1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct btrfs_fs_info *fs_info, 25 struct extent_buffer *dst, 26 struct extent_buffer *src, int empty); 27 static int balance_node_right(struct btrfs_trans_handle *trans, 28 struct btrfs_fs_info *fs_info, 29 struct extent_buffer *dst_buf, 30 struct extent_buffer *src_buf); 31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 32 int level, int slot); 33 34 struct btrfs_path *btrfs_alloc_path(void) 35 { 36 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 37 } 38 39 /* 40 * set all locked nodes in the path to blocking locks. This should 41 * be done before scheduling 42 */ 43 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 44 { 45 int i; 46 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 47 if (!p->nodes[i] || !p->locks[i]) 48 continue; 49 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 50 if (p->locks[i] == BTRFS_READ_LOCK) 51 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 52 else if (p->locks[i] == BTRFS_WRITE_LOCK) 53 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 54 } 55 } 56 57 /* this also releases the path */ 58 void btrfs_free_path(struct btrfs_path *p) 59 { 60 if (!p) 61 return; 62 btrfs_release_path(p); 63 kmem_cache_free(btrfs_path_cachep, p); 64 } 65 66 /* 67 * path release drops references on the extent buffers in the path 68 * and it drops any locks held by this path 69 * 70 * It is safe to call this on paths that no locks or extent buffers held. 71 */ 72 noinline void btrfs_release_path(struct btrfs_path *p) 73 { 74 int i; 75 76 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 77 p->slots[i] = 0; 78 if (!p->nodes[i]) 79 continue; 80 if (p->locks[i]) { 81 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 82 p->locks[i] = 0; 83 } 84 free_extent_buffer(p->nodes[i]); 85 p->nodes[i] = NULL; 86 } 87 } 88 89 /* 90 * safely gets a reference on the root node of a tree. A lock 91 * is not taken, so a concurrent writer may put a different node 92 * at the root of the tree. See btrfs_lock_root_node for the 93 * looping required. 94 * 95 * The extent buffer returned by this has a reference taken, so 96 * it won't disappear. It may stop being the root of the tree 97 * at any time because there are no locks held. 98 */ 99 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 100 { 101 struct extent_buffer *eb; 102 103 while (1) { 104 rcu_read_lock(); 105 eb = rcu_dereference(root->node); 106 107 /* 108 * RCU really hurts here, we could free up the root node because 109 * it was COWed but we may not get the new root node yet so do 110 * the inc_not_zero dance and if it doesn't work then 111 * synchronize_rcu and try again. 112 */ 113 if (atomic_inc_not_zero(&eb->refs)) { 114 rcu_read_unlock(); 115 break; 116 } 117 rcu_read_unlock(); 118 synchronize_rcu(); 119 } 120 return eb; 121 } 122 123 /* loop around taking references on and locking the root node of the 124 * tree until you end up with a lock on the root. A locked buffer 125 * is returned, with a reference held. 126 */ 127 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 128 { 129 struct extent_buffer *eb; 130 131 while (1) { 132 eb = btrfs_root_node(root); 133 btrfs_tree_lock(eb); 134 if (eb == root->node) 135 break; 136 btrfs_tree_unlock(eb); 137 free_extent_buffer(eb); 138 } 139 return eb; 140 } 141 142 /* loop around taking references on and locking the root node of the 143 * tree until you end up with a lock on the root. A locked buffer 144 * is returned, with a reference held. 145 */ 146 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 147 { 148 struct extent_buffer *eb; 149 150 while (1) { 151 eb = btrfs_root_node(root); 152 btrfs_tree_read_lock(eb); 153 if (eb == root->node) 154 break; 155 btrfs_tree_read_unlock(eb); 156 free_extent_buffer(eb); 157 } 158 return eb; 159 } 160 161 /* cowonly root (everything not a reference counted cow subvolume), just get 162 * put onto a simple dirty list. transaction.c walks this to make sure they 163 * get properly updated on disk. 164 */ 165 static void add_root_to_dirty_list(struct btrfs_root *root) 166 { 167 struct btrfs_fs_info *fs_info = root->fs_info; 168 169 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 170 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 171 return; 172 173 spin_lock(&fs_info->trans_lock); 174 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 175 /* Want the extent tree to be the last on the list */ 176 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 177 list_move_tail(&root->dirty_list, 178 &fs_info->dirty_cowonly_roots); 179 else 180 list_move(&root->dirty_list, 181 &fs_info->dirty_cowonly_roots); 182 } 183 spin_unlock(&fs_info->trans_lock); 184 } 185 186 /* 187 * used by snapshot creation to make a copy of a root for a tree with 188 * a given objectid. The buffer with the new root node is returned in 189 * cow_ret, and this func returns zero on success or a negative error code. 190 */ 191 int btrfs_copy_root(struct btrfs_trans_handle *trans, 192 struct btrfs_root *root, 193 struct extent_buffer *buf, 194 struct extent_buffer **cow_ret, u64 new_root_objectid) 195 { 196 struct btrfs_fs_info *fs_info = root->fs_info; 197 struct extent_buffer *cow; 198 int ret = 0; 199 int level; 200 struct btrfs_disk_key disk_key; 201 202 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 203 trans->transid != fs_info->running_transaction->transid); 204 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 205 trans->transid != root->last_trans); 206 207 level = btrfs_header_level(buf); 208 if (level == 0) 209 btrfs_item_key(buf, &disk_key, 0); 210 else 211 btrfs_node_key(buf, &disk_key, 0); 212 213 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 214 &disk_key, level, buf->start, 0); 215 if (IS_ERR(cow)) 216 return PTR_ERR(cow); 217 218 copy_extent_buffer_full(cow, buf); 219 btrfs_set_header_bytenr(cow, cow->start); 220 btrfs_set_header_generation(cow, trans->transid); 221 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 222 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 223 BTRFS_HEADER_FLAG_RELOC); 224 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 225 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 226 else 227 btrfs_set_header_owner(cow, new_root_objectid); 228 229 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 230 231 WARN_ON(btrfs_header_generation(buf) > trans->transid); 232 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 233 ret = btrfs_inc_ref(trans, root, cow, 1); 234 else 235 ret = btrfs_inc_ref(trans, root, cow, 0); 236 237 if (ret) 238 return ret; 239 240 btrfs_mark_buffer_dirty(cow); 241 *cow_ret = cow; 242 return 0; 243 } 244 245 enum mod_log_op { 246 MOD_LOG_KEY_REPLACE, 247 MOD_LOG_KEY_ADD, 248 MOD_LOG_KEY_REMOVE, 249 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 250 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 251 MOD_LOG_MOVE_KEYS, 252 MOD_LOG_ROOT_REPLACE, 253 }; 254 255 struct tree_mod_root { 256 u64 logical; 257 u8 level; 258 }; 259 260 struct tree_mod_elem { 261 struct rb_node node; 262 u64 logical; 263 u64 seq; 264 enum mod_log_op op; 265 266 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 267 int slot; 268 269 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 270 u64 generation; 271 272 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 273 struct btrfs_disk_key key; 274 u64 blockptr; 275 276 /* this is used for op == MOD_LOG_MOVE_KEYS */ 277 struct { 278 int dst_slot; 279 int nr_items; 280 } move; 281 282 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 283 struct tree_mod_root old_root; 284 }; 285 286 /* 287 * Pull a new tree mod seq number for our operation. 288 */ 289 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 290 { 291 return atomic64_inc_return(&fs_info->tree_mod_seq); 292 } 293 294 /* 295 * This adds a new blocker to the tree mod log's blocker list if the @elem 296 * passed does not already have a sequence number set. So when a caller expects 297 * to record tree modifications, it should ensure to set elem->seq to zero 298 * before calling btrfs_get_tree_mod_seq. 299 * Returns a fresh, unused tree log modification sequence number, even if no new 300 * blocker was added. 301 */ 302 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 303 struct seq_list *elem) 304 { 305 write_lock(&fs_info->tree_mod_log_lock); 306 spin_lock(&fs_info->tree_mod_seq_lock); 307 if (!elem->seq) { 308 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 309 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 310 } 311 spin_unlock(&fs_info->tree_mod_seq_lock); 312 write_unlock(&fs_info->tree_mod_log_lock); 313 314 return elem->seq; 315 } 316 317 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 318 struct seq_list *elem) 319 { 320 struct rb_root *tm_root; 321 struct rb_node *node; 322 struct rb_node *next; 323 struct seq_list *cur_elem; 324 struct tree_mod_elem *tm; 325 u64 min_seq = (u64)-1; 326 u64 seq_putting = elem->seq; 327 328 if (!seq_putting) 329 return; 330 331 spin_lock(&fs_info->tree_mod_seq_lock); 332 list_del(&elem->list); 333 elem->seq = 0; 334 335 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 336 if (cur_elem->seq < min_seq) { 337 if (seq_putting > cur_elem->seq) { 338 /* 339 * blocker with lower sequence number exists, we 340 * cannot remove anything from the log 341 */ 342 spin_unlock(&fs_info->tree_mod_seq_lock); 343 return; 344 } 345 min_seq = cur_elem->seq; 346 } 347 } 348 spin_unlock(&fs_info->tree_mod_seq_lock); 349 350 /* 351 * anything that's lower than the lowest existing (read: blocked) 352 * sequence number can be removed from the tree. 353 */ 354 write_lock(&fs_info->tree_mod_log_lock); 355 tm_root = &fs_info->tree_mod_log; 356 for (node = rb_first(tm_root); node; node = next) { 357 next = rb_next(node); 358 tm = rb_entry(node, struct tree_mod_elem, node); 359 if (tm->seq > min_seq) 360 continue; 361 rb_erase(node, tm_root); 362 kfree(tm); 363 } 364 write_unlock(&fs_info->tree_mod_log_lock); 365 } 366 367 /* 368 * key order of the log: 369 * node/leaf start address -> sequence 370 * 371 * The 'start address' is the logical address of the *new* root node 372 * for root replace operations, or the logical address of the affected 373 * block for all other operations. 374 * 375 * Note: must be called with write lock for fs_info::tree_mod_log_lock. 376 */ 377 static noinline int 378 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 379 { 380 struct rb_root *tm_root; 381 struct rb_node **new; 382 struct rb_node *parent = NULL; 383 struct tree_mod_elem *cur; 384 385 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 386 387 tm_root = &fs_info->tree_mod_log; 388 new = &tm_root->rb_node; 389 while (*new) { 390 cur = rb_entry(*new, struct tree_mod_elem, node); 391 parent = *new; 392 if (cur->logical < tm->logical) 393 new = &((*new)->rb_left); 394 else if (cur->logical > tm->logical) 395 new = &((*new)->rb_right); 396 else if (cur->seq < tm->seq) 397 new = &((*new)->rb_left); 398 else if (cur->seq > tm->seq) 399 new = &((*new)->rb_right); 400 else 401 return -EEXIST; 402 } 403 404 rb_link_node(&tm->node, parent, new); 405 rb_insert_color(&tm->node, tm_root); 406 return 0; 407 } 408 409 /* 410 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 411 * returns zero with the tree_mod_log_lock acquired. The caller must hold 412 * this until all tree mod log insertions are recorded in the rb tree and then 413 * write unlock fs_info::tree_mod_log_lock. 414 */ 415 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 416 struct extent_buffer *eb) { 417 smp_mb(); 418 if (list_empty(&(fs_info)->tree_mod_seq_list)) 419 return 1; 420 if (eb && btrfs_header_level(eb) == 0) 421 return 1; 422 423 write_lock(&fs_info->tree_mod_log_lock); 424 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 425 write_unlock(&fs_info->tree_mod_log_lock); 426 return 1; 427 } 428 429 return 0; 430 } 431 432 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 433 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 434 struct extent_buffer *eb) 435 { 436 smp_mb(); 437 if (list_empty(&(fs_info)->tree_mod_seq_list)) 438 return 0; 439 if (eb && btrfs_header_level(eb) == 0) 440 return 0; 441 442 return 1; 443 } 444 445 static struct tree_mod_elem * 446 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 447 enum mod_log_op op, gfp_t flags) 448 { 449 struct tree_mod_elem *tm; 450 451 tm = kzalloc(sizeof(*tm), flags); 452 if (!tm) 453 return NULL; 454 455 tm->logical = eb->start; 456 if (op != MOD_LOG_KEY_ADD) { 457 btrfs_node_key(eb, &tm->key, slot); 458 tm->blockptr = btrfs_node_blockptr(eb, slot); 459 } 460 tm->op = op; 461 tm->slot = slot; 462 tm->generation = btrfs_node_ptr_generation(eb, slot); 463 RB_CLEAR_NODE(&tm->node); 464 465 return tm; 466 } 467 468 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 469 enum mod_log_op op, gfp_t flags) 470 { 471 struct tree_mod_elem *tm; 472 int ret; 473 474 if (!tree_mod_need_log(eb->fs_info, eb)) 475 return 0; 476 477 tm = alloc_tree_mod_elem(eb, slot, op, flags); 478 if (!tm) 479 return -ENOMEM; 480 481 if (tree_mod_dont_log(eb->fs_info, eb)) { 482 kfree(tm); 483 return 0; 484 } 485 486 ret = __tree_mod_log_insert(eb->fs_info, tm); 487 write_unlock(&eb->fs_info->tree_mod_log_lock); 488 if (ret) 489 kfree(tm); 490 491 return ret; 492 } 493 494 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 495 int dst_slot, int src_slot, int nr_items) 496 { 497 struct tree_mod_elem *tm = NULL; 498 struct tree_mod_elem **tm_list = NULL; 499 int ret = 0; 500 int i; 501 int locked = 0; 502 503 if (!tree_mod_need_log(eb->fs_info, eb)) 504 return 0; 505 506 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 507 if (!tm_list) 508 return -ENOMEM; 509 510 tm = kzalloc(sizeof(*tm), GFP_NOFS); 511 if (!tm) { 512 ret = -ENOMEM; 513 goto free_tms; 514 } 515 516 tm->logical = eb->start; 517 tm->slot = src_slot; 518 tm->move.dst_slot = dst_slot; 519 tm->move.nr_items = nr_items; 520 tm->op = MOD_LOG_MOVE_KEYS; 521 522 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 523 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 524 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 525 if (!tm_list[i]) { 526 ret = -ENOMEM; 527 goto free_tms; 528 } 529 } 530 531 if (tree_mod_dont_log(eb->fs_info, eb)) 532 goto free_tms; 533 locked = 1; 534 535 /* 536 * When we override something during the move, we log these removals. 537 * This can only happen when we move towards the beginning of the 538 * buffer, i.e. dst_slot < src_slot. 539 */ 540 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 541 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 542 if (ret) 543 goto free_tms; 544 } 545 546 ret = __tree_mod_log_insert(eb->fs_info, tm); 547 if (ret) 548 goto free_tms; 549 write_unlock(&eb->fs_info->tree_mod_log_lock); 550 kfree(tm_list); 551 552 return 0; 553 free_tms: 554 for (i = 0; i < nr_items; i++) { 555 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 556 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 557 kfree(tm_list[i]); 558 } 559 if (locked) 560 write_unlock(&eb->fs_info->tree_mod_log_lock); 561 kfree(tm_list); 562 kfree(tm); 563 564 return ret; 565 } 566 567 static inline int 568 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 569 struct tree_mod_elem **tm_list, 570 int nritems) 571 { 572 int i, j; 573 int ret; 574 575 for (i = nritems - 1; i >= 0; i--) { 576 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 577 if (ret) { 578 for (j = nritems - 1; j > i; j--) 579 rb_erase(&tm_list[j]->node, 580 &fs_info->tree_mod_log); 581 return ret; 582 } 583 } 584 585 return 0; 586 } 587 588 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 589 struct extent_buffer *new_root, int log_removal) 590 { 591 struct btrfs_fs_info *fs_info = old_root->fs_info; 592 struct tree_mod_elem *tm = NULL; 593 struct tree_mod_elem **tm_list = NULL; 594 int nritems = 0; 595 int ret = 0; 596 int i; 597 598 if (!tree_mod_need_log(fs_info, NULL)) 599 return 0; 600 601 if (log_removal && btrfs_header_level(old_root) > 0) { 602 nritems = btrfs_header_nritems(old_root); 603 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 604 GFP_NOFS); 605 if (!tm_list) { 606 ret = -ENOMEM; 607 goto free_tms; 608 } 609 for (i = 0; i < nritems; i++) { 610 tm_list[i] = alloc_tree_mod_elem(old_root, i, 611 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 612 if (!tm_list[i]) { 613 ret = -ENOMEM; 614 goto free_tms; 615 } 616 } 617 } 618 619 tm = kzalloc(sizeof(*tm), GFP_NOFS); 620 if (!tm) { 621 ret = -ENOMEM; 622 goto free_tms; 623 } 624 625 tm->logical = new_root->start; 626 tm->old_root.logical = old_root->start; 627 tm->old_root.level = btrfs_header_level(old_root); 628 tm->generation = btrfs_header_generation(old_root); 629 tm->op = MOD_LOG_ROOT_REPLACE; 630 631 if (tree_mod_dont_log(fs_info, NULL)) 632 goto free_tms; 633 634 if (tm_list) 635 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 636 if (!ret) 637 ret = __tree_mod_log_insert(fs_info, tm); 638 639 write_unlock(&fs_info->tree_mod_log_lock); 640 if (ret) 641 goto free_tms; 642 kfree(tm_list); 643 644 return ret; 645 646 free_tms: 647 if (tm_list) { 648 for (i = 0; i < nritems; i++) 649 kfree(tm_list[i]); 650 kfree(tm_list); 651 } 652 kfree(tm); 653 654 return ret; 655 } 656 657 static struct tree_mod_elem * 658 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 659 int smallest) 660 { 661 struct rb_root *tm_root; 662 struct rb_node *node; 663 struct tree_mod_elem *cur = NULL; 664 struct tree_mod_elem *found = NULL; 665 666 read_lock(&fs_info->tree_mod_log_lock); 667 tm_root = &fs_info->tree_mod_log; 668 node = tm_root->rb_node; 669 while (node) { 670 cur = rb_entry(node, struct tree_mod_elem, node); 671 if (cur->logical < start) { 672 node = node->rb_left; 673 } else if (cur->logical > start) { 674 node = node->rb_right; 675 } else if (cur->seq < min_seq) { 676 node = node->rb_left; 677 } else if (!smallest) { 678 /* we want the node with the highest seq */ 679 if (found) 680 BUG_ON(found->seq > cur->seq); 681 found = cur; 682 node = node->rb_left; 683 } else if (cur->seq > min_seq) { 684 /* we want the node with the smallest seq */ 685 if (found) 686 BUG_ON(found->seq < cur->seq); 687 found = cur; 688 node = node->rb_right; 689 } else { 690 found = cur; 691 break; 692 } 693 } 694 read_unlock(&fs_info->tree_mod_log_lock); 695 696 return found; 697 } 698 699 /* 700 * this returns the element from the log with the smallest time sequence 701 * value that's in the log (the oldest log item). any element with a time 702 * sequence lower than min_seq will be ignored. 703 */ 704 static struct tree_mod_elem * 705 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 706 u64 min_seq) 707 { 708 return __tree_mod_log_search(fs_info, start, min_seq, 1); 709 } 710 711 /* 712 * this returns the element from the log with the largest time sequence 713 * value that's in the log (the most recent log item). any element with 714 * a time sequence lower than min_seq will be ignored. 715 */ 716 static struct tree_mod_elem * 717 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 718 { 719 return __tree_mod_log_search(fs_info, start, min_seq, 0); 720 } 721 722 static noinline int 723 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 724 struct extent_buffer *src, unsigned long dst_offset, 725 unsigned long src_offset, int nr_items) 726 { 727 int ret = 0; 728 struct tree_mod_elem **tm_list = NULL; 729 struct tree_mod_elem **tm_list_add, **tm_list_rem; 730 int i; 731 int locked = 0; 732 733 if (!tree_mod_need_log(fs_info, NULL)) 734 return 0; 735 736 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 737 return 0; 738 739 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 740 GFP_NOFS); 741 if (!tm_list) 742 return -ENOMEM; 743 744 tm_list_add = tm_list; 745 tm_list_rem = tm_list + nr_items; 746 for (i = 0; i < nr_items; i++) { 747 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 748 MOD_LOG_KEY_REMOVE, GFP_NOFS); 749 if (!tm_list_rem[i]) { 750 ret = -ENOMEM; 751 goto free_tms; 752 } 753 754 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 755 MOD_LOG_KEY_ADD, GFP_NOFS); 756 if (!tm_list_add[i]) { 757 ret = -ENOMEM; 758 goto free_tms; 759 } 760 } 761 762 if (tree_mod_dont_log(fs_info, NULL)) 763 goto free_tms; 764 locked = 1; 765 766 for (i = 0; i < nr_items; i++) { 767 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 768 if (ret) 769 goto free_tms; 770 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 771 if (ret) 772 goto free_tms; 773 } 774 775 write_unlock(&fs_info->tree_mod_log_lock); 776 kfree(tm_list); 777 778 return 0; 779 780 free_tms: 781 for (i = 0; i < nr_items * 2; i++) { 782 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 783 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 784 kfree(tm_list[i]); 785 } 786 if (locked) 787 write_unlock(&fs_info->tree_mod_log_lock); 788 kfree(tm_list); 789 790 return ret; 791 } 792 793 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 794 { 795 struct tree_mod_elem **tm_list = NULL; 796 int nritems = 0; 797 int i; 798 int ret = 0; 799 800 if (btrfs_header_level(eb) == 0) 801 return 0; 802 803 if (!tree_mod_need_log(eb->fs_info, NULL)) 804 return 0; 805 806 nritems = btrfs_header_nritems(eb); 807 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 808 if (!tm_list) 809 return -ENOMEM; 810 811 for (i = 0; i < nritems; i++) { 812 tm_list[i] = alloc_tree_mod_elem(eb, i, 813 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 814 if (!tm_list[i]) { 815 ret = -ENOMEM; 816 goto free_tms; 817 } 818 } 819 820 if (tree_mod_dont_log(eb->fs_info, eb)) 821 goto free_tms; 822 823 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 824 write_unlock(&eb->fs_info->tree_mod_log_lock); 825 if (ret) 826 goto free_tms; 827 kfree(tm_list); 828 829 return 0; 830 831 free_tms: 832 for (i = 0; i < nritems; i++) 833 kfree(tm_list[i]); 834 kfree(tm_list); 835 836 return ret; 837 } 838 839 /* 840 * check if the tree block can be shared by multiple trees 841 */ 842 int btrfs_block_can_be_shared(struct btrfs_root *root, 843 struct extent_buffer *buf) 844 { 845 /* 846 * Tree blocks not in reference counted trees and tree roots 847 * are never shared. If a block was allocated after the last 848 * snapshot and the block was not allocated by tree relocation, 849 * we know the block is not shared. 850 */ 851 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 852 buf != root->node && buf != root->commit_root && 853 (btrfs_header_generation(buf) <= 854 btrfs_root_last_snapshot(&root->root_item) || 855 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 856 return 1; 857 858 return 0; 859 } 860 861 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 862 struct btrfs_root *root, 863 struct extent_buffer *buf, 864 struct extent_buffer *cow, 865 int *last_ref) 866 { 867 struct btrfs_fs_info *fs_info = root->fs_info; 868 u64 refs; 869 u64 owner; 870 u64 flags; 871 u64 new_flags = 0; 872 int ret; 873 874 /* 875 * Backrefs update rules: 876 * 877 * Always use full backrefs for extent pointers in tree block 878 * allocated by tree relocation. 879 * 880 * If a shared tree block is no longer referenced by its owner 881 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 882 * use full backrefs for extent pointers in tree block. 883 * 884 * If a tree block is been relocating 885 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 886 * use full backrefs for extent pointers in tree block. 887 * The reason for this is some operations (such as drop tree) 888 * are only allowed for blocks use full backrefs. 889 */ 890 891 if (btrfs_block_can_be_shared(root, buf)) { 892 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 893 btrfs_header_level(buf), 1, 894 &refs, &flags); 895 if (ret) 896 return ret; 897 if (refs == 0) { 898 ret = -EROFS; 899 btrfs_handle_fs_error(fs_info, ret, NULL); 900 return ret; 901 } 902 } else { 903 refs = 1; 904 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 905 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 906 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 907 else 908 flags = 0; 909 } 910 911 owner = btrfs_header_owner(buf); 912 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 913 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 914 915 if (refs > 1) { 916 if ((owner == root->root_key.objectid || 917 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 918 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 919 ret = btrfs_inc_ref(trans, root, buf, 1); 920 if (ret) 921 return ret; 922 923 if (root->root_key.objectid == 924 BTRFS_TREE_RELOC_OBJECTID) { 925 ret = btrfs_dec_ref(trans, root, buf, 0); 926 if (ret) 927 return ret; 928 ret = btrfs_inc_ref(trans, root, cow, 1); 929 if (ret) 930 return ret; 931 } 932 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 933 } else { 934 935 if (root->root_key.objectid == 936 BTRFS_TREE_RELOC_OBJECTID) 937 ret = btrfs_inc_ref(trans, root, cow, 1); 938 else 939 ret = btrfs_inc_ref(trans, root, cow, 0); 940 if (ret) 941 return ret; 942 } 943 if (new_flags != 0) { 944 int level = btrfs_header_level(buf); 945 946 ret = btrfs_set_disk_extent_flags(trans, fs_info, 947 buf->start, 948 buf->len, 949 new_flags, level, 0); 950 if (ret) 951 return ret; 952 } 953 } else { 954 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 955 if (root->root_key.objectid == 956 BTRFS_TREE_RELOC_OBJECTID) 957 ret = btrfs_inc_ref(trans, root, cow, 1); 958 else 959 ret = btrfs_inc_ref(trans, root, cow, 0); 960 if (ret) 961 return ret; 962 ret = btrfs_dec_ref(trans, root, buf, 1); 963 if (ret) 964 return ret; 965 } 966 clean_tree_block(fs_info, buf); 967 *last_ref = 1; 968 } 969 return 0; 970 } 971 972 static struct extent_buffer *alloc_tree_block_no_bg_flush( 973 struct btrfs_trans_handle *trans, 974 struct btrfs_root *root, 975 u64 parent_start, 976 const struct btrfs_disk_key *disk_key, 977 int level, 978 u64 hint, 979 u64 empty_size) 980 { 981 struct btrfs_fs_info *fs_info = root->fs_info; 982 struct extent_buffer *ret; 983 984 /* 985 * If we are COWing a node/leaf from the extent, chunk, device or free 986 * space trees, make sure that we do not finish block group creation of 987 * pending block groups. We do this to avoid a deadlock. 988 * COWing can result in allocation of a new chunk, and flushing pending 989 * block groups (btrfs_create_pending_block_groups()) can be triggered 990 * when finishing allocation of a new chunk. Creation of a pending block 991 * group modifies the extent, chunk, device and free space trees, 992 * therefore we could deadlock with ourselves since we are holding a 993 * lock on an extent buffer that btrfs_create_pending_block_groups() may 994 * try to COW later. 995 * For similar reasons, we also need to delay flushing pending block 996 * groups when splitting a leaf or node, from one of those trees, since 997 * we are holding a write lock on it and its parent or when inserting a 998 * new root node for one of those trees. 999 */ 1000 if (root == fs_info->extent_root || 1001 root == fs_info->chunk_root || 1002 root == fs_info->dev_root || 1003 root == fs_info->free_space_root) 1004 trans->can_flush_pending_bgs = false; 1005 1006 ret = btrfs_alloc_tree_block(trans, root, parent_start, 1007 root->root_key.objectid, disk_key, level, 1008 hint, empty_size); 1009 trans->can_flush_pending_bgs = true; 1010 1011 return ret; 1012 } 1013 1014 /* 1015 * does the dirty work in cow of a single block. The parent block (if 1016 * supplied) is updated to point to the new cow copy. The new buffer is marked 1017 * dirty and returned locked. If you modify the block it needs to be marked 1018 * dirty again. 1019 * 1020 * search_start -- an allocation hint for the new block 1021 * 1022 * empty_size -- a hint that you plan on doing more cow. This is the size in 1023 * bytes the allocator should try to find free next to the block it returns. 1024 * This is just a hint and may be ignored by the allocator. 1025 */ 1026 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1027 struct btrfs_root *root, 1028 struct extent_buffer *buf, 1029 struct extent_buffer *parent, int parent_slot, 1030 struct extent_buffer **cow_ret, 1031 u64 search_start, u64 empty_size) 1032 { 1033 struct btrfs_fs_info *fs_info = root->fs_info; 1034 struct btrfs_disk_key disk_key; 1035 struct extent_buffer *cow; 1036 int level, ret; 1037 int last_ref = 0; 1038 int unlock_orig = 0; 1039 u64 parent_start = 0; 1040 1041 if (*cow_ret == buf) 1042 unlock_orig = 1; 1043 1044 btrfs_assert_tree_locked(buf); 1045 1046 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1047 trans->transid != fs_info->running_transaction->transid); 1048 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1049 trans->transid != root->last_trans); 1050 1051 level = btrfs_header_level(buf); 1052 1053 if (level == 0) 1054 btrfs_item_key(buf, &disk_key, 0); 1055 else 1056 btrfs_node_key(buf, &disk_key, 0); 1057 1058 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1059 parent_start = parent->start; 1060 1061 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1062 level, search_start, empty_size); 1063 if (IS_ERR(cow)) 1064 return PTR_ERR(cow); 1065 1066 /* cow is set to blocking by btrfs_init_new_buffer */ 1067 1068 copy_extent_buffer_full(cow, buf); 1069 btrfs_set_header_bytenr(cow, cow->start); 1070 btrfs_set_header_generation(cow, trans->transid); 1071 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1072 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1073 BTRFS_HEADER_FLAG_RELOC); 1074 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1075 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1076 else 1077 btrfs_set_header_owner(cow, root->root_key.objectid); 1078 1079 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1080 1081 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1082 if (ret) { 1083 btrfs_abort_transaction(trans, ret); 1084 return ret; 1085 } 1086 1087 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1088 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1089 if (ret) { 1090 btrfs_abort_transaction(trans, ret); 1091 return ret; 1092 } 1093 } 1094 1095 if (buf == root->node) { 1096 WARN_ON(parent && parent != buf); 1097 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1098 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1099 parent_start = buf->start; 1100 1101 extent_buffer_get(cow); 1102 ret = tree_mod_log_insert_root(root->node, cow, 1); 1103 BUG_ON(ret < 0); 1104 rcu_assign_pointer(root->node, cow); 1105 1106 btrfs_free_tree_block(trans, root, buf, parent_start, 1107 last_ref); 1108 free_extent_buffer(buf); 1109 add_root_to_dirty_list(root); 1110 } else { 1111 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1112 tree_mod_log_insert_key(parent, parent_slot, 1113 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1114 btrfs_set_node_blockptr(parent, parent_slot, 1115 cow->start); 1116 btrfs_set_node_ptr_generation(parent, parent_slot, 1117 trans->transid); 1118 btrfs_mark_buffer_dirty(parent); 1119 if (last_ref) { 1120 ret = tree_mod_log_free_eb(buf); 1121 if (ret) { 1122 btrfs_abort_transaction(trans, ret); 1123 return ret; 1124 } 1125 } 1126 btrfs_free_tree_block(trans, root, buf, parent_start, 1127 last_ref); 1128 } 1129 if (unlock_orig) 1130 btrfs_tree_unlock(buf); 1131 free_extent_buffer_stale(buf); 1132 btrfs_mark_buffer_dirty(cow); 1133 *cow_ret = cow; 1134 return 0; 1135 } 1136 1137 /* 1138 * returns the logical address of the oldest predecessor of the given root. 1139 * entries older than time_seq are ignored. 1140 */ 1141 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1142 struct extent_buffer *eb_root, u64 time_seq) 1143 { 1144 struct tree_mod_elem *tm; 1145 struct tree_mod_elem *found = NULL; 1146 u64 root_logical = eb_root->start; 1147 int looped = 0; 1148 1149 if (!time_seq) 1150 return NULL; 1151 1152 /* 1153 * the very last operation that's logged for a root is the 1154 * replacement operation (if it is replaced at all). this has 1155 * the logical address of the *new* root, making it the very 1156 * first operation that's logged for this root. 1157 */ 1158 while (1) { 1159 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1160 time_seq); 1161 if (!looped && !tm) 1162 return NULL; 1163 /* 1164 * if there are no tree operation for the oldest root, we simply 1165 * return it. this should only happen if that (old) root is at 1166 * level 0. 1167 */ 1168 if (!tm) 1169 break; 1170 1171 /* 1172 * if there's an operation that's not a root replacement, we 1173 * found the oldest version of our root. normally, we'll find a 1174 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1175 */ 1176 if (tm->op != MOD_LOG_ROOT_REPLACE) 1177 break; 1178 1179 found = tm; 1180 root_logical = tm->old_root.logical; 1181 looped = 1; 1182 } 1183 1184 /* if there's no old root to return, return what we found instead */ 1185 if (!found) 1186 found = tm; 1187 1188 return found; 1189 } 1190 1191 /* 1192 * tm is a pointer to the first operation to rewind within eb. then, all 1193 * previous operations will be rewound (until we reach something older than 1194 * time_seq). 1195 */ 1196 static void 1197 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1198 u64 time_seq, struct tree_mod_elem *first_tm) 1199 { 1200 u32 n; 1201 struct rb_node *next; 1202 struct tree_mod_elem *tm = first_tm; 1203 unsigned long o_dst; 1204 unsigned long o_src; 1205 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1206 1207 n = btrfs_header_nritems(eb); 1208 read_lock(&fs_info->tree_mod_log_lock); 1209 while (tm && tm->seq >= time_seq) { 1210 /* 1211 * all the operations are recorded with the operator used for 1212 * the modification. as we're going backwards, we do the 1213 * opposite of each operation here. 1214 */ 1215 switch (tm->op) { 1216 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1217 BUG_ON(tm->slot < n); 1218 /* Fallthrough */ 1219 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1220 case MOD_LOG_KEY_REMOVE: 1221 btrfs_set_node_key(eb, &tm->key, tm->slot); 1222 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1223 btrfs_set_node_ptr_generation(eb, tm->slot, 1224 tm->generation); 1225 n++; 1226 break; 1227 case MOD_LOG_KEY_REPLACE: 1228 BUG_ON(tm->slot >= n); 1229 btrfs_set_node_key(eb, &tm->key, tm->slot); 1230 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1231 btrfs_set_node_ptr_generation(eb, tm->slot, 1232 tm->generation); 1233 break; 1234 case MOD_LOG_KEY_ADD: 1235 /* if a move operation is needed it's in the log */ 1236 n--; 1237 break; 1238 case MOD_LOG_MOVE_KEYS: 1239 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1240 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1241 memmove_extent_buffer(eb, o_dst, o_src, 1242 tm->move.nr_items * p_size); 1243 break; 1244 case MOD_LOG_ROOT_REPLACE: 1245 /* 1246 * this operation is special. for roots, this must be 1247 * handled explicitly before rewinding. 1248 * for non-roots, this operation may exist if the node 1249 * was a root: root A -> child B; then A gets empty and 1250 * B is promoted to the new root. in the mod log, we'll 1251 * have a root-replace operation for B, a tree block 1252 * that is no root. we simply ignore that operation. 1253 */ 1254 break; 1255 } 1256 next = rb_next(&tm->node); 1257 if (!next) 1258 break; 1259 tm = rb_entry(next, struct tree_mod_elem, node); 1260 if (tm->logical != first_tm->logical) 1261 break; 1262 } 1263 read_unlock(&fs_info->tree_mod_log_lock); 1264 btrfs_set_header_nritems(eb, n); 1265 } 1266 1267 /* 1268 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1269 * is returned. If rewind operations happen, a fresh buffer is returned. The 1270 * returned buffer is always read-locked. If the returned buffer is not the 1271 * input buffer, the lock on the input buffer is released and the input buffer 1272 * is freed (its refcount is decremented). 1273 */ 1274 static struct extent_buffer * 1275 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1276 struct extent_buffer *eb, u64 time_seq) 1277 { 1278 struct extent_buffer *eb_rewin; 1279 struct tree_mod_elem *tm; 1280 1281 if (!time_seq) 1282 return eb; 1283 1284 if (btrfs_header_level(eb) == 0) 1285 return eb; 1286 1287 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1288 if (!tm) 1289 return eb; 1290 1291 btrfs_set_path_blocking(path); 1292 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1293 1294 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1295 BUG_ON(tm->slot != 0); 1296 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1297 if (!eb_rewin) { 1298 btrfs_tree_read_unlock_blocking(eb); 1299 free_extent_buffer(eb); 1300 return NULL; 1301 } 1302 btrfs_set_header_bytenr(eb_rewin, eb->start); 1303 btrfs_set_header_backref_rev(eb_rewin, 1304 btrfs_header_backref_rev(eb)); 1305 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1306 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1307 } else { 1308 eb_rewin = btrfs_clone_extent_buffer(eb); 1309 if (!eb_rewin) { 1310 btrfs_tree_read_unlock_blocking(eb); 1311 free_extent_buffer(eb); 1312 return NULL; 1313 } 1314 } 1315 1316 btrfs_tree_read_unlock_blocking(eb); 1317 free_extent_buffer(eb); 1318 1319 btrfs_tree_read_lock(eb_rewin); 1320 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1321 WARN_ON(btrfs_header_nritems(eb_rewin) > 1322 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1323 1324 return eb_rewin; 1325 } 1326 1327 /* 1328 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1329 * value. If there are no changes, the current root->root_node is returned. If 1330 * anything changed in between, there's a fresh buffer allocated on which the 1331 * rewind operations are done. In any case, the returned buffer is read locked. 1332 * Returns NULL on error (with no locks held). 1333 */ 1334 static inline struct extent_buffer * 1335 get_old_root(struct btrfs_root *root, u64 time_seq) 1336 { 1337 struct btrfs_fs_info *fs_info = root->fs_info; 1338 struct tree_mod_elem *tm; 1339 struct extent_buffer *eb = NULL; 1340 struct extent_buffer *eb_root; 1341 struct extent_buffer *old; 1342 struct tree_mod_root *old_root = NULL; 1343 u64 old_generation = 0; 1344 u64 logical; 1345 int level; 1346 1347 eb_root = btrfs_read_lock_root_node(root); 1348 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1349 if (!tm) 1350 return eb_root; 1351 1352 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1353 old_root = &tm->old_root; 1354 old_generation = tm->generation; 1355 logical = old_root->logical; 1356 level = old_root->level; 1357 } else { 1358 logical = eb_root->start; 1359 level = btrfs_header_level(eb_root); 1360 } 1361 1362 tm = tree_mod_log_search(fs_info, logical, time_seq); 1363 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1364 btrfs_tree_read_unlock(eb_root); 1365 free_extent_buffer(eb_root); 1366 old = read_tree_block(fs_info, logical, 0, level, NULL); 1367 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1368 if (!IS_ERR(old)) 1369 free_extent_buffer(old); 1370 btrfs_warn(fs_info, 1371 "failed to read tree block %llu from get_old_root", 1372 logical); 1373 } else { 1374 eb = btrfs_clone_extent_buffer(old); 1375 free_extent_buffer(old); 1376 } 1377 } else if (old_root) { 1378 btrfs_tree_read_unlock(eb_root); 1379 free_extent_buffer(eb_root); 1380 eb = alloc_dummy_extent_buffer(fs_info, logical); 1381 } else { 1382 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1383 eb = btrfs_clone_extent_buffer(eb_root); 1384 btrfs_tree_read_unlock_blocking(eb_root); 1385 free_extent_buffer(eb_root); 1386 } 1387 1388 if (!eb) 1389 return NULL; 1390 btrfs_tree_read_lock(eb); 1391 if (old_root) { 1392 btrfs_set_header_bytenr(eb, eb->start); 1393 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1394 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1395 btrfs_set_header_level(eb, old_root->level); 1396 btrfs_set_header_generation(eb, old_generation); 1397 } 1398 if (tm) 1399 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1400 else 1401 WARN_ON(btrfs_header_level(eb) != 0); 1402 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1403 1404 return eb; 1405 } 1406 1407 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1408 { 1409 struct tree_mod_elem *tm; 1410 int level; 1411 struct extent_buffer *eb_root = btrfs_root_node(root); 1412 1413 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1414 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1415 level = tm->old_root.level; 1416 } else { 1417 level = btrfs_header_level(eb_root); 1418 } 1419 free_extent_buffer(eb_root); 1420 1421 return level; 1422 } 1423 1424 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1425 struct btrfs_root *root, 1426 struct extent_buffer *buf) 1427 { 1428 if (btrfs_is_testing(root->fs_info)) 1429 return 0; 1430 1431 /* Ensure we can see the FORCE_COW bit */ 1432 smp_mb__before_atomic(); 1433 1434 /* 1435 * We do not need to cow a block if 1436 * 1) this block is not created or changed in this transaction; 1437 * 2) this block does not belong to TREE_RELOC tree; 1438 * 3) the root is not forced COW. 1439 * 1440 * What is forced COW: 1441 * when we create snapshot during committing the transaction, 1442 * after we've finished copying src root, we must COW the shared 1443 * block to ensure the metadata consistency. 1444 */ 1445 if (btrfs_header_generation(buf) == trans->transid && 1446 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1447 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1448 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1449 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1450 return 0; 1451 return 1; 1452 } 1453 1454 /* 1455 * cows a single block, see __btrfs_cow_block for the real work. 1456 * This version of it has extra checks so that a block isn't COWed more than 1457 * once per transaction, as long as it hasn't been written yet 1458 */ 1459 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1460 struct btrfs_root *root, struct extent_buffer *buf, 1461 struct extent_buffer *parent, int parent_slot, 1462 struct extent_buffer **cow_ret) 1463 { 1464 struct btrfs_fs_info *fs_info = root->fs_info; 1465 u64 search_start; 1466 int ret; 1467 1468 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1469 btrfs_err(fs_info, 1470 "COW'ing blocks on a fs root that's being dropped"); 1471 1472 if (trans->transaction != fs_info->running_transaction) 1473 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1474 trans->transid, 1475 fs_info->running_transaction->transid); 1476 1477 if (trans->transid != fs_info->generation) 1478 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1479 trans->transid, fs_info->generation); 1480 1481 if (!should_cow_block(trans, root, buf)) { 1482 trans->dirty = true; 1483 *cow_ret = buf; 1484 return 0; 1485 } 1486 1487 search_start = buf->start & ~((u64)SZ_1G - 1); 1488 1489 if (parent) 1490 btrfs_set_lock_blocking(parent); 1491 btrfs_set_lock_blocking(buf); 1492 1493 /* 1494 * Before CoWing this block for later modification, check if it's 1495 * the subtree root and do the delayed subtree trace if needed. 1496 * 1497 * Also We don't care about the error, as it's handled internally. 1498 */ 1499 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1500 ret = __btrfs_cow_block(trans, root, buf, parent, 1501 parent_slot, cow_ret, search_start, 0); 1502 1503 trace_btrfs_cow_block(root, buf, *cow_ret); 1504 1505 return ret; 1506 } 1507 1508 /* 1509 * helper function for defrag to decide if two blocks pointed to by a 1510 * node are actually close by 1511 */ 1512 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1513 { 1514 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1515 return 1; 1516 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1517 return 1; 1518 return 0; 1519 } 1520 1521 /* 1522 * compare two keys in a memcmp fashion 1523 */ 1524 static int comp_keys(const struct btrfs_disk_key *disk, 1525 const struct btrfs_key *k2) 1526 { 1527 struct btrfs_key k1; 1528 1529 btrfs_disk_key_to_cpu(&k1, disk); 1530 1531 return btrfs_comp_cpu_keys(&k1, k2); 1532 } 1533 1534 /* 1535 * same as comp_keys only with two btrfs_key's 1536 */ 1537 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1538 { 1539 if (k1->objectid > k2->objectid) 1540 return 1; 1541 if (k1->objectid < k2->objectid) 1542 return -1; 1543 if (k1->type > k2->type) 1544 return 1; 1545 if (k1->type < k2->type) 1546 return -1; 1547 if (k1->offset > k2->offset) 1548 return 1; 1549 if (k1->offset < k2->offset) 1550 return -1; 1551 return 0; 1552 } 1553 1554 /* 1555 * this is used by the defrag code to go through all the 1556 * leaves pointed to by a node and reallocate them so that 1557 * disk order is close to key order 1558 */ 1559 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1560 struct btrfs_root *root, struct extent_buffer *parent, 1561 int start_slot, u64 *last_ret, 1562 struct btrfs_key *progress) 1563 { 1564 struct btrfs_fs_info *fs_info = root->fs_info; 1565 struct extent_buffer *cur; 1566 u64 blocknr; 1567 u64 gen; 1568 u64 search_start = *last_ret; 1569 u64 last_block = 0; 1570 u64 other; 1571 u32 parent_nritems; 1572 int end_slot; 1573 int i; 1574 int err = 0; 1575 int parent_level; 1576 int uptodate; 1577 u32 blocksize; 1578 int progress_passed = 0; 1579 struct btrfs_disk_key disk_key; 1580 1581 parent_level = btrfs_header_level(parent); 1582 1583 WARN_ON(trans->transaction != fs_info->running_transaction); 1584 WARN_ON(trans->transid != fs_info->generation); 1585 1586 parent_nritems = btrfs_header_nritems(parent); 1587 blocksize = fs_info->nodesize; 1588 end_slot = parent_nritems - 1; 1589 1590 if (parent_nritems <= 1) 1591 return 0; 1592 1593 btrfs_set_lock_blocking(parent); 1594 1595 for (i = start_slot; i <= end_slot; i++) { 1596 struct btrfs_key first_key; 1597 int close = 1; 1598 1599 btrfs_node_key(parent, &disk_key, i); 1600 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1601 continue; 1602 1603 progress_passed = 1; 1604 blocknr = btrfs_node_blockptr(parent, i); 1605 gen = btrfs_node_ptr_generation(parent, i); 1606 btrfs_node_key_to_cpu(parent, &first_key, i); 1607 if (last_block == 0) 1608 last_block = blocknr; 1609 1610 if (i > 0) { 1611 other = btrfs_node_blockptr(parent, i - 1); 1612 close = close_blocks(blocknr, other, blocksize); 1613 } 1614 if (!close && i < end_slot) { 1615 other = btrfs_node_blockptr(parent, i + 1); 1616 close = close_blocks(blocknr, other, blocksize); 1617 } 1618 if (close) { 1619 last_block = blocknr; 1620 continue; 1621 } 1622 1623 cur = find_extent_buffer(fs_info, blocknr); 1624 if (cur) 1625 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1626 else 1627 uptodate = 0; 1628 if (!cur || !uptodate) { 1629 if (!cur) { 1630 cur = read_tree_block(fs_info, blocknr, gen, 1631 parent_level - 1, 1632 &first_key); 1633 if (IS_ERR(cur)) { 1634 return PTR_ERR(cur); 1635 } else if (!extent_buffer_uptodate(cur)) { 1636 free_extent_buffer(cur); 1637 return -EIO; 1638 } 1639 } else if (!uptodate) { 1640 err = btrfs_read_buffer(cur, gen, 1641 parent_level - 1,&first_key); 1642 if (err) { 1643 free_extent_buffer(cur); 1644 return err; 1645 } 1646 } 1647 } 1648 if (search_start == 0) 1649 search_start = last_block; 1650 1651 btrfs_tree_lock(cur); 1652 btrfs_set_lock_blocking(cur); 1653 err = __btrfs_cow_block(trans, root, cur, parent, i, 1654 &cur, search_start, 1655 min(16 * blocksize, 1656 (end_slot - i) * blocksize)); 1657 if (err) { 1658 btrfs_tree_unlock(cur); 1659 free_extent_buffer(cur); 1660 break; 1661 } 1662 search_start = cur->start; 1663 last_block = cur->start; 1664 *last_ret = search_start; 1665 btrfs_tree_unlock(cur); 1666 free_extent_buffer(cur); 1667 } 1668 return err; 1669 } 1670 1671 /* 1672 * search for key in the extent_buffer. The items start at offset p, 1673 * and they are item_size apart. There are 'max' items in p. 1674 * 1675 * the slot in the array is returned via slot, and it points to 1676 * the place where you would insert key if it is not found in 1677 * the array. 1678 * 1679 * slot may point to max if the key is bigger than all of the keys 1680 */ 1681 static noinline int generic_bin_search(struct extent_buffer *eb, 1682 unsigned long p, int item_size, 1683 const struct btrfs_key *key, 1684 int max, int *slot) 1685 { 1686 int low = 0; 1687 int high = max; 1688 int mid; 1689 int ret; 1690 struct btrfs_disk_key *tmp = NULL; 1691 struct btrfs_disk_key unaligned; 1692 unsigned long offset; 1693 char *kaddr = NULL; 1694 unsigned long map_start = 0; 1695 unsigned long map_len = 0; 1696 int err; 1697 1698 if (low > high) { 1699 btrfs_err(eb->fs_info, 1700 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1701 __func__, low, high, eb->start, 1702 btrfs_header_owner(eb), btrfs_header_level(eb)); 1703 return -EINVAL; 1704 } 1705 1706 while (low < high) { 1707 mid = (low + high) / 2; 1708 offset = p + mid * item_size; 1709 1710 if (!kaddr || offset < map_start || 1711 (offset + sizeof(struct btrfs_disk_key)) > 1712 map_start + map_len) { 1713 1714 err = map_private_extent_buffer(eb, offset, 1715 sizeof(struct btrfs_disk_key), 1716 &kaddr, &map_start, &map_len); 1717 1718 if (!err) { 1719 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1720 map_start); 1721 } else if (err == 1) { 1722 read_extent_buffer(eb, &unaligned, 1723 offset, sizeof(unaligned)); 1724 tmp = &unaligned; 1725 } else { 1726 return err; 1727 } 1728 1729 } else { 1730 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1731 map_start); 1732 } 1733 ret = comp_keys(tmp, key); 1734 1735 if (ret < 0) 1736 low = mid + 1; 1737 else if (ret > 0) 1738 high = mid; 1739 else { 1740 *slot = mid; 1741 return 0; 1742 } 1743 } 1744 *slot = low; 1745 return 1; 1746 } 1747 1748 /* 1749 * simple bin_search frontend that does the right thing for 1750 * leaves vs nodes 1751 */ 1752 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1753 int level, int *slot) 1754 { 1755 if (level == 0) 1756 return generic_bin_search(eb, 1757 offsetof(struct btrfs_leaf, items), 1758 sizeof(struct btrfs_item), 1759 key, btrfs_header_nritems(eb), 1760 slot); 1761 else 1762 return generic_bin_search(eb, 1763 offsetof(struct btrfs_node, ptrs), 1764 sizeof(struct btrfs_key_ptr), 1765 key, btrfs_header_nritems(eb), 1766 slot); 1767 } 1768 1769 static void root_add_used(struct btrfs_root *root, u32 size) 1770 { 1771 spin_lock(&root->accounting_lock); 1772 btrfs_set_root_used(&root->root_item, 1773 btrfs_root_used(&root->root_item) + size); 1774 spin_unlock(&root->accounting_lock); 1775 } 1776 1777 static void root_sub_used(struct btrfs_root *root, u32 size) 1778 { 1779 spin_lock(&root->accounting_lock); 1780 btrfs_set_root_used(&root->root_item, 1781 btrfs_root_used(&root->root_item) - size); 1782 spin_unlock(&root->accounting_lock); 1783 } 1784 1785 /* given a node and slot number, this reads the blocks it points to. The 1786 * extent buffer is returned with a reference taken (but unlocked). 1787 */ 1788 static noinline struct extent_buffer * 1789 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1790 int slot) 1791 { 1792 int level = btrfs_header_level(parent); 1793 struct extent_buffer *eb; 1794 struct btrfs_key first_key; 1795 1796 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1797 return ERR_PTR(-ENOENT); 1798 1799 BUG_ON(level == 0); 1800 1801 btrfs_node_key_to_cpu(parent, &first_key, slot); 1802 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1803 btrfs_node_ptr_generation(parent, slot), 1804 level - 1, &first_key); 1805 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1806 free_extent_buffer(eb); 1807 eb = ERR_PTR(-EIO); 1808 } 1809 1810 return eb; 1811 } 1812 1813 /* 1814 * node level balancing, used to make sure nodes are in proper order for 1815 * item deletion. We balance from the top down, so we have to make sure 1816 * that a deletion won't leave an node completely empty later on. 1817 */ 1818 static noinline int balance_level(struct btrfs_trans_handle *trans, 1819 struct btrfs_root *root, 1820 struct btrfs_path *path, int level) 1821 { 1822 struct btrfs_fs_info *fs_info = root->fs_info; 1823 struct extent_buffer *right = NULL; 1824 struct extent_buffer *mid; 1825 struct extent_buffer *left = NULL; 1826 struct extent_buffer *parent = NULL; 1827 int ret = 0; 1828 int wret; 1829 int pslot; 1830 int orig_slot = path->slots[level]; 1831 u64 orig_ptr; 1832 1833 ASSERT(level > 0); 1834 1835 mid = path->nodes[level]; 1836 1837 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1838 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1839 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1840 1841 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1842 1843 if (level < BTRFS_MAX_LEVEL - 1) { 1844 parent = path->nodes[level + 1]; 1845 pslot = path->slots[level + 1]; 1846 } 1847 1848 /* 1849 * deal with the case where there is only one pointer in the root 1850 * by promoting the node below to a root 1851 */ 1852 if (!parent) { 1853 struct extent_buffer *child; 1854 1855 if (btrfs_header_nritems(mid) != 1) 1856 return 0; 1857 1858 /* promote the child to a root */ 1859 child = read_node_slot(fs_info, mid, 0); 1860 if (IS_ERR(child)) { 1861 ret = PTR_ERR(child); 1862 btrfs_handle_fs_error(fs_info, ret, NULL); 1863 goto enospc; 1864 } 1865 1866 btrfs_tree_lock(child); 1867 btrfs_set_lock_blocking(child); 1868 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1869 if (ret) { 1870 btrfs_tree_unlock(child); 1871 free_extent_buffer(child); 1872 goto enospc; 1873 } 1874 1875 ret = tree_mod_log_insert_root(root->node, child, 1); 1876 BUG_ON(ret < 0); 1877 rcu_assign_pointer(root->node, child); 1878 1879 add_root_to_dirty_list(root); 1880 btrfs_tree_unlock(child); 1881 1882 path->locks[level] = 0; 1883 path->nodes[level] = NULL; 1884 clean_tree_block(fs_info, mid); 1885 btrfs_tree_unlock(mid); 1886 /* once for the path */ 1887 free_extent_buffer(mid); 1888 1889 root_sub_used(root, mid->len); 1890 btrfs_free_tree_block(trans, root, mid, 0, 1); 1891 /* once for the root ptr */ 1892 free_extent_buffer_stale(mid); 1893 return 0; 1894 } 1895 if (btrfs_header_nritems(mid) > 1896 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1897 return 0; 1898 1899 left = read_node_slot(fs_info, parent, pslot - 1); 1900 if (IS_ERR(left)) 1901 left = NULL; 1902 1903 if (left) { 1904 btrfs_tree_lock(left); 1905 btrfs_set_lock_blocking(left); 1906 wret = btrfs_cow_block(trans, root, left, 1907 parent, pslot - 1, &left); 1908 if (wret) { 1909 ret = wret; 1910 goto enospc; 1911 } 1912 } 1913 1914 right = read_node_slot(fs_info, parent, pslot + 1); 1915 if (IS_ERR(right)) 1916 right = NULL; 1917 1918 if (right) { 1919 btrfs_tree_lock(right); 1920 btrfs_set_lock_blocking(right); 1921 wret = btrfs_cow_block(trans, root, right, 1922 parent, pslot + 1, &right); 1923 if (wret) { 1924 ret = wret; 1925 goto enospc; 1926 } 1927 } 1928 1929 /* first, try to make some room in the middle buffer */ 1930 if (left) { 1931 orig_slot += btrfs_header_nritems(left); 1932 wret = push_node_left(trans, fs_info, left, mid, 1); 1933 if (wret < 0) 1934 ret = wret; 1935 } 1936 1937 /* 1938 * then try to empty the right most buffer into the middle 1939 */ 1940 if (right) { 1941 wret = push_node_left(trans, fs_info, mid, right, 1); 1942 if (wret < 0 && wret != -ENOSPC) 1943 ret = wret; 1944 if (btrfs_header_nritems(right) == 0) { 1945 clean_tree_block(fs_info, right); 1946 btrfs_tree_unlock(right); 1947 del_ptr(root, path, level + 1, pslot + 1); 1948 root_sub_used(root, right->len); 1949 btrfs_free_tree_block(trans, root, right, 0, 1); 1950 free_extent_buffer_stale(right); 1951 right = NULL; 1952 } else { 1953 struct btrfs_disk_key right_key; 1954 btrfs_node_key(right, &right_key, 0); 1955 ret = tree_mod_log_insert_key(parent, pslot + 1, 1956 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1957 BUG_ON(ret < 0); 1958 btrfs_set_node_key(parent, &right_key, pslot + 1); 1959 btrfs_mark_buffer_dirty(parent); 1960 } 1961 } 1962 if (btrfs_header_nritems(mid) == 1) { 1963 /* 1964 * we're not allowed to leave a node with one item in the 1965 * tree during a delete. A deletion from lower in the tree 1966 * could try to delete the only pointer in this node. 1967 * So, pull some keys from the left. 1968 * There has to be a left pointer at this point because 1969 * otherwise we would have pulled some pointers from the 1970 * right 1971 */ 1972 if (!left) { 1973 ret = -EROFS; 1974 btrfs_handle_fs_error(fs_info, ret, NULL); 1975 goto enospc; 1976 } 1977 wret = balance_node_right(trans, fs_info, mid, left); 1978 if (wret < 0) { 1979 ret = wret; 1980 goto enospc; 1981 } 1982 if (wret == 1) { 1983 wret = push_node_left(trans, fs_info, left, mid, 1); 1984 if (wret < 0) 1985 ret = wret; 1986 } 1987 BUG_ON(wret == 1); 1988 } 1989 if (btrfs_header_nritems(mid) == 0) { 1990 clean_tree_block(fs_info, mid); 1991 btrfs_tree_unlock(mid); 1992 del_ptr(root, path, level + 1, pslot); 1993 root_sub_used(root, mid->len); 1994 btrfs_free_tree_block(trans, root, mid, 0, 1); 1995 free_extent_buffer_stale(mid); 1996 mid = NULL; 1997 } else { 1998 /* update the parent key to reflect our changes */ 1999 struct btrfs_disk_key mid_key; 2000 btrfs_node_key(mid, &mid_key, 0); 2001 ret = tree_mod_log_insert_key(parent, pslot, 2002 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2003 BUG_ON(ret < 0); 2004 btrfs_set_node_key(parent, &mid_key, pslot); 2005 btrfs_mark_buffer_dirty(parent); 2006 } 2007 2008 /* update the path */ 2009 if (left) { 2010 if (btrfs_header_nritems(left) > orig_slot) { 2011 extent_buffer_get(left); 2012 /* left was locked after cow */ 2013 path->nodes[level] = left; 2014 path->slots[level + 1] -= 1; 2015 path->slots[level] = orig_slot; 2016 if (mid) { 2017 btrfs_tree_unlock(mid); 2018 free_extent_buffer(mid); 2019 } 2020 } else { 2021 orig_slot -= btrfs_header_nritems(left); 2022 path->slots[level] = orig_slot; 2023 } 2024 } 2025 /* double check we haven't messed things up */ 2026 if (orig_ptr != 2027 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2028 BUG(); 2029 enospc: 2030 if (right) { 2031 btrfs_tree_unlock(right); 2032 free_extent_buffer(right); 2033 } 2034 if (left) { 2035 if (path->nodes[level] != left) 2036 btrfs_tree_unlock(left); 2037 free_extent_buffer(left); 2038 } 2039 return ret; 2040 } 2041 2042 /* Node balancing for insertion. Here we only split or push nodes around 2043 * when they are completely full. This is also done top down, so we 2044 * have to be pessimistic. 2045 */ 2046 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2047 struct btrfs_root *root, 2048 struct btrfs_path *path, int level) 2049 { 2050 struct btrfs_fs_info *fs_info = root->fs_info; 2051 struct extent_buffer *right = NULL; 2052 struct extent_buffer *mid; 2053 struct extent_buffer *left = NULL; 2054 struct extent_buffer *parent = NULL; 2055 int ret = 0; 2056 int wret; 2057 int pslot; 2058 int orig_slot = path->slots[level]; 2059 2060 if (level == 0) 2061 return 1; 2062 2063 mid = path->nodes[level]; 2064 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2065 2066 if (level < BTRFS_MAX_LEVEL - 1) { 2067 parent = path->nodes[level + 1]; 2068 pslot = path->slots[level + 1]; 2069 } 2070 2071 if (!parent) 2072 return 1; 2073 2074 left = read_node_slot(fs_info, parent, pslot - 1); 2075 if (IS_ERR(left)) 2076 left = NULL; 2077 2078 /* first, try to make some room in the middle buffer */ 2079 if (left) { 2080 u32 left_nr; 2081 2082 btrfs_tree_lock(left); 2083 btrfs_set_lock_blocking(left); 2084 2085 left_nr = btrfs_header_nritems(left); 2086 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2087 wret = 1; 2088 } else { 2089 ret = btrfs_cow_block(trans, root, left, parent, 2090 pslot - 1, &left); 2091 if (ret) 2092 wret = 1; 2093 else { 2094 wret = push_node_left(trans, fs_info, 2095 left, mid, 0); 2096 } 2097 } 2098 if (wret < 0) 2099 ret = wret; 2100 if (wret == 0) { 2101 struct btrfs_disk_key disk_key; 2102 orig_slot += left_nr; 2103 btrfs_node_key(mid, &disk_key, 0); 2104 ret = tree_mod_log_insert_key(parent, pslot, 2105 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2106 BUG_ON(ret < 0); 2107 btrfs_set_node_key(parent, &disk_key, pslot); 2108 btrfs_mark_buffer_dirty(parent); 2109 if (btrfs_header_nritems(left) > orig_slot) { 2110 path->nodes[level] = left; 2111 path->slots[level + 1] -= 1; 2112 path->slots[level] = orig_slot; 2113 btrfs_tree_unlock(mid); 2114 free_extent_buffer(mid); 2115 } else { 2116 orig_slot -= 2117 btrfs_header_nritems(left); 2118 path->slots[level] = orig_slot; 2119 btrfs_tree_unlock(left); 2120 free_extent_buffer(left); 2121 } 2122 return 0; 2123 } 2124 btrfs_tree_unlock(left); 2125 free_extent_buffer(left); 2126 } 2127 right = read_node_slot(fs_info, parent, pslot + 1); 2128 if (IS_ERR(right)) 2129 right = NULL; 2130 2131 /* 2132 * then try to empty the right most buffer into the middle 2133 */ 2134 if (right) { 2135 u32 right_nr; 2136 2137 btrfs_tree_lock(right); 2138 btrfs_set_lock_blocking(right); 2139 2140 right_nr = btrfs_header_nritems(right); 2141 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2142 wret = 1; 2143 } else { 2144 ret = btrfs_cow_block(trans, root, right, 2145 parent, pslot + 1, 2146 &right); 2147 if (ret) 2148 wret = 1; 2149 else { 2150 wret = balance_node_right(trans, fs_info, 2151 right, mid); 2152 } 2153 } 2154 if (wret < 0) 2155 ret = wret; 2156 if (wret == 0) { 2157 struct btrfs_disk_key disk_key; 2158 2159 btrfs_node_key(right, &disk_key, 0); 2160 ret = tree_mod_log_insert_key(parent, pslot + 1, 2161 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2162 BUG_ON(ret < 0); 2163 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2164 btrfs_mark_buffer_dirty(parent); 2165 2166 if (btrfs_header_nritems(mid) <= orig_slot) { 2167 path->nodes[level] = right; 2168 path->slots[level + 1] += 1; 2169 path->slots[level] = orig_slot - 2170 btrfs_header_nritems(mid); 2171 btrfs_tree_unlock(mid); 2172 free_extent_buffer(mid); 2173 } else { 2174 btrfs_tree_unlock(right); 2175 free_extent_buffer(right); 2176 } 2177 return 0; 2178 } 2179 btrfs_tree_unlock(right); 2180 free_extent_buffer(right); 2181 } 2182 return 1; 2183 } 2184 2185 /* 2186 * readahead one full node of leaves, finding things that are close 2187 * to the block in 'slot', and triggering ra on them. 2188 */ 2189 static void reada_for_search(struct btrfs_fs_info *fs_info, 2190 struct btrfs_path *path, 2191 int level, int slot, u64 objectid) 2192 { 2193 struct extent_buffer *node; 2194 struct btrfs_disk_key disk_key; 2195 u32 nritems; 2196 u64 search; 2197 u64 target; 2198 u64 nread = 0; 2199 struct extent_buffer *eb; 2200 u32 nr; 2201 u32 blocksize; 2202 u32 nscan = 0; 2203 2204 if (level != 1) 2205 return; 2206 2207 if (!path->nodes[level]) 2208 return; 2209 2210 node = path->nodes[level]; 2211 2212 search = btrfs_node_blockptr(node, slot); 2213 blocksize = fs_info->nodesize; 2214 eb = find_extent_buffer(fs_info, search); 2215 if (eb) { 2216 free_extent_buffer(eb); 2217 return; 2218 } 2219 2220 target = search; 2221 2222 nritems = btrfs_header_nritems(node); 2223 nr = slot; 2224 2225 while (1) { 2226 if (path->reada == READA_BACK) { 2227 if (nr == 0) 2228 break; 2229 nr--; 2230 } else if (path->reada == READA_FORWARD) { 2231 nr++; 2232 if (nr >= nritems) 2233 break; 2234 } 2235 if (path->reada == READA_BACK && objectid) { 2236 btrfs_node_key(node, &disk_key, nr); 2237 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2238 break; 2239 } 2240 search = btrfs_node_blockptr(node, nr); 2241 if ((search <= target && target - search <= 65536) || 2242 (search > target && search - target <= 65536)) { 2243 readahead_tree_block(fs_info, search); 2244 nread += blocksize; 2245 } 2246 nscan++; 2247 if ((nread > 65536 || nscan > 32)) 2248 break; 2249 } 2250 } 2251 2252 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2253 struct btrfs_path *path, int level) 2254 { 2255 int slot; 2256 int nritems; 2257 struct extent_buffer *parent; 2258 struct extent_buffer *eb; 2259 u64 gen; 2260 u64 block1 = 0; 2261 u64 block2 = 0; 2262 2263 parent = path->nodes[level + 1]; 2264 if (!parent) 2265 return; 2266 2267 nritems = btrfs_header_nritems(parent); 2268 slot = path->slots[level + 1]; 2269 2270 if (slot > 0) { 2271 block1 = btrfs_node_blockptr(parent, slot - 1); 2272 gen = btrfs_node_ptr_generation(parent, slot - 1); 2273 eb = find_extent_buffer(fs_info, block1); 2274 /* 2275 * if we get -eagain from btrfs_buffer_uptodate, we 2276 * don't want to return eagain here. That will loop 2277 * forever 2278 */ 2279 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2280 block1 = 0; 2281 free_extent_buffer(eb); 2282 } 2283 if (slot + 1 < nritems) { 2284 block2 = btrfs_node_blockptr(parent, slot + 1); 2285 gen = btrfs_node_ptr_generation(parent, slot + 1); 2286 eb = find_extent_buffer(fs_info, block2); 2287 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2288 block2 = 0; 2289 free_extent_buffer(eb); 2290 } 2291 2292 if (block1) 2293 readahead_tree_block(fs_info, block1); 2294 if (block2) 2295 readahead_tree_block(fs_info, block2); 2296 } 2297 2298 2299 /* 2300 * when we walk down the tree, it is usually safe to unlock the higher layers 2301 * in the tree. The exceptions are when our path goes through slot 0, because 2302 * operations on the tree might require changing key pointers higher up in the 2303 * tree. 2304 * 2305 * callers might also have set path->keep_locks, which tells this code to keep 2306 * the lock if the path points to the last slot in the block. This is part of 2307 * walking through the tree, and selecting the next slot in the higher block. 2308 * 2309 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2310 * if lowest_unlock is 1, level 0 won't be unlocked 2311 */ 2312 static noinline void unlock_up(struct btrfs_path *path, int level, 2313 int lowest_unlock, int min_write_lock_level, 2314 int *write_lock_level) 2315 { 2316 int i; 2317 int skip_level = level; 2318 int no_skips = 0; 2319 struct extent_buffer *t; 2320 2321 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2322 if (!path->nodes[i]) 2323 break; 2324 if (!path->locks[i]) 2325 break; 2326 if (!no_skips && path->slots[i] == 0) { 2327 skip_level = i + 1; 2328 continue; 2329 } 2330 if (!no_skips && path->keep_locks) { 2331 u32 nritems; 2332 t = path->nodes[i]; 2333 nritems = btrfs_header_nritems(t); 2334 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2335 skip_level = i + 1; 2336 continue; 2337 } 2338 } 2339 if (skip_level < i && i >= lowest_unlock) 2340 no_skips = 1; 2341 2342 t = path->nodes[i]; 2343 if (i >= lowest_unlock && i > skip_level) { 2344 btrfs_tree_unlock_rw(t, path->locks[i]); 2345 path->locks[i] = 0; 2346 if (write_lock_level && 2347 i > min_write_lock_level && 2348 i <= *write_lock_level) { 2349 *write_lock_level = i - 1; 2350 } 2351 } 2352 } 2353 } 2354 2355 /* 2356 * This releases any locks held in the path starting at level and 2357 * going all the way up to the root. 2358 * 2359 * btrfs_search_slot will keep the lock held on higher nodes in a few 2360 * corner cases, such as COW of the block at slot zero in the node. This 2361 * ignores those rules, and it should only be called when there are no 2362 * more updates to be done higher up in the tree. 2363 */ 2364 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2365 { 2366 int i; 2367 2368 if (path->keep_locks) 2369 return; 2370 2371 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2372 if (!path->nodes[i]) 2373 continue; 2374 if (!path->locks[i]) 2375 continue; 2376 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2377 path->locks[i] = 0; 2378 } 2379 } 2380 2381 /* 2382 * helper function for btrfs_search_slot. The goal is to find a block 2383 * in cache without setting the path to blocking. If we find the block 2384 * we return zero and the path is unchanged. 2385 * 2386 * If we can't find the block, we set the path blocking and do some 2387 * reada. -EAGAIN is returned and the search must be repeated. 2388 */ 2389 static int 2390 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2391 struct extent_buffer **eb_ret, int level, int slot, 2392 const struct btrfs_key *key) 2393 { 2394 struct btrfs_fs_info *fs_info = root->fs_info; 2395 u64 blocknr; 2396 u64 gen; 2397 struct extent_buffer *b = *eb_ret; 2398 struct extent_buffer *tmp; 2399 struct btrfs_key first_key; 2400 int ret; 2401 int parent_level; 2402 2403 blocknr = btrfs_node_blockptr(b, slot); 2404 gen = btrfs_node_ptr_generation(b, slot); 2405 parent_level = btrfs_header_level(b); 2406 btrfs_node_key_to_cpu(b, &first_key, slot); 2407 2408 tmp = find_extent_buffer(fs_info, blocknr); 2409 if (tmp) { 2410 /* first we do an atomic uptodate check */ 2411 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2412 *eb_ret = tmp; 2413 return 0; 2414 } 2415 2416 /* the pages were up to date, but we failed 2417 * the generation number check. Do a full 2418 * read for the generation number that is correct. 2419 * We must do this without dropping locks so 2420 * we can trust our generation number 2421 */ 2422 btrfs_set_path_blocking(p); 2423 2424 /* now we're allowed to do a blocking uptodate check */ 2425 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2426 if (!ret) { 2427 *eb_ret = tmp; 2428 return 0; 2429 } 2430 free_extent_buffer(tmp); 2431 btrfs_release_path(p); 2432 return -EIO; 2433 } 2434 2435 /* 2436 * reduce lock contention at high levels 2437 * of the btree by dropping locks before 2438 * we read. Don't release the lock on the current 2439 * level because we need to walk this node to figure 2440 * out which blocks to read. 2441 */ 2442 btrfs_unlock_up_safe(p, level + 1); 2443 btrfs_set_path_blocking(p); 2444 2445 if (p->reada != READA_NONE) 2446 reada_for_search(fs_info, p, level, slot, key->objectid); 2447 2448 ret = -EAGAIN; 2449 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2450 &first_key); 2451 if (!IS_ERR(tmp)) { 2452 /* 2453 * If the read above didn't mark this buffer up to date, 2454 * it will never end up being up to date. Set ret to EIO now 2455 * and give up so that our caller doesn't loop forever 2456 * on our EAGAINs. 2457 */ 2458 if (!extent_buffer_uptodate(tmp)) 2459 ret = -EIO; 2460 free_extent_buffer(tmp); 2461 } else { 2462 ret = PTR_ERR(tmp); 2463 } 2464 2465 btrfs_release_path(p); 2466 return ret; 2467 } 2468 2469 /* 2470 * helper function for btrfs_search_slot. This does all of the checks 2471 * for node-level blocks and does any balancing required based on 2472 * the ins_len. 2473 * 2474 * If no extra work was required, zero is returned. If we had to 2475 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2476 * start over 2477 */ 2478 static int 2479 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2480 struct btrfs_root *root, struct btrfs_path *p, 2481 struct extent_buffer *b, int level, int ins_len, 2482 int *write_lock_level) 2483 { 2484 struct btrfs_fs_info *fs_info = root->fs_info; 2485 int ret; 2486 2487 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2488 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2489 int sret; 2490 2491 if (*write_lock_level < level + 1) { 2492 *write_lock_level = level + 1; 2493 btrfs_release_path(p); 2494 goto again; 2495 } 2496 2497 btrfs_set_path_blocking(p); 2498 reada_for_balance(fs_info, p, level); 2499 sret = split_node(trans, root, p, level); 2500 2501 BUG_ON(sret > 0); 2502 if (sret) { 2503 ret = sret; 2504 goto done; 2505 } 2506 b = p->nodes[level]; 2507 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2508 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2509 int sret; 2510 2511 if (*write_lock_level < level + 1) { 2512 *write_lock_level = level + 1; 2513 btrfs_release_path(p); 2514 goto again; 2515 } 2516 2517 btrfs_set_path_blocking(p); 2518 reada_for_balance(fs_info, p, level); 2519 sret = balance_level(trans, root, p, level); 2520 2521 if (sret) { 2522 ret = sret; 2523 goto done; 2524 } 2525 b = p->nodes[level]; 2526 if (!b) { 2527 btrfs_release_path(p); 2528 goto again; 2529 } 2530 BUG_ON(btrfs_header_nritems(b) == 1); 2531 } 2532 return 0; 2533 2534 again: 2535 ret = -EAGAIN; 2536 done: 2537 return ret; 2538 } 2539 2540 static void key_search_validate(struct extent_buffer *b, 2541 const struct btrfs_key *key, 2542 int level) 2543 { 2544 #ifdef CONFIG_BTRFS_ASSERT 2545 struct btrfs_disk_key disk_key; 2546 2547 btrfs_cpu_key_to_disk(&disk_key, key); 2548 2549 if (level == 0) 2550 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2551 offsetof(struct btrfs_leaf, items[0].key), 2552 sizeof(disk_key))); 2553 else 2554 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2555 offsetof(struct btrfs_node, ptrs[0].key), 2556 sizeof(disk_key))); 2557 #endif 2558 } 2559 2560 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2561 int level, int *prev_cmp, int *slot) 2562 { 2563 if (*prev_cmp != 0) { 2564 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2565 return *prev_cmp; 2566 } 2567 2568 key_search_validate(b, key, level); 2569 *slot = 0; 2570 2571 return 0; 2572 } 2573 2574 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2575 u64 iobjectid, u64 ioff, u8 key_type, 2576 struct btrfs_key *found_key) 2577 { 2578 int ret; 2579 struct btrfs_key key; 2580 struct extent_buffer *eb; 2581 2582 ASSERT(path); 2583 ASSERT(found_key); 2584 2585 key.type = key_type; 2586 key.objectid = iobjectid; 2587 key.offset = ioff; 2588 2589 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2590 if (ret < 0) 2591 return ret; 2592 2593 eb = path->nodes[0]; 2594 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2595 ret = btrfs_next_leaf(fs_root, path); 2596 if (ret) 2597 return ret; 2598 eb = path->nodes[0]; 2599 } 2600 2601 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2602 if (found_key->type != key.type || 2603 found_key->objectid != key.objectid) 2604 return 1; 2605 2606 return 0; 2607 } 2608 2609 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2610 struct btrfs_path *p, 2611 int write_lock_level) 2612 { 2613 struct btrfs_fs_info *fs_info = root->fs_info; 2614 struct extent_buffer *b; 2615 int root_lock; 2616 int level = 0; 2617 2618 /* We try very hard to do read locks on the root */ 2619 root_lock = BTRFS_READ_LOCK; 2620 2621 if (p->search_commit_root) { 2622 /* 2623 * The commit roots are read only so we always do read locks, 2624 * and we always must hold the commit_root_sem when doing 2625 * searches on them, the only exception is send where we don't 2626 * want to block transaction commits for a long time, so 2627 * we need to clone the commit root in order to avoid races 2628 * with transaction commits that create a snapshot of one of 2629 * the roots used by a send operation. 2630 */ 2631 if (p->need_commit_sem) { 2632 down_read(&fs_info->commit_root_sem); 2633 b = btrfs_clone_extent_buffer(root->commit_root); 2634 up_read(&fs_info->commit_root_sem); 2635 if (!b) 2636 return ERR_PTR(-ENOMEM); 2637 2638 } else { 2639 b = root->commit_root; 2640 extent_buffer_get(b); 2641 } 2642 level = btrfs_header_level(b); 2643 /* 2644 * Ensure that all callers have set skip_locking when 2645 * p->search_commit_root = 1. 2646 */ 2647 ASSERT(p->skip_locking == 1); 2648 2649 goto out; 2650 } 2651 2652 if (p->skip_locking) { 2653 b = btrfs_root_node(root); 2654 level = btrfs_header_level(b); 2655 goto out; 2656 } 2657 2658 /* 2659 * If the level is set to maximum, we can skip trying to get the read 2660 * lock. 2661 */ 2662 if (write_lock_level < BTRFS_MAX_LEVEL) { 2663 /* 2664 * We don't know the level of the root node until we actually 2665 * have it read locked 2666 */ 2667 b = btrfs_read_lock_root_node(root); 2668 level = btrfs_header_level(b); 2669 if (level > write_lock_level) 2670 goto out; 2671 2672 /* Whoops, must trade for write lock */ 2673 btrfs_tree_read_unlock(b); 2674 free_extent_buffer(b); 2675 } 2676 2677 b = btrfs_lock_root_node(root); 2678 root_lock = BTRFS_WRITE_LOCK; 2679 2680 /* The level might have changed, check again */ 2681 level = btrfs_header_level(b); 2682 2683 out: 2684 p->nodes[level] = b; 2685 if (!p->skip_locking) 2686 p->locks[level] = root_lock; 2687 /* 2688 * Callers are responsible for dropping b's references. 2689 */ 2690 return b; 2691 } 2692 2693 2694 /* 2695 * btrfs_search_slot - look for a key in a tree and perform necessary 2696 * modifications to preserve tree invariants. 2697 * 2698 * @trans: Handle of transaction, used when modifying the tree 2699 * @p: Holds all btree nodes along the search path 2700 * @root: The root node of the tree 2701 * @key: The key we are looking for 2702 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2703 * deletions it's -1. 0 for plain searches 2704 * @cow: boolean should CoW operations be performed. Must always be 1 2705 * when modifying the tree. 2706 * 2707 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2708 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2709 * 2710 * If @key is found, 0 is returned and you can find the item in the leaf level 2711 * of the path (level 0) 2712 * 2713 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2714 * points to the slot where it should be inserted 2715 * 2716 * If an error is encountered while searching the tree a negative error number 2717 * is returned 2718 */ 2719 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2720 const struct btrfs_key *key, struct btrfs_path *p, 2721 int ins_len, int cow) 2722 { 2723 struct btrfs_fs_info *fs_info = root->fs_info; 2724 struct extent_buffer *b; 2725 int slot; 2726 int ret; 2727 int err; 2728 int level; 2729 int lowest_unlock = 1; 2730 /* everything at write_lock_level or lower must be write locked */ 2731 int write_lock_level = 0; 2732 u8 lowest_level = 0; 2733 int min_write_lock_level; 2734 int prev_cmp; 2735 2736 lowest_level = p->lowest_level; 2737 WARN_ON(lowest_level && ins_len > 0); 2738 WARN_ON(p->nodes[0] != NULL); 2739 BUG_ON(!cow && ins_len); 2740 2741 if (ins_len < 0) { 2742 lowest_unlock = 2; 2743 2744 /* when we are removing items, we might have to go up to level 2745 * two as we update tree pointers Make sure we keep write 2746 * for those levels as well 2747 */ 2748 write_lock_level = 2; 2749 } else if (ins_len > 0) { 2750 /* 2751 * for inserting items, make sure we have a write lock on 2752 * level 1 so we can update keys 2753 */ 2754 write_lock_level = 1; 2755 } 2756 2757 if (!cow) 2758 write_lock_level = -1; 2759 2760 if (cow && (p->keep_locks || p->lowest_level)) 2761 write_lock_level = BTRFS_MAX_LEVEL; 2762 2763 min_write_lock_level = write_lock_level; 2764 2765 again: 2766 prev_cmp = -1; 2767 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2768 if (IS_ERR(b)) { 2769 ret = PTR_ERR(b); 2770 goto done; 2771 } 2772 2773 while (b) { 2774 level = btrfs_header_level(b); 2775 2776 /* 2777 * setup the path here so we can release it under lock 2778 * contention with the cow code 2779 */ 2780 if (cow) { 2781 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2782 2783 /* 2784 * if we don't really need to cow this block 2785 * then we don't want to set the path blocking, 2786 * so we test it here 2787 */ 2788 if (!should_cow_block(trans, root, b)) { 2789 trans->dirty = true; 2790 goto cow_done; 2791 } 2792 2793 /* 2794 * must have write locks on this node and the 2795 * parent 2796 */ 2797 if (level > write_lock_level || 2798 (level + 1 > write_lock_level && 2799 level + 1 < BTRFS_MAX_LEVEL && 2800 p->nodes[level + 1])) { 2801 write_lock_level = level + 1; 2802 btrfs_release_path(p); 2803 goto again; 2804 } 2805 2806 btrfs_set_path_blocking(p); 2807 if (last_level) 2808 err = btrfs_cow_block(trans, root, b, NULL, 0, 2809 &b); 2810 else 2811 err = btrfs_cow_block(trans, root, b, 2812 p->nodes[level + 1], 2813 p->slots[level + 1], &b); 2814 if (err) { 2815 ret = err; 2816 goto done; 2817 } 2818 } 2819 cow_done: 2820 p->nodes[level] = b; 2821 /* 2822 * Leave path with blocking locks to avoid massive 2823 * lock context switch, this is made on purpose. 2824 */ 2825 2826 /* 2827 * we have a lock on b and as long as we aren't changing 2828 * the tree, there is no way to for the items in b to change. 2829 * It is safe to drop the lock on our parent before we 2830 * go through the expensive btree search on b. 2831 * 2832 * If we're inserting or deleting (ins_len != 0), then we might 2833 * be changing slot zero, which may require changing the parent. 2834 * So, we can't drop the lock until after we know which slot 2835 * we're operating on. 2836 */ 2837 if (!ins_len && !p->keep_locks) { 2838 int u = level + 1; 2839 2840 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2841 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2842 p->locks[u] = 0; 2843 } 2844 } 2845 2846 ret = key_search(b, key, level, &prev_cmp, &slot); 2847 if (ret < 0) 2848 goto done; 2849 2850 if (level != 0) { 2851 int dec = 0; 2852 if (ret && slot > 0) { 2853 dec = 1; 2854 slot -= 1; 2855 } 2856 p->slots[level] = slot; 2857 err = setup_nodes_for_search(trans, root, p, b, level, 2858 ins_len, &write_lock_level); 2859 if (err == -EAGAIN) 2860 goto again; 2861 if (err) { 2862 ret = err; 2863 goto done; 2864 } 2865 b = p->nodes[level]; 2866 slot = p->slots[level]; 2867 2868 /* 2869 * slot 0 is special, if we change the key 2870 * we have to update the parent pointer 2871 * which means we must have a write lock 2872 * on the parent 2873 */ 2874 if (slot == 0 && ins_len && 2875 write_lock_level < level + 1) { 2876 write_lock_level = level + 1; 2877 btrfs_release_path(p); 2878 goto again; 2879 } 2880 2881 unlock_up(p, level, lowest_unlock, 2882 min_write_lock_level, &write_lock_level); 2883 2884 if (level == lowest_level) { 2885 if (dec) 2886 p->slots[level]++; 2887 goto done; 2888 } 2889 2890 err = read_block_for_search(root, p, &b, level, 2891 slot, key); 2892 if (err == -EAGAIN) 2893 goto again; 2894 if (err) { 2895 ret = err; 2896 goto done; 2897 } 2898 2899 if (!p->skip_locking) { 2900 level = btrfs_header_level(b); 2901 if (level <= write_lock_level) { 2902 err = btrfs_try_tree_write_lock(b); 2903 if (!err) { 2904 btrfs_set_path_blocking(p); 2905 btrfs_tree_lock(b); 2906 } 2907 p->locks[level] = BTRFS_WRITE_LOCK; 2908 } else { 2909 err = btrfs_tree_read_lock_atomic(b); 2910 if (!err) { 2911 btrfs_set_path_blocking(p); 2912 btrfs_tree_read_lock(b); 2913 } 2914 p->locks[level] = BTRFS_READ_LOCK; 2915 } 2916 p->nodes[level] = b; 2917 } 2918 } else { 2919 p->slots[level] = slot; 2920 if (ins_len > 0 && 2921 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2922 if (write_lock_level < 1) { 2923 write_lock_level = 1; 2924 btrfs_release_path(p); 2925 goto again; 2926 } 2927 2928 btrfs_set_path_blocking(p); 2929 err = split_leaf(trans, root, key, 2930 p, ins_len, ret == 0); 2931 2932 BUG_ON(err > 0); 2933 if (err) { 2934 ret = err; 2935 goto done; 2936 } 2937 } 2938 if (!p->search_for_split) 2939 unlock_up(p, level, lowest_unlock, 2940 min_write_lock_level, NULL); 2941 goto done; 2942 } 2943 } 2944 ret = 1; 2945 done: 2946 /* 2947 * we don't really know what they plan on doing with the path 2948 * from here on, so for now just mark it as blocking 2949 */ 2950 if (!p->leave_spinning) 2951 btrfs_set_path_blocking(p); 2952 if (ret < 0 && !p->skip_release_on_error) 2953 btrfs_release_path(p); 2954 return ret; 2955 } 2956 2957 /* 2958 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2959 * current state of the tree together with the operations recorded in the tree 2960 * modification log to search for the key in a previous version of this tree, as 2961 * denoted by the time_seq parameter. 2962 * 2963 * Naturally, there is no support for insert, delete or cow operations. 2964 * 2965 * The resulting path and return value will be set up as if we called 2966 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2967 */ 2968 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2969 struct btrfs_path *p, u64 time_seq) 2970 { 2971 struct btrfs_fs_info *fs_info = root->fs_info; 2972 struct extent_buffer *b; 2973 int slot; 2974 int ret; 2975 int err; 2976 int level; 2977 int lowest_unlock = 1; 2978 u8 lowest_level = 0; 2979 int prev_cmp = -1; 2980 2981 lowest_level = p->lowest_level; 2982 WARN_ON(p->nodes[0] != NULL); 2983 2984 if (p->search_commit_root) { 2985 BUG_ON(time_seq); 2986 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2987 } 2988 2989 again: 2990 b = get_old_root(root, time_seq); 2991 if (!b) { 2992 ret = -EIO; 2993 goto done; 2994 } 2995 level = btrfs_header_level(b); 2996 p->locks[level] = BTRFS_READ_LOCK; 2997 2998 while (b) { 2999 level = btrfs_header_level(b); 3000 p->nodes[level] = b; 3001 3002 /* 3003 * we have a lock on b and as long as we aren't changing 3004 * the tree, there is no way to for the items in b to change. 3005 * It is safe to drop the lock on our parent before we 3006 * go through the expensive btree search on b. 3007 */ 3008 btrfs_unlock_up_safe(p, level + 1); 3009 3010 /* 3011 * Since we can unwind ebs we want to do a real search every 3012 * time. 3013 */ 3014 prev_cmp = -1; 3015 ret = key_search(b, key, level, &prev_cmp, &slot); 3016 3017 if (level != 0) { 3018 int dec = 0; 3019 if (ret && slot > 0) { 3020 dec = 1; 3021 slot -= 1; 3022 } 3023 p->slots[level] = slot; 3024 unlock_up(p, level, lowest_unlock, 0, NULL); 3025 3026 if (level == lowest_level) { 3027 if (dec) 3028 p->slots[level]++; 3029 goto done; 3030 } 3031 3032 err = read_block_for_search(root, p, &b, level, 3033 slot, key); 3034 if (err == -EAGAIN) 3035 goto again; 3036 if (err) { 3037 ret = err; 3038 goto done; 3039 } 3040 3041 level = btrfs_header_level(b); 3042 err = btrfs_tree_read_lock_atomic(b); 3043 if (!err) { 3044 btrfs_set_path_blocking(p); 3045 btrfs_tree_read_lock(b); 3046 } 3047 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3048 if (!b) { 3049 ret = -ENOMEM; 3050 goto done; 3051 } 3052 p->locks[level] = BTRFS_READ_LOCK; 3053 p->nodes[level] = b; 3054 } else { 3055 p->slots[level] = slot; 3056 unlock_up(p, level, lowest_unlock, 0, NULL); 3057 goto done; 3058 } 3059 } 3060 ret = 1; 3061 done: 3062 if (!p->leave_spinning) 3063 btrfs_set_path_blocking(p); 3064 if (ret < 0) 3065 btrfs_release_path(p); 3066 3067 return ret; 3068 } 3069 3070 /* 3071 * helper to use instead of search slot if no exact match is needed but 3072 * instead the next or previous item should be returned. 3073 * When find_higher is true, the next higher item is returned, the next lower 3074 * otherwise. 3075 * When return_any and find_higher are both true, and no higher item is found, 3076 * return the next lower instead. 3077 * When return_any is true and find_higher is false, and no lower item is found, 3078 * return the next higher instead. 3079 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3080 * < 0 on error 3081 */ 3082 int btrfs_search_slot_for_read(struct btrfs_root *root, 3083 const struct btrfs_key *key, 3084 struct btrfs_path *p, int find_higher, 3085 int return_any) 3086 { 3087 int ret; 3088 struct extent_buffer *leaf; 3089 3090 again: 3091 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3092 if (ret <= 0) 3093 return ret; 3094 /* 3095 * a return value of 1 means the path is at the position where the 3096 * item should be inserted. Normally this is the next bigger item, 3097 * but in case the previous item is the last in a leaf, path points 3098 * to the first free slot in the previous leaf, i.e. at an invalid 3099 * item. 3100 */ 3101 leaf = p->nodes[0]; 3102 3103 if (find_higher) { 3104 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3105 ret = btrfs_next_leaf(root, p); 3106 if (ret <= 0) 3107 return ret; 3108 if (!return_any) 3109 return 1; 3110 /* 3111 * no higher item found, return the next 3112 * lower instead 3113 */ 3114 return_any = 0; 3115 find_higher = 0; 3116 btrfs_release_path(p); 3117 goto again; 3118 } 3119 } else { 3120 if (p->slots[0] == 0) { 3121 ret = btrfs_prev_leaf(root, p); 3122 if (ret < 0) 3123 return ret; 3124 if (!ret) { 3125 leaf = p->nodes[0]; 3126 if (p->slots[0] == btrfs_header_nritems(leaf)) 3127 p->slots[0]--; 3128 return 0; 3129 } 3130 if (!return_any) 3131 return 1; 3132 /* 3133 * no lower item found, return the next 3134 * higher instead 3135 */ 3136 return_any = 0; 3137 find_higher = 1; 3138 btrfs_release_path(p); 3139 goto again; 3140 } else { 3141 --p->slots[0]; 3142 } 3143 } 3144 return 0; 3145 } 3146 3147 /* 3148 * adjust the pointers going up the tree, starting at level 3149 * making sure the right key of each node is points to 'key'. 3150 * This is used after shifting pointers to the left, so it stops 3151 * fixing up pointers when a given leaf/node is not in slot 0 of the 3152 * higher levels 3153 * 3154 */ 3155 static void fixup_low_keys(struct btrfs_path *path, 3156 struct btrfs_disk_key *key, int level) 3157 { 3158 int i; 3159 struct extent_buffer *t; 3160 int ret; 3161 3162 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3163 int tslot = path->slots[i]; 3164 3165 if (!path->nodes[i]) 3166 break; 3167 t = path->nodes[i]; 3168 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3169 GFP_ATOMIC); 3170 BUG_ON(ret < 0); 3171 btrfs_set_node_key(t, key, tslot); 3172 btrfs_mark_buffer_dirty(path->nodes[i]); 3173 if (tslot != 0) 3174 break; 3175 } 3176 } 3177 3178 /* 3179 * update item key. 3180 * 3181 * This function isn't completely safe. It's the caller's responsibility 3182 * that the new key won't break the order 3183 */ 3184 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3185 struct btrfs_path *path, 3186 const struct btrfs_key *new_key) 3187 { 3188 struct btrfs_disk_key disk_key; 3189 struct extent_buffer *eb; 3190 int slot; 3191 3192 eb = path->nodes[0]; 3193 slot = path->slots[0]; 3194 if (slot > 0) { 3195 btrfs_item_key(eb, &disk_key, slot - 1); 3196 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3197 } 3198 if (slot < btrfs_header_nritems(eb) - 1) { 3199 btrfs_item_key(eb, &disk_key, slot + 1); 3200 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3201 } 3202 3203 btrfs_cpu_key_to_disk(&disk_key, new_key); 3204 btrfs_set_item_key(eb, &disk_key, slot); 3205 btrfs_mark_buffer_dirty(eb); 3206 if (slot == 0) 3207 fixup_low_keys(path, &disk_key, 1); 3208 } 3209 3210 /* 3211 * try to push data from one node into the next node left in the 3212 * tree. 3213 * 3214 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3215 * error, and > 0 if there was no room in the left hand block. 3216 */ 3217 static int push_node_left(struct btrfs_trans_handle *trans, 3218 struct btrfs_fs_info *fs_info, 3219 struct extent_buffer *dst, 3220 struct extent_buffer *src, int empty) 3221 { 3222 int push_items = 0; 3223 int src_nritems; 3224 int dst_nritems; 3225 int ret = 0; 3226 3227 src_nritems = btrfs_header_nritems(src); 3228 dst_nritems = btrfs_header_nritems(dst); 3229 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3230 WARN_ON(btrfs_header_generation(src) != trans->transid); 3231 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3232 3233 if (!empty && src_nritems <= 8) 3234 return 1; 3235 3236 if (push_items <= 0) 3237 return 1; 3238 3239 if (empty) { 3240 push_items = min(src_nritems, push_items); 3241 if (push_items < src_nritems) { 3242 /* leave at least 8 pointers in the node if 3243 * we aren't going to empty it 3244 */ 3245 if (src_nritems - push_items < 8) { 3246 if (push_items <= 8) 3247 return 1; 3248 push_items -= 8; 3249 } 3250 } 3251 } else 3252 push_items = min(src_nritems - 8, push_items); 3253 3254 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3255 push_items); 3256 if (ret) { 3257 btrfs_abort_transaction(trans, ret); 3258 return ret; 3259 } 3260 copy_extent_buffer(dst, src, 3261 btrfs_node_key_ptr_offset(dst_nritems), 3262 btrfs_node_key_ptr_offset(0), 3263 push_items * sizeof(struct btrfs_key_ptr)); 3264 3265 if (push_items < src_nritems) { 3266 /* 3267 * Don't call tree_mod_log_insert_move here, key removal was 3268 * already fully logged by tree_mod_log_eb_copy above. 3269 */ 3270 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3271 btrfs_node_key_ptr_offset(push_items), 3272 (src_nritems - push_items) * 3273 sizeof(struct btrfs_key_ptr)); 3274 } 3275 btrfs_set_header_nritems(src, src_nritems - push_items); 3276 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3277 btrfs_mark_buffer_dirty(src); 3278 btrfs_mark_buffer_dirty(dst); 3279 3280 return ret; 3281 } 3282 3283 /* 3284 * try to push data from one node into the next node right in the 3285 * tree. 3286 * 3287 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3288 * error, and > 0 if there was no room in the right hand block. 3289 * 3290 * this will only push up to 1/2 the contents of the left node over 3291 */ 3292 static int balance_node_right(struct btrfs_trans_handle *trans, 3293 struct btrfs_fs_info *fs_info, 3294 struct extent_buffer *dst, 3295 struct extent_buffer *src) 3296 { 3297 int push_items = 0; 3298 int max_push; 3299 int src_nritems; 3300 int dst_nritems; 3301 int ret = 0; 3302 3303 WARN_ON(btrfs_header_generation(src) != trans->transid); 3304 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3305 3306 src_nritems = btrfs_header_nritems(src); 3307 dst_nritems = btrfs_header_nritems(dst); 3308 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3309 if (push_items <= 0) 3310 return 1; 3311 3312 if (src_nritems < 4) 3313 return 1; 3314 3315 max_push = src_nritems / 2 + 1; 3316 /* don't try to empty the node */ 3317 if (max_push >= src_nritems) 3318 return 1; 3319 3320 if (max_push < push_items) 3321 push_items = max_push; 3322 3323 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3324 BUG_ON(ret < 0); 3325 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3326 btrfs_node_key_ptr_offset(0), 3327 (dst_nritems) * 3328 sizeof(struct btrfs_key_ptr)); 3329 3330 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3331 src_nritems - push_items, push_items); 3332 if (ret) { 3333 btrfs_abort_transaction(trans, ret); 3334 return ret; 3335 } 3336 copy_extent_buffer(dst, src, 3337 btrfs_node_key_ptr_offset(0), 3338 btrfs_node_key_ptr_offset(src_nritems - push_items), 3339 push_items * sizeof(struct btrfs_key_ptr)); 3340 3341 btrfs_set_header_nritems(src, src_nritems - push_items); 3342 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3343 3344 btrfs_mark_buffer_dirty(src); 3345 btrfs_mark_buffer_dirty(dst); 3346 3347 return ret; 3348 } 3349 3350 /* 3351 * helper function to insert a new root level in the tree. 3352 * A new node is allocated, and a single item is inserted to 3353 * point to the existing root 3354 * 3355 * returns zero on success or < 0 on failure. 3356 */ 3357 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3358 struct btrfs_root *root, 3359 struct btrfs_path *path, int level) 3360 { 3361 struct btrfs_fs_info *fs_info = root->fs_info; 3362 u64 lower_gen; 3363 struct extent_buffer *lower; 3364 struct extent_buffer *c; 3365 struct extent_buffer *old; 3366 struct btrfs_disk_key lower_key; 3367 int ret; 3368 3369 BUG_ON(path->nodes[level]); 3370 BUG_ON(path->nodes[level-1] != root->node); 3371 3372 lower = path->nodes[level-1]; 3373 if (level == 1) 3374 btrfs_item_key(lower, &lower_key, 0); 3375 else 3376 btrfs_node_key(lower, &lower_key, 0); 3377 3378 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3379 root->node->start, 0); 3380 if (IS_ERR(c)) 3381 return PTR_ERR(c); 3382 3383 root_add_used(root, fs_info->nodesize); 3384 3385 btrfs_set_header_nritems(c, 1); 3386 btrfs_set_node_key(c, &lower_key, 0); 3387 btrfs_set_node_blockptr(c, 0, lower->start); 3388 lower_gen = btrfs_header_generation(lower); 3389 WARN_ON(lower_gen != trans->transid); 3390 3391 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3392 3393 btrfs_mark_buffer_dirty(c); 3394 3395 old = root->node; 3396 ret = tree_mod_log_insert_root(root->node, c, 0); 3397 BUG_ON(ret < 0); 3398 rcu_assign_pointer(root->node, c); 3399 3400 /* the super has an extra ref to root->node */ 3401 free_extent_buffer(old); 3402 3403 add_root_to_dirty_list(root); 3404 extent_buffer_get(c); 3405 path->nodes[level] = c; 3406 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3407 path->slots[level] = 0; 3408 return 0; 3409 } 3410 3411 /* 3412 * worker function to insert a single pointer in a node. 3413 * the node should have enough room for the pointer already 3414 * 3415 * slot and level indicate where you want the key to go, and 3416 * blocknr is the block the key points to. 3417 */ 3418 static void insert_ptr(struct btrfs_trans_handle *trans, 3419 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3420 struct btrfs_disk_key *key, u64 bytenr, 3421 int slot, int level) 3422 { 3423 struct extent_buffer *lower; 3424 int nritems; 3425 int ret; 3426 3427 BUG_ON(!path->nodes[level]); 3428 btrfs_assert_tree_locked(path->nodes[level]); 3429 lower = path->nodes[level]; 3430 nritems = btrfs_header_nritems(lower); 3431 BUG_ON(slot > nritems); 3432 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3433 if (slot != nritems) { 3434 if (level) { 3435 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3436 nritems - slot); 3437 BUG_ON(ret < 0); 3438 } 3439 memmove_extent_buffer(lower, 3440 btrfs_node_key_ptr_offset(slot + 1), 3441 btrfs_node_key_ptr_offset(slot), 3442 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3443 } 3444 if (level) { 3445 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3446 GFP_NOFS); 3447 BUG_ON(ret < 0); 3448 } 3449 btrfs_set_node_key(lower, key, slot); 3450 btrfs_set_node_blockptr(lower, slot, bytenr); 3451 WARN_ON(trans->transid == 0); 3452 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3453 btrfs_set_header_nritems(lower, nritems + 1); 3454 btrfs_mark_buffer_dirty(lower); 3455 } 3456 3457 /* 3458 * split the node at the specified level in path in two. 3459 * The path is corrected to point to the appropriate node after the split 3460 * 3461 * Before splitting this tries to make some room in the node by pushing 3462 * left and right, if either one works, it returns right away. 3463 * 3464 * returns 0 on success and < 0 on failure 3465 */ 3466 static noinline int split_node(struct btrfs_trans_handle *trans, 3467 struct btrfs_root *root, 3468 struct btrfs_path *path, int level) 3469 { 3470 struct btrfs_fs_info *fs_info = root->fs_info; 3471 struct extent_buffer *c; 3472 struct extent_buffer *split; 3473 struct btrfs_disk_key disk_key; 3474 int mid; 3475 int ret; 3476 u32 c_nritems; 3477 3478 c = path->nodes[level]; 3479 WARN_ON(btrfs_header_generation(c) != trans->transid); 3480 if (c == root->node) { 3481 /* 3482 * trying to split the root, lets make a new one 3483 * 3484 * tree mod log: We don't log_removal old root in 3485 * insert_new_root, because that root buffer will be kept as a 3486 * normal node. We are going to log removal of half of the 3487 * elements below with tree_mod_log_eb_copy. We're holding a 3488 * tree lock on the buffer, which is why we cannot race with 3489 * other tree_mod_log users. 3490 */ 3491 ret = insert_new_root(trans, root, path, level + 1); 3492 if (ret) 3493 return ret; 3494 } else { 3495 ret = push_nodes_for_insert(trans, root, path, level); 3496 c = path->nodes[level]; 3497 if (!ret && btrfs_header_nritems(c) < 3498 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3499 return 0; 3500 if (ret < 0) 3501 return ret; 3502 } 3503 3504 c_nritems = btrfs_header_nritems(c); 3505 mid = (c_nritems + 1) / 2; 3506 btrfs_node_key(c, &disk_key, mid); 3507 3508 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3509 c->start, 0); 3510 if (IS_ERR(split)) 3511 return PTR_ERR(split); 3512 3513 root_add_used(root, fs_info->nodesize); 3514 ASSERT(btrfs_header_level(c) == level); 3515 3516 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3517 if (ret) { 3518 btrfs_abort_transaction(trans, ret); 3519 return ret; 3520 } 3521 copy_extent_buffer(split, c, 3522 btrfs_node_key_ptr_offset(0), 3523 btrfs_node_key_ptr_offset(mid), 3524 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3525 btrfs_set_header_nritems(split, c_nritems - mid); 3526 btrfs_set_header_nritems(c, mid); 3527 ret = 0; 3528 3529 btrfs_mark_buffer_dirty(c); 3530 btrfs_mark_buffer_dirty(split); 3531 3532 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3533 path->slots[level + 1] + 1, level + 1); 3534 3535 if (path->slots[level] >= mid) { 3536 path->slots[level] -= mid; 3537 btrfs_tree_unlock(c); 3538 free_extent_buffer(c); 3539 path->nodes[level] = split; 3540 path->slots[level + 1] += 1; 3541 } else { 3542 btrfs_tree_unlock(split); 3543 free_extent_buffer(split); 3544 } 3545 return ret; 3546 } 3547 3548 /* 3549 * how many bytes are required to store the items in a leaf. start 3550 * and nr indicate which items in the leaf to check. This totals up the 3551 * space used both by the item structs and the item data 3552 */ 3553 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3554 { 3555 struct btrfs_item *start_item; 3556 struct btrfs_item *end_item; 3557 struct btrfs_map_token token; 3558 int data_len; 3559 int nritems = btrfs_header_nritems(l); 3560 int end = min(nritems, start + nr) - 1; 3561 3562 if (!nr) 3563 return 0; 3564 btrfs_init_map_token(&token); 3565 start_item = btrfs_item_nr(start); 3566 end_item = btrfs_item_nr(end); 3567 data_len = btrfs_token_item_offset(l, start_item, &token) + 3568 btrfs_token_item_size(l, start_item, &token); 3569 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3570 data_len += sizeof(struct btrfs_item) * nr; 3571 WARN_ON(data_len < 0); 3572 return data_len; 3573 } 3574 3575 /* 3576 * The space between the end of the leaf items and 3577 * the start of the leaf data. IOW, how much room 3578 * the leaf has left for both items and data 3579 */ 3580 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3581 struct extent_buffer *leaf) 3582 { 3583 int nritems = btrfs_header_nritems(leaf); 3584 int ret; 3585 3586 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3587 if (ret < 0) { 3588 btrfs_crit(fs_info, 3589 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3590 ret, 3591 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3592 leaf_space_used(leaf, 0, nritems), nritems); 3593 } 3594 return ret; 3595 } 3596 3597 /* 3598 * min slot controls the lowest index we're willing to push to the 3599 * right. We'll push up to and including min_slot, but no lower 3600 */ 3601 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, 3602 struct btrfs_path *path, 3603 int data_size, int empty, 3604 struct extent_buffer *right, 3605 int free_space, u32 left_nritems, 3606 u32 min_slot) 3607 { 3608 struct extent_buffer *left = path->nodes[0]; 3609 struct extent_buffer *upper = path->nodes[1]; 3610 struct btrfs_map_token token; 3611 struct btrfs_disk_key disk_key; 3612 int slot; 3613 u32 i; 3614 int push_space = 0; 3615 int push_items = 0; 3616 struct btrfs_item *item; 3617 u32 nr; 3618 u32 right_nritems; 3619 u32 data_end; 3620 u32 this_item_size; 3621 3622 btrfs_init_map_token(&token); 3623 3624 if (empty) 3625 nr = 0; 3626 else 3627 nr = max_t(u32, 1, min_slot); 3628 3629 if (path->slots[0] >= left_nritems) 3630 push_space += data_size; 3631 3632 slot = path->slots[1]; 3633 i = left_nritems - 1; 3634 while (i >= nr) { 3635 item = btrfs_item_nr(i); 3636 3637 if (!empty && push_items > 0) { 3638 if (path->slots[0] > i) 3639 break; 3640 if (path->slots[0] == i) { 3641 int space = btrfs_leaf_free_space(fs_info, left); 3642 if (space + push_space * 2 > free_space) 3643 break; 3644 } 3645 } 3646 3647 if (path->slots[0] == i) 3648 push_space += data_size; 3649 3650 this_item_size = btrfs_item_size(left, item); 3651 if (this_item_size + sizeof(*item) + push_space > free_space) 3652 break; 3653 3654 push_items++; 3655 push_space += this_item_size + sizeof(*item); 3656 if (i == 0) 3657 break; 3658 i--; 3659 } 3660 3661 if (push_items == 0) 3662 goto out_unlock; 3663 3664 WARN_ON(!empty && push_items == left_nritems); 3665 3666 /* push left to right */ 3667 right_nritems = btrfs_header_nritems(right); 3668 3669 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3670 push_space -= leaf_data_end(fs_info, left); 3671 3672 /* make room in the right data area */ 3673 data_end = leaf_data_end(fs_info, right); 3674 memmove_extent_buffer(right, 3675 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3676 BTRFS_LEAF_DATA_OFFSET + data_end, 3677 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3678 3679 /* copy from the left data area */ 3680 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3681 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3682 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left), 3683 push_space); 3684 3685 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3686 btrfs_item_nr_offset(0), 3687 right_nritems * sizeof(struct btrfs_item)); 3688 3689 /* copy the items from left to right */ 3690 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3691 btrfs_item_nr_offset(left_nritems - push_items), 3692 push_items * sizeof(struct btrfs_item)); 3693 3694 /* update the item pointers */ 3695 right_nritems += push_items; 3696 btrfs_set_header_nritems(right, right_nritems); 3697 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3698 for (i = 0; i < right_nritems; i++) { 3699 item = btrfs_item_nr(i); 3700 push_space -= btrfs_token_item_size(right, item, &token); 3701 btrfs_set_token_item_offset(right, item, push_space, &token); 3702 } 3703 3704 left_nritems -= push_items; 3705 btrfs_set_header_nritems(left, left_nritems); 3706 3707 if (left_nritems) 3708 btrfs_mark_buffer_dirty(left); 3709 else 3710 clean_tree_block(fs_info, left); 3711 3712 btrfs_mark_buffer_dirty(right); 3713 3714 btrfs_item_key(right, &disk_key, 0); 3715 btrfs_set_node_key(upper, &disk_key, slot + 1); 3716 btrfs_mark_buffer_dirty(upper); 3717 3718 /* then fixup the leaf pointer in the path */ 3719 if (path->slots[0] >= left_nritems) { 3720 path->slots[0] -= left_nritems; 3721 if (btrfs_header_nritems(path->nodes[0]) == 0) 3722 clean_tree_block(fs_info, path->nodes[0]); 3723 btrfs_tree_unlock(path->nodes[0]); 3724 free_extent_buffer(path->nodes[0]); 3725 path->nodes[0] = right; 3726 path->slots[1] += 1; 3727 } else { 3728 btrfs_tree_unlock(right); 3729 free_extent_buffer(right); 3730 } 3731 return 0; 3732 3733 out_unlock: 3734 btrfs_tree_unlock(right); 3735 free_extent_buffer(right); 3736 return 1; 3737 } 3738 3739 /* 3740 * push some data in the path leaf to the right, trying to free up at 3741 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3742 * 3743 * returns 1 if the push failed because the other node didn't have enough 3744 * room, 0 if everything worked out and < 0 if there were major errors. 3745 * 3746 * this will push starting from min_slot to the end of the leaf. It won't 3747 * push any slot lower than min_slot 3748 */ 3749 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3750 *root, struct btrfs_path *path, 3751 int min_data_size, int data_size, 3752 int empty, u32 min_slot) 3753 { 3754 struct btrfs_fs_info *fs_info = root->fs_info; 3755 struct extent_buffer *left = path->nodes[0]; 3756 struct extent_buffer *right; 3757 struct extent_buffer *upper; 3758 int slot; 3759 int free_space; 3760 u32 left_nritems; 3761 int ret; 3762 3763 if (!path->nodes[1]) 3764 return 1; 3765 3766 slot = path->slots[1]; 3767 upper = path->nodes[1]; 3768 if (slot >= btrfs_header_nritems(upper) - 1) 3769 return 1; 3770 3771 btrfs_assert_tree_locked(path->nodes[1]); 3772 3773 right = read_node_slot(fs_info, upper, slot + 1); 3774 /* 3775 * slot + 1 is not valid or we fail to read the right node, 3776 * no big deal, just return. 3777 */ 3778 if (IS_ERR(right)) 3779 return 1; 3780 3781 btrfs_tree_lock(right); 3782 btrfs_set_lock_blocking(right); 3783 3784 free_space = btrfs_leaf_free_space(fs_info, right); 3785 if (free_space < data_size) 3786 goto out_unlock; 3787 3788 /* cow and double check */ 3789 ret = btrfs_cow_block(trans, root, right, upper, 3790 slot + 1, &right); 3791 if (ret) 3792 goto out_unlock; 3793 3794 free_space = btrfs_leaf_free_space(fs_info, right); 3795 if (free_space < data_size) 3796 goto out_unlock; 3797 3798 left_nritems = btrfs_header_nritems(left); 3799 if (left_nritems == 0) 3800 goto out_unlock; 3801 3802 if (path->slots[0] == left_nritems && !empty) { 3803 /* Key greater than all keys in the leaf, right neighbor has 3804 * enough room for it and we're not emptying our leaf to delete 3805 * it, therefore use right neighbor to insert the new item and 3806 * no need to touch/dirty our left leaf. */ 3807 btrfs_tree_unlock(left); 3808 free_extent_buffer(left); 3809 path->nodes[0] = right; 3810 path->slots[0] = 0; 3811 path->slots[1]++; 3812 return 0; 3813 } 3814 3815 return __push_leaf_right(fs_info, path, min_data_size, empty, 3816 right, free_space, left_nritems, min_slot); 3817 out_unlock: 3818 btrfs_tree_unlock(right); 3819 free_extent_buffer(right); 3820 return 1; 3821 } 3822 3823 /* 3824 * push some data in the path leaf to the left, trying to free up at 3825 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3826 * 3827 * max_slot can put a limit on how far into the leaf we'll push items. The 3828 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3829 * items 3830 */ 3831 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, 3832 struct btrfs_path *path, int data_size, 3833 int empty, struct extent_buffer *left, 3834 int free_space, u32 right_nritems, 3835 u32 max_slot) 3836 { 3837 struct btrfs_disk_key disk_key; 3838 struct extent_buffer *right = path->nodes[0]; 3839 int i; 3840 int push_space = 0; 3841 int push_items = 0; 3842 struct btrfs_item *item; 3843 u32 old_left_nritems; 3844 u32 nr; 3845 int ret = 0; 3846 u32 this_item_size; 3847 u32 old_left_item_size; 3848 struct btrfs_map_token token; 3849 3850 btrfs_init_map_token(&token); 3851 3852 if (empty) 3853 nr = min(right_nritems, max_slot); 3854 else 3855 nr = min(right_nritems - 1, max_slot); 3856 3857 for (i = 0; i < nr; i++) { 3858 item = btrfs_item_nr(i); 3859 3860 if (!empty && push_items > 0) { 3861 if (path->slots[0] < i) 3862 break; 3863 if (path->slots[0] == i) { 3864 int space = btrfs_leaf_free_space(fs_info, right); 3865 if (space + push_space * 2 > free_space) 3866 break; 3867 } 3868 } 3869 3870 if (path->slots[0] == i) 3871 push_space += data_size; 3872 3873 this_item_size = btrfs_item_size(right, item); 3874 if (this_item_size + sizeof(*item) + push_space > free_space) 3875 break; 3876 3877 push_items++; 3878 push_space += this_item_size + sizeof(*item); 3879 } 3880 3881 if (push_items == 0) { 3882 ret = 1; 3883 goto out; 3884 } 3885 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3886 3887 /* push data from right to left */ 3888 copy_extent_buffer(left, right, 3889 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3890 btrfs_item_nr_offset(0), 3891 push_items * sizeof(struct btrfs_item)); 3892 3893 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3894 btrfs_item_offset_nr(right, push_items - 1); 3895 3896 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3897 leaf_data_end(fs_info, left) - push_space, 3898 BTRFS_LEAF_DATA_OFFSET + 3899 btrfs_item_offset_nr(right, push_items - 1), 3900 push_space); 3901 old_left_nritems = btrfs_header_nritems(left); 3902 BUG_ON(old_left_nritems <= 0); 3903 3904 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3905 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3906 u32 ioff; 3907 3908 item = btrfs_item_nr(i); 3909 3910 ioff = btrfs_token_item_offset(left, item, &token); 3911 btrfs_set_token_item_offset(left, item, 3912 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3913 &token); 3914 } 3915 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3916 3917 /* fixup right node */ 3918 if (push_items > right_nritems) 3919 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3920 right_nritems); 3921 3922 if (push_items < right_nritems) { 3923 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3924 leaf_data_end(fs_info, right); 3925 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3926 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3927 BTRFS_LEAF_DATA_OFFSET + 3928 leaf_data_end(fs_info, right), push_space); 3929 3930 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3931 btrfs_item_nr_offset(push_items), 3932 (btrfs_header_nritems(right) - push_items) * 3933 sizeof(struct btrfs_item)); 3934 } 3935 right_nritems -= push_items; 3936 btrfs_set_header_nritems(right, right_nritems); 3937 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3938 for (i = 0; i < right_nritems; i++) { 3939 item = btrfs_item_nr(i); 3940 3941 push_space = push_space - btrfs_token_item_size(right, 3942 item, &token); 3943 btrfs_set_token_item_offset(right, item, push_space, &token); 3944 } 3945 3946 btrfs_mark_buffer_dirty(left); 3947 if (right_nritems) 3948 btrfs_mark_buffer_dirty(right); 3949 else 3950 clean_tree_block(fs_info, right); 3951 3952 btrfs_item_key(right, &disk_key, 0); 3953 fixup_low_keys(path, &disk_key, 1); 3954 3955 /* then fixup the leaf pointer in the path */ 3956 if (path->slots[0] < push_items) { 3957 path->slots[0] += old_left_nritems; 3958 btrfs_tree_unlock(path->nodes[0]); 3959 free_extent_buffer(path->nodes[0]); 3960 path->nodes[0] = left; 3961 path->slots[1] -= 1; 3962 } else { 3963 btrfs_tree_unlock(left); 3964 free_extent_buffer(left); 3965 path->slots[0] -= push_items; 3966 } 3967 BUG_ON(path->slots[0] < 0); 3968 return ret; 3969 out: 3970 btrfs_tree_unlock(left); 3971 free_extent_buffer(left); 3972 return ret; 3973 } 3974 3975 /* 3976 * push some data in the path leaf to the left, trying to free up at 3977 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3978 * 3979 * max_slot can put a limit on how far into the leaf we'll push items. The 3980 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3981 * items 3982 */ 3983 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3984 *root, struct btrfs_path *path, int min_data_size, 3985 int data_size, int empty, u32 max_slot) 3986 { 3987 struct btrfs_fs_info *fs_info = root->fs_info; 3988 struct extent_buffer *right = path->nodes[0]; 3989 struct extent_buffer *left; 3990 int slot; 3991 int free_space; 3992 u32 right_nritems; 3993 int ret = 0; 3994 3995 slot = path->slots[1]; 3996 if (slot == 0) 3997 return 1; 3998 if (!path->nodes[1]) 3999 return 1; 4000 4001 right_nritems = btrfs_header_nritems(right); 4002 if (right_nritems == 0) 4003 return 1; 4004 4005 btrfs_assert_tree_locked(path->nodes[1]); 4006 4007 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 4008 /* 4009 * slot - 1 is not valid or we fail to read the left node, 4010 * no big deal, just return. 4011 */ 4012 if (IS_ERR(left)) 4013 return 1; 4014 4015 btrfs_tree_lock(left); 4016 btrfs_set_lock_blocking(left); 4017 4018 free_space = btrfs_leaf_free_space(fs_info, left); 4019 if (free_space < data_size) { 4020 ret = 1; 4021 goto out; 4022 } 4023 4024 /* cow and double check */ 4025 ret = btrfs_cow_block(trans, root, left, 4026 path->nodes[1], slot - 1, &left); 4027 if (ret) { 4028 /* we hit -ENOSPC, but it isn't fatal here */ 4029 if (ret == -ENOSPC) 4030 ret = 1; 4031 goto out; 4032 } 4033 4034 free_space = btrfs_leaf_free_space(fs_info, left); 4035 if (free_space < data_size) { 4036 ret = 1; 4037 goto out; 4038 } 4039 4040 return __push_leaf_left(fs_info, path, min_data_size, 4041 empty, left, free_space, right_nritems, 4042 max_slot); 4043 out: 4044 btrfs_tree_unlock(left); 4045 free_extent_buffer(left); 4046 return ret; 4047 } 4048 4049 /* 4050 * split the path's leaf in two, making sure there is at least data_size 4051 * available for the resulting leaf level of the path. 4052 */ 4053 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4054 struct btrfs_fs_info *fs_info, 4055 struct btrfs_path *path, 4056 struct extent_buffer *l, 4057 struct extent_buffer *right, 4058 int slot, int mid, int nritems) 4059 { 4060 int data_copy_size; 4061 int rt_data_off; 4062 int i; 4063 struct btrfs_disk_key disk_key; 4064 struct btrfs_map_token token; 4065 4066 btrfs_init_map_token(&token); 4067 4068 nritems = nritems - mid; 4069 btrfs_set_header_nritems(right, nritems); 4070 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4071 4072 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4073 btrfs_item_nr_offset(mid), 4074 nritems * sizeof(struct btrfs_item)); 4075 4076 copy_extent_buffer(right, l, 4077 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4078 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4079 leaf_data_end(fs_info, l), data_copy_size); 4080 4081 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4082 4083 for (i = 0; i < nritems; i++) { 4084 struct btrfs_item *item = btrfs_item_nr(i); 4085 u32 ioff; 4086 4087 ioff = btrfs_token_item_offset(right, item, &token); 4088 btrfs_set_token_item_offset(right, item, 4089 ioff + rt_data_off, &token); 4090 } 4091 4092 btrfs_set_header_nritems(l, mid); 4093 btrfs_item_key(right, &disk_key, 0); 4094 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4095 path->slots[1] + 1, 1); 4096 4097 btrfs_mark_buffer_dirty(right); 4098 btrfs_mark_buffer_dirty(l); 4099 BUG_ON(path->slots[0] != slot); 4100 4101 if (mid <= slot) { 4102 btrfs_tree_unlock(path->nodes[0]); 4103 free_extent_buffer(path->nodes[0]); 4104 path->nodes[0] = right; 4105 path->slots[0] -= mid; 4106 path->slots[1] += 1; 4107 } else { 4108 btrfs_tree_unlock(right); 4109 free_extent_buffer(right); 4110 } 4111 4112 BUG_ON(path->slots[0] < 0); 4113 } 4114 4115 /* 4116 * double splits happen when we need to insert a big item in the middle 4117 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4118 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4119 * A B C 4120 * 4121 * We avoid this by trying to push the items on either side of our target 4122 * into the adjacent leaves. If all goes well we can avoid the double split 4123 * completely. 4124 */ 4125 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4126 struct btrfs_root *root, 4127 struct btrfs_path *path, 4128 int data_size) 4129 { 4130 struct btrfs_fs_info *fs_info = root->fs_info; 4131 int ret; 4132 int progress = 0; 4133 int slot; 4134 u32 nritems; 4135 int space_needed = data_size; 4136 4137 slot = path->slots[0]; 4138 if (slot < btrfs_header_nritems(path->nodes[0])) 4139 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4140 4141 /* 4142 * try to push all the items after our slot into the 4143 * right leaf 4144 */ 4145 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4146 if (ret < 0) 4147 return ret; 4148 4149 if (ret == 0) 4150 progress++; 4151 4152 nritems = btrfs_header_nritems(path->nodes[0]); 4153 /* 4154 * our goal is to get our slot at the start or end of a leaf. If 4155 * we've done so we're done 4156 */ 4157 if (path->slots[0] == 0 || path->slots[0] == nritems) 4158 return 0; 4159 4160 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4161 return 0; 4162 4163 /* try to push all the items before our slot into the next leaf */ 4164 slot = path->slots[0]; 4165 space_needed = data_size; 4166 if (slot > 0) 4167 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4168 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4169 if (ret < 0) 4170 return ret; 4171 4172 if (ret == 0) 4173 progress++; 4174 4175 if (progress) 4176 return 0; 4177 return 1; 4178 } 4179 4180 /* 4181 * split the path's leaf in two, making sure there is at least data_size 4182 * available for the resulting leaf level of the path. 4183 * 4184 * returns 0 if all went well and < 0 on failure. 4185 */ 4186 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4187 struct btrfs_root *root, 4188 const struct btrfs_key *ins_key, 4189 struct btrfs_path *path, int data_size, 4190 int extend) 4191 { 4192 struct btrfs_disk_key disk_key; 4193 struct extent_buffer *l; 4194 u32 nritems; 4195 int mid; 4196 int slot; 4197 struct extent_buffer *right; 4198 struct btrfs_fs_info *fs_info = root->fs_info; 4199 int ret = 0; 4200 int wret; 4201 int split; 4202 int num_doubles = 0; 4203 int tried_avoid_double = 0; 4204 4205 l = path->nodes[0]; 4206 slot = path->slots[0]; 4207 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4208 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4209 return -EOVERFLOW; 4210 4211 /* first try to make some room by pushing left and right */ 4212 if (data_size && path->nodes[1]) { 4213 int space_needed = data_size; 4214 4215 if (slot < btrfs_header_nritems(l)) 4216 space_needed -= btrfs_leaf_free_space(fs_info, l); 4217 4218 wret = push_leaf_right(trans, root, path, space_needed, 4219 space_needed, 0, 0); 4220 if (wret < 0) 4221 return wret; 4222 if (wret) { 4223 space_needed = data_size; 4224 if (slot > 0) 4225 space_needed -= btrfs_leaf_free_space(fs_info, 4226 l); 4227 wret = push_leaf_left(trans, root, path, space_needed, 4228 space_needed, 0, (u32)-1); 4229 if (wret < 0) 4230 return wret; 4231 } 4232 l = path->nodes[0]; 4233 4234 /* did the pushes work? */ 4235 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4236 return 0; 4237 } 4238 4239 if (!path->nodes[1]) { 4240 ret = insert_new_root(trans, root, path, 1); 4241 if (ret) 4242 return ret; 4243 } 4244 again: 4245 split = 1; 4246 l = path->nodes[0]; 4247 slot = path->slots[0]; 4248 nritems = btrfs_header_nritems(l); 4249 mid = (nritems + 1) / 2; 4250 4251 if (mid <= slot) { 4252 if (nritems == 1 || 4253 leaf_space_used(l, mid, nritems - mid) + data_size > 4254 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4255 if (slot >= nritems) { 4256 split = 0; 4257 } else { 4258 mid = slot; 4259 if (mid != nritems && 4260 leaf_space_used(l, mid, nritems - mid) + 4261 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4262 if (data_size && !tried_avoid_double) 4263 goto push_for_double; 4264 split = 2; 4265 } 4266 } 4267 } 4268 } else { 4269 if (leaf_space_used(l, 0, mid) + data_size > 4270 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4271 if (!extend && data_size && slot == 0) { 4272 split = 0; 4273 } else if ((extend || !data_size) && slot == 0) { 4274 mid = 1; 4275 } else { 4276 mid = slot; 4277 if (mid != nritems && 4278 leaf_space_used(l, mid, nritems - mid) + 4279 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4280 if (data_size && !tried_avoid_double) 4281 goto push_for_double; 4282 split = 2; 4283 } 4284 } 4285 } 4286 } 4287 4288 if (split == 0) 4289 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4290 else 4291 btrfs_item_key(l, &disk_key, mid); 4292 4293 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4294 l->start, 0); 4295 if (IS_ERR(right)) 4296 return PTR_ERR(right); 4297 4298 root_add_used(root, fs_info->nodesize); 4299 4300 if (split == 0) { 4301 if (mid <= slot) { 4302 btrfs_set_header_nritems(right, 0); 4303 insert_ptr(trans, fs_info, path, &disk_key, 4304 right->start, path->slots[1] + 1, 1); 4305 btrfs_tree_unlock(path->nodes[0]); 4306 free_extent_buffer(path->nodes[0]); 4307 path->nodes[0] = right; 4308 path->slots[0] = 0; 4309 path->slots[1] += 1; 4310 } else { 4311 btrfs_set_header_nritems(right, 0); 4312 insert_ptr(trans, fs_info, path, &disk_key, 4313 right->start, path->slots[1], 1); 4314 btrfs_tree_unlock(path->nodes[0]); 4315 free_extent_buffer(path->nodes[0]); 4316 path->nodes[0] = right; 4317 path->slots[0] = 0; 4318 if (path->slots[1] == 0) 4319 fixup_low_keys(path, &disk_key, 1); 4320 } 4321 /* 4322 * We create a new leaf 'right' for the required ins_len and 4323 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4324 * the content of ins_len to 'right'. 4325 */ 4326 return ret; 4327 } 4328 4329 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4330 4331 if (split == 2) { 4332 BUG_ON(num_doubles != 0); 4333 num_doubles++; 4334 goto again; 4335 } 4336 4337 return 0; 4338 4339 push_for_double: 4340 push_for_double_split(trans, root, path, data_size); 4341 tried_avoid_double = 1; 4342 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4343 return 0; 4344 goto again; 4345 } 4346 4347 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4348 struct btrfs_root *root, 4349 struct btrfs_path *path, int ins_len) 4350 { 4351 struct btrfs_fs_info *fs_info = root->fs_info; 4352 struct btrfs_key key; 4353 struct extent_buffer *leaf; 4354 struct btrfs_file_extent_item *fi; 4355 u64 extent_len = 0; 4356 u32 item_size; 4357 int ret; 4358 4359 leaf = path->nodes[0]; 4360 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4361 4362 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4363 key.type != BTRFS_EXTENT_CSUM_KEY); 4364 4365 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4366 return 0; 4367 4368 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4369 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4370 fi = btrfs_item_ptr(leaf, path->slots[0], 4371 struct btrfs_file_extent_item); 4372 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4373 } 4374 btrfs_release_path(path); 4375 4376 path->keep_locks = 1; 4377 path->search_for_split = 1; 4378 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4379 path->search_for_split = 0; 4380 if (ret > 0) 4381 ret = -EAGAIN; 4382 if (ret < 0) 4383 goto err; 4384 4385 ret = -EAGAIN; 4386 leaf = path->nodes[0]; 4387 /* if our item isn't there, return now */ 4388 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4389 goto err; 4390 4391 /* the leaf has changed, it now has room. return now */ 4392 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4393 goto err; 4394 4395 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4396 fi = btrfs_item_ptr(leaf, path->slots[0], 4397 struct btrfs_file_extent_item); 4398 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4399 goto err; 4400 } 4401 4402 btrfs_set_path_blocking(path); 4403 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4404 if (ret) 4405 goto err; 4406 4407 path->keep_locks = 0; 4408 btrfs_unlock_up_safe(path, 1); 4409 return 0; 4410 err: 4411 path->keep_locks = 0; 4412 return ret; 4413 } 4414 4415 static noinline int split_item(struct btrfs_fs_info *fs_info, 4416 struct btrfs_path *path, 4417 const struct btrfs_key *new_key, 4418 unsigned long split_offset) 4419 { 4420 struct extent_buffer *leaf; 4421 struct btrfs_item *item; 4422 struct btrfs_item *new_item; 4423 int slot; 4424 char *buf; 4425 u32 nritems; 4426 u32 item_size; 4427 u32 orig_offset; 4428 struct btrfs_disk_key disk_key; 4429 4430 leaf = path->nodes[0]; 4431 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4432 4433 btrfs_set_path_blocking(path); 4434 4435 item = btrfs_item_nr(path->slots[0]); 4436 orig_offset = btrfs_item_offset(leaf, item); 4437 item_size = btrfs_item_size(leaf, item); 4438 4439 buf = kmalloc(item_size, GFP_NOFS); 4440 if (!buf) 4441 return -ENOMEM; 4442 4443 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4444 path->slots[0]), item_size); 4445 4446 slot = path->slots[0] + 1; 4447 nritems = btrfs_header_nritems(leaf); 4448 if (slot != nritems) { 4449 /* shift the items */ 4450 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4451 btrfs_item_nr_offset(slot), 4452 (nritems - slot) * sizeof(struct btrfs_item)); 4453 } 4454 4455 btrfs_cpu_key_to_disk(&disk_key, new_key); 4456 btrfs_set_item_key(leaf, &disk_key, slot); 4457 4458 new_item = btrfs_item_nr(slot); 4459 4460 btrfs_set_item_offset(leaf, new_item, orig_offset); 4461 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4462 4463 btrfs_set_item_offset(leaf, item, 4464 orig_offset + item_size - split_offset); 4465 btrfs_set_item_size(leaf, item, split_offset); 4466 4467 btrfs_set_header_nritems(leaf, nritems + 1); 4468 4469 /* write the data for the start of the original item */ 4470 write_extent_buffer(leaf, buf, 4471 btrfs_item_ptr_offset(leaf, path->slots[0]), 4472 split_offset); 4473 4474 /* write the data for the new item */ 4475 write_extent_buffer(leaf, buf + split_offset, 4476 btrfs_item_ptr_offset(leaf, slot), 4477 item_size - split_offset); 4478 btrfs_mark_buffer_dirty(leaf); 4479 4480 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4481 kfree(buf); 4482 return 0; 4483 } 4484 4485 /* 4486 * This function splits a single item into two items, 4487 * giving 'new_key' to the new item and splitting the 4488 * old one at split_offset (from the start of the item). 4489 * 4490 * The path may be released by this operation. After 4491 * the split, the path is pointing to the old item. The 4492 * new item is going to be in the same node as the old one. 4493 * 4494 * Note, the item being split must be smaller enough to live alone on 4495 * a tree block with room for one extra struct btrfs_item 4496 * 4497 * This allows us to split the item in place, keeping a lock on the 4498 * leaf the entire time. 4499 */ 4500 int btrfs_split_item(struct btrfs_trans_handle *trans, 4501 struct btrfs_root *root, 4502 struct btrfs_path *path, 4503 const struct btrfs_key *new_key, 4504 unsigned long split_offset) 4505 { 4506 int ret; 4507 ret = setup_leaf_for_split(trans, root, path, 4508 sizeof(struct btrfs_item)); 4509 if (ret) 4510 return ret; 4511 4512 ret = split_item(root->fs_info, path, new_key, split_offset); 4513 return ret; 4514 } 4515 4516 /* 4517 * This function duplicate a item, giving 'new_key' to the new item. 4518 * It guarantees both items live in the same tree leaf and the new item 4519 * is contiguous with the original item. 4520 * 4521 * This allows us to split file extent in place, keeping a lock on the 4522 * leaf the entire time. 4523 */ 4524 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4525 struct btrfs_root *root, 4526 struct btrfs_path *path, 4527 const struct btrfs_key *new_key) 4528 { 4529 struct extent_buffer *leaf; 4530 int ret; 4531 u32 item_size; 4532 4533 leaf = path->nodes[0]; 4534 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4535 ret = setup_leaf_for_split(trans, root, path, 4536 item_size + sizeof(struct btrfs_item)); 4537 if (ret) 4538 return ret; 4539 4540 path->slots[0]++; 4541 setup_items_for_insert(root, path, new_key, &item_size, 4542 item_size, item_size + 4543 sizeof(struct btrfs_item), 1); 4544 leaf = path->nodes[0]; 4545 memcpy_extent_buffer(leaf, 4546 btrfs_item_ptr_offset(leaf, path->slots[0]), 4547 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4548 item_size); 4549 return 0; 4550 } 4551 4552 /* 4553 * make the item pointed to by the path smaller. new_size indicates 4554 * how small to make it, and from_end tells us if we just chop bytes 4555 * off the end of the item or if we shift the item to chop bytes off 4556 * the front. 4557 */ 4558 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4559 struct btrfs_path *path, u32 new_size, int from_end) 4560 { 4561 int slot; 4562 struct extent_buffer *leaf; 4563 struct btrfs_item *item; 4564 u32 nritems; 4565 unsigned int data_end; 4566 unsigned int old_data_start; 4567 unsigned int old_size; 4568 unsigned int size_diff; 4569 int i; 4570 struct btrfs_map_token token; 4571 4572 btrfs_init_map_token(&token); 4573 4574 leaf = path->nodes[0]; 4575 slot = path->slots[0]; 4576 4577 old_size = btrfs_item_size_nr(leaf, slot); 4578 if (old_size == new_size) 4579 return; 4580 4581 nritems = btrfs_header_nritems(leaf); 4582 data_end = leaf_data_end(fs_info, leaf); 4583 4584 old_data_start = btrfs_item_offset_nr(leaf, slot); 4585 4586 size_diff = old_size - new_size; 4587 4588 BUG_ON(slot < 0); 4589 BUG_ON(slot >= nritems); 4590 4591 /* 4592 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4593 */ 4594 /* first correct the data pointers */ 4595 for (i = slot; i < nritems; i++) { 4596 u32 ioff; 4597 item = btrfs_item_nr(i); 4598 4599 ioff = btrfs_token_item_offset(leaf, item, &token); 4600 btrfs_set_token_item_offset(leaf, item, 4601 ioff + size_diff, &token); 4602 } 4603 4604 /* shift the data */ 4605 if (from_end) { 4606 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4607 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4608 data_end, old_data_start + new_size - data_end); 4609 } else { 4610 struct btrfs_disk_key disk_key; 4611 u64 offset; 4612 4613 btrfs_item_key(leaf, &disk_key, slot); 4614 4615 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4616 unsigned long ptr; 4617 struct btrfs_file_extent_item *fi; 4618 4619 fi = btrfs_item_ptr(leaf, slot, 4620 struct btrfs_file_extent_item); 4621 fi = (struct btrfs_file_extent_item *)( 4622 (unsigned long)fi - size_diff); 4623 4624 if (btrfs_file_extent_type(leaf, fi) == 4625 BTRFS_FILE_EXTENT_INLINE) { 4626 ptr = btrfs_item_ptr_offset(leaf, slot); 4627 memmove_extent_buffer(leaf, ptr, 4628 (unsigned long)fi, 4629 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4630 } 4631 } 4632 4633 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4634 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4635 data_end, old_data_start - data_end); 4636 4637 offset = btrfs_disk_key_offset(&disk_key); 4638 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4639 btrfs_set_item_key(leaf, &disk_key, slot); 4640 if (slot == 0) 4641 fixup_low_keys(path, &disk_key, 1); 4642 } 4643 4644 item = btrfs_item_nr(slot); 4645 btrfs_set_item_size(leaf, item, new_size); 4646 btrfs_mark_buffer_dirty(leaf); 4647 4648 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4649 btrfs_print_leaf(leaf); 4650 BUG(); 4651 } 4652 } 4653 4654 /* 4655 * make the item pointed to by the path bigger, data_size is the added size. 4656 */ 4657 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4658 u32 data_size) 4659 { 4660 int slot; 4661 struct extent_buffer *leaf; 4662 struct btrfs_item *item; 4663 u32 nritems; 4664 unsigned int data_end; 4665 unsigned int old_data; 4666 unsigned int old_size; 4667 int i; 4668 struct btrfs_map_token token; 4669 4670 btrfs_init_map_token(&token); 4671 4672 leaf = path->nodes[0]; 4673 4674 nritems = btrfs_header_nritems(leaf); 4675 data_end = leaf_data_end(fs_info, leaf); 4676 4677 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4678 btrfs_print_leaf(leaf); 4679 BUG(); 4680 } 4681 slot = path->slots[0]; 4682 old_data = btrfs_item_end_nr(leaf, slot); 4683 4684 BUG_ON(slot < 0); 4685 if (slot >= nritems) { 4686 btrfs_print_leaf(leaf); 4687 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4688 slot, nritems); 4689 BUG_ON(1); 4690 } 4691 4692 /* 4693 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4694 */ 4695 /* first correct the data pointers */ 4696 for (i = slot; i < nritems; i++) { 4697 u32 ioff; 4698 item = btrfs_item_nr(i); 4699 4700 ioff = btrfs_token_item_offset(leaf, item, &token); 4701 btrfs_set_token_item_offset(leaf, item, 4702 ioff - data_size, &token); 4703 } 4704 4705 /* shift the data */ 4706 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4707 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4708 data_end, old_data - data_end); 4709 4710 data_end = old_data; 4711 old_size = btrfs_item_size_nr(leaf, slot); 4712 item = btrfs_item_nr(slot); 4713 btrfs_set_item_size(leaf, item, old_size + data_size); 4714 btrfs_mark_buffer_dirty(leaf); 4715 4716 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4717 btrfs_print_leaf(leaf); 4718 BUG(); 4719 } 4720 } 4721 4722 /* 4723 * this is a helper for btrfs_insert_empty_items, the main goal here is 4724 * to save stack depth by doing the bulk of the work in a function 4725 * that doesn't call btrfs_search_slot 4726 */ 4727 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4728 const struct btrfs_key *cpu_key, u32 *data_size, 4729 u32 total_data, u32 total_size, int nr) 4730 { 4731 struct btrfs_fs_info *fs_info = root->fs_info; 4732 struct btrfs_item *item; 4733 int i; 4734 u32 nritems; 4735 unsigned int data_end; 4736 struct btrfs_disk_key disk_key; 4737 struct extent_buffer *leaf; 4738 int slot; 4739 struct btrfs_map_token token; 4740 4741 if (path->slots[0] == 0) { 4742 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4743 fixup_low_keys(path, &disk_key, 1); 4744 } 4745 btrfs_unlock_up_safe(path, 1); 4746 4747 btrfs_init_map_token(&token); 4748 4749 leaf = path->nodes[0]; 4750 slot = path->slots[0]; 4751 4752 nritems = btrfs_header_nritems(leaf); 4753 data_end = leaf_data_end(fs_info, leaf); 4754 4755 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4756 btrfs_print_leaf(leaf); 4757 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4758 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4759 BUG(); 4760 } 4761 4762 if (slot != nritems) { 4763 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4764 4765 if (old_data < data_end) { 4766 btrfs_print_leaf(leaf); 4767 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4768 slot, old_data, data_end); 4769 BUG_ON(1); 4770 } 4771 /* 4772 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4773 */ 4774 /* first correct the data pointers */ 4775 for (i = slot; i < nritems; i++) { 4776 u32 ioff; 4777 4778 item = btrfs_item_nr(i); 4779 ioff = btrfs_token_item_offset(leaf, item, &token); 4780 btrfs_set_token_item_offset(leaf, item, 4781 ioff - total_data, &token); 4782 } 4783 /* shift the items */ 4784 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4785 btrfs_item_nr_offset(slot), 4786 (nritems - slot) * sizeof(struct btrfs_item)); 4787 4788 /* shift the data */ 4789 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4790 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4791 data_end, old_data - data_end); 4792 data_end = old_data; 4793 } 4794 4795 /* setup the item for the new data */ 4796 for (i = 0; i < nr; i++) { 4797 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4798 btrfs_set_item_key(leaf, &disk_key, slot + i); 4799 item = btrfs_item_nr(slot + i); 4800 btrfs_set_token_item_offset(leaf, item, 4801 data_end - data_size[i], &token); 4802 data_end -= data_size[i]; 4803 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4804 } 4805 4806 btrfs_set_header_nritems(leaf, nritems + nr); 4807 btrfs_mark_buffer_dirty(leaf); 4808 4809 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4810 btrfs_print_leaf(leaf); 4811 BUG(); 4812 } 4813 } 4814 4815 /* 4816 * Given a key and some data, insert items into the tree. 4817 * This does all the path init required, making room in the tree if needed. 4818 */ 4819 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4820 struct btrfs_root *root, 4821 struct btrfs_path *path, 4822 const struct btrfs_key *cpu_key, u32 *data_size, 4823 int nr) 4824 { 4825 int ret = 0; 4826 int slot; 4827 int i; 4828 u32 total_size = 0; 4829 u32 total_data = 0; 4830 4831 for (i = 0; i < nr; i++) 4832 total_data += data_size[i]; 4833 4834 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4835 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4836 if (ret == 0) 4837 return -EEXIST; 4838 if (ret < 0) 4839 return ret; 4840 4841 slot = path->slots[0]; 4842 BUG_ON(slot < 0); 4843 4844 setup_items_for_insert(root, path, cpu_key, data_size, 4845 total_data, total_size, nr); 4846 return 0; 4847 } 4848 4849 /* 4850 * Given a key and some data, insert an item into the tree. 4851 * This does all the path init required, making room in the tree if needed. 4852 */ 4853 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4854 const struct btrfs_key *cpu_key, void *data, 4855 u32 data_size) 4856 { 4857 int ret = 0; 4858 struct btrfs_path *path; 4859 struct extent_buffer *leaf; 4860 unsigned long ptr; 4861 4862 path = btrfs_alloc_path(); 4863 if (!path) 4864 return -ENOMEM; 4865 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4866 if (!ret) { 4867 leaf = path->nodes[0]; 4868 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4869 write_extent_buffer(leaf, data, ptr, data_size); 4870 btrfs_mark_buffer_dirty(leaf); 4871 } 4872 btrfs_free_path(path); 4873 return ret; 4874 } 4875 4876 /* 4877 * delete the pointer from a given node. 4878 * 4879 * the tree should have been previously balanced so the deletion does not 4880 * empty a node. 4881 */ 4882 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4883 int level, int slot) 4884 { 4885 struct extent_buffer *parent = path->nodes[level]; 4886 u32 nritems; 4887 int ret; 4888 4889 nritems = btrfs_header_nritems(parent); 4890 if (slot != nritems - 1) { 4891 if (level) { 4892 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4893 nritems - slot - 1); 4894 BUG_ON(ret < 0); 4895 } 4896 memmove_extent_buffer(parent, 4897 btrfs_node_key_ptr_offset(slot), 4898 btrfs_node_key_ptr_offset(slot + 1), 4899 sizeof(struct btrfs_key_ptr) * 4900 (nritems - slot - 1)); 4901 } else if (level) { 4902 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4903 GFP_NOFS); 4904 BUG_ON(ret < 0); 4905 } 4906 4907 nritems--; 4908 btrfs_set_header_nritems(parent, nritems); 4909 if (nritems == 0 && parent == root->node) { 4910 BUG_ON(btrfs_header_level(root->node) != 1); 4911 /* just turn the root into a leaf and break */ 4912 btrfs_set_header_level(root->node, 0); 4913 } else if (slot == 0) { 4914 struct btrfs_disk_key disk_key; 4915 4916 btrfs_node_key(parent, &disk_key, 0); 4917 fixup_low_keys(path, &disk_key, level + 1); 4918 } 4919 btrfs_mark_buffer_dirty(parent); 4920 } 4921 4922 /* 4923 * a helper function to delete the leaf pointed to by path->slots[1] and 4924 * path->nodes[1]. 4925 * 4926 * This deletes the pointer in path->nodes[1] and frees the leaf 4927 * block extent. zero is returned if it all worked out, < 0 otherwise. 4928 * 4929 * The path must have already been setup for deleting the leaf, including 4930 * all the proper balancing. path->nodes[1] must be locked. 4931 */ 4932 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4933 struct btrfs_root *root, 4934 struct btrfs_path *path, 4935 struct extent_buffer *leaf) 4936 { 4937 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4938 del_ptr(root, path, 1, path->slots[1]); 4939 4940 /* 4941 * btrfs_free_extent is expensive, we want to make sure we 4942 * aren't holding any locks when we call it 4943 */ 4944 btrfs_unlock_up_safe(path, 0); 4945 4946 root_sub_used(root, leaf->len); 4947 4948 extent_buffer_get(leaf); 4949 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4950 free_extent_buffer_stale(leaf); 4951 } 4952 /* 4953 * delete the item at the leaf level in path. If that empties 4954 * the leaf, remove it from the tree 4955 */ 4956 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4957 struct btrfs_path *path, int slot, int nr) 4958 { 4959 struct btrfs_fs_info *fs_info = root->fs_info; 4960 struct extent_buffer *leaf; 4961 struct btrfs_item *item; 4962 u32 last_off; 4963 u32 dsize = 0; 4964 int ret = 0; 4965 int wret; 4966 int i; 4967 u32 nritems; 4968 struct btrfs_map_token token; 4969 4970 btrfs_init_map_token(&token); 4971 4972 leaf = path->nodes[0]; 4973 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4974 4975 for (i = 0; i < nr; i++) 4976 dsize += btrfs_item_size_nr(leaf, slot + i); 4977 4978 nritems = btrfs_header_nritems(leaf); 4979 4980 if (slot + nr != nritems) { 4981 int data_end = leaf_data_end(fs_info, leaf); 4982 4983 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4984 data_end + dsize, 4985 BTRFS_LEAF_DATA_OFFSET + data_end, 4986 last_off - data_end); 4987 4988 for (i = slot + nr; i < nritems; i++) { 4989 u32 ioff; 4990 4991 item = btrfs_item_nr(i); 4992 ioff = btrfs_token_item_offset(leaf, item, &token); 4993 btrfs_set_token_item_offset(leaf, item, 4994 ioff + dsize, &token); 4995 } 4996 4997 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4998 btrfs_item_nr_offset(slot + nr), 4999 sizeof(struct btrfs_item) * 5000 (nritems - slot - nr)); 5001 } 5002 btrfs_set_header_nritems(leaf, nritems - nr); 5003 nritems -= nr; 5004 5005 /* delete the leaf if we've emptied it */ 5006 if (nritems == 0) { 5007 if (leaf == root->node) { 5008 btrfs_set_header_level(leaf, 0); 5009 } else { 5010 btrfs_set_path_blocking(path); 5011 clean_tree_block(fs_info, leaf); 5012 btrfs_del_leaf(trans, root, path, leaf); 5013 } 5014 } else { 5015 int used = leaf_space_used(leaf, 0, nritems); 5016 if (slot == 0) { 5017 struct btrfs_disk_key disk_key; 5018 5019 btrfs_item_key(leaf, &disk_key, 0); 5020 fixup_low_keys(path, &disk_key, 1); 5021 } 5022 5023 /* delete the leaf if it is mostly empty */ 5024 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5025 /* push_leaf_left fixes the path. 5026 * make sure the path still points to our leaf 5027 * for possible call to del_ptr below 5028 */ 5029 slot = path->slots[1]; 5030 extent_buffer_get(leaf); 5031 5032 btrfs_set_path_blocking(path); 5033 wret = push_leaf_left(trans, root, path, 1, 1, 5034 1, (u32)-1); 5035 if (wret < 0 && wret != -ENOSPC) 5036 ret = wret; 5037 5038 if (path->nodes[0] == leaf && 5039 btrfs_header_nritems(leaf)) { 5040 wret = push_leaf_right(trans, root, path, 1, 5041 1, 1, 0); 5042 if (wret < 0 && wret != -ENOSPC) 5043 ret = wret; 5044 } 5045 5046 if (btrfs_header_nritems(leaf) == 0) { 5047 path->slots[1] = slot; 5048 btrfs_del_leaf(trans, root, path, leaf); 5049 free_extent_buffer(leaf); 5050 ret = 0; 5051 } else { 5052 /* if we're still in the path, make sure 5053 * we're dirty. Otherwise, one of the 5054 * push_leaf functions must have already 5055 * dirtied this buffer 5056 */ 5057 if (path->nodes[0] == leaf) 5058 btrfs_mark_buffer_dirty(leaf); 5059 free_extent_buffer(leaf); 5060 } 5061 } else { 5062 btrfs_mark_buffer_dirty(leaf); 5063 } 5064 } 5065 return ret; 5066 } 5067 5068 /* 5069 * search the tree again to find a leaf with lesser keys 5070 * returns 0 if it found something or 1 if there are no lesser leaves. 5071 * returns < 0 on io errors. 5072 * 5073 * This may release the path, and so you may lose any locks held at the 5074 * time you call it. 5075 */ 5076 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5077 { 5078 struct btrfs_key key; 5079 struct btrfs_disk_key found_key; 5080 int ret; 5081 5082 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5083 5084 if (key.offset > 0) { 5085 key.offset--; 5086 } else if (key.type > 0) { 5087 key.type--; 5088 key.offset = (u64)-1; 5089 } else if (key.objectid > 0) { 5090 key.objectid--; 5091 key.type = (u8)-1; 5092 key.offset = (u64)-1; 5093 } else { 5094 return 1; 5095 } 5096 5097 btrfs_release_path(path); 5098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5099 if (ret < 0) 5100 return ret; 5101 btrfs_item_key(path->nodes[0], &found_key, 0); 5102 ret = comp_keys(&found_key, &key); 5103 /* 5104 * We might have had an item with the previous key in the tree right 5105 * before we released our path. And after we released our path, that 5106 * item might have been pushed to the first slot (0) of the leaf we 5107 * were holding due to a tree balance. Alternatively, an item with the 5108 * previous key can exist as the only element of a leaf (big fat item). 5109 * Therefore account for these 2 cases, so that our callers (like 5110 * btrfs_previous_item) don't miss an existing item with a key matching 5111 * the previous key we computed above. 5112 */ 5113 if (ret <= 0) 5114 return 0; 5115 return 1; 5116 } 5117 5118 /* 5119 * A helper function to walk down the tree starting at min_key, and looking 5120 * for nodes or leaves that are have a minimum transaction id. 5121 * This is used by the btree defrag code, and tree logging 5122 * 5123 * This does not cow, but it does stuff the starting key it finds back 5124 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5125 * key and get a writable path. 5126 * 5127 * This honors path->lowest_level to prevent descent past a given level 5128 * of the tree. 5129 * 5130 * min_trans indicates the oldest transaction that you are interested 5131 * in walking through. Any nodes or leaves older than min_trans are 5132 * skipped over (without reading them). 5133 * 5134 * returns zero if something useful was found, < 0 on error and 1 if there 5135 * was nothing in the tree that matched the search criteria. 5136 */ 5137 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5138 struct btrfs_path *path, 5139 u64 min_trans) 5140 { 5141 struct btrfs_fs_info *fs_info = root->fs_info; 5142 struct extent_buffer *cur; 5143 struct btrfs_key found_key; 5144 int slot; 5145 int sret; 5146 u32 nritems; 5147 int level; 5148 int ret = 1; 5149 int keep_locks = path->keep_locks; 5150 5151 path->keep_locks = 1; 5152 again: 5153 cur = btrfs_read_lock_root_node(root); 5154 level = btrfs_header_level(cur); 5155 WARN_ON(path->nodes[level]); 5156 path->nodes[level] = cur; 5157 path->locks[level] = BTRFS_READ_LOCK; 5158 5159 if (btrfs_header_generation(cur) < min_trans) { 5160 ret = 1; 5161 goto out; 5162 } 5163 while (1) { 5164 nritems = btrfs_header_nritems(cur); 5165 level = btrfs_header_level(cur); 5166 sret = btrfs_bin_search(cur, min_key, level, &slot); 5167 5168 /* at the lowest level, we're done, setup the path and exit */ 5169 if (level == path->lowest_level) { 5170 if (slot >= nritems) 5171 goto find_next_key; 5172 ret = 0; 5173 path->slots[level] = slot; 5174 btrfs_item_key_to_cpu(cur, &found_key, slot); 5175 goto out; 5176 } 5177 if (sret && slot > 0) 5178 slot--; 5179 /* 5180 * check this node pointer against the min_trans parameters. 5181 * If it is too old, old, skip to the next one. 5182 */ 5183 while (slot < nritems) { 5184 u64 gen; 5185 5186 gen = btrfs_node_ptr_generation(cur, slot); 5187 if (gen < min_trans) { 5188 slot++; 5189 continue; 5190 } 5191 break; 5192 } 5193 find_next_key: 5194 /* 5195 * we didn't find a candidate key in this node, walk forward 5196 * and find another one 5197 */ 5198 if (slot >= nritems) { 5199 path->slots[level] = slot; 5200 btrfs_set_path_blocking(path); 5201 sret = btrfs_find_next_key(root, path, min_key, level, 5202 min_trans); 5203 if (sret == 0) { 5204 btrfs_release_path(path); 5205 goto again; 5206 } else { 5207 goto out; 5208 } 5209 } 5210 /* save our key for returning back */ 5211 btrfs_node_key_to_cpu(cur, &found_key, slot); 5212 path->slots[level] = slot; 5213 if (level == path->lowest_level) { 5214 ret = 0; 5215 goto out; 5216 } 5217 btrfs_set_path_blocking(path); 5218 cur = read_node_slot(fs_info, cur, slot); 5219 if (IS_ERR(cur)) { 5220 ret = PTR_ERR(cur); 5221 goto out; 5222 } 5223 5224 btrfs_tree_read_lock(cur); 5225 5226 path->locks[level - 1] = BTRFS_READ_LOCK; 5227 path->nodes[level - 1] = cur; 5228 unlock_up(path, level, 1, 0, NULL); 5229 } 5230 out: 5231 path->keep_locks = keep_locks; 5232 if (ret == 0) { 5233 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5234 btrfs_set_path_blocking(path); 5235 memcpy(min_key, &found_key, sizeof(found_key)); 5236 } 5237 return ret; 5238 } 5239 5240 static int tree_move_down(struct btrfs_fs_info *fs_info, 5241 struct btrfs_path *path, 5242 int *level) 5243 { 5244 struct extent_buffer *eb; 5245 5246 BUG_ON(*level == 0); 5247 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5248 if (IS_ERR(eb)) 5249 return PTR_ERR(eb); 5250 5251 path->nodes[*level - 1] = eb; 5252 path->slots[*level - 1] = 0; 5253 (*level)--; 5254 return 0; 5255 } 5256 5257 static int tree_move_next_or_upnext(struct btrfs_path *path, 5258 int *level, int root_level) 5259 { 5260 int ret = 0; 5261 int nritems; 5262 nritems = btrfs_header_nritems(path->nodes[*level]); 5263 5264 path->slots[*level]++; 5265 5266 while (path->slots[*level] >= nritems) { 5267 if (*level == root_level) 5268 return -1; 5269 5270 /* move upnext */ 5271 path->slots[*level] = 0; 5272 free_extent_buffer(path->nodes[*level]); 5273 path->nodes[*level] = NULL; 5274 (*level)++; 5275 path->slots[*level]++; 5276 5277 nritems = btrfs_header_nritems(path->nodes[*level]); 5278 ret = 1; 5279 } 5280 return ret; 5281 } 5282 5283 /* 5284 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5285 * or down. 5286 */ 5287 static int tree_advance(struct btrfs_fs_info *fs_info, 5288 struct btrfs_path *path, 5289 int *level, int root_level, 5290 int allow_down, 5291 struct btrfs_key *key) 5292 { 5293 int ret; 5294 5295 if (*level == 0 || !allow_down) { 5296 ret = tree_move_next_or_upnext(path, level, root_level); 5297 } else { 5298 ret = tree_move_down(fs_info, path, level); 5299 } 5300 if (ret >= 0) { 5301 if (*level == 0) 5302 btrfs_item_key_to_cpu(path->nodes[*level], key, 5303 path->slots[*level]); 5304 else 5305 btrfs_node_key_to_cpu(path->nodes[*level], key, 5306 path->slots[*level]); 5307 } 5308 return ret; 5309 } 5310 5311 static int tree_compare_item(struct btrfs_path *left_path, 5312 struct btrfs_path *right_path, 5313 char *tmp_buf) 5314 { 5315 int cmp; 5316 int len1, len2; 5317 unsigned long off1, off2; 5318 5319 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5320 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5321 if (len1 != len2) 5322 return 1; 5323 5324 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5325 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5326 right_path->slots[0]); 5327 5328 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5329 5330 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5331 if (cmp) 5332 return 1; 5333 return 0; 5334 } 5335 5336 #define ADVANCE 1 5337 #define ADVANCE_ONLY_NEXT -1 5338 5339 /* 5340 * This function compares two trees and calls the provided callback for 5341 * every changed/new/deleted item it finds. 5342 * If shared tree blocks are encountered, whole subtrees are skipped, making 5343 * the compare pretty fast on snapshotted subvolumes. 5344 * 5345 * This currently works on commit roots only. As commit roots are read only, 5346 * we don't do any locking. The commit roots are protected with transactions. 5347 * Transactions are ended and rejoined when a commit is tried in between. 5348 * 5349 * This function checks for modifications done to the trees while comparing. 5350 * If it detects a change, it aborts immediately. 5351 */ 5352 int btrfs_compare_trees(struct btrfs_root *left_root, 5353 struct btrfs_root *right_root, 5354 btrfs_changed_cb_t changed_cb, void *ctx) 5355 { 5356 struct btrfs_fs_info *fs_info = left_root->fs_info; 5357 int ret; 5358 int cmp; 5359 struct btrfs_path *left_path = NULL; 5360 struct btrfs_path *right_path = NULL; 5361 struct btrfs_key left_key; 5362 struct btrfs_key right_key; 5363 char *tmp_buf = NULL; 5364 int left_root_level; 5365 int right_root_level; 5366 int left_level; 5367 int right_level; 5368 int left_end_reached; 5369 int right_end_reached; 5370 int advance_left; 5371 int advance_right; 5372 u64 left_blockptr; 5373 u64 right_blockptr; 5374 u64 left_gen; 5375 u64 right_gen; 5376 5377 left_path = btrfs_alloc_path(); 5378 if (!left_path) { 5379 ret = -ENOMEM; 5380 goto out; 5381 } 5382 right_path = btrfs_alloc_path(); 5383 if (!right_path) { 5384 ret = -ENOMEM; 5385 goto out; 5386 } 5387 5388 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 5389 if (!tmp_buf) { 5390 ret = -ENOMEM; 5391 goto out; 5392 } 5393 5394 left_path->search_commit_root = 1; 5395 left_path->skip_locking = 1; 5396 right_path->search_commit_root = 1; 5397 right_path->skip_locking = 1; 5398 5399 /* 5400 * Strategy: Go to the first items of both trees. Then do 5401 * 5402 * If both trees are at level 0 5403 * Compare keys of current items 5404 * If left < right treat left item as new, advance left tree 5405 * and repeat 5406 * If left > right treat right item as deleted, advance right tree 5407 * and repeat 5408 * If left == right do deep compare of items, treat as changed if 5409 * needed, advance both trees and repeat 5410 * If both trees are at the same level but not at level 0 5411 * Compare keys of current nodes/leafs 5412 * If left < right advance left tree and repeat 5413 * If left > right advance right tree and repeat 5414 * If left == right compare blockptrs of the next nodes/leafs 5415 * If they match advance both trees but stay at the same level 5416 * and repeat 5417 * If they don't match advance both trees while allowing to go 5418 * deeper and repeat 5419 * If tree levels are different 5420 * Advance the tree that needs it and repeat 5421 * 5422 * Advancing a tree means: 5423 * If we are at level 0, try to go to the next slot. If that's not 5424 * possible, go one level up and repeat. Stop when we found a level 5425 * where we could go to the next slot. We may at this point be on a 5426 * node or a leaf. 5427 * 5428 * If we are not at level 0 and not on shared tree blocks, go one 5429 * level deeper. 5430 * 5431 * If we are not at level 0 and on shared tree blocks, go one slot to 5432 * the right if possible or go up and right. 5433 */ 5434 5435 down_read(&fs_info->commit_root_sem); 5436 left_level = btrfs_header_level(left_root->commit_root); 5437 left_root_level = left_level; 5438 left_path->nodes[left_level] = 5439 btrfs_clone_extent_buffer(left_root->commit_root); 5440 if (!left_path->nodes[left_level]) { 5441 up_read(&fs_info->commit_root_sem); 5442 ret = -ENOMEM; 5443 goto out; 5444 } 5445 5446 right_level = btrfs_header_level(right_root->commit_root); 5447 right_root_level = right_level; 5448 right_path->nodes[right_level] = 5449 btrfs_clone_extent_buffer(right_root->commit_root); 5450 if (!right_path->nodes[right_level]) { 5451 up_read(&fs_info->commit_root_sem); 5452 ret = -ENOMEM; 5453 goto out; 5454 } 5455 up_read(&fs_info->commit_root_sem); 5456 5457 if (left_level == 0) 5458 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5459 &left_key, left_path->slots[left_level]); 5460 else 5461 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5462 &left_key, left_path->slots[left_level]); 5463 if (right_level == 0) 5464 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5465 &right_key, right_path->slots[right_level]); 5466 else 5467 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5468 &right_key, right_path->slots[right_level]); 5469 5470 left_end_reached = right_end_reached = 0; 5471 advance_left = advance_right = 0; 5472 5473 while (1) { 5474 if (advance_left && !left_end_reached) { 5475 ret = tree_advance(fs_info, left_path, &left_level, 5476 left_root_level, 5477 advance_left != ADVANCE_ONLY_NEXT, 5478 &left_key); 5479 if (ret == -1) 5480 left_end_reached = ADVANCE; 5481 else if (ret < 0) 5482 goto out; 5483 advance_left = 0; 5484 } 5485 if (advance_right && !right_end_reached) { 5486 ret = tree_advance(fs_info, right_path, &right_level, 5487 right_root_level, 5488 advance_right != ADVANCE_ONLY_NEXT, 5489 &right_key); 5490 if (ret == -1) 5491 right_end_reached = ADVANCE; 5492 else if (ret < 0) 5493 goto out; 5494 advance_right = 0; 5495 } 5496 5497 if (left_end_reached && right_end_reached) { 5498 ret = 0; 5499 goto out; 5500 } else if (left_end_reached) { 5501 if (right_level == 0) { 5502 ret = changed_cb(left_path, right_path, 5503 &right_key, 5504 BTRFS_COMPARE_TREE_DELETED, 5505 ctx); 5506 if (ret < 0) 5507 goto out; 5508 } 5509 advance_right = ADVANCE; 5510 continue; 5511 } else if (right_end_reached) { 5512 if (left_level == 0) { 5513 ret = changed_cb(left_path, right_path, 5514 &left_key, 5515 BTRFS_COMPARE_TREE_NEW, 5516 ctx); 5517 if (ret < 0) 5518 goto out; 5519 } 5520 advance_left = ADVANCE; 5521 continue; 5522 } 5523 5524 if (left_level == 0 && right_level == 0) { 5525 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5526 if (cmp < 0) { 5527 ret = changed_cb(left_path, right_path, 5528 &left_key, 5529 BTRFS_COMPARE_TREE_NEW, 5530 ctx); 5531 if (ret < 0) 5532 goto out; 5533 advance_left = ADVANCE; 5534 } else if (cmp > 0) { 5535 ret = changed_cb(left_path, right_path, 5536 &right_key, 5537 BTRFS_COMPARE_TREE_DELETED, 5538 ctx); 5539 if (ret < 0) 5540 goto out; 5541 advance_right = ADVANCE; 5542 } else { 5543 enum btrfs_compare_tree_result result; 5544 5545 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5546 ret = tree_compare_item(left_path, right_path, 5547 tmp_buf); 5548 if (ret) 5549 result = BTRFS_COMPARE_TREE_CHANGED; 5550 else 5551 result = BTRFS_COMPARE_TREE_SAME; 5552 ret = changed_cb(left_path, right_path, 5553 &left_key, result, ctx); 5554 if (ret < 0) 5555 goto out; 5556 advance_left = ADVANCE; 5557 advance_right = ADVANCE; 5558 } 5559 } else if (left_level == right_level) { 5560 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5561 if (cmp < 0) { 5562 advance_left = ADVANCE; 5563 } else if (cmp > 0) { 5564 advance_right = ADVANCE; 5565 } else { 5566 left_blockptr = btrfs_node_blockptr( 5567 left_path->nodes[left_level], 5568 left_path->slots[left_level]); 5569 right_blockptr = btrfs_node_blockptr( 5570 right_path->nodes[right_level], 5571 right_path->slots[right_level]); 5572 left_gen = btrfs_node_ptr_generation( 5573 left_path->nodes[left_level], 5574 left_path->slots[left_level]); 5575 right_gen = btrfs_node_ptr_generation( 5576 right_path->nodes[right_level], 5577 right_path->slots[right_level]); 5578 if (left_blockptr == right_blockptr && 5579 left_gen == right_gen) { 5580 /* 5581 * As we're on a shared block, don't 5582 * allow to go deeper. 5583 */ 5584 advance_left = ADVANCE_ONLY_NEXT; 5585 advance_right = ADVANCE_ONLY_NEXT; 5586 } else { 5587 advance_left = ADVANCE; 5588 advance_right = ADVANCE; 5589 } 5590 } 5591 } else if (left_level < right_level) { 5592 advance_right = ADVANCE; 5593 } else { 5594 advance_left = ADVANCE; 5595 } 5596 } 5597 5598 out: 5599 btrfs_free_path(left_path); 5600 btrfs_free_path(right_path); 5601 kvfree(tmp_buf); 5602 return ret; 5603 } 5604 5605 /* 5606 * this is similar to btrfs_next_leaf, but does not try to preserve 5607 * and fixup the path. It looks for and returns the next key in the 5608 * tree based on the current path and the min_trans parameters. 5609 * 5610 * 0 is returned if another key is found, < 0 if there are any errors 5611 * and 1 is returned if there are no higher keys in the tree 5612 * 5613 * path->keep_locks should be set to 1 on the search made before 5614 * calling this function. 5615 */ 5616 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5617 struct btrfs_key *key, int level, u64 min_trans) 5618 { 5619 int slot; 5620 struct extent_buffer *c; 5621 5622 WARN_ON(!path->keep_locks); 5623 while (level < BTRFS_MAX_LEVEL) { 5624 if (!path->nodes[level]) 5625 return 1; 5626 5627 slot = path->slots[level] + 1; 5628 c = path->nodes[level]; 5629 next: 5630 if (slot >= btrfs_header_nritems(c)) { 5631 int ret; 5632 int orig_lowest; 5633 struct btrfs_key cur_key; 5634 if (level + 1 >= BTRFS_MAX_LEVEL || 5635 !path->nodes[level + 1]) 5636 return 1; 5637 5638 if (path->locks[level + 1]) { 5639 level++; 5640 continue; 5641 } 5642 5643 slot = btrfs_header_nritems(c) - 1; 5644 if (level == 0) 5645 btrfs_item_key_to_cpu(c, &cur_key, slot); 5646 else 5647 btrfs_node_key_to_cpu(c, &cur_key, slot); 5648 5649 orig_lowest = path->lowest_level; 5650 btrfs_release_path(path); 5651 path->lowest_level = level; 5652 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5653 0, 0); 5654 path->lowest_level = orig_lowest; 5655 if (ret < 0) 5656 return ret; 5657 5658 c = path->nodes[level]; 5659 slot = path->slots[level]; 5660 if (ret == 0) 5661 slot++; 5662 goto next; 5663 } 5664 5665 if (level == 0) 5666 btrfs_item_key_to_cpu(c, key, slot); 5667 else { 5668 u64 gen = btrfs_node_ptr_generation(c, slot); 5669 5670 if (gen < min_trans) { 5671 slot++; 5672 goto next; 5673 } 5674 btrfs_node_key_to_cpu(c, key, slot); 5675 } 5676 return 0; 5677 } 5678 return 1; 5679 } 5680 5681 /* 5682 * search the tree again to find a leaf with greater keys 5683 * returns 0 if it found something or 1 if there are no greater leaves. 5684 * returns < 0 on io errors. 5685 */ 5686 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5687 { 5688 return btrfs_next_old_leaf(root, path, 0); 5689 } 5690 5691 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5692 u64 time_seq) 5693 { 5694 int slot; 5695 int level; 5696 struct extent_buffer *c; 5697 struct extent_buffer *next; 5698 struct btrfs_key key; 5699 u32 nritems; 5700 int ret; 5701 int old_spinning = path->leave_spinning; 5702 int next_rw_lock = 0; 5703 5704 nritems = btrfs_header_nritems(path->nodes[0]); 5705 if (nritems == 0) 5706 return 1; 5707 5708 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5709 again: 5710 level = 1; 5711 next = NULL; 5712 next_rw_lock = 0; 5713 btrfs_release_path(path); 5714 5715 path->keep_locks = 1; 5716 path->leave_spinning = 1; 5717 5718 if (time_seq) 5719 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5720 else 5721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5722 path->keep_locks = 0; 5723 5724 if (ret < 0) 5725 return ret; 5726 5727 nritems = btrfs_header_nritems(path->nodes[0]); 5728 /* 5729 * by releasing the path above we dropped all our locks. A balance 5730 * could have added more items next to the key that used to be 5731 * at the very end of the block. So, check again here and 5732 * advance the path if there are now more items available. 5733 */ 5734 if (nritems > 0 && path->slots[0] < nritems - 1) { 5735 if (ret == 0) 5736 path->slots[0]++; 5737 ret = 0; 5738 goto done; 5739 } 5740 /* 5741 * So the above check misses one case: 5742 * - after releasing the path above, someone has removed the item that 5743 * used to be at the very end of the block, and balance between leafs 5744 * gets another one with bigger key.offset to replace it. 5745 * 5746 * This one should be returned as well, or we can get leaf corruption 5747 * later(esp. in __btrfs_drop_extents()). 5748 * 5749 * And a bit more explanation about this check, 5750 * with ret > 0, the key isn't found, the path points to the slot 5751 * where it should be inserted, so the path->slots[0] item must be the 5752 * bigger one. 5753 */ 5754 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5755 ret = 0; 5756 goto done; 5757 } 5758 5759 while (level < BTRFS_MAX_LEVEL) { 5760 if (!path->nodes[level]) { 5761 ret = 1; 5762 goto done; 5763 } 5764 5765 slot = path->slots[level] + 1; 5766 c = path->nodes[level]; 5767 if (slot >= btrfs_header_nritems(c)) { 5768 level++; 5769 if (level == BTRFS_MAX_LEVEL) { 5770 ret = 1; 5771 goto done; 5772 } 5773 continue; 5774 } 5775 5776 if (next) { 5777 btrfs_tree_unlock_rw(next, next_rw_lock); 5778 free_extent_buffer(next); 5779 } 5780 5781 next = c; 5782 next_rw_lock = path->locks[level]; 5783 ret = read_block_for_search(root, path, &next, level, 5784 slot, &key); 5785 if (ret == -EAGAIN) 5786 goto again; 5787 5788 if (ret < 0) { 5789 btrfs_release_path(path); 5790 goto done; 5791 } 5792 5793 if (!path->skip_locking) { 5794 ret = btrfs_try_tree_read_lock(next); 5795 if (!ret && time_seq) { 5796 /* 5797 * If we don't get the lock, we may be racing 5798 * with push_leaf_left, holding that lock while 5799 * itself waiting for the leaf we've currently 5800 * locked. To solve this situation, we give up 5801 * on our lock and cycle. 5802 */ 5803 free_extent_buffer(next); 5804 btrfs_release_path(path); 5805 cond_resched(); 5806 goto again; 5807 } 5808 if (!ret) { 5809 btrfs_set_path_blocking(path); 5810 btrfs_tree_read_lock(next); 5811 } 5812 next_rw_lock = BTRFS_READ_LOCK; 5813 } 5814 break; 5815 } 5816 path->slots[level] = slot; 5817 while (1) { 5818 level--; 5819 c = path->nodes[level]; 5820 if (path->locks[level]) 5821 btrfs_tree_unlock_rw(c, path->locks[level]); 5822 5823 free_extent_buffer(c); 5824 path->nodes[level] = next; 5825 path->slots[level] = 0; 5826 if (!path->skip_locking) 5827 path->locks[level] = next_rw_lock; 5828 if (!level) 5829 break; 5830 5831 ret = read_block_for_search(root, path, &next, level, 5832 0, &key); 5833 if (ret == -EAGAIN) 5834 goto again; 5835 5836 if (ret < 0) { 5837 btrfs_release_path(path); 5838 goto done; 5839 } 5840 5841 if (!path->skip_locking) { 5842 ret = btrfs_try_tree_read_lock(next); 5843 if (!ret) { 5844 btrfs_set_path_blocking(path); 5845 btrfs_tree_read_lock(next); 5846 } 5847 next_rw_lock = BTRFS_READ_LOCK; 5848 } 5849 } 5850 ret = 0; 5851 done: 5852 unlock_up(path, 0, 1, 0, NULL); 5853 path->leave_spinning = old_spinning; 5854 if (!old_spinning) 5855 btrfs_set_path_blocking(path); 5856 5857 return ret; 5858 } 5859 5860 /* 5861 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5862 * searching until it gets past min_objectid or finds an item of 'type' 5863 * 5864 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5865 */ 5866 int btrfs_previous_item(struct btrfs_root *root, 5867 struct btrfs_path *path, u64 min_objectid, 5868 int type) 5869 { 5870 struct btrfs_key found_key; 5871 struct extent_buffer *leaf; 5872 u32 nritems; 5873 int ret; 5874 5875 while (1) { 5876 if (path->slots[0] == 0) { 5877 btrfs_set_path_blocking(path); 5878 ret = btrfs_prev_leaf(root, path); 5879 if (ret != 0) 5880 return ret; 5881 } else { 5882 path->slots[0]--; 5883 } 5884 leaf = path->nodes[0]; 5885 nritems = btrfs_header_nritems(leaf); 5886 if (nritems == 0) 5887 return 1; 5888 if (path->slots[0] == nritems) 5889 path->slots[0]--; 5890 5891 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5892 if (found_key.objectid < min_objectid) 5893 break; 5894 if (found_key.type == type) 5895 return 0; 5896 if (found_key.objectid == min_objectid && 5897 found_key.type < type) 5898 break; 5899 } 5900 return 1; 5901 } 5902 5903 /* 5904 * search in extent tree to find a previous Metadata/Data extent item with 5905 * min objecitd. 5906 * 5907 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5908 */ 5909 int btrfs_previous_extent_item(struct btrfs_root *root, 5910 struct btrfs_path *path, u64 min_objectid) 5911 { 5912 struct btrfs_key found_key; 5913 struct extent_buffer *leaf; 5914 u32 nritems; 5915 int ret; 5916 5917 while (1) { 5918 if (path->slots[0] == 0) { 5919 btrfs_set_path_blocking(path); 5920 ret = btrfs_prev_leaf(root, path); 5921 if (ret != 0) 5922 return ret; 5923 } else { 5924 path->slots[0]--; 5925 } 5926 leaf = path->nodes[0]; 5927 nritems = btrfs_header_nritems(leaf); 5928 if (nritems == 0) 5929 return 1; 5930 if (path->slots[0] == nritems) 5931 path->slots[0]--; 5932 5933 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5934 if (found_key.objectid < min_objectid) 5935 break; 5936 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5937 found_key.type == BTRFS_METADATA_ITEM_KEY) 5938 return 0; 5939 if (found_key.objectid == min_objectid && 5940 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5941 break; 5942 } 5943 return 1; 5944 } 5945