1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static const struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * btrfs_end_io_wq structs are used to do processing in task context when an IO 76 * is complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct btrfs_end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 enum btrfs_wq_endio_type metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 static struct kmem_cache *btrfs_end_io_wq_cache; 91 92 int __init btrfs_end_io_wq_init(void) 93 { 94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 95 sizeof(struct btrfs_end_io_wq), 96 0, 97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 98 NULL); 99 if (!btrfs_end_io_wq_cache) 100 return -ENOMEM; 101 return 0; 102 } 103 104 void btrfs_end_io_wq_exit(void) 105 { 106 if (btrfs_end_io_wq_cache) 107 kmem_cache_destroy(btrfs_end_io_wq_cache); 108 } 109 110 /* 111 * async submit bios are used to offload expensive checksumming 112 * onto the worker threads. They checksum file and metadata bios 113 * just before they are sent down the IO stack. 114 */ 115 struct async_submit_bio { 116 struct inode *inode; 117 struct bio *bio; 118 struct list_head list; 119 extent_submit_bio_hook_t *submit_bio_start; 120 extent_submit_bio_hook_t *submit_bio_done; 121 int rw; 122 int mirror_num; 123 unsigned long bio_flags; 124 /* 125 * bio_offset is optional, can be used if the pages in the bio 126 * can't tell us where in the file the bio should go 127 */ 128 u64 bio_offset; 129 struct btrfs_work work; 130 int error; 131 }; 132 133 /* 134 * Lockdep class keys for extent_buffer->lock's in this root. For a given 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and 136 * the level the eb occupies in the tree. 137 * 138 * Different roots are used for different purposes and may nest inside each 139 * other and they require separate keysets. As lockdep keys should be 140 * static, assign keysets according to the purpose of the root as indicated 141 * by btrfs_root->objectid. This ensures that all special purpose roots 142 * have separate keysets. 143 * 144 * Lock-nesting across peer nodes is always done with the immediate parent 145 * node locked thus preventing deadlock. As lockdep doesn't know this, use 146 * subclass to avoid triggering lockdep warning in such cases. 147 * 148 * The key is set by the readpage_end_io_hook after the buffer has passed 149 * csum validation but before the pages are unlocked. It is also set by 150 * btrfs_init_new_buffer on freshly allocated blocks. 151 * 152 * We also add a check to make sure the highest level of the tree is the 153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 154 * needs update as well. 155 */ 156 #ifdef CONFIG_DEBUG_LOCK_ALLOC 157 # if BTRFS_MAX_LEVEL != 8 158 # error 159 # endif 160 161 static struct btrfs_lockdep_keyset { 162 u64 id; /* root objectid */ 163 const char *name_stem; /* lock name stem */ 164 char names[BTRFS_MAX_LEVEL + 1][20]; 165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 166 } btrfs_lockdep_keysets[] = { 167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 178 { .id = 0, .name_stem = "tree" }, 179 }; 180 181 void __init btrfs_init_lockdep(void) 182 { 183 int i, j; 184 185 /* initialize lockdep class names */ 186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 188 189 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 190 snprintf(ks->names[j], sizeof(ks->names[j]), 191 "btrfs-%s-%02d", ks->name_stem, j); 192 } 193 } 194 195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 196 int level) 197 { 198 struct btrfs_lockdep_keyset *ks; 199 200 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 201 202 /* find the matching keyset, id 0 is the default entry */ 203 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 204 if (ks->id == objectid) 205 break; 206 207 lockdep_set_class_and_name(&eb->lock, 208 &ks->keys[level], ks->names[level]); 209 } 210 211 #endif 212 213 /* 214 * extents on the btree inode are pretty simple, there's one extent 215 * that covers the entire device 216 */ 217 static struct extent_map *btree_get_extent(struct inode *inode, 218 struct page *page, size_t pg_offset, u64 start, u64 len, 219 int create) 220 { 221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 222 struct extent_map *em; 223 int ret; 224 225 read_lock(&em_tree->lock); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (em) { 228 em->bdev = 229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 230 read_unlock(&em_tree->lock); 231 goto out; 232 } 233 read_unlock(&em_tree->lock); 234 235 em = alloc_extent_map(); 236 if (!em) { 237 em = ERR_PTR(-ENOMEM); 238 goto out; 239 } 240 em->start = 0; 241 em->len = (u64)-1; 242 em->block_len = (u64)-1; 243 em->block_start = 0; 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 245 246 write_lock(&em_tree->lock); 247 ret = add_extent_mapping(em_tree, em, 0); 248 if (ret == -EEXIST) { 249 free_extent_map(em); 250 em = lookup_extent_mapping(em_tree, start, len); 251 if (!em) 252 em = ERR_PTR(-EIO); 253 } else if (ret) { 254 free_extent_map(em); 255 em = ERR_PTR(ret); 256 } 257 write_unlock(&em_tree->lock); 258 259 out: 260 return em; 261 } 262 263 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 264 { 265 return btrfs_crc32c(seed, data, len); 266 } 267 268 void btrfs_csum_final(u32 crc, char *result) 269 { 270 put_unaligned_le32(~crc, result); 271 } 272 273 /* 274 * compute the csum for a btree block, and either verify it or write it 275 * into the csum field of the block. 276 */ 277 static int csum_tree_block(struct btrfs_fs_info *fs_info, 278 struct extent_buffer *buf, 279 int verify) 280 { 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 282 char *result = NULL; 283 unsigned long len; 284 unsigned long cur_len; 285 unsigned long offset = BTRFS_CSUM_SIZE; 286 char *kaddr; 287 unsigned long map_start; 288 unsigned long map_len; 289 int err; 290 u32 crc = ~(u32)0; 291 unsigned long inline_result; 292 293 len = buf->len - offset; 294 while (len > 0) { 295 err = map_private_extent_buffer(buf, offset, 32, 296 &kaddr, &map_start, &map_len); 297 if (err) 298 return 1; 299 cur_len = min(len, map_len - (offset - map_start)); 300 crc = btrfs_csum_data(kaddr + offset - map_start, 301 crc, cur_len); 302 len -= cur_len; 303 offset += cur_len; 304 } 305 if (csum_size > sizeof(inline_result)) { 306 result = kzalloc(csum_size, GFP_NOFS); 307 if (!result) 308 return 1; 309 } else { 310 result = (char *)&inline_result; 311 } 312 313 btrfs_csum_final(crc, result); 314 315 if (verify) { 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 317 u32 val; 318 u32 found = 0; 319 memcpy(&found, result, csum_size); 320 321 read_extent_buffer(buf, &val, 0, csum_size); 322 btrfs_warn_rl(fs_info, 323 "%s checksum verify failed on %llu wanted %X found %X " 324 "level %d", 325 fs_info->sb->s_id, buf->start, 326 val, found, btrfs_header_level(buf)); 327 if (result != (char *)&inline_result) 328 kfree(result); 329 return 1; 330 } 331 } else { 332 write_extent_buffer(buf, result, 0, csum_size); 333 } 334 if (result != (char *)&inline_result) 335 kfree(result); 336 return 0; 337 } 338 339 /* 340 * we can't consider a given block up to date unless the transid of the 341 * block matches the transid in the parent node's pointer. This is how we 342 * detect blocks that either didn't get written at all or got written 343 * in the wrong place. 344 */ 345 static int verify_parent_transid(struct extent_io_tree *io_tree, 346 struct extent_buffer *eb, u64 parent_transid, 347 int atomic) 348 { 349 struct extent_state *cached_state = NULL; 350 int ret; 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 352 353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 354 return 0; 355 356 if (atomic) 357 return -EAGAIN; 358 359 if (need_lock) { 360 btrfs_tree_read_lock(eb); 361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 362 } 363 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 365 0, &cached_state); 366 if (extent_buffer_uptodate(eb) && 367 btrfs_header_generation(eb) == parent_transid) { 368 ret = 0; 369 goto out; 370 } 371 btrfs_err_rl(eb->fs_info, 372 "parent transid verify failed on %llu wanted %llu found %llu", 373 eb->start, 374 parent_transid, btrfs_header_generation(eb)); 375 ret = 1; 376 377 /* 378 * Things reading via commit roots that don't have normal protection, 379 * like send, can have a really old block in cache that may point at a 380 * block that has been free'd and re-allocated. So don't clear uptodate 381 * if we find an eb that is under IO (dirty/writeback) because we could 382 * end up reading in the stale data and then writing it back out and 383 * making everybody very sad. 384 */ 385 if (!extent_buffer_under_io(eb)) 386 clear_extent_buffer_uptodate(eb); 387 out: 388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 389 &cached_state, GFP_NOFS); 390 if (need_lock) 391 btrfs_tree_read_unlock_blocking(eb); 392 return ret; 393 } 394 395 /* 396 * Return 0 if the superblock checksum type matches the checksum value of that 397 * algorithm. Pass the raw disk superblock data. 398 */ 399 static int btrfs_check_super_csum(char *raw_disk_sb) 400 { 401 struct btrfs_super_block *disk_sb = 402 (struct btrfs_super_block *)raw_disk_sb; 403 u16 csum_type = btrfs_super_csum_type(disk_sb); 404 int ret = 0; 405 406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 407 u32 crc = ~(u32)0; 408 const int csum_size = sizeof(crc); 409 char result[csum_size]; 410 411 /* 412 * The super_block structure does not span the whole 413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 414 * is filled with zeros and is included in the checkum. 415 */ 416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 418 btrfs_csum_final(crc, result); 419 420 if (memcmp(raw_disk_sb, result, csum_size)) 421 ret = 1; 422 } 423 424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 426 csum_type); 427 ret = 1; 428 } 429 430 return ret; 431 } 432 433 /* 434 * helper to read a given tree block, doing retries as required when 435 * the checksums don't match and we have alternate mirrors to try. 436 */ 437 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 438 struct extent_buffer *eb, 439 u64 start, u64 parent_transid) 440 { 441 struct extent_io_tree *io_tree; 442 int failed = 0; 443 int ret; 444 int num_copies = 0; 445 int mirror_num = 0; 446 int failed_mirror = 0; 447 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 450 while (1) { 451 ret = read_extent_buffer_pages(io_tree, eb, start, 452 WAIT_COMPLETE, 453 btree_get_extent, mirror_num); 454 if (!ret) { 455 if (!verify_parent_transid(io_tree, eb, 456 parent_transid, 0)) 457 break; 458 else 459 ret = -EIO; 460 } 461 462 /* 463 * This buffer's crc is fine, but its contents are corrupted, so 464 * there is no reason to read the other copies, they won't be 465 * any less wrong. 466 */ 467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 468 break; 469 470 num_copies = btrfs_num_copies(root->fs_info, 471 eb->start, eb->len); 472 if (num_copies == 1) 473 break; 474 475 if (!failed_mirror) { 476 failed = 1; 477 failed_mirror = eb->read_mirror; 478 } 479 480 mirror_num++; 481 if (mirror_num == failed_mirror) 482 mirror_num++; 483 484 if (mirror_num > num_copies) 485 break; 486 } 487 488 if (failed && !ret && failed_mirror) 489 repair_eb_io_failure(root, eb, failed_mirror); 490 491 return ret; 492 } 493 494 /* 495 * checksum a dirty tree block before IO. This has extra checks to make sure 496 * we only fill in the checksum field in the first page of a multi-page block 497 */ 498 499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 500 { 501 u64 start = page_offset(page); 502 u64 found_start; 503 struct extent_buffer *eb; 504 505 eb = (struct extent_buffer *)page->private; 506 if (page != eb->pages[0]) 507 return 0; 508 found_start = btrfs_header_bytenr(eb); 509 if (WARN_ON(found_start != start || !PageUptodate(page))) 510 return 0; 511 csum_tree_block(fs_info, eb, 0); 512 return 0; 513 } 514 515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 516 struct extent_buffer *eb) 517 { 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 519 u8 fsid[BTRFS_UUID_SIZE]; 520 int ret = 1; 521 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 523 while (fs_devices) { 524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 525 ret = 0; 526 break; 527 } 528 fs_devices = fs_devices->seed; 529 } 530 return ret; 531 } 532 533 #define CORRUPT(reason, eb, root, slot) \ 534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 535 "root=%llu, slot=%d", reason, \ 536 btrfs_header_bytenr(eb), root->objectid, slot) 537 538 static noinline int check_leaf(struct btrfs_root *root, 539 struct extent_buffer *leaf) 540 { 541 struct btrfs_key key; 542 struct btrfs_key leaf_key; 543 u32 nritems = btrfs_header_nritems(leaf); 544 int slot; 545 546 if (nritems == 0) 547 return 0; 548 549 /* Check the 0 item */ 550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 551 BTRFS_LEAF_DATA_SIZE(root)) { 552 CORRUPT("invalid item offset size pair", leaf, root, 0); 553 return -EIO; 554 } 555 556 /* 557 * Check to make sure each items keys are in the correct order and their 558 * offsets make sense. We only have to loop through nritems-1 because 559 * we check the current slot against the next slot, which verifies the 560 * next slot's offset+size makes sense and that the current's slot 561 * offset is correct. 562 */ 563 for (slot = 0; slot < nritems - 1; slot++) { 564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 565 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 566 567 /* Make sure the keys are in the right order */ 568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 569 CORRUPT("bad key order", leaf, root, slot); 570 return -EIO; 571 } 572 573 /* 574 * Make sure the offset and ends are right, remember that the 575 * item data starts at the end of the leaf and grows towards the 576 * front. 577 */ 578 if (btrfs_item_offset_nr(leaf, slot) != 579 btrfs_item_end_nr(leaf, slot + 1)) { 580 CORRUPT("slot offset bad", leaf, root, slot); 581 return -EIO; 582 } 583 584 /* 585 * Check to make sure that we don't point outside of the leaf, 586 * just incase all the items are consistent to eachother, but 587 * all point outside of the leaf. 588 */ 589 if (btrfs_item_end_nr(leaf, slot) > 590 BTRFS_LEAF_DATA_SIZE(root)) { 591 CORRUPT("slot end outside of leaf", leaf, root, slot); 592 return -EIO; 593 } 594 } 595 596 return 0; 597 } 598 599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 600 u64 phy_offset, struct page *page, 601 u64 start, u64 end, int mirror) 602 { 603 u64 found_start; 604 int found_level; 605 struct extent_buffer *eb; 606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 607 int ret = 0; 608 int reads_done; 609 610 if (!page->private) 611 goto out; 612 613 eb = (struct extent_buffer *)page->private; 614 615 /* the pending IO might have been the only thing that kept this buffer 616 * in memory. Make sure we have a ref for all this other checks 617 */ 618 extent_buffer_get(eb); 619 620 reads_done = atomic_dec_and_test(&eb->io_pages); 621 if (!reads_done) 622 goto err; 623 624 eb->read_mirror = mirror; 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 626 ret = -EIO; 627 goto err; 628 } 629 630 found_start = btrfs_header_bytenr(eb); 631 if (found_start != eb->start) { 632 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu", 633 found_start, eb->start); 634 ret = -EIO; 635 goto err; 636 } 637 if (check_tree_block_fsid(root->fs_info, eb)) { 638 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu", 639 eb->start); 640 ret = -EIO; 641 goto err; 642 } 643 found_level = btrfs_header_level(eb); 644 if (found_level >= BTRFS_MAX_LEVEL) { 645 btrfs_err(root->fs_info, "bad tree block level %d", 646 (int)btrfs_header_level(eb)); 647 ret = -EIO; 648 goto err; 649 } 650 651 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 652 eb, found_level); 653 654 ret = csum_tree_block(root->fs_info, eb, 1); 655 if (ret) { 656 ret = -EIO; 657 goto err; 658 } 659 660 /* 661 * If this is a leaf block and it is corrupt, set the corrupt bit so 662 * that we don't try and read the other copies of this block, just 663 * return -EIO. 664 */ 665 if (found_level == 0 && check_leaf(root, eb)) { 666 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 667 ret = -EIO; 668 } 669 670 if (!ret) 671 set_extent_buffer_uptodate(eb); 672 err: 673 if (reads_done && 674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 675 btree_readahead_hook(root, eb, eb->start, ret); 676 677 if (ret) { 678 /* 679 * our io error hook is going to dec the io pages 680 * again, we have to make sure it has something 681 * to decrement 682 */ 683 atomic_inc(&eb->io_pages); 684 clear_extent_buffer_uptodate(eb); 685 } 686 free_extent_buffer(eb); 687 out: 688 return ret; 689 } 690 691 static int btree_io_failed_hook(struct page *page, int failed_mirror) 692 { 693 struct extent_buffer *eb; 694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 695 696 eb = (struct extent_buffer *)page->private; 697 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 698 eb->read_mirror = failed_mirror; 699 atomic_dec(&eb->io_pages); 700 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 701 btree_readahead_hook(root, eb, eb->start, -EIO); 702 return -EIO; /* we fixed nothing */ 703 } 704 705 static void end_workqueue_bio(struct bio *bio) 706 { 707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 708 struct btrfs_fs_info *fs_info; 709 struct btrfs_workqueue *wq; 710 btrfs_work_func_t func; 711 712 fs_info = end_io_wq->info; 713 end_io_wq->error = bio->bi_error; 714 715 if (bio->bi_rw & REQ_WRITE) { 716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 717 wq = fs_info->endio_meta_write_workers; 718 func = btrfs_endio_meta_write_helper; 719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 720 wq = fs_info->endio_freespace_worker; 721 func = btrfs_freespace_write_helper; 722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 723 wq = fs_info->endio_raid56_workers; 724 func = btrfs_endio_raid56_helper; 725 } else { 726 wq = fs_info->endio_write_workers; 727 func = btrfs_endio_write_helper; 728 } 729 } else { 730 if (unlikely(end_io_wq->metadata == 731 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 732 wq = fs_info->endio_repair_workers; 733 func = btrfs_endio_repair_helper; 734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 735 wq = fs_info->endio_raid56_workers; 736 func = btrfs_endio_raid56_helper; 737 } else if (end_io_wq->metadata) { 738 wq = fs_info->endio_meta_workers; 739 func = btrfs_endio_meta_helper; 740 } else { 741 wq = fs_info->endio_workers; 742 func = btrfs_endio_helper; 743 } 744 } 745 746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 747 btrfs_queue_work(wq, &end_io_wq->work); 748 } 749 750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 751 enum btrfs_wq_endio_type metadata) 752 { 753 struct btrfs_end_io_wq *end_io_wq; 754 755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 756 if (!end_io_wq) 757 return -ENOMEM; 758 759 end_io_wq->private = bio->bi_private; 760 end_io_wq->end_io = bio->bi_end_io; 761 end_io_wq->info = info; 762 end_io_wq->error = 0; 763 end_io_wq->bio = bio; 764 end_io_wq->metadata = metadata; 765 766 bio->bi_private = end_io_wq; 767 bio->bi_end_io = end_workqueue_bio; 768 return 0; 769 } 770 771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 772 { 773 unsigned long limit = min_t(unsigned long, 774 info->thread_pool_size, 775 info->fs_devices->open_devices); 776 return 256 * limit; 777 } 778 779 static void run_one_async_start(struct btrfs_work *work) 780 { 781 struct async_submit_bio *async; 782 int ret; 783 784 async = container_of(work, struct async_submit_bio, work); 785 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 786 async->mirror_num, async->bio_flags, 787 async->bio_offset); 788 if (ret) 789 async->error = ret; 790 } 791 792 static void run_one_async_done(struct btrfs_work *work) 793 { 794 struct btrfs_fs_info *fs_info; 795 struct async_submit_bio *async; 796 int limit; 797 798 async = container_of(work, struct async_submit_bio, work); 799 fs_info = BTRFS_I(async->inode)->root->fs_info; 800 801 limit = btrfs_async_submit_limit(fs_info); 802 limit = limit * 2 / 3; 803 804 /* 805 * atomic_dec_return implies a barrier for waitqueue_active 806 */ 807 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 808 waitqueue_active(&fs_info->async_submit_wait)) 809 wake_up(&fs_info->async_submit_wait); 810 811 /* If an error occured we just want to clean up the bio and move on */ 812 if (async->error) { 813 async->bio->bi_error = async->error; 814 bio_endio(async->bio); 815 return; 816 } 817 818 async->submit_bio_done(async->inode, async->rw, async->bio, 819 async->mirror_num, async->bio_flags, 820 async->bio_offset); 821 } 822 823 static void run_one_async_free(struct btrfs_work *work) 824 { 825 struct async_submit_bio *async; 826 827 async = container_of(work, struct async_submit_bio, work); 828 kfree(async); 829 } 830 831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 832 int rw, struct bio *bio, int mirror_num, 833 unsigned long bio_flags, 834 u64 bio_offset, 835 extent_submit_bio_hook_t *submit_bio_start, 836 extent_submit_bio_hook_t *submit_bio_done) 837 { 838 struct async_submit_bio *async; 839 840 async = kmalloc(sizeof(*async), GFP_NOFS); 841 if (!async) 842 return -ENOMEM; 843 844 async->inode = inode; 845 async->rw = rw; 846 async->bio = bio; 847 async->mirror_num = mirror_num; 848 async->submit_bio_start = submit_bio_start; 849 async->submit_bio_done = submit_bio_done; 850 851 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 852 run_one_async_done, run_one_async_free); 853 854 async->bio_flags = bio_flags; 855 async->bio_offset = bio_offset; 856 857 async->error = 0; 858 859 atomic_inc(&fs_info->nr_async_submits); 860 861 if (rw & REQ_SYNC) 862 btrfs_set_work_high_priority(&async->work); 863 864 btrfs_queue_work(fs_info->workers, &async->work); 865 866 while (atomic_read(&fs_info->async_submit_draining) && 867 atomic_read(&fs_info->nr_async_submits)) { 868 wait_event(fs_info->async_submit_wait, 869 (atomic_read(&fs_info->nr_async_submits) == 0)); 870 } 871 872 return 0; 873 } 874 875 static int btree_csum_one_bio(struct bio *bio) 876 { 877 struct bio_vec *bvec; 878 struct btrfs_root *root; 879 int i, ret = 0; 880 881 bio_for_each_segment_all(bvec, bio, i) { 882 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 883 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 884 if (ret) 885 break; 886 } 887 888 return ret; 889 } 890 891 static int __btree_submit_bio_start(struct inode *inode, int rw, 892 struct bio *bio, int mirror_num, 893 unsigned long bio_flags, 894 u64 bio_offset) 895 { 896 /* 897 * when we're called for a write, we're already in the async 898 * submission context. Just jump into btrfs_map_bio 899 */ 900 return btree_csum_one_bio(bio); 901 } 902 903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 904 int mirror_num, unsigned long bio_flags, 905 u64 bio_offset) 906 { 907 int ret; 908 909 /* 910 * when we're called for a write, we're already in the async 911 * submission context. Just jump into btrfs_map_bio 912 */ 913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 914 if (ret) { 915 bio->bi_error = ret; 916 bio_endio(bio); 917 } 918 return ret; 919 } 920 921 static int check_async_write(struct inode *inode, unsigned long bio_flags) 922 { 923 if (bio_flags & EXTENT_BIO_TREE_LOG) 924 return 0; 925 #ifdef CONFIG_X86 926 if (cpu_has_xmm4_2) 927 return 0; 928 #endif 929 return 1; 930 } 931 932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 933 int mirror_num, unsigned long bio_flags, 934 u64 bio_offset) 935 { 936 int async = check_async_write(inode, bio_flags); 937 int ret; 938 939 if (!(rw & REQ_WRITE)) { 940 /* 941 * called for a read, do the setup so that checksum validation 942 * can happen in the async kernel threads 943 */ 944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 945 bio, BTRFS_WQ_ENDIO_METADATA); 946 if (ret) 947 goto out_w_error; 948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 949 mirror_num, 0); 950 } else if (!async) { 951 ret = btree_csum_one_bio(bio); 952 if (ret) 953 goto out_w_error; 954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 955 mirror_num, 0); 956 } else { 957 /* 958 * kthread helpers are used to submit writes so that 959 * checksumming can happen in parallel across all CPUs 960 */ 961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 962 inode, rw, bio, mirror_num, 0, 963 bio_offset, 964 __btree_submit_bio_start, 965 __btree_submit_bio_done); 966 } 967 968 if (ret) 969 goto out_w_error; 970 return 0; 971 972 out_w_error: 973 bio->bi_error = ret; 974 bio_endio(bio); 975 return ret; 976 } 977 978 #ifdef CONFIG_MIGRATION 979 static int btree_migratepage(struct address_space *mapping, 980 struct page *newpage, struct page *page, 981 enum migrate_mode mode) 982 { 983 /* 984 * we can't safely write a btree page from here, 985 * we haven't done the locking hook 986 */ 987 if (PageDirty(page)) 988 return -EAGAIN; 989 /* 990 * Buffers may be managed in a filesystem specific way. 991 * We must have no buffers or drop them. 992 */ 993 if (page_has_private(page) && 994 !try_to_release_page(page, GFP_KERNEL)) 995 return -EAGAIN; 996 return migrate_page(mapping, newpage, page, mode); 997 } 998 #endif 999 1000 1001 static int btree_writepages(struct address_space *mapping, 1002 struct writeback_control *wbc) 1003 { 1004 struct btrfs_fs_info *fs_info; 1005 int ret; 1006 1007 if (wbc->sync_mode == WB_SYNC_NONE) { 1008 1009 if (wbc->for_kupdate) 1010 return 0; 1011 1012 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1013 /* this is a bit racy, but that's ok */ 1014 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1015 BTRFS_DIRTY_METADATA_THRESH); 1016 if (ret < 0) 1017 return 0; 1018 } 1019 return btree_write_cache_pages(mapping, wbc); 1020 } 1021 1022 static int btree_readpage(struct file *file, struct page *page) 1023 { 1024 struct extent_io_tree *tree; 1025 tree = &BTRFS_I(page->mapping->host)->io_tree; 1026 return extent_read_full_page(tree, page, btree_get_extent, 0); 1027 } 1028 1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1030 { 1031 if (PageWriteback(page) || PageDirty(page)) 1032 return 0; 1033 1034 return try_release_extent_buffer(page); 1035 } 1036 1037 static void btree_invalidatepage(struct page *page, unsigned int offset, 1038 unsigned int length) 1039 { 1040 struct extent_io_tree *tree; 1041 tree = &BTRFS_I(page->mapping->host)->io_tree; 1042 extent_invalidatepage(tree, page, offset); 1043 btree_releasepage(page, GFP_NOFS); 1044 if (PagePrivate(page)) { 1045 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1046 "page private not zero on page %llu", 1047 (unsigned long long)page_offset(page)); 1048 ClearPagePrivate(page); 1049 set_page_private(page, 0); 1050 page_cache_release(page); 1051 } 1052 } 1053 1054 static int btree_set_page_dirty(struct page *page) 1055 { 1056 #ifdef DEBUG 1057 struct extent_buffer *eb; 1058 1059 BUG_ON(!PagePrivate(page)); 1060 eb = (struct extent_buffer *)page->private; 1061 BUG_ON(!eb); 1062 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1063 BUG_ON(!atomic_read(&eb->refs)); 1064 btrfs_assert_tree_locked(eb); 1065 #endif 1066 return __set_page_dirty_nobuffers(page); 1067 } 1068 1069 static const struct address_space_operations btree_aops = { 1070 .readpage = btree_readpage, 1071 .writepages = btree_writepages, 1072 .releasepage = btree_releasepage, 1073 .invalidatepage = btree_invalidatepage, 1074 #ifdef CONFIG_MIGRATION 1075 .migratepage = btree_migratepage, 1076 #endif 1077 .set_page_dirty = btree_set_page_dirty, 1078 }; 1079 1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1081 { 1082 struct extent_buffer *buf = NULL; 1083 struct inode *btree_inode = root->fs_info->btree_inode; 1084 1085 buf = btrfs_find_create_tree_block(root, bytenr); 1086 if (!buf) 1087 return; 1088 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1089 buf, 0, WAIT_NONE, btree_get_extent, 0); 1090 free_extent_buffer(buf); 1091 } 1092 1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1094 int mirror_num, struct extent_buffer **eb) 1095 { 1096 struct extent_buffer *buf = NULL; 1097 struct inode *btree_inode = root->fs_info->btree_inode; 1098 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1099 int ret; 1100 1101 buf = btrfs_find_create_tree_block(root, bytenr); 1102 if (!buf) 1103 return 0; 1104 1105 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1106 1107 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1108 btree_get_extent, mirror_num); 1109 if (ret) { 1110 free_extent_buffer(buf); 1111 return ret; 1112 } 1113 1114 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1115 free_extent_buffer(buf); 1116 return -EIO; 1117 } else if (extent_buffer_uptodate(buf)) { 1118 *eb = buf; 1119 } else { 1120 free_extent_buffer(buf); 1121 } 1122 return 0; 1123 } 1124 1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1126 u64 bytenr) 1127 { 1128 return find_extent_buffer(fs_info, bytenr); 1129 } 1130 1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1132 u64 bytenr) 1133 { 1134 if (btrfs_test_is_dummy_root(root)) 1135 return alloc_test_extent_buffer(root->fs_info, bytenr); 1136 return alloc_extent_buffer(root->fs_info, bytenr); 1137 } 1138 1139 1140 int btrfs_write_tree_block(struct extent_buffer *buf) 1141 { 1142 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1143 buf->start + buf->len - 1); 1144 } 1145 1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1147 { 1148 return filemap_fdatawait_range(buf->pages[0]->mapping, 1149 buf->start, buf->start + buf->len - 1); 1150 } 1151 1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1153 u64 parent_transid) 1154 { 1155 struct extent_buffer *buf = NULL; 1156 int ret; 1157 1158 buf = btrfs_find_create_tree_block(root, bytenr); 1159 if (!buf) 1160 return ERR_PTR(-ENOMEM); 1161 1162 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1163 if (ret) { 1164 free_extent_buffer(buf); 1165 return ERR_PTR(ret); 1166 } 1167 return buf; 1168 1169 } 1170 1171 void clean_tree_block(struct btrfs_trans_handle *trans, 1172 struct btrfs_fs_info *fs_info, 1173 struct extent_buffer *buf) 1174 { 1175 if (btrfs_header_generation(buf) == 1176 fs_info->running_transaction->transid) { 1177 btrfs_assert_tree_locked(buf); 1178 1179 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1180 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1181 -buf->len, 1182 fs_info->dirty_metadata_batch); 1183 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1184 btrfs_set_lock_blocking(buf); 1185 clear_extent_buffer_dirty(buf); 1186 } 1187 } 1188 } 1189 1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1191 { 1192 struct btrfs_subvolume_writers *writers; 1193 int ret; 1194 1195 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1196 if (!writers) 1197 return ERR_PTR(-ENOMEM); 1198 1199 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1200 if (ret < 0) { 1201 kfree(writers); 1202 return ERR_PTR(ret); 1203 } 1204 1205 init_waitqueue_head(&writers->wait); 1206 return writers; 1207 } 1208 1209 static void 1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1211 { 1212 percpu_counter_destroy(&writers->counter); 1213 kfree(writers); 1214 } 1215 1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1217 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1218 u64 objectid) 1219 { 1220 root->node = NULL; 1221 root->commit_root = NULL; 1222 root->sectorsize = sectorsize; 1223 root->nodesize = nodesize; 1224 root->stripesize = stripesize; 1225 root->state = 0; 1226 root->orphan_cleanup_state = 0; 1227 1228 root->objectid = objectid; 1229 root->last_trans = 0; 1230 root->highest_objectid = 0; 1231 root->nr_delalloc_inodes = 0; 1232 root->nr_ordered_extents = 0; 1233 root->name = NULL; 1234 root->inode_tree = RB_ROOT; 1235 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1236 root->block_rsv = NULL; 1237 root->orphan_block_rsv = NULL; 1238 1239 INIT_LIST_HEAD(&root->dirty_list); 1240 INIT_LIST_HEAD(&root->root_list); 1241 INIT_LIST_HEAD(&root->delalloc_inodes); 1242 INIT_LIST_HEAD(&root->delalloc_root); 1243 INIT_LIST_HEAD(&root->ordered_extents); 1244 INIT_LIST_HEAD(&root->ordered_root); 1245 INIT_LIST_HEAD(&root->logged_list[0]); 1246 INIT_LIST_HEAD(&root->logged_list[1]); 1247 spin_lock_init(&root->orphan_lock); 1248 spin_lock_init(&root->inode_lock); 1249 spin_lock_init(&root->delalloc_lock); 1250 spin_lock_init(&root->ordered_extent_lock); 1251 spin_lock_init(&root->accounting_lock); 1252 spin_lock_init(&root->log_extents_lock[0]); 1253 spin_lock_init(&root->log_extents_lock[1]); 1254 mutex_init(&root->objectid_mutex); 1255 mutex_init(&root->log_mutex); 1256 mutex_init(&root->ordered_extent_mutex); 1257 mutex_init(&root->delalloc_mutex); 1258 init_waitqueue_head(&root->log_writer_wait); 1259 init_waitqueue_head(&root->log_commit_wait[0]); 1260 init_waitqueue_head(&root->log_commit_wait[1]); 1261 INIT_LIST_HEAD(&root->log_ctxs[0]); 1262 INIT_LIST_HEAD(&root->log_ctxs[1]); 1263 atomic_set(&root->log_commit[0], 0); 1264 atomic_set(&root->log_commit[1], 0); 1265 atomic_set(&root->log_writers, 0); 1266 atomic_set(&root->log_batch, 0); 1267 atomic_set(&root->orphan_inodes, 0); 1268 atomic_set(&root->refs, 1); 1269 atomic_set(&root->will_be_snapshoted, 0); 1270 root->log_transid = 0; 1271 root->log_transid_committed = -1; 1272 root->last_log_commit = 0; 1273 if (fs_info) 1274 extent_io_tree_init(&root->dirty_log_pages, 1275 fs_info->btree_inode->i_mapping); 1276 1277 memset(&root->root_key, 0, sizeof(root->root_key)); 1278 memset(&root->root_item, 0, sizeof(root->root_item)); 1279 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1280 if (fs_info) 1281 root->defrag_trans_start = fs_info->generation; 1282 else 1283 root->defrag_trans_start = 0; 1284 root->root_key.objectid = objectid; 1285 root->anon_dev = 0; 1286 1287 spin_lock_init(&root->root_item_lock); 1288 } 1289 1290 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1291 { 1292 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1293 if (root) 1294 root->fs_info = fs_info; 1295 return root; 1296 } 1297 1298 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1299 /* Should only be used by the testing infrastructure */ 1300 struct btrfs_root *btrfs_alloc_dummy_root(void) 1301 { 1302 struct btrfs_root *root; 1303 1304 root = btrfs_alloc_root(NULL); 1305 if (!root) 1306 return ERR_PTR(-ENOMEM); 1307 __setup_root(4096, 4096, 4096, root, NULL, 1); 1308 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1309 root->alloc_bytenr = 0; 1310 1311 return root; 1312 } 1313 #endif 1314 1315 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1316 struct btrfs_fs_info *fs_info, 1317 u64 objectid) 1318 { 1319 struct extent_buffer *leaf; 1320 struct btrfs_root *tree_root = fs_info->tree_root; 1321 struct btrfs_root *root; 1322 struct btrfs_key key; 1323 int ret = 0; 1324 uuid_le uuid; 1325 1326 root = btrfs_alloc_root(fs_info); 1327 if (!root) 1328 return ERR_PTR(-ENOMEM); 1329 1330 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1331 tree_root->stripesize, root, fs_info, objectid); 1332 root->root_key.objectid = objectid; 1333 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1334 root->root_key.offset = 0; 1335 1336 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1337 if (IS_ERR(leaf)) { 1338 ret = PTR_ERR(leaf); 1339 leaf = NULL; 1340 goto fail; 1341 } 1342 1343 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1344 btrfs_set_header_bytenr(leaf, leaf->start); 1345 btrfs_set_header_generation(leaf, trans->transid); 1346 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1347 btrfs_set_header_owner(leaf, objectid); 1348 root->node = leaf; 1349 1350 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1351 BTRFS_FSID_SIZE); 1352 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1353 btrfs_header_chunk_tree_uuid(leaf), 1354 BTRFS_UUID_SIZE); 1355 btrfs_mark_buffer_dirty(leaf); 1356 1357 root->commit_root = btrfs_root_node(root); 1358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1359 1360 root->root_item.flags = 0; 1361 root->root_item.byte_limit = 0; 1362 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1363 btrfs_set_root_generation(&root->root_item, trans->transid); 1364 btrfs_set_root_level(&root->root_item, 0); 1365 btrfs_set_root_refs(&root->root_item, 1); 1366 btrfs_set_root_used(&root->root_item, leaf->len); 1367 btrfs_set_root_last_snapshot(&root->root_item, 0); 1368 btrfs_set_root_dirid(&root->root_item, 0); 1369 uuid_le_gen(&uuid); 1370 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1371 root->root_item.drop_level = 0; 1372 1373 key.objectid = objectid; 1374 key.type = BTRFS_ROOT_ITEM_KEY; 1375 key.offset = 0; 1376 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1377 if (ret) 1378 goto fail; 1379 1380 btrfs_tree_unlock(leaf); 1381 1382 return root; 1383 1384 fail: 1385 if (leaf) { 1386 btrfs_tree_unlock(leaf); 1387 free_extent_buffer(root->commit_root); 1388 free_extent_buffer(leaf); 1389 } 1390 kfree(root); 1391 1392 return ERR_PTR(ret); 1393 } 1394 1395 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1396 struct btrfs_fs_info *fs_info) 1397 { 1398 struct btrfs_root *root; 1399 struct btrfs_root *tree_root = fs_info->tree_root; 1400 struct extent_buffer *leaf; 1401 1402 root = btrfs_alloc_root(fs_info); 1403 if (!root) 1404 return ERR_PTR(-ENOMEM); 1405 1406 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1407 tree_root->stripesize, root, fs_info, 1408 BTRFS_TREE_LOG_OBJECTID); 1409 1410 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1411 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1412 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1413 1414 /* 1415 * DON'T set REF_COWS for log trees 1416 * 1417 * log trees do not get reference counted because they go away 1418 * before a real commit is actually done. They do store pointers 1419 * to file data extents, and those reference counts still get 1420 * updated (along with back refs to the log tree). 1421 */ 1422 1423 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1424 NULL, 0, 0, 0); 1425 if (IS_ERR(leaf)) { 1426 kfree(root); 1427 return ERR_CAST(leaf); 1428 } 1429 1430 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1431 btrfs_set_header_bytenr(leaf, leaf->start); 1432 btrfs_set_header_generation(leaf, trans->transid); 1433 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1434 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1435 root->node = leaf; 1436 1437 write_extent_buffer(root->node, root->fs_info->fsid, 1438 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1439 btrfs_mark_buffer_dirty(root->node); 1440 btrfs_tree_unlock(root->node); 1441 return root; 1442 } 1443 1444 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1445 struct btrfs_fs_info *fs_info) 1446 { 1447 struct btrfs_root *log_root; 1448 1449 log_root = alloc_log_tree(trans, fs_info); 1450 if (IS_ERR(log_root)) 1451 return PTR_ERR(log_root); 1452 WARN_ON(fs_info->log_root_tree); 1453 fs_info->log_root_tree = log_root; 1454 return 0; 1455 } 1456 1457 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1458 struct btrfs_root *root) 1459 { 1460 struct btrfs_root *log_root; 1461 struct btrfs_inode_item *inode_item; 1462 1463 log_root = alloc_log_tree(trans, root->fs_info); 1464 if (IS_ERR(log_root)) 1465 return PTR_ERR(log_root); 1466 1467 log_root->last_trans = trans->transid; 1468 log_root->root_key.offset = root->root_key.objectid; 1469 1470 inode_item = &log_root->root_item.inode; 1471 btrfs_set_stack_inode_generation(inode_item, 1); 1472 btrfs_set_stack_inode_size(inode_item, 3); 1473 btrfs_set_stack_inode_nlink(inode_item, 1); 1474 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1475 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1476 1477 btrfs_set_root_node(&log_root->root_item, log_root->node); 1478 1479 WARN_ON(root->log_root); 1480 root->log_root = log_root; 1481 root->log_transid = 0; 1482 root->log_transid_committed = -1; 1483 root->last_log_commit = 0; 1484 return 0; 1485 } 1486 1487 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1488 struct btrfs_key *key) 1489 { 1490 struct btrfs_root *root; 1491 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1492 struct btrfs_path *path; 1493 u64 generation; 1494 int ret; 1495 1496 path = btrfs_alloc_path(); 1497 if (!path) 1498 return ERR_PTR(-ENOMEM); 1499 1500 root = btrfs_alloc_root(fs_info); 1501 if (!root) { 1502 ret = -ENOMEM; 1503 goto alloc_fail; 1504 } 1505 1506 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1507 tree_root->stripesize, root, fs_info, key->objectid); 1508 1509 ret = btrfs_find_root(tree_root, key, path, 1510 &root->root_item, &root->root_key); 1511 if (ret) { 1512 if (ret > 0) 1513 ret = -ENOENT; 1514 goto find_fail; 1515 } 1516 1517 generation = btrfs_root_generation(&root->root_item); 1518 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1519 generation); 1520 if (IS_ERR(root->node)) { 1521 ret = PTR_ERR(root->node); 1522 goto find_fail; 1523 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1524 ret = -EIO; 1525 free_extent_buffer(root->node); 1526 goto find_fail; 1527 } 1528 root->commit_root = btrfs_root_node(root); 1529 out: 1530 btrfs_free_path(path); 1531 return root; 1532 1533 find_fail: 1534 kfree(root); 1535 alloc_fail: 1536 root = ERR_PTR(ret); 1537 goto out; 1538 } 1539 1540 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1541 struct btrfs_key *location) 1542 { 1543 struct btrfs_root *root; 1544 1545 root = btrfs_read_tree_root(tree_root, location); 1546 if (IS_ERR(root)) 1547 return root; 1548 1549 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1550 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1551 btrfs_check_and_init_root_item(&root->root_item); 1552 } 1553 1554 return root; 1555 } 1556 1557 int btrfs_init_fs_root(struct btrfs_root *root) 1558 { 1559 int ret; 1560 struct btrfs_subvolume_writers *writers; 1561 1562 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1563 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1564 GFP_NOFS); 1565 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1566 ret = -ENOMEM; 1567 goto fail; 1568 } 1569 1570 writers = btrfs_alloc_subvolume_writers(); 1571 if (IS_ERR(writers)) { 1572 ret = PTR_ERR(writers); 1573 goto fail; 1574 } 1575 root->subv_writers = writers; 1576 1577 btrfs_init_free_ino_ctl(root); 1578 spin_lock_init(&root->ino_cache_lock); 1579 init_waitqueue_head(&root->ino_cache_wait); 1580 1581 ret = get_anon_bdev(&root->anon_dev); 1582 if (ret) 1583 goto free_writers; 1584 return 0; 1585 1586 free_writers: 1587 btrfs_free_subvolume_writers(root->subv_writers); 1588 fail: 1589 kfree(root->free_ino_ctl); 1590 kfree(root->free_ino_pinned); 1591 return ret; 1592 } 1593 1594 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1595 u64 root_id) 1596 { 1597 struct btrfs_root *root; 1598 1599 spin_lock(&fs_info->fs_roots_radix_lock); 1600 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1601 (unsigned long)root_id); 1602 spin_unlock(&fs_info->fs_roots_radix_lock); 1603 return root; 1604 } 1605 1606 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1607 struct btrfs_root *root) 1608 { 1609 int ret; 1610 1611 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1612 if (ret) 1613 return ret; 1614 1615 spin_lock(&fs_info->fs_roots_radix_lock); 1616 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1617 (unsigned long)root->root_key.objectid, 1618 root); 1619 if (ret == 0) 1620 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1621 spin_unlock(&fs_info->fs_roots_radix_lock); 1622 radix_tree_preload_end(); 1623 1624 return ret; 1625 } 1626 1627 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1628 struct btrfs_key *location, 1629 bool check_ref) 1630 { 1631 struct btrfs_root *root; 1632 struct btrfs_path *path; 1633 struct btrfs_key key; 1634 int ret; 1635 1636 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1637 return fs_info->tree_root; 1638 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1639 return fs_info->extent_root; 1640 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1641 return fs_info->chunk_root; 1642 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1643 return fs_info->dev_root; 1644 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1645 return fs_info->csum_root; 1646 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1647 return fs_info->quota_root ? fs_info->quota_root : 1648 ERR_PTR(-ENOENT); 1649 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1650 return fs_info->uuid_root ? fs_info->uuid_root : 1651 ERR_PTR(-ENOENT); 1652 again: 1653 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1654 if (root) { 1655 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1656 return ERR_PTR(-ENOENT); 1657 return root; 1658 } 1659 1660 root = btrfs_read_fs_root(fs_info->tree_root, location); 1661 if (IS_ERR(root)) 1662 return root; 1663 1664 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1665 ret = -ENOENT; 1666 goto fail; 1667 } 1668 1669 ret = btrfs_init_fs_root(root); 1670 if (ret) 1671 goto fail; 1672 1673 path = btrfs_alloc_path(); 1674 if (!path) { 1675 ret = -ENOMEM; 1676 goto fail; 1677 } 1678 key.objectid = BTRFS_ORPHAN_OBJECTID; 1679 key.type = BTRFS_ORPHAN_ITEM_KEY; 1680 key.offset = location->objectid; 1681 1682 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1683 btrfs_free_path(path); 1684 if (ret < 0) 1685 goto fail; 1686 if (ret == 0) 1687 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1688 1689 ret = btrfs_insert_fs_root(fs_info, root); 1690 if (ret) { 1691 if (ret == -EEXIST) { 1692 free_fs_root(root); 1693 goto again; 1694 } 1695 goto fail; 1696 } 1697 return root; 1698 fail: 1699 free_fs_root(root); 1700 return ERR_PTR(ret); 1701 } 1702 1703 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1704 { 1705 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1706 int ret = 0; 1707 struct btrfs_device *device; 1708 struct backing_dev_info *bdi; 1709 1710 rcu_read_lock(); 1711 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1712 if (!device->bdev) 1713 continue; 1714 bdi = blk_get_backing_dev_info(device->bdev); 1715 if (bdi_congested(bdi, bdi_bits)) { 1716 ret = 1; 1717 break; 1718 } 1719 } 1720 rcu_read_unlock(); 1721 return ret; 1722 } 1723 1724 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1725 { 1726 int err; 1727 1728 err = bdi_setup_and_register(bdi, "btrfs"); 1729 if (err) 1730 return err; 1731 1732 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE; 1733 bdi->congested_fn = btrfs_congested_fn; 1734 bdi->congested_data = info; 1735 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1736 return 0; 1737 } 1738 1739 /* 1740 * called by the kthread helper functions to finally call the bio end_io 1741 * functions. This is where read checksum verification actually happens 1742 */ 1743 static void end_workqueue_fn(struct btrfs_work *work) 1744 { 1745 struct bio *bio; 1746 struct btrfs_end_io_wq *end_io_wq; 1747 1748 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1749 bio = end_io_wq->bio; 1750 1751 bio->bi_error = end_io_wq->error; 1752 bio->bi_private = end_io_wq->private; 1753 bio->bi_end_io = end_io_wq->end_io; 1754 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1755 bio_endio(bio); 1756 } 1757 1758 static int cleaner_kthread(void *arg) 1759 { 1760 struct btrfs_root *root = arg; 1761 int again; 1762 struct btrfs_trans_handle *trans; 1763 1764 do { 1765 again = 0; 1766 1767 /* Make the cleaner go to sleep early. */ 1768 if (btrfs_need_cleaner_sleep(root)) 1769 goto sleep; 1770 1771 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1772 goto sleep; 1773 1774 /* 1775 * Avoid the problem that we change the status of the fs 1776 * during the above check and trylock. 1777 */ 1778 if (btrfs_need_cleaner_sleep(root)) { 1779 mutex_unlock(&root->fs_info->cleaner_mutex); 1780 goto sleep; 1781 } 1782 1783 btrfs_run_delayed_iputs(root); 1784 again = btrfs_clean_one_deleted_snapshot(root); 1785 mutex_unlock(&root->fs_info->cleaner_mutex); 1786 1787 /* 1788 * The defragger has dealt with the R/O remount and umount, 1789 * needn't do anything special here. 1790 */ 1791 btrfs_run_defrag_inodes(root->fs_info); 1792 1793 /* 1794 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1795 * with relocation (btrfs_relocate_chunk) and relocation 1796 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1797 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1798 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1799 * unused block groups. 1800 */ 1801 btrfs_delete_unused_bgs(root->fs_info); 1802 sleep: 1803 if (!try_to_freeze() && !again) { 1804 set_current_state(TASK_INTERRUPTIBLE); 1805 if (!kthread_should_stop()) 1806 schedule(); 1807 __set_current_state(TASK_RUNNING); 1808 } 1809 } while (!kthread_should_stop()); 1810 1811 /* 1812 * Transaction kthread is stopped before us and wakes us up. 1813 * However we might have started a new transaction and COWed some 1814 * tree blocks when deleting unused block groups for example. So 1815 * make sure we commit the transaction we started to have a clean 1816 * shutdown when evicting the btree inode - if it has dirty pages 1817 * when we do the final iput() on it, eviction will trigger a 1818 * writeback for it which will fail with null pointer dereferences 1819 * since work queues and other resources were already released and 1820 * destroyed by the time the iput/eviction/writeback is made. 1821 */ 1822 trans = btrfs_attach_transaction(root); 1823 if (IS_ERR(trans)) { 1824 if (PTR_ERR(trans) != -ENOENT) 1825 btrfs_err(root->fs_info, 1826 "cleaner transaction attach returned %ld", 1827 PTR_ERR(trans)); 1828 } else { 1829 int ret; 1830 1831 ret = btrfs_commit_transaction(trans, root); 1832 if (ret) 1833 btrfs_err(root->fs_info, 1834 "cleaner open transaction commit returned %d", 1835 ret); 1836 } 1837 1838 return 0; 1839 } 1840 1841 static int transaction_kthread(void *arg) 1842 { 1843 struct btrfs_root *root = arg; 1844 struct btrfs_trans_handle *trans; 1845 struct btrfs_transaction *cur; 1846 u64 transid; 1847 unsigned long now; 1848 unsigned long delay; 1849 bool cannot_commit; 1850 1851 do { 1852 cannot_commit = false; 1853 delay = HZ * root->fs_info->commit_interval; 1854 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1855 1856 spin_lock(&root->fs_info->trans_lock); 1857 cur = root->fs_info->running_transaction; 1858 if (!cur) { 1859 spin_unlock(&root->fs_info->trans_lock); 1860 goto sleep; 1861 } 1862 1863 now = get_seconds(); 1864 if (cur->state < TRANS_STATE_BLOCKED && 1865 (now < cur->start_time || 1866 now - cur->start_time < root->fs_info->commit_interval)) { 1867 spin_unlock(&root->fs_info->trans_lock); 1868 delay = HZ * 5; 1869 goto sleep; 1870 } 1871 transid = cur->transid; 1872 spin_unlock(&root->fs_info->trans_lock); 1873 1874 /* If the file system is aborted, this will always fail. */ 1875 trans = btrfs_attach_transaction(root); 1876 if (IS_ERR(trans)) { 1877 if (PTR_ERR(trans) != -ENOENT) 1878 cannot_commit = true; 1879 goto sleep; 1880 } 1881 if (transid == trans->transid) { 1882 btrfs_commit_transaction(trans, root); 1883 } else { 1884 btrfs_end_transaction(trans, root); 1885 } 1886 sleep: 1887 wake_up_process(root->fs_info->cleaner_kthread); 1888 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1889 1890 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1891 &root->fs_info->fs_state))) 1892 btrfs_cleanup_transaction(root); 1893 if (!try_to_freeze()) { 1894 set_current_state(TASK_INTERRUPTIBLE); 1895 if (!kthread_should_stop() && 1896 (!btrfs_transaction_blocked(root->fs_info) || 1897 cannot_commit)) 1898 schedule_timeout(delay); 1899 __set_current_state(TASK_RUNNING); 1900 } 1901 } while (!kthread_should_stop()); 1902 return 0; 1903 } 1904 1905 /* 1906 * this will find the highest generation in the array of 1907 * root backups. The index of the highest array is returned, 1908 * or -1 if we can't find anything. 1909 * 1910 * We check to make sure the array is valid by comparing the 1911 * generation of the latest root in the array with the generation 1912 * in the super block. If they don't match we pitch it. 1913 */ 1914 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1915 { 1916 u64 cur; 1917 int newest_index = -1; 1918 struct btrfs_root_backup *root_backup; 1919 int i; 1920 1921 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1922 root_backup = info->super_copy->super_roots + i; 1923 cur = btrfs_backup_tree_root_gen(root_backup); 1924 if (cur == newest_gen) 1925 newest_index = i; 1926 } 1927 1928 /* check to see if we actually wrapped around */ 1929 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1930 root_backup = info->super_copy->super_roots; 1931 cur = btrfs_backup_tree_root_gen(root_backup); 1932 if (cur == newest_gen) 1933 newest_index = 0; 1934 } 1935 return newest_index; 1936 } 1937 1938 1939 /* 1940 * find the oldest backup so we know where to store new entries 1941 * in the backup array. This will set the backup_root_index 1942 * field in the fs_info struct 1943 */ 1944 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1945 u64 newest_gen) 1946 { 1947 int newest_index = -1; 1948 1949 newest_index = find_newest_super_backup(info, newest_gen); 1950 /* if there was garbage in there, just move along */ 1951 if (newest_index == -1) { 1952 info->backup_root_index = 0; 1953 } else { 1954 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1955 } 1956 } 1957 1958 /* 1959 * copy all the root pointers into the super backup array. 1960 * this will bump the backup pointer by one when it is 1961 * done 1962 */ 1963 static void backup_super_roots(struct btrfs_fs_info *info) 1964 { 1965 int next_backup; 1966 struct btrfs_root_backup *root_backup; 1967 int last_backup; 1968 1969 next_backup = info->backup_root_index; 1970 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1971 BTRFS_NUM_BACKUP_ROOTS; 1972 1973 /* 1974 * just overwrite the last backup if we're at the same generation 1975 * this happens only at umount 1976 */ 1977 root_backup = info->super_for_commit->super_roots + last_backup; 1978 if (btrfs_backup_tree_root_gen(root_backup) == 1979 btrfs_header_generation(info->tree_root->node)) 1980 next_backup = last_backup; 1981 1982 root_backup = info->super_for_commit->super_roots + next_backup; 1983 1984 /* 1985 * make sure all of our padding and empty slots get zero filled 1986 * regardless of which ones we use today 1987 */ 1988 memset(root_backup, 0, sizeof(*root_backup)); 1989 1990 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1991 1992 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1993 btrfs_set_backup_tree_root_gen(root_backup, 1994 btrfs_header_generation(info->tree_root->node)); 1995 1996 btrfs_set_backup_tree_root_level(root_backup, 1997 btrfs_header_level(info->tree_root->node)); 1998 1999 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2000 btrfs_set_backup_chunk_root_gen(root_backup, 2001 btrfs_header_generation(info->chunk_root->node)); 2002 btrfs_set_backup_chunk_root_level(root_backup, 2003 btrfs_header_level(info->chunk_root->node)); 2004 2005 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2006 btrfs_set_backup_extent_root_gen(root_backup, 2007 btrfs_header_generation(info->extent_root->node)); 2008 btrfs_set_backup_extent_root_level(root_backup, 2009 btrfs_header_level(info->extent_root->node)); 2010 2011 /* 2012 * we might commit during log recovery, which happens before we set 2013 * the fs_root. Make sure it is valid before we fill it in. 2014 */ 2015 if (info->fs_root && info->fs_root->node) { 2016 btrfs_set_backup_fs_root(root_backup, 2017 info->fs_root->node->start); 2018 btrfs_set_backup_fs_root_gen(root_backup, 2019 btrfs_header_generation(info->fs_root->node)); 2020 btrfs_set_backup_fs_root_level(root_backup, 2021 btrfs_header_level(info->fs_root->node)); 2022 } 2023 2024 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2025 btrfs_set_backup_dev_root_gen(root_backup, 2026 btrfs_header_generation(info->dev_root->node)); 2027 btrfs_set_backup_dev_root_level(root_backup, 2028 btrfs_header_level(info->dev_root->node)); 2029 2030 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2031 btrfs_set_backup_csum_root_gen(root_backup, 2032 btrfs_header_generation(info->csum_root->node)); 2033 btrfs_set_backup_csum_root_level(root_backup, 2034 btrfs_header_level(info->csum_root->node)); 2035 2036 btrfs_set_backup_total_bytes(root_backup, 2037 btrfs_super_total_bytes(info->super_copy)); 2038 btrfs_set_backup_bytes_used(root_backup, 2039 btrfs_super_bytes_used(info->super_copy)); 2040 btrfs_set_backup_num_devices(root_backup, 2041 btrfs_super_num_devices(info->super_copy)); 2042 2043 /* 2044 * if we don't copy this out to the super_copy, it won't get remembered 2045 * for the next commit 2046 */ 2047 memcpy(&info->super_copy->super_roots, 2048 &info->super_for_commit->super_roots, 2049 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2050 } 2051 2052 /* 2053 * this copies info out of the root backup array and back into 2054 * the in-memory super block. It is meant to help iterate through 2055 * the array, so you send it the number of backups you've already 2056 * tried and the last backup index you used. 2057 * 2058 * this returns -1 when it has tried all the backups 2059 */ 2060 static noinline int next_root_backup(struct btrfs_fs_info *info, 2061 struct btrfs_super_block *super, 2062 int *num_backups_tried, int *backup_index) 2063 { 2064 struct btrfs_root_backup *root_backup; 2065 int newest = *backup_index; 2066 2067 if (*num_backups_tried == 0) { 2068 u64 gen = btrfs_super_generation(super); 2069 2070 newest = find_newest_super_backup(info, gen); 2071 if (newest == -1) 2072 return -1; 2073 2074 *backup_index = newest; 2075 *num_backups_tried = 1; 2076 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2077 /* we've tried all the backups, all done */ 2078 return -1; 2079 } else { 2080 /* jump to the next oldest backup */ 2081 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2082 BTRFS_NUM_BACKUP_ROOTS; 2083 *backup_index = newest; 2084 *num_backups_tried += 1; 2085 } 2086 root_backup = super->super_roots + newest; 2087 2088 btrfs_set_super_generation(super, 2089 btrfs_backup_tree_root_gen(root_backup)); 2090 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2091 btrfs_set_super_root_level(super, 2092 btrfs_backup_tree_root_level(root_backup)); 2093 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2094 2095 /* 2096 * fixme: the total bytes and num_devices need to match or we should 2097 * need a fsck 2098 */ 2099 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2100 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2101 return 0; 2102 } 2103 2104 /* helper to cleanup workers */ 2105 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2106 { 2107 btrfs_destroy_workqueue(fs_info->fixup_workers); 2108 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2109 btrfs_destroy_workqueue(fs_info->workers); 2110 btrfs_destroy_workqueue(fs_info->endio_workers); 2111 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2112 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2113 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2114 btrfs_destroy_workqueue(fs_info->rmw_workers); 2115 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2116 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2117 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2118 btrfs_destroy_workqueue(fs_info->submit_workers); 2119 btrfs_destroy_workqueue(fs_info->delayed_workers); 2120 btrfs_destroy_workqueue(fs_info->caching_workers); 2121 btrfs_destroy_workqueue(fs_info->readahead_workers); 2122 btrfs_destroy_workqueue(fs_info->flush_workers); 2123 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2124 btrfs_destroy_workqueue(fs_info->extent_workers); 2125 } 2126 2127 static void free_root_extent_buffers(struct btrfs_root *root) 2128 { 2129 if (root) { 2130 free_extent_buffer(root->node); 2131 free_extent_buffer(root->commit_root); 2132 root->node = NULL; 2133 root->commit_root = NULL; 2134 } 2135 } 2136 2137 /* helper to cleanup tree roots */ 2138 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2139 { 2140 free_root_extent_buffers(info->tree_root); 2141 2142 free_root_extent_buffers(info->dev_root); 2143 free_root_extent_buffers(info->extent_root); 2144 free_root_extent_buffers(info->csum_root); 2145 free_root_extent_buffers(info->quota_root); 2146 free_root_extent_buffers(info->uuid_root); 2147 if (chunk_root) 2148 free_root_extent_buffers(info->chunk_root); 2149 } 2150 2151 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2152 { 2153 int ret; 2154 struct btrfs_root *gang[8]; 2155 int i; 2156 2157 while (!list_empty(&fs_info->dead_roots)) { 2158 gang[0] = list_entry(fs_info->dead_roots.next, 2159 struct btrfs_root, root_list); 2160 list_del(&gang[0]->root_list); 2161 2162 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2163 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2164 } else { 2165 free_extent_buffer(gang[0]->node); 2166 free_extent_buffer(gang[0]->commit_root); 2167 btrfs_put_fs_root(gang[0]); 2168 } 2169 } 2170 2171 while (1) { 2172 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2173 (void **)gang, 0, 2174 ARRAY_SIZE(gang)); 2175 if (!ret) 2176 break; 2177 for (i = 0; i < ret; i++) 2178 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2179 } 2180 2181 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2182 btrfs_free_log_root_tree(NULL, fs_info); 2183 btrfs_destroy_pinned_extent(fs_info->tree_root, 2184 fs_info->pinned_extents); 2185 } 2186 } 2187 2188 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2189 { 2190 mutex_init(&fs_info->scrub_lock); 2191 atomic_set(&fs_info->scrubs_running, 0); 2192 atomic_set(&fs_info->scrub_pause_req, 0); 2193 atomic_set(&fs_info->scrubs_paused, 0); 2194 atomic_set(&fs_info->scrub_cancel_req, 0); 2195 init_waitqueue_head(&fs_info->scrub_pause_wait); 2196 fs_info->scrub_workers_refcnt = 0; 2197 } 2198 2199 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2200 { 2201 spin_lock_init(&fs_info->balance_lock); 2202 mutex_init(&fs_info->balance_mutex); 2203 atomic_set(&fs_info->balance_running, 0); 2204 atomic_set(&fs_info->balance_pause_req, 0); 2205 atomic_set(&fs_info->balance_cancel_req, 0); 2206 fs_info->balance_ctl = NULL; 2207 init_waitqueue_head(&fs_info->balance_wait_q); 2208 } 2209 2210 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2211 struct btrfs_root *tree_root) 2212 { 2213 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2214 set_nlink(fs_info->btree_inode, 1); 2215 /* 2216 * we set the i_size on the btree inode to the max possible int. 2217 * the real end of the address space is determined by all of 2218 * the devices in the system 2219 */ 2220 fs_info->btree_inode->i_size = OFFSET_MAX; 2221 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2222 2223 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2224 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2225 fs_info->btree_inode->i_mapping); 2226 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2227 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2228 2229 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2230 2231 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2232 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2233 sizeof(struct btrfs_key)); 2234 set_bit(BTRFS_INODE_DUMMY, 2235 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2236 btrfs_insert_inode_hash(fs_info->btree_inode); 2237 } 2238 2239 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2240 { 2241 fs_info->dev_replace.lock_owner = 0; 2242 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2243 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2244 mutex_init(&fs_info->dev_replace.lock_management_lock); 2245 mutex_init(&fs_info->dev_replace.lock); 2246 init_waitqueue_head(&fs_info->replace_wait); 2247 } 2248 2249 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2250 { 2251 spin_lock_init(&fs_info->qgroup_lock); 2252 mutex_init(&fs_info->qgroup_ioctl_lock); 2253 fs_info->qgroup_tree = RB_ROOT; 2254 fs_info->qgroup_op_tree = RB_ROOT; 2255 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2256 fs_info->qgroup_seq = 1; 2257 fs_info->quota_enabled = 0; 2258 fs_info->pending_quota_state = 0; 2259 fs_info->qgroup_ulist = NULL; 2260 mutex_init(&fs_info->qgroup_rescan_lock); 2261 } 2262 2263 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2264 struct btrfs_fs_devices *fs_devices) 2265 { 2266 int max_active = fs_info->thread_pool_size; 2267 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2268 2269 fs_info->workers = 2270 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2271 max_active, 16); 2272 2273 fs_info->delalloc_workers = 2274 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2275 2276 fs_info->flush_workers = 2277 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2278 2279 fs_info->caching_workers = 2280 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2281 2282 /* 2283 * a higher idle thresh on the submit workers makes it much more 2284 * likely that bios will be send down in a sane order to the 2285 * devices 2286 */ 2287 fs_info->submit_workers = 2288 btrfs_alloc_workqueue("submit", flags, 2289 min_t(u64, fs_devices->num_devices, 2290 max_active), 64); 2291 2292 fs_info->fixup_workers = 2293 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2294 2295 /* 2296 * endios are largely parallel and should have a very 2297 * low idle thresh 2298 */ 2299 fs_info->endio_workers = 2300 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2301 fs_info->endio_meta_workers = 2302 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2303 fs_info->endio_meta_write_workers = 2304 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2305 fs_info->endio_raid56_workers = 2306 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2307 fs_info->endio_repair_workers = 2308 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2309 fs_info->rmw_workers = 2310 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2311 fs_info->endio_write_workers = 2312 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2313 fs_info->endio_freespace_worker = 2314 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2315 fs_info->delayed_workers = 2316 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2317 fs_info->readahead_workers = 2318 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2319 fs_info->qgroup_rescan_workers = 2320 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2321 fs_info->extent_workers = 2322 btrfs_alloc_workqueue("extent-refs", flags, 2323 min_t(u64, fs_devices->num_devices, 2324 max_active), 8); 2325 2326 if (!(fs_info->workers && fs_info->delalloc_workers && 2327 fs_info->submit_workers && fs_info->flush_workers && 2328 fs_info->endio_workers && fs_info->endio_meta_workers && 2329 fs_info->endio_meta_write_workers && 2330 fs_info->endio_repair_workers && 2331 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2332 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2333 fs_info->caching_workers && fs_info->readahead_workers && 2334 fs_info->fixup_workers && fs_info->delayed_workers && 2335 fs_info->extent_workers && 2336 fs_info->qgroup_rescan_workers)) { 2337 return -ENOMEM; 2338 } 2339 2340 return 0; 2341 } 2342 2343 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2344 struct btrfs_fs_devices *fs_devices) 2345 { 2346 int ret; 2347 struct btrfs_root *tree_root = fs_info->tree_root; 2348 struct btrfs_root *log_tree_root; 2349 struct btrfs_super_block *disk_super = fs_info->super_copy; 2350 u64 bytenr = btrfs_super_log_root(disk_super); 2351 2352 if (fs_devices->rw_devices == 0) { 2353 btrfs_warn(fs_info, "log replay required on RO media"); 2354 return -EIO; 2355 } 2356 2357 log_tree_root = btrfs_alloc_root(fs_info); 2358 if (!log_tree_root) 2359 return -ENOMEM; 2360 2361 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2362 tree_root->stripesize, log_tree_root, fs_info, 2363 BTRFS_TREE_LOG_OBJECTID); 2364 2365 log_tree_root->node = read_tree_block(tree_root, bytenr, 2366 fs_info->generation + 1); 2367 if (IS_ERR(log_tree_root->node)) { 2368 btrfs_warn(fs_info, "failed to read log tree"); 2369 ret = PTR_ERR(log_tree_root->node); 2370 kfree(log_tree_root); 2371 return ret; 2372 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2373 btrfs_err(fs_info, "failed to read log tree"); 2374 free_extent_buffer(log_tree_root->node); 2375 kfree(log_tree_root); 2376 return -EIO; 2377 } 2378 /* returns with log_tree_root freed on success */ 2379 ret = btrfs_recover_log_trees(log_tree_root); 2380 if (ret) { 2381 btrfs_std_error(tree_root->fs_info, ret, 2382 "Failed to recover log tree"); 2383 free_extent_buffer(log_tree_root->node); 2384 kfree(log_tree_root); 2385 return ret; 2386 } 2387 2388 if (fs_info->sb->s_flags & MS_RDONLY) { 2389 ret = btrfs_commit_super(tree_root); 2390 if (ret) 2391 return ret; 2392 } 2393 2394 return 0; 2395 } 2396 2397 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2398 struct btrfs_root *tree_root) 2399 { 2400 struct btrfs_root *root; 2401 struct btrfs_key location; 2402 int ret; 2403 2404 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2405 location.type = BTRFS_ROOT_ITEM_KEY; 2406 location.offset = 0; 2407 2408 root = btrfs_read_tree_root(tree_root, &location); 2409 if (IS_ERR(root)) 2410 return PTR_ERR(root); 2411 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2412 fs_info->extent_root = root; 2413 2414 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2415 root = btrfs_read_tree_root(tree_root, &location); 2416 if (IS_ERR(root)) 2417 return PTR_ERR(root); 2418 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2419 fs_info->dev_root = root; 2420 btrfs_init_devices_late(fs_info); 2421 2422 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2423 root = btrfs_read_tree_root(tree_root, &location); 2424 if (IS_ERR(root)) 2425 return PTR_ERR(root); 2426 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2427 fs_info->csum_root = root; 2428 2429 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2430 root = btrfs_read_tree_root(tree_root, &location); 2431 if (!IS_ERR(root)) { 2432 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2433 fs_info->quota_enabled = 1; 2434 fs_info->pending_quota_state = 1; 2435 fs_info->quota_root = root; 2436 } 2437 2438 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2439 root = btrfs_read_tree_root(tree_root, &location); 2440 if (IS_ERR(root)) { 2441 ret = PTR_ERR(root); 2442 if (ret != -ENOENT) 2443 return ret; 2444 } else { 2445 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2446 fs_info->uuid_root = root; 2447 } 2448 2449 return 0; 2450 } 2451 2452 int open_ctree(struct super_block *sb, 2453 struct btrfs_fs_devices *fs_devices, 2454 char *options) 2455 { 2456 u32 sectorsize; 2457 u32 nodesize; 2458 u32 stripesize; 2459 u64 generation; 2460 u64 features; 2461 struct btrfs_key location; 2462 struct buffer_head *bh; 2463 struct btrfs_super_block *disk_super; 2464 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2465 struct btrfs_root *tree_root; 2466 struct btrfs_root *chunk_root; 2467 int ret; 2468 int err = -EINVAL; 2469 int num_backups_tried = 0; 2470 int backup_index = 0; 2471 int max_active; 2472 2473 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2474 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2475 if (!tree_root || !chunk_root) { 2476 err = -ENOMEM; 2477 goto fail; 2478 } 2479 2480 ret = init_srcu_struct(&fs_info->subvol_srcu); 2481 if (ret) { 2482 err = ret; 2483 goto fail; 2484 } 2485 2486 ret = setup_bdi(fs_info, &fs_info->bdi); 2487 if (ret) { 2488 err = ret; 2489 goto fail_srcu; 2490 } 2491 2492 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2493 if (ret) { 2494 err = ret; 2495 goto fail_bdi; 2496 } 2497 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2498 (1 + ilog2(nr_cpu_ids)); 2499 2500 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2501 if (ret) { 2502 err = ret; 2503 goto fail_dirty_metadata_bytes; 2504 } 2505 2506 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2507 if (ret) { 2508 err = ret; 2509 goto fail_delalloc_bytes; 2510 } 2511 2512 fs_info->btree_inode = new_inode(sb); 2513 if (!fs_info->btree_inode) { 2514 err = -ENOMEM; 2515 goto fail_bio_counter; 2516 } 2517 2518 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2519 2520 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2521 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2522 INIT_LIST_HEAD(&fs_info->trans_list); 2523 INIT_LIST_HEAD(&fs_info->dead_roots); 2524 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2525 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2526 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2527 spin_lock_init(&fs_info->delalloc_root_lock); 2528 spin_lock_init(&fs_info->trans_lock); 2529 spin_lock_init(&fs_info->fs_roots_radix_lock); 2530 spin_lock_init(&fs_info->delayed_iput_lock); 2531 spin_lock_init(&fs_info->defrag_inodes_lock); 2532 spin_lock_init(&fs_info->free_chunk_lock); 2533 spin_lock_init(&fs_info->tree_mod_seq_lock); 2534 spin_lock_init(&fs_info->super_lock); 2535 spin_lock_init(&fs_info->qgroup_op_lock); 2536 spin_lock_init(&fs_info->buffer_lock); 2537 spin_lock_init(&fs_info->unused_bgs_lock); 2538 rwlock_init(&fs_info->tree_mod_log_lock); 2539 mutex_init(&fs_info->unused_bg_unpin_mutex); 2540 mutex_init(&fs_info->delete_unused_bgs_mutex); 2541 mutex_init(&fs_info->reloc_mutex); 2542 mutex_init(&fs_info->delalloc_root_mutex); 2543 seqlock_init(&fs_info->profiles_lock); 2544 init_rwsem(&fs_info->delayed_iput_sem); 2545 2546 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2547 INIT_LIST_HEAD(&fs_info->space_info); 2548 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2549 INIT_LIST_HEAD(&fs_info->unused_bgs); 2550 btrfs_mapping_init(&fs_info->mapping_tree); 2551 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2552 BTRFS_BLOCK_RSV_GLOBAL); 2553 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2554 BTRFS_BLOCK_RSV_DELALLOC); 2555 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2556 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2557 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2558 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2559 BTRFS_BLOCK_RSV_DELOPS); 2560 atomic_set(&fs_info->nr_async_submits, 0); 2561 atomic_set(&fs_info->async_delalloc_pages, 0); 2562 atomic_set(&fs_info->async_submit_draining, 0); 2563 atomic_set(&fs_info->nr_async_bios, 0); 2564 atomic_set(&fs_info->defrag_running, 0); 2565 atomic_set(&fs_info->qgroup_op_seq, 0); 2566 atomic64_set(&fs_info->tree_mod_seq, 0); 2567 fs_info->sb = sb; 2568 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2569 fs_info->metadata_ratio = 0; 2570 fs_info->defrag_inodes = RB_ROOT; 2571 fs_info->free_chunk_space = 0; 2572 fs_info->tree_mod_log = RB_ROOT; 2573 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2574 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2575 /* readahead state */ 2576 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2577 spin_lock_init(&fs_info->reada_lock); 2578 2579 fs_info->thread_pool_size = min_t(unsigned long, 2580 num_online_cpus() + 2, 8); 2581 2582 INIT_LIST_HEAD(&fs_info->ordered_roots); 2583 spin_lock_init(&fs_info->ordered_root_lock); 2584 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2585 GFP_NOFS); 2586 if (!fs_info->delayed_root) { 2587 err = -ENOMEM; 2588 goto fail_iput; 2589 } 2590 btrfs_init_delayed_root(fs_info->delayed_root); 2591 2592 btrfs_init_scrub(fs_info); 2593 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2594 fs_info->check_integrity_print_mask = 0; 2595 #endif 2596 btrfs_init_balance(fs_info); 2597 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2598 2599 sb->s_blocksize = 4096; 2600 sb->s_blocksize_bits = blksize_bits(4096); 2601 sb->s_bdi = &fs_info->bdi; 2602 2603 btrfs_init_btree_inode(fs_info, tree_root); 2604 2605 spin_lock_init(&fs_info->block_group_cache_lock); 2606 fs_info->block_group_cache_tree = RB_ROOT; 2607 fs_info->first_logical_byte = (u64)-1; 2608 2609 extent_io_tree_init(&fs_info->freed_extents[0], 2610 fs_info->btree_inode->i_mapping); 2611 extent_io_tree_init(&fs_info->freed_extents[1], 2612 fs_info->btree_inode->i_mapping); 2613 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2614 fs_info->do_barriers = 1; 2615 2616 2617 mutex_init(&fs_info->ordered_operations_mutex); 2618 mutex_init(&fs_info->tree_log_mutex); 2619 mutex_init(&fs_info->chunk_mutex); 2620 mutex_init(&fs_info->transaction_kthread_mutex); 2621 mutex_init(&fs_info->cleaner_mutex); 2622 mutex_init(&fs_info->volume_mutex); 2623 mutex_init(&fs_info->ro_block_group_mutex); 2624 init_rwsem(&fs_info->commit_root_sem); 2625 init_rwsem(&fs_info->cleanup_work_sem); 2626 init_rwsem(&fs_info->subvol_sem); 2627 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2628 2629 btrfs_init_dev_replace_locks(fs_info); 2630 btrfs_init_qgroup(fs_info); 2631 2632 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2633 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2634 2635 init_waitqueue_head(&fs_info->transaction_throttle); 2636 init_waitqueue_head(&fs_info->transaction_wait); 2637 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2638 init_waitqueue_head(&fs_info->async_submit_wait); 2639 2640 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2641 2642 ret = btrfs_alloc_stripe_hash_table(fs_info); 2643 if (ret) { 2644 err = ret; 2645 goto fail_alloc; 2646 } 2647 2648 __setup_root(4096, 4096, 4096, tree_root, 2649 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2650 2651 invalidate_bdev(fs_devices->latest_bdev); 2652 2653 /* 2654 * Read super block and check the signature bytes only 2655 */ 2656 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2657 if (IS_ERR(bh)) { 2658 err = PTR_ERR(bh); 2659 goto fail_alloc; 2660 } 2661 2662 /* 2663 * We want to check superblock checksum, the type is stored inside. 2664 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2665 */ 2666 if (btrfs_check_super_csum(bh->b_data)) { 2667 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2668 err = -EINVAL; 2669 goto fail_alloc; 2670 } 2671 2672 /* 2673 * super_copy is zeroed at allocation time and we never touch the 2674 * following bytes up to INFO_SIZE, the checksum is calculated from 2675 * the whole block of INFO_SIZE 2676 */ 2677 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2678 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2679 sizeof(*fs_info->super_for_commit)); 2680 brelse(bh); 2681 2682 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2683 2684 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2685 if (ret) { 2686 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2687 err = -EINVAL; 2688 goto fail_alloc; 2689 } 2690 2691 disk_super = fs_info->super_copy; 2692 if (!btrfs_super_root(disk_super)) 2693 goto fail_alloc; 2694 2695 /* check FS state, whether FS is broken. */ 2696 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2697 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2698 2699 /* 2700 * run through our array of backup supers and setup 2701 * our ring pointer to the oldest one 2702 */ 2703 generation = btrfs_super_generation(disk_super); 2704 find_oldest_super_backup(fs_info, generation); 2705 2706 /* 2707 * In the long term, we'll store the compression type in the super 2708 * block, and it'll be used for per file compression control. 2709 */ 2710 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2711 2712 ret = btrfs_parse_options(tree_root, options); 2713 if (ret) { 2714 err = ret; 2715 goto fail_alloc; 2716 } 2717 2718 features = btrfs_super_incompat_flags(disk_super) & 2719 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2720 if (features) { 2721 printk(KERN_ERR "BTRFS: couldn't mount because of " 2722 "unsupported optional features (%Lx).\n", 2723 features); 2724 err = -EINVAL; 2725 goto fail_alloc; 2726 } 2727 2728 /* 2729 * Leafsize and nodesize were always equal, this is only a sanity check. 2730 */ 2731 if (le32_to_cpu(disk_super->__unused_leafsize) != 2732 btrfs_super_nodesize(disk_super)) { 2733 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2734 "blocksizes don't match. node %d leaf %d\n", 2735 btrfs_super_nodesize(disk_super), 2736 le32_to_cpu(disk_super->__unused_leafsize)); 2737 err = -EINVAL; 2738 goto fail_alloc; 2739 } 2740 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2741 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2742 "blocksize (%d) was too large\n", 2743 btrfs_super_nodesize(disk_super)); 2744 err = -EINVAL; 2745 goto fail_alloc; 2746 } 2747 2748 features = btrfs_super_incompat_flags(disk_super); 2749 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2750 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2751 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2752 2753 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2754 printk(KERN_INFO "BTRFS: has skinny extents\n"); 2755 2756 /* 2757 * flag our filesystem as having big metadata blocks if 2758 * they are bigger than the page size 2759 */ 2760 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2761 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2762 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2763 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2764 } 2765 2766 nodesize = btrfs_super_nodesize(disk_super); 2767 sectorsize = btrfs_super_sectorsize(disk_super); 2768 stripesize = btrfs_super_stripesize(disk_super); 2769 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2770 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2771 2772 /* 2773 * mixed block groups end up with duplicate but slightly offset 2774 * extent buffers for the same range. It leads to corruptions 2775 */ 2776 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2777 (sectorsize != nodesize)) { 2778 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes " 2779 "are not allowed for mixed block groups on %s\n", 2780 sb->s_id); 2781 goto fail_alloc; 2782 } 2783 2784 /* 2785 * Needn't use the lock because there is no other task which will 2786 * update the flag. 2787 */ 2788 btrfs_set_super_incompat_flags(disk_super, features); 2789 2790 features = btrfs_super_compat_ro_flags(disk_super) & 2791 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2792 if (!(sb->s_flags & MS_RDONLY) && features) { 2793 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2794 "unsupported option features (%Lx).\n", 2795 features); 2796 err = -EINVAL; 2797 goto fail_alloc; 2798 } 2799 2800 max_active = fs_info->thread_pool_size; 2801 2802 ret = btrfs_init_workqueues(fs_info, fs_devices); 2803 if (ret) { 2804 err = ret; 2805 goto fail_sb_buffer; 2806 } 2807 2808 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2809 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2810 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2811 2812 tree_root->nodesize = nodesize; 2813 tree_root->sectorsize = sectorsize; 2814 tree_root->stripesize = stripesize; 2815 2816 sb->s_blocksize = sectorsize; 2817 sb->s_blocksize_bits = blksize_bits(sectorsize); 2818 2819 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2820 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id); 2821 goto fail_sb_buffer; 2822 } 2823 2824 if (sectorsize != PAGE_SIZE) { 2825 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) " 2826 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2827 goto fail_sb_buffer; 2828 } 2829 2830 mutex_lock(&fs_info->chunk_mutex); 2831 ret = btrfs_read_sys_array(tree_root); 2832 mutex_unlock(&fs_info->chunk_mutex); 2833 if (ret) { 2834 printk(KERN_ERR "BTRFS: failed to read the system " 2835 "array on %s\n", sb->s_id); 2836 goto fail_sb_buffer; 2837 } 2838 2839 generation = btrfs_super_chunk_root_generation(disk_super); 2840 2841 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2842 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2843 2844 chunk_root->node = read_tree_block(chunk_root, 2845 btrfs_super_chunk_root(disk_super), 2846 generation); 2847 if (IS_ERR(chunk_root->node) || 2848 !extent_buffer_uptodate(chunk_root->node)) { 2849 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n", 2850 sb->s_id); 2851 if (!IS_ERR(chunk_root->node)) 2852 free_extent_buffer(chunk_root->node); 2853 chunk_root->node = NULL; 2854 goto fail_tree_roots; 2855 } 2856 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2857 chunk_root->commit_root = btrfs_root_node(chunk_root); 2858 2859 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2860 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2861 2862 ret = btrfs_read_chunk_tree(chunk_root); 2863 if (ret) { 2864 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n", 2865 sb->s_id); 2866 goto fail_tree_roots; 2867 } 2868 2869 /* 2870 * keep the device that is marked to be the target device for the 2871 * dev_replace procedure 2872 */ 2873 btrfs_close_extra_devices(fs_devices, 0); 2874 2875 if (!fs_devices->latest_bdev) { 2876 printk(KERN_ERR "BTRFS: failed to read devices on %s\n", 2877 sb->s_id); 2878 goto fail_tree_roots; 2879 } 2880 2881 retry_root_backup: 2882 generation = btrfs_super_generation(disk_super); 2883 2884 tree_root->node = read_tree_block(tree_root, 2885 btrfs_super_root(disk_super), 2886 generation); 2887 if (IS_ERR(tree_root->node) || 2888 !extent_buffer_uptodate(tree_root->node)) { 2889 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2890 sb->s_id); 2891 if (!IS_ERR(tree_root->node)) 2892 free_extent_buffer(tree_root->node); 2893 tree_root->node = NULL; 2894 goto recovery_tree_root; 2895 } 2896 2897 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2898 tree_root->commit_root = btrfs_root_node(tree_root); 2899 btrfs_set_root_refs(&tree_root->root_item, 1); 2900 2901 ret = btrfs_read_roots(fs_info, tree_root); 2902 if (ret) 2903 goto recovery_tree_root; 2904 2905 fs_info->generation = generation; 2906 fs_info->last_trans_committed = generation; 2907 2908 ret = btrfs_recover_balance(fs_info); 2909 if (ret) { 2910 printk(KERN_ERR "BTRFS: failed to recover balance\n"); 2911 goto fail_block_groups; 2912 } 2913 2914 ret = btrfs_init_dev_stats(fs_info); 2915 if (ret) { 2916 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2917 ret); 2918 goto fail_block_groups; 2919 } 2920 2921 ret = btrfs_init_dev_replace(fs_info); 2922 if (ret) { 2923 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2924 goto fail_block_groups; 2925 } 2926 2927 btrfs_close_extra_devices(fs_devices, 1); 2928 2929 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2930 if (ret) { 2931 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret); 2932 goto fail_block_groups; 2933 } 2934 2935 ret = btrfs_sysfs_add_device(fs_devices); 2936 if (ret) { 2937 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret); 2938 goto fail_fsdev_sysfs; 2939 } 2940 2941 ret = btrfs_sysfs_add_mounted(fs_info); 2942 if (ret) { 2943 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2944 goto fail_fsdev_sysfs; 2945 } 2946 2947 ret = btrfs_init_space_info(fs_info); 2948 if (ret) { 2949 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2950 goto fail_sysfs; 2951 } 2952 2953 ret = btrfs_read_block_groups(fs_info->extent_root); 2954 if (ret) { 2955 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2956 goto fail_sysfs; 2957 } 2958 fs_info->num_tolerated_disk_barrier_failures = 2959 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2960 if (fs_info->fs_devices->missing_devices > 2961 fs_info->num_tolerated_disk_barrier_failures && 2962 !(sb->s_flags & MS_RDONLY)) { 2963 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n", 2964 fs_info->fs_devices->missing_devices, 2965 fs_info->num_tolerated_disk_barrier_failures); 2966 goto fail_sysfs; 2967 } 2968 2969 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2970 "btrfs-cleaner"); 2971 if (IS_ERR(fs_info->cleaner_kthread)) 2972 goto fail_sysfs; 2973 2974 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2975 tree_root, 2976 "btrfs-transaction"); 2977 if (IS_ERR(fs_info->transaction_kthread)) 2978 goto fail_cleaner; 2979 2980 if (!btrfs_test_opt(tree_root, SSD) && 2981 !btrfs_test_opt(tree_root, NOSSD) && 2982 !fs_info->fs_devices->rotating) { 2983 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2984 "mode\n"); 2985 btrfs_set_opt(fs_info->mount_opt, SSD); 2986 } 2987 2988 /* 2989 * Mount does not set all options immediatelly, we can do it now and do 2990 * not have to wait for transaction commit 2991 */ 2992 btrfs_apply_pending_changes(fs_info); 2993 2994 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2995 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2996 ret = btrfsic_mount(tree_root, fs_devices, 2997 btrfs_test_opt(tree_root, 2998 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2999 1 : 0, 3000 fs_info->check_integrity_print_mask); 3001 if (ret) 3002 printk(KERN_WARNING "BTRFS: failed to initialize" 3003 " integrity check module %s\n", sb->s_id); 3004 } 3005 #endif 3006 ret = btrfs_read_qgroup_config(fs_info); 3007 if (ret) 3008 goto fail_trans_kthread; 3009 3010 /* do not make disk changes in broken FS */ 3011 if (btrfs_super_log_root(disk_super) != 0) { 3012 ret = btrfs_replay_log(fs_info, fs_devices); 3013 if (ret) { 3014 err = ret; 3015 goto fail_qgroup; 3016 } 3017 } 3018 3019 ret = btrfs_find_orphan_roots(tree_root); 3020 if (ret) 3021 goto fail_qgroup; 3022 3023 if (!(sb->s_flags & MS_RDONLY)) { 3024 ret = btrfs_cleanup_fs_roots(fs_info); 3025 if (ret) 3026 goto fail_qgroup; 3027 3028 mutex_lock(&fs_info->cleaner_mutex); 3029 ret = btrfs_recover_relocation(tree_root); 3030 mutex_unlock(&fs_info->cleaner_mutex); 3031 if (ret < 0) { 3032 printk(KERN_WARNING 3033 "BTRFS: failed to recover relocation\n"); 3034 err = -EINVAL; 3035 goto fail_qgroup; 3036 } 3037 } 3038 3039 location.objectid = BTRFS_FS_TREE_OBJECTID; 3040 location.type = BTRFS_ROOT_ITEM_KEY; 3041 location.offset = 0; 3042 3043 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3044 if (IS_ERR(fs_info->fs_root)) { 3045 err = PTR_ERR(fs_info->fs_root); 3046 goto fail_qgroup; 3047 } 3048 3049 if (sb->s_flags & MS_RDONLY) 3050 return 0; 3051 3052 down_read(&fs_info->cleanup_work_sem); 3053 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3054 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3055 up_read(&fs_info->cleanup_work_sem); 3056 close_ctree(tree_root); 3057 return ret; 3058 } 3059 up_read(&fs_info->cleanup_work_sem); 3060 3061 ret = btrfs_resume_balance_async(fs_info); 3062 if (ret) { 3063 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 3064 close_ctree(tree_root); 3065 return ret; 3066 } 3067 3068 ret = btrfs_resume_dev_replace_async(fs_info); 3069 if (ret) { 3070 pr_warn("BTRFS: failed to resume dev_replace\n"); 3071 close_ctree(tree_root); 3072 return ret; 3073 } 3074 3075 btrfs_qgroup_rescan_resume(fs_info); 3076 3077 if (!fs_info->uuid_root) { 3078 pr_info("BTRFS: creating UUID tree\n"); 3079 ret = btrfs_create_uuid_tree(fs_info); 3080 if (ret) { 3081 pr_warn("BTRFS: failed to create the UUID tree %d\n", 3082 ret); 3083 close_ctree(tree_root); 3084 return ret; 3085 } 3086 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3087 fs_info->generation != 3088 btrfs_super_uuid_tree_generation(disk_super)) { 3089 pr_info("BTRFS: checking UUID tree\n"); 3090 ret = btrfs_check_uuid_tree(fs_info); 3091 if (ret) { 3092 pr_warn("BTRFS: failed to check the UUID tree %d\n", 3093 ret); 3094 close_ctree(tree_root); 3095 return ret; 3096 } 3097 } else { 3098 fs_info->update_uuid_tree_gen = 1; 3099 } 3100 3101 fs_info->open = 1; 3102 3103 return 0; 3104 3105 fail_qgroup: 3106 btrfs_free_qgroup_config(fs_info); 3107 fail_trans_kthread: 3108 kthread_stop(fs_info->transaction_kthread); 3109 btrfs_cleanup_transaction(fs_info->tree_root); 3110 btrfs_free_fs_roots(fs_info); 3111 fail_cleaner: 3112 kthread_stop(fs_info->cleaner_kthread); 3113 3114 /* 3115 * make sure we're done with the btree inode before we stop our 3116 * kthreads 3117 */ 3118 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3119 3120 fail_sysfs: 3121 btrfs_sysfs_remove_mounted(fs_info); 3122 3123 fail_fsdev_sysfs: 3124 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3125 3126 fail_block_groups: 3127 btrfs_put_block_group_cache(fs_info); 3128 btrfs_free_block_groups(fs_info); 3129 3130 fail_tree_roots: 3131 free_root_pointers(fs_info, 1); 3132 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3133 3134 fail_sb_buffer: 3135 btrfs_stop_all_workers(fs_info); 3136 fail_alloc: 3137 fail_iput: 3138 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3139 3140 iput(fs_info->btree_inode); 3141 fail_bio_counter: 3142 percpu_counter_destroy(&fs_info->bio_counter); 3143 fail_delalloc_bytes: 3144 percpu_counter_destroy(&fs_info->delalloc_bytes); 3145 fail_dirty_metadata_bytes: 3146 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3147 fail_bdi: 3148 bdi_destroy(&fs_info->bdi); 3149 fail_srcu: 3150 cleanup_srcu_struct(&fs_info->subvol_srcu); 3151 fail: 3152 btrfs_free_stripe_hash_table(fs_info); 3153 btrfs_close_devices(fs_info->fs_devices); 3154 return err; 3155 3156 recovery_tree_root: 3157 if (!btrfs_test_opt(tree_root, RECOVERY)) 3158 goto fail_tree_roots; 3159 3160 free_root_pointers(fs_info, 0); 3161 3162 /* don't use the log in recovery mode, it won't be valid */ 3163 btrfs_set_super_log_root(disk_super, 0); 3164 3165 /* we can't trust the free space cache either */ 3166 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3167 3168 ret = next_root_backup(fs_info, fs_info->super_copy, 3169 &num_backups_tried, &backup_index); 3170 if (ret == -1) 3171 goto fail_block_groups; 3172 goto retry_root_backup; 3173 } 3174 3175 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3176 { 3177 if (uptodate) { 3178 set_buffer_uptodate(bh); 3179 } else { 3180 struct btrfs_device *device = (struct btrfs_device *) 3181 bh->b_private; 3182 3183 btrfs_warn_rl_in_rcu(device->dev_root->fs_info, 3184 "lost page write due to IO error on %s", 3185 rcu_str_deref(device->name)); 3186 /* note, we dont' set_buffer_write_io_error because we have 3187 * our own ways of dealing with the IO errors 3188 */ 3189 clear_buffer_uptodate(bh); 3190 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3191 } 3192 unlock_buffer(bh); 3193 put_bh(bh); 3194 } 3195 3196 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3197 struct buffer_head **bh_ret) 3198 { 3199 struct buffer_head *bh; 3200 struct btrfs_super_block *super; 3201 u64 bytenr; 3202 3203 bytenr = btrfs_sb_offset(copy_num); 3204 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3205 return -EINVAL; 3206 3207 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3208 /* 3209 * If we fail to read from the underlying devices, as of now 3210 * the best option we have is to mark it EIO. 3211 */ 3212 if (!bh) 3213 return -EIO; 3214 3215 super = (struct btrfs_super_block *)bh->b_data; 3216 if (btrfs_super_bytenr(super) != bytenr || 3217 btrfs_super_magic(super) != BTRFS_MAGIC) { 3218 brelse(bh); 3219 return -EINVAL; 3220 } 3221 3222 *bh_ret = bh; 3223 return 0; 3224 } 3225 3226 3227 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3228 { 3229 struct buffer_head *bh; 3230 struct buffer_head *latest = NULL; 3231 struct btrfs_super_block *super; 3232 int i; 3233 u64 transid = 0; 3234 int ret = -EINVAL; 3235 3236 /* we would like to check all the supers, but that would make 3237 * a btrfs mount succeed after a mkfs from a different FS. 3238 * So, we need to add a special mount option to scan for 3239 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3240 */ 3241 for (i = 0; i < 1; i++) { 3242 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3243 if (ret) 3244 continue; 3245 3246 super = (struct btrfs_super_block *)bh->b_data; 3247 3248 if (!latest || btrfs_super_generation(super) > transid) { 3249 brelse(latest); 3250 latest = bh; 3251 transid = btrfs_super_generation(super); 3252 } else { 3253 brelse(bh); 3254 } 3255 } 3256 3257 if (!latest) 3258 return ERR_PTR(ret); 3259 3260 return latest; 3261 } 3262 3263 /* 3264 * this should be called twice, once with wait == 0 and 3265 * once with wait == 1. When wait == 0 is done, all the buffer heads 3266 * we write are pinned. 3267 * 3268 * They are released when wait == 1 is done. 3269 * max_mirrors must be the same for both runs, and it indicates how 3270 * many supers on this one device should be written. 3271 * 3272 * max_mirrors == 0 means to write them all. 3273 */ 3274 static int write_dev_supers(struct btrfs_device *device, 3275 struct btrfs_super_block *sb, 3276 int do_barriers, int wait, int max_mirrors) 3277 { 3278 struct buffer_head *bh; 3279 int i; 3280 int ret; 3281 int errors = 0; 3282 u32 crc; 3283 u64 bytenr; 3284 3285 if (max_mirrors == 0) 3286 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3287 3288 for (i = 0; i < max_mirrors; i++) { 3289 bytenr = btrfs_sb_offset(i); 3290 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3291 device->commit_total_bytes) 3292 break; 3293 3294 if (wait) { 3295 bh = __find_get_block(device->bdev, bytenr / 4096, 3296 BTRFS_SUPER_INFO_SIZE); 3297 if (!bh) { 3298 errors++; 3299 continue; 3300 } 3301 wait_on_buffer(bh); 3302 if (!buffer_uptodate(bh)) 3303 errors++; 3304 3305 /* drop our reference */ 3306 brelse(bh); 3307 3308 /* drop the reference from the wait == 0 run */ 3309 brelse(bh); 3310 continue; 3311 } else { 3312 btrfs_set_super_bytenr(sb, bytenr); 3313 3314 crc = ~(u32)0; 3315 crc = btrfs_csum_data((char *)sb + 3316 BTRFS_CSUM_SIZE, crc, 3317 BTRFS_SUPER_INFO_SIZE - 3318 BTRFS_CSUM_SIZE); 3319 btrfs_csum_final(crc, sb->csum); 3320 3321 /* 3322 * one reference for us, and we leave it for the 3323 * caller 3324 */ 3325 bh = __getblk(device->bdev, bytenr / 4096, 3326 BTRFS_SUPER_INFO_SIZE); 3327 if (!bh) { 3328 btrfs_err(device->dev_root->fs_info, 3329 "couldn't get super buffer head for bytenr %llu", 3330 bytenr); 3331 errors++; 3332 continue; 3333 } 3334 3335 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3336 3337 /* one reference for submit_bh */ 3338 get_bh(bh); 3339 3340 set_buffer_uptodate(bh); 3341 lock_buffer(bh); 3342 bh->b_end_io = btrfs_end_buffer_write_sync; 3343 bh->b_private = device; 3344 } 3345 3346 /* 3347 * we fua the first super. The others we allow 3348 * to go down lazy. 3349 */ 3350 if (i == 0) 3351 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3352 else 3353 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3354 if (ret) 3355 errors++; 3356 } 3357 return errors < i ? 0 : -1; 3358 } 3359 3360 /* 3361 * endio for the write_dev_flush, this will wake anyone waiting 3362 * for the barrier when it is done 3363 */ 3364 static void btrfs_end_empty_barrier(struct bio *bio) 3365 { 3366 if (bio->bi_private) 3367 complete(bio->bi_private); 3368 bio_put(bio); 3369 } 3370 3371 /* 3372 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3373 * sent down. With wait == 1, it waits for the previous flush. 3374 * 3375 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3376 * capable 3377 */ 3378 static int write_dev_flush(struct btrfs_device *device, int wait) 3379 { 3380 struct bio *bio; 3381 int ret = 0; 3382 3383 if (device->nobarriers) 3384 return 0; 3385 3386 if (wait) { 3387 bio = device->flush_bio; 3388 if (!bio) 3389 return 0; 3390 3391 wait_for_completion(&device->flush_wait); 3392 3393 if (bio->bi_error) { 3394 ret = bio->bi_error; 3395 btrfs_dev_stat_inc_and_print(device, 3396 BTRFS_DEV_STAT_FLUSH_ERRS); 3397 } 3398 3399 /* drop the reference from the wait == 0 run */ 3400 bio_put(bio); 3401 device->flush_bio = NULL; 3402 3403 return ret; 3404 } 3405 3406 /* 3407 * one reference for us, and we leave it for the 3408 * caller 3409 */ 3410 device->flush_bio = NULL; 3411 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3412 if (!bio) 3413 return -ENOMEM; 3414 3415 bio->bi_end_io = btrfs_end_empty_barrier; 3416 bio->bi_bdev = device->bdev; 3417 init_completion(&device->flush_wait); 3418 bio->bi_private = &device->flush_wait; 3419 device->flush_bio = bio; 3420 3421 bio_get(bio); 3422 btrfsic_submit_bio(WRITE_FLUSH, bio); 3423 3424 return 0; 3425 } 3426 3427 /* 3428 * send an empty flush down to each device in parallel, 3429 * then wait for them 3430 */ 3431 static int barrier_all_devices(struct btrfs_fs_info *info) 3432 { 3433 struct list_head *head; 3434 struct btrfs_device *dev; 3435 int errors_send = 0; 3436 int errors_wait = 0; 3437 int ret; 3438 3439 /* send down all the barriers */ 3440 head = &info->fs_devices->devices; 3441 list_for_each_entry_rcu(dev, head, dev_list) { 3442 if (dev->missing) 3443 continue; 3444 if (!dev->bdev) { 3445 errors_send++; 3446 continue; 3447 } 3448 if (!dev->in_fs_metadata || !dev->writeable) 3449 continue; 3450 3451 ret = write_dev_flush(dev, 0); 3452 if (ret) 3453 errors_send++; 3454 } 3455 3456 /* wait for all the barriers */ 3457 list_for_each_entry_rcu(dev, head, dev_list) { 3458 if (dev->missing) 3459 continue; 3460 if (!dev->bdev) { 3461 errors_wait++; 3462 continue; 3463 } 3464 if (!dev->in_fs_metadata || !dev->writeable) 3465 continue; 3466 3467 ret = write_dev_flush(dev, 1); 3468 if (ret) 3469 errors_wait++; 3470 } 3471 if (errors_send > info->num_tolerated_disk_barrier_failures || 3472 errors_wait > info->num_tolerated_disk_barrier_failures) 3473 return -EIO; 3474 return 0; 3475 } 3476 3477 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3478 { 3479 int raid_type; 3480 int min_tolerated = INT_MAX; 3481 3482 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3483 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3484 min_tolerated = min(min_tolerated, 3485 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3486 tolerated_failures); 3487 3488 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3489 if (raid_type == BTRFS_RAID_SINGLE) 3490 continue; 3491 if (!(flags & btrfs_raid_group[raid_type])) 3492 continue; 3493 min_tolerated = min(min_tolerated, 3494 btrfs_raid_array[raid_type]. 3495 tolerated_failures); 3496 } 3497 3498 if (min_tolerated == INT_MAX) { 3499 pr_warn("BTRFS: unknown raid flag: %llu\n", flags); 3500 min_tolerated = 0; 3501 } 3502 3503 return min_tolerated; 3504 } 3505 3506 int btrfs_calc_num_tolerated_disk_barrier_failures( 3507 struct btrfs_fs_info *fs_info) 3508 { 3509 struct btrfs_ioctl_space_info space; 3510 struct btrfs_space_info *sinfo; 3511 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3512 BTRFS_BLOCK_GROUP_SYSTEM, 3513 BTRFS_BLOCK_GROUP_METADATA, 3514 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3515 int i; 3516 int c; 3517 int num_tolerated_disk_barrier_failures = 3518 (int)fs_info->fs_devices->num_devices; 3519 3520 for (i = 0; i < ARRAY_SIZE(types); i++) { 3521 struct btrfs_space_info *tmp; 3522 3523 sinfo = NULL; 3524 rcu_read_lock(); 3525 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3526 if (tmp->flags == types[i]) { 3527 sinfo = tmp; 3528 break; 3529 } 3530 } 3531 rcu_read_unlock(); 3532 3533 if (!sinfo) 3534 continue; 3535 3536 down_read(&sinfo->groups_sem); 3537 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3538 u64 flags; 3539 3540 if (list_empty(&sinfo->block_groups[c])) 3541 continue; 3542 3543 btrfs_get_block_group_info(&sinfo->block_groups[c], 3544 &space); 3545 if (space.total_bytes == 0 || space.used_bytes == 0) 3546 continue; 3547 flags = space.flags; 3548 3549 num_tolerated_disk_barrier_failures = min( 3550 num_tolerated_disk_barrier_failures, 3551 btrfs_get_num_tolerated_disk_barrier_failures( 3552 flags)); 3553 } 3554 up_read(&sinfo->groups_sem); 3555 } 3556 3557 return num_tolerated_disk_barrier_failures; 3558 } 3559 3560 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3561 { 3562 struct list_head *head; 3563 struct btrfs_device *dev; 3564 struct btrfs_super_block *sb; 3565 struct btrfs_dev_item *dev_item; 3566 int ret; 3567 int do_barriers; 3568 int max_errors; 3569 int total_errors = 0; 3570 u64 flags; 3571 3572 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3573 backup_super_roots(root->fs_info); 3574 3575 sb = root->fs_info->super_for_commit; 3576 dev_item = &sb->dev_item; 3577 3578 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3579 head = &root->fs_info->fs_devices->devices; 3580 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3581 3582 if (do_barriers) { 3583 ret = barrier_all_devices(root->fs_info); 3584 if (ret) { 3585 mutex_unlock( 3586 &root->fs_info->fs_devices->device_list_mutex); 3587 btrfs_std_error(root->fs_info, ret, 3588 "errors while submitting device barriers."); 3589 return ret; 3590 } 3591 } 3592 3593 list_for_each_entry_rcu(dev, head, dev_list) { 3594 if (!dev->bdev) { 3595 total_errors++; 3596 continue; 3597 } 3598 if (!dev->in_fs_metadata || !dev->writeable) 3599 continue; 3600 3601 btrfs_set_stack_device_generation(dev_item, 0); 3602 btrfs_set_stack_device_type(dev_item, dev->type); 3603 btrfs_set_stack_device_id(dev_item, dev->devid); 3604 btrfs_set_stack_device_total_bytes(dev_item, 3605 dev->commit_total_bytes); 3606 btrfs_set_stack_device_bytes_used(dev_item, 3607 dev->commit_bytes_used); 3608 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3609 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3610 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3611 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3612 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3613 3614 flags = btrfs_super_flags(sb); 3615 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3616 3617 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3618 if (ret) 3619 total_errors++; 3620 } 3621 if (total_errors > max_errors) { 3622 btrfs_err(root->fs_info, "%d errors while writing supers", 3623 total_errors); 3624 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3625 3626 /* FUA is masked off if unsupported and can't be the reason */ 3627 btrfs_std_error(root->fs_info, -EIO, 3628 "%d errors while writing supers", total_errors); 3629 return -EIO; 3630 } 3631 3632 total_errors = 0; 3633 list_for_each_entry_rcu(dev, head, dev_list) { 3634 if (!dev->bdev) 3635 continue; 3636 if (!dev->in_fs_metadata || !dev->writeable) 3637 continue; 3638 3639 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3640 if (ret) 3641 total_errors++; 3642 } 3643 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3644 if (total_errors > max_errors) { 3645 btrfs_std_error(root->fs_info, -EIO, 3646 "%d errors while writing supers", total_errors); 3647 return -EIO; 3648 } 3649 return 0; 3650 } 3651 3652 int write_ctree_super(struct btrfs_trans_handle *trans, 3653 struct btrfs_root *root, int max_mirrors) 3654 { 3655 return write_all_supers(root, max_mirrors); 3656 } 3657 3658 /* Drop a fs root from the radix tree and free it. */ 3659 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3660 struct btrfs_root *root) 3661 { 3662 spin_lock(&fs_info->fs_roots_radix_lock); 3663 radix_tree_delete(&fs_info->fs_roots_radix, 3664 (unsigned long)root->root_key.objectid); 3665 spin_unlock(&fs_info->fs_roots_radix_lock); 3666 3667 if (btrfs_root_refs(&root->root_item) == 0) 3668 synchronize_srcu(&fs_info->subvol_srcu); 3669 3670 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3671 btrfs_free_log(NULL, root); 3672 3673 if (root->free_ino_pinned) 3674 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3675 if (root->free_ino_ctl) 3676 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3677 free_fs_root(root); 3678 } 3679 3680 static void free_fs_root(struct btrfs_root *root) 3681 { 3682 iput(root->ino_cache_inode); 3683 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3684 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3685 root->orphan_block_rsv = NULL; 3686 if (root->anon_dev) 3687 free_anon_bdev(root->anon_dev); 3688 if (root->subv_writers) 3689 btrfs_free_subvolume_writers(root->subv_writers); 3690 free_extent_buffer(root->node); 3691 free_extent_buffer(root->commit_root); 3692 kfree(root->free_ino_ctl); 3693 kfree(root->free_ino_pinned); 3694 kfree(root->name); 3695 btrfs_put_fs_root(root); 3696 } 3697 3698 void btrfs_free_fs_root(struct btrfs_root *root) 3699 { 3700 free_fs_root(root); 3701 } 3702 3703 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3704 { 3705 u64 root_objectid = 0; 3706 struct btrfs_root *gang[8]; 3707 int i = 0; 3708 int err = 0; 3709 unsigned int ret = 0; 3710 int index; 3711 3712 while (1) { 3713 index = srcu_read_lock(&fs_info->subvol_srcu); 3714 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3715 (void **)gang, root_objectid, 3716 ARRAY_SIZE(gang)); 3717 if (!ret) { 3718 srcu_read_unlock(&fs_info->subvol_srcu, index); 3719 break; 3720 } 3721 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3722 3723 for (i = 0; i < ret; i++) { 3724 /* Avoid to grab roots in dead_roots */ 3725 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3726 gang[i] = NULL; 3727 continue; 3728 } 3729 /* grab all the search result for later use */ 3730 gang[i] = btrfs_grab_fs_root(gang[i]); 3731 } 3732 srcu_read_unlock(&fs_info->subvol_srcu, index); 3733 3734 for (i = 0; i < ret; i++) { 3735 if (!gang[i]) 3736 continue; 3737 root_objectid = gang[i]->root_key.objectid; 3738 err = btrfs_orphan_cleanup(gang[i]); 3739 if (err) 3740 break; 3741 btrfs_put_fs_root(gang[i]); 3742 } 3743 root_objectid++; 3744 } 3745 3746 /* release the uncleaned roots due to error */ 3747 for (; i < ret; i++) { 3748 if (gang[i]) 3749 btrfs_put_fs_root(gang[i]); 3750 } 3751 return err; 3752 } 3753 3754 int btrfs_commit_super(struct btrfs_root *root) 3755 { 3756 struct btrfs_trans_handle *trans; 3757 3758 mutex_lock(&root->fs_info->cleaner_mutex); 3759 btrfs_run_delayed_iputs(root); 3760 mutex_unlock(&root->fs_info->cleaner_mutex); 3761 wake_up_process(root->fs_info->cleaner_kthread); 3762 3763 /* wait until ongoing cleanup work done */ 3764 down_write(&root->fs_info->cleanup_work_sem); 3765 up_write(&root->fs_info->cleanup_work_sem); 3766 3767 trans = btrfs_join_transaction(root); 3768 if (IS_ERR(trans)) 3769 return PTR_ERR(trans); 3770 return btrfs_commit_transaction(trans, root); 3771 } 3772 3773 void close_ctree(struct btrfs_root *root) 3774 { 3775 struct btrfs_fs_info *fs_info = root->fs_info; 3776 int ret; 3777 3778 fs_info->closing = 1; 3779 smp_mb(); 3780 3781 /* wait for the uuid_scan task to finish */ 3782 down(&fs_info->uuid_tree_rescan_sem); 3783 /* avoid complains from lockdep et al., set sem back to initial state */ 3784 up(&fs_info->uuid_tree_rescan_sem); 3785 3786 /* pause restriper - we want to resume on mount */ 3787 btrfs_pause_balance(fs_info); 3788 3789 btrfs_dev_replace_suspend_for_unmount(fs_info); 3790 3791 btrfs_scrub_cancel(fs_info); 3792 3793 /* wait for any defraggers to finish */ 3794 wait_event(fs_info->transaction_wait, 3795 (atomic_read(&fs_info->defrag_running) == 0)); 3796 3797 /* clear out the rbtree of defraggable inodes */ 3798 btrfs_cleanup_defrag_inodes(fs_info); 3799 3800 cancel_work_sync(&fs_info->async_reclaim_work); 3801 3802 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3803 /* 3804 * If the cleaner thread is stopped and there are 3805 * block groups queued for removal, the deletion will be 3806 * skipped when we quit the cleaner thread. 3807 */ 3808 btrfs_delete_unused_bgs(root->fs_info); 3809 3810 ret = btrfs_commit_super(root); 3811 if (ret) 3812 btrfs_err(fs_info, "commit super ret %d", ret); 3813 } 3814 3815 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3816 btrfs_error_commit_super(root); 3817 3818 kthread_stop(fs_info->transaction_kthread); 3819 kthread_stop(fs_info->cleaner_kthread); 3820 3821 fs_info->closing = 2; 3822 smp_mb(); 3823 3824 btrfs_free_qgroup_config(fs_info); 3825 3826 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3827 btrfs_info(fs_info, "at unmount delalloc count %lld", 3828 percpu_counter_sum(&fs_info->delalloc_bytes)); 3829 } 3830 3831 btrfs_sysfs_remove_mounted(fs_info); 3832 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3833 3834 btrfs_free_fs_roots(fs_info); 3835 3836 btrfs_put_block_group_cache(fs_info); 3837 3838 btrfs_free_block_groups(fs_info); 3839 3840 /* 3841 * we must make sure there is not any read request to 3842 * submit after we stopping all workers. 3843 */ 3844 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3845 btrfs_stop_all_workers(fs_info); 3846 3847 fs_info->open = 0; 3848 free_root_pointers(fs_info, 1); 3849 3850 iput(fs_info->btree_inode); 3851 3852 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3853 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3854 btrfsic_unmount(root, fs_info->fs_devices); 3855 #endif 3856 3857 btrfs_close_devices(fs_info->fs_devices); 3858 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3859 3860 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3861 percpu_counter_destroy(&fs_info->delalloc_bytes); 3862 percpu_counter_destroy(&fs_info->bio_counter); 3863 bdi_destroy(&fs_info->bdi); 3864 cleanup_srcu_struct(&fs_info->subvol_srcu); 3865 3866 btrfs_free_stripe_hash_table(fs_info); 3867 3868 __btrfs_free_block_rsv(root->orphan_block_rsv); 3869 root->orphan_block_rsv = NULL; 3870 3871 lock_chunks(root); 3872 while (!list_empty(&fs_info->pinned_chunks)) { 3873 struct extent_map *em; 3874 3875 em = list_first_entry(&fs_info->pinned_chunks, 3876 struct extent_map, list); 3877 list_del_init(&em->list); 3878 free_extent_map(em); 3879 } 3880 unlock_chunks(root); 3881 } 3882 3883 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3884 int atomic) 3885 { 3886 int ret; 3887 struct inode *btree_inode = buf->pages[0]->mapping->host; 3888 3889 ret = extent_buffer_uptodate(buf); 3890 if (!ret) 3891 return ret; 3892 3893 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3894 parent_transid, atomic); 3895 if (ret == -EAGAIN) 3896 return ret; 3897 return !ret; 3898 } 3899 3900 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3901 { 3902 return set_extent_buffer_uptodate(buf); 3903 } 3904 3905 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3906 { 3907 struct btrfs_root *root; 3908 u64 transid = btrfs_header_generation(buf); 3909 int was_dirty; 3910 3911 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3912 /* 3913 * This is a fast path so only do this check if we have sanity tests 3914 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3915 * outside of the sanity tests. 3916 */ 3917 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3918 return; 3919 #endif 3920 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3921 btrfs_assert_tree_locked(buf); 3922 if (transid != root->fs_info->generation) 3923 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3924 "found %llu running %llu\n", 3925 buf->start, transid, root->fs_info->generation); 3926 was_dirty = set_extent_buffer_dirty(buf); 3927 if (!was_dirty) 3928 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3929 buf->len, 3930 root->fs_info->dirty_metadata_batch); 3931 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3932 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3933 btrfs_print_leaf(root, buf); 3934 ASSERT(0); 3935 } 3936 #endif 3937 } 3938 3939 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3940 int flush_delayed) 3941 { 3942 /* 3943 * looks as though older kernels can get into trouble with 3944 * this code, they end up stuck in balance_dirty_pages forever 3945 */ 3946 int ret; 3947 3948 if (current->flags & PF_MEMALLOC) 3949 return; 3950 3951 if (flush_delayed) 3952 btrfs_balance_delayed_items(root); 3953 3954 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3955 BTRFS_DIRTY_METADATA_THRESH); 3956 if (ret > 0) { 3957 balance_dirty_pages_ratelimited( 3958 root->fs_info->btree_inode->i_mapping); 3959 } 3960 return; 3961 } 3962 3963 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3964 { 3965 __btrfs_btree_balance_dirty(root, 1); 3966 } 3967 3968 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3969 { 3970 __btrfs_btree_balance_dirty(root, 0); 3971 } 3972 3973 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3974 { 3975 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3976 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3977 } 3978 3979 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3980 int read_only) 3981 { 3982 struct btrfs_super_block *sb = fs_info->super_copy; 3983 int ret = 0; 3984 3985 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3986 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 3987 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3988 ret = -EINVAL; 3989 } 3990 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3991 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 3992 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3993 ret = -EINVAL; 3994 } 3995 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3996 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 3997 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3998 ret = -EINVAL; 3999 } 4000 4001 /* 4002 * The common minimum, we don't know if we can trust the nodesize/sectorsize 4003 * items yet, they'll be verified later. Issue just a warning. 4004 */ 4005 if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) 4006 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 4007 btrfs_super_root(sb)); 4008 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) 4009 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 4010 btrfs_super_chunk_root(sb)); 4011 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) 4012 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 4013 btrfs_super_log_root(sb)); 4014 4015 /* 4016 * Check the lower bound, the alignment and other constraints are 4017 * checked later. 4018 */ 4019 if (btrfs_super_nodesize(sb) < 4096) { 4020 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n", 4021 btrfs_super_nodesize(sb)); 4022 ret = -EINVAL; 4023 } 4024 if (btrfs_super_sectorsize(sb) < 4096) { 4025 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n", 4026 btrfs_super_sectorsize(sb)); 4027 ret = -EINVAL; 4028 } 4029 4030 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4031 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 4032 fs_info->fsid, sb->dev_item.fsid); 4033 ret = -EINVAL; 4034 } 4035 4036 /* 4037 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4038 * done later 4039 */ 4040 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4041 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 4042 btrfs_super_num_devices(sb)); 4043 if (btrfs_super_num_devices(sb) == 0) { 4044 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4045 ret = -EINVAL; 4046 } 4047 4048 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4049 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4050 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4051 ret = -EINVAL; 4052 } 4053 4054 /* 4055 * Obvious sys_chunk_array corruptions, it must hold at least one key 4056 * and one chunk 4057 */ 4058 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4059 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4060 btrfs_super_sys_array_size(sb), 4061 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4062 ret = -EINVAL; 4063 } 4064 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4065 + sizeof(struct btrfs_chunk)) { 4066 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4067 btrfs_super_sys_array_size(sb), 4068 sizeof(struct btrfs_disk_key) 4069 + sizeof(struct btrfs_chunk)); 4070 ret = -EINVAL; 4071 } 4072 4073 /* 4074 * The generation is a global counter, we'll trust it more than the others 4075 * but it's still possible that it's the one that's wrong. 4076 */ 4077 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4078 printk(KERN_WARNING 4079 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4080 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4081 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4082 && btrfs_super_cache_generation(sb) != (u64)-1) 4083 printk(KERN_WARNING 4084 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4085 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4086 4087 return ret; 4088 } 4089 4090 static void btrfs_error_commit_super(struct btrfs_root *root) 4091 { 4092 mutex_lock(&root->fs_info->cleaner_mutex); 4093 btrfs_run_delayed_iputs(root); 4094 mutex_unlock(&root->fs_info->cleaner_mutex); 4095 4096 down_write(&root->fs_info->cleanup_work_sem); 4097 up_write(&root->fs_info->cleanup_work_sem); 4098 4099 /* cleanup FS via transaction */ 4100 btrfs_cleanup_transaction(root); 4101 } 4102 4103 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4104 { 4105 struct btrfs_ordered_extent *ordered; 4106 4107 spin_lock(&root->ordered_extent_lock); 4108 /* 4109 * This will just short circuit the ordered completion stuff which will 4110 * make sure the ordered extent gets properly cleaned up. 4111 */ 4112 list_for_each_entry(ordered, &root->ordered_extents, 4113 root_extent_list) 4114 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4115 spin_unlock(&root->ordered_extent_lock); 4116 } 4117 4118 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4119 { 4120 struct btrfs_root *root; 4121 struct list_head splice; 4122 4123 INIT_LIST_HEAD(&splice); 4124 4125 spin_lock(&fs_info->ordered_root_lock); 4126 list_splice_init(&fs_info->ordered_roots, &splice); 4127 while (!list_empty(&splice)) { 4128 root = list_first_entry(&splice, struct btrfs_root, 4129 ordered_root); 4130 list_move_tail(&root->ordered_root, 4131 &fs_info->ordered_roots); 4132 4133 spin_unlock(&fs_info->ordered_root_lock); 4134 btrfs_destroy_ordered_extents(root); 4135 4136 cond_resched(); 4137 spin_lock(&fs_info->ordered_root_lock); 4138 } 4139 spin_unlock(&fs_info->ordered_root_lock); 4140 } 4141 4142 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4143 struct btrfs_root *root) 4144 { 4145 struct rb_node *node; 4146 struct btrfs_delayed_ref_root *delayed_refs; 4147 struct btrfs_delayed_ref_node *ref; 4148 int ret = 0; 4149 4150 delayed_refs = &trans->delayed_refs; 4151 4152 spin_lock(&delayed_refs->lock); 4153 if (atomic_read(&delayed_refs->num_entries) == 0) { 4154 spin_unlock(&delayed_refs->lock); 4155 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4156 return ret; 4157 } 4158 4159 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4160 struct btrfs_delayed_ref_head *head; 4161 struct btrfs_delayed_ref_node *tmp; 4162 bool pin_bytes = false; 4163 4164 head = rb_entry(node, struct btrfs_delayed_ref_head, 4165 href_node); 4166 if (!mutex_trylock(&head->mutex)) { 4167 atomic_inc(&head->node.refs); 4168 spin_unlock(&delayed_refs->lock); 4169 4170 mutex_lock(&head->mutex); 4171 mutex_unlock(&head->mutex); 4172 btrfs_put_delayed_ref(&head->node); 4173 spin_lock(&delayed_refs->lock); 4174 continue; 4175 } 4176 spin_lock(&head->lock); 4177 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4178 list) { 4179 ref->in_tree = 0; 4180 list_del(&ref->list); 4181 atomic_dec(&delayed_refs->num_entries); 4182 btrfs_put_delayed_ref(ref); 4183 } 4184 if (head->must_insert_reserved) 4185 pin_bytes = true; 4186 btrfs_free_delayed_extent_op(head->extent_op); 4187 delayed_refs->num_heads--; 4188 if (head->processing == 0) 4189 delayed_refs->num_heads_ready--; 4190 atomic_dec(&delayed_refs->num_entries); 4191 head->node.in_tree = 0; 4192 rb_erase(&head->href_node, &delayed_refs->href_root); 4193 spin_unlock(&head->lock); 4194 spin_unlock(&delayed_refs->lock); 4195 mutex_unlock(&head->mutex); 4196 4197 if (pin_bytes) 4198 btrfs_pin_extent(root, head->node.bytenr, 4199 head->node.num_bytes, 1); 4200 btrfs_put_delayed_ref(&head->node); 4201 cond_resched(); 4202 spin_lock(&delayed_refs->lock); 4203 } 4204 4205 spin_unlock(&delayed_refs->lock); 4206 4207 return ret; 4208 } 4209 4210 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4211 { 4212 struct btrfs_inode *btrfs_inode; 4213 struct list_head splice; 4214 4215 INIT_LIST_HEAD(&splice); 4216 4217 spin_lock(&root->delalloc_lock); 4218 list_splice_init(&root->delalloc_inodes, &splice); 4219 4220 while (!list_empty(&splice)) { 4221 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4222 delalloc_inodes); 4223 4224 list_del_init(&btrfs_inode->delalloc_inodes); 4225 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4226 &btrfs_inode->runtime_flags); 4227 spin_unlock(&root->delalloc_lock); 4228 4229 btrfs_invalidate_inodes(btrfs_inode->root); 4230 4231 spin_lock(&root->delalloc_lock); 4232 } 4233 4234 spin_unlock(&root->delalloc_lock); 4235 } 4236 4237 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4238 { 4239 struct btrfs_root *root; 4240 struct list_head splice; 4241 4242 INIT_LIST_HEAD(&splice); 4243 4244 spin_lock(&fs_info->delalloc_root_lock); 4245 list_splice_init(&fs_info->delalloc_roots, &splice); 4246 while (!list_empty(&splice)) { 4247 root = list_first_entry(&splice, struct btrfs_root, 4248 delalloc_root); 4249 list_del_init(&root->delalloc_root); 4250 root = btrfs_grab_fs_root(root); 4251 BUG_ON(!root); 4252 spin_unlock(&fs_info->delalloc_root_lock); 4253 4254 btrfs_destroy_delalloc_inodes(root); 4255 btrfs_put_fs_root(root); 4256 4257 spin_lock(&fs_info->delalloc_root_lock); 4258 } 4259 spin_unlock(&fs_info->delalloc_root_lock); 4260 } 4261 4262 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4263 struct extent_io_tree *dirty_pages, 4264 int mark) 4265 { 4266 int ret; 4267 struct extent_buffer *eb; 4268 u64 start = 0; 4269 u64 end; 4270 4271 while (1) { 4272 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4273 mark, NULL); 4274 if (ret) 4275 break; 4276 4277 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4278 while (start <= end) { 4279 eb = btrfs_find_tree_block(root->fs_info, start); 4280 start += root->nodesize; 4281 if (!eb) 4282 continue; 4283 wait_on_extent_buffer_writeback(eb); 4284 4285 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4286 &eb->bflags)) 4287 clear_extent_buffer_dirty(eb); 4288 free_extent_buffer_stale(eb); 4289 } 4290 } 4291 4292 return ret; 4293 } 4294 4295 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4296 struct extent_io_tree *pinned_extents) 4297 { 4298 struct extent_io_tree *unpin; 4299 u64 start; 4300 u64 end; 4301 int ret; 4302 bool loop = true; 4303 4304 unpin = pinned_extents; 4305 again: 4306 while (1) { 4307 ret = find_first_extent_bit(unpin, 0, &start, &end, 4308 EXTENT_DIRTY, NULL); 4309 if (ret) 4310 break; 4311 4312 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4313 btrfs_error_unpin_extent_range(root, start, end); 4314 cond_resched(); 4315 } 4316 4317 if (loop) { 4318 if (unpin == &root->fs_info->freed_extents[0]) 4319 unpin = &root->fs_info->freed_extents[1]; 4320 else 4321 unpin = &root->fs_info->freed_extents[0]; 4322 loop = false; 4323 goto again; 4324 } 4325 4326 return 0; 4327 } 4328 4329 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4330 struct btrfs_root *root) 4331 { 4332 btrfs_destroy_delayed_refs(cur_trans, root); 4333 4334 cur_trans->state = TRANS_STATE_COMMIT_START; 4335 wake_up(&root->fs_info->transaction_blocked_wait); 4336 4337 cur_trans->state = TRANS_STATE_UNBLOCKED; 4338 wake_up(&root->fs_info->transaction_wait); 4339 4340 btrfs_destroy_delayed_inodes(root); 4341 btrfs_assert_delayed_root_empty(root); 4342 4343 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4344 EXTENT_DIRTY); 4345 btrfs_destroy_pinned_extent(root, 4346 root->fs_info->pinned_extents); 4347 4348 cur_trans->state =TRANS_STATE_COMPLETED; 4349 wake_up(&cur_trans->commit_wait); 4350 4351 /* 4352 memset(cur_trans, 0, sizeof(*cur_trans)); 4353 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4354 */ 4355 } 4356 4357 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4358 { 4359 struct btrfs_transaction *t; 4360 4361 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4362 4363 spin_lock(&root->fs_info->trans_lock); 4364 while (!list_empty(&root->fs_info->trans_list)) { 4365 t = list_first_entry(&root->fs_info->trans_list, 4366 struct btrfs_transaction, list); 4367 if (t->state >= TRANS_STATE_COMMIT_START) { 4368 atomic_inc(&t->use_count); 4369 spin_unlock(&root->fs_info->trans_lock); 4370 btrfs_wait_for_commit(root, t->transid); 4371 btrfs_put_transaction(t); 4372 spin_lock(&root->fs_info->trans_lock); 4373 continue; 4374 } 4375 if (t == root->fs_info->running_transaction) { 4376 t->state = TRANS_STATE_COMMIT_DOING; 4377 spin_unlock(&root->fs_info->trans_lock); 4378 /* 4379 * We wait for 0 num_writers since we don't hold a trans 4380 * handle open currently for this transaction. 4381 */ 4382 wait_event(t->writer_wait, 4383 atomic_read(&t->num_writers) == 0); 4384 } else { 4385 spin_unlock(&root->fs_info->trans_lock); 4386 } 4387 btrfs_cleanup_one_transaction(t, root); 4388 4389 spin_lock(&root->fs_info->trans_lock); 4390 if (t == root->fs_info->running_transaction) 4391 root->fs_info->running_transaction = NULL; 4392 list_del_init(&t->list); 4393 spin_unlock(&root->fs_info->trans_lock); 4394 4395 btrfs_put_transaction(t); 4396 trace_btrfs_transaction_commit(root); 4397 spin_lock(&root->fs_info->trans_lock); 4398 } 4399 spin_unlock(&root->fs_info->trans_lock); 4400 btrfs_destroy_all_ordered_extents(root->fs_info); 4401 btrfs_destroy_delayed_inodes(root); 4402 btrfs_assert_delayed_root_empty(root); 4403 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4404 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4405 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4406 4407 return 0; 4408 } 4409 4410 static const struct extent_io_ops btree_extent_io_ops = { 4411 .readpage_end_io_hook = btree_readpage_end_io_hook, 4412 .readpage_io_failed_hook = btree_io_failed_hook, 4413 .submit_bio_hook = btree_submit_bio_hook, 4414 /* note we're sharing with inode.c for the merge bio hook */ 4415 .merge_bio_hook = btrfs_merge_bio_hook, 4416 }; 4417