xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 3eaa2885276fd6dac7b076a793932428b7168e74)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
30 # include <linux/freezer.h>
31 #else
32 # include <linux/sched.h>
33 #endif
34 #include "crc32c.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 
44 #if 0
45 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
46 {
47 	if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
48 		printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
49 		       (unsigned long long)extent_buffer_blocknr(buf),
50 		       (unsigned long long)btrfs_header_blocknr(buf));
51 		return 1;
52 	}
53 	return 0;
54 }
55 #endif
56 
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 
60 struct end_io_wq {
61 	struct bio *bio;
62 	bio_end_io_t *end_io;
63 	void *private;
64 	struct btrfs_fs_info *info;
65 	int error;
66 	int metadata;
67 	struct list_head list;
68 	struct btrfs_work work;
69 };
70 
71 struct async_submit_bio {
72 	struct inode *inode;
73 	struct bio *bio;
74 	struct list_head list;
75 	extent_submit_bio_hook_t *submit_bio_hook;
76 	int rw;
77 	int mirror_num;
78 	struct btrfs_work work;
79 };
80 
81 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
82 				    size_t page_offset, u64 start, u64 len,
83 				    int create)
84 {
85 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
86 	struct extent_map *em;
87 	int ret;
88 
89 	spin_lock(&em_tree->lock);
90 	em = lookup_extent_mapping(em_tree, start, len);
91 	if (em) {
92 		em->bdev =
93 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
94 		spin_unlock(&em_tree->lock);
95 		goto out;
96 	}
97 	spin_unlock(&em_tree->lock);
98 
99 	em = alloc_extent_map(GFP_NOFS);
100 	if (!em) {
101 		em = ERR_PTR(-ENOMEM);
102 		goto out;
103 	}
104 	em->start = 0;
105 	em->len = (u64)-1;
106 	em->block_start = 0;
107 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
108 
109 	spin_lock(&em_tree->lock);
110 	ret = add_extent_mapping(em_tree, em);
111 	if (ret == -EEXIST) {
112 		u64 failed_start = em->start;
113 		u64 failed_len = em->len;
114 
115 		printk("failed to insert %Lu %Lu -> %Lu into tree\n",
116 		       em->start, em->len, em->block_start);
117 		free_extent_map(em);
118 		em = lookup_extent_mapping(em_tree, start, len);
119 		if (em) {
120 			printk("after failing, found %Lu %Lu %Lu\n",
121 			       em->start, em->len, em->block_start);
122 			ret = 0;
123 		} else {
124 			em = lookup_extent_mapping(em_tree, failed_start,
125 						   failed_len);
126 			if (em) {
127 				printk("double failure lookup gives us "
128 				       "%Lu %Lu -> %Lu\n", em->start,
129 				       em->len, em->block_start);
130 				free_extent_map(em);
131 			}
132 			ret = -EIO;
133 		}
134 	} else if (ret) {
135 		free_extent_map(em);
136 		em = NULL;
137 	}
138 	spin_unlock(&em_tree->lock);
139 
140 	if (ret)
141 		em = ERR_PTR(ret);
142 out:
143 	return em;
144 }
145 
146 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
147 {
148 	return btrfs_crc32c(seed, data, len);
149 }
150 
151 void btrfs_csum_final(u32 crc, char *result)
152 {
153 	*(__le32 *)result = ~cpu_to_le32(crc);
154 }
155 
156 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
157 			   int verify)
158 {
159 	char result[BTRFS_CRC32_SIZE];
160 	unsigned long len;
161 	unsigned long cur_len;
162 	unsigned long offset = BTRFS_CSUM_SIZE;
163 	char *map_token = NULL;
164 	char *kaddr;
165 	unsigned long map_start;
166 	unsigned long map_len;
167 	int err;
168 	u32 crc = ~(u32)0;
169 
170 	len = buf->len - offset;
171 	while(len > 0) {
172 		err = map_private_extent_buffer(buf, offset, 32,
173 					&map_token, &kaddr,
174 					&map_start, &map_len, KM_USER0);
175 		if (err) {
176 			printk("failed to map extent buffer! %lu\n",
177 			       offset);
178 			return 1;
179 		}
180 		cur_len = min(len, map_len - (offset - map_start));
181 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
182 				      crc, cur_len);
183 		len -= cur_len;
184 		offset += cur_len;
185 		unmap_extent_buffer(buf, map_token, KM_USER0);
186 	}
187 	btrfs_csum_final(crc, result);
188 
189 	if (verify) {
190 		int from_this_trans = 0;
191 
192 		if (root->fs_info->running_transaction &&
193 		    btrfs_header_generation(buf) ==
194 		    root->fs_info->running_transaction->transid)
195 			from_this_trans = 1;
196 
197 		/* FIXME, this is not good */
198 		if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
199 			u32 val;
200 			u32 found = 0;
201 			memcpy(&found, result, BTRFS_CRC32_SIZE);
202 
203 			read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
204 			printk("btrfs: %s checksum verify failed on %llu "
205 			       "wanted %X found %X from_this_trans %d "
206 			       "level %d\n",
207 			       root->fs_info->sb->s_id,
208 			       buf->start, val, found, from_this_trans,
209 			       btrfs_header_level(buf));
210 			return 1;
211 		}
212 	} else {
213 		write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
214 	}
215 	return 0;
216 }
217 
218 static int verify_parent_transid(struct extent_io_tree *io_tree,
219 				 struct extent_buffer *eb, u64 parent_transid)
220 {
221 	int ret;
222 
223 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
224 		return 0;
225 
226 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
227 	if (extent_buffer_uptodate(io_tree, eb) &&
228 	    btrfs_header_generation(eb) == parent_transid) {
229 		ret = 0;
230 		goto out;
231 	}
232 	printk("parent transid verify failed on %llu wanted %llu found %llu\n",
233 	       (unsigned long long)eb->start,
234 	       (unsigned long long)parent_transid,
235 	       (unsigned long long)btrfs_header_generation(eb));
236 	ret = 1;
237 out:
238 	clear_extent_buffer_uptodate(io_tree, eb);
239 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
240 		      GFP_NOFS);
241 	return ret;
242 
243 }
244 
245 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
246 					  struct extent_buffer *eb,
247 					  u64 start, u64 parent_transid)
248 {
249 	struct extent_io_tree *io_tree;
250 	int ret;
251 	int num_copies = 0;
252 	int mirror_num = 0;
253 
254 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
255 	while (1) {
256 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
257 					       btree_get_extent, mirror_num);
258 		if (!ret &&
259 		    !verify_parent_transid(io_tree, eb, parent_transid))
260 			return ret;
261 
262 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
263 					      eb->start, eb->len);
264 		if (num_copies == 1)
265 			return ret;
266 
267 		mirror_num++;
268 		if (mirror_num > num_copies)
269 			return ret;
270 	}
271 	return -EIO;
272 }
273 
274 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
275 {
276 	struct extent_io_tree *tree;
277 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
278 	u64 found_start;
279 	int found_level;
280 	unsigned long len;
281 	struct extent_buffer *eb;
282 	int ret;
283 
284 	tree = &BTRFS_I(page->mapping->host)->io_tree;
285 
286 	if (page->private == EXTENT_PAGE_PRIVATE)
287 		goto out;
288 	if (!page->private)
289 		goto out;
290 	len = page->private >> 2;
291 	if (len == 0) {
292 		WARN_ON(1);
293 	}
294 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
295 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
296 					     btrfs_header_generation(eb));
297 	BUG_ON(ret);
298 	found_start = btrfs_header_bytenr(eb);
299 	if (found_start != start) {
300 		printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
301 		       start, found_start, len);
302 		WARN_ON(1);
303 		goto err;
304 	}
305 	if (eb->first_page != page) {
306 		printk("bad first page %lu %lu\n", eb->first_page->index,
307 		       page->index);
308 		WARN_ON(1);
309 		goto err;
310 	}
311 	if (!PageUptodate(page)) {
312 		printk("csum not up to date page %lu\n", page->index);
313 		WARN_ON(1);
314 		goto err;
315 	}
316 	found_level = btrfs_header_level(eb);
317 	spin_lock(&root->fs_info->hash_lock);
318 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
319 	spin_unlock(&root->fs_info->hash_lock);
320 	csum_tree_block(root, eb, 0);
321 err:
322 	free_extent_buffer(eb);
323 out:
324 	return 0;
325 }
326 
327 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
328 {
329 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
330 
331 	csum_dirty_buffer(root, page);
332 	return 0;
333 }
334 
335 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
336 			       struct extent_state *state)
337 {
338 	struct extent_io_tree *tree;
339 	u64 found_start;
340 	int found_level;
341 	unsigned long len;
342 	struct extent_buffer *eb;
343 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
344 	int ret = 0;
345 
346 	tree = &BTRFS_I(page->mapping->host)->io_tree;
347 	if (page->private == EXTENT_PAGE_PRIVATE)
348 		goto out;
349 	if (!page->private)
350 		goto out;
351 	len = page->private >> 2;
352 	if (len == 0) {
353 		WARN_ON(1);
354 	}
355 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
356 
357 	found_start = btrfs_header_bytenr(eb);
358 	if (found_start != start) {
359 		ret = -EIO;
360 		goto err;
361 	}
362 	if (eb->first_page != page) {
363 		printk("bad first page %lu %lu\n", eb->first_page->index,
364 		       page->index);
365 		WARN_ON(1);
366 		ret = -EIO;
367 		goto err;
368 	}
369 	if (memcmp_extent_buffer(eb, root->fs_info->fsid,
370 				 (unsigned long)btrfs_header_fsid(eb),
371 				 BTRFS_FSID_SIZE)) {
372 		printk("bad fsid on block %Lu\n", eb->start);
373 		ret = -EIO;
374 		goto err;
375 	}
376 	found_level = btrfs_header_level(eb);
377 
378 	ret = csum_tree_block(root, eb, 1);
379 	if (ret)
380 		ret = -EIO;
381 
382 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
383 	end = eb->start + end - 1;
384 err:
385 	free_extent_buffer(eb);
386 out:
387 	return ret;
388 }
389 
390 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
391 static void end_workqueue_bio(struct bio *bio, int err)
392 #else
393 static int end_workqueue_bio(struct bio *bio,
394 				   unsigned int bytes_done, int err)
395 #endif
396 {
397 	struct end_io_wq *end_io_wq = bio->bi_private;
398 	struct btrfs_fs_info *fs_info;
399 
400 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
401 	if (bio->bi_size)
402 		return 1;
403 #endif
404 
405 	fs_info = end_io_wq->info;
406 	end_io_wq->error = err;
407 	end_io_wq->work.func = end_workqueue_fn;
408 	end_io_wq->work.flags = 0;
409 	if (bio->bi_rw & (1 << BIO_RW))
410 		btrfs_queue_worker(&fs_info->endio_write_workers,
411 				   &end_io_wq->work);
412 	else
413 		btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
414 
415 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
416 	return 0;
417 #endif
418 }
419 
420 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
421 			int metadata)
422 {
423 	struct end_io_wq *end_io_wq;
424 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
425 	if (!end_io_wq)
426 		return -ENOMEM;
427 
428 	end_io_wq->private = bio->bi_private;
429 	end_io_wq->end_io = bio->bi_end_io;
430 	end_io_wq->info = info;
431 	end_io_wq->error = 0;
432 	end_io_wq->bio = bio;
433 	end_io_wq->metadata = metadata;
434 
435 	bio->bi_private = end_io_wq;
436 	bio->bi_end_io = end_workqueue_bio;
437 	return 0;
438 }
439 
440 static void run_one_async_submit(struct btrfs_work *work)
441 {
442 	struct btrfs_fs_info *fs_info;
443 	struct async_submit_bio *async;
444 
445 	async = container_of(work, struct  async_submit_bio, work);
446 	fs_info = BTRFS_I(async->inode)->root->fs_info;
447 	atomic_dec(&fs_info->nr_async_submits);
448 	async->submit_bio_hook(async->inode, async->rw, async->bio,
449 			       async->mirror_num);
450 	kfree(async);
451 }
452 
453 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
454 			int rw, struct bio *bio, int mirror_num,
455 			extent_submit_bio_hook_t *submit_bio_hook)
456 {
457 	struct async_submit_bio *async;
458 
459 	async = kmalloc(sizeof(*async), GFP_NOFS);
460 	if (!async)
461 		return -ENOMEM;
462 
463 	async->inode = inode;
464 	async->rw = rw;
465 	async->bio = bio;
466 	async->mirror_num = mirror_num;
467 	async->submit_bio_hook = submit_bio_hook;
468 	async->work.func = run_one_async_submit;
469 	async->work.flags = 0;
470 	atomic_inc(&fs_info->nr_async_submits);
471 	btrfs_queue_worker(&fs_info->workers, &async->work);
472 	return 0;
473 }
474 
475 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
476 				 int mirror_num)
477 {
478 	struct btrfs_root *root = BTRFS_I(inode)->root;
479 	u64 offset;
480 	int ret;
481 
482 	offset = bio->bi_sector << 9;
483 
484 	/*
485 	 * when we're called for a write, we're already in the async
486 	 * submission context.  Just jump ingo btrfs_map_bio
487 	 */
488 	if (rw & (1 << BIO_RW)) {
489 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
490 				     mirror_num, 0);
491 	}
492 
493 	/*
494 	 * called for a read, do the setup so that checksum validation
495 	 * can happen in the async kernel threads
496 	 */
497 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
498 	BUG_ON(ret);
499 
500 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
501 }
502 
503 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
504 				 int mirror_num)
505 {
506 	/*
507 	 * kthread helpers are used to submit writes so that checksumming
508 	 * can happen in parallel across all CPUs
509 	 */
510 	if (!(rw & (1 << BIO_RW))) {
511 		return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
512 	}
513 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
514 				   inode, rw, bio, mirror_num,
515 				   __btree_submit_bio_hook);
516 }
517 
518 static int btree_writepage(struct page *page, struct writeback_control *wbc)
519 {
520 	struct extent_io_tree *tree;
521 	tree = &BTRFS_I(page->mapping->host)->io_tree;
522 	return extent_write_full_page(tree, page, btree_get_extent, wbc);
523 }
524 
525 static int btree_writepages(struct address_space *mapping,
526 			    struct writeback_control *wbc)
527 {
528 	struct extent_io_tree *tree;
529 	tree = &BTRFS_I(mapping->host)->io_tree;
530 	if (wbc->sync_mode == WB_SYNC_NONE) {
531 		u64 num_dirty;
532 		u64 start = 0;
533 		unsigned long thresh = 96 * 1024 * 1024;
534 
535 		if (wbc->for_kupdate)
536 			return 0;
537 
538 		if (current_is_pdflush()) {
539 			thresh = 96 * 1024 * 1024;
540 		} else {
541 			thresh = 8 * 1024 * 1024;
542 		}
543 		num_dirty = count_range_bits(tree, &start, (u64)-1,
544 					     thresh, EXTENT_DIRTY);
545 		if (num_dirty < thresh) {
546 			return 0;
547 		}
548 	}
549 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
550 }
551 
552 int btree_readpage(struct file *file, struct page *page)
553 {
554 	struct extent_io_tree *tree;
555 	tree = &BTRFS_I(page->mapping->host)->io_tree;
556 	return extent_read_full_page(tree, page, btree_get_extent);
557 }
558 
559 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
560 {
561 	struct extent_io_tree *tree;
562 	struct extent_map_tree *map;
563 	int ret;
564 
565 	tree = &BTRFS_I(page->mapping->host)->io_tree;
566 	map = &BTRFS_I(page->mapping->host)->extent_tree;
567 
568 	ret = try_release_extent_state(map, tree, page, gfp_flags);
569 	if (!ret) {
570 		return 0;
571 	}
572 
573 	ret = try_release_extent_buffer(tree, page);
574 	if (ret == 1) {
575 		ClearPagePrivate(page);
576 		set_page_private(page, 0);
577 		page_cache_release(page);
578 	}
579 
580 	return ret;
581 }
582 
583 static void btree_invalidatepage(struct page *page, unsigned long offset)
584 {
585 	struct extent_io_tree *tree;
586 	tree = &BTRFS_I(page->mapping->host)->io_tree;
587 	extent_invalidatepage(tree, page, offset);
588 	btree_releasepage(page, GFP_NOFS);
589 	if (PagePrivate(page)) {
590 		printk("warning page private not zero on page %Lu\n",
591 		       page_offset(page));
592 		ClearPagePrivate(page);
593 		set_page_private(page, 0);
594 		page_cache_release(page);
595 	}
596 }
597 
598 #if 0
599 static int btree_writepage(struct page *page, struct writeback_control *wbc)
600 {
601 	struct buffer_head *bh;
602 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
603 	struct buffer_head *head;
604 	if (!page_has_buffers(page)) {
605 		create_empty_buffers(page, root->fs_info->sb->s_blocksize,
606 					(1 << BH_Dirty)|(1 << BH_Uptodate));
607 	}
608 	head = page_buffers(page);
609 	bh = head;
610 	do {
611 		if (buffer_dirty(bh))
612 			csum_tree_block(root, bh, 0);
613 		bh = bh->b_this_page;
614 	} while (bh != head);
615 	return block_write_full_page(page, btree_get_block, wbc);
616 }
617 #endif
618 
619 static struct address_space_operations btree_aops = {
620 	.readpage	= btree_readpage,
621 	.writepage	= btree_writepage,
622 	.writepages	= btree_writepages,
623 	.releasepage	= btree_releasepage,
624 	.invalidatepage = btree_invalidatepage,
625 	.sync_page	= block_sync_page,
626 };
627 
628 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
629 			 u64 parent_transid)
630 {
631 	struct extent_buffer *buf = NULL;
632 	struct inode *btree_inode = root->fs_info->btree_inode;
633 	int ret = 0;
634 
635 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
636 	if (!buf)
637 		return 0;
638 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
639 				 buf, 0, 0, btree_get_extent, 0);
640 	free_extent_buffer(buf);
641 	return ret;
642 }
643 
644 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
645 					    u64 bytenr, u32 blocksize)
646 {
647 	struct inode *btree_inode = root->fs_info->btree_inode;
648 	struct extent_buffer *eb;
649 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
650 				bytenr, blocksize, GFP_NOFS);
651 	return eb;
652 }
653 
654 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
655 						 u64 bytenr, u32 blocksize)
656 {
657 	struct inode *btree_inode = root->fs_info->btree_inode;
658 	struct extent_buffer *eb;
659 
660 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
661 				 bytenr, blocksize, NULL, GFP_NOFS);
662 	return eb;
663 }
664 
665 
666 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
667 				      u32 blocksize, u64 parent_transid)
668 {
669 	struct extent_buffer *buf = NULL;
670 	struct inode *btree_inode = root->fs_info->btree_inode;
671 	struct extent_io_tree *io_tree;
672 	int ret;
673 
674 	io_tree = &BTRFS_I(btree_inode)->io_tree;
675 
676 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
677 	if (!buf)
678 		return NULL;
679 
680 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
681 
682 	if (ret == 0) {
683 		buf->flags |= EXTENT_UPTODATE;
684 	}
685 	return buf;
686 
687 }
688 
689 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
690 		     struct extent_buffer *buf)
691 {
692 	struct inode *btree_inode = root->fs_info->btree_inode;
693 	if (btrfs_header_generation(buf) ==
694 	    root->fs_info->running_transaction->transid) {
695 		WARN_ON(!btrfs_tree_locked(buf));
696 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
697 					  buf);
698 	}
699 	return 0;
700 }
701 
702 int wait_on_tree_block_writeback(struct btrfs_root *root,
703 				 struct extent_buffer *buf)
704 {
705 	struct inode *btree_inode = root->fs_info->btree_inode;
706 	wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
707 					buf);
708 	return 0;
709 }
710 
711 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
712 			u32 stripesize, struct btrfs_root *root,
713 			struct btrfs_fs_info *fs_info,
714 			u64 objectid)
715 {
716 	root->node = NULL;
717 	root->inode = NULL;
718 	root->commit_root = NULL;
719 	root->sectorsize = sectorsize;
720 	root->nodesize = nodesize;
721 	root->leafsize = leafsize;
722 	root->stripesize = stripesize;
723 	root->ref_cows = 0;
724 	root->track_dirty = 0;
725 
726 	root->fs_info = fs_info;
727 	root->objectid = objectid;
728 	root->last_trans = 0;
729 	root->highest_inode = 0;
730 	root->last_inode_alloc = 0;
731 	root->name = NULL;
732 	root->in_sysfs = 0;
733 
734 	INIT_LIST_HEAD(&root->dirty_list);
735 	spin_lock_init(&root->node_lock);
736 	mutex_init(&root->objectid_mutex);
737 	memset(&root->root_key, 0, sizeof(root->root_key));
738 	memset(&root->root_item, 0, sizeof(root->root_item));
739 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
740 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
741 	root->defrag_trans_start = fs_info->generation;
742 	init_completion(&root->kobj_unregister);
743 	root->defrag_running = 0;
744 	root->defrag_level = 0;
745 	root->root_key.objectid = objectid;
746 	return 0;
747 }
748 
749 static int find_and_setup_root(struct btrfs_root *tree_root,
750 			       struct btrfs_fs_info *fs_info,
751 			       u64 objectid,
752 			       struct btrfs_root *root)
753 {
754 	int ret;
755 	u32 blocksize;
756 
757 	__setup_root(tree_root->nodesize, tree_root->leafsize,
758 		     tree_root->sectorsize, tree_root->stripesize,
759 		     root, fs_info, objectid);
760 	ret = btrfs_find_last_root(tree_root, objectid,
761 				   &root->root_item, &root->root_key);
762 	BUG_ON(ret);
763 
764 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
765 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
766 				     blocksize, 0);
767 	BUG_ON(!root->node);
768 	return 0;
769 }
770 
771 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
772 					       struct btrfs_key *location)
773 {
774 	struct btrfs_root *root;
775 	struct btrfs_root *tree_root = fs_info->tree_root;
776 	struct btrfs_path *path;
777 	struct extent_buffer *l;
778 	u64 highest_inode;
779 	u32 blocksize;
780 	int ret = 0;
781 
782 	root = kzalloc(sizeof(*root), GFP_NOFS);
783 	if (!root)
784 		return ERR_PTR(-ENOMEM);
785 	if (location->offset == (u64)-1) {
786 		ret = find_and_setup_root(tree_root, fs_info,
787 					  location->objectid, root);
788 		if (ret) {
789 			kfree(root);
790 			return ERR_PTR(ret);
791 		}
792 		goto insert;
793 	}
794 
795 	__setup_root(tree_root->nodesize, tree_root->leafsize,
796 		     tree_root->sectorsize, tree_root->stripesize,
797 		     root, fs_info, location->objectid);
798 
799 	path = btrfs_alloc_path();
800 	BUG_ON(!path);
801 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
802 	if (ret != 0) {
803 		if (ret > 0)
804 			ret = -ENOENT;
805 		goto out;
806 	}
807 	l = path->nodes[0];
808 	read_extent_buffer(l, &root->root_item,
809 	       btrfs_item_ptr_offset(l, path->slots[0]),
810 	       sizeof(root->root_item));
811 	memcpy(&root->root_key, location, sizeof(*location));
812 	ret = 0;
813 out:
814 	btrfs_release_path(root, path);
815 	btrfs_free_path(path);
816 	if (ret) {
817 		kfree(root);
818 		return ERR_PTR(ret);
819 	}
820 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
821 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
822 				     blocksize, 0);
823 	BUG_ON(!root->node);
824 insert:
825 	root->ref_cows = 1;
826 	ret = btrfs_find_highest_inode(root, &highest_inode);
827 	if (ret == 0) {
828 		root->highest_inode = highest_inode;
829 		root->last_inode_alloc = highest_inode;
830 	}
831 	return root;
832 }
833 
834 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
835 					u64 root_objectid)
836 {
837 	struct btrfs_root *root;
838 
839 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
840 		return fs_info->tree_root;
841 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
842 		return fs_info->extent_root;
843 
844 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
845 				 (unsigned long)root_objectid);
846 	return root;
847 }
848 
849 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
850 					      struct btrfs_key *location)
851 {
852 	struct btrfs_root *root;
853 	int ret;
854 
855 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
856 		return fs_info->tree_root;
857 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
858 		return fs_info->extent_root;
859 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
860 		return fs_info->chunk_root;
861 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
862 		return fs_info->dev_root;
863 
864 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
865 				 (unsigned long)location->objectid);
866 	if (root)
867 		return root;
868 
869 	root = btrfs_read_fs_root_no_radix(fs_info, location);
870 	if (IS_ERR(root))
871 		return root;
872 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
873 				(unsigned long)root->root_key.objectid,
874 				root);
875 	if (ret) {
876 		free_extent_buffer(root->node);
877 		kfree(root);
878 		return ERR_PTR(ret);
879 	}
880 	ret = btrfs_find_dead_roots(fs_info->tree_root,
881 				    root->root_key.objectid, root);
882 	BUG_ON(ret);
883 
884 	return root;
885 }
886 
887 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
888 				      struct btrfs_key *location,
889 				      const char *name, int namelen)
890 {
891 	struct btrfs_root *root;
892 	int ret;
893 
894 	root = btrfs_read_fs_root_no_name(fs_info, location);
895 	if (!root)
896 		return NULL;
897 
898 	if (root->in_sysfs)
899 		return root;
900 
901 	ret = btrfs_set_root_name(root, name, namelen);
902 	if (ret) {
903 		free_extent_buffer(root->node);
904 		kfree(root);
905 		return ERR_PTR(ret);
906 	}
907 
908 	ret = btrfs_sysfs_add_root(root);
909 	if (ret) {
910 		free_extent_buffer(root->node);
911 		kfree(root->name);
912 		kfree(root);
913 		return ERR_PTR(ret);
914 	}
915 	root->in_sysfs = 1;
916 	return root;
917 }
918 #if 0
919 static int add_hasher(struct btrfs_fs_info *info, char *type) {
920 	struct btrfs_hasher *hasher;
921 
922 	hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
923 	if (!hasher)
924 		return -ENOMEM;
925 	hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
926 	if (!hasher->hash_tfm) {
927 		kfree(hasher);
928 		return -EINVAL;
929 	}
930 	spin_lock(&info->hash_lock);
931 	list_add(&hasher->list, &info->hashers);
932 	spin_unlock(&info->hash_lock);
933 	return 0;
934 }
935 #endif
936 
937 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
938 {
939 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
940 	int ret = 0;
941 	int limit = 256 * info->fs_devices->open_devices;
942 	struct list_head *cur;
943 	struct btrfs_device *device;
944 	struct backing_dev_info *bdi;
945 
946 	if ((bdi_bits & (1 << BDI_write_congested)) &&
947 	    atomic_read(&info->nr_async_submits) > limit) {
948 		return 1;
949 	}
950 
951 	list_for_each(cur, &info->fs_devices->devices) {
952 		device = list_entry(cur, struct btrfs_device, dev_list);
953 		if (!device->bdev)
954 			continue;
955 		bdi = blk_get_backing_dev_info(device->bdev);
956 		if (bdi && bdi_congested(bdi, bdi_bits)) {
957 			ret = 1;
958 			break;
959 		}
960 	}
961 	return ret;
962 }
963 
964 /*
965  * this unplugs every device on the box, and it is only used when page
966  * is null
967  */
968 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
969 {
970 	struct list_head *cur;
971 	struct btrfs_device *device;
972 	struct btrfs_fs_info *info;
973 
974 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
975 	list_for_each(cur, &info->fs_devices->devices) {
976 		device = list_entry(cur, struct btrfs_device, dev_list);
977 		bdi = blk_get_backing_dev_info(device->bdev);
978 		if (bdi->unplug_io_fn) {
979 			bdi->unplug_io_fn(bdi, page);
980 		}
981 	}
982 }
983 
984 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
985 {
986 	struct inode *inode;
987 	struct extent_map_tree *em_tree;
988 	struct extent_map *em;
989 	struct address_space *mapping;
990 	u64 offset;
991 
992 	/* the generic O_DIRECT read code does this */
993 	if (!page) {
994 		__unplug_io_fn(bdi, page);
995 		return;
996 	}
997 
998 	/*
999 	 * page->mapping may change at any time.  Get a consistent copy
1000 	 * and use that for everything below
1001 	 */
1002 	smp_mb();
1003 	mapping = page->mapping;
1004 	if (!mapping)
1005 		return;
1006 
1007 	inode = mapping->host;
1008 	offset = page_offset(page);
1009 
1010 	em_tree = &BTRFS_I(inode)->extent_tree;
1011 	spin_lock(&em_tree->lock);
1012 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1013 	spin_unlock(&em_tree->lock);
1014 	if (!em) {
1015 		__unplug_io_fn(bdi, page);
1016 		return;
1017 	}
1018 
1019 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1020 		free_extent_map(em);
1021 		__unplug_io_fn(bdi, page);
1022 		return;
1023 	}
1024 	offset = offset - em->start;
1025 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1026 			  em->block_start + offset, page);
1027 	free_extent_map(em);
1028 }
1029 
1030 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1031 {
1032 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1033 	bdi_init(bdi);
1034 #endif
1035 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1036 	bdi->state		= 0;
1037 	bdi->capabilities	= default_backing_dev_info.capabilities;
1038 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1039 	bdi->unplug_io_data	= info;
1040 	bdi->congested_fn	= btrfs_congested_fn;
1041 	bdi->congested_data	= info;
1042 	return 0;
1043 }
1044 
1045 static int bio_ready_for_csum(struct bio *bio)
1046 {
1047 	u64 length = 0;
1048 	u64 buf_len = 0;
1049 	u64 start = 0;
1050 	struct page *page;
1051 	struct extent_io_tree *io_tree = NULL;
1052 	struct btrfs_fs_info *info = NULL;
1053 	struct bio_vec *bvec;
1054 	int i;
1055 	int ret;
1056 
1057 	bio_for_each_segment(bvec, bio, i) {
1058 		page = bvec->bv_page;
1059 		if (page->private == EXTENT_PAGE_PRIVATE) {
1060 			length += bvec->bv_len;
1061 			continue;
1062 		}
1063 		if (!page->private) {
1064 			length += bvec->bv_len;
1065 			continue;
1066 		}
1067 		length = bvec->bv_len;
1068 		buf_len = page->private >> 2;
1069 		start = page_offset(page) + bvec->bv_offset;
1070 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1071 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1072 	}
1073 	/* are we fully contained in this bio? */
1074 	if (buf_len <= length)
1075 		return 1;
1076 
1077 	ret = extent_range_uptodate(io_tree, start + length,
1078 				    start + buf_len - 1);
1079 	if (ret == 1)
1080 		return ret;
1081 	return ret;
1082 }
1083 
1084 /*
1085  * called by the kthread helper functions to finally call the bio end_io
1086  * functions.  This is where read checksum verification actually happens
1087  */
1088 static void end_workqueue_fn(struct btrfs_work *work)
1089 {
1090 	struct bio *bio;
1091 	struct end_io_wq *end_io_wq;
1092 	struct btrfs_fs_info *fs_info;
1093 	int error;
1094 
1095 	end_io_wq = container_of(work, struct end_io_wq, work);
1096 	bio = end_io_wq->bio;
1097 	fs_info = end_io_wq->info;
1098 
1099 	/* metadata bios are special because the whole tree block must
1100 	 * be checksummed at once.  This makes sure the entire block is in
1101 	 * ram and up to date before trying to verify things.  For
1102 	 * blocksize <= pagesize, it is basically a noop
1103 	 */
1104 	if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1105 		btrfs_queue_worker(&fs_info->endio_workers,
1106 				   &end_io_wq->work);
1107 		return;
1108 	}
1109 	error = end_io_wq->error;
1110 	bio->bi_private = end_io_wq->private;
1111 	bio->bi_end_io = end_io_wq->end_io;
1112 	kfree(end_io_wq);
1113 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1114 	bio_endio(bio, bio->bi_size, error);
1115 #else
1116 	bio_endio(bio, error);
1117 #endif
1118 }
1119 
1120 static int cleaner_kthread(void *arg)
1121 {
1122 	struct btrfs_root *root = arg;
1123 
1124 	do {
1125 		smp_mb();
1126 		if (root->fs_info->closing)
1127 			break;
1128 
1129 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1130 		mutex_lock(&root->fs_info->cleaner_mutex);
1131 		btrfs_clean_old_snapshots(root);
1132 		mutex_unlock(&root->fs_info->cleaner_mutex);
1133 
1134 		if (freezing(current)) {
1135 			refrigerator();
1136 		} else {
1137 			smp_mb();
1138 			if (root->fs_info->closing)
1139 				break;
1140 			set_current_state(TASK_INTERRUPTIBLE);
1141 			schedule();
1142 			__set_current_state(TASK_RUNNING);
1143 		}
1144 	} while (!kthread_should_stop());
1145 	return 0;
1146 }
1147 
1148 static int transaction_kthread(void *arg)
1149 {
1150 	struct btrfs_root *root = arg;
1151 	struct btrfs_trans_handle *trans;
1152 	struct btrfs_transaction *cur;
1153 	unsigned long now;
1154 	unsigned long delay;
1155 	int ret;
1156 
1157 	do {
1158 		smp_mb();
1159 		if (root->fs_info->closing)
1160 			break;
1161 
1162 		delay = HZ * 30;
1163 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1164 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1165 
1166 		mutex_lock(&root->fs_info->trans_mutex);
1167 		cur = root->fs_info->running_transaction;
1168 		if (!cur) {
1169 			mutex_unlock(&root->fs_info->trans_mutex);
1170 			goto sleep;
1171 		}
1172 		now = get_seconds();
1173 		if (now < cur->start_time || now - cur->start_time < 30) {
1174 			mutex_unlock(&root->fs_info->trans_mutex);
1175 			delay = HZ * 5;
1176 			goto sleep;
1177 		}
1178 		mutex_unlock(&root->fs_info->trans_mutex);
1179 		trans = btrfs_start_transaction(root, 1);
1180 		ret = btrfs_commit_transaction(trans, root);
1181 sleep:
1182 		wake_up_process(root->fs_info->cleaner_kthread);
1183 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1184 
1185 		if (freezing(current)) {
1186 			refrigerator();
1187 		} else {
1188 			if (root->fs_info->closing)
1189 				break;
1190 			set_current_state(TASK_INTERRUPTIBLE);
1191 			schedule_timeout(delay);
1192 			__set_current_state(TASK_RUNNING);
1193 		}
1194 	} while (!kthread_should_stop());
1195 	return 0;
1196 }
1197 
1198 struct btrfs_root *open_ctree(struct super_block *sb,
1199 			      struct btrfs_fs_devices *fs_devices,
1200 			      char *options)
1201 {
1202 	u32 sectorsize;
1203 	u32 nodesize;
1204 	u32 leafsize;
1205 	u32 blocksize;
1206 	u32 stripesize;
1207 	struct buffer_head *bh;
1208 	struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1209 						 GFP_NOFS);
1210 	struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1211 					       GFP_NOFS);
1212 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1213 						GFP_NOFS);
1214 	struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1215 						GFP_NOFS);
1216 	struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1217 					      GFP_NOFS);
1218 	int ret;
1219 	int err = -EINVAL;
1220 
1221 	struct btrfs_super_block *disk_super;
1222 
1223 	if (!extent_root || !tree_root || !fs_info) {
1224 		err = -ENOMEM;
1225 		goto fail;
1226 	}
1227 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1228 	INIT_LIST_HEAD(&fs_info->trans_list);
1229 	INIT_LIST_HEAD(&fs_info->dead_roots);
1230 	INIT_LIST_HEAD(&fs_info->hashers);
1231 	spin_lock_init(&fs_info->hash_lock);
1232 	spin_lock_init(&fs_info->delalloc_lock);
1233 	spin_lock_init(&fs_info->new_trans_lock);
1234 
1235 	init_completion(&fs_info->kobj_unregister);
1236 	fs_info->tree_root = tree_root;
1237 	fs_info->extent_root = extent_root;
1238 	fs_info->chunk_root = chunk_root;
1239 	fs_info->dev_root = dev_root;
1240 	fs_info->fs_devices = fs_devices;
1241 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1242 	INIT_LIST_HEAD(&fs_info->space_info);
1243 	btrfs_mapping_init(&fs_info->mapping_tree);
1244 	atomic_set(&fs_info->nr_async_submits, 0);
1245 	atomic_set(&fs_info->throttles, 0);
1246 	fs_info->sb = sb;
1247 	fs_info->max_extent = (u64)-1;
1248 	fs_info->max_inline = 8192 * 1024;
1249 	setup_bdi(fs_info, &fs_info->bdi);
1250 	fs_info->btree_inode = new_inode(sb);
1251 	fs_info->btree_inode->i_ino = 1;
1252 	fs_info->btree_inode->i_nlink = 1;
1253 	fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1254 
1255 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1256 	spin_lock_init(&fs_info->ordered_extent_lock);
1257 
1258 	sb->s_blocksize = 4096;
1259 	sb->s_blocksize_bits = blksize_bits(4096);
1260 
1261 	/*
1262 	 * we set the i_size on the btree inode to the max possible int.
1263 	 * the real end of the address space is determined by all of
1264 	 * the devices in the system
1265 	 */
1266 	fs_info->btree_inode->i_size = OFFSET_MAX;
1267 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1268 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1269 
1270 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1271 			     fs_info->btree_inode->i_mapping,
1272 			     GFP_NOFS);
1273 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1274 			     GFP_NOFS);
1275 
1276 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1277 
1278 	extent_io_tree_init(&fs_info->free_space_cache,
1279 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1280 	extent_io_tree_init(&fs_info->block_group_cache,
1281 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1282 	extent_io_tree_init(&fs_info->pinned_extents,
1283 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1284 	extent_io_tree_init(&fs_info->pending_del,
1285 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1286 	extent_io_tree_init(&fs_info->extent_ins,
1287 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1288 	fs_info->do_barriers = 1;
1289 
1290 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1291 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1292 	       sizeof(struct btrfs_key));
1293 	insert_inode_hash(fs_info->btree_inode);
1294 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1295 
1296 	mutex_init(&fs_info->trans_mutex);
1297 	mutex_init(&fs_info->drop_mutex);
1298 	mutex_init(&fs_info->alloc_mutex);
1299 	mutex_init(&fs_info->chunk_mutex);
1300 	mutex_init(&fs_info->transaction_kthread_mutex);
1301 	mutex_init(&fs_info->cleaner_mutex);
1302 	mutex_init(&fs_info->volume_mutex);
1303 	init_waitqueue_head(&fs_info->transaction_throttle);
1304 	init_waitqueue_head(&fs_info->transaction_wait);
1305 
1306 #if 0
1307 	ret = add_hasher(fs_info, "crc32c");
1308 	if (ret) {
1309 		printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1310 		err = -ENOMEM;
1311 		goto fail_iput;
1312 	}
1313 #endif
1314 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1315 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1316 
1317 
1318 	bh = __bread(fs_devices->latest_bdev,
1319 		     BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1320 	if (!bh)
1321 		goto fail_iput;
1322 
1323 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1324 	brelse(bh);
1325 
1326 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1327 
1328 	disk_super = &fs_info->super_copy;
1329 	if (!btrfs_super_root(disk_super))
1330 		goto fail_sb_buffer;
1331 
1332 	err = btrfs_parse_options(tree_root, options);
1333 	if (err)
1334 		goto fail_sb_buffer;
1335 
1336 	/*
1337 	 * we need to start all the end_io workers up front because the
1338 	 * queue work function gets called at interrupt time, and so it
1339 	 * cannot dynamically grow.
1340 	 */
1341 	btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size);
1342 	btrfs_init_workers(&fs_info->submit_workers, fs_info->thread_pool_size);
1343 	btrfs_init_workers(&fs_info->fixup_workers, 1);
1344 	btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1345 	btrfs_init_workers(&fs_info->endio_write_workers,
1346 			   fs_info->thread_pool_size);
1347 	btrfs_start_workers(&fs_info->workers, 1);
1348 	btrfs_start_workers(&fs_info->submit_workers, 1);
1349 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1350 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1351 	btrfs_start_workers(&fs_info->endio_write_workers,
1352 			    fs_info->thread_pool_size);
1353 
1354 	err = -EINVAL;
1355 	if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
1356 		printk("Btrfs: wanted %llu devices, but found %llu\n",
1357 		       (unsigned long long)btrfs_super_num_devices(disk_super),
1358 		       (unsigned long long)fs_devices->open_devices);
1359 		if (btrfs_test_opt(tree_root, DEGRADED))
1360 			printk("continuing in degraded mode\n");
1361 		else {
1362 			goto fail_sb_buffer;
1363 		}
1364 	}
1365 
1366 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1367 
1368 	nodesize = btrfs_super_nodesize(disk_super);
1369 	leafsize = btrfs_super_leafsize(disk_super);
1370 	sectorsize = btrfs_super_sectorsize(disk_super);
1371 	stripesize = btrfs_super_stripesize(disk_super);
1372 	tree_root->nodesize = nodesize;
1373 	tree_root->leafsize = leafsize;
1374 	tree_root->sectorsize = sectorsize;
1375 	tree_root->stripesize = stripesize;
1376 
1377 	sb->s_blocksize = sectorsize;
1378 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1379 
1380 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1381 		    sizeof(disk_super->magic))) {
1382 		printk("btrfs: valid FS not found on %s\n", sb->s_id);
1383 		goto fail_sb_buffer;
1384 	}
1385 
1386 	mutex_lock(&fs_info->chunk_mutex);
1387 	ret = btrfs_read_sys_array(tree_root);
1388 	mutex_unlock(&fs_info->chunk_mutex);
1389 	if (ret) {
1390 		printk("btrfs: failed to read the system array on %s\n",
1391 		       sb->s_id);
1392 		goto fail_sys_array;
1393 	}
1394 
1395 	blocksize = btrfs_level_size(tree_root,
1396 				     btrfs_super_chunk_root_level(disk_super));
1397 
1398 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1399 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1400 
1401 	chunk_root->node = read_tree_block(chunk_root,
1402 					   btrfs_super_chunk_root(disk_super),
1403 					   blocksize, 0);
1404 	BUG_ON(!chunk_root->node);
1405 
1406 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1407 	         (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1408 		 BTRFS_UUID_SIZE);
1409 
1410 	mutex_lock(&fs_info->chunk_mutex);
1411 	ret = btrfs_read_chunk_tree(chunk_root);
1412 	mutex_unlock(&fs_info->chunk_mutex);
1413 	BUG_ON(ret);
1414 
1415 	btrfs_close_extra_devices(fs_devices);
1416 
1417 	blocksize = btrfs_level_size(tree_root,
1418 				     btrfs_super_root_level(disk_super));
1419 
1420 
1421 	tree_root->node = read_tree_block(tree_root,
1422 					  btrfs_super_root(disk_super),
1423 					  blocksize, 0);
1424 	if (!tree_root->node)
1425 		goto fail_sb_buffer;
1426 
1427 
1428 	ret = find_and_setup_root(tree_root, fs_info,
1429 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1430 	if (ret)
1431 		goto fail_tree_root;
1432 	extent_root->track_dirty = 1;
1433 
1434 	ret = find_and_setup_root(tree_root, fs_info,
1435 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1436 	dev_root->track_dirty = 1;
1437 
1438 	if (ret)
1439 		goto fail_extent_root;
1440 
1441 	btrfs_read_block_groups(extent_root);
1442 
1443 	fs_info->generation = btrfs_super_generation(disk_super) + 1;
1444 	fs_info->data_alloc_profile = (u64)-1;
1445 	fs_info->metadata_alloc_profile = (u64)-1;
1446 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1447 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1448 					       "btrfs-cleaner");
1449 	if (!fs_info->cleaner_kthread)
1450 		goto fail_extent_root;
1451 
1452 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1453 						   tree_root,
1454 						   "btrfs-transaction");
1455 	if (!fs_info->transaction_kthread)
1456 		goto fail_cleaner;
1457 
1458 
1459 	return tree_root;
1460 
1461 fail_cleaner:
1462 	kthread_stop(fs_info->cleaner_kthread);
1463 fail_extent_root:
1464 	free_extent_buffer(extent_root->node);
1465 fail_tree_root:
1466 	free_extent_buffer(tree_root->node);
1467 fail_sys_array:
1468 fail_sb_buffer:
1469 	btrfs_stop_workers(&fs_info->fixup_workers);
1470 	btrfs_stop_workers(&fs_info->workers);
1471 	btrfs_stop_workers(&fs_info->endio_workers);
1472 	btrfs_stop_workers(&fs_info->endio_write_workers);
1473 	btrfs_stop_workers(&fs_info->submit_workers);
1474 fail_iput:
1475 	iput(fs_info->btree_inode);
1476 fail:
1477 	btrfs_close_devices(fs_info->fs_devices);
1478 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1479 
1480 	kfree(extent_root);
1481 	kfree(tree_root);
1482 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1483 	bdi_destroy(&fs_info->bdi);
1484 #endif
1485 	kfree(fs_info);
1486 	return ERR_PTR(err);
1487 }
1488 
1489 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1490 {
1491 	char b[BDEVNAME_SIZE];
1492 
1493 	if (uptodate) {
1494 		set_buffer_uptodate(bh);
1495 	} else {
1496 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1497 			printk(KERN_WARNING "lost page write due to "
1498 					"I/O error on %s\n",
1499 				       bdevname(bh->b_bdev, b));
1500 		}
1501 		/* note, we dont' set_buffer_write_io_error because we have
1502 		 * our own ways of dealing with the IO errors
1503 		 */
1504 		clear_buffer_uptodate(bh);
1505 	}
1506 	unlock_buffer(bh);
1507 	put_bh(bh);
1508 }
1509 
1510 int write_all_supers(struct btrfs_root *root)
1511 {
1512 	struct list_head *cur;
1513 	struct list_head *head = &root->fs_info->fs_devices->devices;
1514 	struct btrfs_device *dev;
1515 	struct btrfs_super_block *sb;
1516 	struct btrfs_dev_item *dev_item;
1517 	struct buffer_head *bh;
1518 	int ret;
1519 	int do_barriers;
1520 	int max_errors;
1521 	int total_errors = 0;
1522 	u32 crc;
1523 	u64 flags;
1524 
1525 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1526 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
1527 
1528 	sb = &root->fs_info->super_for_commit;
1529 	dev_item = &sb->dev_item;
1530 	list_for_each(cur, head) {
1531 		dev = list_entry(cur, struct btrfs_device, dev_list);
1532 		if (!dev->bdev) {
1533 			total_errors++;
1534 			continue;
1535 		}
1536 		if (!dev->in_fs_metadata)
1537 			continue;
1538 
1539 		btrfs_set_stack_device_type(dev_item, dev->type);
1540 		btrfs_set_stack_device_id(dev_item, dev->devid);
1541 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1542 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1543 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1544 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1545 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1546 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1547 		flags = btrfs_super_flags(sb);
1548 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1549 
1550 
1551 		crc = ~(u32)0;
1552 		crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1553 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1554 		btrfs_csum_final(crc, sb->csum);
1555 
1556 		bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1557 			      BTRFS_SUPER_INFO_SIZE);
1558 
1559 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1560 		dev->pending_io = bh;
1561 
1562 		get_bh(bh);
1563 		set_buffer_uptodate(bh);
1564 		lock_buffer(bh);
1565 		bh->b_end_io = btrfs_end_buffer_write_sync;
1566 
1567 		if (do_barriers && dev->barriers) {
1568 			ret = submit_bh(WRITE_BARRIER, bh);
1569 			if (ret == -EOPNOTSUPP) {
1570 				printk("btrfs: disabling barriers on dev %s\n",
1571 				       dev->name);
1572 				set_buffer_uptodate(bh);
1573 				dev->barriers = 0;
1574 				get_bh(bh);
1575 				lock_buffer(bh);
1576 				ret = submit_bh(WRITE, bh);
1577 			}
1578 		} else {
1579 			ret = submit_bh(WRITE, bh);
1580 		}
1581 		if (ret)
1582 			total_errors++;
1583 	}
1584 	if (total_errors > max_errors) {
1585 		printk("btrfs: %d errors while writing supers\n", total_errors);
1586 		BUG();
1587 	}
1588 	total_errors = 0;
1589 
1590 	list_for_each(cur, head) {
1591 		dev = list_entry(cur, struct btrfs_device, dev_list);
1592 		if (!dev->bdev)
1593 			continue;
1594 		if (!dev->in_fs_metadata)
1595 			continue;
1596 
1597 		BUG_ON(!dev->pending_io);
1598 		bh = dev->pending_io;
1599 		wait_on_buffer(bh);
1600 		if (!buffer_uptodate(dev->pending_io)) {
1601 			if (do_barriers && dev->barriers) {
1602 				printk("btrfs: disabling barriers on dev %s\n",
1603 				       dev->name);
1604 				set_buffer_uptodate(bh);
1605 				get_bh(bh);
1606 				lock_buffer(bh);
1607 				dev->barriers = 0;
1608 				ret = submit_bh(WRITE, bh);
1609 				BUG_ON(ret);
1610 				wait_on_buffer(bh);
1611 				if (!buffer_uptodate(bh))
1612 					total_errors++;
1613 			} else {
1614 				total_errors++;
1615 			}
1616 
1617 		}
1618 		dev->pending_io = NULL;
1619 		brelse(bh);
1620 	}
1621 	if (total_errors > max_errors) {
1622 		printk("btrfs: %d errors while writing supers\n", total_errors);
1623 		BUG();
1624 	}
1625 	return 0;
1626 }
1627 
1628 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1629 		      *root)
1630 {
1631 	int ret;
1632 
1633 	ret = write_all_supers(root);
1634 	return ret;
1635 }
1636 
1637 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1638 {
1639 	radix_tree_delete(&fs_info->fs_roots_radix,
1640 			  (unsigned long)root->root_key.objectid);
1641 	if (root->in_sysfs)
1642 		btrfs_sysfs_del_root(root);
1643 	if (root->inode)
1644 		iput(root->inode);
1645 	if (root->node)
1646 		free_extent_buffer(root->node);
1647 	if (root->commit_root)
1648 		free_extent_buffer(root->commit_root);
1649 	if (root->name)
1650 		kfree(root->name);
1651 	kfree(root);
1652 	return 0;
1653 }
1654 
1655 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1656 {
1657 	int ret;
1658 	struct btrfs_root *gang[8];
1659 	int i;
1660 
1661 	while(1) {
1662 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1663 					     (void **)gang, 0,
1664 					     ARRAY_SIZE(gang));
1665 		if (!ret)
1666 			break;
1667 		for (i = 0; i < ret; i++)
1668 			btrfs_free_fs_root(fs_info, gang[i]);
1669 	}
1670 	return 0;
1671 }
1672 
1673 int close_ctree(struct btrfs_root *root)
1674 {
1675 	int ret;
1676 	struct btrfs_trans_handle *trans;
1677 	struct btrfs_fs_info *fs_info = root->fs_info;
1678 
1679 	fs_info->closing = 1;
1680 	smp_mb();
1681 
1682 	kthread_stop(root->fs_info->transaction_kthread);
1683 	kthread_stop(root->fs_info->cleaner_kthread);
1684 
1685 	btrfs_clean_old_snapshots(root);
1686 	trans = btrfs_start_transaction(root, 1);
1687 	ret = btrfs_commit_transaction(trans, root);
1688 	/* run commit again to  drop the original snapshot */
1689 	trans = btrfs_start_transaction(root, 1);
1690 	btrfs_commit_transaction(trans, root);
1691 	ret = btrfs_write_and_wait_transaction(NULL, root);
1692 	BUG_ON(ret);
1693 
1694 	write_ctree_super(NULL, root);
1695 
1696 	if (fs_info->delalloc_bytes) {
1697 		printk("btrfs: at unmount delalloc count %Lu\n",
1698 		       fs_info->delalloc_bytes);
1699 	}
1700 	if (fs_info->extent_root->node)
1701 		free_extent_buffer(fs_info->extent_root->node);
1702 
1703 	if (fs_info->tree_root->node)
1704 		free_extent_buffer(fs_info->tree_root->node);
1705 
1706 	if (root->fs_info->chunk_root->node);
1707 		free_extent_buffer(root->fs_info->chunk_root->node);
1708 
1709 	if (root->fs_info->dev_root->node);
1710 		free_extent_buffer(root->fs_info->dev_root->node);
1711 
1712 	btrfs_free_block_groups(root->fs_info);
1713 	del_fs_roots(fs_info);
1714 
1715 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1716 
1717 	truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1718 
1719 	btrfs_stop_workers(&fs_info->fixup_workers);
1720 	btrfs_stop_workers(&fs_info->workers);
1721 	btrfs_stop_workers(&fs_info->endio_workers);
1722 	btrfs_stop_workers(&fs_info->endio_write_workers);
1723 	btrfs_stop_workers(&fs_info->submit_workers);
1724 
1725 	iput(fs_info->btree_inode);
1726 #if 0
1727 	while(!list_empty(&fs_info->hashers)) {
1728 		struct btrfs_hasher *hasher;
1729 		hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1730 				    hashers);
1731 		list_del(&hasher->hashers);
1732 		crypto_free_hash(&fs_info->hash_tfm);
1733 		kfree(hasher);
1734 	}
1735 #endif
1736 	btrfs_close_devices(fs_info->fs_devices);
1737 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1738 
1739 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1740 	bdi_destroy(&fs_info->bdi);
1741 #endif
1742 
1743 	kfree(fs_info->extent_root);
1744 	kfree(fs_info->tree_root);
1745 	kfree(fs_info->chunk_root);
1746 	kfree(fs_info->dev_root);
1747 	return 0;
1748 }
1749 
1750 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
1751 {
1752 	int ret;
1753 	struct inode *btree_inode = buf->first_page->mapping->host;
1754 
1755 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1756 	if (!ret)
1757 		return ret;
1758 
1759 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
1760 				    parent_transid);
1761 	return !ret;
1762 }
1763 
1764 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1765 {
1766 	struct inode *btree_inode = buf->first_page->mapping->host;
1767 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1768 					  buf);
1769 }
1770 
1771 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1772 {
1773 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1774 	u64 transid = btrfs_header_generation(buf);
1775 	struct inode *btree_inode = root->fs_info->btree_inode;
1776 
1777 	WARN_ON(!btrfs_tree_locked(buf));
1778 	if (transid != root->fs_info->generation) {
1779 		printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1780 			(unsigned long long)buf->start,
1781 			transid, root->fs_info->generation);
1782 		WARN_ON(1);
1783 	}
1784 	set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1785 }
1786 
1787 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1788 {
1789 	/*
1790 	 * looks as though older kernels can get into trouble with
1791 	 * this code, they end up stuck in balance_dirty_pages forever
1792 	 */
1793 	struct extent_io_tree *tree;
1794 	u64 num_dirty;
1795 	u64 start = 0;
1796 	unsigned long thresh = 16 * 1024 * 1024;
1797 	tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
1798 
1799 	if (current_is_pdflush())
1800 		return;
1801 
1802 	num_dirty = count_range_bits(tree, &start, (u64)-1,
1803 				     thresh, EXTENT_DIRTY);
1804 	if (num_dirty > thresh) {
1805 		balance_dirty_pages_ratelimited_nr(
1806 				   root->fs_info->btree_inode->i_mapping, 1);
1807 	}
1808 	return;
1809 }
1810 
1811 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
1812 {
1813 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1814 	int ret;
1815 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1816 	if (ret == 0) {
1817 		buf->flags |= EXTENT_UPTODATE;
1818 	}
1819 	return ret;
1820 }
1821 
1822 static struct extent_io_ops btree_extent_io_ops = {
1823 	.writepage_io_hook = btree_writepage_io_hook,
1824 	.readpage_end_io_hook = btree_readpage_end_io_hook,
1825 	.submit_bio_hook = btree_submit_bio_hook,
1826 	/* note we're sharing with inode.c for the merge bio hook */
1827 	.merge_bio_hook = btrfs_merge_bio_hook,
1828 };
1829