1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/version.h> 20 #include <linux/fs.h> 21 #include <linux/blkdev.h> 22 #include <linux/scatterlist.h> 23 #include <linux/swap.h> 24 #include <linux/radix-tree.h> 25 #include <linux/writeback.h> 26 #include <linux/buffer_head.h> // for block_sync_page 27 #include <linux/workqueue.h> 28 #include <linux/kthread.h> 29 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20) 30 # include <linux/freezer.h> 31 #else 32 # include <linux/sched.h> 33 #endif 34 #include "crc32c.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 44 #if 0 45 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf) 46 { 47 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) { 48 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n", 49 (unsigned long long)extent_buffer_blocknr(buf), 50 (unsigned long long)btrfs_header_blocknr(buf)); 51 return 1; 52 } 53 return 0; 54 } 55 #endif 56 57 static struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 60 struct end_io_wq { 61 struct bio *bio; 62 bio_end_io_t *end_io; 63 void *private; 64 struct btrfs_fs_info *info; 65 int error; 66 int metadata; 67 struct list_head list; 68 struct btrfs_work work; 69 }; 70 71 struct async_submit_bio { 72 struct inode *inode; 73 struct bio *bio; 74 struct list_head list; 75 extent_submit_bio_hook_t *submit_bio_hook; 76 int rw; 77 int mirror_num; 78 struct btrfs_work work; 79 }; 80 81 struct extent_map *btree_get_extent(struct inode *inode, struct page *page, 82 size_t page_offset, u64 start, u64 len, 83 int create) 84 { 85 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 86 struct extent_map *em; 87 int ret; 88 89 spin_lock(&em_tree->lock); 90 em = lookup_extent_mapping(em_tree, start, len); 91 if (em) { 92 em->bdev = 93 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 94 spin_unlock(&em_tree->lock); 95 goto out; 96 } 97 spin_unlock(&em_tree->lock); 98 99 em = alloc_extent_map(GFP_NOFS); 100 if (!em) { 101 em = ERR_PTR(-ENOMEM); 102 goto out; 103 } 104 em->start = 0; 105 em->len = (u64)-1; 106 em->block_start = 0; 107 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 108 109 spin_lock(&em_tree->lock); 110 ret = add_extent_mapping(em_tree, em); 111 if (ret == -EEXIST) { 112 u64 failed_start = em->start; 113 u64 failed_len = em->len; 114 115 printk("failed to insert %Lu %Lu -> %Lu into tree\n", 116 em->start, em->len, em->block_start); 117 free_extent_map(em); 118 em = lookup_extent_mapping(em_tree, start, len); 119 if (em) { 120 printk("after failing, found %Lu %Lu %Lu\n", 121 em->start, em->len, em->block_start); 122 ret = 0; 123 } else { 124 em = lookup_extent_mapping(em_tree, failed_start, 125 failed_len); 126 if (em) { 127 printk("double failure lookup gives us " 128 "%Lu %Lu -> %Lu\n", em->start, 129 em->len, em->block_start); 130 free_extent_map(em); 131 } 132 ret = -EIO; 133 } 134 } else if (ret) { 135 free_extent_map(em); 136 em = NULL; 137 } 138 spin_unlock(&em_tree->lock); 139 140 if (ret) 141 em = ERR_PTR(ret); 142 out: 143 return em; 144 } 145 146 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 147 { 148 return btrfs_crc32c(seed, data, len); 149 } 150 151 void btrfs_csum_final(u32 crc, char *result) 152 { 153 *(__le32 *)result = ~cpu_to_le32(crc); 154 } 155 156 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 157 int verify) 158 { 159 char result[BTRFS_CRC32_SIZE]; 160 unsigned long len; 161 unsigned long cur_len; 162 unsigned long offset = BTRFS_CSUM_SIZE; 163 char *map_token = NULL; 164 char *kaddr; 165 unsigned long map_start; 166 unsigned long map_len; 167 int err; 168 u32 crc = ~(u32)0; 169 170 len = buf->len - offset; 171 while(len > 0) { 172 err = map_private_extent_buffer(buf, offset, 32, 173 &map_token, &kaddr, 174 &map_start, &map_len, KM_USER0); 175 if (err) { 176 printk("failed to map extent buffer! %lu\n", 177 offset); 178 return 1; 179 } 180 cur_len = min(len, map_len - (offset - map_start)); 181 crc = btrfs_csum_data(root, kaddr + offset - map_start, 182 crc, cur_len); 183 len -= cur_len; 184 offset += cur_len; 185 unmap_extent_buffer(buf, map_token, KM_USER0); 186 } 187 btrfs_csum_final(crc, result); 188 189 if (verify) { 190 int from_this_trans = 0; 191 192 if (root->fs_info->running_transaction && 193 btrfs_header_generation(buf) == 194 root->fs_info->running_transaction->transid) 195 from_this_trans = 1; 196 197 /* FIXME, this is not good */ 198 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) { 199 u32 val; 200 u32 found = 0; 201 memcpy(&found, result, BTRFS_CRC32_SIZE); 202 203 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE); 204 printk("btrfs: %s checksum verify failed on %llu " 205 "wanted %X found %X from_this_trans %d " 206 "level %d\n", 207 root->fs_info->sb->s_id, 208 buf->start, val, found, from_this_trans, 209 btrfs_header_level(buf)); 210 return 1; 211 } 212 } else { 213 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE); 214 } 215 return 0; 216 } 217 218 static int verify_parent_transid(struct extent_io_tree *io_tree, 219 struct extent_buffer *eb, u64 parent_transid) 220 { 221 int ret; 222 223 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 224 return 0; 225 226 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 227 if (extent_buffer_uptodate(io_tree, eb) && 228 btrfs_header_generation(eb) == parent_transid) { 229 ret = 0; 230 goto out; 231 } 232 printk("parent transid verify failed on %llu wanted %llu found %llu\n", 233 (unsigned long long)eb->start, 234 (unsigned long long)parent_transid, 235 (unsigned long long)btrfs_header_generation(eb)); 236 ret = 1; 237 out: 238 clear_extent_buffer_uptodate(io_tree, eb); 239 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 240 GFP_NOFS); 241 return ret; 242 243 } 244 245 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 246 struct extent_buffer *eb, 247 u64 start, u64 parent_transid) 248 { 249 struct extent_io_tree *io_tree; 250 int ret; 251 int num_copies = 0; 252 int mirror_num = 0; 253 254 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 255 while (1) { 256 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 257 btree_get_extent, mirror_num); 258 if (!ret && 259 !verify_parent_transid(io_tree, eb, parent_transid)) 260 return ret; 261 262 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 263 eb->start, eb->len); 264 if (num_copies == 1) 265 return ret; 266 267 mirror_num++; 268 if (mirror_num > num_copies) 269 return ret; 270 } 271 return -EIO; 272 } 273 274 int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 275 { 276 struct extent_io_tree *tree; 277 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 278 u64 found_start; 279 int found_level; 280 unsigned long len; 281 struct extent_buffer *eb; 282 int ret; 283 284 tree = &BTRFS_I(page->mapping->host)->io_tree; 285 286 if (page->private == EXTENT_PAGE_PRIVATE) 287 goto out; 288 if (!page->private) 289 goto out; 290 len = page->private >> 2; 291 if (len == 0) { 292 WARN_ON(1); 293 } 294 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 295 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 296 btrfs_header_generation(eb)); 297 BUG_ON(ret); 298 found_start = btrfs_header_bytenr(eb); 299 if (found_start != start) { 300 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n", 301 start, found_start, len); 302 WARN_ON(1); 303 goto err; 304 } 305 if (eb->first_page != page) { 306 printk("bad first page %lu %lu\n", eb->first_page->index, 307 page->index); 308 WARN_ON(1); 309 goto err; 310 } 311 if (!PageUptodate(page)) { 312 printk("csum not up to date page %lu\n", page->index); 313 WARN_ON(1); 314 goto err; 315 } 316 found_level = btrfs_header_level(eb); 317 spin_lock(&root->fs_info->hash_lock); 318 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 319 spin_unlock(&root->fs_info->hash_lock); 320 csum_tree_block(root, eb, 0); 321 err: 322 free_extent_buffer(eb); 323 out: 324 return 0; 325 } 326 327 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end) 328 { 329 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 330 331 csum_dirty_buffer(root, page); 332 return 0; 333 } 334 335 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 336 struct extent_state *state) 337 { 338 struct extent_io_tree *tree; 339 u64 found_start; 340 int found_level; 341 unsigned long len; 342 struct extent_buffer *eb; 343 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 344 int ret = 0; 345 346 tree = &BTRFS_I(page->mapping->host)->io_tree; 347 if (page->private == EXTENT_PAGE_PRIVATE) 348 goto out; 349 if (!page->private) 350 goto out; 351 len = page->private >> 2; 352 if (len == 0) { 353 WARN_ON(1); 354 } 355 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 356 357 found_start = btrfs_header_bytenr(eb); 358 if (found_start != start) { 359 ret = -EIO; 360 goto err; 361 } 362 if (eb->first_page != page) { 363 printk("bad first page %lu %lu\n", eb->first_page->index, 364 page->index); 365 WARN_ON(1); 366 ret = -EIO; 367 goto err; 368 } 369 if (memcmp_extent_buffer(eb, root->fs_info->fsid, 370 (unsigned long)btrfs_header_fsid(eb), 371 BTRFS_FSID_SIZE)) { 372 printk("bad fsid on block %Lu\n", eb->start); 373 ret = -EIO; 374 goto err; 375 } 376 found_level = btrfs_header_level(eb); 377 378 ret = csum_tree_block(root, eb, 1); 379 if (ret) 380 ret = -EIO; 381 382 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 383 end = eb->start + end - 1; 384 err: 385 free_extent_buffer(eb); 386 out: 387 return ret; 388 } 389 390 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) 391 static void end_workqueue_bio(struct bio *bio, int err) 392 #else 393 static int end_workqueue_bio(struct bio *bio, 394 unsigned int bytes_done, int err) 395 #endif 396 { 397 struct end_io_wq *end_io_wq = bio->bi_private; 398 struct btrfs_fs_info *fs_info; 399 400 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) 401 if (bio->bi_size) 402 return 1; 403 #endif 404 405 fs_info = end_io_wq->info; 406 end_io_wq->error = err; 407 end_io_wq->work.func = end_workqueue_fn; 408 end_io_wq->work.flags = 0; 409 if (bio->bi_rw & (1 << BIO_RW)) 410 btrfs_queue_worker(&fs_info->endio_write_workers, 411 &end_io_wq->work); 412 else 413 btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work); 414 415 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) 416 return 0; 417 #endif 418 } 419 420 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 421 int metadata) 422 { 423 struct end_io_wq *end_io_wq; 424 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 425 if (!end_io_wq) 426 return -ENOMEM; 427 428 end_io_wq->private = bio->bi_private; 429 end_io_wq->end_io = bio->bi_end_io; 430 end_io_wq->info = info; 431 end_io_wq->error = 0; 432 end_io_wq->bio = bio; 433 end_io_wq->metadata = metadata; 434 435 bio->bi_private = end_io_wq; 436 bio->bi_end_io = end_workqueue_bio; 437 return 0; 438 } 439 440 static void run_one_async_submit(struct btrfs_work *work) 441 { 442 struct btrfs_fs_info *fs_info; 443 struct async_submit_bio *async; 444 445 async = container_of(work, struct async_submit_bio, work); 446 fs_info = BTRFS_I(async->inode)->root->fs_info; 447 atomic_dec(&fs_info->nr_async_submits); 448 async->submit_bio_hook(async->inode, async->rw, async->bio, 449 async->mirror_num); 450 kfree(async); 451 } 452 453 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 454 int rw, struct bio *bio, int mirror_num, 455 extent_submit_bio_hook_t *submit_bio_hook) 456 { 457 struct async_submit_bio *async; 458 459 async = kmalloc(sizeof(*async), GFP_NOFS); 460 if (!async) 461 return -ENOMEM; 462 463 async->inode = inode; 464 async->rw = rw; 465 async->bio = bio; 466 async->mirror_num = mirror_num; 467 async->submit_bio_hook = submit_bio_hook; 468 async->work.func = run_one_async_submit; 469 async->work.flags = 0; 470 atomic_inc(&fs_info->nr_async_submits); 471 btrfs_queue_worker(&fs_info->workers, &async->work); 472 return 0; 473 } 474 475 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 476 int mirror_num) 477 { 478 struct btrfs_root *root = BTRFS_I(inode)->root; 479 u64 offset; 480 int ret; 481 482 offset = bio->bi_sector << 9; 483 484 /* 485 * when we're called for a write, we're already in the async 486 * submission context. Just jump ingo btrfs_map_bio 487 */ 488 if (rw & (1 << BIO_RW)) { 489 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 490 mirror_num, 0); 491 } 492 493 /* 494 * called for a read, do the setup so that checksum validation 495 * can happen in the async kernel threads 496 */ 497 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1); 498 BUG_ON(ret); 499 500 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 501 } 502 503 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 504 int mirror_num) 505 { 506 /* 507 * kthread helpers are used to submit writes so that checksumming 508 * can happen in parallel across all CPUs 509 */ 510 if (!(rw & (1 << BIO_RW))) { 511 return __btree_submit_bio_hook(inode, rw, bio, mirror_num); 512 } 513 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 514 inode, rw, bio, mirror_num, 515 __btree_submit_bio_hook); 516 } 517 518 static int btree_writepage(struct page *page, struct writeback_control *wbc) 519 { 520 struct extent_io_tree *tree; 521 tree = &BTRFS_I(page->mapping->host)->io_tree; 522 return extent_write_full_page(tree, page, btree_get_extent, wbc); 523 } 524 525 static int btree_writepages(struct address_space *mapping, 526 struct writeback_control *wbc) 527 { 528 struct extent_io_tree *tree; 529 tree = &BTRFS_I(mapping->host)->io_tree; 530 if (wbc->sync_mode == WB_SYNC_NONE) { 531 u64 num_dirty; 532 u64 start = 0; 533 unsigned long thresh = 96 * 1024 * 1024; 534 535 if (wbc->for_kupdate) 536 return 0; 537 538 if (current_is_pdflush()) { 539 thresh = 96 * 1024 * 1024; 540 } else { 541 thresh = 8 * 1024 * 1024; 542 } 543 num_dirty = count_range_bits(tree, &start, (u64)-1, 544 thresh, EXTENT_DIRTY); 545 if (num_dirty < thresh) { 546 return 0; 547 } 548 } 549 return extent_writepages(tree, mapping, btree_get_extent, wbc); 550 } 551 552 int btree_readpage(struct file *file, struct page *page) 553 { 554 struct extent_io_tree *tree; 555 tree = &BTRFS_I(page->mapping->host)->io_tree; 556 return extent_read_full_page(tree, page, btree_get_extent); 557 } 558 559 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 560 { 561 struct extent_io_tree *tree; 562 struct extent_map_tree *map; 563 int ret; 564 565 tree = &BTRFS_I(page->mapping->host)->io_tree; 566 map = &BTRFS_I(page->mapping->host)->extent_tree; 567 568 ret = try_release_extent_state(map, tree, page, gfp_flags); 569 if (!ret) { 570 return 0; 571 } 572 573 ret = try_release_extent_buffer(tree, page); 574 if (ret == 1) { 575 ClearPagePrivate(page); 576 set_page_private(page, 0); 577 page_cache_release(page); 578 } 579 580 return ret; 581 } 582 583 static void btree_invalidatepage(struct page *page, unsigned long offset) 584 { 585 struct extent_io_tree *tree; 586 tree = &BTRFS_I(page->mapping->host)->io_tree; 587 extent_invalidatepage(tree, page, offset); 588 btree_releasepage(page, GFP_NOFS); 589 if (PagePrivate(page)) { 590 printk("warning page private not zero on page %Lu\n", 591 page_offset(page)); 592 ClearPagePrivate(page); 593 set_page_private(page, 0); 594 page_cache_release(page); 595 } 596 } 597 598 #if 0 599 static int btree_writepage(struct page *page, struct writeback_control *wbc) 600 { 601 struct buffer_head *bh; 602 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 603 struct buffer_head *head; 604 if (!page_has_buffers(page)) { 605 create_empty_buffers(page, root->fs_info->sb->s_blocksize, 606 (1 << BH_Dirty)|(1 << BH_Uptodate)); 607 } 608 head = page_buffers(page); 609 bh = head; 610 do { 611 if (buffer_dirty(bh)) 612 csum_tree_block(root, bh, 0); 613 bh = bh->b_this_page; 614 } while (bh != head); 615 return block_write_full_page(page, btree_get_block, wbc); 616 } 617 #endif 618 619 static struct address_space_operations btree_aops = { 620 .readpage = btree_readpage, 621 .writepage = btree_writepage, 622 .writepages = btree_writepages, 623 .releasepage = btree_releasepage, 624 .invalidatepage = btree_invalidatepage, 625 .sync_page = block_sync_page, 626 }; 627 628 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 629 u64 parent_transid) 630 { 631 struct extent_buffer *buf = NULL; 632 struct inode *btree_inode = root->fs_info->btree_inode; 633 int ret = 0; 634 635 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 636 if (!buf) 637 return 0; 638 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 639 buf, 0, 0, btree_get_extent, 0); 640 free_extent_buffer(buf); 641 return ret; 642 } 643 644 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 645 u64 bytenr, u32 blocksize) 646 { 647 struct inode *btree_inode = root->fs_info->btree_inode; 648 struct extent_buffer *eb; 649 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 650 bytenr, blocksize, GFP_NOFS); 651 return eb; 652 } 653 654 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 655 u64 bytenr, u32 blocksize) 656 { 657 struct inode *btree_inode = root->fs_info->btree_inode; 658 struct extent_buffer *eb; 659 660 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 661 bytenr, blocksize, NULL, GFP_NOFS); 662 return eb; 663 } 664 665 666 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 667 u32 blocksize, u64 parent_transid) 668 { 669 struct extent_buffer *buf = NULL; 670 struct inode *btree_inode = root->fs_info->btree_inode; 671 struct extent_io_tree *io_tree; 672 int ret; 673 674 io_tree = &BTRFS_I(btree_inode)->io_tree; 675 676 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 677 if (!buf) 678 return NULL; 679 680 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 681 682 if (ret == 0) { 683 buf->flags |= EXTENT_UPTODATE; 684 } 685 return buf; 686 687 } 688 689 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 690 struct extent_buffer *buf) 691 { 692 struct inode *btree_inode = root->fs_info->btree_inode; 693 if (btrfs_header_generation(buf) == 694 root->fs_info->running_transaction->transid) { 695 WARN_ON(!btrfs_tree_locked(buf)); 696 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 697 buf); 698 } 699 return 0; 700 } 701 702 int wait_on_tree_block_writeback(struct btrfs_root *root, 703 struct extent_buffer *buf) 704 { 705 struct inode *btree_inode = root->fs_info->btree_inode; 706 wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree, 707 buf); 708 return 0; 709 } 710 711 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 712 u32 stripesize, struct btrfs_root *root, 713 struct btrfs_fs_info *fs_info, 714 u64 objectid) 715 { 716 root->node = NULL; 717 root->inode = NULL; 718 root->commit_root = NULL; 719 root->sectorsize = sectorsize; 720 root->nodesize = nodesize; 721 root->leafsize = leafsize; 722 root->stripesize = stripesize; 723 root->ref_cows = 0; 724 root->track_dirty = 0; 725 726 root->fs_info = fs_info; 727 root->objectid = objectid; 728 root->last_trans = 0; 729 root->highest_inode = 0; 730 root->last_inode_alloc = 0; 731 root->name = NULL; 732 root->in_sysfs = 0; 733 734 INIT_LIST_HEAD(&root->dirty_list); 735 spin_lock_init(&root->node_lock); 736 mutex_init(&root->objectid_mutex); 737 memset(&root->root_key, 0, sizeof(root->root_key)); 738 memset(&root->root_item, 0, sizeof(root->root_item)); 739 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 740 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 741 root->defrag_trans_start = fs_info->generation; 742 init_completion(&root->kobj_unregister); 743 root->defrag_running = 0; 744 root->defrag_level = 0; 745 root->root_key.objectid = objectid; 746 return 0; 747 } 748 749 static int find_and_setup_root(struct btrfs_root *tree_root, 750 struct btrfs_fs_info *fs_info, 751 u64 objectid, 752 struct btrfs_root *root) 753 { 754 int ret; 755 u32 blocksize; 756 757 __setup_root(tree_root->nodesize, tree_root->leafsize, 758 tree_root->sectorsize, tree_root->stripesize, 759 root, fs_info, objectid); 760 ret = btrfs_find_last_root(tree_root, objectid, 761 &root->root_item, &root->root_key); 762 BUG_ON(ret); 763 764 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 765 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 766 blocksize, 0); 767 BUG_ON(!root->node); 768 return 0; 769 } 770 771 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info, 772 struct btrfs_key *location) 773 { 774 struct btrfs_root *root; 775 struct btrfs_root *tree_root = fs_info->tree_root; 776 struct btrfs_path *path; 777 struct extent_buffer *l; 778 u64 highest_inode; 779 u32 blocksize; 780 int ret = 0; 781 782 root = kzalloc(sizeof(*root), GFP_NOFS); 783 if (!root) 784 return ERR_PTR(-ENOMEM); 785 if (location->offset == (u64)-1) { 786 ret = find_and_setup_root(tree_root, fs_info, 787 location->objectid, root); 788 if (ret) { 789 kfree(root); 790 return ERR_PTR(ret); 791 } 792 goto insert; 793 } 794 795 __setup_root(tree_root->nodesize, tree_root->leafsize, 796 tree_root->sectorsize, tree_root->stripesize, 797 root, fs_info, location->objectid); 798 799 path = btrfs_alloc_path(); 800 BUG_ON(!path); 801 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 802 if (ret != 0) { 803 if (ret > 0) 804 ret = -ENOENT; 805 goto out; 806 } 807 l = path->nodes[0]; 808 read_extent_buffer(l, &root->root_item, 809 btrfs_item_ptr_offset(l, path->slots[0]), 810 sizeof(root->root_item)); 811 memcpy(&root->root_key, location, sizeof(*location)); 812 ret = 0; 813 out: 814 btrfs_release_path(root, path); 815 btrfs_free_path(path); 816 if (ret) { 817 kfree(root); 818 return ERR_PTR(ret); 819 } 820 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 821 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 822 blocksize, 0); 823 BUG_ON(!root->node); 824 insert: 825 root->ref_cows = 1; 826 ret = btrfs_find_highest_inode(root, &highest_inode); 827 if (ret == 0) { 828 root->highest_inode = highest_inode; 829 root->last_inode_alloc = highest_inode; 830 } 831 return root; 832 } 833 834 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 835 u64 root_objectid) 836 { 837 struct btrfs_root *root; 838 839 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 840 return fs_info->tree_root; 841 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 842 return fs_info->extent_root; 843 844 root = radix_tree_lookup(&fs_info->fs_roots_radix, 845 (unsigned long)root_objectid); 846 return root; 847 } 848 849 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 850 struct btrfs_key *location) 851 { 852 struct btrfs_root *root; 853 int ret; 854 855 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 856 return fs_info->tree_root; 857 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 858 return fs_info->extent_root; 859 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 860 return fs_info->chunk_root; 861 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 862 return fs_info->dev_root; 863 864 root = radix_tree_lookup(&fs_info->fs_roots_radix, 865 (unsigned long)location->objectid); 866 if (root) 867 return root; 868 869 root = btrfs_read_fs_root_no_radix(fs_info, location); 870 if (IS_ERR(root)) 871 return root; 872 ret = radix_tree_insert(&fs_info->fs_roots_radix, 873 (unsigned long)root->root_key.objectid, 874 root); 875 if (ret) { 876 free_extent_buffer(root->node); 877 kfree(root); 878 return ERR_PTR(ret); 879 } 880 ret = btrfs_find_dead_roots(fs_info->tree_root, 881 root->root_key.objectid, root); 882 BUG_ON(ret); 883 884 return root; 885 } 886 887 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 888 struct btrfs_key *location, 889 const char *name, int namelen) 890 { 891 struct btrfs_root *root; 892 int ret; 893 894 root = btrfs_read_fs_root_no_name(fs_info, location); 895 if (!root) 896 return NULL; 897 898 if (root->in_sysfs) 899 return root; 900 901 ret = btrfs_set_root_name(root, name, namelen); 902 if (ret) { 903 free_extent_buffer(root->node); 904 kfree(root); 905 return ERR_PTR(ret); 906 } 907 908 ret = btrfs_sysfs_add_root(root); 909 if (ret) { 910 free_extent_buffer(root->node); 911 kfree(root->name); 912 kfree(root); 913 return ERR_PTR(ret); 914 } 915 root->in_sysfs = 1; 916 return root; 917 } 918 #if 0 919 static int add_hasher(struct btrfs_fs_info *info, char *type) { 920 struct btrfs_hasher *hasher; 921 922 hasher = kmalloc(sizeof(*hasher), GFP_NOFS); 923 if (!hasher) 924 return -ENOMEM; 925 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC); 926 if (!hasher->hash_tfm) { 927 kfree(hasher); 928 return -EINVAL; 929 } 930 spin_lock(&info->hash_lock); 931 list_add(&hasher->list, &info->hashers); 932 spin_unlock(&info->hash_lock); 933 return 0; 934 } 935 #endif 936 937 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 938 { 939 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 940 int ret = 0; 941 int limit = 256 * info->fs_devices->open_devices; 942 struct list_head *cur; 943 struct btrfs_device *device; 944 struct backing_dev_info *bdi; 945 946 if ((bdi_bits & (1 << BDI_write_congested)) && 947 atomic_read(&info->nr_async_submits) > limit) { 948 return 1; 949 } 950 951 list_for_each(cur, &info->fs_devices->devices) { 952 device = list_entry(cur, struct btrfs_device, dev_list); 953 if (!device->bdev) 954 continue; 955 bdi = blk_get_backing_dev_info(device->bdev); 956 if (bdi && bdi_congested(bdi, bdi_bits)) { 957 ret = 1; 958 break; 959 } 960 } 961 return ret; 962 } 963 964 /* 965 * this unplugs every device on the box, and it is only used when page 966 * is null 967 */ 968 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 969 { 970 struct list_head *cur; 971 struct btrfs_device *device; 972 struct btrfs_fs_info *info; 973 974 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 975 list_for_each(cur, &info->fs_devices->devices) { 976 device = list_entry(cur, struct btrfs_device, dev_list); 977 bdi = blk_get_backing_dev_info(device->bdev); 978 if (bdi->unplug_io_fn) { 979 bdi->unplug_io_fn(bdi, page); 980 } 981 } 982 } 983 984 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 985 { 986 struct inode *inode; 987 struct extent_map_tree *em_tree; 988 struct extent_map *em; 989 struct address_space *mapping; 990 u64 offset; 991 992 /* the generic O_DIRECT read code does this */ 993 if (!page) { 994 __unplug_io_fn(bdi, page); 995 return; 996 } 997 998 /* 999 * page->mapping may change at any time. Get a consistent copy 1000 * and use that for everything below 1001 */ 1002 smp_mb(); 1003 mapping = page->mapping; 1004 if (!mapping) 1005 return; 1006 1007 inode = mapping->host; 1008 offset = page_offset(page); 1009 1010 em_tree = &BTRFS_I(inode)->extent_tree; 1011 spin_lock(&em_tree->lock); 1012 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1013 spin_unlock(&em_tree->lock); 1014 if (!em) { 1015 __unplug_io_fn(bdi, page); 1016 return; 1017 } 1018 1019 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1020 free_extent_map(em); 1021 __unplug_io_fn(bdi, page); 1022 return; 1023 } 1024 offset = offset - em->start; 1025 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1026 em->block_start + offset, page); 1027 free_extent_map(em); 1028 } 1029 1030 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1031 { 1032 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) 1033 bdi_init(bdi); 1034 #endif 1035 bdi->ra_pages = default_backing_dev_info.ra_pages; 1036 bdi->state = 0; 1037 bdi->capabilities = default_backing_dev_info.capabilities; 1038 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1039 bdi->unplug_io_data = info; 1040 bdi->congested_fn = btrfs_congested_fn; 1041 bdi->congested_data = info; 1042 return 0; 1043 } 1044 1045 static int bio_ready_for_csum(struct bio *bio) 1046 { 1047 u64 length = 0; 1048 u64 buf_len = 0; 1049 u64 start = 0; 1050 struct page *page; 1051 struct extent_io_tree *io_tree = NULL; 1052 struct btrfs_fs_info *info = NULL; 1053 struct bio_vec *bvec; 1054 int i; 1055 int ret; 1056 1057 bio_for_each_segment(bvec, bio, i) { 1058 page = bvec->bv_page; 1059 if (page->private == EXTENT_PAGE_PRIVATE) { 1060 length += bvec->bv_len; 1061 continue; 1062 } 1063 if (!page->private) { 1064 length += bvec->bv_len; 1065 continue; 1066 } 1067 length = bvec->bv_len; 1068 buf_len = page->private >> 2; 1069 start = page_offset(page) + bvec->bv_offset; 1070 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1071 info = BTRFS_I(page->mapping->host)->root->fs_info; 1072 } 1073 /* are we fully contained in this bio? */ 1074 if (buf_len <= length) 1075 return 1; 1076 1077 ret = extent_range_uptodate(io_tree, start + length, 1078 start + buf_len - 1); 1079 if (ret == 1) 1080 return ret; 1081 return ret; 1082 } 1083 1084 /* 1085 * called by the kthread helper functions to finally call the bio end_io 1086 * functions. This is where read checksum verification actually happens 1087 */ 1088 static void end_workqueue_fn(struct btrfs_work *work) 1089 { 1090 struct bio *bio; 1091 struct end_io_wq *end_io_wq; 1092 struct btrfs_fs_info *fs_info; 1093 int error; 1094 1095 end_io_wq = container_of(work, struct end_io_wq, work); 1096 bio = end_io_wq->bio; 1097 fs_info = end_io_wq->info; 1098 1099 /* metadata bios are special because the whole tree block must 1100 * be checksummed at once. This makes sure the entire block is in 1101 * ram and up to date before trying to verify things. For 1102 * blocksize <= pagesize, it is basically a noop 1103 */ 1104 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) { 1105 btrfs_queue_worker(&fs_info->endio_workers, 1106 &end_io_wq->work); 1107 return; 1108 } 1109 error = end_io_wq->error; 1110 bio->bi_private = end_io_wq->private; 1111 bio->bi_end_io = end_io_wq->end_io; 1112 kfree(end_io_wq); 1113 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) 1114 bio_endio(bio, bio->bi_size, error); 1115 #else 1116 bio_endio(bio, error); 1117 #endif 1118 } 1119 1120 static int cleaner_kthread(void *arg) 1121 { 1122 struct btrfs_root *root = arg; 1123 1124 do { 1125 smp_mb(); 1126 if (root->fs_info->closing) 1127 break; 1128 1129 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1130 mutex_lock(&root->fs_info->cleaner_mutex); 1131 btrfs_clean_old_snapshots(root); 1132 mutex_unlock(&root->fs_info->cleaner_mutex); 1133 1134 if (freezing(current)) { 1135 refrigerator(); 1136 } else { 1137 smp_mb(); 1138 if (root->fs_info->closing) 1139 break; 1140 set_current_state(TASK_INTERRUPTIBLE); 1141 schedule(); 1142 __set_current_state(TASK_RUNNING); 1143 } 1144 } while (!kthread_should_stop()); 1145 return 0; 1146 } 1147 1148 static int transaction_kthread(void *arg) 1149 { 1150 struct btrfs_root *root = arg; 1151 struct btrfs_trans_handle *trans; 1152 struct btrfs_transaction *cur; 1153 unsigned long now; 1154 unsigned long delay; 1155 int ret; 1156 1157 do { 1158 smp_mb(); 1159 if (root->fs_info->closing) 1160 break; 1161 1162 delay = HZ * 30; 1163 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1164 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1165 1166 mutex_lock(&root->fs_info->trans_mutex); 1167 cur = root->fs_info->running_transaction; 1168 if (!cur) { 1169 mutex_unlock(&root->fs_info->trans_mutex); 1170 goto sleep; 1171 } 1172 now = get_seconds(); 1173 if (now < cur->start_time || now - cur->start_time < 30) { 1174 mutex_unlock(&root->fs_info->trans_mutex); 1175 delay = HZ * 5; 1176 goto sleep; 1177 } 1178 mutex_unlock(&root->fs_info->trans_mutex); 1179 trans = btrfs_start_transaction(root, 1); 1180 ret = btrfs_commit_transaction(trans, root); 1181 sleep: 1182 wake_up_process(root->fs_info->cleaner_kthread); 1183 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1184 1185 if (freezing(current)) { 1186 refrigerator(); 1187 } else { 1188 if (root->fs_info->closing) 1189 break; 1190 set_current_state(TASK_INTERRUPTIBLE); 1191 schedule_timeout(delay); 1192 __set_current_state(TASK_RUNNING); 1193 } 1194 } while (!kthread_should_stop()); 1195 return 0; 1196 } 1197 1198 struct btrfs_root *open_ctree(struct super_block *sb, 1199 struct btrfs_fs_devices *fs_devices, 1200 char *options) 1201 { 1202 u32 sectorsize; 1203 u32 nodesize; 1204 u32 leafsize; 1205 u32 blocksize; 1206 u32 stripesize; 1207 struct buffer_head *bh; 1208 struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root), 1209 GFP_NOFS); 1210 struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root), 1211 GFP_NOFS); 1212 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1213 GFP_NOFS); 1214 struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root), 1215 GFP_NOFS); 1216 struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root), 1217 GFP_NOFS); 1218 int ret; 1219 int err = -EINVAL; 1220 1221 struct btrfs_super_block *disk_super; 1222 1223 if (!extent_root || !tree_root || !fs_info) { 1224 err = -ENOMEM; 1225 goto fail; 1226 } 1227 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1228 INIT_LIST_HEAD(&fs_info->trans_list); 1229 INIT_LIST_HEAD(&fs_info->dead_roots); 1230 INIT_LIST_HEAD(&fs_info->hashers); 1231 spin_lock_init(&fs_info->hash_lock); 1232 spin_lock_init(&fs_info->delalloc_lock); 1233 spin_lock_init(&fs_info->new_trans_lock); 1234 1235 init_completion(&fs_info->kobj_unregister); 1236 fs_info->tree_root = tree_root; 1237 fs_info->extent_root = extent_root; 1238 fs_info->chunk_root = chunk_root; 1239 fs_info->dev_root = dev_root; 1240 fs_info->fs_devices = fs_devices; 1241 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1242 INIT_LIST_HEAD(&fs_info->space_info); 1243 btrfs_mapping_init(&fs_info->mapping_tree); 1244 atomic_set(&fs_info->nr_async_submits, 0); 1245 atomic_set(&fs_info->throttles, 0); 1246 fs_info->sb = sb; 1247 fs_info->max_extent = (u64)-1; 1248 fs_info->max_inline = 8192 * 1024; 1249 setup_bdi(fs_info, &fs_info->bdi); 1250 fs_info->btree_inode = new_inode(sb); 1251 fs_info->btree_inode->i_ino = 1; 1252 fs_info->btree_inode->i_nlink = 1; 1253 fs_info->thread_pool_size = min(num_online_cpus() + 2, 8); 1254 1255 INIT_LIST_HEAD(&fs_info->ordered_extents); 1256 spin_lock_init(&fs_info->ordered_extent_lock); 1257 1258 sb->s_blocksize = 4096; 1259 sb->s_blocksize_bits = blksize_bits(4096); 1260 1261 /* 1262 * we set the i_size on the btree inode to the max possible int. 1263 * the real end of the address space is determined by all of 1264 * the devices in the system 1265 */ 1266 fs_info->btree_inode->i_size = OFFSET_MAX; 1267 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1268 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1269 1270 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1271 fs_info->btree_inode->i_mapping, 1272 GFP_NOFS); 1273 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1274 GFP_NOFS); 1275 1276 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1277 1278 extent_io_tree_init(&fs_info->free_space_cache, 1279 fs_info->btree_inode->i_mapping, GFP_NOFS); 1280 extent_io_tree_init(&fs_info->block_group_cache, 1281 fs_info->btree_inode->i_mapping, GFP_NOFS); 1282 extent_io_tree_init(&fs_info->pinned_extents, 1283 fs_info->btree_inode->i_mapping, GFP_NOFS); 1284 extent_io_tree_init(&fs_info->pending_del, 1285 fs_info->btree_inode->i_mapping, GFP_NOFS); 1286 extent_io_tree_init(&fs_info->extent_ins, 1287 fs_info->btree_inode->i_mapping, GFP_NOFS); 1288 fs_info->do_barriers = 1; 1289 1290 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1291 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1292 sizeof(struct btrfs_key)); 1293 insert_inode_hash(fs_info->btree_inode); 1294 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1295 1296 mutex_init(&fs_info->trans_mutex); 1297 mutex_init(&fs_info->drop_mutex); 1298 mutex_init(&fs_info->alloc_mutex); 1299 mutex_init(&fs_info->chunk_mutex); 1300 mutex_init(&fs_info->transaction_kthread_mutex); 1301 mutex_init(&fs_info->cleaner_mutex); 1302 mutex_init(&fs_info->volume_mutex); 1303 init_waitqueue_head(&fs_info->transaction_throttle); 1304 init_waitqueue_head(&fs_info->transaction_wait); 1305 1306 #if 0 1307 ret = add_hasher(fs_info, "crc32c"); 1308 if (ret) { 1309 printk("btrfs: failed hash setup, modprobe cryptomgr?\n"); 1310 err = -ENOMEM; 1311 goto fail_iput; 1312 } 1313 #endif 1314 __setup_root(4096, 4096, 4096, 4096, tree_root, 1315 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1316 1317 1318 bh = __bread(fs_devices->latest_bdev, 1319 BTRFS_SUPER_INFO_OFFSET / 4096, 4096); 1320 if (!bh) 1321 goto fail_iput; 1322 1323 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1324 brelse(bh); 1325 1326 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1327 1328 disk_super = &fs_info->super_copy; 1329 if (!btrfs_super_root(disk_super)) 1330 goto fail_sb_buffer; 1331 1332 err = btrfs_parse_options(tree_root, options); 1333 if (err) 1334 goto fail_sb_buffer; 1335 1336 /* 1337 * we need to start all the end_io workers up front because the 1338 * queue work function gets called at interrupt time, and so it 1339 * cannot dynamically grow. 1340 */ 1341 btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size); 1342 btrfs_init_workers(&fs_info->submit_workers, fs_info->thread_pool_size); 1343 btrfs_init_workers(&fs_info->fixup_workers, 1); 1344 btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1345 btrfs_init_workers(&fs_info->endio_write_workers, 1346 fs_info->thread_pool_size); 1347 btrfs_start_workers(&fs_info->workers, 1); 1348 btrfs_start_workers(&fs_info->submit_workers, 1); 1349 btrfs_start_workers(&fs_info->fixup_workers, 1); 1350 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1351 btrfs_start_workers(&fs_info->endio_write_workers, 1352 fs_info->thread_pool_size); 1353 1354 err = -EINVAL; 1355 if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) { 1356 printk("Btrfs: wanted %llu devices, but found %llu\n", 1357 (unsigned long long)btrfs_super_num_devices(disk_super), 1358 (unsigned long long)fs_devices->open_devices); 1359 if (btrfs_test_opt(tree_root, DEGRADED)) 1360 printk("continuing in degraded mode\n"); 1361 else { 1362 goto fail_sb_buffer; 1363 } 1364 } 1365 1366 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1367 1368 nodesize = btrfs_super_nodesize(disk_super); 1369 leafsize = btrfs_super_leafsize(disk_super); 1370 sectorsize = btrfs_super_sectorsize(disk_super); 1371 stripesize = btrfs_super_stripesize(disk_super); 1372 tree_root->nodesize = nodesize; 1373 tree_root->leafsize = leafsize; 1374 tree_root->sectorsize = sectorsize; 1375 tree_root->stripesize = stripesize; 1376 1377 sb->s_blocksize = sectorsize; 1378 sb->s_blocksize_bits = blksize_bits(sectorsize); 1379 1380 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1381 sizeof(disk_super->magic))) { 1382 printk("btrfs: valid FS not found on %s\n", sb->s_id); 1383 goto fail_sb_buffer; 1384 } 1385 1386 mutex_lock(&fs_info->chunk_mutex); 1387 ret = btrfs_read_sys_array(tree_root); 1388 mutex_unlock(&fs_info->chunk_mutex); 1389 if (ret) { 1390 printk("btrfs: failed to read the system array on %s\n", 1391 sb->s_id); 1392 goto fail_sys_array; 1393 } 1394 1395 blocksize = btrfs_level_size(tree_root, 1396 btrfs_super_chunk_root_level(disk_super)); 1397 1398 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1399 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1400 1401 chunk_root->node = read_tree_block(chunk_root, 1402 btrfs_super_chunk_root(disk_super), 1403 blocksize, 0); 1404 BUG_ON(!chunk_root->node); 1405 1406 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1407 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1408 BTRFS_UUID_SIZE); 1409 1410 mutex_lock(&fs_info->chunk_mutex); 1411 ret = btrfs_read_chunk_tree(chunk_root); 1412 mutex_unlock(&fs_info->chunk_mutex); 1413 BUG_ON(ret); 1414 1415 btrfs_close_extra_devices(fs_devices); 1416 1417 blocksize = btrfs_level_size(tree_root, 1418 btrfs_super_root_level(disk_super)); 1419 1420 1421 tree_root->node = read_tree_block(tree_root, 1422 btrfs_super_root(disk_super), 1423 blocksize, 0); 1424 if (!tree_root->node) 1425 goto fail_sb_buffer; 1426 1427 1428 ret = find_and_setup_root(tree_root, fs_info, 1429 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1430 if (ret) 1431 goto fail_tree_root; 1432 extent_root->track_dirty = 1; 1433 1434 ret = find_and_setup_root(tree_root, fs_info, 1435 BTRFS_DEV_TREE_OBJECTID, dev_root); 1436 dev_root->track_dirty = 1; 1437 1438 if (ret) 1439 goto fail_extent_root; 1440 1441 btrfs_read_block_groups(extent_root); 1442 1443 fs_info->generation = btrfs_super_generation(disk_super) + 1; 1444 fs_info->data_alloc_profile = (u64)-1; 1445 fs_info->metadata_alloc_profile = (u64)-1; 1446 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1447 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1448 "btrfs-cleaner"); 1449 if (!fs_info->cleaner_kthread) 1450 goto fail_extent_root; 1451 1452 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1453 tree_root, 1454 "btrfs-transaction"); 1455 if (!fs_info->transaction_kthread) 1456 goto fail_cleaner; 1457 1458 1459 return tree_root; 1460 1461 fail_cleaner: 1462 kthread_stop(fs_info->cleaner_kthread); 1463 fail_extent_root: 1464 free_extent_buffer(extent_root->node); 1465 fail_tree_root: 1466 free_extent_buffer(tree_root->node); 1467 fail_sys_array: 1468 fail_sb_buffer: 1469 btrfs_stop_workers(&fs_info->fixup_workers); 1470 btrfs_stop_workers(&fs_info->workers); 1471 btrfs_stop_workers(&fs_info->endio_workers); 1472 btrfs_stop_workers(&fs_info->endio_write_workers); 1473 btrfs_stop_workers(&fs_info->submit_workers); 1474 fail_iput: 1475 iput(fs_info->btree_inode); 1476 fail: 1477 btrfs_close_devices(fs_info->fs_devices); 1478 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1479 1480 kfree(extent_root); 1481 kfree(tree_root); 1482 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) 1483 bdi_destroy(&fs_info->bdi); 1484 #endif 1485 kfree(fs_info); 1486 return ERR_PTR(err); 1487 } 1488 1489 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1490 { 1491 char b[BDEVNAME_SIZE]; 1492 1493 if (uptodate) { 1494 set_buffer_uptodate(bh); 1495 } else { 1496 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1497 printk(KERN_WARNING "lost page write due to " 1498 "I/O error on %s\n", 1499 bdevname(bh->b_bdev, b)); 1500 } 1501 /* note, we dont' set_buffer_write_io_error because we have 1502 * our own ways of dealing with the IO errors 1503 */ 1504 clear_buffer_uptodate(bh); 1505 } 1506 unlock_buffer(bh); 1507 put_bh(bh); 1508 } 1509 1510 int write_all_supers(struct btrfs_root *root) 1511 { 1512 struct list_head *cur; 1513 struct list_head *head = &root->fs_info->fs_devices->devices; 1514 struct btrfs_device *dev; 1515 struct btrfs_super_block *sb; 1516 struct btrfs_dev_item *dev_item; 1517 struct buffer_head *bh; 1518 int ret; 1519 int do_barriers; 1520 int max_errors; 1521 int total_errors = 0; 1522 u32 crc; 1523 u64 flags; 1524 1525 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 1526 do_barriers = !btrfs_test_opt(root, NOBARRIER); 1527 1528 sb = &root->fs_info->super_for_commit; 1529 dev_item = &sb->dev_item; 1530 list_for_each(cur, head) { 1531 dev = list_entry(cur, struct btrfs_device, dev_list); 1532 if (!dev->bdev) { 1533 total_errors++; 1534 continue; 1535 } 1536 if (!dev->in_fs_metadata) 1537 continue; 1538 1539 btrfs_set_stack_device_type(dev_item, dev->type); 1540 btrfs_set_stack_device_id(dev_item, dev->devid); 1541 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 1542 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 1543 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 1544 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 1545 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 1546 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 1547 flags = btrfs_super_flags(sb); 1548 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 1549 1550 1551 crc = ~(u32)0; 1552 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc, 1553 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 1554 btrfs_csum_final(crc, sb->csum); 1555 1556 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 1557 BTRFS_SUPER_INFO_SIZE); 1558 1559 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 1560 dev->pending_io = bh; 1561 1562 get_bh(bh); 1563 set_buffer_uptodate(bh); 1564 lock_buffer(bh); 1565 bh->b_end_io = btrfs_end_buffer_write_sync; 1566 1567 if (do_barriers && dev->barriers) { 1568 ret = submit_bh(WRITE_BARRIER, bh); 1569 if (ret == -EOPNOTSUPP) { 1570 printk("btrfs: disabling barriers on dev %s\n", 1571 dev->name); 1572 set_buffer_uptodate(bh); 1573 dev->barriers = 0; 1574 get_bh(bh); 1575 lock_buffer(bh); 1576 ret = submit_bh(WRITE, bh); 1577 } 1578 } else { 1579 ret = submit_bh(WRITE, bh); 1580 } 1581 if (ret) 1582 total_errors++; 1583 } 1584 if (total_errors > max_errors) { 1585 printk("btrfs: %d errors while writing supers\n", total_errors); 1586 BUG(); 1587 } 1588 total_errors = 0; 1589 1590 list_for_each(cur, head) { 1591 dev = list_entry(cur, struct btrfs_device, dev_list); 1592 if (!dev->bdev) 1593 continue; 1594 if (!dev->in_fs_metadata) 1595 continue; 1596 1597 BUG_ON(!dev->pending_io); 1598 bh = dev->pending_io; 1599 wait_on_buffer(bh); 1600 if (!buffer_uptodate(dev->pending_io)) { 1601 if (do_barriers && dev->barriers) { 1602 printk("btrfs: disabling barriers on dev %s\n", 1603 dev->name); 1604 set_buffer_uptodate(bh); 1605 get_bh(bh); 1606 lock_buffer(bh); 1607 dev->barriers = 0; 1608 ret = submit_bh(WRITE, bh); 1609 BUG_ON(ret); 1610 wait_on_buffer(bh); 1611 if (!buffer_uptodate(bh)) 1612 total_errors++; 1613 } else { 1614 total_errors++; 1615 } 1616 1617 } 1618 dev->pending_io = NULL; 1619 brelse(bh); 1620 } 1621 if (total_errors > max_errors) { 1622 printk("btrfs: %d errors while writing supers\n", total_errors); 1623 BUG(); 1624 } 1625 return 0; 1626 } 1627 1628 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root 1629 *root) 1630 { 1631 int ret; 1632 1633 ret = write_all_supers(root); 1634 return ret; 1635 } 1636 1637 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 1638 { 1639 radix_tree_delete(&fs_info->fs_roots_radix, 1640 (unsigned long)root->root_key.objectid); 1641 if (root->in_sysfs) 1642 btrfs_sysfs_del_root(root); 1643 if (root->inode) 1644 iput(root->inode); 1645 if (root->node) 1646 free_extent_buffer(root->node); 1647 if (root->commit_root) 1648 free_extent_buffer(root->commit_root); 1649 if (root->name) 1650 kfree(root->name); 1651 kfree(root); 1652 return 0; 1653 } 1654 1655 static int del_fs_roots(struct btrfs_fs_info *fs_info) 1656 { 1657 int ret; 1658 struct btrfs_root *gang[8]; 1659 int i; 1660 1661 while(1) { 1662 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1663 (void **)gang, 0, 1664 ARRAY_SIZE(gang)); 1665 if (!ret) 1666 break; 1667 for (i = 0; i < ret; i++) 1668 btrfs_free_fs_root(fs_info, gang[i]); 1669 } 1670 return 0; 1671 } 1672 1673 int close_ctree(struct btrfs_root *root) 1674 { 1675 int ret; 1676 struct btrfs_trans_handle *trans; 1677 struct btrfs_fs_info *fs_info = root->fs_info; 1678 1679 fs_info->closing = 1; 1680 smp_mb(); 1681 1682 kthread_stop(root->fs_info->transaction_kthread); 1683 kthread_stop(root->fs_info->cleaner_kthread); 1684 1685 btrfs_clean_old_snapshots(root); 1686 trans = btrfs_start_transaction(root, 1); 1687 ret = btrfs_commit_transaction(trans, root); 1688 /* run commit again to drop the original snapshot */ 1689 trans = btrfs_start_transaction(root, 1); 1690 btrfs_commit_transaction(trans, root); 1691 ret = btrfs_write_and_wait_transaction(NULL, root); 1692 BUG_ON(ret); 1693 1694 write_ctree_super(NULL, root); 1695 1696 if (fs_info->delalloc_bytes) { 1697 printk("btrfs: at unmount delalloc count %Lu\n", 1698 fs_info->delalloc_bytes); 1699 } 1700 if (fs_info->extent_root->node) 1701 free_extent_buffer(fs_info->extent_root->node); 1702 1703 if (fs_info->tree_root->node) 1704 free_extent_buffer(fs_info->tree_root->node); 1705 1706 if (root->fs_info->chunk_root->node); 1707 free_extent_buffer(root->fs_info->chunk_root->node); 1708 1709 if (root->fs_info->dev_root->node); 1710 free_extent_buffer(root->fs_info->dev_root->node); 1711 1712 btrfs_free_block_groups(root->fs_info); 1713 del_fs_roots(fs_info); 1714 1715 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1716 1717 truncate_inode_pages(fs_info->btree_inode->i_mapping, 0); 1718 1719 btrfs_stop_workers(&fs_info->fixup_workers); 1720 btrfs_stop_workers(&fs_info->workers); 1721 btrfs_stop_workers(&fs_info->endio_workers); 1722 btrfs_stop_workers(&fs_info->endio_write_workers); 1723 btrfs_stop_workers(&fs_info->submit_workers); 1724 1725 iput(fs_info->btree_inode); 1726 #if 0 1727 while(!list_empty(&fs_info->hashers)) { 1728 struct btrfs_hasher *hasher; 1729 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher, 1730 hashers); 1731 list_del(&hasher->hashers); 1732 crypto_free_hash(&fs_info->hash_tfm); 1733 kfree(hasher); 1734 } 1735 #endif 1736 btrfs_close_devices(fs_info->fs_devices); 1737 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1738 1739 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) 1740 bdi_destroy(&fs_info->bdi); 1741 #endif 1742 1743 kfree(fs_info->extent_root); 1744 kfree(fs_info->tree_root); 1745 kfree(fs_info->chunk_root); 1746 kfree(fs_info->dev_root); 1747 return 0; 1748 } 1749 1750 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 1751 { 1752 int ret; 1753 struct inode *btree_inode = buf->first_page->mapping->host; 1754 1755 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 1756 if (!ret) 1757 return ret; 1758 1759 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 1760 parent_transid); 1761 return !ret; 1762 } 1763 1764 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 1765 { 1766 struct inode *btree_inode = buf->first_page->mapping->host; 1767 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 1768 buf); 1769 } 1770 1771 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 1772 { 1773 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 1774 u64 transid = btrfs_header_generation(buf); 1775 struct inode *btree_inode = root->fs_info->btree_inode; 1776 1777 WARN_ON(!btrfs_tree_locked(buf)); 1778 if (transid != root->fs_info->generation) { 1779 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n", 1780 (unsigned long long)buf->start, 1781 transid, root->fs_info->generation); 1782 WARN_ON(1); 1783 } 1784 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf); 1785 } 1786 1787 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 1788 { 1789 /* 1790 * looks as though older kernels can get into trouble with 1791 * this code, they end up stuck in balance_dirty_pages forever 1792 */ 1793 struct extent_io_tree *tree; 1794 u64 num_dirty; 1795 u64 start = 0; 1796 unsigned long thresh = 16 * 1024 * 1024; 1797 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 1798 1799 if (current_is_pdflush()) 1800 return; 1801 1802 num_dirty = count_range_bits(tree, &start, (u64)-1, 1803 thresh, EXTENT_DIRTY); 1804 if (num_dirty > thresh) { 1805 balance_dirty_pages_ratelimited_nr( 1806 root->fs_info->btree_inode->i_mapping, 1); 1807 } 1808 return; 1809 } 1810 1811 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 1812 { 1813 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 1814 int ret; 1815 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1816 if (ret == 0) { 1817 buf->flags |= EXTENT_UPTODATE; 1818 } 1819 return ret; 1820 } 1821 1822 static struct extent_io_ops btree_extent_io_ops = { 1823 .writepage_io_hook = btree_writepage_io_hook, 1824 .readpage_end_io_hook = btree_readpage_end_io_hook, 1825 .submit_bio_hook = btree_submit_bio_hook, 1826 /* note we're sharing with inode.c for the merge bio hook */ 1827 .merge_bio_hook = btrfs_merge_bio_hook, 1828 }; 1829