1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 55 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 56 BTRFS_HEADER_FLAG_RELOC |\ 57 BTRFS_SUPER_FLAG_ERROR |\ 58 BTRFS_SUPER_FLAG_SEEDING |\ 59 BTRFS_SUPER_FLAG_METADUMP |\ 60 BTRFS_SUPER_FLAG_METADUMP_V2) 61 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_fs_info *fs_info); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 72 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 73 74 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 75 { 76 if (fs_info->csum_shash) 77 crypto_free_shash(fs_info->csum_shash); 78 } 79 80 /* 81 * async submit bios are used to offload expensive checksumming 82 * onto the worker threads. They checksum file and metadata bios 83 * just before they are sent down the IO stack. 84 */ 85 struct async_submit_bio { 86 struct inode *inode; 87 struct bio *bio; 88 extent_submit_bio_start_t *submit_bio_start; 89 int mirror_num; 90 91 /* Optional parameter for submit_bio_start used by direct io */ 92 u64 dio_file_offset; 93 struct btrfs_work work; 94 blk_status_t status; 95 }; 96 97 /* 98 * Compute the csum of a btree block and store the result to provided buffer. 99 */ 100 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 101 { 102 struct btrfs_fs_info *fs_info = buf->fs_info; 103 const int num_pages = num_extent_pages(buf); 104 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 105 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 106 char *kaddr; 107 int i; 108 109 shash->tfm = fs_info->csum_shash; 110 crypto_shash_init(shash); 111 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 112 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 113 first_page_part - BTRFS_CSUM_SIZE); 114 115 for (i = 1; i < num_pages; i++) { 116 kaddr = page_address(buf->pages[i]); 117 crypto_shash_update(shash, kaddr, PAGE_SIZE); 118 } 119 memset(result, 0, BTRFS_CSUM_SIZE); 120 crypto_shash_final(shash, result); 121 } 122 123 /* 124 * we can't consider a given block up to date unless the transid of the 125 * block matches the transid in the parent node's pointer. This is how we 126 * detect blocks that either didn't get written at all or got written 127 * in the wrong place. 128 */ 129 static int verify_parent_transid(struct extent_io_tree *io_tree, 130 struct extent_buffer *eb, u64 parent_transid, 131 int atomic) 132 { 133 struct extent_state *cached_state = NULL; 134 int ret; 135 136 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 137 return 0; 138 139 if (atomic) 140 return -EAGAIN; 141 142 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 143 if (extent_buffer_uptodate(eb) && 144 btrfs_header_generation(eb) == parent_transid) { 145 ret = 0; 146 goto out; 147 } 148 btrfs_err_rl(eb->fs_info, 149 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 150 eb->start, eb->read_mirror, 151 parent_transid, btrfs_header_generation(eb)); 152 ret = 1; 153 clear_extent_buffer_uptodate(eb); 154 out: 155 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 156 &cached_state); 157 return ret; 158 } 159 160 static bool btrfs_supported_super_csum(u16 csum_type) 161 { 162 switch (csum_type) { 163 case BTRFS_CSUM_TYPE_CRC32: 164 case BTRFS_CSUM_TYPE_XXHASH: 165 case BTRFS_CSUM_TYPE_SHA256: 166 case BTRFS_CSUM_TYPE_BLAKE2: 167 return true; 168 default: 169 return false; 170 } 171 } 172 173 /* 174 * Return 0 if the superblock checksum type matches the checksum value of that 175 * algorithm. Pass the raw disk superblock data. 176 */ 177 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 178 const struct btrfs_super_block *disk_sb) 179 { 180 char result[BTRFS_CSUM_SIZE]; 181 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 182 183 shash->tfm = fs_info->csum_shash; 184 185 /* 186 * The super_block structure does not span the whole 187 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 188 * filled with zeros and is included in the checksum. 189 */ 190 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 191 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 192 193 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 194 return 1; 195 196 return 0; 197 } 198 199 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 200 struct btrfs_key *first_key, u64 parent_transid) 201 { 202 struct btrfs_fs_info *fs_info = eb->fs_info; 203 int found_level; 204 struct btrfs_key found_key; 205 int ret; 206 207 found_level = btrfs_header_level(eb); 208 if (found_level != level) { 209 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 210 KERN_ERR "BTRFS: tree level check failed\n"); 211 btrfs_err(fs_info, 212 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 213 eb->start, level, found_level); 214 return -EIO; 215 } 216 217 if (!first_key) 218 return 0; 219 220 /* 221 * For live tree block (new tree blocks in current transaction), 222 * we need proper lock context to avoid race, which is impossible here. 223 * So we only checks tree blocks which is read from disk, whose 224 * generation <= fs_info->last_trans_committed. 225 */ 226 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 227 return 0; 228 229 /* We have @first_key, so this @eb must have at least one item */ 230 if (btrfs_header_nritems(eb) == 0) { 231 btrfs_err(fs_info, 232 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 233 eb->start); 234 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 235 return -EUCLEAN; 236 } 237 238 if (found_level) 239 btrfs_node_key_to_cpu(eb, &found_key, 0); 240 else 241 btrfs_item_key_to_cpu(eb, &found_key, 0); 242 ret = btrfs_comp_cpu_keys(first_key, &found_key); 243 244 if (ret) { 245 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 246 KERN_ERR "BTRFS: tree first key check failed\n"); 247 btrfs_err(fs_info, 248 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 249 eb->start, parent_transid, first_key->objectid, 250 first_key->type, first_key->offset, 251 found_key.objectid, found_key.type, 252 found_key.offset); 253 } 254 return ret; 255 } 256 257 /* 258 * helper to read a given tree block, doing retries as required when 259 * the checksums don't match and we have alternate mirrors to try. 260 * 261 * @parent_transid: expected transid, skip check if 0 262 * @level: expected level, mandatory check 263 * @first_key: expected key of first slot, skip check if NULL 264 */ 265 int btrfs_read_extent_buffer(struct extent_buffer *eb, 266 u64 parent_transid, int level, 267 struct btrfs_key *first_key) 268 { 269 struct btrfs_fs_info *fs_info = eb->fs_info; 270 struct extent_io_tree *io_tree; 271 int failed = 0; 272 int ret; 273 int num_copies = 0; 274 int mirror_num = 0; 275 int failed_mirror = 0; 276 277 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 278 while (1) { 279 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 280 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 281 if (!ret) { 282 if (verify_parent_transid(io_tree, eb, 283 parent_transid, 0)) 284 ret = -EIO; 285 else if (btrfs_verify_level_key(eb, level, 286 first_key, parent_transid)) 287 ret = -EUCLEAN; 288 else 289 break; 290 } 291 292 num_copies = btrfs_num_copies(fs_info, 293 eb->start, eb->len); 294 if (num_copies == 1) 295 break; 296 297 if (!failed_mirror) { 298 failed = 1; 299 failed_mirror = eb->read_mirror; 300 } 301 302 mirror_num++; 303 if (mirror_num == failed_mirror) 304 mirror_num++; 305 306 if (mirror_num > num_copies) 307 break; 308 } 309 310 if (failed && !ret && failed_mirror) 311 btrfs_repair_eb_io_failure(eb, failed_mirror); 312 313 return ret; 314 } 315 316 static int csum_one_extent_buffer(struct extent_buffer *eb) 317 { 318 struct btrfs_fs_info *fs_info = eb->fs_info; 319 u8 result[BTRFS_CSUM_SIZE]; 320 int ret; 321 322 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 323 offsetof(struct btrfs_header, fsid), 324 BTRFS_FSID_SIZE) == 0); 325 csum_tree_block(eb, result); 326 327 if (btrfs_header_level(eb)) 328 ret = btrfs_check_node(eb); 329 else 330 ret = btrfs_check_leaf_full(eb); 331 332 if (ret < 0) 333 goto error; 334 335 /* 336 * Also check the generation, the eb reached here must be newer than 337 * last committed. Or something seriously wrong happened. 338 */ 339 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 340 ret = -EUCLEAN; 341 btrfs_err(fs_info, 342 "block=%llu bad generation, have %llu expect > %llu", 343 eb->start, btrfs_header_generation(eb), 344 fs_info->last_trans_committed); 345 goto error; 346 } 347 write_extent_buffer(eb, result, 0, fs_info->csum_size); 348 349 return 0; 350 351 error: 352 btrfs_print_tree(eb, 0); 353 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 354 eb->start); 355 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 356 return ret; 357 } 358 359 /* Checksum all dirty extent buffers in one bio_vec */ 360 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 361 struct bio_vec *bvec) 362 { 363 struct page *page = bvec->bv_page; 364 u64 bvec_start = page_offset(page) + bvec->bv_offset; 365 u64 cur; 366 int ret = 0; 367 368 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 369 cur += fs_info->nodesize) { 370 struct extent_buffer *eb; 371 bool uptodate; 372 373 eb = find_extent_buffer(fs_info, cur); 374 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 375 fs_info->nodesize); 376 377 /* A dirty eb shouldn't disappear from buffer_radix */ 378 if (WARN_ON(!eb)) 379 return -EUCLEAN; 380 381 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 382 free_extent_buffer(eb); 383 return -EUCLEAN; 384 } 385 if (WARN_ON(!uptodate)) { 386 free_extent_buffer(eb); 387 return -EUCLEAN; 388 } 389 390 ret = csum_one_extent_buffer(eb); 391 free_extent_buffer(eb); 392 if (ret < 0) 393 return ret; 394 } 395 return ret; 396 } 397 398 /* 399 * Checksum a dirty tree block before IO. This has extra checks to make sure 400 * we only fill in the checksum field in the first page of a multi-page block. 401 * For subpage extent buffers we need bvec to also read the offset in the page. 402 */ 403 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 404 { 405 struct page *page = bvec->bv_page; 406 u64 start = page_offset(page); 407 u64 found_start; 408 struct extent_buffer *eb; 409 410 if (fs_info->nodesize < PAGE_SIZE) 411 return csum_dirty_subpage_buffers(fs_info, bvec); 412 413 eb = (struct extent_buffer *)page->private; 414 if (page != eb->pages[0]) 415 return 0; 416 417 found_start = btrfs_header_bytenr(eb); 418 419 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 420 WARN_ON(found_start != 0); 421 return 0; 422 } 423 424 /* 425 * Please do not consolidate these warnings into a single if. 426 * It is useful to know what went wrong. 427 */ 428 if (WARN_ON(found_start != start)) 429 return -EUCLEAN; 430 if (WARN_ON(!PageUptodate(page))) 431 return -EUCLEAN; 432 433 return csum_one_extent_buffer(eb); 434 } 435 436 static int check_tree_block_fsid(struct extent_buffer *eb) 437 { 438 struct btrfs_fs_info *fs_info = eb->fs_info; 439 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 440 u8 fsid[BTRFS_FSID_SIZE]; 441 u8 *metadata_uuid; 442 443 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 444 BTRFS_FSID_SIZE); 445 /* 446 * Checking the incompat flag is only valid for the current fs. For 447 * seed devices it's forbidden to have their uuid changed so reading 448 * ->fsid in this case is fine 449 */ 450 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 451 metadata_uuid = fs_devices->metadata_uuid; 452 else 453 metadata_uuid = fs_devices->fsid; 454 455 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 456 return 0; 457 458 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 459 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 460 return 0; 461 462 return 1; 463 } 464 465 /* Do basic extent buffer checks at read time */ 466 static int validate_extent_buffer(struct extent_buffer *eb) 467 { 468 struct btrfs_fs_info *fs_info = eb->fs_info; 469 u64 found_start; 470 const u32 csum_size = fs_info->csum_size; 471 u8 found_level; 472 u8 result[BTRFS_CSUM_SIZE]; 473 const u8 *header_csum; 474 int ret = 0; 475 476 found_start = btrfs_header_bytenr(eb); 477 if (found_start != eb->start) { 478 btrfs_err_rl(fs_info, 479 "bad tree block start, mirror %u want %llu have %llu", 480 eb->read_mirror, eb->start, found_start); 481 ret = -EIO; 482 goto out; 483 } 484 if (check_tree_block_fsid(eb)) { 485 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 486 eb->start, eb->read_mirror); 487 ret = -EIO; 488 goto out; 489 } 490 found_level = btrfs_header_level(eb); 491 if (found_level >= BTRFS_MAX_LEVEL) { 492 btrfs_err(fs_info, 493 "bad tree block level, mirror %u level %d on logical %llu", 494 eb->read_mirror, btrfs_header_level(eb), eb->start); 495 ret = -EIO; 496 goto out; 497 } 498 499 csum_tree_block(eb, result); 500 header_csum = page_address(eb->pages[0]) + 501 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 502 503 if (memcmp(result, header_csum, csum_size) != 0) { 504 btrfs_warn_rl(fs_info, 505 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 506 eb->start, eb->read_mirror, 507 CSUM_FMT_VALUE(csum_size, header_csum), 508 CSUM_FMT_VALUE(csum_size, result), 509 btrfs_header_level(eb)); 510 ret = -EUCLEAN; 511 goto out; 512 } 513 514 /* 515 * If this is a leaf block and it is corrupt, set the corrupt bit so 516 * that we don't try and read the other copies of this block, just 517 * return -EIO. 518 */ 519 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 520 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 521 ret = -EIO; 522 } 523 524 if (found_level > 0 && btrfs_check_node(eb)) 525 ret = -EIO; 526 527 if (!ret) 528 set_extent_buffer_uptodate(eb); 529 else 530 btrfs_err(fs_info, 531 "read time tree block corruption detected on logical %llu mirror %u", 532 eb->start, eb->read_mirror); 533 out: 534 return ret; 535 } 536 537 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 538 int mirror) 539 { 540 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 541 struct extent_buffer *eb; 542 bool reads_done; 543 int ret = 0; 544 545 /* 546 * We don't allow bio merge for subpage metadata read, so we should 547 * only get one eb for each endio hook. 548 */ 549 ASSERT(end == start + fs_info->nodesize - 1); 550 ASSERT(PagePrivate(page)); 551 552 eb = find_extent_buffer(fs_info, start); 553 /* 554 * When we are reading one tree block, eb must have been inserted into 555 * the radix tree. If not, something is wrong. 556 */ 557 ASSERT(eb); 558 559 reads_done = atomic_dec_and_test(&eb->io_pages); 560 /* Subpage read must finish in page read */ 561 ASSERT(reads_done); 562 563 eb->read_mirror = mirror; 564 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 565 ret = -EIO; 566 goto err; 567 } 568 ret = validate_extent_buffer(eb); 569 if (ret < 0) 570 goto err; 571 572 set_extent_buffer_uptodate(eb); 573 574 free_extent_buffer(eb); 575 return ret; 576 err: 577 /* 578 * end_bio_extent_readpage decrements io_pages in case of error, 579 * make sure it has something to decrement. 580 */ 581 atomic_inc(&eb->io_pages); 582 clear_extent_buffer_uptodate(eb); 583 free_extent_buffer(eb); 584 return ret; 585 } 586 587 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 588 struct page *page, u64 start, u64 end, 589 int mirror) 590 { 591 struct extent_buffer *eb; 592 int ret = 0; 593 int reads_done; 594 595 ASSERT(page->private); 596 597 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 598 return validate_subpage_buffer(page, start, end, mirror); 599 600 eb = (struct extent_buffer *)page->private; 601 602 /* 603 * The pending IO might have been the only thing that kept this buffer 604 * in memory. Make sure we have a ref for all this other checks 605 */ 606 atomic_inc(&eb->refs); 607 608 reads_done = atomic_dec_and_test(&eb->io_pages); 609 if (!reads_done) 610 goto err; 611 612 eb->read_mirror = mirror; 613 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 614 ret = -EIO; 615 goto err; 616 } 617 ret = validate_extent_buffer(eb); 618 err: 619 if (ret) { 620 /* 621 * our io error hook is going to dec the io pages 622 * again, we have to make sure it has something 623 * to decrement 624 */ 625 atomic_inc(&eb->io_pages); 626 clear_extent_buffer_uptodate(eb); 627 } 628 free_extent_buffer(eb); 629 630 return ret; 631 } 632 633 static void run_one_async_start(struct btrfs_work *work) 634 { 635 struct async_submit_bio *async; 636 blk_status_t ret; 637 638 async = container_of(work, struct async_submit_bio, work); 639 ret = async->submit_bio_start(async->inode, async->bio, 640 async->dio_file_offset); 641 if (ret) 642 async->status = ret; 643 } 644 645 /* 646 * In order to insert checksums into the metadata in large chunks, we wait 647 * until bio submission time. All the pages in the bio are checksummed and 648 * sums are attached onto the ordered extent record. 649 * 650 * At IO completion time the csums attached on the ordered extent record are 651 * inserted into the tree. 652 */ 653 static void run_one_async_done(struct btrfs_work *work) 654 { 655 struct async_submit_bio *async = 656 container_of(work, struct async_submit_bio, work); 657 struct inode *inode = async->inode; 658 struct btrfs_bio *bbio = btrfs_bio(async->bio); 659 660 /* If an error occurred we just want to clean up the bio and move on */ 661 if (async->status) { 662 btrfs_bio_end_io(bbio, async->status); 663 return; 664 } 665 666 /* 667 * All of the bios that pass through here are from async helpers. 668 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 669 * This changes nothing when cgroups aren't in use. 670 */ 671 async->bio->bi_opf |= REQ_CGROUP_PUNT; 672 btrfs_submit_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 673 } 674 675 static void run_one_async_free(struct btrfs_work *work) 676 { 677 struct async_submit_bio *async; 678 679 async = container_of(work, struct async_submit_bio, work); 680 kfree(async); 681 } 682 683 /* 684 * Submit bio to an async queue. 685 * 686 * Retrun: 687 * - true if the work has been succesfuly submitted 688 * - false in case of error 689 */ 690 bool btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, int mirror_num, 691 u64 dio_file_offset, 692 extent_submit_bio_start_t *submit_bio_start) 693 { 694 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 695 struct async_submit_bio *async; 696 697 async = kmalloc(sizeof(*async), GFP_NOFS); 698 if (!async) 699 return false; 700 701 async->inode = inode; 702 async->bio = bio; 703 async->mirror_num = mirror_num; 704 async->submit_bio_start = submit_bio_start; 705 706 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 707 run_one_async_free); 708 709 async->dio_file_offset = dio_file_offset; 710 711 async->status = 0; 712 713 if (op_is_sync(bio->bi_opf)) 714 btrfs_queue_work(fs_info->hipri_workers, &async->work); 715 else 716 btrfs_queue_work(fs_info->workers, &async->work); 717 return true; 718 } 719 720 static blk_status_t btree_csum_one_bio(struct bio *bio) 721 { 722 struct bio_vec *bvec; 723 struct btrfs_root *root; 724 int ret = 0; 725 struct bvec_iter_all iter_all; 726 727 ASSERT(!bio_flagged(bio, BIO_CLONED)); 728 bio_for_each_segment_all(bvec, bio, iter_all) { 729 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 730 ret = csum_dirty_buffer(root->fs_info, bvec); 731 if (ret) 732 break; 733 } 734 735 return errno_to_blk_status(ret); 736 } 737 738 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, 739 u64 dio_file_offset) 740 { 741 /* 742 * when we're called for a write, we're already in the async 743 * submission context. Just jump into btrfs_submit_bio. 744 */ 745 return btree_csum_one_bio(bio); 746 } 747 748 static bool should_async_write(struct btrfs_fs_info *fs_info, 749 struct btrfs_inode *bi) 750 { 751 if (btrfs_is_zoned(fs_info)) 752 return false; 753 if (atomic_read(&bi->sync_writers)) 754 return false; 755 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 756 return false; 757 return true; 758 } 759 760 void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num) 761 { 762 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 763 struct btrfs_bio *bbio = btrfs_bio(bio); 764 blk_status_t ret; 765 766 bio->bi_opf |= REQ_META; 767 768 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 769 btrfs_submit_bio(fs_info, bio, mirror_num); 770 return; 771 } 772 773 /* 774 * Kthread helpers are used to submit writes so that checksumming can 775 * happen in parallel across all CPUs. 776 */ 777 if (should_async_write(fs_info, BTRFS_I(inode)) && 778 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, btree_submit_bio_start)) 779 return; 780 781 ret = btree_csum_one_bio(bio); 782 if (ret) { 783 btrfs_bio_end_io(bbio, ret); 784 return; 785 } 786 787 btrfs_submit_bio(fs_info, bio, mirror_num); 788 } 789 790 #ifdef CONFIG_MIGRATION 791 static int btree_migrate_folio(struct address_space *mapping, 792 struct folio *dst, struct folio *src, enum migrate_mode mode) 793 { 794 /* 795 * we can't safely write a btree page from here, 796 * we haven't done the locking hook 797 */ 798 if (folio_test_dirty(src)) 799 return -EAGAIN; 800 /* 801 * Buffers may be managed in a filesystem specific way. 802 * We must have no buffers or drop them. 803 */ 804 if (folio_get_private(src) && 805 !filemap_release_folio(src, GFP_KERNEL)) 806 return -EAGAIN; 807 return migrate_folio(mapping, dst, src, mode); 808 } 809 #else 810 #define btree_migrate_folio NULL 811 #endif 812 813 static int btree_writepages(struct address_space *mapping, 814 struct writeback_control *wbc) 815 { 816 struct btrfs_fs_info *fs_info; 817 int ret; 818 819 if (wbc->sync_mode == WB_SYNC_NONE) { 820 821 if (wbc->for_kupdate) 822 return 0; 823 824 fs_info = BTRFS_I(mapping->host)->root->fs_info; 825 /* this is a bit racy, but that's ok */ 826 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 827 BTRFS_DIRTY_METADATA_THRESH, 828 fs_info->dirty_metadata_batch); 829 if (ret < 0) 830 return 0; 831 } 832 return btree_write_cache_pages(mapping, wbc); 833 } 834 835 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 836 { 837 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 838 return false; 839 840 return try_release_extent_buffer(&folio->page); 841 } 842 843 static void btree_invalidate_folio(struct folio *folio, size_t offset, 844 size_t length) 845 { 846 struct extent_io_tree *tree; 847 tree = &BTRFS_I(folio->mapping->host)->io_tree; 848 extent_invalidate_folio(tree, folio, offset); 849 btree_release_folio(folio, GFP_NOFS); 850 if (folio_get_private(folio)) { 851 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 852 "folio private not zero on folio %llu", 853 (unsigned long long)folio_pos(folio)); 854 folio_detach_private(folio); 855 } 856 } 857 858 #ifdef DEBUG 859 static bool btree_dirty_folio(struct address_space *mapping, 860 struct folio *folio) 861 { 862 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 863 struct btrfs_subpage *subpage; 864 struct extent_buffer *eb; 865 int cur_bit = 0; 866 u64 page_start = folio_pos(folio); 867 868 if (fs_info->sectorsize == PAGE_SIZE) { 869 eb = folio_get_private(folio); 870 BUG_ON(!eb); 871 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 872 BUG_ON(!atomic_read(&eb->refs)); 873 btrfs_assert_tree_write_locked(eb); 874 return filemap_dirty_folio(mapping, folio); 875 } 876 subpage = folio_get_private(folio); 877 878 ASSERT(subpage->dirty_bitmap); 879 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 880 unsigned long flags; 881 u64 cur; 882 u16 tmp = (1 << cur_bit); 883 884 spin_lock_irqsave(&subpage->lock, flags); 885 if (!(tmp & subpage->dirty_bitmap)) { 886 spin_unlock_irqrestore(&subpage->lock, flags); 887 cur_bit++; 888 continue; 889 } 890 spin_unlock_irqrestore(&subpage->lock, flags); 891 cur = page_start + cur_bit * fs_info->sectorsize; 892 893 eb = find_extent_buffer(fs_info, cur); 894 ASSERT(eb); 895 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 896 ASSERT(atomic_read(&eb->refs)); 897 btrfs_assert_tree_write_locked(eb); 898 free_extent_buffer(eb); 899 900 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 901 } 902 return filemap_dirty_folio(mapping, folio); 903 } 904 #else 905 #define btree_dirty_folio filemap_dirty_folio 906 #endif 907 908 static const struct address_space_operations btree_aops = { 909 .writepages = btree_writepages, 910 .release_folio = btree_release_folio, 911 .invalidate_folio = btree_invalidate_folio, 912 .migrate_folio = btree_migrate_folio, 913 .dirty_folio = btree_dirty_folio, 914 }; 915 916 struct extent_buffer *btrfs_find_create_tree_block( 917 struct btrfs_fs_info *fs_info, 918 u64 bytenr, u64 owner_root, 919 int level) 920 { 921 if (btrfs_is_testing(fs_info)) 922 return alloc_test_extent_buffer(fs_info, bytenr); 923 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 924 } 925 926 /* 927 * Read tree block at logical address @bytenr and do variant basic but critical 928 * verification. 929 * 930 * @owner_root: the objectid of the root owner for this block. 931 * @parent_transid: expected transid of this tree block, skip check if 0 932 * @level: expected level, mandatory check 933 * @first_key: expected key in slot 0, skip check if NULL 934 */ 935 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 936 u64 owner_root, u64 parent_transid, 937 int level, struct btrfs_key *first_key) 938 { 939 struct extent_buffer *buf = NULL; 940 int ret; 941 942 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 943 if (IS_ERR(buf)) 944 return buf; 945 946 ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key); 947 if (ret) { 948 free_extent_buffer_stale(buf); 949 return ERR_PTR(ret); 950 } 951 if (btrfs_check_eb_owner(buf, owner_root)) { 952 free_extent_buffer_stale(buf); 953 return ERR_PTR(-EUCLEAN); 954 } 955 return buf; 956 957 } 958 959 void btrfs_clean_tree_block(struct extent_buffer *buf) 960 { 961 struct btrfs_fs_info *fs_info = buf->fs_info; 962 if (btrfs_header_generation(buf) == 963 fs_info->running_transaction->transid) { 964 btrfs_assert_tree_write_locked(buf); 965 966 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 967 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 968 -buf->len, 969 fs_info->dirty_metadata_batch); 970 clear_extent_buffer_dirty(buf); 971 } 972 } 973 } 974 975 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 976 u64 objectid) 977 { 978 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 979 980 memset(&root->root_key, 0, sizeof(root->root_key)); 981 memset(&root->root_item, 0, sizeof(root->root_item)); 982 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 983 root->fs_info = fs_info; 984 root->root_key.objectid = objectid; 985 root->node = NULL; 986 root->commit_root = NULL; 987 root->state = 0; 988 RB_CLEAR_NODE(&root->rb_node); 989 990 root->last_trans = 0; 991 root->free_objectid = 0; 992 root->nr_delalloc_inodes = 0; 993 root->nr_ordered_extents = 0; 994 root->inode_tree = RB_ROOT; 995 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 996 997 btrfs_init_root_block_rsv(root); 998 999 INIT_LIST_HEAD(&root->dirty_list); 1000 INIT_LIST_HEAD(&root->root_list); 1001 INIT_LIST_HEAD(&root->delalloc_inodes); 1002 INIT_LIST_HEAD(&root->delalloc_root); 1003 INIT_LIST_HEAD(&root->ordered_extents); 1004 INIT_LIST_HEAD(&root->ordered_root); 1005 INIT_LIST_HEAD(&root->reloc_dirty_list); 1006 INIT_LIST_HEAD(&root->logged_list[0]); 1007 INIT_LIST_HEAD(&root->logged_list[1]); 1008 spin_lock_init(&root->inode_lock); 1009 spin_lock_init(&root->delalloc_lock); 1010 spin_lock_init(&root->ordered_extent_lock); 1011 spin_lock_init(&root->accounting_lock); 1012 spin_lock_init(&root->log_extents_lock[0]); 1013 spin_lock_init(&root->log_extents_lock[1]); 1014 spin_lock_init(&root->qgroup_meta_rsv_lock); 1015 mutex_init(&root->objectid_mutex); 1016 mutex_init(&root->log_mutex); 1017 mutex_init(&root->ordered_extent_mutex); 1018 mutex_init(&root->delalloc_mutex); 1019 init_waitqueue_head(&root->qgroup_flush_wait); 1020 init_waitqueue_head(&root->log_writer_wait); 1021 init_waitqueue_head(&root->log_commit_wait[0]); 1022 init_waitqueue_head(&root->log_commit_wait[1]); 1023 INIT_LIST_HEAD(&root->log_ctxs[0]); 1024 INIT_LIST_HEAD(&root->log_ctxs[1]); 1025 atomic_set(&root->log_commit[0], 0); 1026 atomic_set(&root->log_commit[1], 0); 1027 atomic_set(&root->log_writers, 0); 1028 atomic_set(&root->log_batch, 0); 1029 refcount_set(&root->refs, 1); 1030 atomic_set(&root->snapshot_force_cow, 0); 1031 atomic_set(&root->nr_swapfiles, 0); 1032 root->log_transid = 0; 1033 root->log_transid_committed = -1; 1034 root->last_log_commit = 0; 1035 root->anon_dev = 0; 1036 if (!dummy) { 1037 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1038 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1039 extent_io_tree_init(fs_info, &root->log_csum_range, 1040 IO_TREE_LOG_CSUM_RANGE, NULL); 1041 } 1042 1043 spin_lock_init(&root->root_item_lock); 1044 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1045 #ifdef CONFIG_BTRFS_DEBUG 1046 INIT_LIST_HEAD(&root->leak_list); 1047 spin_lock(&fs_info->fs_roots_radix_lock); 1048 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1049 spin_unlock(&fs_info->fs_roots_radix_lock); 1050 #endif 1051 } 1052 1053 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1054 u64 objectid, gfp_t flags) 1055 { 1056 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1057 if (root) 1058 __setup_root(root, fs_info, objectid); 1059 return root; 1060 } 1061 1062 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1063 /* Should only be used by the testing infrastructure */ 1064 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1065 { 1066 struct btrfs_root *root; 1067 1068 if (!fs_info) 1069 return ERR_PTR(-EINVAL); 1070 1071 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1072 if (!root) 1073 return ERR_PTR(-ENOMEM); 1074 1075 /* We don't use the stripesize in selftest, set it as sectorsize */ 1076 root->alloc_bytenr = 0; 1077 1078 return root; 1079 } 1080 #endif 1081 1082 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 1083 { 1084 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 1085 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 1086 1087 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 1088 } 1089 1090 static int global_root_key_cmp(const void *k, const struct rb_node *node) 1091 { 1092 const struct btrfs_key *key = k; 1093 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 1094 1095 return btrfs_comp_cpu_keys(key, &root->root_key); 1096 } 1097 1098 int btrfs_global_root_insert(struct btrfs_root *root) 1099 { 1100 struct btrfs_fs_info *fs_info = root->fs_info; 1101 struct rb_node *tmp; 1102 1103 write_lock(&fs_info->global_root_lock); 1104 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1105 write_unlock(&fs_info->global_root_lock); 1106 ASSERT(!tmp); 1107 1108 return tmp ? -EEXIST : 0; 1109 } 1110 1111 void btrfs_global_root_delete(struct btrfs_root *root) 1112 { 1113 struct btrfs_fs_info *fs_info = root->fs_info; 1114 1115 write_lock(&fs_info->global_root_lock); 1116 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1117 write_unlock(&fs_info->global_root_lock); 1118 } 1119 1120 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1121 struct btrfs_key *key) 1122 { 1123 struct rb_node *node; 1124 struct btrfs_root *root = NULL; 1125 1126 read_lock(&fs_info->global_root_lock); 1127 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1128 if (node) 1129 root = container_of(node, struct btrfs_root, rb_node); 1130 read_unlock(&fs_info->global_root_lock); 1131 1132 return root; 1133 } 1134 1135 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1136 { 1137 struct btrfs_block_group *block_group; 1138 u64 ret; 1139 1140 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1141 return 0; 1142 1143 if (bytenr) 1144 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1145 else 1146 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1147 ASSERT(block_group); 1148 if (!block_group) 1149 return 0; 1150 ret = block_group->global_root_id; 1151 btrfs_put_block_group(block_group); 1152 1153 return ret; 1154 } 1155 1156 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1157 { 1158 struct btrfs_key key = { 1159 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1160 .type = BTRFS_ROOT_ITEM_KEY, 1161 .offset = btrfs_global_root_id(fs_info, bytenr), 1162 }; 1163 1164 return btrfs_global_root(fs_info, &key); 1165 } 1166 1167 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1168 { 1169 struct btrfs_key key = { 1170 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1171 .type = BTRFS_ROOT_ITEM_KEY, 1172 .offset = btrfs_global_root_id(fs_info, bytenr), 1173 }; 1174 1175 return btrfs_global_root(fs_info, &key); 1176 } 1177 1178 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1179 { 1180 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1181 return fs_info->block_group_root; 1182 return btrfs_extent_root(fs_info, 0); 1183 } 1184 1185 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1186 u64 objectid) 1187 { 1188 struct btrfs_fs_info *fs_info = trans->fs_info; 1189 struct extent_buffer *leaf; 1190 struct btrfs_root *tree_root = fs_info->tree_root; 1191 struct btrfs_root *root; 1192 struct btrfs_key key; 1193 unsigned int nofs_flag; 1194 int ret = 0; 1195 1196 /* 1197 * We're holding a transaction handle, so use a NOFS memory allocation 1198 * context to avoid deadlock if reclaim happens. 1199 */ 1200 nofs_flag = memalloc_nofs_save(); 1201 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1202 memalloc_nofs_restore(nofs_flag); 1203 if (!root) 1204 return ERR_PTR(-ENOMEM); 1205 1206 root->root_key.objectid = objectid; 1207 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1208 root->root_key.offset = 0; 1209 1210 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1211 BTRFS_NESTING_NORMAL); 1212 if (IS_ERR(leaf)) { 1213 ret = PTR_ERR(leaf); 1214 leaf = NULL; 1215 goto fail; 1216 } 1217 1218 root->node = leaf; 1219 btrfs_mark_buffer_dirty(leaf); 1220 1221 root->commit_root = btrfs_root_node(root); 1222 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1223 1224 btrfs_set_root_flags(&root->root_item, 0); 1225 btrfs_set_root_limit(&root->root_item, 0); 1226 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1227 btrfs_set_root_generation(&root->root_item, trans->transid); 1228 btrfs_set_root_level(&root->root_item, 0); 1229 btrfs_set_root_refs(&root->root_item, 1); 1230 btrfs_set_root_used(&root->root_item, leaf->len); 1231 btrfs_set_root_last_snapshot(&root->root_item, 0); 1232 btrfs_set_root_dirid(&root->root_item, 0); 1233 if (is_fstree(objectid)) 1234 generate_random_guid(root->root_item.uuid); 1235 else 1236 export_guid(root->root_item.uuid, &guid_null); 1237 btrfs_set_root_drop_level(&root->root_item, 0); 1238 1239 btrfs_tree_unlock(leaf); 1240 1241 key.objectid = objectid; 1242 key.type = BTRFS_ROOT_ITEM_KEY; 1243 key.offset = 0; 1244 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1245 if (ret) 1246 goto fail; 1247 1248 return root; 1249 1250 fail: 1251 btrfs_put_root(root); 1252 1253 return ERR_PTR(ret); 1254 } 1255 1256 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1257 struct btrfs_fs_info *fs_info) 1258 { 1259 struct btrfs_root *root; 1260 1261 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1262 if (!root) 1263 return ERR_PTR(-ENOMEM); 1264 1265 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1266 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1267 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1268 1269 return root; 1270 } 1271 1272 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1273 struct btrfs_root *root) 1274 { 1275 struct extent_buffer *leaf; 1276 1277 /* 1278 * DON'T set SHAREABLE bit for log trees. 1279 * 1280 * Log trees are not exposed to user space thus can't be snapshotted, 1281 * and they go away before a real commit is actually done. 1282 * 1283 * They do store pointers to file data extents, and those reference 1284 * counts still get updated (along with back refs to the log tree). 1285 */ 1286 1287 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1288 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1289 if (IS_ERR(leaf)) 1290 return PTR_ERR(leaf); 1291 1292 root->node = leaf; 1293 1294 btrfs_mark_buffer_dirty(root->node); 1295 btrfs_tree_unlock(root->node); 1296 1297 return 0; 1298 } 1299 1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1301 struct btrfs_fs_info *fs_info) 1302 { 1303 struct btrfs_root *log_root; 1304 1305 log_root = alloc_log_tree(trans, fs_info); 1306 if (IS_ERR(log_root)) 1307 return PTR_ERR(log_root); 1308 1309 if (!btrfs_is_zoned(fs_info)) { 1310 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1311 1312 if (ret) { 1313 btrfs_put_root(log_root); 1314 return ret; 1315 } 1316 } 1317 1318 WARN_ON(fs_info->log_root_tree); 1319 fs_info->log_root_tree = log_root; 1320 return 0; 1321 } 1322 1323 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1324 struct btrfs_root *root) 1325 { 1326 struct btrfs_fs_info *fs_info = root->fs_info; 1327 struct btrfs_root *log_root; 1328 struct btrfs_inode_item *inode_item; 1329 int ret; 1330 1331 log_root = alloc_log_tree(trans, fs_info); 1332 if (IS_ERR(log_root)) 1333 return PTR_ERR(log_root); 1334 1335 ret = btrfs_alloc_log_tree_node(trans, log_root); 1336 if (ret) { 1337 btrfs_put_root(log_root); 1338 return ret; 1339 } 1340 1341 log_root->last_trans = trans->transid; 1342 log_root->root_key.offset = root->root_key.objectid; 1343 1344 inode_item = &log_root->root_item.inode; 1345 btrfs_set_stack_inode_generation(inode_item, 1); 1346 btrfs_set_stack_inode_size(inode_item, 3); 1347 btrfs_set_stack_inode_nlink(inode_item, 1); 1348 btrfs_set_stack_inode_nbytes(inode_item, 1349 fs_info->nodesize); 1350 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1351 1352 btrfs_set_root_node(&log_root->root_item, log_root->node); 1353 1354 WARN_ON(root->log_root); 1355 root->log_root = log_root; 1356 root->log_transid = 0; 1357 root->log_transid_committed = -1; 1358 root->last_log_commit = 0; 1359 return 0; 1360 } 1361 1362 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1363 struct btrfs_path *path, 1364 struct btrfs_key *key) 1365 { 1366 struct btrfs_root *root; 1367 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1368 u64 generation; 1369 int ret; 1370 int level; 1371 1372 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1373 if (!root) 1374 return ERR_PTR(-ENOMEM); 1375 1376 ret = btrfs_find_root(tree_root, key, path, 1377 &root->root_item, &root->root_key); 1378 if (ret) { 1379 if (ret > 0) 1380 ret = -ENOENT; 1381 goto fail; 1382 } 1383 1384 generation = btrfs_root_generation(&root->root_item); 1385 level = btrfs_root_level(&root->root_item); 1386 root->node = read_tree_block(fs_info, 1387 btrfs_root_bytenr(&root->root_item), 1388 key->objectid, generation, level, NULL); 1389 if (IS_ERR(root->node)) { 1390 ret = PTR_ERR(root->node); 1391 root->node = NULL; 1392 goto fail; 1393 } 1394 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1395 ret = -EIO; 1396 goto fail; 1397 } 1398 1399 /* 1400 * For real fs, and not log/reloc trees, root owner must 1401 * match its root node owner 1402 */ 1403 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1404 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1405 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1406 root->root_key.objectid != btrfs_header_owner(root->node)) { 1407 btrfs_crit(fs_info, 1408 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1409 root->root_key.objectid, root->node->start, 1410 btrfs_header_owner(root->node), 1411 root->root_key.objectid); 1412 ret = -EUCLEAN; 1413 goto fail; 1414 } 1415 root->commit_root = btrfs_root_node(root); 1416 return root; 1417 fail: 1418 btrfs_put_root(root); 1419 return ERR_PTR(ret); 1420 } 1421 1422 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1423 struct btrfs_key *key) 1424 { 1425 struct btrfs_root *root; 1426 struct btrfs_path *path; 1427 1428 path = btrfs_alloc_path(); 1429 if (!path) 1430 return ERR_PTR(-ENOMEM); 1431 root = read_tree_root_path(tree_root, path, key); 1432 btrfs_free_path(path); 1433 1434 return root; 1435 } 1436 1437 /* 1438 * Initialize subvolume root in-memory structure 1439 * 1440 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1441 */ 1442 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1443 { 1444 int ret; 1445 unsigned int nofs_flag; 1446 1447 /* 1448 * We might be called under a transaction (e.g. indirect backref 1449 * resolution) which could deadlock if it triggers memory reclaim 1450 */ 1451 nofs_flag = memalloc_nofs_save(); 1452 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1453 memalloc_nofs_restore(nofs_flag); 1454 if (ret) 1455 goto fail; 1456 1457 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1458 !btrfs_is_data_reloc_root(root)) { 1459 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1460 btrfs_check_and_init_root_item(&root->root_item); 1461 } 1462 1463 /* 1464 * Don't assign anonymous block device to roots that are not exposed to 1465 * userspace, the id pool is limited to 1M 1466 */ 1467 if (is_fstree(root->root_key.objectid) && 1468 btrfs_root_refs(&root->root_item) > 0) { 1469 if (!anon_dev) { 1470 ret = get_anon_bdev(&root->anon_dev); 1471 if (ret) 1472 goto fail; 1473 } else { 1474 root->anon_dev = anon_dev; 1475 } 1476 } 1477 1478 mutex_lock(&root->objectid_mutex); 1479 ret = btrfs_init_root_free_objectid(root); 1480 if (ret) { 1481 mutex_unlock(&root->objectid_mutex); 1482 goto fail; 1483 } 1484 1485 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1486 1487 mutex_unlock(&root->objectid_mutex); 1488 1489 return 0; 1490 fail: 1491 /* The caller is responsible to call btrfs_free_fs_root */ 1492 return ret; 1493 } 1494 1495 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1496 u64 root_id) 1497 { 1498 struct btrfs_root *root; 1499 1500 spin_lock(&fs_info->fs_roots_radix_lock); 1501 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1502 (unsigned long)root_id); 1503 if (root) 1504 root = btrfs_grab_root(root); 1505 spin_unlock(&fs_info->fs_roots_radix_lock); 1506 return root; 1507 } 1508 1509 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1510 u64 objectid) 1511 { 1512 struct btrfs_key key = { 1513 .objectid = objectid, 1514 .type = BTRFS_ROOT_ITEM_KEY, 1515 .offset = 0, 1516 }; 1517 1518 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1519 return btrfs_grab_root(fs_info->tree_root); 1520 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1521 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1522 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1523 return btrfs_grab_root(fs_info->chunk_root); 1524 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1525 return btrfs_grab_root(fs_info->dev_root); 1526 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1527 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1528 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1529 return btrfs_grab_root(fs_info->quota_root) ? 1530 fs_info->quota_root : ERR_PTR(-ENOENT); 1531 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1532 return btrfs_grab_root(fs_info->uuid_root) ? 1533 fs_info->uuid_root : ERR_PTR(-ENOENT); 1534 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1535 return btrfs_grab_root(fs_info->block_group_root) ? 1536 fs_info->block_group_root : ERR_PTR(-ENOENT); 1537 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1538 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1539 1540 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1541 } 1542 return NULL; 1543 } 1544 1545 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1546 struct btrfs_root *root) 1547 { 1548 int ret; 1549 1550 ret = radix_tree_preload(GFP_NOFS); 1551 if (ret) 1552 return ret; 1553 1554 spin_lock(&fs_info->fs_roots_radix_lock); 1555 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1556 (unsigned long)root->root_key.objectid, 1557 root); 1558 if (ret == 0) { 1559 btrfs_grab_root(root); 1560 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1561 } 1562 spin_unlock(&fs_info->fs_roots_radix_lock); 1563 radix_tree_preload_end(); 1564 1565 return ret; 1566 } 1567 1568 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1569 { 1570 #ifdef CONFIG_BTRFS_DEBUG 1571 struct btrfs_root *root; 1572 1573 while (!list_empty(&fs_info->allocated_roots)) { 1574 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1575 1576 root = list_first_entry(&fs_info->allocated_roots, 1577 struct btrfs_root, leak_list); 1578 btrfs_err(fs_info, "leaked root %s refcount %d", 1579 btrfs_root_name(&root->root_key, buf), 1580 refcount_read(&root->refs)); 1581 while (refcount_read(&root->refs) > 1) 1582 btrfs_put_root(root); 1583 btrfs_put_root(root); 1584 } 1585 #endif 1586 } 1587 1588 static void free_global_roots(struct btrfs_fs_info *fs_info) 1589 { 1590 struct btrfs_root *root; 1591 struct rb_node *node; 1592 1593 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1594 root = rb_entry(node, struct btrfs_root, rb_node); 1595 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1596 btrfs_put_root(root); 1597 } 1598 } 1599 1600 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1601 { 1602 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1603 percpu_counter_destroy(&fs_info->delalloc_bytes); 1604 percpu_counter_destroy(&fs_info->ordered_bytes); 1605 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1606 btrfs_free_csum_hash(fs_info); 1607 btrfs_free_stripe_hash_table(fs_info); 1608 btrfs_free_ref_cache(fs_info); 1609 kfree(fs_info->balance_ctl); 1610 kfree(fs_info->delayed_root); 1611 free_global_roots(fs_info); 1612 btrfs_put_root(fs_info->tree_root); 1613 btrfs_put_root(fs_info->chunk_root); 1614 btrfs_put_root(fs_info->dev_root); 1615 btrfs_put_root(fs_info->quota_root); 1616 btrfs_put_root(fs_info->uuid_root); 1617 btrfs_put_root(fs_info->fs_root); 1618 btrfs_put_root(fs_info->data_reloc_root); 1619 btrfs_put_root(fs_info->block_group_root); 1620 btrfs_check_leaked_roots(fs_info); 1621 btrfs_extent_buffer_leak_debug_check(fs_info); 1622 kfree(fs_info->super_copy); 1623 kfree(fs_info->super_for_commit); 1624 kfree(fs_info->subpage_info); 1625 kvfree(fs_info); 1626 } 1627 1628 1629 /* 1630 * Get an in-memory reference of a root structure. 1631 * 1632 * For essential trees like root/extent tree, we grab it from fs_info directly. 1633 * For subvolume trees, we check the cached filesystem roots first. If not 1634 * found, then read it from disk and add it to cached fs roots. 1635 * 1636 * Caller should release the root by calling btrfs_put_root() after the usage. 1637 * 1638 * NOTE: Reloc and log trees can't be read by this function as they share the 1639 * same root objectid. 1640 * 1641 * @objectid: root id 1642 * @anon_dev: preallocated anonymous block device number for new roots, 1643 * pass 0 for new allocation. 1644 * @check_ref: whether to check root item references, If true, return -ENOENT 1645 * for orphan roots 1646 */ 1647 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1648 u64 objectid, dev_t anon_dev, 1649 bool check_ref) 1650 { 1651 struct btrfs_root *root; 1652 struct btrfs_path *path; 1653 struct btrfs_key key; 1654 int ret; 1655 1656 root = btrfs_get_global_root(fs_info, objectid); 1657 if (root) 1658 return root; 1659 again: 1660 root = btrfs_lookup_fs_root(fs_info, objectid); 1661 if (root) { 1662 /* Shouldn't get preallocated anon_dev for cached roots */ 1663 ASSERT(!anon_dev); 1664 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1665 btrfs_put_root(root); 1666 return ERR_PTR(-ENOENT); 1667 } 1668 return root; 1669 } 1670 1671 key.objectid = objectid; 1672 key.type = BTRFS_ROOT_ITEM_KEY; 1673 key.offset = (u64)-1; 1674 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1675 if (IS_ERR(root)) 1676 return root; 1677 1678 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1679 ret = -ENOENT; 1680 goto fail; 1681 } 1682 1683 ret = btrfs_init_fs_root(root, anon_dev); 1684 if (ret) 1685 goto fail; 1686 1687 path = btrfs_alloc_path(); 1688 if (!path) { 1689 ret = -ENOMEM; 1690 goto fail; 1691 } 1692 key.objectid = BTRFS_ORPHAN_OBJECTID; 1693 key.type = BTRFS_ORPHAN_ITEM_KEY; 1694 key.offset = objectid; 1695 1696 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1697 btrfs_free_path(path); 1698 if (ret < 0) 1699 goto fail; 1700 if (ret == 0) 1701 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1702 1703 ret = btrfs_insert_fs_root(fs_info, root); 1704 if (ret) { 1705 if (ret == -EEXIST) { 1706 btrfs_put_root(root); 1707 goto again; 1708 } 1709 goto fail; 1710 } 1711 return root; 1712 fail: 1713 /* 1714 * If our caller provided us an anonymous device, then it's his 1715 * responsibility to free it in case we fail. So we have to set our 1716 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1717 * and once again by our caller. 1718 */ 1719 if (anon_dev) 1720 root->anon_dev = 0; 1721 btrfs_put_root(root); 1722 return ERR_PTR(ret); 1723 } 1724 1725 /* 1726 * Get in-memory reference of a root structure 1727 * 1728 * @objectid: tree objectid 1729 * @check_ref: if set, verify that the tree exists and the item has at least 1730 * one reference 1731 */ 1732 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1733 u64 objectid, bool check_ref) 1734 { 1735 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1736 } 1737 1738 /* 1739 * Get in-memory reference of a root structure, created as new, optionally pass 1740 * the anonymous block device id 1741 * 1742 * @objectid: tree objectid 1743 * @anon_dev: if zero, allocate a new anonymous block device or use the 1744 * parameter value 1745 */ 1746 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1747 u64 objectid, dev_t anon_dev) 1748 { 1749 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1750 } 1751 1752 /* 1753 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1754 * @fs_info: the fs_info 1755 * @objectid: the objectid we need to lookup 1756 * 1757 * This is exclusively used for backref walking, and exists specifically because 1758 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1759 * creation time, which means we may have to read the tree_root in order to look 1760 * up a fs root that is not in memory. If the root is not in memory we will 1761 * read the tree root commit root and look up the fs root from there. This is a 1762 * temporary root, it will not be inserted into the radix tree as it doesn't 1763 * have the most uptodate information, it'll simply be discarded once the 1764 * backref code is finished using the root. 1765 */ 1766 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1767 struct btrfs_path *path, 1768 u64 objectid) 1769 { 1770 struct btrfs_root *root; 1771 struct btrfs_key key; 1772 1773 ASSERT(path->search_commit_root && path->skip_locking); 1774 1775 /* 1776 * This can return -ENOENT if we ask for a root that doesn't exist, but 1777 * since this is called via the backref walking code we won't be looking 1778 * up a root that doesn't exist, unless there's corruption. So if root 1779 * != NULL just return it. 1780 */ 1781 root = btrfs_get_global_root(fs_info, objectid); 1782 if (root) 1783 return root; 1784 1785 root = btrfs_lookup_fs_root(fs_info, objectid); 1786 if (root) 1787 return root; 1788 1789 key.objectid = objectid; 1790 key.type = BTRFS_ROOT_ITEM_KEY; 1791 key.offset = (u64)-1; 1792 root = read_tree_root_path(fs_info->tree_root, path, &key); 1793 btrfs_release_path(path); 1794 1795 return root; 1796 } 1797 1798 static int cleaner_kthread(void *arg) 1799 { 1800 struct btrfs_fs_info *fs_info = arg; 1801 int again; 1802 1803 while (1) { 1804 again = 0; 1805 1806 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1807 1808 /* Make the cleaner go to sleep early. */ 1809 if (btrfs_need_cleaner_sleep(fs_info)) 1810 goto sleep; 1811 1812 /* 1813 * Do not do anything if we might cause open_ctree() to block 1814 * before we have finished mounting the filesystem. 1815 */ 1816 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1817 goto sleep; 1818 1819 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1820 goto sleep; 1821 1822 /* 1823 * Avoid the problem that we change the status of the fs 1824 * during the above check and trylock. 1825 */ 1826 if (btrfs_need_cleaner_sleep(fs_info)) { 1827 mutex_unlock(&fs_info->cleaner_mutex); 1828 goto sleep; 1829 } 1830 1831 btrfs_run_delayed_iputs(fs_info); 1832 1833 again = btrfs_clean_one_deleted_snapshot(fs_info); 1834 mutex_unlock(&fs_info->cleaner_mutex); 1835 1836 /* 1837 * The defragger has dealt with the R/O remount and umount, 1838 * needn't do anything special here. 1839 */ 1840 btrfs_run_defrag_inodes(fs_info); 1841 1842 /* 1843 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1844 * with relocation (btrfs_relocate_chunk) and relocation 1845 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1846 * after acquiring fs_info->reclaim_bgs_lock. So we 1847 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1848 * unused block groups. 1849 */ 1850 btrfs_delete_unused_bgs(fs_info); 1851 1852 /* 1853 * Reclaim block groups in the reclaim_bgs list after we deleted 1854 * all unused block_groups. This possibly gives us some more free 1855 * space. 1856 */ 1857 btrfs_reclaim_bgs(fs_info); 1858 sleep: 1859 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1860 if (kthread_should_park()) 1861 kthread_parkme(); 1862 if (kthread_should_stop()) 1863 return 0; 1864 if (!again) { 1865 set_current_state(TASK_INTERRUPTIBLE); 1866 schedule(); 1867 __set_current_state(TASK_RUNNING); 1868 } 1869 } 1870 } 1871 1872 static int transaction_kthread(void *arg) 1873 { 1874 struct btrfs_root *root = arg; 1875 struct btrfs_fs_info *fs_info = root->fs_info; 1876 struct btrfs_trans_handle *trans; 1877 struct btrfs_transaction *cur; 1878 u64 transid; 1879 time64_t delta; 1880 unsigned long delay; 1881 bool cannot_commit; 1882 1883 do { 1884 cannot_commit = false; 1885 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1886 mutex_lock(&fs_info->transaction_kthread_mutex); 1887 1888 spin_lock(&fs_info->trans_lock); 1889 cur = fs_info->running_transaction; 1890 if (!cur) { 1891 spin_unlock(&fs_info->trans_lock); 1892 goto sleep; 1893 } 1894 1895 delta = ktime_get_seconds() - cur->start_time; 1896 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1897 cur->state < TRANS_STATE_COMMIT_START && 1898 delta < fs_info->commit_interval) { 1899 spin_unlock(&fs_info->trans_lock); 1900 delay -= msecs_to_jiffies((delta - 1) * 1000); 1901 delay = min(delay, 1902 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1903 goto sleep; 1904 } 1905 transid = cur->transid; 1906 spin_unlock(&fs_info->trans_lock); 1907 1908 /* If the file system is aborted, this will always fail. */ 1909 trans = btrfs_attach_transaction(root); 1910 if (IS_ERR(trans)) { 1911 if (PTR_ERR(trans) != -ENOENT) 1912 cannot_commit = true; 1913 goto sleep; 1914 } 1915 if (transid == trans->transid) { 1916 btrfs_commit_transaction(trans); 1917 } else { 1918 btrfs_end_transaction(trans); 1919 } 1920 sleep: 1921 wake_up_process(fs_info->cleaner_kthread); 1922 mutex_unlock(&fs_info->transaction_kthread_mutex); 1923 1924 if (BTRFS_FS_ERROR(fs_info)) 1925 btrfs_cleanup_transaction(fs_info); 1926 if (!kthread_should_stop() && 1927 (!btrfs_transaction_blocked(fs_info) || 1928 cannot_commit)) 1929 schedule_timeout_interruptible(delay); 1930 } while (!kthread_should_stop()); 1931 return 0; 1932 } 1933 1934 /* 1935 * This will find the highest generation in the array of root backups. The 1936 * index of the highest array is returned, or -EINVAL if we can't find 1937 * anything. 1938 * 1939 * We check to make sure the array is valid by comparing the 1940 * generation of the latest root in the array with the generation 1941 * in the super block. If they don't match we pitch it. 1942 */ 1943 static int find_newest_super_backup(struct btrfs_fs_info *info) 1944 { 1945 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1946 u64 cur; 1947 struct btrfs_root_backup *root_backup; 1948 int i; 1949 1950 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1951 root_backup = info->super_copy->super_roots + i; 1952 cur = btrfs_backup_tree_root_gen(root_backup); 1953 if (cur == newest_gen) 1954 return i; 1955 } 1956 1957 return -EINVAL; 1958 } 1959 1960 /* 1961 * copy all the root pointers into the super backup array. 1962 * this will bump the backup pointer by one when it is 1963 * done 1964 */ 1965 static void backup_super_roots(struct btrfs_fs_info *info) 1966 { 1967 const int next_backup = info->backup_root_index; 1968 struct btrfs_root_backup *root_backup; 1969 1970 root_backup = info->super_for_commit->super_roots + next_backup; 1971 1972 /* 1973 * make sure all of our padding and empty slots get zero filled 1974 * regardless of which ones we use today 1975 */ 1976 memset(root_backup, 0, sizeof(*root_backup)); 1977 1978 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1979 1980 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1981 btrfs_set_backup_tree_root_gen(root_backup, 1982 btrfs_header_generation(info->tree_root->node)); 1983 1984 btrfs_set_backup_tree_root_level(root_backup, 1985 btrfs_header_level(info->tree_root->node)); 1986 1987 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1988 btrfs_set_backup_chunk_root_gen(root_backup, 1989 btrfs_header_generation(info->chunk_root->node)); 1990 btrfs_set_backup_chunk_root_level(root_backup, 1991 btrfs_header_level(info->chunk_root->node)); 1992 1993 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1994 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1995 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1996 1997 btrfs_set_backup_extent_root(root_backup, 1998 extent_root->node->start); 1999 btrfs_set_backup_extent_root_gen(root_backup, 2000 btrfs_header_generation(extent_root->node)); 2001 btrfs_set_backup_extent_root_level(root_backup, 2002 btrfs_header_level(extent_root->node)); 2003 2004 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 2005 btrfs_set_backup_csum_root_gen(root_backup, 2006 btrfs_header_generation(csum_root->node)); 2007 btrfs_set_backup_csum_root_level(root_backup, 2008 btrfs_header_level(csum_root->node)); 2009 } 2010 2011 /* 2012 * we might commit during log recovery, which happens before we set 2013 * the fs_root. Make sure it is valid before we fill it in. 2014 */ 2015 if (info->fs_root && info->fs_root->node) { 2016 btrfs_set_backup_fs_root(root_backup, 2017 info->fs_root->node->start); 2018 btrfs_set_backup_fs_root_gen(root_backup, 2019 btrfs_header_generation(info->fs_root->node)); 2020 btrfs_set_backup_fs_root_level(root_backup, 2021 btrfs_header_level(info->fs_root->node)); 2022 } 2023 2024 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2025 btrfs_set_backup_dev_root_gen(root_backup, 2026 btrfs_header_generation(info->dev_root->node)); 2027 btrfs_set_backup_dev_root_level(root_backup, 2028 btrfs_header_level(info->dev_root->node)); 2029 2030 btrfs_set_backup_total_bytes(root_backup, 2031 btrfs_super_total_bytes(info->super_copy)); 2032 btrfs_set_backup_bytes_used(root_backup, 2033 btrfs_super_bytes_used(info->super_copy)); 2034 btrfs_set_backup_num_devices(root_backup, 2035 btrfs_super_num_devices(info->super_copy)); 2036 2037 /* 2038 * if we don't copy this out to the super_copy, it won't get remembered 2039 * for the next commit 2040 */ 2041 memcpy(&info->super_copy->super_roots, 2042 &info->super_for_commit->super_roots, 2043 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2044 } 2045 2046 /* 2047 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2048 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2049 * 2050 * fs_info - filesystem whose backup roots need to be read 2051 * priority - priority of backup root required 2052 * 2053 * Returns backup root index on success and -EINVAL otherwise. 2054 */ 2055 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2056 { 2057 int backup_index = find_newest_super_backup(fs_info); 2058 struct btrfs_super_block *super = fs_info->super_copy; 2059 struct btrfs_root_backup *root_backup; 2060 2061 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2062 if (priority == 0) 2063 return backup_index; 2064 2065 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2066 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2067 } else { 2068 return -EINVAL; 2069 } 2070 2071 root_backup = super->super_roots + backup_index; 2072 2073 btrfs_set_super_generation(super, 2074 btrfs_backup_tree_root_gen(root_backup)); 2075 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2076 btrfs_set_super_root_level(super, 2077 btrfs_backup_tree_root_level(root_backup)); 2078 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2079 2080 /* 2081 * Fixme: the total bytes and num_devices need to match or we should 2082 * need a fsck 2083 */ 2084 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2085 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2086 2087 return backup_index; 2088 } 2089 2090 /* helper to cleanup workers */ 2091 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2092 { 2093 btrfs_destroy_workqueue(fs_info->fixup_workers); 2094 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2095 btrfs_destroy_workqueue(fs_info->hipri_workers); 2096 btrfs_destroy_workqueue(fs_info->workers); 2097 if (fs_info->endio_workers) 2098 destroy_workqueue(fs_info->endio_workers); 2099 if (fs_info->endio_raid56_workers) 2100 destroy_workqueue(fs_info->endio_raid56_workers); 2101 if (fs_info->rmw_workers) 2102 destroy_workqueue(fs_info->rmw_workers); 2103 if (fs_info->compressed_write_workers) 2104 destroy_workqueue(fs_info->compressed_write_workers); 2105 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2106 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2107 btrfs_destroy_workqueue(fs_info->delayed_workers); 2108 btrfs_destroy_workqueue(fs_info->caching_workers); 2109 btrfs_destroy_workqueue(fs_info->flush_workers); 2110 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2111 if (fs_info->discard_ctl.discard_workers) 2112 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2113 /* 2114 * Now that all other work queues are destroyed, we can safely destroy 2115 * the queues used for metadata I/O, since tasks from those other work 2116 * queues can do metadata I/O operations. 2117 */ 2118 if (fs_info->endio_meta_workers) 2119 destroy_workqueue(fs_info->endio_meta_workers); 2120 } 2121 2122 static void free_root_extent_buffers(struct btrfs_root *root) 2123 { 2124 if (root) { 2125 free_extent_buffer(root->node); 2126 free_extent_buffer(root->commit_root); 2127 root->node = NULL; 2128 root->commit_root = NULL; 2129 } 2130 } 2131 2132 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2133 { 2134 struct btrfs_root *root, *tmp; 2135 2136 rbtree_postorder_for_each_entry_safe(root, tmp, 2137 &fs_info->global_root_tree, 2138 rb_node) 2139 free_root_extent_buffers(root); 2140 } 2141 2142 /* helper to cleanup tree roots */ 2143 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2144 { 2145 free_root_extent_buffers(info->tree_root); 2146 2147 free_global_root_pointers(info); 2148 free_root_extent_buffers(info->dev_root); 2149 free_root_extent_buffers(info->quota_root); 2150 free_root_extent_buffers(info->uuid_root); 2151 free_root_extent_buffers(info->fs_root); 2152 free_root_extent_buffers(info->data_reloc_root); 2153 free_root_extent_buffers(info->block_group_root); 2154 if (free_chunk_root) 2155 free_root_extent_buffers(info->chunk_root); 2156 } 2157 2158 void btrfs_put_root(struct btrfs_root *root) 2159 { 2160 if (!root) 2161 return; 2162 2163 if (refcount_dec_and_test(&root->refs)) { 2164 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2165 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2166 if (root->anon_dev) 2167 free_anon_bdev(root->anon_dev); 2168 btrfs_drew_lock_destroy(&root->snapshot_lock); 2169 free_root_extent_buffers(root); 2170 #ifdef CONFIG_BTRFS_DEBUG 2171 spin_lock(&root->fs_info->fs_roots_radix_lock); 2172 list_del_init(&root->leak_list); 2173 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2174 #endif 2175 kfree(root); 2176 } 2177 } 2178 2179 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2180 { 2181 int ret; 2182 struct btrfs_root *gang[8]; 2183 int i; 2184 2185 while (!list_empty(&fs_info->dead_roots)) { 2186 gang[0] = list_entry(fs_info->dead_roots.next, 2187 struct btrfs_root, root_list); 2188 list_del(&gang[0]->root_list); 2189 2190 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2191 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2192 btrfs_put_root(gang[0]); 2193 } 2194 2195 while (1) { 2196 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2197 (void **)gang, 0, 2198 ARRAY_SIZE(gang)); 2199 if (!ret) 2200 break; 2201 for (i = 0; i < ret; i++) 2202 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2203 } 2204 } 2205 2206 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2207 { 2208 mutex_init(&fs_info->scrub_lock); 2209 atomic_set(&fs_info->scrubs_running, 0); 2210 atomic_set(&fs_info->scrub_pause_req, 0); 2211 atomic_set(&fs_info->scrubs_paused, 0); 2212 atomic_set(&fs_info->scrub_cancel_req, 0); 2213 init_waitqueue_head(&fs_info->scrub_pause_wait); 2214 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2215 } 2216 2217 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2218 { 2219 spin_lock_init(&fs_info->balance_lock); 2220 mutex_init(&fs_info->balance_mutex); 2221 atomic_set(&fs_info->balance_pause_req, 0); 2222 atomic_set(&fs_info->balance_cancel_req, 0); 2223 fs_info->balance_ctl = NULL; 2224 init_waitqueue_head(&fs_info->balance_wait_q); 2225 atomic_set(&fs_info->reloc_cancel_req, 0); 2226 } 2227 2228 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2229 { 2230 struct inode *inode = fs_info->btree_inode; 2231 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2232 fs_info->tree_root); 2233 2234 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2235 set_nlink(inode, 1); 2236 /* 2237 * we set the i_size on the btree inode to the max possible int. 2238 * the real end of the address space is determined by all of 2239 * the devices in the system 2240 */ 2241 inode->i_size = OFFSET_MAX; 2242 inode->i_mapping->a_ops = &btree_aops; 2243 2244 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2245 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2246 IO_TREE_BTREE_INODE_IO, NULL); 2247 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2248 2249 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2250 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2251 BTRFS_I(inode)->location.type = 0; 2252 BTRFS_I(inode)->location.offset = 0; 2253 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2254 __insert_inode_hash(inode, hash); 2255 } 2256 2257 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2258 { 2259 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2260 init_rwsem(&fs_info->dev_replace.rwsem); 2261 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2262 } 2263 2264 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2265 { 2266 spin_lock_init(&fs_info->qgroup_lock); 2267 mutex_init(&fs_info->qgroup_ioctl_lock); 2268 fs_info->qgroup_tree = RB_ROOT; 2269 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2270 fs_info->qgroup_seq = 1; 2271 fs_info->qgroup_ulist = NULL; 2272 fs_info->qgroup_rescan_running = false; 2273 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2274 mutex_init(&fs_info->qgroup_rescan_lock); 2275 } 2276 2277 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2278 { 2279 u32 max_active = fs_info->thread_pool_size; 2280 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2281 2282 fs_info->workers = 2283 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2284 fs_info->hipri_workers = 2285 btrfs_alloc_workqueue(fs_info, "worker-high", 2286 flags | WQ_HIGHPRI, max_active, 16); 2287 2288 fs_info->delalloc_workers = 2289 btrfs_alloc_workqueue(fs_info, "delalloc", 2290 flags, max_active, 2); 2291 2292 fs_info->flush_workers = 2293 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2294 flags, max_active, 0); 2295 2296 fs_info->caching_workers = 2297 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2298 2299 fs_info->fixup_workers = 2300 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2301 2302 fs_info->endio_workers = 2303 alloc_workqueue("btrfs-endio", flags, max_active); 2304 fs_info->endio_meta_workers = 2305 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2306 fs_info->endio_raid56_workers = 2307 alloc_workqueue("btrfs-endio-raid56", flags, max_active); 2308 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2309 fs_info->endio_write_workers = 2310 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2311 max_active, 2); 2312 fs_info->compressed_write_workers = 2313 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2314 fs_info->endio_freespace_worker = 2315 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2316 max_active, 0); 2317 fs_info->delayed_workers = 2318 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2319 max_active, 0); 2320 fs_info->qgroup_rescan_workers = 2321 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2322 fs_info->discard_ctl.discard_workers = 2323 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2324 2325 if (!(fs_info->workers && fs_info->hipri_workers && 2326 fs_info->delalloc_workers && fs_info->flush_workers && 2327 fs_info->endio_workers && fs_info->endio_meta_workers && 2328 fs_info->compressed_write_workers && 2329 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2330 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2331 fs_info->caching_workers && fs_info->fixup_workers && 2332 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2333 fs_info->discard_ctl.discard_workers)) { 2334 return -ENOMEM; 2335 } 2336 2337 return 0; 2338 } 2339 2340 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2341 { 2342 struct crypto_shash *csum_shash; 2343 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2344 2345 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2346 2347 if (IS_ERR(csum_shash)) { 2348 btrfs_err(fs_info, "error allocating %s hash for checksum", 2349 csum_driver); 2350 return PTR_ERR(csum_shash); 2351 } 2352 2353 fs_info->csum_shash = csum_shash; 2354 2355 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2356 btrfs_super_csum_name(csum_type), 2357 crypto_shash_driver_name(csum_shash)); 2358 return 0; 2359 } 2360 2361 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2362 struct btrfs_fs_devices *fs_devices) 2363 { 2364 int ret; 2365 struct btrfs_root *log_tree_root; 2366 struct btrfs_super_block *disk_super = fs_info->super_copy; 2367 u64 bytenr = btrfs_super_log_root(disk_super); 2368 int level = btrfs_super_log_root_level(disk_super); 2369 2370 if (fs_devices->rw_devices == 0) { 2371 btrfs_warn(fs_info, "log replay required on RO media"); 2372 return -EIO; 2373 } 2374 2375 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2376 GFP_KERNEL); 2377 if (!log_tree_root) 2378 return -ENOMEM; 2379 2380 log_tree_root->node = read_tree_block(fs_info, bytenr, 2381 BTRFS_TREE_LOG_OBJECTID, 2382 fs_info->generation + 1, level, 2383 NULL); 2384 if (IS_ERR(log_tree_root->node)) { 2385 btrfs_warn(fs_info, "failed to read log tree"); 2386 ret = PTR_ERR(log_tree_root->node); 2387 log_tree_root->node = NULL; 2388 btrfs_put_root(log_tree_root); 2389 return ret; 2390 } 2391 if (!extent_buffer_uptodate(log_tree_root->node)) { 2392 btrfs_err(fs_info, "failed to read log tree"); 2393 btrfs_put_root(log_tree_root); 2394 return -EIO; 2395 } 2396 2397 /* returns with log_tree_root freed on success */ 2398 ret = btrfs_recover_log_trees(log_tree_root); 2399 if (ret) { 2400 btrfs_handle_fs_error(fs_info, ret, 2401 "Failed to recover log tree"); 2402 btrfs_put_root(log_tree_root); 2403 return ret; 2404 } 2405 2406 if (sb_rdonly(fs_info->sb)) { 2407 ret = btrfs_commit_super(fs_info); 2408 if (ret) 2409 return ret; 2410 } 2411 2412 return 0; 2413 } 2414 2415 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2416 struct btrfs_path *path, u64 objectid, 2417 const char *name) 2418 { 2419 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2420 struct btrfs_root *root; 2421 u64 max_global_id = 0; 2422 int ret; 2423 struct btrfs_key key = { 2424 .objectid = objectid, 2425 .type = BTRFS_ROOT_ITEM_KEY, 2426 .offset = 0, 2427 }; 2428 bool found = false; 2429 2430 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2431 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2432 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2433 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2434 return 0; 2435 } 2436 2437 while (1) { 2438 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2439 if (ret < 0) 2440 break; 2441 2442 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2443 ret = btrfs_next_leaf(tree_root, path); 2444 if (ret) { 2445 if (ret > 0) 2446 ret = 0; 2447 break; 2448 } 2449 } 2450 ret = 0; 2451 2452 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2453 if (key.objectid != objectid) 2454 break; 2455 btrfs_release_path(path); 2456 2457 /* 2458 * Just worry about this for extent tree, it'll be the same for 2459 * everybody. 2460 */ 2461 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2462 max_global_id = max(max_global_id, key.offset); 2463 2464 found = true; 2465 root = read_tree_root_path(tree_root, path, &key); 2466 if (IS_ERR(root)) { 2467 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2468 ret = PTR_ERR(root); 2469 break; 2470 } 2471 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2472 ret = btrfs_global_root_insert(root); 2473 if (ret) { 2474 btrfs_put_root(root); 2475 break; 2476 } 2477 key.offset++; 2478 } 2479 btrfs_release_path(path); 2480 2481 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2482 fs_info->nr_global_roots = max_global_id + 1; 2483 2484 if (!found || ret) { 2485 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2486 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2487 2488 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2489 ret = ret ? ret : -ENOENT; 2490 else 2491 ret = 0; 2492 btrfs_err(fs_info, "failed to load root %s", name); 2493 } 2494 return ret; 2495 } 2496 2497 static int load_global_roots(struct btrfs_root *tree_root) 2498 { 2499 struct btrfs_path *path; 2500 int ret = 0; 2501 2502 path = btrfs_alloc_path(); 2503 if (!path) 2504 return -ENOMEM; 2505 2506 ret = load_global_roots_objectid(tree_root, path, 2507 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2508 if (ret) 2509 goto out; 2510 ret = load_global_roots_objectid(tree_root, path, 2511 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2512 if (ret) 2513 goto out; 2514 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2515 goto out; 2516 ret = load_global_roots_objectid(tree_root, path, 2517 BTRFS_FREE_SPACE_TREE_OBJECTID, 2518 "free space"); 2519 out: 2520 btrfs_free_path(path); 2521 return ret; 2522 } 2523 2524 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2525 { 2526 struct btrfs_root *tree_root = fs_info->tree_root; 2527 struct btrfs_root *root; 2528 struct btrfs_key location; 2529 int ret; 2530 2531 BUG_ON(!fs_info->tree_root); 2532 2533 ret = load_global_roots(tree_root); 2534 if (ret) 2535 return ret; 2536 2537 location.type = BTRFS_ROOT_ITEM_KEY; 2538 location.offset = 0; 2539 2540 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2541 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2542 root = btrfs_read_tree_root(tree_root, &location); 2543 if (IS_ERR(root)) { 2544 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2545 ret = PTR_ERR(root); 2546 goto out; 2547 } 2548 } else { 2549 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2550 fs_info->block_group_root = root; 2551 } 2552 } 2553 2554 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2555 root = btrfs_read_tree_root(tree_root, &location); 2556 if (IS_ERR(root)) { 2557 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2558 ret = PTR_ERR(root); 2559 goto out; 2560 } 2561 } else { 2562 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2563 fs_info->dev_root = root; 2564 } 2565 /* Initialize fs_info for all devices in any case */ 2566 ret = btrfs_init_devices_late(fs_info); 2567 if (ret) 2568 goto out; 2569 2570 /* 2571 * This tree can share blocks with some other fs tree during relocation 2572 * and we need a proper setup by btrfs_get_fs_root 2573 */ 2574 root = btrfs_get_fs_root(tree_root->fs_info, 2575 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2576 if (IS_ERR(root)) { 2577 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2578 ret = PTR_ERR(root); 2579 goto out; 2580 } 2581 } else { 2582 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2583 fs_info->data_reloc_root = root; 2584 } 2585 2586 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2587 root = btrfs_read_tree_root(tree_root, &location); 2588 if (!IS_ERR(root)) { 2589 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2590 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2591 fs_info->quota_root = root; 2592 } 2593 2594 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2595 root = btrfs_read_tree_root(tree_root, &location); 2596 if (IS_ERR(root)) { 2597 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2598 ret = PTR_ERR(root); 2599 if (ret != -ENOENT) 2600 goto out; 2601 } 2602 } else { 2603 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2604 fs_info->uuid_root = root; 2605 } 2606 2607 return 0; 2608 out: 2609 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2610 location.objectid, ret); 2611 return ret; 2612 } 2613 2614 /* 2615 * Real super block validation 2616 * NOTE: super csum type and incompat features will not be checked here. 2617 * 2618 * @sb: super block to check 2619 * @mirror_num: the super block number to check its bytenr: 2620 * 0 the primary (1st) sb 2621 * 1, 2 2nd and 3rd backup copy 2622 * -1 skip bytenr check 2623 */ 2624 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2625 struct btrfs_super_block *sb, int mirror_num) 2626 { 2627 u64 nodesize = btrfs_super_nodesize(sb); 2628 u64 sectorsize = btrfs_super_sectorsize(sb); 2629 int ret = 0; 2630 2631 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2632 btrfs_err(fs_info, "no valid FS found"); 2633 ret = -EINVAL; 2634 } 2635 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2636 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2637 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2638 ret = -EINVAL; 2639 } 2640 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2641 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2642 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2643 ret = -EINVAL; 2644 } 2645 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2646 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2647 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2648 ret = -EINVAL; 2649 } 2650 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2651 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2652 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2653 ret = -EINVAL; 2654 } 2655 2656 /* 2657 * Check sectorsize and nodesize first, other check will need it. 2658 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2659 */ 2660 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2661 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2662 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2663 ret = -EINVAL; 2664 } 2665 2666 /* 2667 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2668 * 2669 * We can support 16K sectorsize with 64K page size without problem, 2670 * but such sectorsize/pagesize combination doesn't make much sense. 2671 * 4K will be our future standard, PAGE_SIZE is supported from the very 2672 * beginning. 2673 */ 2674 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2675 btrfs_err(fs_info, 2676 "sectorsize %llu not yet supported for page size %lu", 2677 sectorsize, PAGE_SIZE); 2678 ret = -EINVAL; 2679 } 2680 2681 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2682 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2683 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2684 ret = -EINVAL; 2685 } 2686 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2687 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2688 le32_to_cpu(sb->__unused_leafsize), nodesize); 2689 ret = -EINVAL; 2690 } 2691 2692 /* Root alignment check */ 2693 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2694 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2695 btrfs_super_root(sb)); 2696 ret = -EINVAL; 2697 } 2698 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2699 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2700 btrfs_super_chunk_root(sb)); 2701 ret = -EINVAL; 2702 } 2703 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2704 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2705 btrfs_super_log_root(sb)); 2706 ret = -EINVAL; 2707 } 2708 2709 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2710 BTRFS_FSID_SIZE)) { 2711 btrfs_err(fs_info, 2712 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2713 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2714 ret = -EINVAL; 2715 } 2716 2717 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2718 memcmp(fs_info->fs_devices->metadata_uuid, 2719 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2720 btrfs_err(fs_info, 2721 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2722 fs_info->super_copy->metadata_uuid, 2723 fs_info->fs_devices->metadata_uuid); 2724 ret = -EINVAL; 2725 } 2726 2727 /* 2728 * Artificial requirement for block-group-tree to force newer features 2729 * (free-space-tree, no-holes) so the test matrix is smaller. 2730 */ 2731 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2732 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2733 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2734 btrfs_err(fs_info, 2735 "block-group-tree feature requires fres-space-tree and no-holes"); 2736 ret = -EINVAL; 2737 } 2738 2739 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2740 BTRFS_FSID_SIZE) != 0) { 2741 btrfs_err(fs_info, 2742 "dev_item UUID does not match metadata fsid: %pU != %pU", 2743 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2744 ret = -EINVAL; 2745 } 2746 2747 /* 2748 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2749 * done later 2750 */ 2751 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2752 btrfs_err(fs_info, "bytes_used is too small %llu", 2753 btrfs_super_bytes_used(sb)); 2754 ret = -EINVAL; 2755 } 2756 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2757 btrfs_err(fs_info, "invalid stripesize %u", 2758 btrfs_super_stripesize(sb)); 2759 ret = -EINVAL; 2760 } 2761 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2762 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2763 btrfs_super_num_devices(sb)); 2764 if (btrfs_super_num_devices(sb) == 0) { 2765 btrfs_err(fs_info, "number of devices is 0"); 2766 ret = -EINVAL; 2767 } 2768 2769 if (mirror_num >= 0 && 2770 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2771 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2772 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2773 ret = -EINVAL; 2774 } 2775 2776 /* 2777 * Obvious sys_chunk_array corruptions, it must hold at least one key 2778 * and one chunk 2779 */ 2780 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2781 btrfs_err(fs_info, "system chunk array too big %u > %u", 2782 btrfs_super_sys_array_size(sb), 2783 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2784 ret = -EINVAL; 2785 } 2786 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2787 + sizeof(struct btrfs_chunk)) { 2788 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2789 btrfs_super_sys_array_size(sb), 2790 sizeof(struct btrfs_disk_key) 2791 + sizeof(struct btrfs_chunk)); 2792 ret = -EINVAL; 2793 } 2794 2795 /* 2796 * The generation is a global counter, we'll trust it more than the others 2797 * but it's still possible that it's the one that's wrong. 2798 */ 2799 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2800 btrfs_warn(fs_info, 2801 "suspicious: generation < chunk_root_generation: %llu < %llu", 2802 btrfs_super_generation(sb), 2803 btrfs_super_chunk_root_generation(sb)); 2804 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2805 && btrfs_super_cache_generation(sb) != (u64)-1) 2806 btrfs_warn(fs_info, 2807 "suspicious: generation < cache_generation: %llu < %llu", 2808 btrfs_super_generation(sb), 2809 btrfs_super_cache_generation(sb)); 2810 2811 return ret; 2812 } 2813 2814 /* 2815 * Validation of super block at mount time. 2816 * Some checks already done early at mount time, like csum type and incompat 2817 * flags will be skipped. 2818 */ 2819 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2820 { 2821 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2822 } 2823 2824 /* 2825 * Validation of super block at write time. 2826 * Some checks like bytenr check will be skipped as their values will be 2827 * overwritten soon. 2828 * Extra checks like csum type and incompat flags will be done here. 2829 */ 2830 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2831 struct btrfs_super_block *sb) 2832 { 2833 int ret; 2834 2835 ret = btrfs_validate_super(fs_info, sb, -1); 2836 if (ret < 0) 2837 goto out; 2838 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2839 ret = -EUCLEAN; 2840 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2841 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2842 goto out; 2843 } 2844 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2845 ret = -EUCLEAN; 2846 btrfs_err(fs_info, 2847 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2848 btrfs_super_incompat_flags(sb), 2849 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2850 goto out; 2851 } 2852 out: 2853 if (ret < 0) 2854 btrfs_err(fs_info, 2855 "super block corruption detected before writing it to disk"); 2856 return ret; 2857 } 2858 2859 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2860 { 2861 int ret = 0; 2862 2863 root->node = read_tree_block(root->fs_info, bytenr, 2864 root->root_key.objectid, gen, level, NULL); 2865 if (IS_ERR(root->node)) { 2866 ret = PTR_ERR(root->node); 2867 root->node = NULL; 2868 return ret; 2869 } 2870 if (!extent_buffer_uptodate(root->node)) { 2871 free_extent_buffer(root->node); 2872 root->node = NULL; 2873 return -EIO; 2874 } 2875 2876 btrfs_set_root_node(&root->root_item, root->node); 2877 root->commit_root = btrfs_root_node(root); 2878 btrfs_set_root_refs(&root->root_item, 1); 2879 return ret; 2880 } 2881 2882 static int load_important_roots(struct btrfs_fs_info *fs_info) 2883 { 2884 struct btrfs_super_block *sb = fs_info->super_copy; 2885 u64 gen, bytenr; 2886 int level, ret; 2887 2888 bytenr = btrfs_super_root(sb); 2889 gen = btrfs_super_generation(sb); 2890 level = btrfs_super_root_level(sb); 2891 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2892 if (ret) { 2893 btrfs_warn(fs_info, "couldn't read tree root"); 2894 return ret; 2895 } 2896 return 0; 2897 } 2898 2899 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2900 { 2901 int backup_index = find_newest_super_backup(fs_info); 2902 struct btrfs_super_block *sb = fs_info->super_copy; 2903 struct btrfs_root *tree_root = fs_info->tree_root; 2904 bool handle_error = false; 2905 int ret = 0; 2906 int i; 2907 2908 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2909 if (handle_error) { 2910 if (!IS_ERR(tree_root->node)) 2911 free_extent_buffer(tree_root->node); 2912 tree_root->node = NULL; 2913 2914 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2915 break; 2916 2917 free_root_pointers(fs_info, 0); 2918 2919 /* 2920 * Don't use the log in recovery mode, it won't be 2921 * valid 2922 */ 2923 btrfs_set_super_log_root(sb, 0); 2924 2925 /* We can't trust the free space cache either */ 2926 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2927 2928 ret = read_backup_root(fs_info, i); 2929 backup_index = ret; 2930 if (ret < 0) 2931 return ret; 2932 } 2933 2934 ret = load_important_roots(fs_info); 2935 if (ret) { 2936 handle_error = true; 2937 continue; 2938 } 2939 2940 /* 2941 * No need to hold btrfs_root::objectid_mutex since the fs 2942 * hasn't been fully initialised and we are the only user 2943 */ 2944 ret = btrfs_init_root_free_objectid(tree_root); 2945 if (ret < 0) { 2946 handle_error = true; 2947 continue; 2948 } 2949 2950 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2951 2952 ret = btrfs_read_roots(fs_info); 2953 if (ret < 0) { 2954 handle_error = true; 2955 continue; 2956 } 2957 2958 /* All successful */ 2959 fs_info->generation = btrfs_header_generation(tree_root->node); 2960 fs_info->last_trans_committed = fs_info->generation; 2961 fs_info->last_reloc_trans = 0; 2962 2963 /* Always begin writing backup roots after the one being used */ 2964 if (backup_index < 0) { 2965 fs_info->backup_root_index = 0; 2966 } else { 2967 fs_info->backup_root_index = backup_index + 1; 2968 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2969 } 2970 break; 2971 } 2972 2973 return ret; 2974 } 2975 2976 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2977 { 2978 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2979 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2980 INIT_LIST_HEAD(&fs_info->trans_list); 2981 INIT_LIST_HEAD(&fs_info->dead_roots); 2982 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2983 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2984 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2985 spin_lock_init(&fs_info->delalloc_root_lock); 2986 spin_lock_init(&fs_info->trans_lock); 2987 spin_lock_init(&fs_info->fs_roots_radix_lock); 2988 spin_lock_init(&fs_info->delayed_iput_lock); 2989 spin_lock_init(&fs_info->defrag_inodes_lock); 2990 spin_lock_init(&fs_info->super_lock); 2991 spin_lock_init(&fs_info->buffer_lock); 2992 spin_lock_init(&fs_info->unused_bgs_lock); 2993 spin_lock_init(&fs_info->treelog_bg_lock); 2994 spin_lock_init(&fs_info->zone_active_bgs_lock); 2995 spin_lock_init(&fs_info->relocation_bg_lock); 2996 rwlock_init(&fs_info->tree_mod_log_lock); 2997 rwlock_init(&fs_info->global_root_lock); 2998 mutex_init(&fs_info->unused_bg_unpin_mutex); 2999 mutex_init(&fs_info->reclaim_bgs_lock); 3000 mutex_init(&fs_info->reloc_mutex); 3001 mutex_init(&fs_info->delalloc_root_mutex); 3002 mutex_init(&fs_info->zoned_meta_io_lock); 3003 mutex_init(&fs_info->zoned_data_reloc_io_lock); 3004 seqlock_init(&fs_info->profiles_lock); 3005 3006 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 3007 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 3008 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 3009 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 3010 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 3011 BTRFS_LOCKDEP_TRANS_COMMIT_START); 3012 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 3013 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 3014 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 3015 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 3016 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 3017 BTRFS_LOCKDEP_TRANS_COMPLETED); 3018 3019 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 3020 INIT_LIST_HEAD(&fs_info->space_info); 3021 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 3022 INIT_LIST_HEAD(&fs_info->unused_bgs); 3023 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 3024 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 3025 #ifdef CONFIG_BTRFS_DEBUG 3026 INIT_LIST_HEAD(&fs_info->allocated_roots); 3027 INIT_LIST_HEAD(&fs_info->allocated_ebs); 3028 spin_lock_init(&fs_info->eb_leak_lock); 3029 #endif 3030 extent_map_tree_init(&fs_info->mapping_tree); 3031 btrfs_init_block_rsv(&fs_info->global_block_rsv, 3032 BTRFS_BLOCK_RSV_GLOBAL); 3033 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 3034 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 3035 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 3036 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 3037 BTRFS_BLOCK_RSV_DELOPS); 3038 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 3039 BTRFS_BLOCK_RSV_DELREFS); 3040 3041 atomic_set(&fs_info->async_delalloc_pages, 0); 3042 atomic_set(&fs_info->defrag_running, 0); 3043 atomic_set(&fs_info->nr_delayed_iputs, 0); 3044 atomic64_set(&fs_info->tree_mod_seq, 0); 3045 fs_info->global_root_tree = RB_ROOT; 3046 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 3047 fs_info->metadata_ratio = 0; 3048 fs_info->defrag_inodes = RB_ROOT; 3049 atomic64_set(&fs_info->free_chunk_space, 0); 3050 fs_info->tree_mod_log = RB_ROOT; 3051 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 3052 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 3053 btrfs_init_ref_verify(fs_info); 3054 3055 fs_info->thread_pool_size = min_t(unsigned long, 3056 num_online_cpus() + 2, 8); 3057 3058 INIT_LIST_HEAD(&fs_info->ordered_roots); 3059 spin_lock_init(&fs_info->ordered_root_lock); 3060 3061 btrfs_init_scrub(fs_info); 3062 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3063 fs_info->check_integrity_print_mask = 0; 3064 #endif 3065 btrfs_init_balance(fs_info); 3066 btrfs_init_async_reclaim_work(fs_info); 3067 3068 rwlock_init(&fs_info->block_group_cache_lock); 3069 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 3070 3071 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 3072 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 3073 3074 mutex_init(&fs_info->ordered_operations_mutex); 3075 mutex_init(&fs_info->tree_log_mutex); 3076 mutex_init(&fs_info->chunk_mutex); 3077 mutex_init(&fs_info->transaction_kthread_mutex); 3078 mutex_init(&fs_info->cleaner_mutex); 3079 mutex_init(&fs_info->ro_block_group_mutex); 3080 init_rwsem(&fs_info->commit_root_sem); 3081 init_rwsem(&fs_info->cleanup_work_sem); 3082 init_rwsem(&fs_info->subvol_sem); 3083 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3084 3085 btrfs_init_dev_replace_locks(fs_info); 3086 btrfs_init_qgroup(fs_info); 3087 btrfs_discard_init(fs_info); 3088 3089 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3090 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3091 3092 init_waitqueue_head(&fs_info->transaction_throttle); 3093 init_waitqueue_head(&fs_info->transaction_wait); 3094 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3095 init_waitqueue_head(&fs_info->async_submit_wait); 3096 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3097 3098 /* Usable values until the real ones are cached from the superblock */ 3099 fs_info->nodesize = 4096; 3100 fs_info->sectorsize = 4096; 3101 fs_info->sectorsize_bits = ilog2(4096); 3102 fs_info->stripesize = 4096; 3103 3104 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3105 3106 spin_lock_init(&fs_info->swapfile_pins_lock); 3107 fs_info->swapfile_pins = RB_ROOT; 3108 3109 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3110 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3111 } 3112 3113 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3114 { 3115 int ret; 3116 3117 fs_info->sb = sb; 3118 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3119 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3120 3121 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3122 if (ret) 3123 return ret; 3124 3125 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3126 if (ret) 3127 return ret; 3128 3129 fs_info->dirty_metadata_batch = PAGE_SIZE * 3130 (1 + ilog2(nr_cpu_ids)); 3131 3132 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3133 if (ret) 3134 return ret; 3135 3136 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3137 GFP_KERNEL); 3138 if (ret) 3139 return ret; 3140 3141 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3142 GFP_KERNEL); 3143 if (!fs_info->delayed_root) 3144 return -ENOMEM; 3145 btrfs_init_delayed_root(fs_info->delayed_root); 3146 3147 if (sb_rdonly(sb)) 3148 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3149 3150 return btrfs_alloc_stripe_hash_table(fs_info); 3151 } 3152 3153 static int btrfs_uuid_rescan_kthread(void *data) 3154 { 3155 struct btrfs_fs_info *fs_info = data; 3156 int ret; 3157 3158 /* 3159 * 1st step is to iterate through the existing UUID tree and 3160 * to delete all entries that contain outdated data. 3161 * 2nd step is to add all missing entries to the UUID tree. 3162 */ 3163 ret = btrfs_uuid_tree_iterate(fs_info); 3164 if (ret < 0) { 3165 if (ret != -EINTR) 3166 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3167 ret); 3168 up(&fs_info->uuid_tree_rescan_sem); 3169 return ret; 3170 } 3171 return btrfs_uuid_scan_kthread(data); 3172 } 3173 3174 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3175 { 3176 struct task_struct *task; 3177 3178 down(&fs_info->uuid_tree_rescan_sem); 3179 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3180 if (IS_ERR(task)) { 3181 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3182 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3183 up(&fs_info->uuid_tree_rescan_sem); 3184 return PTR_ERR(task); 3185 } 3186 3187 return 0; 3188 } 3189 3190 /* 3191 * Some options only have meaning at mount time and shouldn't persist across 3192 * remounts, or be displayed. Clear these at the end of mount and remount 3193 * code paths. 3194 */ 3195 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3196 { 3197 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3198 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3199 } 3200 3201 /* 3202 * Mounting logic specific to read-write file systems. Shared by open_ctree 3203 * and btrfs_remount when remounting from read-only to read-write. 3204 */ 3205 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3206 { 3207 int ret; 3208 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3209 bool clear_free_space_tree = false; 3210 3211 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3212 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3213 clear_free_space_tree = true; 3214 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3215 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3216 btrfs_warn(fs_info, "free space tree is invalid"); 3217 clear_free_space_tree = true; 3218 } 3219 3220 if (clear_free_space_tree) { 3221 btrfs_info(fs_info, "clearing free space tree"); 3222 ret = btrfs_clear_free_space_tree(fs_info); 3223 if (ret) { 3224 btrfs_warn(fs_info, 3225 "failed to clear free space tree: %d", ret); 3226 goto out; 3227 } 3228 } 3229 3230 /* 3231 * btrfs_find_orphan_roots() is responsible for finding all the dead 3232 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3233 * them into the fs_info->fs_roots_radix tree. This must be done before 3234 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3235 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3236 * item before the root's tree is deleted - this means that if we unmount 3237 * or crash before the deletion completes, on the next mount we will not 3238 * delete what remains of the tree because the orphan item does not 3239 * exists anymore, which is what tells us we have a pending deletion. 3240 */ 3241 ret = btrfs_find_orphan_roots(fs_info); 3242 if (ret) 3243 goto out; 3244 3245 ret = btrfs_cleanup_fs_roots(fs_info); 3246 if (ret) 3247 goto out; 3248 3249 down_read(&fs_info->cleanup_work_sem); 3250 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3251 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3252 up_read(&fs_info->cleanup_work_sem); 3253 goto out; 3254 } 3255 up_read(&fs_info->cleanup_work_sem); 3256 3257 mutex_lock(&fs_info->cleaner_mutex); 3258 ret = btrfs_recover_relocation(fs_info); 3259 mutex_unlock(&fs_info->cleaner_mutex); 3260 if (ret < 0) { 3261 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3262 goto out; 3263 } 3264 3265 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3266 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3267 btrfs_info(fs_info, "creating free space tree"); 3268 ret = btrfs_create_free_space_tree(fs_info); 3269 if (ret) { 3270 btrfs_warn(fs_info, 3271 "failed to create free space tree: %d", ret); 3272 goto out; 3273 } 3274 } 3275 3276 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3277 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3278 if (ret) 3279 goto out; 3280 } 3281 3282 ret = btrfs_resume_balance_async(fs_info); 3283 if (ret) 3284 goto out; 3285 3286 ret = btrfs_resume_dev_replace_async(fs_info); 3287 if (ret) { 3288 btrfs_warn(fs_info, "failed to resume dev_replace"); 3289 goto out; 3290 } 3291 3292 btrfs_qgroup_rescan_resume(fs_info); 3293 3294 if (!fs_info->uuid_root) { 3295 btrfs_info(fs_info, "creating UUID tree"); 3296 ret = btrfs_create_uuid_tree(fs_info); 3297 if (ret) { 3298 btrfs_warn(fs_info, 3299 "failed to create the UUID tree %d", ret); 3300 goto out; 3301 } 3302 } 3303 3304 out: 3305 return ret; 3306 } 3307 3308 /* 3309 * Do various sanity and dependency checks of different features. 3310 * 3311 * This is the place for less strict checks (like for subpage or artificial 3312 * feature dependencies). 3313 * 3314 * For strict checks or possible corruption detection, see 3315 * btrfs_validate_super(). 3316 * 3317 * This should be called after btrfs_parse_options(), as some mount options 3318 * (space cache related) can modify on-disk format like free space tree and 3319 * screw up certain feature dependencies. 3320 */ 3321 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb) 3322 { 3323 struct btrfs_super_block *disk_super = fs_info->super_copy; 3324 u64 incompat = btrfs_super_incompat_flags(disk_super); 3325 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3326 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3327 3328 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3329 btrfs_err(fs_info, 3330 "cannot mount because of unknown incompat features (0x%llx)", 3331 incompat); 3332 return -EINVAL; 3333 } 3334 3335 /* Runtime limitation for mixed block groups. */ 3336 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3337 (fs_info->sectorsize != fs_info->nodesize)) { 3338 btrfs_err(fs_info, 3339 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3340 fs_info->nodesize, fs_info->sectorsize); 3341 return -EINVAL; 3342 } 3343 3344 /* Mixed backref is an always-enabled feature. */ 3345 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3346 3347 /* Set compression related flags just in case. */ 3348 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3349 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3350 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3351 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3352 3353 /* 3354 * An ancient flag, which should really be marked deprecated. 3355 * Such runtime limitation doesn't really need a incompat flag. 3356 */ 3357 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3358 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3359 3360 if (compat_ro_unsupp && !sb_rdonly(sb)) { 3361 btrfs_err(fs_info, 3362 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3363 compat_ro); 3364 return -EINVAL; 3365 } 3366 3367 /* 3368 * We have unsupported RO compat features, although RO mounted, we 3369 * should not cause any metadata writes, including log replay. 3370 * Or we could screw up whatever the new feature requires. 3371 */ 3372 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3373 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3374 btrfs_err(fs_info, 3375 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3376 compat_ro); 3377 return -EINVAL; 3378 } 3379 3380 /* 3381 * Artificial limitations for block group tree, to force 3382 * block-group-tree to rely on no-holes and free-space-tree. 3383 */ 3384 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3385 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3386 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3387 btrfs_err(fs_info, 3388 "block-group-tree feature requires no-holes and free-space-tree features"); 3389 return -EINVAL; 3390 } 3391 3392 /* 3393 * Subpage runtime limitation on v1 cache. 3394 * 3395 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3396 * we're already defaulting to v2 cache, no need to bother v1 as it's 3397 * going to be deprecated anyway. 3398 */ 3399 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3400 btrfs_warn(fs_info, 3401 "v1 space cache is not supported for page size %lu with sectorsize %u", 3402 PAGE_SIZE, fs_info->sectorsize); 3403 return -EINVAL; 3404 } 3405 3406 /* This can be called by remount, we need to protect the super block. */ 3407 spin_lock(&fs_info->super_lock); 3408 btrfs_set_super_incompat_flags(disk_super, incompat); 3409 spin_unlock(&fs_info->super_lock); 3410 3411 return 0; 3412 } 3413 3414 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3415 char *options) 3416 { 3417 u32 sectorsize; 3418 u32 nodesize; 3419 u32 stripesize; 3420 u64 generation; 3421 u64 features; 3422 u16 csum_type; 3423 struct btrfs_super_block *disk_super; 3424 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3425 struct btrfs_root *tree_root; 3426 struct btrfs_root *chunk_root; 3427 int ret; 3428 int err = -EINVAL; 3429 int level; 3430 3431 ret = init_mount_fs_info(fs_info, sb); 3432 if (ret) { 3433 err = ret; 3434 goto fail; 3435 } 3436 3437 /* These need to be init'ed before we start creating inodes and such. */ 3438 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3439 GFP_KERNEL); 3440 fs_info->tree_root = tree_root; 3441 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3442 GFP_KERNEL); 3443 fs_info->chunk_root = chunk_root; 3444 if (!tree_root || !chunk_root) { 3445 err = -ENOMEM; 3446 goto fail; 3447 } 3448 3449 fs_info->btree_inode = new_inode(sb); 3450 if (!fs_info->btree_inode) { 3451 err = -ENOMEM; 3452 goto fail; 3453 } 3454 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3455 btrfs_init_btree_inode(fs_info); 3456 3457 invalidate_bdev(fs_devices->latest_dev->bdev); 3458 3459 /* 3460 * Read super block and check the signature bytes only 3461 */ 3462 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3463 if (IS_ERR(disk_super)) { 3464 err = PTR_ERR(disk_super); 3465 goto fail_alloc; 3466 } 3467 3468 /* 3469 * Verify the type first, if that or the checksum value are 3470 * corrupted, we'll find out 3471 */ 3472 csum_type = btrfs_super_csum_type(disk_super); 3473 if (!btrfs_supported_super_csum(csum_type)) { 3474 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3475 csum_type); 3476 err = -EINVAL; 3477 btrfs_release_disk_super(disk_super); 3478 goto fail_alloc; 3479 } 3480 3481 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3482 3483 ret = btrfs_init_csum_hash(fs_info, csum_type); 3484 if (ret) { 3485 err = ret; 3486 btrfs_release_disk_super(disk_super); 3487 goto fail_alloc; 3488 } 3489 3490 /* 3491 * We want to check superblock checksum, the type is stored inside. 3492 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3493 */ 3494 if (btrfs_check_super_csum(fs_info, disk_super)) { 3495 btrfs_err(fs_info, "superblock checksum mismatch"); 3496 err = -EINVAL; 3497 btrfs_release_disk_super(disk_super); 3498 goto fail_alloc; 3499 } 3500 3501 /* 3502 * super_copy is zeroed at allocation time and we never touch the 3503 * following bytes up to INFO_SIZE, the checksum is calculated from 3504 * the whole block of INFO_SIZE 3505 */ 3506 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3507 btrfs_release_disk_super(disk_super); 3508 3509 disk_super = fs_info->super_copy; 3510 3511 3512 features = btrfs_super_flags(disk_super); 3513 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3514 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3515 btrfs_set_super_flags(disk_super, features); 3516 btrfs_info(fs_info, 3517 "found metadata UUID change in progress flag, clearing"); 3518 } 3519 3520 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3521 sizeof(*fs_info->super_for_commit)); 3522 3523 ret = btrfs_validate_mount_super(fs_info); 3524 if (ret) { 3525 btrfs_err(fs_info, "superblock contains fatal errors"); 3526 err = -EINVAL; 3527 goto fail_alloc; 3528 } 3529 3530 if (!btrfs_super_root(disk_super)) 3531 goto fail_alloc; 3532 3533 /* check FS state, whether FS is broken. */ 3534 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3535 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3536 3537 /* 3538 * In the long term, we'll store the compression type in the super 3539 * block, and it'll be used for per file compression control. 3540 */ 3541 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3542 3543 3544 /* Set up fs_info before parsing mount options */ 3545 nodesize = btrfs_super_nodesize(disk_super); 3546 sectorsize = btrfs_super_sectorsize(disk_super); 3547 stripesize = sectorsize; 3548 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3549 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3550 3551 fs_info->nodesize = nodesize; 3552 fs_info->sectorsize = sectorsize; 3553 fs_info->sectorsize_bits = ilog2(sectorsize); 3554 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3555 fs_info->stripesize = stripesize; 3556 3557 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3558 if (ret) { 3559 err = ret; 3560 goto fail_alloc; 3561 } 3562 3563 ret = btrfs_check_features(fs_info, sb); 3564 if (ret < 0) { 3565 err = ret; 3566 goto fail_alloc; 3567 } 3568 3569 if (sectorsize < PAGE_SIZE) { 3570 struct btrfs_subpage_info *subpage_info; 3571 3572 /* 3573 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3574 * going to be deprecated. 3575 * 3576 * Force to use v2 cache for subpage case. 3577 */ 3578 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3579 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3580 "forcing free space tree for sector size %u with page size %lu", 3581 sectorsize, PAGE_SIZE); 3582 3583 btrfs_warn(fs_info, 3584 "read-write for sector size %u with page size %lu is experimental", 3585 sectorsize, PAGE_SIZE); 3586 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3587 if (!subpage_info) 3588 goto fail_alloc; 3589 btrfs_init_subpage_info(subpage_info, sectorsize); 3590 fs_info->subpage_info = subpage_info; 3591 } 3592 3593 ret = btrfs_init_workqueues(fs_info); 3594 if (ret) { 3595 err = ret; 3596 goto fail_sb_buffer; 3597 } 3598 3599 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3600 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3601 3602 sb->s_blocksize = sectorsize; 3603 sb->s_blocksize_bits = blksize_bits(sectorsize); 3604 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3605 3606 mutex_lock(&fs_info->chunk_mutex); 3607 ret = btrfs_read_sys_array(fs_info); 3608 mutex_unlock(&fs_info->chunk_mutex); 3609 if (ret) { 3610 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3611 goto fail_sb_buffer; 3612 } 3613 3614 generation = btrfs_super_chunk_root_generation(disk_super); 3615 level = btrfs_super_chunk_root_level(disk_super); 3616 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3617 generation, level); 3618 if (ret) { 3619 btrfs_err(fs_info, "failed to read chunk root"); 3620 goto fail_tree_roots; 3621 } 3622 3623 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3624 offsetof(struct btrfs_header, chunk_tree_uuid), 3625 BTRFS_UUID_SIZE); 3626 3627 ret = btrfs_read_chunk_tree(fs_info); 3628 if (ret) { 3629 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3630 goto fail_tree_roots; 3631 } 3632 3633 /* 3634 * At this point we know all the devices that make this filesystem, 3635 * including the seed devices but we don't know yet if the replace 3636 * target is required. So free devices that are not part of this 3637 * filesystem but skip the replace target device which is checked 3638 * below in btrfs_init_dev_replace(). 3639 */ 3640 btrfs_free_extra_devids(fs_devices); 3641 if (!fs_devices->latest_dev->bdev) { 3642 btrfs_err(fs_info, "failed to read devices"); 3643 goto fail_tree_roots; 3644 } 3645 3646 ret = init_tree_roots(fs_info); 3647 if (ret) 3648 goto fail_tree_roots; 3649 3650 /* 3651 * Get zone type information of zoned block devices. This will also 3652 * handle emulation of a zoned filesystem if a regular device has the 3653 * zoned incompat feature flag set. 3654 */ 3655 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3656 if (ret) { 3657 btrfs_err(fs_info, 3658 "zoned: failed to read device zone info: %d", 3659 ret); 3660 goto fail_block_groups; 3661 } 3662 3663 /* 3664 * If we have a uuid root and we're not being told to rescan we need to 3665 * check the generation here so we can set the 3666 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3667 * transaction during a balance or the log replay without updating the 3668 * uuid generation, and then if we crash we would rescan the uuid tree, 3669 * even though it was perfectly fine. 3670 */ 3671 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3672 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3673 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3674 3675 ret = btrfs_verify_dev_extents(fs_info); 3676 if (ret) { 3677 btrfs_err(fs_info, 3678 "failed to verify dev extents against chunks: %d", 3679 ret); 3680 goto fail_block_groups; 3681 } 3682 ret = btrfs_recover_balance(fs_info); 3683 if (ret) { 3684 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3685 goto fail_block_groups; 3686 } 3687 3688 ret = btrfs_init_dev_stats(fs_info); 3689 if (ret) { 3690 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3691 goto fail_block_groups; 3692 } 3693 3694 ret = btrfs_init_dev_replace(fs_info); 3695 if (ret) { 3696 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3697 goto fail_block_groups; 3698 } 3699 3700 ret = btrfs_check_zoned_mode(fs_info); 3701 if (ret) { 3702 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3703 ret); 3704 goto fail_block_groups; 3705 } 3706 3707 ret = btrfs_sysfs_add_fsid(fs_devices); 3708 if (ret) { 3709 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3710 ret); 3711 goto fail_block_groups; 3712 } 3713 3714 ret = btrfs_sysfs_add_mounted(fs_info); 3715 if (ret) { 3716 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3717 goto fail_fsdev_sysfs; 3718 } 3719 3720 ret = btrfs_init_space_info(fs_info); 3721 if (ret) { 3722 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3723 goto fail_sysfs; 3724 } 3725 3726 ret = btrfs_read_block_groups(fs_info); 3727 if (ret) { 3728 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3729 goto fail_sysfs; 3730 } 3731 3732 btrfs_free_zone_cache(fs_info); 3733 3734 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3735 !btrfs_check_rw_degradable(fs_info, NULL)) { 3736 btrfs_warn(fs_info, 3737 "writable mount is not allowed due to too many missing devices"); 3738 goto fail_sysfs; 3739 } 3740 3741 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3742 "btrfs-cleaner"); 3743 if (IS_ERR(fs_info->cleaner_kthread)) 3744 goto fail_sysfs; 3745 3746 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3747 tree_root, 3748 "btrfs-transaction"); 3749 if (IS_ERR(fs_info->transaction_kthread)) 3750 goto fail_cleaner; 3751 3752 if (!btrfs_test_opt(fs_info, NOSSD) && 3753 !fs_info->fs_devices->rotating) { 3754 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3755 } 3756 3757 /* 3758 * For devices supporting discard turn on discard=async automatically, 3759 * unless it's already set or disabled. This could be turned off by 3760 * nodiscard for the same mount. 3761 */ 3762 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3763 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3764 btrfs_test_opt(fs_info, NODISCARD)) && 3765 fs_info->fs_devices->discardable) { 3766 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3767 "auto enabling async discard"); 3768 btrfs_clear_opt(fs_info->mount_opt, NODISCARD); 3769 } 3770 3771 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3772 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3773 ret = btrfsic_mount(fs_info, fs_devices, 3774 btrfs_test_opt(fs_info, 3775 CHECK_INTEGRITY_DATA) ? 1 : 0, 3776 fs_info->check_integrity_print_mask); 3777 if (ret) 3778 btrfs_warn(fs_info, 3779 "failed to initialize integrity check module: %d", 3780 ret); 3781 } 3782 #endif 3783 ret = btrfs_read_qgroup_config(fs_info); 3784 if (ret) 3785 goto fail_trans_kthread; 3786 3787 if (btrfs_build_ref_tree(fs_info)) 3788 btrfs_err(fs_info, "couldn't build ref tree"); 3789 3790 /* do not make disk changes in broken FS or nologreplay is given */ 3791 if (btrfs_super_log_root(disk_super) != 0 && 3792 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3793 btrfs_info(fs_info, "start tree-log replay"); 3794 ret = btrfs_replay_log(fs_info, fs_devices); 3795 if (ret) { 3796 err = ret; 3797 goto fail_qgroup; 3798 } 3799 } 3800 3801 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3802 if (IS_ERR(fs_info->fs_root)) { 3803 err = PTR_ERR(fs_info->fs_root); 3804 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3805 fs_info->fs_root = NULL; 3806 goto fail_qgroup; 3807 } 3808 3809 if (sb_rdonly(sb)) 3810 goto clear_oneshot; 3811 3812 ret = btrfs_start_pre_rw_mount(fs_info); 3813 if (ret) { 3814 close_ctree(fs_info); 3815 return ret; 3816 } 3817 btrfs_discard_resume(fs_info); 3818 3819 if (fs_info->uuid_root && 3820 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3821 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3822 btrfs_info(fs_info, "checking UUID tree"); 3823 ret = btrfs_check_uuid_tree(fs_info); 3824 if (ret) { 3825 btrfs_warn(fs_info, 3826 "failed to check the UUID tree: %d", ret); 3827 close_ctree(fs_info); 3828 return ret; 3829 } 3830 } 3831 3832 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3833 3834 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3835 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3836 wake_up_process(fs_info->cleaner_kthread); 3837 3838 clear_oneshot: 3839 btrfs_clear_oneshot_options(fs_info); 3840 return 0; 3841 3842 fail_qgroup: 3843 btrfs_free_qgroup_config(fs_info); 3844 fail_trans_kthread: 3845 kthread_stop(fs_info->transaction_kthread); 3846 btrfs_cleanup_transaction(fs_info); 3847 btrfs_free_fs_roots(fs_info); 3848 fail_cleaner: 3849 kthread_stop(fs_info->cleaner_kthread); 3850 3851 /* 3852 * make sure we're done with the btree inode before we stop our 3853 * kthreads 3854 */ 3855 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3856 3857 fail_sysfs: 3858 btrfs_sysfs_remove_mounted(fs_info); 3859 3860 fail_fsdev_sysfs: 3861 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3862 3863 fail_block_groups: 3864 btrfs_put_block_group_cache(fs_info); 3865 3866 fail_tree_roots: 3867 if (fs_info->data_reloc_root) 3868 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3869 free_root_pointers(fs_info, true); 3870 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3871 3872 fail_sb_buffer: 3873 btrfs_stop_all_workers(fs_info); 3874 btrfs_free_block_groups(fs_info); 3875 fail_alloc: 3876 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3877 3878 iput(fs_info->btree_inode); 3879 fail: 3880 btrfs_close_devices(fs_info->fs_devices); 3881 return err; 3882 } 3883 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3884 3885 static void btrfs_end_super_write(struct bio *bio) 3886 { 3887 struct btrfs_device *device = bio->bi_private; 3888 struct bio_vec *bvec; 3889 struct bvec_iter_all iter_all; 3890 struct page *page; 3891 3892 bio_for_each_segment_all(bvec, bio, iter_all) { 3893 page = bvec->bv_page; 3894 3895 if (bio->bi_status) { 3896 btrfs_warn_rl_in_rcu(device->fs_info, 3897 "lost page write due to IO error on %s (%d)", 3898 rcu_str_deref(device->name), 3899 blk_status_to_errno(bio->bi_status)); 3900 ClearPageUptodate(page); 3901 SetPageError(page); 3902 btrfs_dev_stat_inc_and_print(device, 3903 BTRFS_DEV_STAT_WRITE_ERRS); 3904 } else { 3905 SetPageUptodate(page); 3906 } 3907 3908 put_page(page); 3909 unlock_page(page); 3910 } 3911 3912 bio_put(bio); 3913 } 3914 3915 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3916 int copy_num, bool drop_cache) 3917 { 3918 struct btrfs_super_block *super; 3919 struct page *page; 3920 u64 bytenr, bytenr_orig; 3921 struct address_space *mapping = bdev->bd_inode->i_mapping; 3922 int ret; 3923 3924 bytenr_orig = btrfs_sb_offset(copy_num); 3925 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3926 if (ret == -ENOENT) 3927 return ERR_PTR(-EINVAL); 3928 else if (ret) 3929 return ERR_PTR(ret); 3930 3931 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3932 return ERR_PTR(-EINVAL); 3933 3934 if (drop_cache) { 3935 /* This should only be called with the primary sb. */ 3936 ASSERT(copy_num == 0); 3937 3938 /* 3939 * Drop the page of the primary superblock, so later read will 3940 * always read from the device. 3941 */ 3942 invalidate_inode_pages2_range(mapping, 3943 bytenr >> PAGE_SHIFT, 3944 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3945 } 3946 3947 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3948 if (IS_ERR(page)) 3949 return ERR_CAST(page); 3950 3951 super = page_address(page); 3952 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3953 btrfs_release_disk_super(super); 3954 return ERR_PTR(-ENODATA); 3955 } 3956 3957 if (btrfs_super_bytenr(super) != bytenr_orig) { 3958 btrfs_release_disk_super(super); 3959 return ERR_PTR(-EINVAL); 3960 } 3961 3962 return super; 3963 } 3964 3965 3966 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3967 { 3968 struct btrfs_super_block *super, *latest = NULL; 3969 int i; 3970 u64 transid = 0; 3971 3972 /* we would like to check all the supers, but that would make 3973 * a btrfs mount succeed after a mkfs from a different FS. 3974 * So, we need to add a special mount option to scan for 3975 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3976 */ 3977 for (i = 0; i < 1; i++) { 3978 super = btrfs_read_dev_one_super(bdev, i, false); 3979 if (IS_ERR(super)) 3980 continue; 3981 3982 if (!latest || btrfs_super_generation(super) > transid) { 3983 if (latest) 3984 btrfs_release_disk_super(super); 3985 3986 latest = super; 3987 transid = btrfs_super_generation(super); 3988 } 3989 } 3990 3991 return super; 3992 } 3993 3994 /* 3995 * Write superblock @sb to the @device. Do not wait for completion, all the 3996 * pages we use for writing are locked. 3997 * 3998 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3999 * the expected device size at commit time. Note that max_mirrors must be 4000 * same for write and wait phases. 4001 * 4002 * Return number of errors when page is not found or submission fails. 4003 */ 4004 static int write_dev_supers(struct btrfs_device *device, 4005 struct btrfs_super_block *sb, int max_mirrors) 4006 { 4007 struct btrfs_fs_info *fs_info = device->fs_info; 4008 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 4009 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 4010 int i; 4011 int errors = 0; 4012 int ret; 4013 u64 bytenr, bytenr_orig; 4014 4015 if (max_mirrors == 0) 4016 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4017 4018 shash->tfm = fs_info->csum_shash; 4019 4020 for (i = 0; i < max_mirrors; i++) { 4021 struct page *page; 4022 struct bio *bio; 4023 struct btrfs_super_block *disk_super; 4024 4025 bytenr_orig = btrfs_sb_offset(i); 4026 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 4027 if (ret == -ENOENT) { 4028 continue; 4029 } else if (ret < 0) { 4030 btrfs_err(device->fs_info, 4031 "couldn't get super block location for mirror %d", 4032 i); 4033 errors++; 4034 continue; 4035 } 4036 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4037 device->commit_total_bytes) 4038 break; 4039 4040 btrfs_set_super_bytenr(sb, bytenr_orig); 4041 4042 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 4043 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 4044 sb->csum); 4045 4046 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 4047 GFP_NOFS); 4048 if (!page) { 4049 btrfs_err(device->fs_info, 4050 "couldn't get super block page for bytenr %llu", 4051 bytenr); 4052 errors++; 4053 continue; 4054 } 4055 4056 /* Bump the refcount for wait_dev_supers() */ 4057 get_page(page); 4058 4059 disk_super = page_address(page); 4060 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 4061 4062 /* 4063 * Directly use bios here instead of relying on the page cache 4064 * to do I/O, so we don't lose the ability to do integrity 4065 * checking. 4066 */ 4067 bio = bio_alloc(device->bdev, 1, 4068 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 4069 GFP_NOFS); 4070 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 4071 bio->bi_private = device; 4072 bio->bi_end_io = btrfs_end_super_write; 4073 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 4074 offset_in_page(bytenr)); 4075 4076 /* 4077 * We FUA only the first super block. The others we allow to 4078 * go down lazy and there's a short window where the on-disk 4079 * copies might still contain the older version. 4080 */ 4081 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4082 bio->bi_opf |= REQ_FUA; 4083 4084 btrfsic_check_bio(bio); 4085 submit_bio(bio); 4086 4087 if (btrfs_advance_sb_log(device, i)) 4088 errors++; 4089 } 4090 return errors < i ? 0 : -1; 4091 } 4092 4093 /* 4094 * Wait for write completion of superblocks done by write_dev_supers, 4095 * @max_mirrors same for write and wait phases. 4096 * 4097 * Return number of errors when page is not found or not marked up to 4098 * date. 4099 */ 4100 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4101 { 4102 int i; 4103 int errors = 0; 4104 bool primary_failed = false; 4105 int ret; 4106 u64 bytenr; 4107 4108 if (max_mirrors == 0) 4109 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4110 4111 for (i = 0; i < max_mirrors; i++) { 4112 struct page *page; 4113 4114 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4115 if (ret == -ENOENT) { 4116 break; 4117 } else if (ret < 0) { 4118 errors++; 4119 if (i == 0) 4120 primary_failed = true; 4121 continue; 4122 } 4123 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4124 device->commit_total_bytes) 4125 break; 4126 4127 page = find_get_page(device->bdev->bd_inode->i_mapping, 4128 bytenr >> PAGE_SHIFT); 4129 if (!page) { 4130 errors++; 4131 if (i == 0) 4132 primary_failed = true; 4133 continue; 4134 } 4135 /* Page is submitted locked and unlocked once the IO completes */ 4136 wait_on_page_locked(page); 4137 if (PageError(page)) { 4138 errors++; 4139 if (i == 0) 4140 primary_failed = true; 4141 } 4142 4143 /* Drop our reference */ 4144 put_page(page); 4145 4146 /* Drop the reference from the writing run */ 4147 put_page(page); 4148 } 4149 4150 /* log error, force error return */ 4151 if (primary_failed) { 4152 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4153 device->devid); 4154 return -1; 4155 } 4156 4157 return errors < i ? 0 : -1; 4158 } 4159 4160 /* 4161 * endio for the write_dev_flush, this will wake anyone waiting 4162 * for the barrier when it is done 4163 */ 4164 static void btrfs_end_empty_barrier(struct bio *bio) 4165 { 4166 bio_uninit(bio); 4167 complete(bio->bi_private); 4168 } 4169 4170 /* 4171 * Submit a flush request to the device if it supports it. Error handling is 4172 * done in the waiting counterpart. 4173 */ 4174 static void write_dev_flush(struct btrfs_device *device) 4175 { 4176 struct bio *bio = &device->flush_bio; 4177 4178 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4179 /* 4180 * When a disk has write caching disabled, we skip submission of a bio 4181 * with flush and sync requests before writing the superblock, since 4182 * it's not needed. However when the integrity checker is enabled, this 4183 * results in reports that there are metadata blocks referred by a 4184 * superblock that were not properly flushed. So don't skip the bio 4185 * submission only when the integrity checker is enabled for the sake 4186 * of simplicity, since this is a debug tool and not meant for use in 4187 * non-debug builds. 4188 */ 4189 if (!bdev_write_cache(device->bdev)) 4190 return; 4191 #endif 4192 4193 bio_init(bio, device->bdev, NULL, 0, 4194 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4195 bio->bi_end_io = btrfs_end_empty_barrier; 4196 init_completion(&device->flush_wait); 4197 bio->bi_private = &device->flush_wait; 4198 4199 btrfsic_check_bio(bio); 4200 submit_bio(bio); 4201 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4202 } 4203 4204 /* 4205 * If the flush bio has been submitted by write_dev_flush, wait for it. 4206 */ 4207 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4208 { 4209 struct bio *bio = &device->flush_bio; 4210 4211 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4212 return BLK_STS_OK; 4213 4214 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4215 wait_for_completion_io(&device->flush_wait); 4216 4217 return bio->bi_status; 4218 } 4219 4220 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4221 { 4222 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4223 return -EIO; 4224 return 0; 4225 } 4226 4227 /* 4228 * send an empty flush down to each device in parallel, 4229 * then wait for them 4230 */ 4231 static int barrier_all_devices(struct btrfs_fs_info *info) 4232 { 4233 struct list_head *head; 4234 struct btrfs_device *dev; 4235 int errors_wait = 0; 4236 blk_status_t ret; 4237 4238 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4239 /* send down all the barriers */ 4240 head = &info->fs_devices->devices; 4241 list_for_each_entry(dev, head, dev_list) { 4242 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4243 continue; 4244 if (!dev->bdev) 4245 continue; 4246 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4247 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4248 continue; 4249 4250 write_dev_flush(dev); 4251 dev->last_flush_error = BLK_STS_OK; 4252 } 4253 4254 /* wait for all the barriers */ 4255 list_for_each_entry(dev, head, dev_list) { 4256 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4257 continue; 4258 if (!dev->bdev) { 4259 errors_wait++; 4260 continue; 4261 } 4262 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4263 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4264 continue; 4265 4266 ret = wait_dev_flush(dev); 4267 if (ret) { 4268 dev->last_flush_error = ret; 4269 btrfs_dev_stat_inc_and_print(dev, 4270 BTRFS_DEV_STAT_FLUSH_ERRS); 4271 errors_wait++; 4272 } 4273 } 4274 4275 if (errors_wait) { 4276 /* 4277 * At some point we need the status of all disks 4278 * to arrive at the volume status. So error checking 4279 * is being pushed to a separate loop. 4280 */ 4281 return check_barrier_error(info); 4282 } 4283 return 0; 4284 } 4285 4286 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4287 { 4288 int raid_type; 4289 int min_tolerated = INT_MAX; 4290 4291 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4292 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4293 min_tolerated = min_t(int, min_tolerated, 4294 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4295 tolerated_failures); 4296 4297 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4298 if (raid_type == BTRFS_RAID_SINGLE) 4299 continue; 4300 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4301 continue; 4302 min_tolerated = min_t(int, min_tolerated, 4303 btrfs_raid_array[raid_type]. 4304 tolerated_failures); 4305 } 4306 4307 if (min_tolerated == INT_MAX) { 4308 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4309 min_tolerated = 0; 4310 } 4311 4312 return min_tolerated; 4313 } 4314 4315 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4316 { 4317 struct list_head *head; 4318 struct btrfs_device *dev; 4319 struct btrfs_super_block *sb; 4320 struct btrfs_dev_item *dev_item; 4321 int ret; 4322 int do_barriers; 4323 int max_errors; 4324 int total_errors = 0; 4325 u64 flags; 4326 4327 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4328 4329 /* 4330 * max_mirrors == 0 indicates we're from commit_transaction, 4331 * not from fsync where the tree roots in fs_info have not 4332 * been consistent on disk. 4333 */ 4334 if (max_mirrors == 0) 4335 backup_super_roots(fs_info); 4336 4337 sb = fs_info->super_for_commit; 4338 dev_item = &sb->dev_item; 4339 4340 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4341 head = &fs_info->fs_devices->devices; 4342 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4343 4344 if (do_barriers) { 4345 ret = barrier_all_devices(fs_info); 4346 if (ret) { 4347 mutex_unlock( 4348 &fs_info->fs_devices->device_list_mutex); 4349 btrfs_handle_fs_error(fs_info, ret, 4350 "errors while submitting device barriers."); 4351 return ret; 4352 } 4353 } 4354 4355 list_for_each_entry(dev, head, dev_list) { 4356 if (!dev->bdev) { 4357 total_errors++; 4358 continue; 4359 } 4360 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4361 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4362 continue; 4363 4364 btrfs_set_stack_device_generation(dev_item, 0); 4365 btrfs_set_stack_device_type(dev_item, dev->type); 4366 btrfs_set_stack_device_id(dev_item, dev->devid); 4367 btrfs_set_stack_device_total_bytes(dev_item, 4368 dev->commit_total_bytes); 4369 btrfs_set_stack_device_bytes_used(dev_item, 4370 dev->commit_bytes_used); 4371 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4372 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4373 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4374 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4375 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4376 BTRFS_FSID_SIZE); 4377 4378 flags = btrfs_super_flags(sb); 4379 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4380 4381 ret = btrfs_validate_write_super(fs_info, sb); 4382 if (ret < 0) { 4383 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4384 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4385 "unexpected superblock corruption detected"); 4386 return -EUCLEAN; 4387 } 4388 4389 ret = write_dev_supers(dev, sb, max_mirrors); 4390 if (ret) 4391 total_errors++; 4392 } 4393 if (total_errors > max_errors) { 4394 btrfs_err(fs_info, "%d errors while writing supers", 4395 total_errors); 4396 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4397 4398 /* FUA is masked off if unsupported and can't be the reason */ 4399 btrfs_handle_fs_error(fs_info, -EIO, 4400 "%d errors while writing supers", 4401 total_errors); 4402 return -EIO; 4403 } 4404 4405 total_errors = 0; 4406 list_for_each_entry(dev, head, dev_list) { 4407 if (!dev->bdev) 4408 continue; 4409 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4410 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4411 continue; 4412 4413 ret = wait_dev_supers(dev, max_mirrors); 4414 if (ret) 4415 total_errors++; 4416 } 4417 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4418 if (total_errors > max_errors) { 4419 btrfs_handle_fs_error(fs_info, -EIO, 4420 "%d errors while writing supers", 4421 total_errors); 4422 return -EIO; 4423 } 4424 return 0; 4425 } 4426 4427 /* Drop a fs root from the radix tree and free it. */ 4428 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4429 struct btrfs_root *root) 4430 { 4431 bool drop_ref = false; 4432 4433 spin_lock(&fs_info->fs_roots_radix_lock); 4434 radix_tree_delete(&fs_info->fs_roots_radix, 4435 (unsigned long)root->root_key.objectid); 4436 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4437 drop_ref = true; 4438 spin_unlock(&fs_info->fs_roots_radix_lock); 4439 4440 if (BTRFS_FS_ERROR(fs_info)) { 4441 ASSERT(root->log_root == NULL); 4442 if (root->reloc_root) { 4443 btrfs_put_root(root->reloc_root); 4444 root->reloc_root = NULL; 4445 } 4446 } 4447 4448 if (drop_ref) 4449 btrfs_put_root(root); 4450 } 4451 4452 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4453 { 4454 u64 root_objectid = 0; 4455 struct btrfs_root *gang[8]; 4456 int i = 0; 4457 int err = 0; 4458 unsigned int ret = 0; 4459 4460 while (1) { 4461 spin_lock(&fs_info->fs_roots_radix_lock); 4462 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4463 (void **)gang, root_objectid, 4464 ARRAY_SIZE(gang)); 4465 if (!ret) { 4466 spin_unlock(&fs_info->fs_roots_radix_lock); 4467 break; 4468 } 4469 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4470 4471 for (i = 0; i < ret; i++) { 4472 /* Avoid to grab roots in dead_roots */ 4473 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4474 gang[i] = NULL; 4475 continue; 4476 } 4477 /* grab all the search result for later use */ 4478 gang[i] = btrfs_grab_root(gang[i]); 4479 } 4480 spin_unlock(&fs_info->fs_roots_radix_lock); 4481 4482 for (i = 0; i < ret; i++) { 4483 if (!gang[i]) 4484 continue; 4485 root_objectid = gang[i]->root_key.objectid; 4486 err = btrfs_orphan_cleanup(gang[i]); 4487 if (err) 4488 break; 4489 btrfs_put_root(gang[i]); 4490 } 4491 root_objectid++; 4492 } 4493 4494 /* release the uncleaned roots due to error */ 4495 for (; i < ret; i++) { 4496 if (gang[i]) 4497 btrfs_put_root(gang[i]); 4498 } 4499 return err; 4500 } 4501 4502 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4503 { 4504 struct btrfs_root *root = fs_info->tree_root; 4505 struct btrfs_trans_handle *trans; 4506 4507 mutex_lock(&fs_info->cleaner_mutex); 4508 btrfs_run_delayed_iputs(fs_info); 4509 mutex_unlock(&fs_info->cleaner_mutex); 4510 wake_up_process(fs_info->cleaner_kthread); 4511 4512 /* wait until ongoing cleanup work done */ 4513 down_write(&fs_info->cleanup_work_sem); 4514 up_write(&fs_info->cleanup_work_sem); 4515 4516 trans = btrfs_join_transaction(root); 4517 if (IS_ERR(trans)) 4518 return PTR_ERR(trans); 4519 return btrfs_commit_transaction(trans); 4520 } 4521 4522 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4523 { 4524 struct btrfs_transaction *trans; 4525 struct btrfs_transaction *tmp; 4526 bool found = false; 4527 4528 if (list_empty(&fs_info->trans_list)) 4529 return; 4530 4531 /* 4532 * This function is only called at the very end of close_ctree(), 4533 * thus no other running transaction, no need to take trans_lock. 4534 */ 4535 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4536 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4537 struct extent_state *cached = NULL; 4538 u64 dirty_bytes = 0; 4539 u64 cur = 0; 4540 u64 found_start; 4541 u64 found_end; 4542 4543 found = true; 4544 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4545 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4546 dirty_bytes += found_end + 1 - found_start; 4547 cur = found_end + 1; 4548 } 4549 btrfs_warn(fs_info, 4550 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4551 trans->transid, dirty_bytes); 4552 btrfs_cleanup_one_transaction(trans, fs_info); 4553 4554 if (trans == fs_info->running_transaction) 4555 fs_info->running_transaction = NULL; 4556 list_del_init(&trans->list); 4557 4558 btrfs_put_transaction(trans); 4559 trace_btrfs_transaction_commit(fs_info); 4560 } 4561 ASSERT(!found); 4562 } 4563 4564 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4565 { 4566 int ret; 4567 4568 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4569 4570 /* 4571 * If we had UNFINISHED_DROPS we could still be processing them, so 4572 * clear that bit and wake up relocation so it can stop. 4573 * We must do this before stopping the block group reclaim task, because 4574 * at btrfs_relocate_block_group() we wait for this bit, and after the 4575 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4576 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4577 * return 1. 4578 */ 4579 btrfs_wake_unfinished_drop(fs_info); 4580 4581 /* 4582 * We may have the reclaim task running and relocating a data block group, 4583 * in which case it may create delayed iputs. So stop it before we park 4584 * the cleaner kthread otherwise we can get new delayed iputs after 4585 * parking the cleaner, and that can make the async reclaim task to hang 4586 * if it's waiting for delayed iputs to complete, since the cleaner is 4587 * parked and can not run delayed iputs - this will make us hang when 4588 * trying to stop the async reclaim task. 4589 */ 4590 cancel_work_sync(&fs_info->reclaim_bgs_work); 4591 /* 4592 * We don't want the cleaner to start new transactions, add more delayed 4593 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4594 * because that frees the task_struct, and the transaction kthread might 4595 * still try to wake up the cleaner. 4596 */ 4597 kthread_park(fs_info->cleaner_kthread); 4598 4599 /* wait for the qgroup rescan worker to stop */ 4600 btrfs_qgroup_wait_for_completion(fs_info, false); 4601 4602 /* wait for the uuid_scan task to finish */ 4603 down(&fs_info->uuid_tree_rescan_sem); 4604 /* avoid complains from lockdep et al., set sem back to initial state */ 4605 up(&fs_info->uuid_tree_rescan_sem); 4606 4607 /* pause restriper - we want to resume on mount */ 4608 btrfs_pause_balance(fs_info); 4609 4610 btrfs_dev_replace_suspend_for_unmount(fs_info); 4611 4612 btrfs_scrub_cancel(fs_info); 4613 4614 /* wait for any defraggers to finish */ 4615 wait_event(fs_info->transaction_wait, 4616 (atomic_read(&fs_info->defrag_running) == 0)); 4617 4618 /* clear out the rbtree of defraggable inodes */ 4619 btrfs_cleanup_defrag_inodes(fs_info); 4620 4621 /* 4622 * After we parked the cleaner kthread, ordered extents may have 4623 * completed and created new delayed iputs. If one of the async reclaim 4624 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4625 * can hang forever trying to stop it, because if a delayed iput is 4626 * added after it ran btrfs_run_delayed_iputs() and before it called 4627 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4628 * no one else to run iputs. 4629 * 4630 * So wait for all ongoing ordered extents to complete and then run 4631 * delayed iputs. This works because once we reach this point no one 4632 * can either create new ordered extents nor create delayed iputs 4633 * through some other means. 4634 * 4635 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4636 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4637 * but the delayed iput for the respective inode is made only when doing 4638 * the final btrfs_put_ordered_extent() (which must happen at 4639 * btrfs_finish_ordered_io() when we are unmounting). 4640 */ 4641 btrfs_flush_workqueue(fs_info->endio_write_workers); 4642 /* Ordered extents for free space inodes. */ 4643 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4644 btrfs_run_delayed_iputs(fs_info); 4645 4646 cancel_work_sync(&fs_info->async_reclaim_work); 4647 cancel_work_sync(&fs_info->async_data_reclaim_work); 4648 cancel_work_sync(&fs_info->preempt_reclaim_work); 4649 4650 /* Cancel or finish ongoing discard work */ 4651 btrfs_discard_cleanup(fs_info); 4652 4653 if (!sb_rdonly(fs_info->sb)) { 4654 /* 4655 * The cleaner kthread is stopped, so do one final pass over 4656 * unused block groups. 4657 */ 4658 btrfs_delete_unused_bgs(fs_info); 4659 4660 /* 4661 * There might be existing delayed inode workers still running 4662 * and holding an empty delayed inode item. We must wait for 4663 * them to complete first because they can create a transaction. 4664 * This happens when someone calls btrfs_balance_delayed_items() 4665 * and then a transaction commit runs the same delayed nodes 4666 * before any delayed worker has done something with the nodes. 4667 * We must wait for any worker here and not at transaction 4668 * commit time since that could cause a deadlock. 4669 * This is a very rare case. 4670 */ 4671 btrfs_flush_workqueue(fs_info->delayed_workers); 4672 4673 ret = btrfs_commit_super(fs_info); 4674 if (ret) 4675 btrfs_err(fs_info, "commit super ret %d", ret); 4676 } 4677 4678 if (BTRFS_FS_ERROR(fs_info)) 4679 btrfs_error_commit_super(fs_info); 4680 4681 kthread_stop(fs_info->transaction_kthread); 4682 kthread_stop(fs_info->cleaner_kthread); 4683 4684 ASSERT(list_empty(&fs_info->delayed_iputs)); 4685 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4686 4687 if (btrfs_check_quota_leak(fs_info)) { 4688 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4689 btrfs_err(fs_info, "qgroup reserved space leaked"); 4690 } 4691 4692 btrfs_free_qgroup_config(fs_info); 4693 ASSERT(list_empty(&fs_info->delalloc_roots)); 4694 4695 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4696 btrfs_info(fs_info, "at unmount delalloc count %lld", 4697 percpu_counter_sum(&fs_info->delalloc_bytes)); 4698 } 4699 4700 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4701 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4702 percpu_counter_sum(&fs_info->ordered_bytes)); 4703 4704 btrfs_sysfs_remove_mounted(fs_info); 4705 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4706 4707 btrfs_put_block_group_cache(fs_info); 4708 4709 /* 4710 * we must make sure there is not any read request to 4711 * submit after we stopping all workers. 4712 */ 4713 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4714 btrfs_stop_all_workers(fs_info); 4715 4716 /* We shouldn't have any transaction open at this point */ 4717 warn_about_uncommitted_trans(fs_info); 4718 4719 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4720 free_root_pointers(fs_info, true); 4721 btrfs_free_fs_roots(fs_info); 4722 4723 /* 4724 * We must free the block groups after dropping the fs_roots as we could 4725 * have had an IO error and have left over tree log blocks that aren't 4726 * cleaned up until the fs roots are freed. This makes the block group 4727 * accounting appear to be wrong because there's pending reserved bytes, 4728 * so make sure we do the block group cleanup afterwards. 4729 */ 4730 btrfs_free_block_groups(fs_info); 4731 4732 iput(fs_info->btree_inode); 4733 4734 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4735 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4736 btrfsic_unmount(fs_info->fs_devices); 4737 #endif 4738 4739 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4740 btrfs_close_devices(fs_info->fs_devices); 4741 } 4742 4743 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4744 int atomic) 4745 { 4746 int ret; 4747 struct inode *btree_inode = buf->pages[0]->mapping->host; 4748 4749 ret = extent_buffer_uptodate(buf); 4750 if (!ret) 4751 return ret; 4752 4753 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4754 parent_transid, atomic); 4755 if (ret == -EAGAIN) 4756 return ret; 4757 return !ret; 4758 } 4759 4760 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4761 { 4762 struct btrfs_fs_info *fs_info = buf->fs_info; 4763 u64 transid = btrfs_header_generation(buf); 4764 int was_dirty; 4765 4766 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4767 /* 4768 * This is a fast path so only do this check if we have sanity tests 4769 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4770 * outside of the sanity tests. 4771 */ 4772 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4773 return; 4774 #endif 4775 btrfs_assert_tree_write_locked(buf); 4776 if (transid != fs_info->generation) 4777 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4778 buf->start, transid, fs_info->generation); 4779 was_dirty = set_extent_buffer_dirty(buf); 4780 if (!was_dirty) 4781 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4782 buf->len, 4783 fs_info->dirty_metadata_batch); 4784 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4785 /* 4786 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4787 * but item data not updated. 4788 * So here we should only check item pointers, not item data. 4789 */ 4790 if (btrfs_header_level(buf) == 0 && 4791 btrfs_check_leaf_relaxed(buf)) { 4792 btrfs_print_leaf(buf); 4793 ASSERT(0); 4794 } 4795 #endif 4796 } 4797 4798 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4799 int flush_delayed) 4800 { 4801 /* 4802 * looks as though older kernels can get into trouble with 4803 * this code, they end up stuck in balance_dirty_pages forever 4804 */ 4805 int ret; 4806 4807 if (current->flags & PF_MEMALLOC) 4808 return; 4809 4810 if (flush_delayed) 4811 btrfs_balance_delayed_items(fs_info); 4812 4813 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4814 BTRFS_DIRTY_METADATA_THRESH, 4815 fs_info->dirty_metadata_batch); 4816 if (ret > 0) { 4817 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4818 } 4819 } 4820 4821 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4822 { 4823 __btrfs_btree_balance_dirty(fs_info, 1); 4824 } 4825 4826 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4827 { 4828 __btrfs_btree_balance_dirty(fs_info, 0); 4829 } 4830 4831 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4832 { 4833 /* cleanup FS via transaction */ 4834 btrfs_cleanup_transaction(fs_info); 4835 4836 mutex_lock(&fs_info->cleaner_mutex); 4837 btrfs_run_delayed_iputs(fs_info); 4838 mutex_unlock(&fs_info->cleaner_mutex); 4839 4840 down_write(&fs_info->cleanup_work_sem); 4841 up_write(&fs_info->cleanup_work_sem); 4842 } 4843 4844 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4845 { 4846 struct btrfs_root *gang[8]; 4847 u64 root_objectid = 0; 4848 int ret; 4849 4850 spin_lock(&fs_info->fs_roots_radix_lock); 4851 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4852 (void **)gang, root_objectid, 4853 ARRAY_SIZE(gang))) != 0) { 4854 int i; 4855 4856 for (i = 0; i < ret; i++) 4857 gang[i] = btrfs_grab_root(gang[i]); 4858 spin_unlock(&fs_info->fs_roots_radix_lock); 4859 4860 for (i = 0; i < ret; i++) { 4861 if (!gang[i]) 4862 continue; 4863 root_objectid = gang[i]->root_key.objectid; 4864 btrfs_free_log(NULL, gang[i]); 4865 btrfs_put_root(gang[i]); 4866 } 4867 root_objectid++; 4868 spin_lock(&fs_info->fs_roots_radix_lock); 4869 } 4870 spin_unlock(&fs_info->fs_roots_radix_lock); 4871 btrfs_free_log_root_tree(NULL, fs_info); 4872 } 4873 4874 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4875 { 4876 struct btrfs_ordered_extent *ordered; 4877 4878 spin_lock(&root->ordered_extent_lock); 4879 /* 4880 * This will just short circuit the ordered completion stuff which will 4881 * make sure the ordered extent gets properly cleaned up. 4882 */ 4883 list_for_each_entry(ordered, &root->ordered_extents, 4884 root_extent_list) 4885 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4886 spin_unlock(&root->ordered_extent_lock); 4887 } 4888 4889 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4890 { 4891 struct btrfs_root *root; 4892 struct list_head splice; 4893 4894 INIT_LIST_HEAD(&splice); 4895 4896 spin_lock(&fs_info->ordered_root_lock); 4897 list_splice_init(&fs_info->ordered_roots, &splice); 4898 while (!list_empty(&splice)) { 4899 root = list_first_entry(&splice, struct btrfs_root, 4900 ordered_root); 4901 list_move_tail(&root->ordered_root, 4902 &fs_info->ordered_roots); 4903 4904 spin_unlock(&fs_info->ordered_root_lock); 4905 btrfs_destroy_ordered_extents(root); 4906 4907 cond_resched(); 4908 spin_lock(&fs_info->ordered_root_lock); 4909 } 4910 spin_unlock(&fs_info->ordered_root_lock); 4911 4912 /* 4913 * We need this here because if we've been flipped read-only we won't 4914 * get sync() from the umount, so we need to make sure any ordered 4915 * extents that haven't had their dirty pages IO start writeout yet 4916 * actually get run and error out properly. 4917 */ 4918 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4919 } 4920 4921 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4922 struct btrfs_fs_info *fs_info) 4923 { 4924 struct rb_node *node; 4925 struct btrfs_delayed_ref_root *delayed_refs; 4926 struct btrfs_delayed_ref_node *ref; 4927 int ret = 0; 4928 4929 delayed_refs = &trans->delayed_refs; 4930 4931 spin_lock(&delayed_refs->lock); 4932 if (atomic_read(&delayed_refs->num_entries) == 0) { 4933 spin_unlock(&delayed_refs->lock); 4934 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4935 return ret; 4936 } 4937 4938 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4939 struct btrfs_delayed_ref_head *head; 4940 struct rb_node *n; 4941 bool pin_bytes = false; 4942 4943 head = rb_entry(node, struct btrfs_delayed_ref_head, 4944 href_node); 4945 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4946 continue; 4947 4948 spin_lock(&head->lock); 4949 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4950 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4951 ref_node); 4952 ref->in_tree = 0; 4953 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4954 RB_CLEAR_NODE(&ref->ref_node); 4955 if (!list_empty(&ref->add_list)) 4956 list_del(&ref->add_list); 4957 atomic_dec(&delayed_refs->num_entries); 4958 btrfs_put_delayed_ref(ref); 4959 } 4960 if (head->must_insert_reserved) 4961 pin_bytes = true; 4962 btrfs_free_delayed_extent_op(head->extent_op); 4963 btrfs_delete_ref_head(delayed_refs, head); 4964 spin_unlock(&head->lock); 4965 spin_unlock(&delayed_refs->lock); 4966 mutex_unlock(&head->mutex); 4967 4968 if (pin_bytes) { 4969 struct btrfs_block_group *cache; 4970 4971 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4972 BUG_ON(!cache); 4973 4974 spin_lock(&cache->space_info->lock); 4975 spin_lock(&cache->lock); 4976 cache->pinned += head->num_bytes; 4977 btrfs_space_info_update_bytes_pinned(fs_info, 4978 cache->space_info, head->num_bytes); 4979 cache->reserved -= head->num_bytes; 4980 cache->space_info->bytes_reserved -= head->num_bytes; 4981 spin_unlock(&cache->lock); 4982 spin_unlock(&cache->space_info->lock); 4983 4984 btrfs_put_block_group(cache); 4985 4986 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4987 head->bytenr + head->num_bytes - 1); 4988 } 4989 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4990 btrfs_put_delayed_ref_head(head); 4991 cond_resched(); 4992 spin_lock(&delayed_refs->lock); 4993 } 4994 btrfs_qgroup_destroy_extent_records(trans); 4995 4996 spin_unlock(&delayed_refs->lock); 4997 4998 return ret; 4999 } 5000 5001 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 5002 { 5003 struct btrfs_inode *btrfs_inode; 5004 struct list_head splice; 5005 5006 INIT_LIST_HEAD(&splice); 5007 5008 spin_lock(&root->delalloc_lock); 5009 list_splice_init(&root->delalloc_inodes, &splice); 5010 5011 while (!list_empty(&splice)) { 5012 struct inode *inode = NULL; 5013 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 5014 delalloc_inodes); 5015 __btrfs_del_delalloc_inode(root, btrfs_inode); 5016 spin_unlock(&root->delalloc_lock); 5017 5018 /* 5019 * Make sure we get a live inode and that it'll not disappear 5020 * meanwhile. 5021 */ 5022 inode = igrab(&btrfs_inode->vfs_inode); 5023 if (inode) { 5024 invalidate_inode_pages2(inode->i_mapping); 5025 iput(inode); 5026 } 5027 spin_lock(&root->delalloc_lock); 5028 } 5029 spin_unlock(&root->delalloc_lock); 5030 } 5031 5032 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 5033 { 5034 struct btrfs_root *root; 5035 struct list_head splice; 5036 5037 INIT_LIST_HEAD(&splice); 5038 5039 spin_lock(&fs_info->delalloc_root_lock); 5040 list_splice_init(&fs_info->delalloc_roots, &splice); 5041 while (!list_empty(&splice)) { 5042 root = list_first_entry(&splice, struct btrfs_root, 5043 delalloc_root); 5044 root = btrfs_grab_root(root); 5045 BUG_ON(!root); 5046 spin_unlock(&fs_info->delalloc_root_lock); 5047 5048 btrfs_destroy_delalloc_inodes(root); 5049 btrfs_put_root(root); 5050 5051 spin_lock(&fs_info->delalloc_root_lock); 5052 } 5053 spin_unlock(&fs_info->delalloc_root_lock); 5054 } 5055 5056 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 5057 struct extent_io_tree *dirty_pages, 5058 int mark) 5059 { 5060 int ret; 5061 struct extent_buffer *eb; 5062 u64 start = 0; 5063 u64 end; 5064 5065 while (1) { 5066 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 5067 mark, NULL); 5068 if (ret) 5069 break; 5070 5071 clear_extent_bits(dirty_pages, start, end, mark); 5072 while (start <= end) { 5073 eb = find_extent_buffer(fs_info, start); 5074 start += fs_info->nodesize; 5075 if (!eb) 5076 continue; 5077 wait_on_extent_buffer_writeback(eb); 5078 5079 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 5080 &eb->bflags)) 5081 clear_extent_buffer_dirty(eb); 5082 free_extent_buffer_stale(eb); 5083 } 5084 } 5085 5086 return ret; 5087 } 5088 5089 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5090 struct extent_io_tree *unpin) 5091 { 5092 u64 start; 5093 u64 end; 5094 int ret; 5095 5096 while (1) { 5097 struct extent_state *cached_state = NULL; 5098 5099 /* 5100 * The btrfs_finish_extent_commit() may get the same range as 5101 * ours between find_first_extent_bit and clear_extent_dirty. 5102 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5103 * the same extent range. 5104 */ 5105 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5106 ret = find_first_extent_bit(unpin, 0, &start, &end, 5107 EXTENT_DIRTY, &cached_state); 5108 if (ret) { 5109 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5110 break; 5111 } 5112 5113 clear_extent_dirty(unpin, start, end, &cached_state); 5114 free_extent_state(cached_state); 5115 btrfs_error_unpin_extent_range(fs_info, start, end); 5116 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5117 cond_resched(); 5118 } 5119 5120 return 0; 5121 } 5122 5123 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5124 { 5125 struct inode *inode; 5126 5127 inode = cache->io_ctl.inode; 5128 if (inode) { 5129 invalidate_inode_pages2(inode->i_mapping); 5130 BTRFS_I(inode)->generation = 0; 5131 cache->io_ctl.inode = NULL; 5132 iput(inode); 5133 } 5134 ASSERT(cache->io_ctl.pages == NULL); 5135 btrfs_put_block_group(cache); 5136 } 5137 5138 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5139 struct btrfs_fs_info *fs_info) 5140 { 5141 struct btrfs_block_group *cache; 5142 5143 spin_lock(&cur_trans->dirty_bgs_lock); 5144 while (!list_empty(&cur_trans->dirty_bgs)) { 5145 cache = list_first_entry(&cur_trans->dirty_bgs, 5146 struct btrfs_block_group, 5147 dirty_list); 5148 5149 if (!list_empty(&cache->io_list)) { 5150 spin_unlock(&cur_trans->dirty_bgs_lock); 5151 list_del_init(&cache->io_list); 5152 btrfs_cleanup_bg_io(cache); 5153 spin_lock(&cur_trans->dirty_bgs_lock); 5154 } 5155 5156 list_del_init(&cache->dirty_list); 5157 spin_lock(&cache->lock); 5158 cache->disk_cache_state = BTRFS_DC_ERROR; 5159 spin_unlock(&cache->lock); 5160 5161 spin_unlock(&cur_trans->dirty_bgs_lock); 5162 btrfs_put_block_group(cache); 5163 btrfs_delayed_refs_rsv_release(fs_info, 1); 5164 spin_lock(&cur_trans->dirty_bgs_lock); 5165 } 5166 spin_unlock(&cur_trans->dirty_bgs_lock); 5167 5168 /* 5169 * Refer to the definition of io_bgs member for details why it's safe 5170 * to use it without any locking 5171 */ 5172 while (!list_empty(&cur_trans->io_bgs)) { 5173 cache = list_first_entry(&cur_trans->io_bgs, 5174 struct btrfs_block_group, 5175 io_list); 5176 5177 list_del_init(&cache->io_list); 5178 spin_lock(&cache->lock); 5179 cache->disk_cache_state = BTRFS_DC_ERROR; 5180 spin_unlock(&cache->lock); 5181 btrfs_cleanup_bg_io(cache); 5182 } 5183 } 5184 5185 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5186 struct btrfs_fs_info *fs_info) 5187 { 5188 struct btrfs_device *dev, *tmp; 5189 5190 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5191 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5192 ASSERT(list_empty(&cur_trans->io_bgs)); 5193 5194 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5195 post_commit_list) { 5196 list_del_init(&dev->post_commit_list); 5197 } 5198 5199 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5200 5201 cur_trans->state = TRANS_STATE_COMMIT_START; 5202 wake_up(&fs_info->transaction_blocked_wait); 5203 5204 cur_trans->state = TRANS_STATE_UNBLOCKED; 5205 wake_up(&fs_info->transaction_wait); 5206 5207 btrfs_destroy_delayed_inodes(fs_info); 5208 5209 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5210 EXTENT_DIRTY); 5211 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5212 5213 btrfs_free_redirty_list(cur_trans); 5214 5215 cur_trans->state =TRANS_STATE_COMPLETED; 5216 wake_up(&cur_trans->commit_wait); 5217 } 5218 5219 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5220 { 5221 struct btrfs_transaction *t; 5222 5223 mutex_lock(&fs_info->transaction_kthread_mutex); 5224 5225 spin_lock(&fs_info->trans_lock); 5226 while (!list_empty(&fs_info->trans_list)) { 5227 t = list_first_entry(&fs_info->trans_list, 5228 struct btrfs_transaction, list); 5229 if (t->state >= TRANS_STATE_COMMIT_START) { 5230 refcount_inc(&t->use_count); 5231 spin_unlock(&fs_info->trans_lock); 5232 btrfs_wait_for_commit(fs_info, t->transid); 5233 btrfs_put_transaction(t); 5234 spin_lock(&fs_info->trans_lock); 5235 continue; 5236 } 5237 if (t == fs_info->running_transaction) { 5238 t->state = TRANS_STATE_COMMIT_DOING; 5239 spin_unlock(&fs_info->trans_lock); 5240 /* 5241 * We wait for 0 num_writers since we don't hold a trans 5242 * handle open currently for this transaction. 5243 */ 5244 wait_event(t->writer_wait, 5245 atomic_read(&t->num_writers) == 0); 5246 } else { 5247 spin_unlock(&fs_info->trans_lock); 5248 } 5249 btrfs_cleanup_one_transaction(t, fs_info); 5250 5251 spin_lock(&fs_info->trans_lock); 5252 if (t == fs_info->running_transaction) 5253 fs_info->running_transaction = NULL; 5254 list_del_init(&t->list); 5255 spin_unlock(&fs_info->trans_lock); 5256 5257 btrfs_put_transaction(t); 5258 trace_btrfs_transaction_commit(fs_info); 5259 spin_lock(&fs_info->trans_lock); 5260 } 5261 spin_unlock(&fs_info->trans_lock); 5262 btrfs_destroy_all_ordered_extents(fs_info); 5263 btrfs_destroy_delayed_inodes(fs_info); 5264 btrfs_assert_delayed_root_empty(fs_info); 5265 btrfs_destroy_all_delalloc_inodes(fs_info); 5266 btrfs_drop_all_logs(fs_info); 5267 mutex_unlock(&fs_info->transaction_kthread_mutex); 5268 5269 return 0; 5270 } 5271 5272 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5273 { 5274 struct btrfs_path *path; 5275 int ret; 5276 struct extent_buffer *l; 5277 struct btrfs_key search_key; 5278 struct btrfs_key found_key; 5279 int slot; 5280 5281 path = btrfs_alloc_path(); 5282 if (!path) 5283 return -ENOMEM; 5284 5285 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5286 search_key.type = -1; 5287 search_key.offset = (u64)-1; 5288 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5289 if (ret < 0) 5290 goto error; 5291 BUG_ON(ret == 0); /* Corruption */ 5292 if (path->slots[0] > 0) { 5293 slot = path->slots[0] - 1; 5294 l = path->nodes[0]; 5295 btrfs_item_key_to_cpu(l, &found_key, slot); 5296 root->free_objectid = max_t(u64, found_key.objectid + 1, 5297 BTRFS_FIRST_FREE_OBJECTID); 5298 } else { 5299 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5300 } 5301 ret = 0; 5302 error: 5303 btrfs_free_path(path); 5304 return ret; 5305 } 5306 5307 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5308 { 5309 int ret; 5310 mutex_lock(&root->objectid_mutex); 5311 5312 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5313 btrfs_warn(root->fs_info, 5314 "the objectid of root %llu reaches its highest value", 5315 root->root_key.objectid); 5316 ret = -ENOSPC; 5317 goto out; 5318 } 5319 5320 *objectid = root->free_objectid++; 5321 ret = 0; 5322 out: 5323 mutex_unlock(&root->objectid_mutex); 5324 return ret; 5325 } 5326