_TYPE_XXHASH:
164 	case BTRFS_CSUM_TYPE_SHA256:
165 	case BTRFS_CSUM_TYPE_BLAKE2:
166 		return true;
167 	default:
168 		return false;
169 	}
170 }
171 
172 /*
173  * Return 0 if the superblock checksum type matches the checksum value of that
174  * algorithm. Pass the raw disk superblock data.
175  */
176 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
177 			   const struct btrfs_super_block *disk_sb)
178 {
179 	char result[BTRFS_CSUM_SIZE];
180 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
181 
182 	shash->tfm = fs_info->csum_shash;
183 
184 	/*
185 	 * The super_block structure does not span the whole
186 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
187 	 * filled with zeros and is included in the checksum.
188 	 */
189 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
190 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
191 
192 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
193 		return 1;
194 
195 	return 0;
196 }
197 
198 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
199 			   struct btrfs_key *first_key, u64 parent_transid)
200 {
201 	struct btrfs_fs_info *fs_info = eb->fs_info;
202 	int found_level;
203 	struct btrfs_key found_key;
204 	int ret;
205 
206 	found_level = btrfs_header_level(eb);
207 	if (found_level != level) {
208 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
209 		     KERN_ERR "BTRFS: tree level check failed\n");
210 		btrfs_err(fs_info,
211 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
212 			  eb->start, level, found_level);
213 		return -EIO;
214 	}
215 
216 	if (!first_key)
217 		return 0;
218 
219 	/*
220 	 * For live tree block (new tree blocks in current transaction),
221 	 * we need proper lock context to avoid race, which is impossible here.
222 	 * So we only checks tree blocks which is read from disk, whose
223 	 * generation <= fs_info->last_trans_committed.
224 	 */
225 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
226 		return 0;
227 
228 	/* We have @first_key, so this @eb must have at least one item */
229 	if (btrfs_header_nritems(eb) == 0) {
230 		btrfs_err(fs_info,
231 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
232 			  eb->start);
233 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
234 		return -EUCLEAN;
235 	}
236 
237 	if (found_level)
238 		btrfs_node_key_to_cpu(eb, &found_key, 0);
239 	else
240 		btrfs_item_key_to_cpu(eb, &found_key, 0);
241 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
242 
243 	if (ret) {
244 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
245 		     KERN_ERR "BTRFS: tree first key check failed\n");
246 		btrfs_err(fs_info,
247 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
248 			  eb->start, parent_transid, first_key->objectid,
249 			  first_key->type, first_key->offset,
250 			  found_key.objectid, found_key.type,
251 			  found_key.offset);
252 	}
253 	return ret;
254 }
255 
256 /*
257  * helper to read a given tree block, doing retries as required when
258  * the checksums don't match and we have alternate mirrors to try.
259  *
260  * @parent_transid:	expected transid, skip check if 0
261  * @level:		expected level, mandatory check
262  * @first_key:		expected key of first slot, skip check if NULL
263  */
264 int btrfs_read_extent_buffer(struct extent_buffer *eb,
265 			     u64 parent_transid, int level,
266 			     struct btrfs_key *first_key)
267 {
268 	struct btrfs_fs_info *fs_info = eb->fs_info;
269 	struct extent_io_tree *io_tree;
270 	int failed = 0;
271 	int ret;
272 	int num_copies = 0;
273 	int mirror_num = 0;
274 	int failed_mirror = 0;
275 
276 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
277 	while (1) {
278 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
279 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
280 		if (!ret) {
281 			if (verify_parent_transid(io_tree, eb,
282 						   parent_transid, 0))
283 				ret = -EIO;
284 			else if (btrfs_verify_level_key(eb, level,
285 						first_key, parent_transid))
286 				ret = -EUCLEAN;
287 			else
288 				break;
289 		}
290 
291 		num_copies = btrfs_num_copies(fs_info,
292 					      eb->start, eb->len);
293 		if (num_copies == 1)
294 			break;
295 
296 		if (!failed_mirror) {
297 			failed = 1;
298 			failed_mirror = eb->read_mirror;
299 		}
300 
301 		mirror_num++;
302 		if (mirror_num == failed_mirror)
303 			mirror_num++;
304 
305 		if (mirror_num > num_copies)
306 			break;
307 	}
308 
309 	if (failed && !ret && failed_mirror)
310 		btrfs_repair_eb_io_failure(eb, failed_mirror);
311 
312 	return ret;
313 }
314 
315 static int csum_one_extent_buffer(struct extent_buffer *eb)
316 {
317 	struct btrfs_fs_info *fs_info = eb->fs_info;
318 	u8 result[BTRFS_CSUM_SIZE];
319 	int ret;
320 
321 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
322 				    offsetof(struct btrfs_header, fsid),
323 				    BTRFS_FSID_SIZE) == 0);
324 	csum_tree_block(eb, result);
325 
326 	if (btrfs_header_level(eb))
327 		ret = btrfs_check_node(eb);
328 	else
329 		ret = btrfs_check_leaf_full(eb);
330 
331 	if (ret < 0)
332 		goto error;
333 
334 	/*
335 	 * Also check the generation, the eb reached here must be newer than
336 	 * last committed. Or something seriously wrong happened.
337 	 */
338 	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
339 		ret = -EUCLEAN;
340 		btrfs_err(fs_info,
341 			"block=%llu bad generation, have %llu expect > %llu",
342 			  eb->start, btrfs_header_generation(eb),
343 			  fs_info->last_trans_committed);
344 		goto error;
345 	}
346 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
347 
348 	return 0;
349 
350 error:
351 	btrfs_print_tree(eb, 0);
352 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
353 		  eb->start);
354 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
355 	return ret;
356 }
357 
358 /* Checksum all dirty extent buffers in one bio_vec */
359 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
360 				      struct bio_vec *bvec)
361 {
362 	struct page *page = bvec->bv_page;
363 	u64 bvec_start = page_offset(page) + bvec->bv_offset;
364 	u64 cur;
365 	int ret = 0;
366 
367 	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
368 	     cur += fs_info->nodesize) {
369 		struct extent_buffer *eb;
370 		bool uptodate;
371 
372 		eb = find_extent_buffer(fs_info, cur);
373 		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
374 						       fs_info->nodesize);
375 
376 		/* A dirty eb shouldn't disappear from buffer_radix */
377 		if (WARN_ON(!eb))
378 			return -EUCLEAN;
379 
380 		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
381 			free_extent_buffer(eb);
382 			return -EUCLEAN;
383 		}
384 		if (WARN_ON(!uptodate)) {
385 			free_extent_buffer(eb);
386 			return -EUCLEAN;
387 		}
388 
389 		ret = csum_one_extent_buffer(eb);
390 		free_extent_buffer(eb);
391 		if (ret < 0)
392 			return ret;
393 	}
394 	return ret;
395 }
396 
397 /*
398  * Checksum a dirty tree block before IO.  This has extra checks to make sure
399  * we only fill in the checksum field in the first page of a multi-page block.
400  * For subpage extent buffers we need bvec to also read the offset in the page.
401  */
402 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
403 {
404 	struct page *page = bvec->bv_page;
405 	u64 start = page_offset(page);
406 	u64 found_start;
407 	struct extent_buffer *eb;
408 
409 	if (fs_info->nodesize < PAGE_SIZE)
410 		return csum_dirty_subpage_buffers(fs_info, bvec);
411 
412 	eb = (struct extent_buffer *)page->private;
413 	if (page != eb->pages[0])
414 		return 0;
415 
416 	found_start = btrfs_header_bytenr(eb);
417 
418 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
419 		WARN_ON(found_start != 0);
420 		return 0;
421 	}
422 
423 	/*
424 	 * Please do not consolidate these warnings into a single if.
425 	 * It is useful to know what went wrong.
426 	 */
427 	if (WARN_ON(found_start != start))
428 		return -EUCLEAN;
429 	if (WARN_ON(!PageUptodate(page)))
430 		return -EUCLEAN;
431 
432 	return csum_one_extent_buffer(eb);
433 }
434 
435 static int check_tree_block_fsid(struct extent_buffer *eb)
436 {
437 	struct btrfs_fs_info *fs_info = eb->fs_info;
438 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
439 	u8 fsid[BTRFS_FSID_SIZE];
440 	u8 *metadata_uuid;
441 
442 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
443 			   BTRFS_FSID_SIZE);
444 	/*
445 	 * Checking the incompat flag is only valid for the current fs. For
446 	 * seed devices it's forbidden to have their uuid changed so reading
447 	 * ->fsid in this case is fine
448 	 */
449 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
450 		metadata_uuid = fs_devices->metadata_uuid;
451 	else
452 		metadata_uuid = fs_devices->fsid;
453 
454 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
455 		return 0;
456 
457 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
458 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
459 			return 0;
460 
461 	return 1;
462 }
463 
464 /* Do basic extent buffer checks at read time */
465 static int validate_extent_buffer(struct extent_buffer *eb)
466 {
467 	struct btrfs_fs_info *fs_info = eb->fs_info;
468 	u64 found_start;
469 	const u32 csum_size = fs_info->csum_size;
470 	u8 found_level;
471 	u8 result[BTRFS_CSUM_SIZE];
472 	const u8 *header_csum;
473 	int ret = 0;
474 
475 	found_start = btrfs_header_bytenr(eb);
476 	if (found_start != eb->start) {
477 		btrfs_err_rl(fs_info,
478 			"bad tree block start, mirror %u want %llu have %llu",
479 			     eb->read_mirror, eb->start, found_start);
480 		ret = -EIO;
481 		goto out;
482 	}
483 	if (check_tree_block_fsid(eb)) {
484 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
485 			     eb->start, eb->read_mirror);
486 		ret = -EIO;
487 		goto out;
488 	}
489 	found_level = btrfs_header_level(eb);
490 	if (found_level >= BTRFS_MAX_LEVEL) {
491 		btrfs_err(fs_info,
492 			"bad tree block level, mirror %u level %d on logical %llu",
493 			eb->read_mirror, btrfs_header_level(eb), eb->start);
494 		ret = -EIO;
495 		goto out;
496 	}
497 
498 	csum_tree_block(eb, result);
499 	header_csum = page_address(eb->pages[0]) +
500 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
501 
502 	if (memcmp(result, header_csum, csum_size) != 0) {
503 		btrfs_warn_rl(fs_info,
504 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
505 			      eb->start, eb->read_mirror,
506 			      CSUM_FMT_VALUE(csum_size, header_csum),
507 			      CSUM_FMT_VALUE(csum_size, result),
508 			      btrfs_header_level(eb));
509 		ret = -EUCLEAN;
510 		goto out;
511 	}
512 
513 	/*
514 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
515 	 * that we don't try and read the other copies of this block, just
516 	 * return -EIO.
517 	 */
518 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
519 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
520 		ret = -EIO;
521 	}
522 
523 	if (found_level > 0 && btrfs_check_node(eb))
524 		ret = -EIO;
525 
526 	if (!ret)
527 		set_extent_buffer_uptodate(eb);
528 	else
529 		btrfs_err(fs_info,
530 		"read time tree block corruption detected on logical %llu mirror %u",
531 			  eb->start, eb->read_mirror);
532 out:
533 	return ret;
534 }
535 
536 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
537 				   int mirror)
538 {
539 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
540 	struct extent_buffer *eb;
541 	bool reads_done;
542 	int ret = 0;
543 
544 	/*
545 	 * We don't allow bio merge for subpage metadata read, so we should
546 	 * only get one eb for each endio hook.
547 	 */
548 	ASSERT(end == start + fs_info->nodesize - 1);
549 	ASSERT(PagePrivate(page));
550 
551 	eb = find_extent_buffer(fs_info, start);
552 	/*
553 	 * When we are reading one tree block, eb must have been inserted into
554 	 * the radix tree. If not, something is wrong.
555 	 */
556 	ASSERT(eb);
557 
558 	reads_done = atomic_dec_and_test(&eb->io_pages);
559 	/* Subpage read must finish in page read */
560 	ASSERT(reads_done);
561 
562 	eb->read_mirror = mirror;
563 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
564 		ret = -EIO;
565 		goto err;
566 	}
567 	ret = validate_extent_buffer(eb);
568 	if (ret < 0)
569 		goto err;
570 
571 	set_extent_buffer_uptodate(eb);
572 
573 	free_extent_buffer(eb);
574 	return ret;
575 err:
576 	/*
577 	 * end_bio_extent_readpage decrements io_pages in case of error,
578 	 * make sure it has something to decrement.
579 	 */
580 	atomic_inc(&eb->io_pages);
581 	clear_extent_buffer_uptodate(eb);
582 	free_extent_buffer(eb);
583 	return ret;
584 }
585 
586 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
587 				   struct page *page, u64 start, u64 end,
588 				   int mirror)
589 {
590 	struct extent_buffer *eb;
591 	int ret = 0;
592 	int reads_done;
593 
594 	ASSERT(page->private);
595 
596 	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
597 		return validate_subpage_buffer(page, start, end, mirror);
598 
599 	eb = (struct extent_buffer *)page->private;
600 
601 	/*
602 	 * The pending IO might have been the only thing that kept this buffer
603 	 * in memory.  Make sure we have a ref for all this other checks
604 	 */
605 	atomic_inc(&eb->refs);
606 
607 	reads_done = atomic_dec_and_test(&eb->io_pages);
608 	if (!reads_done)
609 		goto err;
610 
611 	eb->read_mirror = mirror;
612 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
613 		ret = -EIO;
614 		goto err;
615 	}
616 	ret = validate_extent_buffer(eb);
617 err:
618 	if (ret) {
619 		/*
620 		 * our io error hook is going to dec the io pages
621 		 * again, we have to make sure it has something
622 		 * to decrement
623 		 */
624 		atomic_inc(&eb->io_pages);
625 		clear_extent_buffer_uptodate(eb);
626 	}
627 	free_extent_buffer(eb);
628 
629 	return ret;
630 }
631 
632 static void run_one_async_start(struct btrfs_work *work)
633 {
634 	struct async_submit_bio *async;
635 	blk_status_t ret;
636 
637 	async = container_of(work, struct  async_submit_bio, work);
638 	ret = async->submit_bio_start(async->inode, async->bio,
639 				      async->dio_file_offset);
640 	if (ret)
641 		async->status = ret;
642 }
643 
644 /*
645  * In order to insert checksums into the metadata in large chunks, we wait
646  * until bio submission time.   All the pages in the bio are checksummed and
647  * sums are attached onto the ordered extent record.
648  *
649  * At IO completion time the csums attached on the ordered extent record are
650  * inserted into the tree.
651  */
652 static void run_one_async_done(struct btrfs_work *work)
653 {
654 	struct async_submit_bio *async =
655 		container_of(work, struct  async_submit_bio, work);
656 	struct inode *inode = async->inode;
657 	struct btrfs_bio *bbio = btrfs_bio(async->bio);
658 
659 	/* If an error occurred we just want to clean up the bio and move on */
660 	if (async->status) {
661 		btrfs_bio_end_io(bbio, async->status);
662 		return;
663 	}
664 
665 	/*
666 	 * All of the bios that pass through here are from async helpers.
667 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
668 	 * This changes nothing when cgroups aren't in use.
669 	 */
670 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
671 	btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
672 }
673 
674 static void run_one_async_free(struct btrfs_work *work)
675 {
676 	struct async_submit_bio *async;
677 
678 	async = container_of(work, struct  async_submit_bio, work);
679 	kfree(async);
680 }
681 
682 /*
683  * Submit bio to an async queue.
684  *
685  * Retrun:
686  * - true if the work has been succesfuly submitted
687  * - false in case of error
688  */
689 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num,
690 			 u64 dio_file_offset,
691 			 extent_submit_bio_start_t *submit_bio_start)
692 {
693 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
694 	struct async_submit_bio *async;
695 
696 	async = kmalloc(sizeof(*async), GFP_NOFS);
697 	if (!async)
698 		return false;
699 
700 	async->inode = inode;
701 	async->bio = bio;
702 	async->mirror_num = mirror_num;
703 	async->submit_bio_start = submit_bio_start;
704 
705 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
706 			run_one_async_free);
707 
708 	async->dio_file_offset = dio_file_offset;
709 
710 	async->status = 0;
711 
712 	if (op_is_sync(bio->bi_opf))
713 		btrfs_queue_work(fs_info->hipri_workers, &async->work);
714 	else
715 		btrfs_queue_work(fs_info->workers, &async->work);
716 	return true;
717 }
718 
719 static blk_status_t btree_csum_one_bio(struct bio *bio)
720 {
721 	struct bio_vec *bvec;
722 	struct btrfs_root *root;
723 	int ret = 0;
724 	struct bvec_iter_all iter_all;
725 
726 	ASSERT(!bio_flagged(bio, BIO_CLONED));
727 	bio_for_each_segment_all(bvec, bio, iter_all) {
728 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
729 		ret = csum_dirty_buffer(root->fs_info, bvec);
730 		if (ret)
731 			break;
732 	}
733 
734 	return errno_to_blk_status(ret);
735 }
736 
737 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
738 					   u64 dio_file_offset)
739 {
740 	/*
741 	 * when we're called for a write, we're already in the async
742 	 * submission context.  Just jump into btrfs_submit_bio.
743 	 */
744 	return btree_csum_one_bio(bio);
745 }
746 
747 static bool should_async_write(struct btrfs_fs_info *fs_info,
748 			     struct btrfs_inode *bi)
749 {
750 	if (btrfs_is_zoned(fs_info))
751 		return false;
752 	if (atomic_read(&bi->sync_writers))
753 		return false;
754 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
755 		return false;
756 	return true;
757 }
758 
759 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
760 {
761 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
762 	struct btrfs_bio *bbio = btrfs_bio(bio);
763 	blk_status_t ret;
764 
765 	bio->bi_opf |= REQ_META;
766 
767 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
768 		btrfs_submit_bio(fs_info, bio, mirror_num);
769 		return;
770 	}
771 
772 	/*
773 	 * Kthread helpers are used to submit writes so that checksumming can
774 	 * happen in parallel across all CPUs.
775 	 */
776 	if (should_async_write(fs_info, BTRFS_I(inode)) &&
777 	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start))
778 		return;
779 
780 	ret = btree_csum_one_bio(bio);
781 	if (ret) {
782 		btrfs_bio_end_io(bbio, ret);
783 		return;
784 	}
785 
786 	btrfs_submit_bio(fs_info, bio, mirror_num);
787 }
788 
789 #ifdef CONFIG_MIGRATION
790 static int btree_migrate_folio(struct address_space *mapping,
791 		struct folio *dst, struct folio *src, enum migrate_mode mode)
792 {
793 	/*
794 	 * we can't safely write a btree page from here,
795 	 * we haven't done the locking hook
796 	 */
797 	if (folio_test_dirty(src))
798 		return -EAGAIN;
799 	/*
800 	 * Buffers may be managed in a filesystem specific way.
801 	 * We must have no buffers or drop them.
802 	 */
803 	if (folio_get_private(src) &&
804 	    !filemap_release_folio(src, GFP_KERNEL))
805 		return -EAGAIN;
806 	return migrate_folio(mapping, dst, src, mode);
807 }
808 #else
809 #define btree_migrate_folio NULL
810 #endif
811 
812 static int btree_writepages(struct address_space *mapping,
813 			    struct writeback_control *wbc)
814 {
815 	struct btrfs_fs_info *fs_info;
816 	int ret;
817 
818 	if (wbc->sync_mode == WB_SYNC_NONE) {
819 
820 		if (wbc->for_kupdate)
821 			return 0;
822 
823 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
824 		/* this is a bit racy, but that's ok */
825 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
826 					     BTRFS_DIRTY_METADATA_THRESH,
827 					     fs_info->dirty_metadata_batch);
828 		if (ret < 0)
829 			return 0;
830 	}
831 	return btree_write_cache_pages(mapping, wbc);
832 }
833 
834 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
835 {
836 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
837 		return false;
838 
839 	return try_release_extent_buffer(&folio->page);
840 }
841 
842 static void btree_invalidate_folio(struct folio *folio, size_t offset,
843 				 size_t length)
844 {
845 	struct extent_io_tree *tree;
846 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
847 	extent_invalidate_folio(tree, folio, offset);
848 	btree_release_folio(folio, GFP_NOFS);
849 	if (folio_get_private(folio)) {
850 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
851 			   "folio private not zero on folio %llu",
852 			   (unsigned long long)folio_pos(folio));
853 		folio_detach_private(folio);
854 	}
855 }
856 
857 #ifdef DEBUG
858 static bool btree_dirty_folio(struct address_space *mapping,
859 		struct folio *folio)
860 {
861 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
862 	struct btrfs_subpage *subpage;
863 	struct extent_buffer *eb;
864 	int cur_bit = 0;
865 	u64 page_start = folio_pos(folio);
866 
867 	if (fs_info->sectorsize == PAGE_SIZE) {
868 		eb = folio_get_private(folio);
869 		BUG_ON(!eb);
870 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
871 		BUG_ON(!atomic_read(&eb->refs));
872 		btrfs_assert_tree_write_locked(eb);
873 		return filemap_dirty_folio(mapping, folio);
874 	}
875 	subpage = folio_get_private(folio);
876 
877 	ASSERT(subpage->dirty_bitmap);
878 	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
879 		unsigned long flags;
880 		u64 cur;
881 		u16 tmp = (1 << cur_bit);
882 
883 		spin_lock_irqsave(&subpage->lock, flags);
884 		if (!(tmp & subpage->dirty_bitmap)) {
885 			spin_unlock_irqrestore(&subpage->lock, flags);
886 			cur_bit++;
887 			continue;
888 		}
889 		spin_unlock_irqrestore(&subpage->lock, flags);
890 		cur = page_start + cur_bit * fs_info->sectorsize;
891 
892 		eb = find_extent_buffer(fs_info, cur);
893 		ASSERT(eb);
894 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
895 		ASSERT(atomic_read(&eb->refs));
896 		btrfs_assert_tree_write_locked(eb);
897 		free_extent_buffer(eb);
898 
899 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
900 	}
901 	return filemap_dirty_folio(mapping, folio);
902 }
903 #else
904 #define btree_dirty_folio filemap_dirty_folio
905 #endif
906 
907 static const struct address_space_operations btree_aops = {
908 	.writepages	= btree_writepages,
909 	.release_folio	= btree_release_folio,
910 	.invalidate_folio = btree_invalidate_folio,
911 	.migrate_folio	= btree_migrate_folio,
912 	.dirty_folio	= btree_dirty_folio,
913 };
914 
915 struct extent_buffer *btrfs_find_create_tree_block(
916 						struct btrfs_fs_info *fs_info,
917 						u64 bytenr, u64 owner_root,
918 						int level)
919 {
920 	if (btrfs_is_testing(fs_info))
921 		return alloc_test_extent_buffer(fs_info, bytenr);
922 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
923 }
924 
925 /*
926  * Read tree block at logical address @bytenr and do variant basic but critical
927  * verification.
928  *
929  * @owner_root:		the objectid of the root owner for this block.
930  * @parent_transid:	expected transid of this tree block, skip check if 0
931  * @level:		expected level, mandatory check
932  * @first_key:		expected key in slot 0, skip check if NULL
933  */
934 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
935 				      u64 owner_root, u64 parent_transid,
936 				      int level, struct btrfs_key *first_key)
937 {
938 	struct extent_buffer *buf = NULL;
939 	int ret;
940 
941 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
942 	if (IS_ERR(buf))
943 		return buf;
944 
945 	ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
946 	if (ret) {
947 		free_extent_buffer_stale(buf);
948 		return ERR_PTR(ret);
949 	}
950 	if (btrfs_check_eb_owner(buf, owner_root)) {
951 		free_extent_buffer_stale(buf);
952 		return ERR_PTR(-EUCLEAN);
953 	}
954 	return buf;
955 
956 }
957 
958 void btrfs_clean_tree_block(struct extent_buffer *buf)
959 {
960 	struct btrfs_fs_info *fs_info = buf->fs_info;
961 	if (btrfs_header_generation(buf) ==
962 	    fs_info->running_transaction->transid) {
963 		btrfs_assert_tree_write_locked(buf);
964 
965 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
966 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
967 						 -buf->len,
968 						 fs_info->dirty_metadata_batch);
969 			clear_extent_buffer_dirty(buf);
970 		}
971 	}
972 }
973 
974 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
975 			 u64 objectid)
976 {
977 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
978 
979 	memset(&root->root_key, 0, sizeof(root->root_key));
980 	memset(&root->root_item, 0, sizeof(root->root_item));
981 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
982 	root->fs_info = fs_info;
983 	root->root_key.objectid = objectid;
984 	root->node = NULL;
985 	root->commit_root = NULL;
986 	root->state = 0;
987 	RB_CLEAR_NODE(&root->rb_node);
988 
989 	root->last_trans = 0;
990 	root->free_objectid = 0;
991 	root->nr_delalloc_inodes = 0;
992 	root->nr_ordered_extents = 0;
993 	root->inode_tree = RB_ROOT;
994 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
995 
996 	btrfs_init_root_block_rsv(root);
997 
998 	INIT_LIST_HEAD(&root->dirty_list);
999 	INIT_LIST_HEAD(&root->root_list);
1000 	INIT_LIST_HEAD(&root->delalloc_inodes);
1001 	INIT_LIST_HEAD(&root->delalloc_root);
1002 	INIT_LIST_HEAD(&root->ordered_extents);
1003 	INIT_LIST_HEAD(&root->ordered_root);
1004 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1005 	INIT_LIST_HEAD(&root->logged_list[0]);
1006 	INIT_LIST_HEAD(&root->logged_list[1]);
1007 	spin_lock_init(&root->inode_lock);
1008 	spin_lock_init(&root->delalloc_lock);
1009 	spin_lock_init(&root->ordered_extent_lock);
1010 	spin_lock_init(&root->accounting_lock);
1011 	spin_lock_init(&root->log_extents_lock[0]);
1012 	spin_lock_init(&root->log_extents_lock[1]);
1013 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1014 	mutex_init(&root->objectid_mutex);
1015 	mutex_init(&root->log_mutex);
1016 	mutex_init(&root->ordered_extent_mutex);
1017 	mutex_init(&root->delalloc_mutex);
1018 	init_waitqueue_head(&root->qgroup_flush_wait);
1019 	init_waitqueue_head(&root->log_writer_wait);
1020 	init_waitqueue_head(&root->log_commit_wait[0]);
1021 	init_waitqueue_head(&root->log_commit_wait[1]);
1022 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1023 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1024 	atomic_set(&root->log_commit[0], 0);
1025 	atomic_set(&root->log_commit[1], 0);
1026 	atomic_set(&root->log_writers, 0);
1027 	atomic_set(&root->log_batch, 0);
1028 	refcount_set(&root->refs, 1);
1029 	atomic_set(&root->snapshot_force_cow, 0);
1030 	atomic_set(&root->nr_swapfiles, 0);
1031 	root->log_transid = 0;
1032 	root->log_transid_committed = -1;
1033 	root->last_log_commit = 0;
1034 	root->anon_dev = 0;
1035 	if (!dummy) {
1036 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1037 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1038 		extent_io_tree_init(fs_info, &root->log_csum_range,
1039 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1040 	}
1041 
1042 	spin_lock_init(&root->root_item_lock);
1043 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1044 #ifdef CONFIG_BTRFS_DEBUG
1045 	INIT_LIST_HEAD(&root->leak_list);
1046 	spin_lock(&fs_info->fs_roots_radix_lock);
1047 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1048 	spin_unlock(&fs_info->fs_roots_radix_lock);
1049 #endif
1050 }
1051 
1052 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1053 					   u64 objectid, gfp_t flags)
1054 {
1055 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1056 	if (root)
1057 		__setup_root(root, fs_info, objectid);
1058 	return root;
1059 }
1060 
1061 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1062 /* Should only be used by the testing infrastructure */
1063 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1064 {
1065 	struct btrfs_root *root;
1066 
1067 	if (!fs_info)
1068 		return ERR_PTR(-EINVAL);
1069 
1070 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1071 	if (!root)
1072 		return ERR_PTR(-ENOMEM);
1073 
1074 	/* We don't use the stripesize in selftest, set it as sectorsize */
1075 	root->alloc_bytenr = 0;
1076 
1077 	return root;
1078 }
1079 #endif
1080 
1081 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1082 {
1083 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1084 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1085 
1086 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1087 }
1088 
1089 static int global_root_key_cmp(const void *k, const struct rb_node *node)
1090 {
1091 	const struct btrfs_key *key = k;
1092 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1093 
1094 	return btrfs_comp_cpu_keys(key, &root->root_key);
1095 }
1096 
1097 int btrfs_global_root_insert(struct btrfs_root *root)
1098 {
1099 	struct btrfs_fs_info *fs_info = root->fs_info;
1100 	struct rb_node *tmp;
1101 
1102 	write_lock(&fs_info->global_root_lock);
1103 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1104 	write_unlock(&fs_info->global_root_lock);
1105 	ASSERT(!tmp);
1106 
1107 	return tmp ? -EEXIST : 0;
1108 }
1109 
1110 void btrfs_global_root_delete(struct btrfs_root *root)
1111 {
1112 	struct btrfs_fs_info *fs_info = root->fs_info;
1113 
1114 	write_lock(&fs_info->global_root_lock);
1115 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1116 	write_unlock(&fs_info->global_root_lock);
1117 }
1118 
1119 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1120 				     struct btrfs_key *key)
1121 {
1122 	struct rb_node *node;
1123 	struct btrfs_root *root = NULL;
1124 
1125 	read_lock(&fs_info->global_root_lock);
1126 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1127 	if (node)
1128 		root = container_of(node, struct btrfs_root, rb_node);
1129 	read_unlock(&fs_info->global_root_lock);
1130 
1131 	return root;
1132 }
1133 
1134 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1135 {
1136 	struct btrfs_block_group *block_group;
1137 	u64 ret;
1138 
1139 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1140 		return 0;
1141 
1142 	if (bytenr)
1143 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1144 	else
1145 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1146 	ASSERT(block_group);
1147 	if (!block_group)
1148 		return 0;
1149 	ret = block_group->global_root_id;
1150 	btrfs_put_block_group(block_group);
1151 
1152 	return ret;
1153 }
1154 
1155 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1156 {
1157 	struct btrfs_key key = {
1158 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1159 		.type = BTRFS_ROOT_ITEM_KEY,
1160 		.offset = btrfs_global_root_id(fs_info, bytenr),
1161 	};
1162 
1163 	return btrfs_global_root(fs_info, &key);
1164 }
1165 
1166 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1167 {
1168 	struct btrfs_key key = {
1169 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1170 		.type = BTRFS_ROOT_ITEM_KEY,
1171 		.offset = btrfs_global_root_id(fs_info, bytenr),
1172 	};
1173 
1174 	return btrfs_global_root(fs_info, &key);
1175 }
1176 
1177 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1178 {
1179 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1180 		return fs_info->block_group_root;
1181 	return btrfs_extent_root(fs_info, 0);
1182 }
1183 
1184 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1185 				     u64 objectid)
1186 {
1187 	struct btrfs_fs_info *fs_info = trans->fs_info;
1188 	struct extent_buffer *leaf;
1189 	struct btrfs_root *tree_root = fs_info->tree_root;
1190 	struct btrfs_root *root;
1191 	struct btrfs_key key;
1192 	unsigned int nofs_flag;
1193 	int ret = 0;
1194 
1195 	/*
1196 	 * We're holding a transaction handle, so use a NOFS memory allocation
1197 	 * context to avoid deadlock if reclaim happens.
1198 	 */
1199 	nofs_flag = memalloc_nofs_save();
1200 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1201 	memalloc_nofs_restore(nofs_flag);
1202 	if (!root)
1203 		return ERR_PTR(-ENOMEM);
1204 
1205 	root->root_key.objectid = objectid;
1206 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1207 	root->root_key.offset = 0;
1208 
1209 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1210 				      BTRFS_NESTING_NORMAL);
1211 	if (IS_ERR(leaf)) {
1212 		ret = PTR_ERR(leaf);
1213 		leaf = NULL;
1214 		goto fail;
1215 	}
1216 
1217 	root->node = leaf;
1218 	btrfs_mark_buffer_dirty(leaf);
1219 
1220 	root->commit_root = btrfs_root_node(root);
1221 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1222 
1223 	btrfs_set_root_flags(&root->root_item, 0);
1224 	btrfs_set_root_limit(&root->root_item, 0);
1225 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1226 	btrfs_set_root_generation(&root->root_item, trans->transid);
1227 	btrfs_set_root_level(&root->root_item, 0);
1228 	btrfs_set_root_refs(&root->root_item, 1);
1229 	btrfs_set_root_used(&root->root_item, leaf->len);
1230 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1231 	btrfs_set_root_dirid(&root->root_item, 0);
1232 	if (is_fstree(objectid))
1233 		generate_random_guid(root->root_item.uuid);
1234 	else
1235 		export_guid(root->root_item.uuid, &guid_null);
1236 	btrfs_set_root_drop_level(&root->root_item, 0);
1237 
1238 	btrfs_tree_unlock(leaf);
1239 
1240 	key.objectid = objectid;
1241 	key.type = BTRFS_ROOT_ITEM_KEY;
1242 	key.offset = 0;
1243 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1244 	if (ret)
1245 		goto fail;
1246 
1247 	return root;
1248 
1249 fail:
1250 	btrfs_put_root(root);
1251 
1252 	return ERR_PTR(ret);
1253 }
1254 
1255 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1256 					 struct btrfs_fs_info *fs_info)
1257 {
1258 	struct btrfs_root *root;
1259 
1260 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1261 	if (!root)
1262 		return ERR_PTR(-ENOMEM);
1263 
1264 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1265 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1266 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1267 
1268 	return root;
1269 }
1270 
1271 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1272 			      struct btrfs_root *root)
1273 {
1274 	struct extent_buffer *leaf;
1275 
1276 	/*
1277 	 * DON'T set SHAREABLE bit for log trees.
1278 	 *
1279 	 * Log trees are not exposed to user space thus can't be snapshotted,
1280 	 * and they go away before a real commit is actually done.
1281 	 *
1282 	 * They do store pointers to file data extents, and those reference
1283 	 * counts still get updated (along with back refs to the log tree).
1284 	 */
1285 
1286 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1287 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1288 	if (IS_ERR(leaf))
1289 		return PTR_ERR(leaf);
1290 
1291 	root->node = leaf;
1292 
1293 	btrfs_mark_buffer_dirty(root->node);
1294 	btrfs_tree_unlock(root->node);
1295 
1296 	return 0;
1297 }
1298 
1299 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1300 			     struct btrfs_fs_info *fs_info)
1301 {
1302 	struct btrfs_root *log_root;
1303 
1304 	log_root = alloc_log_tree(trans, fs_info);
1305 	if (IS_ERR(log_root))
1306 		return PTR_ERR(log_root);
1307 
1308 	if (!btrfs_is_zoned(fs_info)) {
1309 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1310 
1311 		if (ret) {
1312 			btrfs_put_root(log_root);
1313 			return ret;
1314 		}
1315 	}
1316 
1317 	WARN_ON(fs_info->log_root_tree);
1318 	fs_info->log_root_tree = log_root;
1319 	return 0;
1320 }
1321 
1322 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1323 		       struct btrfs_root *root)
1324 {
1325 	struct btrfs_fs_info *fs_info = root->fs_info;
1326 	struct btrfs_root *log_root;
1327 	struct btrfs_inode_item *inode_item;
1328 	int ret;
1329 
1330 	log_root = alloc_log_tree(trans, fs_info);
1331 	if (IS_ERR(log_root))
1332 		return PTR_ERR(log_root);
1333 
1334 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1335 	if (ret) {
1336 		btrfs_put_root(log_root);
1337 		return ret;
1338 	}
1339 
1340 	log_root->last_trans = trans->transid;
1341 	log_root->root_key.offset = root->root_key.objectid;
1342 
1343 	inode_item = &log_root->root_item.inode;
1344 	btrfs_set_stack_inode_generation(inode_item, 1);
1345 	btrfs_set_stack_inode_size(inode_item, 3);
1346 	btrfs_set_stack_inode_nlink(inode_item, 1);
1347 	btrfs_set_stack_inode_nbytes(inode_item,
1348 				     fs_info->nodesize);
1349 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1350 
1351 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1352 
1353 	WARN_ON(root->log_root);
1354 	root->log_root = log_root;
1355 	root->log_transid = 0;
1356 	root->log_transid_committed = -1;
1357 	root->last_log_commit = 0;
1358 	return 0;
1359 }
1360 
1361 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1362 					      struct btrfs_path *path,
1363 					      struct btrfs_key *key)
1364 {
1365 	struct btrfs_root *root;
1366 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1367 	u64 generation;
1368 	int ret;
1369 	int level;
1370 
1371 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1372 	if (!root)
1373 		return ERR_PTR(-ENOMEM);
1374 
1375 	ret = btrfs_find_root(tree_root, key, path,
1376 			      &root->root_item, &root->root_key);
1377 	if (ret) {
1378 		if (ret > 0)
1379 			ret = -ENOENT;
1380 		goto fail;
1381 	}
1382 
1383 	generation = btrfs_root_generation(&root->root_item);
1384 	level = btrfs_root_level(&root->root_item);
1385 	root->node = read_tree_block(fs_info,
1386 				     btrfs_root_bytenr(&root->root_item),
1387 				     key->objectid, generation, level, NULL);
1388 	if (IS_ERR(root->node)) {
1389 		ret = PTR_ERR(root->node);
1390 		root->node = NULL;
1391 		goto fail;
1392 	}
1393 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1394 		ret = -EIO;
1395 		goto fail;
1396 	}
1397 
1398 	/*
1399 	 * For real fs, and not log/reloc trees, root owner must
1400 	 * match its root node owner
1401 	 */
1402 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1403 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1404 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1405 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1406 		btrfs_crit(fs_info,
1407 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1408 			   root->root_key.objectid, root->node->start,
1409 			   btrfs_header_owner(root->node),
1410 			   root->root_key.objectid);
1411 		ret = -EUCLEAN;
1412 		goto fail;
1413 	}
1414 	root->commit_root = btrfs_root_node(root);
1415 	return root;
1416 fail:
1417 	btrfs_put_root(root);
1418 	return ERR_PTR(ret);
1419 }
1420 
1421 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1422 					struct btrfs_key *key)
1423 {
1424 	struct btrfs_root *root;
1425 	struct btrfs_path *path;
1426 
1427 	path = btrfs_alloc_path();
1428 	if (!path)
1429 		return ERR_PTR(-ENOMEM);
1430 	root = read_tree_root_path(tree_root, path, key);
1431 	btrfs_free_path(path);
1432 
1433 	return root;
1434 }
1435 
1436 /*
1437  * Initialize subvolume root in-memory structure
1438  *
1439  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1440  */
1441 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1442 {
1443 	int ret;
1444 	unsigned int nofs_flag;
1445 
1446 	/*
1447 	 * We might be called under a transaction (e.g. indirect backref
1448 	 * resolution) which could deadlock if it triggers memory reclaim
1449 	 */
1450 	nofs_flag = memalloc_nofs_save();
1451 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1452 	memalloc_nofs_restore(nofs_flag);
1453 	if (ret)
1454 		goto fail;
1455 
1456 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1457 	    !btrfs_is_data_reloc_root(root)) {
1458 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1459 		btrfs_check_and_init_root_item(&root->root_item);
1460 	}
1461 
1462 	/*
1463 	 * Don't assign anonymous block device to roots that are not exposed to
1464 	 * userspace, the id pool is limited to 1M
1465 	 */
1466 	if (is_fstree(root->root_key.objectid) &&
1467 	    btrfs_root_refs(&root->root_item) > 0) {
1468 		if (!anon_dev) {
1469 			ret = get_anon_bdev(&root->anon_dev);
1470 			if (ret)
1471 				goto fail;
1472 		} else {
1473 			root->anon_dev = anon_dev;
1474 		}
1475 	}
1476 
1477 	mutex_lock(&root->objectid_mutex);
1478 	ret = btrfs_init_root_free_objectid(root);
1479 	if (ret) {
1480 		mutex_unlock(&root->objectid_mutex);
1481 		goto fail;
1482 	}
1483 
1484 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1485 
1486 	mutex_unlock(&root->objectid_mutex);
1487 
1488 	return 0;
1489 fail:
1490 	/* The caller is responsible to call btrfs_free_fs_root */
1491 	return ret;
1492 }
1493 
1494 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1495 					       u64 root_id)
1496 {
1497 	struct btrfs_root *root;
1498 
1499 	spin_lock(&fs_info->fs_roots_radix_lock);
1500 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1501 				 (unsigned long)root_id);
1502 	if (root)
1503 		root = btrfs_grab_root(root);
1504 	spin_unlock(&fs_info->fs_roots_radix_lock);
1505 	return root;
1506 }
1507 
1508 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1509 						u64 objectid)
1510 {
1511 	struct btrfs_key key = {
1512 		.objectid = objectid,
1513 		.type = BTRFS_ROOT_ITEM_KEY,
1514 		.offset = 0,
1515 	};
1516 
1517 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1518 		return btrfs_grab_root(fs_info->tree_root);
1519 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1520 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1521 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1522 		return btrfs_grab_root(fs_info->chunk_root);
1523 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1524 		return btrfs_grab_root(fs_info->dev_root);
1525 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1526 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1527 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1528 		return btrfs_grab_root(fs_info->quota_root) ?
1529 			fs_info->quota_root : ERR_PTR(-ENOENT);
1530 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1531 		return btrfs_grab_root(fs_info->uuid_root) ?
1532 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1533 	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1534 		return btrfs_grab_root(fs_info->block_group_root) ?
1535 			fs_info->block_group_root : ERR_PTR(-ENOENT);
1536 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1537 		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1538 
1539 		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1540 	}
1541 	return NULL;
1542 }
1543 
1544 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1545 			 struct btrfs_root *root)
1546 {
1547 	int ret;
1548 
1549 	ret = radix_tree_preload(GFP_NOFS);
1550 	if (ret)
1551 		return ret;
1552 
1553 	spin_lock(&fs_info->fs_roots_radix_lock);
1554 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1555 				(unsigned long)root->root_key.objectid,
1556 				root);
1557 	if (ret == 0) {
1558 		btrfs_grab_root(root);
1559 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1560 	}
1561 	spin_unlock(&fs_info->fs_roots_radix_lock);
1562 	radix_tree_preload_end();
1563 
1564 	return ret;
1565 }
1566 
1567 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1568 {
1569 #ifdef CONFIG_BTRFS_DEBUG
1570 	struct btrfs_root *root;
1571 
1572 	while (!list_empty(&fs_info->allocated_roots)) {
1573 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1574 
1575 		root = list_first_entry(&fs_info->allocated_roots,
1576 					struct btrfs_root, leak_list);
1577 		btrfs_err(fs_info, "leaked root %s refcount %d",
1578 			  btrfs_root_name(&root->root_key, buf),
1579 			  refcount_read(&root->refs));
1580 		while (refcount_read(&root->refs) > 1)
1581 			btrfs_put_root(root);
1582 		btrfs_put_root(root);
1583 	}
1584 #endif
1585 }
1586 
1587 static void free_global_roots(struct btrfs_fs_info *fs_info)
1588 {
1589 	struct btrfs_root *root;
1590 	struct rb_node *node;
1591 
1592 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1593 		root = rb_entry(node, struct btrfs_root, rb_node);
1594 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1595 		btrfs_put_root(root);
1596 	}
1597 }
1598 
1599 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1600 {
1601 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1602 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1603 	percpu_counter_destroy(&fs_info->ordered_bytes);
1604 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1605 	btrfs_free_csum_hash(fs_info);
1606 	btrfs_free_stripe_hash_table(fs_info);
1607 	btrfs_free_ref_cache(fs_info);
1608 	kfree(fs_info->balance_ctl);
1609 	kfree(fs_info->delayed_root);
1610 	free_global_roots(fs_info);
1611 	btrfs_put_root(fs_info->tree_root);
1612 	btrfs_put_root(fs_info->chunk_root);
1613 	btrfs_put_root(fs_info->dev_root);
1614 	btrfs_put_root(fs_info->quota_root);
1615 	btrfs_put_root(fs_info->uuid_root);
1616 	btrfs_put_root(fs_info->fs_root);
1617 	btrfs_put_root(fs_info->data_reloc_root);
1618 	btrfs_put_root(fs_info->block_group_root);
1619 	btrfs_check_leaked_roots(fs_info);
1620 	btrfs_extent_buffer_leak_debug_check(fs_info);
1621 	kfree(fs_info->super_copy);
1622 	kfree(fs_info->super_for_commit);
1623 	kfree(fs_info->subpage_info);
1624 	kvfree(fs_info);
1625 }
1626 
1627 
1628 /*
1629  * Get an in-memory reference of a root structure.
1630  *
1631  * For essential trees like root/extent tree, we grab it from fs_info directly.
1632  * For subvolume trees, we check the cached filesystem roots first. If not
1633  * found, then read it from disk and add it to cached fs roots.
1634  *
1635  * Caller should release the root by calling btrfs_put_root() after the usage.
1636  *
1637  * NOTE: Reloc and log trees can't be read by this function as they share the
1638  *	 same root objectid.
1639  *
1640  * @objectid:	root id
1641  * @anon_dev:	preallocated anonymous block device number for new roots,
1642  * 		pass 0 for new allocation.
1643  * @check_ref:	whether to check root item references, If true, return -ENOENT
1644  *		for orphan roots
1645  */
1646 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1647 					     u64 objectid, dev_t anon_dev,
1648 					     bool check_ref)
1649 {
1650 	struct btrfs_root *root;
1651 	struct btrfs_path *path;
1652 	struct btrfs_key key;
1653 	int ret;
1654 
1655 	root = btrfs_get_global_root(fs_info, objectid);
1656 	if (root)
1657 		return root;
1658 again:
1659 	root = btrfs_lookup_fs_root(fs_info, objectid);
1660 	if (root) {
1661 		/* Shouldn't get preallocated anon_dev for cached roots */
1662 		ASSERT(!anon_dev);
1663 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1664 			btrfs_put_root(root);
1665 			return ERR_PTR(-ENOENT);
1666 		}
1667 		return root;
1668 	}
1669 
1670 	key.objectid = objectid;
1671 	key.type = BTRFS_ROOT_ITEM_KEY;
1672 	key.offset = (u64)-1;
1673 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1674 	if (IS_ERR(root))
1675 		return root;
1676 
1677 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1678 		ret = -ENOENT;
1679 		goto fail;
1680 	}
1681 
1682 	ret = btrfs_init_fs_root(root, anon_dev);
1683 	if (ret)
1684 		goto fail;
1685 
1686 	path = btrfs_alloc_path();
1687 	if (!path) {
1688 		ret = -ENOMEM;
1689 		goto fail;
1690 	}
1691 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1692 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1693 	key.offset = objectid;
1694 
1695 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1696 	btrfs_free_path(path);
1697 	if (ret < 0)
1698 		goto fail;
1699 	if (ret == 0)
1700 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1701 
1702 	ret = btrfs_insert_fs_root(fs_info, root);
1703 	if (ret) {
1704 		if (ret == -EEXIST) {
1705 			btrfs_put_root(root);
1706 			goto again;
1707 		}
1708 		goto fail;
1709 	}
1710 	return root;
1711 fail:
1712 	/*
1713 	 * If our caller provided us an anonymous device, then it's his
1714 	 * responsibility to free it in case we fail. So we have to set our
1715 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1716 	 * and once again by our caller.
1717 	 */
1718 	if (anon_dev)
1719 		root->anon_dev = 0;
1720 	btrfs_put_root(root);
1721 	return ERR_PTR(ret);
1722 }
1723 
1724 /*
1725  * Get in-memory reference of a root structure
1726  *
1727  * @objectid:	tree objectid
1728  * @check_ref:	if set, verify that the tree exists and the item has at least
1729  *		one reference
1730  */
1731 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1732 				     u64 objectid, bool check_ref)
1733 {
1734 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1735 }
1736 
1737 /*
1738  * Get in-memory reference of a root structure, created as new, optionally pass
1739  * the anonymous block device id
1740  *
1741  * @objectid:	tree objectid
1742  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1743  *		parameter value
1744  */
1745 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1746 					 u64 objectid, dev_t anon_dev)
1747 {
1748 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1749 }
1750 
1751 /*
1752  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1753  * @fs_info:	the fs_info
1754  * @objectid:	the objectid we need to lookup
1755  *
1756  * This is exclusively used for backref walking, and exists specifically because
1757  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1758  * creation time, which means we may have to read the tree_root in order to look
1759  * up a fs root that is not in memory.  If the root is not in memory we will
1760  * read the tree root commit root and look up the fs root from there.  This is a
1761  * temporary root, it will not be inserted into the radix tree as it doesn't
1762  * have the most uptodate information, it'll simply be discarded once the
1763  * backref code is finished using the root.
1764  */
1765 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1766 						 struct btrfs_path *path,
1767 						 u64 objectid)
1768 {
1769 	struct btrfs_root *root;
1770 	struct btrfs_key key;
1771 
1772 	ASSERT(path->search_commit_root && path->skip_locking);
1773 
1774 	/*
1775 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1776 	 * since this is called via the backref walking code we won't be looking
1777 	 * up a root that doesn't exist, unless there's corruption.  So if root
1778 	 * != NULL just return it.
1779 	 */
1780 	root = btrfs_get_global_root(fs_info, objectid);
1781 	if (root)
1782 		return root;
1783 
1784 	root = btrfs_lookup_fs_root(fs_info, objectid);
1785 	if (root)
1786 		return root;
1787 
1788 	key.objectid = objectid;
1789 	key.type = BTRFS_ROOT_ITEM_KEY;
1790 	key.offset = (u64)-1;
1791 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1792 	btrfs_release_path(path);
1793 
1794 	return root;
1795 }
1796 
1797 static int cleaner_kthread(void *arg)
1798 {
1799 	struct btrfs_fs_info *fs_info = arg;
1800 	int again;
1801 
1802 	while (1) {
1803 		again = 0;
1804 
1805 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1806 
1807 		/* Make the cleaner go to sleep early. */
1808 		if (btrfs_need_cleaner_sleep(fs_info))
1809 			goto sleep;
1810 
1811 		/*
1812 		 * Do not do anything if we might cause open_ctree() to block
1813 		 * before we have finished mounting the filesystem.
1814 		 */
1815 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1816 			goto sleep;
1817 
1818 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1819 			goto sleep;
1820 
1821 		/*
1822 		 * Avoid the problem that we change the status of the fs
1823 		 * during the above check and trylock.
1824 		 */
1825 		if (btrfs_need_cleaner_sleep(fs_info)) {
1826 			mutex_unlock(&fs_info->cleaner_mutex);
1827 			goto sleep;
1828 		}
1829 
1830 		btrfs_run_delayed_iputs(fs_info);
1831 
1832 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1833 		mutex_unlock(&fs_info->cleaner_mutex);
1834 
1835 		/*
1836 		 * The defragger has dealt with the R/O remount and umount,
1837 		 * needn't do anything special here.
1838 		 */
1839 		btrfs_run_defrag_inodes(fs_info);
1840 
1841 		/*
1842 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1843 		 * with relocation (btrfs_relocate_chunk) and relocation
1844 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1845 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1846 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1847 		 * unused block groups.
1848 		 */
1849 		btrfs_delete_unused_bgs(fs_info);
1850 
1851 		/*
1852 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1853 		 * all unused block_groups. This possibly gives us some more free
1854 		 * space.
1855 		 */
1856 		btrfs_reclaim_bgs(fs_info);
1857 sleep:
1858 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1859 		if (kthread_should_park())
1860 			kthread_parkme();
1861 		if (kthread_should_stop())
1862 			return 0;
1863 		if (!again) {
1864 			set_current_state(TASK_INTERRUPTIBLE);
1865 			schedule();
1866 			__set_current_state(TASK_RUNNING);
1867 		}
1868 	}
1869 }
1870 
1871 static int transaction_kthread(void *arg)
1872 {
1873 	struct btrfs_root *root = arg;
1874 	struct btrfs_fs_info *fs_info = root->fs_info;
1875 	struct btrfs_trans_handle *trans;
1876 	struct btrfs_transaction *cur;
1877 	u64 transid;
1878 	time64_t delta;
1879 	unsigned long delay;
1880 	bool cannot_commit;
1881 
1882 	do {
1883 		cannot_commit = false;
1884 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1885 		mutex_lock(&fs_info->transaction_kthread_mutex);
1886 
1887 		spin_lock(&fs_info->trans_lock);
1888 		cur = fs_info->running_transaction;
1889 		if (!cur) {
1890 			spin_unlock(&fs_info->trans_lock);
1891 			goto sleep;
1892 		}
1893 
1894 		delta = ktime_get_seconds() - cur->start_time;
1895 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1896 		    cur->state < TRANS_STATE_COMMIT_START &&
1897 		    delta < fs_info->commit_interval) {
1898 			spin_unlock(&fs_info->trans_lock);
1899 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1900 			delay = min(delay,
1901 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1902 			goto sleep;
1903 		}
1904 		transid = cur->transid;
1905 		spin_unlock(&fs_info->trans_lock);
1906 
1907 		/* If the file system is aborted, this will always fail. */
1908 		trans = btrfs_attach_transaction(root);
1909 		if (IS_ERR(trans)) {
1910 			if (PTR_ERR(trans) != -ENOENT)
1911 				cannot_commit = true;
1912 			goto sleep;
1913 		}
1914 		if (transid == trans->transid) {
1915 			btrfs_commit_transaction(trans);
1916 		} else {
1917 			btrfs_end_transaction(trans);
1918 		}
1919 sleep:
1920 		wake_up_process(fs_info->cleaner_kthread);
1921 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1922 
1923 		if (BTRFS_FS_ERROR(fs_info))
1924 			btrfs_cleanup_transaction(fs_info);
1925 		if (!kthread_should_stop() &&
1926 				(!btrfs_transaction_blocked(fs_info) ||
1927 				 cannot_commit))
1928 			schedule_timeout_interruptible(delay);
1929 	} while (!kthread_should_stop());
1930 	return 0;
1931 }
1932 
1933 /*
1934  * This will find the highest generation in the array of root backups.  The
1935  * index of the highest array is returned, or -EINVAL if we can't find
1936  * anything.
1937  *
1938  * We check to make sure the array is valid by comparing the
1939  * generation of the latest  root in the array with the generation
1940  * in the super block.  If they don't match we pitch it.
1941  */
1942 static int find_newest_super_backup(struct btrfs_fs_info *info)
1943 {
1944 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1945 	u64 cur;
1946 	struct btrfs_root_backup *root_backup;
1947 	int i;
1948 
1949 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1950 		root_backup = info->super_copy->super_roots + i;
1951 		cur = btrfs_backup_tree_root_gen(root_backup);
1952 		if (cur == newest_gen)
1953 			return i;
1954 	}
1955 
1956 	return -EINVAL;
1957 }
1958 
1959 /*
1960  * copy all the root pointers into the super backup array.
1961  * this will bump the backup pointer by one when it is
1962  * done
1963  */
1964 static void backup_super_roots(struct btrfs_fs_info *info)
1965 {
1966 	const int next_backup = info->backup_root_index;
1967 	struct btrfs_root_backup *root_backup;
1968 
1969 	root_backup = info->super_for_commit->super_roots + next_backup;
1970 
1971 	/*
1972 	 * make sure all of our padding and empty slots get zero filled
1973 	 * regardless of which ones we use today
1974 	 */
1975 	memset(root_backup, 0, sizeof(*root_backup));
1976 
1977 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1978 
1979 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1980 	btrfs_set_backup_tree_root_gen(root_backup,
1981 			       btrfs_header_generation(info->tree_root->node));
1982 
1983 	btrfs_set_backup_tree_root_level(root_backup,
1984 			       btrfs_header_level(info->tree_root->node));
1985 
1986 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1987 	btrfs_set_backup_chunk_root_gen(root_backup,
1988 			       btrfs_header_generation(info->chunk_root->node));
1989 	btrfs_set_backup_chunk_root_level(root_backup,
1990 			       btrfs_header_level(info->chunk_root->node));
1991 
1992 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1993 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1994 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1995 
1996 		btrfs_set_backup_extent_root(root_backup,
1997 					     extent_root->node->start);
1998 		btrfs_set_backup_extent_root_gen(root_backup,
1999 				btrfs_header_generation(extent_root->node));
2000 		btrfs_set_backup_extent_root_level(root_backup,
2001 					btrfs_header_level(extent_root->node));
2002 
2003 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2004 		btrfs_set_backup_csum_root_gen(root_backup,
2005 					       btrfs_header_generation(csum_root->node));
2006 		btrfs_set_backup_csum_root_level(root_backup,
2007 						 btrfs_header_level(csum_root->node));
2008 	}
2009 
2010 	/*
2011 	 * we might commit during log recovery, which happens before we set
2012 	 * the fs_root.  Make sure it is valid before we fill it in.
2013 	 */
2014 	if (info->fs_root && info->fs_root->node) {
2015 		btrfs_set_backup_fs_root(root_backup,
2016 					 info->fs_root->node->start);
2017 		btrfs_set_backup_fs_root_gen(root_backup,
2018 			       btrfs_header_generation(info->fs_root->node));
2019 		btrfs_set_backup_fs_root_level(root_backup,
2020 			       btrfs_header_level(info->fs_root->node));
2021 	}
2022 
2023 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2024 	btrfs_set_backup_dev_root_gen(root_backup,
2025 			       btrfs_header_generation(info->dev_root->node));
2026 	btrfs_set_backup_dev_root_level(root_backup,
2027 				       btrfs_header_level(info->dev_root->node));
2028 
2029 	btrfs_set_backup_total_bytes(root_backup,
2030 			     btrfs_super_total_bytes(info->super_copy));
2031 	btrfs_set_backup_bytes_used(root_backup,
2032 			     btrfs_super_bytes_used(info->super_copy));
2033 	btrfs_set_backup_num_devices(root_backup,
2034 			     btrfs_super_num_devices(info->super_copy));
2035 
2036 	/*
2037 	 * if we don't copy this out to the super_copy, it won't get remembered
2038 	 * for the next commit
2039 	 */
2040 	memcpy(&info->super_copy->super_roots,
2041 	       &info->super_for_commit->super_roots,
2042 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2043 }
2044 
2045 /*
2046  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2047  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2048  *
2049  * fs_info - filesystem whose backup roots need to be read
2050  * priority - priority of backup root required
2051  *
2052  * Returns backup root index on success and -EINVAL otherwise.
2053  */
2054 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2055 {
2056 	int backup_index = find_newest_super_backup(fs_info);
2057 	struct btrfs_super_block *super = fs_info->super_copy;
2058 	struct btrfs_root_backup *root_backup;
2059 
2060 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2061 		if (priority == 0)
2062 			return backup_index;
2063 
2064 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2065 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2066 	} else {
2067 		return -EINVAL;
2068 	}
2069 
2070 	root_backup = super->super_roots + backup_index;
2071 
2072 	btrfs_set_super_generation(super,
2073 				   btrfs_backup_tree_root_gen(root_backup));
2074 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2075 	btrfs_set_super_root_level(super,
2076 				   btrfs_backup_tree_root_level(root_backup));
2077 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2078 
2079 	/*
2080 	 * Fixme: the total bytes and num_devices need to match or we should
2081 	 * need a fsck
2082 	 */
2083 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2084 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2085 
2086 	return backup_index;
2087 }
2088 
2089 /* helper to cleanup workers */
2090 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2091 {
2092 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2093 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2094 	btrfs_destroy_workqueue(fs_info->hipri_workers);
2095 	btrfs_destroy_workqueue(fs_info->workers);
2096 	if (fs_info->endio_workers)
2097 		destroy_workqueue(fs_info->endio_workers);
2098 	if (fs_info->endio_raid56_workers)
2099 		destroy_workqueue(fs_info->endio_raid56_workers);
2100 	if (fs_info->rmw_workers)
2101 		destroy_workqueue(fs_info->rmw_workers);
2102 	if (fs_info->compressed_write_workers)
2103 		destroy_workqueue(fs_info->compressed_write_workers);
2104 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2105 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2106 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2107 	btrfs_destroy_workqueue(fs_info->caching_workers);
2108 	btrfs_destroy_workqueue(fs_info->flush_workers);
2109 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2110 	if (fs_info->discard_ctl.discard_workers)
2111 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2112 	/*
2113 	 * Now that all other work queues are destroyed, we can safely destroy
2114 	 * the queues used for metadata I/O, since tasks from those other work
2115 	 * queues can do metadata I/O operations.
2116 	 */
2117 	if (fs_info->endio_meta_workers)
2118 		destroy_workqueue(fs_info->endio_meta_workers);
2119 }
2120 
2121 static void free_root_extent_buffers(struct btrfs_root *root)
2122 {
2123 	if (root) {
2124 		free_extent_buffer(root->node);
2125 		free_extent_buffer(root->commit_root);
2126 		root->node = NULL;
2127 		root->commit_root = NULL;
2128 	}
2129 }
2130 
2131 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2132 {
2133 	struct btrfs_root *root, *tmp;
2134 
2135 	rbtree_postorder_for_each_entry_safe(root, tmp,
2136 					     &fs_info->global_root_tree,
2137 					     rb_node)
2138 		free_root_extent_buffers(root);
2139 }
2140 
2141 /* helper to cleanup tree roots */
2142 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2143 {
2144 	free_root_extent_buffers(info->tree_root);
2145 
2146 	free_global_root_pointers(info);
2147 	free_root_extent_buffers(info->dev_root);
2148 	free_root_extent_buffers(info->quota_root);
2149 	free_root_extent_buffers(info->uuid_root);
2150 	free_root_extent_buffers(info->fs_root);
2151 	free_root_extent_buffers(info->data_reloc_root);
2152 	free_root_extent_buffers(info->block_group_root);
2153 	if (free_chunk_root)
2154 		free_root_extent_buffers(info->chunk_root);
2155 }
2156 
2157 void btrfs_put_root(struct btrfs_root *root)
2158 {
2159 	if (!root)
2160 		return;
2161 
2162 	if (refcount_dec_and_test(&root->refs)) {
2163 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2164 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2165 		if (root->anon_dev)
2166 			free_anon_bdev(root->anon_dev);
2167 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2168 		free_root_extent_buffers(root);
2169 #ifdef CONFIG_BTRFS_DEBUG
2170 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2171 		list_del_init(&root->leak_list);
2172 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2173 #endif
2174 		kfree(root);
2175 	}
2176 }
2177 
2178 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2179 {
2180 	int ret;
2181 	struct btrfs_root *gang[8];
2182 	int i;
2183 
2184 	while (!list_empty(&fs_info->dead_roots)) {
2185 		gang[0] = list_entry(fs_info->dead_roots.next,
2186 				     struct btrfs_root, root_list);
2187 		list_del(&gang[0]->root_list);
2188 
2189 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2190 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2191 		btrfs_put_root(gang[0]);
2192 	}
2193 
2194 	while (1) {
2195 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2196 					     (void **)gang, 0,
2197 					     ARRAY_SIZE(gang));
2198 		if (!ret)
2199 			break;
2200 		for (i = 0; i < ret; i++)
2201 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2202 	}
2203 }
2204 
2205 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2206 {
2207 	mutex_init(&fs_info->scrub_lock);
2208 	atomic_set(&fs_info->scrubs_running, 0);
2209 	atomic_set(&fs_info->scrub_pause_req, 0);
2210 	atomic_set(&fs_info->scrubs_paused, 0);
2211 	atomic_set(&fs_info->scrub_cancel_req, 0);
2212 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2213 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2214 }
2215 
2216 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2217 {
2218 	spin_lock_init(&fs_info->balance_lock);
2219 	mutex_init(&fs_info->balance_mutex);
2220 	atomic_set(&fs_info->balance_pause_req, 0);
2221 	atomic_set(&fs_info->balance_cancel_req, 0);
2222 	fs_info->balance_ctl = NULL;
2223 	init_waitqueue_head(&fs_info->balance_wait_q);
2224 	atomic_set(&fs_info->reloc_cancel_req, 0);
2225 }
2226 
2227 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2228 {
2229 	struct inode *inode = fs_info->btree_inode;
2230 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2231 					      fs_info->tree_root);
2232 
2233 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2234 	set_nlink(inode, 1);
2235 	/*
2236 	 * we set the i_size on the btree inode to the max possible int.
2237 	 * the real end of the address space is determined by all of
2238 	 * the devices in the system
2239 	 */
2240 	inode->i_size = OFFSET_MAX;
2241 	inode->i_mapping->a_ops = &btree_aops;
2242 
2243 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2244 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2245 			    IO_TREE_BTREE_INODE_IO, NULL);
2246 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2247 
2248 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2249 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2250 	BTRFS_I(inode)->location.type = 0;
2251 	BTRFS_I(inode)->location.offset = 0;
2252 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2253 	__insert_inode_hash(inode, hash);
2254 }
2255 
2256 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2257 {
2258 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2259 	init_rwsem(&fs_info->dev_replace.rwsem);
2260 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2261 }
2262 
2263 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2264 {
2265 	spin_lock_init(&fs_info->qgroup_lock);
2266 	mutex_init(&fs_info->qgroup_ioctl_lock);
2267 	fs_info->qgroup_tree = RB_ROOT;
2268 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2269 	fs_info->qgroup_seq = 1;
2270 	fs_info->qgroup_ulist = NULL;
2271 	fs_info->qgroup_rescan_running = false;
2272 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2273 	mutex_init(&fs_info->qgroup_rescan_lock);
2274 }
2275 
2276 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2277 {
2278 	u32 max_active = fs_info->thread_pool_size;
2279 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2280 
2281 	fs_info->workers =
2282 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2283 	fs_info->hipri_workers =
2284 		btrfs_alloc_workqueue(fs_info, "worker-high",
2285 				      flags | WQ_HIGHPRI, max_active, 16);
2286 
2287 	fs_info->delalloc_workers =
2288 		btrfs_alloc_workqueue(fs_info, "delalloc",
2289 				      flags, max_active, 2);
2290 
2291 	fs_info->flush_workers =
2292 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2293 				      flags, max_active, 0);
2294 
2295 	fs_info->caching_workers =
2296 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2297 
2298 	fs_info->fixup_workers =
2299 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2300 
2301 	fs_info->endio_workers =
2302 		alloc_workqueue("btrfs-endio", flags, max_active);
2303 	fs_info->endio_meta_workers =
2304 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2305 	fs_info->endio_raid56_workers =
2306 		alloc_workqueue("btrfs-endio-raid56", flags, max_active);
2307 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2308 	fs_info->endio_write_workers =
2309 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2310 				      max_active, 2);
2311 	fs_info->compressed_write_workers =
2312 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2313 	fs_info->endio_freespace_worker =
2314 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2315 				      max_active, 0);
2316 	fs_info->delayed_workers =
2317 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2318 				      max_active, 0);
2319 	fs_info->qgroup_rescan_workers =
2320 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2321 	fs_info->discard_ctl.discard_workers =
2322 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2323 
2324 	if (!(fs_info->workers && fs_info->hipri_workers &&
2325 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2326 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2327 	      fs_info->compressed_write_workers &&
2328 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2329 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2330 	      fs_info->caching_workers && fs_info->fixup_workers &&
2331 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2332 	      fs_info->discard_ctl.discard_workers)) {
2333 		return -ENOMEM;
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2340 {
2341 	struct crypto_shash *csum_shash;
2342 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2343 
2344 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2345 
2346 	if (IS_ERR(csum_shash)) {
2347 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2348 			  csum_driver);
2349 		return PTR_ERR(csum_shash);
2350 	}
2351 
2352 	fs_info->csum_shash = csum_shash;
2353 
2354 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2355 			btrfs_super_csum_name(csum_type),
2356 			crypto_shash_driver_name(csum_shash));
2357 	return 0;
2358 }
2359 
2360 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2361 			    struct btrfs_fs_devices *fs_devices)
2362 {
2363 	int ret;
2364 	struct btrfs_root *log_tree_root;
2365 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2366 	u64 bytenr = btrfs_super_log_root(disk_super);
2367 	int level = btrfs_super_log_root_level(disk_super);
2368 
2369 	if (fs_devices->rw_devices == 0) {
2370 		btrfs_warn(fs_info, "log replay required on RO media");
2371 		return -EIO;
2372 	}
2373 
2374 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2375 					 GFP_KERNEL);
2376 	if (!log_tree_root)
2377 		return -ENOMEM;
2378 
2379 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2380 					      BTRFS_TREE_LOG_OBJECTID,
2381 					      fs_info->generation + 1, level,
2382 					      NULL);
2383 	if (IS_ERR(log_tree_root->node)) {
2384 		btrfs_warn(fs_info, "failed to read log tree");
2385 		ret = PTR_ERR(log_tree_root->node);
2386 		log_tree_root->node = NULL;
2387 		btrfs_put_root(log_tree_root);
2388 		return ret;
2389 	}
2390 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2391 		btrfs_err(fs_info, "failed to read log tree");
2392 		btrfs_put_root(log_tree_root);
2393 		return -EIO;
2394 	}
2395 
2396 	/* returns with log_tree_root freed on success */
2397 	ret = btrfs_recover_log_trees(log_tree_root);
2398 	if (ret) {
2399 		btrfs_handle_fs_error(fs_info, ret,
2400 				      "Failed to recover log tree");
2401 		btrfs_put_root(log_tree_root);
2402 		return ret;
2403 	}
2404 
2405 	if (sb_rdonly(fs_info->sb)) {
2406 		ret = btrfs_commit_super(fs_info);
2407 		if (ret)
2408 			return ret;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2415 				      struct btrfs_path *path, u64 objectid,
2416 				      const char *name)
2417 {
2418 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2419 	struct btrfs_root *root;
2420 	u64 max_global_id = 0;
2421 	int ret;
2422 	struct btrfs_key key = {
2423 		.objectid = objectid,
2424 		.type = BTRFS_ROOT_ITEM_KEY,
2425 		.offset = 0,
2426 	};
2427 	bool found = false;
2428 
2429 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2430 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2431 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2432 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2433 		return 0;
2434 	}
2435 
2436 	while (1) {
2437 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2438 		if (ret < 0)
2439 			break;
2440 
2441 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2442 			ret = btrfs_next_leaf(tree_root, path);
2443 			if (ret) {
2444 				if (ret > 0)
2445 					ret = 0;
2446 				break;
2447 			}
2448 		}
2449 		ret = 0;
2450 
2451 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2452 		if (key.objectid != objectid)
2453 			break;
2454 		btrfs_release_path(path);
2455 
2456 		/*
2457 		 * Just worry about this for extent tree, it'll be the same for
2458 		 * everybody.
2459 		 */
2460 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2461 			max_global_id = max(max_global_id, key.offset);
2462 
2463 		found = true;
2464 		root = read_tree_root_path(tree_root, path, &key);
2465 		if (IS_ERR(root)) {
2466 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2467 				ret = PTR_ERR(root);
2468 			break;
2469 		}
2470 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2471 		ret = btrfs_global_root_insert(root);
2472 		if (ret) {
2473 			btrfs_put_root(root);
2474 			break;
2475 		}
2476 		key.offset++;
2477 	}
2478 	btrfs_release_path(path);
2479 
2480 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2481 		fs_info->nr_global_roots = max_global_id + 1;
2482 
2483 	if (!found || ret) {
2484 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2485 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2486 
2487 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2488 			ret = ret ? ret : -ENOENT;
2489 		else
2490 			ret = 0;
2491 		btrfs_err(fs_info, "failed to load root %s", name);
2492 	}
2493 	return ret;
2494 }
2495 
2496 static int load_global_roots(struct btrfs_root *tree_root)
2497 {
2498 	struct btrfs_path *path;
2499 	int ret = 0;
2500 
2501 	path = btrfs_alloc_path();
2502 	if (!path)
2503 		return -ENOMEM;
2504 
2505 	ret = load_global_roots_objectid(tree_root, path,
2506 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2507 	if (ret)
2508 		goto out;
2509 	ret = load_global_roots_objectid(tree_root, path,
2510 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2511 	if (ret)
2512 		goto out;
2513 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2514 		goto out;
2515 	ret = load_global_roots_objectid(tree_root, path,
2516 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2517 					 "free space");
2518 out:
2519 	btrfs_free_path(path);
2520 	return ret;
2521 }
2522 
2523 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2524 {
2525 	struct btrfs_root *tree_root = fs_info->tree_root;
2526 	struct btrfs_root *root;
2527 	struct btrfs_key location;
2528 	int ret;
2529 
2530 	BUG_ON(!fs_info->tree_root);
2531 
2532 	ret = load_global_roots(tree_root);
2533 	if (ret)
2534 		return ret;
2535 
2536 	location.type = BTRFS_ROOT_ITEM_KEY;
2537 	location.offset = 0;
2538 
2539 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2540 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2541 		root = btrfs_read_tree_root(tree_root, &location);
2542 		if (IS_ERR(root)) {
2543 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2544 				ret = PTR_ERR(root);
2545 				goto out;
2546 			}
2547 		} else {
2548 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2549 			fs_info->block_group_root = root;
2550 		}
2551 	}
2552 
2553 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2554 	root = btrfs_read_tree_root(tree_root, &location);
2555 	if (IS_ERR(root)) {
2556 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2557 			ret = PTR_ERR(root);
2558 			goto out;
2559 		}
2560 	} else {
2561 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2562 		fs_info->dev_root = root;
2563 	}
2564 	/* Initialize fs_info for all devices in any case */
2565 	ret = btrfs_init_devices_late(fs_info);
2566 	if (ret)
2567 		goto out;
2568 
2569 	/*
2570 	 * This tree can share blocks with some other fs tree during relocation
2571 	 * and we need a proper setup by btrfs_get_fs_root
2572 	 */
2573 	root = btrfs_get_fs_root(tree_root->fs_info,
2574 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2575 	if (IS_ERR(root)) {
2576 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2577 			ret = PTR_ERR(root);
2578 			goto out;
2579 		}
2580 	} else {
2581 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2582 		fs_info->data_reloc_root = root;
2583 	}
2584 
2585 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2586 	root = btrfs_read_tree_root(tree_root, &location);
2587 	if (!IS_ERR(root)) {
2588 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2589 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2590 		fs_info->quota_root = root;
2591 	}
2592 
2593 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2594 	root = btrfs_read_tree_root(tree_root, &location);
2595 	if (IS_ERR(root)) {
2596 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2597 			ret = PTR_ERR(root);
2598 			if (ret != -ENOENT)
2599 				goto out;
2600 		}
2601 	} else {
2602 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2603 		fs_info->uuid_root = root;
2604 	}
2605 
2606 	return 0;
2607 out:
2608 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2609 		   location.objectid, ret);
2610 	return ret;
2611 }
2612 
2613 /*
2614  * Real super block validation
2615  * NOTE: super csum type and incompat features will not be checked here.
2616  *
2617  * @sb:		super block to check
2618  * @mirror_num:	the super block number to check its bytenr:
2619  * 		0	the primary (1st) sb
2620  * 		1, 2	2nd and 3rd backup copy
2621  * 	       -1	skip bytenr check
2622  */
2623 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2624 			 struct btrfs_super_block *sb, int mirror_num)
2625 {
2626 	u64 nodesize = btrfs_super_nodesize(sb);
2627 	u64 sectorsize = btrfs_super_sectorsize(sb);
2628 	int ret = 0;
2629 
2630 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2631 		btrfs_err(fs_info, "no valid FS found");
2632 		ret = -EINVAL;
2633 	}
2634 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2635 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2636 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2637 		ret = -EINVAL;
2638 	}
2639 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2640 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2641 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2642 		ret = -EINVAL;
2643 	}
2644 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2645 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2646 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2647 		ret = -EINVAL;
2648 	}
2649 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2650 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2651 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2652 		ret = -EINVAL;
2653 	}
2654 
2655 	/*
2656 	 * Check sectorsize and nodesize first, other check will need it.
2657 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2658 	 */
2659 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2660 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2661 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2662 		ret = -EINVAL;
2663 	}
2664 
2665 	/*
2666 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2667 	 *
2668 	 * We can support 16K sectorsize with 64K page size without problem,
2669 	 * but such sectorsize/pagesize combination doesn't make much sense.
2670 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2671 	 * beginning.
2672 	 */
2673 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2674 		btrfs_err(fs_info,
2675 			"sectorsize %llu not yet supported for page size %lu",
2676 			sectorsize, PAGE_SIZE);
2677 		ret = -EINVAL;
2678 	}
2679 
2680 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2681 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2682 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2683 		ret = -EINVAL;
2684 	}
2685 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2686 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2687 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2688 		ret = -EINVAL;
2689 	}
2690 
2691 	/* Root alignment check */
2692 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2693 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2694 			   btrfs_super_root(sb));
2695 		ret = -EINVAL;
2696 	}
2697 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2698 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2699 			   btrfs_super_chunk_root(sb));
2700 		ret = -EINVAL;
2701 	}
2702 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2703 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2704 			   btrfs_super_log_root(sb));
2705 		ret = -EINVAL;
2706 	}
2707 
2708 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2709 		   BTRFS_FSID_SIZE)) {
2710 		btrfs_err(fs_info,
2711 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2712 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2713 		ret = -EINVAL;
2714 	}
2715 
2716 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2717 	    memcmp(fs_info->fs_devices->metadata_uuid,
2718 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2719 		btrfs_err(fs_info,
2720 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2721 			fs_info->super_copy->metadata_uuid,
2722 			fs_info->fs_devices->metadata_uuid);
2723 		ret = -EINVAL;
2724 	}
2725 
2726 	/*
2727 	 * Artificial requirement for block-group-tree to force newer features
2728 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2729 	 */
2730 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2731 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2732 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2733 		btrfs_err(fs_info,
2734 		"block-group-tree feature requires fres-space-tree and no-holes");
2735 		ret = -EINVAL;
2736 	}
2737 
2738 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2739 		   BTRFS_FSID_SIZE) != 0) {
2740 		btrfs_err(fs_info,
2741 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2742 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2743 		ret = -EINVAL;
2744 	}
2745 
2746 	/*
2747 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2748 	 * done later
2749 	 */
2750 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2751 		btrfs_err(fs_info, "bytes_used is too small %llu",
2752 			  btrfs_super_bytes_used(sb));
2753 		ret = -EINVAL;
2754 	}
2755 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2756 		btrfs_err(fs_info, "invalid stripesize %u",
2757 			  btrfs_super_stripesize(sb));
2758 		ret = -EINVAL;
2759 	}
2760 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2761 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2762 			   btrfs_super_num_devices(sb));
2763 	if (btrfs_super_num_devices(sb) == 0) {
2764 		btrfs_err(fs_info, "number of devices is 0");
2765 		ret = -EINVAL;
2766 	}
2767 
2768 	if (mirror_num >= 0 &&
2769 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2770 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2771 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2772 		ret = -EINVAL;
2773 	}
2774 
2775 	/*
2776 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2777 	 * and one chunk
2778 	 */
2779 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2780 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2781 			  btrfs_super_sys_array_size(sb),
2782 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2783 		ret = -EINVAL;
2784 	}
2785 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2786 			+ sizeof(struct btrfs_chunk)) {
2787 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2788 			  btrfs_super_sys_array_size(sb),
2789 			  sizeof(struct btrfs_disk_key)
2790 			  + sizeof(struct btrfs_chunk));
2791 		ret = -EINVAL;
2792 	}
2793 
2794 	/*
2795 	 * The generation is a global counter, we'll trust it more than the others
2796 	 * but it's still possible that it's the one that's wrong.
2797 	 */
2798 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2799 		btrfs_warn(fs_info,
2800 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2801 			btrfs_super_generation(sb),
2802 			btrfs_super_chunk_root_generation(sb));
2803 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2804 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2805 		btrfs_warn(fs_info,
2806 			"suspicious: generation < cache_generation: %llu < %llu",
2807 			btrfs_super_generation(sb),
2808 			btrfs_super_cache_generation(sb));
2809 
2810 	return ret;
2811 }
2812 
2813 /*
2814  * Validation of super block at mount time.
2815  * Some checks already done early at mount time, like csum type and incompat
2816  * flags will be skipped.
2817  */
2818 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2819 {
2820 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2821 }
2822 
2823 /*
2824  * Validation of super block at write time.
2825  * Some checks like bytenr check will be skipped as their values will be
2826  * overwritten soon.
2827  * Extra checks like csum type and incompat flags will be done here.
2828  */
2829 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2830 				      struct btrfs_super_block *sb)
2831 {
2832 	int ret;
2833 
2834 	ret = btrfs_validate_super(fs_info, sb, -1);
2835 	if (ret < 0)
2836 		goto out;
2837 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2838 		ret = -EUCLEAN;
2839 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2840 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2841 		goto out;
2842 	}
2843 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2844 		ret = -EUCLEAN;
2845 		btrfs_err(fs_info,
2846 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2847 			  btrfs_super_incompat_flags(sb),
2848 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2849 		goto out;
2850 	}
2851 out:
2852 	if (ret < 0)
2853 		btrfs_err(fs_info,
2854 		"super block corruption detected before writing it to disk");
2855 	return ret;
2856 }
2857 
2858 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2859 {
2860 	int ret = 0;
2861 
2862 	root->node = read_tree_block(root->fs_info, bytenr,
2863 				     root->root_key.objectid, gen, level, NULL);
2864 	if (IS_ERR(root->node)) {
2865 		ret = PTR_ERR(root->node);
2866 		root->node = NULL;
2867 		return ret;
2868 	}
2869 	if (!extent_buffer_uptodate(root->node)) {
2870 		free_extent_buffer(root->node);
2871 		root->node = NULL;
2872 		return -EIO;
2873 	}
2874 
2875 	btrfs_set_root_node(&root->root_item, root->node);
2876 	root->commit_root = btrfs_root_node(root);
2877 	btrfs_set_root_refs(&root->root_item, 1);
2878 	return ret;
2879 }
2880 
2881 static int load_important_roots(struct btrfs_fs_info *fs_info)
2882 {
2883 	struct btrfs_super_block *sb = fs_info->super_copy;
2884 	u64 gen, bytenr;
2885 	int level, ret;
2886 
2887 	bytenr = btrfs_super_root(sb);
2888 	gen = btrfs_super_generation(sb);
2889 	level = btrfs_super_root_level(sb);
2890 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2891 	if (ret) {
2892 		btrfs_warn(fs_info, "couldn't read tree root");
2893 		return ret;
2894 	}
2895 	return 0;
2896 }
2897 
2898 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2899 {
2900 	int backup_index = find_newest_super_backup(fs_info);
2901 	struct btrfs_super_block *sb = fs_info->super_copy;
2902 	struct btrfs_root *tree_root = fs_info->tree_root;
2903 	bool handle_error = false;
2904 	int ret = 0;
2905 	int i;
2906 
2907 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2908 		if (handle_error) {
2909 			if (!IS_ERR(tree_root->node))
2910 				free_extent_buffer(tree_root->node);
2911 			tree_root->node = NULL;
2912 
2913 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2914 				break;
2915 
2916 			free_root_pointers(fs_info, 0);
2917 
2918 			/*
2919 			 * Don't use the log in recovery mode, it won't be
2920 			 * valid
2921 			 */
2922 			btrfs_set_super_log_root(sb, 0);
2923 
2924 			/* We can't trust the free space cache either */
2925 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2926 
2927 			ret = read_backup_root(fs_info, i);
2928 			backup_index = ret;
2929 			if (ret < 0)
2930 				return ret;
2931 		}
2932 
2933 		ret = load_important_roots(fs_info);
2934 		if (ret) {
2935 			handle_error = true;
2936 			continue;
2937 		}
2938 
2939 		/*
2940 		 * No need to hold btrfs_root::objectid_mutex since the fs
2941 		 * hasn't been fully initialised and we are the only user
2942 		 */
2943 		ret = btrfs_init_root_free_objectid(tree_root);
2944 		if (ret < 0) {
2945 			handle_error = true;
2946 			continue;
2947 		}
2948 
2949 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2950 
2951 		ret = btrfs_read_roots(fs_info);
2952 		if (ret < 0) {
2953 			handle_error = true;
2954 			continue;
2955 		}
2956 
2957 		/* All successful */
2958 		fs_info->generation = btrfs_header_generation(tree_root->node);
2959 		fs_info->last_trans_committed = fs_info->generation;
2960 		fs_info->last_reloc_trans = 0;
2961 
2962 		/* Always begin writing backup roots after the one being used */
2963 		if (backup_index < 0) {
2964 			fs_info->backup_root_index = 0;
2965 		} else {
2966 			fs_info->backup_root_index = backup_index + 1;
2967 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2968 		}
2969 		break;
2970 	}
2971 
2972 	return ret;
2973 }
2974 
2975 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2976 {
2977 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2978 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2979 	INIT_LIST_HEAD(&fs_info->trans_list);
2980 	INIT_LIST_HEAD(&fs_info->dead_roots);
2981 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2982 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2983 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2984 	spin_lock_init(&fs_info->delalloc_root_lock);
2985 	spin_lock_init(&fs_info->trans_lock);
2986 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2987 	spin_lock_init(&fs_info->delayed_iput_lock);
2988 	spin_lock_init(&fs_info->defrag_inodes_lock);
2989 	spin_lock_init(&fs_info->super_lock);
2990 	spin_lock_init(&fs_info->buffer_lock);
2991 	spin_lock_init(&fs_info->unused_bgs_lock);
2992 	spin_lock_init(&fs_info->treelog_bg_lock);
2993 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2994 	spin_lock_init(&fs_info->relocation_bg_lock);
2995 	rwlock_init(&fs_info->tree_mod_log_lock);
2996 	rwlock_init(&fs_info->global_root_lock);
2997 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2998 	mutex_init(&fs_info->reclaim_bgs_lock);
2999 	mutex_init(&fs_info->reloc_mutex);
3000 	mutex_init(&fs_info->delalloc_root_mutex);
3001 	mutex_init(&fs_info->zoned_meta_io_lock);
3002 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
3003 	seqlock_init(&fs_info->profiles_lock);
3004 
3005 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
3006 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
3007 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
3008 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3009 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3010 				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
3011 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3012 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3013 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3014 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3015 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3016 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
3017 
3018 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3019 	INIT_LIST_HEAD(&fs_info->space_info);
3020 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3021 	INIT_LIST_HEAD(&fs_info->unused_bgs);
3022 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3023 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3024 #ifdef CONFIG_BTRFS_DEBUG
3025 	INIT_LIST_HEAD(&fs_info->allocated_roots);
3026 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3027 	spin_lock_init(&fs_info->eb_leak_lock);
3028 #endif
3029 	extent_map_tree_init(&fs_info->mapping_tree);
3030 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3031 			     BTRFS_BLOCK_RSV_GLOBAL);
3032 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3033 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3034 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3035 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3036 			     BTRFS_BLOCK_RSV_DELOPS);
3037 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3038 			     BTRFS_BLOCK_RSV_DELREFS);
3039 
3040 	atomic_set(&fs_info->async_delalloc_pages, 0);
3041 	atomic_set(&fs_info->defrag_running, 0);
3042 	atomic_set(&fs_info->nr_delayed_iputs, 0);
3043 	atomic64_set(&fs_info->tree_mod_seq, 0);
3044 	fs_info->global_root_tree = RB_ROOT;
3045 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3046 	fs_info->metadata_ratio = 0;
3047 	fs_info->defrag_inodes = RB_ROOT;
3048 	atomic64_set(&fs_info->free_chunk_space, 0);
3049 	fs_info->tree_mod_log = RB_ROOT;
3050 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3051 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3052 	btrfs_init_ref_verify(fs_info);
3053 
3054 	fs_info->thread_pool_size = min_t(unsigned long,
3055 					  num_online_cpus() + 2, 8);
3056 
3057 	INIT_LIST_HEAD(&fs_info->ordered_roots);
3058 	spin_lock_init(&fs_info->ordered_root_lock);
3059 
3060 	btrfs_init_scrub(fs_info);
3061 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3062 	fs_info->check_integrity_print_mask = 0;
3063 #endif
3064 	btrfs_init_balance(fs_info);
3065 	btrfs_init_async_reclaim_work(fs_info);
3066 
3067 	rwlock_init(&fs_info->block_group_cache_lock);
3068 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3069 
3070 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3071 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
3072 
3073 	mutex_init(&fs_info->ordered_operations_mutex);
3074 	mutex_init(&fs_info->tree_log_mutex);
3075 	mutex_init(&fs_info->chunk_mutex);
3076 	mutex_init(&fs_info->transaction_kthread_mutex);
3077 	mutex_init(&fs_info->cleaner_mutex);
3078 	mutex_init(&fs_info->ro_block_group_mutex);
3079 	init_rwsem(&fs_info->commit_root_sem);
3080 	init_rwsem(&fs_info->cleanup_work_sem);
3081 	init_rwsem(&fs_info->subvol_sem);
3082 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3083 
3084 	btrfs_init_dev_replace_locks(fs_info);
3085 	btrfs_init_qgroup(fs_info);
3086 	btrfs_discard_init(fs_info);
3087 
3088 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3089 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3090 
3091 	init_waitqueue_head(&fs_info->transaction_throttle);
3092 	init_waitqueue_head(&fs_info->transaction_wait);
3093 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3094 	init_waitqueue_head(&fs_info->async_submit_wait);
3095 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3096 
3097 	/* Usable values until the real ones are cached from the superblock */
3098 	fs_info->nodesize = 4096;
3099 	fs_info->sectorsize = 4096;
3100 	fs_info->sectorsize_bits = ilog2(4096);
3101 	fs_info->stripesize = 4096;
3102 
3103 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3104 
3105 	spin_lock_init(&fs_info->swapfile_pins_lock);
3106 	fs_info->swapfile_pins = RB_ROOT;
3107 
3108 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3109 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3110 }
3111 
3112 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3113 {
3114 	int ret;
3115 
3116 	fs_info->sb = sb;
3117 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3118 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3119 
3120 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3121 	if (ret)
3122 		return ret;
3123 
3124 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3125 	if (ret)
3126 		return ret;
3127 
3128 	fs_info->dirty_metadata_batch = PAGE_SIZE *
3129 					(1 + ilog2(nr_cpu_ids));
3130 
3131 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3132 	if (ret)
3133 		return ret;
3134 
3135 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3136 			GFP_KERNEL);
3137 	if (ret)
3138 		return ret;
3139 
3140 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3141 					GFP_KERNEL);
3142 	if (!fs_info->delayed_root)
3143 		return -ENOMEM;
3144 	btrfs_init_delayed_root(fs_info->delayed_root);
3145 
3146 	if (sb_rdonly(sb))
3147 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3148 
3149 	return btrfs_alloc_stripe_hash_table(fs_info);
3150 }
3151 
3152 static int btrfs_uuid_rescan_kthread(void *data)
3153 {
3154 	struct btrfs_fs_info *fs_info = data;
3155 	int ret;
3156 
3157 	/*
3158 	 * 1st step is to iterate through the existing UUID tree and
3159 	 * to delete all entries that contain outdated data.
3160 	 * 2nd step is to add all missing entries to the UUID tree.
3161 	 */
3162 	ret = btrfs_uuid_tree_iterate(fs_info);
3163 	if (ret < 0) {
3164 		if (ret != -EINTR)
3165 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3166 				   ret);
3167 		up(&fs_info->uuid_tree_rescan_sem);
3168 		return ret;
3169 	}
3170 	return btrfs_uuid_scan_kthread(data);
3171 }
3172 
3173 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3174 {
3175 	struct task_struct *task;
3176 
3177 	down(&fs_info->uuid_tree_rescan_sem);
3178 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3179 	if (IS_ERR(task)) {
3180 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3181 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3182 		up(&fs_info->uuid_tree_rescan_sem);
3183 		return PTR_ERR(task);
3184 	}
3185 
3186 	return 0;
3187 }
3188 
3189 /*
3190  * Some options only have meaning at mount time and shouldn't persist across
3191  * remounts, or be displayed. Clear these at the end of mount and remount
3192  * code paths.
3193  */
3194 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3195 {
3196 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3197 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3198 }
3199 
3200 /*
3201  * Mounting logic specific to read-write file systems. Shared by open_ctree
3202  * and btrfs_remount when remounting from read-only to read-write.
3203  */
3204 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3205 {
3206 	int ret;
3207 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3208 	bool clear_free_space_tree = false;
3209 
3210 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3211 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3212 		clear_free_space_tree = true;
3213 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3214 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3215 		btrfs_warn(fs_info, "free space tree is invalid");
3216 		clear_free_space_tree = true;
3217 	}
3218 
3219 	if (clear_free_space_tree) {
3220 		btrfs_info(fs_info, "clearing free space tree");
3221 		ret = btrfs_clear_free_space_tree(fs_info);
3222 		if (ret) {
3223 			btrfs_warn(fs_info,
3224 				   "failed to clear free space tree: %d", ret);
3225 			goto out;
3226 		}
3227 	}
3228 
3229 	/*
3230 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3231 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3232 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3233 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3234 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3235 	 * item before the root's tree is deleted - this means that if we unmount
3236 	 * or crash before the deletion completes, on the next mount we will not
3237 	 * delete what remains of the tree because the orphan item does not
3238 	 * exists anymore, which is what tells us we have a pending deletion.
3239 	 */
3240 	ret = btrfs_find_orphan_roots(fs_info);
3241 	if (ret)
3242 		goto out;
3243 
3244 	ret = btrfs_cleanup_fs_roots(fs_info);
3245 	if (ret)
3246 		goto out;
3247 
3248 	down_read(&fs_info->cleanup_work_sem);
3249 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3250 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3251 		up_read(&fs_info->cleanup_work_sem);
3252 		goto out;
3253 	}
3254 	up_read(&fs_info->cleanup_work_sem);
3255 
3256 	mutex_lock(&fs_info->cleaner_mutex);
3257 	ret = btrfs_recover_relocation(fs_info);
3258 	mutex_unlock(&fs_info->cleaner_mutex);
3259 	if (ret < 0) {
3260 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3261 		goto out;
3262 	}
3263 
3264 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3265 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3266 		btrfs_info(fs_info, "creating free space tree");
3267 		ret = btrfs_create_free_space_tree(fs_info);
3268 		if (ret) {
3269 			btrfs_warn(fs_info,
3270 				"failed to create free space tree: %d", ret);
3271 			goto out;
3272 		}
3273 	}
3274 
3275 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3276 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3277 		if (ret)
3278 			goto out;
3279 	}
3280 
3281 	ret = btrfs_resume_balance_async(fs_info);
3282 	if (ret)
3283 		goto out;
3284 
3285 	ret = btrfs_resume_dev_replace_async(fs_info);
3286 	if (ret) {
3287 		btrfs_warn(fs_info, "failed to resume dev_replace");
3288 		goto out;
3289 	}
3290 
3291 	btrfs_qgroup_rescan_resume(fs_info);
3292 
3293 	if (!fs_info->uuid_root) {
3294 		btrfs_info(fs_info, "creating UUID tree");
3295 		ret = btrfs_create_uuid_tree(fs_info);
3296 		if (ret) {
3297 			btrfs_warn(fs_info,
3298 				   "failed to create the UUID tree %d", ret);
3299 			goto out;
3300 		}
3301 	}
3302 
3303 out:
3304 	return ret;
3305 }
3306 
3307 /*
3308  * Do various sanity and dependency checks of different features.
3309  *
3310  * This is the place for less strict checks (like for subpage or artificial
3311  * feature dependencies).
3312  *
3313  * For strict checks or possible corruption detection, see
3314  * btrfs_validate_super().
3315  *
3316  * This should be called after btrfs_parse_options(), as some mount options
3317  * (space cache related) can modify on-disk format like free space tree and
3318  * screw up certain feature dependencies.
3319  */
3320 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb)
3321 {
3322 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3323 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3324 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3325 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3326 
3327 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3328 		btrfs_err(fs_info,
3329 		"cannot mount because of unknown incompat features (0x%llx)",
3330 		    incompat);
3331 		return -EINVAL;
3332 	}
3333 
3334 	/* Runtime limitation for mixed block groups. */
3335 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3336 	    (fs_info->sectorsize != fs_info->nodesize)) {
3337 		btrfs_err(fs_info,
3338 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3339 			fs_info->nodesize, fs_info->sectorsize);
3340 		return -EINVAL;
3341 	}
3342 
3343 	/* Mixed backref is an always-enabled feature. */
3344 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3345 
3346 	/* Set compression related flags just in case. */
3347 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3348 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3349 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3350 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3351 
3352 	/*
3353 	 * An ancient flag, which should really be marked deprecated.
3354 	 * Such runtime limitation doesn't really need a incompat flag.
3355 	 */
3356 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3357 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3358 
3359 	if (compat_ro_unsupp && !sb_rdonly(sb)) {
3360 		btrfs_err(fs_info,
3361 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3362 		       compat_ro);
3363 		return -EINVAL;
3364 	}
3365 
3366 	/*
3367 	 * We have unsupported RO compat features, although RO mounted, we
3368 	 * should not cause any metadata writes, including log replay.
3369 	 * Or we could screw up whatever the new feature requires.
3370 	 */
3371 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3372 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3373 		btrfs_err(fs_info,
3374 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3375 			  compat_ro);
3376 		return -EINVAL;
3377 	}
3378 
3379 	/*
3380 	 * Artificial limitations for block group tree, to force
3381 	 * block-group-tree to rely on no-holes and free-space-tree.
3382 	 */
3383 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3384 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3385 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3386 		btrfs_err(fs_info,
3387 "block-group-tree feature requires no-holes and free-space-tree features");
3388 		return -EINVAL;
3389 	}
3390 
3391 	/*
3392 	 * Subpage runtime limitation on v1 cache.
3393 	 *
3394 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3395 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3396 	 * going to be deprecated anyway.
3397 	 */
3398 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3399 		btrfs_warn(fs_info,
3400 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3401 			   PAGE_SIZE, fs_info->sectorsize);
3402 		return -EINVAL;
3403 	}
3404 
3405 	/* This can be called by remount, we need to protect the super block. */
3406 	spin_lock(&fs_info->super_lock);
3407 	btrfs_set_super_incompat_flags(disk_super, incompat);
3408 	spin_unlock(&fs_info->super_lock);
3409 
3410 	return 0;
3411 }
3412 
3413 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3414 		      char *options)
3415 {
3416 	u32 sectorsize;
3417 	u32 nodesize;
3418 	u32 stripesize;
3419 	u64 generation;
3420 	u64 features;
3421 	u16 csum_type;
3422 	struct btrfs_super_block *disk_super;
3423 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3424 	struct btrfs_root *tree_root;
3425 	struct btrfs_root *chunk_root;
3426 	int ret;
3427 	int err = -EINVAL;
3428 	int level;
3429 
3430 	ret = init_mount_fs_info(fs_info, sb);
3431 	if (ret) {
3432 		err = ret;
3433 		goto fail;
3434 	}
3435 
3436 	/* These need to be init'ed before we start creating inodes and such. */
3437 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3438 				     GFP_KERNEL);
3439 	fs_info->tree_root = tree_root;
3440 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3441 				      GFP_KERNEL);
3442 	fs_info->chunk_root = chunk_root;
3443 	if (!tree_root || !chunk_root) {
3444 		err = -ENOMEM;
3445 		goto fail;
3446 	}
3447 
3448 	fs_info->btree_inode = new_inode(sb);
3449 	if (!fs_info->btree_inode) {
3450 		err = -ENOMEM;
3451 		goto fail;
3452 	}
3453 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3454 	btrfs_init_btree_inode(fs_info);
3455 
3456 	invalidate_bdev(fs_devices->latest_dev->bdev);
3457 
3458 	/*
3459 	 * Read super block and check the signature bytes only
3460 	 */
3461 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3462 	if (IS_ERR(disk_super)) {
3463 		err = PTR_ERR(disk_super);
3464 		goto fail_alloc;
3465 	}
3466 
3467 	/*
3468 	 * Verify the type first, if that or the checksum value are
3469 	 * corrupted, we'll find out
3470 	 */
3471 	csum_type = btrfs_super_csum_type(disk_super);
3472 	if (!btrfs_supported_super_csum(csum_type)) {
3473 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3474 			  csum_type);
3475 		err = -EINVAL;
3476 		btrfs_release_disk_super(disk_super);
3477 		goto fail_alloc;
3478 	}
3479 
3480 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3481 
3482 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3483 	if (ret) {
3484 		err = ret;
3485 		btrfs_release_disk_super(disk_super);
3486 		goto fail_alloc;
3487 	}
3488 
3489 	/*
3490 	 * We want to check superblock checksum, the type is stored inside.
3491 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3492 	 */
3493 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3494 		btrfs_err(fs_info, "superblock checksum mismatch");
3495 		err = -EINVAL;
3496 		btrfs_release_disk_super(disk_super);
3497 		goto fail_alloc;
3498 	}
3499 
3500 	/*
3501 	 * super_copy is zeroed at allocation time and we never touch the
3502 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3503 	 * the whole block of INFO_SIZE
3504 	 */
3505 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3506 	btrfs_release_disk_super(disk_super);
3507 
3508 	disk_super = fs_info->super_copy;
3509 
3510 
3511 	features = btrfs_super_flags(disk_super);
3512 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3513 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3514 		btrfs_set_super_flags(disk_super, features);
3515 		btrfs_info(fs_info,
3516 			"found metadata UUID change in progress flag, clearing");
3517 	}
3518 
3519 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3520 	       sizeof(*fs_info->super_for_commit));
3521 
3522 	ret = btrfs_validate_mount_super(fs_info);
3523 	if (ret) {
3524 		btrfs_err(fs_info, "superblock contains fatal errors");
3525 		err = -EINVAL;
3526 		goto fail_alloc;
3527 	}
3528 
3529 	if (!btrfs_super_root(disk_super))
3530 		goto fail_alloc;
3531 
3532 	/* check FS state, whether FS is broken. */
3533 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3534 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3535 
3536 	/*
3537 	 * In the long term, we'll store the compression type in the super
3538 	 * block, and it'll be used for per file compression control.
3539 	 */
3540 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3541 
3542 
3543 	/* Set up fs_info before parsing mount options */
3544 	nodesize = btrfs_super_nodesize(disk_super);
3545 	sectorsize = btrfs_super_sectorsize(disk_super);
3546 	stripesize = sectorsize;
3547 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3548 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3549 
3550 	fs_info->nodesize = nodesize;
3551 	fs_info->sectorsize = sectorsize;
3552 	fs_info->sectorsize_bits = ilog2(sectorsize);
3553 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3554 	fs_info->stripesize = stripesize;
3555 
3556 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3557 	if (ret) {
3558 		err = ret;
3559 		goto fail_alloc;
3560 	}
3561 
3562 	ret = btrfs_check_features(fs_info, sb);
3563 	if (ret < 0) {
3564 		err = ret;
3565 		goto fail_alloc;
3566 	}
3567 
3568 	if (sectorsize < PAGE_SIZE) {
3569 		struct btrfs_subpage_info *subpage_info;
3570 
3571 		/*
3572 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3573 		 * going to be deprecated.
3574 		 *
3575 		 * Force to use v2 cache for subpage case.
3576 		 */
3577 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3578 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3579 			"forcing free space tree for sector size %u with page size %lu",
3580 			sectorsize, PAGE_SIZE);
3581 
3582 		btrfs_warn(fs_info,
3583 		"read-write for sector size %u with page size %lu is experimental",
3584 			   sectorsize, PAGE_SIZE);
3585 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3586 		if (!subpage_info)
3587 			goto fail_alloc;
3588 		btrfs_init_subpage_info(subpage_info, sectorsize);
3589 		fs_info->subpage_info = subpage_info;
3590 	}
3591 
3592 	ret = btrfs_init_workqueues(fs_info);
3593 	if (ret) {
3594 		err = ret;
3595 		goto fail_sb_buffer;
3596 	}
3597 
3598 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3599 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3600 
3601 	sb->s_blocksize = sectorsize;
3602 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3603 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3604 
3605 	mutex_lock(&fs_info->chunk_mutex);
3606 	ret = btrfs_read_sys_array(fs_info);
3607 	mutex_unlock(&fs_info->chunk_mutex);
3608 	if (ret) {
3609 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3610 		goto fail_sb_buffer;
3611 	}
3612 
3613 	generation = btrfs_super_chunk_root_generation(disk_super);
3614 	level = btrfs_super_chunk_root_level(disk_super);
3615 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3616 			      generation, level);
3617 	if (ret) {
3618 		btrfs_err(fs_info, "failed to read chunk root");
3619 		goto fail_tree_roots;
3620 	}
3621 
3622 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3623 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3624 			   BTRFS_UUID_SIZE);
3625 
3626 	ret = btrfs_read_chunk_tree(fs_info);
3627 	if (ret) {
3628 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3629 		goto fail_tree_roots;
3630 	}
3631 
3632 	/*
3633 	 * At this point we know all the devices that make this filesystem,
3634 	 * including the seed devices but we don't know yet if the replace
3635 	 * target is required. So free devices that are not part of this
3636 	 * filesystem but skip the replace target device which is checked
3637 	 * below in btrfs_init_dev_replace().
3638 	 */
3639 	btrfs_free_extra_devids(fs_devices);
3640 	if (!fs_devices->latest_dev->bdev) {
3641 		btrfs_err(fs_info, "failed to read devices");
3642 		goto fail_tree_roots;
3643 	}
3644 
3645 	ret = init_tree_roots(fs_info);
3646 	if (ret)
3647 		goto fail_tree_roots;
3648 
3649 	/*
3650 	 * Get zone type information of zoned block devices. This will also
3651 	 * handle emulation of a zoned filesystem if a regular device has the
3652 	 * zoned incompat feature flag set.
3653 	 */
3654 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3655 	if (ret) {
3656 		btrfs_err(fs_info,
3657 			  "zoned: failed to read device zone info: %d",
3658 			  ret);
3659 		goto fail_block_groups;
3660 	}
3661 
3662 	/*
3663 	 * If we have a uuid root and we're not being told to rescan we need to
3664 	 * check the generation here so we can set the
3665 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3666 	 * transaction during a balance or the log replay without updating the
3667 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3668 	 * even though it was perfectly fine.
3669 	 */
3670 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3671 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3672 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3673 
3674 	ret = btrfs_verify_dev_extents(fs_info);
3675 	if (ret) {
3676 		btrfs_err(fs_info,
3677 			  "failed to verify dev extents against chunks: %d",
3678 			  ret);
3679 		goto fail_block_groups;
3680 	}
3681 	ret = btrfs_recover_balance(fs_info);
3682 	if (ret) {
3683 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3684 		goto fail_block_groups;
3685 	}
3686 
3687 	ret = btrfs_init_dev_stats(fs_info);
3688 	if (ret) {
3689 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3690 		goto fail_block_groups;
3691 	}
3692 
3693 	ret = btrfs_init_dev_replace(fs_info);
3694 	if (ret) {
3695 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3696 		goto fail_block_groups;
3697 	}
3698 
3699 	ret = btrfs_check_zoned_mode(fs_info);
3700 	if (ret) {
3701 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3702 			  ret);
3703 		goto fail_block_groups;
3704 	}
3705 
3706 	ret = btrfs_sysfs_add_fsid(fs_devices);
3707 	if (ret) {
3708 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3709 				ret);
3710 		goto fail_block_groups;
3711 	}
3712 
3713 	ret = btrfs_sysfs_add_mounted(fs_info);
3714 	if (ret) {
3715 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3716 		goto fail_fsdev_sysfs;
3717 	}
3718 
3719 	ret = btrfs_init_space_info(fs_info);
3720 	if (ret) {
3721 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3722 		goto fail_sysfs;
3723 	}
3724 
3725 	ret = btrfs_read_block_groups(fs_info);
3726 	if (ret) {
3727 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3728 		goto fail_sysfs;
3729 	}
3730 
3731 	btrfs_free_zone_cache(fs_info);
3732 
3733 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3734 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3735 		btrfs_warn(fs_info,
3736 		"writable mount is not allowed due to too many missing devices");
3737 		goto fail_sysfs;
3738 	}
3739 
3740 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3741 					       "btrfs-cleaner");
3742 	if (IS_ERR(fs_info->cleaner_kthread))
3743 		goto fail_sysfs;
3744 
3745 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3746 						   tree_root,
3747 						   "btrfs-transaction");
3748 	if (IS_ERR(fs_info->transaction_kthread))
3749 		goto fail_cleaner;
3750 
3751 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3752 	    !fs_info->fs_devices->rotating) {
3753 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3754 	}
3755 
3756 	/*
3757 	 * For devices supporting discard turn on discard=async automatically,
3758 	 * unless it's already set or disabled. This could be turned off by
3759 	 * nodiscard for the same mount.
3760 	 */
3761 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3762 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3763 	      btrfs_test_opt(fs_info, NODISCARD)) &&
3764 	    fs_info->fs_devices->discardable) {
3765 		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3766 				   "auto enabling async discard");
3767 		btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3768 	}
3769 
3770 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3771 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3772 		ret = btrfsic_mount(fs_info, fs_devices,
3773 				    btrfs_test_opt(fs_info,
3774 					CHECK_INTEGRITY_DATA) ? 1 : 0,
3775 				    fs_info->check_integrity_print_mask);
3776 		if (ret)
3777 			btrfs_warn(fs_info,
3778 				"failed to initialize integrity check module: %d",
3779 				ret);
3780 	}
3781 #endif
3782 	ret = btrfs_read_qgroup_config(fs_info);
3783 	if (ret)
3784 		goto fail_trans_kthread;
3785 
3786 	if (btrfs_build_ref_tree(fs_info))
3787 		btrfs_err(fs_info, "couldn't build ref tree");
3788 
3789 	/* do not make disk changes in broken FS or nologreplay is given */
3790 	if (btrfs_super_log_root(disk_super) != 0 &&
3791 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3792 		btrfs_info(fs_info, "start tree-log replay");
3793 		ret = btrfs_replay_log(fs_info, fs_devices);
3794 		if (ret) {
3795 			err = ret;
3796 			goto fail_qgroup;
3797 		}
3798 	}
3799 
3800 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3801 	if (IS_ERR(fs_info->fs_root)) {
3802 		err = PTR_ERR(fs_info->fs_root);
3803 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3804 		fs_info->fs_root = NULL;
3805 		goto fail_qgroup;
3806 	}
3807 
3808 	if (sb_rdonly(sb))
3809 		goto clear_oneshot;
3810 
3811 	ret = btrfs_start_pre_rw_mount(fs_info);
3812 	if (ret) {
3813 		close_ctree(fs_info);
3814 		return ret;
3815 	}
3816 	btrfs_discard_resume(fs_info);
3817 
3818 	if (fs_info->uuid_root &&
3819 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3820 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3821 		btrfs_info(fs_info, "checking UUID tree");
3822 		ret = btrfs_check_uuid_tree(fs_info);
3823 		if (ret) {
3824 			btrfs_warn(fs_info,
3825 				"failed to check the UUID tree: %d", ret);
3826 			close_ctree(fs_info);
3827 			return ret;
3828 		}
3829 	}
3830 
3831 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3832 
3833 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3834 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3835 		wake_up_process(fs_info->cleaner_kthread);
3836 
3837 clear_oneshot:
3838 	btrfs_clear_oneshot_options(fs_info);
3839 	return 0;
3840 
3841 fail_qgroup:
3842 	btrfs_free_qgroup_config(fs_info);
3843 fail_trans_kthread:
3844 	kthread_stop(fs_info->transaction_kthread);
3845 	btrfs_cleanup_transaction(fs_info);
3846 	btrfs_free_fs_roots(fs_info);
3847 fail_cleaner:
3848 	kthread_stop(fs_info->cleaner_kthread);
3849 
3850 	/*
3851 	 * make sure we're done with the btree inode before we stop our
3852 	 * kthreads
3853 	 */
3854 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3855 
3856 fail_sysfs:
3857 	btrfs_sysfs_remove_mounted(fs_info);
3858 
3859 fail_fsdev_sysfs:
3860 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3861 
3862 fail_block_groups:
3863 	btrfs_put_block_group_cache(fs_info);
3864 
3865 fail_tree_roots:
3866 	if (fs_info->data_reloc_root)
3867 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3868 	free_root_pointers(fs_info, true);
3869 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3870 
3871 fail_sb_buffer:
3872 	btrfs_stop_all_workers(fs_info);
3873 	btrfs_free_block_groups(fs_info);
3874 fail_alloc:
3875 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3876 
3877 	iput(fs_info->btree_inode);
3878 fail:
3879 	btrfs_close_devices(fs_info->fs_devices);
3880 	return err;
3881 }
3882 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3883 
3884 static void btrfs_end_super_write(struct bio *bio)
3885 {
3886 	struct btrfs_device *device = bio->bi_private;
3887 	struct bio_vec *bvec;
3888 	struct bvec_iter_all iter_all;
3889 	struct page *page;
3890 
3891 	bio_for_each_segment_all(bvec, bio, iter_all) {
3892 		page = bvec->bv_page;
3893 
3894 		if (bio->bi_status) {
3895 			btrfs_warn_rl_in_rcu(device->fs_info,
3896 				"lost page write due to IO error on %s (%d)",
3897 				rcu_str_deref(device->name),
3898 				blk_status_to_errno(bio->bi_status));
3899 			ClearPageUptodate(page);
3900 			SetPageError(page);
3901 			btrfs_dev_stat_inc_and_print(device,
3902 						     BTRFS_DEV_STAT_WRITE_ERRS);
3903 		} else {
3904 			SetPageUptodate(page);
3905 		}
3906 
3907 		put_page(page);
3908 		unlock_page(page);
3909 	}
3910 
3911 	bio_put(bio);
3912 }
3913 
3914 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3915 						   int copy_num, bool drop_cache)
3916 {
3917 	struct btrfs_super_block *super;
3918 	struct page *page;
3919 	u64 bytenr, bytenr_orig;
3920 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3921 	int ret;
3922 
3923 	bytenr_orig = btrfs_sb_offset(copy_num);
3924 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3925 	if (ret == -ENOENT)
3926 		return ERR_PTR(-EINVAL);
3927 	else if (ret)
3928 		return ERR_PTR(ret);
3929 
3930 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3931 		return ERR_PTR(-EINVAL);
3932 
3933 	if (drop_cache) {
3934 		/* This should only be called with the primary sb. */
3935 		ASSERT(copy_num == 0);
3936 
3937 		/*
3938 		 * Drop the page of the primary superblock, so later read will
3939 		 * always read from the device.
3940 		 */
3941 		invalidate_inode_pages2_range(mapping,
3942 				bytenr >> PAGE_SHIFT,
3943 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3944 	}
3945 
3946 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3947 	if (IS_ERR(page))
3948 		return ERR_CAST(page);
3949 
3950 	super = page_address(page);
3951 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3952 		btrfs_release_disk_super(super);
3953 		return ERR_PTR(-ENODATA);
3954 	}
3955 
3956 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3957 		btrfs_release_disk_super(super);
3958 		return ERR_PTR(-EINVAL);
3959 	}
3960 
3961 	return super;
3962 }
3963 
3964 
3965 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3966 {
3967 	struct btrfs_super_block *super, *latest = NULL;
3968 	int i;
3969 	u64 transid = 0;
3970 
3971 	/* we would like to check all the supers, but that would make
3972 	 * a btrfs mount succeed after a mkfs from a different FS.
3973 	 * So, we need to add a special mount option to scan for
3974 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3975 	 */
3976 	for (i = 0; i < 1; i++) {
3977 		super = btrfs_read_dev_one_super(bdev, i, false);
3978 		if (IS_ERR(super))
3979 			continue;
3980 
3981 		if (!latest || btrfs_super_generation(super) > transid) {
3982 			if (latest)
3983 				btrfs_release_disk_super(super);
3984 
3985 			latest = super;
3986 			transid = btrfs_super_generation(super);
3987 		}
3988 	}
3989 
3990 	return super;
3991 }
3992 
3993 /*
3994  * Write superblock @sb to the @device. Do not wait for completion, all the
3995  * pages we use for writing are locked.
3996  *
3997  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3998  * the expected device size at commit time. Note that max_mirrors must be
3999  * same for write and wait phases.
4000  *
4001  * Return number of errors when page is not found or submission fails.
4002  */
4003 static int write_dev_supers(struct btrfs_device *device,
4004 			    struct btrfs_super_block *sb, int max_mirrors)
4005 {
4006 	struct btrfs_fs_info *fs_info = device->fs_info;
4007 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4008 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4009 	int i;
4010 	int errors = 0;
4011 	int ret;
4012 	u64 bytenr, bytenr_orig;
4013 
4014 	if (max_mirrors == 0)
4015 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4016 
4017 	shash->tfm = fs_info->csum_shash;
4018 
4019 	for (i = 0; i < max_mirrors; i++) {
4020 		struct page *page;
4021 		struct bio *bio;
4022 		struct btrfs_super_block *disk_super;
4023 
4024 		bytenr_orig = btrfs_sb_offset(i);
4025 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4026 		if (ret == -ENOENT) {
4027 			continue;
4028 		} else if (ret < 0) {
4029 			btrfs_err(device->fs_info,
4030 				"couldn't get super block location for mirror %d",
4031 				i);
4032 			errors++;
4033 			continue;
4034 		}
4035 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4036 		    device->commit_total_bytes)
4037 			break;
4038 
4039 		btrfs_set_super_bytenr(sb, bytenr_orig);
4040 
4041 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4042 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4043 				    sb->csum);
4044 
4045 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4046 					   GFP_NOFS);
4047 		if (!page) {
4048 			btrfs_err(device->fs_info,
4049 			    "couldn't get super block page for bytenr %llu",
4050 			    bytenr);
4051 			errors++;
4052 			continue;
4053 		}
4054 
4055 		/* Bump the refcount for wait_dev_supers() */
4056 		get_page(page);
4057 
4058 		disk_super = page_address(page);
4059 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4060 
4061 		/*
4062 		 * Directly use bios here instead of relying on the page cache
4063 		 * to do I/O, so we don't lose the ability to do integrity
4064 		 * checking.
4065 		 */
4066 		bio = bio_alloc(device->bdev, 1,
4067 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4068 				GFP_NOFS);
4069 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4070 		bio->bi_private = device;
4071 		bio->bi_end_io = btrfs_end_super_write;
4072 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4073 			       offset_in_page(bytenr));
4074 
4075 		/*
4076 		 * We FUA only the first super block.  The others we allow to
4077 		 * go down lazy and there's a short window where the on-disk
4078 		 * copies might still contain the older version.
4079 		 */
4080 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4081 			bio->bi_opf |= REQ_FUA;
4082 
4083 		btrfsic_check_bio(bio);
4084 		submit_bio(bio);
4085 
4086 		if (btrfs_advance_sb_log(device, i))
4087 			errors++;
4088 	}
4089 	return errors < i ? 0 : -1;
4090 }
4091 
4092 /*
4093  * Wait for write completion of superblocks done by write_dev_supers,
4094  * @max_mirrors same for write and wait phases.
4095  *
4096  * Return number of errors when page is not found or not marked up to
4097  * date.
4098  */
4099 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4100 {
4101 	int i;
4102 	int errors = 0;
4103 	bool primary_failed = false;
4104 	int ret;
4105 	u64 bytenr;
4106 
4107 	if (max_mirrors == 0)
4108 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4109 
4110 	for (i = 0; i < max_mirrors; i++) {
4111 		struct page *page;
4112 
4113 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4114 		if (ret == -ENOENT) {
4115 			break;
4116 		} else if (ret < 0) {
4117 			errors++;
4118 			if (i == 0)
4119 				primary_failed = true;
4120 			continue;
4121 		}
4122 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4123 		    device->commit_total_bytes)
4124 			break;
4125 
4126 		page = find_get_page(device->bdev->bd_inode->i_mapping,
4127 				     bytenr >> PAGE_SHIFT);
4128 		if (!page) {
4129 			errors++;
4130 			if (i == 0)
4131 				primary_failed = true;
4132 			continue;
4133 		}
4134 		/* Page is submitted locked and unlocked once the IO completes */
4135 		wait_on_page_locked(page);
4136 		if (PageError(page)) {
4137 			errors++;
4138 			if (i == 0)
4139 				primary_failed = true;
4140 		}
4141 
4142 		/* Drop our reference */
4143 		put_page(page);
4144 
4145 		/* Drop the reference from the writing run */
4146 		put_page(page);
4147 	}
4148 
4149 	/* log error, force error return */
4150 	if (primary_failed) {
4151 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4152 			  device->devid);
4153 		return -1;
4154 	}
4155 
4156 	return errors < i ? 0 : -1;
4157 }
4158 
4159 /*
4160  * endio for the write_dev_flush, this will wake anyone waiting
4161  * for the barrier when it is done
4162  */
4163 static void btrfs_end_empty_barrier(struct bio *bio)
4164 {
4165 	bio_uninit(bio);
4166 	complete(bio->bi_private);
4167 }
4168 
4169 /*
4170  * Submit a flush request to the device if it supports it. Error handling is
4171  * done in the waiting counterpart.
4172  */
4173 static void write_dev_flush(struct btrfs_device *device)
4174 {
4175 	struct bio *bio = &device->flush_bio;
4176 
4177 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4178 	/*
4179 	 * When a disk has write caching disabled, we skip submission of a bio
4180 	 * with flush and sync requests before writing the superblock, since
4181 	 * it's not needed. However when the integrity checker is enabled, this
4182 	 * results in reports that there are metadata blocks referred by a
4183 	 * superblock that were not properly flushed. So don't skip the bio
4184 	 * submission only when the integrity checker is enabled for the sake
4185 	 * of simplicity, since this is a debug tool and not meant for use in
4186 	 * non-debug builds.
4187 	 */
4188 	if (!bdev_write_cache(device->bdev))
4189 		return;
4190 #endif
4191 
4192 	bio_init(bio, device->bdev, NULL, 0,
4193 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4194 	bio->bi_end_io = btrfs_end_empty_barrier;
4195 	init_completion(&device->flush_wait);
4196 	bio->bi_private = &device->flush_wait;
4197 
4198 	btrfsic_check_bio(bio);
4199 	submit_bio(bio);
4200 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4201 }
4202 
4203 /*
4204  * If the flush bio has been submitted by write_dev_flush, wait for it.
4205  */
4206 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4207 {
4208 	struct bio *bio = &device->flush_bio;
4209 
4210 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4211 		return BLK_STS_OK;
4212 
4213 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4214 	wait_for_completion_io(&device->flush_wait);
4215 
4216 	return bio->bi_status;
4217 }
4218 
4219 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4220 {
4221 	if (!btrfs_check_rw_degradable(fs_info, NULL))
4222 		return -EIO;
4223 	return 0;
4224 }
4225 
4226 /*
4227  * send an empty flush down to each device in parallel,
4228  * then wait for them
4229  */
4230 static int barrier_all_devices(struct btrfs_fs_info *info)
4231 {
4232 	struct list_head *head;
4233 	struct btrfs_device *dev;
4234 	int errors_wait = 0;
4235 	blk_status_t ret;
4236 
4237 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4238 	/* send down all the barriers */
4239 	head = &info->fs_devices->devices;
4240 	list_for_each_entry(dev, head, dev_list) {
4241 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4242 			continue;
4243 		if (!dev->bdev)
4244 			continue;
4245 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4246 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4247 			continue;
4248 
4249 		write_dev_flush(dev);
4250 		dev->last_flush_error = BLK_STS_OK;
4251 	}
4252 
4253 	/* wait for all the barriers */
4254 	list_for_each_entry(dev, head, dev_list) {
4255 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4256 			continue;
4257 		if (!dev->bdev) {
4258 			errors_wait++;
4259 			continue;
4260 		}
4261 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4262 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4263 			continue;
4264 
4265 		ret = wait_dev_flush(dev);
4266 		if (ret) {
4267 			dev->last_flush_error = ret;
4268 			btrfs_dev_stat_inc_and_print(dev,
4269 					BTRFS_DEV_STAT_FLUSH_ERRS);
4270 			errors_wait++;
4271 		}
4272 	}
4273 
4274 	if (errors_wait) {
4275 		/*
4276 		 * At some point we need the status of all disks
4277 		 * to arrive at the volume status. So error checking
4278 		 * is being pushed to a separate loop.
4279 		 */
4280 		return check_barrier_error(info);
4281 	}
4282 	return 0;
4283 }
4284 
4285 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4286 {
4287 	int raid_type;
4288 	int min_tolerated = INT_MAX;
4289 
4290 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4291 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4292 		min_tolerated = min_t(int, min_tolerated,
4293 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4294 				    tolerated_failures);
4295 
4296 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4297 		if (raid_type == BTRFS_RAID_SINGLE)
4298 			continue;
4299 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4300 			continue;
4301 		min_tolerated = min_t(int, min_tolerated,
4302 				    btrfs_raid_array[raid_type].
4303 				    tolerated_failures);
4304 	}
4305 
4306 	if (min_tolerated == INT_MAX) {
4307 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4308 		min_tolerated = 0;
4309 	}
4310 
4311 	return min_tolerated;
4312 }
4313 
4314 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4315 {
4316 	struct list_head *head;
4317 	struct btrfs_device *dev;
4318 	struct btrfs_super_block *sb;
4319 	struct btrfs_dev_item *dev_item;
4320 	int ret;
4321 	int do_barriers;
4322 	int max_errors;
4323 	int total_errors = 0;
4324 	u64 flags;
4325 
4326 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4327 
4328 	/*
4329 	 * max_mirrors == 0 indicates we're from commit_transaction,
4330 	 * not from fsync where the tree roots in fs_info have not
4331 	 * been consistent on disk.
4332 	 */
4333 	if (max_mirrors == 0)
4334 		backup_super_roots(fs_info);
4335 
4336 	sb = fs_info->super_for_commit;
4337 	dev_item = &sb->dev_item;
4338 
4339 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4340 	head = &fs_info->fs_devices->devices;
4341 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4342 
4343 	if (do_barriers) {
4344 		ret = barrier_all_devices(fs_info);
4345 		if (ret) {
4346 			mutex_unlock(
4347 				&fs_info->fs_devices->device_list_mutex);
4348 			btrfs_handle_fs_error(fs_info, ret,
4349 					      "errors while submitting device barriers.");
4350 			return ret;
4351 		}
4352 	}
4353 
4354 	list_for_each_entry(dev, head, dev_list) {
4355 		if (!dev->bdev) {
4356 			total_errors++;
4357 			continue;
4358 		}
4359 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4360 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4361 			continue;
4362 
4363 		btrfs_set_stack_device_generation(dev_item, 0);
4364 		btrfs_set_stack_device_type(dev_item, dev->type);
4365 		btrfs_set_stack_device_id(dev_item, dev->devid);
4366 		btrfs_set_stack_device_total_bytes(dev_item,
4367 						   dev->commit_total_bytes);
4368 		btrfs_set_stack_device_bytes_used(dev_item,
4369 						  dev->commit_bytes_used);
4370 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4371 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4372 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4373 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4374 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4375 		       BTRFS_FSID_SIZE);
4376 
4377 		flags = btrfs_super_flags(sb);
4378 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4379 
4380 		ret = btrfs_validate_write_super(fs_info, sb);
4381 		if (ret < 0) {
4382 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4383 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4384 				"unexpected superblock corruption detected");
4385 			return -EUCLEAN;
4386 		}
4387 
4388 		ret = write_dev_supers(dev, sb, max_mirrors);
4389 		if (ret)
4390 			total_errors++;
4391 	}
4392 	if (total_errors > max_errors) {
4393 		btrfs_err(fs_info, "%d errors while writing supers",
4394 			  total_errors);
4395 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4396 
4397 		/* FUA is masked off if unsupported and can't be the reason */
4398 		btrfs_handle_fs_error(fs_info, -EIO,
4399 				      "%d errors while writing supers",
4400 				      total_errors);
4401 		return -EIO;
4402 	}
4403 
4404 	total_errors = 0;
4405 	list_for_each_entry(dev, head, dev_list) {
4406 		if (!dev->bdev)
4407 			continue;
4408 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4409 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4410 			continue;
4411 
4412 		ret = wait_dev_supers(dev, max_mirrors);
4413 		if (ret)
4414 			total_errors++;
4415 	}
4416 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4417 	if (total_errors > max_errors) {
4418 		btrfs_handle_fs_error(fs_info, -EIO,
4419 				      "%d errors while writing supers",
4420 				      total_errors);
4421 		return -EIO;
4422 	}
4423 	return 0;
4424 }
4425 
4426 /* Drop a fs root from the radix tree and free it. */
4427 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4428 				  struct btrfs_root *root)
4429 {
4430 	bool drop_ref = false;
4431 
4432 	spin_lock(&fs_info->fs_roots_radix_lock);
4433 	radix_tree_delete(&fs_info->fs_roots_radix,
4434 			  (unsigned long)root->root_key.objectid);
4435 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4436 		drop_ref = true;
4437 	spin_unlock(&fs_info->fs_roots_radix_lock);
4438 
4439 	if (BTRFS_FS_ERROR(fs_info)) {
4440 		ASSERT(root->log_root == NULL);
4441 		if (root->reloc_root) {
4442 			btrfs_put_root(root->reloc_root);
4443 			root->reloc_root = NULL;
4444 		}
4445 	}
4446 
4447 	if (drop_ref)
4448 		btrfs_put_root(root);
4449 }
4450 
4451 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4452 {
4453 	u64 root_objectid = 0;
4454 	struct btrfs_root *gang[8];
4455 	int i = 0;
4456 	int err = 0;
4457 	unsigned int ret = 0;
4458 
4459 	while (1) {
4460 		spin_lock(&fs_info->fs_roots_radix_lock);
4461 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4462 					     (void **)gang, root_objectid,
4463 					     ARRAY_SIZE(gang));
4464 		if (!ret) {
4465 			spin_unlock(&fs_info->fs_roots_radix_lock);
4466 			break;
4467 		}
4468 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4469 
4470 		for (i = 0; i < ret; i++) {
4471 			/* Avoid to grab roots in dead_roots */
4472 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4473 				gang[i] = NULL;
4474 				continue;
4475 			}
4476 			/* grab all the search result for later use */
4477 			gang[i] = btrfs_grab_root(gang[i]);
4478 		}
4479 		spin_unlock(&fs_info->fs_roots_radix_lock);
4480 
4481 		for (i = 0; i < ret; i++) {
4482 			if (!gang[i])
4483 				continue;
4484 			root_objectid = gang[i]->root_key.objectid;
4485 			err = btrfs_orphan_cleanup(gang[i]);
4486 			if (err)
4487 				break;
4488 			btrfs_put_root(gang[i]);
4489 		}
4490 		root_objectid++;
4491 	}
4492 
4493 	/* release the uncleaned roots due to error */
4494 	for (; i < ret; i++) {
4495 		if (gang[i])
4496 			btrfs_put_root(gang[i]);
4497 	}
4498 	return err;
4499 }
4500 
4501 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4502 {
4503 	struct btrfs_root *root = fs_info->tree_root;
4504 	struct btrfs_trans_handle *trans;
4505 
4506 	mutex_lock(&fs_info->cleaner_mutex);
4507 	btrfs_run_delayed_iputs(fs_info);
4508 	mutex_unlock(&fs_info->cleaner_mutex);
4509 	wake_up_process(fs_info->cleaner_kthread);
4510 
4511 	/* wait until ongoing cleanup work done */
4512 	down_write(&fs_info->cleanup_work_sem);
4513 	up_write(&fs_info->cleanup_work_sem);
4514 
4515 	trans = btrfs_join_transaction(root);
4516 	if (IS_ERR(trans))
4517 		return PTR_ERR(trans);
4518 	return btrfs_commit_transaction(trans);
4519 }
4520 
4521 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4522 {
4523 	struct btrfs_transaction *trans;
4524 	struct btrfs_transaction *tmp;
4525 	bool found = false;
4526 
4527 	if (list_empty(&fs_info->trans_list))
4528 		return;
4529 
4530 	/*
4531 	 * This function is only called at the very end of close_ctree(),
4532 	 * thus no other running transaction, no need to take trans_lock.
4533 	 */
4534 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4535 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4536 		struct extent_state *cached = NULL;
4537 		u64 dirty_bytes = 0;
4538 		u64 cur = 0;
4539 		u64 found_start;
4540 		u64 found_end;
4541 
4542 		found = true;
4543 		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4544 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4545 			dirty_bytes += found_end + 1 - found_start;
4546 			cur = found_end + 1;
4547 		}
4548 		btrfs_warn(fs_info,
4549 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4550 			   trans->transid, dirty_bytes);
4551 		btrfs_cleanup_one_transaction(trans, fs_info);
4552 
4553 		if (trans == fs_info->running_transaction)
4554 			fs_info->running_transaction = NULL;
4555 		list_del_init(&trans->list);
4556 
4557 		btrfs_put_transaction(trans);
4558 		trace_btrfs_transaction_commit(fs_info);
4559 	}
4560 	ASSERT(!found);
4561 }
4562 
4563 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4564 {
4565 	int ret;
4566 
4567 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4568 
4569 	/*
4570 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4571 	 * clear that bit and wake up relocation so it can stop.
4572 	 * We must do this before stopping the block group reclaim task, because
4573 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4574 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4575 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4576 	 * return 1.
4577 	 */
4578 	btrfs_wake_unfinished_drop(fs_info);
4579 
4580 	/*
4581 	 * We may have the reclaim task running and relocating a data block group,
4582 	 * in which case it may create delayed iputs. So stop it before we park
4583 	 * the cleaner kthread otherwise we can get new delayed iputs after
4584 	 * parking the cleaner, and that can make the async reclaim task to hang
4585 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4586 	 * parked and can not run delayed iputs - this will make us hang when
4587 	 * trying to stop the async reclaim task.
4588 	 */
4589 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4590 	/*
4591 	 * We don't want the cleaner to start new transactions, add more delayed
4592 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4593 	 * because that frees the task_struct, and the transaction kthread might
4594 	 * still try to wake up the cleaner.
4595 	 */
4596 	kthread_park(fs_info->cleaner_kthread);
4597 
4598 	/* wait for the qgroup rescan worker to stop */
4599 	btrfs_qgroup_wait_for_completion(fs_info, false);
4600 
4601 	/* wait for the uuid_scan task to finish */
4602 	down(&fs_info->uuid_tree_rescan_sem);
4603 	/* avoid complains from lockdep et al., set sem back to initial state */
4604 	up(&fs_info->uuid_tree_rescan_sem);
4605 
4606 	/* pause restriper - we want to resume on mount */
4607 	btrfs_pause_balance(fs_info);
4608 
4609 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4610 
4611 	btrfs_scrub_cancel(fs_info);
4612 
4613 	/* wait for any defraggers to finish */
4614 	wait_event(fs_info->transaction_wait,
4615 		   (atomic_read(&fs_info->defrag_running) == 0));
4616 
4617 	/* clear out the rbtree of defraggable inodes */
4618 	btrfs_cleanup_defrag_inodes(fs_info);
4619 
4620 	/*
4621 	 * After we parked the cleaner kthread, ordered extents may have
4622 	 * completed and created new delayed iputs. If one of the async reclaim
4623 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4624 	 * can hang forever trying to stop it, because if a delayed iput is
4625 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4626 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4627 	 * no one else to run iputs.
4628 	 *
4629 	 * So wait for all ongoing ordered extents to complete and then run
4630 	 * delayed iputs. This works because once we reach this point no one
4631 	 * can either create new ordered extents nor create delayed iputs
4632 	 * through some other means.
4633 	 *
4634 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4635 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4636 	 * but the delayed iput for the respective inode is made only when doing
4637 	 * the final btrfs_put_ordered_extent() (which must happen at
4638 	 * btrfs_finish_ordered_io() when we are unmounting).
4639 	 */
4640 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4641 	/* Ordered extents for free space inodes. */
4642 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4643 	btrfs_run_delayed_iputs(fs_info);
4644 
4645 	cancel_work_sync(&fs_info->async_reclaim_work);
4646 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4647 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4648 
4649 	/* Cancel or finish ongoing discard work */
4650 	btrfs_discard_cleanup(fs_info);
4651 
4652 	if (!sb_rdonly(fs_info->sb)) {
4653 		/*
4654 		 * The cleaner kthread is stopped, so do one final pass over
4655 		 * unused block groups.
4656 		 */
4657 		btrfs_delete_unused_bgs(fs_info);
4658 
4659 		/*
4660 		 * There might be existing delayed inode workers still running
4661 		 * and holding an empty delayed inode item. We must wait for
4662 		 * them to complete first because they can create a transaction.
4663 		 * This happens when someone calls btrfs_balance_delayed_items()
4664 		 * and then a transaction commit runs the same delayed nodes
4665 		 * before any delayed worker has done something with the nodes.
4666 		 * We must wait for any worker here and not at transaction
4667 		 * commit time since that could cause a deadlock.
4668 		 * This is a very rare case.
4669 		 */
4670 		btrfs_flush_workqueue(fs_info->delayed_workers);
4671 
4672 		ret = btrfs_commit_super(fs_info);
4673 		if (ret)
4674 			btrfs_err(fs_info, "commit super ret %d", ret);
4675 	}
4676 
4677 	if (BTRFS_FS_ERROR(fs_info))
4678 		btrfs_error_commit_super(fs_info);
4679 
4680 	kthread_stop(fs_info->transaction_kthread);
4681 	kthread_stop(fs_info->cleaner_kthread);
4682 
4683 	ASSERT(list_empty(&fs_info->delayed_iputs));
4684 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4685 
4686 	if (btrfs_check_quota_leak(fs_info)) {
4687 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4688 		btrfs_err(fs_info, "qgroup reserved space leaked");
4689 	}
4690 
4691 	btrfs_free_qgroup_config(fs_info);
4692 	ASSERT(list_empty(&fs_info->delalloc_roots));
4693 
4694 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4695 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4696 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4697 	}
4698 
4699 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4700 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4701 			   percpu_counter_sum(&fs_info->ordered_bytes));
4702 
4703 	btrfs_sysfs_remove_mounted(fs_info);
4704 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4705 
4706 	btrfs_put_block_group_cache(fs_info);
4707 
4708 	/*
4709 	 * we must make sure there is not any read request to
4710 	 * submit after we stopping all workers.
4711 	 */
4712 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4713 	btrfs_stop_all_workers(fs_info);
4714 
4715 	/* We shouldn't have any transaction open at this point */
4716 	warn_about_uncommitted_trans(fs_info);
4717 
4718 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4719 	free_root_pointers(fs_info, true);
4720 	btrfs_free_fs_roots(fs_info);
4721 
4722 	/*
4723 	 * We must free the block groups after dropping the fs_roots as we could
4724 	 * have had an IO error and have left over tree log blocks that aren't
4725 	 * cleaned up until the fs roots are freed.  This makes the block group
4726 	 * accounting appear to be wrong because there's pending reserved bytes,
4727 	 * so make sure we do the block group cleanup afterwards.
4728 	 */
4729 	btrfs_free_block_groups(fs_info);
4730 
4731 	iput(fs_info->btree_inode);
4732 
4733 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4734 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4735 		btrfsic_unmount(fs_info->fs_devices);
4736 #endif
4737 
4738 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4739 	btrfs_close_devices(fs_info->fs_devices);
4740 }
4741 
4742 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4743 			  int atomic)
4744 {
4745 	int ret;
4746 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4747 
4748 	ret = extent_buffer_uptodate(buf);
4749 	if (!ret)
4750 		return ret;
4751 
4752 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4753 				    parent_transid, atomic);
4754 	if (ret == -EAGAIN)
4755 		return ret;
4756 	return !ret;
4757 }
4758 
4759 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4760 {
4761 	struct btrfs_fs_info *fs_info = buf->fs_info;
4762 	u64 transid = btrfs_header_generation(buf);
4763 	int was_dirty;
4764 
4765 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4766 	/*
4767 	 * This is a fast path so only do this check if we have sanity tests
4768 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4769 	 * outside of the sanity tests.
4770 	 */
4771 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4772 		return;
4773 #endif
4774 	btrfs_assert_tree_write_locked(buf);
4775 	if (transid != fs_info->generation)
4776 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4777 			buf->start, transid, fs_info->generation);
4778 	was_dirty = set_extent_buffer_dirty(buf);
4779 	if (!was_dirty)
4780 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4781 					 buf->len,
4782 					 fs_info->dirty_metadata_batch);
4783 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4784 	/*
4785 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4786 	 * but item data not updated.
4787 	 * So here we should only check item pointers, not item data.
4788 	 */
4789 	if (btrfs_header_level(buf) == 0 &&
4790 	    btrfs_check_leaf_relaxed(buf)) {
4791 		btrfs_print_leaf(buf);
4792 		ASSERT(0);
4793 	}
4794 #endif
4795 }
4796 
4797 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4798 					int flush_delayed)
4799 {
4800 	/*
4801 	 * looks as though older kernels can get into trouble with
4802 	 * this code, they end up stuck in balance_dirty_pages forever
4803 	 */
4804 	int ret;
4805 
4806 	if (current->flags & PF_MEMALLOC)
4807 		return;
4808 
4809 	if (flush_delayed)
4810 		btrfs_balance_delayed_items(fs_info);
4811 
4812 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4813 				     BTRFS_DIRTY_METADATA_THRESH,
4814 				     fs_info->dirty_metadata_batch);
4815 	if (ret > 0) {
4816 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4817 	}
4818 }
4819 
4820 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4821 {
4822 	__btrfs_btree_balance_dirty(fs_info, 1);
4823 }
4824 
4825 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4826 {
4827 	__btrfs_btree_balance_dirty(fs_info, 0);
4828 }
4829 
4830 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4831 {
4832 	/* cleanup FS via transaction */
4833 	btrfs_cleanup_transaction(fs_info);
4834 
4835 	mutex_lock(&fs_info->cleaner_mutex);
4836 	btrfs_run_delayed_iputs(fs_info);
4837 	mutex_unlock(&fs_info->cleaner_mutex);
4838 
4839 	down_write(&fs_info->cleanup_work_sem);
4840 	up_write(&fs_info->cleanup_work_sem);
4841 }
4842 
4843 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4844 {
4845 	struct btrfs_root *gang[8];
4846 	u64 root_objectid = 0;
4847 	int ret;
4848 
4849 	spin_lock(&fs_info->fs_roots_radix_lock);
4850 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4851 					     (void **)gang, root_objectid,
4852 					     ARRAY_SIZE(gang))) != 0) {
4853 		int i;
4854 
4855 		for (i = 0; i < ret; i++)
4856 			gang[i] = btrfs_grab_root(gang[i]);
4857 		spin_unlock(&fs_info->fs_roots_radix_lock);
4858 
4859 		for (i = 0; i < ret; i++) {
4860 			if (!gang[i])
4861 				continue;
4862 			root_objectid = gang[i]->root_key.objectid;
4863 			btrfs_free_log(NULL, gang[i]);
4864 			btrfs_put_root(gang[i]);
4865 		}
4866 		root_objectid++;
4867 		spin_lock(&fs_info->fs_roots_radix_lock);
4868 	}
4869 	spin_unlock(&fs_info->fs_roots_radix_lock);
4870 	btrfs_free_log_root_tree(NULL, fs_info);
4871 }
4872 
4873 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4874 {
4875 	struct btrfs_ordered_extent *ordered;
4876 
4877 	spin_lock(&root->ordered_extent_lock);
4878 	/*
4879 	 * This will just short circuit the ordered completion stuff which will
4880 	 * make sure the ordered extent gets properly cleaned up.
4881 	 */
4882 	list_for_each_entry(ordered, &root->ordered_extents,
4883 			    root_extent_list)
4884 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4885 	spin_unlock(&root->ordered_extent_lock);
4886 }
4887 
4888 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4889 {
4890 	struct btrfs_root *root;
4891 	struct list_head splice;
4892 
4893 	INIT_LIST_HEAD(&splice);
4894 
4895 	spin_lock(&fs_info->ordered_root_lock);
4896 	list_splice_init(&fs_info->ordered_roots, &splice);
4897 	while (!list_empty(&splice)) {
4898 		root = list_first_entry(&splice, struct btrfs_root,
4899 					ordered_root);
4900 		list_move_tail(&root->ordered_root,
4901 			       &fs_info->ordered_roots);
4902 
4903 		spin_unlock(&fs_info->ordered_root_lock);
4904 		btrfs_destroy_ordered_extents(root);
4905 
4906 		cond_resched();
4907 		spin_lock(&fs_info->ordered_root_lock);
4908 	}
4909 	spin_unlock(&fs_info->ordered_root_lock);
4910 
4911 	/*
4912 	 * We need this here because if we've been flipped read-only we won't
4913 	 * get sync() from the umount, so we need to make sure any ordered
4914 	 * extents that haven't had their dirty pages IO start writeout yet
4915 	 * actually get run and error out properly.
4916 	 */
4917 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4918 }
4919 
4920 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4921 				      struct btrfs_fs_info *fs_info)
4922 {
4923 	struct rb_node *node;
4924 	struct btrfs_delayed_ref_root *delayed_refs;
4925 	struct btrfs_delayed_ref_node *ref;
4926 	int ret = 0;
4927 
4928 	delayed_refs = &trans->delayed_refs;
4929 
4930 	spin_lock(&delayed_refs->lock);
4931 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4932 		spin_unlock(&delayed_refs->lock);
4933 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4934 		return ret;
4935 	}
4936 
4937 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4938 		struct btrfs_delayed_ref_head *head;
4939 		struct rb_node *n;
4940 		bool pin_bytes = false;
4941 
4942 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4943 				href_node);
4944 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4945 			continue;
4946 
4947 		spin_lock(&head->lock);
4948 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4949 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4950 				       ref_node);
4951 			ref->in_tree = 0;
4952 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4953 			RB_CLEAR_NODE(&ref->ref_node);
4954 			if (!list_empty(&ref->add_list))
4955 				list_del(&ref->add_list);
4956 			atomic_dec(&delayed_refs->num_entries);
4957 			btrfs_put_delayed_ref(ref);
4958 		}
4959 		if (head->must_insert_reserved)
4960 			pin_bytes = true;
4961 		btrfs_free_delayed_extent_op(head->extent_op);
4962 		btrfs_delete_ref_head(delayed_refs, head);
4963 		spin_unlock(&head->lock);
4964 		spin_unlock(&delayed_refs->lock);
4965 		mutex_unlock(&head->mutex);
4966 
4967 		if (pin_bytes) {
4968 			struct btrfs_block_group *cache;
4969 
4970 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4971 			BUG_ON(!cache);
4972 
4973 			spin_lock(&cache->space_info->lock);
4974 			spin_lock(&cache->lock);
4975 			cache->pinned += head->num_bytes;
4976 			btrfs_space_info_update_bytes_pinned(fs_info,
4977 				cache->space_info, head->num_bytes);
4978 			cache->reserved -= head->num_bytes;
4979 			cache->space_info->bytes_reserved -= head->num_bytes;
4980 			spin_unlock(&cache->lock);
4981 			spin_unlock(&cache->space_info->lock);
4982 
4983 			btrfs_put_block_group(cache);
4984 
4985 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4986 				head->bytenr + head->num_bytes - 1);
4987 		}
4988 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4989 		btrfs_put_delayed_ref_head(head);
4990 		cond_resched();
4991 		spin_lock(&delayed_refs->lock);
4992 	}
4993 	btrfs_qgroup_destroy_extent_records(trans);
4994 
4995 	spin_unlock(&delayed_refs->lock);
4996 
4997 	return ret;
4998 }
4999 
5000 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5001 {
5002 	struct btrfs_inode *btrfs_inode;
5003 	struct list_head splice;
5004 
5005 	INIT_LIST_HEAD(&splice);
5006 
5007 	spin_lock(&root->delalloc_lock);
5008 	list_splice_init(&root->delalloc_inodes, &splice);
5009 
5010 	while (!list_empty(&splice)) {
5011 		struct inode *inode = NULL;
5012 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5013 					       delalloc_inodes);
5014 		__btrfs_del_delalloc_inode(root, btrfs_inode);
5015 		spin_unlock(&root->delalloc_lock);
5016 
5017 		/*
5018 		 * Make sure we get a live inode and that it'll not disappear
5019 		 * meanwhile.
5020 		 */
5021 		inode = igrab(&btrfs_inode->vfs_inode);
5022 		if (inode) {
5023 			invalidate_inode_pages2(inode->i_mapping);
5024 			iput(inode);
5025 		}
5026 		spin_lock(&root->delalloc_lock);
5027 	}
5028 	spin_unlock(&root->delalloc_lock);
5029 }
5030 
5031 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5032 {
5033 	struct btrfs_root *root;
5034 	struct list_head splice;
5035 
5036 	INIT_LIST_HEAD(&splice);
5037 
5038 	spin_lock(&fs_info->delalloc_root_lock);
5039 	list_splice_init(&fs_info->delalloc_roots, &splice);
5040 	while (!list_empty(&splice)) {
5041 		root = list_first_entry(&splice, struct btrfs_root,
5042 					 delalloc_root);
5043 		root = btrfs_grab_root(root);
5044 		BUG_ON(!root);
5045 		spin_unlock(&fs_info->delalloc_root_lock);
5046 
5047 		btrfs_destroy_delalloc_inodes(root);
5048 		btrfs_put_root(root);
5049 
5050 		spin_lock(&fs_info->delalloc_root_lock);
5051 	}
5052 	spin_unlock(&fs_info->delalloc_root_lock);
5053 }
5054 
5055 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5056 					struct extent_io_tree *dirty_pages,
5057 					int mark)
5058 {
5059 	int ret;
5060 	struct extent_buffer *eb;
5061 	u64 start = 0;
5062 	u64 end;
5063 
5064 	while (1) {
5065 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5066 					    mark, NULL);
5067 		if (ret)
5068 			break;
5069 
5070 		clear_extent_bits(dirty_pages, start, end, mark);
5071 		while (start <= end) {
5072 			eb = find_extent_buffer(fs_info, start);
5073 			start += fs_info->nodesize;
5074 			if (!eb)
5075 				continue;
5076 			wait_on_extent_buffer_writeback(eb);
5077 
5078 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5079 					       &eb->bflags))
5080 				clear_extent_buffer_dirty(eb);
5081 			free_extent_buffer_stale(eb);
5082 		}
5083 	}
5084 
5085 	return ret;
5086 }
5087 
5088 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5089 				       struct extent_io_tree *unpin)
5090 {
5091 	u64 start;
5092 	u64 end;
5093 	int ret;
5094 
5095 	while (1) {
5096 		struct extent_state *cached_state = NULL;
5097 
5098 		/*
5099 		 * The btrfs_finish_extent_commit() may get the same range as
5100 		 * ours between find_first_extent_bit and clear_extent_dirty.
5101 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5102 		 * the same extent range.
5103 		 */
5104 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5105 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5106 					    EXTENT_DIRTY, &cached_state);
5107 		if (ret) {
5108 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5109 			break;
5110 		}
5111 
5112 		clear_extent_dirty(unpin, start, end, &cached_state);
5113 		free_extent_state(cached_state);
5114 		btrfs_error_unpin_extent_range(fs_info, start, end);
5115 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5116 		cond_resched();
5117 	}
5118 
5119 	return 0;
5120 }
5121 
5122 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5123 {
5124 	struct inode *inode;
5125 
5126 	inode = cache->io_ctl.inode;
5127 	if (inode) {
5128 		invalidate_inode_pages2(inode->i_mapping);
5129 		BTRFS_I(inode)->generation = 0;
5130 		cache->io_ctl.inode = NULL;
5131 		iput(inode);
5132 	}
5133 	ASSERT(cache->io_ctl.pages == NULL);
5134 	btrfs_put_block_group(cache);
5135 }
5136 
5137 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5138 			     struct btrfs_fs_info *fs_info)
5139 {
5140 	struct btrfs_block_group *cache;
5141 
5142 	spin_lock(&cur_trans->dirty_bgs_lock);
5143 	while (!list_empty(&cur_trans->dirty_bgs)) {
5144 		cache = list_first_entry(&cur_trans->dirty_bgs,
5145 					 struct btrfs_block_group,
5146 					 dirty_list);
5147 
5148 		if (!list_empty(&cache->io_list)) {
5149 			spin_unlock(&cur_trans->dirty_bgs_lock);
5150 			list_del_init(&cache->io_list);
5151 			btrfs_cleanup_bg_io(cache);
5152 			spin_lock(&cur_trans->dirty_bgs_lock);
5153 		}
5154 
5155 		list_del_init(&cache->dirty_list);
5156 		spin_lock(&cache->lock);
5157 		cache->disk_cache_state = BTRFS_DC_ERROR;
5158 		spin_unlock(&cache->lock);
5159 
5160 		spin_unlock(&cur_trans->dirty_bgs_lock);
5161 		btrfs_put_block_group(cache);
5162 		btrfs_delayed_refs_rsv_release(fs_info, 1);
5163 		spin_lock(&cur_trans->dirty_bgs_lock);
5164 	}
5165 	spin_unlock(&cur_trans->dirty_bgs_lock);
5166 
5167 	/*
5168 	 * Refer to the definition of io_bgs member for details why it's safe
5169 	 * to use it without any locking
5170 	 */
5171 	while (!list_empty(&cur_trans->io_bgs)) {
5172 		cache = list_first_entry(&cur_trans->io_bgs,
5173 					 struct btrfs_block_group,
5174 					 io_list);
5175 
5176 		list_del_init(&cache->io_list);
5177 		spin_lock(&cache->lock);
5178 		cache->disk_cache_state = BTRFS_DC_ERROR;
5179 		spin_unlock(&cache->lock);
5180 		btrfs_cleanup_bg_io(cache);
5181 	}
5182 }
5183 
5184 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5185 				   struct btrfs_fs_info *fs_info)
5186 {
5187 	struct btrfs_device *dev, *tmp;
5188 
5189 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5190 	ASSERT(list_empty(&cur_trans->dirty_bgs));
5191 	ASSERT(list_empty(&cur_trans->io_bgs));
5192 
5193 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5194 				 post_commit_list) {
5195 		list_del_init(&dev->post_commit_list);
5196 	}
5197 
5198 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5199 
5200 	cur_trans->state = TRANS_STATE_COMMIT_START;
5201 	wake_up(&fs_info->transaction_blocked_wait);
5202 
5203 	cur_trans->state = TRANS_STATE_UNBLOCKED;
5204 	wake_up(&fs_info->transaction_wait);
5205 
5206 	btrfs_destroy_delayed_inodes(fs_info);
5207 
5208 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5209 				     EXTENT_DIRTY);
5210 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5211 
5212 	btrfs_free_redirty_list(cur_trans);
5213 
5214 	cur_trans->state =TRANS_STATE_COMPLETED;
5215 	wake_up(&cur_trans->commit_wait);
5216 }
5217 
5218 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5219 {
5220 	struct btrfs_transaction *t;
5221 
5222 	mutex_lock(&fs_info->transaction_kthread_mutex);
5223 
5224 	spin_lock(&fs_info->trans_lock);
5225 	while (!list_empty(&fs_info->trans_list)) {
5226 		t = list_first_entry(&fs_info->trans_list,
5227 				     struct btrfs_transaction, list);
5228 		if (t->state >= TRANS_STATE_COMMIT_START) {
5229 			refcount_inc(&t->use_count);
5230 			spin_unlock(&fs_info->trans_lock);
5231 			btrfs_wait_for_commit(fs_info, t->transid);
5232 			btrfs_put_transaction(t);
5233 			spin_lock(&fs_info->trans_lock);
5234 			continue;
5235 		}
5236 		if (t == fs_info->running_transaction) {
5237 			t->state = TRANS_STATE_COMMIT_DOING;
5238 			spin_unlock(&fs_info->trans_lock);
5239 			/*
5240 			 * We wait for 0 num_writers since we don't hold a trans
5241 			 * handle open currently for this transaction.
5242 			 */
5243 			wait_event(t->writer_wait,
5244 				   atomic_read(&t->num_writers) == 0);
5245 		} else {
5246 			spin_unlock(&fs_info->trans_lock);
5247 		}
5248 		btrfs_cleanup_one_transaction(t, fs_info);
5249 
5250 		spin_lock(&fs_info->trans_lock);
5251 		if (t == fs_info->running_transaction)
5252 			fs_info->running_transaction = NULL;
5253 		list_del_init(&t->list);
5254 		spin_unlock(&fs_info->trans_lock);
5255 
5256 		btrfs_put_transaction(t);
5257 		trace_btrfs_transaction_commit(fs_info);
5258 		spin_lock(&fs_info->trans_lock);
5259 	}
5260 	spin_unlock(&fs_info->trans_lock);
5261 	btrfs_destroy_all_ordered_extents(fs_info);
5262 	btrfs_destroy_delayed_inodes(fs_info);
5263 	btrfs_assert_delayed_root_empty(fs_info);
5264 	btrfs_destroy_all_delalloc_inodes(fs_info);
5265 	btrfs_drop_all_logs(fs_info);
5266 	mutex_unlock(&fs_info->transaction_kthread_mutex);
5267 
5268 	return 0;
5269 }
5270 
5271 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5272 {
5273 	struct btrfs_path *path;
5274 	int ret;
5275 	struct extent_buffer *l;
5276 	struct btrfs_key search_key;
5277 	struct btrfs_key found_key;
5278 	int slot;
5279 
5280 	path = btrfs_alloc_path();
5281 	if (!path)
5282 		return -ENOMEM;
5283 
5284 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5285 	search_key.type = -1;
5286 	search_key.offset = (u64)-1;
5287 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5288 	if (ret < 0)
5289 		goto error;
5290 	BUG_ON(ret == 0); /* Corruption */
5291 	if (path->slots[0] > 0) {
5292 		slot = path->slots[0] - 1;
5293 		l = path->nodes[0];
5294 		btrfs_item_key_to_cpu(l, &found_key, slot);
5295 		root->free_objectid = max_t(u64, found_key.objectid + 1,
5296 					    BTRFS_FIRST_FREE_OBJECTID);
5297 	} else {
5298 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5299 	}
5300 	ret = 0;
5301 error:
5302 	btrfs_free_path(path);
5303 	return ret;
5304 }
5305 
5306 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5307 {
5308 	int ret;
5309 	mutex_lock(&root->objectid_mutex);
5310 
5311 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5312 		btrfs_warn(root->fs_info,
5313 			   "the objectid of root %llu reaches its highest value",
5314 			   root->root_key.objectid);
5315 		ret = -ENOSPC;
5316 		goto out;
5317 	}
5318 
5319 	*objectid = root->free_objectid++;
5320 	ret = 0;
5321 out:
5322 	mutex_unlock(&root->objectid_mutex);
5323 	return ret;
5324 }
5325