1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <linux/sched/mm.h> 21 #include <asm/unaligned.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 43 #ifdef CONFIG_X86 44 #include <asm/cpufeature.h> 45 #endif 46 47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 48 BTRFS_HEADER_FLAG_RELOC |\ 49 BTRFS_SUPER_FLAG_ERROR |\ 50 BTRFS_SUPER_FLAG_SEEDING |\ 51 BTRFS_SUPER_FLAG_METADUMP |\ 52 BTRFS_SUPER_FLAG_METADUMP_V2) 53 54 static const struct extent_io_ops btree_extent_io_ops; 55 static void end_workqueue_fn(struct btrfs_work *work); 56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 58 struct btrfs_fs_info *fs_info); 59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 61 struct extent_io_tree *dirty_pages, 62 int mark); 63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 64 struct extent_io_tree *pinned_extents); 65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 67 68 /* 69 * btrfs_end_io_wq structs are used to do processing in task context when an IO 70 * is complete. This is used during reads to verify checksums, and it is used 71 * by writes to insert metadata for new file extents after IO is complete. 72 */ 73 struct btrfs_end_io_wq { 74 struct bio *bio; 75 bio_end_io_t *end_io; 76 void *private; 77 struct btrfs_fs_info *info; 78 blk_status_t status; 79 enum btrfs_wq_endio_type metadata; 80 struct btrfs_work work; 81 }; 82 83 static struct kmem_cache *btrfs_end_io_wq_cache; 84 85 int __init btrfs_end_io_wq_init(void) 86 { 87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 88 sizeof(struct btrfs_end_io_wq), 89 0, 90 SLAB_MEM_SPREAD, 91 NULL); 92 if (!btrfs_end_io_wq_cache) 93 return -ENOMEM; 94 return 0; 95 } 96 97 void __cold btrfs_end_io_wq_exit(void) 98 { 99 kmem_cache_destroy(btrfs_end_io_wq_cache); 100 } 101 102 /* 103 * async submit bios are used to offload expensive checksumming 104 * onto the worker threads. They checksum file and metadata bios 105 * just before they are sent down the IO stack. 106 */ 107 struct async_submit_bio { 108 void *private_data; 109 struct bio *bio; 110 extent_submit_bio_start_t *submit_bio_start; 111 int mirror_num; 112 /* 113 * bio_offset is optional, can be used if the pages in the bio 114 * can't tell us where in the file the bio should go 115 */ 116 u64 bio_offset; 117 struct btrfs_work work; 118 blk_status_t status; 119 }; 120 121 /* 122 * Lockdep class keys for extent_buffer->lock's in this root. For a given 123 * eb, the lockdep key is determined by the btrfs_root it belongs to and 124 * the level the eb occupies in the tree. 125 * 126 * Different roots are used for different purposes and may nest inside each 127 * other and they require separate keysets. As lockdep keys should be 128 * static, assign keysets according to the purpose of the root as indicated 129 * by btrfs_root->root_key.objectid. This ensures that all special purpose 130 * roots have separate keysets. 131 * 132 * Lock-nesting across peer nodes is always done with the immediate parent 133 * node locked thus preventing deadlock. As lockdep doesn't know this, use 134 * subclass to avoid triggering lockdep warning in such cases. 135 * 136 * The key is set by the readpage_end_io_hook after the buffer has passed 137 * csum validation but before the pages are unlocked. It is also set by 138 * btrfs_init_new_buffer on freshly allocated blocks. 139 * 140 * We also add a check to make sure the highest level of the tree is the 141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 142 * needs update as well. 143 */ 144 #ifdef CONFIG_DEBUG_LOCK_ALLOC 145 # if BTRFS_MAX_LEVEL != 8 146 # error 147 # endif 148 149 static struct btrfs_lockdep_keyset { 150 u64 id; /* root objectid */ 151 const char *name_stem; /* lock name stem */ 152 char names[BTRFS_MAX_LEVEL + 1][20]; 153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 154 } btrfs_lockdep_keysets[] = { 155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 167 { .id = 0, .name_stem = "tree" }, 168 }; 169 170 void __init btrfs_init_lockdep(void) 171 { 172 int i, j; 173 174 /* initialize lockdep class names */ 175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 177 178 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 179 snprintf(ks->names[j], sizeof(ks->names[j]), 180 "btrfs-%s-%02d", ks->name_stem, j); 181 } 182 } 183 184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 185 int level) 186 { 187 struct btrfs_lockdep_keyset *ks; 188 189 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 190 191 /* find the matching keyset, id 0 is the default entry */ 192 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 193 if (ks->id == objectid) 194 break; 195 196 lockdep_set_class_and_name(&eb->lock, 197 &ks->keys[level], ks->names[level]); 198 } 199 200 #endif 201 202 /* 203 * extents on the btree inode are pretty simple, there's one extent 204 * that covers the entire device 205 */ 206 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 207 struct page *page, size_t pg_offset, u64 start, u64 len, 208 int create) 209 { 210 struct btrfs_fs_info *fs_info = inode->root->fs_info; 211 struct extent_map_tree *em_tree = &inode->extent_tree; 212 struct extent_map *em; 213 int ret; 214 215 read_lock(&em_tree->lock); 216 em = lookup_extent_mapping(em_tree, start, len); 217 if (em) { 218 em->bdev = fs_info->fs_devices->latest_bdev; 219 read_unlock(&em_tree->lock); 220 goto out; 221 } 222 read_unlock(&em_tree->lock); 223 224 em = alloc_extent_map(); 225 if (!em) { 226 em = ERR_PTR(-ENOMEM); 227 goto out; 228 } 229 em->start = 0; 230 em->len = (u64)-1; 231 em->block_len = (u64)-1; 232 em->block_start = 0; 233 em->bdev = fs_info->fs_devices->latest_bdev; 234 235 write_lock(&em_tree->lock); 236 ret = add_extent_mapping(em_tree, em, 0); 237 if (ret == -EEXIST) { 238 free_extent_map(em); 239 em = lookup_extent_mapping(em_tree, start, len); 240 if (!em) 241 em = ERR_PTR(-EIO); 242 } else if (ret) { 243 free_extent_map(em); 244 em = ERR_PTR(ret); 245 } 246 write_unlock(&em_tree->lock); 247 248 out: 249 return em; 250 } 251 252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 253 { 254 return crc32c(seed, data, len); 255 } 256 257 void btrfs_csum_final(u32 crc, u8 *result) 258 { 259 put_unaligned_le32(~crc, result); 260 } 261 262 /* 263 * Compute the csum of a btree block and store the result to provided buffer. 264 * 265 * Returns error if the extent buffer cannot be mapped. 266 */ 267 static int csum_tree_block(struct extent_buffer *buf, u8 *result) 268 { 269 unsigned long len; 270 unsigned long cur_len; 271 unsigned long offset = BTRFS_CSUM_SIZE; 272 char *kaddr; 273 unsigned long map_start; 274 unsigned long map_len; 275 int err; 276 u32 crc = ~(u32)0; 277 278 len = buf->len - offset; 279 while (len > 0) { 280 /* 281 * Note: we don't need to check for the err == 1 case here, as 282 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 283 * and 'min_len = 32' and the currently implemented mapping 284 * algorithm we cannot cross a page boundary. 285 */ 286 err = map_private_extent_buffer(buf, offset, 32, 287 &kaddr, &map_start, &map_len); 288 if (WARN_ON(err)) 289 return err; 290 cur_len = min(len, map_len - (offset - map_start)); 291 crc = btrfs_csum_data(kaddr + offset - map_start, 292 crc, cur_len); 293 len -= cur_len; 294 offset += cur_len; 295 } 296 memset(result, 0, BTRFS_CSUM_SIZE); 297 298 btrfs_csum_final(crc, result); 299 300 return 0; 301 } 302 303 /* 304 * we can't consider a given block up to date unless the transid of the 305 * block matches the transid in the parent node's pointer. This is how we 306 * detect blocks that either didn't get written at all or got written 307 * in the wrong place. 308 */ 309 static int verify_parent_transid(struct extent_io_tree *io_tree, 310 struct extent_buffer *eb, u64 parent_transid, 311 int atomic) 312 { 313 struct extent_state *cached_state = NULL; 314 int ret; 315 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 316 317 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 318 return 0; 319 320 if (atomic) 321 return -EAGAIN; 322 323 if (need_lock) { 324 btrfs_tree_read_lock(eb); 325 btrfs_set_lock_blocking_read(eb); 326 } 327 328 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 329 &cached_state); 330 if (extent_buffer_uptodate(eb) && 331 btrfs_header_generation(eb) == parent_transid) { 332 ret = 0; 333 goto out; 334 } 335 btrfs_err_rl(eb->fs_info, 336 "parent transid verify failed on %llu wanted %llu found %llu", 337 eb->start, 338 parent_transid, btrfs_header_generation(eb)); 339 ret = 1; 340 341 /* 342 * Things reading via commit roots that don't have normal protection, 343 * like send, can have a really old block in cache that may point at a 344 * block that has been freed and re-allocated. So don't clear uptodate 345 * if we find an eb that is under IO (dirty/writeback) because we could 346 * end up reading in the stale data and then writing it back out and 347 * making everybody very sad. 348 */ 349 if (!extent_buffer_under_io(eb)) 350 clear_extent_buffer_uptodate(eb); 351 out: 352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 353 &cached_state); 354 if (need_lock) 355 btrfs_tree_read_unlock_blocking(eb); 356 return ret; 357 } 358 359 /* 360 * Return 0 if the superblock checksum type matches the checksum value of that 361 * algorithm. Pass the raw disk superblock data. 362 */ 363 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 364 char *raw_disk_sb) 365 { 366 struct btrfs_super_block *disk_sb = 367 (struct btrfs_super_block *)raw_disk_sb; 368 u16 csum_type = btrfs_super_csum_type(disk_sb); 369 int ret = 0; 370 371 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 372 u32 crc = ~(u32)0; 373 char result[sizeof(crc)]; 374 375 /* 376 * The super_block structure does not span the whole 377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 378 * is filled with zeros and is included in the checksum. 379 */ 380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 382 btrfs_csum_final(crc, result); 383 384 if (memcmp(raw_disk_sb, result, sizeof(result))) 385 ret = 1; 386 } 387 388 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 389 btrfs_err(fs_info, "unsupported checksum algorithm %u", 390 csum_type); 391 ret = 1; 392 } 393 394 return ret; 395 } 396 397 static int verify_level_key(struct btrfs_fs_info *fs_info, 398 struct extent_buffer *eb, int level, 399 struct btrfs_key *first_key, u64 parent_transid) 400 { 401 int found_level; 402 struct btrfs_key found_key; 403 int ret; 404 405 found_level = btrfs_header_level(eb); 406 if (found_level != level) { 407 #ifdef CONFIG_BTRFS_DEBUG 408 WARN_ON(1); 409 btrfs_err(fs_info, 410 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 411 eb->start, level, found_level); 412 #endif 413 return -EIO; 414 } 415 416 if (!first_key) 417 return 0; 418 419 /* 420 * For live tree block (new tree blocks in current transaction), 421 * we need proper lock context to avoid race, which is impossible here. 422 * So we only checks tree blocks which is read from disk, whose 423 * generation <= fs_info->last_trans_committed. 424 */ 425 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 426 return 0; 427 if (found_level) 428 btrfs_node_key_to_cpu(eb, &found_key, 0); 429 else 430 btrfs_item_key_to_cpu(eb, &found_key, 0); 431 ret = btrfs_comp_cpu_keys(first_key, &found_key); 432 433 #ifdef CONFIG_BTRFS_DEBUG 434 if (ret) { 435 WARN_ON(1); 436 btrfs_err(fs_info, 437 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 438 eb->start, parent_transid, first_key->objectid, 439 first_key->type, first_key->offset, 440 found_key.objectid, found_key.type, 441 found_key.offset); 442 } 443 #endif 444 return ret; 445 } 446 447 /* 448 * helper to read a given tree block, doing retries as required when 449 * the checksums don't match and we have alternate mirrors to try. 450 * 451 * @parent_transid: expected transid, skip check if 0 452 * @level: expected level, mandatory check 453 * @first_key: expected key of first slot, skip check if NULL 454 */ 455 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 456 struct extent_buffer *eb, 457 u64 parent_transid, int level, 458 struct btrfs_key *first_key) 459 { 460 struct extent_io_tree *io_tree; 461 int failed = 0; 462 int ret; 463 int num_copies = 0; 464 int mirror_num = 0; 465 int failed_mirror = 0; 466 467 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 468 while (1) { 469 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 470 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 471 mirror_num); 472 if (!ret) { 473 if (verify_parent_transid(io_tree, eb, 474 parent_transid, 0)) 475 ret = -EIO; 476 else if (verify_level_key(fs_info, eb, level, 477 first_key, parent_transid)) 478 ret = -EUCLEAN; 479 else 480 break; 481 } 482 483 num_copies = btrfs_num_copies(fs_info, 484 eb->start, eb->len); 485 if (num_copies == 1) 486 break; 487 488 if (!failed_mirror) { 489 failed = 1; 490 failed_mirror = eb->read_mirror; 491 } 492 493 mirror_num++; 494 if (mirror_num == failed_mirror) 495 mirror_num++; 496 497 if (mirror_num > num_copies) 498 break; 499 } 500 501 if (failed && !ret && failed_mirror) 502 repair_eb_io_failure(fs_info, eb, failed_mirror); 503 504 return ret; 505 } 506 507 /* 508 * checksum a dirty tree block before IO. This has extra checks to make sure 509 * we only fill in the checksum field in the first page of a multi-page block 510 */ 511 512 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 513 { 514 u64 start = page_offset(page); 515 u64 found_start; 516 u8 result[BTRFS_CSUM_SIZE]; 517 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 518 struct extent_buffer *eb; 519 520 eb = (struct extent_buffer *)page->private; 521 if (page != eb->pages[0]) 522 return 0; 523 524 found_start = btrfs_header_bytenr(eb); 525 /* 526 * Please do not consolidate these warnings into a single if. 527 * It is useful to know what went wrong. 528 */ 529 if (WARN_ON(found_start != start)) 530 return -EUCLEAN; 531 if (WARN_ON(!PageUptodate(page))) 532 return -EUCLEAN; 533 534 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 535 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 536 537 if (csum_tree_block(eb, result)) 538 return -EINVAL; 539 540 write_extent_buffer(eb, result, 0, csum_size); 541 return 0; 542 } 543 544 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 545 struct extent_buffer *eb) 546 { 547 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 548 u8 fsid[BTRFS_FSID_SIZE]; 549 int ret = 1; 550 551 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 552 while (fs_devices) { 553 u8 *metadata_uuid; 554 555 /* 556 * Checking the incompat flag is only valid for the current 557 * fs. For seed devices it's forbidden to have their uuid 558 * changed so reading ->fsid in this case is fine 559 */ 560 if (fs_devices == fs_info->fs_devices && 561 btrfs_fs_incompat(fs_info, METADATA_UUID)) 562 metadata_uuid = fs_devices->metadata_uuid; 563 else 564 metadata_uuid = fs_devices->fsid; 565 566 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 567 ret = 0; 568 break; 569 } 570 fs_devices = fs_devices->seed; 571 } 572 return ret; 573 } 574 575 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 576 u64 phy_offset, struct page *page, 577 u64 start, u64 end, int mirror) 578 { 579 u64 found_start; 580 int found_level; 581 struct extent_buffer *eb; 582 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 583 struct btrfs_fs_info *fs_info = root->fs_info; 584 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 585 int ret = 0; 586 u8 result[BTRFS_CSUM_SIZE]; 587 int reads_done; 588 589 if (!page->private) 590 goto out; 591 592 eb = (struct extent_buffer *)page->private; 593 594 /* the pending IO might have been the only thing that kept this buffer 595 * in memory. Make sure we have a ref for all this other checks 596 */ 597 extent_buffer_get(eb); 598 599 reads_done = atomic_dec_and_test(&eb->io_pages); 600 if (!reads_done) 601 goto err; 602 603 eb->read_mirror = mirror; 604 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 605 ret = -EIO; 606 goto err; 607 } 608 609 found_start = btrfs_header_bytenr(eb); 610 if (found_start != eb->start) { 611 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 612 eb->start, found_start); 613 ret = -EIO; 614 goto err; 615 } 616 if (check_tree_block_fsid(fs_info, eb)) { 617 btrfs_err_rl(fs_info, "bad fsid on block %llu", 618 eb->start); 619 ret = -EIO; 620 goto err; 621 } 622 found_level = btrfs_header_level(eb); 623 if (found_level >= BTRFS_MAX_LEVEL) { 624 btrfs_err(fs_info, "bad tree block level %d on %llu", 625 (int)btrfs_header_level(eb), eb->start); 626 ret = -EIO; 627 goto err; 628 } 629 630 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 631 eb, found_level); 632 633 ret = csum_tree_block(eb, result); 634 if (ret) 635 goto err; 636 637 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 638 u32 val; 639 u32 found = 0; 640 641 memcpy(&found, result, csum_size); 642 643 read_extent_buffer(eb, &val, 0, csum_size); 644 btrfs_warn_rl(fs_info, 645 "%s checksum verify failed on %llu wanted %x found %x level %d", 646 fs_info->sb->s_id, eb->start, 647 val, found, btrfs_header_level(eb)); 648 ret = -EUCLEAN; 649 goto err; 650 } 651 652 /* 653 * If this is a leaf block and it is corrupt, set the corrupt bit so 654 * that we don't try and read the other copies of this block, just 655 * return -EIO. 656 */ 657 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 658 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 659 ret = -EIO; 660 } 661 662 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 663 ret = -EIO; 664 665 if (!ret) 666 set_extent_buffer_uptodate(eb); 667 err: 668 if (reads_done && 669 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 670 btree_readahead_hook(eb, ret); 671 672 if (ret) { 673 /* 674 * our io error hook is going to dec the io pages 675 * again, we have to make sure it has something 676 * to decrement 677 */ 678 atomic_inc(&eb->io_pages); 679 clear_extent_buffer_uptodate(eb); 680 } 681 free_extent_buffer(eb); 682 out: 683 return ret; 684 } 685 686 static void end_workqueue_bio(struct bio *bio) 687 { 688 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 689 struct btrfs_fs_info *fs_info; 690 struct btrfs_workqueue *wq; 691 btrfs_work_func_t func; 692 693 fs_info = end_io_wq->info; 694 end_io_wq->status = bio->bi_status; 695 696 if (bio_op(bio) == REQ_OP_WRITE) { 697 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 698 wq = fs_info->endio_meta_write_workers; 699 func = btrfs_endio_meta_write_helper; 700 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 701 wq = fs_info->endio_freespace_worker; 702 func = btrfs_freespace_write_helper; 703 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 704 wq = fs_info->endio_raid56_workers; 705 func = btrfs_endio_raid56_helper; 706 } else { 707 wq = fs_info->endio_write_workers; 708 func = btrfs_endio_write_helper; 709 } 710 } else { 711 if (unlikely(end_io_wq->metadata == 712 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 713 wq = fs_info->endio_repair_workers; 714 func = btrfs_endio_repair_helper; 715 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 716 wq = fs_info->endio_raid56_workers; 717 func = btrfs_endio_raid56_helper; 718 } else if (end_io_wq->metadata) { 719 wq = fs_info->endio_meta_workers; 720 func = btrfs_endio_meta_helper; 721 } else { 722 wq = fs_info->endio_workers; 723 func = btrfs_endio_helper; 724 } 725 } 726 727 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 728 btrfs_queue_work(wq, &end_io_wq->work); 729 } 730 731 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 732 enum btrfs_wq_endio_type metadata) 733 { 734 struct btrfs_end_io_wq *end_io_wq; 735 736 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 737 if (!end_io_wq) 738 return BLK_STS_RESOURCE; 739 740 end_io_wq->private = bio->bi_private; 741 end_io_wq->end_io = bio->bi_end_io; 742 end_io_wq->info = info; 743 end_io_wq->status = 0; 744 end_io_wq->bio = bio; 745 end_io_wq->metadata = metadata; 746 747 bio->bi_private = end_io_wq; 748 bio->bi_end_io = end_workqueue_bio; 749 return 0; 750 } 751 752 static void run_one_async_start(struct btrfs_work *work) 753 { 754 struct async_submit_bio *async; 755 blk_status_t ret; 756 757 async = container_of(work, struct async_submit_bio, work); 758 ret = async->submit_bio_start(async->private_data, async->bio, 759 async->bio_offset); 760 if (ret) 761 async->status = ret; 762 } 763 764 /* 765 * In order to insert checksums into the metadata in large chunks, we wait 766 * until bio submission time. All the pages in the bio are checksummed and 767 * sums are attached onto the ordered extent record. 768 * 769 * At IO completion time the csums attached on the ordered extent record are 770 * inserted into the tree. 771 */ 772 static void run_one_async_done(struct btrfs_work *work) 773 { 774 struct async_submit_bio *async; 775 struct inode *inode; 776 blk_status_t ret; 777 778 async = container_of(work, struct async_submit_bio, work); 779 inode = async->private_data; 780 781 /* If an error occurred we just want to clean up the bio and move on */ 782 if (async->status) { 783 async->bio->bi_status = async->status; 784 bio_endio(async->bio); 785 return; 786 } 787 788 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, 789 async->mirror_num, 1); 790 if (ret) { 791 async->bio->bi_status = ret; 792 bio_endio(async->bio); 793 } 794 } 795 796 static void run_one_async_free(struct btrfs_work *work) 797 { 798 struct async_submit_bio *async; 799 800 async = container_of(work, struct async_submit_bio, work); 801 kfree(async); 802 } 803 804 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 805 int mirror_num, unsigned long bio_flags, 806 u64 bio_offset, void *private_data, 807 extent_submit_bio_start_t *submit_bio_start) 808 { 809 struct async_submit_bio *async; 810 811 async = kmalloc(sizeof(*async), GFP_NOFS); 812 if (!async) 813 return BLK_STS_RESOURCE; 814 815 async->private_data = private_data; 816 async->bio = bio; 817 async->mirror_num = mirror_num; 818 async->submit_bio_start = submit_bio_start; 819 820 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 821 run_one_async_done, run_one_async_free); 822 823 async->bio_offset = bio_offset; 824 825 async->status = 0; 826 827 if (op_is_sync(bio->bi_opf)) 828 btrfs_set_work_high_priority(&async->work); 829 830 btrfs_queue_work(fs_info->workers, &async->work); 831 return 0; 832 } 833 834 static blk_status_t btree_csum_one_bio(struct bio *bio) 835 { 836 struct bio_vec *bvec; 837 struct btrfs_root *root; 838 int i, ret = 0; 839 struct bvec_iter_all iter_all; 840 841 ASSERT(!bio_flagged(bio, BIO_CLONED)); 842 bio_for_each_segment_all(bvec, bio, i, iter_all) { 843 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 844 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 845 if (ret) 846 break; 847 } 848 849 return errno_to_blk_status(ret); 850 } 851 852 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 853 u64 bio_offset) 854 { 855 /* 856 * when we're called for a write, we're already in the async 857 * submission context. Just jump into btrfs_map_bio 858 */ 859 return btree_csum_one_bio(bio); 860 } 861 862 static int check_async_write(struct btrfs_inode *bi) 863 { 864 if (atomic_read(&bi->sync_writers)) 865 return 0; 866 #ifdef CONFIG_X86 867 if (static_cpu_has(X86_FEATURE_XMM4_2)) 868 return 0; 869 #endif 870 return 1; 871 } 872 873 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 874 int mirror_num, unsigned long bio_flags, 875 u64 bio_offset) 876 { 877 struct inode *inode = private_data; 878 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 879 int async = check_async_write(BTRFS_I(inode)); 880 blk_status_t ret; 881 882 if (bio_op(bio) != REQ_OP_WRITE) { 883 /* 884 * called for a read, do the setup so that checksum validation 885 * can happen in the async kernel threads 886 */ 887 ret = btrfs_bio_wq_end_io(fs_info, bio, 888 BTRFS_WQ_ENDIO_METADATA); 889 if (ret) 890 goto out_w_error; 891 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 892 } else if (!async) { 893 ret = btree_csum_one_bio(bio); 894 if (ret) 895 goto out_w_error; 896 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 897 } else { 898 /* 899 * kthread helpers are used to submit writes so that 900 * checksumming can happen in parallel across all CPUs 901 */ 902 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 903 bio_offset, private_data, 904 btree_submit_bio_start); 905 } 906 907 if (ret) 908 goto out_w_error; 909 return 0; 910 911 out_w_error: 912 bio->bi_status = ret; 913 bio_endio(bio); 914 return ret; 915 } 916 917 #ifdef CONFIG_MIGRATION 918 static int btree_migratepage(struct address_space *mapping, 919 struct page *newpage, struct page *page, 920 enum migrate_mode mode) 921 { 922 /* 923 * we can't safely write a btree page from here, 924 * we haven't done the locking hook 925 */ 926 if (PageDirty(page)) 927 return -EAGAIN; 928 /* 929 * Buffers may be managed in a filesystem specific way. 930 * We must have no buffers or drop them. 931 */ 932 if (page_has_private(page) && 933 !try_to_release_page(page, GFP_KERNEL)) 934 return -EAGAIN; 935 return migrate_page(mapping, newpage, page, mode); 936 } 937 #endif 938 939 940 static int btree_writepages(struct address_space *mapping, 941 struct writeback_control *wbc) 942 { 943 struct btrfs_fs_info *fs_info; 944 int ret; 945 946 if (wbc->sync_mode == WB_SYNC_NONE) { 947 948 if (wbc->for_kupdate) 949 return 0; 950 951 fs_info = BTRFS_I(mapping->host)->root->fs_info; 952 /* this is a bit racy, but that's ok */ 953 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 954 BTRFS_DIRTY_METADATA_THRESH, 955 fs_info->dirty_metadata_batch); 956 if (ret < 0) 957 return 0; 958 } 959 return btree_write_cache_pages(mapping, wbc); 960 } 961 962 static int btree_readpage(struct file *file, struct page *page) 963 { 964 struct extent_io_tree *tree; 965 tree = &BTRFS_I(page->mapping->host)->io_tree; 966 return extent_read_full_page(tree, page, btree_get_extent, 0); 967 } 968 969 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 970 { 971 if (PageWriteback(page) || PageDirty(page)) 972 return 0; 973 974 return try_release_extent_buffer(page); 975 } 976 977 static void btree_invalidatepage(struct page *page, unsigned int offset, 978 unsigned int length) 979 { 980 struct extent_io_tree *tree; 981 tree = &BTRFS_I(page->mapping->host)->io_tree; 982 extent_invalidatepage(tree, page, offset); 983 btree_releasepage(page, GFP_NOFS); 984 if (PagePrivate(page)) { 985 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 986 "page private not zero on page %llu", 987 (unsigned long long)page_offset(page)); 988 ClearPagePrivate(page); 989 set_page_private(page, 0); 990 put_page(page); 991 } 992 } 993 994 static int btree_set_page_dirty(struct page *page) 995 { 996 #ifdef DEBUG 997 struct extent_buffer *eb; 998 999 BUG_ON(!PagePrivate(page)); 1000 eb = (struct extent_buffer *)page->private; 1001 BUG_ON(!eb); 1002 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1003 BUG_ON(!atomic_read(&eb->refs)); 1004 btrfs_assert_tree_locked(eb); 1005 #endif 1006 return __set_page_dirty_nobuffers(page); 1007 } 1008 1009 static const struct address_space_operations btree_aops = { 1010 .readpage = btree_readpage, 1011 .writepages = btree_writepages, 1012 .releasepage = btree_releasepage, 1013 .invalidatepage = btree_invalidatepage, 1014 #ifdef CONFIG_MIGRATION 1015 .migratepage = btree_migratepage, 1016 #endif 1017 .set_page_dirty = btree_set_page_dirty, 1018 }; 1019 1020 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1021 { 1022 struct extent_buffer *buf = NULL; 1023 struct inode *btree_inode = fs_info->btree_inode; 1024 1025 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1026 if (IS_ERR(buf)) 1027 return; 1028 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1029 buf, WAIT_NONE, 0); 1030 free_extent_buffer(buf); 1031 } 1032 1033 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1034 int mirror_num, struct extent_buffer **eb) 1035 { 1036 struct extent_buffer *buf = NULL; 1037 struct inode *btree_inode = fs_info->btree_inode; 1038 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1039 int ret; 1040 1041 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1042 if (IS_ERR(buf)) 1043 return 0; 1044 1045 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1046 1047 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1048 mirror_num); 1049 if (ret) { 1050 free_extent_buffer(buf); 1051 return ret; 1052 } 1053 1054 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1055 free_extent_buffer(buf); 1056 return -EIO; 1057 } else if (extent_buffer_uptodate(buf)) { 1058 *eb = buf; 1059 } else { 1060 free_extent_buffer(buf); 1061 } 1062 return 0; 1063 } 1064 1065 struct extent_buffer *btrfs_find_create_tree_block( 1066 struct btrfs_fs_info *fs_info, 1067 u64 bytenr) 1068 { 1069 if (btrfs_is_testing(fs_info)) 1070 return alloc_test_extent_buffer(fs_info, bytenr); 1071 return alloc_extent_buffer(fs_info, bytenr); 1072 } 1073 1074 1075 int btrfs_write_tree_block(struct extent_buffer *buf) 1076 { 1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1078 buf->start + buf->len - 1); 1079 } 1080 1081 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1082 { 1083 filemap_fdatawait_range(buf->pages[0]->mapping, 1084 buf->start, buf->start + buf->len - 1); 1085 } 1086 1087 /* 1088 * Read tree block at logical address @bytenr and do variant basic but critical 1089 * verification. 1090 * 1091 * @parent_transid: expected transid of this tree block, skip check if 0 1092 * @level: expected level, mandatory check 1093 * @first_key: expected key in slot 0, skip check if NULL 1094 */ 1095 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1096 u64 parent_transid, int level, 1097 struct btrfs_key *first_key) 1098 { 1099 struct extent_buffer *buf = NULL; 1100 int ret; 1101 1102 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1103 if (IS_ERR(buf)) 1104 return buf; 1105 1106 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1107 level, first_key); 1108 if (ret) { 1109 free_extent_buffer(buf); 1110 return ERR_PTR(ret); 1111 } 1112 return buf; 1113 1114 } 1115 1116 void clean_tree_block(struct btrfs_fs_info *fs_info, 1117 struct extent_buffer *buf) 1118 { 1119 if (btrfs_header_generation(buf) == 1120 fs_info->running_transaction->transid) { 1121 btrfs_assert_tree_locked(buf); 1122 1123 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1124 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1125 -buf->len, 1126 fs_info->dirty_metadata_batch); 1127 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1128 btrfs_set_lock_blocking_write(buf); 1129 clear_extent_buffer_dirty(buf); 1130 } 1131 } 1132 } 1133 1134 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1135 { 1136 struct btrfs_subvolume_writers *writers; 1137 int ret; 1138 1139 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1140 if (!writers) 1141 return ERR_PTR(-ENOMEM); 1142 1143 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1144 if (ret < 0) { 1145 kfree(writers); 1146 return ERR_PTR(ret); 1147 } 1148 1149 init_waitqueue_head(&writers->wait); 1150 return writers; 1151 } 1152 1153 static void 1154 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1155 { 1156 percpu_counter_destroy(&writers->counter); 1157 kfree(writers); 1158 } 1159 1160 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1161 u64 objectid) 1162 { 1163 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1164 root->node = NULL; 1165 root->commit_root = NULL; 1166 root->state = 0; 1167 root->orphan_cleanup_state = 0; 1168 1169 root->last_trans = 0; 1170 root->highest_objectid = 0; 1171 root->nr_delalloc_inodes = 0; 1172 root->nr_ordered_extents = 0; 1173 root->inode_tree = RB_ROOT; 1174 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1175 root->block_rsv = NULL; 1176 1177 INIT_LIST_HEAD(&root->dirty_list); 1178 INIT_LIST_HEAD(&root->root_list); 1179 INIT_LIST_HEAD(&root->delalloc_inodes); 1180 INIT_LIST_HEAD(&root->delalloc_root); 1181 INIT_LIST_HEAD(&root->ordered_extents); 1182 INIT_LIST_HEAD(&root->ordered_root); 1183 INIT_LIST_HEAD(&root->reloc_dirty_list); 1184 INIT_LIST_HEAD(&root->logged_list[0]); 1185 INIT_LIST_HEAD(&root->logged_list[1]); 1186 spin_lock_init(&root->inode_lock); 1187 spin_lock_init(&root->delalloc_lock); 1188 spin_lock_init(&root->ordered_extent_lock); 1189 spin_lock_init(&root->accounting_lock); 1190 spin_lock_init(&root->log_extents_lock[0]); 1191 spin_lock_init(&root->log_extents_lock[1]); 1192 spin_lock_init(&root->qgroup_meta_rsv_lock); 1193 mutex_init(&root->objectid_mutex); 1194 mutex_init(&root->log_mutex); 1195 mutex_init(&root->ordered_extent_mutex); 1196 mutex_init(&root->delalloc_mutex); 1197 init_waitqueue_head(&root->log_writer_wait); 1198 init_waitqueue_head(&root->log_commit_wait[0]); 1199 init_waitqueue_head(&root->log_commit_wait[1]); 1200 INIT_LIST_HEAD(&root->log_ctxs[0]); 1201 INIT_LIST_HEAD(&root->log_ctxs[1]); 1202 atomic_set(&root->log_commit[0], 0); 1203 atomic_set(&root->log_commit[1], 0); 1204 atomic_set(&root->log_writers, 0); 1205 atomic_set(&root->log_batch, 0); 1206 refcount_set(&root->refs, 1); 1207 atomic_set(&root->will_be_snapshotted, 0); 1208 atomic_set(&root->snapshot_force_cow, 0); 1209 atomic_set(&root->nr_swapfiles, 0); 1210 root->log_transid = 0; 1211 root->log_transid_committed = -1; 1212 root->last_log_commit = 0; 1213 if (!dummy) 1214 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1215 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1216 1217 memset(&root->root_key, 0, sizeof(root->root_key)); 1218 memset(&root->root_item, 0, sizeof(root->root_item)); 1219 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1220 if (!dummy) 1221 root->defrag_trans_start = fs_info->generation; 1222 else 1223 root->defrag_trans_start = 0; 1224 root->root_key.objectid = objectid; 1225 root->anon_dev = 0; 1226 1227 spin_lock_init(&root->root_item_lock); 1228 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1229 } 1230 1231 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1232 gfp_t flags) 1233 { 1234 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1235 if (root) 1236 root->fs_info = fs_info; 1237 return root; 1238 } 1239 1240 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1241 /* Should only be used by the testing infrastructure */ 1242 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1243 { 1244 struct btrfs_root *root; 1245 1246 if (!fs_info) 1247 return ERR_PTR(-EINVAL); 1248 1249 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1250 if (!root) 1251 return ERR_PTR(-ENOMEM); 1252 1253 /* We don't use the stripesize in selftest, set it as sectorsize */ 1254 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1255 root->alloc_bytenr = 0; 1256 1257 return root; 1258 } 1259 #endif 1260 1261 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1262 struct btrfs_fs_info *fs_info, 1263 u64 objectid) 1264 { 1265 struct extent_buffer *leaf; 1266 struct btrfs_root *tree_root = fs_info->tree_root; 1267 struct btrfs_root *root; 1268 struct btrfs_key key; 1269 unsigned int nofs_flag; 1270 int ret = 0; 1271 uuid_le uuid = NULL_UUID_LE; 1272 1273 /* 1274 * We're holding a transaction handle, so use a NOFS memory allocation 1275 * context to avoid deadlock if reclaim happens. 1276 */ 1277 nofs_flag = memalloc_nofs_save(); 1278 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1279 memalloc_nofs_restore(nofs_flag); 1280 if (!root) 1281 return ERR_PTR(-ENOMEM); 1282 1283 __setup_root(root, fs_info, objectid); 1284 root->root_key.objectid = objectid; 1285 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1286 root->root_key.offset = 0; 1287 1288 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1289 if (IS_ERR(leaf)) { 1290 ret = PTR_ERR(leaf); 1291 leaf = NULL; 1292 goto fail; 1293 } 1294 1295 root->node = leaf; 1296 btrfs_mark_buffer_dirty(leaf); 1297 1298 root->commit_root = btrfs_root_node(root); 1299 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1300 1301 root->root_item.flags = 0; 1302 root->root_item.byte_limit = 0; 1303 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1304 btrfs_set_root_generation(&root->root_item, trans->transid); 1305 btrfs_set_root_level(&root->root_item, 0); 1306 btrfs_set_root_refs(&root->root_item, 1); 1307 btrfs_set_root_used(&root->root_item, leaf->len); 1308 btrfs_set_root_last_snapshot(&root->root_item, 0); 1309 btrfs_set_root_dirid(&root->root_item, 0); 1310 if (is_fstree(objectid)) 1311 uuid_le_gen(&uuid); 1312 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1313 root->root_item.drop_level = 0; 1314 1315 key.objectid = objectid; 1316 key.type = BTRFS_ROOT_ITEM_KEY; 1317 key.offset = 0; 1318 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1319 if (ret) 1320 goto fail; 1321 1322 btrfs_tree_unlock(leaf); 1323 1324 return root; 1325 1326 fail: 1327 if (leaf) { 1328 btrfs_tree_unlock(leaf); 1329 free_extent_buffer(root->commit_root); 1330 free_extent_buffer(leaf); 1331 } 1332 kfree(root); 1333 1334 return ERR_PTR(ret); 1335 } 1336 1337 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1338 struct btrfs_fs_info *fs_info) 1339 { 1340 struct btrfs_root *root; 1341 struct extent_buffer *leaf; 1342 1343 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1344 if (!root) 1345 return ERR_PTR(-ENOMEM); 1346 1347 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1348 1349 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1350 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1351 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1352 1353 /* 1354 * DON'T set REF_COWS for log trees 1355 * 1356 * log trees do not get reference counted because they go away 1357 * before a real commit is actually done. They do store pointers 1358 * to file data extents, and those reference counts still get 1359 * updated (along with back refs to the log tree). 1360 */ 1361 1362 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1363 NULL, 0, 0, 0); 1364 if (IS_ERR(leaf)) { 1365 kfree(root); 1366 return ERR_CAST(leaf); 1367 } 1368 1369 root->node = leaf; 1370 1371 btrfs_mark_buffer_dirty(root->node); 1372 btrfs_tree_unlock(root->node); 1373 return root; 1374 } 1375 1376 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1377 struct btrfs_fs_info *fs_info) 1378 { 1379 struct btrfs_root *log_root; 1380 1381 log_root = alloc_log_tree(trans, fs_info); 1382 if (IS_ERR(log_root)) 1383 return PTR_ERR(log_root); 1384 WARN_ON(fs_info->log_root_tree); 1385 fs_info->log_root_tree = log_root; 1386 return 0; 1387 } 1388 1389 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1390 struct btrfs_root *root) 1391 { 1392 struct btrfs_fs_info *fs_info = root->fs_info; 1393 struct btrfs_root *log_root; 1394 struct btrfs_inode_item *inode_item; 1395 1396 log_root = alloc_log_tree(trans, fs_info); 1397 if (IS_ERR(log_root)) 1398 return PTR_ERR(log_root); 1399 1400 log_root->last_trans = trans->transid; 1401 log_root->root_key.offset = root->root_key.objectid; 1402 1403 inode_item = &log_root->root_item.inode; 1404 btrfs_set_stack_inode_generation(inode_item, 1); 1405 btrfs_set_stack_inode_size(inode_item, 3); 1406 btrfs_set_stack_inode_nlink(inode_item, 1); 1407 btrfs_set_stack_inode_nbytes(inode_item, 1408 fs_info->nodesize); 1409 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1410 1411 btrfs_set_root_node(&log_root->root_item, log_root->node); 1412 1413 WARN_ON(root->log_root); 1414 root->log_root = log_root; 1415 root->log_transid = 0; 1416 root->log_transid_committed = -1; 1417 root->last_log_commit = 0; 1418 return 0; 1419 } 1420 1421 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1422 struct btrfs_key *key) 1423 { 1424 struct btrfs_root *root; 1425 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1426 struct btrfs_path *path; 1427 u64 generation; 1428 int ret; 1429 int level; 1430 1431 path = btrfs_alloc_path(); 1432 if (!path) 1433 return ERR_PTR(-ENOMEM); 1434 1435 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1436 if (!root) { 1437 ret = -ENOMEM; 1438 goto alloc_fail; 1439 } 1440 1441 __setup_root(root, fs_info, key->objectid); 1442 1443 ret = btrfs_find_root(tree_root, key, path, 1444 &root->root_item, &root->root_key); 1445 if (ret) { 1446 if (ret > 0) 1447 ret = -ENOENT; 1448 goto find_fail; 1449 } 1450 1451 generation = btrfs_root_generation(&root->root_item); 1452 level = btrfs_root_level(&root->root_item); 1453 root->node = read_tree_block(fs_info, 1454 btrfs_root_bytenr(&root->root_item), 1455 generation, level, NULL); 1456 if (IS_ERR(root->node)) { 1457 ret = PTR_ERR(root->node); 1458 goto find_fail; 1459 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1460 ret = -EIO; 1461 free_extent_buffer(root->node); 1462 goto find_fail; 1463 } 1464 root->commit_root = btrfs_root_node(root); 1465 out: 1466 btrfs_free_path(path); 1467 return root; 1468 1469 find_fail: 1470 kfree(root); 1471 alloc_fail: 1472 root = ERR_PTR(ret); 1473 goto out; 1474 } 1475 1476 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1477 struct btrfs_key *location) 1478 { 1479 struct btrfs_root *root; 1480 1481 root = btrfs_read_tree_root(tree_root, location); 1482 if (IS_ERR(root)) 1483 return root; 1484 1485 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1486 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1487 btrfs_check_and_init_root_item(&root->root_item); 1488 } 1489 1490 return root; 1491 } 1492 1493 int btrfs_init_fs_root(struct btrfs_root *root) 1494 { 1495 int ret; 1496 struct btrfs_subvolume_writers *writers; 1497 1498 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1499 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1500 GFP_NOFS); 1501 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1502 ret = -ENOMEM; 1503 goto fail; 1504 } 1505 1506 writers = btrfs_alloc_subvolume_writers(); 1507 if (IS_ERR(writers)) { 1508 ret = PTR_ERR(writers); 1509 goto fail; 1510 } 1511 root->subv_writers = writers; 1512 1513 btrfs_init_free_ino_ctl(root); 1514 spin_lock_init(&root->ino_cache_lock); 1515 init_waitqueue_head(&root->ino_cache_wait); 1516 1517 ret = get_anon_bdev(&root->anon_dev); 1518 if (ret) 1519 goto fail; 1520 1521 mutex_lock(&root->objectid_mutex); 1522 ret = btrfs_find_highest_objectid(root, 1523 &root->highest_objectid); 1524 if (ret) { 1525 mutex_unlock(&root->objectid_mutex); 1526 goto fail; 1527 } 1528 1529 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1530 1531 mutex_unlock(&root->objectid_mutex); 1532 1533 return 0; 1534 fail: 1535 /* The caller is responsible to call btrfs_free_fs_root */ 1536 return ret; 1537 } 1538 1539 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1540 u64 root_id) 1541 { 1542 struct btrfs_root *root; 1543 1544 spin_lock(&fs_info->fs_roots_radix_lock); 1545 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1546 (unsigned long)root_id); 1547 spin_unlock(&fs_info->fs_roots_radix_lock); 1548 return root; 1549 } 1550 1551 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1552 struct btrfs_root *root) 1553 { 1554 int ret; 1555 1556 ret = radix_tree_preload(GFP_NOFS); 1557 if (ret) 1558 return ret; 1559 1560 spin_lock(&fs_info->fs_roots_radix_lock); 1561 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1562 (unsigned long)root->root_key.objectid, 1563 root); 1564 if (ret == 0) 1565 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1566 spin_unlock(&fs_info->fs_roots_radix_lock); 1567 radix_tree_preload_end(); 1568 1569 return ret; 1570 } 1571 1572 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1573 struct btrfs_key *location, 1574 bool check_ref) 1575 { 1576 struct btrfs_root *root; 1577 struct btrfs_path *path; 1578 struct btrfs_key key; 1579 int ret; 1580 1581 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1582 return fs_info->tree_root; 1583 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1584 return fs_info->extent_root; 1585 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1586 return fs_info->chunk_root; 1587 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1588 return fs_info->dev_root; 1589 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1590 return fs_info->csum_root; 1591 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1592 return fs_info->quota_root ? fs_info->quota_root : 1593 ERR_PTR(-ENOENT); 1594 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1595 return fs_info->uuid_root ? fs_info->uuid_root : 1596 ERR_PTR(-ENOENT); 1597 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1598 return fs_info->free_space_root ? fs_info->free_space_root : 1599 ERR_PTR(-ENOENT); 1600 again: 1601 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1602 if (root) { 1603 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1604 return ERR_PTR(-ENOENT); 1605 return root; 1606 } 1607 1608 root = btrfs_read_fs_root(fs_info->tree_root, location); 1609 if (IS_ERR(root)) 1610 return root; 1611 1612 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1613 ret = -ENOENT; 1614 goto fail; 1615 } 1616 1617 ret = btrfs_init_fs_root(root); 1618 if (ret) 1619 goto fail; 1620 1621 path = btrfs_alloc_path(); 1622 if (!path) { 1623 ret = -ENOMEM; 1624 goto fail; 1625 } 1626 key.objectid = BTRFS_ORPHAN_OBJECTID; 1627 key.type = BTRFS_ORPHAN_ITEM_KEY; 1628 key.offset = location->objectid; 1629 1630 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1631 btrfs_free_path(path); 1632 if (ret < 0) 1633 goto fail; 1634 if (ret == 0) 1635 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1636 1637 ret = btrfs_insert_fs_root(fs_info, root); 1638 if (ret) { 1639 if (ret == -EEXIST) { 1640 btrfs_free_fs_root(root); 1641 goto again; 1642 } 1643 goto fail; 1644 } 1645 return root; 1646 fail: 1647 btrfs_free_fs_root(root); 1648 return ERR_PTR(ret); 1649 } 1650 1651 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1652 { 1653 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1654 int ret = 0; 1655 struct btrfs_device *device; 1656 struct backing_dev_info *bdi; 1657 1658 rcu_read_lock(); 1659 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1660 if (!device->bdev) 1661 continue; 1662 bdi = device->bdev->bd_bdi; 1663 if (bdi_congested(bdi, bdi_bits)) { 1664 ret = 1; 1665 break; 1666 } 1667 } 1668 rcu_read_unlock(); 1669 return ret; 1670 } 1671 1672 /* 1673 * called by the kthread helper functions to finally call the bio end_io 1674 * functions. This is where read checksum verification actually happens 1675 */ 1676 static void end_workqueue_fn(struct btrfs_work *work) 1677 { 1678 struct bio *bio; 1679 struct btrfs_end_io_wq *end_io_wq; 1680 1681 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1682 bio = end_io_wq->bio; 1683 1684 bio->bi_status = end_io_wq->status; 1685 bio->bi_private = end_io_wq->private; 1686 bio->bi_end_io = end_io_wq->end_io; 1687 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1688 bio_endio(bio); 1689 } 1690 1691 static int cleaner_kthread(void *arg) 1692 { 1693 struct btrfs_root *root = arg; 1694 struct btrfs_fs_info *fs_info = root->fs_info; 1695 int again; 1696 1697 while (1) { 1698 again = 0; 1699 1700 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1701 1702 /* Make the cleaner go to sleep early. */ 1703 if (btrfs_need_cleaner_sleep(fs_info)) 1704 goto sleep; 1705 1706 /* 1707 * Do not do anything if we might cause open_ctree() to block 1708 * before we have finished mounting the filesystem. 1709 */ 1710 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1711 goto sleep; 1712 1713 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1714 goto sleep; 1715 1716 /* 1717 * Avoid the problem that we change the status of the fs 1718 * during the above check and trylock. 1719 */ 1720 if (btrfs_need_cleaner_sleep(fs_info)) { 1721 mutex_unlock(&fs_info->cleaner_mutex); 1722 goto sleep; 1723 } 1724 1725 btrfs_run_delayed_iputs(fs_info); 1726 1727 again = btrfs_clean_one_deleted_snapshot(root); 1728 mutex_unlock(&fs_info->cleaner_mutex); 1729 1730 /* 1731 * The defragger has dealt with the R/O remount and umount, 1732 * needn't do anything special here. 1733 */ 1734 btrfs_run_defrag_inodes(fs_info); 1735 1736 /* 1737 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1738 * with relocation (btrfs_relocate_chunk) and relocation 1739 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1740 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1741 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1742 * unused block groups. 1743 */ 1744 btrfs_delete_unused_bgs(fs_info); 1745 sleep: 1746 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1747 if (kthread_should_park()) 1748 kthread_parkme(); 1749 if (kthread_should_stop()) 1750 return 0; 1751 if (!again) { 1752 set_current_state(TASK_INTERRUPTIBLE); 1753 schedule(); 1754 __set_current_state(TASK_RUNNING); 1755 } 1756 } 1757 } 1758 1759 static int transaction_kthread(void *arg) 1760 { 1761 struct btrfs_root *root = arg; 1762 struct btrfs_fs_info *fs_info = root->fs_info; 1763 struct btrfs_trans_handle *trans; 1764 struct btrfs_transaction *cur; 1765 u64 transid; 1766 time64_t now; 1767 unsigned long delay; 1768 bool cannot_commit; 1769 1770 do { 1771 cannot_commit = false; 1772 delay = HZ * fs_info->commit_interval; 1773 mutex_lock(&fs_info->transaction_kthread_mutex); 1774 1775 spin_lock(&fs_info->trans_lock); 1776 cur = fs_info->running_transaction; 1777 if (!cur) { 1778 spin_unlock(&fs_info->trans_lock); 1779 goto sleep; 1780 } 1781 1782 now = ktime_get_seconds(); 1783 if (cur->state < TRANS_STATE_BLOCKED && 1784 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1785 (now < cur->start_time || 1786 now - cur->start_time < fs_info->commit_interval)) { 1787 spin_unlock(&fs_info->trans_lock); 1788 delay = HZ * 5; 1789 goto sleep; 1790 } 1791 transid = cur->transid; 1792 spin_unlock(&fs_info->trans_lock); 1793 1794 /* If the file system is aborted, this will always fail. */ 1795 trans = btrfs_attach_transaction(root); 1796 if (IS_ERR(trans)) { 1797 if (PTR_ERR(trans) != -ENOENT) 1798 cannot_commit = true; 1799 goto sleep; 1800 } 1801 if (transid == trans->transid) { 1802 btrfs_commit_transaction(trans); 1803 } else { 1804 btrfs_end_transaction(trans); 1805 } 1806 sleep: 1807 wake_up_process(fs_info->cleaner_kthread); 1808 mutex_unlock(&fs_info->transaction_kthread_mutex); 1809 1810 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1811 &fs_info->fs_state))) 1812 btrfs_cleanup_transaction(fs_info); 1813 if (!kthread_should_stop() && 1814 (!btrfs_transaction_blocked(fs_info) || 1815 cannot_commit)) 1816 schedule_timeout_interruptible(delay); 1817 } while (!kthread_should_stop()); 1818 return 0; 1819 } 1820 1821 /* 1822 * this will find the highest generation in the array of 1823 * root backups. The index of the highest array is returned, 1824 * or -1 if we can't find anything. 1825 * 1826 * We check to make sure the array is valid by comparing the 1827 * generation of the latest root in the array with the generation 1828 * in the super block. If they don't match we pitch it. 1829 */ 1830 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1831 { 1832 u64 cur; 1833 int newest_index = -1; 1834 struct btrfs_root_backup *root_backup; 1835 int i; 1836 1837 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1838 root_backup = info->super_copy->super_roots + i; 1839 cur = btrfs_backup_tree_root_gen(root_backup); 1840 if (cur == newest_gen) 1841 newest_index = i; 1842 } 1843 1844 /* check to see if we actually wrapped around */ 1845 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1846 root_backup = info->super_copy->super_roots; 1847 cur = btrfs_backup_tree_root_gen(root_backup); 1848 if (cur == newest_gen) 1849 newest_index = 0; 1850 } 1851 return newest_index; 1852 } 1853 1854 1855 /* 1856 * find the oldest backup so we know where to store new entries 1857 * in the backup array. This will set the backup_root_index 1858 * field in the fs_info struct 1859 */ 1860 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1861 u64 newest_gen) 1862 { 1863 int newest_index = -1; 1864 1865 newest_index = find_newest_super_backup(info, newest_gen); 1866 /* if there was garbage in there, just move along */ 1867 if (newest_index == -1) { 1868 info->backup_root_index = 0; 1869 } else { 1870 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1871 } 1872 } 1873 1874 /* 1875 * copy all the root pointers into the super backup array. 1876 * this will bump the backup pointer by one when it is 1877 * done 1878 */ 1879 static void backup_super_roots(struct btrfs_fs_info *info) 1880 { 1881 int next_backup; 1882 struct btrfs_root_backup *root_backup; 1883 int last_backup; 1884 1885 next_backup = info->backup_root_index; 1886 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1887 BTRFS_NUM_BACKUP_ROOTS; 1888 1889 /* 1890 * just overwrite the last backup if we're at the same generation 1891 * this happens only at umount 1892 */ 1893 root_backup = info->super_for_commit->super_roots + last_backup; 1894 if (btrfs_backup_tree_root_gen(root_backup) == 1895 btrfs_header_generation(info->tree_root->node)) 1896 next_backup = last_backup; 1897 1898 root_backup = info->super_for_commit->super_roots + next_backup; 1899 1900 /* 1901 * make sure all of our padding and empty slots get zero filled 1902 * regardless of which ones we use today 1903 */ 1904 memset(root_backup, 0, sizeof(*root_backup)); 1905 1906 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1907 1908 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1909 btrfs_set_backup_tree_root_gen(root_backup, 1910 btrfs_header_generation(info->tree_root->node)); 1911 1912 btrfs_set_backup_tree_root_level(root_backup, 1913 btrfs_header_level(info->tree_root->node)); 1914 1915 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1916 btrfs_set_backup_chunk_root_gen(root_backup, 1917 btrfs_header_generation(info->chunk_root->node)); 1918 btrfs_set_backup_chunk_root_level(root_backup, 1919 btrfs_header_level(info->chunk_root->node)); 1920 1921 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1922 btrfs_set_backup_extent_root_gen(root_backup, 1923 btrfs_header_generation(info->extent_root->node)); 1924 btrfs_set_backup_extent_root_level(root_backup, 1925 btrfs_header_level(info->extent_root->node)); 1926 1927 /* 1928 * we might commit during log recovery, which happens before we set 1929 * the fs_root. Make sure it is valid before we fill it in. 1930 */ 1931 if (info->fs_root && info->fs_root->node) { 1932 btrfs_set_backup_fs_root(root_backup, 1933 info->fs_root->node->start); 1934 btrfs_set_backup_fs_root_gen(root_backup, 1935 btrfs_header_generation(info->fs_root->node)); 1936 btrfs_set_backup_fs_root_level(root_backup, 1937 btrfs_header_level(info->fs_root->node)); 1938 } 1939 1940 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1941 btrfs_set_backup_dev_root_gen(root_backup, 1942 btrfs_header_generation(info->dev_root->node)); 1943 btrfs_set_backup_dev_root_level(root_backup, 1944 btrfs_header_level(info->dev_root->node)); 1945 1946 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1947 btrfs_set_backup_csum_root_gen(root_backup, 1948 btrfs_header_generation(info->csum_root->node)); 1949 btrfs_set_backup_csum_root_level(root_backup, 1950 btrfs_header_level(info->csum_root->node)); 1951 1952 btrfs_set_backup_total_bytes(root_backup, 1953 btrfs_super_total_bytes(info->super_copy)); 1954 btrfs_set_backup_bytes_used(root_backup, 1955 btrfs_super_bytes_used(info->super_copy)); 1956 btrfs_set_backup_num_devices(root_backup, 1957 btrfs_super_num_devices(info->super_copy)); 1958 1959 /* 1960 * if we don't copy this out to the super_copy, it won't get remembered 1961 * for the next commit 1962 */ 1963 memcpy(&info->super_copy->super_roots, 1964 &info->super_for_commit->super_roots, 1965 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1966 } 1967 1968 /* 1969 * this copies info out of the root backup array and back into 1970 * the in-memory super block. It is meant to help iterate through 1971 * the array, so you send it the number of backups you've already 1972 * tried and the last backup index you used. 1973 * 1974 * this returns -1 when it has tried all the backups 1975 */ 1976 static noinline int next_root_backup(struct btrfs_fs_info *info, 1977 struct btrfs_super_block *super, 1978 int *num_backups_tried, int *backup_index) 1979 { 1980 struct btrfs_root_backup *root_backup; 1981 int newest = *backup_index; 1982 1983 if (*num_backups_tried == 0) { 1984 u64 gen = btrfs_super_generation(super); 1985 1986 newest = find_newest_super_backup(info, gen); 1987 if (newest == -1) 1988 return -1; 1989 1990 *backup_index = newest; 1991 *num_backups_tried = 1; 1992 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1993 /* we've tried all the backups, all done */ 1994 return -1; 1995 } else { 1996 /* jump to the next oldest backup */ 1997 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1998 BTRFS_NUM_BACKUP_ROOTS; 1999 *backup_index = newest; 2000 *num_backups_tried += 1; 2001 } 2002 root_backup = super->super_roots + newest; 2003 2004 btrfs_set_super_generation(super, 2005 btrfs_backup_tree_root_gen(root_backup)); 2006 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2007 btrfs_set_super_root_level(super, 2008 btrfs_backup_tree_root_level(root_backup)); 2009 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2010 2011 /* 2012 * fixme: the total bytes and num_devices need to match or we should 2013 * need a fsck 2014 */ 2015 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2016 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2017 return 0; 2018 } 2019 2020 /* helper to cleanup workers */ 2021 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2022 { 2023 btrfs_destroy_workqueue(fs_info->fixup_workers); 2024 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2025 btrfs_destroy_workqueue(fs_info->workers); 2026 btrfs_destroy_workqueue(fs_info->endio_workers); 2027 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2028 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2029 btrfs_destroy_workqueue(fs_info->rmw_workers); 2030 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2031 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2032 btrfs_destroy_workqueue(fs_info->submit_workers); 2033 btrfs_destroy_workqueue(fs_info->delayed_workers); 2034 btrfs_destroy_workqueue(fs_info->caching_workers); 2035 btrfs_destroy_workqueue(fs_info->readahead_workers); 2036 btrfs_destroy_workqueue(fs_info->flush_workers); 2037 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2038 btrfs_destroy_workqueue(fs_info->extent_workers); 2039 /* 2040 * Now that all other work queues are destroyed, we can safely destroy 2041 * the queues used for metadata I/O, since tasks from those other work 2042 * queues can do metadata I/O operations. 2043 */ 2044 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2045 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2046 } 2047 2048 static void free_root_extent_buffers(struct btrfs_root *root) 2049 { 2050 if (root) { 2051 free_extent_buffer(root->node); 2052 free_extent_buffer(root->commit_root); 2053 root->node = NULL; 2054 root->commit_root = NULL; 2055 } 2056 } 2057 2058 /* helper to cleanup tree roots */ 2059 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2060 { 2061 free_root_extent_buffers(info->tree_root); 2062 2063 free_root_extent_buffers(info->dev_root); 2064 free_root_extent_buffers(info->extent_root); 2065 free_root_extent_buffers(info->csum_root); 2066 free_root_extent_buffers(info->quota_root); 2067 free_root_extent_buffers(info->uuid_root); 2068 if (chunk_root) 2069 free_root_extent_buffers(info->chunk_root); 2070 free_root_extent_buffers(info->free_space_root); 2071 } 2072 2073 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2074 { 2075 int ret; 2076 struct btrfs_root *gang[8]; 2077 int i; 2078 2079 while (!list_empty(&fs_info->dead_roots)) { 2080 gang[0] = list_entry(fs_info->dead_roots.next, 2081 struct btrfs_root, root_list); 2082 list_del(&gang[0]->root_list); 2083 2084 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2085 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2086 } else { 2087 free_extent_buffer(gang[0]->node); 2088 free_extent_buffer(gang[0]->commit_root); 2089 btrfs_put_fs_root(gang[0]); 2090 } 2091 } 2092 2093 while (1) { 2094 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2095 (void **)gang, 0, 2096 ARRAY_SIZE(gang)); 2097 if (!ret) 2098 break; 2099 for (i = 0; i < ret; i++) 2100 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2101 } 2102 2103 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2104 btrfs_free_log_root_tree(NULL, fs_info); 2105 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2106 } 2107 } 2108 2109 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2110 { 2111 mutex_init(&fs_info->scrub_lock); 2112 atomic_set(&fs_info->scrubs_running, 0); 2113 atomic_set(&fs_info->scrub_pause_req, 0); 2114 atomic_set(&fs_info->scrubs_paused, 0); 2115 atomic_set(&fs_info->scrub_cancel_req, 0); 2116 init_waitqueue_head(&fs_info->scrub_pause_wait); 2117 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2118 } 2119 2120 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2121 { 2122 spin_lock_init(&fs_info->balance_lock); 2123 mutex_init(&fs_info->balance_mutex); 2124 atomic_set(&fs_info->balance_pause_req, 0); 2125 atomic_set(&fs_info->balance_cancel_req, 0); 2126 fs_info->balance_ctl = NULL; 2127 init_waitqueue_head(&fs_info->balance_wait_q); 2128 } 2129 2130 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2131 { 2132 struct inode *inode = fs_info->btree_inode; 2133 2134 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2135 set_nlink(inode, 1); 2136 /* 2137 * we set the i_size on the btree inode to the max possible int. 2138 * the real end of the address space is determined by all of 2139 * the devices in the system 2140 */ 2141 inode->i_size = OFFSET_MAX; 2142 inode->i_mapping->a_ops = &btree_aops; 2143 2144 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2145 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2146 IO_TREE_INODE_IO, inode); 2147 BTRFS_I(inode)->io_tree.track_uptodate = false; 2148 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2149 2150 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2151 2152 BTRFS_I(inode)->root = fs_info->tree_root; 2153 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2154 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2155 btrfs_insert_inode_hash(inode); 2156 } 2157 2158 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2159 { 2160 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2161 init_rwsem(&fs_info->dev_replace.rwsem); 2162 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2163 } 2164 2165 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2166 { 2167 spin_lock_init(&fs_info->qgroup_lock); 2168 mutex_init(&fs_info->qgroup_ioctl_lock); 2169 fs_info->qgroup_tree = RB_ROOT; 2170 fs_info->qgroup_op_tree = RB_ROOT; 2171 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2172 fs_info->qgroup_seq = 1; 2173 fs_info->qgroup_ulist = NULL; 2174 fs_info->qgroup_rescan_running = false; 2175 mutex_init(&fs_info->qgroup_rescan_lock); 2176 } 2177 2178 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2179 struct btrfs_fs_devices *fs_devices) 2180 { 2181 u32 max_active = fs_info->thread_pool_size; 2182 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2183 2184 fs_info->workers = 2185 btrfs_alloc_workqueue(fs_info, "worker", 2186 flags | WQ_HIGHPRI, max_active, 16); 2187 2188 fs_info->delalloc_workers = 2189 btrfs_alloc_workqueue(fs_info, "delalloc", 2190 flags, max_active, 2); 2191 2192 fs_info->flush_workers = 2193 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2194 flags, max_active, 0); 2195 2196 fs_info->caching_workers = 2197 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2198 2199 /* 2200 * a higher idle thresh on the submit workers makes it much more 2201 * likely that bios will be send down in a sane order to the 2202 * devices 2203 */ 2204 fs_info->submit_workers = 2205 btrfs_alloc_workqueue(fs_info, "submit", flags, 2206 min_t(u64, fs_devices->num_devices, 2207 max_active), 64); 2208 2209 fs_info->fixup_workers = 2210 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2211 2212 /* 2213 * endios are largely parallel and should have a very 2214 * low idle thresh 2215 */ 2216 fs_info->endio_workers = 2217 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2218 fs_info->endio_meta_workers = 2219 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2220 max_active, 4); 2221 fs_info->endio_meta_write_workers = 2222 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2223 max_active, 2); 2224 fs_info->endio_raid56_workers = 2225 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2226 max_active, 4); 2227 fs_info->endio_repair_workers = 2228 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2229 fs_info->rmw_workers = 2230 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2231 fs_info->endio_write_workers = 2232 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2233 max_active, 2); 2234 fs_info->endio_freespace_worker = 2235 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2236 max_active, 0); 2237 fs_info->delayed_workers = 2238 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2239 max_active, 0); 2240 fs_info->readahead_workers = 2241 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2242 max_active, 2); 2243 fs_info->qgroup_rescan_workers = 2244 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2245 fs_info->extent_workers = 2246 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2247 min_t(u64, fs_devices->num_devices, 2248 max_active), 8); 2249 2250 if (!(fs_info->workers && fs_info->delalloc_workers && 2251 fs_info->submit_workers && fs_info->flush_workers && 2252 fs_info->endio_workers && fs_info->endio_meta_workers && 2253 fs_info->endio_meta_write_workers && 2254 fs_info->endio_repair_workers && 2255 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2256 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2257 fs_info->caching_workers && fs_info->readahead_workers && 2258 fs_info->fixup_workers && fs_info->delayed_workers && 2259 fs_info->extent_workers && 2260 fs_info->qgroup_rescan_workers)) { 2261 return -ENOMEM; 2262 } 2263 2264 return 0; 2265 } 2266 2267 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2268 struct btrfs_fs_devices *fs_devices) 2269 { 2270 int ret; 2271 struct btrfs_root *log_tree_root; 2272 struct btrfs_super_block *disk_super = fs_info->super_copy; 2273 u64 bytenr = btrfs_super_log_root(disk_super); 2274 int level = btrfs_super_log_root_level(disk_super); 2275 2276 if (fs_devices->rw_devices == 0) { 2277 btrfs_warn(fs_info, "log replay required on RO media"); 2278 return -EIO; 2279 } 2280 2281 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2282 if (!log_tree_root) 2283 return -ENOMEM; 2284 2285 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2286 2287 log_tree_root->node = read_tree_block(fs_info, bytenr, 2288 fs_info->generation + 1, 2289 level, NULL); 2290 if (IS_ERR(log_tree_root->node)) { 2291 btrfs_warn(fs_info, "failed to read log tree"); 2292 ret = PTR_ERR(log_tree_root->node); 2293 kfree(log_tree_root); 2294 return ret; 2295 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2296 btrfs_err(fs_info, "failed to read log tree"); 2297 free_extent_buffer(log_tree_root->node); 2298 kfree(log_tree_root); 2299 return -EIO; 2300 } 2301 /* returns with log_tree_root freed on success */ 2302 ret = btrfs_recover_log_trees(log_tree_root); 2303 if (ret) { 2304 btrfs_handle_fs_error(fs_info, ret, 2305 "Failed to recover log tree"); 2306 free_extent_buffer(log_tree_root->node); 2307 kfree(log_tree_root); 2308 return ret; 2309 } 2310 2311 if (sb_rdonly(fs_info->sb)) { 2312 ret = btrfs_commit_super(fs_info); 2313 if (ret) 2314 return ret; 2315 } 2316 2317 return 0; 2318 } 2319 2320 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2321 { 2322 struct btrfs_root *tree_root = fs_info->tree_root; 2323 struct btrfs_root *root; 2324 struct btrfs_key location; 2325 int ret; 2326 2327 BUG_ON(!fs_info->tree_root); 2328 2329 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2330 location.type = BTRFS_ROOT_ITEM_KEY; 2331 location.offset = 0; 2332 2333 root = btrfs_read_tree_root(tree_root, &location); 2334 if (IS_ERR(root)) { 2335 ret = PTR_ERR(root); 2336 goto out; 2337 } 2338 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2339 fs_info->extent_root = root; 2340 2341 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2342 root = btrfs_read_tree_root(tree_root, &location); 2343 if (IS_ERR(root)) { 2344 ret = PTR_ERR(root); 2345 goto out; 2346 } 2347 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2348 fs_info->dev_root = root; 2349 btrfs_init_devices_late(fs_info); 2350 2351 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2352 root = btrfs_read_tree_root(tree_root, &location); 2353 if (IS_ERR(root)) { 2354 ret = PTR_ERR(root); 2355 goto out; 2356 } 2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2358 fs_info->csum_root = root; 2359 2360 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2361 root = btrfs_read_tree_root(tree_root, &location); 2362 if (!IS_ERR(root)) { 2363 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2364 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2365 fs_info->quota_root = root; 2366 } 2367 2368 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2369 root = btrfs_read_tree_root(tree_root, &location); 2370 if (IS_ERR(root)) { 2371 ret = PTR_ERR(root); 2372 if (ret != -ENOENT) 2373 goto out; 2374 } else { 2375 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2376 fs_info->uuid_root = root; 2377 } 2378 2379 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2380 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2381 root = btrfs_read_tree_root(tree_root, &location); 2382 if (IS_ERR(root)) { 2383 ret = PTR_ERR(root); 2384 goto out; 2385 } 2386 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2387 fs_info->free_space_root = root; 2388 } 2389 2390 return 0; 2391 out: 2392 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2393 location.objectid, ret); 2394 return ret; 2395 } 2396 2397 /* 2398 * Real super block validation 2399 * NOTE: super csum type and incompat features will not be checked here. 2400 * 2401 * @sb: super block to check 2402 * @mirror_num: the super block number to check its bytenr: 2403 * 0 the primary (1st) sb 2404 * 1, 2 2nd and 3rd backup copy 2405 * -1 skip bytenr check 2406 */ 2407 static int validate_super(struct btrfs_fs_info *fs_info, 2408 struct btrfs_super_block *sb, int mirror_num) 2409 { 2410 u64 nodesize = btrfs_super_nodesize(sb); 2411 u64 sectorsize = btrfs_super_sectorsize(sb); 2412 int ret = 0; 2413 2414 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2415 btrfs_err(fs_info, "no valid FS found"); 2416 ret = -EINVAL; 2417 } 2418 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2419 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2420 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2421 ret = -EINVAL; 2422 } 2423 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2424 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2425 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2426 ret = -EINVAL; 2427 } 2428 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2429 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2430 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2431 ret = -EINVAL; 2432 } 2433 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2434 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2435 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2436 ret = -EINVAL; 2437 } 2438 2439 /* 2440 * Check sectorsize and nodesize first, other check will need it. 2441 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2442 */ 2443 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2444 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2445 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2446 ret = -EINVAL; 2447 } 2448 /* Only PAGE SIZE is supported yet */ 2449 if (sectorsize != PAGE_SIZE) { 2450 btrfs_err(fs_info, 2451 "sectorsize %llu not supported yet, only support %lu", 2452 sectorsize, PAGE_SIZE); 2453 ret = -EINVAL; 2454 } 2455 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2456 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2457 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2458 ret = -EINVAL; 2459 } 2460 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2461 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2462 le32_to_cpu(sb->__unused_leafsize), nodesize); 2463 ret = -EINVAL; 2464 } 2465 2466 /* Root alignment check */ 2467 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2468 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2469 btrfs_super_root(sb)); 2470 ret = -EINVAL; 2471 } 2472 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2473 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2474 btrfs_super_chunk_root(sb)); 2475 ret = -EINVAL; 2476 } 2477 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2478 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2479 btrfs_super_log_root(sb)); 2480 ret = -EINVAL; 2481 } 2482 2483 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2484 BTRFS_FSID_SIZE) != 0) { 2485 btrfs_err(fs_info, 2486 "dev_item UUID does not match metadata fsid: %pU != %pU", 2487 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2488 ret = -EINVAL; 2489 } 2490 2491 /* 2492 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2493 * done later 2494 */ 2495 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2496 btrfs_err(fs_info, "bytes_used is too small %llu", 2497 btrfs_super_bytes_used(sb)); 2498 ret = -EINVAL; 2499 } 2500 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2501 btrfs_err(fs_info, "invalid stripesize %u", 2502 btrfs_super_stripesize(sb)); 2503 ret = -EINVAL; 2504 } 2505 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2506 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2507 btrfs_super_num_devices(sb)); 2508 if (btrfs_super_num_devices(sb) == 0) { 2509 btrfs_err(fs_info, "number of devices is 0"); 2510 ret = -EINVAL; 2511 } 2512 2513 if (mirror_num >= 0 && 2514 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2515 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2516 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2517 ret = -EINVAL; 2518 } 2519 2520 /* 2521 * Obvious sys_chunk_array corruptions, it must hold at least one key 2522 * and one chunk 2523 */ 2524 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2525 btrfs_err(fs_info, "system chunk array too big %u > %u", 2526 btrfs_super_sys_array_size(sb), 2527 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2528 ret = -EINVAL; 2529 } 2530 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2531 + sizeof(struct btrfs_chunk)) { 2532 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2533 btrfs_super_sys_array_size(sb), 2534 sizeof(struct btrfs_disk_key) 2535 + sizeof(struct btrfs_chunk)); 2536 ret = -EINVAL; 2537 } 2538 2539 /* 2540 * The generation is a global counter, we'll trust it more than the others 2541 * but it's still possible that it's the one that's wrong. 2542 */ 2543 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2544 btrfs_warn(fs_info, 2545 "suspicious: generation < chunk_root_generation: %llu < %llu", 2546 btrfs_super_generation(sb), 2547 btrfs_super_chunk_root_generation(sb)); 2548 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2549 && btrfs_super_cache_generation(sb) != (u64)-1) 2550 btrfs_warn(fs_info, 2551 "suspicious: generation < cache_generation: %llu < %llu", 2552 btrfs_super_generation(sb), 2553 btrfs_super_cache_generation(sb)); 2554 2555 return ret; 2556 } 2557 2558 /* 2559 * Validation of super block at mount time. 2560 * Some checks already done early at mount time, like csum type and incompat 2561 * flags will be skipped. 2562 */ 2563 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2564 { 2565 return validate_super(fs_info, fs_info->super_copy, 0); 2566 } 2567 2568 /* 2569 * Validation of super block at write time. 2570 * Some checks like bytenr check will be skipped as their values will be 2571 * overwritten soon. 2572 * Extra checks like csum type and incompat flags will be done here. 2573 */ 2574 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2575 struct btrfs_super_block *sb) 2576 { 2577 int ret; 2578 2579 ret = validate_super(fs_info, sb, -1); 2580 if (ret < 0) 2581 goto out; 2582 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2583 ret = -EUCLEAN; 2584 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2585 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2586 goto out; 2587 } 2588 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2589 ret = -EUCLEAN; 2590 btrfs_err(fs_info, 2591 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2592 btrfs_super_incompat_flags(sb), 2593 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2594 goto out; 2595 } 2596 out: 2597 if (ret < 0) 2598 btrfs_err(fs_info, 2599 "super block corruption detected before writing it to disk"); 2600 return ret; 2601 } 2602 2603 int open_ctree(struct super_block *sb, 2604 struct btrfs_fs_devices *fs_devices, 2605 char *options) 2606 { 2607 u32 sectorsize; 2608 u32 nodesize; 2609 u32 stripesize; 2610 u64 generation; 2611 u64 features; 2612 struct btrfs_key location; 2613 struct buffer_head *bh; 2614 struct btrfs_super_block *disk_super; 2615 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2616 struct btrfs_root *tree_root; 2617 struct btrfs_root *chunk_root; 2618 int ret; 2619 int err = -EINVAL; 2620 int num_backups_tried = 0; 2621 int backup_index = 0; 2622 int clear_free_space_tree = 0; 2623 int level; 2624 2625 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2626 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2627 if (!tree_root || !chunk_root) { 2628 err = -ENOMEM; 2629 goto fail; 2630 } 2631 2632 ret = init_srcu_struct(&fs_info->subvol_srcu); 2633 if (ret) { 2634 err = ret; 2635 goto fail; 2636 } 2637 2638 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2639 if (ret) { 2640 err = ret; 2641 goto fail_srcu; 2642 } 2643 fs_info->dirty_metadata_batch = PAGE_SIZE * 2644 (1 + ilog2(nr_cpu_ids)); 2645 2646 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2647 if (ret) { 2648 err = ret; 2649 goto fail_dirty_metadata_bytes; 2650 } 2651 2652 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2653 GFP_KERNEL); 2654 if (ret) { 2655 err = ret; 2656 goto fail_delalloc_bytes; 2657 } 2658 2659 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2660 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2661 INIT_LIST_HEAD(&fs_info->trans_list); 2662 INIT_LIST_HEAD(&fs_info->dead_roots); 2663 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2664 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2665 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2666 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2667 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2668 spin_lock_init(&fs_info->delalloc_root_lock); 2669 spin_lock_init(&fs_info->trans_lock); 2670 spin_lock_init(&fs_info->fs_roots_radix_lock); 2671 spin_lock_init(&fs_info->delayed_iput_lock); 2672 spin_lock_init(&fs_info->defrag_inodes_lock); 2673 spin_lock_init(&fs_info->tree_mod_seq_lock); 2674 spin_lock_init(&fs_info->super_lock); 2675 spin_lock_init(&fs_info->qgroup_op_lock); 2676 spin_lock_init(&fs_info->buffer_lock); 2677 spin_lock_init(&fs_info->unused_bgs_lock); 2678 rwlock_init(&fs_info->tree_mod_log_lock); 2679 mutex_init(&fs_info->unused_bg_unpin_mutex); 2680 mutex_init(&fs_info->delete_unused_bgs_mutex); 2681 mutex_init(&fs_info->reloc_mutex); 2682 mutex_init(&fs_info->delalloc_root_mutex); 2683 seqlock_init(&fs_info->profiles_lock); 2684 2685 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2686 INIT_LIST_HEAD(&fs_info->space_info); 2687 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2688 INIT_LIST_HEAD(&fs_info->unused_bgs); 2689 btrfs_mapping_init(&fs_info->mapping_tree); 2690 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2691 BTRFS_BLOCK_RSV_GLOBAL); 2692 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2693 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2694 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2695 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2696 BTRFS_BLOCK_RSV_DELOPS); 2697 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2698 BTRFS_BLOCK_RSV_DELREFS); 2699 2700 atomic_set(&fs_info->async_delalloc_pages, 0); 2701 atomic_set(&fs_info->defrag_running, 0); 2702 atomic_set(&fs_info->qgroup_op_seq, 0); 2703 atomic_set(&fs_info->reada_works_cnt, 0); 2704 atomic_set(&fs_info->nr_delayed_iputs, 0); 2705 atomic64_set(&fs_info->tree_mod_seq, 0); 2706 fs_info->sb = sb; 2707 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2708 fs_info->metadata_ratio = 0; 2709 fs_info->defrag_inodes = RB_ROOT; 2710 atomic64_set(&fs_info->free_chunk_space, 0); 2711 fs_info->tree_mod_log = RB_ROOT; 2712 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2713 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2714 /* readahead state */ 2715 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2716 spin_lock_init(&fs_info->reada_lock); 2717 btrfs_init_ref_verify(fs_info); 2718 2719 fs_info->thread_pool_size = min_t(unsigned long, 2720 num_online_cpus() + 2, 8); 2721 2722 INIT_LIST_HEAD(&fs_info->ordered_roots); 2723 spin_lock_init(&fs_info->ordered_root_lock); 2724 2725 fs_info->btree_inode = new_inode(sb); 2726 if (!fs_info->btree_inode) { 2727 err = -ENOMEM; 2728 goto fail_bio_counter; 2729 } 2730 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2731 2732 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2733 GFP_KERNEL); 2734 if (!fs_info->delayed_root) { 2735 err = -ENOMEM; 2736 goto fail_iput; 2737 } 2738 btrfs_init_delayed_root(fs_info->delayed_root); 2739 2740 btrfs_init_scrub(fs_info); 2741 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2742 fs_info->check_integrity_print_mask = 0; 2743 #endif 2744 btrfs_init_balance(fs_info); 2745 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2746 2747 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2748 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2749 2750 btrfs_init_btree_inode(fs_info); 2751 2752 spin_lock_init(&fs_info->block_group_cache_lock); 2753 fs_info->block_group_cache_tree = RB_ROOT; 2754 fs_info->first_logical_byte = (u64)-1; 2755 2756 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], 2757 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); 2758 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], 2759 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); 2760 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2761 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2762 2763 mutex_init(&fs_info->ordered_operations_mutex); 2764 mutex_init(&fs_info->tree_log_mutex); 2765 mutex_init(&fs_info->chunk_mutex); 2766 mutex_init(&fs_info->transaction_kthread_mutex); 2767 mutex_init(&fs_info->cleaner_mutex); 2768 mutex_init(&fs_info->ro_block_group_mutex); 2769 init_rwsem(&fs_info->commit_root_sem); 2770 init_rwsem(&fs_info->cleanup_work_sem); 2771 init_rwsem(&fs_info->subvol_sem); 2772 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2773 2774 btrfs_init_dev_replace_locks(fs_info); 2775 btrfs_init_qgroup(fs_info); 2776 2777 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2778 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2779 2780 init_waitqueue_head(&fs_info->transaction_throttle); 2781 init_waitqueue_head(&fs_info->transaction_wait); 2782 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2783 init_waitqueue_head(&fs_info->async_submit_wait); 2784 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2785 2786 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2787 2788 /* Usable values until the real ones are cached from the superblock */ 2789 fs_info->nodesize = 4096; 2790 fs_info->sectorsize = 4096; 2791 fs_info->stripesize = 4096; 2792 2793 spin_lock_init(&fs_info->swapfile_pins_lock); 2794 fs_info->swapfile_pins = RB_ROOT; 2795 2796 ret = btrfs_alloc_stripe_hash_table(fs_info); 2797 if (ret) { 2798 err = ret; 2799 goto fail_alloc; 2800 } 2801 2802 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2803 2804 invalidate_bdev(fs_devices->latest_bdev); 2805 2806 /* 2807 * Read super block and check the signature bytes only 2808 */ 2809 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2810 if (IS_ERR(bh)) { 2811 err = PTR_ERR(bh); 2812 goto fail_alloc; 2813 } 2814 2815 /* 2816 * We want to check superblock checksum, the type is stored inside. 2817 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2818 */ 2819 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2820 btrfs_err(fs_info, "superblock checksum mismatch"); 2821 err = -EINVAL; 2822 brelse(bh); 2823 goto fail_alloc; 2824 } 2825 2826 /* 2827 * super_copy is zeroed at allocation time and we never touch the 2828 * following bytes up to INFO_SIZE, the checksum is calculated from 2829 * the whole block of INFO_SIZE 2830 */ 2831 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2832 brelse(bh); 2833 2834 disk_super = fs_info->super_copy; 2835 2836 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2837 BTRFS_FSID_SIZE)); 2838 2839 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2840 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2841 fs_info->super_copy->metadata_uuid, 2842 BTRFS_FSID_SIZE)); 2843 } 2844 2845 features = btrfs_super_flags(disk_super); 2846 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2847 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2848 btrfs_set_super_flags(disk_super, features); 2849 btrfs_info(fs_info, 2850 "found metadata UUID change in progress flag, clearing"); 2851 } 2852 2853 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2854 sizeof(*fs_info->super_for_commit)); 2855 2856 ret = btrfs_validate_mount_super(fs_info); 2857 if (ret) { 2858 btrfs_err(fs_info, "superblock contains fatal errors"); 2859 err = -EINVAL; 2860 goto fail_alloc; 2861 } 2862 2863 if (!btrfs_super_root(disk_super)) 2864 goto fail_alloc; 2865 2866 /* check FS state, whether FS is broken. */ 2867 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2868 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2869 2870 /* 2871 * run through our array of backup supers and setup 2872 * our ring pointer to the oldest one 2873 */ 2874 generation = btrfs_super_generation(disk_super); 2875 find_oldest_super_backup(fs_info, generation); 2876 2877 /* 2878 * In the long term, we'll store the compression type in the super 2879 * block, and it'll be used for per file compression control. 2880 */ 2881 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2882 2883 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2884 if (ret) { 2885 err = ret; 2886 goto fail_alloc; 2887 } 2888 2889 features = btrfs_super_incompat_flags(disk_super) & 2890 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2891 if (features) { 2892 btrfs_err(fs_info, 2893 "cannot mount because of unsupported optional features (%llx)", 2894 features); 2895 err = -EINVAL; 2896 goto fail_alloc; 2897 } 2898 2899 features = btrfs_super_incompat_flags(disk_super); 2900 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2901 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2902 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2903 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2904 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2905 2906 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2907 btrfs_info(fs_info, "has skinny extents"); 2908 2909 /* 2910 * flag our filesystem as having big metadata blocks if 2911 * they are bigger than the page size 2912 */ 2913 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2914 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2915 btrfs_info(fs_info, 2916 "flagging fs with big metadata feature"); 2917 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2918 } 2919 2920 nodesize = btrfs_super_nodesize(disk_super); 2921 sectorsize = btrfs_super_sectorsize(disk_super); 2922 stripesize = sectorsize; 2923 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2924 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2925 2926 /* Cache block sizes */ 2927 fs_info->nodesize = nodesize; 2928 fs_info->sectorsize = sectorsize; 2929 fs_info->stripesize = stripesize; 2930 2931 /* 2932 * mixed block groups end up with duplicate but slightly offset 2933 * extent buffers for the same range. It leads to corruptions 2934 */ 2935 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2936 (sectorsize != nodesize)) { 2937 btrfs_err(fs_info, 2938 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2939 nodesize, sectorsize); 2940 goto fail_alloc; 2941 } 2942 2943 /* 2944 * Needn't use the lock because there is no other task which will 2945 * update the flag. 2946 */ 2947 btrfs_set_super_incompat_flags(disk_super, features); 2948 2949 features = btrfs_super_compat_ro_flags(disk_super) & 2950 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2951 if (!sb_rdonly(sb) && features) { 2952 btrfs_err(fs_info, 2953 "cannot mount read-write because of unsupported optional features (%llx)", 2954 features); 2955 err = -EINVAL; 2956 goto fail_alloc; 2957 } 2958 2959 ret = btrfs_init_workqueues(fs_info, fs_devices); 2960 if (ret) { 2961 err = ret; 2962 goto fail_sb_buffer; 2963 } 2964 2965 sb->s_bdi->congested_fn = btrfs_congested_fn; 2966 sb->s_bdi->congested_data = fs_info; 2967 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2968 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 2969 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2970 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2971 2972 sb->s_blocksize = sectorsize; 2973 sb->s_blocksize_bits = blksize_bits(sectorsize); 2974 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 2975 2976 mutex_lock(&fs_info->chunk_mutex); 2977 ret = btrfs_read_sys_array(fs_info); 2978 mutex_unlock(&fs_info->chunk_mutex); 2979 if (ret) { 2980 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2981 goto fail_sb_buffer; 2982 } 2983 2984 generation = btrfs_super_chunk_root_generation(disk_super); 2985 level = btrfs_super_chunk_root_level(disk_super); 2986 2987 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2988 2989 chunk_root->node = read_tree_block(fs_info, 2990 btrfs_super_chunk_root(disk_super), 2991 generation, level, NULL); 2992 if (IS_ERR(chunk_root->node) || 2993 !extent_buffer_uptodate(chunk_root->node)) { 2994 btrfs_err(fs_info, "failed to read chunk root"); 2995 if (!IS_ERR(chunk_root->node)) 2996 free_extent_buffer(chunk_root->node); 2997 chunk_root->node = NULL; 2998 goto fail_tree_roots; 2999 } 3000 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3001 chunk_root->commit_root = btrfs_root_node(chunk_root); 3002 3003 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3004 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 3005 3006 ret = btrfs_read_chunk_tree(fs_info); 3007 if (ret) { 3008 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3009 goto fail_tree_roots; 3010 } 3011 3012 /* 3013 * Keep the devid that is marked to be the target device for the 3014 * device replace procedure 3015 */ 3016 btrfs_free_extra_devids(fs_devices, 0); 3017 3018 if (!fs_devices->latest_bdev) { 3019 btrfs_err(fs_info, "failed to read devices"); 3020 goto fail_tree_roots; 3021 } 3022 3023 retry_root_backup: 3024 generation = btrfs_super_generation(disk_super); 3025 level = btrfs_super_root_level(disk_super); 3026 3027 tree_root->node = read_tree_block(fs_info, 3028 btrfs_super_root(disk_super), 3029 generation, level, NULL); 3030 if (IS_ERR(tree_root->node) || 3031 !extent_buffer_uptodate(tree_root->node)) { 3032 btrfs_warn(fs_info, "failed to read tree root"); 3033 if (!IS_ERR(tree_root->node)) 3034 free_extent_buffer(tree_root->node); 3035 tree_root->node = NULL; 3036 goto recovery_tree_root; 3037 } 3038 3039 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3040 tree_root->commit_root = btrfs_root_node(tree_root); 3041 btrfs_set_root_refs(&tree_root->root_item, 1); 3042 3043 mutex_lock(&tree_root->objectid_mutex); 3044 ret = btrfs_find_highest_objectid(tree_root, 3045 &tree_root->highest_objectid); 3046 if (ret) { 3047 mutex_unlock(&tree_root->objectid_mutex); 3048 goto recovery_tree_root; 3049 } 3050 3051 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3052 3053 mutex_unlock(&tree_root->objectid_mutex); 3054 3055 ret = btrfs_read_roots(fs_info); 3056 if (ret) 3057 goto recovery_tree_root; 3058 3059 fs_info->generation = generation; 3060 fs_info->last_trans_committed = generation; 3061 3062 ret = btrfs_verify_dev_extents(fs_info); 3063 if (ret) { 3064 btrfs_err(fs_info, 3065 "failed to verify dev extents against chunks: %d", 3066 ret); 3067 goto fail_block_groups; 3068 } 3069 ret = btrfs_recover_balance(fs_info); 3070 if (ret) { 3071 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3072 goto fail_block_groups; 3073 } 3074 3075 ret = btrfs_init_dev_stats(fs_info); 3076 if (ret) { 3077 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3078 goto fail_block_groups; 3079 } 3080 3081 ret = btrfs_init_dev_replace(fs_info); 3082 if (ret) { 3083 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3084 goto fail_block_groups; 3085 } 3086 3087 btrfs_free_extra_devids(fs_devices, 1); 3088 3089 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3090 if (ret) { 3091 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3092 ret); 3093 goto fail_block_groups; 3094 } 3095 3096 ret = btrfs_sysfs_add_device(fs_devices); 3097 if (ret) { 3098 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3099 ret); 3100 goto fail_fsdev_sysfs; 3101 } 3102 3103 ret = btrfs_sysfs_add_mounted(fs_info); 3104 if (ret) { 3105 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3106 goto fail_fsdev_sysfs; 3107 } 3108 3109 ret = btrfs_init_space_info(fs_info); 3110 if (ret) { 3111 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3112 goto fail_sysfs; 3113 } 3114 3115 ret = btrfs_read_block_groups(fs_info); 3116 if (ret) { 3117 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3118 goto fail_sysfs; 3119 } 3120 3121 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3122 btrfs_warn(fs_info, 3123 "writable mount is not allowed due to too many missing devices"); 3124 goto fail_sysfs; 3125 } 3126 3127 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3128 "btrfs-cleaner"); 3129 if (IS_ERR(fs_info->cleaner_kthread)) 3130 goto fail_sysfs; 3131 3132 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3133 tree_root, 3134 "btrfs-transaction"); 3135 if (IS_ERR(fs_info->transaction_kthread)) 3136 goto fail_cleaner; 3137 3138 if (!btrfs_test_opt(fs_info, NOSSD) && 3139 !fs_info->fs_devices->rotating) { 3140 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3141 } 3142 3143 /* 3144 * Mount does not set all options immediately, we can do it now and do 3145 * not have to wait for transaction commit 3146 */ 3147 btrfs_apply_pending_changes(fs_info); 3148 3149 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3150 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3151 ret = btrfsic_mount(fs_info, fs_devices, 3152 btrfs_test_opt(fs_info, 3153 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3154 1 : 0, 3155 fs_info->check_integrity_print_mask); 3156 if (ret) 3157 btrfs_warn(fs_info, 3158 "failed to initialize integrity check module: %d", 3159 ret); 3160 } 3161 #endif 3162 ret = btrfs_read_qgroup_config(fs_info); 3163 if (ret) 3164 goto fail_trans_kthread; 3165 3166 if (btrfs_build_ref_tree(fs_info)) 3167 btrfs_err(fs_info, "couldn't build ref tree"); 3168 3169 /* do not make disk changes in broken FS or nologreplay is given */ 3170 if (btrfs_super_log_root(disk_super) != 0 && 3171 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3172 ret = btrfs_replay_log(fs_info, fs_devices); 3173 if (ret) { 3174 err = ret; 3175 goto fail_qgroup; 3176 } 3177 } 3178 3179 ret = btrfs_find_orphan_roots(fs_info); 3180 if (ret) 3181 goto fail_qgroup; 3182 3183 if (!sb_rdonly(sb)) { 3184 ret = btrfs_cleanup_fs_roots(fs_info); 3185 if (ret) 3186 goto fail_qgroup; 3187 3188 mutex_lock(&fs_info->cleaner_mutex); 3189 ret = btrfs_recover_relocation(tree_root); 3190 mutex_unlock(&fs_info->cleaner_mutex); 3191 if (ret < 0) { 3192 btrfs_warn(fs_info, "failed to recover relocation: %d", 3193 ret); 3194 err = -EINVAL; 3195 goto fail_qgroup; 3196 } 3197 } 3198 3199 location.objectid = BTRFS_FS_TREE_OBJECTID; 3200 location.type = BTRFS_ROOT_ITEM_KEY; 3201 location.offset = 0; 3202 3203 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3204 if (IS_ERR(fs_info->fs_root)) { 3205 err = PTR_ERR(fs_info->fs_root); 3206 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3207 goto fail_qgroup; 3208 } 3209 3210 if (sb_rdonly(sb)) 3211 return 0; 3212 3213 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3214 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3215 clear_free_space_tree = 1; 3216 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3217 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3218 btrfs_warn(fs_info, "free space tree is invalid"); 3219 clear_free_space_tree = 1; 3220 } 3221 3222 if (clear_free_space_tree) { 3223 btrfs_info(fs_info, "clearing free space tree"); 3224 ret = btrfs_clear_free_space_tree(fs_info); 3225 if (ret) { 3226 btrfs_warn(fs_info, 3227 "failed to clear free space tree: %d", ret); 3228 close_ctree(fs_info); 3229 return ret; 3230 } 3231 } 3232 3233 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3234 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3235 btrfs_info(fs_info, "creating free space tree"); 3236 ret = btrfs_create_free_space_tree(fs_info); 3237 if (ret) { 3238 btrfs_warn(fs_info, 3239 "failed to create free space tree: %d", ret); 3240 close_ctree(fs_info); 3241 return ret; 3242 } 3243 } 3244 3245 down_read(&fs_info->cleanup_work_sem); 3246 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3247 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3248 up_read(&fs_info->cleanup_work_sem); 3249 close_ctree(fs_info); 3250 return ret; 3251 } 3252 up_read(&fs_info->cleanup_work_sem); 3253 3254 ret = btrfs_resume_balance_async(fs_info); 3255 if (ret) { 3256 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3257 close_ctree(fs_info); 3258 return ret; 3259 } 3260 3261 ret = btrfs_resume_dev_replace_async(fs_info); 3262 if (ret) { 3263 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3264 close_ctree(fs_info); 3265 return ret; 3266 } 3267 3268 btrfs_qgroup_rescan_resume(fs_info); 3269 3270 if (!fs_info->uuid_root) { 3271 btrfs_info(fs_info, "creating UUID tree"); 3272 ret = btrfs_create_uuid_tree(fs_info); 3273 if (ret) { 3274 btrfs_warn(fs_info, 3275 "failed to create the UUID tree: %d", ret); 3276 close_ctree(fs_info); 3277 return ret; 3278 } 3279 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3280 fs_info->generation != 3281 btrfs_super_uuid_tree_generation(disk_super)) { 3282 btrfs_info(fs_info, "checking UUID tree"); 3283 ret = btrfs_check_uuid_tree(fs_info); 3284 if (ret) { 3285 btrfs_warn(fs_info, 3286 "failed to check the UUID tree: %d", ret); 3287 close_ctree(fs_info); 3288 return ret; 3289 } 3290 } else { 3291 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3292 } 3293 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3294 3295 /* 3296 * backuproot only affect mount behavior, and if open_ctree succeeded, 3297 * no need to keep the flag 3298 */ 3299 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3300 3301 return 0; 3302 3303 fail_qgroup: 3304 btrfs_free_qgroup_config(fs_info); 3305 fail_trans_kthread: 3306 kthread_stop(fs_info->transaction_kthread); 3307 btrfs_cleanup_transaction(fs_info); 3308 btrfs_free_fs_roots(fs_info); 3309 fail_cleaner: 3310 kthread_stop(fs_info->cleaner_kthread); 3311 3312 /* 3313 * make sure we're done with the btree inode before we stop our 3314 * kthreads 3315 */ 3316 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3317 3318 fail_sysfs: 3319 btrfs_sysfs_remove_mounted(fs_info); 3320 3321 fail_fsdev_sysfs: 3322 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3323 3324 fail_block_groups: 3325 btrfs_put_block_group_cache(fs_info); 3326 3327 fail_tree_roots: 3328 free_root_pointers(fs_info, 1); 3329 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3330 3331 fail_sb_buffer: 3332 btrfs_stop_all_workers(fs_info); 3333 btrfs_free_block_groups(fs_info); 3334 fail_alloc: 3335 fail_iput: 3336 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3337 3338 iput(fs_info->btree_inode); 3339 fail_bio_counter: 3340 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3341 fail_delalloc_bytes: 3342 percpu_counter_destroy(&fs_info->delalloc_bytes); 3343 fail_dirty_metadata_bytes: 3344 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3345 fail_srcu: 3346 cleanup_srcu_struct(&fs_info->subvol_srcu); 3347 fail: 3348 btrfs_free_stripe_hash_table(fs_info); 3349 btrfs_close_devices(fs_info->fs_devices); 3350 return err; 3351 3352 recovery_tree_root: 3353 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3354 goto fail_tree_roots; 3355 3356 free_root_pointers(fs_info, 0); 3357 3358 /* don't use the log in recovery mode, it won't be valid */ 3359 btrfs_set_super_log_root(disk_super, 0); 3360 3361 /* we can't trust the free space cache either */ 3362 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3363 3364 ret = next_root_backup(fs_info, fs_info->super_copy, 3365 &num_backups_tried, &backup_index); 3366 if (ret == -1) 3367 goto fail_block_groups; 3368 goto retry_root_backup; 3369 } 3370 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3371 3372 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3373 { 3374 if (uptodate) { 3375 set_buffer_uptodate(bh); 3376 } else { 3377 struct btrfs_device *device = (struct btrfs_device *) 3378 bh->b_private; 3379 3380 btrfs_warn_rl_in_rcu(device->fs_info, 3381 "lost page write due to IO error on %s", 3382 rcu_str_deref(device->name)); 3383 /* note, we don't set_buffer_write_io_error because we have 3384 * our own ways of dealing with the IO errors 3385 */ 3386 clear_buffer_uptodate(bh); 3387 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3388 } 3389 unlock_buffer(bh); 3390 put_bh(bh); 3391 } 3392 3393 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3394 struct buffer_head **bh_ret) 3395 { 3396 struct buffer_head *bh; 3397 struct btrfs_super_block *super; 3398 u64 bytenr; 3399 3400 bytenr = btrfs_sb_offset(copy_num); 3401 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3402 return -EINVAL; 3403 3404 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3405 /* 3406 * If we fail to read from the underlying devices, as of now 3407 * the best option we have is to mark it EIO. 3408 */ 3409 if (!bh) 3410 return -EIO; 3411 3412 super = (struct btrfs_super_block *)bh->b_data; 3413 if (btrfs_super_bytenr(super) != bytenr || 3414 btrfs_super_magic(super) != BTRFS_MAGIC) { 3415 brelse(bh); 3416 return -EINVAL; 3417 } 3418 3419 *bh_ret = bh; 3420 return 0; 3421 } 3422 3423 3424 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3425 { 3426 struct buffer_head *bh; 3427 struct buffer_head *latest = NULL; 3428 struct btrfs_super_block *super; 3429 int i; 3430 u64 transid = 0; 3431 int ret = -EINVAL; 3432 3433 /* we would like to check all the supers, but that would make 3434 * a btrfs mount succeed after a mkfs from a different FS. 3435 * So, we need to add a special mount option to scan for 3436 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3437 */ 3438 for (i = 0; i < 1; i++) { 3439 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3440 if (ret) 3441 continue; 3442 3443 super = (struct btrfs_super_block *)bh->b_data; 3444 3445 if (!latest || btrfs_super_generation(super) > transid) { 3446 brelse(latest); 3447 latest = bh; 3448 transid = btrfs_super_generation(super); 3449 } else { 3450 brelse(bh); 3451 } 3452 } 3453 3454 if (!latest) 3455 return ERR_PTR(ret); 3456 3457 return latest; 3458 } 3459 3460 /* 3461 * Write superblock @sb to the @device. Do not wait for completion, all the 3462 * buffer heads we write are pinned. 3463 * 3464 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3465 * the expected device size at commit time. Note that max_mirrors must be 3466 * same for write and wait phases. 3467 * 3468 * Return number of errors when buffer head is not found or submission fails. 3469 */ 3470 static int write_dev_supers(struct btrfs_device *device, 3471 struct btrfs_super_block *sb, int max_mirrors) 3472 { 3473 struct buffer_head *bh; 3474 int i; 3475 int ret; 3476 int errors = 0; 3477 u32 crc; 3478 u64 bytenr; 3479 int op_flags; 3480 3481 if (max_mirrors == 0) 3482 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3483 3484 for (i = 0; i < max_mirrors; i++) { 3485 bytenr = btrfs_sb_offset(i); 3486 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3487 device->commit_total_bytes) 3488 break; 3489 3490 btrfs_set_super_bytenr(sb, bytenr); 3491 3492 crc = ~(u32)0; 3493 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3494 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3495 btrfs_csum_final(crc, sb->csum); 3496 3497 /* One reference for us, and we leave it for the caller */ 3498 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3499 BTRFS_SUPER_INFO_SIZE); 3500 if (!bh) { 3501 btrfs_err(device->fs_info, 3502 "couldn't get super buffer head for bytenr %llu", 3503 bytenr); 3504 errors++; 3505 continue; 3506 } 3507 3508 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3509 3510 /* one reference for submit_bh */ 3511 get_bh(bh); 3512 3513 set_buffer_uptodate(bh); 3514 lock_buffer(bh); 3515 bh->b_end_io = btrfs_end_buffer_write_sync; 3516 bh->b_private = device; 3517 3518 /* 3519 * we fua the first super. The others we allow 3520 * to go down lazy. 3521 */ 3522 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3523 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3524 op_flags |= REQ_FUA; 3525 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3526 if (ret) 3527 errors++; 3528 } 3529 return errors < i ? 0 : -1; 3530 } 3531 3532 /* 3533 * Wait for write completion of superblocks done by write_dev_supers, 3534 * @max_mirrors same for write and wait phases. 3535 * 3536 * Return number of errors when buffer head is not found or not marked up to 3537 * date. 3538 */ 3539 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3540 { 3541 struct buffer_head *bh; 3542 int i; 3543 int errors = 0; 3544 bool primary_failed = false; 3545 u64 bytenr; 3546 3547 if (max_mirrors == 0) 3548 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3549 3550 for (i = 0; i < max_mirrors; i++) { 3551 bytenr = btrfs_sb_offset(i); 3552 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3553 device->commit_total_bytes) 3554 break; 3555 3556 bh = __find_get_block(device->bdev, 3557 bytenr / BTRFS_BDEV_BLOCKSIZE, 3558 BTRFS_SUPER_INFO_SIZE); 3559 if (!bh) { 3560 errors++; 3561 if (i == 0) 3562 primary_failed = true; 3563 continue; 3564 } 3565 wait_on_buffer(bh); 3566 if (!buffer_uptodate(bh)) { 3567 errors++; 3568 if (i == 0) 3569 primary_failed = true; 3570 } 3571 3572 /* drop our reference */ 3573 brelse(bh); 3574 3575 /* drop the reference from the writing run */ 3576 brelse(bh); 3577 } 3578 3579 /* log error, force error return */ 3580 if (primary_failed) { 3581 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3582 device->devid); 3583 return -1; 3584 } 3585 3586 return errors < i ? 0 : -1; 3587 } 3588 3589 /* 3590 * endio for the write_dev_flush, this will wake anyone waiting 3591 * for the barrier when it is done 3592 */ 3593 static void btrfs_end_empty_barrier(struct bio *bio) 3594 { 3595 complete(bio->bi_private); 3596 } 3597 3598 /* 3599 * Submit a flush request to the device if it supports it. Error handling is 3600 * done in the waiting counterpart. 3601 */ 3602 static void write_dev_flush(struct btrfs_device *device) 3603 { 3604 struct request_queue *q = bdev_get_queue(device->bdev); 3605 struct bio *bio = device->flush_bio; 3606 3607 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3608 return; 3609 3610 bio_reset(bio); 3611 bio->bi_end_io = btrfs_end_empty_barrier; 3612 bio_set_dev(bio, device->bdev); 3613 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3614 init_completion(&device->flush_wait); 3615 bio->bi_private = &device->flush_wait; 3616 3617 btrfsic_submit_bio(bio); 3618 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3619 } 3620 3621 /* 3622 * If the flush bio has been submitted by write_dev_flush, wait for it. 3623 */ 3624 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3625 { 3626 struct bio *bio = device->flush_bio; 3627 3628 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3629 return BLK_STS_OK; 3630 3631 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3632 wait_for_completion_io(&device->flush_wait); 3633 3634 return bio->bi_status; 3635 } 3636 3637 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3638 { 3639 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3640 return -EIO; 3641 return 0; 3642 } 3643 3644 /* 3645 * send an empty flush down to each device in parallel, 3646 * then wait for them 3647 */ 3648 static int barrier_all_devices(struct btrfs_fs_info *info) 3649 { 3650 struct list_head *head; 3651 struct btrfs_device *dev; 3652 int errors_wait = 0; 3653 blk_status_t ret; 3654 3655 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3656 /* send down all the barriers */ 3657 head = &info->fs_devices->devices; 3658 list_for_each_entry(dev, head, dev_list) { 3659 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3660 continue; 3661 if (!dev->bdev) 3662 continue; 3663 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3664 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3665 continue; 3666 3667 write_dev_flush(dev); 3668 dev->last_flush_error = BLK_STS_OK; 3669 } 3670 3671 /* wait for all the barriers */ 3672 list_for_each_entry(dev, head, dev_list) { 3673 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3674 continue; 3675 if (!dev->bdev) { 3676 errors_wait++; 3677 continue; 3678 } 3679 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3680 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3681 continue; 3682 3683 ret = wait_dev_flush(dev); 3684 if (ret) { 3685 dev->last_flush_error = ret; 3686 btrfs_dev_stat_inc_and_print(dev, 3687 BTRFS_DEV_STAT_FLUSH_ERRS); 3688 errors_wait++; 3689 } 3690 } 3691 3692 if (errors_wait) { 3693 /* 3694 * At some point we need the status of all disks 3695 * to arrive at the volume status. So error checking 3696 * is being pushed to a separate loop. 3697 */ 3698 return check_barrier_error(info); 3699 } 3700 return 0; 3701 } 3702 3703 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3704 { 3705 int raid_type; 3706 int min_tolerated = INT_MAX; 3707 3708 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3709 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3710 min_tolerated = min(min_tolerated, 3711 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3712 tolerated_failures); 3713 3714 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3715 if (raid_type == BTRFS_RAID_SINGLE) 3716 continue; 3717 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3718 continue; 3719 min_tolerated = min(min_tolerated, 3720 btrfs_raid_array[raid_type]. 3721 tolerated_failures); 3722 } 3723 3724 if (min_tolerated == INT_MAX) { 3725 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3726 min_tolerated = 0; 3727 } 3728 3729 return min_tolerated; 3730 } 3731 3732 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3733 { 3734 struct list_head *head; 3735 struct btrfs_device *dev; 3736 struct btrfs_super_block *sb; 3737 struct btrfs_dev_item *dev_item; 3738 int ret; 3739 int do_barriers; 3740 int max_errors; 3741 int total_errors = 0; 3742 u64 flags; 3743 3744 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3745 3746 /* 3747 * max_mirrors == 0 indicates we're from commit_transaction, 3748 * not from fsync where the tree roots in fs_info have not 3749 * been consistent on disk. 3750 */ 3751 if (max_mirrors == 0) 3752 backup_super_roots(fs_info); 3753 3754 sb = fs_info->super_for_commit; 3755 dev_item = &sb->dev_item; 3756 3757 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3758 head = &fs_info->fs_devices->devices; 3759 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3760 3761 if (do_barriers) { 3762 ret = barrier_all_devices(fs_info); 3763 if (ret) { 3764 mutex_unlock( 3765 &fs_info->fs_devices->device_list_mutex); 3766 btrfs_handle_fs_error(fs_info, ret, 3767 "errors while submitting device barriers."); 3768 return ret; 3769 } 3770 } 3771 3772 list_for_each_entry(dev, head, dev_list) { 3773 if (!dev->bdev) { 3774 total_errors++; 3775 continue; 3776 } 3777 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3778 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3779 continue; 3780 3781 btrfs_set_stack_device_generation(dev_item, 0); 3782 btrfs_set_stack_device_type(dev_item, dev->type); 3783 btrfs_set_stack_device_id(dev_item, dev->devid); 3784 btrfs_set_stack_device_total_bytes(dev_item, 3785 dev->commit_total_bytes); 3786 btrfs_set_stack_device_bytes_used(dev_item, 3787 dev->commit_bytes_used); 3788 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3789 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3790 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3791 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3792 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3793 BTRFS_FSID_SIZE); 3794 3795 flags = btrfs_super_flags(sb); 3796 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3797 3798 ret = btrfs_validate_write_super(fs_info, sb); 3799 if (ret < 0) { 3800 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3801 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3802 "unexpected superblock corruption detected"); 3803 return -EUCLEAN; 3804 } 3805 3806 ret = write_dev_supers(dev, sb, max_mirrors); 3807 if (ret) 3808 total_errors++; 3809 } 3810 if (total_errors > max_errors) { 3811 btrfs_err(fs_info, "%d errors while writing supers", 3812 total_errors); 3813 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3814 3815 /* FUA is masked off if unsupported and can't be the reason */ 3816 btrfs_handle_fs_error(fs_info, -EIO, 3817 "%d errors while writing supers", 3818 total_errors); 3819 return -EIO; 3820 } 3821 3822 total_errors = 0; 3823 list_for_each_entry(dev, head, dev_list) { 3824 if (!dev->bdev) 3825 continue; 3826 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3827 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3828 continue; 3829 3830 ret = wait_dev_supers(dev, max_mirrors); 3831 if (ret) 3832 total_errors++; 3833 } 3834 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3835 if (total_errors > max_errors) { 3836 btrfs_handle_fs_error(fs_info, -EIO, 3837 "%d errors while writing supers", 3838 total_errors); 3839 return -EIO; 3840 } 3841 return 0; 3842 } 3843 3844 /* Drop a fs root from the radix tree and free it. */ 3845 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3846 struct btrfs_root *root) 3847 { 3848 spin_lock(&fs_info->fs_roots_radix_lock); 3849 radix_tree_delete(&fs_info->fs_roots_radix, 3850 (unsigned long)root->root_key.objectid); 3851 spin_unlock(&fs_info->fs_roots_radix_lock); 3852 3853 if (btrfs_root_refs(&root->root_item) == 0) 3854 synchronize_srcu(&fs_info->subvol_srcu); 3855 3856 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3857 btrfs_free_log(NULL, root); 3858 if (root->reloc_root) { 3859 free_extent_buffer(root->reloc_root->node); 3860 free_extent_buffer(root->reloc_root->commit_root); 3861 btrfs_put_fs_root(root->reloc_root); 3862 root->reloc_root = NULL; 3863 } 3864 } 3865 3866 if (root->free_ino_pinned) 3867 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3868 if (root->free_ino_ctl) 3869 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3870 btrfs_free_fs_root(root); 3871 } 3872 3873 void btrfs_free_fs_root(struct btrfs_root *root) 3874 { 3875 iput(root->ino_cache_inode); 3876 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3877 if (root->anon_dev) 3878 free_anon_bdev(root->anon_dev); 3879 if (root->subv_writers) 3880 btrfs_free_subvolume_writers(root->subv_writers); 3881 free_extent_buffer(root->node); 3882 free_extent_buffer(root->commit_root); 3883 kfree(root->free_ino_ctl); 3884 kfree(root->free_ino_pinned); 3885 btrfs_put_fs_root(root); 3886 } 3887 3888 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3889 { 3890 u64 root_objectid = 0; 3891 struct btrfs_root *gang[8]; 3892 int i = 0; 3893 int err = 0; 3894 unsigned int ret = 0; 3895 int index; 3896 3897 while (1) { 3898 index = srcu_read_lock(&fs_info->subvol_srcu); 3899 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3900 (void **)gang, root_objectid, 3901 ARRAY_SIZE(gang)); 3902 if (!ret) { 3903 srcu_read_unlock(&fs_info->subvol_srcu, index); 3904 break; 3905 } 3906 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3907 3908 for (i = 0; i < ret; i++) { 3909 /* Avoid to grab roots in dead_roots */ 3910 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3911 gang[i] = NULL; 3912 continue; 3913 } 3914 /* grab all the search result for later use */ 3915 gang[i] = btrfs_grab_fs_root(gang[i]); 3916 } 3917 srcu_read_unlock(&fs_info->subvol_srcu, index); 3918 3919 for (i = 0; i < ret; i++) { 3920 if (!gang[i]) 3921 continue; 3922 root_objectid = gang[i]->root_key.objectid; 3923 err = btrfs_orphan_cleanup(gang[i]); 3924 if (err) 3925 break; 3926 btrfs_put_fs_root(gang[i]); 3927 } 3928 root_objectid++; 3929 } 3930 3931 /* release the uncleaned roots due to error */ 3932 for (; i < ret; i++) { 3933 if (gang[i]) 3934 btrfs_put_fs_root(gang[i]); 3935 } 3936 return err; 3937 } 3938 3939 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3940 { 3941 struct btrfs_root *root = fs_info->tree_root; 3942 struct btrfs_trans_handle *trans; 3943 3944 mutex_lock(&fs_info->cleaner_mutex); 3945 btrfs_run_delayed_iputs(fs_info); 3946 mutex_unlock(&fs_info->cleaner_mutex); 3947 wake_up_process(fs_info->cleaner_kthread); 3948 3949 /* wait until ongoing cleanup work done */ 3950 down_write(&fs_info->cleanup_work_sem); 3951 up_write(&fs_info->cleanup_work_sem); 3952 3953 trans = btrfs_join_transaction(root); 3954 if (IS_ERR(trans)) 3955 return PTR_ERR(trans); 3956 return btrfs_commit_transaction(trans); 3957 } 3958 3959 void close_ctree(struct btrfs_fs_info *fs_info) 3960 { 3961 int ret; 3962 3963 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3964 /* 3965 * We don't want the cleaner to start new transactions, add more delayed 3966 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3967 * because that frees the task_struct, and the transaction kthread might 3968 * still try to wake up the cleaner. 3969 */ 3970 kthread_park(fs_info->cleaner_kthread); 3971 3972 /* wait for the qgroup rescan worker to stop */ 3973 btrfs_qgroup_wait_for_completion(fs_info, false); 3974 3975 /* wait for the uuid_scan task to finish */ 3976 down(&fs_info->uuid_tree_rescan_sem); 3977 /* avoid complains from lockdep et al., set sem back to initial state */ 3978 up(&fs_info->uuid_tree_rescan_sem); 3979 3980 /* pause restriper - we want to resume on mount */ 3981 btrfs_pause_balance(fs_info); 3982 3983 btrfs_dev_replace_suspend_for_unmount(fs_info); 3984 3985 btrfs_scrub_cancel(fs_info); 3986 3987 /* wait for any defraggers to finish */ 3988 wait_event(fs_info->transaction_wait, 3989 (atomic_read(&fs_info->defrag_running) == 0)); 3990 3991 /* clear out the rbtree of defraggable inodes */ 3992 btrfs_cleanup_defrag_inodes(fs_info); 3993 3994 cancel_work_sync(&fs_info->async_reclaim_work); 3995 3996 if (!sb_rdonly(fs_info->sb)) { 3997 /* 3998 * The cleaner kthread is stopped, so do one final pass over 3999 * unused block groups. 4000 */ 4001 btrfs_delete_unused_bgs(fs_info); 4002 4003 ret = btrfs_commit_super(fs_info); 4004 if (ret) 4005 btrfs_err(fs_info, "commit super ret %d", ret); 4006 } 4007 4008 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4009 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4010 btrfs_error_commit_super(fs_info); 4011 4012 kthread_stop(fs_info->transaction_kthread); 4013 kthread_stop(fs_info->cleaner_kthread); 4014 4015 ASSERT(list_empty(&fs_info->delayed_iputs)); 4016 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4017 4018 btrfs_free_qgroup_config(fs_info); 4019 ASSERT(list_empty(&fs_info->delalloc_roots)); 4020 4021 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4022 btrfs_info(fs_info, "at unmount delalloc count %lld", 4023 percpu_counter_sum(&fs_info->delalloc_bytes)); 4024 } 4025 4026 btrfs_sysfs_remove_mounted(fs_info); 4027 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4028 4029 btrfs_free_fs_roots(fs_info); 4030 4031 btrfs_put_block_group_cache(fs_info); 4032 4033 /* 4034 * we must make sure there is not any read request to 4035 * submit after we stopping all workers. 4036 */ 4037 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4038 btrfs_stop_all_workers(fs_info); 4039 4040 btrfs_free_block_groups(fs_info); 4041 4042 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4043 free_root_pointers(fs_info, 1); 4044 4045 iput(fs_info->btree_inode); 4046 4047 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4048 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4049 btrfsic_unmount(fs_info->fs_devices); 4050 #endif 4051 4052 btrfs_close_devices(fs_info->fs_devices); 4053 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4054 4055 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4056 percpu_counter_destroy(&fs_info->delalloc_bytes); 4057 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4058 cleanup_srcu_struct(&fs_info->subvol_srcu); 4059 4060 btrfs_free_stripe_hash_table(fs_info); 4061 btrfs_free_ref_cache(fs_info); 4062 4063 while (!list_empty(&fs_info->pinned_chunks)) { 4064 struct extent_map *em; 4065 4066 em = list_first_entry(&fs_info->pinned_chunks, 4067 struct extent_map, list); 4068 list_del_init(&em->list); 4069 free_extent_map(em); 4070 } 4071 } 4072 4073 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4074 int atomic) 4075 { 4076 int ret; 4077 struct inode *btree_inode = buf->pages[0]->mapping->host; 4078 4079 ret = extent_buffer_uptodate(buf); 4080 if (!ret) 4081 return ret; 4082 4083 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4084 parent_transid, atomic); 4085 if (ret == -EAGAIN) 4086 return ret; 4087 return !ret; 4088 } 4089 4090 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4091 { 4092 struct btrfs_fs_info *fs_info; 4093 struct btrfs_root *root; 4094 u64 transid = btrfs_header_generation(buf); 4095 int was_dirty; 4096 4097 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4098 /* 4099 * This is a fast path so only do this check if we have sanity tests 4100 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4101 * outside of the sanity tests. 4102 */ 4103 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4104 return; 4105 #endif 4106 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4107 fs_info = root->fs_info; 4108 btrfs_assert_tree_locked(buf); 4109 if (transid != fs_info->generation) 4110 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4111 buf->start, transid, fs_info->generation); 4112 was_dirty = set_extent_buffer_dirty(buf); 4113 if (!was_dirty) 4114 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4115 buf->len, 4116 fs_info->dirty_metadata_batch); 4117 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4118 /* 4119 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4120 * but item data not updated. 4121 * So here we should only check item pointers, not item data. 4122 */ 4123 if (btrfs_header_level(buf) == 0 && 4124 btrfs_check_leaf_relaxed(fs_info, buf)) { 4125 btrfs_print_leaf(buf); 4126 ASSERT(0); 4127 } 4128 #endif 4129 } 4130 4131 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4132 int flush_delayed) 4133 { 4134 /* 4135 * looks as though older kernels can get into trouble with 4136 * this code, they end up stuck in balance_dirty_pages forever 4137 */ 4138 int ret; 4139 4140 if (current->flags & PF_MEMALLOC) 4141 return; 4142 4143 if (flush_delayed) 4144 btrfs_balance_delayed_items(fs_info); 4145 4146 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4147 BTRFS_DIRTY_METADATA_THRESH, 4148 fs_info->dirty_metadata_batch); 4149 if (ret > 0) { 4150 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4151 } 4152 } 4153 4154 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4155 { 4156 __btrfs_btree_balance_dirty(fs_info, 1); 4157 } 4158 4159 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4160 { 4161 __btrfs_btree_balance_dirty(fs_info, 0); 4162 } 4163 4164 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4165 struct btrfs_key *first_key) 4166 { 4167 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4168 struct btrfs_fs_info *fs_info = root->fs_info; 4169 4170 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4171 level, first_key); 4172 } 4173 4174 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4175 { 4176 /* cleanup FS via transaction */ 4177 btrfs_cleanup_transaction(fs_info); 4178 4179 mutex_lock(&fs_info->cleaner_mutex); 4180 btrfs_run_delayed_iputs(fs_info); 4181 mutex_unlock(&fs_info->cleaner_mutex); 4182 4183 down_write(&fs_info->cleanup_work_sem); 4184 up_write(&fs_info->cleanup_work_sem); 4185 } 4186 4187 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4188 { 4189 struct btrfs_ordered_extent *ordered; 4190 4191 spin_lock(&root->ordered_extent_lock); 4192 /* 4193 * This will just short circuit the ordered completion stuff which will 4194 * make sure the ordered extent gets properly cleaned up. 4195 */ 4196 list_for_each_entry(ordered, &root->ordered_extents, 4197 root_extent_list) 4198 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4199 spin_unlock(&root->ordered_extent_lock); 4200 } 4201 4202 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4203 { 4204 struct btrfs_root *root; 4205 struct list_head splice; 4206 4207 INIT_LIST_HEAD(&splice); 4208 4209 spin_lock(&fs_info->ordered_root_lock); 4210 list_splice_init(&fs_info->ordered_roots, &splice); 4211 while (!list_empty(&splice)) { 4212 root = list_first_entry(&splice, struct btrfs_root, 4213 ordered_root); 4214 list_move_tail(&root->ordered_root, 4215 &fs_info->ordered_roots); 4216 4217 spin_unlock(&fs_info->ordered_root_lock); 4218 btrfs_destroy_ordered_extents(root); 4219 4220 cond_resched(); 4221 spin_lock(&fs_info->ordered_root_lock); 4222 } 4223 spin_unlock(&fs_info->ordered_root_lock); 4224 4225 /* 4226 * We need this here because if we've been flipped read-only we won't 4227 * get sync() from the umount, so we need to make sure any ordered 4228 * extents that haven't had their dirty pages IO start writeout yet 4229 * actually get run and error out properly. 4230 */ 4231 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4232 } 4233 4234 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4235 struct btrfs_fs_info *fs_info) 4236 { 4237 struct rb_node *node; 4238 struct btrfs_delayed_ref_root *delayed_refs; 4239 struct btrfs_delayed_ref_node *ref; 4240 int ret = 0; 4241 4242 delayed_refs = &trans->delayed_refs; 4243 4244 spin_lock(&delayed_refs->lock); 4245 if (atomic_read(&delayed_refs->num_entries) == 0) { 4246 spin_unlock(&delayed_refs->lock); 4247 btrfs_info(fs_info, "delayed_refs has NO entry"); 4248 return ret; 4249 } 4250 4251 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4252 struct btrfs_delayed_ref_head *head; 4253 struct rb_node *n; 4254 bool pin_bytes = false; 4255 4256 head = rb_entry(node, struct btrfs_delayed_ref_head, 4257 href_node); 4258 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4259 continue; 4260 4261 spin_lock(&head->lock); 4262 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4263 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4264 ref_node); 4265 ref->in_tree = 0; 4266 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4267 RB_CLEAR_NODE(&ref->ref_node); 4268 if (!list_empty(&ref->add_list)) 4269 list_del(&ref->add_list); 4270 atomic_dec(&delayed_refs->num_entries); 4271 btrfs_put_delayed_ref(ref); 4272 } 4273 if (head->must_insert_reserved) 4274 pin_bytes = true; 4275 btrfs_free_delayed_extent_op(head->extent_op); 4276 btrfs_delete_ref_head(delayed_refs, head); 4277 spin_unlock(&head->lock); 4278 spin_unlock(&delayed_refs->lock); 4279 mutex_unlock(&head->mutex); 4280 4281 if (pin_bytes) 4282 btrfs_pin_extent(fs_info, head->bytenr, 4283 head->num_bytes, 1); 4284 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4285 btrfs_put_delayed_ref_head(head); 4286 cond_resched(); 4287 spin_lock(&delayed_refs->lock); 4288 } 4289 4290 spin_unlock(&delayed_refs->lock); 4291 4292 return ret; 4293 } 4294 4295 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4296 { 4297 struct btrfs_inode *btrfs_inode; 4298 struct list_head splice; 4299 4300 INIT_LIST_HEAD(&splice); 4301 4302 spin_lock(&root->delalloc_lock); 4303 list_splice_init(&root->delalloc_inodes, &splice); 4304 4305 while (!list_empty(&splice)) { 4306 struct inode *inode = NULL; 4307 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4308 delalloc_inodes); 4309 __btrfs_del_delalloc_inode(root, btrfs_inode); 4310 spin_unlock(&root->delalloc_lock); 4311 4312 /* 4313 * Make sure we get a live inode and that it'll not disappear 4314 * meanwhile. 4315 */ 4316 inode = igrab(&btrfs_inode->vfs_inode); 4317 if (inode) { 4318 invalidate_inode_pages2(inode->i_mapping); 4319 iput(inode); 4320 } 4321 spin_lock(&root->delalloc_lock); 4322 } 4323 spin_unlock(&root->delalloc_lock); 4324 } 4325 4326 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4327 { 4328 struct btrfs_root *root; 4329 struct list_head splice; 4330 4331 INIT_LIST_HEAD(&splice); 4332 4333 spin_lock(&fs_info->delalloc_root_lock); 4334 list_splice_init(&fs_info->delalloc_roots, &splice); 4335 while (!list_empty(&splice)) { 4336 root = list_first_entry(&splice, struct btrfs_root, 4337 delalloc_root); 4338 root = btrfs_grab_fs_root(root); 4339 BUG_ON(!root); 4340 spin_unlock(&fs_info->delalloc_root_lock); 4341 4342 btrfs_destroy_delalloc_inodes(root); 4343 btrfs_put_fs_root(root); 4344 4345 spin_lock(&fs_info->delalloc_root_lock); 4346 } 4347 spin_unlock(&fs_info->delalloc_root_lock); 4348 } 4349 4350 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4351 struct extent_io_tree *dirty_pages, 4352 int mark) 4353 { 4354 int ret; 4355 struct extent_buffer *eb; 4356 u64 start = 0; 4357 u64 end; 4358 4359 while (1) { 4360 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4361 mark, NULL); 4362 if (ret) 4363 break; 4364 4365 clear_extent_bits(dirty_pages, start, end, mark); 4366 while (start <= end) { 4367 eb = find_extent_buffer(fs_info, start); 4368 start += fs_info->nodesize; 4369 if (!eb) 4370 continue; 4371 wait_on_extent_buffer_writeback(eb); 4372 4373 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4374 &eb->bflags)) 4375 clear_extent_buffer_dirty(eb); 4376 free_extent_buffer_stale(eb); 4377 } 4378 } 4379 4380 return ret; 4381 } 4382 4383 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4384 struct extent_io_tree *pinned_extents) 4385 { 4386 struct extent_io_tree *unpin; 4387 u64 start; 4388 u64 end; 4389 int ret; 4390 bool loop = true; 4391 4392 unpin = pinned_extents; 4393 again: 4394 while (1) { 4395 struct extent_state *cached_state = NULL; 4396 4397 /* 4398 * The btrfs_finish_extent_commit() may get the same range as 4399 * ours between find_first_extent_bit and clear_extent_dirty. 4400 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4401 * the same extent range. 4402 */ 4403 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4404 ret = find_first_extent_bit(unpin, 0, &start, &end, 4405 EXTENT_DIRTY, &cached_state); 4406 if (ret) { 4407 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4408 break; 4409 } 4410 4411 clear_extent_dirty(unpin, start, end, &cached_state); 4412 free_extent_state(cached_state); 4413 btrfs_error_unpin_extent_range(fs_info, start, end); 4414 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4415 cond_resched(); 4416 } 4417 4418 if (loop) { 4419 if (unpin == &fs_info->freed_extents[0]) 4420 unpin = &fs_info->freed_extents[1]; 4421 else 4422 unpin = &fs_info->freed_extents[0]; 4423 loop = false; 4424 goto again; 4425 } 4426 4427 return 0; 4428 } 4429 4430 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4431 { 4432 struct inode *inode; 4433 4434 inode = cache->io_ctl.inode; 4435 if (inode) { 4436 invalidate_inode_pages2(inode->i_mapping); 4437 BTRFS_I(inode)->generation = 0; 4438 cache->io_ctl.inode = NULL; 4439 iput(inode); 4440 } 4441 btrfs_put_block_group(cache); 4442 } 4443 4444 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4445 struct btrfs_fs_info *fs_info) 4446 { 4447 struct btrfs_block_group_cache *cache; 4448 4449 spin_lock(&cur_trans->dirty_bgs_lock); 4450 while (!list_empty(&cur_trans->dirty_bgs)) { 4451 cache = list_first_entry(&cur_trans->dirty_bgs, 4452 struct btrfs_block_group_cache, 4453 dirty_list); 4454 4455 if (!list_empty(&cache->io_list)) { 4456 spin_unlock(&cur_trans->dirty_bgs_lock); 4457 list_del_init(&cache->io_list); 4458 btrfs_cleanup_bg_io(cache); 4459 spin_lock(&cur_trans->dirty_bgs_lock); 4460 } 4461 4462 list_del_init(&cache->dirty_list); 4463 spin_lock(&cache->lock); 4464 cache->disk_cache_state = BTRFS_DC_ERROR; 4465 spin_unlock(&cache->lock); 4466 4467 spin_unlock(&cur_trans->dirty_bgs_lock); 4468 btrfs_put_block_group(cache); 4469 btrfs_delayed_refs_rsv_release(fs_info, 1); 4470 spin_lock(&cur_trans->dirty_bgs_lock); 4471 } 4472 spin_unlock(&cur_trans->dirty_bgs_lock); 4473 4474 /* 4475 * Refer to the definition of io_bgs member for details why it's safe 4476 * to use it without any locking 4477 */ 4478 while (!list_empty(&cur_trans->io_bgs)) { 4479 cache = list_first_entry(&cur_trans->io_bgs, 4480 struct btrfs_block_group_cache, 4481 io_list); 4482 4483 list_del_init(&cache->io_list); 4484 spin_lock(&cache->lock); 4485 cache->disk_cache_state = BTRFS_DC_ERROR; 4486 spin_unlock(&cache->lock); 4487 btrfs_cleanup_bg_io(cache); 4488 } 4489 } 4490 4491 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4492 struct btrfs_fs_info *fs_info) 4493 { 4494 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4495 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4496 ASSERT(list_empty(&cur_trans->io_bgs)); 4497 4498 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4499 4500 cur_trans->state = TRANS_STATE_COMMIT_START; 4501 wake_up(&fs_info->transaction_blocked_wait); 4502 4503 cur_trans->state = TRANS_STATE_UNBLOCKED; 4504 wake_up(&fs_info->transaction_wait); 4505 4506 btrfs_destroy_delayed_inodes(fs_info); 4507 btrfs_assert_delayed_root_empty(fs_info); 4508 4509 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4510 EXTENT_DIRTY); 4511 btrfs_destroy_pinned_extent(fs_info, 4512 fs_info->pinned_extents); 4513 4514 cur_trans->state =TRANS_STATE_COMPLETED; 4515 wake_up(&cur_trans->commit_wait); 4516 } 4517 4518 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4519 { 4520 struct btrfs_transaction *t; 4521 4522 mutex_lock(&fs_info->transaction_kthread_mutex); 4523 4524 spin_lock(&fs_info->trans_lock); 4525 while (!list_empty(&fs_info->trans_list)) { 4526 t = list_first_entry(&fs_info->trans_list, 4527 struct btrfs_transaction, list); 4528 if (t->state >= TRANS_STATE_COMMIT_START) { 4529 refcount_inc(&t->use_count); 4530 spin_unlock(&fs_info->trans_lock); 4531 btrfs_wait_for_commit(fs_info, t->transid); 4532 btrfs_put_transaction(t); 4533 spin_lock(&fs_info->trans_lock); 4534 continue; 4535 } 4536 if (t == fs_info->running_transaction) { 4537 t->state = TRANS_STATE_COMMIT_DOING; 4538 spin_unlock(&fs_info->trans_lock); 4539 /* 4540 * We wait for 0 num_writers since we don't hold a trans 4541 * handle open currently for this transaction. 4542 */ 4543 wait_event(t->writer_wait, 4544 atomic_read(&t->num_writers) == 0); 4545 } else { 4546 spin_unlock(&fs_info->trans_lock); 4547 } 4548 btrfs_cleanup_one_transaction(t, fs_info); 4549 4550 spin_lock(&fs_info->trans_lock); 4551 if (t == fs_info->running_transaction) 4552 fs_info->running_transaction = NULL; 4553 list_del_init(&t->list); 4554 spin_unlock(&fs_info->trans_lock); 4555 4556 btrfs_put_transaction(t); 4557 trace_btrfs_transaction_commit(fs_info->tree_root); 4558 spin_lock(&fs_info->trans_lock); 4559 } 4560 spin_unlock(&fs_info->trans_lock); 4561 btrfs_destroy_all_ordered_extents(fs_info); 4562 btrfs_destroy_delayed_inodes(fs_info); 4563 btrfs_assert_delayed_root_empty(fs_info); 4564 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4565 btrfs_destroy_all_delalloc_inodes(fs_info); 4566 mutex_unlock(&fs_info->transaction_kthread_mutex); 4567 4568 return 0; 4569 } 4570 4571 static const struct extent_io_ops btree_extent_io_ops = { 4572 /* mandatory callbacks */ 4573 .submit_bio_hook = btree_submit_bio_hook, 4574 .readpage_end_io_hook = btree_readpage_end_io_hook, 4575 }; 4576