xref: /openbmc/linux/fs/btrfs/discard.c (revision c765ceda78f0bd9df1217f9beaefea58ecf3865c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/jiffies.h>
4 #include <linux/kernel.h>
5 #include <linux/ktime.h>
6 #include <linux/list.h>
7 #include <linux/math64.h>
8 #include <linux/sizes.h>
9 #include <linux/workqueue.h>
10 #include "ctree.h"
11 #include "block-group.h"
12 #include "discard.h"
13 #include "free-space-cache.h"
14 #include "fs.h"
15 
16 /*
17  * This contains the logic to handle async discard.
18  *
19  * Async discard manages trimming of free space outside of transaction commit.
20  * Discarding is done by managing the block_groups on a LRU list based on free
21  * space recency.  Two passes are used to first prioritize discarding extents
22  * and then allow for trimming in the bitmap the best opportunity to coalesce.
23  * The block_groups are maintained on multiple lists to allow for multiple
24  * passes with different discard filter requirements.  A delayed work item is
25  * used to manage discarding with timeout determined by a max of the delay
26  * incurred by the iops rate limit, the byte rate limit, and the max delay of
27  * BTRFS_DISCARD_MAX_DELAY.
28  *
29  * Note, this only keeps track of block_groups that are explicitly for data.
30  * Mixed block_groups are not supported.
31  *
32  * The first list is special to manage discarding of fully free block groups.
33  * This is necessary because we issue a final trim for a full free block group
34  * after forgetting it.  When a block group becomes unused, instead of directly
35  * being added to the unused_bgs list, we add it to this first list.  Then
36  * from there, if it becomes fully discarded, we place it onto the unused_bgs
37  * list.
38  *
39  * The in-memory free space cache serves as the backing state for discard.
40  * Consequently this means there is no persistence.  We opt to load all the
41  * block groups in as not discarded, so the mount case degenerates to the
42  * crashing case.
43  *
44  * As the free space cache uses bitmaps, there exists a tradeoff between
45  * ease/efficiency for find_free_extent() and the accuracy of discard state.
46  * Here we opt to let untrimmed regions merge with everything while only letting
47  * trimmed regions merge with other trimmed regions.  This can cause
48  * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
49  * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
50  * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
51  * this resets the state and we will retry trimming the whole bitmap.  This is a
52  * tradeoff between discard state accuracy and the cost of accounting.
53  */
54 
55 /* This is an initial delay to give some chance for block reuse */
56 #define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
57 #define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
58 
59 /* Target completion latency of discarding all discardable extents */
60 #define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
61 #define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
62 #define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
63 #define BTRFS_DISCARD_MAX_IOPS		(10U)
64 
65 /* Monotonically decreasing minimum length filters after index 0 */
66 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
67 	0,
68 	BTRFS_ASYNC_DISCARD_MAX_FILTER,
69 	BTRFS_ASYNC_DISCARD_MIN_FILTER
70 };
71 
72 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
73 					  struct btrfs_block_group *block_group)
74 {
75 	return &discard_ctl->discard_list[block_group->discard_index];
76 }
77 
78 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
79 				  struct btrfs_block_group *block_group)
80 {
81 	if (!btrfs_run_discard_work(discard_ctl))
82 		return;
83 
84 	if (list_empty(&block_group->discard_list) ||
85 	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
86 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
87 			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
88 		block_group->discard_eligible_time = (ktime_get_ns() +
89 						      BTRFS_DISCARD_DELAY);
90 		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
91 	}
92 
93 	list_move_tail(&block_group->discard_list,
94 		       get_discard_list(discard_ctl, block_group));
95 }
96 
97 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
98 				struct btrfs_block_group *block_group)
99 {
100 	if (!btrfs_is_block_group_data_only(block_group))
101 		return;
102 
103 	spin_lock(&discard_ctl->lock);
104 	__add_to_discard_list(discard_ctl, block_group);
105 	spin_unlock(&discard_ctl->lock);
106 }
107 
108 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
109 				       struct btrfs_block_group *block_group)
110 {
111 	spin_lock(&discard_ctl->lock);
112 
113 	if (!btrfs_run_discard_work(discard_ctl)) {
114 		spin_unlock(&discard_ctl->lock);
115 		return;
116 	}
117 
118 	list_del_init(&block_group->discard_list);
119 
120 	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
121 	block_group->discard_eligible_time = (ktime_get_ns() +
122 					      BTRFS_DISCARD_UNUSED_DELAY);
123 	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
124 	list_add_tail(&block_group->discard_list,
125 		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
126 
127 	spin_unlock(&discard_ctl->lock);
128 }
129 
130 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
131 				     struct btrfs_block_group *block_group)
132 {
133 	bool running = false;
134 
135 	spin_lock(&discard_ctl->lock);
136 
137 	if (block_group == discard_ctl->block_group) {
138 		running = true;
139 		discard_ctl->block_group = NULL;
140 	}
141 
142 	block_group->discard_eligible_time = 0;
143 	list_del_init(&block_group->discard_list);
144 
145 	spin_unlock(&discard_ctl->lock);
146 
147 	return running;
148 }
149 
150 /*
151  * Find block_group that's up next for discarding.
152  *
153  * @discard_ctl:  discard control
154  * @now:          current time
155  *
156  * Iterate over the discard lists to find the next block_group up for
157  * discarding checking the discard_eligible_time of block_group.
158  */
159 static struct btrfs_block_group *find_next_block_group(
160 					struct btrfs_discard_ctl *discard_ctl,
161 					u64 now)
162 {
163 	struct btrfs_block_group *ret_block_group = NULL, *block_group;
164 	int i;
165 
166 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
167 		struct list_head *discard_list = &discard_ctl->discard_list[i];
168 
169 		if (!list_empty(discard_list)) {
170 			block_group = list_first_entry(discard_list,
171 						       struct btrfs_block_group,
172 						       discard_list);
173 
174 			if (!ret_block_group)
175 				ret_block_group = block_group;
176 
177 			if (ret_block_group->discard_eligible_time < now)
178 				break;
179 
180 			if (ret_block_group->discard_eligible_time >
181 			    block_group->discard_eligible_time)
182 				ret_block_group = block_group;
183 		}
184 	}
185 
186 	return ret_block_group;
187 }
188 
189 /*
190  * Look up next block group and set it for use.
191  *
192  * @discard_ctl:   discard control
193  * @discard_state: the discard_state of the block_group after state management
194  * @discard_index: the discard_index of the block_group after state management
195  * @now:           time when discard was invoked, in ns
196  *
197  * Wrap find_next_block_group() and set the block_group to be in use.
198  * @discard_state's control flow is managed here.  Variables related to
199  * @discard_state are reset here as needed (eg. @discard_cursor).  @discard_state
200  * and @discard_index are remembered as it may change while we're discarding,
201  * but we want the discard to execute in the context determined here.
202  */
203 static struct btrfs_block_group *peek_discard_list(
204 					struct btrfs_discard_ctl *discard_ctl,
205 					enum btrfs_discard_state *discard_state,
206 					int *discard_index, u64 now)
207 {
208 	struct btrfs_block_group *block_group;
209 
210 	spin_lock(&discard_ctl->lock);
211 again:
212 	block_group = find_next_block_group(discard_ctl, now);
213 
214 	if (block_group && now >= block_group->discard_eligible_time) {
215 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
216 		    block_group->used != 0) {
217 			if (btrfs_is_block_group_data_only(block_group))
218 				__add_to_discard_list(discard_ctl, block_group);
219 			else
220 				list_del_init(&block_group->discard_list);
221 			goto again;
222 		}
223 		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
224 			block_group->discard_cursor = block_group->start;
225 			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
226 		}
227 		discard_ctl->block_group = block_group;
228 	}
229 	if (block_group) {
230 		*discard_state = block_group->discard_state;
231 		*discard_index = block_group->discard_index;
232 	}
233 	spin_unlock(&discard_ctl->lock);
234 
235 	return block_group;
236 }
237 
238 /*
239  * Update a block group's filters.
240  *
241  * @block_group:  block group of interest
242  * @bytes:        recently freed region size after coalescing
243  *
244  * Async discard maintains multiple lists with progressively smaller filters
245  * to prioritize discarding based on size.  Should a free space that matches
246  * a larger filter be returned to the free_space_cache, prioritize that discard
247  * by moving @block_group to the proper filter.
248  */
249 void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
250 				u64 bytes)
251 {
252 	struct btrfs_discard_ctl *discard_ctl;
253 
254 	if (!block_group ||
255 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
256 		return;
257 
258 	discard_ctl = &block_group->fs_info->discard_ctl;
259 
260 	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
261 	    bytes >= discard_minlen[block_group->discard_index - 1]) {
262 		int i;
263 
264 		remove_from_discard_list(discard_ctl, block_group);
265 
266 		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
267 		     i++) {
268 			if (bytes >= discard_minlen[i]) {
269 				block_group->discard_index = i;
270 				add_to_discard_list(discard_ctl, block_group);
271 				break;
272 			}
273 		}
274 	}
275 }
276 
277 /*
278  * Move a block group along the discard lists.
279  *
280  * @discard_ctl: discard control
281  * @block_group: block_group of interest
282  *
283  * Increment @block_group's discard_index.  If it falls of the list, let it be.
284  * Otherwise add it back to the appropriate list.
285  */
286 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
287 				       struct btrfs_block_group *block_group)
288 {
289 	block_group->discard_index++;
290 	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
291 		block_group->discard_index = 1;
292 		return;
293 	}
294 
295 	add_to_discard_list(discard_ctl, block_group);
296 }
297 
298 /*
299  * Remove a block_group from the discard lists.
300  *
301  * @discard_ctl: discard control
302  * @block_group: block_group of interest
303  *
304  * Remove @block_group from the discard lists.  If necessary, wait on the
305  * current work and then reschedule the delayed work.
306  */
307 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
308 			       struct btrfs_block_group *block_group)
309 {
310 	if (remove_from_discard_list(discard_ctl, block_group)) {
311 		cancel_delayed_work_sync(&discard_ctl->work);
312 		btrfs_discard_schedule_work(discard_ctl, true);
313 	}
314 }
315 
316 /*
317  * Handles queuing the block_groups.
318  *
319  * @discard_ctl: discard control
320  * @block_group: block_group of interest
321  *
322  * Maintain the LRU order of the discard lists.
323  */
324 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
325 			      struct btrfs_block_group *block_group)
326 {
327 	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
328 		return;
329 
330 	if (block_group->used == 0)
331 		add_to_discard_unused_list(discard_ctl, block_group);
332 	else
333 		add_to_discard_list(discard_ctl, block_group);
334 
335 	if (!delayed_work_pending(&discard_ctl->work))
336 		btrfs_discard_schedule_work(discard_ctl, false);
337 }
338 
339 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
340 					  u64 now, bool override)
341 {
342 	struct btrfs_block_group *block_group;
343 
344 	if (!btrfs_run_discard_work(discard_ctl))
345 		return;
346 	if (!override && delayed_work_pending(&discard_ctl->work))
347 		return;
348 
349 	block_group = find_next_block_group(discard_ctl, now);
350 	if (block_group) {
351 		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
352 		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
353 
354 		/*
355 		 * A single delayed workqueue item is responsible for
356 		 * discarding, so we can manage the bytes rate limit by keeping
357 		 * track of the previous discard.
358 		 */
359 		if (kbps_limit && discard_ctl->prev_discard) {
360 			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
361 			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
362 						  NSEC_PER_SEC, bps_limit);
363 
364 			delay = max(delay, bps_delay);
365 		}
366 
367 		/*
368 		 * This timeout is to hopefully prevent immediate discarding
369 		 * in a recently allocated block group.
370 		 */
371 		if (now < block_group->discard_eligible_time) {
372 			u64 bg_timeout = block_group->discard_eligible_time - now;
373 
374 			delay = max(delay, bg_timeout);
375 		}
376 
377 		if (override && discard_ctl->prev_discard) {
378 			u64 elapsed = now - discard_ctl->prev_discard_time;
379 
380 			if (delay > elapsed)
381 				delay -= elapsed;
382 			else
383 				delay = 0;
384 		}
385 
386 		mod_delayed_work(discard_ctl->discard_workers,
387 				 &discard_ctl->work, nsecs_to_jiffies(delay));
388 	}
389 }
390 
391 /*
392  * Responsible for scheduling the discard work.
393  *
394  * @discard_ctl:  discard control
395  * @override:     override the current timer
396  *
397  * Discards are issued by a delayed workqueue item.  @override is used to
398  * update the current delay as the baseline delay interval is reevaluated on
399  * transaction commit.  This is also maxed with any other rate limit.
400  */
401 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
402 				 bool override)
403 {
404 	const u64 now = ktime_get_ns();
405 
406 	spin_lock(&discard_ctl->lock);
407 	__btrfs_discard_schedule_work(discard_ctl, now, override);
408 	spin_unlock(&discard_ctl->lock);
409 }
410 
411 /*
412  * Determine next step of a block_group.
413  *
414  * @discard_ctl: discard control
415  * @block_group: block_group of interest
416  *
417  * Determine the next step for a block group after it's finished going through
418  * a pass on a discard list.  If it is unused and fully trimmed, we can mark it
419  * unused and send it to the unused_bgs path.  Otherwise, pass it onto the
420  * appropriate filter list or let it fall off.
421  */
422 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
423 				      struct btrfs_block_group *block_group)
424 {
425 	remove_from_discard_list(discard_ctl, block_group);
426 
427 	if (block_group->used == 0) {
428 		if (btrfs_is_free_space_trimmed(block_group))
429 			btrfs_mark_bg_unused(block_group);
430 		else
431 			add_to_discard_unused_list(discard_ctl, block_group);
432 	} else {
433 		btrfs_update_discard_index(discard_ctl, block_group);
434 	}
435 }
436 
437 /*
438  * Discard work queue callback
439  *
440  * @work: work
441  *
442  * Find the next block_group to start discarding and then discard a single
443  * region.  It does this in a two-pass fashion: first extents and second
444  * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
445  */
446 static void btrfs_discard_workfn(struct work_struct *work)
447 {
448 	struct btrfs_discard_ctl *discard_ctl;
449 	struct btrfs_block_group *block_group;
450 	enum btrfs_discard_state discard_state;
451 	int discard_index = 0;
452 	u64 trimmed = 0;
453 	u64 minlen = 0;
454 	u64 now = ktime_get_ns();
455 
456 	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
457 
458 	block_group = peek_discard_list(discard_ctl, &discard_state,
459 					&discard_index, now);
460 	if (!block_group || !btrfs_run_discard_work(discard_ctl))
461 		return;
462 	if (now < block_group->discard_eligible_time) {
463 		btrfs_discard_schedule_work(discard_ctl, false);
464 		return;
465 	}
466 
467 	/* Perform discarding */
468 	minlen = discard_minlen[discard_index];
469 
470 	if (discard_state == BTRFS_DISCARD_BITMAPS) {
471 		u64 maxlen = 0;
472 
473 		/*
474 		 * Use the previous levels minimum discard length as the max
475 		 * length filter.  In the case something is added to make a
476 		 * region go beyond the max filter, the entire bitmap is set
477 		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
478 		 */
479 		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
480 			maxlen = discard_minlen[discard_index - 1];
481 
482 		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
483 				       block_group->discard_cursor,
484 				       btrfs_block_group_end(block_group),
485 				       minlen, maxlen, true);
486 		discard_ctl->discard_bitmap_bytes += trimmed;
487 	} else {
488 		btrfs_trim_block_group_extents(block_group, &trimmed,
489 				       block_group->discard_cursor,
490 				       btrfs_block_group_end(block_group),
491 				       minlen, true);
492 		discard_ctl->discard_extent_bytes += trimmed;
493 	}
494 
495 	/* Determine next steps for a block_group */
496 	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
497 		if (discard_state == BTRFS_DISCARD_BITMAPS) {
498 			btrfs_finish_discard_pass(discard_ctl, block_group);
499 		} else {
500 			block_group->discard_cursor = block_group->start;
501 			spin_lock(&discard_ctl->lock);
502 			if (block_group->discard_state !=
503 			    BTRFS_DISCARD_RESET_CURSOR)
504 				block_group->discard_state =
505 							BTRFS_DISCARD_BITMAPS;
506 			spin_unlock(&discard_ctl->lock);
507 		}
508 	}
509 
510 	now = ktime_get_ns();
511 	spin_lock(&discard_ctl->lock);
512 	discard_ctl->prev_discard = trimmed;
513 	discard_ctl->prev_discard_time = now;
514 	discard_ctl->block_group = NULL;
515 	__btrfs_discard_schedule_work(discard_ctl, now, false);
516 	spin_unlock(&discard_ctl->lock);
517 }
518 
519 /*
520  * Determine if async discard should be running.
521  *
522  * @discard_ctl: discard control
523  *
524  * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
525  */
526 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
527 {
528 	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
529 						     struct btrfs_fs_info,
530 						     discard_ctl);
531 
532 	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
533 		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
534 }
535 
536 /*
537  * Recalculate the base delay.
538  *
539  * @discard_ctl: discard control
540  *
541  * Recalculate the base delay which is based off the total number of
542  * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
543  * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
544  */
545 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
546 {
547 	s32 discardable_extents;
548 	s64 discardable_bytes;
549 	u32 iops_limit;
550 	unsigned long delay;
551 
552 	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
553 	if (!discardable_extents)
554 		return;
555 
556 	spin_lock(&discard_ctl->lock);
557 
558 	/*
559 	 * The following is to fix a potential -1 discrepancy that we're not
560 	 * sure how to reproduce. But given that this is the only place that
561 	 * utilizes these numbers and this is only called by from
562 	 * btrfs_finish_extent_commit() which is synchronized, we can correct
563 	 * here.
564 	 */
565 	if (discardable_extents < 0)
566 		atomic_add(-discardable_extents,
567 			   &discard_ctl->discardable_extents);
568 
569 	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
570 	if (discardable_bytes < 0)
571 		atomic64_add(-discardable_bytes,
572 			     &discard_ctl->discardable_bytes);
573 
574 	if (discardable_extents <= 0) {
575 		spin_unlock(&discard_ctl->lock);
576 		return;
577 	}
578 
579 	iops_limit = READ_ONCE(discard_ctl->iops_limit);
580 	if (iops_limit)
581 		delay = MSEC_PER_SEC / iops_limit;
582 	else
583 		delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
584 
585 	delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
586 		      BTRFS_DISCARD_MAX_DELAY_MSEC);
587 	discard_ctl->delay_ms = delay;
588 
589 	spin_unlock(&discard_ctl->lock);
590 }
591 
592 /*
593  * Propagate discard counters.
594  *
595  * @block_group: block_group of interest
596  *
597  * Propagate deltas of counters up to the discard_ctl.  It maintains a current
598  * counter and a previous counter passing the delta up to the global stat.
599  * Then the current counter value becomes the previous counter value.
600  */
601 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
602 {
603 	struct btrfs_free_space_ctl *ctl;
604 	struct btrfs_discard_ctl *discard_ctl;
605 	s32 extents_delta;
606 	s64 bytes_delta;
607 
608 	if (!block_group ||
609 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
610 	    !btrfs_is_block_group_data_only(block_group))
611 		return;
612 
613 	ctl = block_group->free_space_ctl;
614 	discard_ctl = &block_group->fs_info->discard_ctl;
615 
616 	lockdep_assert_held(&ctl->tree_lock);
617 	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
618 			ctl->discardable_extents[BTRFS_STAT_PREV];
619 	if (extents_delta) {
620 		atomic_add(extents_delta, &discard_ctl->discardable_extents);
621 		ctl->discardable_extents[BTRFS_STAT_PREV] =
622 			ctl->discardable_extents[BTRFS_STAT_CURR];
623 	}
624 
625 	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
626 		      ctl->discardable_bytes[BTRFS_STAT_PREV];
627 	if (bytes_delta) {
628 		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
629 		ctl->discardable_bytes[BTRFS_STAT_PREV] =
630 			ctl->discardable_bytes[BTRFS_STAT_CURR];
631 	}
632 }
633 
634 /*
635  * Punt unused_bgs list to discard lists.
636  *
637  * @fs_info: fs_info of interest
638  *
639  * The unused_bgs list needs to be punted to the discard lists because the
640  * order of operations is changed.  In the normal synchronous discard path, the
641  * block groups are trimmed via a single large trim in transaction commit.  This
642  * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
643  * it must be done before going down the unused_bgs path.
644  */
645 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
646 {
647 	struct btrfs_block_group *block_group, *next;
648 
649 	spin_lock(&fs_info->unused_bgs_lock);
650 	/* We enabled async discard, so punt all to the queue */
651 	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
652 				 bg_list) {
653 		list_del_init(&block_group->bg_list);
654 		btrfs_put_block_group(block_group);
655 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
656 	}
657 	spin_unlock(&fs_info->unused_bgs_lock);
658 }
659 
660 /*
661  * Purge discard lists.
662  *
663  * @discard_ctl: discard control
664  *
665  * If we are disabling async discard, we may have intercepted block groups that
666  * are completely free and ready for the unused_bgs path.  As discarding will
667  * now happen in transaction commit or not at all, we can safely mark the
668  * corresponding block groups as unused and they will be sent on their merry
669  * way to the unused_bgs list.
670  */
671 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
672 {
673 	struct btrfs_block_group *block_group, *next;
674 	int i;
675 
676 	spin_lock(&discard_ctl->lock);
677 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
678 		list_for_each_entry_safe(block_group, next,
679 					 &discard_ctl->discard_list[i],
680 					 discard_list) {
681 			list_del_init(&block_group->discard_list);
682 			spin_unlock(&discard_ctl->lock);
683 			if (block_group->used == 0)
684 				btrfs_mark_bg_unused(block_group);
685 			spin_lock(&discard_ctl->lock);
686 		}
687 	}
688 	spin_unlock(&discard_ctl->lock);
689 }
690 
691 void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
692 {
693 	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
694 		btrfs_discard_cleanup(fs_info);
695 		return;
696 	}
697 
698 	btrfs_discard_punt_unused_bgs_list(fs_info);
699 
700 	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
701 }
702 
703 void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
704 {
705 	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
706 }
707 
708 void btrfs_discard_init(struct btrfs_fs_info *fs_info)
709 {
710 	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
711 	int i;
712 
713 	spin_lock_init(&discard_ctl->lock);
714 	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
715 
716 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
717 		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
718 
719 	discard_ctl->prev_discard = 0;
720 	discard_ctl->prev_discard_time = 0;
721 	atomic_set(&discard_ctl->discardable_extents, 0);
722 	atomic64_set(&discard_ctl->discardable_bytes, 0);
723 	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
724 	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
725 	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
726 	discard_ctl->kbps_limit = 0;
727 	discard_ctl->discard_extent_bytes = 0;
728 	discard_ctl->discard_bitmap_bytes = 0;
729 	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
730 }
731 
732 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
733 {
734 	btrfs_discard_stop(fs_info);
735 	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
736 	btrfs_discard_purge_list(&fs_info->discard_ctl);
737 }
738