1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include "delayed-inode.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "ctree.h" 25 26 #define BTRFS_DELAYED_WRITEBACK 512 27 #define BTRFS_DELAYED_BACKGROUND 128 28 #define BTRFS_DELAYED_BATCH 16 29 30 static struct kmem_cache *delayed_node_cache; 31 32 int __init btrfs_delayed_inode_init(void) 33 { 34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 35 sizeof(struct btrfs_delayed_node), 36 0, 37 SLAB_MEM_SPREAD, 38 NULL); 39 if (!delayed_node_cache) 40 return -ENOMEM; 41 return 0; 42 } 43 44 void btrfs_delayed_inode_exit(void) 45 { 46 kmem_cache_destroy(delayed_node_cache); 47 } 48 49 static inline void btrfs_init_delayed_node( 50 struct btrfs_delayed_node *delayed_node, 51 struct btrfs_root *root, u64 inode_id) 52 { 53 delayed_node->root = root; 54 delayed_node->inode_id = inode_id; 55 atomic_set(&delayed_node->refs, 0); 56 delayed_node->ins_root = RB_ROOT; 57 delayed_node->del_root = RB_ROOT; 58 mutex_init(&delayed_node->mutex); 59 INIT_LIST_HEAD(&delayed_node->n_list); 60 INIT_LIST_HEAD(&delayed_node->p_list); 61 } 62 63 static inline int btrfs_is_continuous_delayed_item( 64 struct btrfs_delayed_item *item1, 65 struct btrfs_delayed_item *item2) 66 { 67 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 68 item1->key.objectid == item2->key.objectid && 69 item1->key.type == item2->key.type && 70 item1->key.offset + 1 == item2->key.offset) 71 return 1; 72 return 0; 73 } 74 75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root( 76 struct btrfs_root *root) 77 { 78 return root->fs_info->delayed_root; 79 } 80 81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) 82 { 83 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 84 struct btrfs_root *root = btrfs_inode->root; 85 u64 ino = btrfs_ino(inode); 86 struct btrfs_delayed_node *node; 87 88 node = ACCESS_ONCE(btrfs_inode->delayed_node); 89 if (node) { 90 atomic_inc(&node->refs); 91 return node; 92 } 93 94 spin_lock(&root->inode_lock); 95 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 96 if (node) { 97 if (btrfs_inode->delayed_node) { 98 atomic_inc(&node->refs); /* can be accessed */ 99 BUG_ON(btrfs_inode->delayed_node != node); 100 spin_unlock(&root->inode_lock); 101 return node; 102 } 103 btrfs_inode->delayed_node = node; 104 /* can be accessed and cached in the inode */ 105 atomic_add(2, &node->refs); 106 spin_unlock(&root->inode_lock); 107 return node; 108 } 109 spin_unlock(&root->inode_lock); 110 111 return NULL; 112 } 113 114 /* Will return either the node or PTR_ERR(-ENOMEM) */ 115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 116 struct inode *inode) 117 { 118 struct btrfs_delayed_node *node; 119 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 120 struct btrfs_root *root = btrfs_inode->root; 121 u64 ino = btrfs_ino(inode); 122 int ret; 123 124 again: 125 node = btrfs_get_delayed_node(inode); 126 if (node) 127 return node; 128 129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 130 if (!node) 131 return ERR_PTR(-ENOMEM); 132 btrfs_init_delayed_node(node, root, ino); 133 134 /* cached in the btrfs inode and can be accessed */ 135 atomic_add(2, &node->refs); 136 137 ret = radix_tree_preload(GFP_NOFS); 138 if (ret) { 139 kmem_cache_free(delayed_node_cache, node); 140 return ERR_PTR(ret); 141 } 142 143 spin_lock(&root->inode_lock); 144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 145 if (ret == -EEXIST) { 146 spin_unlock(&root->inode_lock); 147 kmem_cache_free(delayed_node_cache, node); 148 radix_tree_preload_end(); 149 goto again; 150 } 151 btrfs_inode->delayed_node = node; 152 spin_unlock(&root->inode_lock); 153 radix_tree_preload_end(); 154 155 return node; 156 } 157 158 /* 159 * Call it when holding delayed_node->mutex 160 * 161 * If mod = 1, add this node into the prepared list. 162 */ 163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 164 struct btrfs_delayed_node *node, 165 int mod) 166 { 167 spin_lock(&root->lock); 168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 169 if (!list_empty(&node->p_list)) 170 list_move_tail(&node->p_list, &root->prepare_list); 171 else if (mod) 172 list_add_tail(&node->p_list, &root->prepare_list); 173 } else { 174 list_add_tail(&node->n_list, &root->node_list); 175 list_add_tail(&node->p_list, &root->prepare_list); 176 atomic_inc(&node->refs); /* inserted into list */ 177 root->nodes++; 178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 179 } 180 spin_unlock(&root->lock); 181 } 182 183 /* Call it when holding delayed_node->mutex */ 184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 185 struct btrfs_delayed_node *node) 186 { 187 spin_lock(&root->lock); 188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 189 root->nodes--; 190 atomic_dec(&node->refs); /* not in the list */ 191 list_del_init(&node->n_list); 192 if (!list_empty(&node->p_list)) 193 list_del_init(&node->p_list); 194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 195 } 196 spin_unlock(&root->lock); 197 } 198 199 static struct btrfs_delayed_node *btrfs_first_delayed_node( 200 struct btrfs_delayed_root *delayed_root) 201 { 202 struct list_head *p; 203 struct btrfs_delayed_node *node = NULL; 204 205 spin_lock(&delayed_root->lock); 206 if (list_empty(&delayed_root->node_list)) 207 goto out; 208 209 p = delayed_root->node_list.next; 210 node = list_entry(p, struct btrfs_delayed_node, n_list); 211 atomic_inc(&node->refs); 212 out: 213 spin_unlock(&delayed_root->lock); 214 215 return node; 216 } 217 218 static struct btrfs_delayed_node *btrfs_next_delayed_node( 219 struct btrfs_delayed_node *node) 220 { 221 struct btrfs_delayed_root *delayed_root; 222 struct list_head *p; 223 struct btrfs_delayed_node *next = NULL; 224 225 delayed_root = node->root->fs_info->delayed_root; 226 spin_lock(&delayed_root->lock); 227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 228 /* not in the list */ 229 if (list_empty(&delayed_root->node_list)) 230 goto out; 231 p = delayed_root->node_list.next; 232 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 233 goto out; 234 else 235 p = node->n_list.next; 236 237 next = list_entry(p, struct btrfs_delayed_node, n_list); 238 atomic_inc(&next->refs); 239 out: 240 spin_unlock(&delayed_root->lock); 241 242 return next; 243 } 244 245 static void __btrfs_release_delayed_node( 246 struct btrfs_delayed_node *delayed_node, 247 int mod) 248 { 249 struct btrfs_delayed_root *delayed_root; 250 251 if (!delayed_node) 252 return; 253 254 delayed_root = delayed_node->root->fs_info->delayed_root; 255 256 mutex_lock(&delayed_node->mutex); 257 if (delayed_node->count) 258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 259 else 260 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 261 mutex_unlock(&delayed_node->mutex); 262 263 if (atomic_dec_and_test(&delayed_node->refs)) { 264 bool free = false; 265 struct btrfs_root *root = delayed_node->root; 266 spin_lock(&root->inode_lock); 267 if (atomic_read(&delayed_node->refs) == 0) { 268 radix_tree_delete(&root->delayed_nodes_tree, 269 delayed_node->inode_id); 270 free = true; 271 } 272 spin_unlock(&root->inode_lock); 273 if (free) 274 kmem_cache_free(delayed_node_cache, delayed_node); 275 } 276 } 277 278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 279 { 280 __btrfs_release_delayed_node(node, 0); 281 } 282 283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 284 struct btrfs_delayed_root *delayed_root) 285 { 286 struct list_head *p; 287 struct btrfs_delayed_node *node = NULL; 288 289 spin_lock(&delayed_root->lock); 290 if (list_empty(&delayed_root->prepare_list)) 291 goto out; 292 293 p = delayed_root->prepare_list.next; 294 list_del_init(p); 295 node = list_entry(p, struct btrfs_delayed_node, p_list); 296 atomic_inc(&node->refs); 297 out: 298 spin_unlock(&delayed_root->lock); 299 300 return node; 301 } 302 303 static inline void btrfs_release_prepared_delayed_node( 304 struct btrfs_delayed_node *node) 305 { 306 __btrfs_release_delayed_node(node, 1); 307 } 308 309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 310 { 311 struct btrfs_delayed_item *item; 312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 313 if (item) { 314 item->data_len = data_len; 315 item->ins_or_del = 0; 316 item->bytes_reserved = 0; 317 item->delayed_node = NULL; 318 atomic_set(&item->refs, 1); 319 } 320 return item; 321 } 322 323 /* 324 * __btrfs_lookup_delayed_item - look up the delayed item by key 325 * @delayed_node: pointer to the delayed node 326 * @key: the key to look up 327 * @prev: used to store the prev item if the right item isn't found 328 * @next: used to store the next item if the right item isn't found 329 * 330 * Note: if we don't find the right item, we will return the prev item and 331 * the next item. 332 */ 333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 334 struct rb_root *root, 335 struct btrfs_key *key, 336 struct btrfs_delayed_item **prev, 337 struct btrfs_delayed_item **next) 338 { 339 struct rb_node *node, *prev_node = NULL; 340 struct btrfs_delayed_item *delayed_item = NULL; 341 int ret = 0; 342 343 node = root->rb_node; 344 345 while (node) { 346 delayed_item = rb_entry(node, struct btrfs_delayed_item, 347 rb_node); 348 prev_node = node; 349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 350 if (ret < 0) 351 node = node->rb_right; 352 else if (ret > 0) 353 node = node->rb_left; 354 else 355 return delayed_item; 356 } 357 358 if (prev) { 359 if (!prev_node) 360 *prev = NULL; 361 else if (ret < 0) 362 *prev = delayed_item; 363 else if ((node = rb_prev(prev_node)) != NULL) { 364 *prev = rb_entry(node, struct btrfs_delayed_item, 365 rb_node); 366 } else 367 *prev = NULL; 368 } 369 370 if (next) { 371 if (!prev_node) 372 *next = NULL; 373 else if (ret > 0) 374 *next = delayed_item; 375 else if ((node = rb_next(prev_node)) != NULL) { 376 *next = rb_entry(node, struct btrfs_delayed_item, 377 rb_node); 378 } else 379 *next = NULL; 380 } 381 return NULL; 382 } 383 384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 385 struct btrfs_delayed_node *delayed_node, 386 struct btrfs_key *key) 387 { 388 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 389 NULL, NULL); 390 } 391 392 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 393 struct btrfs_delayed_item *ins, 394 int action) 395 { 396 struct rb_node **p, *node; 397 struct rb_node *parent_node = NULL; 398 struct rb_root *root; 399 struct btrfs_delayed_item *item; 400 int cmp; 401 402 if (action == BTRFS_DELAYED_INSERTION_ITEM) 403 root = &delayed_node->ins_root; 404 else if (action == BTRFS_DELAYED_DELETION_ITEM) 405 root = &delayed_node->del_root; 406 else 407 BUG(); 408 p = &root->rb_node; 409 node = &ins->rb_node; 410 411 while (*p) { 412 parent_node = *p; 413 item = rb_entry(parent_node, struct btrfs_delayed_item, 414 rb_node); 415 416 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 417 if (cmp < 0) 418 p = &(*p)->rb_right; 419 else if (cmp > 0) 420 p = &(*p)->rb_left; 421 else 422 return -EEXIST; 423 } 424 425 rb_link_node(node, parent_node, p); 426 rb_insert_color(node, root); 427 ins->delayed_node = delayed_node; 428 ins->ins_or_del = action; 429 430 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 431 action == BTRFS_DELAYED_INSERTION_ITEM && 432 ins->key.offset >= delayed_node->index_cnt) 433 delayed_node->index_cnt = ins->key.offset + 1; 434 435 delayed_node->count++; 436 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 437 return 0; 438 } 439 440 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 441 struct btrfs_delayed_item *item) 442 { 443 return __btrfs_add_delayed_item(node, item, 444 BTRFS_DELAYED_INSERTION_ITEM); 445 } 446 447 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 448 struct btrfs_delayed_item *item) 449 { 450 return __btrfs_add_delayed_item(node, item, 451 BTRFS_DELAYED_DELETION_ITEM); 452 } 453 454 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 455 { 456 int seq = atomic_inc_return(&delayed_root->items_seq); 457 458 /* 459 * atomic_dec_return implies a barrier for waitqueue_active 460 */ 461 if ((atomic_dec_return(&delayed_root->items) < 462 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && 463 waitqueue_active(&delayed_root->wait)) 464 wake_up(&delayed_root->wait); 465 } 466 467 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 468 { 469 struct rb_root *root; 470 struct btrfs_delayed_root *delayed_root; 471 472 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 473 474 BUG_ON(!delayed_root); 475 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 476 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 477 478 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 479 root = &delayed_item->delayed_node->ins_root; 480 else 481 root = &delayed_item->delayed_node->del_root; 482 483 rb_erase(&delayed_item->rb_node, root); 484 delayed_item->delayed_node->count--; 485 486 finish_one_item(delayed_root); 487 } 488 489 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 490 { 491 if (item) { 492 __btrfs_remove_delayed_item(item); 493 if (atomic_dec_and_test(&item->refs)) 494 kfree(item); 495 } 496 } 497 498 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 499 struct btrfs_delayed_node *delayed_node) 500 { 501 struct rb_node *p; 502 struct btrfs_delayed_item *item = NULL; 503 504 p = rb_first(&delayed_node->ins_root); 505 if (p) 506 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 507 508 return item; 509 } 510 511 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 512 struct btrfs_delayed_node *delayed_node) 513 { 514 struct rb_node *p; 515 struct btrfs_delayed_item *item = NULL; 516 517 p = rb_first(&delayed_node->del_root); 518 if (p) 519 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 520 521 return item; 522 } 523 524 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 525 struct btrfs_delayed_item *item) 526 { 527 struct rb_node *p; 528 struct btrfs_delayed_item *next = NULL; 529 530 p = rb_next(&item->rb_node); 531 if (p) 532 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 533 534 return next; 535 } 536 537 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 538 struct btrfs_root *root, 539 struct btrfs_delayed_item *item) 540 { 541 struct btrfs_fs_info *fs_info = root->fs_info; 542 struct btrfs_block_rsv *src_rsv; 543 struct btrfs_block_rsv *dst_rsv; 544 u64 num_bytes; 545 int ret; 546 547 if (!trans->bytes_reserved) 548 return 0; 549 550 src_rsv = trans->block_rsv; 551 dst_rsv = &fs_info->delayed_block_rsv; 552 553 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 554 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 555 if (!ret) { 556 trace_btrfs_space_reservation(fs_info, "delayed_item", 557 item->key.objectid, 558 num_bytes, 1); 559 item->bytes_reserved = num_bytes; 560 } 561 562 return ret; 563 } 564 565 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 566 struct btrfs_delayed_item *item) 567 { 568 struct btrfs_fs_info *fs_info = root->fs_info; 569 struct btrfs_block_rsv *rsv; 570 571 if (!item->bytes_reserved) 572 return; 573 574 rsv = &fs_info->delayed_block_rsv; 575 trace_btrfs_space_reservation(fs_info, "delayed_item", 576 item->key.objectid, item->bytes_reserved, 577 0); 578 btrfs_block_rsv_release(root, rsv, 579 item->bytes_reserved); 580 } 581 582 static int btrfs_delayed_inode_reserve_metadata( 583 struct btrfs_trans_handle *trans, 584 struct btrfs_root *root, 585 struct inode *inode, 586 struct btrfs_delayed_node *node) 587 { 588 struct btrfs_fs_info *fs_info = root->fs_info; 589 struct btrfs_block_rsv *src_rsv; 590 struct btrfs_block_rsv *dst_rsv; 591 u64 num_bytes; 592 int ret; 593 bool release = false; 594 595 src_rsv = trans->block_rsv; 596 dst_rsv = &fs_info->delayed_block_rsv; 597 598 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 599 600 /* 601 * If our block_rsv is the delalloc block reserve then check and see if 602 * we have our extra reservation for updating the inode. If not fall 603 * through and try to reserve space quickly. 604 * 605 * We used to try and steal from the delalloc block rsv or the global 606 * reserve, but we'd steal a full reservation, which isn't kind. We are 607 * here through delalloc which means we've likely just cowed down close 608 * to the leaf that contains the inode, so we would steal less just 609 * doing the fallback inode update, so if we do end up having to steal 610 * from the global block rsv we hopefully only steal one or two blocks 611 * worth which is less likely to hurt us. 612 */ 613 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) { 614 spin_lock(&BTRFS_I(inode)->lock); 615 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 616 &BTRFS_I(inode)->runtime_flags)) 617 release = true; 618 else 619 src_rsv = NULL; 620 spin_unlock(&BTRFS_I(inode)->lock); 621 } 622 623 /* 624 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 625 * which doesn't reserve space for speed. This is a problem since we 626 * still need to reserve space for this update, so try to reserve the 627 * space. 628 * 629 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 630 * we're accounted for. 631 */ 632 if (!src_rsv || (!trans->bytes_reserved && 633 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 635 BTRFS_RESERVE_NO_FLUSH); 636 /* 637 * Since we're under a transaction reserve_metadata_bytes could 638 * try to commit the transaction which will make it return 639 * EAGAIN to make us stop the transaction we have, so return 640 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 641 */ 642 if (ret == -EAGAIN) 643 ret = -ENOSPC; 644 if (!ret) { 645 node->bytes_reserved = num_bytes; 646 trace_btrfs_space_reservation(fs_info, 647 "delayed_inode", 648 btrfs_ino(inode), 649 num_bytes, 1); 650 } 651 return ret; 652 } 653 654 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 655 656 /* 657 * Migrate only takes a reservation, it doesn't touch the size of the 658 * block_rsv. This is to simplify people who don't normally have things 659 * migrated from their block rsv. If they go to release their 660 * reservation, that will decrease the size as well, so if migrate 661 * reduced size we'd end up with a negative size. But for the 662 * delalloc_meta_reserved stuff we will only know to drop 1 reservation, 663 * but we could in fact do this reserve/migrate dance several times 664 * between the time we did the original reservation and we'd clean it 665 * up. So to take care of this, release the space for the meta 666 * reservation here. I think it may be time for a documentation page on 667 * how block rsvs. work. 668 */ 669 if (!ret) { 670 trace_btrfs_space_reservation(fs_info, "delayed_inode", 671 btrfs_ino(inode), num_bytes, 1); 672 node->bytes_reserved = num_bytes; 673 } 674 675 if (release) { 676 trace_btrfs_space_reservation(fs_info, "delalloc", 677 btrfs_ino(inode), num_bytes, 0); 678 btrfs_block_rsv_release(root, src_rsv, num_bytes); 679 } 680 681 return ret; 682 } 683 684 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, 685 struct btrfs_delayed_node *node) 686 { 687 struct btrfs_fs_info *fs_info = root->fs_info; 688 struct btrfs_block_rsv *rsv; 689 690 if (!node->bytes_reserved) 691 return; 692 693 rsv = &fs_info->delayed_block_rsv; 694 trace_btrfs_space_reservation(fs_info, "delayed_inode", 695 node->inode_id, node->bytes_reserved, 0); 696 btrfs_block_rsv_release(root, rsv, 697 node->bytes_reserved); 698 node->bytes_reserved = 0; 699 } 700 701 /* 702 * This helper will insert some continuous items into the same leaf according 703 * to the free space of the leaf. 704 */ 705 static int btrfs_batch_insert_items(struct btrfs_root *root, 706 struct btrfs_path *path, 707 struct btrfs_delayed_item *item) 708 { 709 struct btrfs_delayed_item *curr, *next; 710 int free_space; 711 int total_data_size = 0, total_size = 0; 712 struct extent_buffer *leaf; 713 char *data_ptr; 714 struct btrfs_key *keys; 715 u32 *data_size; 716 struct list_head head; 717 int slot; 718 int nitems; 719 int i; 720 int ret = 0; 721 722 BUG_ON(!path->nodes[0]); 723 724 leaf = path->nodes[0]; 725 free_space = btrfs_leaf_free_space(root, leaf); 726 INIT_LIST_HEAD(&head); 727 728 next = item; 729 nitems = 0; 730 731 /* 732 * count the number of the continuous items that we can insert in batch 733 */ 734 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 735 free_space) { 736 total_data_size += next->data_len; 737 total_size += next->data_len + sizeof(struct btrfs_item); 738 list_add_tail(&next->tree_list, &head); 739 nitems++; 740 741 curr = next; 742 next = __btrfs_next_delayed_item(curr); 743 if (!next) 744 break; 745 746 if (!btrfs_is_continuous_delayed_item(curr, next)) 747 break; 748 } 749 750 if (!nitems) { 751 ret = 0; 752 goto out; 753 } 754 755 /* 756 * we need allocate some memory space, but it might cause the task 757 * to sleep, so we set all locked nodes in the path to blocking locks 758 * first. 759 */ 760 btrfs_set_path_blocking(path); 761 762 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 763 if (!keys) { 764 ret = -ENOMEM; 765 goto out; 766 } 767 768 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 769 if (!data_size) { 770 ret = -ENOMEM; 771 goto error; 772 } 773 774 /* get keys of all the delayed items */ 775 i = 0; 776 list_for_each_entry(next, &head, tree_list) { 777 keys[i] = next->key; 778 data_size[i] = next->data_len; 779 i++; 780 } 781 782 /* reset all the locked nodes in the patch to spinning locks. */ 783 btrfs_clear_path_blocking(path, NULL, 0); 784 785 /* insert the keys of the items */ 786 setup_items_for_insert(root, path, keys, data_size, 787 total_data_size, total_size, nitems); 788 789 /* insert the dir index items */ 790 slot = path->slots[0]; 791 list_for_each_entry_safe(curr, next, &head, tree_list) { 792 data_ptr = btrfs_item_ptr(leaf, slot, char); 793 write_extent_buffer(leaf, &curr->data, 794 (unsigned long)data_ptr, 795 curr->data_len); 796 slot++; 797 798 btrfs_delayed_item_release_metadata(root, curr); 799 800 list_del(&curr->tree_list); 801 btrfs_release_delayed_item(curr); 802 } 803 804 error: 805 kfree(data_size); 806 kfree(keys); 807 out: 808 return ret; 809 } 810 811 /* 812 * This helper can just do simple insertion that needn't extend item for new 813 * data, such as directory name index insertion, inode insertion. 814 */ 815 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 816 struct btrfs_root *root, 817 struct btrfs_path *path, 818 struct btrfs_delayed_item *delayed_item) 819 { 820 struct extent_buffer *leaf; 821 char *ptr; 822 int ret; 823 824 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 825 delayed_item->data_len); 826 if (ret < 0 && ret != -EEXIST) 827 return ret; 828 829 leaf = path->nodes[0]; 830 831 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 832 833 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 834 delayed_item->data_len); 835 btrfs_mark_buffer_dirty(leaf); 836 837 btrfs_delayed_item_release_metadata(root, delayed_item); 838 return 0; 839 } 840 841 /* 842 * we insert an item first, then if there are some continuous items, we try 843 * to insert those items into the same leaf. 844 */ 845 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 846 struct btrfs_path *path, 847 struct btrfs_root *root, 848 struct btrfs_delayed_node *node) 849 { 850 struct btrfs_delayed_item *curr, *prev; 851 int ret = 0; 852 853 do_again: 854 mutex_lock(&node->mutex); 855 curr = __btrfs_first_delayed_insertion_item(node); 856 if (!curr) 857 goto insert_end; 858 859 ret = btrfs_insert_delayed_item(trans, root, path, curr); 860 if (ret < 0) { 861 btrfs_release_path(path); 862 goto insert_end; 863 } 864 865 prev = curr; 866 curr = __btrfs_next_delayed_item(prev); 867 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 868 /* insert the continuous items into the same leaf */ 869 path->slots[0]++; 870 btrfs_batch_insert_items(root, path, curr); 871 } 872 btrfs_release_delayed_item(prev); 873 btrfs_mark_buffer_dirty(path->nodes[0]); 874 875 btrfs_release_path(path); 876 mutex_unlock(&node->mutex); 877 goto do_again; 878 879 insert_end: 880 mutex_unlock(&node->mutex); 881 return ret; 882 } 883 884 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 885 struct btrfs_root *root, 886 struct btrfs_path *path, 887 struct btrfs_delayed_item *item) 888 { 889 struct btrfs_delayed_item *curr, *next; 890 struct extent_buffer *leaf; 891 struct btrfs_key key; 892 struct list_head head; 893 int nitems, i, last_item; 894 int ret = 0; 895 896 BUG_ON(!path->nodes[0]); 897 898 leaf = path->nodes[0]; 899 900 i = path->slots[0]; 901 last_item = btrfs_header_nritems(leaf) - 1; 902 if (i > last_item) 903 return -ENOENT; /* FIXME: Is errno suitable? */ 904 905 next = item; 906 INIT_LIST_HEAD(&head); 907 btrfs_item_key_to_cpu(leaf, &key, i); 908 nitems = 0; 909 /* 910 * count the number of the dir index items that we can delete in batch 911 */ 912 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 913 list_add_tail(&next->tree_list, &head); 914 nitems++; 915 916 curr = next; 917 next = __btrfs_next_delayed_item(curr); 918 if (!next) 919 break; 920 921 if (!btrfs_is_continuous_delayed_item(curr, next)) 922 break; 923 924 i++; 925 if (i > last_item) 926 break; 927 btrfs_item_key_to_cpu(leaf, &key, i); 928 } 929 930 if (!nitems) 931 return 0; 932 933 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 934 if (ret) 935 goto out; 936 937 list_for_each_entry_safe(curr, next, &head, tree_list) { 938 btrfs_delayed_item_release_metadata(root, curr); 939 list_del(&curr->tree_list); 940 btrfs_release_delayed_item(curr); 941 } 942 943 out: 944 return ret; 945 } 946 947 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 948 struct btrfs_path *path, 949 struct btrfs_root *root, 950 struct btrfs_delayed_node *node) 951 { 952 struct btrfs_delayed_item *curr, *prev; 953 int ret = 0; 954 955 do_again: 956 mutex_lock(&node->mutex); 957 curr = __btrfs_first_delayed_deletion_item(node); 958 if (!curr) 959 goto delete_fail; 960 961 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 962 if (ret < 0) 963 goto delete_fail; 964 else if (ret > 0) { 965 /* 966 * can't find the item which the node points to, so this node 967 * is invalid, just drop it. 968 */ 969 prev = curr; 970 curr = __btrfs_next_delayed_item(prev); 971 btrfs_release_delayed_item(prev); 972 ret = 0; 973 btrfs_release_path(path); 974 if (curr) { 975 mutex_unlock(&node->mutex); 976 goto do_again; 977 } else 978 goto delete_fail; 979 } 980 981 btrfs_batch_delete_items(trans, root, path, curr); 982 btrfs_release_path(path); 983 mutex_unlock(&node->mutex); 984 goto do_again; 985 986 delete_fail: 987 btrfs_release_path(path); 988 mutex_unlock(&node->mutex); 989 return ret; 990 } 991 992 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 993 { 994 struct btrfs_delayed_root *delayed_root; 995 996 if (delayed_node && 997 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 998 BUG_ON(!delayed_node->root); 999 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1000 delayed_node->count--; 1001 1002 delayed_root = delayed_node->root->fs_info->delayed_root; 1003 finish_one_item(delayed_root); 1004 } 1005 } 1006 1007 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 1008 { 1009 struct btrfs_delayed_root *delayed_root; 1010 1011 ASSERT(delayed_node->root); 1012 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1013 delayed_node->count--; 1014 1015 delayed_root = delayed_node->root->fs_info->delayed_root; 1016 finish_one_item(delayed_root); 1017 } 1018 1019 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1020 struct btrfs_root *root, 1021 struct btrfs_path *path, 1022 struct btrfs_delayed_node *node) 1023 { 1024 struct btrfs_key key; 1025 struct btrfs_inode_item *inode_item; 1026 struct extent_buffer *leaf; 1027 int mod; 1028 int ret; 1029 1030 key.objectid = node->inode_id; 1031 key.type = BTRFS_INODE_ITEM_KEY; 1032 key.offset = 0; 1033 1034 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1035 mod = -1; 1036 else 1037 mod = 1; 1038 1039 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1040 if (ret > 0) { 1041 btrfs_release_path(path); 1042 return -ENOENT; 1043 } else if (ret < 0) { 1044 return ret; 1045 } 1046 1047 leaf = path->nodes[0]; 1048 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1049 struct btrfs_inode_item); 1050 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1051 sizeof(struct btrfs_inode_item)); 1052 btrfs_mark_buffer_dirty(leaf); 1053 1054 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1055 goto no_iref; 1056 1057 path->slots[0]++; 1058 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1059 goto search; 1060 again: 1061 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1062 if (key.objectid != node->inode_id) 1063 goto out; 1064 1065 if (key.type != BTRFS_INODE_REF_KEY && 1066 key.type != BTRFS_INODE_EXTREF_KEY) 1067 goto out; 1068 1069 /* 1070 * Delayed iref deletion is for the inode who has only one link, 1071 * so there is only one iref. The case that several irefs are 1072 * in the same item doesn't exist. 1073 */ 1074 btrfs_del_item(trans, root, path); 1075 out: 1076 btrfs_release_delayed_iref(node); 1077 no_iref: 1078 btrfs_release_path(path); 1079 err_out: 1080 btrfs_delayed_inode_release_metadata(root, node); 1081 btrfs_release_delayed_inode(node); 1082 1083 return ret; 1084 1085 search: 1086 btrfs_release_path(path); 1087 1088 key.type = BTRFS_INODE_EXTREF_KEY; 1089 key.offset = -1; 1090 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1091 if (ret < 0) 1092 goto err_out; 1093 ASSERT(ret); 1094 1095 ret = 0; 1096 leaf = path->nodes[0]; 1097 path->slots[0]--; 1098 goto again; 1099 } 1100 1101 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1102 struct btrfs_root *root, 1103 struct btrfs_path *path, 1104 struct btrfs_delayed_node *node) 1105 { 1106 int ret; 1107 1108 mutex_lock(&node->mutex); 1109 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1110 mutex_unlock(&node->mutex); 1111 return 0; 1112 } 1113 1114 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1115 mutex_unlock(&node->mutex); 1116 return ret; 1117 } 1118 1119 static inline int 1120 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1121 struct btrfs_path *path, 1122 struct btrfs_delayed_node *node) 1123 { 1124 int ret; 1125 1126 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1127 if (ret) 1128 return ret; 1129 1130 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1131 if (ret) 1132 return ret; 1133 1134 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1135 return ret; 1136 } 1137 1138 /* 1139 * Called when committing the transaction. 1140 * Returns 0 on success. 1141 * Returns < 0 on error and returns with an aborted transaction with any 1142 * outstanding delayed items cleaned up. 1143 */ 1144 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1145 struct btrfs_root *root, int nr) 1146 { 1147 struct btrfs_fs_info *fs_info = root->fs_info; 1148 struct btrfs_delayed_root *delayed_root; 1149 struct btrfs_delayed_node *curr_node, *prev_node; 1150 struct btrfs_path *path; 1151 struct btrfs_block_rsv *block_rsv; 1152 int ret = 0; 1153 bool count = (nr > 0); 1154 1155 if (trans->aborted) 1156 return -EIO; 1157 1158 path = btrfs_alloc_path(); 1159 if (!path) 1160 return -ENOMEM; 1161 path->leave_spinning = 1; 1162 1163 block_rsv = trans->block_rsv; 1164 trans->block_rsv = &fs_info->delayed_block_rsv; 1165 1166 delayed_root = btrfs_get_delayed_root(root); 1167 1168 curr_node = btrfs_first_delayed_node(delayed_root); 1169 while (curr_node && (!count || (count && nr--))) { 1170 ret = __btrfs_commit_inode_delayed_items(trans, path, 1171 curr_node); 1172 if (ret) { 1173 btrfs_release_delayed_node(curr_node); 1174 curr_node = NULL; 1175 btrfs_abort_transaction(trans, ret); 1176 break; 1177 } 1178 1179 prev_node = curr_node; 1180 curr_node = btrfs_next_delayed_node(curr_node); 1181 btrfs_release_delayed_node(prev_node); 1182 } 1183 1184 if (curr_node) 1185 btrfs_release_delayed_node(curr_node); 1186 btrfs_free_path(path); 1187 trans->block_rsv = block_rsv; 1188 1189 return ret; 1190 } 1191 1192 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1193 struct btrfs_root *root) 1194 { 1195 return __btrfs_run_delayed_items(trans, root, -1); 1196 } 1197 1198 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, 1199 struct btrfs_root *root, int nr) 1200 { 1201 return __btrfs_run_delayed_items(trans, root, nr); 1202 } 1203 1204 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1205 struct inode *inode) 1206 { 1207 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1208 struct btrfs_path *path; 1209 struct btrfs_block_rsv *block_rsv; 1210 int ret; 1211 1212 if (!delayed_node) 1213 return 0; 1214 1215 mutex_lock(&delayed_node->mutex); 1216 if (!delayed_node->count) { 1217 mutex_unlock(&delayed_node->mutex); 1218 btrfs_release_delayed_node(delayed_node); 1219 return 0; 1220 } 1221 mutex_unlock(&delayed_node->mutex); 1222 1223 path = btrfs_alloc_path(); 1224 if (!path) { 1225 btrfs_release_delayed_node(delayed_node); 1226 return -ENOMEM; 1227 } 1228 path->leave_spinning = 1; 1229 1230 block_rsv = trans->block_rsv; 1231 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1232 1233 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1234 1235 btrfs_release_delayed_node(delayed_node); 1236 btrfs_free_path(path); 1237 trans->block_rsv = block_rsv; 1238 1239 return ret; 1240 } 1241 1242 int btrfs_commit_inode_delayed_inode(struct inode *inode) 1243 { 1244 struct btrfs_trans_handle *trans; 1245 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1246 struct btrfs_path *path; 1247 struct btrfs_block_rsv *block_rsv; 1248 int ret; 1249 1250 if (!delayed_node) 1251 return 0; 1252 1253 mutex_lock(&delayed_node->mutex); 1254 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1255 mutex_unlock(&delayed_node->mutex); 1256 btrfs_release_delayed_node(delayed_node); 1257 return 0; 1258 } 1259 mutex_unlock(&delayed_node->mutex); 1260 1261 trans = btrfs_join_transaction(delayed_node->root); 1262 if (IS_ERR(trans)) { 1263 ret = PTR_ERR(trans); 1264 goto out; 1265 } 1266 1267 path = btrfs_alloc_path(); 1268 if (!path) { 1269 ret = -ENOMEM; 1270 goto trans_out; 1271 } 1272 path->leave_spinning = 1; 1273 1274 block_rsv = trans->block_rsv; 1275 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1276 1277 mutex_lock(&delayed_node->mutex); 1278 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1279 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1280 path, delayed_node); 1281 else 1282 ret = 0; 1283 mutex_unlock(&delayed_node->mutex); 1284 1285 btrfs_free_path(path); 1286 trans->block_rsv = block_rsv; 1287 trans_out: 1288 btrfs_end_transaction(trans, delayed_node->root); 1289 btrfs_btree_balance_dirty(delayed_node->root); 1290 out: 1291 btrfs_release_delayed_node(delayed_node); 1292 1293 return ret; 1294 } 1295 1296 void btrfs_remove_delayed_node(struct inode *inode) 1297 { 1298 struct btrfs_delayed_node *delayed_node; 1299 1300 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); 1301 if (!delayed_node) 1302 return; 1303 1304 BTRFS_I(inode)->delayed_node = NULL; 1305 btrfs_release_delayed_node(delayed_node); 1306 } 1307 1308 struct btrfs_async_delayed_work { 1309 struct btrfs_delayed_root *delayed_root; 1310 int nr; 1311 struct btrfs_work work; 1312 }; 1313 1314 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1315 { 1316 struct btrfs_async_delayed_work *async_work; 1317 struct btrfs_delayed_root *delayed_root; 1318 struct btrfs_trans_handle *trans; 1319 struct btrfs_path *path; 1320 struct btrfs_delayed_node *delayed_node = NULL; 1321 struct btrfs_root *root; 1322 struct btrfs_block_rsv *block_rsv; 1323 int total_done = 0; 1324 1325 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1326 delayed_root = async_work->delayed_root; 1327 1328 path = btrfs_alloc_path(); 1329 if (!path) 1330 goto out; 1331 1332 again: 1333 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) 1334 goto free_path; 1335 1336 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1337 if (!delayed_node) 1338 goto free_path; 1339 1340 path->leave_spinning = 1; 1341 root = delayed_node->root; 1342 1343 trans = btrfs_join_transaction(root); 1344 if (IS_ERR(trans)) 1345 goto release_path; 1346 1347 block_rsv = trans->block_rsv; 1348 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1349 1350 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1351 1352 trans->block_rsv = block_rsv; 1353 btrfs_end_transaction(trans, root); 1354 btrfs_btree_balance_dirty_nodelay(root); 1355 1356 release_path: 1357 btrfs_release_path(path); 1358 total_done++; 1359 1360 btrfs_release_prepared_delayed_node(delayed_node); 1361 if (async_work->nr == 0 || total_done < async_work->nr) 1362 goto again; 1363 1364 free_path: 1365 btrfs_free_path(path); 1366 out: 1367 wake_up(&delayed_root->wait); 1368 kfree(async_work); 1369 } 1370 1371 1372 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1373 struct btrfs_fs_info *fs_info, int nr) 1374 { 1375 struct btrfs_async_delayed_work *async_work; 1376 1377 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1378 return 0; 1379 1380 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1381 if (!async_work) 1382 return -ENOMEM; 1383 1384 async_work->delayed_root = delayed_root; 1385 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, 1386 btrfs_async_run_delayed_root, NULL, NULL); 1387 async_work->nr = nr; 1388 1389 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1390 return 0; 1391 } 1392 1393 void btrfs_assert_delayed_root_empty(struct btrfs_root *root) 1394 { 1395 struct btrfs_delayed_root *delayed_root; 1396 delayed_root = btrfs_get_delayed_root(root); 1397 WARN_ON(btrfs_first_delayed_node(delayed_root)); 1398 } 1399 1400 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1401 { 1402 int val = atomic_read(&delayed_root->items_seq); 1403 1404 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1405 return 1; 1406 1407 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1408 return 1; 1409 1410 return 0; 1411 } 1412 1413 void btrfs_balance_delayed_items(struct btrfs_root *root) 1414 { 1415 struct btrfs_delayed_root *delayed_root; 1416 struct btrfs_fs_info *fs_info = root->fs_info; 1417 1418 delayed_root = btrfs_get_delayed_root(root); 1419 1420 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1421 return; 1422 1423 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1424 int seq; 1425 int ret; 1426 1427 seq = atomic_read(&delayed_root->items_seq); 1428 1429 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1430 if (ret) 1431 return; 1432 1433 wait_event_interruptible(delayed_root->wait, 1434 could_end_wait(delayed_root, seq)); 1435 return; 1436 } 1437 1438 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1439 } 1440 1441 /* Will return 0 or -ENOMEM */ 1442 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1443 struct btrfs_root *root, const char *name, 1444 int name_len, struct inode *dir, 1445 struct btrfs_disk_key *disk_key, u8 type, 1446 u64 index) 1447 { 1448 struct btrfs_delayed_node *delayed_node; 1449 struct btrfs_delayed_item *delayed_item; 1450 struct btrfs_dir_item *dir_item; 1451 int ret; 1452 1453 delayed_node = btrfs_get_or_create_delayed_node(dir); 1454 if (IS_ERR(delayed_node)) 1455 return PTR_ERR(delayed_node); 1456 1457 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1458 if (!delayed_item) { 1459 ret = -ENOMEM; 1460 goto release_node; 1461 } 1462 1463 delayed_item->key.objectid = btrfs_ino(dir); 1464 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1465 delayed_item->key.offset = index; 1466 1467 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1468 dir_item->location = *disk_key; 1469 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1470 btrfs_set_stack_dir_data_len(dir_item, 0); 1471 btrfs_set_stack_dir_name_len(dir_item, name_len); 1472 btrfs_set_stack_dir_type(dir_item, type); 1473 memcpy((char *)(dir_item + 1), name, name_len); 1474 1475 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); 1476 /* 1477 * we have reserved enough space when we start a new transaction, 1478 * so reserving metadata failure is impossible 1479 */ 1480 BUG_ON(ret); 1481 1482 1483 mutex_lock(&delayed_node->mutex); 1484 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1485 if (unlikely(ret)) { 1486 btrfs_err(root->fs_info, 1487 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1488 name_len, name, delayed_node->root->objectid, 1489 delayed_node->inode_id, ret); 1490 BUG(); 1491 } 1492 mutex_unlock(&delayed_node->mutex); 1493 1494 release_node: 1495 btrfs_release_delayed_node(delayed_node); 1496 return ret; 1497 } 1498 1499 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, 1500 struct btrfs_delayed_node *node, 1501 struct btrfs_key *key) 1502 { 1503 struct btrfs_delayed_item *item; 1504 1505 mutex_lock(&node->mutex); 1506 item = __btrfs_lookup_delayed_insertion_item(node, key); 1507 if (!item) { 1508 mutex_unlock(&node->mutex); 1509 return 1; 1510 } 1511 1512 btrfs_delayed_item_release_metadata(root, item); 1513 btrfs_release_delayed_item(item); 1514 mutex_unlock(&node->mutex); 1515 return 0; 1516 } 1517 1518 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1519 struct btrfs_root *root, struct inode *dir, 1520 u64 index) 1521 { 1522 struct btrfs_delayed_node *node; 1523 struct btrfs_delayed_item *item; 1524 struct btrfs_key item_key; 1525 int ret; 1526 1527 node = btrfs_get_or_create_delayed_node(dir); 1528 if (IS_ERR(node)) 1529 return PTR_ERR(node); 1530 1531 item_key.objectid = btrfs_ino(dir); 1532 item_key.type = BTRFS_DIR_INDEX_KEY; 1533 item_key.offset = index; 1534 1535 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); 1536 if (!ret) 1537 goto end; 1538 1539 item = btrfs_alloc_delayed_item(0); 1540 if (!item) { 1541 ret = -ENOMEM; 1542 goto end; 1543 } 1544 1545 item->key = item_key; 1546 1547 ret = btrfs_delayed_item_reserve_metadata(trans, root, item); 1548 /* 1549 * we have reserved enough space when we start a new transaction, 1550 * so reserving metadata failure is impossible. 1551 */ 1552 BUG_ON(ret); 1553 1554 mutex_lock(&node->mutex); 1555 ret = __btrfs_add_delayed_deletion_item(node, item); 1556 if (unlikely(ret)) { 1557 btrfs_err(root->fs_info, 1558 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1559 index, node->root->objectid, node->inode_id, ret); 1560 BUG(); 1561 } 1562 mutex_unlock(&node->mutex); 1563 end: 1564 btrfs_release_delayed_node(node); 1565 return ret; 1566 } 1567 1568 int btrfs_inode_delayed_dir_index_count(struct inode *inode) 1569 { 1570 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1571 1572 if (!delayed_node) 1573 return -ENOENT; 1574 1575 /* 1576 * Since we have held i_mutex of this directory, it is impossible that 1577 * a new directory index is added into the delayed node and index_cnt 1578 * is updated now. So we needn't lock the delayed node. 1579 */ 1580 if (!delayed_node->index_cnt) { 1581 btrfs_release_delayed_node(delayed_node); 1582 return -EINVAL; 1583 } 1584 1585 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; 1586 btrfs_release_delayed_node(delayed_node); 1587 return 0; 1588 } 1589 1590 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1591 struct list_head *ins_list, 1592 struct list_head *del_list) 1593 { 1594 struct btrfs_delayed_node *delayed_node; 1595 struct btrfs_delayed_item *item; 1596 1597 delayed_node = btrfs_get_delayed_node(inode); 1598 if (!delayed_node) 1599 return false; 1600 1601 /* 1602 * We can only do one readdir with delayed items at a time because of 1603 * item->readdir_list. 1604 */ 1605 inode_unlock_shared(inode); 1606 inode_lock(inode); 1607 1608 mutex_lock(&delayed_node->mutex); 1609 item = __btrfs_first_delayed_insertion_item(delayed_node); 1610 while (item) { 1611 atomic_inc(&item->refs); 1612 list_add_tail(&item->readdir_list, ins_list); 1613 item = __btrfs_next_delayed_item(item); 1614 } 1615 1616 item = __btrfs_first_delayed_deletion_item(delayed_node); 1617 while (item) { 1618 atomic_inc(&item->refs); 1619 list_add_tail(&item->readdir_list, del_list); 1620 item = __btrfs_next_delayed_item(item); 1621 } 1622 mutex_unlock(&delayed_node->mutex); 1623 /* 1624 * This delayed node is still cached in the btrfs inode, so refs 1625 * must be > 1 now, and we needn't check it is going to be freed 1626 * or not. 1627 * 1628 * Besides that, this function is used to read dir, we do not 1629 * insert/delete delayed items in this period. So we also needn't 1630 * requeue or dequeue this delayed node. 1631 */ 1632 atomic_dec(&delayed_node->refs); 1633 1634 return true; 1635 } 1636 1637 void btrfs_readdir_put_delayed_items(struct inode *inode, 1638 struct list_head *ins_list, 1639 struct list_head *del_list) 1640 { 1641 struct btrfs_delayed_item *curr, *next; 1642 1643 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1644 list_del(&curr->readdir_list); 1645 if (atomic_dec_and_test(&curr->refs)) 1646 kfree(curr); 1647 } 1648 1649 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1650 list_del(&curr->readdir_list); 1651 if (atomic_dec_and_test(&curr->refs)) 1652 kfree(curr); 1653 } 1654 1655 /* 1656 * The VFS is going to do up_read(), so we need to downgrade back to a 1657 * read lock. 1658 */ 1659 downgrade_write(&inode->i_rwsem); 1660 } 1661 1662 int btrfs_should_delete_dir_index(struct list_head *del_list, 1663 u64 index) 1664 { 1665 struct btrfs_delayed_item *curr, *next; 1666 int ret; 1667 1668 if (list_empty(del_list)) 1669 return 0; 1670 1671 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1672 if (curr->key.offset > index) 1673 break; 1674 1675 list_del(&curr->readdir_list); 1676 ret = (curr->key.offset == index); 1677 1678 if (atomic_dec_and_test(&curr->refs)) 1679 kfree(curr); 1680 1681 if (ret) 1682 return 1; 1683 else 1684 continue; 1685 } 1686 return 0; 1687 } 1688 1689 /* 1690 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1691 * 1692 */ 1693 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1694 struct list_head *ins_list) 1695 { 1696 struct btrfs_dir_item *di; 1697 struct btrfs_delayed_item *curr, *next; 1698 struct btrfs_key location; 1699 char *name; 1700 int name_len; 1701 int over = 0; 1702 unsigned char d_type; 1703 1704 if (list_empty(ins_list)) 1705 return 0; 1706 1707 /* 1708 * Changing the data of the delayed item is impossible. So 1709 * we needn't lock them. And we have held i_mutex of the 1710 * directory, nobody can delete any directory indexes now. 1711 */ 1712 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1713 list_del(&curr->readdir_list); 1714 1715 if (curr->key.offset < ctx->pos) { 1716 if (atomic_dec_and_test(&curr->refs)) 1717 kfree(curr); 1718 continue; 1719 } 1720 1721 ctx->pos = curr->key.offset; 1722 1723 di = (struct btrfs_dir_item *)curr->data; 1724 name = (char *)(di + 1); 1725 name_len = btrfs_stack_dir_name_len(di); 1726 1727 d_type = btrfs_filetype_table[di->type]; 1728 btrfs_disk_key_to_cpu(&location, &di->location); 1729 1730 over = !dir_emit(ctx, name, name_len, 1731 location.objectid, d_type); 1732 1733 if (atomic_dec_and_test(&curr->refs)) 1734 kfree(curr); 1735 1736 if (over) 1737 return 1; 1738 } 1739 return 0; 1740 } 1741 1742 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1743 struct btrfs_inode_item *inode_item, 1744 struct inode *inode) 1745 { 1746 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1747 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1748 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1749 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1750 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1751 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1752 btrfs_set_stack_inode_generation(inode_item, 1753 BTRFS_I(inode)->generation); 1754 btrfs_set_stack_inode_sequence(inode_item, inode->i_version); 1755 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1756 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1757 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1758 btrfs_set_stack_inode_block_group(inode_item, 0); 1759 1760 btrfs_set_stack_timespec_sec(&inode_item->atime, 1761 inode->i_atime.tv_sec); 1762 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1763 inode->i_atime.tv_nsec); 1764 1765 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1766 inode->i_mtime.tv_sec); 1767 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1768 inode->i_mtime.tv_nsec); 1769 1770 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1771 inode->i_ctime.tv_sec); 1772 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1773 inode->i_ctime.tv_nsec); 1774 1775 btrfs_set_stack_timespec_sec(&inode_item->otime, 1776 BTRFS_I(inode)->i_otime.tv_sec); 1777 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1778 BTRFS_I(inode)->i_otime.tv_nsec); 1779 } 1780 1781 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1782 { 1783 struct btrfs_delayed_node *delayed_node; 1784 struct btrfs_inode_item *inode_item; 1785 1786 delayed_node = btrfs_get_delayed_node(inode); 1787 if (!delayed_node) 1788 return -ENOENT; 1789 1790 mutex_lock(&delayed_node->mutex); 1791 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1792 mutex_unlock(&delayed_node->mutex); 1793 btrfs_release_delayed_node(delayed_node); 1794 return -ENOENT; 1795 } 1796 1797 inode_item = &delayed_node->inode_item; 1798 1799 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1800 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1801 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1802 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1803 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1804 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1805 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1806 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1807 1808 inode->i_version = btrfs_stack_inode_sequence(inode_item); 1809 inode->i_rdev = 0; 1810 *rdev = btrfs_stack_inode_rdev(inode_item); 1811 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1812 1813 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1814 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1815 1816 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1817 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1818 1819 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1820 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1821 1822 BTRFS_I(inode)->i_otime.tv_sec = 1823 btrfs_stack_timespec_sec(&inode_item->otime); 1824 BTRFS_I(inode)->i_otime.tv_nsec = 1825 btrfs_stack_timespec_nsec(&inode_item->otime); 1826 1827 inode->i_generation = BTRFS_I(inode)->generation; 1828 BTRFS_I(inode)->index_cnt = (u64)-1; 1829 1830 mutex_unlock(&delayed_node->mutex); 1831 btrfs_release_delayed_node(delayed_node); 1832 return 0; 1833 } 1834 1835 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1836 struct btrfs_root *root, struct inode *inode) 1837 { 1838 struct btrfs_delayed_node *delayed_node; 1839 int ret = 0; 1840 1841 delayed_node = btrfs_get_or_create_delayed_node(inode); 1842 if (IS_ERR(delayed_node)) 1843 return PTR_ERR(delayed_node); 1844 1845 mutex_lock(&delayed_node->mutex); 1846 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1847 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1848 goto release_node; 1849 } 1850 1851 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1852 delayed_node); 1853 if (ret) 1854 goto release_node; 1855 1856 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1857 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1858 delayed_node->count++; 1859 atomic_inc(&root->fs_info->delayed_root->items); 1860 release_node: 1861 mutex_unlock(&delayed_node->mutex); 1862 btrfs_release_delayed_node(delayed_node); 1863 return ret; 1864 } 1865 1866 int btrfs_delayed_delete_inode_ref(struct inode *inode) 1867 { 1868 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1869 struct btrfs_delayed_node *delayed_node; 1870 1871 /* 1872 * we don't do delayed inode updates during log recovery because it 1873 * leads to enospc problems. This means we also can't do 1874 * delayed inode refs 1875 */ 1876 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1877 return -EAGAIN; 1878 1879 delayed_node = btrfs_get_or_create_delayed_node(inode); 1880 if (IS_ERR(delayed_node)) 1881 return PTR_ERR(delayed_node); 1882 1883 /* 1884 * We don't reserve space for inode ref deletion is because: 1885 * - We ONLY do async inode ref deletion for the inode who has only 1886 * one link(i_nlink == 1), it means there is only one inode ref. 1887 * And in most case, the inode ref and the inode item are in the 1888 * same leaf, and we will deal with them at the same time. 1889 * Since we are sure we will reserve the space for the inode item, 1890 * it is unnecessary to reserve space for inode ref deletion. 1891 * - If the inode ref and the inode item are not in the same leaf, 1892 * We also needn't worry about enospc problem, because we reserve 1893 * much more space for the inode update than it needs. 1894 * - At the worst, we can steal some space from the global reservation. 1895 * It is very rare. 1896 */ 1897 mutex_lock(&delayed_node->mutex); 1898 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1899 goto release_node; 1900 1901 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1902 delayed_node->count++; 1903 atomic_inc(&fs_info->delayed_root->items); 1904 release_node: 1905 mutex_unlock(&delayed_node->mutex); 1906 btrfs_release_delayed_node(delayed_node); 1907 return 0; 1908 } 1909 1910 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1911 { 1912 struct btrfs_root *root = delayed_node->root; 1913 struct btrfs_delayed_item *curr_item, *prev_item; 1914 1915 mutex_lock(&delayed_node->mutex); 1916 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1917 while (curr_item) { 1918 btrfs_delayed_item_release_metadata(root, curr_item); 1919 prev_item = curr_item; 1920 curr_item = __btrfs_next_delayed_item(prev_item); 1921 btrfs_release_delayed_item(prev_item); 1922 } 1923 1924 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1925 while (curr_item) { 1926 btrfs_delayed_item_release_metadata(root, curr_item); 1927 prev_item = curr_item; 1928 curr_item = __btrfs_next_delayed_item(prev_item); 1929 btrfs_release_delayed_item(prev_item); 1930 } 1931 1932 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1933 btrfs_release_delayed_iref(delayed_node); 1934 1935 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1936 btrfs_delayed_inode_release_metadata(root, delayed_node); 1937 btrfs_release_delayed_inode(delayed_node); 1938 } 1939 mutex_unlock(&delayed_node->mutex); 1940 } 1941 1942 void btrfs_kill_delayed_inode_items(struct inode *inode) 1943 { 1944 struct btrfs_delayed_node *delayed_node; 1945 1946 delayed_node = btrfs_get_delayed_node(inode); 1947 if (!delayed_node) 1948 return; 1949 1950 __btrfs_kill_delayed_node(delayed_node); 1951 btrfs_release_delayed_node(delayed_node); 1952 } 1953 1954 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1955 { 1956 u64 inode_id = 0; 1957 struct btrfs_delayed_node *delayed_nodes[8]; 1958 int i, n; 1959 1960 while (1) { 1961 spin_lock(&root->inode_lock); 1962 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1963 (void **)delayed_nodes, inode_id, 1964 ARRAY_SIZE(delayed_nodes)); 1965 if (!n) { 1966 spin_unlock(&root->inode_lock); 1967 break; 1968 } 1969 1970 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1971 1972 for (i = 0; i < n; i++) 1973 atomic_inc(&delayed_nodes[i]->refs); 1974 spin_unlock(&root->inode_lock); 1975 1976 for (i = 0; i < n; i++) { 1977 __btrfs_kill_delayed_node(delayed_nodes[i]); 1978 btrfs_release_delayed_node(delayed_nodes[i]); 1979 } 1980 } 1981 } 1982 1983 void btrfs_destroy_delayed_inodes(struct btrfs_root *root) 1984 { 1985 struct btrfs_delayed_root *delayed_root; 1986 struct btrfs_delayed_node *curr_node, *prev_node; 1987 1988 delayed_root = btrfs_get_delayed_root(root); 1989 1990 curr_node = btrfs_first_delayed_node(delayed_root); 1991 while (curr_node) { 1992 __btrfs_kill_delayed_node(curr_node); 1993 1994 prev_node = curr_node; 1995 curr_node = btrfs_next_delayed_node(curr_node); 1996 btrfs_release_delayed_node(prev_node); 1997 } 1998 } 1999 2000