1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 62 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 63 struct btrfs_fs_info *fs_info); 64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 65 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 66 struct extent_io_tree *dirty_pages, 67 int mark); 68 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 69 struct extent_io_tree *pinned_extents); 70 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 71 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 72 73 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 74 { 75 if (fs_info->csum_shash) 76 crypto_free_shash(fs_info->csum_shash); 77 } 78 79 /* 80 * async submit bios are used to offload expensive checksumming 81 * onto the worker threads. They checksum file and metadata bios 82 * just before they are sent down the IO stack. 83 */ 84 struct async_submit_bio { 85 struct inode *inode; 86 struct bio *bio; 87 extent_submit_bio_start_t *submit_bio_start; 88 int mirror_num; 89 90 /* Optional parameter for submit_bio_start used by direct io */ 91 u64 dio_file_offset; 92 struct btrfs_work work; 93 blk_status_t status; 94 }; 95 96 /* 97 * Compute the csum of a btree block and store the result to provided buffer. 98 */ 99 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 100 { 101 struct btrfs_fs_info *fs_info = buf->fs_info; 102 const int num_pages = num_extent_pages(buf); 103 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 104 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 105 char *kaddr; 106 int i; 107 108 shash->tfm = fs_info->csum_shash; 109 crypto_shash_init(shash); 110 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 111 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 112 first_page_part - BTRFS_CSUM_SIZE); 113 114 for (i = 1; i < num_pages; i++) { 115 kaddr = page_address(buf->pages[i]); 116 crypto_shash_update(shash, kaddr, PAGE_SIZE); 117 } 118 memset(result, 0, BTRFS_CSUM_SIZE); 119 crypto_shash_final(shash, result); 120 } 121 122 /* 123 * we can't consider a given block up to date unless the transid of the 124 * block matches the transid in the parent node's pointer. This is how we 125 * detect blocks that either didn't get written at all or got written 126 * in the wrong place. 127 */ 128 static int verify_parent_transid(struct extent_io_tree *io_tree, 129 struct extent_buffer *eb, u64 parent_transid, 130 int atomic) 131 { 132 struct extent_state *cached_state = NULL; 133 int ret; 134 135 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 136 return 0; 137 138 if (atomic) 139 return -EAGAIN; 140 141 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 142 if (extent_buffer_uptodate(eb) && 143 btrfs_header_generation(eb) == parent_transid) { 144 ret = 0; 145 goto out; 146 } 147 btrfs_err_rl(eb->fs_info, 148 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 149 eb->start, eb->read_mirror, 150 parent_transid, btrfs_header_generation(eb)); 151 ret = 1; 152 clear_extent_buffer_uptodate(eb); 153 out: 154 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 155 &cached_state); 156 return ret; 157 } 158 159 static bool btrfs_supported_super_csum(u16 csum_type) 160 { 161 switch (csum_type) { 162 case BTRFS_CSUM_TYPE_CRC32: 163 case BTRFS_CSUM_TYPE_XXHASH: 164 case BTRFS_CSUM_TYPE_SHA256: 165 case BTRFS_CSUM_TYPE_BLAKE2: 166 return true; 167 default: 168 return false; 169 } 170 } 171 172 /* 173 * Return 0 if the superblock checksum type matches the checksum value of that 174 * algorithm. Pass the raw disk superblock data. 175 */ 176 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 177 const struct btrfs_super_block *disk_sb) 178 { 179 char result[BTRFS_CSUM_SIZE]; 180 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 181 182 shash->tfm = fs_info->csum_shash; 183 184 /* 185 * The super_block structure does not span the whole 186 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 187 * filled with zeros and is included in the checksum. 188 */ 189 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 190 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 191 192 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 193 return 1; 194 195 return 0; 196 } 197 198 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 199 struct btrfs_key *first_key, u64 parent_transid) 200 { 201 struct btrfs_fs_info *fs_info = eb->fs_info; 202 int found_level; 203 struct btrfs_key found_key; 204 int ret; 205 206 found_level = btrfs_header_level(eb); 207 if (found_level != level) { 208 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 209 KERN_ERR "BTRFS: tree level check failed\n"); 210 btrfs_err(fs_info, 211 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 212 eb->start, level, found_level); 213 return -EIO; 214 } 215 216 if (!first_key) 217 return 0; 218 219 /* 220 * For live tree block (new tree blocks in current transaction), 221 * we need proper lock context to avoid race, which is impossible here. 222 * So we only checks tree blocks which is read from disk, whose 223 * generation <= fs_info->last_trans_committed. 224 */ 225 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 226 return 0; 227 228 /* We have @first_key, so this @eb must have at least one item */ 229 if (btrfs_header_nritems(eb) == 0) { 230 btrfs_err(fs_info, 231 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 232 eb->start); 233 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 234 return -EUCLEAN; 235 } 236 237 if (found_level) 238 btrfs_node_key_to_cpu(eb, &found_key, 0); 239 else 240 btrfs_item_key_to_cpu(eb, &found_key, 0); 241 ret = btrfs_comp_cpu_keys(first_key, &found_key); 242 243 if (ret) { 244 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 245 KERN_ERR "BTRFS: tree first key check failed\n"); 246 btrfs_err(fs_info, 247 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 248 eb->start, parent_transid, first_key->objectid, 249 first_key->type, first_key->offset, 250 found_key.objectid, found_key.type, 251 found_key.offset); 252 } 253 return ret; 254 } 255 256 /* 257 * helper to read a given tree block, doing retries as required when 258 * the checksums don't match and we have alternate mirrors to try. 259 * 260 * @parent_transid: expected transid, skip check if 0 261 * @level: expected level, mandatory check 262 * @first_key: expected key of first slot, skip check if NULL 263 */ 264 int btrfs_read_extent_buffer(struct extent_buffer *eb, 265 u64 parent_transid, int level, 266 struct btrfs_key *first_key) 267 { 268 struct btrfs_fs_info *fs_info = eb->fs_info; 269 struct extent_io_tree *io_tree; 270 int failed = 0; 271 int ret; 272 int num_copies = 0; 273 int mirror_num = 0; 274 int failed_mirror = 0; 275 276 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 277 while (1) { 278 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 279 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 280 if (!ret) { 281 if (verify_parent_transid(io_tree, eb, 282 parent_transid, 0)) 283 ret = -EIO; 284 else if (btrfs_verify_level_key(eb, level, 285 first_key, parent_transid)) 286 ret = -EUCLEAN; 287 else 288 break; 289 } 290 291 num_copies = btrfs_num_copies(fs_info, 292 eb->start, eb->len); 293 if (num_copies == 1) 294 break; 295 296 if (!failed_mirror) { 297 failed = 1; 298 failed_mirror = eb->read_mirror; 299 } 300 301 mirror_num++; 302 if (mirror_num == failed_mirror) 303 mirror_num++; 304 305 if (mirror_num > num_copies) 306 break; 307 } 308 309 if (failed && !ret && failed_mirror) 310 btrfs_repair_eb_io_failure(eb, failed_mirror); 311 312 return ret; 313 } 314 315 static int csum_one_extent_buffer(struct extent_buffer *eb) 316 { 317 struct btrfs_fs_info *fs_info = eb->fs_info; 318 u8 result[BTRFS_CSUM_SIZE]; 319 int ret; 320 321 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 322 offsetof(struct btrfs_header, fsid), 323 BTRFS_FSID_SIZE) == 0); 324 csum_tree_block(eb, result); 325 326 if (btrfs_header_level(eb)) 327 ret = btrfs_check_node(eb); 328 else 329 ret = btrfs_check_leaf_full(eb); 330 331 if (ret < 0) 332 goto error; 333 334 /* 335 * Also check the generation, the eb reached here must be newer than 336 * last committed. Or something seriously wrong happened. 337 */ 338 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 339 ret = -EUCLEAN; 340 btrfs_err(fs_info, 341 "block=%llu bad generation, have %llu expect > %llu", 342 eb->start, btrfs_header_generation(eb), 343 fs_info->last_trans_committed); 344 goto error; 345 } 346 write_extent_buffer(eb, result, 0, fs_info->csum_size); 347 348 return 0; 349 350 error: 351 btrfs_print_tree(eb, 0); 352 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 353 eb->start); 354 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 355 return ret; 356 } 357 358 /* Checksum all dirty extent buffers in one bio_vec */ 359 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 360 struct bio_vec *bvec) 361 { 362 struct page *page = bvec->bv_page; 363 u64 bvec_start = page_offset(page) + bvec->bv_offset; 364 u64 cur; 365 int ret = 0; 366 367 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 368 cur += fs_info->nodesize) { 369 struct extent_buffer *eb; 370 bool uptodate; 371 372 eb = find_extent_buffer(fs_info, cur); 373 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 374 fs_info->nodesize); 375 376 /* A dirty eb shouldn't disappear from buffer_radix */ 377 if (WARN_ON(!eb)) 378 return -EUCLEAN; 379 380 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 381 free_extent_buffer(eb); 382 return -EUCLEAN; 383 } 384 if (WARN_ON(!uptodate)) { 385 free_extent_buffer(eb); 386 return -EUCLEAN; 387 } 388 389 ret = csum_one_extent_buffer(eb); 390 free_extent_buffer(eb); 391 if (ret < 0) 392 return ret; 393 } 394 return ret; 395 } 396 397 /* 398 * Checksum a dirty tree block before IO. This has extra checks to make sure 399 * we only fill in the checksum field in the first page of a multi-page block. 400 * For subpage extent buffers we need bvec to also read the offset in the page. 401 */ 402 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 403 { 404 struct page *page = bvec->bv_page; 405 u64 start = page_offset(page); 406 u64 found_start; 407 struct extent_buffer *eb; 408 409 if (fs_info->nodesize < PAGE_SIZE) 410 return csum_dirty_subpage_buffers(fs_info, bvec); 411 412 eb = (struct extent_buffer *)page->private; 413 if (page != eb->pages[0]) 414 return 0; 415 416 found_start = btrfs_header_bytenr(eb); 417 418 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 419 WARN_ON(found_start != 0); 420 return 0; 421 } 422 423 /* 424 * Please do not consolidate these warnings into a single if. 425 * It is useful to know what went wrong. 426 */ 427 if (WARN_ON(found_start != start)) 428 return -EUCLEAN; 429 if (WARN_ON(!PageUptodate(page))) 430 return -EUCLEAN; 431 432 return csum_one_extent_buffer(eb); 433 } 434 435 static int check_tree_block_fsid(struct extent_buffer *eb) 436 { 437 struct btrfs_fs_info *fs_info = eb->fs_info; 438 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 439 u8 fsid[BTRFS_FSID_SIZE]; 440 u8 *metadata_uuid; 441 442 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 443 BTRFS_FSID_SIZE); 444 /* 445 * Checking the incompat flag is only valid for the current fs. For 446 * seed devices it's forbidden to have their uuid changed so reading 447 * ->fsid in this case is fine 448 */ 449 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 450 metadata_uuid = fs_devices->metadata_uuid; 451 else 452 metadata_uuid = fs_devices->fsid; 453 454 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 455 return 0; 456 457 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 458 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 459 return 0; 460 461 return 1; 462 } 463 464 /* Do basic extent buffer checks at read time */ 465 static int validate_extent_buffer(struct extent_buffer *eb) 466 { 467 struct btrfs_fs_info *fs_info = eb->fs_info; 468 u64 found_start; 469 const u32 csum_size = fs_info->csum_size; 470 u8 found_level; 471 u8 result[BTRFS_CSUM_SIZE]; 472 const u8 *header_csum; 473 int ret = 0; 474 475 found_start = btrfs_header_bytenr(eb); 476 if (found_start != eb->start) { 477 btrfs_err_rl(fs_info, 478 "bad tree block start, mirror %u want %llu have %llu", 479 eb->read_mirror, eb->start, found_start); 480 ret = -EIO; 481 goto out; 482 } 483 if (check_tree_block_fsid(eb)) { 484 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 485 eb->start, eb->read_mirror); 486 ret = -EIO; 487 goto out; 488 } 489 found_level = btrfs_header_level(eb); 490 if (found_level >= BTRFS_MAX_LEVEL) { 491 btrfs_err(fs_info, 492 "bad tree block level, mirror %u level %d on logical %llu", 493 eb->read_mirror, btrfs_header_level(eb), eb->start); 494 ret = -EIO; 495 goto out; 496 } 497 498 csum_tree_block(eb, result); 499 header_csum = page_address(eb->pages[0]) + 500 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 501 502 if (memcmp(result, header_csum, csum_size) != 0) { 503 btrfs_warn_rl(fs_info, 504 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 505 eb->start, eb->read_mirror, 506 CSUM_FMT_VALUE(csum_size, header_csum), 507 CSUM_FMT_VALUE(csum_size, result), 508 btrfs_header_level(eb)); 509 ret = -EUCLEAN; 510 goto out; 511 } 512 513 /* 514 * If this is a leaf block and it is corrupt, set the corrupt bit so 515 * that we don't try and read the other copies of this block, just 516 * return -EIO. 517 */ 518 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 519 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 520 ret = -EIO; 521 } 522 523 if (found_level > 0 && btrfs_check_node(eb)) 524 ret = -EIO; 525 526 if (!ret) 527 set_extent_buffer_uptodate(eb); 528 else 529 btrfs_err(fs_info, 530 "read time tree block corruption detected on logical %llu mirror %u", 531 eb->start, eb->read_mirror); 532 out: 533 return ret; 534 } 535 536 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 537 int mirror) 538 { 539 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 540 struct extent_buffer *eb; 541 bool reads_done; 542 int ret = 0; 543 544 /* 545 * We don't allow bio merge for subpage metadata read, so we should 546 * only get one eb for each endio hook. 547 */ 548 ASSERT(end == start + fs_info->nodesize - 1); 549 ASSERT(PagePrivate(page)); 550 551 eb = find_extent_buffer(fs_info, start); 552 /* 553 * When we are reading one tree block, eb must have been inserted into 554 * the radix tree. If not, something is wrong. 555 */ 556 ASSERT(eb); 557 558 reads_done = atomic_dec_and_test(&eb->io_pages); 559 /* Subpage read must finish in page read */ 560 ASSERT(reads_done); 561 562 eb->read_mirror = mirror; 563 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 564 ret = -EIO; 565 goto err; 566 } 567 ret = validate_extent_buffer(eb); 568 if (ret < 0) 569 goto err; 570 571 set_extent_buffer_uptodate(eb); 572 573 free_extent_buffer(eb); 574 return ret; 575 err: 576 /* 577 * end_bio_extent_readpage decrements io_pages in case of error, 578 * make sure it has something to decrement. 579 */ 580 atomic_inc(&eb->io_pages); 581 clear_extent_buffer_uptodate(eb); 582 free_extent_buffer(eb); 583 return ret; 584 } 585 586 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 587 struct page *page, u64 start, u64 end, 588 int mirror) 589 { 590 struct extent_buffer *eb; 591 int ret = 0; 592 int reads_done; 593 594 ASSERT(page->private); 595 596 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 597 return validate_subpage_buffer(page, start, end, mirror); 598 599 eb = (struct extent_buffer *)page->private; 600 601 /* 602 * The pending IO might have been the only thing that kept this buffer 603 * in memory. Make sure we have a ref for all this other checks 604 */ 605 atomic_inc(&eb->refs); 606 607 reads_done = atomic_dec_and_test(&eb->io_pages); 608 if (!reads_done) 609 goto err; 610 611 eb->read_mirror = mirror; 612 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 613 ret = -EIO; 614 goto err; 615 } 616 ret = validate_extent_buffer(eb); 617 err: 618 if (ret) { 619 /* 620 * our io error hook is going to dec the io pages 621 * again, we have to make sure it has something 622 * to decrement 623 */ 624 atomic_inc(&eb->io_pages); 625 clear_extent_buffer_uptodate(eb); 626 } 627 free_extent_buffer(eb); 628 629 return ret; 630 } 631 632 static void run_one_async_start(struct btrfs_work *work) 633 { 634 struct async_submit_bio *async; 635 blk_status_t ret; 636 637 async = container_of(work, struct async_submit_bio, work); 638 ret = async->submit_bio_start(async->inode, async->bio, 639 async->dio_file_offset); 640 if (ret) 641 async->status = ret; 642 } 643 644 /* 645 * In order to insert checksums into the metadata in large chunks, we wait 646 * until bio submission time. All the pages in the bio are checksummed and 647 * sums are attached onto the ordered extent record. 648 * 649 * At IO completion time the csums attached on the ordered extent record are 650 * inserted into the tree. 651 */ 652 static void run_one_async_done(struct btrfs_work *work) 653 { 654 struct async_submit_bio *async = 655 container_of(work, struct async_submit_bio, work); 656 struct inode *inode = async->inode; 657 struct btrfs_bio *bbio = btrfs_bio(async->bio); 658 659 /* If an error occurred we just want to clean up the bio and move on */ 660 if (async->status) { 661 btrfs_bio_end_io(bbio, async->status); 662 return; 663 } 664 665 /* 666 * All of the bios that pass through here are from async helpers. 667 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 668 * This changes nothing when cgroups aren't in use. 669 */ 670 async->bio->bi_opf |= REQ_CGROUP_PUNT; 671 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 672 } 673 674 static void run_one_async_free(struct btrfs_work *work) 675 { 676 struct async_submit_bio *async; 677 678 async = container_of(work, struct async_submit_bio, work); 679 kfree(async); 680 } 681 682 /* 683 * Submit bio to an async queue. 684 * 685 * Retrun: 686 * - true if the work has been succesfuly submitted 687 * - false in case of error 688 */ 689 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num, 690 u64 dio_file_offset, 691 extent_submit_bio_start_t *submit_bio_start) 692 { 693 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 694 struct async_submit_bio *async; 695 696 async = kmalloc(sizeof(*async), GFP_NOFS); 697 if (!async) 698 return false; 699 700 async->inode = inode; 701 async->bio = bio; 702 async->mirror_num = mirror_num; 703 async->submit_bio_start = submit_bio_start; 704 705 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 706 run_one_async_free); 707 708 async->dio_file_offset = dio_file_offset; 709 710 async->status = 0; 711 712 if (op_is_sync(bio->bi_opf)) 713 btrfs_queue_work(fs_info->hipri_workers, &async->work); 714 else 715 btrfs_queue_work(fs_info->workers, &async->work); 716 return true; 717 } 718 719 static blk_status_t btree_csum_one_bio(struct bio *bio) 720 { 721 struct bio_vec *bvec; 722 struct btrfs_root *root; 723 int ret = 0; 724 struct bvec_iter_all iter_all; 725 726 ASSERT(!bio_flagged(bio, BIO_CLONED)); 727 bio_for_each_segment_all(bvec, bio, iter_all) { 728 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 729 ret = csum_dirty_buffer(root->fs_info, bvec); 730 if (ret) 731 break; 732 } 733 734 return errno_to_blk_status(ret); 735 } 736 737 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, 738 u64 dio_file_offset) 739 { 740 /* 741 * when we're called for a write, we're already in the async 742 * submission context. Just jump into btrfs_submit_bio. 743 */ 744 return btree_csum_one_bio(bio); 745 } 746 747 static bool should_async_write(struct btrfs_fs_info *fs_info, 748 struct btrfs_inode *bi) 749 { 750 if (btrfs_is_zoned(fs_info)) 751 return false; 752 if (atomic_read(&bi->sync_writers)) 753 return false; 754 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 755 return false; 756 return true; 757 } 758 759 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num) 760 { 761 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 762 struct btrfs_bio *bbio = btrfs_bio(bio); 763 blk_status_t ret; 764 765 bio->bi_opf |= REQ_META; 766 767 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 768 btrfs_submit_bio(fs_info, bio, mirror_num); 769 return; 770 } 771 772 /* 773 * Kthread helpers are used to submit writes so that checksumming can 774 * happen in parallel across all CPUs. 775 */ 776 if (should_async_write(fs_info, BTRFS_I(inode)) && 777 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start)) 778 return; 779 780 ret = btree_csum_one_bio(bio); 781 if (ret) { 782 btrfs_bio_end_io(bbio, ret); 783 return; 784 } 785 786 btrfs_submit_bio(fs_info, bio, mirror_num); 787 } 788 789 #ifdef CONFIG_MIGRATION 790 static int btree_migrate_folio(struct address_space *mapping, 791 struct folio *dst, struct folio *src, enum migrate_mode mode) 792 { 793 /* 794 * we can't safely write a btree page from here, 795 * we haven't done the locking hook 796 */ 797 if (folio_test_dirty(src)) 798 return -EAGAIN; 799 /* 800 * Buffers may be managed in a filesystem specific way. 801 * We must have no buffers or drop them. 802 */ 803 if (folio_get_private(src) && 804 !filemap_release_folio(src, GFP_KERNEL)) 805 return -EAGAIN; 806 return migrate_folio(mapping, dst, src, mode); 807 } 808 #else 809 #define btree_migrate_folio NULL 810 #endif 811 812 static int btree_writepages(struct address_space *mapping, 813 struct writeback_control *wbc) 814 { 815 struct btrfs_fs_info *fs_info; 816 int ret; 817 818 if (wbc->sync_mode == WB_SYNC_NONE) { 819 820 if (wbc->for_kupdate) 821 return 0; 822 823 fs_info = BTRFS_I(mapping->host)->root->fs_info; 824 /* this is a bit racy, but that's ok */ 825 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 826 BTRFS_DIRTY_METADATA_THRESH, 827 fs_info->dirty_metadata_batch); 828 if (ret < 0) 829 return 0; 830 } 831 return btree_write_cache_pages(mapping, wbc); 832 } 833 834 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 835 { 836 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 837 return false; 838 839 return try_release_extent_buffer(&folio->page); 840 } 841 842 static void btree_invalidate_folio(struct folio *folio, size_t offset, 843 size_t length) 844 { 845 struct extent_io_tree *tree; 846 tree = &BTRFS_I(folio->mapping->host)->io_tree; 847 extent_invalidate_folio(tree, folio, offset); 848 btree_release_folio(folio, GFP_NOFS); 849 if (folio_get_private(folio)) { 850 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 851 "folio private not zero on folio %llu", 852 (unsigned long long)folio_pos(folio)); 853 folio_detach_private(folio); 854 } 855 } 856 857 #ifdef DEBUG 858 static bool btree_dirty_folio(struct address_space *mapping, 859 struct folio *folio) 860 { 861 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 862 struct btrfs_subpage *subpage; 863 struct extent_buffer *eb; 864 int cur_bit = 0; 865 u64 page_start = folio_pos(folio); 866 867 if (fs_info->sectorsize == PAGE_SIZE) { 868 eb = folio_get_private(folio); 869 BUG_ON(!eb); 870 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 871 BUG_ON(!atomic_read(&eb->refs)); 872 btrfs_assert_tree_write_locked(eb); 873 return filemap_dirty_folio(mapping, folio); 874 } 875 subpage = folio_get_private(folio); 876 877 ASSERT(subpage->dirty_bitmap); 878 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 879 unsigned long flags; 880 u64 cur; 881 u16 tmp = (1 << cur_bit); 882 883 spin_lock_irqsave(&subpage->lock, flags); 884 if (!(tmp & subpage->dirty_bitmap)) { 885 spin_unlock_irqrestore(&subpage->lock, flags); 886 cur_bit++; 887 continue; 888 } 889 spin_unlock_irqrestore(&subpage->lock, flags); 890 cur = page_start + cur_bit * fs_info->sectorsize; 891 892 eb = find_extent_buffer(fs_info, cur); 893 ASSERT(eb); 894 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 895 ASSERT(atomic_read(&eb->refs)); 896 btrfs_assert_tree_write_locked(eb); 897 free_extent_buffer(eb); 898 899 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 900 } 901 return filemap_dirty_folio(mapping, folio); 902 } 903 #else 904 #define btree_dirty_folio filemap_dirty_folio 905 #endif 906 907 static const struct address_space_operations btree_aops = { 908 .writepages = btree_writepages, 909 .release_folio = btree_release_folio, 910 .invalidate_folio = btree_invalidate_folio, 911 .migrate_folio = btree_migrate_folio, 912 .dirty_folio = btree_dirty_folio, 913 }; 914 915 struct extent_buffer *btrfs_find_create_tree_block( 916 struct btrfs_fs_info *fs_info, 917 u64 bytenr, u64 owner_root, 918 int level) 919 { 920 if (btrfs_is_testing(fs_info)) 921 return alloc_test_extent_buffer(fs_info, bytenr); 922 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 923 } 924 925 /* 926 * Read tree block at logical address @bytenr and do variant basic but critical 927 * verification. 928 * 929 * @owner_root: the objectid of the root owner for this block. 930 * @parent_transid: expected transid of this tree block, skip check if 0 931 * @level: expected level, mandatory check 932 * @first_key: expected key in slot 0, skip check if NULL 933 */ 934 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 935 u64 owner_root, u64 parent_transid, 936 int level, struct btrfs_key *first_key) 937 { 938 struct extent_buffer *buf = NULL; 939 int ret; 940 941 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 942 if (IS_ERR(buf)) 943 return buf; 944 945 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key); 946 if (ret) { 947 free_extent_buffer_stale(buf); 948 return ERR_PTR(ret); 949 } 950 if (btrfs_check_eb_owner(buf, owner_root)) { 951 free_extent_buffer_stale(buf); 952 return ERR_PTR(-EUCLEAN); 953 } 954 return buf; 955 956 } 957 958 void btrfs_clean_tree_block(struct extent_buffer *buf) 959 { 960 struct btrfs_fs_info *fs_info = buf->fs_info; 961 if (btrfs_header_generation(buf) == 962 fs_info->running_transaction->transid) { 963 btrfs_assert_tree_write_locked(buf); 964 965 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 966 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 967 -buf->len, 968 fs_info->dirty_metadata_batch); 969 clear_extent_buffer_dirty(buf); 970 } 971 } 972 } 973 974 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 975 u64 objectid) 976 { 977 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 978 979 memset(&root->root_key, 0, sizeof(root->root_key)); 980 memset(&root->root_item, 0, sizeof(root->root_item)); 981 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 982 root->fs_info = fs_info; 983 root->root_key.objectid = objectid; 984 root->node = NULL; 985 root->commit_root = NULL; 986 root->state = 0; 987 RB_CLEAR_NODE(&root->rb_node); 988 989 root->last_trans = 0; 990 root->free_objectid = 0; 991 root->nr_delalloc_inodes = 0; 992 root->nr_ordered_extents = 0; 993 root->inode_tree = RB_ROOT; 994 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 995 996 btrfs_init_root_block_rsv(root); 997 998 INIT_LIST_HEAD(&root->dirty_list); 999 INIT_LIST_HEAD(&root->root_list); 1000 INIT_LIST_HEAD(&root->delalloc_inodes); 1001 INIT_LIST_HEAD(&root->delalloc_root); 1002 INIT_LIST_HEAD(&root->ordered_extents); 1003 INIT_LIST_HEAD(&root->ordered_root); 1004 INIT_LIST_HEAD(&root->reloc_dirty_list); 1005 INIT_LIST_HEAD(&root->logged_list[0]); 1006 INIT_LIST_HEAD(&root->logged_list[1]); 1007 spin_lock_init(&root->inode_lock); 1008 spin_lock_init(&root->delalloc_lock); 1009 spin_lock_init(&root->ordered_extent_lock); 1010 spin_lock_init(&root->accounting_lock); 1011 spin_lock_init(&root->log_extents_lock[0]); 1012 spin_lock_init(&root->log_extents_lock[1]); 1013 spin_lock_init(&root->qgroup_meta_rsv_lock); 1014 mutex_init(&root->objectid_mutex); 1015 mutex_init(&root->log_mutex); 1016 mutex_init(&root->ordered_extent_mutex); 1017 mutex_init(&root->delalloc_mutex); 1018 init_waitqueue_head(&root->qgroup_flush_wait); 1019 init_waitqueue_head(&root->log_writer_wait); 1020 init_waitqueue_head(&root->log_commit_wait[0]); 1021 init_waitqueue_head(&root->log_commit_wait[1]); 1022 INIT_LIST_HEAD(&root->log_ctxs[0]); 1023 INIT_LIST_HEAD(&root->log_ctxs[1]); 1024 atomic_set(&root->log_commit[0], 0); 1025 atomic_set(&root->log_commit[1], 0); 1026 atomic_set(&root->log_writers, 0); 1027 atomic_set(&root->log_batch, 0); 1028 refcount_set(&root->refs, 1); 1029 atomic_set(&root->snapshot_force_cow, 0); 1030 atomic_set(&root->nr_swapfiles, 0); 1031 root->log_transid = 0; 1032 root->log_transid_committed = -1; 1033 root->last_log_commit = 0; 1034 root->anon_dev = 0; 1035 if (!dummy) { 1036 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1037 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1038 extent_io_tree_init(fs_info, &root->log_csum_range, 1039 IO_TREE_LOG_CSUM_RANGE, NULL); 1040 } 1041 1042 spin_lock_init(&root->root_item_lock); 1043 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1044 #ifdef CONFIG_BTRFS_DEBUG 1045 INIT_LIST_HEAD(&root->leak_list); 1046 spin_lock(&fs_info->fs_roots_radix_lock); 1047 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1048 spin_unlock(&fs_info->fs_roots_radix_lock); 1049 #endif 1050 } 1051 1052 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1053 u64 objectid, gfp_t flags) 1054 { 1055 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1056 if (root) 1057 __setup_root(root, fs_info, objectid); 1058 return root; 1059 } 1060 1061 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1062 /* Should only be used by the testing infrastructure */ 1063 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1064 { 1065 struct btrfs_root *root; 1066 1067 if (!fs_info) 1068 return ERR_PTR(-EINVAL); 1069 1070 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1071 if (!root) 1072 return ERR_PTR(-ENOMEM); 1073 1074 /* We don't use the stripesize in selftest, set it as sectorsize */ 1075 root->alloc_bytenr = 0; 1076 1077 return root; 1078 } 1079 #endif 1080 1081 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 1082 { 1083 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 1084 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 1085 1086 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 1087 } 1088 1089 static int global_root_key_cmp(const void *k, const struct rb_node *node) 1090 { 1091 const struct btrfs_key *key = k; 1092 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 1093 1094 return btrfs_comp_cpu_keys(key, &root->root_key); 1095 } 1096 1097 int btrfs_global_root_insert(struct btrfs_root *root) 1098 { 1099 struct btrfs_fs_info *fs_info = root->fs_info; 1100 struct rb_node *tmp; 1101 1102 write_lock(&fs_info->global_root_lock); 1103 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1104 write_unlock(&fs_info->global_root_lock); 1105 ASSERT(!tmp); 1106 1107 return tmp ? -EEXIST : 0; 1108 } 1109 1110 void btrfs_global_root_delete(struct btrfs_root *root) 1111 { 1112 struct btrfs_fs_info *fs_info = root->fs_info; 1113 1114 write_lock(&fs_info->global_root_lock); 1115 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1116 write_unlock(&fs_info->global_root_lock); 1117 } 1118 1119 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1120 struct btrfs_key *key) 1121 { 1122 struct rb_node *node; 1123 struct btrfs_root *root = NULL; 1124 1125 read_lock(&fs_info->global_root_lock); 1126 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1127 if (node) 1128 root = container_of(node, struct btrfs_root, rb_node); 1129 read_unlock(&fs_info->global_root_lock); 1130 1131 return root; 1132 } 1133 1134 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1135 { 1136 struct btrfs_block_group *block_group; 1137 u64 ret; 1138 1139 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1140 return 0; 1141 1142 if (bytenr) 1143 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1144 else 1145 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1146 ASSERT(block_group); 1147 if (!block_group) 1148 return 0; 1149 ret = block_group->global_root_id; 1150 btrfs_put_block_group(block_group); 1151 1152 return ret; 1153 } 1154 1155 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1156 { 1157 struct btrfs_key key = { 1158 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1159 .type = BTRFS_ROOT_ITEM_KEY, 1160 .offset = btrfs_global_root_id(fs_info, bytenr), 1161 }; 1162 1163 return btrfs_global_root(fs_info, &key); 1164 } 1165 1166 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1167 { 1168 struct btrfs_key key = { 1169 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1170 .type = BTRFS_ROOT_ITEM_KEY, 1171 .offset = btrfs_global_root_id(fs_info, bytenr), 1172 }; 1173 1174 return btrfs_global_root(fs_info, &key); 1175 } 1176 1177 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1178 { 1179 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1180 return fs_info->block_group_root; 1181 return btrfs_extent_root(fs_info, 0); 1182 } 1183 1184 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1185 u64 objectid) 1186 { 1187 struct btrfs_fs_info *fs_info = trans->fs_info; 1188 struct extent_buffer *leaf; 1189 struct btrfs_root *tree_root = fs_info->tree_root; 1190 struct btrfs_root *root; 1191 struct btrfs_key key; 1192 unsigned int nofs_flag; 1193 int ret = 0; 1194 1195 /* 1196 * We're holding a transaction handle, so use a NOFS memory allocation 1197 * context to avoid deadlock if reclaim happens. 1198 */ 1199 nofs_flag = memalloc_nofs_save(); 1200 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1201 memalloc_nofs_restore(nofs_flag); 1202 if (!root) 1203 return ERR_PTR(-ENOMEM); 1204 1205 root->root_key.objectid = objectid; 1206 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1207 root->root_key.offset = 0; 1208 1209 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1210 BTRFS_NESTING_NORMAL); 1211 if (IS_ERR(leaf)) { 1212 ret = PTR_ERR(leaf); 1213 leaf = NULL; 1214 goto fail; 1215 } 1216 1217 root->node = leaf; 1218 btrfs_mark_buffer_dirty(leaf); 1219 1220 root->commit_root = btrfs_root_node(root); 1221 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1222 1223 btrfs_set_root_flags(&root->root_item, 0); 1224 btrfs_set_root_limit(&root->root_item, 0); 1225 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1226 btrfs_set_root_generation(&root->root_item, trans->transid); 1227 btrfs_set_root_level(&root->root_item, 0); 1228 btrfs_set_root_refs(&root->root_item, 1); 1229 btrfs_set_root_used(&root->root_item, leaf->len); 1230 btrfs_set_root_last_snapshot(&root->root_item, 0); 1231 btrfs_set_root_dirid(&root->root_item, 0); 1232 if (is_fstree(objectid)) 1233 generate_random_guid(root->root_item.uuid); 1234 else 1235 export_guid(root->root_item.uuid, &guid_null); 1236 btrfs_set_root_drop_level(&root->root_item, 0); 1237 1238 btrfs_tree_unlock(leaf); 1239 1240 key.objectid = objectid; 1241 key.type = BTRFS_ROOT_ITEM_KEY; 1242 key.offset = 0; 1243 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1244 if (ret) 1245 goto fail; 1246 1247 return root; 1248 1249 fail: 1250 btrfs_put_root(root); 1251 1252 return ERR_PTR(ret); 1253 } 1254 1255 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1256 struct btrfs_fs_info *fs_info) 1257 { 1258 struct btrfs_root *root; 1259 1260 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1261 if (!root) 1262 return ERR_PTR(-ENOMEM); 1263 1264 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1265 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1266 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1267 1268 return root; 1269 } 1270 1271 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1272 struct btrfs_root *root) 1273 { 1274 struct extent_buffer *leaf; 1275 1276 /* 1277 * DON'T set SHAREABLE bit for log trees. 1278 * 1279 * Log trees are not exposed to user space thus can't be snapshotted, 1280 * and they go away before a real commit is actually done. 1281 * 1282 * They do store pointers to file data extents, and those reference 1283 * counts still get updated (along with back refs to the log tree). 1284 */ 1285 1286 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1287 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1288 if (IS_ERR(leaf)) 1289 return PTR_ERR(leaf); 1290 1291 root->node = leaf; 1292 1293 btrfs_mark_buffer_dirty(root->node); 1294 btrfs_tree_unlock(root->node); 1295 1296 return 0; 1297 } 1298 1299 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1300 struct btrfs_fs_info *fs_info) 1301 { 1302 struct btrfs_root *log_root; 1303 1304 log_root = alloc_log_tree(trans, fs_info); 1305 if (IS_ERR(log_root)) 1306 return PTR_ERR(log_root); 1307 1308 if (!btrfs_is_zoned(fs_info)) { 1309 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1310 1311 if (ret) { 1312 btrfs_put_root(log_root); 1313 return ret; 1314 } 1315 } 1316 1317 WARN_ON(fs_info->log_root_tree); 1318 fs_info->log_root_tree = log_root; 1319 return 0; 1320 } 1321 1322 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1323 struct btrfs_root *root) 1324 { 1325 struct btrfs_fs_info *fs_info = root->fs_info; 1326 struct btrfs_root *log_root; 1327 struct btrfs_inode_item *inode_item; 1328 int ret; 1329 1330 log_root = alloc_log_tree(trans, fs_info); 1331 if (IS_ERR(log_root)) 1332 return PTR_ERR(log_root); 1333 1334 ret = btrfs_alloc_log_tree_node(trans, log_root); 1335 if (ret) { 1336 btrfs_put_root(log_root); 1337 return ret; 1338 } 1339 1340 log_root->last_trans = trans->transid; 1341 log_root->root_key.offset = root->root_key.objectid; 1342 1343 inode_item = &log_root->root_item.inode; 1344 btrfs_set_stack_inode_generation(inode_item, 1); 1345 btrfs_set_stack_inode_size(inode_item, 3); 1346 btrfs_set_stack_inode_nlink(inode_item, 1); 1347 btrfs_set_stack_inode_nbytes(inode_item, 1348 fs_info->nodesize); 1349 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1350 1351 btrfs_set_root_node(&log_root->root_item, log_root->node); 1352 1353 WARN_ON(root->log_root); 1354 root->log_root = log_root; 1355 root->log_transid = 0; 1356 root->log_transid_committed = -1; 1357 root->last_log_commit = 0; 1358 return 0; 1359 } 1360 1361 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1362 struct btrfs_path *path, 1363 struct btrfs_key *key) 1364 { 1365 struct btrfs_root *root; 1366 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1367 u64 generation; 1368 int ret; 1369 int level; 1370 1371 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1372 if (!root) 1373 return ERR_PTR(-ENOMEM); 1374 1375 ret = btrfs_find_root(tree_root, key, path, 1376 &root->root_item, &root->root_key); 1377 if (ret) { 1378 if (ret > 0) 1379 ret = -ENOENT; 1380 goto fail; 1381 } 1382 1383 generation = btrfs_root_generation(&root->root_item); 1384 level = btrfs_root_level(&root->root_item); 1385 root->node = read_tree_block(fs_info, 1386 btrfs_root_bytenr(&root->root_item), 1387 key->objectid, generation, level, NULL); 1388 if (IS_ERR(root->node)) { 1389 ret = PTR_ERR(root->node); 1390 root->node = NULL; 1391 goto fail; 1392 } 1393 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1394 ret = -EIO; 1395 goto fail; 1396 } 1397 1398 /* 1399 * For real fs, and not log/reloc trees, root owner must 1400 * match its root node owner 1401 */ 1402 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1403 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1404 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1405 root->root_key.objectid != btrfs_header_owner(root->node)) { 1406 btrfs_crit(fs_info, 1407 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1408 root->root_key.objectid, root->node->start, 1409 btrfs_header_owner(root->node), 1410 root->root_key.objectid); 1411 ret = -EUCLEAN; 1412 goto fail; 1413 } 1414 root->commit_root = btrfs_root_node(root); 1415 return root; 1416 fail: 1417 btrfs_put_root(root); 1418 return ERR_PTR(ret); 1419 } 1420 1421 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1422 struct btrfs_key *key) 1423 { 1424 struct btrfs_root *root; 1425 struct btrfs_path *path; 1426 1427 path = btrfs_alloc_path(); 1428 if (!path) 1429 return ERR_PTR(-ENOMEM); 1430 root = read_tree_root_path(tree_root, path, key); 1431 btrfs_free_path(path); 1432 1433 return root; 1434 } 1435 1436 /* 1437 * Initialize subvolume root in-memory structure 1438 * 1439 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1440 */ 1441 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1442 { 1443 int ret; 1444 unsigned int nofs_flag; 1445 1446 /* 1447 * We might be called under a transaction (e.g. indirect backref 1448 * resolution) which could deadlock if it triggers memory reclaim 1449 */ 1450 nofs_flag = memalloc_nofs_save(); 1451 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1452 memalloc_nofs_restore(nofs_flag); 1453 if (ret) 1454 goto fail; 1455 1456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1457 !btrfs_is_data_reloc_root(root)) { 1458 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1459 btrfs_check_and_init_root_item(&root->root_item); 1460 } 1461 1462 /* 1463 * Don't assign anonymous block device to roots that are not exposed to 1464 * userspace, the id pool is limited to 1M 1465 */ 1466 if (is_fstree(root->root_key.objectid) && 1467 btrfs_root_refs(&root->root_item) > 0) { 1468 if (!anon_dev) { 1469 ret = get_anon_bdev(&root->anon_dev); 1470 if (ret) 1471 goto fail; 1472 } else { 1473 root->anon_dev = anon_dev; 1474 } 1475 } 1476 1477 mutex_lock(&root->objectid_mutex); 1478 ret = btrfs_init_root_free_objectid(root); 1479 if (ret) { 1480 mutex_unlock(&root->objectid_mutex); 1481 goto fail; 1482 } 1483 1484 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1485 1486 mutex_unlock(&root->objectid_mutex); 1487 1488 return 0; 1489 fail: 1490 /* The caller is responsible to call btrfs_free_fs_root */ 1491 return ret; 1492 } 1493 1494 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1495 u64 root_id) 1496 { 1497 struct btrfs_root *root; 1498 1499 spin_lock(&fs_info->fs_roots_radix_lock); 1500 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1501 (unsigned long)root_id); 1502 if (root) 1503 root = btrfs_grab_root(root); 1504 spin_unlock(&fs_info->fs_roots_radix_lock); 1505 return root; 1506 } 1507 1508 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1509 u64 objectid) 1510 { 1511 struct btrfs_key key = { 1512 .objectid = objectid, 1513 .type = BTRFS_ROOT_ITEM_KEY, 1514 .offset = 0, 1515 }; 1516 1517 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1518 return btrfs_grab_root(fs_info->tree_root); 1519 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1520 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1521 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1522 return btrfs_grab_root(fs_info->chunk_root); 1523 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1524 return btrfs_grab_root(fs_info->dev_root); 1525 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1526 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1527 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1528 return btrfs_grab_root(fs_info->quota_root) ? 1529 fs_info->quota_root : ERR_PTR(-ENOENT); 1530 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1531 return btrfs_grab_root(fs_info->uuid_root) ? 1532 fs_info->uuid_root : ERR_PTR(-ENOENT); 1533 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1534 return btrfs_grab_root(fs_info->block_group_root) ? 1535 fs_info->block_group_root : ERR_PTR(-ENOENT); 1536 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1537 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1538 1539 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1540 } 1541 return NULL; 1542 } 1543 1544 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1545 struct btrfs_root *root) 1546 { 1547 int ret; 1548 1549 ret = radix_tree_preload(GFP_NOFS); 1550 if (ret) 1551 return ret; 1552 1553 spin_lock(&fs_info->fs_roots_radix_lock); 1554 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1555 (unsigned long)root->root_key.objectid, 1556 root); 1557 if (ret == 0) { 1558 btrfs_grab_root(root); 1559 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1560 } 1561 spin_unlock(&fs_info->fs_roots_radix_lock); 1562 radix_tree_preload_end(); 1563 1564 return ret; 1565 } 1566 1567 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1568 { 1569 #ifdef CONFIG_BTRFS_DEBUG 1570 struct btrfs_root *root; 1571 1572 while (!list_empty(&fs_info->allocated_roots)) { 1573 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1574 1575 root = list_first_entry(&fs_info->allocated_roots, 1576 struct btrfs_root, leak_list); 1577 btrfs_err(fs_info, "leaked root %s refcount %d", 1578 btrfs_root_name(&root->root_key, buf), 1579 refcount_read(&root->refs)); 1580 while (refcount_read(&root->refs) > 1) 1581 btrfs_put_root(root); 1582 btrfs_put_root(root); 1583 } 1584 #endif 1585 } 1586 1587 static void free_global_roots(struct btrfs_fs_info *fs_info) 1588 { 1589 struct btrfs_root *root; 1590 struct rb_node *node; 1591 1592 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1593 root = rb_entry(node, struct btrfs_root, rb_node); 1594 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1595 btrfs_put_root(root); 1596 } 1597 } 1598 1599 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1600 { 1601 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1602 percpu_counter_destroy(&fs_info->delalloc_bytes); 1603 percpu_counter_destroy(&fs_info->ordered_bytes); 1604 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1605 btrfs_free_csum_hash(fs_info); 1606 btrfs_free_stripe_hash_table(fs_info); 1607 btrfs_free_ref_cache(fs_info); 1608 kfree(fs_info->balance_ctl); 1609 kfree(fs_info->delayed_root); 1610 free_global_roots(fs_info); 1611 btrfs_put_root(fs_info->tree_root); 1612 btrfs_put_root(fs_info->chunk_root); 1613 btrfs_put_root(fs_info->dev_root); 1614 btrfs_put_root(fs_info->quota_root); 1615 btrfs_put_root(fs_info->uuid_root); 1616 btrfs_put_root(fs_info->fs_root); 1617 btrfs_put_root(fs_info->data_reloc_root); 1618 btrfs_put_root(fs_info->block_group_root); 1619 btrfs_check_leaked_roots(fs_info); 1620 btrfs_extent_buffer_leak_debug_check(fs_info); 1621 kfree(fs_info->super_copy); 1622 kfree(fs_info->super_for_commit); 1623 kfree(fs_info->subpage_info); 1624 kvfree(fs_info); 1625 } 1626 1627 1628 /* 1629 * Get an in-memory reference of a root structure. 1630 * 1631 * For essential trees like root/extent tree, we grab it from fs_info directly. 1632 * For subvolume trees, we check the cached filesystem roots first. If not 1633 * found, then read it from disk and add it to cached fs roots. 1634 * 1635 * Caller should release the root by calling btrfs_put_root() after the usage. 1636 * 1637 * NOTE: Reloc and log trees can't be read by this function as they share the 1638 * same root objectid. 1639 * 1640 * @objectid: root id 1641 * @anon_dev: preallocated anonymous block device number for new roots, 1642 * pass 0 for new allocation. 1643 * @check_ref: whether to check root item references, If true, return -ENOENT 1644 * for orphan roots 1645 */ 1646 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1647 u64 objectid, dev_t anon_dev, 1648 bool check_ref) 1649 { 1650 struct btrfs_root *root; 1651 struct btrfs_path *path; 1652 struct btrfs_key key; 1653 int ret; 1654 1655 root = btrfs_get_global_root(fs_info, objectid); 1656 if (root) 1657 return root; 1658 again: 1659 root = btrfs_lookup_fs_root(fs_info, objectid); 1660 if (root) { 1661 /* Shouldn't get preallocated anon_dev for cached roots */ 1662 ASSERT(!anon_dev); 1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1664 btrfs_put_root(root); 1665 return ERR_PTR(-ENOENT); 1666 } 1667 return root; 1668 } 1669 1670 key.objectid = objectid; 1671 key.type = BTRFS_ROOT_ITEM_KEY; 1672 key.offset = (u64)-1; 1673 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1674 if (IS_ERR(root)) 1675 return root; 1676 1677 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1678 ret = -ENOENT; 1679 goto fail; 1680 } 1681 1682 ret = btrfs_init_fs_root(root, anon_dev); 1683 if (ret) 1684 goto fail; 1685 1686 path = btrfs_alloc_path(); 1687 if (!path) { 1688 ret = -ENOMEM; 1689 goto fail; 1690 } 1691 key.objectid = BTRFS_ORPHAN_OBJECTID; 1692 key.type = BTRFS_ORPHAN_ITEM_KEY; 1693 key.offset = objectid; 1694 1695 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1696 btrfs_free_path(path); 1697 if (ret < 0) 1698 goto fail; 1699 if (ret == 0) 1700 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1701 1702 ret = btrfs_insert_fs_root(fs_info, root); 1703 if (ret) { 1704 if (ret == -EEXIST) { 1705 btrfs_put_root(root); 1706 goto again; 1707 } 1708 goto fail; 1709 } 1710 return root; 1711 fail: 1712 /* 1713 * If our caller provided us an anonymous device, then it's his 1714 * responsibility to free it in case we fail. So we have to set our 1715 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1716 * and once again by our caller. 1717 */ 1718 if (anon_dev) 1719 root->anon_dev = 0; 1720 btrfs_put_root(root); 1721 return ERR_PTR(ret); 1722 } 1723 1724 /* 1725 * Get in-memory reference of a root structure 1726 * 1727 * @objectid: tree objectid 1728 * @check_ref: if set, verify that the tree exists and the item has at least 1729 * one reference 1730 */ 1731 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1732 u64 objectid, bool check_ref) 1733 { 1734 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1735 } 1736 1737 /* 1738 * Get in-memory reference of a root structure, created as new, optionally pass 1739 * the anonymous block device id 1740 * 1741 * @objectid: tree objectid 1742 * @anon_dev: if zero, allocate a new anonymous block device or use the 1743 * parameter value 1744 */ 1745 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1746 u64 objectid, dev_t anon_dev) 1747 { 1748 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1749 } 1750 1751 /* 1752 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1753 * @fs_info: the fs_info 1754 * @objectid: the objectid we need to lookup 1755 * 1756 * This is exclusively used for backref walking, and exists specifically because 1757 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1758 * creation time, which means we may have to read the tree_root in order to look 1759 * up a fs root that is not in memory. If the root is not in memory we will 1760 * read the tree root commit root and look up the fs root from there. This is a 1761 * temporary root, it will not be inserted into the radix tree as it doesn't 1762 * have the most uptodate information, it'll simply be discarded once the 1763 * backref code is finished using the root. 1764 */ 1765 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1766 struct btrfs_path *path, 1767 u64 objectid) 1768 { 1769 struct btrfs_root *root; 1770 struct btrfs_key key; 1771 1772 ASSERT(path->search_commit_root && path->skip_locking); 1773 1774 /* 1775 * This can return -ENOENT if we ask for a root that doesn't exist, but 1776 * since this is called via the backref walking code we won't be looking 1777 * up a root that doesn't exist, unless there's corruption. So if root 1778 * != NULL just return it. 1779 */ 1780 root = btrfs_get_global_root(fs_info, objectid); 1781 if (root) 1782 return root; 1783 1784 root = btrfs_lookup_fs_root(fs_info, objectid); 1785 if (root) 1786 return root; 1787 1788 key.objectid = objectid; 1789 key.type = BTRFS_ROOT_ITEM_KEY; 1790 key.offset = (u64)-1; 1791 root = read_tree_root_path(fs_info->tree_root, path, &key); 1792 btrfs_release_path(path); 1793 1794 return root; 1795 } 1796 1797 static int cleaner_kthread(void *arg) 1798 { 1799 struct btrfs_fs_info *fs_info = arg; 1800 int again; 1801 1802 while (1) { 1803 again = 0; 1804 1805 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1806 1807 /* Make the cleaner go to sleep early. */ 1808 if (btrfs_need_cleaner_sleep(fs_info)) 1809 goto sleep; 1810 1811 /* 1812 * Do not do anything if we might cause open_ctree() to block 1813 * before we have finished mounting the filesystem. 1814 */ 1815 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1816 goto sleep; 1817 1818 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1819 goto sleep; 1820 1821 /* 1822 * Avoid the problem that we change the status of the fs 1823 * during the above check and trylock. 1824 */ 1825 if (btrfs_need_cleaner_sleep(fs_info)) { 1826 mutex_unlock(&fs_info->cleaner_mutex); 1827 goto sleep; 1828 } 1829 1830 btrfs_run_delayed_iputs(fs_info); 1831 1832 again = btrfs_clean_one_deleted_snapshot(fs_info); 1833 mutex_unlock(&fs_info->cleaner_mutex); 1834 1835 /* 1836 * The defragger has dealt with the R/O remount and umount, 1837 * needn't do anything special here. 1838 */ 1839 btrfs_run_defrag_inodes(fs_info); 1840 1841 /* 1842 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1843 * with relocation (btrfs_relocate_chunk) and relocation 1844 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1845 * after acquiring fs_info->reclaim_bgs_lock. So we 1846 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1847 * unused block groups. 1848 */ 1849 btrfs_delete_unused_bgs(fs_info); 1850 1851 /* 1852 * Reclaim block groups in the reclaim_bgs list after we deleted 1853 * all unused block_groups. This possibly gives us some more free 1854 * space. 1855 */ 1856 btrfs_reclaim_bgs(fs_info); 1857 sleep: 1858 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1859 if (kthread_should_park()) 1860 kthread_parkme(); 1861 if (kthread_should_stop()) 1862 return 0; 1863 if (!again) { 1864 set_current_state(TASK_INTERRUPTIBLE); 1865 schedule(); 1866 __set_current_state(TASK_RUNNING); 1867 } 1868 } 1869 } 1870 1871 static int transaction_kthread(void *arg) 1872 { 1873 struct btrfs_root *root = arg; 1874 struct btrfs_fs_info *fs_info = root->fs_info; 1875 struct btrfs_trans_handle *trans; 1876 struct btrfs_transaction *cur; 1877 u64 transid; 1878 time64_t delta; 1879 unsigned long delay; 1880 bool cannot_commit; 1881 1882 do { 1883 cannot_commit = false; 1884 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1885 mutex_lock(&fs_info->transaction_kthread_mutex); 1886 1887 spin_lock(&fs_info->trans_lock); 1888 cur = fs_info->running_transaction; 1889 if (!cur) { 1890 spin_unlock(&fs_info->trans_lock); 1891 goto sleep; 1892 } 1893 1894 delta = ktime_get_seconds() - cur->start_time; 1895 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1896 cur->state < TRANS_STATE_COMMIT_START && 1897 delta < fs_info->commit_interval) { 1898 spin_unlock(&fs_info->trans_lock); 1899 delay -= msecs_to_jiffies((delta - 1) * 1000); 1900 delay = min(delay, 1901 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1902 goto sleep; 1903 } 1904 transid = cur->transid; 1905 spin_unlock(&fs_info->trans_lock); 1906 1907 /* If the file system is aborted, this will always fail. */ 1908 trans = btrfs_attach_transaction(root); 1909 if (IS_ERR(trans)) { 1910 if (PTR_ERR(trans) != -ENOENT) 1911 cannot_commit = true; 1912 goto sleep; 1913 } 1914 if (transid == trans->transid) { 1915 btrfs_commit_transaction(trans); 1916 } else { 1917 btrfs_end_transaction(trans); 1918 } 1919 sleep: 1920 wake_up_process(fs_info->cleaner_kthread); 1921 mutex_unlock(&fs_info->transaction_kthread_mutex); 1922 1923 if (BTRFS_FS_ERROR(fs_info)) 1924 btrfs_cleanup_transaction(fs_info); 1925 if (!kthread_should_stop() && 1926 (!btrfs_transaction_blocked(fs_info) || 1927 cannot_commit)) 1928 schedule_timeout_interruptible(delay); 1929 } while (!kthread_should_stop()); 1930 return 0; 1931 } 1932 1933 /* 1934 * This will find the highest generation in the array of root backups. The 1935 * index of the highest array is returned, or -EINVAL if we can't find 1936 * anything. 1937 * 1938 * We check to make sure the array is valid by comparing the 1939 * generation of the latest root in the array with the generation 1940 * in the super block. If they don't match we pitch it. 1941 */ 1942 static int find_newest_super_backup(struct btrfs_fs_info *info) 1943 { 1944 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1945 u64 cur; 1946 struct btrfs_root_backup *root_backup; 1947 int i; 1948 1949 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1950 root_backup = info->super_copy->super_roots + i; 1951 cur = btrfs_backup_tree_root_gen(root_backup); 1952 if (cur == newest_gen) 1953 return i; 1954 } 1955 1956 return -EINVAL; 1957 } 1958 1959 /* 1960 * copy all the root pointers into the super backup array. 1961 * this will bump the backup pointer by one when it is 1962 * done 1963 */ 1964 static void backup_super_roots(struct btrfs_fs_info *info) 1965 { 1966 const int next_backup = info->backup_root_index; 1967 struct btrfs_root_backup *root_backup; 1968 1969 root_backup = info->super_for_commit->super_roots + next_backup; 1970 1971 /* 1972 * make sure all of our padding and empty slots get zero filled 1973 * regardless of which ones we use today 1974 */ 1975 memset(root_backup, 0, sizeof(*root_backup)); 1976 1977 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1978 1979 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1980 btrfs_set_backup_tree_root_gen(root_backup, 1981 btrfs_header_generation(info->tree_root->node)); 1982 1983 btrfs_set_backup_tree_root_level(root_backup, 1984 btrfs_header_level(info->tree_root->node)); 1985 1986 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1987 btrfs_set_backup_chunk_root_gen(root_backup, 1988 btrfs_header_generation(info->chunk_root->node)); 1989 btrfs_set_backup_chunk_root_level(root_backup, 1990 btrfs_header_level(info->chunk_root->node)); 1991 1992 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1993 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1994 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1995 1996 btrfs_set_backup_extent_root(root_backup, 1997 extent_root->node->start); 1998 btrfs_set_backup_extent_root_gen(root_backup, 1999 btrfs_header_generation(extent_root->node)); 2000 btrfs_set_backup_extent_root_level(root_backup, 2001 btrfs_header_level(extent_root->node)); 2002 2003 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 2004 btrfs_set_backup_csum_root_gen(root_backup, 2005 btrfs_header_generation(csum_root->node)); 2006 btrfs_set_backup_csum_root_level(root_backup, 2007 btrfs_header_level(csum_root->node)); 2008 } 2009 2010 /* 2011 * we might commit during log recovery, which happens before we set 2012 * the fs_root. Make sure it is valid before we fill it in. 2013 */ 2014 if (info->fs_root && info->fs_root->node) { 2015 btrfs_set_backup_fs_root(root_backup, 2016 info->fs_root->node->start); 2017 btrfs_set_backup_fs_root_gen(root_backup, 2018 btrfs_header_generation(info->fs_root->node)); 2019 btrfs_set_backup_fs_root_level(root_backup, 2020 btrfs_header_level(info->fs_root->node)); 2021 } 2022 2023 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2024 btrfs_set_backup_dev_root_gen(root_backup, 2025 btrfs_header_generation(info->dev_root->node)); 2026 btrfs_set_backup_dev_root_level(root_backup, 2027 btrfs_header_level(info->dev_root->node)); 2028 2029 btrfs_set_backup_total_bytes(root_backup, 2030 btrfs_super_total_bytes(info->super_copy)); 2031 btrfs_set_backup_bytes_used(root_backup, 2032 btrfs_super_bytes_used(info->super_copy)); 2033 btrfs_set_backup_num_devices(root_backup, 2034 btrfs_super_num_devices(info->super_copy)); 2035 2036 /* 2037 * if we don't copy this out to the super_copy, it won't get remembered 2038 * for the next commit 2039 */ 2040 memcpy(&info->super_copy->super_roots, 2041 &info->super_for_commit->super_roots, 2042 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2043 } 2044 2045 /* 2046 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2047 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2048 * 2049 * fs_info - filesystem whose backup roots need to be read 2050 * priority - priority of backup root required 2051 * 2052 * Returns backup root index on success and -EINVAL otherwise. 2053 */ 2054 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2055 { 2056 int backup_index = find_newest_super_backup(fs_info); 2057 struct btrfs_super_block *super = fs_info->super_copy; 2058 struct btrfs_root_backup *root_backup; 2059 2060 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2061 if (priority == 0) 2062 return backup_index; 2063 2064 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2065 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2066 } else { 2067 return -EINVAL; 2068 } 2069 2070 root_backup = super->super_roots + backup_index; 2071 2072 btrfs_set_super_generation(super, 2073 btrfs_backup_tree_root_gen(root_backup)); 2074 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2075 btrfs_set_super_root_level(super, 2076 btrfs_backup_tree_root_level(root_backup)); 2077 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2078 2079 /* 2080 * Fixme: the total bytes and num_devices need to match or we should 2081 * need a fsck 2082 */ 2083 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2084 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2085 2086 return backup_index; 2087 } 2088 2089 /* helper to cleanup workers */ 2090 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2091 { 2092 btrfs_destroy_workqueue(fs_info->fixup_workers); 2093 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2094 btrfs_destroy_workqueue(fs_info->hipri_workers); 2095 btrfs_destroy_workqueue(fs_info->workers); 2096 if (fs_info->endio_workers) 2097 destroy_workqueue(fs_info->endio_workers); 2098 if (fs_info->endio_raid56_workers) 2099 destroy_workqueue(fs_info->endio_raid56_workers); 2100 if (fs_info->rmw_workers) 2101 destroy_workqueue(fs_info->rmw_workers); 2102 if (fs_info->compressed_write_workers) 2103 destroy_workqueue(fs_info->compressed_write_workers); 2104 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2105 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2106 btrfs_destroy_workqueue(fs_info->delayed_workers); 2107 btrfs_destroy_workqueue(fs_info->caching_workers); 2108 btrfs_destroy_workqueue(fs_info->flush_workers); 2109 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2110 if (fs_info->discard_ctl.discard_workers) 2111 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2112 /* 2113 * Now that all other work queues are destroyed, we can safely destroy 2114 * the queues used for metadata I/O, since tasks from those other work 2115 * queues can do metadata I/O operations. 2116 */ 2117 if (fs_info->endio_meta_workers) 2118 destroy_workqueue(fs_info->endio_meta_workers); 2119 } 2120 2121 static void free_root_extent_buffers(struct btrfs_root *root) 2122 { 2123 if (root) { 2124 free_extent_buffer(root->node); 2125 free_extent_buffer(root->commit_root); 2126 root->node = NULL; 2127 root->commit_root = NULL; 2128 } 2129 } 2130 2131 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2132 { 2133 struct btrfs_root *root, *tmp; 2134 2135 rbtree_postorder_for_each_entry_safe(root, tmp, 2136 &fs_info->global_root_tree, 2137 rb_node) 2138 free_root_extent_buffers(root); 2139 } 2140 2141 /* helper to cleanup tree roots */ 2142 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2143 { 2144 free_root_extent_buffers(info->tree_root); 2145 2146 free_global_root_pointers(info); 2147 free_root_extent_buffers(info->dev_root); 2148 free_root_extent_buffers(info->quota_root); 2149 free_root_extent_buffers(info->uuid_root); 2150 free_root_extent_buffers(info->fs_root); 2151 free_root_extent_buffers(info->data_reloc_root); 2152 free_root_extent_buffers(info->block_group_root); 2153 if (free_chunk_root) 2154 free_root_extent_buffers(info->chunk_root); 2155 } 2156 2157 void btrfs_put_root(struct btrfs_root *root) 2158 { 2159 if (!root) 2160 return; 2161 2162 if (refcount_dec_and_test(&root->refs)) { 2163 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2164 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2165 if (root->anon_dev) 2166 free_anon_bdev(root->anon_dev); 2167 btrfs_drew_lock_destroy(&root->snapshot_lock); 2168 free_root_extent_buffers(root); 2169 #ifdef CONFIG_BTRFS_DEBUG 2170 spin_lock(&root->fs_info->fs_roots_radix_lock); 2171 list_del_init(&root->leak_list); 2172 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2173 #endif 2174 kfree(root); 2175 } 2176 } 2177 2178 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2179 { 2180 int ret; 2181 struct btrfs_root *gang[8]; 2182 int i; 2183 2184 while (!list_empty(&fs_info->dead_roots)) { 2185 gang[0] = list_entry(fs_info->dead_roots.next, 2186 struct btrfs_root, root_list); 2187 list_del(&gang[0]->root_list); 2188 2189 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2190 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2191 btrfs_put_root(gang[0]); 2192 } 2193 2194 while (1) { 2195 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2196 (void **)gang, 0, 2197 ARRAY_SIZE(gang)); 2198 if (!ret) 2199 break; 2200 for (i = 0; i < ret; i++) 2201 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2202 } 2203 } 2204 2205 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2206 { 2207 mutex_init(&fs_info->scrub_lock); 2208 atomic_set(&fs_info->scrubs_running, 0); 2209 atomic_set(&fs_info->scrub_pause_req, 0); 2210 atomic_set(&fs_info->scrubs_paused, 0); 2211 atomic_set(&fs_info->scrub_cancel_req, 0); 2212 init_waitqueue_head(&fs_info->scrub_pause_wait); 2213 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2214 } 2215 2216 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2217 { 2218 spin_lock_init(&fs_info->balance_lock); 2219 mutex_init(&fs_info->balance_mutex); 2220 atomic_set(&fs_info->balance_pause_req, 0); 2221 atomic_set(&fs_info->balance_cancel_req, 0); 2222 fs_info->balance_ctl = NULL; 2223 init_waitqueue_head(&fs_info->balance_wait_q); 2224 atomic_set(&fs_info->reloc_cancel_req, 0); 2225 } 2226 2227 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2228 { 2229 struct inode *inode = fs_info->btree_inode; 2230 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2231 fs_info->tree_root); 2232 2233 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2234 set_nlink(inode, 1); 2235 /* 2236 * we set the i_size on the btree inode to the max possible int. 2237 * the real end of the address space is determined by all of 2238 * the devices in the system 2239 */ 2240 inode->i_size = OFFSET_MAX; 2241 inode->i_mapping->a_ops = &btree_aops; 2242 2243 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2244 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2245 IO_TREE_BTREE_INODE_IO, NULL); 2246 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2247 2248 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2249 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2250 BTRFS_I(inode)->location.type = 0; 2251 BTRFS_I(inode)->location.offset = 0; 2252 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2253 __insert_inode_hash(inode, hash); 2254 } 2255 2256 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2257 { 2258 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2259 init_rwsem(&fs_info->dev_replace.rwsem); 2260 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2261 } 2262 2263 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2264 { 2265 spin_lock_init(&fs_info->qgroup_lock); 2266 mutex_init(&fs_info->qgroup_ioctl_lock); 2267 fs_info->qgroup_tree = RB_ROOT; 2268 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2269 fs_info->qgroup_seq = 1; 2270 fs_info->qgroup_ulist = NULL; 2271 fs_info->qgroup_rescan_running = false; 2272 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2273 mutex_init(&fs_info->qgroup_rescan_lock); 2274 } 2275 2276 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2277 { 2278 u32 max_active = fs_info->thread_pool_size; 2279 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2280 2281 fs_info->workers = 2282 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2283 fs_info->hipri_workers = 2284 btrfs_alloc_workqueue(fs_info, "worker-high", 2285 flags | WQ_HIGHPRI, max_active, 16); 2286 2287 fs_info->delalloc_workers = 2288 btrfs_alloc_workqueue(fs_info, "delalloc", 2289 flags, max_active, 2); 2290 2291 fs_info->flush_workers = 2292 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2293 flags, max_active, 0); 2294 2295 fs_info->caching_workers = 2296 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2297 2298 fs_info->fixup_workers = 2299 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2300 2301 fs_info->endio_workers = 2302 alloc_workqueue("btrfs-endio", flags, max_active); 2303 fs_info->endio_meta_workers = 2304 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2305 fs_info->endio_raid56_workers = 2306 alloc_workqueue("btrfs-endio-raid56", flags, max_active); 2307 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2308 fs_info->endio_write_workers = 2309 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2310 max_active, 2); 2311 fs_info->compressed_write_workers = 2312 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2313 fs_info->endio_freespace_worker = 2314 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2315 max_active, 0); 2316 fs_info->delayed_workers = 2317 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2318 max_active, 0); 2319 fs_info->qgroup_rescan_workers = 2320 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2321 fs_info->discard_ctl.discard_workers = 2322 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2323 2324 if (!(fs_info->workers && fs_info->hipri_workers && 2325 fs_info->delalloc_workers && fs_info->flush_workers && 2326 fs_info->endio_workers && fs_info->endio_meta_workers && 2327 fs_info->compressed_write_workers && 2328 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2329 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2330 fs_info->caching_workers && fs_info->fixup_workers && 2331 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2332 fs_info->discard_ctl.discard_workers)) { 2333 return -ENOMEM; 2334 } 2335 2336 return 0; 2337 } 2338 2339 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2340 { 2341 struct crypto_shash *csum_shash; 2342 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2343 2344 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2345 2346 if (IS_ERR(csum_shash)) { 2347 btrfs_err(fs_info, "error allocating %s hash for checksum", 2348 csum_driver); 2349 return PTR_ERR(csum_shash); 2350 } 2351 2352 fs_info->csum_shash = csum_shash; 2353 2354 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2355 btrfs_super_csum_name(csum_type), 2356 crypto_shash_driver_name(csum_shash)); 2357 return 0; 2358 } 2359 2360 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2361 struct btrfs_fs_devices *fs_devices) 2362 { 2363 int ret; 2364 struct btrfs_root *log_tree_root; 2365 struct btrfs_super_block *disk_super = fs_info->super_copy; 2366 u64 bytenr = btrfs_super_log_root(disk_super); 2367 int level = btrfs_super_log_root_level(disk_super); 2368 2369 if (fs_devices->rw_devices == 0) { 2370 btrfs_warn(fs_info, "log replay required on RO media"); 2371 return -EIO; 2372 } 2373 2374 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2375 GFP_KERNEL); 2376 if (!log_tree_root) 2377 return -ENOMEM; 2378 2379 log_tree_root->node = read_tree_block(fs_info, bytenr, 2380 BTRFS_TREE_LOG_OBJECTID, 2381 fs_info->generation + 1, level, 2382 NULL); 2383 if (IS_ERR(log_tree_root->node)) { 2384 btrfs_warn(fs_info, "failed to read log tree"); 2385 ret = PTR_ERR(log_tree_root->node); 2386 log_tree_root->node = NULL; 2387 btrfs_put_root(log_tree_root); 2388 return ret; 2389 } 2390 if (!extent_buffer_uptodate(log_tree_root->node)) { 2391 btrfs_err(fs_info, "failed to read log tree"); 2392 btrfs_put_root(log_tree_root); 2393 return -EIO; 2394 } 2395 2396 /* returns with log_tree_root freed on success */ 2397 ret = btrfs_recover_log_trees(log_tree_root); 2398 if (ret) { 2399 btrfs_handle_fs_error(fs_info, ret, 2400 "Failed to recover log tree"); 2401 btrfs_put_root(log_tree_root); 2402 return ret; 2403 } 2404 2405 if (sb_rdonly(fs_info->sb)) { 2406 ret = btrfs_commit_super(fs_info); 2407 if (ret) 2408 return ret; 2409 } 2410 2411 return 0; 2412 } 2413 2414 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2415 struct btrfs_path *path, u64 objectid, 2416 const char *name) 2417 { 2418 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2419 struct btrfs_root *root; 2420 u64 max_global_id = 0; 2421 int ret; 2422 struct btrfs_key key = { 2423 .objectid = objectid, 2424 .type = BTRFS_ROOT_ITEM_KEY, 2425 .offset = 0, 2426 }; 2427 bool found = false; 2428 2429 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2430 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2431 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2432 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2433 return 0; 2434 } 2435 2436 while (1) { 2437 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2438 if (ret < 0) 2439 break; 2440 2441 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2442 ret = btrfs_next_leaf(tree_root, path); 2443 if (ret) { 2444 if (ret > 0) 2445 ret = 0; 2446 break; 2447 } 2448 } 2449 ret = 0; 2450 2451 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2452 if (key.objectid != objectid) 2453 break; 2454 btrfs_release_path(path); 2455 2456 /* 2457 * Just worry about this for extent tree, it'll be the same for 2458 * everybody. 2459 */ 2460 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2461 max_global_id = max(max_global_id, key.offset); 2462 2463 found = true; 2464 root = read_tree_root_path(tree_root, path, &key); 2465 if (IS_ERR(root)) { 2466 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2467 ret = PTR_ERR(root); 2468 break; 2469 } 2470 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2471 ret = btrfs_global_root_insert(root); 2472 if (ret) { 2473 btrfs_put_root(root); 2474 break; 2475 } 2476 key.offset++; 2477 } 2478 btrfs_release_path(path); 2479 2480 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2481 fs_info->nr_global_roots = max_global_id + 1; 2482 2483 if (!found || ret) { 2484 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2485 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2486 2487 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2488 ret = ret ? ret : -ENOENT; 2489 else 2490 ret = 0; 2491 btrfs_err(fs_info, "failed to load root %s", name); 2492 } 2493 return ret; 2494 } 2495 2496 static int load_global_roots(struct btrfs_root *tree_root) 2497 { 2498 struct btrfs_path *path; 2499 int ret = 0; 2500 2501 path = btrfs_alloc_path(); 2502 if (!path) 2503 return -ENOMEM; 2504 2505 ret = load_global_roots_objectid(tree_root, path, 2506 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2507 if (ret) 2508 goto out; 2509 ret = load_global_roots_objectid(tree_root, path, 2510 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2511 if (ret) 2512 goto out; 2513 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2514 goto out; 2515 ret = load_global_roots_objectid(tree_root, path, 2516 BTRFS_FREE_SPACE_TREE_OBJECTID, 2517 "free space"); 2518 out: 2519 btrfs_free_path(path); 2520 return ret; 2521 } 2522 2523 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2524 { 2525 struct btrfs_root *tree_root = fs_info->tree_root; 2526 struct btrfs_root *root; 2527 struct btrfs_key location; 2528 int ret; 2529 2530 BUG_ON(!fs_info->tree_root); 2531 2532 ret = load_global_roots(tree_root); 2533 if (ret) 2534 return ret; 2535 2536 location.type = BTRFS_ROOT_ITEM_KEY; 2537 location.offset = 0; 2538 2539 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2540 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2541 root = btrfs_read_tree_root(tree_root, &location); 2542 if (IS_ERR(root)) { 2543 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2544 ret = PTR_ERR(root); 2545 goto out; 2546 } 2547 } else { 2548 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2549 fs_info->block_group_root = root; 2550 } 2551 } 2552 2553 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2554 root = btrfs_read_tree_root(tree_root, &location); 2555 if (IS_ERR(root)) { 2556 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2557 ret = PTR_ERR(root); 2558 goto out; 2559 } 2560 } else { 2561 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2562 fs_info->dev_root = root; 2563 } 2564 /* Initialize fs_info for all devices in any case */ 2565 ret = btrfs_init_devices_late(fs_info); 2566 if (ret) 2567 goto out; 2568 2569 /* 2570 * This tree can share blocks with some other fs tree during relocation 2571 * and we need a proper setup by btrfs_get_fs_root 2572 */ 2573 root = btrfs_get_fs_root(tree_root->fs_info, 2574 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2575 if (IS_ERR(root)) { 2576 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2577 ret = PTR_ERR(root); 2578 goto out; 2579 } 2580 } else { 2581 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2582 fs_info->data_reloc_root = root; 2583 } 2584 2585 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2586 root = btrfs_read_tree_root(tree_root, &location); 2587 if (!IS_ERR(root)) { 2588 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2589 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2590 fs_info->quota_root = root; 2591 } 2592 2593 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2594 root = btrfs_read_tree_root(tree_root, &location); 2595 if (IS_ERR(root)) { 2596 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2597 ret = PTR_ERR(root); 2598 if (ret != -ENOENT) 2599 goto out; 2600 } 2601 } else { 2602 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2603 fs_info->uuid_root = root; 2604 } 2605 2606 return 0; 2607 out: 2608 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2609 location.objectid, ret); 2610 return ret; 2611 } 2612 2613 /* 2614 * Real super block validation 2615 * NOTE: super csum type and incompat features will not be checked here. 2616 * 2617 * @sb: super block to check 2618 * @mirror_num: the super block number to check its bytenr: 2619 * 0 the primary (1st) sb 2620 * 1, 2 2nd and 3rd backup copy 2621 * -1 skip bytenr check 2622 */ 2623 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2624 struct btrfs_super_block *sb, int mirror_num) 2625 { 2626 u64 nodesize = btrfs_super_nodesize(sb); 2627 u64 sectorsize = btrfs_super_sectorsize(sb); 2628 int ret = 0; 2629 2630 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2631 btrfs_err(fs_info, "no valid FS found"); 2632 ret = -EINVAL; 2633 } 2634 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2635 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2636 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2637 ret = -EINVAL; 2638 } 2639 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2640 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2641 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2642 ret = -EINVAL; 2643 } 2644 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2645 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2646 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2647 ret = -EINVAL; 2648 } 2649 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2650 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2651 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2652 ret = -EINVAL; 2653 } 2654 2655 /* 2656 * Check sectorsize and nodesize first, other check will need it. 2657 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2658 */ 2659 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2660 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2661 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2662 ret = -EINVAL; 2663 } 2664 2665 /* 2666 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2667 * 2668 * We can support 16K sectorsize with 64K page size without problem, 2669 * but such sectorsize/pagesize combination doesn't make much sense. 2670 * 4K will be our future standard, PAGE_SIZE is supported from the very 2671 * beginning. 2672 */ 2673 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2674 btrfs_err(fs_info, 2675 "sectorsize %llu not yet supported for page size %lu", 2676 sectorsize, PAGE_SIZE); 2677 ret = -EINVAL; 2678 } 2679 2680 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2681 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2682 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2683 ret = -EINVAL; 2684 } 2685 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2686 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2687 le32_to_cpu(sb->__unused_leafsize), nodesize); 2688 ret = -EINVAL; 2689 } 2690 2691 /* Root alignment check */ 2692 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2693 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2694 btrfs_super_root(sb)); 2695 ret = -EINVAL; 2696 } 2697 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2698 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2699 btrfs_super_chunk_root(sb)); 2700 ret = -EINVAL; 2701 } 2702 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2703 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2704 btrfs_super_log_root(sb)); 2705 ret = -EINVAL; 2706 } 2707 2708 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2709 BTRFS_FSID_SIZE)) { 2710 btrfs_err(fs_info, 2711 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2712 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2713 ret = -EINVAL; 2714 } 2715 2716 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2717 memcmp(fs_info->fs_devices->metadata_uuid, 2718 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2719 btrfs_err(fs_info, 2720 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2721 fs_info->super_copy->metadata_uuid, 2722 fs_info->fs_devices->metadata_uuid); 2723 ret = -EINVAL; 2724 } 2725 2726 /* 2727 * Artificial requirement for block-group-tree to force newer features 2728 * (free-space-tree, no-holes) so the test matrix is smaller. 2729 */ 2730 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2731 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2732 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2733 btrfs_err(fs_info, 2734 "block-group-tree feature requires fres-space-tree and no-holes"); 2735 ret = -EINVAL; 2736 } 2737 2738 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2739 BTRFS_FSID_SIZE) != 0) { 2740 btrfs_err(fs_info, 2741 "dev_item UUID does not match metadata fsid: %pU != %pU", 2742 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2743 ret = -EINVAL; 2744 } 2745 2746 /* 2747 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2748 * done later 2749 */ 2750 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2751 btrfs_err(fs_info, "bytes_used is too small %llu", 2752 btrfs_super_bytes_used(sb)); 2753 ret = -EINVAL; 2754 } 2755 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2756 btrfs_err(fs_info, "invalid stripesize %u", 2757 btrfs_super_stripesize(sb)); 2758 ret = -EINVAL; 2759 } 2760 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2761 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2762 btrfs_super_num_devices(sb)); 2763 if (btrfs_super_num_devices(sb) == 0) { 2764 btrfs_err(fs_info, "number of devices is 0"); 2765 ret = -EINVAL; 2766 } 2767 2768 if (mirror_num >= 0 && 2769 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2770 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2771 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2772 ret = -EINVAL; 2773 } 2774 2775 /* 2776 * Obvious sys_chunk_array corruptions, it must hold at least one key 2777 * and one chunk 2778 */ 2779 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2780 btrfs_err(fs_info, "system chunk array too big %u > %u", 2781 btrfs_super_sys_array_size(sb), 2782 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2783 ret = -EINVAL; 2784 } 2785 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2786 + sizeof(struct btrfs_chunk)) { 2787 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2788 btrfs_super_sys_array_size(sb), 2789 sizeof(struct btrfs_disk_key) 2790 + sizeof(struct btrfs_chunk)); 2791 ret = -EINVAL; 2792 } 2793 2794 /* 2795 * The generation is a global counter, we'll trust it more than the others 2796 * but it's still possible that it's the one that's wrong. 2797 */ 2798 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2799 btrfs_warn(fs_info, 2800 "suspicious: generation < chunk_root_generation: %llu < %llu", 2801 btrfs_super_generation(sb), 2802 btrfs_super_chunk_root_generation(sb)); 2803 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2804 && btrfs_super_cache_generation(sb) != (u64)-1) 2805 btrfs_warn(fs_info, 2806 "suspicious: generation < cache_generation: %llu < %llu", 2807 btrfs_super_generation(sb), 2808 btrfs_super_cache_generation(sb)); 2809 2810 return ret; 2811 } 2812 2813 /* 2814 * Validation of super block at mount time. 2815 * Some checks already done early at mount time, like csum type and incompat 2816 * flags will be skipped. 2817 */ 2818 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2819 { 2820 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2821 } 2822 2823 /* 2824 * Validation of super block at write time. 2825 * Some checks like bytenr check will be skipped as their values will be 2826 * overwritten soon. 2827 * Extra checks like csum type and incompat flags will be done here. 2828 */ 2829 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2830 struct btrfs_super_block *sb) 2831 { 2832 int ret; 2833 2834 ret = btrfs_validate_super(fs_info, sb, -1); 2835 if (ret < 0) 2836 goto out; 2837 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2838 ret = -EUCLEAN; 2839 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2840 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2841 goto out; 2842 } 2843 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2844 ret = -EUCLEAN; 2845 btrfs_err(fs_info, 2846 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2847 btrfs_super_incompat_flags(sb), 2848 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2849 goto out; 2850 } 2851 out: 2852 if (ret < 0) 2853 btrfs_err(fs_info, 2854 "super block corruption detected before writing it to disk"); 2855 return ret; 2856 } 2857 2858 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2859 { 2860 int ret = 0; 2861 2862 root->node = read_tree_block(root->fs_info, bytenr, 2863 root->root_key.objectid, gen, level, NULL); 2864 if (IS_ERR(root->node)) { 2865 ret = PTR_ERR(root->node); 2866 root->node = NULL; 2867 return ret; 2868 } 2869 if (!extent_buffer_uptodate(root->node)) { 2870 free_extent_buffer(root->node); 2871 root->node = NULL; 2872 return -EIO; 2873 } 2874 2875 btrfs_set_root_node(&root->root_item, root->node); 2876 root->commit_root = btrfs_root_node(root); 2877 btrfs_set_root_refs(&root->root_item, 1); 2878 return ret; 2879 } 2880 2881 static int load_important_roots(struct btrfs_fs_info *fs_info) 2882 { 2883 struct btrfs_super_block *sb = fs_info->super_copy; 2884 u64 gen, bytenr; 2885 int level, ret; 2886 2887 bytenr = btrfs_super_root(sb); 2888 gen = btrfs_super_generation(sb); 2889 level = btrfs_super_root_level(sb); 2890 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2891 if (ret) { 2892 btrfs_warn(fs_info, "couldn't read tree root"); 2893 return ret; 2894 } 2895 return 0; 2896 } 2897 2898 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2899 { 2900 int backup_index = find_newest_super_backup(fs_info); 2901 struct btrfs_super_block *sb = fs_info->super_copy; 2902 struct btrfs_root *tree_root = fs_info->tree_root; 2903 bool handle_error = false; 2904 int ret = 0; 2905 int i; 2906 2907 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2908 if (handle_error) { 2909 if (!IS_ERR(tree_root->node)) 2910 free_extent_buffer(tree_root->node); 2911 tree_root->node = NULL; 2912 2913 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2914 break; 2915 2916 free_root_pointers(fs_info, 0); 2917 2918 /* 2919 * Don't use the log in recovery mode, it won't be 2920 * valid 2921 */ 2922 btrfs_set_super_log_root(sb, 0); 2923 2924 /* We can't trust the free space cache either */ 2925 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2926 2927 ret = read_backup_root(fs_info, i); 2928 backup_index = ret; 2929 if (ret < 0) 2930 return ret; 2931 } 2932 2933 ret = load_important_roots(fs_info); 2934 if (ret) { 2935 handle_error = true; 2936 continue; 2937 } 2938 2939 /* 2940 * No need to hold btrfs_root::objectid_mutex since the fs 2941 * hasn't been fully initialised and we are the only user 2942 */ 2943 ret = btrfs_init_root_free_objectid(tree_root); 2944 if (ret < 0) { 2945 handle_error = true; 2946 continue; 2947 } 2948 2949 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2950 2951 ret = btrfs_read_roots(fs_info); 2952 if (ret < 0) { 2953 handle_error = true; 2954 continue; 2955 } 2956 2957 /* All successful */ 2958 fs_info->generation = btrfs_header_generation(tree_root->node); 2959 fs_info->last_trans_committed = fs_info->generation; 2960 fs_info->last_reloc_trans = 0; 2961 2962 /* Always begin writing backup roots after the one being used */ 2963 if (backup_index < 0) { 2964 fs_info->backup_root_index = 0; 2965 } else { 2966 fs_info->backup_root_index = backup_index + 1; 2967 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2968 } 2969 break; 2970 } 2971 2972 return ret; 2973 } 2974 2975 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2976 { 2977 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2978 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2979 INIT_LIST_HEAD(&fs_info->trans_list); 2980 INIT_LIST_HEAD(&fs_info->dead_roots); 2981 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2982 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2983 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2984 spin_lock_init(&fs_info->delalloc_root_lock); 2985 spin_lock_init(&fs_info->trans_lock); 2986 spin_lock_init(&fs_info->fs_roots_radix_lock); 2987 spin_lock_init(&fs_info->delayed_iput_lock); 2988 spin_lock_init(&fs_info->defrag_inodes_lock); 2989 spin_lock_init(&fs_info->super_lock); 2990 spin_lock_init(&fs_info->buffer_lock); 2991 spin_lock_init(&fs_info->unused_bgs_lock); 2992 spin_lock_init(&fs_info->treelog_bg_lock); 2993 spin_lock_init(&fs_info->zone_active_bgs_lock); 2994 spin_lock_init(&fs_info->relocation_bg_lock); 2995 rwlock_init(&fs_info->tree_mod_log_lock); 2996 rwlock_init(&fs_info->global_root_lock); 2997 mutex_init(&fs_info->unused_bg_unpin_mutex); 2998 mutex_init(&fs_info->reclaim_bgs_lock); 2999 mutex_init(&fs_info->reloc_mutex); 3000 mutex_init(&fs_info->delalloc_root_mutex); 3001 mutex_init(&fs_info->zoned_meta_io_lock); 3002 mutex_init(&fs_info->zoned_data_reloc_io_lock); 3003 seqlock_init(&fs_info->profiles_lock); 3004 3005 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 3006 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 3007 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 3008 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 3009 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 3010 BTRFS_LOCKDEP_TRANS_COMMIT_START); 3011 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 3012 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 3013 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 3014 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 3015 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 3016 BTRFS_LOCKDEP_TRANS_COMPLETED); 3017 3018 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 3019 INIT_LIST_HEAD(&fs_info->space_info); 3020 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 3021 INIT_LIST_HEAD(&fs_info->unused_bgs); 3022 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 3023 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 3024 #ifdef CONFIG_BTRFS_DEBUG 3025 INIT_LIST_HEAD(&fs_info->allocated_roots); 3026 INIT_LIST_HEAD(&fs_info->allocated_ebs); 3027 spin_lock_init(&fs_info->eb_leak_lock); 3028 #endif 3029 extent_map_tree_init(&fs_info->mapping_tree); 3030 btrfs_init_block_rsv(&fs_info->global_block_rsv, 3031 BTRFS_BLOCK_RSV_GLOBAL); 3032 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 3033 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 3034 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 3035 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 3036 BTRFS_BLOCK_RSV_DELOPS); 3037 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 3038 BTRFS_BLOCK_RSV_DELREFS); 3039 3040 atomic_set(&fs_info->async_delalloc_pages, 0); 3041 atomic_set(&fs_info->defrag_running, 0); 3042 atomic_set(&fs_info->nr_delayed_iputs, 0); 3043 atomic64_set(&fs_info->tree_mod_seq, 0); 3044 fs_info->global_root_tree = RB_ROOT; 3045 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 3046 fs_info->metadata_ratio = 0; 3047 fs_info->defrag_inodes = RB_ROOT; 3048 atomic64_set(&fs_info->free_chunk_space, 0); 3049 fs_info->tree_mod_log = RB_ROOT; 3050 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 3051 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 3052 btrfs_init_ref_verify(fs_info); 3053 3054 fs_info->thread_pool_size = min_t(unsigned long, 3055 num_online_cpus() + 2, 8); 3056 3057 INIT_LIST_HEAD(&fs_info->ordered_roots); 3058 spin_lock_init(&fs_info->ordered_root_lock); 3059 3060 btrfs_init_scrub(fs_info); 3061 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3062 fs_info->check_integrity_print_mask = 0; 3063 #endif 3064 btrfs_init_balance(fs_info); 3065 btrfs_init_async_reclaim_work(fs_info); 3066 3067 rwlock_init(&fs_info->block_group_cache_lock); 3068 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 3069 3070 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 3071 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 3072 3073 mutex_init(&fs_info->ordered_operations_mutex); 3074 mutex_init(&fs_info->tree_log_mutex); 3075 mutex_init(&fs_info->chunk_mutex); 3076 mutex_init(&fs_info->transaction_kthread_mutex); 3077 mutex_init(&fs_info->cleaner_mutex); 3078 mutex_init(&fs_info->ro_block_group_mutex); 3079 init_rwsem(&fs_info->commit_root_sem); 3080 init_rwsem(&fs_info->cleanup_work_sem); 3081 init_rwsem(&fs_info->subvol_sem); 3082 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3083 3084 btrfs_init_dev_replace_locks(fs_info); 3085 btrfs_init_qgroup(fs_info); 3086 btrfs_discard_init(fs_info); 3087 3088 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3089 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3090 3091 init_waitqueue_head(&fs_info->transaction_throttle); 3092 init_waitqueue_head(&fs_info->transaction_wait); 3093 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3094 init_waitqueue_head(&fs_info->async_submit_wait); 3095 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3096 3097 /* Usable values until the real ones are cached from the superblock */ 3098 fs_info->nodesize = 4096; 3099 fs_info->sectorsize = 4096; 3100 fs_info->sectorsize_bits = ilog2(4096); 3101 fs_info->stripesize = 4096; 3102 3103 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3104 3105 spin_lock_init(&fs_info->swapfile_pins_lock); 3106 fs_info->swapfile_pins = RB_ROOT; 3107 3108 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3109 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3110 } 3111 3112 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3113 { 3114 int ret; 3115 3116 fs_info->sb = sb; 3117 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3118 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3119 3120 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3121 if (ret) 3122 return ret; 3123 3124 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3125 if (ret) 3126 return ret; 3127 3128 fs_info->dirty_metadata_batch = PAGE_SIZE * 3129 (1 + ilog2(nr_cpu_ids)); 3130 3131 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3132 if (ret) 3133 return ret; 3134 3135 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3136 GFP_KERNEL); 3137 if (ret) 3138 return ret; 3139 3140 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3141 GFP_KERNEL); 3142 if (!fs_info->delayed_root) 3143 return -ENOMEM; 3144 btrfs_init_delayed_root(fs_info->delayed_root); 3145 3146 if (sb_rdonly(sb)) 3147 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3148 3149 return btrfs_alloc_stripe_hash_table(fs_info); 3150 } 3151 3152 static int btrfs_uuid_rescan_kthread(void *data) 3153 { 3154 struct btrfs_fs_info *fs_info = data; 3155 int ret; 3156 3157 /* 3158 * 1st step is to iterate through the existing UUID tree and 3159 * to delete all entries that contain outdated data. 3160 * 2nd step is to add all missing entries to the UUID tree. 3161 */ 3162 ret = btrfs_uuid_tree_iterate(fs_info); 3163 if (ret < 0) { 3164 if (ret != -EINTR) 3165 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3166 ret); 3167 up(&fs_info->uuid_tree_rescan_sem); 3168 return ret; 3169 } 3170 return btrfs_uuid_scan_kthread(data); 3171 } 3172 3173 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3174 { 3175 struct task_struct *task; 3176 3177 down(&fs_info->uuid_tree_rescan_sem); 3178 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3179 if (IS_ERR(task)) { 3180 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3181 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3182 up(&fs_info->uuid_tree_rescan_sem); 3183 return PTR_ERR(task); 3184 } 3185 3186 return 0; 3187 } 3188 3189 /* 3190 * Some options only have meaning at mount time and shouldn't persist across 3191 * remounts, or be displayed. Clear these at the end of mount and remount 3192 * code paths. 3193 */ 3194 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3195 { 3196 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3197 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3198 } 3199 3200 /* 3201 * Mounting logic specific to read-write file systems. Shared by open_ctree 3202 * and btrfs_remount when remounting from read-only to read-write. 3203 */ 3204 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3205 { 3206 int ret; 3207 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3208 bool clear_free_space_tree = false; 3209 3210 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3211 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3212 clear_free_space_tree = true; 3213 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3214 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3215 btrfs_warn(fs_info, "free space tree is invalid"); 3216 clear_free_space_tree = true; 3217 } 3218 3219 if (clear_free_space_tree) { 3220 btrfs_info(fs_info, "clearing free space tree"); 3221 ret = btrfs_clear_free_space_tree(fs_info); 3222 if (ret) { 3223 btrfs_warn(fs_info, 3224 "failed to clear free space tree: %d", ret); 3225 goto out; 3226 } 3227 } 3228 3229 /* 3230 * btrfs_find_orphan_roots() is responsible for finding all the dead 3231 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3232 * them into the fs_info->fs_roots_radix tree. This must be done before 3233 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3234 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3235 * item before the root's tree is deleted - this means that if we unmount 3236 * or crash before the deletion completes, on the next mount we will not 3237 * delete what remains of the tree because the orphan item does not 3238 * exists anymore, which is what tells us we have a pending deletion. 3239 */ 3240 ret = btrfs_find_orphan_roots(fs_info); 3241 if (ret) 3242 goto out; 3243 3244 ret = btrfs_cleanup_fs_roots(fs_info); 3245 if (ret) 3246 goto out; 3247 3248 down_read(&fs_info->cleanup_work_sem); 3249 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3250 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3251 up_read(&fs_info->cleanup_work_sem); 3252 goto out; 3253 } 3254 up_read(&fs_info->cleanup_work_sem); 3255 3256 mutex_lock(&fs_info->cleaner_mutex); 3257 ret = btrfs_recover_relocation(fs_info); 3258 mutex_unlock(&fs_info->cleaner_mutex); 3259 if (ret < 0) { 3260 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3261 goto out; 3262 } 3263 3264 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3265 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3266 btrfs_info(fs_info, "creating free space tree"); 3267 ret = btrfs_create_free_space_tree(fs_info); 3268 if (ret) { 3269 btrfs_warn(fs_info, 3270 "failed to create free space tree: %d", ret); 3271 goto out; 3272 } 3273 } 3274 3275 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3276 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3277 if (ret) 3278 goto out; 3279 } 3280 3281 ret = btrfs_resume_balance_async(fs_info); 3282 if (ret) 3283 goto out; 3284 3285 ret = btrfs_resume_dev_replace_async(fs_info); 3286 if (ret) { 3287 btrfs_warn(fs_info, "failed to resume dev_replace"); 3288 goto out; 3289 } 3290 3291 btrfs_qgroup_rescan_resume(fs_info); 3292 3293 if (!fs_info->uuid_root) { 3294 btrfs_info(fs_info, "creating UUID tree"); 3295 ret = btrfs_create_uuid_tree(fs_info); 3296 if (ret) { 3297 btrfs_warn(fs_info, 3298 "failed to create the UUID tree %d", ret); 3299 goto out; 3300 } 3301 } 3302 3303 out: 3304 return ret; 3305 } 3306 3307 /* 3308 * Do various sanity and dependency checks of different features. 3309 * 3310 * This is the place for less strict checks (like for subpage or artificial 3311 * feature dependencies). 3312 * 3313 * For strict checks or possible corruption detection, see 3314 * btrfs_validate_super(). 3315 * 3316 * This should be called after btrfs_parse_options(), as some mount options 3317 * (space cache related) can modify on-disk format like free space tree and 3318 * screw up certain feature dependencies. 3319 */ 3320 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb) 3321 { 3322 struct btrfs_super_block *disk_super = fs_info->super_copy; 3323 u64 incompat = btrfs_super_incompat_flags(disk_super); 3324 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3325 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3326 3327 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3328 btrfs_err(fs_info, 3329 "cannot mount because of unknown incompat features (0x%llx)", 3330 incompat); 3331 return -EINVAL; 3332 } 3333 3334 /* Runtime limitation for mixed block groups. */ 3335 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3336 (fs_info->sectorsize != fs_info->nodesize)) { 3337 btrfs_err(fs_info, 3338 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3339 fs_info->nodesize, fs_info->sectorsize); 3340 return -EINVAL; 3341 } 3342 3343 /* Mixed backref is an always-enabled feature. */ 3344 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3345 3346 /* Set compression related flags just in case. */ 3347 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3348 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3349 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3350 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3351 3352 /* 3353 * An ancient flag, which should really be marked deprecated. 3354 * Such runtime limitation doesn't really need a incompat flag. 3355 */ 3356 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3357 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3358 3359 if (compat_ro_unsupp && !sb_rdonly(sb)) { 3360 btrfs_err(fs_info, 3361 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3362 compat_ro); 3363 return -EINVAL; 3364 } 3365 3366 /* 3367 * We have unsupported RO compat features, although RO mounted, we 3368 * should not cause any metadata writes, including log replay. 3369 * Or we could screw up whatever the new feature requires. 3370 */ 3371 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3372 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3373 btrfs_err(fs_info, 3374 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3375 compat_ro); 3376 return -EINVAL; 3377 } 3378 3379 /* 3380 * Artificial limitations for block group tree, to force 3381 * block-group-tree to rely on no-holes and free-space-tree. 3382 */ 3383 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3384 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3385 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3386 btrfs_err(fs_info, 3387 "block-group-tree feature requires no-holes and free-space-tree features"); 3388 return -EINVAL; 3389 } 3390 3391 /* 3392 * Subpage runtime limitation on v1 cache. 3393 * 3394 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3395 * we're already defaulting to v2 cache, no need to bother v1 as it's 3396 * going to be deprecated anyway. 3397 */ 3398 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3399 btrfs_warn(fs_info, 3400 "v1 space cache is not supported for page size %lu with sectorsize %u", 3401 PAGE_SIZE, fs_info->sectorsize); 3402 return -EINVAL; 3403 } 3404 3405 /* This can be called by remount, we need to protect the super block. */ 3406 spin_lock(&fs_info->super_lock); 3407 btrfs_set_super_incompat_flags(disk_super, incompat); 3408 spin_unlock(&fs_info->super_lock); 3409 3410 return 0; 3411 } 3412 3413 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3414 char *options) 3415 { 3416 u32 sectorsize; 3417 u32 nodesize; 3418 u32 stripesize; 3419 u64 generation; 3420 u64 features; 3421 u16 csum_type; 3422 struct btrfs_super_block *disk_super; 3423 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3424 struct btrfs_root *tree_root; 3425 struct btrfs_root *chunk_root; 3426 int ret; 3427 int err = -EINVAL; 3428 int level; 3429 3430 ret = init_mount_fs_info(fs_info, sb); 3431 if (ret) { 3432 err = ret; 3433 goto fail; 3434 } 3435 3436 /* These need to be init'ed before we start creating inodes and such. */ 3437 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3438 GFP_KERNEL); 3439 fs_info->tree_root = tree_root; 3440 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3441 GFP_KERNEL); 3442 fs_info->chunk_root = chunk_root; 3443 if (!tree_root || !chunk_root) { 3444 err = -ENOMEM; 3445 goto fail; 3446 } 3447 3448 fs_info->btree_inode = new_inode(sb); 3449 if (!fs_info->btree_inode) { 3450 err = -ENOMEM; 3451 goto fail; 3452 } 3453 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3454 btrfs_init_btree_inode(fs_info); 3455 3456 invalidate_bdev(fs_devices->latest_dev->bdev); 3457 3458 /* 3459 * Read super block and check the signature bytes only 3460 */ 3461 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3462 if (IS_ERR(disk_super)) { 3463 err = PTR_ERR(disk_super); 3464 goto fail_alloc; 3465 } 3466 3467 /* 3468 * Verify the type first, if that or the checksum value are 3469 * corrupted, we'll find out 3470 */ 3471 csum_type = btrfs_super_csum_type(disk_super); 3472 if (!btrfs_supported_super_csum(csum_type)) { 3473 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3474 csum_type); 3475 err = -EINVAL; 3476 btrfs_release_disk_super(disk_super); 3477 goto fail_alloc; 3478 } 3479 3480 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3481 3482 ret = btrfs_init_csum_hash(fs_info, csum_type); 3483 if (ret) { 3484 err = ret; 3485 btrfs_release_disk_super(disk_super); 3486 goto fail_alloc; 3487 } 3488 3489 /* 3490 * We want to check superblock checksum, the type is stored inside. 3491 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3492 */ 3493 if (btrfs_check_super_csum(fs_info, disk_super)) { 3494 btrfs_err(fs_info, "superblock checksum mismatch"); 3495 err = -EINVAL; 3496 btrfs_release_disk_super(disk_super); 3497 goto fail_alloc; 3498 } 3499 3500 /* 3501 * super_copy is zeroed at allocation time and we never touch the 3502 * following bytes up to INFO_SIZE, the checksum is calculated from 3503 * the whole block of INFO_SIZE 3504 */ 3505 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3506 btrfs_release_disk_super(disk_super); 3507 3508 disk_super = fs_info->super_copy; 3509 3510 3511 features = btrfs_super_flags(disk_super); 3512 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3513 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3514 btrfs_set_super_flags(disk_super, features); 3515 btrfs_info(fs_info, 3516 "found metadata UUID change in progress flag, clearing"); 3517 } 3518 3519 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3520 sizeof(*fs_info->super_for_commit)); 3521 3522 ret = btrfs_validate_mount_super(fs_info); 3523 if (ret) { 3524 btrfs_err(fs_info, "superblock contains fatal errors"); 3525 err = -EINVAL; 3526 goto fail_alloc; 3527 } 3528 3529 if (!btrfs_super_root(disk_super)) 3530 goto fail_alloc; 3531 3532 /* check FS state, whether FS is broken. */ 3533 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3534 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3535 3536 /* 3537 * In the long term, we'll store the compression type in the super 3538 * block, and it'll be used for per file compression control. 3539 */ 3540 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3541 3542 3543 /* Set up fs_info before parsing mount options */ 3544 nodesize = btrfs_super_nodesize(disk_super); 3545 sectorsize = btrfs_super_sectorsize(disk_super); 3546 stripesize = sectorsize; 3547 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3548 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3549 3550 fs_info->nodesize = nodesize; 3551 fs_info->sectorsize = sectorsize; 3552 fs_info->sectorsize_bits = ilog2(sectorsize); 3553 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3554 fs_info->stripesize = stripesize; 3555 3556 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3557 if (ret) { 3558 err = ret; 3559 goto fail_alloc; 3560 } 3561 3562 ret = btrfs_check_features(fs_info, sb); 3563 if (ret < 0) { 3564 err = ret; 3565 goto fail_alloc; 3566 } 3567 3568 if (sectorsize < PAGE_SIZE) { 3569 struct btrfs_subpage_info *subpage_info; 3570 3571 /* 3572 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3573 * going to be deprecated. 3574 * 3575 * Force to use v2 cache for subpage case. 3576 */ 3577 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3578 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3579 "forcing free space tree for sector size %u with page size %lu", 3580 sectorsize, PAGE_SIZE); 3581 3582 btrfs_warn(fs_info, 3583 "read-write for sector size %u with page size %lu is experimental", 3584 sectorsize, PAGE_SIZE); 3585 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3586 if (!subpage_info) 3587 goto fail_alloc; 3588 btrfs_init_subpage_info(subpage_info, sectorsize); 3589 fs_info->subpage_info = subpage_info; 3590 } 3591 3592 ret = btrfs_init_workqueues(fs_info); 3593 if (ret) { 3594 err = ret; 3595 goto fail_sb_buffer; 3596 } 3597 3598 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3599 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3600 3601 sb->s_blocksize = sectorsize; 3602 sb->s_blocksize_bits = blksize_bits(sectorsize); 3603 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3604 3605 mutex_lock(&fs_info->chunk_mutex); 3606 ret = btrfs_read_sys_array(fs_info); 3607 mutex_unlock(&fs_info->chunk_mutex); 3608 if (ret) { 3609 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3610 goto fail_sb_buffer; 3611 } 3612 3613 generation = btrfs_super_chunk_root_generation(disk_super); 3614 level = btrfs_super_chunk_root_level(disk_super); 3615 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3616 generation, level); 3617 if (ret) { 3618 btrfs_err(fs_info, "failed to read chunk root"); 3619 goto fail_tree_roots; 3620 } 3621 3622 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3623 offsetof(struct btrfs_header, chunk_tree_uuid), 3624 BTRFS_UUID_SIZE); 3625 3626 ret = btrfs_read_chunk_tree(fs_info); 3627 if (ret) { 3628 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3629 goto fail_tree_roots; 3630 } 3631 3632 /* 3633 * At this point we know all the devices that make this filesystem, 3634 * including the seed devices but we don't know yet if the replace 3635 * target is required. So free devices that are not part of this 3636 * filesystem but skip the replace target device which is checked 3637 * below in btrfs_init_dev_replace(). 3638 */ 3639 btrfs_free_extra_devids(fs_devices); 3640 if (!fs_devices->latest_dev->bdev) { 3641 btrfs_err(fs_info, "failed to read devices"); 3642 goto fail_tree_roots; 3643 } 3644 3645 ret = init_tree_roots(fs_info); 3646 if (ret) 3647 goto fail_tree_roots; 3648 3649 /* 3650 * Get zone type information of zoned block devices. This will also 3651 * handle emulation of a zoned filesystem if a regular device has the 3652 * zoned incompat feature flag set. 3653 */ 3654 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3655 if (ret) { 3656 btrfs_err(fs_info, 3657 "zoned: failed to read device zone info: %d", 3658 ret); 3659 goto fail_block_groups; 3660 } 3661 3662 /* 3663 * If we have a uuid root and we're not being told to rescan we need to 3664 * check the generation here so we can set the 3665 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3666 * transaction during a balance or the log replay without updating the 3667 * uuid generation, and then if we crash we would rescan the uuid tree, 3668 * even though it was perfectly fine. 3669 */ 3670 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3671 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3672 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3673 3674 ret = btrfs_verify_dev_extents(fs_info); 3675 if (ret) { 3676 btrfs_err(fs_info, 3677 "failed to verify dev extents against chunks: %d", 3678 ret); 3679 goto fail_block_groups; 3680 } 3681 ret = btrfs_recover_balance(fs_info); 3682 if (ret) { 3683 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3684 goto fail_block_groups; 3685 } 3686 3687 ret = btrfs_init_dev_stats(fs_info); 3688 if (ret) { 3689 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3690 goto fail_block_groups; 3691 } 3692 3693 ret = btrfs_init_dev_replace(fs_info); 3694 if (ret) { 3695 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3696 goto fail_block_groups; 3697 } 3698 3699 ret = btrfs_check_zoned_mode(fs_info); 3700 if (ret) { 3701 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3702 ret); 3703 goto fail_block_groups; 3704 } 3705 3706 ret = btrfs_sysfs_add_fsid(fs_devices); 3707 if (ret) { 3708 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3709 ret); 3710 goto fail_block_groups; 3711 } 3712 3713 ret = btrfs_sysfs_add_mounted(fs_info); 3714 if (ret) { 3715 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3716 goto fail_fsdev_sysfs; 3717 } 3718 3719 ret = btrfs_init_space_info(fs_info); 3720 if (ret) { 3721 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3722 goto fail_sysfs; 3723 } 3724 3725 ret = btrfs_read_block_groups(fs_info); 3726 if (ret) { 3727 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3728 goto fail_sysfs; 3729 } 3730 3731 btrfs_free_zone_cache(fs_info); 3732 3733 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3734 !btrfs_check_rw_degradable(fs_info, NULL)) { 3735 btrfs_warn(fs_info, 3736 "writable mount is not allowed due to too many missing devices"); 3737 goto fail_sysfs; 3738 } 3739 3740 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3741 "btrfs-cleaner"); 3742 if (IS_ERR(fs_info->cleaner_kthread)) 3743 goto fail_sysfs; 3744 3745 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3746 tree_root, 3747 "btrfs-transaction"); 3748 if (IS_ERR(fs_info->transaction_kthread)) 3749 goto fail_cleaner; 3750 3751 if (!btrfs_test_opt(fs_info, NOSSD) && 3752 !fs_info->fs_devices->rotating) { 3753 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3754 } 3755 3756 /* 3757 * For devices supporting discard turn on discard=async automatically, 3758 * unless it's already set or disabled. This could be turned off by 3759 * nodiscard for the same mount. 3760 */ 3761 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3762 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3763 btrfs_test_opt(fs_info, NODISCARD)) && 3764 fs_info->fs_devices->discardable) { 3765 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3766 "auto enabling async discard"); 3767 btrfs_clear_opt(fs_info->mount_opt, NODISCARD); 3768 } 3769 3770 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3771 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3772 ret = btrfsic_mount(fs_info, fs_devices, 3773 btrfs_test_opt(fs_info, 3774 CHECK_INTEGRITY_DATA) ? 1 : 0, 3775 fs_info->check_integrity_print_mask); 3776 if (ret) 3777 btrfs_warn(fs_info, 3778 "failed to initialize integrity check module: %d", 3779 ret); 3780 } 3781 #endif 3782 ret = btrfs_read_qgroup_config(fs_info); 3783 if (ret) 3784 goto fail_trans_kthread; 3785 3786 if (btrfs_build_ref_tree(fs_info)) 3787 btrfs_err(fs_info, "couldn't build ref tree"); 3788 3789 /* do not make disk changes in broken FS or nologreplay is given */ 3790 if (btrfs_super_log_root(disk_super) != 0 && 3791 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3792 btrfs_info(fs_info, "start tree-log replay"); 3793 ret = btrfs_replay_log(fs_info, fs_devices); 3794 if (ret) { 3795 err = ret; 3796 goto fail_qgroup; 3797 } 3798 } 3799 3800 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3801 if (IS_ERR(fs_info->fs_root)) { 3802 err = PTR_ERR(fs_info->fs_root); 3803 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3804 fs_info->fs_root = NULL; 3805 goto fail_qgroup; 3806 } 3807 3808 if (sb_rdonly(sb)) 3809 goto clear_oneshot; 3810 3811 ret = btrfs_start_pre_rw_mount(fs_info); 3812 if (ret) { 3813 close_ctree(fs_info); 3814 return ret; 3815 } 3816 btrfs_discard_resume(fs_info); 3817 3818 if (fs_info->uuid_root && 3819 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3820 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3821 btrfs_info(fs_info, "checking UUID tree"); 3822 ret = btrfs_check_uuid_tree(fs_info); 3823 if (ret) { 3824 btrfs_warn(fs_info, 3825 "failed to check the UUID tree: %d", ret); 3826 close_ctree(fs_info); 3827 return ret; 3828 } 3829 } 3830 3831 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3832 3833 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3834 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3835 wake_up_process(fs_info->cleaner_kthread); 3836 3837 clear_oneshot: 3838 btrfs_clear_oneshot_options(fs_info); 3839 return 0; 3840 3841 fail_qgroup: 3842 btrfs_free_qgroup_config(fs_info); 3843 fail_trans_kthread: 3844 kthread_stop(fs_info->transaction_kthread); 3845 btrfs_cleanup_transaction(fs_info); 3846 btrfs_free_fs_roots(fs_info); 3847 fail_cleaner: 3848 kthread_stop(fs_info->cleaner_kthread); 3849 3850 /* 3851 * make sure we're done with the btree inode before we stop our 3852 * kthreads 3853 */ 3854 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3855 3856 fail_sysfs: 3857 btrfs_sysfs_remove_mounted(fs_info); 3858 3859 fail_fsdev_sysfs: 3860 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3861 3862 fail_block_groups: 3863 btrfs_put_block_group_cache(fs_info); 3864 3865 fail_tree_roots: 3866 if (fs_info->data_reloc_root) 3867 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3868 free_root_pointers(fs_info, true); 3869 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3870 3871 fail_sb_buffer: 3872 btrfs_stop_all_workers(fs_info); 3873 btrfs_free_block_groups(fs_info); 3874 fail_alloc: 3875 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3876 3877 iput(fs_info->btree_inode); 3878 fail: 3879 btrfs_close_devices(fs_info->fs_devices); 3880 return err; 3881 } 3882 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3883 3884 static void btrfs_end_super_write(struct bio *bio) 3885 { 3886 struct btrfs_device *device = bio->bi_private; 3887 struct bio_vec *bvec; 3888 struct bvec_iter_all iter_all; 3889 struct page *page; 3890 3891 bio_for_each_segment_all(bvec, bio, iter_all) { 3892 page = bvec->bv_page; 3893 3894 if (bio->bi_status) { 3895 btrfs_warn_rl_in_rcu(device->fs_info, 3896 "lost page write due to IO error on %s (%d)", 3897 rcu_str_deref(device->name), 3898 blk_status_to_errno(bio->bi_status)); 3899 ClearPageUptodate(page); 3900 SetPageError(page); 3901 btrfs_dev_stat_inc_and_print(device, 3902 BTRFS_DEV_STAT_WRITE_ERRS); 3903 } else { 3904 SetPageUptodate(page); 3905 } 3906 3907 put_page(page); 3908 unlock_page(page); 3909 } 3910 3911 bio_put(bio); 3912 } 3913 3914 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3915 int copy_num, bool drop_cache) 3916 { 3917 struct btrfs_super_block *super; 3918 struct page *page; 3919 u64 bytenr, bytenr_orig; 3920 struct address_space *mapping = bdev->bd_inode->i_mapping; 3921 int ret; 3922 3923 bytenr_orig = btrfs_sb_offset(copy_num); 3924 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3925 if (ret == -ENOENT) 3926 return ERR_PTR(-EINVAL); 3927 else if (ret) 3928 return ERR_PTR(ret); 3929 3930 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3931 return ERR_PTR(-EINVAL); 3932 3933 if (drop_cache) { 3934 /* This should only be called with the primary sb. */ 3935 ASSERT(copy_num == 0); 3936 3937 /* 3938 * Drop the page of the primary superblock, so later read will 3939 * always read from the device. 3940 */ 3941 invalidate_inode_pages2_range(mapping, 3942 bytenr >> PAGE_SHIFT, 3943 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3944 } 3945 3946 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3947 if (IS_ERR(page)) 3948 return ERR_CAST(page); 3949 3950 super = page_address(page); 3951 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3952 btrfs_release_disk_super(super); 3953 return ERR_PTR(-ENODATA); 3954 } 3955 3956 if (btrfs_super_bytenr(super) != bytenr_orig) { 3957 btrfs_release_disk_super(super); 3958 return ERR_PTR(-EINVAL); 3959 } 3960 3961 return super; 3962 } 3963 3964 3965 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3966 { 3967 struct btrfs_super_block *super, *latest = NULL; 3968 int i; 3969 u64 transid = 0; 3970 3971 /* we would like to check all the supers, but that would make 3972 * a btrfs mount succeed after a mkfs from a different FS. 3973 * So, we need to add a special mount option to scan for 3974 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3975 */ 3976 for (i = 0; i < 1; i++) { 3977 super = btrfs_read_dev_one_super(bdev, i, false); 3978 if (IS_ERR(super)) 3979 continue; 3980 3981 if (!latest || btrfs_super_generation(super) > transid) { 3982 if (latest) 3983 btrfs_release_disk_super(super); 3984 3985 latest = super; 3986 transid = btrfs_super_generation(super); 3987 } 3988 } 3989 3990 return super; 3991 } 3992 3993 /* 3994 * Write superblock @sb to the @device. Do not wait for completion, all the 3995 * pages we use for writing are locked. 3996 * 3997 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3998 * the expected device size at commit time. Note that max_mirrors must be 3999 * same for write and wait phases. 4000 * 4001 * Return number of errors when page is not found or submission fails. 4002 */ 4003 static int write_dev_supers(struct btrfs_device *device, 4004 struct btrfs_super_block *sb, int max_mirrors) 4005 { 4006 struct btrfs_fs_info *fs_info = device->fs_info; 4007 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 4008 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 4009 int i; 4010 int errors = 0; 4011 int ret; 4012 u64 bytenr, bytenr_orig; 4013 4014 if (max_mirrors == 0) 4015 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4016 4017 shash->tfm = fs_info->csum_shash; 4018 4019 for (i = 0; i < max_mirrors; i++) { 4020 struct page *page; 4021 struct bio *bio; 4022 struct btrfs_super_block *disk_super; 4023 4024 bytenr_orig = btrfs_sb_offset(i); 4025 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 4026 if (ret == -ENOENT) { 4027 continue; 4028 } else if (ret < 0) { 4029 btrfs_err(device->fs_info, 4030 "couldn't get super block location for mirror %d", 4031 i); 4032 errors++; 4033 continue; 4034 } 4035 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4036 device->commit_total_bytes) 4037 break; 4038 4039 btrfs_set_super_bytenr(sb, bytenr_orig); 4040 4041 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 4042 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 4043 sb->csum); 4044 4045 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 4046 GFP_NOFS); 4047 if (!page) { 4048 btrfs_err(device->fs_info, 4049 "couldn't get super block page for bytenr %llu", 4050 bytenr); 4051 errors++; 4052 continue; 4053 } 4054 4055 /* Bump the refcount for wait_dev_supers() */ 4056 get_page(page); 4057 4058 disk_super = page_address(page); 4059 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 4060 4061 /* 4062 * Directly use bios here instead of relying on the page cache 4063 * to do I/O, so we don't lose the ability to do integrity 4064 * checking. 4065 */ 4066 bio = bio_alloc(device->bdev, 1, 4067 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 4068 GFP_NOFS); 4069 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 4070 bio->bi_private = device; 4071 bio->bi_end_io = btrfs_end_super_write; 4072 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 4073 offset_in_page(bytenr)); 4074 4075 /* 4076 * We FUA only the first super block. The others we allow to 4077 * go down lazy and there's a short window where the on-disk 4078 * copies might still contain the older version. 4079 */ 4080 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4081 bio->bi_opf |= REQ_FUA; 4082 4083 btrfsic_check_bio(bio); 4084 submit_bio(bio); 4085 4086 if (btrfs_advance_sb_log(device, i)) 4087 errors++; 4088 } 4089 return errors < i ? 0 : -1; 4090 } 4091 4092 /* 4093 * Wait for write completion of superblocks done by write_dev_supers, 4094 * @max_mirrors same for write and wait phases. 4095 * 4096 * Return number of errors when page is not found or not marked up to 4097 * date. 4098 */ 4099 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4100 { 4101 int i; 4102 int errors = 0; 4103 bool primary_failed = false; 4104 int ret; 4105 u64 bytenr; 4106 4107 if (max_mirrors == 0) 4108 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4109 4110 for (i = 0; i < max_mirrors; i++) { 4111 struct page *page; 4112 4113 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4114 if (ret == -ENOENT) { 4115 break; 4116 } else if (ret < 0) { 4117 errors++; 4118 if (i == 0) 4119 primary_failed = true; 4120 continue; 4121 } 4122 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4123 device->commit_total_bytes) 4124 break; 4125 4126 page = find_get_page(device->bdev->bd_inode->i_mapping, 4127 bytenr >> PAGE_SHIFT); 4128 if (!page) { 4129 errors++; 4130 if (i == 0) 4131 primary_failed = true; 4132 continue; 4133 } 4134 /* Page is submitted locked and unlocked once the IO completes */ 4135 wait_on_page_locked(page); 4136 if (PageError(page)) { 4137 errors++; 4138 if (i == 0) 4139 primary_failed = true; 4140 } 4141 4142 /* Drop our reference */ 4143 put_page(page); 4144 4145 /* Drop the reference from the writing run */ 4146 put_page(page); 4147 } 4148 4149 /* log error, force error return */ 4150 if (primary_failed) { 4151 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4152 device->devid); 4153 return -1; 4154 } 4155 4156 return errors < i ? 0 : -1; 4157 } 4158 4159 /* 4160 * endio for the write_dev_flush, this will wake anyone waiting 4161 * for the barrier when it is done 4162 */ 4163 static void btrfs_end_empty_barrier(struct bio *bio) 4164 { 4165 bio_uninit(bio); 4166 complete(bio->bi_private); 4167 } 4168 4169 /* 4170 * Submit a flush request to the device if it supports it. Error handling is 4171 * done in the waiting counterpart. 4172 */ 4173 static void write_dev_flush(struct btrfs_device *device) 4174 { 4175 struct bio *bio = &device->flush_bio; 4176 4177 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4178 /* 4179 * When a disk has write caching disabled, we skip submission of a bio 4180 * with flush and sync requests before writing the superblock, since 4181 * it's not needed. However when the integrity checker is enabled, this 4182 * results in reports that there are metadata blocks referred by a 4183 * superblock that were not properly flushed. So don't skip the bio 4184 * submission only when the integrity checker is enabled for the sake 4185 * of simplicity, since this is a debug tool and not meant for use in 4186 * non-debug builds. 4187 */ 4188 if (!bdev_write_cache(device->bdev)) 4189 return; 4190 #endif 4191 4192 bio_init(bio, device->bdev, NULL, 0, 4193 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4194 bio->bi_end_io = btrfs_end_empty_barrier; 4195 init_completion(&device->flush_wait); 4196 bio->bi_private = &device->flush_wait; 4197 4198 btrfsic_check_bio(bio); 4199 submit_bio(bio); 4200 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4201 } 4202 4203 /* 4204 * If the flush bio has been submitted by write_dev_flush, wait for it. 4205 */ 4206 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4207 { 4208 struct bio *bio = &device->flush_bio; 4209 4210 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4211 return BLK_STS_OK; 4212 4213 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4214 wait_for_completion_io(&device->flush_wait); 4215 4216 return bio->bi_status; 4217 } 4218 4219 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4220 { 4221 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4222 return -EIO; 4223 return 0; 4224 } 4225 4226 /* 4227 * send an empty flush down to each device in parallel, 4228 * then wait for them 4229 */ 4230 static int barrier_all_devices(struct btrfs_fs_info *info) 4231 { 4232 struct list_head *head; 4233 struct btrfs_device *dev; 4234 int errors_wait = 0; 4235 blk_status_t ret; 4236 4237 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4238 /* send down all the barriers */ 4239 head = &info->fs_devices->devices; 4240 list_for_each_entry(dev, head, dev_list) { 4241 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4242 continue; 4243 if (!dev->bdev) 4244 continue; 4245 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4246 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4247 continue; 4248 4249 write_dev_flush(dev); 4250 dev->last_flush_error = BLK_STS_OK; 4251 } 4252 4253 /* wait for all the barriers */ 4254 list_for_each_entry(dev, head, dev_list) { 4255 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4256 continue; 4257 if (!dev->bdev) { 4258 errors_wait++; 4259 continue; 4260 } 4261 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4262 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4263 continue; 4264 4265 ret = wait_dev_flush(dev); 4266 if (ret) { 4267 dev->last_flush_error = ret; 4268 btrfs_dev_stat_inc_and_print(dev, 4269 BTRFS_DEV_STAT_FLUSH_ERRS); 4270 errors_wait++; 4271 } 4272 } 4273 4274 if (errors_wait) { 4275 /* 4276 * At some point we need the status of all disks 4277 * to arrive at the volume status. So error checking 4278 * is being pushed to a separate loop. 4279 */ 4280 return check_barrier_error(info); 4281 } 4282 return 0; 4283 } 4284 4285 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4286 { 4287 int raid_type; 4288 int min_tolerated = INT_MAX; 4289 4290 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4291 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4292 min_tolerated = min_t(int, min_tolerated, 4293 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4294 tolerated_failures); 4295 4296 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4297 if (raid_type == BTRFS_RAID_SINGLE) 4298 continue; 4299 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4300 continue; 4301 min_tolerated = min_t(int, min_tolerated, 4302 btrfs_raid_array[raid_type]. 4303 tolerated_failures); 4304 } 4305 4306 if (min_tolerated == INT_MAX) { 4307 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4308 min_tolerated = 0; 4309 } 4310 4311 return min_tolerated; 4312 } 4313 4314 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4315 { 4316 struct list_head *head; 4317 struct btrfs_device *dev; 4318 struct btrfs_super_block *sb; 4319 struct btrfs_dev_item *dev_item; 4320 int ret; 4321 int do_barriers; 4322 int max_errors; 4323 int total_errors = 0; 4324 u64 flags; 4325 4326 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4327 4328 /* 4329 * max_mirrors == 0 indicates we're from commit_transaction, 4330 * not from fsync where the tree roots in fs_info have not 4331 * been consistent on disk. 4332 */ 4333 if (max_mirrors == 0) 4334 backup_super_roots(fs_info); 4335 4336 sb = fs_info->super_for_commit; 4337 dev_item = &sb->dev_item; 4338 4339 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4340 head = &fs_info->fs_devices->devices; 4341 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4342 4343 if (do_barriers) { 4344 ret = barrier_all_devices(fs_info); 4345 if (ret) { 4346 mutex_unlock( 4347 &fs_info->fs_devices->device_list_mutex); 4348 btrfs_handle_fs_error(fs_info, ret, 4349 "errors while submitting device barriers."); 4350 return ret; 4351 } 4352 } 4353 4354 list_for_each_entry(dev, head, dev_list) { 4355 if (!dev->bdev) { 4356 total_errors++; 4357 continue; 4358 } 4359 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4360 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4361 continue; 4362 4363 btrfs_set_stack_device_generation(dev_item, 0); 4364 btrfs_set_stack_device_type(dev_item, dev->type); 4365 btrfs_set_stack_device_id(dev_item, dev->devid); 4366 btrfs_set_stack_device_total_bytes(dev_item, 4367 dev->commit_total_bytes); 4368 btrfs_set_stack_device_bytes_used(dev_item, 4369 dev->commit_bytes_used); 4370 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4371 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4372 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4373 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4374 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4375 BTRFS_FSID_SIZE); 4376 4377 flags = btrfs_super_flags(sb); 4378 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4379 4380 ret = btrfs_validate_write_super(fs_info, sb); 4381 if (ret < 0) { 4382 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4383 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4384 "unexpected superblock corruption detected"); 4385 return -EUCLEAN; 4386 } 4387 4388 ret = write_dev_supers(dev, sb, max_mirrors); 4389 if (ret) 4390 total_errors++; 4391 } 4392 if (total_errors > max_errors) { 4393 btrfs_err(fs_info, "%d errors while writing supers", 4394 total_errors); 4395 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4396 4397 /* FUA is masked off if unsupported and can't be the reason */ 4398 btrfs_handle_fs_error(fs_info, -EIO, 4399 "%d errors while writing supers", 4400 total_errors); 4401 return -EIO; 4402 } 4403 4404 total_errors = 0; 4405 list_for_each_entry(dev, head, dev_list) { 4406 if (!dev->bdev) 4407 continue; 4408 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4409 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4410 continue; 4411 4412 ret = wait_dev_supers(dev, max_mirrors); 4413 if (ret) 4414 total_errors++; 4415 } 4416 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4417 if (total_errors > max_errors) { 4418 btrfs_handle_fs_error(fs_info, -EIO, 4419 "%d errors while writing supers", 4420 total_errors); 4421 return -EIO; 4422 } 4423 return 0; 4424 } 4425 4426 /* Drop a fs root from the radix tree and free it. */ 4427 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4428 struct btrfs_root *root) 4429 { 4430 bool drop_ref = false; 4431 4432 spin_lock(&fs_info->fs_roots_radix_lock); 4433 radix_tree_delete(&fs_info->fs_roots_radix, 4434 (unsigned long)root->root_key.objectid); 4435 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4436 drop_ref = true; 4437 spin_unlock(&fs_info->fs_roots_radix_lock); 4438 4439 if (BTRFS_FS_ERROR(fs_info)) { 4440 ASSERT(root->log_root == NULL); 4441 if (root->reloc_root) { 4442 btrfs_put_root(root->reloc_root); 4443 root->reloc_root = NULL; 4444 } 4445 } 4446 4447 if (drop_ref) 4448 btrfs_put_root(root); 4449 } 4450 4451 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4452 { 4453 u64 root_objectid = 0; 4454 struct btrfs_root *gang[8]; 4455 int i = 0; 4456 int err = 0; 4457 unsigned int ret = 0; 4458 4459 while (1) { 4460 spin_lock(&fs_info->fs_roots_radix_lock); 4461 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4462 (void **)gang, root_objectid, 4463 ARRAY_SIZE(gang)); 4464 if (!ret) { 4465 spin_unlock(&fs_info->fs_roots_radix_lock); 4466 break; 4467 } 4468 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4469 4470 for (i = 0; i < ret; i++) { 4471 /* Avoid to grab roots in dead_roots */ 4472 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4473 gang[i] = NULL; 4474 continue; 4475 } 4476 /* grab all the search result for later use */ 4477 gang[i] = btrfs_grab_root(gang[i]); 4478 } 4479 spin_unlock(&fs_info->fs_roots_radix_lock); 4480 4481 for (i = 0; i < ret; i++) { 4482 if (!gang[i]) 4483 continue; 4484 root_objectid = gang[i]->root_key.objectid; 4485 err = btrfs_orphan_cleanup(gang[i]); 4486 if (err) 4487 break; 4488 btrfs_put_root(gang[i]); 4489 } 4490 root_objectid++; 4491 } 4492 4493 /* release the uncleaned roots due to error */ 4494 for (; i < ret; i++) { 4495 if (gang[i]) 4496 btrfs_put_root(gang[i]); 4497 } 4498 return err; 4499 } 4500 4501 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4502 { 4503 struct btrfs_root *root = fs_info->tree_root; 4504 struct btrfs_trans_handle *trans; 4505 4506 mutex_lock(&fs_info->cleaner_mutex); 4507 btrfs_run_delayed_iputs(fs_info); 4508 mutex_unlock(&fs_info->cleaner_mutex); 4509 wake_up_process(fs_info->cleaner_kthread); 4510 4511 /* wait until ongoing cleanup work done */ 4512 down_write(&fs_info->cleanup_work_sem); 4513 up_write(&fs_info->cleanup_work_sem); 4514 4515 trans = btrfs_join_transaction(root); 4516 if (IS_ERR(trans)) 4517 return PTR_ERR(trans); 4518 return btrfs_commit_transaction(trans); 4519 } 4520 4521 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4522 { 4523 struct btrfs_transaction *trans; 4524 struct btrfs_transaction *tmp; 4525 bool found = false; 4526 4527 if (list_empty(&fs_info->trans_list)) 4528 return; 4529 4530 /* 4531 * This function is only called at the very end of close_ctree(), 4532 * thus no other running transaction, no need to take trans_lock. 4533 */ 4534 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4535 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4536 struct extent_state *cached = NULL; 4537 u64 dirty_bytes = 0; 4538 u64 cur = 0; 4539 u64 found_start; 4540 u64 found_end; 4541 4542 found = true; 4543 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4544 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4545 dirty_bytes += found_end + 1 - found_start; 4546 cur = found_end + 1; 4547 } 4548 btrfs_warn(fs_info, 4549 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4550 trans->transid, dirty_bytes); 4551 btrfs_cleanup_one_transaction(trans, fs_info); 4552 4553 if (trans == fs_info->running_transaction) 4554 fs_info->running_transaction = NULL; 4555 list_del_init(&trans->list); 4556 4557 btrfs_put_transaction(trans); 4558 trace_btrfs_transaction_commit(fs_info); 4559 } 4560 ASSERT(!found); 4561 } 4562 4563 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4564 { 4565 int ret; 4566 4567 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4568 4569 /* 4570 * If we had UNFINISHED_DROPS we could still be processing them, so 4571 * clear that bit and wake up relocation so it can stop. 4572 * We must do this before stopping the block group reclaim task, because 4573 * at btrfs_relocate_block_group() we wait for this bit, and after the 4574 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4575 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4576 * return 1. 4577 */ 4578 btrfs_wake_unfinished_drop(fs_info); 4579 4580 /* 4581 * We may have the reclaim task running and relocating a data block group, 4582 * in which case it may create delayed iputs. So stop it before we park 4583 * the cleaner kthread otherwise we can get new delayed iputs after 4584 * parking the cleaner, and that can make the async reclaim task to hang 4585 * if it's waiting for delayed iputs to complete, since the cleaner is 4586 * parked and can not run delayed iputs - this will make us hang when 4587 * trying to stop the async reclaim task. 4588 */ 4589 cancel_work_sync(&fs_info->reclaim_bgs_work); 4590 /* 4591 * We don't want the cleaner to start new transactions, add more delayed 4592 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4593 * because that frees the task_struct, and the transaction kthread might 4594 * still try to wake up the cleaner. 4595 */ 4596 kthread_park(fs_info->cleaner_kthread); 4597 4598 /* wait for the qgroup rescan worker to stop */ 4599 btrfs_qgroup_wait_for_completion(fs_info, false); 4600 4601 /* wait for the uuid_scan task to finish */ 4602 down(&fs_info->uuid_tree_rescan_sem); 4603 /* avoid complains from lockdep et al., set sem back to initial state */ 4604 up(&fs_info->uuid_tree_rescan_sem); 4605 4606 /* pause restriper - we want to resume on mount */ 4607 btrfs_pause_balance(fs_info); 4608 4609 btrfs_dev_replace_suspend_for_unmount(fs_info); 4610 4611 btrfs_scrub_cancel(fs_info); 4612 4613 /* wait for any defraggers to finish */ 4614 wait_event(fs_info->transaction_wait, 4615 (atomic_read(&fs_info->defrag_running) == 0)); 4616 4617 /* clear out the rbtree of defraggable inodes */ 4618 btrfs_cleanup_defrag_inodes(fs_info); 4619 4620 /* 4621 * After we parked the cleaner kthread, ordered extents may have 4622 * completed and created new delayed iputs. If one of the async reclaim 4623 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4624 * can hang forever trying to stop it, because if a delayed iput is 4625 * added after it ran btrfs_run_delayed_iputs() and before it called 4626 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4627 * no one else to run iputs. 4628 * 4629 * So wait for all ongoing ordered extents to complete and then run 4630 * delayed iputs. This works because once we reach this point no one 4631 * can either create new ordered extents nor create delayed iputs 4632 * through some other means. 4633 * 4634 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4635 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4636 * but the delayed iput for the respective inode is made only when doing 4637 * the final btrfs_put_ordered_extent() (which must happen at 4638 * btrfs_finish_ordered_io() when we are unmounting). 4639 */ 4640 btrfs_flush_workqueue(fs_info->endio_write_workers); 4641 /* Ordered extents for free space inodes. */ 4642 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4643 btrfs_run_delayed_iputs(fs_info); 4644 4645 cancel_work_sync(&fs_info->async_reclaim_work); 4646 cancel_work_sync(&fs_info->async_data_reclaim_work); 4647 cancel_work_sync(&fs_info->preempt_reclaim_work); 4648 4649 /* Cancel or finish ongoing discard work */ 4650 btrfs_discard_cleanup(fs_info); 4651 4652 if (!sb_rdonly(fs_info->sb)) { 4653 /* 4654 * The cleaner kthread is stopped, so do one final pass over 4655 * unused block groups. 4656 */ 4657 btrfs_delete_unused_bgs(fs_info); 4658 4659 /* 4660 * There might be existing delayed inode workers still running 4661 * and holding an empty delayed inode item. We must wait for 4662 * them to complete first because they can create a transaction. 4663 * This happens when someone calls btrfs_balance_delayed_items() 4664 * and then a transaction commit runs the same delayed nodes 4665 * before any delayed worker has done something with the nodes. 4666 * We must wait for any worker here and not at transaction 4667 * commit time since that could cause a deadlock. 4668 * This is a very rare case. 4669 */ 4670 btrfs_flush_workqueue(fs_info->delayed_workers); 4671 4672 ret = btrfs_commit_super(fs_info); 4673 if (ret) 4674 btrfs_err(fs_info, "commit super ret %d", ret); 4675 } 4676 4677 if (BTRFS_FS_ERROR(fs_info)) 4678 btrfs_error_commit_super(fs_info); 4679 4680 kthread_stop(fs_info->transaction_kthread); 4681 kthread_stop(fs_info->cleaner_kthread); 4682 4683 ASSERT(list_empty(&fs_info->delayed_iputs)); 4684 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4685 4686 if (btrfs_check_quota_leak(fs_info)) { 4687 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4688 btrfs_err(fs_info, "qgroup reserved space leaked"); 4689 } 4690 4691 btrfs_free_qgroup_config(fs_info); 4692 ASSERT(list_empty(&fs_info->delalloc_roots)); 4693 4694 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4695 btrfs_info(fs_info, "at unmount delalloc count %lld", 4696 percpu_counter_sum(&fs_info->delalloc_bytes)); 4697 } 4698 4699 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4700 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4701 percpu_counter_sum(&fs_info->ordered_bytes)); 4702 4703 btrfs_sysfs_remove_mounted(fs_info); 4704 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4705 4706 btrfs_put_block_group_cache(fs_info); 4707 4708 /* 4709 * we must make sure there is not any read request to 4710 * submit after we stopping all workers. 4711 */ 4712 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4713 btrfs_stop_all_workers(fs_info); 4714 4715 /* We shouldn't have any transaction open at this point */ 4716 warn_about_uncommitted_trans(fs_info); 4717 4718 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4719 free_root_pointers(fs_info, true); 4720 btrfs_free_fs_roots(fs_info); 4721 4722 /* 4723 * We must free the block groups after dropping the fs_roots as we could 4724 * have had an IO error and have left over tree log blocks that aren't 4725 * cleaned up until the fs roots are freed. This makes the block group 4726 * accounting appear to be wrong because there's pending reserved bytes, 4727 * so make sure we do the block group cleanup afterwards. 4728 */ 4729 btrfs_free_block_groups(fs_info); 4730 4731 iput(fs_info->btree_inode); 4732 4733 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4734 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4735 btrfsic_unmount(fs_info->fs_devices); 4736 #endif 4737 4738 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4739 btrfs_close_devices(fs_info->fs_devices); 4740 } 4741 4742 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4743 int atomic) 4744 { 4745 int ret; 4746 struct inode *btree_inode = buf->pages[0]->mapping->host; 4747 4748 ret = extent_buffer_uptodate(buf); 4749 if (!ret) 4750 return ret; 4751 4752 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4753 parent_transid, atomic); 4754 if (ret == -EAGAIN) 4755 return ret; 4756 return !ret; 4757 } 4758 4759 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4760 { 4761 struct btrfs_fs_info *fs_info = buf->fs_info; 4762 u64 transid = btrfs_header_generation(buf); 4763 int was_dirty; 4764 4765 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4766 /* 4767 * This is a fast path so only do this check if we have sanity tests 4768 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4769 * outside of the sanity tests. 4770 */ 4771 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4772 return; 4773 #endif 4774 btrfs_assert_tree_write_locked(buf); 4775 if (transid != fs_info->generation) 4776 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4777 buf->start, transid, fs_info->generation); 4778 was_dirty = set_extent_buffer_dirty(buf); 4779 if (!was_dirty) 4780 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4781 buf->len, 4782 fs_info->dirty_metadata_batch); 4783 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4784 /* 4785 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4786 * but item data not updated. 4787 * So here we should only check item pointers, not item data. 4788 */ 4789 if (btrfs_header_level(buf) == 0 && 4790 btrfs_check_leaf_relaxed(buf)) { 4791 btrfs_print_leaf(buf); 4792 ASSERT(0); 4793 } 4794 #endif 4795 } 4796 4797 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4798 int flush_delayed) 4799 { 4800 /* 4801 * looks as though older kernels can get into trouble with 4802 * this code, they end up stuck in balance_dirty_pages forever 4803 */ 4804 int ret; 4805 4806 if (current->flags & PF_MEMALLOC) 4807 return; 4808 4809 if (flush_delayed) 4810 btrfs_balance_delayed_items(fs_info); 4811 4812 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4813 BTRFS_DIRTY_METADATA_THRESH, 4814 fs_info->dirty_metadata_batch); 4815 if (ret > 0) { 4816 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4817 } 4818 } 4819 4820 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4821 { 4822 __btrfs_btree_balance_dirty(fs_info, 1); 4823 } 4824 4825 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4826 { 4827 __btrfs_btree_balance_dirty(fs_info, 0); 4828 } 4829 4830 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4831 { 4832 /* cleanup FS via transaction */ 4833 btrfs_cleanup_transaction(fs_info); 4834 4835 mutex_lock(&fs_info->cleaner_mutex); 4836 btrfs_run_delayed_iputs(fs_info); 4837 mutex_unlock(&fs_info->cleaner_mutex); 4838 4839 down_write(&fs_info->cleanup_work_sem); 4840 up_write(&fs_info->cleanup_work_sem); 4841 } 4842 4843 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4844 { 4845 struct btrfs_root *gang[8]; 4846 u64 root_objectid = 0; 4847 int ret; 4848 4849 spin_lock(&fs_info->fs_roots_radix_lock); 4850 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4851 (void **)gang, root_objectid, 4852 ARRAY_SIZE(gang))) != 0) { 4853 int i; 4854 4855 for (i = 0; i < ret; i++) 4856 gang[i] = btrfs_grab_root(gang[i]); 4857 spin_unlock(&fs_info->fs_roots_radix_lock); 4858 4859 for (i = 0; i < ret; i++) { 4860 if (!gang[i]) 4861 continue; 4862 root_objectid = gang[i]->root_key.objectid; 4863 btrfs_free_log(NULL, gang[i]); 4864 btrfs_put_root(gang[i]); 4865 } 4866 root_objectid++; 4867 spin_lock(&fs_info->fs_roots_radix_lock); 4868 } 4869 spin_unlock(&fs_info->fs_roots_radix_lock); 4870 btrfs_free_log_root_tree(NULL, fs_info); 4871 } 4872 4873 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4874 { 4875 struct btrfs_ordered_extent *ordered; 4876 4877 spin_lock(&root->ordered_extent_lock); 4878 /* 4879 * This will just short circuit the ordered completion stuff which will 4880 * make sure the ordered extent gets properly cleaned up. 4881 */ 4882 list_for_each_entry(ordered, &root->ordered_extents, 4883 root_extent_list) 4884 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4885 spin_unlock(&root->ordered_extent_lock); 4886 } 4887 4888 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4889 { 4890 struct btrfs_root *root; 4891 struct list_head splice; 4892 4893 INIT_LIST_HEAD(&splice); 4894 4895 spin_lock(&fs_info->ordered_root_lock); 4896 list_splice_init(&fs_info->ordered_roots, &splice); 4897 while (!list_empty(&splice)) { 4898 root = list_first_entry(&splice, struct btrfs_root, 4899 ordered_root); 4900 list_move_tail(&root->ordered_root, 4901 &fs_info->ordered_roots); 4902 4903 spin_unlock(&fs_info->ordered_root_lock); 4904 btrfs_destroy_ordered_extents(root); 4905 4906 cond_resched(); 4907 spin_lock(&fs_info->ordered_root_lock); 4908 } 4909 spin_unlock(&fs_info->ordered_root_lock); 4910 4911 /* 4912 * We need this here because if we've been flipped read-only we won't 4913 * get sync() from the umount, so we need to make sure any ordered 4914 * extents that haven't had their dirty pages IO start writeout yet 4915 * actually get run and error out properly. 4916 */ 4917 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4918 } 4919 4920 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4921 struct btrfs_fs_info *fs_info) 4922 { 4923 struct rb_node *node; 4924 struct btrfs_delayed_ref_root *delayed_refs; 4925 struct btrfs_delayed_ref_node *ref; 4926 int ret = 0; 4927 4928 delayed_refs = &trans->delayed_refs; 4929 4930 spin_lock(&delayed_refs->lock); 4931 if (atomic_read(&delayed_refs->num_entries) == 0) { 4932 spin_unlock(&delayed_refs->lock); 4933 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4934 return ret; 4935 } 4936 4937 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4938 struct btrfs_delayed_ref_head *head; 4939 struct rb_node *n; 4940 bool pin_bytes = false; 4941 4942 head = rb_entry(node, struct btrfs_delayed_ref_head, 4943 href_node); 4944 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4945 continue; 4946 4947 spin_lock(&head->lock); 4948 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4949 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4950 ref_node); 4951 ref->in_tree = 0; 4952 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4953 RB_CLEAR_NODE(&ref->ref_node); 4954 if (!list_empty(&ref->add_list)) 4955 list_del(&ref->add_list); 4956 atomic_dec(&delayed_refs->num_entries); 4957 btrfs_put_delayed_ref(ref); 4958 } 4959 if (head->must_insert_reserved) 4960 pin_bytes = true; 4961 btrfs_free_delayed_extent_op(head->extent_op); 4962 btrfs_delete_ref_head(delayed_refs, head); 4963 spin_unlock(&head->lock); 4964 spin_unlock(&delayed_refs->lock); 4965 mutex_unlock(&head->mutex); 4966 4967 if (pin_bytes) { 4968 struct btrfs_block_group *cache; 4969 4970 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4971 BUG_ON(!cache); 4972 4973 spin_lock(&cache->space_info->lock); 4974 spin_lock(&cache->lock); 4975 cache->pinned += head->num_bytes; 4976 btrfs_space_info_update_bytes_pinned(fs_info, 4977 cache->space_info, head->num_bytes); 4978 cache->reserved -= head->num_bytes; 4979 cache->space_info->bytes_reserved -= head->num_bytes; 4980 spin_unlock(&cache->lock); 4981 spin_unlock(&cache->space_info->lock); 4982 4983 btrfs_put_block_group(cache); 4984 4985 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4986 head->bytenr + head->num_bytes - 1); 4987 } 4988 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4989 btrfs_put_delayed_ref_head(head); 4990 cond_resched(); 4991 spin_lock(&delayed_refs->lock); 4992 } 4993 btrfs_qgroup_destroy_extent_records(trans); 4994 4995 spin_unlock(&delayed_refs->lock); 4996 4997 return ret; 4998 } 4999 5000 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 5001 { 5002 struct btrfs_inode *btrfs_inode; 5003 struct list_head splice; 5004 5005 INIT_LIST_HEAD(&splice); 5006 5007 spin_lock(&root->delalloc_lock); 5008 list_splice_init(&root->delalloc_inodes, &splice); 5009 5010 while (!list_empty(&splice)) { 5011 struct inode *inode = NULL; 5012 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 5013 delalloc_inodes); 5014 __btrfs_del_delalloc_inode(root, btrfs_inode); 5015 spin_unlock(&root->delalloc_lock); 5016 5017 /* 5018 * Make sure we get a live inode and that it'll not disappear 5019 * meanwhile. 5020 */ 5021 inode = igrab(&btrfs_inode->vfs_inode); 5022 if (inode) { 5023 invalidate_inode_pages2(inode->i_mapping); 5024 iput(inode); 5025 } 5026 spin_lock(&root->delalloc_lock); 5027 } 5028 spin_unlock(&root->delalloc_lock); 5029 } 5030 5031 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 5032 { 5033 struct btrfs_root *root; 5034 struct list_head splice; 5035 5036 INIT_LIST_HEAD(&splice); 5037 5038 spin_lock(&fs_info->delalloc_root_lock); 5039 list_splice_init(&fs_info->delalloc_roots, &splice); 5040 while (!list_empty(&splice)) { 5041 root = list_first_entry(&splice, struct btrfs_root, 5042 delalloc_root); 5043 root = btrfs_grab_root(root); 5044 BUG_ON(!root); 5045 spin_unlock(&fs_info->delalloc_root_lock); 5046 5047 btrfs_destroy_delalloc_inodes(root); 5048 btrfs_put_root(root); 5049 5050 spin_lock(&fs_info->delalloc_root_lock); 5051 } 5052 spin_unlock(&fs_info->delalloc_root_lock); 5053 } 5054 5055 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 5056 struct extent_io_tree *dirty_pages, 5057 int mark) 5058 { 5059 int ret; 5060 struct extent_buffer *eb; 5061 u64 start = 0; 5062 u64 end; 5063 5064 while (1) { 5065 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 5066 mark, NULL); 5067 if (ret) 5068 break; 5069 5070 clear_extent_bits(dirty_pages, start, end, mark); 5071 while (start <= end) { 5072 eb = find_extent_buffer(fs_info, start); 5073 start += fs_info->nodesize; 5074 if (!eb) 5075 continue; 5076 wait_on_extent_buffer_writeback(eb); 5077 5078 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 5079 &eb->bflags)) 5080 clear_extent_buffer_dirty(eb); 5081 free_extent_buffer_stale(eb); 5082 } 5083 } 5084 5085 return ret; 5086 } 5087 5088 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5089 struct extent_io_tree *unpin) 5090 { 5091 u64 start; 5092 u64 end; 5093 int ret; 5094 5095 while (1) { 5096 struct extent_state *cached_state = NULL; 5097 5098 /* 5099 * The btrfs_finish_extent_commit() may get the same range as 5100 * ours between find_first_extent_bit and clear_extent_dirty. 5101 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5102 * the same extent range. 5103 */ 5104 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5105 ret = find_first_extent_bit(unpin, 0, &start, &end, 5106 EXTENT_DIRTY, &cached_state); 5107 if (ret) { 5108 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5109 break; 5110 } 5111 5112 clear_extent_dirty(unpin, start, end, &cached_state); 5113 free_extent_state(cached_state); 5114 btrfs_error_unpin_extent_range(fs_info, start, end); 5115 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5116 cond_resched(); 5117 } 5118 5119 return 0; 5120 } 5121 5122 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5123 { 5124 struct inode *inode; 5125 5126 inode = cache->io_ctl.inode; 5127 if (inode) { 5128 invalidate_inode_pages2(inode->i_mapping); 5129 BTRFS_I(inode)->generation = 0; 5130 cache->io_ctl.inode = NULL; 5131 iput(inode); 5132 } 5133 ASSERT(cache->io_ctl.pages == NULL); 5134 btrfs_put_block_group(cache); 5135 } 5136 5137 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5138 struct btrfs_fs_info *fs_info) 5139 { 5140 struct btrfs_block_group *cache; 5141 5142 spin_lock(&cur_trans->dirty_bgs_lock); 5143 while (!list_empty(&cur_trans->dirty_bgs)) { 5144 cache = list_first_entry(&cur_trans->dirty_bgs, 5145 struct btrfs_block_group, 5146 dirty_list); 5147 5148 if (!list_empty(&cache->io_list)) { 5149 spin_unlock(&cur_trans->dirty_bgs_lock); 5150 list_del_init(&cache->io_list); 5151 btrfs_cleanup_bg_io(cache); 5152 spin_lock(&cur_trans->dirty_bgs_lock); 5153 } 5154 5155 list_del_init(&cache->dirty_list); 5156 spin_lock(&cache->lock); 5157 cache->disk_cache_state = BTRFS_DC_ERROR; 5158 spin_unlock(&cache->lock); 5159 5160 spin_unlock(&cur_trans->dirty_bgs_lock); 5161 btrfs_put_block_group(cache); 5162 btrfs_delayed_refs_rsv_release(fs_info, 1); 5163 spin_lock(&cur_trans->dirty_bgs_lock); 5164 } 5165 spin_unlock(&cur_trans->dirty_bgs_lock); 5166 5167 /* 5168 * Refer to the definition of io_bgs member for details why it's safe 5169 * to use it without any locking 5170 */ 5171 while (!list_empty(&cur_trans->io_bgs)) { 5172 cache = list_first_entry(&cur_trans->io_bgs, 5173 struct btrfs_block_group, 5174 io_list); 5175 5176 list_del_init(&cache->io_list); 5177 spin_lock(&cache->lock); 5178 cache->disk_cache_state = BTRFS_DC_ERROR; 5179 spin_unlock(&cache->lock); 5180 btrfs_cleanup_bg_io(cache); 5181 } 5182 } 5183 5184 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5185 struct btrfs_fs_info *fs_info) 5186 { 5187 struct btrfs_device *dev, *tmp; 5188 5189 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5190 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5191 ASSERT(list_empty(&cur_trans->io_bgs)); 5192 5193 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5194 post_commit_list) { 5195 list_del_init(&dev->post_commit_list); 5196 } 5197 5198 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5199 5200 cur_trans->state = TRANS_STATE_COMMIT_START; 5201 wake_up(&fs_info->transaction_blocked_wait); 5202 5203 cur_trans->state = TRANS_STATE_UNBLOCKED; 5204 wake_up(&fs_info->transaction_wait); 5205 5206 btrfs_destroy_delayed_inodes(fs_info); 5207 5208 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5209 EXTENT_DIRTY); 5210 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5211 5212 btrfs_free_redirty_list(cur_trans); 5213 5214 cur_trans->state =TRANS_STATE_COMPLETED; 5215 wake_up(&cur_trans->commit_wait); 5216 } 5217 5218 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5219 { 5220 struct btrfs_transaction *t; 5221 5222 mutex_lock(&fs_info->transaction_kthread_mutex); 5223 5224 spin_lock(&fs_info->trans_lock); 5225 while (!list_empty(&fs_info->trans_list)) { 5226 t = list_first_entry(&fs_info->trans_list, 5227 struct btrfs_transaction, list); 5228 if (t->state >= TRANS_STATE_COMMIT_START) { 5229 refcount_inc(&t->use_count); 5230 spin_unlock(&fs_info->trans_lock); 5231 btrfs_wait_for_commit(fs_info, t->transid); 5232 btrfs_put_transaction(t); 5233 spin_lock(&fs_info->trans_lock); 5234 continue; 5235 } 5236 if (t == fs_info->running_transaction) { 5237 t->state = TRANS_STATE_COMMIT_DOING; 5238 spin_unlock(&fs_info->trans_lock); 5239 /* 5240 * We wait for 0 num_writers since we don't hold a trans 5241 * handle open currently for this transaction. 5242 */ 5243 wait_event(t->writer_wait, 5244 atomic_read(&t->num_writers) == 0); 5245 } else { 5246 spin_unlock(&fs_info->trans_lock); 5247 } 5248 btrfs_cleanup_one_transaction(t, fs_info); 5249 5250 spin_lock(&fs_info->trans_lock); 5251 if (t == fs_info->running_transaction) 5252 fs_info->running_transaction = NULL; 5253 list_del_init(&t->list); 5254 spin_unlock(&fs_info->trans_lock); 5255 5256 btrfs_put_transaction(t); 5257 trace_btrfs_transaction_commit(fs_info); 5258 spin_lock(&fs_info->trans_lock); 5259 } 5260 spin_unlock(&fs_info->trans_lock); 5261 btrfs_destroy_all_ordered_extents(fs_info); 5262 btrfs_destroy_delayed_inodes(fs_info); 5263 btrfs_assert_delayed_root_empty(fs_info); 5264 btrfs_destroy_all_delalloc_inodes(fs_info); 5265 btrfs_drop_all_logs(fs_info); 5266 mutex_unlock(&fs_info->transaction_kthread_mutex); 5267 5268 return 0; 5269 } 5270 5271 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5272 { 5273 struct btrfs_path *path; 5274 int ret; 5275 struct extent_buffer *l; 5276 struct btrfs_key search_key; 5277 struct btrfs_key found_key; 5278 int slot; 5279 5280 path = btrfs_alloc_path(); 5281 if (!path) 5282 return -ENOMEM; 5283 5284 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5285 search_key.type = -1; 5286 search_key.offset = (u64)-1; 5287 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5288 if (ret < 0) 5289 goto error; 5290 BUG_ON(ret == 0); /* Corruption */ 5291 if (path->slots[0] > 0) { 5292 slot = path->slots[0] - 1; 5293 l = path->nodes[0]; 5294 btrfs_item_key_to_cpu(l, &found_key, slot); 5295 root->free_objectid = max_t(u64, found_key.objectid + 1, 5296 BTRFS_FIRST_FREE_OBJECTID); 5297 } else { 5298 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5299 } 5300 ret = 0; 5301 error: 5302 btrfs_free_path(path); 5303 return ret; 5304 } 5305 5306 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5307 { 5308 int ret; 5309 mutex_lock(&root->objectid_mutex); 5310 5311 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5312 btrfs_warn(root->fs_info, 5313 "the objectid of root %llu reaches its highest value", 5314 root->root_key.objectid); 5315 ret = -ENOSPC; 5316 goto out; 5317 } 5318 5319 *objectid = root->free_objectid++; 5320 ret = 0; 5321 out: 5322 mutex_unlock(&root->objectid_mutex); 5323 return ret; 5324 } 5325