1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static const struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * btrfs_end_io_wq structs are used to do processing in task context when an IO 76 * is complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct btrfs_end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 enum btrfs_wq_endio_type metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 static struct kmem_cache *btrfs_end_io_wq_cache; 91 92 int __init btrfs_end_io_wq_init(void) 93 { 94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 95 sizeof(struct btrfs_end_io_wq), 96 0, 97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 98 NULL); 99 if (!btrfs_end_io_wq_cache) 100 return -ENOMEM; 101 return 0; 102 } 103 104 void btrfs_end_io_wq_exit(void) 105 { 106 if (btrfs_end_io_wq_cache) 107 kmem_cache_destroy(btrfs_end_io_wq_cache); 108 } 109 110 /* 111 * async submit bios are used to offload expensive checksumming 112 * onto the worker threads. They checksum file and metadata bios 113 * just before they are sent down the IO stack. 114 */ 115 struct async_submit_bio { 116 struct inode *inode; 117 struct bio *bio; 118 struct list_head list; 119 extent_submit_bio_hook_t *submit_bio_start; 120 extent_submit_bio_hook_t *submit_bio_done; 121 int rw; 122 int mirror_num; 123 unsigned long bio_flags; 124 /* 125 * bio_offset is optional, can be used if the pages in the bio 126 * can't tell us where in the file the bio should go 127 */ 128 u64 bio_offset; 129 struct btrfs_work work; 130 int error; 131 }; 132 133 /* 134 * Lockdep class keys for extent_buffer->lock's in this root. For a given 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and 136 * the level the eb occupies in the tree. 137 * 138 * Different roots are used for different purposes and may nest inside each 139 * other and they require separate keysets. As lockdep keys should be 140 * static, assign keysets according to the purpose of the root as indicated 141 * by btrfs_root->objectid. This ensures that all special purpose roots 142 * have separate keysets. 143 * 144 * Lock-nesting across peer nodes is always done with the immediate parent 145 * node locked thus preventing deadlock. As lockdep doesn't know this, use 146 * subclass to avoid triggering lockdep warning in such cases. 147 * 148 * The key is set by the readpage_end_io_hook after the buffer has passed 149 * csum validation but before the pages are unlocked. It is also set by 150 * btrfs_init_new_buffer on freshly allocated blocks. 151 * 152 * We also add a check to make sure the highest level of the tree is the 153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 154 * needs update as well. 155 */ 156 #ifdef CONFIG_DEBUG_LOCK_ALLOC 157 # if BTRFS_MAX_LEVEL != 8 158 # error 159 # endif 160 161 static struct btrfs_lockdep_keyset { 162 u64 id; /* root objectid */ 163 const char *name_stem; /* lock name stem */ 164 char names[BTRFS_MAX_LEVEL + 1][20]; 165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 166 } btrfs_lockdep_keysets[] = { 167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 178 { .id = 0, .name_stem = "tree" }, 179 }; 180 181 void __init btrfs_init_lockdep(void) 182 { 183 int i, j; 184 185 /* initialize lockdep class names */ 186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 188 189 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 190 snprintf(ks->names[j], sizeof(ks->names[j]), 191 "btrfs-%s-%02d", ks->name_stem, j); 192 } 193 } 194 195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 196 int level) 197 { 198 struct btrfs_lockdep_keyset *ks; 199 200 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 201 202 /* find the matching keyset, id 0 is the default entry */ 203 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 204 if (ks->id == objectid) 205 break; 206 207 lockdep_set_class_and_name(&eb->lock, 208 &ks->keys[level], ks->names[level]); 209 } 210 211 #endif 212 213 /* 214 * extents on the btree inode are pretty simple, there's one extent 215 * that covers the entire device 216 */ 217 static struct extent_map *btree_get_extent(struct inode *inode, 218 struct page *page, size_t pg_offset, u64 start, u64 len, 219 int create) 220 { 221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 222 struct extent_map *em; 223 int ret; 224 225 read_lock(&em_tree->lock); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (em) { 228 em->bdev = 229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 230 read_unlock(&em_tree->lock); 231 goto out; 232 } 233 read_unlock(&em_tree->lock); 234 235 em = alloc_extent_map(); 236 if (!em) { 237 em = ERR_PTR(-ENOMEM); 238 goto out; 239 } 240 em->start = 0; 241 em->len = (u64)-1; 242 em->block_len = (u64)-1; 243 em->block_start = 0; 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 245 246 write_lock(&em_tree->lock); 247 ret = add_extent_mapping(em_tree, em, 0); 248 if (ret == -EEXIST) { 249 free_extent_map(em); 250 em = lookup_extent_mapping(em_tree, start, len); 251 if (!em) 252 em = ERR_PTR(-EIO); 253 } else if (ret) { 254 free_extent_map(em); 255 em = ERR_PTR(ret); 256 } 257 write_unlock(&em_tree->lock); 258 259 out: 260 return em; 261 } 262 263 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 264 { 265 return btrfs_crc32c(seed, data, len); 266 } 267 268 void btrfs_csum_final(u32 crc, char *result) 269 { 270 put_unaligned_le32(~crc, result); 271 } 272 273 /* 274 * compute the csum for a btree block, and either verify it or write it 275 * into the csum field of the block. 276 */ 277 static int csum_tree_block(struct btrfs_fs_info *fs_info, 278 struct extent_buffer *buf, 279 int verify) 280 { 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 282 char *result = NULL; 283 unsigned long len; 284 unsigned long cur_len; 285 unsigned long offset = BTRFS_CSUM_SIZE; 286 char *kaddr; 287 unsigned long map_start; 288 unsigned long map_len; 289 int err; 290 u32 crc = ~(u32)0; 291 unsigned long inline_result; 292 293 len = buf->len - offset; 294 while (len > 0) { 295 err = map_private_extent_buffer(buf, offset, 32, 296 &kaddr, &map_start, &map_len); 297 if (err) 298 return 1; 299 cur_len = min(len, map_len - (offset - map_start)); 300 crc = btrfs_csum_data(kaddr + offset - map_start, 301 crc, cur_len); 302 len -= cur_len; 303 offset += cur_len; 304 } 305 if (csum_size > sizeof(inline_result)) { 306 result = kzalloc(csum_size, GFP_NOFS); 307 if (!result) 308 return 1; 309 } else { 310 result = (char *)&inline_result; 311 } 312 313 btrfs_csum_final(crc, result); 314 315 if (verify) { 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 317 u32 val; 318 u32 found = 0; 319 memcpy(&found, result, csum_size); 320 321 read_extent_buffer(buf, &val, 0, csum_size); 322 btrfs_warn_rl(fs_info, 323 "%s checksum verify failed on %llu wanted %X found %X " 324 "level %d", 325 fs_info->sb->s_id, buf->start, 326 val, found, btrfs_header_level(buf)); 327 if (result != (char *)&inline_result) 328 kfree(result); 329 return 1; 330 } 331 } else { 332 write_extent_buffer(buf, result, 0, csum_size); 333 } 334 if (result != (char *)&inline_result) 335 kfree(result); 336 return 0; 337 } 338 339 /* 340 * we can't consider a given block up to date unless the transid of the 341 * block matches the transid in the parent node's pointer. This is how we 342 * detect blocks that either didn't get written at all or got written 343 * in the wrong place. 344 */ 345 static int verify_parent_transid(struct extent_io_tree *io_tree, 346 struct extent_buffer *eb, u64 parent_transid, 347 int atomic) 348 { 349 struct extent_state *cached_state = NULL; 350 int ret; 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 352 353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 354 return 0; 355 356 if (atomic) 357 return -EAGAIN; 358 359 if (need_lock) { 360 btrfs_tree_read_lock(eb); 361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 362 } 363 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 365 0, &cached_state); 366 if (extent_buffer_uptodate(eb) && 367 btrfs_header_generation(eb) == parent_transid) { 368 ret = 0; 369 goto out; 370 } 371 btrfs_err_rl(eb->fs_info, 372 "parent transid verify failed on %llu wanted %llu found %llu", 373 eb->start, 374 parent_transid, btrfs_header_generation(eb)); 375 ret = 1; 376 377 /* 378 * Things reading via commit roots that don't have normal protection, 379 * like send, can have a really old block in cache that may point at a 380 * block that has been free'd and re-allocated. So don't clear uptodate 381 * if we find an eb that is under IO (dirty/writeback) because we could 382 * end up reading in the stale data and then writing it back out and 383 * making everybody very sad. 384 */ 385 if (!extent_buffer_under_io(eb)) 386 clear_extent_buffer_uptodate(eb); 387 out: 388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 389 &cached_state, GFP_NOFS); 390 if (need_lock) 391 btrfs_tree_read_unlock_blocking(eb); 392 return ret; 393 } 394 395 /* 396 * Return 0 if the superblock checksum type matches the checksum value of that 397 * algorithm. Pass the raw disk superblock data. 398 */ 399 static int btrfs_check_super_csum(char *raw_disk_sb) 400 { 401 struct btrfs_super_block *disk_sb = 402 (struct btrfs_super_block *)raw_disk_sb; 403 u16 csum_type = btrfs_super_csum_type(disk_sb); 404 int ret = 0; 405 406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 407 u32 crc = ~(u32)0; 408 const int csum_size = sizeof(crc); 409 char result[csum_size]; 410 411 /* 412 * The super_block structure does not span the whole 413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 414 * is filled with zeros and is included in the checkum. 415 */ 416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 418 btrfs_csum_final(crc, result); 419 420 if (memcmp(raw_disk_sb, result, csum_size)) 421 ret = 1; 422 } 423 424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 426 csum_type); 427 ret = 1; 428 } 429 430 return ret; 431 } 432 433 /* 434 * helper to read a given tree block, doing retries as required when 435 * the checksums don't match and we have alternate mirrors to try. 436 */ 437 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 438 struct extent_buffer *eb, 439 u64 start, u64 parent_transid) 440 { 441 struct extent_io_tree *io_tree; 442 int failed = 0; 443 int ret; 444 int num_copies = 0; 445 int mirror_num = 0; 446 int failed_mirror = 0; 447 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 450 while (1) { 451 ret = read_extent_buffer_pages(io_tree, eb, start, 452 WAIT_COMPLETE, 453 btree_get_extent, mirror_num); 454 if (!ret) { 455 if (!verify_parent_transid(io_tree, eb, 456 parent_transid, 0)) 457 break; 458 else 459 ret = -EIO; 460 } 461 462 /* 463 * This buffer's crc is fine, but its contents are corrupted, so 464 * there is no reason to read the other copies, they won't be 465 * any less wrong. 466 */ 467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 468 break; 469 470 num_copies = btrfs_num_copies(root->fs_info, 471 eb->start, eb->len); 472 if (num_copies == 1) 473 break; 474 475 if (!failed_mirror) { 476 failed = 1; 477 failed_mirror = eb->read_mirror; 478 } 479 480 mirror_num++; 481 if (mirror_num == failed_mirror) 482 mirror_num++; 483 484 if (mirror_num > num_copies) 485 break; 486 } 487 488 if (failed && !ret && failed_mirror) 489 repair_eb_io_failure(root, eb, failed_mirror); 490 491 return ret; 492 } 493 494 /* 495 * checksum a dirty tree block before IO. This has extra checks to make sure 496 * we only fill in the checksum field in the first page of a multi-page block 497 */ 498 499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 500 { 501 u64 start = page_offset(page); 502 u64 found_start; 503 struct extent_buffer *eb; 504 505 eb = (struct extent_buffer *)page->private; 506 if (page != eb->pages[0]) 507 return 0; 508 found_start = btrfs_header_bytenr(eb); 509 if (WARN_ON(found_start != start || !PageUptodate(page))) 510 return 0; 511 csum_tree_block(fs_info, eb, 0); 512 return 0; 513 } 514 515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 516 struct extent_buffer *eb) 517 { 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 519 u8 fsid[BTRFS_UUID_SIZE]; 520 int ret = 1; 521 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 523 while (fs_devices) { 524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 525 ret = 0; 526 break; 527 } 528 fs_devices = fs_devices->seed; 529 } 530 return ret; 531 } 532 533 #define CORRUPT(reason, eb, root, slot) \ 534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 535 "root=%llu, slot=%d", reason, \ 536 btrfs_header_bytenr(eb), root->objectid, slot) 537 538 static noinline int check_leaf(struct btrfs_root *root, 539 struct extent_buffer *leaf) 540 { 541 struct btrfs_key key; 542 struct btrfs_key leaf_key; 543 u32 nritems = btrfs_header_nritems(leaf); 544 int slot; 545 546 if (nritems == 0) 547 return 0; 548 549 /* Check the 0 item */ 550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 551 BTRFS_LEAF_DATA_SIZE(root)) { 552 CORRUPT("invalid item offset size pair", leaf, root, 0); 553 return -EIO; 554 } 555 556 /* 557 * Check to make sure each items keys are in the correct order and their 558 * offsets make sense. We only have to loop through nritems-1 because 559 * we check the current slot against the next slot, which verifies the 560 * next slot's offset+size makes sense and that the current's slot 561 * offset is correct. 562 */ 563 for (slot = 0; slot < nritems - 1; slot++) { 564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 565 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 566 567 /* Make sure the keys are in the right order */ 568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 569 CORRUPT("bad key order", leaf, root, slot); 570 return -EIO; 571 } 572 573 /* 574 * Make sure the offset and ends are right, remember that the 575 * item data starts at the end of the leaf and grows towards the 576 * front. 577 */ 578 if (btrfs_item_offset_nr(leaf, slot) != 579 btrfs_item_end_nr(leaf, slot + 1)) { 580 CORRUPT("slot offset bad", leaf, root, slot); 581 return -EIO; 582 } 583 584 /* 585 * Check to make sure that we don't point outside of the leaf, 586 * just incase all the items are consistent to eachother, but 587 * all point outside of the leaf. 588 */ 589 if (btrfs_item_end_nr(leaf, slot) > 590 BTRFS_LEAF_DATA_SIZE(root)) { 591 CORRUPT("slot end outside of leaf", leaf, root, slot); 592 return -EIO; 593 } 594 } 595 596 return 0; 597 } 598 599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 600 u64 phy_offset, struct page *page, 601 u64 start, u64 end, int mirror) 602 { 603 u64 found_start; 604 int found_level; 605 struct extent_buffer *eb; 606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 607 int ret = 0; 608 int reads_done; 609 610 if (!page->private) 611 goto out; 612 613 eb = (struct extent_buffer *)page->private; 614 615 /* the pending IO might have been the only thing that kept this buffer 616 * in memory. Make sure we have a ref for all this other checks 617 */ 618 extent_buffer_get(eb); 619 620 reads_done = atomic_dec_and_test(&eb->io_pages); 621 if (!reads_done) 622 goto err; 623 624 eb->read_mirror = mirror; 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 626 ret = -EIO; 627 goto err; 628 } 629 630 found_start = btrfs_header_bytenr(eb); 631 if (found_start != eb->start) { 632 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu", 633 found_start, eb->start); 634 ret = -EIO; 635 goto err; 636 } 637 if (check_tree_block_fsid(root->fs_info, eb)) { 638 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu", 639 eb->start); 640 ret = -EIO; 641 goto err; 642 } 643 found_level = btrfs_header_level(eb); 644 if (found_level >= BTRFS_MAX_LEVEL) { 645 btrfs_err(root->fs_info, "bad tree block level %d", 646 (int)btrfs_header_level(eb)); 647 ret = -EIO; 648 goto err; 649 } 650 651 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 652 eb, found_level); 653 654 ret = csum_tree_block(root->fs_info, eb, 1); 655 if (ret) { 656 ret = -EIO; 657 goto err; 658 } 659 660 /* 661 * If this is a leaf block and it is corrupt, set the corrupt bit so 662 * that we don't try and read the other copies of this block, just 663 * return -EIO. 664 */ 665 if (found_level == 0 && check_leaf(root, eb)) { 666 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 667 ret = -EIO; 668 } 669 670 if (!ret) 671 set_extent_buffer_uptodate(eb); 672 err: 673 if (reads_done && 674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 675 btree_readahead_hook(root, eb, eb->start, ret); 676 677 if (ret) { 678 /* 679 * our io error hook is going to dec the io pages 680 * again, we have to make sure it has something 681 * to decrement 682 */ 683 atomic_inc(&eb->io_pages); 684 clear_extent_buffer_uptodate(eb); 685 } 686 free_extent_buffer(eb); 687 out: 688 return ret; 689 } 690 691 static int btree_io_failed_hook(struct page *page, int failed_mirror) 692 { 693 struct extent_buffer *eb; 694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 695 696 eb = (struct extent_buffer *)page->private; 697 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 698 eb->read_mirror = failed_mirror; 699 atomic_dec(&eb->io_pages); 700 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 701 btree_readahead_hook(root, eb, eb->start, -EIO); 702 return -EIO; /* we fixed nothing */ 703 } 704 705 static void end_workqueue_bio(struct bio *bio) 706 { 707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 708 struct btrfs_fs_info *fs_info; 709 struct btrfs_workqueue *wq; 710 btrfs_work_func_t func; 711 712 fs_info = end_io_wq->info; 713 end_io_wq->error = bio->bi_error; 714 715 if (bio->bi_rw & REQ_WRITE) { 716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 717 wq = fs_info->endio_meta_write_workers; 718 func = btrfs_endio_meta_write_helper; 719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 720 wq = fs_info->endio_freespace_worker; 721 func = btrfs_freespace_write_helper; 722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 723 wq = fs_info->endio_raid56_workers; 724 func = btrfs_endio_raid56_helper; 725 } else { 726 wq = fs_info->endio_write_workers; 727 func = btrfs_endio_write_helper; 728 } 729 } else { 730 if (unlikely(end_io_wq->metadata == 731 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 732 wq = fs_info->endio_repair_workers; 733 func = btrfs_endio_repair_helper; 734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 735 wq = fs_info->endio_raid56_workers; 736 func = btrfs_endio_raid56_helper; 737 } else if (end_io_wq->metadata) { 738 wq = fs_info->endio_meta_workers; 739 func = btrfs_endio_meta_helper; 740 } else { 741 wq = fs_info->endio_workers; 742 func = btrfs_endio_helper; 743 } 744 } 745 746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 747 btrfs_queue_work(wq, &end_io_wq->work); 748 } 749 750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 751 enum btrfs_wq_endio_type metadata) 752 { 753 struct btrfs_end_io_wq *end_io_wq; 754 755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 756 if (!end_io_wq) 757 return -ENOMEM; 758 759 end_io_wq->private = bio->bi_private; 760 end_io_wq->end_io = bio->bi_end_io; 761 end_io_wq->info = info; 762 end_io_wq->error = 0; 763 end_io_wq->bio = bio; 764 end_io_wq->metadata = metadata; 765 766 bio->bi_private = end_io_wq; 767 bio->bi_end_io = end_workqueue_bio; 768 return 0; 769 } 770 771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 772 { 773 unsigned long limit = min_t(unsigned long, 774 info->thread_pool_size, 775 info->fs_devices->open_devices); 776 return 256 * limit; 777 } 778 779 static void run_one_async_start(struct btrfs_work *work) 780 { 781 struct async_submit_bio *async; 782 int ret; 783 784 async = container_of(work, struct async_submit_bio, work); 785 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 786 async->mirror_num, async->bio_flags, 787 async->bio_offset); 788 if (ret) 789 async->error = ret; 790 } 791 792 static void run_one_async_done(struct btrfs_work *work) 793 { 794 struct btrfs_fs_info *fs_info; 795 struct async_submit_bio *async; 796 int limit; 797 798 async = container_of(work, struct async_submit_bio, work); 799 fs_info = BTRFS_I(async->inode)->root->fs_info; 800 801 limit = btrfs_async_submit_limit(fs_info); 802 limit = limit * 2 / 3; 803 804 /* 805 * atomic_dec_return implies a barrier for waitqueue_active 806 */ 807 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 808 waitqueue_active(&fs_info->async_submit_wait)) 809 wake_up(&fs_info->async_submit_wait); 810 811 /* If an error occured we just want to clean up the bio and move on */ 812 if (async->error) { 813 async->bio->bi_error = async->error; 814 bio_endio(async->bio); 815 return; 816 } 817 818 async->submit_bio_done(async->inode, async->rw, async->bio, 819 async->mirror_num, async->bio_flags, 820 async->bio_offset); 821 } 822 823 static void run_one_async_free(struct btrfs_work *work) 824 { 825 struct async_submit_bio *async; 826 827 async = container_of(work, struct async_submit_bio, work); 828 kfree(async); 829 } 830 831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 832 int rw, struct bio *bio, int mirror_num, 833 unsigned long bio_flags, 834 u64 bio_offset, 835 extent_submit_bio_hook_t *submit_bio_start, 836 extent_submit_bio_hook_t *submit_bio_done) 837 { 838 struct async_submit_bio *async; 839 840 async = kmalloc(sizeof(*async), GFP_NOFS); 841 if (!async) 842 return -ENOMEM; 843 844 async->inode = inode; 845 async->rw = rw; 846 async->bio = bio; 847 async->mirror_num = mirror_num; 848 async->submit_bio_start = submit_bio_start; 849 async->submit_bio_done = submit_bio_done; 850 851 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 852 run_one_async_done, run_one_async_free); 853 854 async->bio_flags = bio_flags; 855 async->bio_offset = bio_offset; 856 857 async->error = 0; 858 859 atomic_inc(&fs_info->nr_async_submits); 860 861 if (rw & REQ_SYNC) 862 btrfs_set_work_high_priority(&async->work); 863 864 btrfs_queue_work(fs_info->workers, &async->work); 865 866 while (atomic_read(&fs_info->async_submit_draining) && 867 atomic_read(&fs_info->nr_async_submits)) { 868 wait_event(fs_info->async_submit_wait, 869 (atomic_read(&fs_info->nr_async_submits) == 0)); 870 } 871 872 return 0; 873 } 874 875 static int btree_csum_one_bio(struct bio *bio) 876 { 877 struct bio_vec *bvec; 878 struct btrfs_root *root; 879 int i, ret = 0; 880 881 bio_for_each_segment_all(bvec, bio, i) { 882 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 883 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 884 if (ret) 885 break; 886 } 887 888 return ret; 889 } 890 891 static int __btree_submit_bio_start(struct inode *inode, int rw, 892 struct bio *bio, int mirror_num, 893 unsigned long bio_flags, 894 u64 bio_offset) 895 { 896 /* 897 * when we're called for a write, we're already in the async 898 * submission context. Just jump into btrfs_map_bio 899 */ 900 return btree_csum_one_bio(bio); 901 } 902 903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 904 int mirror_num, unsigned long bio_flags, 905 u64 bio_offset) 906 { 907 int ret; 908 909 /* 910 * when we're called for a write, we're already in the async 911 * submission context. Just jump into btrfs_map_bio 912 */ 913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 914 if (ret) { 915 bio->bi_error = ret; 916 bio_endio(bio); 917 } 918 return ret; 919 } 920 921 static int check_async_write(struct inode *inode, unsigned long bio_flags) 922 { 923 if (bio_flags & EXTENT_BIO_TREE_LOG) 924 return 0; 925 #ifdef CONFIG_X86 926 if (cpu_has_xmm4_2) 927 return 0; 928 #endif 929 return 1; 930 } 931 932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 933 int mirror_num, unsigned long bio_flags, 934 u64 bio_offset) 935 { 936 int async = check_async_write(inode, bio_flags); 937 int ret; 938 939 if (!(rw & REQ_WRITE)) { 940 /* 941 * called for a read, do the setup so that checksum validation 942 * can happen in the async kernel threads 943 */ 944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 945 bio, BTRFS_WQ_ENDIO_METADATA); 946 if (ret) 947 goto out_w_error; 948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 949 mirror_num, 0); 950 } else if (!async) { 951 ret = btree_csum_one_bio(bio); 952 if (ret) 953 goto out_w_error; 954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 955 mirror_num, 0); 956 } else { 957 /* 958 * kthread helpers are used to submit writes so that 959 * checksumming can happen in parallel across all CPUs 960 */ 961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 962 inode, rw, bio, mirror_num, 0, 963 bio_offset, 964 __btree_submit_bio_start, 965 __btree_submit_bio_done); 966 } 967 968 if (ret) 969 goto out_w_error; 970 return 0; 971 972 out_w_error: 973 bio->bi_error = ret; 974 bio_endio(bio); 975 return ret; 976 } 977 978 #ifdef CONFIG_MIGRATION 979 static int btree_migratepage(struct address_space *mapping, 980 struct page *newpage, struct page *page, 981 enum migrate_mode mode) 982 { 983 /* 984 * we can't safely write a btree page from here, 985 * we haven't done the locking hook 986 */ 987 if (PageDirty(page)) 988 return -EAGAIN; 989 /* 990 * Buffers may be managed in a filesystem specific way. 991 * We must have no buffers or drop them. 992 */ 993 if (page_has_private(page) && 994 !try_to_release_page(page, GFP_KERNEL)) 995 return -EAGAIN; 996 return migrate_page(mapping, newpage, page, mode); 997 } 998 #endif 999 1000 1001 static int btree_writepages(struct address_space *mapping, 1002 struct writeback_control *wbc) 1003 { 1004 struct btrfs_fs_info *fs_info; 1005 int ret; 1006 1007 if (wbc->sync_mode == WB_SYNC_NONE) { 1008 1009 if (wbc->for_kupdate) 1010 return 0; 1011 1012 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1013 /* this is a bit racy, but that's ok */ 1014 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1015 BTRFS_DIRTY_METADATA_THRESH); 1016 if (ret < 0) 1017 return 0; 1018 } 1019 return btree_write_cache_pages(mapping, wbc); 1020 } 1021 1022 static int btree_readpage(struct file *file, struct page *page) 1023 { 1024 struct extent_io_tree *tree; 1025 tree = &BTRFS_I(page->mapping->host)->io_tree; 1026 return extent_read_full_page(tree, page, btree_get_extent, 0); 1027 } 1028 1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1030 { 1031 if (PageWriteback(page) || PageDirty(page)) 1032 return 0; 1033 1034 return try_release_extent_buffer(page); 1035 } 1036 1037 static void btree_invalidatepage(struct page *page, unsigned int offset, 1038 unsigned int length) 1039 { 1040 struct extent_io_tree *tree; 1041 tree = &BTRFS_I(page->mapping->host)->io_tree; 1042 extent_invalidatepage(tree, page, offset); 1043 btree_releasepage(page, GFP_NOFS); 1044 if (PagePrivate(page)) { 1045 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1046 "page private not zero on page %llu", 1047 (unsigned long long)page_offset(page)); 1048 ClearPagePrivate(page); 1049 set_page_private(page, 0); 1050 page_cache_release(page); 1051 } 1052 } 1053 1054 static int btree_set_page_dirty(struct page *page) 1055 { 1056 #ifdef DEBUG 1057 struct extent_buffer *eb; 1058 1059 BUG_ON(!PagePrivate(page)); 1060 eb = (struct extent_buffer *)page->private; 1061 BUG_ON(!eb); 1062 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1063 BUG_ON(!atomic_read(&eb->refs)); 1064 btrfs_assert_tree_locked(eb); 1065 #endif 1066 return __set_page_dirty_nobuffers(page); 1067 } 1068 1069 static const struct address_space_operations btree_aops = { 1070 .readpage = btree_readpage, 1071 .writepages = btree_writepages, 1072 .releasepage = btree_releasepage, 1073 .invalidatepage = btree_invalidatepage, 1074 #ifdef CONFIG_MIGRATION 1075 .migratepage = btree_migratepage, 1076 #endif 1077 .set_page_dirty = btree_set_page_dirty, 1078 }; 1079 1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1081 { 1082 struct extent_buffer *buf = NULL; 1083 struct inode *btree_inode = root->fs_info->btree_inode; 1084 1085 buf = btrfs_find_create_tree_block(root, bytenr); 1086 if (!buf) 1087 return; 1088 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1089 buf, 0, WAIT_NONE, btree_get_extent, 0); 1090 free_extent_buffer(buf); 1091 } 1092 1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1094 int mirror_num, struct extent_buffer **eb) 1095 { 1096 struct extent_buffer *buf = NULL; 1097 struct inode *btree_inode = root->fs_info->btree_inode; 1098 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1099 int ret; 1100 1101 buf = btrfs_find_create_tree_block(root, bytenr); 1102 if (!buf) 1103 return 0; 1104 1105 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1106 1107 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1108 btree_get_extent, mirror_num); 1109 if (ret) { 1110 free_extent_buffer(buf); 1111 return ret; 1112 } 1113 1114 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1115 free_extent_buffer(buf); 1116 return -EIO; 1117 } else if (extent_buffer_uptodate(buf)) { 1118 *eb = buf; 1119 } else { 1120 free_extent_buffer(buf); 1121 } 1122 return 0; 1123 } 1124 1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1126 u64 bytenr) 1127 { 1128 return find_extent_buffer(fs_info, bytenr); 1129 } 1130 1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1132 u64 bytenr) 1133 { 1134 if (btrfs_test_is_dummy_root(root)) 1135 return alloc_test_extent_buffer(root->fs_info, bytenr); 1136 return alloc_extent_buffer(root->fs_info, bytenr); 1137 } 1138 1139 1140 int btrfs_write_tree_block(struct extent_buffer *buf) 1141 { 1142 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1143 buf->start + buf->len - 1); 1144 } 1145 1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1147 { 1148 return filemap_fdatawait_range(buf->pages[0]->mapping, 1149 buf->start, buf->start + buf->len - 1); 1150 } 1151 1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1153 u64 parent_transid) 1154 { 1155 struct extent_buffer *buf = NULL; 1156 int ret; 1157 1158 buf = btrfs_find_create_tree_block(root, bytenr); 1159 if (!buf) 1160 return ERR_PTR(-ENOMEM); 1161 1162 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1163 if (ret) { 1164 free_extent_buffer(buf); 1165 return ERR_PTR(ret); 1166 } 1167 return buf; 1168 1169 } 1170 1171 void clean_tree_block(struct btrfs_trans_handle *trans, 1172 struct btrfs_fs_info *fs_info, 1173 struct extent_buffer *buf) 1174 { 1175 if (btrfs_header_generation(buf) == 1176 fs_info->running_transaction->transid) { 1177 btrfs_assert_tree_locked(buf); 1178 1179 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1180 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1181 -buf->len, 1182 fs_info->dirty_metadata_batch); 1183 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1184 btrfs_set_lock_blocking(buf); 1185 clear_extent_buffer_dirty(buf); 1186 } 1187 } 1188 } 1189 1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1191 { 1192 struct btrfs_subvolume_writers *writers; 1193 int ret; 1194 1195 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1196 if (!writers) 1197 return ERR_PTR(-ENOMEM); 1198 1199 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1200 if (ret < 0) { 1201 kfree(writers); 1202 return ERR_PTR(ret); 1203 } 1204 1205 init_waitqueue_head(&writers->wait); 1206 return writers; 1207 } 1208 1209 static void 1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1211 { 1212 percpu_counter_destroy(&writers->counter); 1213 kfree(writers); 1214 } 1215 1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1217 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1218 u64 objectid) 1219 { 1220 root->node = NULL; 1221 root->commit_root = NULL; 1222 root->sectorsize = sectorsize; 1223 root->nodesize = nodesize; 1224 root->stripesize = stripesize; 1225 root->state = 0; 1226 root->orphan_cleanup_state = 0; 1227 1228 root->objectid = objectid; 1229 root->last_trans = 0; 1230 root->highest_objectid = 0; 1231 root->nr_delalloc_inodes = 0; 1232 root->nr_ordered_extents = 0; 1233 root->name = NULL; 1234 root->inode_tree = RB_ROOT; 1235 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1236 root->block_rsv = NULL; 1237 root->orphan_block_rsv = NULL; 1238 1239 INIT_LIST_HEAD(&root->dirty_list); 1240 INIT_LIST_HEAD(&root->root_list); 1241 INIT_LIST_HEAD(&root->delalloc_inodes); 1242 INIT_LIST_HEAD(&root->delalloc_root); 1243 INIT_LIST_HEAD(&root->ordered_extents); 1244 INIT_LIST_HEAD(&root->ordered_root); 1245 INIT_LIST_HEAD(&root->logged_list[0]); 1246 INIT_LIST_HEAD(&root->logged_list[1]); 1247 spin_lock_init(&root->orphan_lock); 1248 spin_lock_init(&root->inode_lock); 1249 spin_lock_init(&root->delalloc_lock); 1250 spin_lock_init(&root->ordered_extent_lock); 1251 spin_lock_init(&root->accounting_lock); 1252 spin_lock_init(&root->log_extents_lock[0]); 1253 spin_lock_init(&root->log_extents_lock[1]); 1254 mutex_init(&root->objectid_mutex); 1255 mutex_init(&root->log_mutex); 1256 mutex_init(&root->ordered_extent_mutex); 1257 mutex_init(&root->delalloc_mutex); 1258 init_waitqueue_head(&root->log_writer_wait); 1259 init_waitqueue_head(&root->log_commit_wait[0]); 1260 init_waitqueue_head(&root->log_commit_wait[1]); 1261 INIT_LIST_HEAD(&root->log_ctxs[0]); 1262 INIT_LIST_HEAD(&root->log_ctxs[1]); 1263 atomic_set(&root->log_commit[0], 0); 1264 atomic_set(&root->log_commit[1], 0); 1265 atomic_set(&root->log_writers, 0); 1266 atomic_set(&root->log_batch, 0); 1267 atomic_set(&root->orphan_inodes, 0); 1268 atomic_set(&root->refs, 1); 1269 atomic_set(&root->will_be_snapshoted, 0); 1270 atomic_set(&root->qgroup_meta_rsv, 0); 1271 root->log_transid = 0; 1272 root->log_transid_committed = -1; 1273 root->last_log_commit = 0; 1274 if (fs_info) 1275 extent_io_tree_init(&root->dirty_log_pages, 1276 fs_info->btree_inode->i_mapping); 1277 1278 memset(&root->root_key, 0, sizeof(root->root_key)); 1279 memset(&root->root_item, 0, sizeof(root->root_item)); 1280 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1281 if (fs_info) 1282 root->defrag_trans_start = fs_info->generation; 1283 else 1284 root->defrag_trans_start = 0; 1285 root->root_key.objectid = objectid; 1286 root->anon_dev = 0; 1287 1288 spin_lock_init(&root->root_item_lock); 1289 } 1290 1291 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1292 { 1293 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1294 if (root) 1295 root->fs_info = fs_info; 1296 return root; 1297 } 1298 1299 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1300 /* Should only be used by the testing infrastructure */ 1301 struct btrfs_root *btrfs_alloc_dummy_root(void) 1302 { 1303 struct btrfs_root *root; 1304 1305 root = btrfs_alloc_root(NULL); 1306 if (!root) 1307 return ERR_PTR(-ENOMEM); 1308 __setup_root(4096, 4096, 4096, root, NULL, 1); 1309 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1310 root->alloc_bytenr = 0; 1311 1312 return root; 1313 } 1314 #endif 1315 1316 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1317 struct btrfs_fs_info *fs_info, 1318 u64 objectid) 1319 { 1320 struct extent_buffer *leaf; 1321 struct btrfs_root *tree_root = fs_info->tree_root; 1322 struct btrfs_root *root; 1323 struct btrfs_key key; 1324 int ret = 0; 1325 uuid_le uuid; 1326 1327 root = btrfs_alloc_root(fs_info); 1328 if (!root) 1329 return ERR_PTR(-ENOMEM); 1330 1331 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1332 tree_root->stripesize, root, fs_info, objectid); 1333 root->root_key.objectid = objectid; 1334 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1335 root->root_key.offset = 0; 1336 1337 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1338 if (IS_ERR(leaf)) { 1339 ret = PTR_ERR(leaf); 1340 leaf = NULL; 1341 goto fail; 1342 } 1343 1344 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1345 btrfs_set_header_bytenr(leaf, leaf->start); 1346 btrfs_set_header_generation(leaf, trans->transid); 1347 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1348 btrfs_set_header_owner(leaf, objectid); 1349 root->node = leaf; 1350 1351 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1352 BTRFS_FSID_SIZE); 1353 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1354 btrfs_header_chunk_tree_uuid(leaf), 1355 BTRFS_UUID_SIZE); 1356 btrfs_mark_buffer_dirty(leaf); 1357 1358 root->commit_root = btrfs_root_node(root); 1359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1360 1361 root->root_item.flags = 0; 1362 root->root_item.byte_limit = 0; 1363 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1364 btrfs_set_root_generation(&root->root_item, trans->transid); 1365 btrfs_set_root_level(&root->root_item, 0); 1366 btrfs_set_root_refs(&root->root_item, 1); 1367 btrfs_set_root_used(&root->root_item, leaf->len); 1368 btrfs_set_root_last_snapshot(&root->root_item, 0); 1369 btrfs_set_root_dirid(&root->root_item, 0); 1370 uuid_le_gen(&uuid); 1371 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1372 root->root_item.drop_level = 0; 1373 1374 key.objectid = objectid; 1375 key.type = BTRFS_ROOT_ITEM_KEY; 1376 key.offset = 0; 1377 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1378 if (ret) 1379 goto fail; 1380 1381 btrfs_tree_unlock(leaf); 1382 1383 return root; 1384 1385 fail: 1386 if (leaf) { 1387 btrfs_tree_unlock(leaf); 1388 free_extent_buffer(root->commit_root); 1389 free_extent_buffer(leaf); 1390 } 1391 kfree(root); 1392 1393 return ERR_PTR(ret); 1394 } 1395 1396 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1397 struct btrfs_fs_info *fs_info) 1398 { 1399 struct btrfs_root *root; 1400 struct btrfs_root *tree_root = fs_info->tree_root; 1401 struct extent_buffer *leaf; 1402 1403 root = btrfs_alloc_root(fs_info); 1404 if (!root) 1405 return ERR_PTR(-ENOMEM); 1406 1407 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1408 tree_root->stripesize, root, fs_info, 1409 BTRFS_TREE_LOG_OBJECTID); 1410 1411 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1412 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1413 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1414 1415 /* 1416 * DON'T set REF_COWS for log trees 1417 * 1418 * log trees do not get reference counted because they go away 1419 * before a real commit is actually done. They do store pointers 1420 * to file data extents, and those reference counts still get 1421 * updated (along with back refs to the log tree). 1422 */ 1423 1424 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1425 NULL, 0, 0, 0); 1426 if (IS_ERR(leaf)) { 1427 kfree(root); 1428 return ERR_CAST(leaf); 1429 } 1430 1431 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1432 btrfs_set_header_bytenr(leaf, leaf->start); 1433 btrfs_set_header_generation(leaf, trans->transid); 1434 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1435 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1436 root->node = leaf; 1437 1438 write_extent_buffer(root->node, root->fs_info->fsid, 1439 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1440 btrfs_mark_buffer_dirty(root->node); 1441 btrfs_tree_unlock(root->node); 1442 return root; 1443 } 1444 1445 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1446 struct btrfs_fs_info *fs_info) 1447 { 1448 struct btrfs_root *log_root; 1449 1450 log_root = alloc_log_tree(trans, fs_info); 1451 if (IS_ERR(log_root)) 1452 return PTR_ERR(log_root); 1453 WARN_ON(fs_info->log_root_tree); 1454 fs_info->log_root_tree = log_root; 1455 return 0; 1456 } 1457 1458 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1459 struct btrfs_root *root) 1460 { 1461 struct btrfs_root *log_root; 1462 struct btrfs_inode_item *inode_item; 1463 1464 log_root = alloc_log_tree(trans, root->fs_info); 1465 if (IS_ERR(log_root)) 1466 return PTR_ERR(log_root); 1467 1468 log_root->last_trans = trans->transid; 1469 log_root->root_key.offset = root->root_key.objectid; 1470 1471 inode_item = &log_root->root_item.inode; 1472 btrfs_set_stack_inode_generation(inode_item, 1); 1473 btrfs_set_stack_inode_size(inode_item, 3); 1474 btrfs_set_stack_inode_nlink(inode_item, 1); 1475 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1476 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1477 1478 btrfs_set_root_node(&log_root->root_item, log_root->node); 1479 1480 WARN_ON(root->log_root); 1481 root->log_root = log_root; 1482 root->log_transid = 0; 1483 root->log_transid_committed = -1; 1484 root->last_log_commit = 0; 1485 return 0; 1486 } 1487 1488 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1489 struct btrfs_key *key) 1490 { 1491 struct btrfs_root *root; 1492 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1493 struct btrfs_path *path; 1494 u64 generation; 1495 int ret; 1496 1497 path = btrfs_alloc_path(); 1498 if (!path) 1499 return ERR_PTR(-ENOMEM); 1500 1501 root = btrfs_alloc_root(fs_info); 1502 if (!root) { 1503 ret = -ENOMEM; 1504 goto alloc_fail; 1505 } 1506 1507 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1508 tree_root->stripesize, root, fs_info, key->objectid); 1509 1510 ret = btrfs_find_root(tree_root, key, path, 1511 &root->root_item, &root->root_key); 1512 if (ret) { 1513 if (ret > 0) 1514 ret = -ENOENT; 1515 goto find_fail; 1516 } 1517 1518 generation = btrfs_root_generation(&root->root_item); 1519 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1520 generation); 1521 if (IS_ERR(root->node)) { 1522 ret = PTR_ERR(root->node); 1523 goto find_fail; 1524 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1525 ret = -EIO; 1526 free_extent_buffer(root->node); 1527 goto find_fail; 1528 } 1529 root->commit_root = btrfs_root_node(root); 1530 out: 1531 btrfs_free_path(path); 1532 return root; 1533 1534 find_fail: 1535 kfree(root); 1536 alloc_fail: 1537 root = ERR_PTR(ret); 1538 goto out; 1539 } 1540 1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1542 struct btrfs_key *location) 1543 { 1544 struct btrfs_root *root; 1545 1546 root = btrfs_read_tree_root(tree_root, location); 1547 if (IS_ERR(root)) 1548 return root; 1549 1550 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1551 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1552 btrfs_check_and_init_root_item(&root->root_item); 1553 } 1554 1555 return root; 1556 } 1557 1558 int btrfs_init_fs_root(struct btrfs_root *root) 1559 { 1560 int ret; 1561 struct btrfs_subvolume_writers *writers; 1562 1563 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1564 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1565 GFP_NOFS); 1566 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1567 ret = -ENOMEM; 1568 goto fail; 1569 } 1570 1571 writers = btrfs_alloc_subvolume_writers(); 1572 if (IS_ERR(writers)) { 1573 ret = PTR_ERR(writers); 1574 goto fail; 1575 } 1576 root->subv_writers = writers; 1577 1578 btrfs_init_free_ino_ctl(root); 1579 spin_lock_init(&root->ino_cache_lock); 1580 init_waitqueue_head(&root->ino_cache_wait); 1581 1582 ret = get_anon_bdev(&root->anon_dev); 1583 if (ret) 1584 goto free_writers; 1585 return 0; 1586 1587 free_writers: 1588 btrfs_free_subvolume_writers(root->subv_writers); 1589 fail: 1590 kfree(root->free_ino_ctl); 1591 kfree(root->free_ino_pinned); 1592 return ret; 1593 } 1594 1595 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1596 u64 root_id) 1597 { 1598 struct btrfs_root *root; 1599 1600 spin_lock(&fs_info->fs_roots_radix_lock); 1601 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1602 (unsigned long)root_id); 1603 spin_unlock(&fs_info->fs_roots_radix_lock); 1604 return root; 1605 } 1606 1607 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1608 struct btrfs_root *root) 1609 { 1610 int ret; 1611 1612 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1613 if (ret) 1614 return ret; 1615 1616 spin_lock(&fs_info->fs_roots_radix_lock); 1617 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1618 (unsigned long)root->root_key.objectid, 1619 root); 1620 if (ret == 0) 1621 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1622 spin_unlock(&fs_info->fs_roots_radix_lock); 1623 radix_tree_preload_end(); 1624 1625 return ret; 1626 } 1627 1628 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1629 struct btrfs_key *location, 1630 bool check_ref) 1631 { 1632 struct btrfs_root *root; 1633 struct btrfs_path *path; 1634 struct btrfs_key key; 1635 int ret; 1636 1637 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1638 return fs_info->tree_root; 1639 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1640 return fs_info->extent_root; 1641 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1642 return fs_info->chunk_root; 1643 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1644 return fs_info->dev_root; 1645 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1646 return fs_info->csum_root; 1647 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1648 return fs_info->quota_root ? fs_info->quota_root : 1649 ERR_PTR(-ENOENT); 1650 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1651 return fs_info->uuid_root ? fs_info->uuid_root : 1652 ERR_PTR(-ENOENT); 1653 again: 1654 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1655 if (root) { 1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1657 return ERR_PTR(-ENOENT); 1658 return root; 1659 } 1660 1661 root = btrfs_read_fs_root(fs_info->tree_root, location); 1662 if (IS_ERR(root)) 1663 return root; 1664 1665 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1666 ret = -ENOENT; 1667 goto fail; 1668 } 1669 1670 ret = btrfs_init_fs_root(root); 1671 if (ret) 1672 goto fail; 1673 1674 path = btrfs_alloc_path(); 1675 if (!path) { 1676 ret = -ENOMEM; 1677 goto fail; 1678 } 1679 key.objectid = BTRFS_ORPHAN_OBJECTID; 1680 key.type = BTRFS_ORPHAN_ITEM_KEY; 1681 key.offset = location->objectid; 1682 1683 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1684 btrfs_free_path(path); 1685 if (ret < 0) 1686 goto fail; 1687 if (ret == 0) 1688 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1689 1690 ret = btrfs_insert_fs_root(fs_info, root); 1691 if (ret) { 1692 if (ret == -EEXIST) { 1693 free_fs_root(root); 1694 goto again; 1695 } 1696 goto fail; 1697 } 1698 return root; 1699 fail: 1700 free_fs_root(root); 1701 return ERR_PTR(ret); 1702 } 1703 1704 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1705 { 1706 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1707 int ret = 0; 1708 struct btrfs_device *device; 1709 struct backing_dev_info *bdi; 1710 1711 rcu_read_lock(); 1712 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1713 if (!device->bdev) 1714 continue; 1715 bdi = blk_get_backing_dev_info(device->bdev); 1716 if (bdi_congested(bdi, bdi_bits)) { 1717 ret = 1; 1718 break; 1719 } 1720 } 1721 rcu_read_unlock(); 1722 return ret; 1723 } 1724 1725 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1726 { 1727 int err; 1728 1729 err = bdi_setup_and_register(bdi, "btrfs"); 1730 if (err) 1731 return err; 1732 1733 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE; 1734 bdi->congested_fn = btrfs_congested_fn; 1735 bdi->congested_data = info; 1736 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1737 return 0; 1738 } 1739 1740 /* 1741 * called by the kthread helper functions to finally call the bio end_io 1742 * functions. This is where read checksum verification actually happens 1743 */ 1744 static void end_workqueue_fn(struct btrfs_work *work) 1745 { 1746 struct bio *bio; 1747 struct btrfs_end_io_wq *end_io_wq; 1748 1749 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1750 bio = end_io_wq->bio; 1751 1752 bio->bi_error = end_io_wq->error; 1753 bio->bi_private = end_io_wq->private; 1754 bio->bi_end_io = end_io_wq->end_io; 1755 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1756 bio_endio(bio); 1757 } 1758 1759 static int cleaner_kthread(void *arg) 1760 { 1761 struct btrfs_root *root = arg; 1762 int again; 1763 struct btrfs_trans_handle *trans; 1764 1765 do { 1766 again = 0; 1767 1768 /* Make the cleaner go to sleep early. */ 1769 if (btrfs_need_cleaner_sleep(root)) 1770 goto sleep; 1771 1772 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1773 goto sleep; 1774 1775 /* 1776 * Avoid the problem that we change the status of the fs 1777 * during the above check and trylock. 1778 */ 1779 if (btrfs_need_cleaner_sleep(root)) { 1780 mutex_unlock(&root->fs_info->cleaner_mutex); 1781 goto sleep; 1782 } 1783 1784 btrfs_run_delayed_iputs(root); 1785 again = btrfs_clean_one_deleted_snapshot(root); 1786 mutex_unlock(&root->fs_info->cleaner_mutex); 1787 1788 /* 1789 * The defragger has dealt with the R/O remount and umount, 1790 * needn't do anything special here. 1791 */ 1792 btrfs_run_defrag_inodes(root->fs_info); 1793 1794 /* 1795 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1796 * with relocation (btrfs_relocate_chunk) and relocation 1797 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1798 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1799 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1800 * unused block groups. 1801 */ 1802 btrfs_delete_unused_bgs(root->fs_info); 1803 sleep: 1804 if (!try_to_freeze() && !again) { 1805 set_current_state(TASK_INTERRUPTIBLE); 1806 if (!kthread_should_stop()) 1807 schedule(); 1808 __set_current_state(TASK_RUNNING); 1809 } 1810 } while (!kthread_should_stop()); 1811 1812 /* 1813 * Transaction kthread is stopped before us and wakes us up. 1814 * However we might have started a new transaction and COWed some 1815 * tree blocks when deleting unused block groups for example. So 1816 * make sure we commit the transaction we started to have a clean 1817 * shutdown when evicting the btree inode - if it has dirty pages 1818 * when we do the final iput() on it, eviction will trigger a 1819 * writeback for it which will fail with null pointer dereferences 1820 * since work queues and other resources were already released and 1821 * destroyed by the time the iput/eviction/writeback is made. 1822 */ 1823 trans = btrfs_attach_transaction(root); 1824 if (IS_ERR(trans)) { 1825 if (PTR_ERR(trans) != -ENOENT) 1826 btrfs_err(root->fs_info, 1827 "cleaner transaction attach returned %ld", 1828 PTR_ERR(trans)); 1829 } else { 1830 int ret; 1831 1832 ret = btrfs_commit_transaction(trans, root); 1833 if (ret) 1834 btrfs_err(root->fs_info, 1835 "cleaner open transaction commit returned %d", 1836 ret); 1837 } 1838 1839 return 0; 1840 } 1841 1842 static int transaction_kthread(void *arg) 1843 { 1844 struct btrfs_root *root = arg; 1845 struct btrfs_trans_handle *trans; 1846 struct btrfs_transaction *cur; 1847 u64 transid; 1848 unsigned long now; 1849 unsigned long delay; 1850 bool cannot_commit; 1851 1852 do { 1853 cannot_commit = false; 1854 delay = HZ * root->fs_info->commit_interval; 1855 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1856 1857 spin_lock(&root->fs_info->trans_lock); 1858 cur = root->fs_info->running_transaction; 1859 if (!cur) { 1860 spin_unlock(&root->fs_info->trans_lock); 1861 goto sleep; 1862 } 1863 1864 now = get_seconds(); 1865 if (cur->state < TRANS_STATE_BLOCKED && 1866 (now < cur->start_time || 1867 now - cur->start_time < root->fs_info->commit_interval)) { 1868 spin_unlock(&root->fs_info->trans_lock); 1869 delay = HZ * 5; 1870 goto sleep; 1871 } 1872 transid = cur->transid; 1873 spin_unlock(&root->fs_info->trans_lock); 1874 1875 /* If the file system is aborted, this will always fail. */ 1876 trans = btrfs_attach_transaction(root); 1877 if (IS_ERR(trans)) { 1878 if (PTR_ERR(trans) != -ENOENT) 1879 cannot_commit = true; 1880 goto sleep; 1881 } 1882 if (transid == trans->transid) { 1883 btrfs_commit_transaction(trans, root); 1884 } else { 1885 btrfs_end_transaction(trans, root); 1886 } 1887 sleep: 1888 wake_up_process(root->fs_info->cleaner_kthread); 1889 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1890 1891 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1892 &root->fs_info->fs_state))) 1893 btrfs_cleanup_transaction(root); 1894 if (!try_to_freeze()) { 1895 set_current_state(TASK_INTERRUPTIBLE); 1896 if (!kthread_should_stop() && 1897 (!btrfs_transaction_blocked(root->fs_info) || 1898 cannot_commit)) 1899 schedule_timeout(delay); 1900 __set_current_state(TASK_RUNNING); 1901 } 1902 } while (!kthread_should_stop()); 1903 return 0; 1904 } 1905 1906 /* 1907 * this will find the highest generation in the array of 1908 * root backups. The index of the highest array is returned, 1909 * or -1 if we can't find anything. 1910 * 1911 * We check to make sure the array is valid by comparing the 1912 * generation of the latest root in the array with the generation 1913 * in the super block. If they don't match we pitch it. 1914 */ 1915 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1916 { 1917 u64 cur; 1918 int newest_index = -1; 1919 struct btrfs_root_backup *root_backup; 1920 int i; 1921 1922 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1923 root_backup = info->super_copy->super_roots + i; 1924 cur = btrfs_backup_tree_root_gen(root_backup); 1925 if (cur == newest_gen) 1926 newest_index = i; 1927 } 1928 1929 /* check to see if we actually wrapped around */ 1930 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1931 root_backup = info->super_copy->super_roots; 1932 cur = btrfs_backup_tree_root_gen(root_backup); 1933 if (cur == newest_gen) 1934 newest_index = 0; 1935 } 1936 return newest_index; 1937 } 1938 1939 1940 /* 1941 * find the oldest backup so we know where to store new entries 1942 * in the backup array. This will set the backup_root_index 1943 * field in the fs_info struct 1944 */ 1945 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1946 u64 newest_gen) 1947 { 1948 int newest_index = -1; 1949 1950 newest_index = find_newest_super_backup(info, newest_gen); 1951 /* if there was garbage in there, just move along */ 1952 if (newest_index == -1) { 1953 info->backup_root_index = 0; 1954 } else { 1955 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1956 } 1957 } 1958 1959 /* 1960 * copy all the root pointers into the super backup array. 1961 * this will bump the backup pointer by one when it is 1962 * done 1963 */ 1964 static void backup_super_roots(struct btrfs_fs_info *info) 1965 { 1966 int next_backup; 1967 struct btrfs_root_backup *root_backup; 1968 int last_backup; 1969 1970 next_backup = info->backup_root_index; 1971 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1972 BTRFS_NUM_BACKUP_ROOTS; 1973 1974 /* 1975 * just overwrite the last backup if we're at the same generation 1976 * this happens only at umount 1977 */ 1978 root_backup = info->super_for_commit->super_roots + last_backup; 1979 if (btrfs_backup_tree_root_gen(root_backup) == 1980 btrfs_header_generation(info->tree_root->node)) 1981 next_backup = last_backup; 1982 1983 root_backup = info->super_for_commit->super_roots + next_backup; 1984 1985 /* 1986 * make sure all of our padding and empty slots get zero filled 1987 * regardless of which ones we use today 1988 */ 1989 memset(root_backup, 0, sizeof(*root_backup)); 1990 1991 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1992 1993 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1994 btrfs_set_backup_tree_root_gen(root_backup, 1995 btrfs_header_generation(info->tree_root->node)); 1996 1997 btrfs_set_backup_tree_root_level(root_backup, 1998 btrfs_header_level(info->tree_root->node)); 1999 2000 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2001 btrfs_set_backup_chunk_root_gen(root_backup, 2002 btrfs_header_generation(info->chunk_root->node)); 2003 btrfs_set_backup_chunk_root_level(root_backup, 2004 btrfs_header_level(info->chunk_root->node)); 2005 2006 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2007 btrfs_set_backup_extent_root_gen(root_backup, 2008 btrfs_header_generation(info->extent_root->node)); 2009 btrfs_set_backup_extent_root_level(root_backup, 2010 btrfs_header_level(info->extent_root->node)); 2011 2012 /* 2013 * we might commit during log recovery, which happens before we set 2014 * the fs_root. Make sure it is valid before we fill it in. 2015 */ 2016 if (info->fs_root && info->fs_root->node) { 2017 btrfs_set_backup_fs_root(root_backup, 2018 info->fs_root->node->start); 2019 btrfs_set_backup_fs_root_gen(root_backup, 2020 btrfs_header_generation(info->fs_root->node)); 2021 btrfs_set_backup_fs_root_level(root_backup, 2022 btrfs_header_level(info->fs_root->node)); 2023 } 2024 2025 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2026 btrfs_set_backup_dev_root_gen(root_backup, 2027 btrfs_header_generation(info->dev_root->node)); 2028 btrfs_set_backup_dev_root_level(root_backup, 2029 btrfs_header_level(info->dev_root->node)); 2030 2031 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2032 btrfs_set_backup_csum_root_gen(root_backup, 2033 btrfs_header_generation(info->csum_root->node)); 2034 btrfs_set_backup_csum_root_level(root_backup, 2035 btrfs_header_level(info->csum_root->node)); 2036 2037 btrfs_set_backup_total_bytes(root_backup, 2038 btrfs_super_total_bytes(info->super_copy)); 2039 btrfs_set_backup_bytes_used(root_backup, 2040 btrfs_super_bytes_used(info->super_copy)); 2041 btrfs_set_backup_num_devices(root_backup, 2042 btrfs_super_num_devices(info->super_copy)); 2043 2044 /* 2045 * if we don't copy this out to the super_copy, it won't get remembered 2046 * for the next commit 2047 */ 2048 memcpy(&info->super_copy->super_roots, 2049 &info->super_for_commit->super_roots, 2050 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2051 } 2052 2053 /* 2054 * this copies info out of the root backup array and back into 2055 * the in-memory super block. It is meant to help iterate through 2056 * the array, so you send it the number of backups you've already 2057 * tried and the last backup index you used. 2058 * 2059 * this returns -1 when it has tried all the backups 2060 */ 2061 static noinline int next_root_backup(struct btrfs_fs_info *info, 2062 struct btrfs_super_block *super, 2063 int *num_backups_tried, int *backup_index) 2064 { 2065 struct btrfs_root_backup *root_backup; 2066 int newest = *backup_index; 2067 2068 if (*num_backups_tried == 0) { 2069 u64 gen = btrfs_super_generation(super); 2070 2071 newest = find_newest_super_backup(info, gen); 2072 if (newest == -1) 2073 return -1; 2074 2075 *backup_index = newest; 2076 *num_backups_tried = 1; 2077 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2078 /* we've tried all the backups, all done */ 2079 return -1; 2080 } else { 2081 /* jump to the next oldest backup */ 2082 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2083 BTRFS_NUM_BACKUP_ROOTS; 2084 *backup_index = newest; 2085 *num_backups_tried += 1; 2086 } 2087 root_backup = super->super_roots + newest; 2088 2089 btrfs_set_super_generation(super, 2090 btrfs_backup_tree_root_gen(root_backup)); 2091 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2092 btrfs_set_super_root_level(super, 2093 btrfs_backup_tree_root_level(root_backup)); 2094 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2095 2096 /* 2097 * fixme: the total bytes and num_devices need to match or we should 2098 * need a fsck 2099 */ 2100 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2101 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2102 return 0; 2103 } 2104 2105 /* helper to cleanup workers */ 2106 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2107 { 2108 btrfs_destroy_workqueue(fs_info->fixup_workers); 2109 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2110 btrfs_destroy_workqueue(fs_info->workers); 2111 btrfs_destroy_workqueue(fs_info->endio_workers); 2112 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2113 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2114 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2115 btrfs_destroy_workqueue(fs_info->rmw_workers); 2116 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2117 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2118 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2119 btrfs_destroy_workqueue(fs_info->submit_workers); 2120 btrfs_destroy_workqueue(fs_info->delayed_workers); 2121 btrfs_destroy_workqueue(fs_info->caching_workers); 2122 btrfs_destroy_workqueue(fs_info->readahead_workers); 2123 btrfs_destroy_workqueue(fs_info->flush_workers); 2124 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2125 btrfs_destroy_workqueue(fs_info->extent_workers); 2126 } 2127 2128 static void free_root_extent_buffers(struct btrfs_root *root) 2129 { 2130 if (root) { 2131 free_extent_buffer(root->node); 2132 free_extent_buffer(root->commit_root); 2133 root->node = NULL; 2134 root->commit_root = NULL; 2135 } 2136 } 2137 2138 /* helper to cleanup tree roots */ 2139 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2140 { 2141 free_root_extent_buffers(info->tree_root); 2142 2143 free_root_extent_buffers(info->dev_root); 2144 free_root_extent_buffers(info->extent_root); 2145 free_root_extent_buffers(info->csum_root); 2146 free_root_extent_buffers(info->quota_root); 2147 free_root_extent_buffers(info->uuid_root); 2148 if (chunk_root) 2149 free_root_extent_buffers(info->chunk_root); 2150 } 2151 2152 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2153 { 2154 int ret; 2155 struct btrfs_root *gang[8]; 2156 int i; 2157 2158 while (!list_empty(&fs_info->dead_roots)) { 2159 gang[0] = list_entry(fs_info->dead_roots.next, 2160 struct btrfs_root, root_list); 2161 list_del(&gang[0]->root_list); 2162 2163 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2164 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2165 } else { 2166 free_extent_buffer(gang[0]->node); 2167 free_extent_buffer(gang[0]->commit_root); 2168 btrfs_put_fs_root(gang[0]); 2169 } 2170 } 2171 2172 while (1) { 2173 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2174 (void **)gang, 0, 2175 ARRAY_SIZE(gang)); 2176 if (!ret) 2177 break; 2178 for (i = 0; i < ret; i++) 2179 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2180 } 2181 2182 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2183 btrfs_free_log_root_tree(NULL, fs_info); 2184 btrfs_destroy_pinned_extent(fs_info->tree_root, 2185 fs_info->pinned_extents); 2186 } 2187 } 2188 2189 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2190 { 2191 mutex_init(&fs_info->scrub_lock); 2192 atomic_set(&fs_info->scrubs_running, 0); 2193 atomic_set(&fs_info->scrub_pause_req, 0); 2194 atomic_set(&fs_info->scrubs_paused, 0); 2195 atomic_set(&fs_info->scrub_cancel_req, 0); 2196 init_waitqueue_head(&fs_info->scrub_pause_wait); 2197 fs_info->scrub_workers_refcnt = 0; 2198 } 2199 2200 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2201 { 2202 spin_lock_init(&fs_info->balance_lock); 2203 mutex_init(&fs_info->balance_mutex); 2204 atomic_set(&fs_info->balance_running, 0); 2205 atomic_set(&fs_info->balance_pause_req, 0); 2206 atomic_set(&fs_info->balance_cancel_req, 0); 2207 fs_info->balance_ctl = NULL; 2208 init_waitqueue_head(&fs_info->balance_wait_q); 2209 } 2210 2211 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2212 struct btrfs_root *tree_root) 2213 { 2214 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2215 set_nlink(fs_info->btree_inode, 1); 2216 /* 2217 * we set the i_size on the btree inode to the max possible int. 2218 * the real end of the address space is determined by all of 2219 * the devices in the system 2220 */ 2221 fs_info->btree_inode->i_size = OFFSET_MAX; 2222 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2223 2224 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2225 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2226 fs_info->btree_inode->i_mapping); 2227 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2228 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2229 2230 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2231 2232 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2233 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2234 sizeof(struct btrfs_key)); 2235 set_bit(BTRFS_INODE_DUMMY, 2236 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2237 btrfs_insert_inode_hash(fs_info->btree_inode); 2238 } 2239 2240 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2241 { 2242 fs_info->dev_replace.lock_owner = 0; 2243 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2244 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2245 mutex_init(&fs_info->dev_replace.lock_management_lock); 2246 mutex_init(&fs_info->dev_replace.lock); 2247 init_waitqueue_head(&fs_info->replace_wait); 2248 } 2249 2250 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2251 { 2252 spin_lock_init(&fs_info->qgroup_lock); 2253 mutex_init(&fs_info->qgroup_ioctl_lock); 2254 fs_info->qgroup_tree = RB_ROOT; 2255 fs_info->qgroup_op_tree = RB_ROOT; 2256 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2257 fs_info->qgroup_seq = 1; 2258 fs_info->quota_enabled = 0; 2259 fs_info->pending_quota_state = 0; 2260 fs_info->qgroup_ulist = NULL; 2261 mutex_init(&fs_info->qgroup_rescan_lock); 2262 } 2263 2264 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2265 struct btrfs_fs_devices *fs_devices) 2266 { 2267 int max_active = fs_info->thread_pool_size; 2268 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2269 2270 fs_info->workers = 2271 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2272 max_active, 16); 2273 2274 fs_info->delalloc_workers = 2275 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2276 2277 fs_info->flush_workers = 2278 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2279 2280 fs_info->caching_workers = 2281 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2282 2283 /* 2284 * a higher idle thresh on the submit workers makes it much more 2285 * likely that bios will be send down in a sane order to the 2286 * devices 2287 */ 2288 fs_info->submit_workers = 2289 btrfs_alloc_workqueue("submit", flags, 2290 min_t(u64, fs_devices->num_devices, 2291 max_active), 64); 2292 2293 fs_info->fixup_workers = 2294 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2295 2296 /* 2297 * endios are largely parallel and should have a very 2298 * low idle thresh 2299 */ 2300 fs_info->endio_workers = 2301 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2302 fs_info->endio_meta_workers = 2303 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2304 fs_info->endio_meta_write_workers = 2305 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2306 fs_info->endio_raid56_workers = 2307 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2308 fs_info->endio_repair_workers = 2309 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2310 fs_info->rmw_workers = 2311 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2312 fs_info->endio_write_workers = 2313 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2314 fs_info->endio_freespace_worker = 2315 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2316 fs_info->delayed_workers = 2317 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2318 fs_info->readahead_workers = 2319 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2320 fs_info->qgroup_rescan_workers = 2321 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2322 fs_info->extent_workers = 2323 btrfs_alloc_workqueue("extent-refs", flags, 2324 min_t(u64, fs_devices->num_devices, 2325 max_active), 8); 2326 2327 if (!(fs_info->workers && fs_info->delalloc_workers && 2328 fs_info->submit_workers && fs_info->flush_workers && 2329 fs_info->endio_workers && fs_info->endio_meta_workers && 2330 fs_info->endio_meta_write_workers && 2331 fs_info->endio_repair_workers && 2332 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2333 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2334 fs_info->caching_workers && fs_info->readahead_workers && 2335 fs_info->fixup_workers && fs_info->delayed_workers && 2336 fs_info->extent_workers && 2337 fs_info->qgroup_rescan_workers)) { 2338 return -ENOMEM; 2339 } 2340 2341 return 0; 2342 } 2343 2344 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2345 struct btrfs_fs_devices *fs_devices) 2346 { 2347 int ret; 2348 struct btrfs_root *tree_root = fs_info->tree_root; 2349 struct btrfs_root *log_tree_root; 2350 struct btrfs_super_block *disk_super = fs_info->super_copy; 2351 u64 bytenr = btrfs_super_log_root(disk_super); 2352 2353 if (fs_devices->rw_devices == 0) { 2354 btrfs_warn(fs_info, "log replay required on RO media"); 2355 return -EIO; 2356 } 2357 2358 log_tree_root = btrfs_alloc_root(fs_info); 2359 if (!log_tree_root) 2360 return -ENOMEM; 2361 2362 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2363 tree_root->stripesize, log_tree_root, fs_info, 2364 BTRFS_TREE_LOG_OBJECTID); 2365 2366 log_tree_root->node = read_tree_block(tree_root, bytenr, 2367 fs_info->generation + 1); 2368 if (IS_ERR(log_tree_root->node)) { 2369 btrfs_warn(fs_info, "failed to read log tree"); 2370 ret = PTR_ERR(log_tree_root->node); 2371 kfree(log_tree_root); 2372 return ret; 2373 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2374 btrfs_err(fs_info, "failed to read log tree"); 2375 free_extent_buffer(log_tree_root->node); 2376 kfree(log_tree_root); 2377 return -EIO; 2378 } 2379 /* returns with log_tree_root freed on success */ 2380 ret = btrfs_recover_log_trees(log_tree_root); 2381 if (ret) { 2382 btrfs_std_error(tree_root->fs_info, ret, 2383 "Failed to recover log tree"); 2384 free_extent_buffer(log_tree_root->node); 2385 kfree(log_tree_root); 2386 return ret; 2387 } 2388 2389 if (fs_info->sb->s_flags & MS_RDONLY) { 2390 ret = btrfs_commit_super(tree_root); 2391 if (ret) 2392 return ret; 2393 } 2394 2395 return 0; 2396 } 2397 2398 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2399 struct btrfs_root *tree_root) 2400 { 2401 struct btrfs_root *root; 2402 struct btrfs_key location; 2403 int ret; 2404 2405 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2406 location.type = BTRFS_ROOT_ITEM_KEY; 2407 location.offset = 0; 2408 2409 root = btrfs_read_tree_root(tree_root, &location); 2410 if (IS_ERR(root)) 2411 return PTR_ERR(root); 2412 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2413 fs_info->extent_root = root; 2414 2415 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2416 root = btrfs_read_tree_root(tree_root, &location); 2417 if (IS_ERR(root)) 2418 return PTR_ERR(root); 2419 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2420 fs_info->dev_root = root; 2421 btrfs_init_devices_late(fs_info); 2422 2423 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2424 root = btrfs_read_tree_root(tree_root, &location); 2425 if (IS_ERR(root)) 2426 return PTR_ERR(root); 2427 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2428 fs_info->csum_root = root; 2429 2430 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2431 root = btrfs_read_tree_root(tree_root, &location); 2432 if (!IS_ERR(root)) { 2433 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2434 fs_info->quota_enabled = 1; 2435 fs_info->pending_quota_state = 1; 2436 fs_info->quota_root = root; 2437 } 2438 2439 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2440 root = btrfs_read_tree_root(tree_root, &location); 2441 if (IS_ERR(root)) { 2442 ret = PTR_ERR(root); 2443 if (ret != -ENOENT) 2444 return ret; 2445 } else { 2446 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2447 fs_info->uuid_root = root; 2448 } 2449 2450 return 0; 2451 } 2452 2453 int open_ctree(struct super_block *sb, 2454 struct btrfs_fs_devices *fs_devices, 2455 char *options) 2456 { 2457 u32 sectorsize; 2458 u32 nodesize; 2459 u32 stripesize; 2460 u64 generation; 2461 u64 features; 2462 struct btrfs_key location; 2463 struct buffer_head *bh; 2464 struct btrfs_super_block *disk_super; 2465 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2466 struct btrfs_root *tree_root; 2467 struct btrfs_root *chunk_root; 2468 int ret; 2469 int err = -EINVAL; 2470 int num_backups_tried = 0; 2471 int backup_index = 0; 2472 int max_active; 2473 2474 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2475 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2476 if (!tree_root || !chunk_root) { 2477 err = -ENOMEM; 2478 goto fail; 2479 } 2480 2481 ret = init_srcu_struct(&fs_info->subvol_srcu); 2482 if (ret) { 2483 err = ret; 2484 goto fail; 2485 } 2486 2487 ret = setup_bdi(fs_info, &fs_info->bdi); 2488 if (ret) { 2489 err = ret; 2490 goto fail_srcu; 2491 } 2492 2493 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2494 if (ret) { 2495 err = ret; 2496 goto fail_bdi; 2497 } 2498 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2499 (1 + ilog2(nr_cpu_ids)); 2500 2501 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2502 if (ret) { 2503 err = ret; 2504 goto fail_dirty_metadata_bytes; 2505 } 2506 2507 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2508 if (ret) { 2509 err = ret; 2510 goto fail_delalloc_bytes; 2511 } 2512 2513 fs_info->btree_inode = new_inode(sb); 2514 if (!fs_info->btree_inode) { 2515 err = -ENOMEM; 2516 goto fail_bio_counter; 2517 } 2518 2519 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2520 2521 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2522 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2523 INIT_LIST_HEAD(&fs_info->trans_list); 2524 INIT_LIST_HEAD(&fs_info->dead_roots); 2525 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2526 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2527 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2528 spin_lock_init(&fs_info->delalloc_root_lock); 2529 spin_lock_init(&fs_info->trans_lock); 2530 spin_lock_init(&fs_info->fs_roots_radix_lock); 2531 spin_lock_init(&fs_info->delayed_iput_lock); 2532 spin_lock_init(&fs_info->defrag_inodes_lock); 2533 spin_lock_init(&fs_info->free_chunk_lock); 2534 spin_lock_init(&fs_info->tree_mod_seq_lock); 2535 spin_lock_init(&fs_info->super_lock); 2536 spin_lock_init(&fs_info->qgroup_op_lock); 2537 spin_lock_init(&fs_info->buffer_lock); 2538 spin_lock_init(&fs_info->unused_bgs_lock); 2539 rwlock_init(&fs_info->tree_mod_log_lock); 2540 mutex_init(&fs_info->unused_bg_unpin_mutex); 2541 mutex_init(&fs_info->delete_unused_bgs_mutex); 2542 mutex_init(&fs_info->reloc_mutex); 2543 mutex_init(&fs_info->delalloc_root_mutex); 2544 seqlock_init(&fs_info->profiles_lock); 2545 init_rwsem(&fs_info->delayed_iput_sem); 2546 2547 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2548 INIT_LIST_HEAD(&fs_info->space_info); 2549 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2550 INIT_LIST_HEAD(&fs_info->unused_bgs); 2551 btrfs_mapping_init(&fs_info->mapping_tree); 2552 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2553 BTRFS_BLOCK_RSV_GLOBAL); 2554 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2555 BTRFS_BLOCK_RSV_DELALLOC); 2556 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2557 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2558 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2559 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2560 BTRFS_BLOCK_RSV_DELOPS); 2561 atomic_set(&fs_info->nr_async_submits, 0); 2562 atomic_set(&fs_info->async_delalloc_pages, 0); 2563 atomic_set(&fs_info->async_submit_draining, 0); 2564 atomic_set(&fs_info->nr_async_bios, 0); 2565 atomic_set(&fs_info->defrag_running, 0); 2566 atomic_set(&fs_info->qgroup_op_seq, 0); 2567 atomic64_set(&fs_info->tree_mod_seq, 0); 2568 fs_info->sb = sb; 2569 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2570 fs_info->metadata_ratio = 0; 2571 fs_info->defrag_inodes = RB_ROOT; 2572 fs_info->free_chunk_space = 0; 2573 fs_info->tree_mod_log = RB_ROOT; 2574 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2575 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2576 /* readahead state */ 2577 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2578 spin_lock_init(&fs_info->reada_lock); 2579 2580 fs_info->thread_pool_size = min_t(unsigned long, 2581 num_online_cpus() + 2, 8); 2582 2583 INIT_LIST_HEAD(&fs_info->ordered_roots); 2584 spin_lock_init(&fs_info->ordered_root_lock); 2585 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2586 GFP_NOFS); 2587 if (!fs_info->delayed_root) { 2588 err = -ENOMEM; 2589 goto fail_iput; 2590 } 2591 btrfs_init_delayed_root(fs_info->delayed_root); 2592 2593 btrfs_init_scrub(fs_info); 2594 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2595 fs_info->check_integrity_print_mask = 0; 2596 #endif 2597 btrfs_init_balance(fs_info); 2598 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2599 2600 sb->s_blocksize = 4096; 2601 sb->s_blocksize_bits = blksize_bits(4096); 2602 sb->s_bdi = &fs_info->bdi; 2603 2604 btrfs_init_btree_inode(fs_info, tree_root); 2605 2606 spin_lock_init(&fs_info->block_group_cache_lock); 2607 fs_info->block_group_cache_tree = RB_ROOT; 2608 fs_info->first_logical_byte = (u64)-1; 2609 2610 extent_io_tree_init(&fs_info->freed_extents[0], 2611 fs_info->btree_inode->i_mapping); 2612 extent_io_tree_init(&fs_info->freed_extents[1], 2613 fs_info->btree_inode->i_mapping); 2614 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2615 fs_info->do_barriers = 1; 2616 2617 2618 mutex_init(&fs_info->ordered_operations_mutex); 2619 mutex_init(&fs_info->tree_log_mutex); 2620 mutex_init(&fs_info->chunk_mutex); 2621 mutex_init(&fs_info->transaction_kthread_mutex); 2622 mutex_init(&fs_info->cleaner_mutex); 2623 mutex_init(&fs_info->volume_mutex); 2624 mutex_init(&fs_info->ro_block_group_mutex); 2625 init_rwsem(&fs_info->commit_root_sem); 2626 init_rwsem(&fs_info->cleanup_work_sem); 2627 init_rwsem(&fs_info->subvol_sem); 2628 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2629 2630 btrfs_init_dev_replace_locks(fs_info); 2631 btrfs_init_qgroup(fs_info); 2632 2633 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2634 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2635 2636 init_waitqueue_head(&fs_info->transaction_throttle); 2637 init_waitqueue_head(&fs_info->transaction_wait); 2638 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2639 init_waitqueue_head(&fs_info->async_submit_wait); 2640 2641 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2642 2643 ret = btrfs_alloc_stripe_hash_table(fs_info); 2644 if (ret) { 2645 err = ret; 2646 goto fail_alloc; 2647 } 2648 2649 __setup_root(4096, 4096, 4096, tree_root, 2650 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2651 2652 invalidate_bdev(fs_devices->latest_bdev); 2653 2654 /* 2655 * Read super block and check the signature bytes only 2656 */ 2657 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2658 if (IS_ERR(bh)) { 2659 err = PTR_ERR(bh); 2660 goto fail_alloc; 2661 } 2662 2663 /* 2664 * We want to check superblock checksum, the type is stored inside. 2665 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2666 */ 2667 if (btrfs_check_super_csum(bh->b_data)) { 2668 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2669 err = -EINVAL; 2670 goto fail_alloc; 2671 } 2672 2673 /* 2674 * super_copy is zeroed at allocation time and we never touch the 2675 * following bytes up to INFO_SIZE, the checksum is calculated from 2676 * the whole block of INFO_SIZE 2677 */ 2678 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2679 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2680 sizeof(*fs_info->super_for_commit)); 2681 brelse(bh); 2682 2683 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2684 2685 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2686 if (ret) { 2687 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2688 err = -EINVAL; 2689 goto fail_alloc; 2690 } 2691 2692 disk_super = fs_info->super_copy; 2693 if (!btrfs_super_root(disk_super)) 2694 goto fail_alloc; 2695 2696 /* check FS state, whether FS is broken. */ 2697 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2698 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2699 2700 /* 2701 * run through our array of backup supers and setup 2702 * our ring pointer to the oldest one 2703 */ 2704 generation = btrfs_super_generation(disk_super); 2705 find_oldest_super_backup(fs_info, generation); 2706 2707 /* 2708 * In the long term, we'll store the compression type in the super 2709 * block, and it'll be used for per file compression control. 2710 */ 2711 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2712 2713 ret = btrfs_parse_options(tree_root, options); 2714 if (ret) { 2715 err = ret; 2716 goto fail_alloc; 2717 } 2718 2719 features = btrfs_super_incompat_flags(disk_super) & 2720 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2721 if (features) { 2722 printk(KERN_ERR "BTRFS: couldn't mount because of " 2723 "unsupported optional features (%Lx).\n", 2724 features); 2725 err = -EINVAL; 2726 goto fail_alloc; 2727 } 2728 2729 /* 2730 * Leafsize and nodesize were always equal, this is only a sanity check. 2731 */ 2732 if (le32_to_cpu(disk_super->__unused_leafsize) != 2733 btrfs_super_nodesize(disk_super)) { 2734 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2735 "blocksizes don't match. node %d leaf %d\n", 2736 btrfs_super_nodesize(disk_super), 2737 le32_to_cpu(disk_super->__unused_leafsize)); 2738 err = -EINVAL; 2739 goto fail_alloc; 2740 } 2741 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2742 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2743 "blocksize (%d) was too large\n", 2744 btrfs_super_nodesize(disk_super)); 2745 err = -EINVAL; 2746 goto fail_alloc; 2747 } 2748 2749 features = btrfs_super_incompat_flags(disk_super); 2750 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2751 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2752 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2753 2754 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2755 printk(KERN_INFO "BTRFS: has skinny extents\n"); 2756 2757 /* 2758 * flag our filesystem as having big metadata blocks if 2759 * they are bigger than the page size 2760 */ 2761 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2762 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2763 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2764 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2765 } 2766 2767 nodesize = btrfs_super_nodesize(disk_super); 2768 sectorsize = btrfs_super_sectorsize(disk_super); 2769 stripesize = btrfs_super_stripesize(disk_super); 2770 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2771 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2772 2773 /* 2774 * mixed block groups end up with duplicate but slightly offset 2775 * extent buffers for the same range. It leads to corruptions 2776 */ 2777 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2778 (sectorsize != nodesize)) { 2779 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes " 2780 "are not allowed for mixed block groups on %s\n", 2781 sb->s_id); 2782 goto fail_alloc; 2783 } 2784 2785 /* 2786 * Needn't use the lock because there is no other task which will 2787 * update the flag. 2788 */ 2789 btrfs_set_super_incompat_flags(disk_super, features); 2790 2791 features = btrfs_super_compat_ro_flags(disk_super) & 2792 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2793 if (!(sb->s_flags & MS_RDONLY) && features) { 2794 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2795 "unsupported option features (%Lx).\n", 2796 features); 2797 err = -EINVAL; 2798 goto fail_alloc; 2799 } 2800 2801 max_active = fs_info->thread_pool_size; 2802 2803 ret = btrfs_init_workqueues(fs_info, fs_devices); 2804 if (ret) { 2805 err = ret; 2806 goto fail_sb_buffer; 2807 } 2808 2809 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2810 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2811 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2812 2813 tree_root->nodesize = nodesize; 2814 tree_root->sectorsize = sectorsize; 2815 tree_root->stripesize = stripesize; 2816 2817 sb->s_blocksize = sectorsize; 2818 sb->s_blocksize_bits = blksize_bits(sectorsize); 2819 2820 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2821 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id); 2822 goto fail_sb_buffer; 2823 } 2824 2825 if (sectorsize != PAGE_SIZE) { 2826 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) " 2827 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2828 goto fail_sb_buffer; 2829 } 2830 2831 mutex_lock(&fs_info->chunk_mutex); 2832 ret = btrfs_read_sys_array(tree_root); 2833 mutex_unlock(&fs_info->chunk_mutex); 2834 if (ret) { 2835 printk(KERN_ERR "BTRFS: failed to read the system " 2836 "array on %s\n", sb->s_id); 2837 goto fail_sb_buffer; 2838 } 2839 2840 generation = btrfs_super_chunk_root_generation(disk_super); 2841 2842 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2843 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2844 2845 chunk_root->node = read_tree_block(chunk_root, 2846 btrfs_super_chunk_root(disk_super), 2847 generation); 2848 if (IS_ERR(chunk_root->node) || 2849 !extent_buffer_uptodate(chunk_root->node)) { 2850 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n", 2851 sb->s_id); 2852 if (!IS_ERR(chunk_root->node)) 2853 free_extent_buffer(chunk_root->node); 2854 chunk_root->node = NULL; 2855 goto fail_tree_roots; 2856 } 2857 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2858 chunk_root->commit_root = btrfs_root_node(chunk_root); 2859 2860 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2861 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2862 2863 ret = btrfs_read_chunk_tree(chunk_root); 2864 if (ret) { 2865 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n", 2866 sb->s_id); 2867 goto fail_tree_roots; 2868 } 2869 2870 /* 2871 * keep the device that is marked to be the target device for the 2872 * dev_replace procedure 2873 */ 2874 btrfs_close_extra_devices(fs_devices, 0); 2875 2876 if (!fs_devices->latest_bdev) { 2877 printk(KERN_ERR "BTRFS: failed to read devices on %s\n", 2878 sb->s_id); 2879 goto fail_tree_roots; 2880 } 2881 2882 retry_root_backup: 2883 generation = btrfs_super_generation(disk_super); 2884 2885 tree_root->node = read_tree_block(tree_root, 2886 btrfs_super_root(disk_super), 2887 generation); 2888 if (IS_ERR(tree_root->node) || 2889 !extent_buffer_uptodate(tree_root->node)) { 2890 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2891 sb->s_id); 2892 if (!IS_ERR(tree_root->node)) 2893 free_extent_buffer(tree_root->node); 2894 tree_root->node = NULL; 2895 goto recovery_tree_root; 2896 } 2897 2898 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2899 tree_root->commit_root = btrfs_root_node(tree_root); 2900 btrfs_set_root_refs(&tree_root->root_item, 1); 2901 2902 ret = btrfs_read_roots(fs_info, tree_root); 2903 if (ret) 2904 goto recovery_tree_root; 2905 2906 fs_info->generation = generation; 2907 fs_info->last_trans_committed = generation; 2908 2909 ret = btrfs_recover_balance(fs_info); 2910 if (ret) { 2911 printk(KERN_ERR "BTRFS: failed to recover balance\n"); 2912 goto fail_block_groups; 2913 } 2914 2915 ret = btrfs_init_dev_stats(fs_info); 2916 if (ret) { 2917 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2918 ret); 2919 goto fail_block_groups; 2920 } 2921 2922 ret = btrfs_init_dev_replace(fs_info); 2923 if (ret) { 2924 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2925 goto fail_block_groups; 2926 } 2927 2928 btrfs_close_extra_devices(fs_devices, 1); 2929 2930 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2931 if (ret) { 2932 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret); 2933 goto fail_block_groups; 2934 } 2935 2936 ret = btrfs_sysfs_add_device(fs_devices); 2937 if (ret) { 2938 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret); 2939 goto fail_fsdev_sysfs; 2940 } 2941 2942 ret = btrfs_sysfs_add_mounted(fs_info); 2943 if (ret) { 2944 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2945 goto fail_fsdev_sysfs; 2946 } 2947 2948 ret = btrfs_init_space_info(fs_info); 2949 if (ret) { 2950 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2951 goto fail_sysfs; 2952 } 2953 2954 ret = btrfs_read_block_groups(fs_info->extent_root); 2955 if (ret) { 2956 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2957 goto fail_sysfs; 2958 } 2959 fs_info->num_tolerated_disk_barrier_failures = 2960 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2961 if (fs_info->fs_devices->missing_devices > 2962 fs_info->num_tolerated_disk_barrier_failures && 2963 !(sb->s_flags & MS_RDONLY)) { 2964 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n", 2965 fs_info->fs_devices->missing_devices, 2966 fs_info->num_tolerated_disk_barrier_failures); 2967 goto fail_sysfs; 2968 } 2969 2970 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2971 "btrfs-cleaner"); 2972 if (IS_ERR(fs_info->cleaner_kthread)) 2973 goto fail_sysfs; 2974 2975 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2976 tree_root, 2977 "btrfs-transaction"); 2978 if (IS_ERR(fs_info->transaction_kthread)) 2979 goto fail_cleaner; 2980 2981 if (!btrfs_test_opt(tree_root, SSD) && 2982 !btrfs_test_opt(tree_root, NOSSD) && 2983 !fs_info->fs_devices->rotating) { 2984 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2985 "mode\n"); 2986 btrfs_set_opt(fs_info->mount_opt, SSD); 2987 } 2988 2989 /* 2990 * Mount does not set all options immediatelly, we can do it now and do 2991 * not have to wait for transaction commit 2992 */ 2993 btrfs_apply_pending_changes(fs_info); 2994 2995 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2996 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2997 ret = btrfsic_mount(tree_root, fs_devices, 2998 btrfs_test_opt(tree_root, 2999 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3000 1 : 0, 3001 fs_info->check_integrity_print_mask); 3002 if (ret) 3003 printk(KERN_WARNING "BTRFS: failed to initialize" 3004 " integrity check module %s\n", sb->s_id); 3005 } 3006 #endif 3007 ret = btrfs_read_qgroup_config(fs_info); 3008 if (ret) 3009 goto fail_trans_kthread; 3010 3011 /* do not make disk changes in broken FS */ 3012 if (btrfs_super_log_root(disk_super) != 0) { 3013 ret = btrfs_replay_log(fs_info, fs_devices); 3014 if (ret) { 3015 err = ret; 3016 goto fail_qgroup; 3017 } 3018 } 3019 3020 ret = btrfs_find_orphan_roots(tree_root); 3021 if (ret) 3022 goto fail_qgroup; 3023 3024 if (!(sb->s_flags & MS_RDONLY)) { 3025 ret = btrfs_cleanup_fs_roots(fs_info); 3026 if (ret) 3027 goto fail_qgroup; 3028 3029 mutex_lock(&fs_info->cleaner_mutex); 3030 ret = btrfs_recover_relocation(tree_root); 3031 mutex_unlock(&fs_info->cleaner_mutex); 3032 if (ret < 0) { 3033 printk(KERN_WARNING 3034 "BTRFS: failed to recover relocation\n"); 3035 err = -EINVAL; 3036 goto fail_qgroup; 3037 } 3038 } 3039 3040 location.objectid = BTRFS_FS_TREE_OBJECTID; 3041 location.type = BTRFS_ROOT_ITEM_KEY; 3042 location.offset = 0; 3043 3044 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3045 if (IS_ERR(fs_info->fs_root)) { 3046 err = PTR_ERR(fs_info->fs_root); 3047 goto fail_qgroup; 3048 } 3049 3050 if (sb->s_flags & MS_RDONLY) 3051 return 0; 3052 3053 down_read(&fs_info->cleanup_work_sem); 3054 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3055 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3056 up_read(&fs_info->cleanup_work_sem); 3057 close_ctree(tree_root); 3058 return ret; 3059 } 3060 up_read(&fs_info->cleanup_work_sem); 3061 3062 ret = btrfs_resume_balance_async(fs_info); 3063 if (ret) { 3064 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 3065 close_ctree(tree_root); 3066 return ret; 3067 } 3068 3069 ret = btrfs_resume_dev_replace_async(fs_info); 3070 if (ret) { 3071 pr_warn("BTRFS: failed to resume dev_replace\n"); 3072 close_ctree(tree_root); 3073 return ret; 3074 } 3075 3076 btrfs_qgroup_rescan_resume(fs_info); 3077 3078 if (!fs_info->uuid_root) { 3079 pr_info("BTRFS: creating UUID tree\n"); 3080 ret = btrfs_create_uuid_tree(fs_info); 3081 if (ret) { 3082 pr_warn("BTRFS: failed to create the UUID tree %d\n", 3083 ret); 3084 close_ctree(tree_root); 3085 return ret; 3086 } 3087 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3088 fs_info->generation != 3089 btrfs_super_uuid_tree_generation(disk_super)) { 3090 pr_info("BTRFS: checking UUID tree\n"); 3091 ret = btrfs_check_uuid_tree(fs_info); 3092 if (ret) { 3093 pr_warn("BTRFS: failed to check the UUID tree %d\n", 3094 ret); 3095 close_ctree(tree_root); 3096 return ret; 3097 } 3098 } else { 3099 fs_info->update_uuid_tree_gen = 1; 3100 } 3101 3102 fs_info->open = 1; 3103 3104 return 0; 3105 3106 fail_qgroup: 3107 btrfs_free_qgroup_config(fs_info); 3108 fail_trans_kthread: 3109 kthread_stop(fs_info->transaction_kthread); 3110 btrfs_cleanup_transaction(fs_info->tree_root); 3111 btrfs_free_fs_roots(fs_info); 3112 fail_cleaner: 3113 kthread_stop(fs_info->cleaner_kthread); 3114 3115 /* 3116 * make sure we're done with the btree inode before we stop our 3117 * kthreads 3118 */ 3119 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3120 3121 fail_sysfs: 3122 btrfs_sysfs_remove_mounted(fs_info); 3123 3124 fail_fsdev_sysfs: 3125 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3126 3127 fail_block_groups: 3128 btrfs_put_block_group_cache(fs_info); 3129 btrfs_free_block_groups(fs_info); 3130 3131 fail_tree_roots: 3132 free_root_pointers(fs_info, 1); 3133 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3134 3135 fail_sb_buffer: 3136 btrfs_stop_all_workers(fs_info); 3137 fail_alloc: 3138 fail_iput: 3139 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3140 3141 iput(fs_info->btree_inode); 3142 fail_bio_counter: 3143 percpu_counter_destroy(&fs_info->bio_counter); 3144 fail_delalloc_bytes: 3145 percpu_counter_destroy(&fs_info->delalloc_bytes); 3146 fail_dirty_metadata_bytes: 3147 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3148 fail_bdi: 3149 bdi_destroy(&fs_info->bdi); 3150 fail_srcu: 3151 cleanup_srcu_struct(&fs_info->subvol_srcu); 3152 fail: 3153 btrfs_free_stripe_hash_table(fs_info); 3154 btrfs_close_devices(fs_info->fs_devices); 3155 return err; 3156 3157 recovery_tree_root: 3158 if (!btrfs_test_opt(tree_root, RECOVERY)) 3159 goto fail_tree_roots; 3160 3161 free_root_pointers(fs_info, 0); 3162 3163 /* don't use the log in recovery mode, it won't be valid */ 3164 btrfs_set_super_log_root(disk_super, 0); 3165 3166 /* we can't trust the free space cache either */ 3167 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3168 3169 ret = next_root_backup(fs_info, fs_info->super_copy, 3170 &num_backups_tried, &backup_index); 3171 if (ret == -1) 3172 goto fail_block_groups; 3173 goto retry_root_backup; 3174 } 3175 3176 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3177 { 3178 if (uptodate) { 3179 set_buffer_uptodate(bh); 3180 } else { 3181 struct btrfs_device *device = (struct btrfs_device *) 3182 bh->b_private; 3183 3184 btrfs_warn_rl_in_rcu(device->dev_root->fs_info, 3185 "lost page write due to IO error on %s", 3186 rcu_str_deref(device->name)); 3187 /* note, we dont' set_buffer_write_io_error because we have 3188 * our own ways of dealing with the IO errors 3189 */ 3190 clear_buffer_uptodate(bh); 3191 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3192 } 3193 unlock_buffer(bh); 3194 put_bh(bh); 3195 } 3196 3197 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3198 struct buffer_head **bh_ret) 3199 { 3200 struct buffer_head *bh; 3201 struct btrfs_super_block *super; 3202 u64 bytenr; 3203 3204 bytenr = btrfs_sb_offset(copy_num); 3205 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3206 return -EINVAL; 3207 3208 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3209 /* 3210 * If we fail to read from the underlying devices, as of now 3211 * the best option we have is to mark it EIO. 3212 */ 3213 if (!bh) 3214 return -EIO; 3215 3216 super = (struct btrfs_super_block *)bh->b_data; 3217 if (btrfs_super_bytenr(super) != bytenr || 3218 btrfs_super_magic(super) != BTRFS_MAGIC) { 3219 brelse(bh); 3220 return -EINVAL; 3221 } 3222 3223 *bh_ret = bh; 3224 return 0; 3225 } 3226 3227 3228 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3229 { 3230 struct buffer_head *bh; 3231 struct buffer_head *latest = NULL; 3232 struct btrfs_super_block *super; 3233 int i; 3234 u64 transid = 0; 3235 int ret = -EINVAL; 3236 3237 /* we would like to check all the supers, but that would make 3238 * a btrfs mount succeed after a mkfs from a different FS. 3239 * So, we need to add a special mount option to scan for 3240 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3241 */ 3242 for (i = 0; i < 1; i++) { 3243 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3244 if (ret) 3245 continue; 3246 3247 super = (struct btrfs_super_block *)bh->b_data; 3248 3249 if (!latest || btrfs_super_generation(super) > transid) { 3250 brelse(latest); 3251 latest = bh; 3252 transid = btrfs_super_generation(super); 3253 } else { 3254 brelse(bh); 3255 } 3256 } 3257 3258 if (!latest) 3259 return ERR_PTR(ret); 3260 3261 return latest; 3262 } 3263 3264 /* 3265 * this should be called twice, once with wait == 0 and 3266 * once with wait == 1. When wait == 0 is done, all the buffer heads 3267 * we write are pinned. 3268 * 3269 * They are released when wait == 1 is done. 3270 * max_mirrors must be the same for both runs, and it indicates how 3271 * many supers on this one device should be written. 3272 * 3273 * max_mirrors == 0 means to write them all. 3274 */ 3275 static int write_dev_supers(struct btrfs_device *device, 3276 struct btrfs_super_block *sb, 3277 int do_barriers, int wait, int max_mirrors) 3278 { 3279 struct buffer_head *bh; 3280 int i; 3281 int ret; 3282 int errors = 0; 3283 u32 crc; 3284 u64 bytenr; 3285 3286 if (max_mirrors == 0) 3287 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3288 3289 for (i = 0; i < max_mirrors; i++) { 3290 bytenr = btrfs_sb_offset(i); 3291 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3292 device->commit_total_bytes) 3293 break; 3294 3295 if (wait) { 3296 bh = __find_get_block(device->bdev, bytenr / 4096, 3297 BTRFS_SUPER_INFO_SIZE); 3298 if (!bh) { 3299 errors++; 3300 continue; 3301 } 3302 wait_on_buffer(bh); 3303 if (!buffer_uptodate(bh)) 3304 errors++; 3305 3306 /* drop our reference */ 3307 brelse(bh); 3308 3309 /* drop the reference from the wait == 0 run */ 3310 brelse(bh); 3311 continue; 3312 } else { 3313 btrfs_set_super_bytenr(sb, bytenr); 3314 3315 crc = ~(u32)0; 3316 crc = btrfs_csum_data((char *)sb + 3317 BTRFS_CSUM_SIZE, crc, 3318 BTRFS_SUPER_INFO_SIZE - 3319 BTRFS_CSUM_SIZE); 3320 btrfs_csum_final(crc, sb->csum); 3321 3322 /* 3323 * one reference for us, and we leave it for the 3324 * caller 3325 */ 3326 bh = __getblk(device->bdev, bytenr / 4096, 3327 BTRFS_SUPER_INFO_SIZE); 3328 if (!bh) { 3329 btrfs_err(device->dev_root->fs_info, 3330 "couldn't get super buffer head for bytenr %llu", 3331 bytenr); 3332 errors++; 3333 continue; 3334 } 3335 3336 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3337 3338 /* one reference for submit_bh */ 3339 get_bh(bh); 3340 3341 set_buffer_uptodate(bh); 3342 lock_buffer(bh); 3343 bh->b_end_io = btrfs_end_buffer_write_sync; 3344 bh->b_private = device; 3345 } 3346 3347 /* 3348 * we fua the first super. The others we allow 3349 * to go down lazy. 3350 */ 3351 if (i == 0) 3352 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3353 else 3354 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3355 if (ret) 3356 errors++; 3357 } 3358 return errors < i ? 0 : -1; 3359 } 3360 3361 /* 3362 * endio for the write_dev_flush, this will wake anyone waiting 3363 * for the barrier when it is done 3364 */ 3365 static void btrfs_end_empty_barrier(struct bio *bio) 3366 { 3367 if (bio->bi_private) 3368 complete(bio->bi_private); 3369 bio_put(bio); 3370 } 3371 3372 /* 3373 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3374 * sent down. With wait == 1, it waits for the previous flush. 3375 * 3376 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3377 * capable 3378 */ 3379 static int write_dev_flush(struct btrfs_device *device, int wait) 3380 { 3381 struct bio *bio; 3382 int ret = 0; 3383 3384 if (device->nobarriers) 3385 return 0; 3386 3387 if (wait) { 3388 bio = device->flush_bio; 3389 if (!bio) 3390 return 0; 3391 3392 wait_for_completion(&device->flush_wait); 3393 3394 if (bio->bi_error) { 3395 ret = bio->bi_error; 3396 btrfs_dev_stat_inc_and_print(device, 3397 BTRFS_DEV_STAT_FLUSH_ERRS); 3398 } 3399 3400 /* drop the reference from the wait == 0 run */ 3401 bio_put(bio); 3402 device->flush_bio = NULL; 3403 3404 return ret; 3405 } 3406 3407 /* 3408 * one reference for us, and we leave it for the 3409 * caller 3410 */ 3411 device->flush_bio = NULL; 3412 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3413 if (!bio) 3414 return -ENOMEM; 3415 3416 bio->bi_end_io = btrfs_end_empty_barrier; 3417 bio->bi_bdev = device->bdev; 3418 init_completion(&device->flush_wait); 3419 bio->bi_private = &device->flush_wait; 3420 device->flush_bio = bio; 3421 3422 bio_get(bio); 3423 btrfsic_submit_bio(WRITE_FLUSH, bio); 3424 3425 return 0; 3426 } 3427 3428 /* 3429 * send an empty flush down to each device in parallel, 3430 * then wait for them 3431 */ 3432 static int barrier_all_devices(struct btrfs_fs_info *info) 3433 { 3434 struct list_head *head; 3435 struct btrfs_device *dev; 3436 int errors_send = 0; 3437 int errors_wait = 0; 3438 int ret; 3439 3440 /* send down all the barriers */ 3441 head = &info->fs_devices->devices; 3442 list_for_each_entry_rcu(dev, head, dev_list) { 3443 if (dev->missing) 3444 continue; 3445 if (!dev->bdev) { 3446 errors_send++; 3447 continue; 3448 } 3449 if (!dev->in_fs_metadata || !dev->writeable) 3450 continue; 3451 3452 ret = write_dev_flush(dev, 0); 3453 if (ret) 3454 errors_send++; 3455 } 3456 3457 /* wait for all the barriers */ 3458 list_for_each_entry_rcu(dev, head, dev_list) { 3459 if (dev->missing) 3460 continue; 3461 if (!dev->bdev) { 3462 errors_wait++; 3463 continue; 3464 } 3465 if (!dev->in_fs_metadata || !dev->writeable) 3466 continue; 3467 3468 ret = write_dev_flush(dev, 1); 3469 if (ret) 3470 errors_wait++; 3471 } 3472 if (errors_send > info->num_tolerated_disk_barrier_failures || 3473 errors_wait > info->num_tolerated_disk_barrier_failures) 3474 return -EIO; 3475 return 0; 3476 } 3477 3478 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3479 { 3480 int raid_type; 3481 int min_tolerated = INT_MAX; 3482 3483 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3484 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3485 min_tolerated = min(min_tolerated, 3486 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3487 tolerated_failures); 3488 3489 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3490 if (raid_type == BTRFS_RAID_SINGLE) 3491 continue; 3492 if (!(flags & btrfs_raid_group[raid_type])) 3493 continue; 3494 min_tolerated = min(min_tolerated, 3495 btrfs_raid_array[raid_type]. 3496 tolerated_failures); 3497 } 3498 3499 if (min_tolerated == INT_MAX) { 3500 pr_warn("BTRFS: unknown raid flag: %llu\n", flags); 3501 min_tolerated = 0; 3502 } 3503 3504 return min_tolerated; 3505 } 3506 3507 int btrfs_calc_num_tolerated_disk_barrier_failures( 3508 struct btrfs_fs_info *fs_info) 3509 { 3510 struct btrfs_ioctl_space_info space; 3511 struct btrfs_space_info *sinfo; 3512 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3513 BTRFS_BLOCK_GROUP_SYSTEM, 3514 BTRFS_BLOCK_GROUP_METADATA, 3515 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3516 int i; 3517 int c; 3518 int num_tolerated_disk_barrier_failures = 3519 (int)fs_info->fs_devices->num_devices; 3520 3521 for (i = 0; i < ARRAY_SIZE(types); i++) { 3522 struct btrfs_space_info *tmp; 3523 3524 sinfo = NULL; 3525 rcu_read_lock(); 3526 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3527 if (tmp->flags == types[i]) { 3528 sinfo = tmp; 3529 break; 3530 } 3531 } 3532 rcu_read_unlock(); 3533 3534 if (!sinfo) 3535 continue; 3536 3537 down_read(&sinfo->groups_sem); 3538 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3539 u64 flags; 3540 3541 if (list_empty(&sinfo->block_groups[c])) 3542 continue; 3543 3544 btrfs_get_block_group_info(&sinfo->block_groups[c], 3545 &space); 3546 if (space.total_bytes == 0 || space.used_bytes == 0) 3547 continue; 3548 flags = space.flags; 3549 3550 num_tolerated_disk_barrier_failures = min( 3551 num_tolerated_disk_barrier_failures, 3552 btrfs_get_num_tolerated_disk_barrier_failures( 3553 flags)); 3554 } 3555 up_read(&sinfo->groups_sem); 3556 } 3557 3558 return num_tolerated_disk_barrier_failures; 3559 } 3560 3561 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3562 { 3563 struct list_head *head; 3564 struct btrfs_device *dev; 3565 struct btrfs_super_block *sb; 3566 struct btrfs_dev_item *dev_item; 3567 int ret; 3568 int do_barriers; 3569 int max_errors; 3570 int total_errors = 0; 3571 u64 flags; 3572 3573 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3574 backup_super_roots(root->fs_info); 3575 3576 sb = root->fs_info->super_for_commit; 3577 dev_item = &sb->dev_item; 3578 3579 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3580 head = &root->fs_info->fs_devices->devices; 3581 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3582 3583 if (do_barriers) { 3584 ret = barrier_all_devices(root->fs_info); 3585 if (ret) { 3586 mutex_unlock( 3587 &root->fs_info->fs_devices->device_list_mutex); 3588 btrfs_std_error(root->fs_info, ret, 3589 "errors while submitting device barriers."); 3590 return ret; 3591 } 3592 } 3593 3594 list_for_each_entry_rcu(dev, head, dev_list) { 3595 if (!dev->bdev) { 3596 total_errors++; 3597 continue; 3598 } 3599 if (!dev->in_fs_metadata || !dev->writeable) 3600 continue; 3601 3602 btrfs_set_stack_device_generation(dev_item, 0); 3603 btrfs_set_stack_device_type(dev_item, dev->type); 3604 btrfs_set_stack_device_id(dev_item, dev->devid); 3605 btrfs_set_stack_device_total_bytes(dev_item, 3606 dev->commit_total_bytes); 3607 btrfs_set_stack_device_bytes_used(dev_item, 3608 dev->commit_bytes_used); 3609 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3610 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3611 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3612 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3613 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3614 3615 flags = btrfs_super_flags(sb); 3616 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3617 3618 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3619 if (ret) 3620 total_errors++; 3621 } 3622 if (total_errors > max_errors) { 3623 btrfs_err(root->fs_info, "%d errors while writing supers", 3624 total_errors); 3625 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3626 3627 /* FUA is masked off if unsupported and can't be the reason */ 3628 btrfs_std_error(root->fs_info, -EIO, 3629 "%d errors while writing supers", total_errors); 3630 return -EIO; 3631 } 3632 3633 total_errors = 0; 3634 list_for_each_entry_rcu(dev, head, dev_list) { 3635 if (!dev->bdev) 3636 continue; 3637 if (!dev->in_fs_metadata || !dev->writeable) 3638 continue; 3639 3640 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3641 if (ret) 3642 total_errors++; 3643 } 3644 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3645 if (total_errors > max_errors) { 3646 btrfs_std_error(root->fs_info, -EIO, 3647 "%d errors while writing supers", total_errors); 3648 return -EIO; 3649 } 3650 return 0; 3651 } 3652 3653 int write_ctree_super(struct btrfs_trans_handle *trans, 3654 struct btrfs_root *root, int max_mirrors) 3655 { 3656 return write_all_supers(root, max_mirrors); 3657 } 3658 3659 /* Drop a fs root from the radix tree and free it. */ 3660 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3661 struct btrfs_root *root) 3662 { 3663 spin_lock(&fs_info->fs_roots_radix_lock); 3664 radix_tree_delete(&fs_info->fs_roots_radix, 3665 (unsigned long)root->root_key.objectid); 3666 spin_unlock(&fs_info->fs_roots_radix_lock); 3667 3668 if (btrfs_root_refs(&root->root_item) == 0) 3669 synchronize_srcu(&fs_info->subvol_srcu); 3670 3671 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3672 btrfs_free_log(NULL, root); 3673 3674 if (root->free_ino_pinned) 3675 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3676 if (root->free_ino_ctl) 3677 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3678 free_fs_root(root); 3679 } 3680 3681 static void free_fs_root(struct btrfs_root *root) 3682 { 3683 iput(root->ino_cache_inode); 3684 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3685 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3686 root->orphan_block_rsv = NULL; 3687 if (root->anon_dev) 3688 free_anon_bdev(root->anon_dev); 3689 if (root->subv_writers) 3690 btrfs_free_subvolume_writers(root->subv_writers); 3691 free_extent_buffer(root->node); 3692 free_extent_buffer(root->commit_root); 3693 kfree(root->free_ino_ctl); 3694 kfree(root->free_ino_pinned); 3695 kfree(root->name); 3696 btrfs_put_fs_root(root); 3697 } 3698 3699 void btrfs_free_fs_root(struct btrfs_root *root) 3700 { 3701 free_fs_root(root); 3702 } 3703 3704 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3705 { 3706 u64 root_objectid = 0; 3707 struct btrfs_root *gang[8]; 3708 int i = 0; 3709 int err = 0; 3710 unsigned int ret = 0; 3711 int index; 3712 3713 while (1) { 3714 index = srcu_read_lock(&fs_info->subvol_srcu); 3715 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3716 (void **)gang, root_objectid, 3717 ARRAY_SIZE(gang)); 3718 if (!ret) { 3719 srcu_read_unlock(&fs_info->subvol_srcu, index); 3720 break; 3721 } 3722 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3723 3724 for (i = 0; i < ret; i++) { 3725 /* Avoid to grab roots in dead_roots */ 3726 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3727 gang[i] = NULL; 3728 continue; 3729 } 3730 /* grab all the search result for later use */ 3731 gang[i] = btrfs_grab_fs_root(gang[i]); 3732 } 3733 srcu_read_unlock(&fs_info->subvol_srcu, index); 3734 3735 for (i = 0; i < ret; i++) { 3736 if (!gang[i]) 3737 continue; 3738 root_objectid = gang[i]->root_key.objectid; 3739 err = btrfs_orphan_cleanup(gang[i]); 3740 if (err) 3741 break; 3742 btrfs_put_fs_root(gang[i]); 3743 } 3744 root_objectid++; 3745 } 3746 3747 /* release the uncleaned roots due to error */ 3748 for (; i < ret; i++) { 3749 if (gang[i]) 3750 btrfs_put_fs_root(gang[i]); 3751 } 3752 return err; 3753 } 3754 3755 int btrfs_commit_super(struct btrfs_root *root) 3756 { 3757 struct btrfs_trans_handle *trans; 3758 3759 mutex_lock(&root->fs_info->cleaner_mutex); 3760 btrfs_run_delayed_iputs(root); 3761 mutex_unlock(&root->fs_info->cleaner_mutex); 3762 wake_up_process(root->fs_info->cleaner_kthread); 3763 3764 /* wait until ongoing cleanup work done */ 3765 down_write(&root->fs_info->cleanup_work_sem); 3766 up_write(&root->fs_info->cleanup_work_sem); 3767 3768 trans = btrfs_join_transaction(root); 3769 if (IS_ERR(trans)) 3770 return PTR_ERR(trans); 3771 return btrfs_commit_transaction(trans, root); 3772 } 3773 3774 void close_ctree(struct btrfs_root *root) 3775 { 3776 struct btrfs_fs_info *fs_info = root->fs_info; 3777 int ret; 3778 3779 fs_info->closing = 1; 3780 smp_mb(); 3781 3782 /* wait for the uuid_scan task to finish */ 3783 down(&fs_info->uuid_tree_rescan_sem); 3784 /* avoid complains from lockdep et al., set sem back to initial state */ 3785 up(&fs_info->uuid_tree_rescan_sem); 3786 3787 /* pause restriper - we want to resume on mount */ 3788 btrfs_pause_balance(fs_info); 3789 3790 btrfs_dev_replace_suspend_for_unmount(fs_info); 3791 3792 btrfs_scrub_cancel(fs_info); 3793 3794 /* wait for any defraggers to finish */ 3795 wait_event(fs_info->transaction_wait, 3796 (atomic_read(&fs_info->defrag_running) == 0)); 3797 3798 /* clear out the rbtree of defraggable inodes */ 3799 btrfs_cleanup_defrag_inodes(fs_info); 3800 3801 cancel_work_sync(&fs_info->async_reclaim_work); 3802 3803 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3804 /* 3805 * If the cleaner thread is stopped and there are 3806 * block groups queued for removal, the deletion will be 3807 * skipped when we quit the cleaner thread. 3808 */ 3809 btrfs_delete_unused_bgs(root->fs_info); 3810 3811 ret = btrfs_commit_super(root); 3812 if (ret) 3813 btrfs_err(fs_info, "commit super ret %d", ret); 3814 } 3815 3816 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3817 btrfs_error_commit_super(root); 3818 3819 kthread_stop(fs_info->transaction_kthread); 3820 kthread_stop(fs_info->cleaner_kthread); 3821 3822 fs_info->closing = 2; 3823 smp_mb(); 3824 3825 btrfs_free_qgroup_config(fs_info); 3826 3827 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3828 btrfs_info(fs_info, "at unmount delalloc count %lld", 3829 percpu_counter_sum(&fs_info->delalloc_bytes)); 3830 } 3831 3832 btrfs_sysfs_remove_mounted(fs_info); 3833 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3834 3835 btrfs_free_fs_roots(fs_info); 3836 3837 btrfs_put_block_group_cache(fs_info); 3838 3839 btrfs_free_block_groups(fs_info); 3840 3841 /* 3842 * we must make sure there is not any read request to 3843 * submit after we stopping all workers. 3844 */ 3845 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3846 btrfs_stop_all_workers(fs_info); 3847 3848 fs_info->open = 0; 3849 free_root_pointers(fs_info, 1); 3850 3851 iput(fs_info->btree_inode); 3852 3853 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3854 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3855 btrfsic_unmount(root, fs_info->fs_devices); 3856 #endif 3857 3858 btrfs_close_devices(fs_info->fs_devices); 3859 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3860 3861 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3862 percpu_counter_destroy(&fs_info->delalloc_bytes); 3863 percpu_counter_destroy(&fs_info->bio_counter); 3864 bdi_destroy(&fs_info->bdi); 3865 cleanup_srcu_struct(&fs_info->subvol_srcu); 3866 3867 btrfs_free_stripe_hash_table(fs_info); 3868 3869 __btrfs_free_block_rsv(root->orphan_block_rsv); 3870 root->orphan_block_rsv = NULL; 3871 3872 lock_chunks(root); 3873 while (!list_empty(&fs_info->pinned_chunks)) { 3874 struct extent_map *em; 3875 3876 em = list_first_entry(&fs_info->pinned_chunks, 3877 struct extent_map, list); 3878 list_del_init(&em->list); 3879 free_extent_map(em); 3880 } 3881 unlock_chunks(root); 3882 } 3883 3884 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3885 int atomic) 3886 { 3887 int ret; 3888 struct inode *btree_inode = buf->pages[0]->mapping->host; 3889 3890 ret = extent_buffer_uptodate(buf); 3891 if (!ret) 3892 return ret; 3893 3894 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3895 parent_transid, atomic); 3896 if (ret == -EAGAIN) 3897 return ret; 3898 return !ret; 3899 } 3900 3901 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3902 { 3903 return set_extent_buffer_uptodate(buf); 3904 } 3905 3906 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3907 { 3908 struct btrfs_root *root; 3909 u64 transid = btrfs_header_generation(buf); 3910 int was_dirty; 3911 3912 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3913 /* 3914 * This is a fast path so only do this check if we have sanity tests 3915 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3916 * outside of the sanity tests. 3917 */ 3918 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3919 return; 3920 #endif 3921 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3922 btrfs_assert_tree_locked(buf); 3923 if (transid != root->fs_info->generation) 3924 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3925 "found %llu running %llu\n", 3926 buf->start, transid, root->fs_info->generation); 3927 was_dirty = set_extent_buffer_dirty(buf); 3928 if (!was_dirty) 3929 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3930 buf->len, 3931 root->fs_info->dirty_metadata_batch); 3932 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3933 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3934 btrfs_print_leaf(root, buf); 3935 ASSERT(0); 3936 } 3937 #endif 3938 } 3939 3940 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3941 int flush_delayed) 3942 { 3943 /* 3944 * looks as though older kernels can get into trouble with 3945 * this code, they end up stuck in balance_dirty_pages forever 3946 */ 3947 int ret; 3948 3949 if (current->flags & PF_MEMALLOC) 3950 return; 3951 3952 if (flush_delayed) 3953 btrfs_balance_delayed_items(root); 3954 3955 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3956 BTRFS_DIRTY_METADATA_THRESH); 3957 if (ret > 0) { 3958 balance_dirty_pages_ratelimited( 3959 root->fs_info->btree_inode->i_mapping); 3960 } 3961 return; 3962 } 3963 3964 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3965 { 3966 __btrfs_btree_balance_dirty(root, 1); 3967 } 3968 3969 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3970 { 3971 __btrfs_btree_balance_dirty(root, 0); 3972 } 3973 3974 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3975 { 3976 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3977 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3978 } 3979 3980 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3981 int read_only) 3982 { 3983 struct btrfs_super_block *sb = fs_info->super_copy; 3984 int ret = 0; 3985 3986 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3987 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 3988 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3989 ret = -EINVAL; 3990 } 3991 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3992 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 3993 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3994 ret = -EINVAL; 3995 } 3996 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3997 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 3998 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3999 ret = -EINVAL; 4000 } 4001 4002 /* 4003 * The common minimum, we don't know if we can trust the nodesize/sectorsize 4004 * items yet, they'll be verified later. Issue just a warning. 4005 */ 4006 if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) 4007 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 4008 btrfs_super_root(sb)); 4009 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) 4010 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 4011 btrfs_super_chunk_root(sb)); 4012 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) 4013 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 4014 btrfs_super_log_root(sb)); 4015 4016 /* 4017 * Check the lower bound, the alignment and other constraints are 4018 * checked later. 4019 */ 4020 if (btrfs_super_nodesize(sb) < 4096) { 4021 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n", 4022 btrfs_super_nodesize(sb)); 4023 ret = -EINVAL; 4024 } 4025 if (btrfs_super_sectorsize(sb) < 4096) { 4026 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n", 4027 btrfs_super_sectorsize(sb)); 4028 ret = -EINVAL; 4029 } 4030 4031 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4032 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 4033 fs_info->fsid, sb->dev_item.fsid); 4034 ret = -EINVAL; 4035 } 4036 4037 /* 4038 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4039 * done later 4040 */ 4041 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4042 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 4043 btrfs_super_num_devices(sb)); 4044 if (btrfs_super_num_devices(sb) == 0) { 4045 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4046 ret = -EINVAL; 4047 } 4048 4049 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4050 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4051 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4052 ret = -EINVAL; 4053 } 4054 4055 /* 4056 * Obvious sys_chunk_array corruptions, it must hold at least one key 4057 * and one chunk 4058 */ 4059 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4060 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4061 btrfs_super_sys_array_size(sb), 4062 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4063 ret = -EINVAL; 4064 } 4065 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4066 + sizeof(struct btrfs_chunk)) { 4067 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4068 btrfs_super_sys_array_size(sb), 4069 sizeof(struct btrfs_disk_key) 4070 + sizeof(struct btrfs_chunk)); 4071 ret = -EINVAL; 4072 } 4073 4074 /* 4075 * The generation is a global counter, we'll trust it more than the others 4076 * but it's still possible that it's the one that's wrong. 4077 */ 4078 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4079 printk(KERN_WARNING 4080 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4081 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4082 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4083 && btrfs_super_cache_generation(sb) != (u64)-1) 4084 printk(KERN_WARNING 4085 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4086 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4087 4088 return ret; 4089 } 4090 4091 static void btrfs_error_commit_super(struct btrfs_root *root) 4092 { 4093 mutex_lock(&root->fs_info->cleaner_mutex); 4094 btrfs_run_delayed_iputs(root); 4095 mutex_unlock(&root->fs_info->cleaner_mutex); 4096 4097 down_write(&root->fs_info->cleanup_work_sem); 4098 up_write(&root->fs_info->cleanup_work_sem); 4099 4100 /* cleanup FS via transaction */ 4101 btrfs_cleanup_transaction(root); 4102 } 4103 4104 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4105 { 4106 struct btrfs_ordered_extent *ordered; 4107 4108 spin_lock(&root->ordered_extent_lock); 4109 /* 4110 * This will just short circuit the ordered completion stuff which will 4111 * make sure the ordered extent gets properly cleaned up. 4112 */ 4113 list_for_each_entry(ordered, &root->ordered_extents, 4114 root_extent_list) 4115 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4116 spin_unlock(&root->ordered_extent_lock); 4117 } 4118 4119 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4120 { 4121 struct btrfs_root *root; 4122 struct list_head splice; 4123 4124 INIT_LIST_HEAD(&splice); 4125 4126 spin_lock(&fs_info->ordered_root_lock); 4127 list_splice_init(&fs_info->ordered_roots, &splice); 4128 while (!list_empty(&splice)) { 4129 root = list_first_entry(&splice, struct btrfs_root, 4130 ordered_root); 4131 list_move_tail(&root->ordered_root, 4132 &fs_info->ordered_roots); 4133 4134 spin_unlock(&fs_info->ordered_root_lock); 4135 btrfs_destroy_ordered_extents(root); 4136 4137 cond_resched(); 4138 spin_lock(&fs_info->ordered_root_lock); 4139 } 4140 spin_unlock(&fs_info->ordered_root_lock); 4141 } 4142 4143 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4144 struct btrfs_root *root) 4145 { 4146 struct rb_node *node; 4147 struct btrfs_delayed_ref_root *delayed_refs; 4148 struct btrfs_delayed_ref_node *ref; 4149 int ret = 0; 4150 4151 delayed_refs = &trans->delayed_refs; 4152 4153 spin_lock(&delayed_refs->lock); 4154 if (atomic_read(&delayed_refs->num_entries) == 0) { 4155 spin_unlock(&delayed_refs->lock); 4156 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4157 return ret; 4158 } 4159 4160 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4161 struct btrfs_delayed_ref_head *head; 4162 struct btrfs_delayed_ref_node *tmp; 4163 bool pin_bytes = false; 4164 4165 head = rb_entry(node, struct btrfs_delayed_ref_head, 4166 href_node); 4167 if (!mutex_trylock(&head->mutex)) { 4168 atomic_inc(&head->node.refs); 4169 spin_unlock(&delayed_refs->lock); 4170 4171 mutex_lock(&head->mutex); 4172 mutex_unlock(&head->mutex); 4173 btrfs_put_delayed_ref(&head->node); 4174 spin_lock(&delayed_refs->lock); 4175 continue; 4176 } 4177 spin_lock(&head->lock); 4178 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4179 list) { 4180 ref->in_tree = 0; 4181 list_del(&ref->list); 4182 atomic_dec(&delayed_refs->num_entries); 4183 btrfs_put_delayed_ref(ref); 4184 } 4185 if (head->must_insert_reserved) 4186 pin_bytes = true; 4187 btrfs_free_delayed_extent_op(head->extent_op); 4188 delayed_refs->num_heads--; 4189 if (head->processing == 0) 4190 delayed_refs->num_heads_ready--; 4191 atomic_dec(&delayed_refs->num_entries); 4192 head->node.in_tree = 0; 4193 rb_erase(&head->href_node, &delayed_refs->href_root); 4194 spin_unlock(&head->lock); 4195 spin_unlock(&delayed_refs->lock); 4196 mutex_unlock(&head->mutex); 4197 4198 if (pin_bytes) 4199 btrfs_pin_extent(root, head->node.bytenr, 4200 head->node.num_bytes, 1); 4201 btrfs_put_delayed_ref(&head->node); 4202 cond_resched(); 4203 spin_lock(&delayed_refs->lock); 4204 } 4205 4206 spin_unlock(&delayed_refs->lock); 4207 4208 return ret; 4209 } 4210 4211 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4212 { 4213 struct btrfs_inode *btrfs_inode; 4214 struct list_head splice; 4215 4216 INIT_LIST_HEAD(&splice); 4217 4218 spin_lock(&root->delalloc_lock); 4219 list_splice_init(&root->delalloc_inodes, &splice); 4220 4221 while (!list_empty(&splice)) { 4222 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4223 delalloc_inodes); 4224 4225 list_del_init(&btrfs_inode->delalloc_inodes); 4226 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4227 &btrfs_inode->runtime_flags); 4228 spin_unlock(&root->delalloc_lock); 4229 4230 btrfs_invalidate_inodes(btrfs_inode->root); 4231 4232 spin_lock(&root->delalloc_lock); 4233 } 4234 4235 spin_unlock(&root->delalloc_lock); 4236 } 4237 4238 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4239 { 4240 struct btrfs_root *root; 4241 struct list_head splice; 4242 4243 INIT_LIST_HEAD(&splice); 4244 4245 spin_lock(&fs_info->delalloc_root_lock); 4246 list_splice_init(&fs_info->delalloc_roots, &splice); 4247 while (!list_empty(&splice)) { 4248 root = list_first_entry(&splice, struct btrfs_root, 4249 delalloc_root); 4250 list_del_init(&root->delalloc_root); 4251 root = btrfs_grab_fs_root(root); 4252 BUG_ON(!root); 4253 spin_unlock(&fs_info->delalloc_root_lock); 4254 4255 btrfs_destroy_delalloc_inodes(root); 4256 btrfs_put_fs_root(root); 4257 4258 spin_lock(&fs_info->delalloc_root_lock); 4259 } 4260 spin_unlock(&fs_info->delalloc_root_lock); 4261 } 4262 4263 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4264 struct extent_io_tree *dirty_pages, 4265 int mark) 4266 { 4267 int ret; 4268 struct extent_buffer *eb; 4269 u64 start = 0; 4270 u64 end; 4271 4272 while (1) { 4273 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4274 mark, NULL); 4275 if (ret) 4276 break; 4277 4278 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4279 while (start <= end) { 4280 eb = btrfs_find_tree_block(root->fs_info, start); 4281 start += root->nodesize; 4282 if (!eb) 4283 continue; 4284 wait_on_extent_buffer_writeback(eb); 4285 4286 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4287 &eb->bflags)) 4288 clear_extent_buffer_dirty(eb); 4289 free_extent_buffer_stale(eb); 4290 } 4291 } 4292 4293 return ret; 4294 } 4295 4296 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4297 struct extent_io_tree *pinned_extents) 4298 { 4299 struct extent_io_tree *unpin; 4300 u64 start; 4301 u64 end; 4302 int ret; 4303 bool loop = true; 4304 4305 unpin = pinned_extents; 4306 again: 4307 while (1) { 4308 ret = find_first_extent_bit(unpin, 0, &start, &end, 4309 EXTENT_DIRTY, NULL); 4310 if (ret) 4311 break; 4312 4313 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4314 btrfs_error_unpin_extent_range(root, start, end); 4315 cond_resched(); 4316 } 4317 4318 if (loop) { 4319 if (unpin == &root->fs_info->freed_extents[0]) 4320 unpin = &root->fs_info->freed_extents[1]; 4321 else 4322 unpin = &root->fs_info->freed_extents[0]; 4323 loop = false; 4324 goto again; 4325 } 4326 4327 return 0; 4328 } 4329 4330 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans, 4331 struct btrfs_fs_info *fs_info) 4332 { 4333 struct btrfs_ordered_extent *ordered; 4334 4335 spin_lock(&fs_info->trans_lock); 4336 while (!list_empty(&cur_trans->pending_ordered)) { 4337 ordered = list_first_entry(&cur_trans->pending_ordered, 4338 struct btrfs_ordered_extent, 4339 trans_list); 4340 list_del_init(&ordered->trans_list); 4341 spin_unlock(&fs_info->trans_lock); 4342 4343 btrfs_put_ordered_extent(ordered); 4344 spin_lock(&fs_info->trans_lock); 4345 } 4346 spin_unlock(&fs_info->trans_lock); 4347 } 4348 4349 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4350 struct btrfs_root *root) 4351 { 4352 btrfs_destroy_delayed_refs(cur_trans, root); 4353 4354 cur_trans->state = TRANS_STATE_COMMIT_START; 4355 wake_up(&root->fs_info->transaction_blocked_wait); 4356 4357 cur_trans->state = TRANS_STATE_UNBLOCKED; 4358 wake_up(&root->fs_info->transaction_wait); 4359 4360 btrfs_free_pending_ordered(cur_trans, root->fs_info); 4361 btrfs_destroy_delayed_inodes(root); 4362 btrfs_assert_delayed_root_empty(root); 4363 4364 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4365 EXTENT_DIRTY); 4366 btrfs_destroy_pinned_extent(root, 4367 root->fs_info->pinned_extents); 4368 4369 cur_trans->state =TRANS_STATE_COMPLETED; 4370 wake_up(&cur_trans->commit_wait); 4371 4372 /* 4373 memset(cur_trans, 0, sizeof(*cur_trans)); 4374 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4375 */ 4376 } 4377 4378 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4379 { 4380 struct btrfs_transaction *t; 4381 4382 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4383 4384 spin_lock(&root->fs_info->trans_lock); 4385 while (!list_empty(&root->fs_info->trans_list)) { 4386 t = list_first_entry(&root->fs_info->trans_list, 4387 struct btrfs_transaction, list); 4388 if (t->state >= TRANS_STATE_COMMIT_START) { 4389 atomic_inc(&t->use_count); 4390 spin_unlock(&root->fs_info->trans_lock); 4391 btrfs_wait_for_commit(root, t->transid); 4392 btrfs_put_transaction(t); 4393 spin_lock(&root->fs_info->trans_lock); 4394 continue; 4395 } 4396 if (t == root->fs_info->running_transaction) { 4397 t->state = TRANS_STATE_COMMIT_DOING; 4398 spin_unlock(&root->fs_info->trans_lock); 4399 /* 4400 * We wait for 0 num_writers since we don't hold a trans 4401 * handle open currently for this transaction. 4402 */ 4403 wait_event(t->writer_wait, 4404 atomic_read(&t->num_writers) == 0); 4405 } else { 4406 spin_unlock(&root->fs_info->trans_lock); 4407 } 4408 btrfs_cleanup_one_transaction(t, root); 4409 4410 spin_lock(&root->fs_info->trans_lock); 4411 if (t == root->fs_info->running_transaction) 4412 root->fs_info->running_transaction = NULL; 4413 list_del_init(&t->list); 4414 spin_unlock(&root->fs_info->trans_lock); 4415 4416 btrfs_put_transaction(t); 4417 trace_btrfs_transaction_commit(root); 4418 spin_lock(&root->fs_info->trans_lock); 4419 } 4420 spin_unlock(&root->fs_info->trans_lock); 4421 btrfs_destroy_all_ordered_extents(root->fs_info); 4422 btrfs_destroy_delayed_inodes(root); 4423 btrfs_assert_delayed_root_empty(root); 4424 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4425 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4426 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4427 4428 return 0; 4429 } 4430 4431 static const struct extent_io_ops btree_extent_io_ops = { 4432 .readpage_end_io_hook = btree_readpage_end_io_hook, 4433 .readpage_io_failed_hook = btree_io_failed_hook, 4434 .submit_bio_hook = btree_submit_bio_hook, 4435 /* note we're sharing with inode.c for the merge bio hook */ 4436 .merge_bio_hook = btrfs_merge_bio_hook, 4437 }; 4438