1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 41 struct btrfs_path *path, int level, int slot, 42 int tree_mod_log); 43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr, 46 u32 blocksize, u64 parent_transid, 47 u64 time_seq); 48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root, 49 u64 bytenr, u32 blocksize, 50 u64 time_seq); 51 52 struct btrfs_path *btrfs_alloc_path(void) 53 { 54 struct btrfs_path *path; 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 56 return path; 57 } 58 59 /* 60 * set all locked nodes in the path to blocking locks. This should 61 * be done before scheduling 62 */ 63 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 64 { 65 int i; 66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 67 if (!p->nodes[i] || !p->locks[i]) 68 continue; 69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 70 if (p->locks[i] == BTRFS_READ_LOCK) 71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 72 else if (p->locks[i] == BTRFS_WRITE_LOCK) 73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 74 } 75 } 76 77 /* 78 * reset all the locked nodes in the patch to spinning locks. 79 * 80 * held is used to keep lockdep happy, when lockdep is enabled 81 * we set held to a blocking lock before we go around and 82 * retake all the spinlocks in the path. You can safely use NULL 83 * for held 84 */ 85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 86 struct extent_buffer *held, int held_rw) 87 { 88 int i; 89 90 #ifdef CONFIG_DEBUG_LOCK_ALLOC 91 /* lockdep really cares that we take all of these spinlocks 92 * in the right order. If any of the locks in the path are not 93 * currently blocking, it is going to complain. So, make really 94 * really sure by forcing the path to blocking before we clear 95 * the path blocking. 96 */ 97 if (held) { 98 btrfs_set_lock_blocking_rw(held, held_rw); 99 if (held_rw == BTRFS_WRITE_LOCK) 100 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 101 else if (held_rw == BTRFS_READ_LOCK) 102 held_rw = BTRFS_READ_LOCK_BLOCKING; 103 } 104 btrfs_set_path_blocking(p); 105 #endif 106 107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 108 if (p->nodes[i] && p->locks[i]) { 109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 111 p->locks[i] = BTRFS_WRITE_LOCK; 112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 113 p->locks[i] = BTRFS_READ_LOCK; 114 } 115 } 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 if (held) 119 btrfs_clear_lock_blocking_rw(held, held_rw); 120 #endif 121 } 122 123 /* this also releases the path */ 124 void btrfs_free_path(struct btrfs_path *p) 125 { 126 if (!p) 127 return; 128 btrfs_release_path(p); 129 kmem_cache_free(btrfs_path_cachep, p); 130 } 131 132 /* 133 * path release drops references on the extent buffers in the path 134 * and it drops any locks held by this path 135 * 136 * It is safe to call this on paths that no locks or extent buffers held. 137 */ 138 noinline void btrfs_release_path(struct btrfs_path *p) 139 { 140 int i; 141 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 143 p->slots[i] = 0; 144 if (!p->nodes[i]) 145 continue; 146 if (p->locks[i]) { 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 148 p->locks[i] = 0; 149 } 150 free_extent_buffer(p->nodes[i]); 151 p->nodes[i] = NULL; 152 } 153 } 154 155 /* 156 * safely gets a reference on the root node of a tree. A lock 157 * is not taken, so a concurrent writer may put a different node 158 * at the root of the tree. See btrfs_lock_root_node for the 159 * looping required. 160 * 161 * The extent buffer returned by this has a reference taken, so 162 * it won't disappear. It may stop being the root of the tree 163 * at any time because there are no locks held. 164 */ 165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 166 { 167 struct extent_buffer *eb; 168 169 while (1) { 170 rcu_read_lock(); 171 eb = rcu_dereference(root->node); 172 173 /* 174 * RCU really hurts here, we could free up the root node because 175 * it was cow'ed but we may not get the new root node yet so do 176 * the inc_not_zero dance and if it doesn't work then 177 * synchronize_rcu and try again. 178 */ 179 if (atomic_inc_not_zero(&eb->refs)) { 180 rcu_read_unlock(); 181 break; 182 } 183 rcu_read_unlock(); 184 synchronize_rcu(); 185 } 186 return eb; 187 } 188 189 /* loop around taking references on and locking the root node of the 190 * tree until you end up with a lock on the root. A locked buffer 191 * is returned, with a reference held. 192 */ 193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 194 { 195 struct extent_buffer *eb; 196 197 while (1) { 198 eb = btrfs_root_node(root); 199 btrfs_tree_lock(eb); 200 if (eb == root->node) 201 break; 202 btrfs_tree_unlock(eb); 203 free_extent_buffer(eb); 204 } 205 return eb; 206 } 207 208 /* loop around taking references on and locking the root node of the 209 * tree until you end up with a lock on the root. A locked buffer 210 * is returned, with a reference held. 211 */ 212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 213 { 214 struct extent_buffer *eb; 215 216 while (1) { 217 eb = btrfs_root_node(root); 218 btrfs_tree_read_lock(eb); 219 if (eb == root->node) 220 break; 221 btrfs_tree_read_unlock(eb); 222 free_extent_buffer(eb); 223 } 224 return eb; 225 } 226 227 /* cowonly root (everything not a reference counted cow subvolume), just get 228 * put onto a simple dirty list. transaction.c walks this to make sure they 229 * get properly updated on disk. 230 */ 231 static void add_root_to_dirty_list(struct btrfs_root *root) 232 { 233 spin_lock(&root->fs_info->trans_lock); 234 if (root->track_dirty && list_empty(&root->dirty_list)) { 235 list_add(&root->dirty_list, 236 &root->fs_info->dirty_cowonly_roots); 237 } 238 spin_unlock(&root->fs_info->trans_lock); 239 } 240 241 /* 242 * used by snapshot creation to make a copy of a root for a tree with 243 * a given objectid. The buffer with the new root node is returned in 244 * cow_ret, and this func returns zero on success or a negative error code. 245 */ 246 int btrfs_copy_root(struct btrfs_trans_handle *trans, 247 struct btrfs_root *root, 248 struct extent_buffer *buf, 249 struct extent_buffer **cow_ret, u64 new_root_objectid) 250 { 251 struct extent_buffer *cow; 252 int ret = 0; 253 int level; 254 struct btrfs_disk_key disk_key; 255 256 WARN_ON(root->ref_cows && trans->transid != 257 root->fs_info->running_transaction->transid); 258 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 259 260 level = btrfs_header_level(buf); 261 if (level == 0) 262 btrfs_item_key(buf, &disk_key, 0); 263 else 264 btrfs_node_key(buf, &disk_key, 0); 265 266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 267 new_root_objectid, &disk_key, level, 268 buf->start, 0); 269 if (IS_ERR(cow)) 270 return PTR_ERR(cow); 271 272 copy_extent_buffer(cow, buf, 0, 0, cow->len); 273 btrfs_set_header_bytenr(cow, cow->start); 274 btrfs_set_header_generation(cow, trans->transid); 275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 277 BTRFS_HEADER_FLAG_RELOC); 278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 280 else 281 btrfs_set_header_owner(cow, new_root_objectid); 282 283 write_extent_buffer(cow, root->fs_info->fsid, 284 (unsigned long)btrfs_header_fsid(cow), 285 BTRFS_FSID_SIZE); 286 287 WARN_ON(btrfs_header_generation(buf) > trans->transid); 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 290 else 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 292 293 if (ret) 294 return ret; 295 296 btrfs_mark_buffer_dirty(cow); 297 *cow_ret = cow; 298 return 0; 299 } 300 301 enum mod_log_op { 302 MOD_LOG_KEY_REPLACE, 303 MOD_LOG_KEY_ADD, 304 MOD_LOG_KEY_REMOVE, 305 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 306 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 307 MOD_LOG_MOVE_KEYS, 308 MOD_LOG_ROOT_REPLACE, 309 }; 310 311 struct tree_mod_move { 312 int dst_slot; 313 int nr_items; 314 }; 315 316 struct tree_mod_root { 317 u64 logical; 318 u8 level; 319 }; 320 321 struct tree_mod_elem { 322 struct rb_node node; 323 u64 index; /* shifted logical */ 324 struct seq_list elem; 325 enum mod_log_op op; 326 327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 328 int slot; 329 330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 331 u64 generation; 332 333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 334 struct btrfs_disk_key key; 335 u64 blockptr; 336 337 /* this is used for op == MOD_LOG_MOVE_KEYS */ 338 struct tree_mod_move move; 339 340 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 341 struct tree_mod_root old_root; 342 }; 343 344 static inline void 345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem) 346 { 347 elem->seq = atomic_inc_return(&fs_info->tree_mod_seq); 348 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 349 } 350 351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 352 struct seq_list *elem) 353 { 354 elem->flags = 1; 355 spin_lock(&fs_info->tree_mod_seq_lock); 356 __get_tree_mod_seq(fs_info, elem); 357 spin_unlock(&fs_info->tree_mod_seq_lock); 358 } 359 360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 361 struct seq_list *elem) 362 { 363 struct rb_root *tm_root; 364 struct rb_node *node; 365 struct rb_node *next; 366 struct seq_list *cur_elem; 367 struct tree_mod_elem *tm; 368 u64 min_seq = (u64)-1; 369 u64 seq_putting = elem->seq; 370 371 if (!seq_putting) 372 return; 373 374 BUG_ON(!(elem->flags & 1)); 375 spin_lock(&fs_info->tree_mod_seq_lock); 376 list_del(&elem->list); 377 378 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 379 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) { 380 if (seq_putting > cur_elem->seq) { 381 /* 382 * blocker with lower sequence number exists, we 383 * cannot remove anything from the log 384 */ 385 goto out; 386 } 387 min_seq = cur_elem->seq; 388 } 389 } 390 391 /* 392 * anything that's lower than the lowest existing (read: blocked) 393 * sequence number can be removed from the tree. 394 */ 395 write_lock(&fs_info->tree_mod_log_lock); 396 tm_root = &fs_info->tree_mod_log; 397 for (node = rb_first(tm_root); node; node = next) { 398 next = rb_next(node); 399 tm = container_of(node, struct tree_mod_elem, node); 400 if (tm->elem.seq > min_seq) 401 continue; 402 rb_erase(node, tm_root); 403 list_del(&tm->elem.list); 404 kfree(tm); 405 } 406 write_unlock(&fs_info->tree_mod_log_lock); 407 out: 408 spin_unlock(&fs_info->tree_mod_seq_lock); 409 } 410 411 /* 412 * key order of the log: 413 * index -> sequence 414 * 415 * the index is the shifted logical of the *new* root node for root replace 416 * operations, or the shifted logical of the affected block for all other 417 * operations. 418 */ 419 static noinline int 420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 421 { 422 struct rb_root *tm_root; 423 struct rb_node **new; 424 struct rb_node *parent = NULL; 425 struct tree_mod_elem *cur; 426 int ret = 0; 427 428 BUG_ON(!tm || !tm->elem.seq); 429 430 write_lock(&fs_info->tree_mod_log_lock); 431 tm_root = &fs_info->tree_mod_log; 432 new = &tm_root->rb_node; 433 while (*new) { 434 cur = container_of(*new, struct tree_mod_elem, node); 435 parent = *new; 436 if (cur->index < tm->index) 437 new = &((*new)->rb_left); 438 else if (cur->index > tm->index) 439 new = &((*new)->rb_right); 440 else if (cur->elem.seq < tm->elem.seq) 441 new = &((*new)->rb_left); 442 else if (cur->elem.seq > tm->elem.seq) 443 new = &((*new)->rb_right); 444 else { 445 kfree(tm); 446 ret = -EEXIST; 447 goto unlock; 448 } 449 } 450 451 rb_link_node(&tm->node, parent, new); 452 rb_insert_color(&tm->node, tm_root); 453 unlock: 454 write_unlock(&fs_info->tree_mod_log_lock); 455 return ret; 456 } 457 458 int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags, 459 struct tree_mod_elem **tm_ret) 460 { 461 struct tree_mod_elem *tm; 462 u64 seq = 0; 463 464 smp_mb(); 465 if (list_empty(&fs_info->tree_mod_seq_list)) 466 return 0; 467 468 tm = *tm_ret = kzalloc(sizeof(*tm), flags); 469 if (!tm) 470 return -ENOMEM; 471 472 __get_tree_mod_seq(fs_info, &tm->elem); 473 seq = tm->elem.seq; 474 tm->elem.flags = 0; 475 476 return seq; 477 } 478 479 static noinline int 480 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info, 481 struct extent_buffer *eb, int slot, 482 enum mod_log_op op, gfp_t flags) 483 { 484 struct tree_mod_elem *tm; 485 int ret; 486 487 ret = tree_mod_alloc(fs_info, flags, &tm); 488 if (ret <= 0) 489 return ret; 490 491 tm->index = eb->start >> PAGE_CACHE_SHIFT; 492 if (op != MOD_LOG_KEY_ADD) { 493 btrfs_node_key(eb, &tm->key, slot); 494 tm->blockptr = btrfs_node_blockptr(eb, slot); 495 } 496 tm->op = op; 497 tm->slot = slot; 498 tm->generation = btrfs_node_ptr_generation(eb, slot); 499 500 return __tree_mod_log_insert(fs_info, tm); 501 } 502 503 static noinline int 504 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 505 int slot, enum mod_log_op op) 506 { 507 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS); 508 } 509 510 static noinline int 511 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 512 struct extent_buffer *eb, int dst_slot, int src_slot, 513 int nr_items, gfp_t flags) 514 { 515 struct tree_mod_elem *tm; 516 int ret; 517 int i; 518 519 ret = tree_mod_alloc(fs_info, flags, &tm); 520 if (ret <= 0) 521 return ret; 522 523 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 524 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot, 525 MOD_LOG_KEY_REMOVE_WHILE_MOVING); 526 BUG_ON(ret < 0); 527 } 528 529 tm->index = eb->start >> PAGE_CACHE_SHIFT; 530 tm->slot = src_slot; 531 tm->move.dst_slot = dst_slot; 532 tm->move.nr_items = nr_items; 533 tm->op = MOD_LOG_MOVE_KEYS; 534 535 return __tree_mod_log_insert(fs_info, tm); 536 } 537 538 static noinline int 539 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 540 struct extent_buffer *old_root, 541 struct extent_buffer *new_root, gfp_t flags) 542 { 543 struct tree_mod_elem *tm; 544 int ret; 545 546 ret = tree_mod_alloc(fs_info, flags, &tm); 547 if (ret <= 0) 548 return ret; 549 550 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 551 tm->old_root.logical = old_root->start; 552 tm->old_root.level = btrfs_header_level(old_root); 553 tm->generation = btrfs_header_generation(old_root); 554 tm->op = MOD_LOG_ROOT_REPLACE; 555 556 return __tree_mod_log_insert(fs_info, tm); 557 } 558 559 static struct tree_mod_elem * 560 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 561 int smallest) 562 { 563 struct rb_root *tm_root; 564 struct rb_node *node; 565 struct tree_mod_elem *cur = NULL; 566 struct tree_mod_elem *found = NULL; 567 u64 index = start >> PAGE_CACHE_SHIFT; 568 569 read_lock(&fs_info->tree_mod_log_lock); 570 tm_root = &fs_info->tree_mod_log; 571 node = tm_root->rb_node; 572 while (node) { 573 cur = container_of(node, struct tree_mod_elem, node); 574 if (cur->index < index) { 575 node = node->rb_left; 576 } else if (cur->index > index) { 577 node = node->rb_right; 578 } else if (cur->elem.seq < min_seq) { 579 node = node->rb_left; 580 } else if (!smallest) { 581 /* we want the node with the highest seq */ 582 if (found) 583 BUG_ON(found->elem.seq > cur->elem.seq); 584 found = cur; 585 node = node->rb_left; 586 } else if (cur->elem.seq > min_seq) { 587 /* we want the node with the smallest seq */ 588 if (found) 589 BUG_ON(found->elem.seq < cur->elem.seq); 590 found = cur; 591 node = node->rb_right; 592 } else { 593 found = cur; 594 break; 595 } 596 } 597 read_unlock(&fs_info->tree_mod_log_lock); 598 599 return found; 600 } 601 602 /* 603 * this returns the element from the log with the smallest time sequence 604 * value that's in the log (the oldest log item). any element with a time 605 * sequence lower than min_seq will be ignored. 606 */ 607 static struct tree_mod_elem * 608 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 609 u64 min_seq) 610 { 611 return __tree_mod_log_search(fs_info, start, min_seq, 1); 612 } 613 614 /* 615 * this returns the element from the log with the largest time sequence 616 * value that's in the log (the most recent log item). any element with 617 * a time sequence lower than min_seq will be ignored. 618 */ 619 static struct tree_mod_elem * 620 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 621 { 622 return __tree_mod_log_search(fs_info, start, min_seq, 0); 623 } 624 625 static inline void 626 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 627 struct extent_buffer *src, unsigned long dst_offset, 628 unsigned long src_offset, int nr_items) 629 { 630 int ret; 631 int i; 632 633 smp_mb(); 634 if (list_empty(&fs_info->tree_mod_seq_list)) 635 return; 636 637 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 638 return; 639 640 /* speed this up by single seq for all operations? */ 641 for (i = 0; i < nr_items; i++) { 642 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset, 643 MOD_LOG_KEY_REMOVE); 644 BUG_ON(ret < 0); 645 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset, 646 MOD_LOG_KEY_ADD); 647 BUG_ON(ret < 0); 648 } 649 } 650 651 static inline void 652 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 653 int dst_offset, int src_offset, int nr_items) 654 { 655 int ret; 656 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 657 nr_items, GFP_NOFS); 658 BUG_ON(ret < 0); 659 } 660 661 static inline void 662 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 663 struct extent_buffer *eb, 664 struct btrfs_disk_key *disk_key, int slot, int atomic) 665 { 666 int ret; 667 668 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot, 669 MOD_LOG_KEY_REPLACE, 670 atomic ? GFP_ATOMIC : GFP_NOFS); 671 BUG_ON(ret < 0); 672 } 673 674 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 675 struct extent_buffer *eb) 676 { 677 int i; 678 int ret; 679 u32 nritems; 680 681 smp_mb(); 682 if (list_empty(&fs_info->tree_mod_seq_list)) 683 return; 684 685 if (btrfs_header_level(eb) == 0) 686 return; 687 688 nritems = btrfs_header_nritems(eb); 689 for (i = nritems - 1; i >= 0; i--) { 690 ret = tree_mod_log_insert_key(fs_info, eb, i, 691 MOD_LOG_KEY_REMOVE_WHILE_FREEING); 692 BUG_ON(ret < 0); 693 } 694 } 695 696 static inline void 697 tree_mod_log_set_root_pointer(struct btrfs_root *root, 698 struct extent_buffer *new_root_node) 699 { 700 int ret; 701 tree_mod_log_free_eb(root->fs_info, root->node); 702 ret = tree_mod_log_insert_root(root->fs_info, root->node, 703 new_root_node, GFP_NOFS); 704 BUG_ON(ret < 0); 705 } 706 707 /* 708 * check if the tree block can be shared by multiple trees 709 */ 710 int btrfs_block_can_be_shared(struct btrfs_root *root, 711 struct extent_buffer *buf) 712 { 713 /* 714 * Tree blocks not in refernece counted trees and tree roots 715 * are never shared. If a block was allocated after the last 716 * snapshot and the block was not allocated by tree relocation, 717 * we know the block is not shared. 718 */ 719 if (root->ref_cows && 720 buf != root->node && buf != root->commit_root && 721 (btrfs_header_generation(buf) <= 722 btrfs_root_last_snapshot(&root->root_item) || 723 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 724 return 1; 725 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 726 if (root->ref_cows && 727 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 728 return 1; 729 #endif 730 return 0; 731 } 732 733 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 734 struct btrfs_root *root, 735 struct extent_buffer *buf, 736 struct extent_buffer *cow, 737 int *last_ref) 738 { 739 u64 refs; 740 u64 owner; 741 u64 flags; 742 u64 new_flags = 0; 743 int ret; 744 745 /* 746 * Backrefs update rules: 747 * 748 * Always use full backrefs for extent pointers in tree block 749 * allocated by tree relocation. 750 * 751 * If a shared tree block is no longer referenced by its owner 752 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 753 * use full backrefs for extent pointers in tree block. 754 * 755 * If a tree block is been relocating 756 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 757 * use full backrefs for extent pointers in tree block. 758 * The reason for this is some operations (such as drop tree) 759 * are only allowed for blocks use full backrefs. 760 */ 761 762 if (btrfs_block_can_be_shared(root, buf)) { 763 ret = btrfs_lookup_extent_info(trans, root, buf->start, 764 buf->len, &refs, &flags); 765 if (ret) 766 return ret; 767 if (refs == 0) { 768 ret = -EROFS; 769 btrfs_std_error(root->fs_info, ret); 770 return ret; 771 } 772 } else { 773 refs = 1; 774 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 775 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 776 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 777 else 778 flags = 0; 779 } 780 781 owner = btrfs_header_owner(buf); 782 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 783 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 784 785 if (refs > 1) { 786 if ((owner == root->root_key.objectid || 787 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 788 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 789 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 790 BUG_ON(ret); /* -ENOMEM */ 791 792 if (root->root_key.objectid == 793 BTRFS_TREE_RELOC_OBJECTID) { 794 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 795 BUG_ON(ret); /* -ENOMEM */ 796 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 797 BUG_ON(ret); /* -ENOMEM */ 798 } 799 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 800 } else { 801 802 if (root->root_key.objectid == 803 BTRFS_TREE_RELOC_OBJECTID) 804 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 805 else 806 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 807 BUG_ON(ret); /* -ENOMEM */ 808 } 809 if (new_flags != 0) { 810 ret = btrfs_set_disk_extent_flags(trans, root, 811 buf->start, 812 buf->len, 813 new_flags, 0); 814 if (ret) 815 return ret; 816 } 817 } else { 818 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 819 if (root->root_key.objectid == 820 BTRFS_TREE_RELOC_OBJECTID) 821 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 822 else 823 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 824 BUG_ON(ret); /* -ENOMEM */ 825 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 826 BUG_ON(ret); /* -ENOMEM */ 827 } 828 /* 829 * don't log freeing in case we're freeing the root node, this 830 * is done by tree_mod_log_set_root_pointer later 831 */ 832 if (buf != root->node && btrfs_header_level(buf) != 0) 833 tree_mod_log_free_eb(root->fs_info, buf); 834 clean_tree_block(trans, root, buf); 835 *last_ref = 1; 836 } 837 return 0; 838 } 839 840 /* 841 * does the dirty work in cow of a single block. The parent block (if 842 * supplied) is updated to point to the new cow copy. The new buffer is marked 843 * dirty and returned locked. If you modify the block it needs to be marked 844 * dirty again. 845 * 846 * search_start -- an allocation hint for the new block 847 * 848 * empty_size -- a hint that you plan on doing more cow. This is the size in 849 * bytes the allocator should try to find free next to the block it returns. 850 * This is just a hint and may be ignored by the allocator. 851 */ 852 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 853 struct btrfs_root *root, 854 struct extent_buffer *buf, 855 struct extent_buffer *parent, int parent_slot, 856 struct extent_buffer **cow_ret, 857 u64 search_start, u64 empty_size) 858 { 859 struct btrfs_disk_key disk_key; 860 struct extent_buffer *cow; 861 int level, ret; 862 int last_ref = 0; 863 int unlock_orig = 0; 864 u64 parent_start; 865 866 if (*cow_ret == buf) 867 unlock_orig = 1; 868 869 btrfs_assert_tree_locked(buf); 870 871 WARN_ON(root->ref_cows && trans->transid != 872 root->fs_info->running_transaction->transid); 873 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 874 875 level = btrfs_header_level(buf); 876 877 if (level == 0) 878 btrfs_item_key(buf, &disk_key, 0); 879 else 880 btrfs_node_key(buf, &disk_key, 0); 881 882 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 883 if (parent) 884 parent_start = parent->start; 885 else 886 parent_start = 0; 887 } else 888 parent_start = 0; 889 890 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 891 root->root_key.objectid, &disk_key, 892 level, search_start, empty_size); 893 if (IS_ERR(cow)) 894 return PTR_ERR(cow); 895 896 /* cow is set to blocking by btrfs_init_new_buffer */ 897 898 copy_extent_buffer(cow, buf, 0, 0, cow->len); 899 btrfs_set_header_bytenr(cow, cow->start); 900 btrfs_set_header_generation(cow, trans->transid); 901 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 902 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 903 BTRFS_HEADER_FLAG_RELOC); 904 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 905 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 906 else 907 btrfs_set_header_owner(cow, root->root_key.objectid); 908 909 write_extent_buffer(cow, root->fs_info->fsid, 910 (unsigned long)btrfs_header_fsid(cow), 911 BTRFS_FSID_SIZE); 912 913 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 914 if (ret) { 915 btrfs_abort_transaction(trans, root, ret); 916 return ret; 917 } 918 919 if (root->ref_cows) 920 btrfs_reloc_cow_block(trans, root, buf, cow); 921 922 if (buf == root->node) { 923 WARN_ON(parent && parent != buf); 924 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 925 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 926 parent_start = buf->start; 927 else 928 parent_start = 0; 929 930 extent_buffer_get(cow); 931 tree_mod_log_set_root_pointer(root, cow); 932 rcu_assign_pointer(root->node, cow); 933 934 btrfs_free_tree_block(trans, root, buf, parent_start, 935 last_ref); 936 free_extent_buffer(buf); 937 add_root_to_dirty_list(root); 938 } else { 939 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 940 parent_start = parent->start; 941 else 942 parent_start = 0; 943 944 WARN_ON(trans->transid != btrfs_header_generation(parent)); 945 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 946 MOD_LOG_KEY_REPLACE); 947 btrfs_set_node_blockptr(parent, parent_slot, 948 cow->start); 949 btrfs_set_node_ptr_generation(parent, parent_slot, 950 trans->transid); 951 btrfs_mark_buffer_dirty(parent); 952 btrfs_free_tree_block(trans, root, buf, parent_start, 953 last_ref); 954 } 955 if (unlock_orig) 956 btrfs_tree_unlock(buf); 957 free_extent_buffer_stale(buf); 958 btrfs_mark_buffer_dirty(cow); 959 *cow_ret = cow; 960 return 0; 961 } 962 963 static inline int should_cow_block(struct btrfs_trans_handle *trans, 964 struct btrfs_root *root, 965 struct extent_buffer *buf) 966 { 967 /* ensure we can see the force_cow */ 968 smp_rmb(); 969 970 /* 971 * We do not need to cow a block if 972 * 1) this block is not created or changed in this transaction; 973 * 2) this block does not belong to TREE_RELOC tree; 974 * 3) the root is not forced COW. 975 * 976 * What is forced COW: 977 * when we create snapshot during commiting the transaction, 978 * after we've finished coping src root, we must COW the shared 979 * block to ensure the metadata consistency. 980 */ 981 if (btrfs_header_generation(buf) == trans->transid && 982 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 983 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 984 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 985 !root->force_cow) 986 return 0; 987 return 1; 988 } 989 990 /* 991 * cows a single block, see __btrfs_cow_block for the real work. 992 * This version of it has extra checks so that a block isn't cow'd more than 993 * once per transaction, as long as it hasn't been written yet 994 */ 995 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 996 struct btrfs_root *root, struct extent_buffer *buf, 997 struct extent_buffer *parent, int parent_slot, 998 struct extent_buffer **cow_ret) 999 { 1000 u64 search_start; 1001 int ret; 1002 1003 if (trans->transaction != root->fs_info->running_transaction) { 1004 printk(KERN_CRIT "trans %llu running %llu\n", 1005 (unsigned long long)trans->transid, 1006 (unsigned long long) 1007 root->fs_info->running_transaction->transid); 1008 WARN_ON(1); 1009 } 1010 if (trans->transid != root->fs_info->generation) { 1011 printk(KERN_CRIT "trans %llu running %llu\n", 1012 (unsigned long long)trans->transid, 1013 (unsigned long long)root->fs_info->generation); 1014 WARN_ON(1); 1015 } 1016 1017 if (!should_cow_block(trans, root, buf)) { 1018 *cow_ret = buf; 1019 return 0; 1020 } 1021 1022 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1023 1024 if (parent) 1025 btrfs_set_lock_blocking(parent); 1026 btrfs_set_lock_blocking(buf); 1027 1028 ret = __btrfs_cow_block(trans, root, buf, parent, 1029 parent_slot, cow_ret, search_start, 0); 1030 1031 trace_btrfs_cow_block(root, buf, *cow_ret); 1032 1033 return ret; 1034 } 1035 1036 /* 1037 * helper function for defrag to decide if two blocks pointed to by a 1038 * node are actually close by 1039 */ 1040 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1041 { 1042 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1043 return 1; 1044 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1045 return 1; 1046 return 0; 1047 } 1048 1049 /* 1050 * compare two keys in a memcmp fashion 1051 */ 1052 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1053 { 1054 struct btrfs_key k1; 1055 1056 btrfs_disk_key_to_cpu(&k1, disk); 1057 1058 return btrfs_comp_cpu_keys(&k1, k2); 1059 } 1060 1061 /* 1062 * same as comp_keys only with two btrfs_key's 1063 */ 1064 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1065 { 1066 if (k1->objectid > k2->objectid) 1067 return 1; 1068 if (k1->objectid < k2->objectid) 1069 return -1; 1070 if (k1->type > k2->type) 1071 return 1; 1072 if (k1->type < k2->type) 1073 return -1; 1074 if (k1->offset > k2->offset) 1075 return 1; 1076 if (k1->offset < k2->offset) 1077 return -1; 1078 return 0; 1079 } 1080 1081 /* 1082 * this is used by the defrag code to go through all the 1083 * leaves pointed to by a node and reallocate them so that 1084 * disk order is close to key order 1085 */ 1086 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1087 struct btrfs_root *root, struct extent_buffer *parent, 1088 int start_slot, int cache_only, u64 *last_ret, 1089 struct btrfs_key *progress) 1090 { 1091 struct extent_buffer *cur; 1092 u64 blocknr; 1093 u64 gen; 1094 u64 search_start = *last_ret; 1095 u64 last_block = 0; 1096 u64 other; 1097 u32 parent_nritems; 1098 int end_slot; 1099 int i; 1100 int err = 0; 1101 int parent_level; 1102 int uptodate; 1103 u32 blocksize; 1104 int progress_passed = 0; 1105 struct btrfs_disk_key disk_key; 1106 1107 parent_level = btrfs_header_level(parent); 1108 if (cache_only && parent_level != 1) 1109 return 0; 1110 1111 if (trans->transaction != root->fs_info->running_transaction) 1112 WARN_ON(1); 1113 if (trans->transid != root->fs_info->generation) 1114 WARN_ON(1); 1115 1116 parent_nritems = btrfs_header_nritems(parent); 1117 blocksize = btrfs_level_size(root, parent_level - 1); 1118 end_slot = parent_nritems; 1119 1120 if (parent_nritems == 1) 1121 return 0; 1122 1123 btrfs_set_lock_blocking(parent); 1124 1125 for (i = start_slot; i < end_slot; i++) { 1126 int close = 1; 1127 1128 btrfs_node_key(parent, &disk_key, i); 1129 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1130 continue; 1131 1132 progress_passed = 1; 1133 blocknr = btrfs_node_blockptr(parent, i); 1134 gen = btrfs_node_ptr_generation(parent, i); 1135 if (last_block == 0) 1136 last_block = blocknr; 1137 1138 if (i > 0) { 1139 other = btrfs_node_blockptr(parent, i - 1); 1140 close = close_blocks(blocknr, other, blocksize); 1141 } 1142 if (!close && i < end_slot - 2) { 1143 other = btrfs_node_blockptr(parent, i + 1); 1144 close = close_blocks(blocknr, other, blocksize); 1145 } 1146 if (close) { 1147 last_block = blocknr; 1148 continue; 1149 } 1150 1151 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1152 if (cur) 1153 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1154 else 1155 uptodate = 0; 1156 if (!cur || !uptodate) { 1157 if (cache_only) { 1158 free_extent_buffer(cur); 1159 continue; 1160 } 1161 if (!cur) { 1162 cur = read_tree_block(root, blocknr, 1163 blocksize, gen); 1164 if (!cur) 1165 return -EIO; 1166 } else if (!uptodate) { 1167 btrfs_read_buffer(cur, gen); 1168 } 1169 } 1170 if (search_start == 0) 1171 search_start = last_block; 1172 1173 btrfs_tree_lock(cur); 1174 btrfs_set_lock_blocking(cur); 1175 err = __btrfs_cow_block(trans, root, cur, parent, i, 1176 &cur, search_start, 1177 min(16 * blocksize, 1178 (end_slot - i) * blocksize)); 1179 if (err) { 1180 btrfs_tree_unlock(cur); 1181 free_extent_buffer(cur); 1182 break; 1183 } 1184 search_start = cur->start; 1185 last_block = cur->start; 1186 *last_ret = search_start; 1187 btrfs_tree_unlock(cur); 1188 free_extent_buffer(cur); 1189 } 1190 return err; 1191 } 1192 1193 /* 1194 * The leaf data grows from end-to-front in the node. 1195 * this returns the address of the start of the last item, 1196 * which is the stop of the leaf data stack 1197 */ 1198 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1199 struct extent_buffer *leaf) 1200 { 1201 u32 nr = btrfs_header_nritems(leaf); 1202 if (nr == 0) 1203 return BTRFS_LEAF_DATA_SIZE(root); 1204 return btrfs_item_offset_nr(leaf, nr - 1); 1205 } 1206 1207 1208 /* 1209 * search for key in the extent_buffer. The items start at offset p, 1210 * and they are item_size apart. There are 'max' items in p. 1211 * 1212 * the slot in the array is returned via slot, and it points to 1213 * the place where you would insert key if it is not found in 1214 * the array. 1215 * 1216 * slot may point to max if the key is bigger than all of the keys 1217 */ 1218 static noinline int generic_bin_search(struct extent_buffer *eb, 1219 unsigned long p, 1220 int item_size, struct btrfs_key *key, 1221 int max, int *slot) 1222 { 1223 int low = 0; 1224 int high = max; 1225 int mid; 1226 int ret; 1227 struct btrfs_disk_key *tmp = NULL; 1228 struct btrfs_disk_key unaligned; 1229 unsigned long offset; 1230 char *kaddr = NULL; 1231 unsigned long map_start = 0; 1232 unsigned long map_len = 0; 1233 int err; 1234 1235 while (low < high) { 1236 mid = (low + high) / 2; 1237 offset = p + mid * item_size; 1238 1239 if (!kaddr || offset < map_start || 1240 (offset + sizeof(struct btrfs_disk_key)) > 1241 map_start + map_len) { 1242 1243 err = map_private_extent_buffer(eb, offset, 1244 sizeof(struct btrfs_disk_key), 1245 &kaddr, &map_start, &map_len); 1246 1247 if (!err) { 1248 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1249 map_start); 1250 } else { 1251 read_extent_buffer(eb, &unaligned, 1252 offset, sizeof(unaligned)); 1253 tmp = &unaligned; 1254 } 1255 1256 } else { 1257 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1258 map_start); 1259 } 1260 ret = comp_keys(tmp, key); 1261 1262 if (ret < 0) 1263 low = mid + 1; 1264 else if (ret > 0) 1265 high = mid; 1266 else { 1267 *slot = mid; 1268 return 0; 1269 } 1270 } 1271 *slot = low; 1272 return 1; 1273 } 1274 1275 /* 1276 * simple bin_search frontend that does the right thing for 1277 * leaves vs nodes 1278 */ 1279 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1280 int level, int *slot) 1281 { 1282 if (level == 0) { 1283 return generic_bin_search(eb, 1284 offsetof(struct btrfs_leaf, items), 1285 sizeof(struct btrfs_item), 1286 key, btrfs_header_nritems(eb), 1287 slot); 1288 } else { 1289 return generic_bin_search(eb, 1290 offsetof(struct btrfs_node, ptrs), 1291 sizeof(struct btrfs_key_ptr), 1292 key, btrfs_header_nritems(eb), 1293 slot); 1294 } 1295 return -1; 1296 } 1297 1298 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1299 int level, int *slot) 1300 { 1301 return bin_search(eb, key, level, slot); 1302 } 1303 1304 static void root_add_used(struct btrfs_root *root, u32 size) 1305 { 1306 spin_lock(&root->accounting_lock); 1307 btrfs_set_root_used(&root->root_item, 1308 btrfs_root_used(&root->root_item) + size); 1309 spin_unlock(&root->accounting_lock); 1310 } 1311 1312 static void root_sub_used(struct btrfs_root *root, u32 size) 1313 { 1314 spin_lock(&root->accounting_lock); 1315 btrfs_set_root_used(&root->root_item, 1316 btrfs_root_used(&root->root_item) - size); 1317 spin_unlock(&root->accounting_lock); 1318 } 1319 1320 /* given a node and slot number, this reads the blocks it points to. The 1321 * extent buffer is returned with a reference taken (but unlocked). 1322 * NULL is returned on error. 1323 */ 1324 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1325 struct extent_buffer *parent, int slot) 1326 { 1327 int level = btrfs_header_level(parent); 1328 if (slot < 0) 1329 return NULL; 1330 if (slot >= btrfs_header_nritems(parent)) 1331 return NULL; 1332 1333 BUG_ON(level == 0); 1334 1335 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 1336 btrfs_level_size(root, level - 1), 1337 btrfs_node_ptr_generation(parent, slot)); 1338 } 1339 1340 /* 1341 * node level balancing, used to make sure nodes are in proper order for 1342 * item deletion. We balance from the top down, so we have to make sure 1343 * that a deletion won't leave an node completely empty later on. 1344 */ 1345 static noinline int balance_level(struct btrfs_trans_handle *trans, 1346 struct btrfs_root *root, 1347 struct btrfs_path *path, int level) 1348 { 1349 struct extent_buffer *right = NULL; 1350 struct extent_buffer *mid; 1351 struct extent_buffer *left = NULL; 1352 struct extent_buffer *parent = NULL; 1353 int ret = 0; 1354 int wret; 1355 int pslot; 1356 int orig_slot = path->slots[level]; 1357 u64 orig_ptr; 1358 1359 if (level == 0) 1360 return 0; 1361 1362 mid = path->nodes[level]; 1363 1364 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1365 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1366 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1367 1368 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1369 1370 if (level < BTRFS_MAX_LEVEL - 1) { 1371 parent = path->nodes[level + 1]; 1372 pslot = path->slots[level + 1]; 1373 } 1374 1375 /* 1376 * deal with the case where there is only one pointer in the root 1377 * by promoting the node below to a root 1378 */ 1379 if (!parent) { 1380 struct extent_buffer *child; 1381 1382 if (btrfs_header_nritems(mid) != 1) 1383 return 0; 1384 1385 /* promote the child to a root */ 1386 child = read_node_slot(root, mid, 0); 1387 if (!child) { 1388 ret = -EROFS; 1389 btrfs_std_error(root->fs_info, ret); 1390 goto enospc; 1391 } 1392 1393 btrfs_tree_lock(child); 1394 btrfs_set_lock_blocking(child); 1395 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1396 if (ret) { 1397 btrfs_tree_unlock(child); 1398 free_extent_buffer(child); 1399 goto enospc; 1400 } 1401 1402 tree_mod_log_set_root_pointer(root, child); 1403 rcu_assign_pointer(root->node, child); 1404 1405 add_root_to_dirty_list(root); 1406 btrfs_tree_unlock(child); 1407 1408 path->locks[level] = 0; 1409 path->nodes[level] = NULL; 1410 clean_tree_block(trans, root, mid); 1411 btrfs_tree_unlock(mid); 1412 /* once for the path */ 1413 free_extent_buffer(mid); 1414 1415 root_sub_used(root, mid->len); 1416 btrfs_free_tree_block(trans, root, mid, 0, 1); 1417 /* once for the root ptr */ 1418 free_extent_buffer_stale(mid); 1419 return 0; 1420 } 1421 if (btrfs_header_nritems(mid) > 1422 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1423 return 0; 1424 1425 btrfs_header_nritems(mid); 1426 1427 left = read_node_slot(root, parent, pslot - 1); 1428 if (left) { 1429 btrfs_tree_lock(left); 1430 btrfs_set_lock_blocking(left); 1431 wret = btrfs_cow_block(trans, root, left, 1432 parent, pslot - 1, &left); 1433 if (wret) { 1434 ret = wret; 1435 goto enospc; 1436 } 1437 } 1438 right = read_node_slot(root, parent, pslot + 1); 1439 if (right) { 1440 btrfs_tree_lock(right); 1441 btrfs_set_lock_blocking(right); 1442 wret = btrfs_cow_block(trans, root, right, 1443 parent, pslot + 1, &right); 1444 if (wret) { 1445 ret = wret; 1446 goto enospc; 1447 } 1448 } 1449 1450 /* first, try to make some room in the middle buffer */ 1451 if (left) { 1452 orig_slot += btrfs_header_nritems(left); 1453 wret = push_node_left(trans, root, left, mid, 1); 1454 if (wret < 0) 1455 ret = wret; 1456 btrfs_header_nritems(mid); 1457 } 1458 1459 /* 1460 * then try to empty the right most buffer into the middle 1461 */ 1462 if (right) { 1463 wret = push_node_left(trans, root, mid, right, 1); 1464 if (wret < 0 && wret != -ENOSPC) 1465 ret = wret; 1466 if (btrfs_header_nritems(right) == 0) { 1467 clean_tree_block(trans, root, right); 1468 btrfs_tree_unlock(right); 1469 del_ptr(trans, root, path, level + 1, pslot + 1, 1); 1470 root_sub_used(root, right->len); 1471 btrfs_free_tree_block(trans, root, right, 0, 1); 1472 free_extent_buffer_stale(right); 1473 right = NULL; 1474 } else { 1475 struct btrfs_disk_key right_key; 1476 btrfs_node_key(right, &right_key, 0); 1477 tree_mod_log_set_node_key(root->fs_info, parent, 1478 &right_key, pslot + 1, 0); 1479 btrfs_set_node_key(parent, &right_key, pslot + 1); 1480 btrfs_mark_buffer_dirty(parent); 1481 } 1482 } 1483 if (btrfs_header_nritems(mid) == 1) { 1484 /* 1485 * we're not allowed to leave a node with one item in the 1486 * tree during a delete. A deletion from lower in the tree 1487 * could try to delete the only pointer in this node. 1488 * So, pull some keys from the left. 1489 * There has to be a left pointer at this point because 1490 * otherwise we would have pulled some pointers from the 1491 * right 1492 */ 1493 if (!left) { 1494 ret = -EROFS; 1495 btrfs_std_error(root->fs_info, ret); 1496 goto enospc; 1497 } 1498 wret = balance_node_right(trans, root, mid, left); 1499 if (wret < 0) { 1500 ret = wret; 1501 goto enospc; 1502 } 1503 if (wret == 1) { 1504 wret = push_node_left(trans, root, left, mid, 1); 1505 if (wret < 0) 1506 ret = wret; 1507 } 1508 BUG_ON(wret == 1); 1509 } 1510 if (btrfs_header_nritems(mid) == 0) { 1511 clean_tree_block(trans, root, mid); 1512 btrfs_tree_unlock(mid); 1513 del_ptr(trans, root, path, level + 1, pslot, 1); 1514 root_sub_used(root, mid->len); 1515 btrfs_free_tree_block(trans, root, mid, 0, 1); 1516 free_extent_buffer_stale(mid); 1517 mid = NULL; 1518 } else { 1519 /* update the parent key to reflect our changes */ 1520 struct btrfs_disk_key mid_key; 1521 btrfs_node_key(mid, &mid_key, 0); 1522 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key, 1523 pslot, 0); 1524 btrfs_set_node_key(parent, &mid_key, pslot); 1525 btrfs_mark_buffer_dirty(parent); 1526 } 1527 1528 /* update the path */ 1529 if (left) { 1530 if (btrfs_header_nritems(left) > orig_slot) { 1531 extent_buffer_get(left); 1532 /* left was locked after cow */ 1533 path->nodes[level] = left; 1534 path->slots[level + 1] -= 1; 1535 path->slots[level] = orig_slot; 1536 if (mid) { 1537 btrfs_tree_unlock(mid); 1538 free_extent_buffer(mid); 1539 } 1540 } else { 1541 orig_slot -= btrfs_header_nritems(left); 1542 path->slots[level] = orig_slot; 1543 } 1544 } 1545 /* double check we haven't messed things up */ 1546 if (orig_ptr != 1547 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1548 BUG(); 1549 enospc: 1550 if (right) { 1551 btrfs_tree_unlock(right); 1552 free_extent_buffer(right); 1553 } 1554 if (left) { 1555 if (path->nodes[level] != left) 1556 btrfs_tree_unlock(left); 1557 free_extent_buffer(left); 1558 } 1559 return ret; 1560 } 1561 1562 /* Node balancing for insertion. Here we only split or push nodes around 1563 * when they are completely full. This is also done top down, so we 1564 * have to be pessimistic. 1565 */ 1566 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1567 struct btrfs_root *root, 1568 struct btrfs_path *path, int level) 1569 { 1570 struct extent_buffer *right = NULL; 1571 struct extent_buffer *mid; 1572 struct extent_buffer *left = NULL; 1573 struct extent_buffer *parent = NULL; 1574 int ret = 0; 1575 int wret; 1576 int pslot; 1577 int orig_slot = path->slots[level]; 1578 1579 if (level == 0) 1580 return 1; 1581 1582 mid = path->nodes[level]; 1583 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1584 1585 if (level < BTRFS_MAX_LEVEL - 1) { 1586 parent = path->nodes[level + 1]; 1587 pslot = path->slots[level + 1]; 1588 } 1589 1590 if (!parent) 1591 return 1; 1592 1593 left = read_node_slot(root, parent, pslot - 1); 1594 1595 /* first, try to make some room in the middle buffer */ 1596 if (left) { 1597 u32 left_nr; 1598 1599 btrfs_tree_lock(left); 1600 btrfs_set_lock_blocking(left); 1601 1602 left_nr = btrfs_header_nritems(left); 1603 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1604 wret = 1; 1605 } else { 1606 ret = btrfs_cow_block(trans, root, left, parent, 1607 pslot - 1, &left); 1608 if (ret) 1609 wret = 1; 1610 else { 1611 wret = push_node_left(trans, root, 1612 left, mid, 0); 1613 } 1614 } 1615 if (wret < 0) 1616 ret = wret; 1617 if (wret == 0) { 1618 struct btrfs_disk_key disk_key; 1619 orig_slot += left_nr; 1620 btrfs_node_key(mid, &disk_key, 0); 1621 tree_mod_log_set_node_key(root->fs_info, parent, 1622 &disk_key, pslot, 0); 1623 btrfs_set_node_key(parent, &disk_key, pslot); 1624 btrfs_mark_buffer_dirty(parent); 1625 if (btrfs_header_nritems(left) > orig_slot) { 1626 path->nodes[level] = left; 1627 path->slots[level + 1] -= 1; 1628 path->slots[level] = orig_slot; 1629 btrfs_tree_unlock(mid); 1630 free_extent_buffer(mid); 1631 } else { 1632 orig_slot -= 1633 btrfs_header_nritems(left); 1634 path->slots[level] = orig_slot; 1635 btrfs_tree_unlock(left); 1636 free_extent_buffer(left); 1637 } 1638 return 0; 1639 } 1640 btrfs_tree_unlock(left); 1641 free_extent_buffer(left); 1642 } 1643 right = read_node_slot(root, parent, pslot + 1); 1644 1645 /* 1646 * then try to empty the right most buffer into the middle 1647 */ 1648 if (right) { 1649 u32 right_nr; 1650 1651 btrfs_tree_lock(right); 1652 btrfs_set_lock_blocking(right); 1653 1654 right_nr = btrfs_header_nritems(right); 1655 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1656 wret = 1; 1657 } else { 1658 ret = btrfs_cow_block(trans, root, right, 1659 parent, pslot + 1, 1660 &right); 1661 if (ret) 1662 wret = 1; 1663 else { 1664 wret = balance_node_right(trans, root, 1665 right, mid); 1666 } 1667 } 1668 if (wret < 0) 1669 ret = wret; 1670 if (wret == 0) { 1671 struct btrfs_disk_key disk_key; 1672 1673 btrfs_node_key(right, &disk_key, 0); 1674 tree_mod_log_set_node_key(root->fs_info, parent, 1675 &disk_key, pslot + 1, 0); 1676 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1677 btrfs_mark_buffer_dirty(parent); 1678 1679 if (btrfs_header_nritems(mid) <= orig_slot) { 1680 path->nodes[level] = right; 1681 path->slots[level + 1] += 1; 1682 path->slots[level] = orig_slot - 1683 btrfs_header_nritems(mid); 1684 btrfs_tree_unlock(mid); 1685 free_extent_buffer(mid); 1686 } else { 1687 btrfs_tree_unlock(right); 1688 free_extent_buffer(right); 1689 } 1690 return 0; 1691 } 1692 btrfs_tree_unlock(right); 1693 free_extent_buffer(right); 1694 } 1695 return 1; 1696 } 1697 1698 /* 1699 * readahead one full node of leaves, finding things that are close 1700 * to the block in 'slot', and triggering ra on them. 1701 */ 1702 static void reada_for_search(struct btrfs_root *root, 1703 struct btrfs_path *path, 1704 int level, int slot, u64 objectid) 1705 { 1706 struct extent_buffer *node; 1707 struct btrfs_disk_key disk_key; 1708 u32 nritems; 1709 u64 search; 1710 u64 target; 1711 u64 nread = 0; 1712 u64 gen; 1713 int direction = path->reada; 1714 struct extent_buffer *eb; 1715 u32 nr; 1716 u32 blocksize; 1717 u32 nscan = 0; 1718 1719 if (level != 1) 1720 return; 1721 1722 if (!path->nodes[level]) 1723 return; 1724 1725 node = path->nodes[level]; 1726 1727 search = btrfs_node_blockptr(node, slot); 1728 blocksize = btrfs_level_size(root, level - 1); 1729 eb = btrfs_find_tree_block(root, search, blocksize); 1730 if (eb) { 1731 free_extent_buffer(eb); 1732 return; 1733 } 1734 1735 target = search; 1736 1737 nritems = btrfs_header_nritems(node); 1738 nr = slot; 1739 1740 while (1) { 1741 if (direction < 0) { 1742 if (nr == 0) 1743 break; 1744 nr--; 1745 } else if (direction > 0) { 1746 nr++; 1747 if (nr >= nritems) 1748 break; 1749 } 1750 if (path->reada < 0 && objectid) { 1751 btrfs_node_key(node, &disk_key, nr); 1752 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1753 break; 1754 } 1755 search = btrfs_node_blockptr(node, nr); 1756 if ((search <= target && target - search <= 65536) || 1757 (search > target && search - target <= 65536)) { 1758 gen = btrfs_node_ptr_generation(node, nr); 1759 readahead_tree_block(root, search, blocksize, gen); 1760 nread += blocksize; 1761 } 1762 nscan++; 1763 if ((nread > 65536 || nscan > 32)) 1764 break; 1765 } 1766 } 1767 1768 /* 1769 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1770 * cache 1771 */ 1772 static noinline int reada_for_balance(struct btrfs_root *root, 1773 struct btrfs_path *path, int level) 1774 { 1775 int slot; 1776 int nritems; 1777 struct extent_buffer *parent; 1778 struct extent_buffer *eb; 1779 u64 gen; 1780 u64 block1 = 0; 1781 u64 block2 = 0; 1782 int ret = 0; 1783 int blocksize; 1784 1785 parent = path->nodes[level + 1]; 1786 if (!parent) 1787 return 0; 1788 1789 nritems = btrfs_header_nritems(parent); 1790 slot = path->slots[level + 1]; 1791 blocksize = btrfs_level_size(root, level); 1792 1793 if (slot > 0) { 1794 block1 = btrfs_node_blockptr(parent, slot - 1); 1795 gen = btrfs_node_ptr_generation(parent, slot - 1); 1796 eb = btrfs_find_tree_block(root, block1, blocksize); 1797 /* 1798 * if we get -eagain from btrfs_buffer_uptodate, we 1799 * don't want to return eagain here. That will loop 1800 * forever 1801 */ 1802 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 1803 block1 = 0; 1804 free_extent_buffer(eb); 1805 } 1806 if (slot + 1 < nritems) { 1807 block2 = btrfs_node_blockptr(parent, slot + 1); 1808 gen = btrfs_node_ptr_generation(parent, slot + 1); 1809 eb = btrfs_find_tree_block(root, block2, blocksize); 1810 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 1811 block2 = 0; 1812 free_extent_buffer(eb); 1813 } 1814 if (block1 || block2) { 1815 ret = -EAGAIN; 1816 1817 /* release the whole path */ 1818 btrfs_release_path(path); 1819 1820 /* read the blocks */ 1821 if (block1) 1822 readahead_tree_block(root, block1, blocksize, 0); 1823 if (block2) 1824 readahead_tree_block(root, block2, blocksize, 0); 1825 1826 if (block1) { 1827 eb = read_tree_block(root, block1, blocksize, 0); 1828 free_extent_buffer(eb); 1829 } 1830 if (block2) { 1831 eb = read_tree_block(root, block2, blocksize, 0); 1832 free_extent_buffer(eb); 1833 } 1834 } 1835 return ret; 1836 } 1837 1838 1839 /* 1840 * when we walk down the tree, it is usually safe to unlock the higher layers 1841 * in the tree. The exceptions are when our path goes through slot 0, because 1842 * operations on the tree might require changing key pointers higher up in the 1843 * tree. 1844 * 1845 * callers might also have set path->keep_locks, which tells this code to keep 1846 * the lock if the path points to the last slot in the block. This is part of 1847 * walking through the tree, and selecting the next slot in the higher block. 1848 * 1849 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1850 * if lowest_unlock is 1, level 0 won't be unlocked 1851 */ 1852 static noinline void unlock_up(struct btrfs_path *path, int level, 1853 int lowest_unlock, int min_write_lock_level, 1854 int *write_lock_level) 1855 { 1856 int i; 1857 int skip_level = level; 1858 int no_skips = 0; 1859 struct extent_buffer *t; 1860 1861 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1862 if (!path->nodes[i]) 1863 break; 1864 if (!path->locks[i]) 1865 break; 1866 if (!no_skips && path->slots[i] == 0) { 1867 skip_level = i + 1; 1868 continue; 1869 } 1870 if (!no_skips && path->keep_locks) { 1871 u32 nritems; 1872 t = path->nodes[i]; 1873 nritems = btrfs_header_nritems(t); 1874 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1875 skip_level = i + 1; 1876 continue; 1877 } 1878 } 1879 if (skip_level < i && i >= lowest_unlock) 1880 no_skips = 1; 1881 1882 t = path->nodes[i]; 1883 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1884 btrfs_tree_unlock_rw(t, path->locks[i]); 1885 path->locks[i] = 0; 1886 if (write_lock_level && 1887 i > min_write_lock_level && 1888 i <= *write_lock_level) { 1889 *write_lock_level = i - 1; 1890 } 1891 } 1892 } 1893 } 1894 1895 /* 1896 * This releases any locks held in the path starting at level and 1897 * going all the way up to the root. 1898 * 1899 * btrfs_search_slot will keep the lock held on higher nodes in a few 1900 * corner cases, such as COW of the block at slot zero in the node. This 1901 * ignores those rules, and it should only be called when there are no 1902 * more updates to be done higher up in the tree. 1903 */ 1904 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1905 { 1906 int i; 1907 1908 if (path->keep_locks) 1909 return; 1910 1911 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1912 if (!path->nodes[i]) 1913 continue; 1914 if (!path->locks[i]) 1915 continue; 1916 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1917 path->locks[i] = 0; 1918 } 1919 } 1920 1921 /* 1922 * helper function for btrfs_search_slot. The goal is to find a block 1923 * in cache without setting the path to blocking. If we find the block 1924 * we return zero and the path is unchanged. 1925 * 1926 * If we can't find the block, we set the path blocking and do some 1927 * reada. -EAGAIN is returned and the search must be repeated. 1928 */ 1929 static int 1930 read_block_for_search(struct btrfs_trans_handle *trans, 1931 struct btrfs_root *root, struct btrfs_path *p, 1932 struct extent_buffer **eb_ret, int level, int slot, 1933 struct btrfs_key *key) 1934 { 1935 u64 blocknr; 1936 u64 gen; 1937 u32 blocksize; 1938 struct extent_buffer *b = *eb_ret; 1939 struct extent_buffer *tmp; 1940 int ret; 1941 1942 blocknr = btrfs_node_blockptr(b, slot); 1943 gen = btrfs_node_ptr_generation(b, slot); 1944 blocksize = btrfs_level_size(root, level - 1); 1945 1946 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1947 if (tmp) { 1948 /* first we do an atomic uptodate check */ 1949 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) { 1950 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1951 /* 1952 * we found an up to date block without 1953 * sleeping, return 1954 * right away 1955 */ 1956 *eb_ret = tmp; 1957 return 0; 1958 } 1959 /* the pages were up to date, but we failed 1960 * the generation number check. Do a full 1961 * read for the generation number that is correct. 1962 * We must do this without dropping locks so 1963 * we can trust our generation number 1964 */ 1965 free_extent_buffer(tmp); 1966 btrfs_set_path_blocking(p); 1967 1968 /* now we're allowed to do a blocking uptodate check */ 1969 tmp = read_tree_block(root, blocknr, blocksize, gen); 1970 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) { 1971 *eb_ret = tmp; 1972 return 0; 1973 } 1974 free_extent_buffer(tmp); 1975 btrfs_release_path(p); 1976 return -EIO; 1977 } 1978 } 1979 1980 /* 1981 * reduce lock contention at high levels 1982 * of the btree by dropping locks before 1983 * we read. Don't release the lock on the current 1984 * level because we need to walk this node to figure 1985 * out which blocks to read. 1986 */ 1987 btrfs_unlock_up_safe(p, level + 1); 1988 btrfs_set_path_blocking(p); 1989 1990 free_extent_buffer(tmp); 1991 if (p->reada) 1992 reada_for_search(root, p, level, slot, key->objectid); 1993 1994 btrfs_release_path(p); 1995 1996 ret = -EAGAIN; 1997 tmp = read_tree_block(root, blocknr, blocksize, 0); 1998 if (tmp) { 1999 /* 2000 * If the read above didn't mark this buffer up to date, 2001 * it will never end up being up to date. Set ret to EIO now 2002 * and give up so that our caller doesn't loop forever 2003 * on our EAGAINs. 2004 */ 2005 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2006 ret = -EIO; 2007 free_extent_buffer(tmp); 2008 } 2009 return ret; 2010 } 2011 2012 /* 2013 * helper function for btrfs_search_slot. This does all of the checks 2014 * for node-level blocks and does any balancing required based on 2015 * the ins_len. 2016 * 2017 * If no extra work was required, zero is returned. If we had to 2018 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2019 * start over 2020 */ 2021 static int 2022 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2023 struct btrfs_root *root, struct btrfs_path *p, 2024 struct extent_buffer *b, int level, int ins_len, 2025 int *write_lock_level) 2026 { 2027 int ret; 2028 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2029 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2030 int sret; 2031 2032 if (*write_lock_level < level + 1) { 2033 *write_lock_level = level + 1; 2034 btrfs_release_path(p); 2035 goto again; 2036 } 2037 2038 sret = reada_for_balance(root, p, level); 2039 if (sret) 2040 goto again; 2041 2042 btrfs_set_path_blocking(p); 2043 sret = split_node(trans, root, p, level); 2044 btrfs_clear_path_blocking(p, NULL, 0); 2045 2046 BUG_ON(sret > 0); 2047 if (sret) { 2048 ret = sret; 2049 goto done; 2050 } 2051 b = p->nodes[level]; 2052 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2053 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2054 int sret; 2055 2056 if (*write_lock_level < level + 1) { 2057 *write_lock_level = level + 1; 2058 btrfs_release_path(p); 2059 goto again; 2060 } 2061 2062 sret = reada_for_balance(root, p, level); 2063 if (sret) 2064 goto again; 2065 2066 btrfs_set_path_blocking(p); 2067 sret = balance_level(trans, root, p, level); 2068 btrfs_clear_path_blocking(p, NULL, 0); 2069 2070 if (sret) { 2071 ret = sret; 2072 goto done; 2073 } 2074 b = p->nodes[level]; 2075 if (!b) { 2076 btrfs_release_path(p); 2077 goto again; 2078 } 2079 BUG_ON(btrfs_header_nritems(b) == 1); 2080 } 2081 return 0; 2082 2083 again: 2084 ret = -EAGAIN; 2085 done: 2086 return ret; 2087 } 2088 2089 /* 2090 * look for key in the tree. path is filled in with nodes along the way 2091 * if key is found, we return zero and you can find the item in the leaf 2092 * level of the path (level 0) 2093 * 2094 * If the key isn't found, the path points to the slot where it should 2095 * be inserted, and 1 is returned. If there are other errors during the 2096 * search a negative error number is returned. 2097 * 2098 * if ins_len > 0, nodes and leaves will be split as we walk down the 2099 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2100 * possible) 2101 */ 2102 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2103 *root, struct btrfs_key *key, struct btrfs_path *p, int 2104 ins_len, int cow) 2105 { 2106 struct extent_buffer *b; 2107 int slot; 2108 int ret; 2109 int err; 2110 int level; 2111 int lowest_unlock = 1; 2112 int root_lock; 2113 /* everything at write_lock_level or lower must be write locked */ 2114 int write_lock_level = 0; 2115 u8 lowest_level = 0; 2116 int min_write_lock_level; 2117 2118 lowest_level = p->lowest_level; 2119 WARN_ON(lowest_level && ins_len > 0); 2120 WARN_ON(p->nodes[0] != NULL); 2121 2122 if (ins_len < 0) { 2123 lowest_unlock = 2; 2124 2125 /* when we are removing items, we might have to go up to level 2126 * two as we update tree pointers Make sure we keep write 2127 * for those levels as well 2128 */ 2129 write_lock_level = 2; 2130 } else if (ins_len > 0) { 2131 /* 2132 * for inserting items, make sure we have a write lock on 2133 * level 1 so we can update keys 2134 */ 2135 write_lock_level = 1; 2136 } 2137 2138 if (!cow) 2139 write_lock_level = -1; 2140 2141 if (cow && (p->keep_locks || p->lowest_level)) 2142 write_lock_level = BTRFS_MAX_LEVEL; 2143 2144 min_write_lock_level = write_lock_level; 2145 2146 again: 2147 /* 2148 * we try very hard to do read locks on the root 2149 */ 2150 root_lock = BTRFS_READ_LOCK; 2151 level = 0; 2152 if (p->search_commit_root) { 2153 /* 2154 * the commit roots are read only 2155 * so we always do read locks 2156 */ 2157 b = root->commit_root; 2158 extent_buffer_get(b); 2159 level = btrfs_header_level(b); 2160 if (!p->skip_locking) 2161 btrfs_tree_read_lock(b); 2162 } else { 2163 if (p->skip_locking) { 2164 b = btrfs_root_node(root); 2165 level = btrfs_header_level(b); 2166 } else { 2167 /* we don't know the level of the root node 2168 * until we actually have it read locked 2169 */ 2170 b = btrfs_read_lock_root_node(root); 2171 level = btrfs_header_level(b); 2172 if (level <= write_lock_level) { 2173 /* whoops, must trade for write lock */ 2174 btrfs_tree_read_unlock(b); 2175 free_extent_buffer(b); 2176 b = btrfs_lock_root_node(root); 2177 root_lock = BTRFS_WRITE_LOCK; 2178 2179 /* the level might have changed, check again */ 2180 level = btrfs_header_level(b); 2181 } 2182 } 2183 } 2184 p->nodes[level] = b; 2185 if (!p->skip_locking) 2186 p->locks[level] = root_lock; 2187 2188 while (b) { 2189 level = btrfs_header_level(b); 2190 2191 /* 2192 * setup the path here so we can release it under lock 2193 * contention with the cow code 2194 */ 2195 if (cow) { 2196 /* 2197 * if we don't really need to cow this block 2198 * then we don't want to set the path blocking, 2199 * so we test it here 2200 */ 2201 if (!should_cow_block(trans, root, b)) 2202 goto cow_done; 2203 2204 btrfs_set_path_blocking(p); 2205 2206 /* 2207 * must have write locks on this node and the 2208 * parent 2209 */ 2210 if (level + 1 > write_lock_level) { 2211 write_lock_level = level + 1; 2212 btrfs_release_path(p); 2213 goto again; 2214 } 2215 2216 err = btrfs_cow_block(trans, root, b, 2217 p->nodes[level + 1], 2218 p->slots[level + 1], &b); 2219 if (err) { 2220 ret = err; 2221 goto done; 2222 } 2223 } 2224 cow_done: 2225 BUG_ON(!cow && ins_len); 2226 2227 p->nodes[level] = b; 2228 btrfs_clear_path_blocking(p, NULL, 0); 2229 2230 /* 2231 * we have a lock on b and as long as we aren't changing 2232 * the tree, there is no way to for the items in b to change. 2233 * It is safe to drop the lock on our parent before we 2234 * go through the expensive btree search on b. 2235 * 2236 * If cow is true, then we might be changing slot zero, 2237 * which may require changing the parent. So, we can't 2238 * drop the lock until after we know which slot we're 2239 * operating on. 2240 */ 2241 if (!cow) 2242 btrfs_unlock_up_safe(p, level + 1); 2243 2244 ret = bin_search(b, key, level, &slot); 2245 2246 if (level != 0) { 2247 int dec = 0; 2248 if (ret && slot > 0) { 2249 dec = 1; 2250 slot -= 1; 2251 } 2252 p->slots[level] = slot; 2253 err = setup_nodes_for_search(trans, root, p, b, level, 2254 ins_len, &write_lock_level); 2255 if (err == -EAGAIN) 2256 goto again; 2257 if (err) { 2258 ret = err; 2259 goto done; 2260 } 2261 b = p->nodes[level]; 2262 slot = p->slots[level]; 2263 2264 /* 2265 * slot 0 is special, if we change the key 2266 * we have to update the parent pointer 2267 * which means we must have a write lock 2268 * on the parent 2269 */ 2270 if (slot == 0 && cow && 2271 write_lock_level < level + 1) { 2272 write_lock_level = level + 1; 2273 btrfs_release_path(p); 2274 goto again; 2275 } 2276 2277 unlock_up(p, level, lowest_unlock, 2278 min_write_lock_level, &write_lock_level); 2279 2280 if (level == lowest_level) { 2281 if (dec) 2282 p->slots[level]++; 2283 goto done; 2284 } 2285 2286 err = read_block_for_search(trans, root, p, 2287 &b, level, slot, key); 2288 if (err == -EAGAIN) 2289 goto again; 2290 if (err) { 2291 ret = err; 2292 goto done; 2293 } 2294 2295 if (!p->skip_locking) { 2296 level = btrfs_header_level(b); 2297 if (level <= write_lock_level) { 2298 err = btrfs_try_tree_write_lock(b); 2299 if (!err) { 2300 btrfs_set_path_blocking(p); 2301 btrfs_tree_lock(b); 2302 btrfs_clear_path_blocking(p, b, 2303 BTRFS_WRITE_LOCK); 2304 } 2305 p->locks[level] = BTRFS_WRITE_LOCK; 2306 } else { 2307 err = btrfs_try_tree_read_lock(b); 2308 if (!err) { 2309 btrfs_set_path_blocking(p); 2310 btrfs_tree_read_lock(b); 2311 btrfs_clear_path_blocking(p, b, 2312 BTRFS_READ_LOCK); 2313 } 2314 p->locks[level] = BTRFS_READ_LOCK; 2315 } 2316 p->nodes[level] = b; 2317 } 2318 } else { 2319 p->slots[level] = slot; 2320 if (ins_len > 0 && 2321 btrfs_leaf_free_space(root, b) < ins_len) { 2322 if (write_lock_level < 1) { 2323 write_lock_level = 1; 2324 btrfs_release_path(p); 2325 goto again; 2326 } 2327 2328 btrfs_set_path_blocking(p); 2329 err = split_leaf(trans, root, key, 2330 p, ins_len, ret == 0); 2331 btrfs_clear_path_blocking(p, NULL, 0); 2332 2333 BUG_ON(err > 0); 2334 if (err) { 2335 ret = err; 2336 goto done; 2337 } 2338 } 2339 if (!p->search_for_split) 2340 unlock_up(p, level, lowest_unlock, 2341 min_write_lock_level, &write_lock_level); 2342 goto done; 2343 } 2344 } 2345 ret = 1; 2346 done: 2347 /* 2348 * we don't really know what they plan on doing with the path 2349 * from here on, so for now just mark it as blocking 2350 */ 2351 if (!p->leave_spinning) 2352 btrfs_set_path_blocking(p); 2353 if (ret < 0) 2354 btrfs_release_path(p); 2355 return ret; 2356 } 2357 2358 /* 2359 * adjust the pointers going up the tree, starting at level 2360 * making sure the right key of each node is points to 'key'. 2361 * This is used after shifting pointers to the left, so it stops 2362 * fixing up pointers when a given leaf/node is not in slot 0 of the 2363 * higher levels 2364 * 2365 */ 2366 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2367 struct btrfs_root *root, struct btrfs_path *path, 2368 struct btrfs_disk_key *key, int level) 2369 { 2370 int i; 2371 struct extent_buffer *t; 2372 2373 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2374 int tslot = path->slots[i]; 2375 if (!path->nodes[i]) 2376 break; 2377 t = path->nodes[i]; 2378 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1); 2379 btrfs_set_node_key(t, key, tslot); 2380 btrfs_mark_buffer_dirty(path->nodes[i]); 2381 if (tslot != 0) 2382 break; 2383 } 2384 } 2385 2386 /* 2387 * update item key. 2388 * 2389 * This function isn't completely safe. It's the caller's responsibility 2390 * that the new key won't break the order 2391 */ 2392 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2393 struct btrfs_root *root, struct btrfs_path *path, 2394 struct btrfs_key *new_key) 2395 { 2396 struct btrfs_disk_key disk_key; 2397 struct extent_buffer *eb; 2398 int slot; 2399 2400 eb = path->nodes[0]; 2401 slot = path->slots[0]; 2402 if (slot > 0) { 2403 btrfs_item_key(eb, &disk_key, slot - 1); 2404 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2405 } 2406 if (slot < btrfs_header_nritems(eb) - 1) { 2407 btrfs_item_key(eb, &disk_key, slot + 1); 2408 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2409 } 2410 2411 btrfs_cpu_key_to_disk(&disk_key, new_key); 2412 btrfs_set_item_key(eb, &disk_key, slot); 2413 btrfs_mark_buffer_dirty(eb); 2414 if (slot == 0) 2415 fixup_low_keys(trans, root, path, &disk_key, 1); 2416 } 2417 2418 /* 2419 * try to push data from one node into the next node left in the 2420 * tree. 2421 * 2422 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2423 * error, and > 0 if there was no room in the left hand block. 2424 */ 2425 static int push_node_left(struct btrfs_trans_handle *trans, 2426 struct btrfs_root *root, struct extent_buffer *dst, 2427 struct extent_buffer *src, int empty) 2428 { 2429 int push_items = 0; 2430 int src_nritems; 2431 int dst_nritems; 2432 int ret = 0; 2433 2434 src_nritems = btrfs_header_nritems(src); 2435 dst_nritems = btrfs_header_nritems(dst); 2436 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2437 WARN_ON(btrfs_header_generation(src) != trans->transid); 2438 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2439 2440 if (!empty && src_nritems <= 8) 2441 return 1; 2442 2443 if (push_items <= 0) 2444 return 1; 2445 2446 if (empty) { 2447 push_items = min(src_nritems, push_items); 2448 if (push_items < src_nritems) { 2449 /* leave at least 8 pointers in the node if 2450 * we aren't going to empty it 2451 */ 2452 if (src_nritems - push_items < 8) { 2453 if (push_items <= 8) 2454 return 1; 2455 push_items -= 8; 2456 } 2457 } 2458 } else 2459 push_items = min(src_nritems - 8, push_items); 2460 2461 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 2462 push_items); 2463 copy_extent_buffer(dst, src, 2464 btrfs_node_key_ptr_offset(dst_nritems), 2465 btrfs_node_key_ptr_offset(0), 2466 push_items * sizeof(struct btrfs_key_ptr)); 2467 2468 if (push_items < src_nritems) { 2469 tree_mod_log_eb_move(root->fs_info, src, 0, push_items, 2470 src_nritems - push_items); 2471 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2472 btrfs_node_key_ptr_offset(push_items), 2473 (src_nritems - push_items) * 2474 sizeof(struct btrfs_key_ptr)); 2475 } 2476 btrfs_set_header_nritems(src, src_nritems - push_items); 2477 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2478 btrfs_mark_buffer_dirty(src); 2479 btrfs_mark_buffer_dirty(dst); 2480 2481 return ret; 2482 } 2483 2484 /* 2485 * try to push data from one node into the next node right in the 2486 * tree. 2487 * 2488 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2489 * error, and > 0 if there was no room in the right hand block. 2490 * 2491 * this will only push up to 1/2 the contents of the left node over 2492 */ 2493 static int balance_node_right(struct btrfs_trans_handle *trans, 2494 struct btrfs_root *root, 2495 struct extent_buffer *dst, 2496 struct extent_buffer *src) 2497 { 2498 int push_items = 0; 2499 int max_push; 2500 int src_nritems; 2501 int dst_nritems; 2502 int ret = 0; 2503 2504 WARN_ON(btrfs_header_generation(src) != trans->transid); 2505 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2506 2507 src_nritems = btrfs_header_nritems(src); 2508 dst_nritems = btrfs_header_nritems(dst); 2509 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2510 if (push_items <= 0) 2511 return 1; 2512 2513 if (src_nritems < 4) 2514 return 1; 2515 2516 max_push = src_nritems / 2 + 1; 2517 /* don't try to empty the node */ 2518 if (max_push >= src_nritems) 2519 return 1; 2520 2521 if (max_push < push_items) 2522 push_items = max_push; 2523 2524 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 2525 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2526 btrfs_node_key_ptr_offset(0), 2527 (dst_nritems) * 2528 sizeof(struct btrfs_key_ptr)); 2529 2530 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 2531 src_nritems - push_items, push_items); 2532 copy_extent_buffer(dst, src, 2533 btrfs_node_key_ptr_offset(0), 2534 btrfs_node_key_ptr_offset(src_nritems - push_items), 2535 push_items * sizeof(struct btrfs_key_ptr)); 2536 2537 btrfs_set_header_nritems(src, src_nritems - push_items); 2538 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2539 2540 btrfs_mark_buffer_dirty(src); 2541 btrfs_mark_buffer_dirty(dst); 2542 2543 return ret; 2544 } 2545 2546 /* 2547 * helper function to insert a new root level in the tree. 2548 * A new node is allocated, and a single item is inserted to 2549 * point to the existing root 2550 * 2551 * returns zero on success or < 0 on failure. 2552 */ 2553 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2554 struct btrfs_root *root, 2555 struct btrfs_path *path, int level) 2556 { 2557 u64 lower_gen; 2558 struct extent_buffer *lower; 2559 struct extent_buffer *c; 2560 struct extent_buffer *old; 2561 struct btrfs_disk_key lower_key; 2562 2563 BUG_ON(path->nodes[level]); 2564 BUG_ON(path->nodes[level-1] != root->node); 2565 2566 lower = path->nodes[level-1]; 2567 if (level == 1) 2568 btrfs_item_key(lower, &lower_key, 0); 2569 else 2570 btrfs_node_key(lower, &lower_key, 0); 2571 2572 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2573 root->root_key.objectid, &lower_key, 2574 level, root->node->start, 0); 2575 if (IS_ERR(c)) 2576 return PTR_ERR(c); 2577 2578 root_add_used(root, root->nodesize); 2579 2580 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2581 btrfs_set_header_nritems(c, 1); 2582 btrfs_set_header_level(c, level); 2583 btrfs_set_header_bytenr(c, c->start); 2584 btrfs_set_header_generation(c, trans->transid); 2585 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2586 btrfs_set_header_owner(c, root->root_key.objectid); 2587 2588 write_extent_buffer(c, root->fs_info->fsid, 2589 (unsigned long)btrfs_header_fsid(c), 2590 BTRFS_FSID_SIZE); 2591 2592 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2593 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2594 BTRFS_UUID_SIZE); 2595 2596 btrfs_set_node_key(c, &lower_key, 0); 2597 btrfs_set_node_blockptr(c, 0, lower->start); 2598 lower_gen = btrfs_header_generation(lower); 2599 WARN_ON(lower_gen != trans->transid); 2600 2601 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2602 2603 btrfs_mark_buffer_dirty(c); 2604 2605 old = root->node; 2606 tree_mod_log_set_root_pointer(root, c); 2607 rcu_assign_pointer(root->node, c); 2608 2609 /* the super has an extra ref to root->node */ 2610 free_extent_buffer(old); 2611 2612 add_root_to_dirty_list(root); 2613 extent_buffer_get(c); 2614 path->nodes[level] = c; 2615 path->locks[level] = BTRFS_WRITE_LOCK; 2616 path->slots[level] = 0; 2617 return 0; 2618 } 2619 2620 /* 2621 * worker function to insert a single pointer in a node. 2622 * the node should have enough room for the pointer already 2623 * 2624 * slot and level indicate where you want the key to go, and 2625 * blocknr is the block the key points to. 2626 */ 2627 static void insert_ptr(struct btrfs_trans_handle *trans, 2628 struct btrfs_root *root, struct btrfs_path *path, 2629 struct btrfs_disk_key *key, u64 bytenr, 2630 int slot, int level, int tree_mod_log) 2631 { 2632 struct extent_buffer *lower; 2633 int nritems; 2634 int ret; 2635 2636 BUG_ON(!path->nodes[level]); 2637 btrfs_assert_tree_locked(path->nodes[level]); 2638 lower = path->nodes[level]; 2639 nritems = btrfs_header_nritems(lower); 2640 BUG_ON(slot > nritems); 2641 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 2642 if (slot != nritems) { 2643 if (tree_mod_log && level) 2644 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 2645 slot, nritems - slot); 2646 memmove_extent_buffer(lower, 2647 btrfs_node_key_ptr_offset(slot + 1), 2648 btrfs_node_key_ptr_offset(slot), 2649 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2650 } 2651 if (tree_mod_log && level) { 2652 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 2653 MOD_LOG_KEY_ADD); 2654 BUG_ON(ret < 0); 2655 } 2656 btrfs_set_node_key(lower, key, slot); 2657 btrfs_set_node_blockptr(lower, slot, bytenr); 2658 WARN_ON(trans->transid == 0); 2659 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2660 btrfs_set_header_nritems(lower, nritems + 1); 2661 btrfs_mark_buffer_dirty(lower); 2662 } 2663 2664 /* 2665 * split the node at the specified level in path in two. 2666 * The path is corrected to point to the appropriate node after the split 2667 * 2668 * Before splitting this tries to make some room in the node by pushing 2669 * left and right, if either one works, it returns right away. 2670 * 2671 * returns 0 on success and < 0 on failure 2672 */ 2673 static noinline int split_node(struct btrfs_trans_handle *trans, 2674 struct btrfs_root *root, 2675 struct btrfs_path *path, int level) 2676 { 2677 struct extent_buffer *c; 2678 struct extent_buffer *split; 2679 struct btrfs_disk_key disk_key; 2680 int mid; 2681 int ret; 2682 u32 c_nritems; 2683 2684 c = path->nodes[level]; 2685 WARN_ON(btrfs_header_generation(c) != trans->transid); 2686 if (c == root->node) { 2687 /* trying to split the root, lets make a new one */ 2688 ret = insert_new_root(trans, root, path, level + 1); 2689 if (ret) 2690 return ret; 2691 } else { 2692 ret = push_nodes_for_insert(trans, root, path, level); 2693 c = path->nodes[level]; 2694 if (!ret && btrfs_header_nritems(c) < 2695 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2696 return 0; 2697 if (ret < 0) 2698 return ret; 2699 } 2700 2701 c_nritems = btrfs_header_nritems(c); 2702 mid = (c_nritems + 1) / 2; 2703 btrfs_node_key(c, &disk_key, mid); 2704 2705 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2706 root->root_key.objectid, 2707 &disk_key, level, c->start, 0); 2708 if (IS_ERR(split)) 2709 return PTR_ERR(split); 2710 2711 root_add_used(root, root->nodesize); 2712 2713 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 2714 btrfs_set_header_level(split, btrfs_header_level(c)); 2715 btrfs_set_header_bytenr(split, split->start); 2716 btrfs_set_header_generation(split, trans->transid); 2717 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 2718 btrfs_set_header_owner(split, root->root_key.objectid); 2719 write_extent_buffer(split, root->fs_info->fsid, 2720 (unsigned long)btrfs_header_fsid(split), 2721 BTRFS_FSID_SIZE); 2722 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2723 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2724 BTRFS_UUID_SIZE); 2725 2726 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 2727 copy_extent_buffer(split, c, 2728 btrfs_node_key_ptr_offset(0), 2729 btrfs_node_key_ptr_offset(mid), 2730 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2731 btrfs_set_header_nritems(split, c_nritems - mid); 2732 btrfs_set_header_nritems(c, mid); 2733 ret = 0; 2734 2735 btrfs_mark_buffer_dirty(c); 2736 btrfs_mark_buffer_dirty(split); 2737 2738 insert_ptr(trans, root, path, &disk_key, split->start, 2739 path->slots[level + 1] + 1, level + 1, 1); 2740 2741 if (path->slots[level] >= mid) { 2742 path->slots[level] -= mid; 2743 btrfs_tree_unlock(c); 2744 free_extent_buffer(c); 2745 path->nodes[level] = split; 2746 path->slots[level + 1] += 1; 2747 } else { 2748 btrfs_tree_unlock(split); 2749 free_extent_buffer(split); 2750 } 2751 return ret; 2752 } 2753 2754 /* 2755 * how many bytes are required to store the items in a leaf. start 2756 * and nr indicate which items in the leaf to check. This totals up the 2757 * space used both by the item structs and the item data 2758 */ 2759 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2760 { 2761 int data_len; 2762 int nritems = btrfs_header_nritems(l); 2763 int end = min(nritems, start + nr) - 1; 2764 2765 if (!nr) 2766 return 0; 2767 data_len = btrfs_item_end_nr(l, start); 2768 data_len = data_len - btrfs_item_offset_nr(l, end); 2769 data_len += sizeof(struct btrfs_item) * nr; 2770 WARN_ON(data_len < 0); 2771 return data_len; 2772 } 2773 2774 /* 2775 * The space between the end of the leaf items and 2776 * the start of the leaf data. IOW, how much room 2777 * the leaf has left for both items and data 2778 */ 2779 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2780 struct extent_buffer *leaf) 2781 { 2782 int nritems = btrfs_header_nritems(leaf); 2783 int ret; 2784 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2785 if (ret < 0) { 2786 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2787 "used %d nritems %d\n", 2788 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2789 leaf_space_used(leaf, 0, nritems), nritems); 2790 } 2791 return ret; 2792 } 2793 2794 /* 2795 * min slot controls the lowest index we're willing to push to the 2796 * right. We'll push up to and including min_slot, but no lower 2797 */ 2798 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2799 struct btrfs_root *root, 2800 struct btrfs_path *path, 2801 int data_size, int empty, 2802 struct extent_buffer *right, 2803 int free_space, u32 left_nritems, 2804 u32 min_slot) 2805 { 2806 struct extent_buffer *left = path->nodes[0]; 2807 struct extent_buffer *upper = path->nodes[1]; 2808 struct btrfs_map_token token; 2809 struct btrfs_disk_key disk_key; 2810 int slot; 2811 u32 i; 2812 int push_space = 0; 2813 int push_items = 0; 2814 struct btrfs_item *item; 2815 u32 nr; 2816 u32 right_nritems; 2817 u32 data_end; 2818 u32 this_item_size; 2819 2820 btrfs_init_map_token(&token); 2821 2822 if (empty) 2823 nr = 0; 2824 else 2825 nr = max_t(u32, 1, min_slot); 2826 2827 if (path->slots[0] >= left_nritems) 2828 push_space += data_size; 2829 2830 slot = path->slots[1]; 2831 i = left_nritems - 1; 2832 while (i >= nr) { 2833 item = btrfs_item_nr(left, i); 2834 2835 if (!empty && push_items > 0) { 2836 if (path->slots[0] > i) 2837 break; 2838 if (path->slots[0] == i) { 2839 int space = btrfs_leaf_free_space(root, left); 2840 if (space + push_space * 2 > free_space) 2841 break; 2842 } 2843 } 2844 2845 if (path->slots[0] == i) 2846 push_space += data_size; 2847 2848 this_item_size = btrfs_item_size(left, item); 2849 if (this_item_size + sizeof(*item) + push_space > free_space) 2850 break; 2851 2852 push_items++; 2853 push_space += this_item_size + sizeof(*item); 2854 if (i == 0) 2855 break; 2856 i--; 2857 } 2858 2859 if (push_items == 0) 2860 goto out_unlock; 2861 2862 if (!empty && push_items == left_nritems) 2863 WARN_ON(1); 2864 2865 /* push left to right */ 2866 right_nritems = btrfs_header_nritems(right); 2867 2868 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2869 push_space -= leaf_data_end(root, left); 2870 2871 /* make room in the right data area */ 2872 data_end = leaf_data_end(root, right); 2873 memmove_extent_buffer(right, 2874 btrfs_leaf_data(right) + data_end - push_space, 2875 btrfs_leaf_data(right) + data_end, 2876 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2877 2878 /* copy from the left data area */ 2879 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2880 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2881 btrfs_leaf_data(left) + leaf_data_end(root, left), 2882 push_space); 2883 2884 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2885 btrfs_item_nr_offset(0), 2886 right_nritems * sizeof(struct btrfs_item)); 2887 2888 /* copy the items from left to right */ 2889 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2890 btrfs_item_nr_offset(left_nritems - push_items), 2891 push_items * sizeof(struct btrfs_item)); 2892 2893 /* update the item pointers */ 2894 right_nritems += push_items; 2895 btrfs_set_header_nritems(right, right_nritems); 2896 push_space = BTRFS_LEAF_DATA_SIZE(root); 2897 for (i = 0; i < right_nritems; i++) { 2898 item = btrfs_item_nr(right, i); 2899 push_space -= btrfs_token_item_size(right, item, &token); 2900 btrfs_set_token_item_offset(right, item, push_space, &token); 2901 } 2902 2903 left_nritems -= push_items; 2904 btrfs_set_header_nritems(left, left_nritems); 2905 2906 if (left_nritems) 2907 btrfs_mark_buffer_dirty(left); 2908 else 2909 clean_tree_block(trans, root, left); 2910 2911 btrfs_mark_buffer_dirty(right); 2912 2913 btrfs_item_key(right, &disk_key, 0); 2914 btrfs_set_node_key(upper, &disk_key, slot + 1); 2915 btrfs_mark_buffer_dirty(upper); 2916 2917 /* then fixup the leaf pointer in the path */ 2918 if (path->slots[0] >= left_nritems) { 2919 path->slots[0] -= left_nritems; 2920 if (btrfs_header_nritems(path->nodes[0]) == 0) 2921 clean_tree_block(trans, root, path->nodes[0]); 2922 btrfs_tree_unlock(path->nodes[0]); 2923 free_extent_buffer(path->nodes[0]); 2924 path->nodes[0] = right; 2925 path->slots[1] += 1; 2926 } else { 2927 btrfs_tree_unlock(right); 2928 free_extent_buffer(right); 2929 } 2930 return 0; 2931 2932 out_unlock: 2933 btrfs_tree_unlock(right); 2934 free_extent_buffer(right); 2935 return 1; 2936 } 2937 2938 /* 2939 * push some data in the path leaf to the right, trying to free up at 2940 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2941 * 2942 * returns 1 if the push failed because the other node didn't have enough 2943 * room, 0 if everything worked out and < 0 if there were major errors. 2944 * 2945 * this will push starting from min_slot to the end of the leaf. It won't 2946 * push any slot lower than min_slot 2947 */ 2948 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2949 *root, struct btrfs_path *path, 2950 int min_data_size, int data_size, 2951 int empty, u32 min_slot) 2952 { 2953 struct extent_buffer *left = path->nodes[0]; 2954 struct extent_buffer *right; 2955 struct extent_buffer *upper; 2956 int slot; 2957 int free_space; 2958 u32 left_nritems; 2959 int ret; 2960 2961 if (!path->nodes[1]) 2962 return 1; 2963 2964 slot = path->slots[1]; 2965 upper = path->nodes[1]; 2966 if (slot >= btrfs_header_nritems(upper) - 1) 2967 return 1; 2968 2969 btrfs_assert_tree_locked(path->nodes[1]); 2970 2971 right = read_node_slot(root, upper, slot + 1); 2972 if (right == NULL) 2973 return 1; 2974 2975 btrfs_tree_lock(right); 2976 btrfs_set_lock_blocking(right); 2977 2978 free_space = btrfs_leaf_free_space(root, right); 2979 if (free_space < data_size) 2980 goto out_unlock; 2981 2982 /* cow and double check */ 2983 ret = btrfs_cow_block(trans, root, right, upper, 2984 slot + 1, &right); 2985 if (ret) 2986 goto out_unlock; 2987 2988 free_space = btrfs_leaf_free_space(root, right); 2989 if (free_space < data_size) 2990 goto out_unlock; 2991 2992 left_nritems = btrfs_header_nritems(left); 2993 if (left_nritems == 0) 2994 goto out_unlock; 2995 2996 return __push_leaf_right(trans, root, path, min_data_size, empty, 2997 right, free_space, left_nritems, min_slot); 2998 out_unlock: 2999 btrfs_tree_unlock(right); 3000 free_extent_buffer(right); 3001 return 1; 3002 } 3003 3004 /* 3005 * push some data in the path leaf to the left, trying to free up at 3006 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3007 * 3008 * max_slot can put a limit on how far into the leaf we'll push items. The 3009 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3010 * items 3011 */ 3012 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3013 struct btrfs_root *root, 3014 struct btrfs_path *path, int data_size, 3015 int empty, struct extent_buffer *left, 3016 int free_space, u32 right_nritems, 3017 u32 max_slot) 3018 { 3019 struct btrfs_disk_key disk_key; 3020 struct extent_buffer *right = path->nodes[0]; 3021 int i; 3022 int push_space = 0; 3023 int push_items = 0; 3024 struct btrfs_item *item; 3025 u32 old_left_nritems; 3026 u32 nr; 3027 int ret = 0; 3028 u32 this_item_size; 3029 u32 old_left_item_size; 3030 struct btrfs_map_token token; 3031 3032 btrfs_init_map_token(&token); 3033 3034 if (empty) 3035 nr = min(right_nritems, max_slot); 3036 else 3037 nr = min(right_nritems - 1, max_slot); 3038 3039 for (i = 0; i < nr; i++) { 3040 item = btrfs_item_nr(right, i); 3041 3042 if (!empty && push_items > 0) { 3043 if (path->slots[0] < i) 3044 break; 3045 if (path->slots[0] == i) { 3046 int space = btrfs_leaf_free_space(root, right); 3047 if (space + push_space * 2 > free_space) 3048 break; 3049 } 3050 } 3051 3052 if (path->slots[0] == i) 3053 push_space += data_size; 3054 3055 this_item_size = btrfs_item_size(right, item); 3056 if (this_item_size + sizeof(*item) + push_space > free_space) 3057 break; 3058 3059 push_items++; 3060 push_space += this_item_size + sizeof(*item); 3061 } 3062 3063 if (push_items == 0) { 3064 ret = 1; 3065 goto out; 3066 } 3067 if (!empty && push_items == btrfs_header_nritems(right)) 3068 WARN_ON(1); 3069 3070 /* push data from right to left */ 3071 copy_extent_buffer(left, right, 3072 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3073 btrfs_item_nr_offset(0), 3074 push_items * sizeof(struct btrfs_item)); 3075 3076 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3077 btrfs_item_offset_nr(right, push_items - 1); 3078 3079 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3080 leaf_data_end(root, left) - push_space, 3081 btrfs_leaf_data(right) + 3082 btrfs_item_offset_nr(right, push_items - 1), 3083 push_space); 3084 old_left_nritems = btrfs_header_nritems(left); 3085 BUG_ON(old_left_nritems <= 0); 3086 3087 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3088 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3089 u32 ioff; 3090 3091 item = btrfs_item_nr(left, i); 3092 3093 ioff = btrfs_token_item_offset(left, item, &token); 3094 btrfs_set_token_item_offset(left, item, 3095 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3096 &token); 3097 } 3098 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3099 3100 /* fixup right node */ 3101 if (push_items > right_nritems) { 3102 printk(KERN_CRIT "push items %d nr %u\n", push_items, 3103 right_nritems); 3104 WARN_ON(1); 3105 } 3106 3107 if (push_items < right_nritems) { 3108 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3109 leaf_data_end(root, right); 3110 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3111 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3112 btrfs_leaf_data(right) + 3113 leaf_data_end(root, right), push_space); 3114 3115 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3116 btrfs_item_nr_offset(push_items), 3117 (btrfs_header_nritems(right) - push_items) * 3118 sizeof(struct btrfs_item)); 3119 } 3120 right_nritems -= push_items; 3121 btrfs_set_header_nritems(right, right_nritems); 3122 push_space = BTRFS_LEAF_DATA_SIZE(root); 3123 for (i = 0; i < right_nritems; i++) { 3124 item = btrfs_item_nr(right, i); 3125 3126 push_space = push_space - btrfs_token_item_size(right, 3127 item, &token); 3128 btrfs_set_token_item_offset(right, item, push_space, &token); 3129 } 3130 3131 btrfs_mark_buffer_dirty(left); 3132 if (right_nritems) 3133 btrfs_mark_buffer_dirty(right); 3134 else 3135 clean_tree_block(trans, root, right); 3136 3137 btrfs_item_key(right, &disk_key, 0); 3138 fixup_low_keys(trans, root, path, &disk_key, 1); 3139 3140 /* then fixup the leaf pointer in the path */ 3141 if (path->slots[0] < push_items) { 3142 path->slots[0] += old_left_nritems; 3143 btrfs_tree_unlock(path->nodes[0]); 3144 free_extent_buffer(path->nodes[0]); 3145 path->nodes[0] = left; 3146 path->slots[1] -= 1; 3147 } else { 3148 btrfs_tree_unlock(left); 3149 free_extent_buffer(left); 3150 path->slots[0] -= push_items; 3151 } 3152 BUG_ON(path->slots[0] < 0); 3153 return ret; 3154 out: 3155 btrfs_tree_unlock(left); 3156 free_extent_buffer(left); 3157 return ret; 3158 } 3159 3160 /* 3161 * push some data in the path leaf to the left, trying to free up at 3162 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3163 * 3164 * max_slot can put a limit on how far into the leaf we'll push items. The 3165 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3166 * items 3167 */ 3168 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3169 *root, struct btrfs_path *path, int min_data_size, 3170 int data_size, int empty, u32 max_slot) 3171 { 3172 struct extent_buffer *right = path->nodes[0]; 3173 struct extent_buffer *left; 3174 int slot; 3175 int free_space; 3176 u32 right_nritems; 3177 int ret = 0; 3178 3179 slot = path->slots[1]; 3180 if (slot == 0) 3181 return 1; 3182 if (!path->nodes[1]) 3183 return 1; 3184 3185 right_nritems = btrfs_header_nritems(right); 3186 if (right_nritems == 0) 3187 return 1; 3188 3189 btrfs_assert_tree_locked(path->nodes[1]); 3190 3191 left = read_node_slot(root, path->nodes[1], slot - 1); 3192 if (left == NULL) 3193 return 1; 3194 3195 btrfs_tree_lock(left); 3196 btrfs_set_lock_blocking(left); 3197 3198 free_space = btrfs_leaf_free_space(root, left); 3199 if (free_space < data_size) { 3200 ret = 1; 3201 goto out; 3202 } 3203 3204 /* cow and double check */ 3205 ret = btrfs_cow_block(trans, root, left, 3206 path->nodes[1], slot - 1, &left); 3207 if (ret) { 3208 /* we hit -ENOSPC, but it isn't fatal here */ 3209 if (ret == -ENOSPC) 3210 ret = 1; 3211 goto out; 3212 } 3213 3214 free_space = btrfs_leaf_free_space(root, left); 3215 if (free_space < data_size) { 3216 ret = 1; 3217 goto out; 3218 } 3219 3220 return __push_leaf_left(trans, root, path, min_data_size, 3221 empty, left, free_space, right_nritems, 3222 max_slot); 3223 out: 3224 btrfs_tree_unlock(left); 3225 free_extent_buffer(left); 3226 return ret; 3227 } 3228 3229 /* 3230 * split the path's leaf in two, making sure there is at least data_size 3231 * available for the resulting leaf level of the path. 3232 */ 3233 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3234 struct btrfs_root *root, 3235 struct btrfs_path *path, 3236 struct extent_buffer *l, 3237 struct extent_buffer *right, 3238 int slot, int mid, int nritems) 3239 { 3240 int data_copy_size; 3241 int rt_data_off; 3242 int i; 3243 struct btrfs_disk_key disk_key; 3244 struct btrfs_map_token token; 3245 3246 btrfs_init_map_token(&token); 3247 3248 nritems = nritems - mid; 3249 btrfs_set_header_nritems(right, nritems); 3250 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3251 3252 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3253 btrfs_item_nr_offset(mid), 3254 nritems * sizeof(struct btrfs_item)); 3255 3256 copy_extent_buffer(right, l, 3257 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3258 data_copy_size, btrfs_leaf_data(l) + 3259 leaf_data_end(root, l), data_copy_size); 3260 3261 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3262 btrfs_item_end_nr(l, mid); 3263 3264 for (i = 0; i < nritems; i++) { 3265 struct btrfs_item *item = btrfs_item_nr(right, i); 3266 u32 ioff; 3267 3268 ioff = btrfs_token_item_offset(right, item, &token); 3269 btrfs_set_token_item_offset(right, item, 3270 ioff + rt_data_off, &token); 3271 } 3272 3273 btrfs_set_header_nritems(l, mid); 3274 btrfs_item_key(right, &disk_key, 0); 3275 insert_ptr(trans, root, path, &disk_key, right->start, 3276 path->slots[1] + 1, 1, 0); 3277 3278 btrfs_mark_buffer_dirty(right); 3279 btrfs_mark_buffer_dirty(l); 3280 BUG_ON(path->slots[0] != slot); 3281 3282 if (mid <= slot) { 3283 btrfs_tree_unlock(path->nodes[0]); 3284 free_extent_buffer(path->nodes[0]); 3285 path->nodes[0] = right; 3286 path->slots[0] -= mid; 3287 path->slots[1] += 1; 3288 } else { 3289 btrfs_tree_unlock(right); 3290 free_extent_buffer(right); 3291 } 3292 3293 BUG_ON(path->slots[0] < 0); 3294 } 3295 3296 /* 3297 * double splits happen when we need to insert a big item in the middle 3298 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3299 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3300 * A B C 3301 * 3302 * We avoid this by trying to push the items on either side of our target 3303 * into the adjacent leaves. If all goes well we can avoid the double split 3304 * completely. 3305 */ 3306 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3307 struct btrfs_root *root, 3308 struct btrfs_path *path, 3309 int data_size) 3310 { 3311 int ret; 3312 int progress = 0; 3313 int slot; 3314 u32 nritems; 3315 3316 slot = path->slots[0]; 3317 3318 /* 3319 * try to push all the items after our slot into the 3320 * right leaf 3321 */ 3322 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3323 if (ret < 0) 3324 return ret; 3325 3326 if (ret == 0) 3327 progress++; 3328 3329 nritems = btrfs_header_nritems(path->nodes[0]); 3330 /* 3331 * our goal is to get our slot at the start or end of a leaf. If 3332 * we've done so we're done 3333 */ 3334 if (path->slots[0] == 0 || path->slots[0] == nritems) 3335 return 0; 3336 3337 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3338 return 0; 3339 3340 /* try to push all the items before our slot into the next leaf */ 3341 slot = path->slots[0]; 3342 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3343 if (ret < 0) 3344 return ret; 3345 3346 if (ret == 0) 3347 progress++; 3348 3349 if (progress) 3350 return 0; 3351 return 1; 3352 } 3353 3354 /* 3355 * split the path's leaf in two, making sure there is at least data_size 3356 * available for the resulting leaf level of the path. 3357 * 3358 * returns 0 if all went well and < 0 on failure. 3359 */ 3360 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3361 struct btrfs_root *root, 3362 struct btrfs_key *ins_key, 3363 struct btrfs_path *path, int data_size, 3364 int extend) 3365 { 3366 struct btrfs_disk_key disk_key; 3367 struct extent_buffer *l; 3368 u32 nritems; 3369 int mid; 3370 int slot; 3371 struct extent_buffer *right; 3372 int ret = 0; 3373 int wret; 3374 int split; 3375 int num_doubles = 0; 3376 int tried_avoid_double = 0; 3377 3378 l = path->nodes[0]; 3379 slot = path->slots[0]; 3380 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3381 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3382 return -EOVERFLOW; 3383 3384 /* first try to make some room by pushing left and right */ 3385 if (data_size) { 3386 wret = push_leaf_right(trans, root, path, data_size, 3387 data_size, 0, 0); 3388 if (wret < 0) 3389 return wret; 3390 if (wret) { 3391 wret = push_leaf_left(trans, root, path, data_size, 3392 data_size, 0, (u32)-1); 3393 if (wret < 0) 3394 return wret; 3395 } 3396 l = path->nodes[0]; 3397 3398 /* did the pushes work? */ 3399 if (btrfs_leaf_free_space(root, l) >= data_size) 3400 return 0; 3401 } 3402 3403 if (!path->nodes[1]) { 3404 ret = insert_new_root(trans, root, path, 1); 3405 if (ret) 3406 return ret; 3407 } 3408 again: 3409 split = 1; 3410 l = path->nodes[0]; 3411 slot = path->slots[0]; 3412 nritems = btrfs_header_nritems(l); 3413 mid = (nritems + 1) / 2; 3414 3415 if (mid <= slot) { 3416 if (nritems == 1 || 3417 leaf_space_used(l, mid, nritems - mid) + data_size > 3418 BTRFS_LEAF_DATA_SIZE(root)) { 3419 if (slot >= nritems) { 3420 split = 0; 3421 } else { 3422 mid = slot; 3423 if (mid != nritems && 3424 leaf_space_used(l, mid, nritems - mid) + 3425 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3426 if (data_size && !tried_avoid_double) 3427 goto push_for_double; 3428 split = 2; 3429 } 3430 } 3431 } 3432 } else { 3433 if (leaf_space_used(l, 0, mid) + data_size > 3434 BTRFS_LEAF_DATA_SIZE(root)) { 3435 if (!extend && data_size && slot == 0) { 3436 split = 0; 3437 } else if ((extend || !data_size) && slot == 0) { 3438 mid = 1; 3439 } else { 3440 mid = slot; 3441 if (mid != nritems && 3442 leaf_space_used(l, mid, nritems - mid) + 3443 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3444 if (data_size && !tried_avoid_double) 3445 goto push_for_double; 3446 split = 2 ; 3447 } 3448 } 3449 } 3450 } 3451 3452 if (split == 0) 3453 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3454 else 3455 btrfs_item_key(l, &disk_key, mid); 3456 3457 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 3458 root->root_key.objectid, 3459 &disk_key, 0, l->start, 0); 3460 if (IS_ERR(right)) 3461 return PTR_ERR(right); 3462 3463 root_add_used(root, root->leafsize); 3464 3465 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3466 btrfs_set_header_bytenr(right, right->start); 3467 btrfs_set_header_generation(right, trans->transid); 3468 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3469 btrfs_set_header_owner(right, root->root_key.objectid); 3470 btrfs_set_header_level(right, 0); 3471 write_extent_buffer(right, root->fs_info->fsid, 3472 (unsigned long)btrfs_header_fsid(right), 3473 BTRFS_FSID_SIZE); 3474 3475 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3476 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3477 BTRFS_UUID_SIZE); 3478 3479 if (split == 0) { 3480 if (mid <= slot) { 3481 btrfs_set_header_nritems(right, 0); 3482 insert_ptr(trans, root, path, &disk_key, right->start, 3483 path->slots[1] + 1, 1, 0); 3484 btrfs_tree_unlock(path->nodes[0]); 3485 free_extent_buffer(path->nodes[0]); 3486 path->nodes[0] = right; 3487 path->slots[0] = 0; 3488 path->slots[1] += 1; 3489 } else { 3490 btrfs_set_header_nritems(right, 0); 3491 insert_ptr(trans, root, path, &disk_key, right->start, 3492 path->slots[1], 1, 0); 3493 btrfs_tree_unlock(path->nodes[0]); 3494 free_extent_buffer(path->nodes[0]); 3495 path->nodes[0] = right; 3496 path->slots[0] = 0; 3497 if (path->slots[1] == 0) 3498 fixup_low_keys(trans, root, path, 3499 &disk_key, 1); 3500 } 3501 btrfs_mark_buffer_dirty(right); 3502 return ret; 3503 } 3504 3505 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3506 3507 if (split == 2) { 3508 BUG_ON(num_doubles != 0); 3509 num_doubles++; 3510 goto again; 3511 } 3512 3513 return 0; 3514 3515 push_for_double: 3516 push_for_double_split(trans, root, path, data_size); 3517 tried_avoid_double = 1; 3518 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3519 return 0; 3520 goto again; 3521 } 3522 3523 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3524 struct btrfs_root *root, 3525 struct btrfs_path *path, int ins_len) 3526 { 3527 struct btrfs_key key; 3528 struct extent_buffer *leaf; 3529 struct btrfs_file_extent_item *fi; 3530 u64 extent_len = 0; 3531 u32 item_size; 3532 int ret; 3533 3534 leaf = path->nodes[0]; 3535 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3536 3537 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3538 key.type != BTRFS_EXTENT_CSUM_KEY); 3539 3540 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3541 return 0; 3542 3543 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3544 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3545 fi = btrfs_item_ptr(leaf, path->slots[0], 3546 struct btrfs_file_extent_item); 3547 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3548 } 3549 btrfs_release_path(path); 3550 3551 path->keep_locks = 1; 3552 path->search_for_split = 1; 3553 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3554 path->search_for_split = 0; 3555 if (ret < 0) 3556 goto err; 3557 3558 ret = -EAGAIN; 3559 leaf = path->nodes[0]; 3560 /* if our item isn't there or got smaller, return now */ 3561 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3562 goto err; 3563 3564 /* the leaf has changed, it now has room. return now */ 3565 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 3566 goto err; 3567 3568 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3569 fi = btrfs_item_ptr(leaf, path->slots[0], 3570 struct btrfs_file_extent_item); 3571 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3572 goto err; 3573 } 3574 3575 btrfs_set_path_blocking(path); 3576 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3577 if (ret) 3578 goto err; 3579 3580 path->keep_locks = 0; 3581 btrfs_unlock_up_safe(path, 1); 3582 return 0; 3583 err: 3584 path->keep_locks = 0; 3585 return ret; 3586 } 3587 3588 static noinline int split_item(struct btrfs_trans_handle *trans, 3589 struct btrfs_root *root, 3590 struct btrfs_path *path, 3591 struct btrfs_key *new_key, 3592 unsigned long split_offset) 3593 { 3594 struct extent_buffer *leaf; 3595 struct btrfs_item *item; 3596 struct btrfs_item *new_item; 3597 int slot; 3598 char *buf; 3599 u32 nritems; 3600 u32 item_size; 3601 u32 orig_offset; 3602 struct btrfs_disk_key disk_key; 3603 3604 leaf = path->nodes[0]; 3605 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3606 3607 btrfs_set_path_blocking(path); 3608 3609 item = btrfs_item_nr(leaf, path->slots[0]); 3610 orig_offset = btrfs_item_offset(leaf, item); 3611 item_size = btrfs_item_size(leaf, item); 3612 3613 buf = kmalloc(item_size, GFP_NOFS); 3614 if (!buf) 3615 return -ENOMEM; 3616 3617 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3618 path->slots[0]), item_size); 3619 3620 slot = path->slots[0] + 1; 3621 nritems = btrfs_header_nritems(leaf); 3622 if (slot != nritems) { 3623 /* shift the items */ 3624 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3625 btrfs_item_nr_offset(slot), 3626 (nritems - slot) * sizeof(struct btrfs_item)); 3627 } 3628 3629 btrfs_cpu_key_to_disk(&disk_key, new_key); 3630 btrfs_set_item_key(leaf, &disk_key, slot); 3631 3632 new_item = btrfs_item_nr(leaf, slot); 3633 3634 btrfs_set_item_offset(leaf, new_item, orig_offset); 3635 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3636 3637 btrfs_set_item_offset(leaf, item, 3638 orig_offset + item_size - split_offset); 3639 btrfs_set_item_size(leaf, item, split_offset); 3640 3641 btrfs_set_header_nritems(leaf, nritems + 1); 3642 3643 /* write the data for the start of the original item */ 3644 write_extent_buffer(leaf, buf, 3645 btrfs_item_ptr_offset(leaf, path->slots[0]), 3646 split_offset); 3647 3648 /* write the data for the new item */ 3649 write_extent_buffer(leaf, buf + split_offset, 3650 btrfs_item_ptr_offset(leaf, slot), 3651 item_size - split_offset); 3652 btrfs_mark_buffer_dirty(leaf); 3653 3654 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 3655 kfree(buf); 3656 return 0; 3657 } 3658 3659 /* 3660 * This function splits a single item into two items, 3661 * giving 'new_key' to the new item and splitting the 3662 * old one at split_offset (from the start of the item). 3663 * 3664 * The path may be released by this operation. After 3665 * the split, the path is pointing to the old item. The 3666 * new item is going to be in the same node as the old one. 3667 * 3668 * Note, the item being split must be smaller enough to live alone on 3669 * a tree block with room for one extra struct btrfs_item 3670 * 3671 * This allows us to split the item in place, keeping a lock on the 3672 * leaf the entire time. 3673 */ 3674 int btrfs_split_item(struct btrfs_trans_handle *trans, 3675 struct btrfs_root *root, 3676 struct btrfs_path *path, 3677 struct btrfs_key *new_key, 3678 unsigned long split_offset) 3679 { 3680 int ret; 3681 ret = setup_leaf_for_split(trans, root, path, 3682 sizeof(struct btrfs_item)); 3683 if (ret) 3684 return ret; 3685 3686 ret = split_item(trans, root, path, new_key, split_offset); 3687 return ret; 3688 } 3689 3690 /* 3691 * This function duplicate a item, giving 'new_key' to the new item. 3692 * It guarantees both items live in the same tree leaf and the new item 3693 * is contiguous with the original item. 3694 * 3695 * This allows us to split file extent in place, keeping a lock on the 3696 * leaf the entire time. 3697 */ 3698 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3699 struct btrfs_root *root, 3700 struct btrfs_path *path, 3701 struct btrfs_key *new_key) 3702 { 3703 struct extent_buffer *leaf; 3704 int ret; 3705 u32 item_size; 3706 3707 leaf = path->nodes[0]; 3708 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3709 ret = setup_leaf_for_split(trans, root, path, 3710 item_size + sizeof(struct btrfs_item)); 3711 if (ret) 3712 return ret; 3713 3714 path->slots[0]++; 3715 setup_items_for_insert(trans, root, path, new_key, &item_size, 3716 item_size, item_size + 3717 sizeof(struct btrfs_item), 1); 3718 leaf = path->nodes[0]; 3719 memcpy_extent_buffer(leaf, 3720 btrfs_item_ptr_offset(leaf, path->slots[0]), 3721 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3722 item_size); 3723 return 0; 3724 } 3725 3726 /* 3727 * make the item pointed to by the path smaller. new_size indicates 3728 * how small to make it, and from_end tells us if we just chop bytes 3729 * off the end of the item or if we shift the item to chop bytes off 3730 * the front. 3731 */ 3732 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 3733 struct btrfs_root *root, 3734 struct btrfs_path *path, 3735 u32 new_size, int from_end) 3736 { 3737 int slot; 3738 struct extent_buffer *leaf; 3739 struct btrfs_item *item; 3740 u32 nritems; 3741 unsigned int data_end; 3742 unsigned int old_data_start; 3743 unsigned int old_size; 3744 unsigned int size_diff; 3745 int i; 3746 struct btrfs_map_token token; 3747 3748 btrfs_init_map_token(&token); 3749 3750 leaf = path->nodes[0]; 3751 slot = path->slots[0]; 3752 3753 old_size = btrfs_item_size_nr(leaf, slot); 3754 if (old_size == new_size) 3755 return; 3756 3757 nritems = btrfs_header_nritems(leaf); 3758 data_end = leaf_data_end(root, leaf); 3759 3760 old_data_start = btrfs_item_offset_nr(leaf, slot); 3761 3762 size_diff = old_size - new_size; 3763 3764 BUG_ON(slot < 0); 3765 BUG_ON(slot >= nritems); 3766 3767 /* 3768 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3769 */ 3770 /* first correct the data pointers */ 3771 for (i = slot; i < nritems; i++) { 3772 u32 ioff; 3773 item = btrfs_item_nr(leaf, i); 3774 3775 ioff = btrfs_token_item_offset(leaf, item, &token); 3776 btrfs_set_token_item_offset(leaf, item, 3777 ioff + size_diff, &token); 3778 } 3779 3780 /* shift the data */ 3781 if (from_end) { 3782 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3783 data_end + size_diff, btrfs_leaf_data(leaf) + 3784 data_end, old_data_start + new_size - data_end); 3785 } else { 3786 struct btrfs_disk_key disk_key; 3787 u64 offset; 3788 3789 btrfs_item_key(leaf, &disk_key, slot); 3790 3791 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3792 unsigned long ptr; 3793 struct btrfs_file_extent_item *fi; 3794 3795 fi = btrfs_item_ptr(leaf, slot, 3796 struct btrfs_file_extent_item); 3797 fi = (struct btrfs_file_extent_item *)( 3798 (unsigned long)fi - size_diff); 3799 3800 if (btrfs_file_extent_type(leaf, fi) == 3801 BTRFS_FILE_EXTENT_INLINE) { 3802 ptr = btrfs_item_ptr_offset(leaf, slot); 3803 memmove_extent_buffer(leaf, ptr, 3804 (unsigned long)fi, 3805 offsetof(struct btrfs_file_extent_item, 3806 disk_bytenr)); 3807 } 3808 } 3809 3810 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3811 data_end + size_diff, btrfs_leaf_data(leaf) + 3812 data_end, old_data_start - data_end); 3813 3814 offset = btrfs_disk_key_offset(&disk_key); 3815 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3816 btrfs_set_item_key(leaf, &disk_key, slot); 3817 if (slot == 0) 3818 fixup_low_keys(trans, root, path, &disk_key, 1); 3819 } 3820 3821 item = btrfs_item_nr(leaf, slot); 3822 btrfs_set_item_size(leaf, item, new_size); 3823 btrfs_mark_buffer_dirty(leaf); 3824 3825 if (btrfs_leaf_free_space(root, leaf) < 0) { 3826 btrfs_print_leaf(root, leaf); 3827 BUG(); 3828 } 3829 } 3830 3831 /* 3832 * make the item pointed to by the path bigger, data_size is the new size. 3833 */ 3834 void btrfs_extend_item(struct btrfs_trans_handle *trans, 3835 struct btrfs_root *root, struct btrfs_path *path, 3836 u32 data_size) 3837 { 3838 int slot; 3839 struct extent_buffer *leaf; 3840 struct btrfs_item *item; 3841 u32 nritems; 3842 unsigned int data_end; 3843 unsigned int old_data; 3844 unsigned int old_size; 3845 int i; 3846 struct btrfs_map_token token; 3847 3848 btrfs_init_map_token(&token); 3849 3850 leaf = path->nodes[0]; 3851 3852 nritems = btrfs_header_nritems(leaf); 3853 data_end = leaf_data_end(root, leaf); 3854 3855 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3856 btrfs_print_leaf(root, leaf); 3857 BUG(); 3858 } 3859 slot = path->slots[0]; 3860 old_data = btrfs_item_end_nr(leaf, slot); 3861 3862 BUG_ON(slot < 0); 3863 if (slot >= nritems) { 3864 btrfs_print_leaf(root, leaf); 3865 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3866 slot, nritems); 3867 BUG_ON(1); 3868 } 3869 3870 /* 3871 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3872 */ 3873 /* first correct the data pointers */ 3874 for (i = slot; i < nritems; i++) { 3875 u32 ioff; 3876 item = btrfs_item_nr(leaf, i); 3877 3878 ioff = btrfs_token_item_offset(leaf, item, &token); 3879 btrfs_set_token_item_offset(leaf, item, 3880 ioff - data_size, &token); 3881 } 3882 3883 /* shift the data */ 3884 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3885 data_end - data_size, btrfs_leaf_data(leaf) + 3886 data_end, old_data - data_end); 3887 3888 data_end = old_data; 3889 old_size = btrfs_item_size_nr(leaf, slot); 3890 item = btrfs_item_nr(leaf, slot); 3891 btrfs_set_item_size(leaf, item, old_size + data_size); 3892 btrfs_mark_buffer_dirty(leaf); 3893 3894 if (btrfs_leaf_free_space(root, leaf) < 0) { 3895 btrfs_print_leaf(root, leaf); 3896 BUG(); 3897 } 3898 } 3899 3900 /* 3901 * Given a key and some data, insert items into the tree. 3902 * This does all the path init required, making room in the tree if needed. 3903 * Returns the number of keys that were inserted. 3904 */ 3905 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3906 struct btrfs_root *root, 3907 struct btrfs_path *path, 3908 struct btrfs_key *cpu_key, u32 *data_size, 3909 int nr) 3910 { 3911 struct extent_buffer *leaf; 3912 struct btrfs_item *item; 3913 int ret = 0; 3914 int slot; 3915 int i; 3916 u32 nritems; 3917 u32 total_data = 0; 3918 u32 total_size = 0; 3919 unsigned int data_end; 3920 struct btrfs_disk_key disk_key; 3921 struct btrfs_key found_key; 3922 struct btrfs_map_token token; 3923 3924 btrfs_init_map_token(&token); 3925 3926 for (i = 0; i < nr; i++) { 3927 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3928 BTRFS_LEAF_DATA_SIZE(root)) { 3929 break; 3930 nr = i; 3931 } 3932 total_data += data_size[i]; 3933 total_size += data_size[i] + sizeof(struct btrfs_item); 3934 } 3935 BUG_ON(nr == 0); 3936 3937 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3938 if (ret == 0) 3939 return -EEXIST; 3940 if (ret < 0) 3941 goto out; 3942 3943 leaf = path->nodes[0]; 3944 3945 nritems = btrfs_header_nritems(leaf); 3946 data_end = leaf_data_end(root, leaf); 3947 3948 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3949 for (i = nr; i >= 0; i--) { 3950 total_data -= data_size[i]; 3951 total_size -= data_size[i] + sizeof(struct btrfs_item); 3952 if (total_size < btrfs_leaf_free_space(root, leaf)) 3953 break; 3954 } 3955 nr = i; 3956 } 3957 3958 slot = path->slots[0]; 3959 BUG_ON(slot < 0); 3960 3961 if (slot != nritems) { 3962 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3963 3964 item = btrfs_item_nr(leaf, slot); 3965 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3966 3967 /* figure out how many keys we can insert in here */ 3968 total_data = data_size[0]; 3969 for (i = 1; i < nr; i++) { 3970 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3971 break; 3972 total_data += data_size[i]; 3973 } 3974 nr = i; 3975 3976 if (old_data < data_end) { 3977 btrfs_print_leaf(root, leaf); 3978 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3979 slot, old_data, data_end); 3980 BUG_ON(1); 3981 } 3982 /* 3983 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3984 */ 3985 /* first correct the data pointers */ 3986 for (i = slot; i < nritems; i++) { 3987 u32 ioff; 3988 3989 item = btrfs_item_nr(leaf, i); 3990 ioff = btrfs_token_item_offset(leaf, item, &token); 3991 btrfs_set_token_item_offset(leaf, item, 3992 ioff - total_data, &token); 3993 } 3994 /* shift the items */ 3995 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3996 btrfs_item_nr_offset(slot), 3997 (nritems - slot) * sizeof(struct btrfs_item)); 3998 3999 /* shift the data */ 4000 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4001 data_end - total_data, btrfs_leaf_data(leaf) + 4002 data_end, old_data - data_end); 4003 data_end = old_data; 4004 } else { 4005 /* 4006 * this sucks but it has to be done, if we are inserting at 4007 * the end of the leaf only insert 1 of the items, since we 4008 * have no way of knowing whats on the next leaf and we'd have 4009 * to drop our current locks to figure it out 4010 */ 4011 nr = 1; 4012 } 4013 4014 /* setup the item for the new data */ 4015 for (i = 0; i < nr; i++) { 4016 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4017 btrfs_set_item_key(leaf, &disk_key, slot + i); 4018 item = btrfs_item_nr(leaf, slot + i); 4019 btrfs_set_token_item_offset(leaf, item, 4020 data_end - data_size[i], &token); 4021 data_end -= data_size[i]; 4022 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4023 } 4024 btrfs_set_header_nritems(leaf, nritems + nr); 4025 btrfs_mark_buffer_dirty(leaf); 4026 4027 ret = 0; 4028 if (slot == 0) { 4029 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4030 fixup_low_keys(trans, root, path, &disk_key, 1); 4031 } 4032 4033 if (btrfs_leaf_free_space(root, leaf) < 0) { 4034 btrfs_print_leaf(root, leaf); 4035 BUG(); 4036 } 4037 out: 4038 if (!ret) 4039 ret = nr; 4040 return ret; 4041 } 4042 4043 /* 4044 * this is a helper for btrfs_insert_empty_items, the main goal here is 4045 * to save stack depth by doing the bulk of the work in a function 4046 * that doesn't call btrfs_search_slot 4047 */ 4048 void setup_items_for_insert(struct btrfs_trans_handle *trans, 4049 struct btrfs_root *root, struct btrfs_path *path, 4050 struct btrfs_key *cpu_key, u32 *data_size, 4051 u32 total_data, u32 total_size, int nr) 4052 { 4053 struct btrfs_item *item; 4054 int i; 4055 u32 nritems; 4056 unsigned int data_end; 4057 struct btrfs_disk_key disk_key; 4058 struct extent_buffer *leaf; 4059 int slot; 4060 struct btrfs_map_token token; 4061 4062 btrfs_init_map_token(&token); 4063 4064 leaf = path->nodes[0]; 4065 slot = path->slots[0]; 4066 4067 nritems = btrfs_header_nritems(leaf); 4068 data_end = leaf_data_end(root, leaf); 4069 4070 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4071 btrfs_print_leaf(root, leaf); 4072 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4073 total_size, btrfs_leaf_free_space(root, leaf)); 4074 BUG(); 4075 } 4076 4077 if (slot != nritems) { 4078 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4079 4080 if (old_data < data_end) { 4081 btrfs_print_leaf(root, leaf); 4082 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4083 slot, old_data, data_end); 4084 BUG_ON(1); 4085 } 4086 /* 4087 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4088 */ 4089 /* first correct the data pointers */ 4090 for (i = slot; i < nritems; i++) { 4091 u32 ioff; 4092 4093 item = btrfs_item_nr(leaf, i); 4094 ioff = btrfs_token_item_offset(leaf, item, &token); 4095 btrfs_set_token_item_offset(leaf, item, 4096 ioff - total_data, &token); 4097 } 4098 /* shift the items */ 4099 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4100 btrfs_item_nr_offset(slot), 4101 (nritems - slot) * sizeof(struct btrfs_item)); 4102 4103 /* shift the data */ 4104 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4105 data_end - total_data, btrfs_leaf_data(leaf) + 4106 data_end, old_data - data_end); 4107 data_end = old_data; 4108 } 4109 4110 /* setup the item for the new data */ 4111 for (i = 0; i < nr; i++) { 4112 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4113 btrfs_set_item_key(leaf, &disk_key, slot + i); 4114 item = btrfs_item_nr(leaf, slot + i); 4115 btrfs_set_token_item_offset(leaf, item, 4116 data_end - data_size[i], &token); 4117 data_end -= data_size[i]; 4118 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4119 } 4120 4121 btrfs_set_header_nritems(leaf, nritems + nr); 4122 4123 if (slot == 0) { 4124 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4125 fixup_low_keys(trans, root, path, &disk_key, 1); 4126 } 4127 btrfs_unlock_up_safe(path, 1); 4128 btrfs_mark_buffer_dirty(leaf); 4129 4130 if (btrfs_leaf_free_space(root, leaf) < 0) { 4131 btrfs_print_leaf(root, leaf); 4132 BUG(); 4133 } 4134 } 4135 4136 /* 4137 * Given a key and some data, insert items into the tree. 4138 * This does all the path init required, making room in the tree if needed. 4139 */ 4140 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4141 struct btrfs_root *root, 4142 struct btrfs_path *path, 4143 struct btrfs_key *cpu_key, u32 *data_size, 4144 int nr) 4145 { 4146 int ret = 0; 4147 int slot; 4148 int i; 4149 u32 total_size = 0; 4150 u32 total_data = 0; 4151 4152 for (i = 0; i < nr; i++) 4153 total_data += data_size[i]; 4154 4155 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4156 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4157 if (ret == 0) 4158 return -EEXIST; 4159 if (ret < 0) 4160 return ret; 4161 4162 slot = path->slots[0]; 4163 BUG_ON(slot < 0); 4164 4165 setup_items_for_insert(trans, root, path, cpu_key, data_size, 4166 total_data, total_size, nr); 4167 return 0; 4168 } 4169 4170 /* 4171 * Given a key and some data, insert an item into the tree. 4172 * This does all the path init required, making room in the tree if needed. 4173 */ 4174 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4175 *root, struct btrfs_key *cpu_key, void *data, u32 4176 data_size) 4177 { 4178 int ret = 0; 4179 struct btrfs_path *path; 4180 struct extent_buffer *leaf; 4181 unsigned long ptr; 4182 4183 path = btrfs_alloc_path(); 4184 if (!path) 4185 return -ENOMEM; 4186 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4187 if (!ret) { 4188 leaf = path->nodes[0]; 4189 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4190 write_extent_buffer(leaf, data, ptr, data_size); 4191 btrfs_mark_buffer_dirty(leaf); 4192 } 4193 btrfs_free_path(path); 4194 return ret; 4195 } 4196 4197 /* 4198 * delete the pointer from a given node. 4199 * 4200 * the tree should have been previously balanced so the deletion does not 4201 * empty a node. 4202 */ 4203 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4204 struct btrfs_path *path, int level, int slot, 4205 int tree_mod_log) 4206 { 4207 struct extent_buffer *parent = path->nodes[level]; 4208 u32 nritems; 4209 int ret; 4210 4211 nritems = btrfs_header_nritems(parent); 4212 if (slot != nritems - 1) { 4213 if (tree_mod_log && level) 4214 tree_mod_log_eb_move(root->fs_info, parent, slot, 4215 slot + 1, nritems - slot - 1); 4216 memmove_extent_buffer(parent, 4217 btrfs_node_key_ptr_offset(slot), 4218 btrfs_node_key_ptr_offset(slot + 1), 4219 sizeof(struct btrfs_key_ptr) * 4220 (nritems - slot - 1)); 4221 } 4222 4223 if (tree_mod_log && level) { 4224 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4225 MOD_LOG_KEY_REMOVE); 4226 BUG_ON(ret < 0); 4227 } 4228 4229 nritems--; 4230 btrfs_set_header_nritems(parent, nritems); 4231 if (nritems == 0 && parent == root->node) { 4232 BUG_ON(btrfs_header_level(root->node) != 1); 4233 /* just turn the root into a leaf and break */ 4234 btrfs_set_header_level(root->node, 0); 4235 } else if (slot == 0) { 4236 struct btrfs_disk_key disk_key; 4237 4238 btrfs_node_key(parent, &disk_key, 0); 4239 fixup_low_keys(trans, root, path, &disk_key, level + 1); 4240 } 4241 btrfs_mark_buffer_dirty(parent); 4242 } 4243 4244 /* 4245 * a helper function to delete the leaf pointed to by path->slots[1] and 4246 * path->nodes[1]. 4247 * 4248 * This deletes the pointer in path->nodes[1] and frees the leaf 4249 * block extent. zero is returned if it all worked out, < 0 otherwise. 4250 * 4251 * The path must have already been setup for deleting the leaf, including 4252 * all the proper balancing. path->nodes[1] must be locked. 4253 */ 4254 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4255 struct btrfs_root *root, 4256 struct btrfs_path *path, 4257 struct extent_buffer *leaf) 4258 { 4259 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4260 del_ptr(trans, root, path, 1, path->slots[1], 1); 4261 4262 /* 4263 * btrfs_free_extent is expensive, we want to make sure we 4264 * aren't holding any locks when we call it 4265 */ 4266 btrfs_unlock_up_safe(path, 0); 4267 4268 root_sub_used(root, leaf->len); 4269 4270 extent_buffer_get(leaf); 4271 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4272 free_extent_buffer_stale(leaf); 4273 } 4274 /* 4275 * delete the item at the leaf level in path. If that empties 4276 * the leaf, remove it from the tree 4277 */ 4278 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4279 struct btrfs_path *path, int slot, int nr) 4280 { 4281 struct extent_buffer *leaf; 4282 struct btrfs_item *item; 4283 int last_off; 4284 int dsize = 0; 4285 int ret = 0; 4286 int wret; 4287 int i; 4288 u32 nritems; 4289 struct btrfs_map_token token; 4290 4291 btrfs_init_map_token(&token); 4292 4293 leaf = path->nodes[0]; 4294 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4295 4296 for (i = 0; i < nr; i++) 4297 dsize += btrfs_item_size_nr(leaf, slot + i); 4298 4299 nritems = btrfs_header_nritems(leaf); 4300 4301 if (slot + nr != nritems) { 4302 int data_end = leaf_data_end(root, leaf); 4303 4304 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4305 data_end + dsize, 4306 btrfs_leaf_data(leaf) + data_end, 4307 last_off - data_end); 4308 4309 for (i = slot + nr; i < nritems; i++) { 4310 u32 ioff; 4311 4312 item = btrfs_item_nr(leaf, i); 4313 ioff = btrfs_token_item_offset(leaf, item, &token); 4314 btrfs_set_token_item_offset(leaf, item, 4315 ioff + dsize, &token); 4316 } 4317 4318 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4319 btrfs_item_nr_offset(slot + nr), 4320 sizeof(struct btrfs_item) * 4321 (nritems - slot - nr)); 4322 } 4323 btrfs_set_header_nritems(leaf, nritems - nr); 4324 nritems -= nr; 4325 4326 /* delete the leaf if we've emptied it */ 4327 if (nritems == 0) { 4328 if (leaf == root->node) { 4329 btrfs_set_header_level(leaf, 0); 4330 } else { 4331 btrfs_set_path_blocking(path); 4332 clean_tree_block(trans, root, leaf); 4333 btrfs_del_leaf(trans, root, path, leaf); 4334 } 4335 } else { 4336 int used = leaf_space_used(leaf, 0, nritems); 4337 if (slot == 0) { 4338 struct btrfs_disk_key disk_key; 4339 4340 btrfs_item_key(leaf, &disk_key, 0); 4341 fixup_low_keys(trans, root, path, &disk_key, 1); 4342 } 4343 4344 /* delete the leaf if it is mostly empty */ 4345 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4346 /* push_leaf_left fixes the path. 4347 * make sure the path still points to our leaf 4348 * for possible call to del_ptr below 4349 */ 4350 slot = path->slots[1]; 4351 extent_buffer_get(leaf); 4352 4353 btrfs_set_path_blocking(path); 4354 wret = push_leaf_left(trans, root, path, 1, 1, 4355 1, (u32)-1); 4356 if (wret < 0 && wret != -ENOSPC) 4357 ret = wret; 4358 4359 if (path->nodes[0] == leaf && 4360 btrfs_header_nritems(leaf)) { 4361 wret = push_leaf_right(trans, root, path, 1, 4362 1, 1, 0); 4363 if (wret < 0 && wret != -ENOSPC) 4364 ret = wret; 4365 } 4366 4367 if (btrfs_header_nritems(leaf) == 0) { 4368 path->slots[1] = slot; 4369 btrfs_del_leaf(trans, root, path, leaf); 4370 free_extent_buffer(leaf); 4371 ret = 0; 4372 } else { 4373 /* if we're still in the path, make sure 4374 * we're dirty. Otherwise, one of the 4375 * push_leaf functions must have already 4376 * dirtied this buffer 4377 */ 4378 if (path->nodes[0] == leaf) 4379 btrfs_mark_buffer_dirty(leaf); 4380 free_extent_buffer(leaf); 4381 } 4382 } else { 4383 btrfs_mark_buffer_dirty(leaf); 4384 } 4385 } 4386 return ret; 4387 } 4388 4389 /* 4390 * search the tree again to find a leaf with lesser keys 4391 * returns 0 if it found something or 1 if there are no lesser leaves. 4392 * returns < 0 on io errors. 4393 * 4394 * This may release the path, and so you may lose any locks held at the 4395 * time you call it. 4396 */ 4397 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4398 { 4399 struct btrfs_key key; 4400 struct btrfs_disk_key found_key; 4401 int ret; 4402 4403 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4404 4405 if (key.offset > 0) 4406 key.offset--; 4407 else if (key.type > 0) 4408 key.type--; 4409 else if (key.objectid > 0) 4410 key.objectid--; 4411 else 4412 return 1; 4413 4414 btrfs_release_path(path); 4415 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4416 if (ret < 0) 4417 return ret; 4418 btrfs_item_key(path->nodes[0], &found_key, 0); 4419 ret = comp_keys(&found_key, &key); 4420 if (ret < 0) 4421 return 0; 4422 return 1; 4423 } 4424 4425 /* 4426 * A helper function to walk down the tree starting at min_key, and looking 4427 * for nodes or leaves that are either in cache or have a minimum 4428 * transaction id. This is used by the btree defrag code, and tree logging 4429 * 4430 * This does not cow, but it does stuff the starting key it finds back 4431 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4432 * key and get a writable path. 4433 * 4434 * This does lock as it descends, and path->keep_locks should be set 4435 * to 1 by the caller. 4436 * 4437 * This honors path->lowest_level to prevent descent past a given level 4438 * of the tree. 4439 * 4440 * min_trans indicates the oldest transaction that you are interested 4441 * in walking through. Any nodes or leaves older than min_trans are 4442 * skipped over (without reading them). 4443 * 4444 * returns zero if something useful was found, < 0 on error and 1 if there 4445 * was nothing in the tree that matched the search criteria. 4446 */ 4447 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4448 struct btrfs_key *max_key, 4449 struct btrfs_path *path, int cache_only, 4450 u64 min_trans) 4451 { 4452 struct extent_buffer *cur; 4453 struct btrfs_key found_key; 4454 int slot; 4455 int sret; 4456 u32 nritems; 4457 int level; 4458 int ret = 1; 4459 4460 WARN_ON(!path->keep_locks); 4461 again: 4462 cur = btrfs_read_lock_root_node(root); 4463 level = btrfs_header_level(cur); 4464 WARN_ON(path->nodes[level]); 4465 path->nodes[level] = cur; 4466 path->locks[level] = BTRFS_READ_LOCK; 4467 4468 if (btrfs_header_generation(cur) < min_trans) { 4469 ret = 1; 4470 goto out; 4471 } 4472 while (1) { 4473 nritems = btrfs_header_nritems(cur); 4474 level = btrfs_header_level(cur); 4475 sret = bin_search(cur, min_key, level, &slot); 4476 4477 /* at the lowest level, we're done, setup the path and exit */ 4478 if (level == path->lowest_level) { 4479 if (slot >= nritems) 4480 goto find_next_key; 4481 ret = 0; 4482 path->slots[level] = slot; 4483 btrfs_item_key_to_cpu(cur, &found_key, slot); 4484 goto out; 4485 } 4486 if (sret && slot > 0) 4487 slot--; 4488 /* 4489 * check this node pointer against the cache_only and 4490 * min_trans parameters. If it isn't in cache or is too 4491 * old, skip to the next one. 4492 */ 4493 while (slot < nritems) { 4494 u64 blockptr; 4495 u64 gen; 4496 struct extent_buffer *tmp; 4497 struct btrfs_disk_key disk_key; 4498 4499 blockptr = btrfs_node_blockptr(cur, slot); 4500 gen = btrfs_node_ptr_generation(cur, slot); 4501 if (gen < min_trans) { 4502 slot++; 4503 continue; 4504 } 4505 if (!cache_only) 4506 break; 4507 4508 if (max_key) { 4509 btrfs_node_key(cur, &disk_key, slot); 4510 if (comp_keys(&disk_key, max_key) >= 0) { 4511 ret = 1; 4512 goto out; 4513 } 4514 } 4515 4516 tmp = btrfs_find_tree_block(root, blockptr, 4517 btrfs_level_size(root, level - 1)); 4518 4519 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 4520 free_extent_buffer(tmp); 4521 break; 4522 } 4523 if (tmp) 4524 free_extent_buffer(tmp); 4525 slot++; 4526 } 4527 find_next_key: 4528 /* 4529 * we didn't find a candidate key in this node, walk forward 4530 * and find another one 4531 */ 4532 if (slot >= nritems) { 4533 path->slots[level] = slot; 4534 btrfs_set_path_blocking(path); 4535 sret = btrfs_find_next_key(root, path, min_key, level, 4536 cache_only, min_trans); 4537 if (sret == 0) { 4538 btrfs_release_path(path); 4539 goto again; 4540 } else { 4541 goto out; 4542 } 4543 } 4544 /* save our key for returning back */ 4545 btrfs_node_key_to_cpu(cur, &found_key, slot); 4546 path->slots[level] = slot; 4547 if (level == path->lowest_level) { 4548 ret = 0; 4549 unlock_up(path, level, 1, 0, NULL); 4550 goto out; 4551 } 4552 btrfs_set_path_blocking(path); 4553 cur = read_node_slot(root, cur, slot); 4554 BUG_ON(!cur); /* -ENOMEM */ 4555 4556 btrfs_tree_read_lock(cur); 4557 4558 path->locks[level - 1] = BTRFS_READ_LOCK; 4559 path->nodes[level - 1] = cur; 4560 unlock_up(path, level, 1, 0, NULL); 4561 btrfs_clear_path_blocking(path, NULL, 0); 4562 } 4563 out: 4564 if (ret == 0) 4565 memcpy(min_key, &found_key, sizeof(found_key)); 4566 btrfs_set_path_blocking(path); 4567 return ret; 4568 } 4569 4570 /* 4571 * this is similar to btrfs_next_leaf, but does not try to preserve 4572 * and fixup the path. It looks for and returns the next key in the 4573 * tree based on the current path and the cache_only and min_trans 4574 * parameters. 4575 * 4576 * 0 is returned if another key is found, < 0 if there are any errors 4577 * and 1 is returned if there are no higher keys in the tree 4578 * 4579 * path->keep_locks should be set to 1 on the search made before 4580 * calling this function. 4581 */ 4582 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4583 struct btrfs_key *key, int level, 4584 int cache_only, u64 min_trans) 4585 { 4586 int slot; 4587 struct extent_buffer *c; 4588 4589 WARN_ON(!path->keep_locks); 4590 while (level < BTRFS_MAX_LEVEL) { 4591 if (!path->nodes[level]) 4592 return 1; 4593 4594 slot = path->slots[level] + 1; 4595 c = path->nodes[level]; 4596 next: 4597 if (slot >= btrfs_header_nritems(c)) { 4598 int ret; 4599 int orig_lowest; 4600 struct btrfs_key cur_key; 4601 if (level + 1 >= BTRFS_MAX_LEVEL || 4602 !path->nodes[level + 1]) 4603 return 1; 4604 4605 if (path->locks[level + 1]) { 4606 level++; 4607 continue; 4608 } 4609 4610 slot = btrfs_header_nritems(c) - 1; 4611 if (level == 0) 4612 btrfs_item_key_to_cpu(c, &cur_key, slot); 4613 else 4614 btrfs_node_key_to_cpu(c, &cur_key, slot); 4615 4616 orig_lowest = path->lowest_level; 4617 btrfs_release_path(path); 4618 path->lowest_level = level; 4619 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4620 0, 0); 4621 path->lowest_level = orig_lowest; 4622 if (ret < 0) 4623 return ret; 4624 4625 c = path->nodes[level]; 4626 slot = path->slots[level]; 4627 if (ret == 0) 4628 slot++; 4629 goto next; 4630 } 4631 4632 if (level == 0) 4633 btrfs_item_key_to_cpu(c, key, slot); 4634 else { 4635 u64 blockptr = btrfs_node_blockptr(c, slot); 4636 u64 gen = btrfs_node_ptr_generation(c, slot); 4637 4638 if (cache_only) { 4639 struct extent_buffer *cur; 4640 cur = btrfs_find_tree_block(root, blockptr, 4641 btrfs_level_size(root, level - 1)); 4642 if (!cur || 4643 btrfs_buffer_uptodate(cur, gen, 1) <= 0) { 4644 slot++; 4645 if (cur) 4646 free_extent_buffer(cur); 4647 goto next; 4648 } 4649 free_extent_buffer(cur); 4650 } 4651 if (gen < min_trans) { 4652 slot++; 4653 goto next; 4654 } 4655 btrfs_node_key_to_cpu(c, key, slot); 4656 } 4657 return 0; 4658 } 4659 return 1; 4660 } 4661 4662 /* 4663 * search the tree again to find a leaf with greater keys 4664 * returns 0 if it found something or 1 if there are no greater leaves. 4665 * returns < 0 on io errors. 4666 */ 4667 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4668 { 4669 int slot; 4670 int level; 4671 struct extent_buffer *c; 4672 struct extent_buffer *next; 4673 struct btrfs_key key; 4674 u32 nritems; 4675 int ret; 4676 int old_spinning = path->leave_spinning; 4677 int next_rw_lock = 0; 4678 4679 nritems = btrfs_header_nritems(path->nodes[0]); 4680 if (nritems == 0) 4681 return 1; 4682 4683 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4684 again: 4685 level = 1; 4686 next = NULL; 4687 next_rw_lock = 0; 4688 btrfs_release_path(path); 4689 4690 path->keep_locks = 1; 4691 path->leave_spinning = 1; 4692 4693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4694 path->keep_locks = 0; 4695 4696 if (ret < 0) 4697 return ret; 4698 4699 nritems = btrfs_header_nritems(path->nodes[0]); 4700 /* 4701 * by releasing the path above we dropped all our locks. A balance 4702 * could have added more items next to the key that used to be 4703 * at the very end of the block. So, check again here and 4704 * advance the path if there are now more items available. 4705 */ 4706 if (nritems > 0 && path->slots[0] < nritems - 1) { 4707 if (ret == 0) 4708 path->slots[0]++; 4709 ret = 0; 4710 goto done; 4711 } 4712 4713 while (level < BTRFS_MAX_LEVEL) { 4714 if (!path->nodes[level]) { 4715 ret = 1; 4716 goto done; 4717 } 4718 4719 slot = path->slots[level] + 1; 4720 c = path->nodes[level]; 4721 if (slot >= btrfs_header_nritems(c)) { 4722 level++; 4723 if (level == BTRFS_MAX_LEVEL) { 4724 ret = 1; 4725 goto done; 4726 } 4727 continue; 4728 } 4729 4730 if (next) { 4731 btrfs_tree_unlock_rw(next, next_rw_lock); 4732 free_extent_buffer(next); 4733 } 4734 4735 next = c; 4736 next_rw_lock = path->locks[level]; 4737 ret = read_block_for_search(NULL, root, path, &next, level, 4738 slot, &key); 4739 if (ret == -EAGAIN) 4740 goto again; 4741 4742 if (ret < 0) { 4743 btrfs_release_path(path); 4744 goto done; 4745 } 4746 4747 if (!path->skip_locking) { 4748 ret = btrfs_try_tree_read_lock(next); 4749 if (!ret) { 4750 btrfs_set_path_blocking(path); 4751 btrfs_tree_read_lock(next); 4752 btrfs_clear_path_blocking(path, next, 4753 BTRFS_READ_LOCK); 4754 } 4755 next_rw_lock = BTRFS_READ_LOCK; 4756 } 4757 break; 4758 } 4759 path->slots[level] = slot; 4760 while (1) { 4761 level--; 4762 c = path->nodes[level]; 4763 if (path->locks[level]) 4764 btrfs_tree_unlock_rw(c, path->locks[level]); 4765 4766 free_extent_buffer(c); 4767 path->nodes[level] = next; 4768 path->slots[level] = 0; 4769 if (!path->skip_locking) 4770 path->locks[level] = next_rw_lock; 4771 if (!level) 4772 break; 4773 4774 ret = read_block_for_search(NULL, root, path, &next, level, 4775 0, &key); 4776 if (ret == -EAGAIN) 4777 goto again; 4778 4779 if (ret < 0) { 4780 btrfs_release_path(path); 4781 goto done; 4782 } 4783 4784 if (!path->skip_locking) { 4785 ret = btrfs_try_tree_read_lock(next); 4786 if (!ret) { 4787 btrfs_set_path_blocking(path); 4788 btrfs_tree_read_lock(next); 4789 btrfs_clear_path_blocking(path, next, 4790 BTRFS_READ_LOCK); 4791 } 4792 next_rw_lock = BTRFS_READ_LOCK; 4793 } 4794 } 4795 ret = 0; 4796 done: 4797 unlock_up(path, 0, 1, 0, NULL); 4798 path->leave_spinning = old_spinning; 4799 if (!old_spinning) 4800 btrfs_set_path_blocking(path); 4801 4802 return ret; 4803 } 4804 4805 /* 4806 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4807 * searching until it gets past min_objectid or finds an item of 'type' 4808 * 4809 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4810 */ 4811 int btrfs_previous_item(struct btrfs_root *root, 4812 struct btrfs_path *path, u64 min_objectid, 4813 int type) 4814 { 4815 struct btrfs_key found_key; 4816 struct extent_buffer *leaf; 4817 u32 nritems; 4818 int ret; 4819 4820 while (1) { 4821 if (path->slots[0] == 0) { 4822 btrfs_set_path_blocking(path); 4823 ret = btrfs_prev_leaf(root, path); 4824 if (ret != 0) 4825 return ret; 4826 } else { 4827 path->slots[0]--; 4828 } 4829 leaf = path->nodes[0]; 4830 nritems = btrfs_header_nritems(leaf); 4831 if (nritems == 0) 4832 return 1; 4833 if (path->slots[0] == nritems) 4834 path->slots[0]--; 4835 4836 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4837 if (found_key.objectid < min_objectid) 4838 break; 4839 if (found_key.type == type) 4840 return 0; 4841 if (found_key.objectid == min_objectid && 4842 found_key.type < type) 4843 break; 4844 } 4845 return 1; 4846 } 4847