xref: /openbmc/linux/fs/btrfs/disk-io.c (revision 0b246afa62b0cf5b09d078121f543135f28492ad)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 				    int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 				      struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 					struct extent_io_tree *dirty_pages,
75 					int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 				       struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80 
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87 	struct bio *bio;
88 	bio_end_io_t *end_io;
89 	void *private;
90 	struct btrfs_fs_info *info;
91 	int error;
92 	enum btrfs_wq_endio_type metadata;
93 	struct list_head list;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115 
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122 	struct inode *inode;
123 	struct bio *bio;
124 	struct list_head list;
125 	extent_submit_bio_hook_t *submit_bio_start;
126 	extent_submit_bio_hook_t *submit_bio_done;
127 	int mirror_num;
128 	unsigned long bio_flags;
129 	/*
130 	 * bio_offset is optional, can be used if the pages in the bio
131 	 * can't tell us where in the file the bio should go
132 	 */
133 	u64 bio_offset;
134 	struct btrfs_work work;
135 	int error;
136 };
137 
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165 
166 static struct btrfs_lockdep_keyset {
167 	u64			id;		/* root objectid */
168 	const char		*name_stem;	/* lock name stem */
169 	char			names[BTRFS_MAX_LEVEL + 1][20];
170 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
173 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
174 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
175 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
176 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
177 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
178 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
179 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
180 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
181 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
182 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
183 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
184 	{ .id = 0,				.name_stem = "tree"	},
185 };
186 
187 void __init btrfs_init_lockdep(void)
188 {
189 	int i, j;
190 
191 	/* initialize lockdep class names */
192 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194 
195 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 			snprintf(ks->names[j], sizeof(ks->names[j]),
197 				 "btrfs-%s-%02d", ks->name_stem, j);
198 	}
199 }
200 
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 				    int level)
203 {
204 	struct btrfs_lockdep_keyset *ks;
205 
206 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
207 
208 	/* find the matching keyset, id 0 is the default entry */
209 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 		if (ks->id == objectid)
211 			break;
212 
213 	lockdep_set_class_and_name(&eb->lock,
214 				   &ks->keys[level], ks->names[level]);
215 }
216 
217 #endif
218 
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 		struct page *page, size_t pg_offset, u64 start, u64 len,
225 		int create)
226 {
227 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
228 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 	struct extent_map *em;
230 	int ret;
231 
232 	read_lock(&em_tree->lock);
233 	em = lookup_extent_mapping(em_tree, start, len);
234 	if (em) {
235 		em->bdev = fs_info->fs_devices->latest_bdev;
236 		read_unlock(&em_tree->lock);
237 		goto out;
238 	}
239 	read_unlock(&em_tree->lock);
240 
241 	em = alloc_extent_map();
242 	if (!em) {
243 		em = ERR_PTR(-ENOMEM);
244 		goto out;
245 	}
246 	em->start = 0;
247 	em->len = (u64)-1;
248 	em->block_len = (u64)-1;
249 	em->block_start = 0;
250 	em->bdev = fs_info->fs_devices->latest_bdev;
251 
252 	write_lock(&em_tree->lock);
253 	ret = add_extent_mapping(em_tree, em, 0);
254 	if (ret == -EEXIST) {
255 		free_extent_map(em);
256 		em = lookup_extent_mapping(em_tree, start, len);
257 		if (!em)
258 			em = ERR_PTR(-EIO);
259 	} else if (ret) {
260 		free_extent_map(em);
261 		em = ERR_PTR(ret);
262 	}
263 	write_unlock(&em_tree->lock);
264 
265 out:
266 	return em;
267 }
268 
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 	return btrfs_crc32c(seed, data, len);
272 }
273 
274 void btrfs_csum_final(u32 crc, u8 *result)
275 {
276 	put_unaligned_le32(~crc, result);
277 }
278 
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 			   struct extent_buffer *buf,
285 			   int verify)
286 {
287 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 	char *result = NULL;
289 	unsigned long len;
290 	unsigned long cur_len;
291 	unsigned long offset = BTRFS_CSUM_SIZE;
292 	char *kaddr;
293 	unsigned long map_start;
294 	unsigned long map_len;
295 	int err;
296 	u32 crc = ~(u32)0;
297 	unsigned long inline_result;
298 
299 	len = buf->len - offset;
300 	while (len > 0) {
301 		err = map_private_extent_buffer(buf, offset, 32,
302 					&kaddr, &map_start, &map_len);
303 		if (err)
304 			return err;
305 		cur_len = min(len, map_len - (offset - map_start));
306 		crc = btrfs_csum_data(kaddr + offset - map_start,
307 				      crc, cur_len);
308 		len -= cur_len;
309 		offset += cur_len;
310 	}
311 	if (csum_size > sizeof(inline_result)) {
312 		result = kzalloc(csum_size, GFP_NOFS);
313 		if (!result)
314 			return -ENOMEM;
315 	} else {
316 		result = (char *)&inline_result;
317 	}
318 
319 	btrfs_csum_final(crc, result);
320 
321 	if (verify) {
322 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 			u32 val;
324 			u32 found = 0;
325 			memcpy(&found, result, csum_size);
326 
327 			read_extent_buffer(buf, &val, 0, csum_size);
328 			btrfs_warn_rl(fs_info,
329 				"%s checksum verify failed on %llu wanted %X found %X level %d",
330 				fs_info->sb->s_id, buf->start,
331 				val, found, btrfs_header_level(buf));
332 			if (result != (char *)&inline_result)
333 				kfree(result);
334 			return -EUCLEAN;
335 		}
336 	} else {
337 		write_extent_buffer(buf, result, 0, csum_size);
338 	}
339 	if (result != (char *)&inline_result)
340 		kfree(result);
341 	return 0;
342 }
343 
344 /*
345  * we can't consider a given block up to date unless the transid of the
346  * block matches the transid in the parent node's pointer.  This is how we
347  * detect blocks that either didn't get written at all or got written
348  * in the wrong place.
349  */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351 				 struct extent_buffer *eb, u64 parent_transid,
352 				 int atomic)
353 {
354 	struct extent_state *cached_state = NULL;
355 	int ret;
356 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357 
358 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 		return 0;
360 
361 	if (atomic)
362 		return -EAGAIN;
363 
364 	if (need_lock) {
365 		btrfs_tree_read_lock(eb);
366 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 	}
368 
369 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 			 &cached_state);
371 	if (extent_buffer_uptodate(eb) &&
372 	    btrfs_header_generation(eb) == parent_transid) {
373 		ret = 0;
374 		goto out;
375 	}
376 	btrfs_err_rl(eb->fs_info,
377 		"parent transid verify failed on %llu wanted %llu found %llu",
378 			eb->start,
379 			parent_transid, btrfs_header_generation(eb));
380 	ret = 1;
381 
382 	/*
383 	 * Things reading via commit roots that don't have normal protection,
384 	 * like send, can have a really old block in cache that may point at a
385 	 * block that has been freed and re-allocated.  So don't clear uptodate
386 	 * if we find an eb that is under IO (dirty/writeback) because we could
387 	 * end up reading in the stale data and then writing it back out and
388 	 * making everybody very sad.
389 	 */
390 	if (!extent_buffer_under_io(eb))
391 		clear_extent_buffer_uptodate(eb);
392 out:
393 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 			     &cached_state, GFP_NOFS);
395 	if (need_lock)
396 		btrfs_tree_read_unlock_blocking(eb);
397 	return ret;
398 }
399 
400 /*
401  * Return 0 if the superblock checksum type matches the checksum value of that
402  * algorithm. Pass the raw disk superblock data.
403  */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 				  char *raw_disk_sb)
406 {
407 	struct btrfs_super_block *disk_sb =
408 		(struct btrfs_super_block *)raw_disk_sb;
409 	u16 csum_type = btrfs_super_csum_type(disk_sb);
410 	int ret = 0;
411 
412 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 		u32 crc = ~(u32)0;
414 		const int csum_size = sizeof(crc);
415 		char result[csum_size];
416 
417 		/*
418 		 * The super_block structure does not span the whole
419 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 		 * is filled with zeros and is included in the checksum.
421 		 */
422 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 		btrfs_csum_final(crc, result);
425 
426 		if (memcmp(raw_disk_sb, result, csum_size))
427 			ret = 1;
428 	}
429 
430 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 				csum_type);
433 		ret = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 					  struct extent_buffer *eb,
445 					  u64 parent_transid)
446 {
447 	struct btrfs_fs_info *fs_info = root->fs_info;
448 	struct extent_io_tree *io_tree;
449 	int failed = 0;
450 	int ret;
451 	int num_copies = 0;
452 	int mirror_num = 0;
453 	int failed_mirror = 0;
454 
455 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
457 	while (1) {
458 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
459 					       btree_get_extent, mirror_num);
460 		if (!ret) {
461 			if (!verify_parent_transid(io_tree, eb,
462 						   parent_transid, 0))
463 				break;
464 			else
465 				ret = -EIO;
466 		}
467 
468 		/*
469 		 * This buffer's crc is fine, but its contents are corrupted, so
470 		 * there is no reason to read the other copies, they won't be
471 		 * any less wrong.
472 		 */
473 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 			break;
475 
476 		num_copies = btrfs_num_copies(fs_info,
477 					      eb->start, eb->len);
478 		if (num_copies == 1)
479 			break;
480 
481 		if (!failed_mirror) {
482 			failed = 1;
483 			failed_mirror = eb->read_mirror;
484 		}
485 
486 		mirror_num++;
487 		if (mirror_num == failed_mirror)
488 			mirror_num++;
489 
490 		if (mirror_num > num_copies)
491 			break;
492 	}
493 
494 	if (failed && !ret && failed_mirror)
495 		repair_eb_io_failure(root, eb, failed_mirror);
496 
497 	return ret;
498 }
499 
500 /*
501  * checksum a dirty tree block before IO.  This has extra checks to make sure
502  * we only fill in the checksum field in the first page of a multi-page block
503  */
504 
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507 	u64 start = page_offset(page);
508 	u64 found_start;
509 	struct extent_buffer *eb;
510 
511 	eb = (struct extent_buffer *)page->private;
512 	if (page != eb->pages[0])
513 		return 0;
514 
515 	found_start = btrfs_header_bytenr(eb);
516 	/*
517 	 * Please do not consolidate these warnings into a single if.
518 	 * It is useful to know what went wrong.
519 	 */
520 	if (WARN_ON(found_start != start))
521 		return -EUCLEAN;
522 	if (WARN_ON(!PageUptodate(page)))
523 		return -EUCLEAN;
524 
525 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527 
528 	return csum_tree_block(fs_info, eb, 0);
529 }
530 
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532 				 struct extent_buffer *eb)
533 {
534 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535 	u8 fsid[BTRFS_UUID_SIZE];
536 	int ret = 1;
537 
538 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539 	while (fs_devices) {
540 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 			ret = 0;
542 			break;
543 		}
544 		fs_devices = fs_devices->seed;
545 	}
546 	return ret;
547 }
548 
549 #define CORRUPT(reason, eb, root, slot)					\
550 	btrfs_crit(root->fs_info,					\
551 		   "corrupt %s, %s: block=%llu, root=%llu, slot=%d",	\
552 		   btrfs_header_level(eb) == 0 ? "leaf" : "node",	\
553 		   reason, btrfs_header_bytenr(eb), root->objectid, slot)
554 
555 static noinline int check_leaf(struct btrfs_root *root,
556 			       struct extent_buffer *leaf)
557 {
558 	struct btrfs_fs_info *fs_info = root->fs_info;
559 	struct btrfs_key key;
560 	struct btrfs_key leaf_key;
561 	u32 nritems = btrfs_header_nritems(leaf);
562 	int slot;
563 
564 	if (nritems == 0) {
565 		struct btrfs_root *check_root;
566 
567 		key.objectid = btrfs_header_owner(leaf);
568 		key.type = BTRFS_ROOT_ITEM_KEY;
569 		key.offset = (u64)-1;
570 
571 		check_root = btrfs_get_fs_root(fs_info, &key, false);
572 		/*
573 		 * The only reason we also check NULL here is that during
574 		 * open_ctree() some roots has not yet been set up.
575 		 */
576 		if (!IS_ERR_OR_NULL(check_root)) {
577 			/* if leaf is the root, then it's fine */
578 			if (leaf->start !=
579 			    btrfs_root_bytenr(&check_root->root_item)) {
580 				CORRUPT("non-root leaf's nritems is 0",
581 					leaf, root, 0);
582 				return -EIO;
583 			}
584 		}
585 		return 0;
586 	}
587 
588 	/* Check the 0 item */
589 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
590 	    BTRFS_LEAF_DATA_SIZE(fs_info)) {
591 		CORRUPT("invalid item offset size pair", leaf, root, 0);
592 		return -EIO;
593 	}
594 
595 	/*
596 	 * Check to make sure each items keys are in the correct order and their
597 	 * offsets make sense.  We only have to loop through nritems-1 because
598 	 * we check the current slot against the next slot, which verifies the
599 	 * next slot's offset+size makes sense and that the current's slot
600 	 * offset is correct.
601 	 */
602 	for (slot = 0; slot < nritems - 1; slot++) {
603 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
604 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
605 
606 		/* Make sure the keys are in the right order */
607 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
608 			CORRUPT("bad key order", leaf, root, slot);
609 			return -EIO;
610 		}
611 
612 		/*
613 		 * Make sure the offset and ends are right, remember that the
614 		 * item data starts at the end of the leaf and grows towards the
615 		 * front.
616 		 */
617 		if (btrfs_item_offset_nr(leaf, slot) !=
618 			btrfs_item_end_nr(leaf, slot + 1)) {
619 			CORRUPT("slot offset bad", leaf, root, slot);
620 			return -EIO;
621 		}
622 
623 		/*
624 		 * Check to make sure that we don't point outside of the leaf,
625 		 * just in case all the items are consistent to each other, but
626 		 * all point outside of the leaf.
627 		 */
628 		if (btrfs_item_end_nr(leaf, slot) >
629 		    BTRFS_LEAF_DATA_SIZE(fs_info)) {
630 			CORRUPT("slot end outside of leaf", leaf, root, slot);
631 			return -EIO;
632 		}
633 	}
634 
635 	return 0;
636 }
637 
638 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
639 {
640 	unsigned long nr = btrfs_header_nritems(node);
641 	struct btrfs_key key, next_key;
642 	int slot;
643 	u64 bytenr;
644 	int ret = 0;
645 
646 	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
647 		btrfs_crit(root->fs_info,
648 			   "corrupt node: block %llu root %llu nritems %lu",
649 			   node->start, root->objectid, nr);
650 		return -EIO;
651 	}
652 
653 	for (slot = 0; slot < nr - 1; slot++) {
654 		bytenr = btrfs_node_blockptr(node, slot);
655 		btrfs_node_key_to_cpu(node, &key, slot);
656 		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
657 
658 		if (!bytenr) {
659 			CORRUPT("invalid item slot", node, root, slot);
660 			ret = -EIO;
661 			goto out;
662 		}
663 
664 		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
665 			CORRUPT("bad key order", node, root, slot);
666 			ret = -EIO;
667 			goto out;
668 		}
669 	}
670 out:
671 	return ret;
672 }
673 
674 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
675 				      u64 phy_offset, struct page *page,
676 				      u64 start, u64 end, int mirror)
677 {
678 	u64 found_start;
679 	int found_level;
680 	struct extent_buffer *eb;
681 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682 	struct btrfs_fs_info *fs_info = root->fs_info;
683 	int ret = 0;
684 	int reads_done;
685 
686 	if (!page->private)
687 		goto out;
688 
689 	eb = (struct extent_buffer *)page->private;
690 
691 	/* the pending IO might have been the only thing that kept this buffer
692 	 * in memory.  Make sure we have a ref for all this other checks
693 	 */
694 	extent_buffer_get(eb);
695 
696 	reads_done = atomic_dec_and_test(&eb->io_pages);
697 	if (!reads_done)
698 		goto err;
699 
700 	eb->read_mirror = mirror;
701 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
702 		ret = -EIO;
703 		goto err;
704 	}
705 
706 	found_start = btrfs_header_bytenr(eb);
707 	if (found_start != eb->start) {
708 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
709 			     found_start, eb->start);
710 		ret = -EIO;
711 		goto err;
712 	}
713 	if (check_tree_block_fsid(fs_info, eb)) {
714 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
715 			     eb->start);
716 		ret = -EIO;
717 		goto err;
718 	}
719 	found_level = btrfs_header_level(eb);
720 	if (found_level >= BTRFS_MAX_LEVEL) {
721 		btrfs_err(fs_info, "bad tree block level %d",
722 			  (int)btrfs_header_level(eb));
723 		ret = -EIO;
724 		goto err;
725 	}
726 
727 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
728 				       eb, found_level);
729 
730 	ret = csum_tree_block(fs_info, eb, 1);
731 	if (ret)
732 		goto err;
733 
734 	/*
735 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
736 	 * that we don't try and read the other copies of this block, just
737 	 * return -EIO.
738 	 */
739 	if (found_level == 0 && check_leaf(root, eb)) {
740 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
741 		ret = -EIO;
742 	}
743 
744 	if (found_level > 0 && check_node(root, eb))
745 		ret = -EIO;
746 
747 	if (!ret)
748 		set_extent_buffer_uptodate(eb);
749 err:
750 	if (reads_done &&
751 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
752 		btree_readahead_hook(fs_info, eb, ret);
753 
754 	if (ret) {
755 		/*
756 		 * our io error hook is going to dec the io pages
757 		 * again, we have to make sure it has something
758 		 * to decrement
759 		 */
760 		atomic_inc(&eb->io_pages);
761 		clear_extent_buffer_uptodate(eb);
762 	}
763 	free_extent_buffer(eb);
764 out:
765 	return ret;
766 }
767 
768 static int btree_io_failed_hook(struct page *page, int failed_mirror)
769 {
770 	struct extent_buffer *eb;
771 
772 	eb = (struct extent_buffer *)page->private;
773 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
774 	eb->read_mirror = failed_mirror;
775 	atomic_dec(&eb->io_pages);
776 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
777 		btree_readahead_hook(eb->fs_info, eb, -EIO);
778 	return -EIO;	/* we fixed nothing */
779 }
780 
781 static void end_workqueue_bio(struct bio *bio)
782 {
783 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
784 	struct btrfs_fs_info *fs_info;
785 	struct btrfs_workqueue *wq;
786 	btrfs_work_func_t func;
787 
788 	fs_info = end_io_wq->info;
789 	end_io_wq->error = bio->bi_error;
790 
791 	if (bio_op(bio) == REQ_OP_WRITE) {
792 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
793 			wq = fs_info->endio_meta_write_workers;
794 			func = btrfs_endio_meta_write_helper;
795 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
796 			wq = fs_info->endio_freespace_worker;
797 			func = btrfs_freespace_write_helper;
798 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
799 			wq = fs_info->endio_raid56_workers;
800 			func = btrfs_endio_raid56_helper;
801 		} else {
802 			wq = fs_info->endio_write_workers;
803 			func = btrfs_endio_write_helper;
804 		}
805 	} else {
806 		if (unlikely(end_io_wq->metadata ==
807 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
808 			wq = fs_info->endio_repair_workers;
809 			func = btrfs_endio_repair_helper;
810 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
811 			wq = fs_info->endio_raid56_workers;
812 			func = btrfs_endio_raid56_helper;
813 		} else if (end_io_wq->metadata) {
814 			wq = fs_info->endio_meta_workers;
815 			func = btrfs_endio_meta_helper;
816 		} else {
817 			wq = fs_info->endio_workers;
818 			func = btrfs_endio_helper;
819 		}
820 	}
821 
822 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
823 	btrfs_queue_work(wq, &end_io_wq->work);
824 }
825 
826 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
827 			enum btrfs_wq_endio_type metadata)
828 {
829 	struct btrfs_end_io_wq *end_io_wq;
830 
831 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
832 	if (!end_io_wq)
833 		return -ENOMEM;
834 
835 	end_io_wq->private = bio->bi_private;
836 	end_io_wq->end_io = bio->bi_end_io;
837 	end_io_wq->info = info;
838 	end_io_wq->error = 0;
839 	end_io_wq->bio = bio;
840 	end_io_wq->metadata = metadata;
841 
842 	bio->bi_private = end_io_wq;
843 	bio->bi_end_io = end_workqueue_bio;
844 	return 0;
845 }
846 
847 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
848 {
849 	unsigned long limit = min_t(unsigned long,
850 				    info->thread_pool_size,
851 				    info->fs_devices->open_devices);
852 	return 256 * limit;
853 }
854 
855 static void run_one_async_start(struct btrfs_work *work)
856 {
857 	struct async_submit_bio *async;
858 	int ret;
859 
860 	async = container_of(work, struct  async_submit_bio, work);
861 	ret = async->submit_bio_start(async->inode, async->bio,
862 				      async->mirror_num, async->bio_flags,
863 				      async->bio_offset);
864 	if (ret)
865 		async->error = ret;
866 }
867 
868 static void run_one_async_done(struct btrfs_work *work)
869 {
870 	struct btrfs_fs_info *fs_info;
871 	struct async_submit_bio *async;
872 	int limit;
873 
874 	async = container_of(work, struct  async_submit_bio, work);
875 	fs_info = BTRFS_I(async->inode)->root->fs_info;
876 
877 	limit = btrfs_async_submit_limit(fs_info);
878 	limit = limit * 2 / 3;
879 
880 	/*
881 	 * atomic_dec_return implies a barrier for waitqueue_active
882 	 */
883 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
884 	    waitqueue_active(&fs_info->async_submit_wait))
885 		wake_up(&fs_info->async_submit_wait);
886 
887 	/* If an error occurred we just want to clean up the bio and move on */
888 	if (async->error) {
889 		async->bio->bi_error = async->error;
890 		bio_endio(async->bio);
891 		return;
892 	}
893 
894 	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
895 			       async->bio_flags, async->bio_offset);
896 }
897 
898 static void run_one_async_free(struct btrfs_work *work)
899 {
900 	struct async_submit_bio *async;
901 
902 	async = container_of(work, struct  async_submit_bio, work);
903 	kfree(async);
904 }
905 
906 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
907 			struct bio *bio, int mirror_num,
908 			unsigned long bio_flags,
909 			u64 bio_offset,
910 			extent_submit_bio_hook_t *submit_bio_start,
911 			extent_submit_bio_hook_t *submit_bio_done)
912 {
913 	struct async_submit_bio *async;
914 
915 	async = kmalloc(sizeof(*async), GFP_NOFS);
916 	if (!async)
917 		return -ENOMEM;
918 
919 	async->inode = inode;
920 	async->bio = bio;
921 	async->mirror_num = mirror_num;
922 	async->submit_bio_start = submit_bio_start;
923 	async->submit_bio_done = submit_bio_done;
924 
925 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
926 			run_one_async_done, run_one_async_free);
927 
928 	async->bio_flags = bio_flags;
929 	async->bio_offset = bio_offset;
930 
931 	async->error = 0;
932 
933 	atomic_inc(&fs_info->nr_async_submits);
934 
935 	if (bio->bi_opf & REQ_SYNC)
936 		btrfs_set_work_high_priority(&async->work);
937 
938 	btrfs_queue_work(fs_info->workers, &async->work);
939 
940 	while (atomic_read(&fs_info->async_submit_draining) &&
941 	      atomic_read(&fs_info->nr_async_submits)) {
942 		wait_event(fs_info->async_submit_wait,
943 			   (atomic_read(&fs_info->nr_async_submits) == 0));
944 	}
945 
946 	return 0;
947 }
948 
949 static int btree_csum_one_bio(struct bio *bio)
950 {
951 	struct bio_vec *bvec;
952 	struct btrfs_root *root;
953 	int i, ret = 0;
954 
955 	bio_for_each_segment_all(bvec, bio, i) {
956 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
957 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
958 		if (ret)
959 			break;
960 	}
961 
962 	return ret;
963 }
964 
965 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
966 				    int mirror_num, unsigned long bio_flags,
967 				    u64 bio_offset)
968 {
969 	/*
970 	 * when we're called for a write, we're already in the async
971 	 * submission context.  Just jump into btrfs_map_bio
972 	 */
973 	return btree_csum_one_bio(bio);
974 }
975 
976 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
977 				 int mirror_num, unsigned long bio_flags,
978 				 u64 bio_offset)
979 {
980 	int ret;
981 
982 	/*
983 	 * when we're called for a write, we're already in the async
984 	 * submission context.  Just jump into btrfs_map_bio
985 	 */
986 	ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
987 	if (ret) {
988 		bio->bi_error = ret;
989 		bio_endio(bio);
990 	}
991 	return ret;
992 }
993 
994 static int check_async_write(struct inode *inode, unsigned long bio_flags)
995 {
996 	if (bio_flags & EXTENT_BIO_TREE_LOG)
997 		return 0;
998 #ifdef CONFIG_X86
999 	if (static_cpu_has(X86_FEATURE_XMM4_2))
1000 		return 0;
1001 #endif
1002 	return 1;
1003 }
1004 
1005 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1006 				 int mirror_num, unsigned long bio_flags,
1007 				 u64 bio_offset)
1008 {
1009 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1010 	int async = check_async_write(inode, bio_flags);
1011 	int ret;
1012 
1013 	if (bio_op(bio) != REQ_OP_WRITE) {
1014 		/*
1015 		 * called for a read, do the setup so that checksum validation
1016 		 * can happen in the async kernel threads
1017 		 */
1018 		ret = btrfs_bio_wq_end_io(fs_info, bio,
1019 					  BTRFS_WQ_ENDIO_METADATA);
1020 		if (ret)
1021 			goto out_w_error;
1022 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1023 	} else if (!async) {
1024 		ret = btree_csum_one_bio(bio);
1025 		if (ret)
1026 			goto out_w_error;
1027 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1028 	} else {
1029 		/*
1030 		 * kthread helpers are used to submit writes so that
1031 		 * checksumming can happen in parallel across all CPUs
1032 		 */
1033 		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1034 					  bio_offset,
1035 					  __btree_submit_bio_start,
1036 					  __btree_submit_bio_done);
1037 	}
1038 
1039 	if (ret)
1040 		goto out_w_error;
1041 	return 0;
1042 
1043 out_w_error:
1044 	bio->bi_error = ret;
1045 	bio_endio(bio);
1046 	return ret;
1047 }
1048 
1049 #ifdef CONFIG_MIGRATION
1050 static int btree_migratepage(struct address_space *mapping,
1051 			struct page *newpage, struct page *page,
1052 			enum migrate_mode mode)
1053 {
1054 	/*
1055 	 * we can't safely write a btree page from here,
1056 	 * we haven't done the locking hook
1057 	 */
1058 	if (PageDirty(page))
1059 		return -EAGAIN;
1060 	/*
1061 	 * Buffers may be managed in a filesystem specific way.
1062 	 * We must have no buffers or drop them.
1063 	 */
1064 	if (page_has_private(page) &&
1065 	    !try_to_release_page(page, GFP_KERNEL))
1066 		return -EAGAIN;
1067 	return migrate_page(mapping, newpage, page, mode);
1068 }
1069 #endif
1070 
1071 
1072 static int btree_writepages(struct address_space *mapping,
1073 			    struct writeback_control *wbc)
1074 {
1075 	struct btrfs_fs_info *fs_info;
1076 	int ret;
1077 
1078 	if (wbc->sync_mode == WB_SYNC_NONE) {
1079 
1080 		if (wbc->for_kupdate)
1081 			return 0;
1082 
1083 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1084 		/* this is a bit racy, but that's ok */
1085 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1086 					     BTRFS_DIRTY_METADATA_THRESH);
1087 		if (ret < 0)
1088 			return 0;
1089 	}
1090 	return btree_write_cache_pages(mapping, wbc);
1091 }
1092 
1093 static int btree_readpage(struct file *file, struct page *page)
1094 {
1095 	struct extent_io_tree *tree;
1096 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1097 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1098 }
1099 
1100 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1101 {
1102 	if (PageWriteback(page) || PageDirty(page))
1103 		return 0;
1104 
1105 	return try_release_extent_buffer(page);
1106 }
1107 
1108 static void btree_invalidatepage(struct page *page, unsigned int offset,
1109 				 unsigned int length)
1110 {
1111 	struct extent_io_tree *tree;
1112 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1113 	extent_invalidatepage(tree, page, offset);
1114 	btree_releasepage(page, GFP_NOFS);
1115 	if (PagePrivate(page)) {
1116 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1117 			   "page private not zero on page %llu",
1118 			   (unsigned long long)page_offset(page));
1119 		ClearPagePrivate(page);
1120 		set_page_private(page, 0);
1121 		put_page(page);
1122 	}
1123 }
1124 
1125 static int btree_set_page_dirty(struct page *page)
1126 {
1127 #ifdef DEBUG
1128 	struct extent_buffer *eb;
1129 
1130 	BUG_ON(!PagePrivate(page));
1131 	eb = (struct extent_buffer *)page->private;
1132 	BUG_ON(!eb);
1133 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1134 	BUG_ON(!atomic_read(&eb->refs));
1135 	btrfs_assert_tree_locked(eb);
1136 #endif
1137 	return __set_page_dirty_nobuffers(page);
1138 }
1139 
1140 static const struct address_space_operations btree_aops = {
1141 	.readpage	= btree_readpage,
1142 	.writepages	= btree_writepages,
1143 	.releasepage	= btree_releasepage,
1144 	.invalidatepage = btree_invalidatepage,
1145 #ifdef CONFIG_MIGRATION
1146 	.migratepage	= btree_migratepage,
1147 #endif
1148 	.set_page_dirty = btree_set_page_dirty,
1149 };
1150 
1151 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1152 {
1153 	struct extent_buffer *buf = NULL;
1154 	struct inode *btree_inode = root->fs_info->btree_inode;
1155 
1156 	buf = btrfs_find_create_tree_block(root, bytenr);
1157 	if (IS_ERR(buf))
1158 		return;
1159 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1160 				 buf, WAIT_NONE, btree_get_extent, 0);
1161 	free_extent_buffer(buf);
1162 }
1163 
1164 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1165 			 int mirror_num, struct extent_buffer **eb)
1166 {
1167 	struct extent_buffer *buf = NULL;
1168 	struct inode *btree_inode = root->fs_info->btree_inode;
1169 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1170 	int ret;
1171 
1172 	buf = btrfs_find_create_tree_block(root, bytenr);
1173 	if (IS_ERR(buf))
1174 		return 0;
1175 
1176 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1177 
1178 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1179 				       btree_get_extent, mirror_num);
1180 	if (ret) {
1181 		free_extent_buffer(buf);
1182 		return ret;
1183 	}
1184 
1185 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1186 		free_extent_buffer(buf);
1187 		return -EIO;
1188 	} else if (extent_buffer_uptodate(buf)) {
1189 		*eb = buf;
1190 	} else {
1191 		free_extent_buffer(buf);
1192 	}
1193 	return 0;
1194 }
1195 
1196 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1197 						 u64 bytenr)
1198 {
1199 	struct btrfs_fs_info *fs_info = root->fs_info;
1200 
1201 	if (btrfs_is_testing(fs_info))
1202 		return alloc_test_extent_buffer(fs_info, bytenr);
1203 	return alloc_extent_buffer(fs_info, bytenr);
1204 }
1205 
1206 
1207 int btrfs_write_tree_block(struct extent_buffer *buf)
1208 {
1209 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1210 					buf->start + buf->len - 1);
1211 }
1212 
1213 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1214 {
1215 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1216 				       buf->start, buf->start + buf->len - 1);
1217 }
1218 
1219 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1220 				      u64 parent_transid)
1221 {
1222 	struct extent_buffer *buf = NULL;
1223 	int ret;
1224 
1225 	buf = btrfs_find_create_tree_block(root, bytenr);
1226 	if (IS_ERR(buf))
1227 		return buf;
1228 
1229 	ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1230 	if (ret) {
1231 		free_extent_buffer(buf);
1232 		return ERR_PTR(ret);
1233 	}
1234 	return buf;
1235 
1236 }
1237 
1238 void clean_tree_block(struct btrfs_trans_handle *trans,
1239 		      struct btrfs_fs_info *fs_info,
1240 		      struct extent_buffer *buf)
1241 {
1242 	if (btrfs_header_generation(buf) ==
1243 	    fs_info->running_transaction->transid) {
1244 		btrfs_assert_tree_locked(buf);
1245 
1246 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1247 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1248 					     -buf->len,
1249 					     fs_info->dirty_metadata_batch);
1250 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1251 			btrfs_set_lock_blocking(buf);
1252 			clear_extent_buffer_dirty(buf);
1253 		}
1254 	}
1255 }
1256 
1257 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1258 {
1259 	struct btrfs_subvolume_writers *writers;
1260 	int ret;
1261 
1262 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1263 	if (!writers)
1264 		return ERR_PTR(-ENOMEM);
1265 
1266 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1267 	if (ret < 0) {
1268 		kfree(writers);
1269 		return ERR_PTR(ret);
1270 	}
1271 
1272 	init_waitqueue_head(&writers->wait);
1273 	return writers;
1274 }
1275 
1276 static void
1277 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1278 {
1279 	percpu_counter_destroy(&writers->counter);
1280 	kfree(writers);
1281 }
1282 
1283 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1284 			 u64 objectid)
1285 {
1286 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1287 	root->node = NULL;
1288 	root->commit_root = NULL;
1289 	root->state = 0;
1290 	root->orphan_cleanup_state = 0;
1291 
1292 	root->objectid = objectid;
1293 	root->last_trans = 0;
1294 	root->highest_objectid = 0;
1295 	root->nr_delalloc_inodes = 0;
1296 	root->nr_ordered_extents = 0;
1297 	root->name = NULL;
1298 	root->inode_tree = RB_ROOT;
1299 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1300 	root->block_rsv = NULL;
1301 	root->orphan_block_rsv = NULL;
1302 
1303 	INIT_LIST_HEAD(&root->dirty_list);
1304 	INIT_LIST_HEAD(&root->root_list);
1305 	INIT_LIST_HEAD(&root->delalloc_inodes);
1306 	INIT_LIST_HEAD(&root->delalloc_root);
1307 	INIT_LIST_HEAD(&root->ordered_extents);
1308 	INIT_LIST_HEAD(&root->ordered_root);
1309 	INIT_LIST_HEAD(&root->logged_list[0]);
1310 	INIT_LIST_HEAD(&root->logged_list[1]);
1311 	spin_lock_init(&root->orphan_lock);
1312 	spin_lock_init(&root->inode_lock);
1313 	spin_lock_init(&root->delalloc_lock);
1314 	spin_lock_init(&root->ordered_extent_lock);
1315 	spin_lock_init(&root->accounting_lock);
1316 	spin_lock_init(&root->log_extents_lock[0]);
1317 	spin_lock_init(&root->log_extents_lock[1]);
1318 	mutex_init(&root->objectid_mutex);
1319 	mutex_init(&root->log_mutex);
1320 	mutex_init(&root->ordered_extent_mutex);
1321 	mutex_init(&root->delalloc_mutex);
1322 	init_waitqueue_head(&root->log_writer_wait);
1323 	init_waitqueue_head(&root->log_commit_wait[0]);
1324 	init_waitqueue_head(&root->log_commit_wait[1]);
1325 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1326 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1327 	atomic_set(&root->log_commit[0], 0);
1328 	atomic_set(&root->log_commit[1], 0);
1329 	atomic_set(&root->log_writers, 0);
1330 	atomic_set(&root->log_batch, 0);
1331 	atomic_set(&root->orphan_inodes, 0);
1332 	atomic_set(&root->refs, 1);
1333 	atomic_set(&root->will_be_snapshoted, 0);
1334 	atomic_set(&root->qgroup_meta_rsv, 0);
1335 	root->log_transid = 0;
1336 	root->log_transid_committed = -1;
1337 	root->last_log_commit = 0;
1338 	if (!dummy)
1339 		extent_io_tree_init(&root->dirty_log_pages,
1340 				     fs_info->btree_inode->i_mapping);
1341 
1342 	memset(&root->root_key, 0, sizeof(root->root_key));
1343 	memset(&root->root_item, 0, sizeof(root->root_item));
1344 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1345 	if (!dummy)
1346 		root->defrag_trans_start = fs_info->generation;
1347 	else
1348 		root->defrag_trans_start = 0;
1349 	root->root_key.objectid = objectid;
1350 	root->anon_dev = 0;
1351 
1352 	spin_lock_init(&root->root_item_lock);
1353 }
1354 
1355 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1356 		gfp_t flags)
1357 {
1358 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1359 	if (root)
1360 		root->fs_info = fs_info;
1361 	return root;
1362 }
1363 
1364 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1365 /* Should only be used by the testing infrastructure */
1366 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1367 {
1368 	struct btrfs_root *root;
1369 
1370 	if (!fs_info)
1371 		return ERR_PTR(-EINVAL);
1372 
1373 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1374 	if (!root)
1375 		return ERR_PTR(-ENOMEM);
1376 
1377 	/* We don't use the stripesize in selftest, set it as sectorsize */
1378 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1379 	root->alloc_bytenr = 0;
1380 
1381 	return root;
1382 }
1383 #endif
1384 
1385 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1386 				     struct btrfs_fs_info *fs_info,
1387 				     u64 objectid)
1388 {
1389 	struct extent_buffer *leaf;
1390 	struct btrfs_root *tree_root = fs_info->tree_root;
1391 	struct btrfs_root *root;
1392 	struct btrfs_key key;
1393 	int ret = 0;
1394 	uuid_le uuid;
1395 
1396 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1397 	if (!root)
1398 		return ERR_PTR(-ENOMEM);
1399 
1400 	__setup_root(root, fs_info, objectid);
1401 	root->root_key.objectid = objectid;
1402 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1403 	root->root_key.offset = 0;
1404 
1405 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1406 	if (IS_ERR(leaf)) {
1407 		ret = PTR_ERR(leaf);
1408 		leaf = NULL;
1409 		goto fail;
1410 	}
1411 
1412 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1413 	btrfs_set_header_bytenr(leaf, leaf->start);
1414 	btrfs_set_header_generation(leaf, trans->transid);
1415 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1416 	btrfs_set_header_owner(leaf, objectid);
1417 	root->node = leaf;
1418 
1419 	write_extent_buffer_fsid(leaf, fs_info->fsid);
1420 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1421 	btrfs_mark_buffer_dirty(leaf);
1422 
1423 	root->commit_root = btrfs_root_node(root);
1424 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1425 
1426 	root->root_item.flags = 0;
1427 	root->root_item.byte_limit = 0;
1428 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1429 	btrfs_set_root_generation(&root->root_item, trans->transid);
1430 	btrfs_set_root_level(&root->root_item, 0);
1431 	btrfs_set_root_refs(&root->root_item, 1);
1432 	btrfs_set_root_used(&root->root_item, leaf->len);
1433 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1434 	btrfs_set_root_dirid(&root->root_item, 0);
1435 	uuid_le_gen(&uuid);
1436 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1437 	root->root_item.drop_level = 0;
1438 
1439 	key.objectid = objectid;
1440 	key.type = BTRFS_ROOT_ITEM_KEY;
1441 	key.offset = 0;
1442 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1443 	if (ret)
1444 		goto fail;
1445 
1446 	btrfs_tree_unlock(leaf);
1447 
1448 	return root;
1449 
1450 fail:
1451 	if (leaf) {
1452 		btrfs_tree_unlock(leaf);
1453 		free_extent_buffer(root->commit_root);
1454 		free_extent_buffer(leaf);
1455 	}
1456 	kfree(root);
1457 
1458 	return ERR_PTR(ret);
1459 }
1460 
1461 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1462 					 struct btrfs_fs_info *fs_info)
1463 {
1464 	struct btrfs_root *root;
1465 	struct extent_buffer *leaf;
1466 
1467 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1468 	if (!root)
1469 		return ERR_PTR(-ENOMEM);
1470 
1471 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1472 
1473 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1474 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1475 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1476 
1477 	/*
1478 	 * DON'T set REF_COWS for log trees
1479 	 *
1480 	 * log trees do not get reference counted because they go away
1481 	 * before a real commit is actually done.  They do store pointers
1482 	 * to file data extents, and those reference counts still get
1483 	 * updated (along with back refs to the log tree).
1484 	 */
1485 
1486 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1487 			NULL, 0, 0, 0);
1488 	if (IS_ERR(leaf)) {
1489 		kfree(root);
1490 		return ERR_CAST(leaf);
1491 	}
1492 
1493 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1494 	btrfs_set_header_bytenr(leaf, leaf->start);
1495 	btrfs_set_header_generation(leaf, trans->transid);
1496 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1497 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1498 	root->node = leaf;
1499 
1500 	write_extent_buffer_fsid(root->node, fs_info->fsid);
1501 	btrfs_mark_buffer_dirty(root->node);
1502 	btrfs_tree_unlock(root->node);
1503 	return root;
1504 }
1505 
1506 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1507 			     struct btrfs_fs_info *fs_info)
1508 {
1509 	struct btrfs_root *log_root;
1510 
1511 	log_root = alloc_log_tree(trans, fs_info);
1512 	if (IS_ERR(log_root))
1513 		return PTR_ERR(log_root);
1514 	WARN_ON(fs_info->log_root_tree);
1515 	fs_info->log_root_tree = log_root;
1516 	return 0;
1517 }
1518 
1519 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1520 		       struct btrfs_root *root)
1521 {
1522 	struct btrfs_fs_info *fs_info = root->fs_info;
1523 	struct btrfs_root *log_root;
1524 	struct btrfs_inode_item *inode_item;
1525 
1526 	log_root = alloc_log_tree(trans, fs_info);
1527 	if (IS_ERR(log_root))
1528 		return PTR_ERR(log_root);
1529 
1530 	log_root->last_trans = trans->transid;
1531 	log_root->root_key.offset = root->root_key.objectid;
1532 
1533 	inode_item = &log_root->root_item.inode;
1534 	btrfs_set_stack_inode_generation(inode_item, 1);
1535 	btrfs_set_stack_inode_size(inode_item, 3);
1536 	btrfs_set_stack_inode_nlink(inode_item, 1);
1537 	btrfs_set_stack_inode_nbytes(inode_item,
1538 				     fs_info->nodesize);
1539 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1540 
1541 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1542 
1543 	WARN_ON(root->log_root);
1544 	root->log_root = log_root;
1545 	root->log_transid = 0;
1546 	root->log_transid_committed = -1;
1547 	root->last_log_commit = 0;
1548 	return 0;
1549 }
1550 
1551 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1552 					       struct btrfs_key *key)
1553 {
1554 	struct btrfs_root *root;
1555 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1556 	struct btrfs_path *path;
1557 	u64 generation;
1558 	int ret;
1559 
1560 	path = btrfs_alloc_path();
1561 	if (!path)
1562 		return ERR_PTR(-ENOMEM);
1563 
1564 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1565 	if (!root) {
1566 		ret = -ENOMEM;
1567 		goto alloc_fail;
1568 	}
1569 
1570 	__setup_root(root, fs_info, key->objectid);
1571 
1572 	ret = btrfs_find_root(tree_root, key, path,
1573 			      &root->root_item, &root->root_key);
1574 	if (ret) {
1575 		if (ret > 0)
1576 			ret = -ENOENT;
1577 		goto find_fail;
1578 	}
1579 
1580 	generation = btrfs_root_generation(&root->root_item);
1581 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1582 				     generation);
1583 	if (IS_ERR(root->node)) {
1584 		ret = PTR_ERR(root->node);
1585 		goto find_fail;
1586 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1587 		ret = -EIO;
1588 		free_extent_buffer(root->node);
1589 		goto find_fail;
1590 	}
1591 	root->commit_root = btrfs_root_node(root);
1592 out:
1593 	btrfs_free_path(path);
1594 	return root;
1595 
1596 find_fail:
1597 	kfree(root);
1598 alloc_fail:
1599 	root = ERR_PTR(ret);
1600 	goto out;
1601 }
1602 
1603 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1604 				      struct btrfs_key *location)
1605 {
1606 	struct btrfs_root *root;
1607 
1608 	root = btrfs_read_tree_root(tree_root, location);
1609 	if (IS_ERR(root))
1610 		return root;
1611 
1612 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1613 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1614 		btrfs_check_and_init_root_item(&root->root_item);
1615 	}
1616 
1617 	return root;
1618 }
1619 
1620 int btrfs_init_fs_root(struct btrfs_root *root)
1621 {
1622 	int ret;
1623 	struct btrfs_subvolume_writers *writers;
1624 
1625 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1626 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1627 					GFP_NOFS);
1628 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1629 		ret = -ENOMEM;
1630 		goto fail;
1631 	}
1632 
1633 	writers = btrfs_alloc_subvolume_writers();
1634 	if (IS_ERR(writers)) {
1635 		ret = PTR_ERR(writers);
1636 		goto fail;
1637 	}
1638 	root->subv_writers = writers;
1639 
1640 	btrfs_init_free_ino_ctl(root);
1641 	spin_lock_init(&root->ino_cache_lock);
1642 	init_waitqueue_head(&root->ino_cache_wait);
1643 
1644 	ret = get_anon_bdev(&root->anon_dev);
1645 	if (ret)
1646 		goto fail;
1647 
1648 	mutex_lock(&root->objectid_mutex);
1649 	ret = btrfs_find_highest_objectid(root,
1650 					&root->highest_objectid);
1651 	if (ret) {
1652 		mutex_unlock(&root->objectid_mutex);
1653 		goto fail;
1654 	}
1655 
1656 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1657 
1658 	mutex_unlock(&root->objectid_mutex);
1659 
1660 	return 0;
1661 fail:
1662 	/* the caller is responsible to call free_fs_root */
1663 	return ret;
1664 }
1665 
1666 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1667 					u64 root_id)
1668 {
1669 	struct btrfs_root *root;
1670 
1671 	spin_lock(&fs_info->fs_roots_radix_lock);
1672 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1673 				 (unsigned long)root_id);
1674 	spin_unlock(&fs_info->fs_roots_radix_lock);
1675 	return root;
1676 }
1677 
1678 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1679 			 struct btrfs_root *root)
1680 {
1681 	int ret;
1682 
1683 	ret = radix_tree_preload(GFP_NOFS);
1684 	if (ret)
1685 		return ret;
1686 
1687 	spin_lock(&fs_info->fs_roots_radix_lock);
1688 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1689 				(unsigned long)root->root_key.objectid,
1690 				root);
1691 	if (ret == 0)
1692 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1693 	spin_unlock(&fs_info->fs_roots_radix_lock);
1694 	radix_tree_preload_end();
1695 
1696 	return ret;
1697 }
1698 
1699 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1700 				     struct btrfs_key *location,
1701 				     bool check_ref)
1702 {
1703 	struct btrfs_root *root;
1704 	struct btrfs_path *path;
1705 	struct btrfs_key key;
1706 	int ret;
1707 
1708 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1709 		return fs_info->tree_root;
1710 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1711 		return fs_info->extent_root;
1712 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1713 		return fs_info->chunk_root;
1714 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1715 		return fs_info->dev_root;
1716 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1717 		return fs_info->csum_root;
1718 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1719 		return fs_info->quota_root ? fs_info->quota_root :
1720 					     ERR_PTR(-ENOENT);
1721 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1722 		return fs_info->uuid_root ? fs_info->uuid_root :
1723 					    ERR_PTR(-ENOENT);
1724 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1725 		return fs_info->free_space_root ? fs_info->free_space_root :
1726 						  ERR_PTR(-ENOENT);
1727 again:
1728 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1729 	if (root) {
1730 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1731 			return ERR_PTR(-ENOENT);
1732 		return root;
1733 	}
1734 
1735 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1736 	if (IS_ERR(root))
1737 		return root;
1738 
1739 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1740 		ret = -ENOENT;
1741 		goto fail;
1742 	}
1743 
1744 	ret = btrfs_init_fs_root(root);
1745 	if (ret)
1746 		goto fail;
1747 
1748 	path = btrfs_alloc_path();
1749 	if (!path) {
1750 		ret = -ENOMEM;
1751 		goto fail;
1752 	}
1753 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1754 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1755 	key.offset = location->objectid;
1756 
1757 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1758 	btrfs_free_path(path);
1759 	if (ret < 0)
1760 		goto fail;
1761 	if (ret == 0)
1762 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1763 
1764 	ret = btrfs_insert_fs_root(fs_info, root);
1765 	if (ret) {
1766 		if (ret == -EEXIST) {
1767 			free_fs_root(root);
1768 			goto again;
1769 		}
1770 		goto fail;
1771 	}
1772 	return root;
1773 fail:
1774 	free_fs_root(root);
1775 	return ERR_PTR(ret);
1776 }
1777 
1778 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1779 {
1780 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1781 	int ret = 0;
1782 	struct btrfs_device *device;
1783 	struct backing_dev_info *bdi;
1784 
1785 	rcu_read_lock();
1786 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1787 		if (!device->bdev)
1788 			continue;
1789 		bdi = blk_get_backing_dev_info(device->bdev);
1790 		if (bdi_congested(bdi, bdi_bits)) {
1791 			ret = 1;
1792 			break;
1793 		}
1794 	}
1795 	rcu_read_unlock();
1796 	return ret;
1797 }
1798 
1799 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1800 {
1801 	int err;
1802 
1803 	err = bdi_setup_and_register(bdi, "btrfs");
1804 	if (err)
1805 		return err;
1806 
1807 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1808 	bdi->congested_fn	= btrfs_congested_fn;
1809 	bdi->congested_data	= info;
1810 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1811 	return 0;
1812 }
1813 
1814 /*
1815  * called by the kthread helper functions to finally call the bio end_io
1816  * functions.  This is where read checksum verification actually happens
1817  */
1818 static void end_workqueue_fn(struct btrfs_work *work)
1819 {
1820 	struct bio *bio;
1821 	struct btrfs_end_io_wq *end_io_wq;
1822 
1823 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1824 	bio = end_io_wq->bio;
1825 
1826 	bio->bi_error = end_io_wq->error;
1827 	bio->bi_private = end_io_wq->private;
1828 	bio->bi_end_io = end_io_wq->end_io;
1829 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1830 	bio_endio(bio);
1831 }
1832 
1833 static int cleaner_kthread(void *arg)
1834 {
1835 	struct btrfs_root *root = arg;
1836 	struct btrfs_fs_info *fs_info = root->fs_info;
1837 	int again;
1838 	struct btrfs_trans_handle *trans;
1839 
1840 	do {
1841 		again = 0;
1842 
1843 		/* Make the cleaner go to sleep early. */
1844 		if (btrfs_need_cleaner_sleep(root))
1845 			goto sleep;
1846 
1847 		/*
1848 		 * Do not do anything if we might cause open_ctree() to block
1849 		 * before we have finished mounting the filesystem.
1850 		 */
1851 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1852 			goto sleep;
1853 
1854 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1855 			goto sleep;
1856 
1857 		/*
1858 		 * Avoid the problem that we change the status of the fs
1859 		 * during the above check and trylock.
1860 		 */
1861 		if (btrfs_need_cleaner_sleep(root)) {
1862 			mutex_unlock(&fs_info->cleaner_mutex);
1863 			goto sleep;
1864 		}
1865 
1866 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1867 		btrfs_run_delayed_iputs(root);
1868 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1869 
1870 		again = btrfs_clean_one_deleted_snapshot(root);
1871 		mutex_unlock(&fs_info->cleaner_mutex);
1872 
1873 		/*
1874 		 * The defragger has dealt with the R/O remount and umount,
1875 		 * needn't do anything special here.
1876 		 */
1877 		btrfs_run_defrag_inodes(fs_info);
1878 
1879 		/*
1880 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1881 		 * with relocation (btrfs_relocate_chunk) and relocation
1882 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1883 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1884 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1885 		 * unused block groups.
1886 		 */
1887 		btrfs_delete_unused_bgs(fs_info);
1888 sleep:
1889 		if (!again) {
1890 			set_current_state(TASK_INTERRUPTIBLE);
1891 			if (!kthread_should_stop())
1892 				schedule();
1893 			__set_current_state(TASK_RUNNING);
1894 		}
1895 	} while (!kthread_should_stop());
1896 
1897 	/*
1898 	 * Transaction kthread is stopped before us and wakes us up.
1899 	 * However we might have started a new transaction and COWed some
1900 	 * tree blocks when deleting unused block groups for example. So
1901 	 * make sure we commit the transaction we started to have a clean
1902 	 * shutdown when evicting the btree inode - if it has dirty pages
1903 	 * when we do the final iput() on it, eviction will trigger a
1904 	 * writeback for it which will fail with null pointer dereferences
1905 	 * since work queues and other resources were already released and
1906 	 * destroyed by the time the iput/eviction/writeback is made.
1907 	 */
1908 	trans = btrfs_attach_transaction(root);
1909 	if (IS_ERR(trans)) {
1910 		if (PTR_ERR(trans) != -ENOENT)
1911 			btrfs_err(fs_info,
1912 				  "cleaner transaction attach returned %ld",
1913 				  PTR_ERR(trans));
1914 	} else {
1915 		int ret;
1916 
1917 		ret = btrfs_commit_transaction(trans, root);
1918 		if (ret)
1919 			btrfs_err(fs_info,
1920 				  "cleaner open transaction commit returned %d",
1921 				  ret);
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static int transaction_kthread(void *arg)
1928 {
1929 	struct btrfs_root *root = arg;
1930 	struct btrfs_fs_info *fs_info = root->fs_info;
1931 	struct btrfs_trans_handle *trans;
1932 	struct btrfs_transaction *cur;
1933 	u64 transid;
1934 	unsigned long now;
1935 	unsigned long delay;
1936 	bool cannot_commit;
1937 
1938 	do {
1939 		cannot_commit = false;
1940 		delay = HZ * fs_info->commit_interval;
1941 		mutex_lock(&fs_info->transaction_kthread_mutex);
1942 
1943 		spin_lock(&fs_info->trans_lock);
1944 		cur = fs_info->running_transaction;
1945 		if (!cur) {
1946 			spin_unlock(&fs_info->trans_lock);
1947 			goto sleep;
1948 		}
1949 
1950 		now = get_seconds();
1951 		if (cur->state < TRANS_STATE_BLOCKED &&
1952 		    (now < cur->start_time ||
1953 		     now - cur->start_time < fs_info->commit_interval)) {
1954 			spin_unlock(&fs_info->trans_lock);
1955 			delay = HZ * 5;
1956 			goto sleep;
1957 		}
1958 		transid = cur->transid;
1959 		spin_unlock(&fs_info->trans_lock);
1960 
1961 		/* If the file system is aborted, this will always fail. */
1962 		trans = btrfs_attach_transaction(root);
1963 		if (IS_ERR(trans)) {
1964 			if (PTR_ERR(trans) != -ENOENT)
1965 				cannot_commit = true;
1966 			goto sleep;
1967 		}
1968 		if (transid == trans->transid) {
1969 			btrfs_commit_transaction(trans, root);
1970 		} else {
1971 			btrfs_end_transaction(trans, root);
1972 		}
1973 sleep:
1974 		wake_up_process(fs_info->cleaner_kthread);
1975 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1976 
1977 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1978 				      &fs_info->fs_state)))
1979 			btrfs_cleanup_transaction(root);
1980 		set_current_state(TASK_INTERRUPTIBLE);
1981 		if (!kthread_should_stop() &&
1982 				(!btrfs_transaction_blocked(fs_info) ||
1983 				 cannot_commit))
1984 			schedule_timeout(delay);
1985 		__set_current_state(TASK_RUNNING);
1986 	} while (!kthread_should_stop());
1987 	return 0;
1988 }
1989 
1990 /*
1991  * this will find the highest generation in the array of
1992  * root backups.  The index of the highest array is returned,
1993  * or -1 if we can't find anything.
1994  *
1995  * We check to make sure the array is valid by comparing the
1996  * generation of the latest  root in the array with the generation
1997  * in the super block.  If they don't match we pitch it.
1998  */
1999 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2000 {
2001 	u64 cur;
2002 	int newest_index = -1;
2003 	struct btrfs_root_backup *root_backup;
2004 	int i;
2005 
2006 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2007 		root_backup = info->super_copy->super_roots + i;
2008 		cur = btrfs_backup_tree_root_gen(root_backup);
2009 		if (cur == newest_gen)
2010 			newest_index = i;
2011 	}
2012 
2013 	/* check to see if we actually wrapped around */
2014 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2015 		root_backup = info->super_copy->super_roots;
2016 		cur = btrfs_backup_tree_root_gen(root_backup);
2017 		if (cur == newest_gen)
2018 			newest_index = 0;
2019 	}
2020 	return newest_index;
2021 }
2022 
2023 
2024 /*
2025  * find the oldest backup so we know where to store new entries
2026  * in the backup array.  This will set the backup_root_index
2027  * field in the fs_info struct
2028  */
2029 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2030 				     u64 newest_gen)
2031 {
2032 	int newest_index = -1;
2033 
2034 	newest_index = find_newest_super_backup(info, newest_gen);
2035 	/* if there was garbage in there, just move along */
2036 	if (newest_index == -1) {
2037 		info->backup_root_index = 0;
2038 	} else {
2039 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2040 	}
2041 }
2042 
2043 /*
2044  * copy all the root pointers into the super backup array.
2045  * this will bump the backup pointer by one when it is
2046  * done
2047  */
2048 static void backup_super_roots(struct btrfs_fs_info *info)
2049 {
2050 	int next_backup;
2051 	struct btrfs_root_backup *root_backup;
2052 	int last_backup;
2053 
2054 	next_backup = info->backup_root_index;
2055 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2056 		BTRFS_NUM_BACKUP_ROOTS;
2057 
2058 	/*
2059 	 * just overwrite the last backup if we're at the same generation
2060 	 * this happens only at umount
2061 	 */
2062 	root_backup = info->super_for_commit->super_roots + last_backup;
2063 	if (btrfs_backup_tree_root_gen(root_backup) ==
2064 	    btrfs_header_generation(info->tree_root->node))
2065 		next_backup = last_backup;
2066 
2067 	root_backup = info->super_for_commit->super_roots + next_backup;
2068 
2069 	/*
2070 	 * make sure all of our padding and empty slots get zero filled
2071 	 * regardless of which ones we use today
2072 	 */
2073 	memset(root_backup, 0, sizeof(*root_backup));
2074 
2075 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2076 
2077 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2078 	btrfs_set_backup_tree_root_gen(root_backup,
2079 			       btrfs_header_generation(info->tree_root->node));
2080 
2081 	btrfs_set_backup_tree_root_level(root_backup,
2082 			       btrfs_header_level(info->tree_root->node));
2083 
2084 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2085 	btrfs_set_backup_chunk_root_gen(root_backup,
2086 			       btrfs_header_generation(info->chunk_root->node));
2087 	btrfs_set_backup_chunk_root_level(root_backup,
2088 			       btrfs_header_level(info->chunk_root->node));
2089 
2090 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2091 	btrfs_set_backup_extent_root_gen(root_backup,
2092 			       btrfs_header_generation(info->extent_root->node));
2093 	btrfs_set_backup_extent_root_level(root_backup,
2094 			       btrfs_header_level(info->extent_root->node));
2095 
2096 	/*
2097 	 * we might commit during log recovery, which happens before we set
2098 	 * the fs_root.  Make sure it is valid before we fill it in.
2099 	 */
2100 	if (info->fs_root && info->fs_root->node) {
2101 		btrfs_set_backup_fs_root(root_backup,
2102 					 info->fs_root->node->start);
2103 		btrfs_set_backup_fs_root_gen(root_backup,
2104 			       btrfs_header_generation(info->fs_root->node));
2105 		btrfs_set_backup_fs_root_level(root_backup,
2106 			       btrfs_header_level(info->fs_root->node));
2107 	}
2108 
2109 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2110 	btrfs_set_backup_dev_root_gen(root_backup,
2111 			       btrfs_header_generation(info->dev_root->node));
2112 	btrfs_set_backup_dev_root_level(root_backup,
2113 				       btrfs_header_level(info->dev_root->node));
2114 
2115 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2116 	btrfs_set_backup_csum_root_gen(root_backup,
2117 			       btrfs_header_generation(info->csum_root->node));
2118 	btrfs_set_backup_csum_root_level(root_backup,
2119 			       btrfs_header_level(info->csum_root->node));
2120 
2121 	btrfs_set_backup_total_bytes(root_backup,
2122 			     btrfs_super_total_bytes(info->super_copy));
2123 	btrfs_set_backup_bytes_used(root_backup,
2124 			     btrfs_super_bytes_used(info->super_copy));
2125 	btrfs_set_backup_num_devices(root_backup,
2126 			     btrfs_super_num_devices(info->super_copy));
2127 
2128 	/*
2129 	 * if we don't copy this out to the super_copy, it won't get remembered
2130 	 * for the next commit
2131 	 */
2132 	memcpy(&info->super_copy->super_roots,
2133 	       &info->super_for_commit->super_roots,
2134 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2135 }
2136 
2137 /*
2138  * this copies info out of the root backup array and back into
2139  * the in-memory super block.  It is meant to help iterate through
2140  * the array, so you send it the number of backups you've already
2141  * tried and the last backup index you used.
2142  *
2143  * this returns -1 when it has tried all the backups
2144  */
2145 static noinline int next_root_backup(struct btrfs_fs_info *info,
2146 				     struct btrfs_super_block *super,
2147 				     int *num_backups_tried, int *backup_index)
2148 {
2149 	struct btrfs_root_backup *root_backup;
2150 	int newest = *backup_index;
2151 
2152 	if (*num_backups_tried == 0) {
2153 		u64 gen = btrfs_super_generation(super);
2154 
2155 		newest = find_newest_super_backup(info, gen);
2156 		if (newest == -1)
2157 			return -1;
2158 
2159 		*backup_index = newest;
2160 		*num_backups_tried = 1;
2161 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2162 		/* we've tried all the backups, all done */
2163 		return -1;
2164 	} else {
2165 		/* jump to the next oldest backup */
2166 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2167 			BTRFS_NUM_BACKUP_ROOTS;
2168 		*backup_index = newest;
2169 		*num_backups_tried += 1;
2170 	}
2171 	root_backup = super->super_roots + newest;
2172 
2173 	btrfs_set_super_generation(super,
2174 				   btrfs_backup_tree_root_gen(root_backup));
2175 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2176 	btrfs_set_super_root_level(super,
2177 				   btrfs_backup_tree_root_level(root_backup));
2178 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2179 
2180 	/*
2181 	 * fixme: the total bytes and num_devices need to match or we should
2182 	 * need a fsck
2183 	 */
2184 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2185 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2186 	return 0;
2187 }
2188 
2189 /* helper to cleanup workers */
2190 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2191 {
2192 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2193 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2194 	btrfs_destroy_workqueue(fs_info->workers);
2195 	btrfs_destroy_workqueue(fs_info->endio_workers);
2196 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2197 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2198 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2199 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2200 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2201 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2202 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2203 	btrfs_destroy_workqueue(fs_info->submit_workers);
2204 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2205 	btrfs_destroy_workqueue(fs_info->caching_workers);
2206 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2207 	btrfs_destroy_workqueue(fs_info->flush_workers);
2208 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2209 	btrfs_destroy_workqueue(fs_info->extent_workers);
2210 }
2211 
2212 static void free_root_extent_buffers(struct btrfs_root *root)
2213 {
2214 	if (root) {
2215 		free_extent_buffer(root->node);
2216 		free_extent_buffer(root->commit_root);
2217 		root->node = NULL;
2218 		root->commit_root = NULL;
2219 	}
2220 }
2221 
2222 /* helper to cleanup tree roots */
2223 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2224 {
2225 	free_root_extent_buffers(info->tree_root);
2226 
2227 	free_root_extent_buffers(info->dev_root);
2228 	free_root_extent_buffers(info->extent_root);
2229 	free_root_extent_buffers(info->csum_root);
2230 	free_root_extent_buffers(info->quota_root);
2231 	free_root_extent_buffers(info->uuid_root);
2232 	if (chunk_root)
2233 		free_root_extent_buffers(info->chunk_root);
2234 	free_root_extent_buffers(info->free_space_root);
2235 }
2236 
2237 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2238 {
2239 	int ret;
2240 	struct btrfs_root *gang[8];
2241 	int i;
2242 
2243 	while (!list_empty(&fs_info->dead_roots)) {
2244 		gang[0] = list_entry(fs_info->dead_roots.next,
2245 				     struct btrfs_root, root_list);
2246 		list_del(&gang[0]->root_list);
2247 
2248 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2249 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2250 		} else {
2251 			free_extent_buffer(gang[0]->node);
2252 			free_extent_buffer(gang[0]->commit_root);
2253 			btrfs_put_fs_root(gang[0]);
2254 		}
2255 	}
2256 
2257 	while (1) {
2258 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2259 					     (void **)gang, 0,
2260 					     ARRAY_SIZE(gang));
2261 		if (!ret)
2262 			break;
2263 		for (i = 0; i < ret; i++)
2264 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2265 	}
2266 
2267 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2268 		btrfs_free_log_root_tree(NULL, fs_info);
2269 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2270 					    fs_info->pinned_extents);
2271 	}
2272 }
2273 
2274 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2275 {
2276 	mutex_init(&fs_info->scrub_lock);
2277 	atomic_set(&fs_info->scrubs_running, 0);
2278 	atomic_set(&fs_info->scrub_pause_req, 0);
2279 	atomic_set(&fs_info->scrubs_paused, 0);
2280 	atomic_set(&fs_info->scrub_cancel_req, 0);
2281 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2282 	fs_info->scrub_workers_refcnt = 0;
2283 }
2284 
2285 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2286 {
2287 	spin_lock_init(&fs_info->balance_lock);
2288 	mutex_init(&fs_info->balance_mutex);
2289 	atomic_set(&fs_info->balance_running, 0);
2290 	atomic_set(&fs_info->balance_pause_req, 0);
2291 	atomic_set(&fs_info->balance_cancel_req, 0);
2292 	fs_info->balance_ctl = NULL;
2293 	init_waitqueue_head(&fs_info->balance_wait_q);
2294 }
2295 
2296 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2297 {
2298 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2299 	set_nlink(fs_info->btree_inode, 1);
2300 	/*
2301 	 * we set the i_size on the btree inode to the max possible int.
2302 	 * the real end of the address space is determined by all of
2303 	 * the devices in the system
2304 	 */
2305 	fs_info->btree_inode->i_size = OFFSET_MAX;
2306 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2307 
2308 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2309 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2310 			     fs_info->btree_inode->i_mapping);
2311 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2312 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2313 
2314 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2315 
2316 	BTRFS_I(fs_info->btree_inode)->root = fs_info->tree_root;
2317 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2318 	       sizeof(struct btrfs_key));
2319 	set_bit(BTRFS_INODE_DUMMY,
2320 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2321 	btrfs_insert_inode_hash(fs_info->btree_inode);
2322 }
2323 
2324 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2325 {
2326 	fs_info->dev_replace.lock_owner = 0;
2327 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2328 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2329 	rwlock_init(&fs_info->dev_replace.lock);
2330 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2331 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2332 	init_waitqueue_head(&fs_info->replace_wait);
2333 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2334 }
2335 
2336 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2337 {
2338 	spin_lock_init(&fs_info->qgroup_lock);
2339 	mutex_init(&fs_info->qgroup_ioctl_lock);
2340 	fs_info->qgroup_tree = RB_ROOT;
2341 	fs_info->qgroup_op_tree = RB_ROOT;
2342 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2343 	fs_info->qgroup_seq = 1;
2344 	fs_info->qgroup_ulist = NULL;
2345 	fs_info->qgroup_rescan_running = false;
2346 	mutex_init(&fs_info->qgroup_rescan_lock);
2347 }
2348 
2349 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2350 		struct btrfs_fs_devices *fs_devices)
2351 {
2352 	int max_active = fs_info->thread_pool_size;
2353 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2354 
2355 	fs_info->workers =
2356 		btrfs_alloc_workqueue(fs_info, "worker",
2357 				      flags | WQ_HIGHPRI, max_active, 16);
2358 
2359 	fs_info->delalloc_workers =
2360 		btrfs_alloc_workqueue(fs_info, "delalloc",
2361 				      flags, max_active, 2);
2362 
2363 	fs_info->flush_workers =
2364 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2365 				      flags, max_active, 0);
2366 
2367 	fs_info->caching_workers =
2368 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2369 
2370 	/*
2371 	 * a higher idle thresh on the submit workers makes it much more
2372 	 * likely that bios will be send down in a sane order to the
2373 	 * devices
2374 	 */
2375 	fs_info->submit_workers =
2376 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2377 				      min_t(u64, fs_devices->num_devices,
2378 					    max_active), 64);
2379 
2380 	fs_info->fixup_workers =
2381 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2382 
2383 	/*
2384 	 * endios are largely parallel and should have a very
2385 	 * low idle thresh
2386 	 */
2387 	fs_info->endio_workers =
2388 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2389 	fs_info->endio_meta_workers =
2390 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2391 				      max_active, 4);
2392 	fs_info->endio_meta_write_workers =
2393 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2394 				      max_active, 2);
2395 	fs_info->endio_raid56_workers =
2396 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2397 				      max_active, 4);
2398 	fs_info->endio_repair_workers =
2399 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2400 	fs_info->rmw_workers =
2401 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2402 	fs_info->endio_write_workers =
2403 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2404 				      max_active, 2);
2405 	fs_info->endio_freespace_worker =
2406 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2407 				      max_active, 0);
2408 	fs_info->delayed_workers =
2409 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2410 				      max_active, 0);
2411 	fs_info->readahead_workers =
2412 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2413 				      max_active, 2);
2414 	fs_info->qgroup_rescan_workers =
2415 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2416 	fs_info->extent_workers =
2417 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2418 				      min_t(u64, fs_devices->num_devices,
2419 					    max_active), 8);
2420 
2421 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2422 	      fs_info->submit_workers && fs_info->flush_workers &&
2423 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2424 	      fs_info->endio_meta_write_workers &&
2425 	      fs_info->endio_repair_workers &&
2426 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2427 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2428 	      fs_info->caching_workers && fs_info->readahead_workers &&
2429 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2430 	      fs_info->extent_workers &&
2431 	      fs_info->qgroup_rescan_workers)) {
2432 		return -ENOMEM;
2433 	}
2434 
2435 	return 0;
2436 }
2437 
2438 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2439 			    struct btrfs_fs_devices *fs_devices)
2440 {
2441 	int ret;
2442 	struct btrfs_root *tree_root = fs_info->tree_root;
2443 	struct btrfs_root *log_tree_root;
2444 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2445 	u64 bytenr = btrfs_super_log_root(disk_super);
2446 
2447 	if (fs_devices->rw_devices == 0) {
2448 		btrfs_warn(fs_info, "log replay required on RO media");
2449 		return -EIO;
2450 	}
2451 
2452 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2453 	if (!log_tree_root)
2454 		return -ENOMEM;
2455 
2456 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2457 
2458 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2459 			fs_info->generation + 1);
2460 	if (IS_ERR(log_tree_root->node)) {
2461 		btrfs_warn(fs_info, "failed to read log tree");
2462 		ret = PTR_ERR(log_tree_root->node);
2463 		kfree(log_tree_root);
2464 		return ret;
2465 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2466 		btrfs_err(fs_info, "failed to read log tree");
2467 		free_extent_buffer(log_tree_root->node);
2468 		kfree(log_tree_root);
2469 		return -EIO;
2470 	}
2471 	/* returns with log_tree_root freed on success */
2472 	ret = btrfs_recover_log_trees(log_tree_root);
2473 	if (ret) {
2474 		btrfs_handle_fs_error(fs_info, ret,
2475 				      "Failed to recover log tree");
2476 		free_extent_buffer(log_tree_root->node);
2477 		kfree(log_tree_root);
2478 		return ret;
2479 	}
2480 
2481 	if (fs_info->sb->s_flags & MS_RDONLY) {
2482 		ret = btrfs_commit_super(fs_info);
2483 		if (ret)
2484 			return ret;
2485 	}
2486 
2487 	return 0;
2488 }
2489 
2490 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2491 {
2492 	struct btrfs_root *tree_root = fs_info->tree_root;
2493 	struct btrfs_root *root;
2494 	struct btrfs_key location;
2495 	int ret;
2496 
2497 	BUG_ON(!fs_info->tree_root);
2498 
2499 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2500 	location.type = BTRFS_ROOT_ITEM_KEY;
2501 	location.offset = 0;
2502 
2503 	root = btrfs_read_tree_root(tree_root, &location);
2504 	if (IS_ERR(root))
2505 		return PTR_ERR(root);
2506 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2507 	fs_info->extent_root = root;
2508 
2509 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2510 	root = btrfs_read_tree_root(tree_root, &location);
2511 	if (IS_ERR(root))
2512 		return PTR_ERR(root);
2513 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2514 	fs_info->dev_root = root;
2515 	btrfs_init_devices_late(fs_info);
2516 
2517 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2518 	root = btrfs_read_tree_root(tree_root, &location);
2519 	if (IS_ERR(root))
2520 		return PTR_ERR(root);
2521 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2522 	fs_info->csum_root = root;
2523 
2524 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2525 	root = btrfs_read_tree_root(tree_root, &location);
2526 	if (!IS_ERR(root)) {
2527 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2528 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2529 		fs_info->quota_root = root;
2530 	}
2531 
2532 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2533 	root = btrfs_read_tree_root(tree_root, &location);
2534 	if (IS_ERR(root)) {
2535 		ret = PTR_ERR(root);
2536 		if (ret != -ENOENT)
2537 			return ret;
2538 	} else {
2539 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2540 		fs_info->uuid_root = root;
2541 	}
2542 
2543 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2544 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2545 		root = btrfs_read_tree_root(tree_root, &location);
2546 		if (IS_ERR(root))
2547 			return PTR_ERR(root);
2548 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2549 		fs_info->free_space_root = root;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 int open_ctree(struct super_block *sb,
2556 	       struct btrfs_fs_devices *fs_devices,
2557 	       char *options)
2558 {
2559 	u32 sectorsize;
2560 	u32 nodesize;
2561 	u32 stripesize;
2562 	u64 generation;
2563 	u64 features;
2564 	struct btrfs_key location;
2565 	struct buffer_head *bh;
2566 	struct btrfs_super_block *disk_super;
2567 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2568 	struct btrfs_root *tree_root;
2569 	struct btrfs_root *chunk_root;
2570 	int ret;
2571 	int err = -EINVAL;
2572 	int num_backups_tried = 0;
2573 	int backup_index = 0;
2574 	int max_active;
2575 	int clear_free_space_tree = 0;
2576 
2577 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2578 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2579 	if (!tree_root || !chunk_root) {
2580 		err = -ENOMEM;
2581 		goto fail;
2582 	}
2583 
2584 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2585 	if (ret) {
2586 		err = ret;
2587 		goto fail;
2588 	}
2589 
2590 	ret = setup_bdi(fs_info, &fs_info->bdi);
2591 	if (ret) {
2592 		err = ret;
2593 		goto fail_srcu;
2594 	}
2595 
2596 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2597 	if (ret) {
2598 		err = ret;
2599 		goto fail_bdi;
2600 	}
2601 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2602 					(1 + ilog2(nr_cpu_ids));
2603 
2604 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2605 	if (ret) {
2606 		err = ret;
2607 		goto fail_dirty_metadata_bytes;
2608 	}
2609 
2610 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2611 	if (ret) {
2612 		err = ret;
2613 		goto fail_delalloc_bytes;
2614 	}
2615 
2616 	fs_info->btree_inode = new_inode(sb);
2617 	if (!fs_info->btree_inode) {
2618 		err = -ENOMEM;
2619 		goto fail_bio_counter;
2620 	}
2621 
2622 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2623 
2624 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2625 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2626 	INIT_LIST_HEAD(&fs_info->trans_list);
2627 	INIT_LIST_HEAD(&fs_info->dead_roots);
2628 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2629 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2630 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2631 	spin_lock_init(&fs_info->delalloc_root_lock);
2632 	spin_lock_init(&fs_info->trans_lock);
2633 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2634 	spin_lock_init(&fs_info->delayed_iput_lock);
2635 	spin_lock_init(&fs_info->defrag_inodes_lock);
2636 	spin_lock_init(&fs_info->free_chunk_lock);
2637 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2638 	spin_lock_init(&fs_info->super_lock);
2639 	spin_lock_init(&fs_info->qgroup_op_lock);
2640 	spin_lock_init(&fs_info->buffer_lock);
2641 	spin_lock_init(&fs_info->unused_bgs_lock);
2642 	rwlock_init(&fs_info->tree_mod_log_lock);
2643 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2644 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2645 	mutex_init(&fs_info->reloc_mutex);
2646 	mutex_init(&fs_info->delalloc_root_mutex);
2647 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2648 	seqlock_init(&fs_info->profiles_lock);
2649 
2650 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2651 	INIT_LIST_HEAD(&fs_info->space_info);
2652 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2653 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2654 	btrfs_mapping_init(&fs_info->mapping_tree);
2655 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2656 			     BTRFS_BLOCK_RSV_GLOBAL);
2657 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2658 			     BTRFS_BLOCK_RSV_DELALLOC);
2659 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2660 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2661 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2662 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2663 			     BTRFS_BLOCK_RSV_DELOPS);
2664 	atomic_set(&fs_info->nr_async_submits, 0);
2665 	atomic_set(&fs_info->async_delalloc_pages, 0);
2666 	atomic_set(&fs_info->async_submit_draining, 0);
2667 	atomic_set(&fs_info->nr_async_bios, 0);
2668 	atomic_set(&fs_info->defrag_running, 0);
2669 	atomic_set(&fs_info->qgroup_op_seq, 0);
2670 	atomic_set(&fs_info->reada_works_cnt, 0);
2671 	atomic64_set(&fs_info->tree_mod_seq, 0);
2672 	fs_info->fs_frozen = 0;
2673 	fs_info->sb = sb;
2674 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2675 	fs_info->metadata_ratio = 0;
2676 	fs_info->defrag_inodes = RB_ROOT;
2677 	fs_info->free_chunk_space = 0;
2678 	fs_info->tree_mod_log = RB_ROOT;
2679 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2680 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2681 	/* readahead state */
2682 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2683 	spin_lock_init(&fs_info->reada_lock);
2684 
2685 	fs_info->thread_pool_size = min_t(unsigned long,
2686 					  num_online_cpus() + 2, 8);
2687 
2688 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2689 	spin_lock_init(&fs_info->ordered_root_lock);
2690 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2691 					GFP_KERNEL);
2692 	if (!fs_info->delayed_root) {
2693 		err = -ENOMEM;
2694 		goto fail_iput;
2695 	}
2696 	btrfs_init_delayed_root(fs_info->delayed_root);
2697 
2698 	btrfs_init_scrub(fs_info);
2699 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2700 	fs_info->check_integrity_print_mask = 0;
2701 #endif
2702 	btrfs_init_balance(fs_info);
2703 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2704 
2705 	sb->s_blocksize = 4096;
2706 	sb->s_blocksize_bits = blksize_bits(4096);
2707 	sb->s_bdi = &fs_info->bdi;
2708 
2709 	btrfs_init_btree_inode(fs_info);
2710 
2711 	spin_lock_init(&fs_info->block_group_cache_lock);
2712 	fs_info->block_group_cache_tree = RB_ROOT;
2713 	fs_info->first_logical_byte = (u64)-1;
2714 
2715 	extent_io_tree_init(&fs_info->freed_extents[0],
2716 			     fs_info->btree_inode->i_mapping);
2717 	extent_io_tree_init(&fs_info->freed_extents[1],
2718 			     fs_info->btree_inode->i_mapping);
2719 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2720 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2721 
2722 	mutex_init(&fs_info->ordered_operations_mutex);
2723 	mutex_init(&fs_info->tree_log_mutex);
2724 	mutex_init(&fs_info->chunk_mutex);
2725 	mutex_init(&fs_info->transaction_kthread_mutex);
2726 	mutex_init(&fs_info->cleaner_mutex);
2727 	mutex_init(&fs_info->volume_mutex);
2728 	mutex_init(&fs_info->ro_block_group_mutex);
2729 	init_rwsem(&fs_info->commit_root_sem);
2730 	init_rwsem(&fs_info->cleanup_work_sem);
2731 	init_rwsem(&fs_info->subvol_sem);
2732 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2733 
2734 	btrfs_init_dev_replace_locks(fs_info);
2735 	btrfs_init_qgroup(fs_info);
2736 
2737 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2738 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2739 
2740 	init_waitqueue_head(&fs_info->transaction_throttle);
2741 	init_waitqueue_head(&fs_info->transaction_wait);
2742 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2743 	init_waitqueue_head(&fs_info->async_submit_wait);
2744 
2745 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2746 
2747 	/* Usable values until the real ones are cached from the superblock */
2748 	fs_info->nodesize = 4096;
2749 	fs_info->sectorsize = 4096;
2750 	fs_info->stripesize = 4096;
2751 
2752 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2753 	if (ret) {
2754 		err = ret;
2755 		goto fail_alloc;
2756 	}
2757 
2758 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2759 
2760 	invalidate_bdev(fs_devices->latest_bdev);
2761 
2762 	/*
2763 	 * Read super block and check the signature bytes only
2764 	 */
2765 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2766 	if (IS_ERR(bh)) {
2767 		err = PTR_ERR(bh);
2768 		goto fail_alloc;
2769 	}
2770 
2771 	/*
2772 	 * We want to check superblock checksum, the type is stored inside.
2773 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2774 	 */
2775 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2776 		btrfs_err(fs_info, "superblock checksum mismatch");
2777 		err = -EINVAL;
2778 		brelse(bh);
2779 		goto fail_alloc;
2780 	}
2781 
2782 	/*
2783 	 * super_copy is zeroed at allocation time and we never touch the
2784 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2785 	 * the whole block of INFO_SIZE
2786 	 */
2787 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2788 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2789 	       sizeof(*fs_info->super_for_commit));
2790 	brelse(bh);
2791 
2792 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2793 
2794 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2795 	if (ret) {
2796 		btrfs_err(fs_info, "superblock contains fatal errors");
2797 		err = -EINVAL;
2798 		goto fail_alloc;
2799 	}
2800 
2801 	disk_super = fs_info->super_copy;
2802 	if (!btrfs_super_root(disk_super))
2803 		goto fail_alloc;
2804 
2805 	/* check FS state, whether FS is broken. */
2806 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2807 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2808 
2809 	/*
2810 	 * run through our array of backup supers and setup
2811 	 * our ring pointer to the oldest one
2812 	 */
2813 	generation = btrfs_super_generation(disk_super);
2814 	find_oldest_super_backup(fs_info, generation);
2815 
2816 	/*
2817 	 * In the long term, we'll store the compression type in the super
2818 	 * block, and it'll be used for per file compression control.
2819 	 */
2820 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2821 
2822 	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2823 	if (ret) {
2824 		err = ret;
2825 		goto fail_alloc;
2826 	}
2827 
2828 	features = btrfs_super_incompat_flags(disk_super) &
2829 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2830 	if (features) {
2831 		btrfs_err(fs_info,
2832 		    "cannot mount because of unsupported optional features (%llx)",
2833 		    features);
2834 		err = -EINVAL;
2835 		goto fail_alloc;
2836 	}
2837 
2838 	features = btrfs_super_incompat_flags(disk_super);
2839 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2840 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2841 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2842 
2843 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2844 		btrfs_info(fs_info, "has skinny extents");
2845 
2846 	/*
2847 	 * flag our filesystem as having big metadata blocks if
2848 	 * they are bigger than the page size
2849 	 */
2850 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2851 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2852 			btrfs_info(fs_info,
2853 				"flagging fs with big metadata feature");
2854 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2855 	}
2856 
2857 	nodesize = btrfs_super_nodesize(disk_super);
2858 	sectorsize = btrfs_super_sectorsize(disk_super);
2859 	stripesize = sectorsize;
2860 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2861 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2862 
2863 	/* Cache block sizes */
2864 	fs_info->nodesize = nodesize;
2865 	fs_info->sectorsize = sectorsize;
2866 	fs_info->stripesize = stripesize;
2867 
2868 	/*
2869 	 * mixed block groups end up with duplicate but slightly offset
2870 	 * extent buffers for the same range.  It leads to corruptions
2871 	 */
2872 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2873 	    (sectorsize != nodesize)) {
2874 		btrfs_err(fs_info,
2875 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2876 			nodesize, sectorsize);
2877 		goto fail_alloc;
2878 	}
2879 
2880 	/*
2881 	 * Needn't use the lock because there is no other task which will
2882 	 * update the flag.
2883 	 */
2884 	btrfs_set_super_incompat_flags(disk_super, features);
2885 
2886 	features = btrfs_super_compat_ro_flags(disk_super) &
2887 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2888 	if (!(sb->s_flags & MS_RDONLY) && features) {
2889 		btrfs_err(fs_info,
2890 	"cannot mount read-write because of unsupported optional features (%llx)",
2891 		       features);
2892 		err = -EINVAL;
2893 		goto fail_alloc;
2894 	}
2895 
2896 	max_active = fs_info->thread_pool_size;
2897 
2898 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2899 	if (ret) {
2900 		err = ret;
2901 		goto fail_sb_buffer;
2902 	}
2903 
2904 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2905 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2906 				    SZ_4M / PAGE_SIZE);
2907 
2908 	sb->s_blocksize = sectorsize;
2909 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2910 
2911 	mutex_lock(&fs_info->chunk_mutex);
2912 	ret = btrfs_read_sys_array(fs_info);
2913 	mutex_unlock(&fs_info->chunk_mutex);
2914 	if (ret) {
2915 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2916 		goto fail_sb_buffer;
2917 	}
2918 
2919 	generation = btrfs_super_chunk_root_generation(disk_super);
2920 
2921 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2922 
2923 	chunk_root->node = read_tree_block(chunk_root,
2924 					   btrfs_super_chunk_root(disk_super),
2925 					   generation);
2926 	if (IS_ERR(chunk_root->node) ||
2927 	    !extent_buffer_uptodate(chunk_root->node)) {
2928 		btrfs_err(fs_info, "failed to read chunk root");
2929 		if (!IS_ERR(chunk_root->node))
2930 			free_extent_buffer(chunk_root->node);
2931 		chunk_root->node = NULL;
2932 		goto fail_tree_roots;
2933 	}
2934 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2935 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2936 
2937 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2938 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2939 
2940 	ret = btrfs_read_chunk_tree(fs_info);
2941 	if (ret) {
2942 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2943 		goto fail_tree_roots;
2944 	}
2945 
2946 	/*
2947 	 * keep the device that is marked to be the target device for the
2948 	 * dev_replace procedure
2949 	 */
2950 	btrfs_close_extra_devices(fs_devices, 0);
2951 
2952 	if (!fs_devices->latest_bdev) {
2953 		btrfs_err(fs_info, "failed to read devices");
2954 		goto fail_tree_roots;
2955 	}
2956 
2957 retry_root_backup:
2958 	generation = btrfs_super_generation(disk_super);
2959 
2960 	tree_root->node = read_tree_block(tree_root,
2961 					  btrfs_super_root(disk_super),
2962 					  generation);
2963 	if (IS_ERR(tree_root->node) ||
2964 	    !extent_buffer_uptodate(tree_root->node)) {
2965 		btrfs_warn(fs_info, "failed to read tree root");
2966 		if (!IS_ERR(tree_root->node))
2967 			free_extent_buffer(tree_root->node);
2968 		tree_root->node = NULL;
2969 		goto recovery_tree_root;
2970 	}
2971 
2972 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2973 	tree_root->commit_root = btrfs_root_node(tree_root);
2974 	btrfs_set_root_refs(&tree_root->root_item, 1);
2975 
2976 	mutex_lock(&tree_root->objectid_mutex);
2977 	ret = btrfs_find_highest_objectid(tree_root,
2978 					&tree_root->highest_objectid);
2979 	if (ret) {
2980 		mutex_unlock(&tree_root->objectid_mutex);
2981 		goto recovery_tree_root;
2982 	}
2983 
2984 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2985 
2986 	mutex_unlock(&tree_root->objectid_mutex);
2987 
2988 	ret = btrfs_read_roots(fs_info);
2989 	if (ret)
2990 		goto recovery_tree_root;
2991 
2992 	fs_info->generation = generation;
2993 	fs_info->last_trans_committed = generation;
2994 
2995 	ret = btrfs_recover_balance(fs_info);
2996 	if (ret) {
2997 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2998 		goto fail_block_groups;
2999 	}
3000 
3001 	ret = btrfs_init_dev_stats(fs_info);
3002 	if (ret) {
3003 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3004 		goto fail_block_groups;
3005 	}
3006 
3007 	ret = btrfs_init_dev_replace(fs_info);
3008 	if (ret) {
3009 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3010 		goto fail_block_groups;
3011 	}
3012 
3013 	btrfs_close_extra_devices(fs_devices, 1);
3014 
3015 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3016 	if (ret) {
3017 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3018 				ret);
3019 		goto fail_block_groups;
3020 	}
3021 
3022 	ret = btrfs_sysfs_add_device(fs_devices);
3023 	if (ret) {
3024 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3025 				ret);
3026 		goto fail_fsdev_sysfs;
3027 	}
3028 
3029 	ret = btrfs_sysfs_add_mounted(fs_info);
3030 	if (ret) {
3031 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3032 		goto fail_fsdev_sysfs;
3033 	}
3034 
3035 	ret = btrfs_init_space_info(fs_info);
3036 	if (ret) {
3037 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3038 		goto fail_sysfs;
3039 	}
3040 
3041 	ret = btrfs_read_block_groups(fs_info);
3042 	if (ret) {
3043 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3044 		goto fail_sysfs;
3045 	}
3046 	fs_info->num_tolerated_disk_barrier_failures =
3047 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3048 	if (fs_info->fs_devices->missing_devices >
3049 	     fs_info->num_tolerated_disk_barrier_failures &&
3050 	    !(sb->s_flags & MS_RDONLY)) {
3051 		btrfs_warn(fs_info,
3052 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3053 			fs_info->fs_devices->missing_devices,
3054 			fs_info->num_tolerated_disk_barrier_failures);
3055 		goto fail_sysfs;
3056 	}
3057 
3058 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3059 					       "btrfs-cleaner");
3060 	if (IS_ERR(fs_info->cleaner_kthread))
3061 		goto fail_sysfs;
3062 
3063 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3064 						   tree_root,
3065 						   "btrfs-transaction");
3066 	if (IS_ERR(fs_info->transaction_kthread))
3067 		goto fail_cleaner;
3068 
3069 	if (!btrfs_test_opt(fs_info, SSD) &&
3070 	    !btrfs_test_opt(fs_info, NOSSD) &&
3071 	    !fs_info->fs_devices->rotating) {
3072 		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3073 		btrfs_set_opt(fs_info->mount_opt, SSD);
3074 	}
3075 
3076 	/*
3077 	 * Mount does not set all options immediately, we can do it now and do
3078 	 * not have to wait for transaction commit
3079 	 */
3080 	btrfs_apply_pending_changes(fs_info);
3081 
3082 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3083 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3084 		ret = btrfsic_mount(tree_root, fs_devices,
3085 				    btrfs_test_opt(fs_info,
3086 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3087 				    1 : 0,
3088 				    fs_info->check_integrity_print_mask);
3089 		if (ret)
3090 			btrfs_warn(fs_info,
3091 				"failed to initialize integrity check module: %d",
3092 				ret);
3093 	}
3094 #endif
3095 	ret = btrfs_read_qgroup_config(fs_info);
3096 	if (ret)
3097 		goto fail_trans_kthread;
3098 
3099 	/* do not make disk changes in broken FS or nologreplay is given */
3100 	if (btrfs_super_log_root(disk_super) != 0 &&
3101 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3102 		ret = btrfs_replay_log(fs_info, fs_devices);
3103 		if (ret) {
3104 			err = ret;
3105 			goto fail_qgroup;
3106 		}
3107 	}
3108 
3109 	ret = btrfs_find_orphan_roots(fs_info);
3110 	if (ret)
3111 		goto fail_qgroup;
3112 
3113 	if (!(sb->s_flags & MS_RDONLY)) {
3114 		ret = btrfs_cleanup_fs_roots(fs_info);
3115 		if (ret)
3116 			goto fail_qgroup;
3117 
3118 		mutex_lock(&fs_info->cleaner_mutex);
3119 		ret = btrfs_recover_relocation(tree_root);
3120 		mutex_unlock(&fs_info->cleaner_mutex);
3121 		if (ret < 0) {
3122 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3123 					ret);
3124 			err = -EINVAL;
3125 			goto fail_qgroup;
3126 		}
3127 	}
3128 
3129 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3130 	location.type = BTRFS_ROOT_ITEM_KEY;
3131 	location.offset = 0;
3132 
3133 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3134 	if (IS_ERR(fs_info->fs_root)) {
3135 		err = PTR_ERR(fs_info->fs_root);
3136 		goto fail_qgroup;
3137 	}
3138 
3139 	if (sb->s_flags & MS_RDONLY)
3140 		return 0;
3141 
3142 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3143 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3144 		clear_free_space_tree = 1;
3145 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3146 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3147 		btrfs_warn(fs_info, "free space tree is invalid");
3148 		clear_free_space_tree = 1;
3149 	}
3150 
3151 	if (clear_free_space_tree) {
3152 		btrfs_info(fs_info, "clearing free space tree");
3153 		ret = btrfs_clear_free_space_tree(fs_info);
3154 		if (ret) {
3155 			btrfs_warn(fs_info,
3156 				   "failed to clear free space tree: %d", ret);
3157 			close_ctree(fs_info);
3158 			return ret;
3159 		}
3160 	}
3161 
3162 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3163 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3164 		btrfs_info(fs_info, "creating free space tree");
3165 		ret = btrfs_create_free_space_tree(fs_info);
3166 		if (ret) {
3167 			btrfs_warn(fs_info,
3168 				"failed to create free space tree: %d", ret);
3169 			close_ctree(fs_info);
3170 			return ret;
3171 		}
3172 	}
3173 
3174 	down_read(&fs_info->cleanup_work_sem);
3175 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3176 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3177 		up_read(&fs_info->cleanup_work_sem);
3178 		close_ctree(fs_info);
3179 		return ret;
3180 	}
3181 	up_read(&fs_info->cleanup_work_sem);
3182 
3183 	ret = btrfs_resume_balance_async(fs_info);
3184 	if (ret) {
3185 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3186 		close_ctree(fs_info);
3187 		return ret;
3188 	}
3189 
3190 	ret = btrfs_resume_dev_replace_async(fs_info);
3191 	if (ret) {
3192 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3193 		close_ctree(fs_info);
3194 		return ret;
3195 	}
3196 
3197 	btrfs_qgroup_rescan_resume(fs_info);
3198 
3199 	if (!fs_info->uuid_root) {
3200 		btrfs_info(fs_info, "creating UUID tree");
3201 		ret = btrfs_create_uuid_tree(fs_info);
3202 		if (ret) {
3203 			btrfs_warn(fs_info,
3204 				"failed to create the UUID tree: %d", ret);
3205 			close_ctree(fs_info);
3206 			return ret;
3207 		}
3208 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3209 		   fs_info->generation !=
3210 				btrfs_super_uuid_tree_generation(disk_super)) {
3211 		btrfs_info(fs_info, "checking UUID tree");
3212 		ret = btrfs_check_uuid_tree(fs_info);
3213 		if (ret) {
3214 			btrfs_warn(fs_info,
3215 				"failed to check the UUID tree: %d", ret);
3216 			close_ctree(fs_info);
3217 			return ret;
3218 		}
3219 	} else {
3220 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3221 	}
3222 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3223 
3224 	/*
3225 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3226 	 * no need to keep the flag
3227 	 */
3228 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3229 
3230 	return 0;
3231 
3232 fail_qgroup:
3233 	btrfs_free_qgroup_config(fs_info);
3234 fail_trans_kthread:
3235 	kthread_stop(fs_info->transaction_kthread);
3236 	btrfs_cleanup_transaction(fs_info->tree_root);
3237 	btrfs_free_fs_roots(fs_info);
3238 fail_cleaner:
3239 	kthread_stop(fs_info->cleaner_kthread);
3240 
3241 	/*
3242 	 * make sure we're done with the btree inode before we stop our
3243 	 * kthreads
3244 	 */
3245 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3246 
3247 fail_sysfs:
3248 	btrfs_sysfs_remove_mounted(fs_info);
3249 
3250 fail_fsdev_sysfs:
3251 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3252 
3253 fail_block_groups:
3254 	btrfs_put_block_group_cache(fs_info);
3255 	btrfs_free_block_groups(fs_info);
3256 
3257 fail_tree_roots:
3258 	free_root_pointers(fs_info, 1);
3259 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3260 
3261 fail_sb_buffer:
3262 	btrfs_stop_all_workers(fs_info);
3263 fail_alloc:
3264 fail_iput:
3265 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3266 
3267 	iput(fs_info->btree_inode);
3268 fail_bio_counter:
3269 	percpu_counter_destroy(&fs_info->bio_counter);
3270 fail_delalloc_bytes:
3271 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3272 fail_dirty_metadata_bytes:
3273 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3274 fail_bdi:
3275 	bdi_destroy(&fs_info->bdi);
3276 fail_srcu:
3277 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3278 fail:
3279 	btrfs_free_stripe_hash_table(fs_info);
3280 	btrfs_close_devices(fs_info->fs_devices);
3281 	return err;
3282 
3283 recovery_tree_root:
3284 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3285 		goto fail_tree_roots;
3286 
3287 	free_root_pointers(fs_info, 0);
3288 
3289 	/* don't use the log in recovery mode, it won't be valid */
3290 	btrfs_set_super_log_root(disk_super, 0);
3291 
3292 	/* we can't trust the free space cache either */
3293 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3294 
3295 	ret = next_root_backup(fs_info, fs_info->super_copy,
3296 			       &num_backups_tried, &backup_index);
3297 	if (ret == -1)
3298 		goto fail_block_groups;
3299 	goto retry_root_backup;
3300 }
3301 
3302 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3303 {
3304 	if (uptodate) {
3305 		set_buffer_uptodate(bh);
3306 	} else {
3307 		struct btrfs_device *device = (struct btrfs_device *)
3308 			bh->b_private;
3309 
3310 		btrfs_warn_rl_in_rcu(device->fs_info,
3311 				"lost page write due to IO error on %s",
3312 					  rcu_str_deref(device->name));
3313 		/* note, we don't set_buffer_write_io_error because we have
3314 		 * our own ways of dealing with the IO errors
3315 		 */
3316 		clear_buffer_uptodate(bh);
3317 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3318 	}
3319 	unlock_buffer(bh);
3320 	put_bh(bh);
3321 }
3322 
3323 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3324 			struct buffer_head **bh_ret)
3325 {
3326 	struct buffer_head *bh;
3327 	struct btrfs_super_block *super;
3328 	u64 bytenr;
3329 
3330 	bytenr = btrfs_sb_offset(copy_num);
3331 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3332 		return -EINVAL;
3333 
3334 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3335 	/*
3336 	 * If we fail to read from the underlying devices, as of now
3337 	 * the best option we have is to mark it EIO.
3338 	 */
3339 	if (!bh)
3340 		return -EIO;
3341 
3342 	super = (struct btrfs_super_block *)bh->b_data;
3343 	if (btrfs_super_bytenr(super) != bytenr ||
3344 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3345 		brelse(bh);
3346 		return -EINVAL;
3347 	}
3348 
3349 	*bh_ret = bh;
3350 	return 0;
3351 }
3352 
3353 
3354 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3355 {
3356 	struct buffer_head *bh;
3357 	struct buffer_head *latest = NULL;
3358 	struct btrfs_super_block *super;
3359 	int i;
3360 	u64 transid = 0;
3361 	int ret = -EINVAL;
3362 
3363 	/* we would like to check all the supers, but that would make
3364 	 * a btrfs mount succeed after a mkfs from a different FS.
3365 	 * So, we need to add a special mount option to scan for
3366 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3367 	 */
3368 	for (i = 0; i < 1; i++) {
3369 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3370 		if (ret)
3371 			continue;
3372 
3373 		super = (struct btrfs_super_block *)bh->b_data;
3374 
3375 		if (!latest || btrfs_super_generation(super) > transid) {
3376 			brelse(latest);
3377 			latest = bh;
3378 			transid = btrfs_super_generation(super);
3379 		} else {
3380 			brelse(bh);
3381 		}
3382 	}
3383 
3384 	if (!latest)
3385 		return ERR_PTR(ret);
3386 
3387 	return latest;
3388 }
3389 
3390 /*
3391  * this should be called twice, once with wait == 0 and
3392  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3393  * we write are pinned.
3394  *
3395  * They are released when wait == 1 is done.
3396  * max_mirrors must be the same for both runs, and it indicates how
3397  * many supers on this one device should be written.
3398  *
3399  * max_mirrors == 0 means to write them all.
3400  */
3401 static int write_dev_supers(struct btrfs_device *device,
3402 			    struct btrfs_super_block *sb,
3403 			    int do_barriers, int wait, int max_mirrors)
3404 {
3405 	struct buffer_head *bh;
3406 	int i;
3407 	int ret;
3408 	int errors = 0;
3409 	u32 crc;
3410 	u64 bytenr;
3411 
3412 	if (max_mirrors == 0)
3413 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3414 
3415 	for (i = 0; i < max_mirrors; i++) {
3416 		bytenr = btrfs_sb_offset(i);
3417 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3418 		    device->commit_total_bytes)
3419 			break;
3420 
3421 		if (wait) {
3422 			bh = __find_get_block(device->bdev, bytenr / 4096,
3423 					      BTRFS_SUPER_INFO_SIZE);
3424 			if (!bh) {
3425 				errors++;
3426 				continue;
3427 			}
3428 			wait_on_buffer(bh);
3429 			if (!buffer_uptodate(bh))
3430 				errors++;
3431 
3432 			/* drop our reference */
3433 			brelse(bh);
3434 
3435 			/* drop the reference from the wait == 0 run */
3436 			brelse(bh);
3437 			continue;
3438 		} else {
3439 			btrfs_set_super_bytenr(sb, bytenr);
3440 
3441 			crc = ~(u32)0;
3442 			crc = btrfs_csum_data((char *)sb +
3443 					      BTRFS_CSUM_SIZE, crc,
3444 					      BTRFS_SUPER_INFO_SIZE -
3445 					      BTRFS_CSUM_SIZE);
3446 			btrfs_csum_final(crc, sb->csum);
3447 
3448 			/*
3449 			 * one reference for us, and we leave it for the
3450 			 * caller
3451 			 */
3452 			bh = __getblk(device->bdev, bytenr / 4096,
3453 				      BTRFS_SUPER_INFO_SIZE);
3454 			if (!bh) {
3455 				btrfs_err(device->fs_info,
3456 				    "couldn't get super buffer head for bytenr %llu",
3457 				    bytenr);
3458 				errors++;
3459 				continue;
3460 			}
3461 
3462 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3463 
3464 			/* one reference for submit_bh */
3465 			get_bh(bh);
3466 
3467 			set_buffer_uptodate(bh);
3468 			lock_buffer(bh);
3469 			bh->b_end_io = btrfs_end_buffer_write_sync;
3470 			bh->b_private = device;
3471 		}
3472 
3473 		/*
3474 		 * we fua the first super.  The others we allow
3475 		 * to go down lazy.
3476 		 */
3477 		if (i == 0)
3478 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3479 		else
3480 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3481 		if (ret)
3482 			errors++;
3483 	}
3484 	return errors < i ? 0 : -1;
3485 }
3486 
3487 /*
3488  * endio for the write_dev_flush, this will wake anyone waiting
3489  * for the barrier when it is done
3490  */
3491 static void btrfs_end_empty_barrier(struct bio *bio)
3492 {
3493 	if (bio->bi_private)
3494 		complete(bio->bi_private);
3495 	bio_put(bio);
3496 }
3497 
3498 /*
3499  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3500  * sent down.  With wait == 1, it waits for the previous flush.
3501  *
3502  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3503  * capable
3504  */
3505 static int write_dev_flush(struct btrfs_device *device, int wait)
3506 {
3507 	struct bio *bio;
3508 	int ret = 0;
3509 
3510 	if (device->nobarriers)
3511 		return 0;
3512 
3513 	if (wait) {
3514 		bio = device->flush_bio;
3515 		if (!bio)
3516 			return 0;
3517 
3518 		wait_for_completion(&device->flush_wait);
3519 
3520 		if (bio->bi_error) {
3521 			ret = bio->bi_error;
3522 			btrfs_dev_stat_inc_and_print(device,
3523 				BTRFS_DEV_STAT_FLUSH_ERRS);
3524 		}
3525 
3526 		/* drop the reference from the wait == 0 run */
3527 		bio_put(bio);
3528 		device->flush_bio = NULL;
3529 
3530 		return ret;
3531 	}
3532 
3533 	/*
3534 	 * one reference for us, and we leave it for the
3535 	 * caller
3536 	 */
3537 	device->flush_bio = NULL;
3538 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3539 	if (!bio)
3540 		return -ENOMEM;
3541 
3542 	bio->bi_end_io = btrfs_end_empty_barrier;
3543 	bio->bi_bdev = device->bdev;
3544 	bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3545 	init_completion(&device->flush_wait);
3546 	bio->bi_private = &device->flush_wait;
3547 	device->flush_bio = bio;
3548 
3549 	bio_get(bio);
3550 	btrfsic_submit_bio(bio);
3551 
3552 	return 0;
3553 }
3554 
3555 /*
3556  * send an empty flush down to each device in parallel,
3557  * then wait for them
3558  */
3559 static int barrier_all_devices(struct btrfs_fs_info *info)
3560 {
3561 	struct list_head *head;
3562 	struct btrfs_device *dev;
3563 	int errors_send = 0;
3564 	int errors_wait = 0;
3565 	int ret;
3566 
3567 	/* send down all the barriers */
3568 	head = &info->fs_devices->devices;
3569 	list_for_each_entry_rcu(dev, head, dev_list) {
3570 		if (dev->missing)
3571 			continue;
3572 		if (!dev->bdev) {
3573 			errors_send++;
3574 			continue;
3575 		}
3576 		if (!dev->in_fs_metadata || !dev->writeable)
3577 			continue;
3578 
3579 		ret = write_dev_flush(dev, 0);
3580 		if (ret)
3581 			errors_send++;
3582 	}
3583 
3584 	/* wait for all the barriers */
3585 	list_for_each_entry_rcu(dev, head, dev_list) {
3586 		if (dev->missing)
3587 			continue;
3588 		if (!dev->bdev) {
3589 			errors_wait++;
3590 			continue;
3591 		}
3592 		if (!dev->in_fs_metadata || !dev->writeable)
3593 			continue;
3594 
3595 		ret = write_dev_flush(dev, 1);
3596 		if (ret)
3597 			errors_wait++;
3598 	}
3599 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3600 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3601 		return -EIO;
3602 	return 0;
3603 }
3604 
3605 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3606 {
3607 	int raid_type;
3608 	int min_tolerated = INT_MAX;
3609 
3610 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3611 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3612 		min_tolerated = min(min_tolerated,
3613 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3614 				    tolerated_failures);
3615 
3616 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3617 		if (raid_type == BTRFS_RAID_SINGLE)
3618 			continue;
3619 		if (!(flags & btrfs_raid_group[raid_type]))
3620 			continue;
3621 		min_tolerated = min(min_tolerated,
3622 				    btrfs_raid_array[raid_type].
3623 				    tolerated_failures);
3624 	}
3625 
3626 	if (min_tolerated == INT_MAX) {
3627 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3628 		min_tolerated = 0;
3629 	}
3630 
3631 	return min_tolerated;
3632 }
3633 
3634 int btrfs_calc_num_tolerated_disk_barrier_failures(
3635 	struct btrfs_fs_info *fs_info)
3636 {
3637 	struct btrfs_ioctl_space_info space;
3638 	struct btrfs_space_info *sinfo;
3639 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3640 		       BTRFS_BLOCK_GROUP_SYSTEM,
3641 		       BTRFS_BLOCK_GROUP_METADATA,
3642 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3643 	int i;
3644 	int c;
3645 	int num_tolerated_disk_barrier_failures =
3646 		(int)fs_info->fs_devices->num_devices;
3647 
3648 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3649 		struct btrfs_space_info *tmp;
3650 
3651 		sinfo = NULL;
3652 		rcu_read_lock();
3653 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3654 			if (tmp->flags == types[i]) {
3655 				sinfo = tmp;
3656 				break;
3657 			}
3658 		}
3659 		rcu_read_unlock();
3660 
3661 		if (!sinfo)
3662 			continue;
3663 
3664 		down_read(&sinfo->groups_sem);
3665 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3666 			u64 flags;
3667 
3668 			if (list_empty(&sinfo->block_groups[c]))
3669 				continue;
3670 
3671 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3672 						   &space);
3673 			if (space.total_bytes == 0 || space.used_bytes == 0)
3674 				continue;
3675 			flags = space.flags;
3676 
3677 			num_tolerated_disk_barrier_failures = min(
3678 				num_tolerated_disk_barrier_failures,
3679 				btrfs_get_num_tolerated_disk_barrier_failures(
3680 					flags));
3681 		}
3682 		up_read(&sinfo->groups_sem);
3683 	}
3684 
3685 	return num_tolerated_disk_barrier_failures;
3686 }
3687 
3688 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3689 {
3690 	struct btrfs_fs_info *fs_info = root->fs_info;
3691 	struct list_head *head;
3692 	struct btrfs_device *dev;
3693 	struct btrfs_super_block *sb;
3694 	struct btrfs_dev_item *dev_item;
3695 	int ret;
3696 	int do_barriers;
3697 	int max_errors;
3698 	int total_errors = 0;
3699 	u64 flags;
3700 
3701 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3702 	backup_super_roots(fs_info);
3703 
3704 	sb = fs_info->super_for_commit;
3705 	dev_item = &sb->dev_item;
3706 
3707 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3708 	head = &fs_info->fs_devices->devices;
3709 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3710 
3711 	if (do_barriers) {
3712 		ret = barrier_all_devices(fs_info);
3713 		if (ret) {
3714 			mutex_unlock(
3715 				&fs_info->fs_devices->device_list_mutex);
3716 			btrfs_handle_fs_error(fs_info, ret,
3717 					      "errors while submitting device barriers.");
3718 			return ret;
3719 		}
3720 	}
3721 
3722 	list_for_each_entry_rcu(dev, head, dev_list) {
3723 		if (!dev->bdev) {
3724 			total_errors++;
3725 			continue;
3726 		}
3727 		if (!dev->in_fs_metadata || !dev->writeable)
3728 			continue;
3729 
3730 		btrfs_set_stack_device_generation(dev_item, 0);
3731 		btrfs_set_stack_device_type(dev_item, dev->type);
3732 		btrfs_set_stack_device_id(dev_item, dev->devid);
3733 		btrfs_set_stack_device_total_bytes(dev_item,
3734 						   dev->commit_total_bytes);
3735 		btrfs_set_stack_device_bytes_used(dev_item,
3736 						  dev->commit_bytes_used);
3737 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3738 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3739 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3740 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3741 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3742 
3743 		flags = btrfs_super_flags(sb);
3744 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3745 
3746 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3747 		if (ret)
3748 			total_errors++;
3749 	}
3750 	if (total_errors > max_errors) {
3751 		btrfs_err(fs_info, "%d errors while writing supers",
3752 			  total_errors);
3753 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3754 
3755 		/* FUA is masked off if unsupported and can't be the reason */
3756 		btrfs_handle_fs_error(fs_info, -EIO,
3757 				      "%d errors while writing supers",
3758 				      total_errors);
3759 		return -EIO;
3760 	}
3761 
3762 	total_errors = 0;
3763 	list_for_each_entry_rcu(dev, head, dev_list) {
3764 		if (!dev->bdev)
3765 			continue;
3766 		if (!dev->in_fs_metadata || !dev->writeable)
3767 			continue;
3768 
3769 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3770 		if (ret)
3771 			total_errors++;
3772 	}
3773 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3774 	if (total_errors > max_errors) {
3775 		btrfs_handle_fs_error(fs_info, -EIO,
3776 				      "%d errors while writing supers",
3777 				      total_errors);
3778 		return -EIO;
3779 	}
3780 	return 0;
3781 }
3782 
3783 int write_ctree_super(struct btrfs_trans_handle *trans,
3784 		      struct btrfs_root *root, int max_mirrors)
3785 {
3786 	return write_all_supers(root, max_mirrors);
3787 }
3788 
3789 /* Drop a fs root from the radix tree and free it. */
3790 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3791 				  struct btrfs_root *root)
3792 {
3793 	spin_lock(&fs_info->fs_roots_radix_lock);
3794 	radix_tree_delete(&fs_info->fs_roots_radix,
3795 			  (unsigned long)root->root_key.objectid);
3796 	spin_unlock(&fs_info->fs_roots_radix_lock);
3797 
3798 	if (btrfs_root_refs(&root->root_item) == 0)
3799 		synchronize_srcu(&fs_info->subvol_srcu);
3800 
3801 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3802 		btrfs_free_log(NULL, root);
3803 		if (root->reloc_root) {
3804 			free_extent_buffer(root->reloc_root->node);
3805 			free_extent_buffer(root->reloc_root->commit_root);
3806 			btrfs_put_fs_root(root->reloc_root);
3807 			root->reloc_root = NULL;
3808 		}
3809 	}
3810 
3811 	if (root->free_ino_pinned)
3812 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3813 	if (root->free_ino_ctl)
3814 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3815 	free_fs_root(root);
3816 }
3817 
3818 static void free_fs_root(struct btrfs_root *root)
3819 {
3820 	iput(root->ino_cache_inode);
3821 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3822 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3823 	root->orphan_block_rsv = NULL;
3824 	if (root->anon_dev)
3825 		free_anon_bdev(root->anon_dev);
3826 	if (root->subv_writers)
3827 		btrfs_free_subvolume_writers(root->subv_writers);
3828 	free_extent_buffer(root->node);
3829 	free_extent_buffer(root->commit_root);
3830 	kfree(root->free_ino_ctl);
3831 	kfree(root->free_ino_pinned);
3832 	kfree(root->name);
3833 	btrfs_put_fs_root(root);
3834 }
3835 
3836 void btrfs_free_fs_root(struct btrfs_root *root)
3837 {
3838 	free_fs_root(root);
3839 }
3840 
3841 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3842 {
3843 	u64 root_objectid = 0;
3844 	struct btrfs_root *gang[8];
3845 	int i = 0;
3846 	int err = 0;
3847 	unsigned int ret = 0;
3848 	int index;
3849 
3850 	while (1) {
3851 		index = srcu_read_lock(&fs_info->subvol_srcu);
3852 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3853 					     (void **)gang, root_objectid,
3854 					     ARRAY_SIZE(gang));
3855 		if (!ret) {
3856 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3857 			break;
3858 		}
3859 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3860 
3861 		for (i = 0; i < ret; i++) {
3862 			/* Avoid to grab roots in dead_roots */
3863 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3864 				gang[i] = NULL;
3865 				continue;
3866 			}
3867 			/* grab all the search result for later use */
3868 			gang[i] = btrfs_grab_fs_root(gang[i]);
3869 		}
3870 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3871 
3872 		for (i = 0; i < ret; i++) {
3873 			if (!gang[i])
3874 				continue;
3875 			root_objectid = gang[i]->root_key.objectid;
3876 			err = btrfs_orphan_cleanup(gang[i]);
3877 			if (err)
3878 				break;
3879 			btrfs_put_fs_root(gang[i]);
3880 		}
3881 		root_objectid++;
3882 	}
3883 
3884 	/* release the uncleaned roots due to error */
3885 	for (; i < ret; i++) {
3886 		if (gang[i])
3887 			btrfs_put_fs_root(gang[i]);
3888 	}
3889 	return err;
3890 }
3891 
3892 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3893 {
3894 	struct btrfs_root *root = fs_info->tree_root;
3895 	struct btrfs_trans_handle *trans;
3896 
3897 	mutex_lock(&fs_info->cleaner_mutex);
3898 	btrfs_run_delayed_iputs(root);
3899 	mutex_unlock(&fs_info->cleaner_mutex);
3900 	wake_up_process(fs_info->cleaner_kthread);
3901 
3902 	/* wait until ongoing cleanup work done */
3903 	down_write(&fs_info->cleanup_work_sem);
3904 	up_write(&fs_info->cleanup_work_sem);
3905 
3906 	trans = btrfs_join_transaction(root);
3907 	if (IS_ERR(trans))
3908 		return PTR_ERR(trans);
3909 	return btrfs_commit_transaction(trans, root);
3910 }
3911 
3912 void close_ctree(struct btrfs_fs_info *fs_info)
3913 {
3914 	struct btrfs_root *root = fs_info->tree_root;
3915 	int ret;
3916 
3917 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3918 
3919 	/* wait for the qgroup rescan worker to stop */
3920 	btrfs_qgroup_wait_for_completion(fs_info, false);
3921 
3922 	/* wait for the uuid_scan task to finish */
3923 	down(&fs_info->uuid_tree_rescan_sem);
3924 	/* avoid complains from lockdep et al., set sem back to initial state */
3925 	up(&fs_info->uuid_tree_rescan_sem);
3926 
3927 	/* pause restriper - we want to resume on mount */
3928 	btrfs_pause_balance(fs_info);
3929 
3930 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3931 
3932 	btrfs_scrub_cancel(fs_info);
3933 
3934 	/* wait for any defraggers to finish */
3935 	wait_event(fs_info->transaction_wait,
3936 		   (atomic_read(&fs_info->defrag_running) == 0));
3937 
3938 	/* clear out the rbtree of defraggable inodes */
3939 	btrfs_cleanup_defrag_inodes(fs_info);
3940 
3941 	cancel_work_sync(&fs_info->async_reclaim_work);
3942 
3943 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3944 		/*
3945 		 * If the cleaner thread is stopped and there are
3946 		 * block groups queued for removal, the deletion will be
3947 		 * skipped when we quit the cleaner thread.
3948 		 */
3949 		btrfs_delete_unused_bgs(fs_info);
3950 
3951 		ret = btrfs_commit_super(fs_info);
3952 		if (ret)
3953 			btrfs_err(fs_info, "commit super ret %d", ret);
3954 	}
3955 
3956 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3957 		btrfs_error_commit_super(root);
3958 
3959 	kthread_stop(fs_info->transaction_kthread);
3960 	kthread_stop(fs_info->cleaner_kthread);
3961 
3962 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3963 
3964 	btrfs_free_qgroup_config(fs_info);
3965 
3966 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3967 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3968 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3969 	}
3970 
3971 	btrfs_sysfs_remove_mounted(fs_info);
3972 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3973 
3974 	btrfs_free_fs_roots(fs_info);
3975 
3976 	btrfs_put_block_group_cache(fs_info);
3977 
3978 	btrfs_free_block_groups(fs_info);
3979 
3980 	/*
3981 	 * we must make sure there is not any read request to
3982 	 * submit after we stopping all workers.
3983 	 */
3984 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3985 	btrfs_stop_all_workers(fs_info);
3986 
3987 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3988 	free_root_pointers(fs_info, 1);
3989 
3990 	iput(fs_info->btree_inode);
3991 
3992 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3993 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3994 		btrfsic_unmount(root, fs_info->fs_devices);
3995 #endif
3996 
3997 	btrfs_close_devices(fs_info->fs_devices);
3998 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3999 
4000 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4001 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4002 	percpu_counter_destroy(&fs_info->bio_counter);
4003 	bdi_destroy(&fs_info->bdi);
4004 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4005 
4006 	btrfs_free_stripe_hash_table(fs_info);
4007 
4008 	__btrfs_free_block_rsv(root->orphan_block_rsv);
4009 	root->orphan_block_rsv = NULL;
4010 
4011 	lock_chunks(fs_info);
4012 	while (!list_empty(&fs_info->pinned_chunks)) {
4013 		struct extent_map *em;
4014 
4015 		em = list_first_entry(&fs_info->pinned_chunks,
4016 				      struct extent_map, list);
4017 		list_del_init(&em->list);
4018 		free_extent_map(em);
4019 	}
4020 	unlock_chunks(fs_info);
4021 }
4022 
4023 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4024 			  int atomic)
4025 {
4026 	int ret;
4027 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4028 
4029 	ret = extent_buffer_uptodate(buf);
4030 	if (!ret)
4031 		return ret;
4032 
4033 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4034 				    parent_transid, atomic);
4035 	if (ret == -EAGAIN)
4036 		return ret;
4037 	return !ret;
4038 }
4039 
4040 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4041 {
4042 	struct btrfs_fs_info *fs_info;
4043 	struct btrfs_root *root;
4044 	u64 transid = btrfs_header_generation(buf);
4045 	int was_dirty;
4046 
4047 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4048 	/*
4049 	 * This is a fast path so only do this check if we have sanity tests
4050 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4051 	 * outside of the sanity tests.
4052 	 */
4053 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4054 		return;
4055 #endif
4056 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4057 	fs_info = root->fs_info;
4058 	btrfs_assert_tree_locked(buf);
4059 	if (transid != fs_info->generation)
4060 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4061 			buf->start, transid, fs_info->generation);
4062 	was_dirty = set_extent_buffer_dirty(buf);
4063 	if (!was_dirty)
4064 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
4065 				     buf->len,
4066 				     fs_info->dirty_metadata_batch);
4067 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4068 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4069 		btrfs_print_leaf(root, buf);
4070 		ASSERT(0);
4071 	}
4072 #endif
4073 }
4074 
4075 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4076 					int flush_delayed)
4077 {
4078 	struct btrfs_fs_info *fs_info = root->fs_info;
4079 	/*
4080 	 * looks as though older kernels can get into trouble with
4081 	 * this code, they end up stuck in balance_dirty_pages forever
4082 	 */
4083 	int ret;
4084 
4085 	if (current->flags & PF_MEMALLOC)
4086 		return;
4087 
4088 	if (flush_delayed)
4089 		btrfs_balance_delayed_items(root);
4090 
4091 	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4092 				     BTRFS_DIRTY_METADATA_THRESH);
4093 	if (ret > 0) {
4094 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4095 	}
4096 }
4097 
4098 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4099 {
4100 	__btrfs_btree_balance_dirty(root, 1);
4101 }
4102 
4103 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4104 {
4105 	__btrfs_btree_balance_dirty(root, 0);
4106 }
4107 
4108 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4109 {
4110 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4111 	return btree_read_extent_buffer_pages(root, buf, parent_transid);
4112 }
4113 
4114 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4115 			      int read_only)
4116 {
4117 	struct btrfs_super_block *sb = fs_info->super_copy;
4118 	u64 nodesize = btrfs_super_nodesize(sb);
4119 	u64 sectorsize = btrfs_super_sectorsize(sb);
4120 	int ret = 0;
4121 
4122 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4123 		btrfs_err(fs_info, "no valid FS found");
4124 		ret = -EINVAL;
4125 	}
4126 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4127 		btrfs_warn(fs_info, "unrecognized super flag: %llu",
4128 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4129 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4130 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4131 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4132 		ret = -EINVAL;
4133 	}
4134 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4135 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4136 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4137 		ret = -EINVAL;
4138 	}
4139 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4140 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4141 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4142 		ret = -EINVAL;
4143 	}
4144 
4145 	/*
4146 	 * Check sectorsize and nodesize first, other check will need it.
4147 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4148 	 */
4149 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4150 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4151 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4152 		ret = -EINVAL;
4153 	}
4154 	/* Only PAGE SIZE is supported yet */
4155 	if (sectorsize != PAGE_SIZE) {
4156 		btrfs_err(fs_info,
4157 			"sectorsize %llu not supported yet, only support %lu",
4158 			sectorsize, PAGE_SIZE);
4159 		ret = -EINVAL;
4160 	}
4161 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4162 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4163 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4164 		ret = -EINVAL;
4165 	}
4166 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4167 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4168 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4169 		ret = -EINVAL;
4170 	}
4171 
4172 	/* Root alignment check */
4173 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4174 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4175 			   btrfs_super_root(sb));
4176 		ret = -EINVAL;
4177 	}
4178 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4179 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4180 			   btrfs_super_chunk_root(sb));
4181 		ret = -EINVAL;
4182 	}
4183 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4184 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4185 			   btrfs_super_log_root(sb));
4186 		ret = -EINVAL;
4187 	}
4188 
4189 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4190 		btrfs_err(fs_info,
4191 			   "dev_item UUID does not match fsid: %pU != %pU",
4192 			   fs_info->fsid, sb->dev_item.fsid);
4193 		ret = -EINVAL;
4194 	}
4195 
4196 	/*
4197 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4198 	 * done later
4199 	 */
4200 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4201 		btrfs_err(fs_info, "bytes_used is too small %llu",
4202 			  btrfs_super_bytes_used(sb));
4203 		ret = -EINVAL;
4204 	}
4205 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4206 		btrfs_err(fs_info, "invalid stripesize %u",
4207 			  btrfs_super_stripesize(sb));
4208 		ret = -EINVAL;
4209 	}
4210 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4211 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4212 			   btrfs_super_num_devices(sb));
4213 	if (btrfs_super_num_devices(sb) == 0) {
4214 		btrfs_err(fs_info, "number of devices is 0");
4215 		ret = -EINVAL;
4216 	}
4217 
4218 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4219 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4220 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4221 		ret = -EINVAL;
4222 	}
4223 
4224 	/*
4225 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4226 	 * and one chunk
4227 	 */
4228 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4229 		btrfs_err(fs_info, "system chunk array too big %u > %u",
4230 			  btrfs_super_sys_array_size(sb),
4231 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4232 		ret = -EINVAL;
4233 	}
4234 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4235 			+ sizeof(struct btrfs_chunk)) {
4236 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4237 			  btrfs_super_sys_array_size(sb),
4238 			  sizeof(struct btrfs_disk_key)
4239 			  + sizeof(struct btrfs_chunk));
4240 		ret = -EINVAL;
4241 	}
4242 
4243 	/*
4244 	 * The generation is a global counter, we'll trust it more than the others
4245 	 * but it's still possible that it's the one that's wrong.
4246 	 */
4247 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4248 		btrfs_warn(fs_info,
4249 			"suspicious: generation < chunk_root_generation: %llu < %llu",
4250 			btrfs_super_generation(sb),
4251 			btrfs_super_chunk_root_generation(sb));
4252 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4253 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4254 		btrfs_warn(fs_info,
4255 			"suspicious: generation < cache_generation: %llu < %llu",
4256 			btrfs_super_generation(sb),
4257 			btrfs_super_cache_generation(sb));
4258 
4259 	return ret;
4260 }
4261 
4262 static void btrfs_error_commit_super(struct btrfs_root *root)
4263 {
4264 	struct btrfs_fs_info *fs_info = root->fs_info;
4265 
4266 	mutex_lock(&fs_info->cleaner_mutex);
4267 	btrfs_run_delayed_iputs(root);
4268 	mutex_unlock(&fs_info->cleaner_mutex);
4269 
4270 	down_write(&fs_info->cleanup_work_sem);
4271 	up_write(&fs_info->cleanup_work_sem);
4272 
4273 	/* cleanup FS via transaction */
4274 	btrfs_cleanup_transaction(root);
4275 }
4276 
4277 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4278 {
4279 	struct btrfs_ordered_extent *ordered;
4280 
4281 	spin_lock(&root->ordered_extent_lock);
4282 	/*
4283 	 * This will just short circuit the ordered completion stuff which will
4284 	 * make sure the ordered extent gets properly cleaned up.
4285 	 */
4286 	list_for_each_entry(ordered, &root->ordered_extents,
4287 			    root_extent_list)
4288 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4289 	spin_unlock(&root->ordered_extent_lock);
4290 }
4291 
4292 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4293 {
4294 	struct btrfs_root *root;
4295 	struct list_head splice;
4296 
4297 	INIT_LIST_HEAD(&splice);
4298 
4299 	spin_lock(&fs_info->ordered_root_lock);
4300 	list_splice_init(&fs_info->ordered_roots, &splice);
4301 	while (!list_empty(&splice)) {
4302 		root = list_first_entry(&splice, struct btrfs_root,
4303 					ordered_root);
4304 		list_move_tail(&root->ordered_root,
4305 			       &fs_info->ordered_roots);
4306 
4307 		spin_unlock(&fs_info->ordered_root_lock);
4308 		btrfs_destroy_ordered_extents(root);
4309 
4310 		cond_resched();
4311 		spin_lock(&fs_info->ordered_root_lock);
4312 	}
4313 	spin_unlock(&fs_info->ordered_root_lock);
4314 }
4315 
4316 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4317 				      struct btrfs_root *root)
4318 {
4319 	struct btrfs_fs_info *fs_info = root->fs_info;
4320 	struct rb_node *node;
4321 	struct btrfs_delayed_ref_root *delayed_refs;
4322 	struct btrfs_delayed_ref_node *ref;
4323 	int ret = 0;
4324 
4325 	delayed_refs = &trans->delayed_refs;
4326 
4327 	spin_lock(&delayed_refs->lock);
4328 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4329 		spin_unlock(&delayed_refs->lock);
4330 		btrfs_info(fs_info, "delayed_refs has NO entry");
4331 		return ret;
4332 	}
4333 
4334 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4335 		struct btrfs_delayed_ref_head *head;
4336 		struct btrfs_delayed_ref_node *tmp;
4337 		bool pin_bytes = false;
4338 
4339 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4340 				href_node);
4341 		if (!mutex_trylock(&head->mutex)) {
4342 			atomic_inc(&head->node.refs);
4343 			spin_unlock(&delayed_refs->lock);
4344 
4345 			mutex_lock(&head->mutex);
4346 			mutex_unlock(&head->mutex);
4347 			btrfs_put_delayed_ref(&head->node);
4348 			spin_lock(&delayed_refs->lock);
4349 			continue;
4350 		}
4351 		spin_lock(&head->lock);
4352 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4353 						 list) {
4354 			ref->in_tree = 0;
4355 			list_del(&ref->list);
4356 			if (!list_empty(&ref->add_list))
4357 				list_del(&ref->add_list);
4358 			atomic_dec(&delayed_refs->num_entries);
4359 			btrfs_put_delayed_ref(ref);
4360 		}
4361 		if (head->must_insert_reserved)
4362 			pin_bytes = true;
4363 		btrfs_free_delayed_extent_op(head->extent_op);
4364 		delayed_refs->num_heads--;
4365 		if (head->processing == 0)
4366 			delayed_refs->num_heads_ready--;
4367 		atomic_dec(&delayed_refs->num_entries);
4368 		head->node.in_tree = 0;
4369 		rb_erase(&head->href_node, &delayed_refs->href_root);
4370 		spin_unlock(&head->lock);
4371 		spin_unlock(&delayed_refs->lock);
4372 		mutex_unlock(&head->mutex);
4373 
4374 		if (pin_bytes)
4375 			btrfs_pin_extent(root, head->node.bytenr,
4376 					 head->node.num_bytes, 1);
4377 		btrfs_put_delayed_ref(&head->node);
4378 		cond_resched();
4379 		spin_lock(&delayed_refs->lock);
4380 	}
4381 
4382 	spin_unlock(&delayed_refs->lock);
4383 
4384 	return ret;
4385 }
4386 
4387 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4388 {
4389 	struct btrfs_inode *btrfs_inode;
4390 	struct list_head splice;
4391 
4392 	INIT_LIST_HEAD(&splice);
4393 
4394 	spin_lock(&root->delalloc_lock);
4395 	list_splice_init(&root->delalloc_inodes, &splice);
4396 
4397 	while (!list_empty(&splice)) {
4398 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4399 					       delalloc_inodes);
4400 
4401 		list_del_init(&btrfs_inode->delalloc_inodes);
4402 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4403 			  &btrfs_inode->runtime_flags);
4404 		spin_unlock(&root->delalloc_lock);
4405 
4406 		btrfs_invalidate_inodes(btrfs_inode->root);
4407 
4408 		spin_lock(&root->delalloc_lock);
4409 	}
4410 
4411 	spin_unlock(&root->delalloc_lock);
4412 }
4413 
4414 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4415 {
4416 	struct btrfs_root *root;
4417 	struct list_head splice;
4418 
4419 	INIT_LIST_HEAD(&splice);
4420 
4421 	spin_lock(&fs_info->delalloc_root_lock);
4422 	list_splice_init(&fs_info->delalloc_roots, &splice);
4423 	while (!list_empty(&splice)) {
4424 		root = list_first_entry(&splice, struct btrfs_root,
4425 					 delalloc_root);
4426 		list_del_init(&root->delalloc_root);
4427 		root = btrfs_grab_fs_root(root);
4428 		BUG_ON(!root);
4429 		spin_unlock(&fs_info->delalloc_root_lock);
4430 
4431 		btrfs_destroy_delalloc_inodes(root);
4432 		btrfs_put_fs_root(root);
4433 
4434 		spin_lock(&fs_info->delalloc_root_lock);
4435 	}
4436 	spin_unlock(&fs_info->delalloc_root_lock);
4437 }
4438 
4439 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4440 					struct extent_io_tree *dirty_pages,
4441 					int mark)
4442 {
4443 	struct btrfs_fs_info *fs_info = root->fs_info;
4444 	int ret;
4445 	struct extent_buffer *eb;
4446 	u64 start = 0;
4447 	u64 end;
4448 
4449 	while (1) {
4450 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4451 					    mark, NULL);
4452 		if (ret)
4453 			break;
4454 
4455 		clear_extent_bits(dirty_pages, start, end, mark);
4456 		while (start <= end) {
4457 			eb = find_extent_buffer(fs_info, start);
4458 			start += fs_info->nodesize;
4459 			if (!eb)
4460 				continue;
4461 			wait_on_extent_buffer_writeback(eb);
4462 
4463 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4464 					       &eb->bflags))
4465 				clear_extent_buffer_dirty(eb);
4466 			free_extent_buffer_stale(eb);
4467 		}
4468 	}
4469 
4470 	return ret;
4471 }
4472 
4473 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4474 				       struct extent_io_tree *pinned_extents)
4475 {
4476 	struct btrfs_fs_info *fs_info = root->fs_info;
4477 	struct extent_io_tree *unpin;
4478 	u64 start;
4479 	u64 end;
4480 	int ret;
4481 	bool loop = true;
4482 
4483 	unpin = pinned_extents;
4484 again:
4485 	while (1) {
4486 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4487 					    EXTENT_DIRTY, NULL);
4488 		if (ret)
4489 			break;
4490 
4491 		clear_extent_dirty(unpin, start, end);
4492 		btrfs_error_unpin_extent_range(root, start, end);
4493 		cond_resched();
4494 	}
4495 
4496 	if (loop) {
4497 		if (unpin == &fs_info->freed_extents[0])
4498 			unpin = &fs_info->freed_extents[1];
4499 		else
4500 			unpin = &fs_info->freed_extents[0];
4501 		loop = false;
4502 		goto again;
4503 	}
4504 
4505 	return 0;
4506 }
4507 
4508 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4509 {
4510 	struct inode *inode;
4511 
4512 	inode = cache->io_ctl.inode;
4513 	if (inode) {
4514 		invalidate_inode_pages2(inode->i_mapping);
4515 		BTRFS_I(inode)->generation = 0;
4516 		cache->io_ctl.inode = NULL;
4517 		iput(inode);
4518 	}
4519 	btrfs_put_block_group(cache);
4520 }
4521 
4522 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4523 			     struct btrfs_root *root)
4524 {
4525 	struct btrfs_fs_info *fs_info = root->fs_info;
4526 	struct btrfs_block_group_cache *cache;
4527 
4528 	spin_lock(&cur_trans->dirty_bgs_lock);
4529 	while (!list_empty(&cur_trans->dirty_bgs)) {
4530 		cache = list_first_entry(&cur_trans->dirty_bgs,
4531 					 struct btrfs_block_group_cache,
4532 					 dirty_list);
4533 		if (!cache) {
4534 			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4535 			spin_unlock(&cur_trans->dirty_bgs_lock);
4536 			return;
4537 		}
4538 
4539 		if (!list_empty(&cache->io_list)) {
4540 			spin_unlock(&cur_trans->dirty_bgs_lock);
4541 			list_del_init(&cache->io_list);
4542 			btrfs_cleanup_bg_io(cache);
4543 			spin_lock(&cur_trans->dirty_bgs_lock);
4544 		}
4545 
4546 		list_del_init(&cache->dirty_list);
4547 		spin_lock(&cache->lock);
4548 		cache->disk_cache_state = BTRFS_DC_ERROR;
4549 		spin_unlock(&cache->lock);
4550 
4551 		spin_unlock(&cur_trans->dirty_bgs_lock);
4552 		btrfs_put_block_group(cache);
4553 		spin_lock(&cur_trans->dirty_bgs_lock);
4554 	}
4555 	spin_unlock(&cur_trans->dirty_bgs_lock);
4556 
4557 	while (!list_empty(&cur_trans->io_bgs)) {
4558 		cache = list_first_entry(&cur_trans->io_bgs,
4559 					 struct btrfs_block_group_cache,
4560 					 io_list);
4561 		if (!cache) {
4562 			btrfs_err(fs_info, "orphan block group on io_bgs list");
4563 			return;
4564 		}
4565 
4566 		list_del_init(&cache->io_list);
4567 		spin_lock(&cache->lock);
4568 		cache->disk_cache_state = BTRFS_DC_ERROR;
4569 		spin_unlock(&cache->lock);
4570 		btrfs_cleanup_bg_io(cache);
4571 	}
4572 }
4573 
4574 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4575 				   struct btrfs_root *root)
4576 {
4577 	struct btrfs_fs_info *fs_info = root->fs_info;
4578 	btrfs_cleanup_dirty_bgs(cur_trans, root);
4579 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4580 	ASSERT(list_empty(&cur_trans->io_bgs));
4581 
4582 	btrfs_destroy_delayed_refs(cur_trans, root);
4583 
4584 	cur_trans->state = TRANS_STATE_COMMIT_START;
4585 	wake_up(&fs_info->transaction_blocked_wait);
4586 
4587 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4588 	wake_up(&fs_info->transaction_wait);
4589 
4590 	btrfs_destroy_delayed_inodes(root);
4591 	btrfs_assert_delayed_root_empty(root);
4592 
4593 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4594 				     EXTENT_DIRTY);
4595 	btrfs_destroy_pinned_extent(root,
4596 				    fs_info->pinned_extents);
4597 
4598 	cur_trans->state =TRANS_STATE_COMPLETED;
4599 	wake_up(&cur_trans->commit_wait);
4600 
4601 	/*
4602 	memset(cur_trans, 0, sizeof(*cur_trans));
4603 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4604 	*/
4605 }
4606 
4607 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4608 {
4609 	struct btrfs_fs_info *fs_info = root->fs_info;
4610 	struct btrfs_transaction *t;
4611 
4612 	mutex_lock(&fs_info->transaction_kthread_mutex);
4613 
4614 	spin_lock(&fs_info->trans_lock);
4615 	while (!list_empty(&fs_info->trans_list)) {
4616 		t = list_first_entry(&fs_info->trans_list,
4617 				     struct btrfs_transaction, list);
4618 		if (t->state >= TRANS_STATE_COMMIT_START) {
4619 			atomic_inc(&t->use_count);
4620 			spin_unlock(&fs_info->trans_lock);
4621 			btrfs_wait_for_commit(root, t->transid);
4622 			btrfs_put_transaction(t);
4623 			spin_lock(&fs_info->trans_lock);
4624 			continue;
4625 		}
4626 		if (t == fs_info->running_transaction) {
4627 			t->state = TRANS_STATE_COMMIT_DOING;
4628 			spin_unlock(&fs_info->trans_lock);
4629 			/*
4630 			 * We wait for 0 num_writers since we don't hold a trans
4631 			 * handle open currently for this transaction.
4632 			 */
4633 			wait_event(t->writer_wait,
4634 				   atomic_read(&t->num_writers) == 0);
4635 		} else {
4636 			spin_unlock(&fs_info->trans_lock);
4637 		}
4638 		btrfs_cleanup_one_transaction(t, root);
4639 
4640 		spin_lock(&fs_info->trans_lock);
4641 		if (t == fs_info->running_transaction)
4642 			fs_info->running_transaction = NULL;
4643 		list_del_init(&t->list);
4644 		spin_unlock(&fs_info->trans_lock);
4645 
4646 		btrfs_put_transaction(t);
4647 		trace_btrfs_transaction_commit(root);
4648 		spin_lock(&fs_info->trans_lock);
4649 	}
4650 	spin_unlock(&fs_info->trans_lock);
4651 	btrfs_destroy_all_ordered_extents(fs_info);
4652 	btrfs_destroy_delayed_inodes(root);
4653 	btrfs_assert_delayed_root_empty(root);
4654 	btrfs_destroy_pinned_extent(root, fs_info->pinned_extents);
4655 	btrfs_destroy_all_delalloc_inodes(fs_info);
4656 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4657 
4658 	return 0;
4659 }
4660 
4661 static const struct extent_io_ops btree_extent_io_ops = {
4662 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4663 	.readpage_io_failed_hook = btree_io_failed_hook,
4664 	.submit_bio_hook = btree_submit_bio_hook,
4665 	/* note we're sharing with inode.c for the merge bio hook */
4666 	.merge_bio_hook = btrfs_merge_bio_hook,
4667 };
4668