xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 0b246afa62b0cf5b09d078121f543135f28492ad)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25 
26 #define BTRFS_DELAYED_WRITEBACK		512
27 #define BTRFS_DELAYED_BACKGROUND	128
28 #define BTRFS_DELAYED_BATCH		16
29 
30 static struct kmem_cache *delayed_node_cache;
31 
32 int __init btrfs_delayed_inode_init(void)
33 {
34 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 					sizeof(struct btrfs_delayed_node),
36 					0,
37 					SLAB_MEM_SPREAD,
38 					NULL);
39 	if (!delayed_node_cache)
40 		return -ENOMEM;
41 	return 0;
42 }
43 
44 void btrfs_delayed_inode_exit(void)
45 {
46 	kmem_cache_destroy(delayed_node_cache);
47 }
48 
49 static inline void btrfs_init_delayed_node(
50 				struct btrfs_delayed_node *delayed_node,
51 				struct btrfs_root *root, u64 inode_id)
52 {
53 	delayed_node->root = root;
54 	delayed_node->inode_id = inode_id;
55 	atomic_set(&delayed_node->refs, 0);
56 	delayed_node->ins_root = RB_ROOT;
57 	delayed_node->del_root = RB_ROOT;
58 	mutex_init(&delayed_node->mutex);
59 	INIT_LIST_HEAD(&delayed_node->n_list);
60 	INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62 
63 static inline int btrfs_is_continuous_delayed_item(
64 					struct btrfs_delayed_item *item1,
65 					struct btrfs_delayed_item *item2)
66 {
67 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 	    item1->key.objectid == item2->key.objectid &&
69 	    item1->key.type == item2->key.type &&
70 	    item1->key.offset + 1 == item2->key.offset)
71 		return 1;
72 	return 0;
73 }
74 
75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
76 							struct btrfs_root *root)
77 {
78 	return root->fs_info->delayed_root;
79 }
80 
81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
82 {
83 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
84 	struct btrfs_root *root = btrfs_inode->root;
85 	u64 ino = btrfs_ino(inode);
86 	struct btrfs_delayed_node *node;
87 
88 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
89 	if (node) {
90 		atomic_inc(&node->refs);
91 		return node;
92 	}
93 
94 	spin_lock(&root->inode_lock);
95 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
96 	if (node) {
97 		if (btrfs_inode->delayed_node) {
98 			atomic_inc(&node->refs);	/* can be accessed */
99 			BUG_ON(btrfs_inode->delayed_node != node);
100 			spin_unlock(&root->inode_lock);
101 			return node;
102 		}
103 		btrfs_inode->delayed_node = node;
104 		/* can be accessed and cached in the inode */
105 		atomic_add(2, &node->refs);
106 		spin_unlock(&root->inode_lock);
107 		return node;
108 	}
109 	spin_unlock(&root->inode_lock);
110 
111 	return NULL;
112 }
113 
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
116 							struct inode *inode)
117 {
118 	struct btrfs_delayed_node *node;
119 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
120 	struct btrfs_root *root = btrfs_inode->root;
121 	u64 ino = btrfs_ino(inode);
122 	int ret;
123 
124 again:
125 	node = btrfs_get_delayed_node(inode);
126 	if (node)
127 		return node;
128 
129 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 	if (!node)
131 		return ERR_PTR(-ENOMEM);
132 	btrfs_init_delayed_node(node, root, ino);
133 
134 	/* cached in the btrfs inode and can be accessed */
135 	atomic_add(2, &node->refs);
136 
137 	ret = radix_tree_preload(GFP_NOFS);
138 	if (ret) {
139 		kmem_cache_free(delayed_node_cache, node);
140 		return ERR_PTR(ret);
141 	}
142 
143 	spin_lock(&root->inode_lock);
144 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 	if (ret == -EEXIST) {
146 		spin_unlock(&root->inode_lock);
147 		kmem_cache_free(delayed_node_cache, node);
148 		radix_tree_preload_end();
149 		goto again;
150 	}
151 	btrfs_inode->delayed_node = node;
152 	spin_unlock(&root->inode_lock);
153 	radix_tree_preload_end();
154 
155 	return node;
156 }
157 
158 /*
159  * Call it when holding delayed_node->mutex
160  *
161  * If mod = 1, add this node into the prepared list.
162  */
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 				     struct btrfs_delayed_node *node,
165 				     int mod)
166 {
167 	spin_lock(&root->lock);
168 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 		if (!list_empty(&node->p_list))
170 			list_move_tail(&node->p_list, &root->prepare_list);
171 		else if (mod)
172 			list_add_tail(&node->p_list, &root->prepare_list);
173 	} else {
174 		list_add_tail(&node->n_list, &root->node_list);
175 		list_add_tail(&node->p_list, &root->prepare_list);
176 		atomic_inc(&node->refs);	/* inserted into list */
177 		root->nodes++;
178 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 	}
180 	spin_unlock(&root->lock);
181 }
182 
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 				       struct btrfs_delayed_node *node)
186 {
187 	spin_lock(&root->lock);
188 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 		root->nodes--;
190 		atomic_dec(&node->refs);	/* not in the list */
191 		list_del_init(&node->n_list);
192 		if (!list_empty(&node->p_list))
193 			list_del_init(&node->p_list);
194 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 	}
196 	spin_unlock(&root->lock);
197 }
198 
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 			struct btrfs_delayed_root *delayed_root)
201 {
202 	struct list_head *p;
203 	struct btrfs_delayed_node *node = NULL;
204 
205 	spin_lock(&delayed_root->lock);
206 	if (list_empty(&delayed_root->node_list))
207 		goto out;
208 
209 	p = delayed_root->node_list.next;
210 	node = list_entry(p, struct btrfs_delayed_node, n_list);
211 	atomic_inc(&node->refs);
212 out:
213 	spin_unlock(&delayed_root->lock);
214 
215 	return node;
216 }
217 
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 						struct btrfs_delayed_node *node)
220 {
221 	struct btrfs_delayed_root *delayed_root;
222 	struct list_head *p;
223 	struct btrfs_delayed_node *next = NULL;
224 
225 	delayed_root = node->root->fs_info->delayed_root;
226 	spin_lock(&delayed_root->lock);
227 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 		/* not in the list */
229 		if (list_empty(&delayed_root->node_list))
230 			goto out;
231 		p = delayed_root->node_list.next;
232 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 		goto out;
234 	else
235 		p = node->n_list.next;
236 
237 	next = list_entry(p, struct btrfs_delayed_node, n_list);
238 	atomic_inc(&next->refs);
239 out:
240 	spin_unlock(&delayed_root->lock);
241 
242 	return next;
243 }
244 
245 static void __btrfs_release_delayed_node(
246 				struct btrfs_delayed_node *delayed_node,
247 				int mod)
248 {
249 	struct btrfs_delayed_root *delayed_root;
250 
251 	if (!delayed_node)
252 		return;
253 
254 	delayed_root = delayed_node->root->fs_info->delayed_root;
255 
256 	mutex_lock(&delayed_node->mutex);
257 	if (delayed_node->count)
258 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 	else
260 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 	mutex_unlock(&delayed_node->mutex);
262 
263 	if (atomic_dec_and_test(&delayed_node->refs)) {
264 		bool free = false;
265 		struct btrfs_root *root = delayed_node->root;
266 		spin_lock(&root->inode_lock);
267 		if (atomic_read(&delayed_node->refs) == 0) {
268 			radix_tree_delete(&root->delayed_nodes_tree,
269 					  delayed_node->inode_id);
270 			free = true;
271 		}
272 		spin_unlock(&root->inode_lock);
273 		if (free)
274 			kmem_cache_free(delayed_node_cache, delayed_node);
275 	}
276 }
277 
278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279 {
280 	__btrfs_release_delayed_node(node, 0);
281 }
282 
283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 					struct btrfs_delayed_root *delayed_root)
285 {
286 	struct list_head *p;
287 	struct btrfs_delayed_node *node = NULL;
288 
289 	spin_lock(&delayed_root->lock);
290 	if (list_empty(&delayed_root->prepare_list))
291 		goto out;
292 
293 	p = delayed_root->prepare_list.next;
294 	list_del_init(p);
295 	node = list_entry(p, struct btrfs_delayed_node, p_list);
296 	atomic_inc(&node->refs);
297 out:
298 	spin_unlock(&delayed_root->lock);
299 
300 	return node;
301 }
302 
303 static inline void btrfs_release_prepared_delayed_node(
304 					struct btrfs_delayed_node *node)
305 {
306 	__btrfs_release_delayed_node(node, 1);
307 }
308 
309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 {
311 	struct btrfs_delayed_item *item;
312 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 	if (item) {
314 		item->data_len = data_len;
315 		item->ins_or_del = 0;
316 		item->bytes_reserved = 0;
317 		item->delayed_node = NULL;
318 		atomic_set(&item->refs, 1);
319 	}
320 	return item;
321 }
322 
323 /*
324  * __btrfs_lookup_delayed_item - look up the delayed item by key
325  * @delayed_node: pointer to the delayed node
326  * @key:	  the key to look up
327  * @prev:	  used to store the prev item if the right item isn't found
328  * @next:	  used to store the next item if the right item isn't found
329  *
330  * Note: if we don't find the right item, we will return the prev item and
331  * the next item.
332  */
333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 				struct rb_root *root,
335 				struct btrfs_key *key,
336 				struct btrfs_delayed_item **prev,
337 				struct btrfs_delayed_item **next)
338 {
339 	struct rb_node *node, *prev_node = NULL;
340 	struct btrfs_delayed_item *delayed_item = NULL;
341 	int ret = 0;
342 
343 	node = root->rb_node;
344 
345 	while (node) {
346 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 					rb_node);
348 		prev_node = node;
349 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 		if (ret < 0)
351 			node = node->rb_right;
352 		else if (ret > 0)
353 			node = node->rb_left;
354 		else
355 			return delayed_item;
356 	}
357 
358 	if (prev) {
359 		if (!prev_node)
360 			*prev = NULL;
361 		else if (ret < 0)
362 			*prev = delayed_item;
363 		else if ((node = rb_prev(prev_node)) != NULL) {
364 			*prev = rb_entry(node, struct btrfs_delayed_item,
365 					 rb_node);
366 		} else
367 			*prev = NULL;
368 	}
369 
370 	if (next) {
371 		if (!prev_node)
372 			*next = NULL;
373 		else if (ret > 0)
374 			*next = delayed_item;
375 		else if ((node = rb_next(prev_node)) != NULL) {
376 			*next = rb_entry(node, struct btrfs_delayed_item,
377 					 rb_node);
378 		} else
379 			*next = NULL;
380 	}
381 	return NULL;
382 }
383 
384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 					struct btrfs_delayed_node *delayed_node,
386 					struct btrfs_key *key)
387 {
388 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
389 					   NULL, NULL);
390 }
391 
392 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
393 				    struct btrfs_delayed_item *ins,
394 				    int action)
395 {
396 	struct rb_node **p, *node;
397 	struct rb_node *parent_node = NULL;
398 	struct rb_root *root;
399 	struct btrfs_delayed_item *item;
400 	int cmp;
401 
402 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
403 		root = &delayed_node->ins_root;
404 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
405 		root = &delayed_node->del_root;
406 	else
407 		BUG();
408 	p = &root->rb_node;
409 	node = &ins->rb_node;
410 
411 	while (*p) {
412 		parent_node = *p;
413 		item = rb_entry(parent_node, struct btrfs_delayed_item,
414 				 rb_node);
415 
416 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
417 		if (cmp < 0)
418 			p = &(*p)->rb_right;
419 		else if (cmp > 0)
420 			p = &(*p)->rb_left;
421 		else
422 			return -EEXIST;
423 	}
424 
425 	rb_link_node(node, parent_node, p);
426 	rb_insert_color(node, root);
427 	ins->delayed_node = delayed_node;
428 	ins->ins_or_del = action;
429 
430 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
431 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
432 	    ins->key.offset >= delayed_node->index_cnt)
433 			delayed_node->index_cnt = ins->key.offset + 1;
434 
435 	delayed_node->count++;
436 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
437 	return 0;
438 }
439 
440 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
441 					      struct btrfs_delayed_item *item)
442 {
443 	return __btrfs_add_delayed_item(node, item,
444 					BTRFS_DELAYED_INSERTION_ITEM);
445 }
446 
447 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
448 					     struct btrfs_delayed_item *item)
449 {
450 	return __btrfs_add_delayed_item(node, item,
451 					BTRFS_DELAYED_DELETION_ITEM);
452 }
453 
454 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
455 {
456 	int seq = atomic_inc_return(&delayed_root->items_seq);
457 
458 	/*
459 	 * atomic_dec_return implies a barrier for waitqueue_active
460 	 */
461 	if ((atomic_dec_return(&delayed_root->items) <
462 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
463 	    waitqueue_active(&delayed_root->wait))
464 		wake_up(&delayed_root->wait);
465 }
466 
467 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
468 {
469 	struct rb_root *root;
470 	struct btrfs_delayed_root *delayed_root;
471 
472 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
473 
474 	BUG_ON(!delayed_root);
475 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
476 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
477 
478 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
479 		root = &delayed_item->delayed_node->ins_root;
480 	else
481 		root = &delayed_item->delayed_node->del_root;
482 
483 	rb_erase(&delayed_item->rb_node, root);
484 	delayed_item->delayed_node->count--;
485 
486 	finish_one_item(delayed_root);
487 }
488 
489 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
490 {
491 	if (item) {
492 		__btrfs_remove_delayed_item(item);
493 		if (atomic_dec_and_test(&item->refs))
494 			kfree(item);
495 	}
496 }
497 
498 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
499 					struct btrfs_delayed_node *delayed_node)
500 {
501 	struct rb_node *p;
502 	struct btrfs_delayed_item *item = NULL;
503 
504 	p = rb_first(&delayed_node->ins_root);
505 	if (p)
506 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
507 
508 	return item;
509 }
510 
511 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
512 					struct btrfs_delayed_node *delayed_node)
513 {
514 	struct rb_node *p;
515 	struct btrfs_delayed_item *item = NULL;
516 
517 	p = rb_first(&delayed_node->del_root);
518 	if (p)
519 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
520 
521 	return item;
522 }
523 
524 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
525 						struct btrfs_delayed_item *item)
526 {
527 	struct rb_node *p;
528 	struct btrfs_delayed_item *next = NULL;
529 
530 	p = rb_next(&item->rb_node);
531 	if (p)
532 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
533 
534 	return next;
535 }
536 
537 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
538 					       struct btrfs_root *root,
539 					       struct btrfs_delayed_item *item)
540 {
541 	struct btrfs_fs_info *fs_info = root->fs_info;
542 	struct btrfs_block_rsv *src_rsv;
543 	struct btrfs_block_rsv *dst_rsv;
544 	u64 num_bytes;
545 	int ret;
546 
547 	if (!trans->bytes_reserved)
548 		return 0;
549 
550 	src_rsv = trans->block_rsv;
551 	dst_rsv = &fs_info->delayed_block_rsv;
552 
553 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
554 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
555 	if (!ret) {
556 		trace_btrfs_space_reservation(fs_info, "delayed_item",
557 					      item->key.objectid,
558 					      num_bytes, 1);
559 		item->bytes_reserved = num_bytes;
560 	}
561 
562 	return ret;
563 }
564 
565 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
566 						struct btrfs_delayed_item *item)
567 {
568 	struct btrfs_fs_info *fs_info = root->fs_info;
569 	struct btrfs_block_rsv *rsv;
570 
571 	if (!item->bytes_reserved)
572 		return;
573 
574 	rsv = &fs_info->delayed_block_rsv;
575 	trace_btrfs_space_reservation(fs_info, "delayed_item",
576 				      item->key.objectid, item->bytes_reserved,
577 				      0);
578 	btrfs_block_rsv_release(root, rsv,
579 				item->bytes_reserved);
580 }
581 
582 static int btrfs_delayed_inode_reserve_metadata(
583 					struct btrfs_trans_handle *trans,
584 					struct btrfs_root *root,
585 					struct inode *inode,
586 					struct btrfs_delayed_node *node)
587 {
588 	struct btrfs_fs_info *fs_info = root->fs_info;
589 	struct btrfs_block_rsv *src_rsv;
590 	struct btrfs_block_rsv *dst_rsv;
591 	u64 num_bytes;
592 	int ret;
593 	bool release = false;
594 
595 	src_rsv = trans->block_rsv;
596 	dst_rsv = &fs_info->delayed_block_rsv;
597 
598 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
599 
600 	/*
601 	 * If our block_rsv is the delalloc block reserve then check and see if
602 	 * we have our extra reservation for updating the inode.  If not fall
603 	 * through and try to reserve space quickly.
604 	 *
605 	 * We used to try and steal from the delalloc block rsv or the global
606 	 * reserve, but we'd steal a full reservation, which isn't kind.  We are
607 	 * here through delalloc which means we've likely just cowed down close
608 	 * to the leaf that contains the inode, so we would steal less just
609 	 * doing the fallback inode update, so if we do end up having to steal
610 	 * from the global block rsv we hopefully only steal one or two blocks
611 	 * worth which is less likely to hurt us.
612 	 */
613 	if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
614 		spin_lock(&BTRFS_I(inode)->lock);
615 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
616 				       &BTRFS_I(inode)->runtime_flags))
617 			release = true;
618 		else
619 			src_rsv = NULL;
620 		spin_unlock(&BTRFS_I(inode)->lock);
621 	}
622 
623 	/*
624 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
625 	 * which doesn't reserve space for speed.  This is a problem since we
626 	 * still need to reserve space for this update, so try to reserve the
627 	 * space.
628 	 *
629 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
630 	 * we're accounted for.
631 	 */
632 	if (!src_rsv || (!trans->bytes_reserved &&
633 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
634 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 					  BTRFS_RESERVE_NO_FLUSH);
636 		/*
637 		 * Since we're under a transaction reserve_metadata_bytes could
638 		 * try to commit the transaction which will make it return
639 		 * EAGAIN to make us stop the transaction we have, so return
640 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 		 */
642 		if (ret == -EAGAIN)
643 			ret = -ENOSPC;
644 		if (!ret) {
645 			node->bytes_reserved = num_bytes;
646 			trace_btrfs_space_reservation(fs_info,
647 						      "delayed_inode",
648 						      btrfs_ino(inode),
649 						      num_bytes, 1);
650 		}
651 		return ret;
652 	}
653 
654 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
655 
656 	/*
657 	 * Migrate only takes a reservation, it doesn't touch the size of the
658 	 * block_rsv.  This is to simplify people who don't normally have things
659 	 * migrated from their block rsv.  If they go to release their
660 	 * reservation, that will decrease the size as well, so if migrate
661 	 * reduced size we'd end up with a negative size.  But for the
662 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
663 	 * but we could in fact do this reserve/migrate dance several times
664 	 * between the time we did the original reservation and we'd clean it
665 	 * up.  So to take care of this, release the space for the meta
666 	 * reservation here.  I think it may be time for a documentation page on
667 	 * how block rsvs. work.
668 	 */
669 	if (!ret) {
670 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
671 					      btrfs_ino(inode), num_bytes, 1);
672 		node->bytes_reserved = num_bytes;
673 	}
674 
675 	if (release) {
676 		trace_btrfs_space_reservation(fs_info, "delalloc",
677 					      btrfs_ino(inode), num_bytes, 0);
678 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
679 	}
680 
681 	return ret;
682 }
683 
684 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
685 						struct btrfs_delayed_node *node)
686 {
687 	struct btrfs_fs_info *fs_info = root->fs_info;
688 	struct btrfs_block_rsv *rsv;
689 
690 	if (!node->bytes_reserved)
691 		return;
692 
693 	rsv = &fs_info->delayed_block_rsv;
694 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
695 				      node->inode_id, node->bytes_reserved, 0);
696 	btrfs_block_rsv_release(root, rsv,
697 				node->bytes_reserved);
698 	node->bytes_reserved = 0;
699 }
700 
701 /*
702  * This helper will insert some continuous items into the same leaf according
703  * to the free space of the leaf.
704  */
705 static int btrfs_batch_insert_items(struct btrfs_root *root,
706 				    struct btrfs_path *path,
707 				    struct btrfs_delayed_item *item)
708 {
709 	struct btrfs_delayed_item *curr, *next;
710 	int free_space;
711 	int total_data_size = 0, total_size = 0;
712 	struct extent_buffer *leaf;
713 	char *data_ptr;
714 	struct btrfs_key *keys;
715 	u32 *data_size;
716 	struct list_head head;
717 	int slot;
718 	int nitems;
719 	int i;
720 	int ret = 0;
721 
722 	BUG_ON(!path->nodes[0]);
723 
724 	leaf = path->nodes[0];
725 	free_space = btrfs_leaf_free_space(root, leaf);
726 	INIT_LIST_HEAD(&head);
727 
728 	next = item;
729 	nitems = 0;
730 
731 	/*
732 	 * count the number of the continuous items that we can insert in batch
733 	 */
734 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
735 	       free_space) {
736 		total_data_size += next->data_len;
737 		total_size += next->data_len + sizeof(struct btrfs_item);
738 		list_add_tail(&next->tree_list, &head);
739 		nitems++;
740 
741 		curr = next;
742 		next = __btrfs_next_delayed_item(curr);
743 		if (!next)
744 			break;
745 
746 		if (!btrfs_is_continuous_delayed_item(curr, next))
747 			break;
748 	}
749 
750 	if (!nitems) {
751 		ret = 0;
752 		goto out;
753 	}
754 
755 	/*
756 	 * we need allocate some memory space, but it might cause the task
757 	 * to sleep, so we set all locked nodes in the path to blocking locks
758 	 * first.
759 	 */
760 	btrfs_set_path_blocking(path);
761 
762 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
763 	if (!keys) {
764 		ret = -ENOMEM;
765 		goto out;
766 	}
767 
768 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
769 	if (!data_size) {
770 		ret = -ENOMEM;
771 		goto error;
772 	}
773 
774 	/* get keys of all the delayed items */
775 	i = 0;
776 	list_for_each_entry(next, &head, tree_list) {
777 		keys[i] = next->key;
778 		data_size[i] = next->data_len;
779 		i++;
780 	}
781 
782 	/* reset all the locked nodes in the patch to spinning locks. */
783 	btrfs_clear_path_blocking(path, NULL, 0);
784 
785 	/* insert the keys of the items */
786 	setup_items_for_insert(root, path, keys, data_size,
787 			       total_data_size, total_size, nitems);
788 
789 	/* insert the dir index items */
790 	slot = path->slots[0];
791 	list_for_each_entry_safe(curr, next, &head, tree_list) {
792 		data_ptr = btrfs_item_ptr(leaf, slot, char);
793 		write_extent_buffer(leaf, &curr->data,
794 				    (unsigned long)data_ptr,
795 				    curr->data_len);
796 		slot++;
797 
798 		btrfs_delayed_item_release_metadata(root, curr);
799 
800 		list_del(&curr->tree_list);
801 		btrfs_release_delayed_item(curr);
802 	}
803 
804 error:
805 	kfree(data_size);
806 	kfree(keys);
807 out:
808 	return ret;
809 }
810 
811 /*
812  * This helper can just do simple insertion that needn't extend item for new
813  * data, such as directory name index insertion, inode insertion.
814  */
815 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
816 				     struct btrfs_root *root,
817 				     struct btrfs_path *path,
818 				     struct btrfs_delayed_item *delayed_item)
819 {
820 	struct extent_buffer *leaf;
821 	char *ptr;
822 	int ret;
823 
824 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
825 				      delayed_item->data_len);
826 	if (ret < 0 && ret != -EEXIST)
827 		return ret;
828 
829 	leaf = path->nodes[0];
830 
831 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
832 
833 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
834 			    delayed_item->data_len);
835 	btrfs_mark_buffer_dirty(leaf);
836 
837 	btrfs_delayed_item_release_metadata(root, delayed_item);
838 	return 0;
839 }
840 
841 /*
842  * we insert an item first, then if there are some continuous items, we try
843  * to insert those items into the same leaf.
844  */
845 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
846 				      struct btrfs_path *path,
847 				      struct btrfs_root *root,
848 				      struct btrfs_delayed_node *node)
849 {
850 	struct btrfs_delayed_item *curr, *prev;
851 	int ret = 0;
852 
853 do_again:
854 	mutex_lock(&node->mutex);
855 	curr = __btrfs_first_delayed_insertion_item(node);
856 	if (!curr)
857 		goto insert_end;
858 
859 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
860 	if (ret < 0) {
861 		btrfs_release_path(path);
862 		goto insert_end;
863 	}
864 
865 	prev = curr;
866 	curr = __btrfs_next_delayed_item(prev);
867 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
868 		/* insert the continuous items into the same leaf */
869 		path->slots[0]++;
870 		btrfs_batch_insert_items(root, path, curr);
871 	}
872 	btrfs_release_delayed_item(prev);
873 	btrfs_mark_buffer_dirty(path->nodes[0]);
874 
875 	btrfs_release_path(path);
876 	mutex_unlock(&node->mutex);
877 	goto do_again;
878 
879 insert_end:
880 	mutex_unlock(&node->mutex);
881 	return ret;
882 }
883 
884 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
885 				    struct btrfs_root *root,
886 				    struct btrfs_path *path,
887 				    struct btrfs_delayed_item *item)
888 {
889 	struct btrfs_delayed_item *curr, *next;
890 	struct extent_buffer *leaf;
891 	struct btrfs_key key;
892 	struct list_head head;
893 	int nitems, i, last_item;
894 	int ret = 0;
895 
896 	BUG_ON(!path->nodes[0]);
897 
898 	leaf = path->nodes[0];
899 
900 	i = path->slots[0];
901 	last_item = btrfs_header_nritems(leaf) - 1;
902 	if (i > last_item)
903 		return -ENOENT;	/* FIXME: Is errno suitable? */
904 
905 	next = item;
906 	INIT_LIST_HEAD(&head);
907 	btrfs_item_key_to_cpu(leaf, &key, i);
908 	nitems = 0;
909 	/*
910 	 * count the number of the dir index items that we can delete in batch
911 	 */
912 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
913 		list_add_tail(&next->tree_list, &head);
914 		nitems++;
915 
916 		curr = next;
917 		next = __btrfs_next_delayed_item(curr);
918 		if (!next)
919 			break;
920 
921 		if (!btrfs_is_continuous_delayed_item(curr, next))
922 			break;
923 
924 		i++;
925 		if (i > last_item)
926 			break;
927 		btrfs_item_key_to_cpu(leaf, &key, i);
928 	}
929 
930 	if (!nitems)
931 		return 0;
932 
933 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
934 	if (ret)
935 		goto out;
936 
937 	list_for_each_entry_safe(curr, next, &head, tree_list) {
938 		btrfs_delayed_item_release_metadata(root, curr);
939 		list_del(&curr->tree_list);
940 		btrfs_release_delayed_item(curr);
941 	}
942 
943 out:
944 	return ret;
945 }
946 
947 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
948 				      struct btrfs_path *path,
949 				      struct btrfs_root *root,
950 				      struct btrfs_delayed_node *node)
951 {
952 	struct btrfs_delayed_item *curr, *prev;
953 	int ret = 0;
954 
955 do_again:
956 	mutex_lock(&node->mutex);
957 	curr = __btrfs_first_delayed_deletion_item(node);
958 	if (!curr)
959 		goto delete_fail;
960 
961 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
962 	if (ret < 0)
963 		goto delete_fail;
964 	else if (ret > 0) {
965 		/*
966 		 * can't find the item which the node points to, so this node
967 		 * is invalid, just drop it.
968 		 */
969 		prev = curr;
970 		curr = __btrfs_next_delayed_item(prev);
971 		btrfs_release_delayed_item(prev);
972 		ret = 0;
973 		btrfs_release_path(path);
974 		if (curr) {
975 			mutex_unlock(&node->mutex);
976 			goto do_again;
977 		} else
978 			goto delete_fail;
979 	}
980 
981 	btrfs_batch_delete_items(trans, root, path, curr);
982 	btrfs_release_path(path);
983 	mutex_unlock(&node->mutex);
984 	goto do_again;
985 
986 delete_fail:
987 	btrfs_release_path(path);
988 	mutex_unlock(&node->mutex);
989 	return ret;
990 }
991 
992 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
993 {
994 	struct btrfs_delayed_root *delayed_root;
995 
996 	if (delayed_node &&
997 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
998 		BUG_ON(!delayed_node->root);
999 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1000 		delayed_node->count--;
1001 
1002 		delayed_root = delayed_node->root->fs_info->delayed_root;
1003 		finish_one_item(delayed_root);
1004 	}
1005 }
1006 
1007 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1008 {
1009 	struct btrfs_delayed_root *delayed_root;
1010 
1011 	ASSERT(delayed_node->root);
1012 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1013 	delayed_node->count--;
1014 
1015 	delayed_root = delayed_node->root->fs_info->delayed_root;
1016 	finish_one_item(delayed_root);
1017 }
1018 
1019 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1020 					struct btrfs_root *root,
1021 					struct btrfs_path *path,
1022 					struct btrfs_delayed_node *node)
1023 {
1024 	struct btrfs_key key;
1025 	struct btrfs_inode_item *inode_item;
1026 	struct extent_buffer *leaf;
1027 	int mod;
1028 	int ret;
1029 
1030 	key.objectid = node->inode_id;
1031 	key.type = BTRFS_INODE_ITEM_KEY;
1032 	key.offset = 0;
1033 
1034 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1035 		mod = -1;
1036 	else
1037 		mod = 1;
1038 
1039 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1040 	if (ret > 0) {
1041 		btrfs_release_path(path);
1042 		return -ENOENT;
1043 	} else if (ret < 0) {
1044 		return ret;
1045 	}
1046 
1047 	leaf = path->nodes[0];
1048 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1049 				    struct btrfs_inode_item);
1050 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1051 			    sizeof(struct btrfs_inode_item));
1052 	btrfs_mark_buffer_dirty(leaf);
1053 
1054 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1055 		goto no_iref;
1056 
1057 	path->slots[0]++;
1058 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1059 		goto search;
1060 again:
1061 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1062 	if (key.objectid != node->inode_id)
1063 		goto out;
1064 
1065 	if (key.type != BTRFS_INODE_REF_KEY &&
1066 	    key.type != BTRFS_INODE_EXTREF_KEY)
1067 		goto out;
1068 
1069 	/*
1070 	 * Delayed iref deletion is for the inode who has only one link,
1071 	 * so there is only one iref. The case that several irefs are
1072 	 * in the same item doesn't exist.
1073 	 */
1074 	btrfs_del_item(trans, root, path);
1075 out:
1076 	btrfs_release_delayed_iref(node);
1077 no_iref:
1078 	btrfs_release_path(path);
1079 err_out:
1080 	btrfs_delayed_inode_release_metadata(root, node);
1081 	btrfs_release_delayed_inode(node);
1082 
1083 	return ret;
1084 
1085 search:
1086 	btrfs_release_path(path);
1087 
1088 	key.type = BTRFS_INODE_EXTREF_KEY;
1089 	key.offset = -1;
1090 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1091 	if (ret < 0)
1092 		goto err_out;
1093 	ASSERT(ret);
1094 
1095 	ret = 0;
1096 	leaf = path->nodes[0];
1097 	path->slots[0]--;
1098 	goto again;
1099 }
1100 
1101 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1102 					     struct btrfs_root *root,
1103 					     struct btrfs_path *path,
1104 					     struct btrfs_delayed_node *node)
1105 {
1106 	int ret;
1107 
1108 	mutex_lock(&node->mutex);
1109 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1110 		mutex_unlock(&node->mutex);
1111 		return 0;
1112 	}
1113 
1114 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1115 	mutex_unlock(&node->mutex);
1116 	return ret;
1117 }
1118 
1119 static inline int
1120 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1121 				   struct btrfs_path *path,
1122 				   struct btrfs_delayed_node *node)
1123 {
1124 	int ret;
1125 
1126 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1127 	if (ret)
1128 		return ret;
1129 
1130 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1131 	if (ret)
1132 		return ret;
1133 
1134 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1135 	return ret;
1136 }
1137 
1138 /*
1139  * Called when committing the transaction.
1140  * Returns 0 on success.
1141  * Returns < 0 on error and returns with an aborted transaction with any
1142  * outstanding delayed items cleaned up.
1143  */
1144 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1145 				     struct btrfs_root *root, int nr)
1146 {
1147 	struct btrfs_fs_info *fs_info = root->fs_info;
1148 	struct btrfs_delayed_root *delayed_root;
1149 	struct btrfs_delayed_node *curr_node, *prev_node;
1150 	struct btrfs_path *path;
1151 	struct btrfs_block_rsv *block_rsv;
1152 	int ret = 0;
1153 	bool count = (nr > 0);
1154 
1155 	if (trans->aborted)
1156 		return -EIO;
1157 
1158 	path = btrfs_alloc_path();
1159 	if (!path)
1160 		return -ENOMEM;
1161 	path->leave_spinning = 1;
1162 
1163 	block_rsv = trans->block_rsv;
1164 	trans->block_rsv = &fs_info->delayed_block_rsv;
1165 
1166 	delayed_root = btrfs_get_delayed_root(root);
1167 
1168 	curr_node = btrfs_first_delayed_node(delayed_root);
1169 	while (curr_node && (!count || (count && nr--))) {
1170 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1171 							 curr_node);
1172 		if (ret) {
1173 			btrfs_release_delayed_node(curr_node);
1174 			curr_node = NULL;
1175 			btrfs_abort_transaction(trans, ret);
1176 			break;
1177 		}
1178 
1179 		prev_node = curr_node;
1180 		curr_node = btrfs_next_delayed_node(curr_node);
1181 		btrfs_release_delayed_node(prev_node);
1182 	}
1183 
1184 	if (curr_node)
1185 		btrfs_release_delayed_node(curr_node);
1186 	btrfs_free_path(path);
1187 	trans->block_rsv = block_rsv;
1188 
1189 	return ret;
1190 }
1191 
1192 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1193 			    struct btrfs_root *root)
1194 {
1195 	return __btrfs_run_delayed_items(trans, root, -1);
1196 }
1197 
1198 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1199 			       struct btrfs_root *root, int nr)
1200 {
1201 	return __btrfs_run_delayed_items(trans, root, nr);
1202 }
1203 
1204 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1205 				     struct inode *inode)
1206 {
1207 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1208 	struct btrfs_path *path;
1209 	struct btrfs_block_rsv *block_rsv;
1210 	int ret;
1211 
1212 	if (!delayed_node)
1213 		return 0;
1214 
1215 	mutex_lock(&delayed_node->mutex);
1216 	if (!delayed_node->count) {
1217 		mutex_unlock(&delayed_node->mutex);
1218 		btrfs_release_delayed_node(delayed_node);
1219 		return 0;
1220 	}
1221 	mutex_unlock(&delayed_node->mutex);
1222 
1223 	path = btrfs_alloc_path();
1224 	if (!path) {
1225 		btrfs_release_delayed_node(delayed_node);
1226 		return -ENOMEM;
1227 	}
1228 	path->leave_spinning = 1;
1229 
1230 	block_rsv = trans->block_rsv;
1231 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1232 
1233 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1234 
1235 	btrfs_release_delayed_node(delayed_node);
1236 	btrfs_free_path(path);
1237 	trans->block_rsv = block_rsv;
1238 
1239 	return ret;
1240 }
1241 
1242 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1243 {
1244 	struct btrfs_trans_handle *trans;
1245 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1246 	struct btrfs_path *path;
1247 	struct btrfs_block_rsv *block_rsv;
1248 	int ret;
1249 
1250 	if (!delayed_node)
1251 		return 0;
1252 
1253 	mutex_lock(&delayed_node->mutex);
1254 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1255 		mutex_unlock(&delayed_node->mutex);
1256 		btrfs_release_delayed_node(delayed_node);
1257 		return 0;
1258 	}
1259 	mutex_unlock(&delayed_node->mutex);
1260 
1261 	trans = btrfs_join_transaction(delayed_node->root);
1262 	if (IS_ERR(trans)) {
1263 		ret = PTR_ERR(trans);
1264 		goto out;
1265 	}
1266 
1267 	path = btrfs_alloc_path();
1268 	if (!path) {
1269 		ret = -ENOMEM;
1270 		goto trans_out;
1271 	}
1272 	path->leave_spinning = 1;
1273 
1274 	block_rsv = trans->block_rsv;
1275 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1276 
1277 	mutex_lock(&delayed_node->mutex);
1278 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1279 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1280 						   path, delayed_node);
1281 	else
1282 		ret = 0;
1283 	mutex_unlock(&delayed_node->mutex);
1284 
1285 	btrfs_free_path(path);
1286 	trans->block_rsv = block_rsv;
1287 trans_out:
1288 	btrfs_end_transaction(trans, delayed_node->root);
1289 	btrfs_btree_balance_dirty(delayed_node->root);
1290 out:
1291 	btrfs_release_delayed_node(delayed_node);
1292 
1293 	return ret;
1294 }
1295 
1296 void btrfs_remove_delayed_node(struct inode *inode)
1297 {
1298 	struct btrfs_delayed_node *delayed_node;
1299 
1300 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1301 	if (!delayed_node)
1302 		return;
1303 
1304 	BTRFS_I(inode)->delayed_node = NULL;
1305 	btrfs_release_delayed_node(delayed_node);
1306 }
1307 
1308 struct btrfs_async_delayed_work {
1309 	struct btrfs_delayed_root *delayed_root;
1310 	int nr;
1311 	struct btrfs_work work;
1312 };
1313 
1314 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1315 {
1316 	struct btrfs_async_delayed_work *async_work;
1317 	struct btrfs_delayed_root *delayed_root;
1318 	struct btrfs_trans_handle *trans;
1319 	struct btrfs_path *path;
1320 	struct btrfs_delayed_node *delayed_node = NULL;
1321 	struct btrfs_root *root;
1322 	struct btrfs_block_rsv *block_rsv;
1323 	int total_done = 0;
1324 
1325 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1326 	delayed_root = async_work->delayed_root;
1327 
1328 	path = btrfs_alloc_path();
1329 	if (!path)
1330 		goto out;
1331 
1332 again:
1333 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1334 		goto free_path;
1335 
1336 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1337 	if (!delayed_node)
1338 		goto free_path;
1339 
1340 	path->leave_spinning = 1;
1341 	root = delayed_node->root;
1342 
1343 	trans = btrfs_join_transaction(root);
1344 	if (IS_ERR(trans))
1345 		goto release_path;
1346 
1347 	block_rsv = trans->block_rsv;
1348 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1349 
1350 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1351 
1352 	trans->block_rsv = block_rsv;
1353 	btrfs_end_transaction(trans, root);
1354 	btrfs_btree_balance_dirty_nodelay(root);
1355 
1356 release_path:
1357 	btrfs_release_path(path);
1358 	total_done++;
1359 
1360 	btrfs_release_prepared_delayed_node(delayed_node);
1361 	if (async_work->nr == 0 || total_done < async_work->nr)
1362 		goto again;
1363 
1364 free_path:
1365 	btrfs_free_path(path);
1366 out:
1367 	wake_up(&delayed_root->wait);
1368 	kfree(async_work);
1369 }
1370 
1371 
1372 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373 				     struct btrfs_fs_info *fs_info, int nr)
1374 {
1375 	struct btrfs_async_delayed_work *async_work;
1376 
1377 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1378 		return 0;
1379 
1380 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1381 	if (!async_work)
1382 		return -ENOMEM;
1383 
1384 	async_work->delayed_root = delayed_root;
1385 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1386 			btrfs_async_run_delayed_root, NULL, NULL);
1387 	async_work->nr = nr;
1388 
1389 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1390 	return 0;
1391 }
1392 
1393 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1394 {
1395 	struct btrfs_delayed_root *delayed_root;
1396 	delayed_root = btrfs_get_delayed_root(root);
1397 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1398 }
1399 
1400 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1401 {
1402 	int val = atomic_read(&delayed_root->items_seq);
1403 
1404 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1405 		return 1;
1406 
1407 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1408 		return 1;
1409 
1410 	return 0;
1411 }
1412 
1413 void btrfs_balance_delayed_items(struct btrfs_root *root)
1414 {
1415 	struct btrfs_delayed_root *delayed_root;
1416 	struct btrfs_fs_info *fs_info = root->fs_info;
1417 
1418 	delayed_root = btrfs_get_delayed_root(root);
1419 
1420 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1421 		return;
1422 
1423 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1424 		int seq;
1425 		int ret;
1426 
1427 		seq = atomic_read(&delayed_root->items_seq);
1428 
1429 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1430 		if (ret)
1431 			return;
1432 
1433 		wait_event_interruptible(delayed_root->wait,
1434 					 could_end_wait(delayed_root, seq));
1435 		return;
1436 	}
1437 
1438 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1439 }
1440 
1441 /* Will return 0 or -ENOMEM */
1442 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1443 				   struct btrfs_root *root, const char *name,
1444 				   int name_len, struct inode *dir,
1445 				   struct btrfs_disk_key *disk_key, u8 type,
1446 				   u64 index)
1447 {
1448 	struct btrfs_delayed_node *delayed_node;
1449 	struct btrfs_delayed_item *delayed_item;
1450 	struct btrfs_dir_item *dir_item;
1451 	int ret;
1452 
1453 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1454 	if (IS_ERR(delayed_node))
1455 		return PTR_ERR(delayed_node);
1456 
1457 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1458 	if (!delayed_item) {
1459 		ret = -ENOMEM;
1460 		goto release_node;
1461 	}
1462 
1463 	delayed_item->key.objectid = btrfs_ino(dir);
1464 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1465 	delayed_item->key.offset = index;
1466 
1467 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1468 	dir_item->location = *disk_key;
1469 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1470 	btrfs_set_stack_dir_data_len(dir_item, 0);
1471 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1472 	btrfs_set_stack_dir_type(dir_item, type);
1473 	memcpy((char *)(dir_item + 1), name, name_len);
1474 
1475 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1476 	/*
1477 	 * we have reserved enough space when we start a new transaction,
1478 	 * so reserving metadata failure is impossible
1479 	 */
1480 	BUG_ON(ret);
1481 
1482 
1483 	mutex_lock(&delayed_node->mutex);
1484 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1485 	if (unlikely(ret)) {
1486 		btrfs_err(root->fs_info,
1487 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1488 			  name_len, name, delayed_node->root->objectid,
1489 			  delayed_node->inode_id, ret);
1490 		BUG();
1491 	}
1492 	mutex_unlock(&delayed_node->mutex);
1493 
1494 release_node:
1495 	btrfs_release_delayed_node(delayed_node);
1496 	return ret;
1497 }
1498 
1499 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1500 					       struct btrfs_delayed_node *node,
1501 					       struct btrfs_key *key)
1502 {
1503 	struct btrfs_delayed_item *item;
1504 
1505 	mutex_lock(&node->mutex);
1506 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1507 	if (!item) {
1508 		mutex_unlock(&node->mutex);
1509 		return 1;
1510 	}
1511 
1512 	btrfs_delayed_item_release_metadata(root, item);
1513 	btrfs_release_delayed_item(item);
1514 	mutex_unlock(&node->mutex);
1515 	return 0;
1516 }
1517 
1518 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1519 				   struct btrfs_root *root, struct inode *dir,
1520 				   u64 index)
1521 {
1522 	struct btrfs_delayed_node *node;
1523 	struct btrfs_delayed_item *item;
1524 	struct btrfs_key item_key;
1525 	int ret;
1526 
1527 	node = btrfs_get_or_create_delayed_node(dir);
1528 	if (IS_ERR(node))
1529 		return PTR_ERR(node);
1530 
1531 	item_key.objectid = btrfs_ino(dir);
1532 	item_key.type = BTRFS_DIR_INDEX_KEY;
1533 	item_key.offset = index;
1534 
1535 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1536 	if (!ret)
1537 		goto end;
1538 
1539 	item = btrfs_alloc_delayed_item(0);
1540 	if (!item) {
1541 		ret = -ENOMEM;
1542 		goto end;
1543 	}
1544 
1545 	item->key = item_key;
1546 
1547 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1548 	/*
1549 	 * we have reserved enough space when we start a new transaction,
1550 	 * so reserving metadata failure is impossible.
1551 	 */
1552 	BUG_ON(ret);
1553 
1554 	mutex_lock(&node->mutex);
1555 	ret = __btrfs_add_delayed_deletion_item(node, item);
1556 	if (unlikely(ret)) {
1557 		btrfs_err(root->fs_info,
1558 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1559 			  index, node->root->objectid, node->inode_id, ret);
1560 		BUG();
1561 	}
1562 	mutex_unlock(&node->mutex);
1563 end:
1564 	btrfs_release_delayed_node(node);
1565 	return ret;
1566 }
1567 
1568 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1569 {
1570 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1571 
1572 	if (!delayed_node)
1573 		return -ENOENT;
1574 
1575 	/*
1576 	 * Since we have held i_mutex of this directory, it is impossible that
1577 	 * a new directory index is added into the delayed node and index_cnt
1578 	 * is updated now. So we needn't lock the delayed node.
1579 	 */
1580 	if (!delayed_node->index_cnt) {
1581 		btrfs_release_delayed_node(delayed_node);
1582 		return -EINVAL;
1583 	}
1584 
1585 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1586 	btrfs_release_delayed_node(delayed_node);
1587 	return 0;
1588 }
1589 
1590 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1591 				     struct list_head *ins_list,
1592 				     struct list_head *del_list)
1593 {
1594 	struct btrfs_delayed_node *delayed_node;
1595 	struct btrfs_delayed_item *item;
1596 
1597 	delayed_node = btrfs_get_delayed_node(inode);
1598 	if (!delayed_node)
1599 		return false;
1600 
1601 	/*
1602 	 * We can only do one readdir with delayed items at a time because of
1603 	 * item->readdir_list.
1604 	 */
1605 	inode_unlock_shared(inode);
1606 	inode_lock(inode);
1607 
1608 	mutex_lock(&delayed_node->mutex);
1609 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1610 	while (item) {
1611 		atomic_inc(&item->refs);
1612 		list_add_tail(&item->readdir_list, ins_list);
1613 		item = __btrfs_next_delayed_item(item);
1614 	}
1615 
1616 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1617 	while (item) {
1618 		atomic_inc(&item->refs);
1619 		list_add_tail(&item->readdir_list, del_list);
1620 		item = __btrfs_next_delayed_item(item);
1621 	}
1622 	mutex_unlock(&delayed_node->mutex);
1623 	/*
1624 	 * This delayed node is still cached in the btrfs inode, so refs
1625 	 * must be > 1 now, and we needn't check it is going to be freed
1626 	 * or not.
1627 	 *
1628 	 * Besides that, this function is used to read dir, we do not
1629 	 * insert/delete delayed items in this period. So we also needn't
1630 	 * requeue or dequeue this delayed node.
1631 	 */
1632 	atomic_dec(&delayed_node->refs);
1633 
1634 	return true;
1635 }
1636 
1637 void btrfs_readdir_put_delayed_items(struct inode *inode,
1638 				     struct list_head *ins_list,
1639 				     struct list_head *del_list)
1640 {
1641 	struct btrfs_delayed_item *curr, *next;
1642 
1643 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1644 		list_del(&curr->readdir_list);
1645 		if (atomic_dec_and_test(&curr->refs))
1646 			kfree(curr);
1647 	}
1648 
1649 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1650 		list_del(&curr->readdir_list);
1651 		if (atomic_dec_and_test(&curr->refs))
1652 			kfree(curr);
1653 	}
1654 
1655 	/*
1656 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1657 	 * read lock.
1658 	 */
1659 	downgrade_write(&inode->i_rwsem);
1660 }
1661 
1662 int btrfs_should_delete_dir_index(struct list_head *del_list,
1663 				  u64 index)
1664 {
1665 	struct btrfs_delayed_item *curr, *next;
1666 	int ret;
1667 
1668 	if (list_empty(del_list))
1669 		return 0;
1670 
1671 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1672 		if (curr->key.offset > index)
1673 			break;
1674 
1675 		list_del(&curr->readdir_list);
1676 		ret = (curr->key.offset == index);
1677 
1678 		if (atomic_dec_and_test(&curr->refs))
1679 			kfree(curr);
1680 
1681 		if (ret)
1682 			return 1;
1683 		else
1684 			continue;
1685 	}
1686 	return 0;
1687 }
1688 
1689 /*
1690  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1691  *
1692  */
1693 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1694 				    struct list_head *ins_list)
1695 {
1696 	struct btrfs_dir_item *di;
1697 	struct btrfs_delayed_item *curr, *next;
1698 	struct btrfs_key location;
1699 	char *name;
1700 	int name_len;
1701 	int over = 0;
1702 	unsigned char d_type;
1703 
1704 	if (list_empty(ins_list))
1705 		return 0;
1706 
1707 	/*
1708 	 * Changing the data of the delayed item is impossible. So
1709 	 * we needn't lock them. And we have held i_mutex of the
1710 	 * directory, nobody can delete any directory indexes now.
1711 	 */
1712 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1713 		list_del(&curr->readdir_list);
1714 
1715 		if (curr->key.offset < ctx->pos) {
1716 			if (atomic_dec_and_test(&curr->refs))
1717 				kfree(curr);
1718 			continue;
1719 		}
1720 
1721 		ctx->pos = curr->key.offset;
1722 
1723 		di = (struct btrfs_dir_item *)curr->data;
1724 		name = (char *)(di + 1);
1725 		name_len = btrfs_stack_dir_name_len(di);
1726 
1727 		d_type = btrfs_filetype_table[di->type];
1728 		btrfs_disk_key_to_cpu(&location, &di->location);
1729 
1730 		over = !dir_emit(ctx, name, name_len,
1731 			       location.objectid, d_type);
1732 
1733 		if (atomic_dec_and_test(&curr->refs))
1734 			kfree(curr);
1735 
1736 		if (over)
1737 			return 1;
1738 	}
1739 	return 0;
1740 }
1741 
1742 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1743 				  struct btrfs_inode_item *inode_item,
1744 				  struct inode *inode)
1745 {
1746 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1747 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1748 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1749 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1750 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1751 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1752 	btrfs_set_stack_inode_generation(inode_item,
1753 					 BTRFS_I(inode)->generation);
1754 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1755 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1756 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1757 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1758 	btrfs_set_stack_inode_block_group(inode_item, 0);
1759 
1760 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1761 				     inode->i_atime.tv_sec);
1762 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1763 				      inode->i_atime.tv_nsec);
1764 
1765 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1766 				     inode->i_mtime.tv_sec);
1767 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1768 				      inode->i_mtime.tv_nsec);
1769 
1770 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1771 				     inode->i_ctime.tv_sec);
1772 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1773 				      inode->i_ctime.tv_nsec);
1774 
1775 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1776 				     BTRFS_I(inode)->i_otime.tv_sec);
1777 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1778 				     BTRFS_I(inode)->i_otime.tv_nsec);
1779 }
1780 
1781 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1782 {
1783 	struct btrfs_delayed_node *delayed_node;
1784 	struct btrfs_inode_item *inode_item;
1785 
1786 	delayed_node = btrfs_get_delayed_node(inode);
1787 	if (!delayed_node)
1788 		return -ENOENT;
1789 
1790 	mutex_lock(&delayed_node->mutex);
1791 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1792 		mutex_unlock(&delayed_node->mutex);
1793 		btrfs_release_delayed_node(delayed_node);
1794 		return -ENOENT;
1795 	}
1796 
1797 	inode_item = &delayed_node->inode_item;
1798 
1799 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1800 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1801 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1802 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1803 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1804 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1805 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1806         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1807 
1808 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1809 	inode->i_rdev = 0;
1810 	*rdev = btrfs_stack_inode_rdev(inode_item);
1811 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1812 
1813 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1814 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1815 
1816 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1817 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1818 
1819 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1820 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1821 
1822 	BTRFS_I(inode)->i_otime.tv_sec =
1823 		btrfs_stack_timespec_sec(&inode_item->otime);
1824 	BTRFS_I(inode)->i_otime.tv_nsec =
1825 		btrfs_stack_timespec_nsec(&inode_item->otime);
1826 
1827 	inode->i_generation = BTRFS_I(inode)->generation;
1828 	BTRFS_I(inode)->index_cnt = (u64)-1;
1829 
1830 	mutex_unlock(&delayed_node->mutex);
1831 	btrfs_release_delayed_node(delayed_node);
1832 	return 0;
1833 }
1834 
1835 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1836 			       struct btrfs_root *root, struct inode *inode)
1837 {
1838 	struct btrfs_delayed_node *delayed_node;
1839 	int ret = 0;
1840 
1841 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1842 	if (IS_ERR(delayed_node))
1843 		return PTR_ERR(delayed_node);
1844 
1845 	mutex_lock(&delayed_node->mutex);
1846 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1847 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1848 		goto release_node;
1849 	}
1850 
1851 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1852 						   delayed_node);
1853 	if (ret)
1854 		goto release_node;
1855 
1856 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1857 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1858 	delayed_node->count++;
1859 	atomic_inc(&root->fs_info->delayed_root->items);
1860 release_node:
1861 	mutex_unlock(&delayed_node->mutex);
1862 	btrfs_release_delayed_node(delayed_node);
1863 	return ret;
1864 }
1865 
1866 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1867 {
1868 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1869 	struct btrfs_delayed_node *delayed_node;
1870 
1871 	/*
1872 	 * we don't do delayed inode updates during log recovery because it
1873 	 * leads to enospc problems.  This means we also can't do
1874 	 * delayed inode refs
1875 	 */
1876 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1877 		return -EAGAIN;
1878 
1879 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1880 	if (IS_ERR(delayed_node))
1881 		return PTR_ERR(delayed_node);
1882 
1883 	/*
1884 	 * We don't reserve space for inode ref deletion is because:
1885 	 * - We ONLY do async inode ref deletion for the inode who has only
1886 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1887 	 *   And in most case, the inode ref and the inode item are in the
1888 	 *   same leaf, and we will deal with them at the same time.
1889 	 *   Since we are sure we will reserve the space for the inode item,
1890 	 *   it is unnecessary to reserve space for inode ref deletion.
1891 	 * - If the inode ref and the inode item are not in the same leaf,
1892 	 *   We also needn't worry about enospc problem, because we reserve
1893 	 *   much more space for the inode update than it needs.
1894 	 * - At the worst, we can steal some space from the global reservation.
1895 	 *   It is very rare.
1896 	 */
1897 	mutex_lock(&delayed_node->mutex);
1898 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1899 		goto release_node;
1900 
1901 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1902 	delayed_node->count++;
1903 	atomic_inc(&fs_info->delayed_root->items);
1904 release_node:
1905 	mutex_unlock(&delayed_node->mutex);
1906 	btrfs_release_delayed_node(delayed_node);
1907 	return 0;
1908 }
1909 
1910 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1911 {
1912 	struct btrfs_root *root = delayed_node->root;
1913 	struct btrfs_delayed_item *curr_item, *prev_item;
1914 
1915 	mutex_lock(&delayed_node->mutex);
1916 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1917 	while (curr_item) {
1918 		btrfs_delayed_item_release_metadata(root, curr_item);
1919 		prev_item = curr_item;
1920 		curr_item = __btrfs_next_delayed_item(prev_item);
1921 		btrfs_release_delayed_item(prev_item);
1922 	}
1923 
1924 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1925 	while (curr_item) {
1926 		btrfs_delayed_item_release_metadata(root, curr_item);
1927 		prev_item = curr_item;
1928 		curr_item = __btrfs_next_delayed_item(prev_item);
1929 		btrfs_release_delayed_item(prev_item);
1930 	}
1931 
1932 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1933 		btrfs_release_delayed_iref(delayed_node);
1934 
1935 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1936 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1937 		btrfs_release_delayed_inode(delayed_node);
1938 	}
1939 	mutex_unlock(&delayed_node->mutex);
1940 }
1941 
1942 void btrfs_kill_delayed_inode_items(struct inode *inode)
1943 {
1944 	struct btrfs_delayed_node *delayed_node;
1945 
1946 	delayed_node = btrfs_get_delayed_node(inode);
1947 	if (!delayed_node)
1948 		return;
1949 
1950 	__btrfs_kill_delayed_node(delayed_node);
1951 	btrfs_release_delayed_node(delayed_node);
1952 }
1953 
1954 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1955 {
1956 	u64 inode_id = 0;
1957 	struct btrfs_delayed_node *delayed_nodes[8];
1958 	int i, n;
1959 
1960 	while (1) {
1961 		spin_lock(&root->inode_lock);
1962 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1963 					   (void **)delayed_nodes, inode_id,
1964 					   ARRAY_SIZE(delayed_nodes));
1965 		if (!n) {
1966 			spin_unlock(&root->inode_lock);
1967 			break;
1968 		}
1969 
1970 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1971 
1972 		for (i = 0; i < n; i++)
1973 			atomic_inc(&delayed_nodes[i]->refs);
1974 		spin_unlock(&root->inode_lock);
1975 
1976 		for (i = 0; i < n; i++) {
1977 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1978 			btrfs_release_delayed_node(delayed_nodes[i]);
1979 		}
1980 	}
1981 }
1982 
1983 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1984 {
1985 	struct btrfs_delayed_root *delayed_root;
1986 	struct btrfs_delayed_node *curr_node, *prev_node;
1987 
1988 	delayed_root = btrfs_get_delayed_root(root);
1989 
1990 	curr_node = btrfs_first_delayed_node(delayed_root);
1991 	while (curr_node) {
1992 		__btrfs_kill_delayed_node(curr_node);
1993 
1994 		prev_node = curr_node;
1995 		curr_node = btrfs_next_delayed_node(curr_node);
1996 		btrfs_release_delayed_node(prev_node);
1997 	}
1998 }
1999 
2000