1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 return path; 51 } 52 53 /* 54 * set all locked nodes in the path to blocking locks. This should 55 * be done before scheduling 56 */ 57 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 58 { 59 int i; 60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 61 if (!p->nodes[i] || !p->locks[i]) 62 continue; 63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 64 if (p->locks[i] == BTRFS_READ_LOCK) 65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 66 else if (p->locks[i] == BTRFS_WRITE_LOCK) 67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 68 } 69 } 70 71 /* 72 * reset all the locked nodes in the patch to spinning locks. 73 * 74 * held is used to keep lockdep happy, when lockdep is enabled 75 * we set held to a blocking lock before we go around and 76 * retake all the spinlocks in the path. You can safely use NULL 77 * for held 78 */ 79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 80 struct extent_buffer *held, int held_rw) 81 { 82 int i; 83 84 #ifdef CONFIG_DEBUG_LOCK_ALLOC 85 /* lockdep really cares that we take all of these spinlocks 86 * in the right order. If any of the locks in the path are not 87 * currently blocking, it is going to complain. So, make really 88 * really sure by forcing the path to blocking before we clear 89 * the path blocking. 90 */ 91 if (held) { 92 btrfs_set_lock_blocking_rw(held, held_rw); 93 if (held_rw == BTRFS_WRITE_LOCK) 94 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 95 else if (held_rw == BTRFS_READ_LOCK) 96 held_rw = BTRFS_READ_LOCK_BLOCKING; 97 } 98 btrfs_set_path_blocking(p); 99 #endif 100 101 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 102 if (p->nodes[i] && p->locks[i]) { 103 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 104 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 105 p->locks[i] = BTRFS_WRITE_LOCK; 106 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 107 p->locks[i] = BTRFS_READ_LOCK; 108 } 109 } 110 111 #ifdef CONFIG_DEBUG_LOCK_ALLOC 112 if (held) 113 btrfs_clear_lock_blocking_rw(held, held_rw); 114 #endif 115 } 116 117 /* this also releases the path */ 118 void btrfs_free_path(struct btrfs_path *p) 119 { 120 if (!p) 121 return; 122 btrfs_release_path(p); 123 kmem_cache_free(btrfs_path_cachep, p); 124 } 125 126 /* 127 * path release drops references on the extent buffers in the path 128 * and it drops any locks held by this path 129 * 130 * It is safe to call this on paths that no locks or extent buffers held. 131 */ 132 noinline void btrfs_release_path(struct btrfs_path *p) 133 { 134 int i; 135 136 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 137 p->slots[i] = 0; 138 if (!p->nodes[i]) 139 continue; 140 if (p->locks[i]) { 141 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 142 p->locks[i] = 0; 143 } 144 free_extent_buffer(p->nodes[i]); 145 p->nodes[i] = NULL; 146 } 147 } 148 149 /* 150 * safely gets a reference on the root node of a tree. A lock 151 * is not taken, so a concurrent writer may put a different node 152 * at the root of the tree. See btrfs_lock_root_node for the 153 * looping required. 154 * 155 * The extent buffer returned by this has a reference taken, so 156 * it won't disappear. It may stop being the root of the tree 157 * at any time because there are no locks held. 158 */ 159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 160 { 161 struct extent_buffer *eb; 162 163 while (1) { 164 rcu_read_lock(); 165 eb = rcu_dereference(root->node); 166 167 /* 168 * RCU really hurts here, we could free up the root node because 169 * it was cow'ed but we may not get the new root node yet so do 170 * the inc_not_zero dance and if it doesn't work then 171 * synchronize_rcu and try again. 172 */ 173 if (atomic_inc_not_zero(&eb->refs)) { 174 rcu_read_unlock(); 175 break; 176 } 177 rcu_read_unlock(); 178 synchronize_rcu(); 179 } 180 return eb; 181 } 182 183 /* loop around taking references on and locking the root node of the 184 * tree until you end up with a lock on the root. A locked buffer 185 * is returned, with a reference held. 186 */ 187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 188 { 189 struct extent_buffer *eb; 190 191 while (1) { 192 eb = btrfs_root_node(root); 193 btrfs_tree_lock(eb); 194 if (eb == root->node) 195 break; 196 btrfs_tree_unlock(eb); 197 free_extent_buffer(eb); 198 } 199 return eb; 200 } 201 202 /* loop around taking references on and locking the root node of the 203 * tree until you end up with a lock on the root. A locked buffer 204 * is returned, with a reference held. 205 */ 206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 207 { 208 struct extent_buffer *eb; 209 210 while (1) { 211 eb = btrfs_root_node(root); 212 btrfs_tree_read_lock(eb); 213 if (eb == root->node) 214 break; 215 btrfs_tree_read_unlock(eb); 216 free_extent_buffer(eb); 217 } 218 return eb; 219 } 220 221 /* cowonly root (everything not a reference counted cow subvolume), just get 222 * put onto a simple dirty list. transaction.c walks this to make sure they 223 * get properly updated on disk. 224 */ 225 static void add_root_to_dirty_list(struct btrfs_root *root) 226 { 227 spin_lock(&root->fs_info->trans_lock); 228 if (root->track_dirty && list_empty(&root->dirty_list)) { 229 list_add(&root->dirty_list, 230 &root->fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&root->fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct extent_buffer *cow; 246 int ret = 0; 247 int level; 248 struct btrfs_disk_key disk_key; 249 250 WARN_ON(root->ref_cows && trans->transid != 251 root->fs_info->running_transaction->transid); 252 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 253 254 level = btrfs_header_level(buf); 255 if (level == 0) 256 btrfs_item_key(buf, &disk_key, 0); 257 else 258 btrfs_node_key(buf, &disk_key, 0); 259 260 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 261 new_root_objectid, &disk_key, level, 262 buf->start, 0); 263 if (IS_ERR(cow)) 264 return PTR_ERR(cow); 265 266 copy_extent_buffer(cow, buf, 0, 0, cow->len); 267 btrfs_set_header_bytenr(cow, cow->start); 268 btrfs_set_header_generation(cow, trans->transid); 269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 271 BTRFS_HEADER_FLAG_RELOC); 272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 274 else 275 btrfs_set_header_owner(cow, new_root_objectid); 276 277 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 278 BTRFS_FSID_SIZE); 279 280 WARN_ON(btrfs_header_generation(buf) > trans->transid); 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 282 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 283 else 284 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 285 286 if (ret) 287 return ret; 288 289 btrfs_mark_buffer_dirty(cow); 290 *cow_ret = cow; 291 return 0; 292 } 293 294 enum mod_log_op { 295 MOD_LOG_KEY_REPLACE, 296 MOD_LOG_KEY_ADD, 297 MOD_LOG_KEY_REMOVE, 298 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 299 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 300 MOD_LOG_MOVE_KEYS, 301 MOD_LOG_ROOT_REPLACE, 302 }; 303 304 struct tree_mod_move { 305 int dst_slot; 306 int nr_items; 307 }; 308 309 struct tree_mod_root { 310 u64 logical; 311 u8 level; 312 }; 313 314 struct tree_mod_elem { 315 struct rb_node node; 316 u64 index; /* shifted logical */ 317 u64 seq; 318 enum mod_log_op op; 319 320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 321 int slot; 322 323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 324 u64 generation; 325 326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 327 struct btrfs_disk_key key; 328 u64 blockptr; 329 330 /* this is used for op == MOD_LOG_MOVE_KEYS */ 331 struct tree_mod_move move; 332 333 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 334 struct tree_mod_root old_root; 335 }; 336 337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 338 { 339 read_lock(&fs_info->tree_mod_log_lock); 340 } 341 342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 343 { 344 read_unlock(&fs_info->tree_mod_log_lock); 345 } 346 347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 348 { 349 write_lock(&fs_info->tree_mod_log_lock); 350 } 351 352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 353 { 354 write_unlock(&fs_info->tree_mod_log_lock); 355 } 356 357 /* 358 * Increment the upper half of tree_mod_seq, set lower half zero. 359 * 360 * Must be called with fs_info->tree_mod_seq_lock held. 361 */ 362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info) 363 { 364 u64 seq = atomic64_read(&fs_info->tree_mod_seq); 365 seq &= 0xffffffff00000000ull; 366 seq += 1ull << 32; 367 atomic64_set(&fs_info->tree_mod_seq, seq); 368 return seq; 369 } 370 371 /* 372 * Increment the lower half of tree_mod_seq. 373 * 374 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers 375 * are generated should not technically require a spin lock here. (Rationale: 376 * incrementing the minor while incrementing the major seq number is between its 377 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it 378 * just returns a unique sequence number as usual.) We have decided to leave 379 * that requirement in here and rethink it once we notice it really imposes a 380 * problem on some workload. 381 */ 382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info) 383 { 384 return atomic64_inc_return(&fs_info->tree_mod_seq); 385 } 386 387 /* 388 * return the last minor in the previous major tree_mod_seq number 389 */ 390 u64 btrfs_tree_mod_seq_prev(u64 seq) 391 { 392 return (seq & 0xffffffff00000000ull) - 1ull; 393 } 394 395 /* 396 * This adds a new blocker to the tree mod log's blocker list if the @elem 397 * passed does not already have a sequence number set. So when a caller expects 398 * to record tree modifications, it should ensure to set elem->seq to zero 399 * before calling btrfs_get_tree_mod_seq. 400 * Returns a fresh, unused tree log modification sequence number, even if no new 401 * blocker was added. 402 */ 403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 404 struct seq_list *elem) 405 { 406 u64 seq; 407 408 tree_mod_log_write_lock(fs_info); 409 spin_lock(&fs_info->tree_mod_seq_lock); 410 if (!elem->seq) { 411 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info); 412 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 413 } 414 seq = btrfs_inc_tree_mod_seq_minor(fs_info); 415 spin_unlock(&fs_info->tree_mod_seq_lock); 416 tree_mod_log_write_unlock(fs_info); 417 418 return seq; 419 } 420 421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 422 struct seq_list *elem) 423 { 424 struct rb_root *tm_root; 425 struct rb_node *node; 426 struct rb_node *next; 427 struct seq_list *cur_elem; 428 struct tree_mod_elem *tm; 429 u64 min_seq = (u64)-1; 430 u64 seq_putting = elem->seq; 431 432 if (!seq_putting) 433 return; 434 435 spin_lock(&fs_info->tree_mod_seq_lock); 436 list_del(&elem->list); 437 elem->seq = 0; 438 439 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 440 if (cur_elem->seq < min_seq) { 441 if (seq_putting > cur_elem->seq) { 442 /* 443 * blocker with lower sequence number exists, we 444 * cannot remove anything from the log 445 */ 446 spin_unlock(&fs_info->tree_mod_seq_lock); 447 return; 448 } 449 min_seq = cur_elem->seq; 450 } 451 } 452 spin_unlock(&fs_info->tree_mod_seq_lock); 453 454 /* 455 * anything that's lower than the lowest existing (read: blocked) 456 * sequence number can be removed from the tree. 457 */ 458 tree_mod_log_write_lock(fs_info); 459 tm_root = &fs_info->tree_mod_log; 460 for (node = rb_first(tm_root); node; node = next) { 461 next = rb_next(node); 462 tm = container_of(node, struct tree_mod_elem, node); 463 if (tm->seq > min_seq) 464 continue; 465 rb_erase(node, tm_root); 466 kfree(tm); 467 } 468 tree_mod_log_write_unlock(fs_info); 469 } 470 471 /* 472 * key order of the log: 473 * index -> sequence 474 * 475 * the index is the shifted logical of the *new* root node for root replace 476 * operations, or the shifted logical of the affected block for all other 477 * operations. 478 */ 479 static noinline int 480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 481 { 482 struct rb_root *tm_root; 483 struct rb_node **new; 484 struct rb_node *parent = NULL; 485 struct tree_mod_elem *cur; 486 int ret = 0; 487 488 BUG_ON(!tm); 489 490 tree_mod_log_write_lock(fs_info); 491 if (list_empty(&fs_info->tree_mod_seq_list)) { 492 tree_mod_log_write_unlock(fs_info); 493 /* 494 * Ok we no longer care about logging modifications, free up tm 495 * and return 0. Any callers shouldn't be using tm after 496 * calling tree_mod_log_insert, but if they do we can just 497 * change this to return a special error code to let the callers 498 * do their own thing. 499 */ 500 kfree(tm); 501 return 0; 502 } 503 504 spin_lock(&fs_info->tree_mod_seq_lock); 505 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info); 506 spin_unlock(&fs_info->tree_mod_seq_lock); 507 508 tm_root = &fs_info->tree_mod_log; 509 new = &tm_root->rb_node; 510 while (*new) { 511 cur = container_of(*new, struct tree_mod_elem, node); 512 parent = *new; 513 if (cur->index < tm->index) 514 new = &((*new)->rb_left); 515 else if (cur->index > tm->index) 516 new = &((*new)->rb_right); 517 else if (cur->seq < tm->seq) 518 new = &((*new)->rb_left); 519 else if (cur->seq > tm->seq) 520 new = &((*new)->rb_right); 521 else { 522 ret = -EEXIST; 523 kfree(tm); 524 goto out; 525 } 526 } 527 528 rb_link_node(&tm->node, parent, new); 529 rb_insert_color(&tm->node, tm_root); 530 out: 531 tree_mod_log_write_unlock(fs_info); 532 return ret; 533 } 534 535 /* 536 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 537 * returns zero with the tree_mod_log_lock acquired. The caller must hold 538 * this until all tree mod log insertions are recorded in the rb tree and then 539 * call tree_mod_log_write_unlock() to release. 540 */ 541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 542 struct extent_buffer *eb) { 543 smp_mb(); 544 if (list_empty(&(fs_info)->tree_mod_seq_list)) 545 return 1; 546 if (eb && btrfs_header_level(eb) == 0) 547 return 1; 548 return 0; 549 } 550 551 static inline int 552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 553 struct extent_buffer *eb, int slot, 554 enum mod_log_op op, gfp_t flags) 555 { 556 struct tree_mod_elem *tm; 557 558 tm = kzalloc(sizeof(*tm), flags); 559 if (!tm) 560 return -ENOMEM; 561 562 tm->index = eb->start >> PAGE_CACHE_SHIFT; 563 if (op != MOD_LOG_KEY_ADD) { 564 btrfs_node_key(eb, &tm->key, slot); 565 tm->blockptr = btrfs_node_blockptr(eb, slot); 566 } 567 tm->op = op; 568 tm->slot = slot; 569 tm->generation = btrfs_node_ptr_generation(eb, slot); 570 571 return __tree_mod_log_insert(fs_info, tm); 572 } 573 574 static noinline int 575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 576 struct extent_buffer *eb, int slot, 577 enum mod_log_op op, gfp_t flags) 578 { 579 if (tree_mod_dont_log(fs_info, eb)) 580 return 0; 581 582 return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags); 583 } 584 585 static noinline int 586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 587 struct extent_buffer *eb, int dst_slot, int src_slot, 588 int nr_items, gfp_t flags) 589 { 590 struct tree_mod_elem *tm; 591 int ret; 592 int i; 593 594 if (tree_mod_dont_log(fs_info, eb)) 595 return 0; 596 597 /* 598 * When we override something during the move, we log these removals. 599 * This can only happen when we move towards the beginning of the 600 * buffer, i.e. dst_slot < src_slot. 601 */ 602 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 603 ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot, 604 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 605 BUG_ON(ret < 0); 606 } 607 608 tm = kzalloc(sizeof(*tm), flags); 609 if (!tm) 610 return -ENOMEM; 611 612 tm->index = eb->start >> PAGE_CACHE_SHIFT; 613 tm->slot = src_slot; 614 tm->move.dst_slot = dst_slot; 615 tm->move.nr_items = nr_items; 616 tm->op = MOD_LOG_MOVE_KEYS; 617 618 return __tree_mod_log_insert(fs_info, tm); 619 } 620 621 static inline void 622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 623 { 624 int i; 625 u32 nritems; 626 int ret; 627 628 if (btrfs_header_level(eb) == 0) 629 return; 630 631 nritems = btrfs_header_nritems(eb); 632 for (i = nritems - 1; i >= 0; i--) { 633 ret = __tree_mod_log_insert_key(fs_info, eb, i, 634 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 635 BUG_ON(ret < 0); 636 } 637 } 638 639 static noinline int 640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 641 struct extent_buffer *old_root, 642 struct extent_buffer *new_root, gfp_t flags, 643 int log_removal) 644 { 645 struct tree_mod_elem *tm; 646 647 if (tree_mod_dont_log(fs_info, NULL)) 648 return 0; 649 650 if (log_removal) 651 __tree_mod_log_free_eb(fs_info, old_root); 652 653 tm = kzalloc(sizeof(*tm), flags); 654 if (!tm) 655 return -ENOMEM; 656 657 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 658 tm->old_root.logical = old_root->start; 659 tm->old_root.level = btrfs_header_level(old_root); 660 tm->generation = btrfs_header_generation(old_root); 661 tm->op = MOD_LOG_ROOT_REPLACE; 662 663 return __tree_mod_log_insert(fs_info, tm); 664 } 665 666 static struct tree_mod_elem * 667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 668 int smallest) 669 { 670 struct rb_root *tm_root; 671 struct rb_node *node; 672 struct tree_mod_elem *cur = NULL; 673 struct tree_mod_elem *found = NULL; 674 u64 index = start >> PAGE_CACHE_SHIFT; 675 676 tree_mod_log_read_lock(fs_info); 677 tm_root = &fs_info->tree_mod_log; 678 node = tm_root->rb_node; 679 while (node) { 680 cur = container_of(node, struct tree_mod_elem, node); 681 if (cur->index < index) { 682 node = node->rb_left; 683 } else if (cur->index > index) { 684 node = node->rb_right; 685 } else if (cur->seq < min_seq) { 686 node = node->rb_left; 687 } else if (!smallest) { 688 /* we want the node with the highest seq */ 689 if (found) 690 BUG_ON(found->seq > cur->seq); 691 found = cur; 692 node = node->rb_left; 693 } else if (cur->seq > min_seq) { 694 /* we want the node with the smallest seq */ 695 if (found) 696 BUG_ON(found->seq < cur->seq); 697 found = cur; 698 node = node->rb_right; 699 } else { 700 found = cur; 701 break; 702 } 703 } 704 tree_mod_log_read_unlock(fs_info); 705 706 return found; 707 } 708 709 /* 710 * this returns the element from the log with the smallest time sequence 711 * value that's in the log (the oldest log item). any element with a time 712 * sequence lower than min_seq will be ignored. 713 */ 714 static struct tree_mod_elem * 715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 716 u64 min_seq) 717 { 718 return __tree_mod_log_search(fs_info, start, min_seq, 1); 719 } 720 721 /* 722 * this returns the element from the log with the largest time sequence 723 * value that's in the log (the most recent log item). any element with 724 * a time sequence lower than min_seq will be ignored. 725 */ 726 static struct tree_mod_elem * 727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 728 { 729 return __tree_mod_log_search(fs_info, start, min_seq, 0); 730 } 731 732 static noinline void 733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 734 struct extent_buffer *src, unsigned long dst_offset, 735 unsigned long src_offset, int nr_items) 736 { 737 int ret; 738 int i; 739 740 if (tree_mod_dont_log(fs_info, NULL)) 741 return; 742 743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 744 return; 745 746 for (i = 0; i < nr_items; i++) { 747 ret = __tree_mod_log_insert_key(fs_info, src, 748 i + src_offset, 749 MOD_LOG_KEY_REMOVE, GFP_NOFS); 750 BUG_ON(ret < 0); 751 ret = __tree_mod_log_insert_key(fs_info, dst, 752 i + dst_offset, 753 MOD_LOG_KEY_ADD, 754 GFP_NOFS); 755 BUG_ON(ret < 0); 756 } 757 } 758 759 static inline void 760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 761 int dst_offset, int src_offset, int nr_items) 762 { 763 int ret; 764 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 765 nr_items, GFP_NOFS); 766 BUG_ON(ret < 0); 767 } 768 769 static noinline void 770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 771 struct extent_buffer *eb, int slot, int atomic) 772 { 773 int ret; 774 775 ret = __tree_mod_log_insert_key(fs_info, eb, slot, 776 MOD_LOG_KEY_REPLACE, 777 atomic ? GFP_ATOMIC : GFP_NOFS); 778 BUG_ON(ret < 0); 779 } 780 781 static noinline void 782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 783 { 784 if (tree_mod_dont_log(fs_info, eb)) 785 return; 786 __tree_mod_log_free_eb(fs_info, eb); 787 } 788 789 static noinline void 790 tree_mod_log_set_root_pointer(struct btrfs_root *root, 791 struct extent_buffer *new_root_node, 792 int log_removal) 793 { 794 int ret; 795 ret = tree_mod_log_insert_root(root->fs_info, root->node, 796 new_root_node, GFP_NOFS, log_removal); 797 BUG_ON(ret < 0); 798 } 799 800 /* 801 * check if the tree block can be shared by multiple trees 802 */ 803 int btrfs_block_can_be_shared(struct btrfs_root *root, 804 struct extent_buffer *buf) 805 { 806 /* 807 * Tree blocks not in refernece counted trees and tree roots 808 * are never shared. If a block was allocated after the last 809 * snapshot and the block was not allocated by tree relocation, 810 * we know the block is not shared. 811 */ 812 if (root->ref_cows && 813 buf != root->node && buf != root->commit_root && 814 (btrfs_header_generation(buf) <= 815 btrfs_root_last_snapshot(&root->root_item) || 816 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 817 return 1; 818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 819 if (root->ref_cows && 820 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 821 return 1; 822 #endif 823 return 0; 824 } 825 826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 827 struct btrfs_root *root, 828 struct extent_buffer *buf, 829 struct extent_buffer *cow, 830 int *last_ref) 831 { 832 u64 refs; 833 u64 owner; 834 u64 flags; 835 u64 new_flags = 0; 836 int ret; 837 838 /* 839 * Backrefs update rules: 840 * 841 * Always use full backrefs for extent pointers in tree block 842 * allocated by tree relocation. 843 * 844 * If a shared tree block is no longer referenced by its owner 845 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 846 * use full backrefs for extent pointers in tree block. 847 * 848 * If a tree block is been relocating 849 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 850 * use full backrefs for extent pointers in tree block. 851 * The reason for this is some operations (such as drop tree) 852 * are only allowed for blocks use full backrefs. 853 */ 854 855 if (btrfs_block_can_be_shared(root, buf)) { 856 ret = btrfs_lookup_extent_info(trans, root, buf->start, 857 btrfs_header_level(buf), 1, 858 &refs, &flags); 859 if (ret) 860 return ret; 861 if (refs == 0) { 862 ret = -EROFS; 863 btrfs_std_error(root->fs_info, ret); 864 return ret; 865 } 866 } else { 867 refs = 1; 868 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 869 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 870 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 871 else 872 flags = 0; 873 } 874 875 owner = btrfs_header_owner(buf); 876 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 877 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 878 879 if (refs > 1) { 880 if ((owner == root->root_key.objectid || 881 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 882 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 883 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 884 BUG_ON(ret); /* -ENOMEM */ 885 886 if (root->root_key.objectid == 887 BTRFS_TREE_RELOC_OBJECTID) { 888 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 889 BUG_ON(ret); /* -ENOMEM */ 890 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 891 BUG_ON(ret); /* -ENOMEM */ 892 } 893 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 894 } else { 895 896 if (root->root_key.objectid == 897 BTRFS_TREE_RELOC_OBJECTID) 898 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 899 else 900 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 901 BUG_ON(ret); /* -ENOMEM */ 902 } 903 if (new_flags != 0) { 904 int level = btrfs_header_level(buf); 905 906 ret = btrfs_set_disk_extent_flags(trans, root, 907 buf->start, 908 buf->len, 909 new_flags, level, 0); 910 if (ret) 911 return ret; 912 } 913 } else { 914 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 915 if (root->root_key.objectid == 916 BTRFS_TREE_RELOC_OBJECTID) 917 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 918 else 919 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 920 BUG_ON(ret); /* -ENOMEM */ 921 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 922 BUG_ON(ret); /* -ENOMEM */ 923 } 924 clean_tree_block(trans, root, buf); 925 *last_ref = 1; 926 } 927 return 0; 928 } 929 930 /* 931 * does the dirty work in cow of a single block. The parent block (if 932 * supplied) is updated to point to the new cow copy. The new buffer is marked 933 * dirty and returned locked. If you modify the block it needs to be marked 934 * dirty again. 935 * 936 * search_start -- an allocation hint for the new block 937 * 938 * empty_size -- a hint that you plan on doing more cow. This is the size in 939 * bytes the allocator should try to find free next to the block it returns. 940 * This is just a hint and may be ignored by the allocator. 941 */ 942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 943 struct btrfs_root *root, 944 struct extent_buffer *buf, 945 struct extent_buffer *parent, int parent_slot, 946 struct extent_buffer **cow_ret, 947 u64 search_start, u64 empty_size) 948 { 949 struct btrfs_disk_key disk_key; 950 struct extent_buffer *cow; 951 int level, ret; 952 int last_ref = 0; 953 int unlock_orig = 0; 954 u64 parent_start; 955 956 if (*cow_ret == buf) 957 unlock_orig = 1; 958 959 btrfs_assert_tree_locked(buf); 960 961 WARN_ON(root->ref_cows && trans->transid != 962 root->fs_info->running_transaction->transid); 963 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 964 965 level = btrfs_header_level(buf); 966 967 if (level == 0) 968 btrfs_item_key(buf, &disk_key, 0); 969 else 970 btrfs_node_key(buf, &disk_key, 0); 971 972 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 973 if (parent) 974 parent_start = parent->start; 975 else 976 parent_start = 0; 977 } else 978 parent_start = 0; 979 980 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 981 root->root_key.objectid, &disk_key, 982 level, search_start, empty_size); 983 if (IS_ERR(cow)) 984 return PTR_ERR(cow); 985 986 /* cow is set to blocking by btrfs_init_new_buffer */ 987 988 copy_extent_buffer(cow, buf, 0, 0, cow->len); 989 btrfs_set_header_bytenr(cow, cow->start); 990 btrfs_set_header_generation(cow, trans->transid); 991 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 992 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 993 BTRFS_HEADER_FLAG_RELOC); 994 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 995 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 996 else 997 btrfs_set_header_owner(cow, root->root_key.objectid); 998 999 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1000 BTRFS_FSID_SIZE); 1001 1002 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1003 if (ret) { 1004 btrfs_abort_transaction(trans, root, ret); 1005 return ret; 1006 } 1007 1008 if (root->ref_cows) { 1009 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1010 if (ret) 1011 return ret; 1012 } 1013 1014 if (buf == root->node) { 1015 WARN_ON(parent && parent != buf); 1016 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1017 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1018 parent_start = buf->start; 1019 else 1020 parent_start = 0; 1021 1022 extent_buffer_get(cow); 1023 tree_mod_log_set_root_pointer(root, cow, 1); 1024 rcu_assign_pointer(root->node, cow); 1025 1026 btrfs_free_tree_block(trans, root, buf, parent_start, 1027 last_ref); 1028 free_extent_buffer(buf); 1029 add_root_to_dirty_list(root); 1030 } else { 1031 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1032 parent_start = parent->start; 1033 else 1034 parent_start = 0; 1035 1036 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1037 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1038 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1039 btrfs_set_node_blockptr(parent, parent_slot, 1040 cow->start); 1041 btrfs_set_node_ptr_generation(parent, parent_slot, 1042 trans->transid); 1043 btrfs_mark_buffer_dirty(parent); 1044 if (last_ref) 1045 tree_mod_log_free_eb(root->fs_info, buf); 1046 btrfs_free_tree_block(trans, root, buf, parent_start, 1047 last_ref); 1048 } 1049 if (unlock_orig) 1050 btrfs_tree_unlock(buf); 1051 free_extent_buffer_stale(buf); 1052 btrfs_mark_buffer_dirty(cow); 1053 *cow_ret = cow; 1054 return 0; 1055 } 1056 1057 /* 1058 * returns the logical address of the oldest predecessor of the given root. 1059 * entries older than time_seq are ignored. 1060 */ 1061 static struct tree_mod_elem * 1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1063 struct extent_buffer *eb_root, u64 time_seq) 1064 { 1065 struct tree_mod_elem *tm; 1066 struct tree_mod_elem *found = NULL; 1067 u64 root_logical = eb_root->start; 1068 int looped = 0; 1069 1070 if (!time_seq) 1071 return NULL; 1072 1073 /* 1074 * the very last operation that's logged for a root is the replacement 1075 * operation (if it is replaced at all). this has the index of the *new* 1076 * root, making it the very first operation that's logged for this root. 1077 */ 1078 while (1) { 1079 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1080 time_seq); 1081 if (!looped && !tm) 1082 return NULL; 1083 /* 1084 * if there are no tree operation for the oldest root, we simply 1085 * return it. this should only happen if that (old) root is at 1086 * level 0. 1087 */ 1088 if (!tm) 1089 break; 1090 1091 /* 1092 * if there's an operation that's not a root replacement, we 1093 * found the oldest version of our root. normally, we'll find a 1094 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1095 */ 1096 if (tm->op != MOD_LOG_ROOT_REPLACE) 1097 break; 1098 1099 found = tm; 1100 root_logical = tm->old_root.logical; 1101 looped = 1; 1102 } 1103 1104 /* if there's no old root to return, return what we found instead */ 1105 if (!found) 1106 found = tm; 1107 1108 return found; 1109 } 1110 1111 /* 1112 * tm is a pointer to the first operation to rewind within eb. then, all 1113 * previous operations will be rewinded (until we reach something older than 1114 * time_seq). 1115 */ 1116 static void 1117 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1118 u64 time_seq, struct tree_mod_elem *first_tm) 1119 { 1120 u32 n; 1121 struct rb_node *next; 1122 struct tree_mod_elem *tm = first_tm; 1123 unsigned long o_dst; 1124 unsigned long o_src; 1125 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1126 1127 n = btrfs_header_nritems(eb); 1128 tree_mod_log_read_lock(fs_info); 1129 while (tm && tm->seq >= time_seq) { 1130 /* 1131 * all the operations are recorded with the operator used for 1132 * the modification. as we're going backwards, we do the 1133 * opposite of each operation here. 1134 */ 1135 switch (tm->op) { 1136 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1137 BUG_ON(tm->slot < n); 1138 /* Fallthrough */ 1139 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1140 case MOD_LOG_KEY_REMOVE: 1141 btrfs_set_node_key(eb, &tm->key, tm->slot); 1142 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1143 btrfs_set_node_ptr_generation(eb, tm->slot, 1144 tm->generation); 1145 n++; 1146 break; 1147 case MOD_LOG_KEY_REPLACE: 1148 BUG_ON(tm->slot >= n); 1149 btrfs_set_node_key(eb, &tm->key, tm->slot); 1150 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1151 btrfs_set_node_ptr_generation(eb, tm->slot, 1152 tm->generation); 1153 break; 1154 case MOD_LOG_KEY_ADD: 1155 /* if a move operation is needed it's in the log */ 1156 n--; 1157 break; 1158 case MOD_LOG_MOVE_KEYS: 1159 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1160 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1161 memmove_extent_buffer(eb, o_dst, o_src, 1162 tm->move.nr_items * p_size); 1163 break; 1164 case MOD_LOG_ROOT_REPLACE: 1165 /* 1166 * this operation is special. for roots, this must be 1167 * handled explicitly before rewinding. 1168 * for non-roots, this operation may exist if the node 1169 * was a root: root A -> child B; then A gets empty and 1170 * B is promoted to the new root. in the mod log, we'll 1171 * have a root-replace operation for B, a tree block 1172 * that is no root. we simply ignore that operation. 1173 */ 1174 break; 1175 } 1176 next = rb_next(&tm->node); 1177 if (!next) 1178 break; 1179 tm = container_of(next, struct tree_mod_elem, node); 1180 if (tm->index != first_tm->index) 1181 break; 1182 } 1183 tree_mod_log_read_unlock(fs_info); 1184 btrfs_set_header_nritems(eb, n); 1185 } 1186 1187 /* 1188 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1189 * is returned. If rewind operations happen, a fresh buffer is returned. The 1190 * returned buffer is always read-locked. If the returned buffer is not the 1191 * input buffer, the lock on the input buffer is released and the input buffer 1192 * is freed (its refcount is decremented). 1193 */ 1194 static struct extent_buffer * 1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1196 struct extent_buffer *eb, u64 time_seq) 1197 { 1198 struct extent_buffer *eb_rewin; 1199 struct tree_mod_elem *tm; 1200 1201 if (!time_seq) 1202 return eb; 1203 1204 if (btrfs_header_level(eb) == 0) 1205 return eb; 1206 1207 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1208 if (!tm) 1209 return eb; 1210 1211 btrfs_set_path_blocking(path); 1212 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1213 1214 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1215 BUG_ON(tm->slot != 0); 1216 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1217 fs_info->tree_root->nodesize); 1218 if (!eb_rewin) { 1219 btrfs_tree_read_unlock_blocking(eb); 1220 free_extent_buffer(eb); 1221 return NULL; 1222 } 1223 btrfs_set_header_bytenr(eb_rewin, eb->start); 1224 btrfs_set_header_backref_rev(eb_rewin, 1225 btrfs_header_backref_rev(eb)); 1226 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1227 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1228 } else { 1229 eb_rewin = btrfs_clone_extent_buffer(eb); 1230 if (!eb_rewin) { 1231 btrfs_tree_read_unlock_blocking(eb); 1232 free_extent_buffer(eb); 1233 return NULL; 1234 } 1235 } 1236 1237 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1238 btrfs_tree_read_unlock_blocking(eb); 1239 free_extent_buffer(eb); 1240 1241 extent_buffer_get(eb_rewin); 1242 btrfs_tree_read_lock(eb_rewin); 1243 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1244 WARN_ON(btrfs_header_nritems(eb_rewin) > 1245 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1246 1247 return eb_rewin; 1248 } 1249 1250 /* 1251 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1252 * value. If there are no changes, the current root->root_node is returned. If 1253 * anything changed in between, there's a fresh buffer allocated on which the 1254 * rewind operations are done. In any case, the returned buffer is read locked. 1255 * Returns NULL on error (with no locks held). 1256 */ 1257 static inline struct extent_buffer * 1258 get_old_root(struct btrfs_root *root, u64 time_seq) 1259 { 1260 struct tree_mod_elem *tm; 1261 struct extent_buffer *eb = NULL; 1262 struct extent_buffer *eb_root; 1263 struct extent_buffer *old; 1264 struct tree_mod_root *old_root = NULL; 1265 u64 old_generation = 0; 1266 u64 logical; 1267 u32 blocksize; 1268 1269 eb_root = btrfs_read_lock_root_node(root); 1270 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1271 if (!tm) 1272 return eb_root; 1273 1274 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1275 old_root = &tm->old_root; 1276 old_generation = tm->generation; 1277 logical = old_root->logical; 1278 } else { 1279 logical = eb_root->start; 1280 } 1281 1282 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1283 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1284 btrfs_tree_read_unlock(eb_root); 1285 free_extent_buffer(eb_root); 1286 blocksize = btrfs_level_size(root, old_root->level); 1287 old = read_tree_block(root, logical, blocksize, 0); 1288 if (!old || !extent_buffer_uptodate(old)) { 1289 free_extent_buffer(old); 1290 pr_warn("btrfs: failed to read tree block %llu from get_old_root\n", 1291 logical); 1292 WARN_ON(1); 1293 } else { 1294 eb = btrfs_clone_extent_buffer(old); 1295 free_extent_buffer(old); 1296 } 1297 } else if (old_root) { 1298 btrfs_tree_read_unlock(eb_root); 1299 free_extent_buffer(eb_root); 1300 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1301 } else { 1302 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1303 eb = btrfs_clone_extent_buffer(eb_root); 1304 btrfs_tree_read_unlock_blocking(eb_root); 1305 free_extent_buffer(eb_root); 1306 } 1307 1308 if (!eb) 1309 return NULL; 1310 extent_buffer_get(eb); 1311 btrfs_tree_read_lock(eb); 1312 if (old_root) { 1313 btrfs_set_header_bytenr(eb, eb->start); 1314 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1315 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1316 btrfs_set_header_level(eb, old_root->level); 1317 btrfs_set_header_generation(eb, old_generation); 1318 } 1319 if (tm) 1320 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1321 else 1322 WARN_ON(btrfs_header_level(eb) != 0); 1323 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1324 1325 return eb; 1326 } 1327 1328 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1329 { 1330 struct tree_mod_elem *tm; 1331 int level; 1332 struct extent_buffer *eb_root = btrfs_root_node(root); 1333 1334 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1335 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1336 level = tm->old_root.level; 1337 } else { 1338 level = btrfs_header_level(eb_root); 1339 } 1340 free_extent_buffer(eb_root); 1341 1342 return level; 1343 } 1344 1345 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1346 struct btrfs_root *root, 1347 struct extent_buffer *buf) 1348 { 1349 /* ensure we can see the force_cow */ 1350 smp_rmb(); 1351 1352 /* 1353 * We do not need to cow a block if 1354 * 1) this block is not created or changed in this transaction; 1355 * 2) this block does not belong to TREE_RELOC tree; 1356 * 3) the root is not forced COW. 1357 * 1358 * What is forced COW: 1359 * when we create snapshot during commiting the transaction, 1360 * after we've finished coping src root, we must COW the shared 1361 * block to ensure the metadata consistency. 1362 */ 1363 if (btrfs_header_generation(buf) == trans->transid && 1364 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1365 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1366 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1367 !root->force_cow) 1368 return 0; 1369 return 1; 1370 } 1371 1372 /* 1373 * cows a single block, see __btrfs_cow_block for the real work. 1374 * This version of it has extra checks so that a block isn't cow'd more than 1375 * once per transaction, as long as it hasn't been written yet 1376 */ 1377 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1378 struct btrfs_root *root, struct extent_buffer *buf, 1379 struct extent_buffer *parent, int parent_slot, 1380 struct extent_buffer **cow_ret) 1381 { 1382 u64 search_start; 1383 int ret; 1384 1385 if (trans->transaction != root->fs_info->running_transaction) 1386 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1387 trans->transid, 1388 root->fs_info->running_transaction->transid); 1389 1390 if (trans->transid != root->fs_info->generation) 1391 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1392 trans->transid, root->fs_info->generation); 1393 1394 if (!should_cow_block(trans, root, buf)) { 1395 *cow_ret = buf; 1396 return 0; 1397 } 1398 1399 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1400 1401 if (parent) 1402 btrfs_set_lock_blocking(parent); 1403 btrfs_set_lock_blocking(buf); 1404 1405 ret = __btrfs_cow_block(trans, root, buf, parent, 1406 parent_slot, cow_ret, search_start, 0); 1407 1408 trace_btrfs_cow_block(root, buf, *cow_ret); 1409 1410 return ret; 1411 } 1412 1413 /* 1414 * helper function for defrag to decide if two blocks pointed to by a 1415 * node are actually close by 1416 */ 1417 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1418 { 1419 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1420 return 1; 1421 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1422 return 1; 1423 return 0; 1424 } 1425 1426 /* 1427 * compare two keys in a memcmp fashion 1428 */ 1429 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1430 { 1431 struct btrfs_key k1; 1432 1433 btrfs_disk_key_to_cpu(&k1, disk); 1434 1435 return btrfs_comp_cpu_keys(&k1, k2); 1436 } 1437 1438 /* 1439 * same as comp_keys only with two btrfs_key's 1440 */ 1441 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1442 { 1443 if (k1->objectid > k2->objectid) 1444 return 1; 1445 if (k1->objectid < k2->objectid) 1446 return -1; 1447 if (k1->type > k2->type) 1448 return 1; 1449 if (k1->type < k2->type) 1450 return -1; 1451 if (k1->offset > k2->offset) 1452 return 1; 1453 if (k1->offset < k2->offset) 1454 return -1; 1455 return 0; 1456 } 1457 1458 /* 1459 * this is used by the defrag code to go through all the 1460 * leaves pointed to by a node and reallocate them so that 1461 * disk order is close to key order 1462 */ 1463 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1464 struct btrfs_root *root, struct extent_buffer *parent, 1465 int start_slot, u64 *last_ret, 1466 struct btrfs_key *progress) 1467 { 1468 struct extent_buffer *cur; 1469 u64 blocknr; 1470 u64 gen; 1471 u64 search_start = *last_ret; 1472 u64 last_block = 0; 1473 u64 other; 1474 u32 parent_nritems; 1475 int end_slot; 1476 int i; 1477 int err = 0; 1478 int parent_level; 1479 int uptodate; 1480 u32 blocksize; 1481 int progress_passed = 0; 1482 struct btrfs_disk_key disk_key; 1483 1484 parent_level = btrfs_header_level(parent); 1485 1486 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1487 WARN_ON(trans->transid != root->fs_info->generation); 1488 1489 parent_nritems = btrfs_header_nritems(parent); 1490 blocksize = btrfs_level_size(root, parent_level - 1); 1491 end_slot = parent_nritems; 1492 1493 if (parent_nritems == 1) 1494 return 0; 1495 1496 btrfs_set_lock_blocking(parent); 1497 1498 for (i = start_slot; i < end_slot; i++) { 1499 int close = 1; 1500 1501 btrfs_node_key(parent, &disk_key, i); 1502 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1503 continue; 1504 1505 progress_passed = 1; 1506 blocknr = btrfs_node_blockptr(parent, i); 1507 gen = btrfs_node_ptr_generation(parent, i); 1508 if (last_block == 0) 1509 last_block = blocknr; 1510 1511 if (i > 0) { 1512 other = btrfs_node_blockptr(parent, i - 1); 1513 close = close_blocks(blocknr, other, blocksize); 1514 } 1515 if (!close && i < end_slot - 2) { 1516 other = btrfs_node_blockptr(parent, i + 1); 1517 close = close_blocks(blocknr, other, blocksize); 1518 } 1519 if (close) { 1520 last_block = blocknr; 1521 continue; 1522 } 1523 1524 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1525 if (cur) 1526 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1527 else 1528 uptodate = 0; 1529 if (!cur || !uptodate) { 1530 if (!cur) { 1531 cur = read_tree_block(root, blocknr, 1532 blocksize, gen); 1533 if (!cur || !extent_buffer_uptodate(cur)) { 1534 free_extent_buffer(cur); 1535 return -EIO; 1536 } 1537 } else if (!uptodate) { 1538 err = btrfs_read_buffer(cur, gen); 1539 if (err) { 1540 free_extent_buffer(cur); 1541 return err; 1542 } 1543 } 1544 } 1545 if (search_start == 0) 1546 search_start = last_block; 1547 1548 btrfs_tree_lock(cur); 1549 btrfs_set_lock_blocking(cur); 1550 err = __btrfs_cow_block(trans, root, cur, parent, i, 1551 &cur, search_start, 1552 min(16 * blocksize, 1553 (end_slot - i) * blocksize)); 1554 if (err) { 1555 btrfs_tree_unlock(cur); 1556 free_extent_buffer(cur); 1557 break; 1558 } 1559 search_start = cur->start; 1560 last_block = cur->start; 1561 *last_ret = search_start; 1562 btrfs_tree_unlock(cur); 1563 free_extent_buffer(cur); 1564 } 1565 return err; 1566 } 1567 1568 /* 1569 * The leaf data grows from end-to-front in the node. 1570 * this returns the address of the start of the last item, 1571 * which is the stop of the leaf data stack 1572 */ 1573 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1574 struct extent_buffer *leaf) 1575 { 1576 u32 nr = btrfs_header_nritems(leaf); 1577 if (nr == 0) 1578 return BTRFS_LEAF_DATA_SIZE(root); 1579 return btrfs_item_offset_nr(leaf, nr - 1); 1580 } 1581 1582 1583 /* 1584 * search for key in the extent_buffer. The items start at offset p, 1585 * and they are item_size apart. There are 'max' items in p. 1586 * 1587 * the slot in the array is returned via slot, and it points to 1588 * the place where you would insert key if it is not found in 1589 * the array. 1590 * 1591 * slot may point to max if the key is bigger than all of the keys 1592 */ 1593 static noinline int generic_bin_search(struct extent_buffer *eb, 1594 unsigned long p, 1595 int item_size, struct btrfs_key *key, 1596 int max, int *slot) 1597 { 1598 int low = 0; 1599 int high = max; 1600 int mid; 1601 int ret; 1602 struct btrfs_disk_key *tmp = NULL; 1603 struct btrfs_disk_key unaligned; 1604 unsigned long offset; 1605 char *kaddr = NULL; 1606 unsigned long map_start = 0; 1607 unsigned long map_len = 0; 1608 int err; 1609 1610 while (low < high) { 1611 mid = (low + high) / 2; 1612 offset = p + mid * item_size; 1613 1614 if (!kaddr || offset < map_start || 1615 (offset + sizeof(struct btrfs_disk_key)) > 1616 map_start + map_len) { 1617 1618 err = map_private_extent_buffer(eb, offset, 1619 sizeof(struct btrfs_disk_key), 1620 &kaddr, &map_start, &map_len); 1621 1622 if (!err) { 1623 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1624 map_start); 1625 } else { 1626 read_extent_buffer(eb, &unaligned, 1627 offset, sizeof(unaligned)); 1628 tmp = &unaligned; 1629 } 1630 1631 } else { 1632 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1633 map_start); 1634 } 1635 ret = comp_keys(tmp, key); 1636 1637 if (ret < 0) 1638 low = mid + 1; 1639 else if (ret > 0) 1640 high = mid; 1641 else { 1642 *slot = mid; 1643 return 0; 1644 } 1645 } 1646 *slot = low; 1647 return 1; 1648 } 1649 1650 /* 1651 * simple bin_search frontend that does the right thing for 1652 * leaves vs nodes 1653 */ 1654 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1655 int level, int *slot) 1656 { 1657 if (level == 0) 1658 return generic_bin_search(eb, 1659 offsetof(struct btrfs_leaf, items), 1660 sizeof(struct btrfs_item), 1661 key, btrfs_header_nritems(eb), 1662 slot); 1663 else 1664 return generic_bin_search(eb, 1665 offsetof(struct btrfs_node, ptrs), 1666 sizeof(struct btrfs_key_ptr), 1667 key, btrfs_header_nritems(eb), 1668 slot); 1669 } 1670 1671 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1672 int level, int *slot) 1673 { 1674 return bin_search(eb, key, level, slot); 1675 } 1676 1677 static void root_add_used(struct btrfs_root *root, u32 size) 1678 { 1679 spin_lock(&root->accounting_lock); 1680 btrfs_set_root_used(&root->root_item, 1681 btrfs_root_used(&root->root_item) + size); 1682 spin_unlock(&root->accounting_lock); 1683 } 1684 1685 static void root_sub_used(struct btrfs_root *root, u32 size) 1686 { 1687 spin_lock(&root->accounting_lock); 1688 btrfs_set_root_used(&root->root_item, 1689 btrfs_root_used(&root->root_item) - size); 1690 spin_unlock(&root->accounting_lock); 1691 } 1692 1693 /* given a node and slot number, this reads the blocks it points to. The 1694 * extent buffer is returned with a reference taken (but unlocked). 1695 * NULL is returned on error. 1696 */ 1697 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1698 struct extent_buffer *parent, int slot) 1699 { 1700 int level = btrfs_header_level(parent); 1701 struct extent_buffer *eb; 1702 1703 if (slot < 0) 1704 return NULL; 1705 if (slot >= btrfs_header_nritems(parent)) 1706 return NULL; 1707 1708 BUG_ON(level == 0); 1709 1710 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1711 btrfs_level_size(root, level - 1), 1712 btrfs_node_ptr_generation(parent, slot)); 1713 if (eb && !extent_buffer_uptodate(eb)) { 1714 free_extent_buffer(eb); 1715 eb = NULL; 1716 } 1717 1718 return eb; 1719 } 1720 1721 /* 1722 * node level balancing, used to make sure nodes are in proper order for 1723 * item deletion. We balance from the top down, so we have to make sure 1724 * that a deletion won't leave an node completely empty later on. 1725 */ 1726 static noinline int balance_level(struct btrfs_trans_handle *trans, 1727 struct btrfs_root *root, 1728 struct btrfs_path *path, int level) 1729 { 1730 struct extent_buffer *right = NULL; 1731 struct extent_buffer *mid; 1732 struct extent_buffer *left = NULL; 1733 struct extent_buffer *parent = NULL; 1734 int ret = 0; 1735 int wret; 1736 int pslot; 1737 int orig_slot = path->slots[level]; 1738 u64 orig_ptr; 1739 1740 if (level == 0) 1741 return 0; 1742 1743 mid = path->nodes[level]; 1744 1745 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1746 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1747 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1748 1749 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1750 1751 if (level < BTRFS_MAX_LEVEL - 1) { 1752 parent = path->nodes[level + 1]; 1753 pslot = path->slots[level + 1]; 1754 } 1755 1756 /* 1757 * deal with the case where there is only one pointer in the root 1758 * by promoting the node below to a root 1759 */ 1760 if (!parent) { 1761 struct extent_buffer *child; 1762 1763 if (btrfs_header_nritems(mid) != 1) 1764 return 0; 1765 1766 /* promote the child to a root */ 1767 child = read_node_slot(root, mid, 0); 1768 if (!child) { 1769 ret = -EROFS; 1770 btrfs_std_error(root->fs_info, ret); 1771 goto enospc; 1772 } 1773 1774 btrfs_tree_lock(child); 1775 btrfs_set_lock_blocking(child); 1776 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1777 if (ret) { 1778 btrfs_tree_unlock(child); 1779 free_extent_buffer(child); 1780 goto enospc; 1781 } 1782 1783 tree_mod_log_set_root_pointer(root, child, 1); 1784 rcu_assign_pointer(root->node, child); 1785 1786 add_root_to_dirty_list(root); 1787 btrfs_tree_unlock(child); 1788 1789 path->locks[level] = 0; 1790 path->nodes[level] = NULL; 1791 clean_tree_block(trans, root, mid); 1792 btrfs_tree_unlock(mid); 1793 /* once for the path */ 1794 free_extent_buffer(mid); 1795 1796 root_sub_used(root, mid->len); 1797 btrfs_free_tree_block(trans, root, mid, 0, 1); 1798 /* once for the root ptr */ 1799 free_extent_buffer_stale(mid); 1800 return 0; 1801 } 1802 if (btrfs_header_nritems(mid) > 1803 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1804 return 0; 1805 1806 left = read_node_slot(root, parent, pslot - 1); 1807 if (left) { 1808 btrfs_tree_lock(left); 1809 btrfs_set_lock_blocking(left); 1810 wret = btrfs_cow_block(trans, root, left, 1811 parent, pslot - 1, &left); 1812 if (wret) { 1813 ret = wret; 1814 goto enospc; 1815 } 1816 } 1817 right = read_node_slot(root, parent, pslot + 1); 1818 if (right) { 1819 btrfs_tree_lock(right); 1820 btrfs_set_lock_blocking(right); 1821 wret = btrfs_cow_block(trans, root, right, 1822 parent, pslot + 1, &right); 1823 if (wret) { 1824 ret = wret; 1825 goto enospc; 1826 } 1827 } 1828 1829 /* first, try to make some room in the middle buffer */ 1830 if (left) { 1831 orig_slot += btrfs_header_nritems(left); 1832 wret = push_node_left(trans, root, left, mid, 1); 1833 if (wret < 0) 1834 ret = wret; 1835 } 1836 1837 /* 1838 * then try to empty the right most buffer into the middle 1839 */ 1840 if (right) { 1841 wret = push_node_left(trans, root, mid, right, 1); 1842 if (wret < 0 && wret != -ENOSPC) 1843 ret = wret; 1844 if (btrfs_header_nritems(right) == 0) { 1845 clean_tree_block(trans, root, right); 1846 btrfs_tree_unlock(right); 1847 del_ptr(root, path, level + 1, pslot + 1); 1848 root_sub_used(root, right->len); 1849 btrfs_free_tree_block(trans, root, right, 0, 1); 1850 free_extent_buffer_stale(right); 1851 right = NULL; 1852 } else { 1853 struct btrfs_disk_key right_key; 1854 btrfs_node_key(right, &right_key, 0); 1855 tree_mod_log_set_node_key(root->fs_info, parent, 1856 pslot + 1, 0); 1857 btrfs_set_node_key(parent, &right_key, pslot + 1); 1858 btrfs_mark_buffer_dirty(parent); 1859 } 1860 } 1861 if (btrfs_header_nritems(mid) == 1) { 1862 /* 1863 * we're not allowed to leave a node with one item in the 1864 * tree during a delete. A deletion from lower in the tree 1865 * could try to delete the only pointer in this node. 1866 * So, pull some keys from the left. 1867 * There has to be a left pointer at this point because 1868 * otherwise we would have pulled some pointers from the 1869 * right 1870 */ 1871 if (!left) { 1872 ret = -EROFS; 1873 btrfs_std_error(root->fs_info, ret); 1874 goto enospc; 1875 } 1876 wret = balance_node_right(trans, root, mid, left); 1877 if (wret < 0) { 1878 ret = wret; 1879 goto enospc; 1880 } 1881 if (wret == 1) { 1882 wret = push_node_left(trans, root, left, mid, 1); 1883 if (wret < 0) 1884 ret = wret; 1885 } 1886 BUG_ON(wret == 1); 1887 } 1888 if (btrfs_header_nritems(mid) == 0) { 1889 clean_tree_block(trans, root, mid); 1890 btrfs_tree_unlock(mid); 1891 del_ptr(root, path, level + 1, pslot); 1892 root_sub_used(root, mid->len); 1893 btrfs_free_tree_block(trans, root, mid, 0, 1); 1894 free_extent_buffer_stale(mid); 1895 mid = NULL; 1896 } else { 1897 /* update the parent key to reflect our changes */ 1898 struct btrfs_disk_key mid_key; 1899 btrfs_node_key(mid, &mid_key, 0); 1900 tree_mod_log_set_node_key(root->fs_info, parent, 1901 pslot, 0); 1902 btrfs_set_node_key(parent, &mid_key, pslot); 1903 btrfs_mark_buffer_dirty(parent); 1904 } 1905 1906 /* update the path */ 1907 if (left) { 1908 if (btrfs_header_nritems(left) > orig_slot) { 1909 extent_buffer_get(left); 1910 /* left was locked after cow */ 1911 path->nodes[level] = left; 1912 path->slots[level + 1] -= 1; 1913 path->slots[level] = orig_slot; 1914 if (mid) { 1915 btrfs_tree_unlock(mid); 1916 free_extent_buffer(mid); 1917 } 1918 } else { 1919 orig_slot -= btrfs_header_nritems(left); 1920 path->slots[level] = orig_slot; 1921 } 1922 } 1923 /* double check we haven't messed things up */ 1924 if (orig_ptr != 1925 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1926 BUG(); 1927 enospc: 1928 if (right) { 1929 btrfs_tree_unlock(right); 1930 free_extent_buffer(right); 1931 } 1932 if (left) { 1933 if (path->nodes[level] != left) 1934 btrfs_tree_unlock(left); 1935 free_extent_buffer(left); 1936 } 1937 return ret; 1938 } 1939 1940 /* Node balancing for insertion. Here we only split or push nodes around 1941 * when they are completely full. This is also done top down, so we 1942 * have to be pessimistic. 1943 */ 1944 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1945 struct btrfs_root *root, 1946 struct btrfs_path *path, int level) 1947 { 1948 struct extent_buffer *right = NULL; 1949 struct extent_buffer *mid; 1950 struct extent_buffer *left = NULL; 1951 struct extent_buffer *parent = NULL; 1952 int ret = 0; 1953 int wret; 1954 int pslot; 1955 int orig_slot = path->slots[level]; 1956 1957 if (level == 0) 1958 return 1; 1959 1960 mid = path->nodes[level]; 1961 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1962 1963 if (level < BTRFS_MAX_LEVEL - 1) { 1964 parent = path->nodes[level + 1]; 1965 pslot = path->slots[level + 1]; 1966 } 1967 1968 if (!parent) 1969 return 1; 1970 1971 left = read_node_slot(root, parent, pslot - 1); 1972 1973 /* first, try to make some room in the middle buffer */ 1974 if (left) { 1975 u32 left_nr; 1976 1977 btrfs_tree_lock(left); 1978 btrfs_set_lock_blocking(left); 1979 1980 left_nr = btrfs_header_nritems(left); 1981 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1982 wret = 1; 1983 } else { 1984 ret = btrfs_cow_block(trans, root, left, parent, 1985 pslot - 1, &left); 1986 if (ret) 1987 wret = 1; 1988 else { 1989 wret = push_node_left(trans, root, 1990 left, mid, 0); 1991 } 1992 } 1993 if (wret < 0) 1994 ret = wret; 1995 if (wret == 0) { 1996 struct btrfs_disk_key disk_key; 1997 orig_slot += left_nr; 1998 btrfs_node_key(mid, &disk_key, 0); 1999 tree_mod_log_set_node_key(root->fs_info, parent, 2000 pslot, 0); 2001 btrfs_set_node_key(parent, &disk_key, pslot); 2002 btrfs_mark_buffer_dirty(parent); 2003 if (btrfs_header_nritems(left) > orig_slot) { 2004 path->nodes[level] = left; 2005 path->slots[level + 1] -= 1; 2006 path->slots[level] = orig_slot; 2007 btrfs_tree_unlock(mid); 2008 free_extent_buffer(mid); 2009 } else { 2010 orig_slot -= 2011 btrfs_header_nritems(left); 2012 path->slots[level] = orig_slot; 2013 btrfs_tree_unlock(left); 2014 free_extent_buffer(left); 2015 } 2016 return 0; 2017 } 2018 btrfs_tree_unlock(left); 2019 free_extent_buffer(left); 2020 } 2021 right = read_node_slot(root, parent, pslot + 1); 2022 2023 /* 2024 * then try to empty the right most buffer into the middle 2025 */ 2026 if (right) { 2027 u32 right_nr; 2028 2029 btrfs_tree_lock(right); 2030 btrfs_set_lock_blocking(right); 2031 2032 right_nr = btrfs_header_nritems(right); 2033 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2034 wret = 1; 2035 } else { 2036 ret = btrfs_cow_block(trans, root, right, 2037 parent, pslot + 1, 2038 &right); 2039 if (ret) 2040 wret = 1; 2041 else { 2042 wret = balance_node_right(trans, root, 2043 right, mid); 2044 } 2045 } 2046 if (wret < 0) 2047 ret = wret; 2048 if (wret == 0) { 2049 struct btrfs_disk_key disk_key; 2050 2051 btrfs_node_key(right, &disk_key, 0); 2052 tree_mod_log_set_node_key(root->fs_info, parent, 2053 pslot + 1, 0); 2054 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2055 btrfs_mark_buffer_dirty(parent); 2056 2057 if (btrfs_header_nritems(mid) <= orig_slot) { 2058 path->nodes[level] = right; 2059 path->slots[level + 1] += 1; 2060 path->slots[level] = orig_slot - 2061 btrfs_header_nritems(mid); 2062 btrfs_tree_unlock(mid); 2063 free_extent_buffer(mid); 2064 } else { 2065 btrfs_tree_unlock(right); 2066 free_extent_buffer(right); 2067 } 2068 return 0; 2069 } 2070 btrfs_tree_unlock(right); 2071 free_extent_buffer(right); 2072 } 2073 return 1; 2074 } 2075 2076 /* 2077 * readahead one full node of leaves, finding things that are close 2078 * to the block in 'slot', and triggering ra on them. 2079 */ 2080 static void reada_for_search(struct btrfs_root *root, 2081 struct btrfs_path *path, 2082 int level, int slot, u64 objectid) 2083 { 2084 struct extent_buffer *node; 2085 struct btrfs_disk_key disk_key; 2086 u32 nritems; 2087 u64 search; 2088 u64 target; 2089 u64 nread = 0; 2090 u64 gen; 2091 int direction = path->reada; 2092 struct extent_buffer *eb; 2093 u32 nr; 2094 u32 blocksize; 2095 u32 nscan = 0; 2096 2097 if (level != 1) 2098 return; 2099 2100 if (!path->nodes[level]) 2101 return; 2102 2103 node = path->nodes[level]; 2104 2105 search = btrfs_node_blockptr(node, slot); 2106 blocksize = btrfs_level_size(root, level - 1); 2107 eb = btrfs_find_tree_block(root, search, blocksize); 2108 if (eb) { 2109 free_extent_buffer(eb); 2110 return; 2111 } 2112 2113 target = search; 2114 2115 nritems = btrfs_header_nritems(node); 2116 nr = slot; 2117 2118 while (1) { 2119 if (direction < 0) { 2120 if (nr == 0) 2121 break; 2122 nr--; 2123 } else if (direction > 0) { 2124 nr++; 2125 if (nr >= nritems) 2126 break; 2127 } 2128 if (path->reada < 0 && objectid) { 2129 btrfs_node_key(node, &disk_key, nr); 2130 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2131 break; 2132 } 2133 search = btrfs_node_blockptr(node, nr); 2134 if ((search <= target && target - search <= 65536) || 2135 (search > target && search - target <= 65536)) { 2136 gen = btrfs_node_ptr_generation(node, nr); 2137 readahead_tree_block(root, search, blocksize, gen); 2138 nread += blocksize; 2139 } 2140 nscan++; 2141 if ((nread > 65536 || nscan > 32)) 2142 break; 2143 } 2144 } 2145 2146 static noinline void reada_for_balance(struct btrfs_root *root, 2147 struct btrfs_path *path, int level) 2148 { 2149 int slot; 2150 int nritems; 2151 struct extent_buffer *parent; 2152 struct extent_buffer *eb; 2153 u64 gen; 2154 u64 block1 = 0; 2155 u64 block2 = 0; 2156 int blocksize; 2157 2158 parent = path->nodes[level + 1]; 2159 if (!parent) 2160 return; 2161 2162 nritems = btrfs_header_nritems(parent); 2163 slot = path->slots[level + 1]; 2164 blocksize = btrfs_level_size(root, level); 2165 2166 if (slot > 0) { 2167 block1 = btrfs_node_blockptr(parent, slot - 1); 2168 gen = btrfs_node_ptr_generation(parent, slot - 1); 2169 eb = btrfs_find_tree_block(root, block1, blocksize); 2170 /* 2171 * if we get -eagain from btrfs_buffer_uptodate, we 2172 * don't want to return eagain here. That will loop 2173 * forever 2174 */ 2175 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2176 block1 = 0; 2177 free_extent_buffer(eb); 2178 } 2179 if (slot + 1 < nritems) { 2180 block2 = btrfs_node_blockptr(parent, slot + 1); 2181 gen = btrfs_node_ptr_generation(parent, slot + 1); 2182 eb = btrfs_find_tree_block(root, block2, blocksize); 2183 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2184 block2 = 0; 2185 free_extent_buffer(eb); 2186 } 2187 2188 if (block1) 2189 readahead_tree_block(root, block1, blocksize, 0); 2190 if (block2) 2191 readahead_tree_block(root, block2, blocksize, 0); 2192 } 2193 2194 2195 /* 2196 * when we walk down the tree, it is usually safe to unlock the higher layers 2197 * in the tree. The exceptions are when our path goes through slot 0, because 2198 * operations on the tree might require changing key pointers higher up in the 2199 * tree. 2200 * 2201 * callers might also have set path->keep_locks, which tells this code to keep 2202 * the lock if the path points to the last slot in the block. This is part of 2203 * walking through the tree, and selecting the next slot in the higher block. 2204 * 2205 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2206 * if lowest_unlock is 1, level 0 won't be unlocked 2207 */ 2208 static noinline void unlock_up(struct btrfs_path *path, int level, 2209 int lowest_unlock, int min_write_lock_level, 2210 int *write_lock_level) 2211 { 2212 int i; 2213 int skip_level = level; 2214 int no_skips = 0; 2215 struct extent_buffer *t; 2216 2217 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2218 if (!path->nodes[i]) 2219 break; 2220 if (!path->locks[i]) 2221 break; 2222 if (!no_skips && path->slots[i] == 0) { 2223 skip_level = i + 1; 2224 continue; 2225 } 2226 if (!no_skips && path->keep_locks) { 2227 u32 nritems; 2228 t = path->nodes[i]; 2229 nritems = btrfs_header_nritems(t); 2230 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2231 skip_level = i + 1; 2232 continue; 2233 } 2234 } 2235 if (skip_level < i && i >= lowest_unlock) 2236 no_skips = 1; 2237 2238 t = path->nodes[i]; 2239 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2240 btrfs_tree_unlock_rw(t, path->locks[i]); 2241 path->locks[i] = 0; 2242 if (write_lock_level && 2243 i > min_write_lock_level && 2244 i <= *write_lock_level) { 2245 *write_lock_level = i - 1; 2246 } 2247 } 2248 } 2249 } 2250 2251 /* 2252 * This releases any locks held in the path starting at level and 2253 * going all the way up to the root. 2254 * 2255 * btrfs_search_slot will keep the lock held on higher nodes in a few 2256 * corner cases, such as COW of the block at slot zero in the node. This 2257 * ignores those rules, and it should only be called when there are no 2258 * more updates to be done higher up in the tree. 2259 */ 2260 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2261 { 2262 int i; 2263 2264 if (path->keep_locks) 2265 return; 2266 2267 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2268 if (!path->nodes[i]) 2269 continue; 2270 if (!path->locks[i]) 2271 continue; 2272 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2273 path->locks[i] = 0; 2274 } 2275 } 2276 2277 /* 2278 * helper function for btrfs_search_slot. The goal is to find a block 2279 * in cache without setting the path to blocking. If we find the block 2280 * we return zero and the path is unchanged. 2281 * 2282 * If we can't find the block, we set the path blocking and do some 2283 * reada. -EAGAIN is returned and the search must be repeated. 2284 */ 2285 static int 2286 read_block_for_search(struct btrfs_trans_handle *trans, 2287 struct btrfs_root *root, struct btrfs_path *p, 2288 struct extent_buffer **eb_ret, int level, int slot, 2289 struct btrfs_key *key, u64 time_seq) 2290 { 2291 u64 blocknr; 2292 u64 gen; 2293 u32 blocksize; 2294 struct extent_buffer *b = *eb_ret; 2295 struct extent_buffer *tmp; 2296 int ret; 2297 2298 blocknr = btrfs_node_blockptr(b, slot); 2299 gen = btrfs_node_ptr_generation(b, slot); 2300 blocksize = btrfs_level_size(root, level - 1); 2301 2302 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2303 if (tmp) { 2304 /* first we do an atomic uptodate check */ 2305 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2306 *eb_ret = tmp; 2307 return 0; 2308 } 2309 2310 /* the pages were up to date, but we failed 2311 * the generation number check. Do a full 2312 * read for the generation number that is correct. 2313 * We must do this without dropping locks so 2314 * we can trust our generation number 2315 */ 2316 btrfs_set_path_blocking(p); 2317 2318 /* now we're allowed to do a blocking uptodate check */ 2319 ret = btrfs_read_buffer(tmp, gen); 2320 if (!ret) { 2321 *eb_ret = tmp; 2322 return 0; 2323 } 2324 free_extent_buffer(tmp); 2325 btrfs_release_path(p); 2326 return -EIO; 2327 } 2328 2329 /* 2330 * reduce lock contention at high levels 2331 * of the btree by dropping locks before 2332 * we read. Don't release the lock on the current 2333 * level because we need to walk this node to figure 2334 * out which blocks to read. 2335 */ 2336 btrfs_unlock_up_safe(p, level + 1); 2337 btrfs_set_path_blocking(p); 2338 2339 free_extent_buffer(tmp); 2340 if (p->reada) 2341 reada_for_search(root, p, level, slot, key->objectid); 2342 2343 btrfs_release_path(p); 2344 2345 ret = -EAGAIN; 2346 tmp = read_tree_block(root, blocknr, blocksize, 0); 2347 if (tmp) { 2348 /* 2349 * If the read above didn't mark this buffer up to date, 2350 * it will never end up being up to date. Set ret to EIO now 2351 * and give up so that our caller doesn't loop forever 2352 * on our EAGAINs. 2353 */ 2354 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2355 ret = -EIO; 2356 free_extent_buffer(tmp); 2357 } 2358 return ret; 2359 } 2360 2361 /* 2362 * helper function for btrfs_search_slot. This does all of the checks 2363 * for node-level blocks and does any balancing required based on 2364 * the ins_len. 2365 * 2366 * If no extra work was required, zero is returned. If we had to 2367 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2368 * start over 2369 */ 2370 static int 2371 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2372 struct btrfs_root *root, struct btrfs_path *p, 2373 struct extent_buffer *b, int level, int ins_len, 2374 int *write_lock_level) 2375 { 2376 int ret; 2377 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2378 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2379 int sret; 2380 2381 if (*write_lock_level < level + 1) { 2382 *write_lock_level = level + 1; 2383 btrfs_release_path(p); 2384 goto again; 2385 } 2386 2387 btrfs_set_path_blocking(p); 2388 reada_for_balance(root, p, level); 2389 sret = split_node(trans, root, p, level); 2390 btrfs_clear_path_blocking(p, NULL, 0); 2391 2392 BUG_ON(sret > 0); 2393 if (sret) { 2394 ret = sret; 2395 goto done; 2396 } 2397 b = p->nodes[level]; 2398 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2399 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2400 int sret; 2401 2402 if (*write_lock_level < level + 1) { 2403 *write_lock_level = level + 1; 2404 btrfs_release_path(p); 2405 goto again; 2406 } 2407 2408 btrfs_set_path_blocking(p); 2409 reada_for_balance(root, p, level); 2410 sret = balance_level(trans, root, p, level); 2411 btrfs_clear_path_blocking(p, NULL, 0); 2412 2413 if (sret) { 2414 ret = sret; 2415 goto done; 2416 } 2417 b = p->nodes[level]; 2418 if (!b) { 2419 btrfs_release_path(p); 2420 goto again; 2421 } 2422 BUG_ON(btrfs_header_nritems(b) == 1); 2423 } 2424 return 0; 2425 2426 again: 2427 ret = -EAGAIN; 2428 done: 2429 return ret; 2430 } 2431 2432 static void key_search_validate(struct extent_buffer *b, 2433 struct btrfs_key *key, 2434 int level) 2435 { 2436 #ifdef CONFIG_BTRFS_ASSERT 2437 struct btrfs_disk_key disk_key; 2438 2439 btrfs_cpu_key_to_disk(&disk_key, key); 2440 2441 if (level == 0) 2442 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2443 offsetof(struct btrfs_leaf, items[0].key), 2444 sizeof(disk_key))); 2445 else 2446 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2447 offsetof(struct btrfs_node, ptrs[0].key), 2448 sizeof(disk_key))); 2449 #endif 2450 } 2451 2452 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2453 int level, int *prev_cmp, int *slot) 2454 { 2455 if (*prev_cmp != 0) { 2456 *prev_cmp = bin_search(b, key, level, slot); 2457 return *prev_cmp; 2458 } 2459 2460 key_search_validate(b, key, level); 2461 *slot = 0; 2462 2463 return 0; 2464 } 2465 2466 /* 2467 * look for key in the tree. path is filled in with nodes along the way 2468 * if key is found, we return zero and you can find the item in the leaf 2469 * level of the path (level 0) 2470 * 2471 * If the key isn't found, the path points to the slot where it should 2472 * be inserted, and 1 is returned. If there are other errors during the 2473 * search a negative error number is returned. 2474 * 2475 * if ins_len > 0, nodes and leaves will be split as we walk down the 2476 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2477 * possible) 2478 */ 2479 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2480 *root, struct btrfs_key *key, struct btrfs_path *p, int 2481 ins_len, int cow) 2482 { 2483 struct extent_buffer *b; 2484 int slot; 2485 int ret; 2486 int err; 2487 int level; 2488 int lowest_unlock = 1; 2489 int root_lock; 2490 /* everything at write_lock_level or lower must be write locked */ 2491 int write_lock_level = 0; 2492 u8 lowest_level = 0; 2493 int min_write_lock_level; 2494 int prev_cmp; 2495 2496 lowest_level = p->lowest_level; 2497 WARN_ON(lowest_level && ins_len > 0); 2498 WARN_ON(p->nodes[0] != NULL); 2499 2500 if (ins_len < 0) { 2501 lowest_unlock = 2; 2502 2503 /* when we are removing items, we might have to go up to level 2504 * two as we update tree pointers Make sure we keep write 2505 * for those levels as well 2506 */ 2507 write_lock_level = 2; 2508 } else if (ins_len > 0) { 2509 /* 2510 * for inserting items, make sure we have a write lock on 2511 * level 1 so we can update keys 2512 */ 2513 write_lock_level = 1; 2514 } 2515 2516 if (!cow) 2517 write_lock_level = -1; 2518 2519 if (cow && (p->keep_locks || p->lowest_level)) 2520 write_lock_level = BTRFS_MAX_LEVEL; 2521 2522 min_write_lock_level = write_lock_level; 2523 2524 again: 2525 prev_cmp = -1; 2526 /* 2527 * we try very hard to do read locks on the root 2528 */ 2529 root_lock = BTRFS_READ_LOCK; 2530 level = 0; 2531 if (p->search_commit_root) { 2532 /* 2533 * the commit roots are read only 2534 * so we always do read locks 2535 */ 2536 b = root->commit_root; 2537 extent_buffer_get(b); 2538 level = btrfs_header_level(b); 2539 if (!p->skip_locking) 2540 btrfs_tree_read_lock(b); 2541 } else { 2542 if (p->skip_locking) { 2543 b = btrfs_root_node(root); 2544 level = btrfs_header_level(b); 2545 } else { 2546 /* we don't know the level of the root node 2547 * until we actually have it read locked 2548 */ 2549 b = btrfs_read_lock_root_node(root); 2550 level = btrfs_header_level(b); 2551 if (level <= write_lock_level) { 2552 /* whoops, must trade for write lock */ 2553 btrfs_tree_read_unlock(b); 2554 free_extent_buffer(b); 2555 b = btrfs_lock_root_node(root); 2556 root_lock = BTRFS_WRITE_LOCK; 2557 2558 /* the level might have changed, check again */ 2559 level = btrfs_header_level(b); 2560 } 2561 } 2562 } 2563 p->nodes[level] = b; 2564 if (!p->skip_locking) 2565 p->locks[level] = root_lock; 2566 2567 while (b) { 2568 level = btrfs_header_level(b); 2569 2570 /* 2571 * setup the path here so we can release it under lock 2572 * contention with the cow code 2573 */ 2574 if (cow) { 2575 /* 2576 * if we don't really need to cow this block 2577 * then we don't want to set the path blocking, 2578 * so we test it here 2579 */ 2580 if (!should_cow_block(trans, root, b)) 2581 goto cow_done; 2582 2583 btrfs_set_path_blocking(p); 2584 2585 /* 2586 * must have write locks on this node and the 2587 * parent 2588 */ 2589 if (level > write_lock_level || 2590 (level + 1 > write_lock_level && 2591 level + 1 < BTRFS_MAX_LEVEL && 2592 p->nodes[level + 1])) { 2593 write_lock_level = level + 1; 2594 btrfs_release_path(p); 2595 goto again; 2596 } 2597 2598 err = btrfs_cow_block(trans, root, b, 2599 p->nodes[level + 1], 2600 p->slots[level + 1], &b); 2601 if (err) { 2602 ret = err; 2603 goto done; 2604 } 2605 } 2606 cow_done: 2607 BUG_ON(!cow && ins_len); 2608 2609 p->nodes[level] = b; 2610 btrfs_clear_path_blocking(p, NULL, 0); 2611 2612 /* 2613 * we have a lock on b and as long as we aren't changing 2614 * the tree, there is no way to for the items in b to change. 2615 * It is safe to drop the lock on our parent before we 2616 * go through the expensive btree search on b. 2617 * 2618 * If cow is true, then we might be changing slot zero, 2619 * which may require changing the parent. So, we can't 2620 * drop the lock until after we know which slot we're 2621 * operating on. 2622 */ 2623 if (!cow) 2624 btrfs_unlock_up_safe(p, level + 1); 2625 2626 ret = key_search(b, key, level, &prev_cmp, &slot); 2627 2628 if (level != 0) { 2629 int dec = 0; 2630 if (ret && slot > 0) { 2631 dec = 1; 2632 slot -= 1; 2633 } 2634 p->slots[level] = slot; 2635 err = setup_nodes_for_search(trans, root, p, b, level, 2636 ins_len, &write_lock_level); 2637 if (err == -EAGAIN) 2638 goto again; 2639 if (err) { 2640 ret = err; 2641 goto done; 2642 } 2643 b = p->nodes[level]; 2644 slot = p->slots[level]; 2645 2646 /* 2647 * slot 0 is special, if we change the key 2648 * we have to update the parent pointer 2649 * which means we must have a write lock 2650 * on the parent 2651 */ 2652 if (slot == 0 && cow && 2653 write_lock_level < level + 1) { 2654 write_lock_level = level + 1; 2655 btrfs_release_path(p); 2656 goto again; 2657 } 2658 2659 unlock_up(p, level, lowest_unlock, 2660 min_write_lock_level, &write_lock_level); 2661 2662 if (level == lowest_level) { 2663 if (dec) 2664 p->slots[level]++; 2665 goto done; 2666 } 2667 2668 err = read_block_for_search(trans, root, p, 2669 &b, level, slot, key, 0); 2670 if (err == -EAGAIN) 2671 goto again; 2672 if (err) { 2673 ret = err; 2674 goto done; 2675 } 2676 2677 if (!p->skip_locking) { 2678 level = btrfs_header_level(b); 2679 if (level <= write_lock_level) { 2680 err = btrfs_try_tree_write_lock(b); 2681 if (!err) { 2682 btrfs_set_path_blocking(p); 2683 btrfs_tree_lock(b); 2684 btrfs_clear_path_blocking(p, b, 2685 BTRFS_WRITE_LOCK); 2686 } 2687 p->locks[level] = BTRFS_WRITE_LOCK; 2688 } else { 2689 err = btrfs_try_tree_read_lock(b); 2690 if (!err) { 2691 btrfs_set_path_blocking(p); 2692 btrfs_tree_read_lock(b); 2693 btrfs_clear_path_blocking(p, b, 2694 BTRFS_READ_LOCK); 2695 } 2696 p->locks[level] = BTRFS_READ_LOCK; 2697 } 2698 p->nodes[level] = b; 2699 } 2700 } else { 2701 p->slots[level] = slot; 2702 if (ins_len > 0 && 2703 btrfs_leaf_free_space(root, b) < ins_len) { 2704 if (write_lock_level < 1) { 2705 write_lock_level = 1; 2706 btrfs_release_path(p); 2707 goto again; 2708 } 2709 2710 btrfs_set_path_blocking(p); 2711 err = split_leaf(trans, root, key, 2712 p, ins_len, ret == 0); 2713 btrfs_clear_path_blocking(p, NULL, 0); 2714 2715 BUG_ON(err > 0); 2716 if (err) { 2717 ret = err; 2718 goto done; 2719 } 2720 } 2721 if (!p->search_for_split) 2722 unlock_up(p, level, lowest_unlock, 2723 min_write_lock_level, &write_lock_level); 2724 goto done; 2725 } 2726 } 2727 ret = 1; 2728 done: 2729 /* 2730 * we don't really know what they plan on doing with the path 2731 * from here on, so for now just mark it as blocking 2732 */ 2733 if (!p->leave_spinning) 2734 btrfs_set_path_blocking(p); 2735 if (ret < 0) 2736 btrfs_release_path(p); 2737 return ret; 2738 } 2739 2740 /* 2741 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2742 * current state of the tree together with the operations recorded in the tree 2743 * modification log to search for the key in a previous version of this tree, as 2744 * denoted by the time_seq parameter. 2745 * 2746 * Naturally, there is no support for insert, delete or cow operations. 2747 * 2748 * The resulting path and return value will be set up as if we called 2749 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2750 */ 2751 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2752 struct btrfs_path *p, u64 time_seq) 2753 { 2754 struct extent_buffer *b; 2755 int slot; 2756 int ret; 2757 int err; 2758 int level; 2759 int lowest_unlock = 1; 2760 u8 lowest_level = 0; 2761 int prev_cmp = -1; 2762 2763 lowest_level = p->lowest_level; 2764 WARN_ON(p->nodes[0] != NULL); 2765 2766 if (p->search_commit_root) { 2767 BUG_ON(time_seq); 2768 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2769 } 2770 2771 again: 2772 b = get_old_root(root, time_seq); 2773 level = btrfs_header_level(b); 2774 p->locks[level] = BTRFS_READ_LOCK; 2775 2776 while (b) { 2777 level = btrfs_header_level(b); 2778 p->nodes[level] = b; 2779 btrfs_clear_path_blocking(p, NULL, 0); 2780 2781 /* 2782 * we have a lock on b and as long as we aren't changing 2783 * the tree, there is no way to for the items in b to change. 2784 * It is safe to drop the lock on our parent before we 2785 * go through the expensive btree search on b. 2786 */ 2787 btrfs_unlock_up_safe(p, level + 1); 2788 2789 /* 2790 * Since we can unwind eb's we want to do a real search every 2791 * time. 2792 */ 2793 prev_cmp = -1; 2794 ret = key_search(b, key, level, &prev_cmp, &slot); 2795 2796 if (level != 0) { 2797 int dec = 0; 2798 if (ret && slot > 0) { 2799 dec = 1; 2800 slot -= 1; 2801 } 2802 p->slots[level] = slot; 2803 unlock_up(p, level, lowest_unlock, 0, NULL); 2804 2805 if (level == lowest_level) { 2806 if (dec) 2807 p->slots[level]++; 2808 goto done; 2809 } 2810 2811 err = read_block_for_search(NULL, root, p, &b, level, 2812 slot, key, time_seq); 2813 if (err == -EAGAIN) 2814 goto again; 2815 if (err) { 2816 ret = err; 2817 goto done; 2818 } 2819 2820 level = btrfs_header_level(b); 2821 err = btrfs_try_tree_read_lock(b); 2822 if (!err) { 2823 btrfs_set_path_blocking(p); 2824 btrfs_tree_read_lock(b); 2825 btrfs_clear_path_blocking(p, b, 2826 BTRFS_READ_LOCK); 2827 } 2828 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 2829 if (!b) { 2830 ret = -ENOMEM; 2831 goto done; 2832 } 2833 p->locks[level] = BTRFS_READ_LOCK; 2834 p->nodes[level] = b; 2835 } else { 2836 p->slots[level] = slot; 2837 unlock_up(p, level, lowest_unlock, 0, NULL); 2838 goto done; 2839 } 2840 } 2841 ret = 1; 2842 done: 2843 if (!p->leave_spinning) 2844 btrfs_set_path_blocking(p); 2845 if (ret < 0) 2846 btrfs_release_path(p); 2847 2848 return ret; 2849 } 2850 2851 /* 2852 * helper to use instead of search slot if no exact match is needed but 2853 * instead the next or previous item should be returned. 2854 * When find_higher is true, the next higher item is returned, the next lower 2855 * otherwise. 2856 * When return_any and find_higher are both true, and no higher item is found, 2857 * return the next lower instead. 2858 * When return_any is true and find_higher is false, and no lower item is found, 2859 * return the next higher instead. 2860 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2861 * < 0 on error 2862 */ 2863 int btrfs_search_slot_for_read(struct btrfs_root *root, 2864 struct btrfs_key *key, struct btrfs_path *p, 2865 int find_higher, int return_any) 2866 { 2867 int ret; 2868 struct extent_buffer *leaf; 2869 2870 again: 2871 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2872 if (ret <= 0) 2873 return ret; 2874 /* 2875 * a return value of 1 means the path is at the position where the 2876 * item should be inserted. Normally this is the next bigger item, 2877 * but in case the previous item is the last in a leaf, path points 2878 * to the first free slot in the previous leaf, i.e. at an invalid 2879 * item. 2880 */ 2881 leaf = p->nodes[0]; 2882 2883 if (find_higher) { 2884 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2885 ret = btrfs_next_leaf(root, p); 2886 if (ret <= 0) 2887 return ret; 2888 if (!return_any) 2889 return 1; 2890 /* 2891 * no higher item found, return the next 2892 * lower instead 2893 */ 2894 return_any = 0; 2895 find_higher = 0; 2896 btrfs_release_path(p); 2897 goto again; 2898 } 2899 } else { 2900 if (p->slots[0] == 0) { 2901 ret = btrfs_prev_leaf(root, p); 2902 if (ret < 0) 2903 return ret; 2904 if (!ret) { 2905 p->slots[0] = btrfs_header_nritems(leaf) - 1; 2906 return 0; 2907 } 2908 if (!return_any) 2909 return 1; 2910 /* 2911 * no lower item found, return the next 2912 * higher instead 2913 */ 2914 return_any = 0; 2915 find_higher = 1; 2916 btrfs_release_path(p); 2917 goto again; 2918 } else { 2919 --p->slots[0]; 2920 } 2921 } 2922 return 0; 2923 } 2924 2925 /* 2926 * adjust the pointers going up the tree, starting at level 2927 * making sure the right key of each node is points to 'key'. 2928 * This is used after shifting pointers to the left, so it stops 2929 * fixing up pointers when a given leaf/node is not in slot 0 of the 2930 * higher levels 2931 * 2932 */ 2933 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 2934 struct btrfs_disk_key *key, int level) 2935 { 2936 int i; 2937 struct extent_buffer *t; 2938 2939 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2940 int tslot = path->slots[i]; 2941 if (!path->nodes[i]) 2942 break; 2943 t = path->nodes[i]; 2944 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 2945 btrfs_set_node_key(t, key, tslot); 2946 btrfs_mark_buffer_dirty(path->nodes[i]); 2947 if (tslot != 0) 2948 break; 2949 } 2950 } 2951 2952 /* 2953 * update item key. 2954 * 2955 * This function isn't completely safe. It's the caller's responsibility 2956 * that the new key won't break the order 2957 */ 2958 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 2959 struct btrfs_key *new_key) 2960 { 2961 struct btrfs_disk_key disk_key; 2962 struct extent_buffer *eb; 2963 int slot; 2964 2965 eb = path->nodes[0]; 2966 slot = path->slots[0]; 2967 if (slot > 0) { 2968 btrfs_item_key(eb, &disk_key, slot - 1); 2969 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2970 } 2971 if (slot < btrfs_header_nritems(eb) - 1) { 2972 btrfs_item_key(eb, &disk_key, slot + 1); 2973 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2974 } 2975 2976 btrfs_cpu_key_to_disk(&disk_key, new_key); 2977 btrfs_set_item_key(eb, &disk_key, slot); 2978 btrfs_mark_buffer_dirty(eb); 2979 if (slot == 0) 2980 fixup_low_keys(root, path, &disk_key, 1); 2981 } 2982 2983 /* 2984 * try to push data from one node into the next node left in the 2985 * tree. 2986 * 2987 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2988 * error, and > 0 if there was no room in the left hand block. 2989 */ 2990 static int push_node_left(struct btrfs_trans_handle *trans, 2991 struct btrfs_root *root, struct extent_buffer *dst, 2992 struct extent_buffer *src, int empty) 2993 { 2994 int push_items = 0; 2995 int src_nritems; 2996 int dst_nritems; 2997 int ret = 0; 2998 2999 src_nritems = btrfs_header_nritems(src); 3000 dst_nritems = btrfs_header_nritems(dst); 3001 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3002 WARN_ON(btrfs_header_generation(src) != trans->transid); 3003 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3004 3005 if (!empty && src_nritems <= 8) 3006 return 1; 3007 3008 if (push_items <= 0) 3009 return 1; 3010 3011 if (empty) { 3012 push_items = min(src_nritems, push_items); 3013 if (push_items < src_nritems) { 3014 /* leave at least 8 pointers in the node if 3015 * we aren't going to empty it 3016 */ 3017 if (src_nritems - push_items < 8) { 3018 if (push_items <= 8) 3019 return 1; 3020 push_items -= 8; 3021 } 3022 } 3023 } else 3024 push_items = min(src_nritems - 8, push_items); 3025 3026 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3027 push_items); 3028 copy_extent_buffer(dst, src, 3029 btrfs_node_key_ptr_offset(dst_nritems), 3030 btrfs_node_key_ptr_offset(0), 3031 push_items * sizeof(struct btrfs_key_ptr)); 3032 3033 if (push_items < src_nritems) { 3034 /* 3035 * don't call tree_mod_log_eb_move here, key removal was already 3036 * fully logged by tree_mod_log_eb_copy above. 3037 */ 3038 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3039 btrfs_node_key_ptr_offset(push_items), 3040 (src_nritems - push_items) * 3041 sizeof(struct btrfs_key_ptr)); 3042 } 3043 btrfs_set_header_nritems(src, src_nritems - push_items); 3044 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3045 btrfs_mark_buffer_dirty(src); 3046 btrfs_mark_buffer_dirty(dst); 3047 3048 return ret; 3049 } 3050 3051 /* 3052 * try to push data from one node into the next node right in the 3053 * tree. 3054 * 3055 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3056 * error, and > 0 if there was no room in the right hand block. 3057 * 3058 * this will only push up to 1/2 the contents of the left node over 3059 */ 3060 static int balance_node_right(struct btrfs_trans_handle *trans, 3061 struct btrfs_root *root, 3062 struct extent_buffer *dst, 3063 struct extent_buffer *src) 3064 { 3065 int push_items = 0; 3066 int max_push; 3067 int src_nritems; 3068 int dst_nritems; 3069 int ret = 0; 3070 3071 WARN_ON(btrfs_header_generation(src) != trans->transid); 3072 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3073 3074 src_nritems = btrfs_header_nritems(src); 3075 dst_nritems = btrfs_header_nritems(dst); 3076 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3077 if (push_items <= 0) 3078 return 1; 3079 3080 if (src_nritems < 4) 3081 return 1; 3082 3083 max_push = src_nritems / 2 + 1; 3084 /* don't try to empty the node */ 3085 if (max_push >= src_nritems) 3086 return 1; 3087 3088 if (max_push < push_items) 3089 push_items = max_push; 3090 3091 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3092 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3093 btrfs_node_key_ptr_offset(0), 3094 (dst_nritems) * 3095 sizeof(struct btrfs_key_ptr)); 3096 3097 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3098 src_nritems - push_items, push_items); 3099 copy_extent_buffer(dst, src, 3100 btrfs_node_key_ptr_offset(0), 3101 btrfs_node_key_ptr_offset(src_nritems - push_items), 3102 push_items * sizeof(struct btrfs_key_ptr)); 3103 3104 btrfs_set_header_nritems(src, src_nritems - push_items); 3105 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3106 3107 btrfs_mark_buffer_dirty(src); 3108 btrfs_mark_buffer_dirty(dst); 3109 3110 return ret; 3111 } 3112 3113 /* 3114 * helper function to insert a new root level in the tree. 3115 * A new node is allocated, and a single item is inserted to 3116 * point to the existing root 3117 * 3118 * returns zero on success or < 0 on failure. 3119 */ 3120 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3121 struct btrfs_root *root, 3122 struct btrfs_path *path, int level) 3123 { 3124 u64 lower_gen; 3125 struct extent_buffer *lower; 3126 struct extent_buffer *c; 3127 struct extent_buffer *old; 3128 struct btrfs_disk_key lower_key; 3129 3130 BUG_ON(path->nodes[level]); 3131 BUG_ON(path->nodes[level-1] != root->node); 3132 3133 lower = path->nodes[level-1]; 3134 if (level == 1) 3135 btrfs_item_key(lower, &lower_key, 0); 3136 else 3137 btrfs_node_key(lower, &lower_key, 0); 3138 3139 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3140 root->root_key.objectid, &lower_key, 3141 level, root->node->start, 0); 3142 if (IS_ERR(c)) 3143 return PTR_ERR(c); 3144 3145 root_add_used(root, root->nodesize); 3146 3147 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3148 btrfs_set_header_nritems(c, 1); 3149 btrfs_set_header_level(c, level); 3150 btrfs_set_header_bytenr(c, c->start); 3151 btrfs_set_header_generation(c, trans->transid); 3152 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3153 btrfs_set_header_owner(c, root->root_key.objectid); 3154 3155 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3156 BTRFS_FSID_SIZE); 3157 3158 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3159 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3160 3161 btrfs_set_node_key(c, &lower_key, 0); 3162 btrfs_set_node_blockptr(c, 0, lower->start); 3163 lower_gen = btrfs_header_generation(lower); 3164 WARN_ON(lower_gen != trans->transid); 3165 3166 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3167 3168 btrfs_mark_buffer_dirty(c); 3169 3170 old = root->node; 3171 tree_mod_log_set_root_pointer(root, c, 0); 3172 rcu_assign_pointer(root->node, c); 3173 3174 /* the super has an extra ref to root->node */ 3175 free_extent_buffer(old); 3176 3177 add_root_to_dirty_list(root); 3178 extent_buffer_get(c); 3179 path->nodes[level] = c; 3180 path->locks[level] = BTRFS_WRITE_LOCK; 3181 path->slots[level] = 0; 3182 return 0; 3183 } 3184 3185 /* 3186 * worker function to insert a single pointer in a node. 3187 * the node should have enough room for the pointer already 3188 * 3189 * slot and level indicate where you want the key to go, and 3190 * blocknr is the block the key points to. 3191 */ 3192 static void insert_ptr(struct btrfs_trans_handle *trans, 3193 struct btrfs_root *root, struct btrfs_path *path, 3194 struct btrfs_disk_key *key, u64 bytenr, 3195 int slot, int level) 3196 { 3197 struct extent_buffer *lower; 3198 int nritems; 3199 int ret; 3200 3201 BUG_ON(!path->nodes[level]); 3202 btrfs_assert_tree_locked(path->nodes[level]); 3203 lower = path->nodes[level]; 3204 nritems = btrfs_header_nritems(lower); 3205 BUG_ON(slot > nritems); 3206 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3207 if (slot != nritems) { 3208 if (level) 3209 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3210 slot, nritems - slot); 3211 memmove_extent_buffer(lower, 3212 btrfs_node_key_ptr_offset(slot + 1), 3213 btrfs_node_key_ptr_offset(slot), 3214 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3215 } 3216 if (level) { 3217 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3218 MOD_LOG_KEY_ADD, GFP_NOFS); 3219 BUG_ON(ret < 0); 3220 } 3221 btrfs_set_node_key(lower, key, slot); 3222 btrfs_set_node_blockptr(lower, slot, bytenr); 3223 WARN_ON(trans->transid == 0); 3224 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3225 btrfs_set_header_nritems(lower, nritems + 1); 3226 btrfs_mark_buffer_dirty(lower); 3227 } 3228 3229 /* 3230 * split the node at the specified level in path in two. 3231 * The path is corrected to point to the appropriate node after the split 3232 * 3233 * Before splitting this tries to make some room in the node by pushing 3234 * left and right, if either one works, it returns right away. 3235 * 3236 * returns 0 on success and < 0 on failure 3237 */ 3238 static noinline int split_node(struct btrfs_trans_handle *trans, 3239 struct btrfs_root *root, 3240 struct btrfs_path *path, int level) 3241 { 3242 struct extent_buffer *c; 3243 struct extent_buffer *split; 3244 struct btrfs_disk_key disk_key; 3245 int mid; 3246 int ret; 3247 u32 c_nritems; 3248 3249 c = path->nodes[level]; 3250 WARN_ON(btrfs_header_generation(c) != trans->transid); 3251 if (c == root->node) { 3252 /* 3253 * trying to split the root, lets make a new one 3254 * 3255 * tree mod log: We don't log_removal old root in 3256 * insert_new_root, because that root buffer will be kept as a 3257 * normal node. We are going to log removal of half of the 3258 * elements below with tree_mod_log_eb_copy. We're holding a 3259 * tree lock on the buffer, which is why we cannot race with 3260 * other tree_mod_log users. 3261 */ 3262 ret = insert_new_root(trans, root, path, level + 1); 3263 if (ret) 3264 return ret; 3265 } else { 3266 ret = push_nodes_for_insert(trans, root, path, level); 3267 c = path->nodes[level]; 3268 if (!ret && btrfs_header_nritems(c) < 3269 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3270 return 0; 3271 if (ret < 0) 3272 return ret; 3273 } 3274 3275 c_nritems = btrfs_header_nritems(c); 3276 mid = (c_nritems + 1) / 2; 3277 btrfs_node_key(c, &disk_key, mid); 3278 3279 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3280 root->root_key.objectid, 3281 &disk_key, level, c->start, 0); 3282 if (IS_ERR(split)) 3283 return PTR_ERR(split); 3284 3285 root_add_used(root, root->nodesize); 3286 3287 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3288 btrfs_set_header_level(split, btrfs_header_level(c)); 3289 btrfs_set_header_bytenr(split, split->start); 3290 btrfs_set_header_generation(split, trans->transid); 3291 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3292 btrfs_set_header_owner(split, root->root_key.objectid); 3293 write_extent_buffer(split, root->fs_info->fsid, 3294 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3295 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3296 btrfs_header_chunk_tree_uuid(split), 3297 BTRFS_UUID_SIZE); 3298 3299 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3300 copy_extent_buffer(split, c, 3301 btrfs_node_key_ptr_offset(0), 3302 btrfs_node_key_ptr_offset(mid), 3303 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3304 btrfs_set_header_nritems(split, c_nritems - mid); 3305 btrfs_set_header_nritems(c, mid); 3306 ret = 0; 3307 3308 btrfs_mark_buffer_dirty(c); 3309 btrfs_mark_buffer_dirty(split); 3310 3311 insert_ptr(trans, root, path, &disk_key, split->start, 3312 path->slots[level + 1] + 1, level + 1); 3313 3314 if (path->slots[level] >= mid) { 3315 path->slots[level] -= mid; 3316 btrfs_tree_unlock(c); 3317 free_extent_buffer(c); 3318 path->nodes[level] = split; 3319 path->slots[level + 1] += 1; 3320 } else { 3321 btrfs_tree_unlock(split); 3322 free_extent_buffer(split); 3323 } 3324 return ret; 3325 } 3326 3327 /* 3328 * how many bytes are required to store the items in a leaf. start 3329 * and nr indicate which items in the leaf to check. This totals up the 3330 * space used both by the item structs and the item data 3331 */ 3332 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3333 { 3334 struct btrfs_item *start_item; 3335 struct btrfs_item *end_item; 3336 struct btrfs_map_token token; 3337 int data_len; 3338 int nritems = btrfs_header_nritems(l); 3339 int end = min(nritems, start + nr) - 1; 3340 3341 if (!nr) 3342 return 0; 3343 btrfs_init_map_token(&token); 3344 start_item = btrfs_item_nr(start); 3345 end_item = btrfs_item_nr(end); 3346 data_len = btrfs_token_item_offset(l, start_item, &token) + 3347 btrfs_token_item_size(l, start_item, &token); 3348 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3349 data_len += sizeof(struct btrfs_item) * nr; 3350 WARN_ON(data_len < 0); 3351 return data_len; 3352 } 3353 3354 /* 3355 * The space between the end of the leaf items and 3356 * the start of the leaf data. IOW, how much room 3357 * the leaf has left for both items and data 3358 */ 3359 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3360 struct extent_buffer *leaf) 3361 { 3362 int nritems = btrfs_header_nritems(leaf); 3363 int ret; 3364 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3365 if (ret < 0) { 3366 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3367 "used %d nritems %d\n", 3368 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3369 leaf_space_used(leaf, 0, nritems), nritems); 3370 } 3371 return ret; 3372 } 3373 3374 /* 3375 * min slot controls the lowest index we're willing to push to the 3376 * right. We'll push up to and including min_slot, but no lower 3377 */ 3378 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3379 struct btrfs_root *root, 3380 struct btrfs_path *path, 3381 int data_size, int empty, 3382 struct extent_buffer *right, 3383 int free_space, u32 left_nritems, 3384 u32 min_slot) 3385 { 3386 struct extent_buffer *left = path->nodes[0]; 3387 struct extent_buffer *upper = path->nodes[1]; 3388 struct btrfs_map_token token; 3389 struct btrfs_disk_key disk_key; 3390 int slot; 3391 u32 i; 3392 int push_space = 0; 3393 int push_items = 0; 3394 struct btrfs_item *item; 3395 u32 nr; 3396 u32 right_nritems; 3397 u32 data_end; 3398 u32 this_item_size; 3399 3400 btrfs_init_map_token(&token); 3401 3402 if (empty) 3403 nr = 0; 3404 else 3405 nr = max_t(u32, 1, min_slot); 3406 3407 if (path->slots[0] >= left_nritems) 3408 push_space += data_size; 3409 3410 slot = path->slots[1]; 3411 i = left_nritems - 1; 3412 while (i >= nr) { 3413 item = btrfs_item_nr(i); 3414 3415 if (!empty && push_items > 0) { 3416 if (path->slots[0] > i) 3417 break; 3418 if (path->slots[0] == i) { 3419 int space = btrfs_leaf_free_space(root, left); 3420 if (space + push_space * 2 > free_space) 3421 break; 3422 } 3423 } 3424 3425 if (path->slots[0] == i) 3426 push_space += data_size; 3427 3428 this_item_size = btrfs_item_size(left, item); 3429 if (this_item_size + sizeof(*item) + push_space > free_space) 3430 break; 3431 3432 push_items++; 3433 push_space += this_item_size + sizeof(*item); 3434 if (i == 0) 3435 break; 3436 i--; 3437 } 3438 3439 if (push_items == 0) 3440 goto out_unlock; 3441 3442 WARN_ON(!empty && push_items == left_nritems); 3443 3444 /* push left to right */ 3445 right_nritems = btrfs_header_nritems(right); 3446 3447 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3448 push_space -= leaf_data_end(root, left); 3449 3450 /* make room in the right data area */ 3451 data_end = leaf_data_end(root, right); 3452 memmove_extent_buffer(right, 3453 btrfs_leaf_data(right) + data_end - push_space, 3454 btrfs_leaf_data(right) + data_end, 3455 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3456 3457 /* copy from the left data area */ 3458 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3459 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3460 btrfs_leaf_data(left) + leaf_data_end(root, left), 3461 push_space); 3462 3463 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3464 btrfs_item_nr_offset(0), 3465 right_nritems * sizeof(struct btrfs_item)); 3466 3467 /* copy the items from left to right */ 3468 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3469 btrfs_item_nr_offset(left_nritems - push_items), 3470 push_items * sizeof(struct btrfs_item)); 3471 3472 /* update the item pointers */ 3473 right_nritems += push_items; 3474 btrfs_set_header_nritems(right, right_nritems); 3475 push_space = BTRFS_LEAF_DATA_SIZE(root); 3476 for (i = 0; i < right_nritems; i++) { 3477 item = btrfs_item_nr(i); 3478 push_space -= btrfs_token_item_size(right, item, &token); 3479 btrfs_set_token_item_offset(right, item, push_space, &token); 3480 } 3481 3482 left_nritems -= push_items; 3483 btrfs_set_header_nritems(left, left_nritems); 3484 3485 if (left_nritems) 3486 btrfs_mark_buffer_dirty(left); 3487 else 3488 clean_tree_block(trans, root, left); 3489 3490 btrfs_mark_buffer_dirty(right); 3491 3492 btrfs_item_key(right, &disk_key, 0); 3493 btrfs_set_node_key(upper, &disk_key, slot + 1); 3494 btrfs_mark_buffer_dirty(upper); 3495 3496 /* then fixup the leaf pointer in the path */ 3497 if (path->slots[0] >= left_nritems) { 3498 path->slots[0] -= left_nritems; 3499 if (btrfs_header_nritems(path->nodes[0]) == 0) 3500 clean_tree_block(trans, root, path->nodes[0]); 3501 btrfs_tree_unlock(path->nodes[0]); 3502 free_extent_buffer(path->nodes[0]); 3503 path->nodes[0] = right; 3504 path->slots[1] += 1; 3505 } else { 3506 btrfs_tree_unlock(right); 3507 free_extent_buffer(right); 3508 } 3509 return 0; 3510 3511 out_unlock: 3512 btrfs_tree_unlock(right); 3513 free_extent_buffer(right); 3514 return 1; 3515 } 3516 3517 /* 3518 * push some data in the path leaf to the right, trying to free up at 3519 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3520 * 3521 * returns 1 if the push failed because the other node didn't have enough 3522 * room, 0 if everything worked out and < 0 if there were major errors. 3523 * 3524 * this will push starting from min_slot to the end of the leaf. It won't 3525 * push any slot lower than min_slot 3526 */ 3527 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3528 *root, struct btrfs_path *path, 3529 int min_data_size, int data_size, 3530 int empty, u32 min_slot) 3531 { 3532 struct extent_buffer *left = path->nodes[0]; 3533 struct extent_buffer *right; 3534 struct extent_buffer *upper; 3535 int slot; 3536 int free_space; 3537 u32 left_nritems; 3538 int ret; 3539 3540 if (!path->nodes[1]) 3541 return 1; 3542 3543 slot = path->slots[1]; 3544 upper = path->nodes[1]; 3545 if (slot >= btrfs_header_nritems(upper) - 1) 3546 return 1; 3547 3548 btrfs_assert_tree_locked(path->nodes[1]); 3549 3550 right = read_node_slot(root, upper, slot + 1); 3551 if (right == NULL) 3552 return 1; 3553 3554 btrfs_tree_lock(right); 3555 btrfs_set_lock_blocking(right); 3556 3557 free_space = btrfs_leaf_free_space(root, right); 3558 if (free_space < data_size) 3559 goto out_unlock; 3560 3561 /* cow and double check */ 3562 ret = btrfs_cow_block(trans, root, right, upper, 3563 slot + 1, &right); 3564 if (ret) 3565 goto out_unlock; 3566 3567 free_space = btrfs_leaf_free_space(root, right); 3568 if (free_space < data_size) 3569 goto out_unlock; 3570 3571 left_nritems = btrfs_header_nritems(left); 3572 if (left_nritems == 0) 3573 goto out_unlock; 3574 3575 return __push_leaf_right(trans, root, path, min_data_size, empty, 3576 right, free_space, left_nritems, min_slot); 3577 out_unlock: 3578 btrfs_tree_unlock(right); 3579 free_extent_buffer(right); 3580 return 1; 3581 } 3582 3583 /* 3584 * push some data in the path leaf to the left, trying to free up at 3585 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3586 * 3587 * max_slot can put a limit on how far into the leaf we'll push items. The 3588 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3589 * items 3590 */ 3591 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3592 struct btrfs_root *root, 3593 struct btrfs_path *path, int data_size, 3594 int empty, struct extent_buffer *left, 3595 int free_space, u32 right_nritems, 3596 u32 max_slot) 3597 { 3598 struct btrfs_disk_key disk_key; 3599 struct extent_buffer *right = path->nodes[0]; 3600 int i; 3601 int push_space = 0; 3602 int push_items = 0; 3603 struct btrfs_item *item; 3604 u32 old_left_nritems; 3605 u32 nr; 3606 int ret = 0; 3607 u32 this_item_size; 3608 u32 old_left_item_size; 3609 struct btrfs_map_token token; 3610 3611 btrfs_init_map_token(&token); 3612 3613 if (empty) 3614 nr = min(right_nritems, max_slot); 3615 else 3616 nr = min(right_nritems - 1, max_slot); 3617 3618 for (i = 0; i < nr; i++) { 3619 item = btrfs_item_nr(i); 3620 3621 if (!empty && push_items > 0) { 3622 if (path->slots[0] < i) 3623 break; 3624 if (path->slots[0] == i) { 3625 int space = btrfs_leaf_free_space(root, right); 3626 if (space + push_space * 2 > free_space) 3627 break; 3628 } 3629 } 3630 3631 if (path->slots[0] == i) 3632 push_space += data_size; 3633 3634 this_item_size = btrfs_item_size(right, item); 3635 if (this_item_size + sizeof(*item) + push_space > free_space) 3636 break; 3637 3638 push_items++; 3639 push_space += this_item_size + sizeof(*item); 3640 } 3641 3642 if (push_items == 0) { 3643 ret = 1; 3644 goto out; 3645 } 3646 if (!empty && push_items == btrfs_header_nritems(right)) 3647 WARN_ON(1); 3648 3649 /* push data from right to left */ 3650 copy_extent_buffer(left, right, 3651 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3652 btrfs_item_nr_offset(0), 3653 push_items * sizeof(struct btrfs_item)); 3654 3655 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3656 btrfs_item_offset_nr(right, push_items - 1); 3657 3658 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3659 leaf_data_end(root, left) - push_space, 3660 btrfs_leaf_data(right) + 3661 btrfs_item_offset_nr(right, push_items - 1), 3662 push_space); 3663 old_left_nritems = btrfs_header_nritems(left); 3664 BUG_ON(old_left_nritems <= 0); 3665 3666 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3667 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3668 u32 ioff; 3669 3670 item = btrfs_item_nr(i); 3671 3672 ioff = btrfs_token_item_offset(left, item, &token); 3673 btrfs_set_token_item_offset(left, item, 3674 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3675 &token); 3676 } 3677 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3678 3679 /* fixup right node */ 3680 if (push_items > right_nritems) 3681 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3682 right_nritems); 3683 3684 if (push_items < right_nritems) { 3685 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3686 leaf_data_end(root, right); 3687 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3688 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3689 btrfs_leaf_data(right) + 3690 leaf_data_end(root, right), push_space); 3691 3692 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3693 btrfs_item_nr_offset(push_items), 3694 (btrfs_header_nritems(right) - push_items) * 3695 sizeof(struct btrfs_item)); 3696 } 3697 right_nritems -= push_items; 3698 btrfs_set_header_nritems(right, right_nritems); 3699 push_space = BTRFS_LEAF_DATA_SIZE(root); 3700 for (i = 0; i < right_nritems; i++) { 3701 item = btrfs_item_nr(i); 3702 3703 push_space = push_space - btrfs_token_item_size(right, 3704 item, &token); 3705 btrfs_set_token_item_offset(right, item, push_space, &token); 3706 } 3707 3708 btrfs_mark_buffer_dirty(left); 3709 if (right_nritems) 3710 btrfs_mark_buffer_dirty(right); 3711 else 3712 clean_tree_block(trans, root, right); 3713 3714 btrfs_item_key(right, &disk_key, 0); 3715 fixup_low_keys(root, path, &disk_key, 1); 3716 3717 /* then fixup the leaf pointer in the path */ 3718 if (path->slots[0] < push_items) { 3719 path->slots[0] += old_left_nritems; 3720 btrfs_tree_unlock(path->nodes[0]); 3721 free_extent_buffer(path->nodes[0]); 3722 path->nodes[0] = left; 3723 path->slots[1] -= 1; 3724 } else { 3725 btrfs_tree_unlock(left); 3726 free_extent_buffer(left); 3727 path->slots[0] -= push_items; 3728 } 3729 BUG_ON(path->slots[0] < 0); 3730 return ret; 3731 out: 3732 btrfs_tree_unlock(left); 3733 free_extent_buffer(left); 3734 return ret; 3735 } 3736 3737 /* 3738 * push some data in the path leaf to the left, trying to free up at 3739 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3740 * 3741 * max_slot can put a limit on how far into the leaf we'll push items. The 3742 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3743 * items 3744 */ 3745 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3746 *root, struct btrfs_path *path, int min_data_size, 3747 int data_size, int empty, u32 max_slot) 3748 { 3749 struct extent_buffer *right = path->nodes[0]; 3750 struct extent_buffer *left; 3751 int slot; 3752 int free_space; 3753 u32 right_nritems; 3754 int ret = 0; 3755 3756 slot = path->slots[1]; 3757 if (slot == 0) 3758 return 1; 3759 if (!path->nodes[1]) 3760 return 1; 3761 3762 right_nritems = btrfs_header_nritems(right); 3763 if (right_nritems == 0) 3764 return 1; 3765 3766 btrfs_assert_tree_locked(path->nodes[1]); 3767 3768 left = read_node_slot(root, path->nodes[1], slot - 1); 3769 if (left == NULL) 3770 return 1; 3771 3772 btrfs_tree_lock(left); 3773 btrfs_set_lock_blocking(left); 3774 3775 free_space = btrfs_leaf_free_space(root, left); 3776 if (free_space < data_size) { 3777 ret = 1; 3778 goto out; 3779 } 3780 3781 /* cow and double check */ 3782 ret = btrfs_cow_block(trans, root, left, 3783 path->nodes[1], slot - 1, &left); 3784 if (ret) { 3785 /* we hit -ENOSPC, but it isn't fatal here */ 3786 if (ret == -ENOSPC) 3787 ret = 1; 3788 goto out; 3789 } 3790 3791 free_space = btrfs_leaf_free_space(root, left); 3792 if (free_space < data_size) { 3793 ret = 1; 3794 goto out; 3795 } 3796 3797 return __push_leaf_left(trans, root, path, min_data_size, 3798 empty, left, free_space, right_nritems, 3799 max_slot); 3800 out: 3801 btrfs_tree_unlock(left); 3802 free_extent_buffer(left); 3803 return ret; 3804 } 3805 3806 /* 3807 * split the path's leaf in two, making sure there is at least data_size 3808 * available for the resulting leaf level of the path. 3809 */ 3810 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3811 struct btrfs_root *root, 3812 struct btrfs_path *path, 3813 struct extent_buffer *l, 3814 struct extent_buffer *right, 3815 int slot, int mid, int nritems) 3816 { 3817 int data_copy_size; 3818 int rt_data_off; 3819 int i; 3820 struct btrfs_disk_key disk_key; 3821 struct btrfs_map_token token; 3822 3823 btrfs_init_map_token(&token); 3824 3825 nritems = nritems - mid; 3826 btrfs_set_header_nritems(right, nritems); 3827 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3828 3829 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3830 btrfs_item_nr_offset(mid), 3831 nritems * sizeof(struct btrfs_item)); 3832 3833 copy_extent_buffer(right, l, 3834 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3835 data_copy_size, btrfs_leaf_data(l) + 3836 leaf_data_end(root, l), data_copy_size); 3837 3838 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3839 btrfs_item_end_nr(l, mid); 3840 3841 for (i = 0; i < nritems; i++) { 3842 struct btrfs_item *item = btrfs_item_nr(i); 3843 u32 ioff; 3844 3845 ioff = btrfs_token_item_offset(right, item, &token); 3846 btrfs_set_token_item_offset(right, item, 3847 ioff + rt_data_off, &token); 3848 } 3849 3850 btrfs_set_header_nritems(l, mid); 3851 btrfs_item_key(right, &disk_key, 0); 3852 insert_ptr(trans, root, path, &disk_key, right->start, 3853 path->slots[1] + 1, 1); 3854 3855 btrfs_mark_buffer_dirty(right); 3856 btrfs_mark_buffer_dirty(l); 3857 BUG_ON(path->slots[0] != slot); 3858 3859 if (mid <= slot) { 3860 btrfs_tree_unlock(path->nodes[0]); 3861 free_extent_buffer(path->nodes[0]); 3862 path->nodes[0] = right; 3863 path->slots[0] -= mid; 3864 path->slots[1] += 1; 3865 } else { 3866 btrfs_tree_unlock(right); 3867 free_extent_buffer(right); 3868 } 3869 3870 BUG_ON(path->slots[0] < 0); 3871 } 3872 3873 /* 3874 * double splits happen when we need to insert a big item in the middle 3875 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3876 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3877 * A B C 3878 * 3879 * We avoid this by trying to push the items on either side of our target 3880 * into the adjacent leaves. If all goes well we can avoid the double split 3881 * completely. 3882 */ 3883 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3884 struct btrfs_root *root, 3885 struct btrfs_path *path, 3886 int data_size) 3887 { 3888 int ret; 3889 int progress = 0; 3890 int slot; 3891 u32 nritems; 3892 3893 slot = path->slots[0]; 3894 3895 /* 3896 * try to push all the items after our slot into the 3897 * right leaf 3898 */ 3899 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3900 if (ret < 0) 3901 return ret; 3902 3903 if (ret == 0) 3904 progress++; 3905 3906 nritems = btrfs_header_nritems(path->nodes[0]); 3907 /* 3908 * our goal is to get our slot at the start or end of a leaf. If 3909 * we've done so we're done 3910 */ 3911 if (path->slots[0] == 0 || path->slots[0] == nritems) 3912 return 0; 3913 3914 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3915 return 0; 3916 3917 /* try to push all the items before our slot into the next leaf */ 3918 slot = path->slots[0]; 3919 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3920 if (ret < 0) 3921 return ret; 3922 3923 if (ret == 0) 3924 progress++; 3925 3926 if (progress) 3927 return 0; 3928 return 1; 3929 } 3930 3931 /* 3932 * split the path's leaf in two, making sure there is at least data_size 3933 * available for the resulting leaf level of the path. 3934 * 3935 * returns 0 if all went well and < 0 on failure. 3936 */ 3937 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3938 struct btrfs_root *root, 3939 struct btrfs_key *ins_key, 3940 struct btrfs_path *path, int data_size, 3941 int extend) 3942 { 3943 struct btrfs_disk_key disk_key; 3944 struct extent_buffer *l; 3945 u32 nritems; 3946 int mid; 3947 int slot; 3948 struct extent_buffer *right; 3949 int ret = 0; 3950 int wret; 3951 int split; 3952 int num_doubles = 0; 3953 int tried_avoid_double = 0; 3954 3955 l = path->nodes[0]; 3956 slot = path->slots[0]; 3957 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3958 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3959 return -EOVERFLOW; 3960 3961 /* first try to make some room by pushing left and right */ 3962 if (data_size && path->nodes[1]) { 3963 wret = push_leaf_right(trans, root, path, data_size, 3964 data_size, 0, 0); 3965 if (wret < 0) 3966 return wret; 3967 if (wret) { 3968 wret = push_leaf_left(trans, root, path, data_size, 3969 data_size, 0, (u32)-1); 3970 if (wret < 0) 3971 return wret; 3972 } 3973 l = path->nodes[0]; 3974 3975 /* did the pushes work? */ 3976 if (btrfs_leaf_free_space(root, l) >= data_size) 3977 return 0; 3978 } 3979 3980 if (!path->nodes[1]) { 3981 ret = insert_new_root(trans, root, path, 1); 3982 if (ret) 3983 return ret; 3984 } 3985 again: 3986 split = 1; 3987 l = path->nodes[0]; 3988 slot = path->slots[0]; 3989 nritems = btrfs_header_nritems(l); 3990 mid = (nritems + 1) / 2; 3991 3992 if (mid <= slot) { 3993 if (nritems == 1 || 3994 leaf_space_used(l, mid, nritems - mid) + data_size > 3995 BTRFS_LEAF_DATA_SIZE(root)) { 3996 if (slot >= nritems) { 3997 split = 0; 3998 } else { 3999 mid = slot; 4000 if (mid != nritems && 4001 leaf_space_used(l, mid, nritems - mid) + 4002 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4003 if (data_size && !tried_avoid_double) 4004 goto push_for_double; 4005 split = 2; 4006 } 4007 } 4008 } 4009 } else { 4010 if (leaf_space_used(l, 0, mid) + data_size > 4011 BTRFS_LEAF_DATA_SIZE(root)) { 4012 if (!extend && data_size && slot == 0) { 4013 split = 0; 4014 } else if ((extend || !data_size) && slot == 0) { 4015 mid = 1; 4016 } else { 4017 mid = slot; 4018 if (mid != nritems && 4019 leaf_space_used(l, mid, nritems - mid) + 4020 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4021 if (data_size && !tried_avoid_double) 4022 goto push_for_double; 4023 split = 2 ; 4024 } 4025 } 4026 } 4027 } 4028 4029 if (split == 0) 4030 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4031 else 4032 btrfs_item_key(l, &disk_key, mid); 4033 4034 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 4035 root->root_key.objectid, 4036 &disk_key, 0, l->start, 0); 4037 if (IS_ERR(right)) 4038 return PTR_ERR(right); 4039 4040 root_add_used(root, root->leafsize); 4041 4042 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4043 btrfs_set_header_bytenr(right, right->start); 4044 btrfs_set_header_generation(right, trans->transid); 4045 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4046 btrfs_set_header_owner(right, root->root_key.objectid); 4047 btrfs_set_header_level(right, 0); 4048 write_extent_buffer(right, root->fs_info->fsid, 4049 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4050 4051 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4052 btrfs_header_chunk_tree_uuid(right), 4053 BTRFS_UUID_SIZE); 4054 4055 if (split == 0) { 4056 if (mid <= slot) { 4057 btrfs_set_header_nritems(right, 0); 4058 insert_ptr(trans, root, path, &disk_key, right->start, 4059 path->slots[1] + 1, 1); 4060 btrfs_tree_unlock(path->nodes[0]); 4061 free_extent_buffer(path->nodes[0]); 4062 path->nodes[0] = right; 4063 path->slots[0] = 0; 4064 path->slots[1] += 1; 4065 } else { 4066 btrfs_set_header_nritems(right, 0); 4067 insert_ptr(trans, root, path, &disk_key, right->start, 4068 path->slots[1], 1); 4069 btrfs_tree_unlock(path->nodes[0]); 4070 free_extent_buffer(path->nodes[0]); 4071 path->nodes[0] = right; 4072 path->slots[0] = 0; 4073 if (path->slots[1] == 0) 4074 fixup_low_keys(root, path, &disk_key, 1); 4075 } 4076 btrfs_mark_buffer_dirty(right); 4077 return ret; 4078 } 4079 4080 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4081 4082 if (split == 2) { 4083 BUG_ON(num_doubles != 0); 4084 num_doubles++; 4085 goto again; 4086 } 4087 4088 return 0; 4089 4090 push_for_double: 4091 push_for_double_split(trans, root, path, data_size); 4092 tried_avoid_double = 1; 4093 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4094 return 0; 4095 goto again; 4096 } 4097 4098 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4099 struct btrfs_root *root, 4100 struct btrfs_path *path, int ins_len) 4101 { 4102 struct btrfs_key key; 4103 struct extent_buffer *leaf; 4104 struct btrfs_file_extent_item *fi; 4105 u64 extent_len = 0; 4106 u32 item_size; 4107 int ret; 4108 4109 leaf = path->nodes[0]; 4110 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4111 4112 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4113 key.type != BTRFS_EXTENT_CSUM_KEY); 4114 4115 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4116 return 0; 4117 4118 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4119 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4120 fi = btrfs_item_ptr(leaf, path->slots[0], 4121 struct btrfs_file_extent_item); 4122 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4123 } 4124 btrfs_release_path(path); 4125 4126 path->keep_locks = 1; 4127 path->search_for_split = 1; 4128 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4129 path->search_for_split = 0; 4130 if (ret < 0) 4131 goto err; 4132 4133 ret = -EAGAIN; 4134 leaf = path->nodes[0]; 4135 /* if our item isn't there or got smaller, return now */ 4136 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4137 goto err; 4138 4139 /* the leaf has changed, it now has room. return now */ 4140 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4141 goto err; 4142 4143 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4144 fi = btrfs_item_ptr(leaf, path->slots[0], 4145 struct btrfs_file_extent_item); 4146 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4147 goto err; 4148 } 4149 4150 btrfs_set_path_blocking(path); 4151 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4152 if (ret) 4153 goto err; 4154 4155 path->keep_locks = 0; 4156 btrfs_unlock_up_safe(path, 1); 4157 return 0; 4158 err: 4159 path->keep_locks = 0; 4160 return ret; 4161 } 4162 4163 static noinline int split_item(struct btrfs_trans_handle *trans, 4164 struct btrfs_root *root, 4165 struct btrfs_path *path, 4166 struct btrfs_key *new_key, 4167 unsigned long split_offset) 4168 { 4169 struct extent_buffer *leaf; 4170 struct btrfs_item *item; 4171 struct btrfs_item *new_item; 4172 int slot; 4173 char *buf; 4174 u32 nritems; 4175 u32 item_size; 4176 u32 orig_offset; 4177 struct btrfs_disk_key disk_key; 4178 4179 leaf = path->nodes[0]; 4180 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4181 4182 btrfs_set_path_blocking(path); 4183 4184 item = btrfs_item_nr(path->slots[0]); 4185 orig_offset = btrfs_item_offset(leaf, item); 4186 item_size = btrfs_item_size(leaf, item); 4187 4188 buf = kmalloc(item_size, GFP_NOFS); 4189 if (!buf) 4190 return -ENOMEM; 4191 4192 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4193 path->slots[0]), item_size); 4194 4195 slot = path->slots[0] + 1; 4196 nritems = btrfs_header_nritems(leaf); 4197 if (slot != nritems) { 4198 /* shift the items */ 4199 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4200 btrfs_item_nr_offset(slot), 4201 (nritems - slot) * sizeof(struct btrfs_item)); 4202 } 4203 4204 btrfs_cpu_key_to_disk(&disk_key, new_key); 4205 btrfs_set_item_key(leaf, &disk_key, slot); 4206 4207 new_item = btrfs_item_nr(slot); 4208 4209 btrfs_set_item_offset(leaf, new_item, orig_offset); 4210 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4211 4212 btrfs_set_item_offset(leaf, item, 4213 orig_offset + item_size - split_offset); 4214 btrfs_set_item_size(leaf, item, split_offset); 4215 4216 btrfs_set_header_nritems(leaf, nritems + 1); 4217 4218 /* write the data for the start of the original item */ 4219 write_extent_buffer(leaf, buf, 4220 btrfs_item_ptr_offset(leaf, path->slots[0]), 4221 split_offset); 4222 4223 /* write the data for the new item */ 4224 write_extent_buffer(leaf, buf + split_offset, 4225 btrfs_item_ptr_offset(leaf, slot), 4226 item_size - split_offset); 4227 btrfs_mark_buffer_dirty(leaf); 4228 4229 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4230 kfree(buf); 4231 return 0; 4232 } 4233 4234 /* 4235 * This function splits a single item into two items, 4236 * giving 'new_key' to the new item and splitting the 4237 * old one at split_offset (from the start of the item). 4238 * 4239 * The path may be released by this operation. After 4240 * the split, the path is pointing to the old item. The 4241 * new item is going to be in the same node as the old one. 4242 * 4243 * Note, the item being split must be smaller enough to live alone on 4244 * a tree block with room for one extra struct btrfs_item 4245 * 4246 * This allows us to split the item in place, keeping a lock on the 4247 * leaf the entire time. 4248 */ 4249 int btrfs_split_item(struct btrfs_trans_handle *trans, 4250 struct btrfs_root *root, 4251 struct btrfs_path *path, 4252 struct btrfs_key *new_key, 4253 unsigned long split_offset) 4254 { 4255 int ret; 4256 ret = setup_leaf_for_split(trans, root, path, 4257 sizeof(struct btrfs_item)); 4258 if (ret) 4259 return ret; 4260 4261 ret = split_item(trans, root, path, new_key, split_offset); 4262 return ret; 4263 } 4264 4265 /* 4266 * This function duplicate a item, giving 'new_key' to the new item. 4267 * It guarantees both items live in the same tree leaf and the new item 4268 * is contiguous with the original item. 4269 * 4270 * This allows us to split file extent in place, keeping a lock on the 4271 * leaf the entire time. 4272 */ 4273 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4274 struct btrfs_root *root, 4275 struct btrfs_path *path, 4276 struct btrfs_key *new_key) 4277 { 4278 struct extent_buffer *leaf; 4279 int ret; 4280 u32 item_size; 4281 4282 leaf = path->nodes[0]; 4283 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4284 ret = setup_leaf_for_split(trans, root, path, 4285 item_size + sizeof(struct btrfs_item)); 4286 if (ret) 4287 return ret; 4288 4289 path->slots[0]++; 4290 setup_items_for_insert(root, path, new_key, &item_size, 4291 item_size, item_size + 4292 sizeof(struct btrfs_item), 1); 4293 leaf = path->nodes[0]; 4294 memcpy_extent_buffer(leaf, 4295 btrfs_item_ptr_offset(leaf, path->slots[0]), 4296 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4297 item_size); 4298 return 0; 4299 } 4300 4301 /* 4302 * make the item pointed to by the path smaller. new_size indicates 4303 * how small to make it, and from_end tells us if we just chop bytes 4304 * off the end of the item or if we shift the item to chop bytes off 4305 * the front. 4306 */ 4307 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4308 u32 new_size, int from_end) 4309 { 4310 int slot; 4311 struct extent_buffer *leaf; 4312 struct btrfs_item *item; 4313 u32 nritems; 4314 unsigned int data_end; 4315 unsigned int old_data_start; 4316 unsigned int old_size; 4317 unsigned int size_diff; 4318 int i; 4319 struct btrfs_map_token token; 4320 4321 btrfs_init_map_token(&token); 4322 4323 leaf = path->nodes[0]; 4324 slot = path->slots[0]; 4325 4326 old_size = btrfs_item_size_nr(leaf, slot); 4327 if (old_size == new_size) 4328 return; 4329 4330 nritems = btrfs_header_nritems(leaf); 4331 data_end = leaf_data_end(root, leaf); 4332 4333 old_data_start = btrfs_item_offset_nr(leaf, slot); 4334 4335 size_diff = old_size - new_size; 4336 4337 BUG_ON(slot < 0); 4338 BUG_ON(slot >= nritems); 4339 4340 /* 4341 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4342 */ 4343 /* first correct the data pointers */ 4344 for (i = slot; i < nritems; i++) { 4345 u32 ioff; 4346 item = btrfs_item_nr(i); 4347 4348 ioff = btrfs_token_item_offset(leaf, item, &token); 4349 btrfs_set_token_item_offset(leaf, item, 4350 ioff + size_diff, &token); 4351 } 4352 4353 /* shift the data */ 4354 if (from_end) { 4355 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4356 data_end + size_diff, btrfs_leaf_data(leaf) + 4357 data_end, old_data_start + new_size - data_end); 4358 } else { 4359 struct btrfs_disk_key disk_key; 4360 u64 offset; 4361 4362 btrfs_item_key(leaf, &disk_key, slot); 4363 4364 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4365 unsigned long ptr; 4366 struct btrfs_file_extent_item *fi; 4367 4368 fi = btrfs_item_ptr(leaf, slot, 4369 struct btrfs_file_extent_item); 4370 fi = (struct btrfs_file_extent_item *)( 4371 (unsigned long)fi - size_diff); 4372 4373 if (btrfs_file_extent_type(leaf, fi) == 4374 BTRFS_FILE_EXTENT_INLINE) { 4375 ptr = btrfs_item_ptr_offset(leaf, slot); 4376 memmove_extent_buffer(leaf, ptr, 4377 (unsigned long)fi, 4378 offsetof(struct btrfs_file_extent_item, 4379 disk_bytenr)); 4380 } 4381 } 4382 4383 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4384 data_end + size_diff, btrfs_leaf_data(leaf) + 4385 data_end, old_data_start - data_end); 4386 4387 offset = btrfs_disk_key_offset(&disk_key); 4388 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4389 btrfs_set_item_key(leaf, &disk_key, slot); 4390 if (slot == 0) 4391 fixup_low_keys(root, path, &disk_key, 1); 4392 } 4393 4394 item = btrfs_item_nr(slot); 4395 btrfs_set_item_size(leaf, item, new_size); 4396 btrfs_mark_buffer_dirty(leaf); 4397 4398 if (btrfs_leaf_free_space(root, leaf) < 0) { 4399 btrfs_print_leaf(root, leaf); 4400 BUG(); 4401 } 4402 } 4403 4404 /* 4405 * make the item pointed to by the path bigger, data_size is the added size. 4406 */ 4407 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4408 u32 data_size) 4409 { 4410 int slot; 4411 struct extent_buffer *leaf; 4412 struct btrfs_item *item; 4413 u32 nritems; 4414 unsigned int data_end; 4415 unsigned int old_data; 4416 unsigned int old_size; 4417 int i; 4418 struct btrfs_map_token token; 4419 4420 btrfs_init_map_token(&token); 4421 4422 leaf = path->nodes[0]; 4423 4424 nritems = btrfs_header_nritems(leaf); 4425 data_end = leaf_data_end(root, leaf); 4426 4427 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4428 btrfs_print_leaf(root, leaf); 4429 BUG(); 4430 } 4431 slot = path->slots[0]; 4432 old_data = btrfs_item_end_nr(leaf, slot); 4433 4434 BUG_ON(slot < 0); 4435 if (slot >= nritems) { 4436 btrfs_print_leaf(root, leaf); 4437 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4438 slot, nritems); 4439 BUG_ON(1); 4440 } 4441 4442 /* 4443 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4444 */ 4445 /* first correct the data pointers */ 4446 for (i = slot; i < nritems; i++) { 4447 u32 ioff; 4448 item = btrfs_item_nr(i); 4449 4450 ioff = btrfs_token_item_offset(leaf, item, &token); 4451 btrfs_set_token_item_offset(leaf, item, 4452 ioff - data_size, &token); 4453 } 4454 4455 /* shift the data */ 4456 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4457 data_end - data_size, btrfs_leaf_data(leaf) + 4458 data_end, old_data - data_end); 4459 4460 data_end = old_data; 4461 old_size = btrfs_item_size_nr(leaf, slot); 4462 item = btrfs_item_nr(slot); 4463 btrfs_set_item_size(leaf, item, old_size + data_size); 4464 btrfs_mark_buffer_dirty(leaf); 4465 4466 if (btrfs_leaf_free_space(root, leaf) < 0) { 4467 btrfs_print_leaf(root, leaf); 4468 BUG(); 4469 } 4470 } 4471 4472 /* 4473 * this is a helper for btrfs_insert_empty_items, the main goal here is 4474 * to save stack depth by doing the bulk of the work in a function 4475 * that doesn't call btrfs_search_slot 4476 */ 4477 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4478 struct btrfs_key *cpu_key, u32 *data_size, 4479 u32 total_data, u32 total_size, int nr) 4480 { 4481 struct btrfs_item *item; 4482 int i; 4483 u32 nritems; 4484 unsigned int data_end; 4485 struct btrfs_disk_key disk_key; 4486 struct extent_buffer *leaf; 4487 int slot; 4488 struct btrfs_map_token token; 4489 4490 btrfs_init_map_token(&token); 4491 4492 leaf = path->nodes[0]; 4493 slot = path->slots[0]; 4494 4495 nritems = btrfs_header_nritems(leaf); 4496 data_end = leaf_data_end(root, leaf); 4497 4498 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4499 btrfs_print_leaf(root, leaf); 4500 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4501 total_size, btrfs_leaf_free_space(root, leaf)); 4502 BUG(); 4503 } 4504 4505 if (slot != nritems) { 4506 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4507 4508 if (old_data < data_end) { 4509 btrfs_print_leaf(root, leaf); 4510 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4511 slot, old_data, data_end); 4512 BUG_ON(1); 4513 } 4514 /* 4515 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4516 */ 4517 /* first correct the data pointers */ 4518 for (i = slot; i < nritems; i++) { 4519 u32 ioff; 4520 4521 item = btrfs_item_nr( i); 4522 ioff = btrfs_token_item_offset(leaf, item, &token); 4523 btrfs_set_token_item_offset(leaf, item, 4524 ioff - total_data, &token); 4525 } 4526 /* shift the items */ 4527 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4528 btrfs_item_nr_offset(slot), 4529 (nritems - slot) * sizeof(struct btrfs_item)); 4530 4531 /* shift the data */ 4532 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4533 data_end - total_data, btrfs_leaf_data(leaf) + 4534 data_end, old_data - data_end); 4535 data_end = old_data; 4536 } 4537 4538 /* setup the item for the new data */ 4539 for (i = 0; i < nr; i++) { 4540 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4541 btrfs_set_item_key(leaf, &disk_key, slot + i); 4542 item = btrfs_item_nr(slot + i); 4543 btrfs_set_token_item_offset(leaf, item, 4544 data_end - data_size[i], &token); 4545 data_end -= data_size[i]; 4546 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4547 } 4548 4549 btrfs_set_header_nritems(leaf, nritems + nr); 4550 4551 if (slot == 0) { 4552 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4553 fixup_low_keys(root, path, &disk_key, 1); 4554 } 4555 btrfs_unlock_up_safe(path, 1); 4556 btrfs_mark_buffer_dirty(leaf); 4557 4558 if (btrfs_leaf_free_space(root, leaf) < 0) { 4559 btrfs_print_leaf(root, leaf); 4560 BUG(); 4561 } 4562 } 4563 4564 /* 4565 * Given a key and some data, insert items into the tree. 4566 * This does all the path init required, making room in the tree if needed. 4567 */ 4568 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4569 struct btrfs_root *root, 4570 struct btrfs_path *path, 4571 struct btrfs_key *cpu_key, u32 *data_size, 4572 int nr) 4573 { 4574 int ret = 0; 4575 int slot; 4576 int i; 4577 u32 total_size = 0; 4578 u32 total_data = 0; 4579 4580 for (i = 0; i < nr; i++) 4581 total_data += data_size[i]; 4582 4583 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4584 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4585 if (ret == 0) 4586 return -EEXIST; 4587 if (ret < 0) 4588 return ret; 4589 4590 slot = path->slots[0]; 4591 BUG_ON(slot < 0); 4592 4593 setup_items_for_insert(root, path, cpu_key, data_size, 4594 total_data, total_size, nr); 4595 return 0; 4596 } 4597 4598 /* 4599 * Given a key and some data, insert an item into the tree. 4600 * This does all the path init required, making room in the tree if needed. 4601 */ 4602 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4603 *root, struct btrfs_key *cpu_key, void *data, u32 4604 data_size) 4605 { 4606 int ret = 0; 4607 struct btrfs_path *path; 4608 struct extent_buffer *leaf; 4609 unsigned long ptr; 4610 4611 path = btrfs_alloc_path(); 4612 if (!path) 4613 return -ENOMEM; 4614 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4615 if (!ret) { 4616 leaf = path->nodes[0]; 4617 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4618 write_extent_buffer(leaf, data, ptr, data_size); 4619 btrfs_mark_buffer_dirty(leaf); 4620 } 4621 btrfs_free_path(path); 4622 return ret; 4623 } 4624 4625 /* 4626 * delete the pointer from a given node. 4627 * 4628 * the tree should have been previously balanced so the deletion does not 4629 * empty a node. 4630 */ 4631 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4632 int level, int slot) 4633 { 4634 struct extent_buffer *parent = path->nodes[level]; 4635 u32 nritems; 4636 int ret; 4637 4638 nritems = btrfs_header_nritems(parent); 4639 if (slot != nritems - 1) { 4640 if (level) 4641 tree_mod_log_eb_move(root->fs_info, parent, slot, 4642 slot + 1, nritems - slot - 1); 4643 memmove_extent_buffer(parent, 4644 btrfs_node_key_ptr_offset(slot), 4645 btrfs_node_key_ptr_offset(slot + 1), 4646 sizeof(struct btrfs_key_ptr) * 4647 (nritems - slot - 1)); 4648 } else if (level) { 4649 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4650 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4651 BUG_ON(ret < 0); 4652 } 4653 4654 nritems--; 4655 btrfs_set_header_nritems(parent, nritems); 4656 if (nritems == 0 && parent == root->node) { 4657 BUG_ON(btrfs_header_level(root->node) != 1); 4658 /* just turn the root into a leaf and break */ 4659 btrfs_set_header_level(root->node, 0); 4660 } else if (slot == 0) { 4661 struct btrfs_disk_key disk_key; 4662 4663 btrfs_node_key(parent, &disk_key, 0); 4664 fixup_low_keys(root, path, &disk_key, level + 1); 4665 } 4666 btrfs_mark_buffer_dirty(parent); 4667 } 4668 4669 /* 4670 * a helper function to delete the leaf pointed to by path->slots[1] and 4671 * path->nodes[1]. 4672 * 4673 * This deletes the pointer in path->nodes[1] and frees the leaf 4674 * block extent. zero is returned if it all worked out, < 0 otherwise. 4675 * 4676 * The path must have already been setup for deleting the leaf, including 4677 * all the proper balancing. path->nodes[1] must be locked. 4678 */ 4679 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4680 struct btrfs_root *root, 4681 struct btrfs_path *path, 4682 struct extent_buffer *leaf) 4683 { 4684 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4685 del_ptr(root, path, 1, path->slots[1]); 4686 4687 /* 4688 * btrfs_free_extent is expensive, we want to make sure we 4689 * aren't holding any locks when we call it 4690 */ 4691 btrfs_unlock_up_safe(path, 0); 4692 4693 root_sub_used(root, leaf->len); 4694 4695 extent_buffer_get(leaf); 4696 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4697 free_extent_buffer_stale(leaf); 4698 } 4699 /* 4700 * delete the item at the leaf level in path. If that empties 4701 * the leaf, remove it from the tree 4702 */ 4703 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4704 struct btrfs_path *path, int slot, int nr) 4705 { 4706 struct extent_buffer *leaf; 4707 struct btrfs_item *item; 4708 int last_off; 4709 int dsize = 0; 4710 int ret = 0; 4711 int wret; 4712 int i; 4713 u32 nritems; 4714 struct btrfs_map_token token; 4715 4716 btrfs_init_map_token(&token); 4717 4718 leaf = path->nodes[0]; 4719 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4720 4721 for (i = 0; i < nr; i++) 4722 dsize += btrfs_item_size_nr(leaf, slot + i); 4723 4724 nritems = btrfs_header_nritems(leaf); 4725 4726 if (slot + nr != nritems) { 4727 int data_end = leaf_data_end(root, leaf); 4728 4729 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4730 data_end + dsize, 4731 btrfs_leaf_data(leaf) + data_end, 4732 last_off - data_end); 4733 4734 for (i = slot + nr; i < nritems; i++) { 4735 u32 ioff; 4736 4737 item = btrfs_item_nr(i); 4738 ioff = btrfs_token_item_offset(leaf, item, &token); 4739 btrfs_set_token_item_offset(leaf, item, 4740 ioff + dsize, &token); 4741 } 4742 4743 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4744 btrfs_item_nr_offset(slot + nr), 4745 sizeof(struct btrfs_item) * 4746 (nritems - slot - nr)); 4747 } 4748 btrfs_set_header_nritems(leaf, nritems - nr); 4749 nritems -= nr; 4750 4751 /* delete the leaf if we've emptied it */ 4752 if (nritems == 0) { 4753 if (leaf == root->node) { 4754 btrfs_set_header_level(leaf, 0); 4755 } else { 4756 btrfs_set_path_blocking(path); 4757 clean_tree_block(trans, root, leaf); 4758 btrfs_del_leaf(trans, root, path, leaf); 4759 } 4760 } else { 4761 int used = leaf_space_used(leaf, 0, nritems); 4762 if (slot == 0) { 4763 struct btrfs_disk_key disk_key; 4764 4765 btrfs_item_key(leaf, &disk_key, 0); 4766 fixup_low_keys(root, path, &disk_key, 1); 4767 } 4768 4769 /* delete the leaf if it is mostly empty */ 4770 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4771 /* push_leaf_left fixes the path. 4772 * make sure the path still points to our leaf 4773 * for possible call to del_ptr below 4774 */ 4775 slot = path->slots[1]; 4776 extent_buffer_get(leaf); 4777 4778 btrfs_set_path_blocking(path); 4779 wret = push_leaf_left(trans, root, path, 1, 1, 4780 1, (u32)-1); 4781 if (wret < 0 && wret != -ENOSPC) 4782 ret = wret; 4783 4784 if (path->nodes[0] == leaf && 4785 btrfs_header_nritems(leaf)) { 4786 wret = push_leaf_right(trans, root, path, 1, 4787 1, 1, 0); 4788 if (wret < 0 && wret != -ENOSPC) 4789 ret = wret; 4790 } 4791 4792 if (btrfs_header_nritems(leaf) == 0) { 4793 path->slots[1] = slot; 4794 btrfs_del_leaf(trans, root, path, leaf); 4795 free_extent_buffer(leaf); 4796 ret = 0; 4797 } else { 4798 /* if we're still in the path, make sure 4799 * we're dirty. Otherwise, one of the 4800 * push_leaf functions must have already 4801 * dirtied this buffer 4802 */ 4803 if (path->nodes[0] == leaf) 4804 btrfs_mark_buffer_dirty(leaf); 4805 free_extent_buffer(leaf); 4806 } 4807 } else { 4808 btrfs_mark_buffer_dirty(leaf); 4809 } 4810 } 4811 return ret; 4812 } 4813 4814 /* 4815 * search the tree again to find a leaf with lesser keys 4816 * returns 0 if it found something or 1 if there are no lesser leaves. 4817 * returns < 0 on io errors. 4818 * 4819 * This may release the path, and so you may lose any locks held at the 4820 * time you call it. 4821 */ 4822 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4823 { 4824 struct btrfs_key key; 4825 struct btrfs_disk_key found_key; 4826 int ret; 4827 4828 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4829 4830 if (key.offset > 0) { 4831 key.offset--; 4832 } else if (key.type > 0) { 4833 key.type--; 4834 key.offset = (u64)-1; 4835 } else if (key.objectid > 0) { 4836 key.objectid--; 4837 key.type = (u8)-1; 4838 key.offset = (u64)-1; 4839 } else { 4840 return 1; 4841 } 4842 4843 btrfs_release_path(path); 4844 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4845 if (ret < 0) 4846 return ret; 4847 btrfs_item_key(path->nodes[0], &found_key, 0); 4848 ret = comp_keys(&found_key, &key); 4849 if (ret < 0) 4850 return 0; 4851 return 1; 4852 } 4853 4854 /* 4855 * A helper function to walk down the tree starting at min_key, and looking 4856 * for nodes or leaves that are have a minimum transaction id. 4857 * This is used by the btree defrag code, and tree logging 4858 * 4859 * This does not cow, but it does stuff the starting key it finds back 4860 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4861 * key and get a writable path. 4862 * 4863 * This does lock as it descends, and path->keep_locks should be set 4864 * to 1 by the caller. 4865 * 4866 * This honors path->lowest_level to prevent descent past a given level 4867 * of the tree. 4868 * 4869 * min_trans indicates the oldest transaction that you are interested 4870 * in walking through. Any nodes or leaves older than min_trans are 4871 * skipped over (without reading them). 4872 * 4873 * returns zero if something useful was found, < 0 on error and 1 if there 4874 * was nothing in the tree that matched the search criteria. 4875 */ 4876 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4877 struct btrfs_path *path, 4878 u64 min_trans) 4879 { 4880 struct extent_buffer *cur; 4881 struct btrfs_key found_key; 4882 int slot; 4883 int sret; 4884 u32 nritems; 4885 int level; 4886 int ret = 1; 4887 4888 WARN_ON(!path->keep_locks); 4889 again: 4890 cur = btrfs_read_lock_root_node(root); 4891 level = btrfs_header_level(cur); 4892 WARN_ON(path->nodes[level]); 4893 path->nodes[level] = cur; 4894 path->locks[level] = BTRFS_READ_LOCK; 4895 4896 if (btrfs_header_generation(cur) < min_trans) { 4897 ret = 1; 4898 goto out; 4899 } 4900 while (1) { 4901 nritems = btrfs_header_nritems(cur); 4902 level = btrfs_header_level(cur); 4903 sret = bin_search(cur, min_key, level, &slot); 4904 4905 /* at the lowest level, we're done, setup the path and exit */ 4906 if (level == path->lowest_level) { 4907 if (slot >= nritems) 4908 goto find_next_key; 4909 ret = 0; 4910 path->slots[level] = slot; 4911 btrfs_item_key_to_cpu(cur, &found_key, slot); 4912 goto out; 4913 } 4914 if (sret && slot > 0) 4915 slot--; 4916 /* 4917 * check this node pointer against the min_trans parameters. 4918 * If it is too old, old, skip to the next one. 4919 */ 4920 while (slot < nritems) { 4921 u64 gen; 4922 4923 gen = btrfs_node_ptr_generation(cur, slot); 4924 if (gen < min_trans) { 4925 slot++; 4926 continue; 4927 } 4928 break; 4929 } 4930 find_next_key: 4931 /* 4932 * we didn't find a candidate key in this node, walk forward 4933 * and find another one 4934 */ 4935 if (slot >= nritems) { 4936 path->slots[level] = slot; 4937 btrfs_set_path_blocking(path); 4938 sret = btrfs_find_next_key(root, path, min_key, level, 4939 min_trans); 4940 if (sret == 0) { 4941 btrfs_release_path(path); 4942 goto again; 4943 } else { 4944 goto out; 4945 } 4946 } 4947 /* save our key for returning back */ 4948 btrfs_node_key_to_cpu(cur, &found_key, slot); 4949 path->slots[level] = slot; 4950 if (level == path->lowest_level) { 4951 ret = 0; 4952 unlock_up(path, level, 1, 0, NULL); 4953 goto out; 4954 } 4955 btrfs_set_path_blocking(path); 4956 cur = read_node_slot(root, cur, slot); 4957 BUG_ON(!cur); /* -ENOMEM */ 4958 4959 btrfs_tree_read_lock(cur); 4960 4961 path->locks[level - 1] = BTRFS_READ_LOCK; 4962 path->nodes[level - 1] = cur; 4963 unlock_up(path, level, 1, 0, NULL); 4964 btrfs_clear_path_blocking(path, NULL, 0); 4965 } 4966 out: 4967 if (ret == 0) 4968 memcpy(min_key, &found_key, sizeof(found_key)); 4969 btrfs_set_path_blocking(path); 4970 return ret; 4971 } 4972 4973 static void tree_move_down(struct btrfs_root *root, 4974 struct btrfs_path *path, 4975 int *level, int root_level) 4976 { 4977 BUG_ON(*level == 0); 4978 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 4979 path->slots[*level]); 4980 path->slots[*level - 1] = 0; 4981 (*level)--; 4982 } 4983 4984 static int tree_move_next_or_upnext(struct btrfs_root *root, 4985 struct btrfs_path *path, 4986 int *level, int root_level) 4987 { 4988 int ret = 0; 4989 int nritems; 4990 nritems = btrfs_header_nritems(path->nodes[*level]); 4991 4992 path->slots[*level]++; 4993 4994 while (path->slots[*level] >= nritems) { 4995 if (*level == root_level) 4996 return -1; 4997 4998 /* move upnext */ 4999 path->slots[*level] = 0; 5000 free_extent_buffer(path->nodes[*level]); 5001 path->nodes[*level] = NULL; 5002 (*level)++; 5003 path->slots[*level]++; 5004 5005 nritems = btrfs_header_nritems(path->nodes[*level]); 5006 ret = 1; 5007 } 5008 return ret; 5009 } 5010 5011 /* 5012 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5013 * or down. 5014 */ 5015 static int tree_advance(struct btrfs_root *root, 5016 struct btrfs_path *path, 5017 int *level, int root_level, 5018 int allow_down, 5019 struct btrfs_key *key) 5020 { 5021 int ret; 5022 5023 if (*level == 0 || !allow_down) { 5024 ret = tree_move_next_or_upnext(root, path, level, root_level); 5025 } else { 5026 tree_move_down(root, path, level, root_level); 5027 ret = 0; 5028 } 5029 if (ret >= 0) { 5030 if (*level == 0) 5031 btrfs_item_key_to_cpu(path->nodes[*level], key, 5032 path->slots[*level]); 5033 else 5034 btrfs_node_key_to_cpu(path->nodes[*level], key, 5035 path->slots[*level]); 5036 } 5037 return ret; 5038 } 5039 5040 static int tree_compare_item(struct btrfs_root *left_root, 5041 struct btrfs_path *left_path, 5042 struct btrfs_path *right_path, 5043 char *tmp_buf) 5044 { 5045 int cmp; 5046 int len1, len2; 5047 unsigned long off1, off2; 5048 5049 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5050 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5051 if (len1 != len2) 5052 return 1; 5053 5054 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5055 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5056 right_path->slots[0]); 5057 5058 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5059 5060 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5061 if (cmp) 5062 return 1; 5063 return 0; 5064 } 5065 5066 #define ADVANCE 1 5067 #define ADVANCE_ONLY_NEXT -1 5068 5069 /* 5070 * This function compares two trees and calls the provided callback for 5071 * every changed/new/deleted item it finds. 5072 * If shared tree blocks are encountered, whole subtrees are skipped, making 5073 * the compare pretty fast on snapshotted subvolumes. 5074 * 5075 * This currently works on commit roots only. As commit roots are read only, 5076 * we don't do any locking. The commit roots are protected with transactions. 5077 * Transactions are ended and rejoined when a commit is tried in between. 5078 * 5079 * This function checks for modifications done to the trees while comparing. 5080 * If it detects a change, it aborts immediately. 5081 */ 5082 int btrfs_compare_trees(struct btrfs_root *left_root, 5083 struct btrfs_root *right_root, 5084 btrfs_changed_cb_t changed_cb, void *ctx) 5085 { 5086 int ret; 5087 int cmp; 5088 struct btrfs_trans_handle *trans = NULL; 5089 struct btrfs_path *left_path = NULL; 5090 struct btrfs_path *right_path = NULL; 5091 struct btrfs_key left_key; 5092 struct btrfs_key right_key; 5093 char *tmp_buf = NULL; 5094 int left_root_level; 5095 int right_root_level; 5096 int left_level; 5097 int right_level; 5098 int left_end_reached; 5099 int right_end_reached; 5100 int advance_left; 5101 int advance_right; 5102 u64 left_blockptr; 5103 u64 right_blockptr; 5104 u64 left_start_ctransid; 5105 u64 right_start_ctransid; 5106 u64 ctransid; 5107 5108 left_path = btrfs_alloc_path(); 5109 if (!left_path) { 5110 ret = -ENOMEM; 5111 goto out; 5112 } 5113 right_path = btrfs_alloc_path(); 5114 if (!right_path) { 5115 ret = -ENOMEM; 5116 goto out; 5117 } 5118 5119 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5120 if (!tmp_buf) { 5121 ret = -ENOMEM; 5122 goto out; 5123 } 5124 5125 left_path->search_commit_root = 1; 5126 left_path->skip_locking = 1; 5127 right_path->search_commit_root = 1; 5128 right_path->skip_locking = 1; 5129 5130 spin_lock(&left_root->root_item_lock); 5131 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5132 spin_unlock(&left_root->root_item_lock); 5133 5134 spin_lock(&right_root->root_item_lock); 5135 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5136 spin_unlock(&right_root->root_item_lock); 5137 5138 trans = btrfs_join_transaction(left_root); 5139 if (IS_ERR(trans)) { 5140 ret = PTR_ERR(trans); 5141 trans = NULL; 5142 goto out; 5143 } 5144 5145 /* 5146 * Strategy: Go to the first items of both trees. Then do 5147 * 5148 * If both trees are at level 0 5149 * Compare keys of current items 5150 * If left < right treat left item as new, advance left tree 5151 * and repeat 5152 * If left > right treat right item as deleted, advance right tree 5153 * and repeat 5154 * If left == right do deep compare of items, treat as changed if 5155 * needed, advance both trees and repeat 5156 * If both trees are at the same level but not at level 0 5157 * Compare keys of current nodes/leafs 5158 * If left < right advance left tree and repeat 5159 * If left > right advance right tree and repeat 5160 * If left == right compare blockptrs of the next nodes/leafs 5161 * If they match advance both trees but stay at the same level 5162 * and repeat 5163 * If they don't match advance both trees while allowing to go 5164 * deeper and repeat 5165 * If tree levels are different 5166 * Advance the tree that needs it and repeat 5167 * 5168 * Advancing a tree means: 5169 * If we are at level 0, try to go to the next slot. If that's not 5170 * possible, go one level up and repeat. Stop when we found a level 5171 * where we could go to the next slot. We may at this point be on a 5172 * node or a leaf. 5173 * 5174 * If we are not at level 0 and not on shared tree blocks, go one 5175 * level deeper. 5176 * 5177 * If we are not at level 0 and on shared tree blocks, go one slot to 5178 * the right if possible or go up and right. 5179 */ 5180 5181 left_level = btrfs_header_level(left_root->commit_root); 5182 left_root_level = left_level; 5183 left_path->nodes[left_level] = left_root->commit_root; 5184 extent_buffer_get(left_path->nodes[left_level]); 5185 5186 right_level = btrfs_header_level(right_root->commit_root); 5187 right_root_level = right_level; 5188 right_path->nodes[right_level] = right_root->commit_root; 5189 extent_buffer_get(right_path->nodes[right_level]); 5190 5191 if (left_level == 0) 5192 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5193 &left_key, left_path->slots[left_level]); 5194 else 5195 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5196 &left_key, left_path->slots[left_level]); 5197 if (right_level == 0) 5198 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5199 &right_key, right_path->slots[right_level]); 5200 else 5201 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5202 &right_key, right_path->slots[right_level]); 5203 5204 left_end_reached = right_end_reached = 0; 5205 advance_left = advance_right = 0; 5206 5207 while (1) { 5208 /* 5209 * We need to make sure the transaction does not get committed 5210 * while we do anything on commit roots. This means, we need to 5211 * join and leave transactions for every item that we process. 5212 */ 5213 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5214 btrfs_release_path(left_path); 5215 btrfs_release_path(right_path); 5216 5217 ret = btrfs_end_transaction(trans, left_root); 5218 trans = NULL; 5219 if (ret < 0) 5220 goto out; 5221 } 5222 /* now rejoin the transaction */ 5223 if (!trans) { 5224 trans = btrfs_join_transaction(left_root); 5225 if (IS_ERR(trans)) { 5226 ret = PTR_ERR(trans); 5227 trans = NULL; 5228 goto out; 5229 } 5230 5231 spin_lock(&left_root->root_item_lock); 5232 ctransid = btrfs_root_ctransid(&left_root->root_item); 5233 spin_unlock(&left_root->root_item_lock); 5234 if (ctransid != left_start_ctransid) 5235 left_start_ctransid = 0; 5236 5237 spin_lock(&right_root->root_item_lock); 5238 ctransid = btrfs_root_ctransid(&right_root->root_item); 5239 spin_unlock(&right_root->root_item_lock); 5240 if (ctransid != right_start_ctransid) 5241 right_start_ctransid = 0; 5242 5243 if (!left_start_ctransid || !right_start_ctransid) { 5244 WARN(1, KERN_WARNING 5245 "btrfs: btrfs_compare_tree detected " 5246 "a change in one of the trees while " 5247 "iterating. This is probably a " 5248 "bug.\n"); 5249 ret = -EIO; 5250 goto out; 5251 } 5252 5253 /* 5254 * the commit root may have changed, so start again 5255 * where we stopped 5256 */ 5257 left_path->lowest_level = left_level; 5258 right_path->lowest_level = right_level; 5259 ret = btrfs_search_slot(NULL, left_root, 5260 &left_key, left_path, 0, 0); 5261 if (ret < 0) 5262 goto out; 5263 ret = btrfs_search_slot(NULL, right_root, 5264 &right_key, right_path, 0, 0); 5265 if (ret < 0) 5266 goto out; 5267 } 5268 5269 if (advance_left && !left_end_reached) { 5270 ret = tree_advance(left_root, left_path, &left_level, 5271 left_root_level, 5272 advance_left != ADVANCE_ONLY_NEXT, 5273 &left_key); 5274 if (ret < 0) 5275 left_end_reached = ADVANCE; 5276 advance_left = 0; 5277 } 5278 if (advance_right && !right_end_reached) { 5279 ret = tree_advance(right_root, right_path, &right_level, 5280 right_root_level, 5281 advance_right != ADVANCE_ONLY_NEXT, 5282 &right_key); 5283 if (ret < 0) 5284 right_end_reached = ADVANCE; 5285 advance_right = 0; 5286 } 5287 5288 if (left_end_reached && right_end_reached) { 5289 ret = 0; 5290 goto out; 5291 } else if (left_end_reached) { 5292 if (right_level == 0) { 5293 ret = changed_cb(left_root, right_root, 5294 left_path, right_path, 5295 &right_key, 5296 BTRFS_COMPARE_TREE_DELETED, 5297 ctx); 5298 if (ret < 0) 5299 goto out; 5300 } 5301 advance_right = ADVANCE; 5302 continue; 5303 } else if (right_end_reached) { 5304 if (left_level == 0) { 5305 ret = changed_cb(left_root, right_root, 5306 left_path, right_path, 5307 &left_key, 5308 BTRFS_COMPARE_TREE_NEW, 5309 ctx); 5310 if (ret < 0) 5311 goto out; 5312 } 5313 advance_left = ADVANCE; 5314 continue; 5315 } 5316 5317 if (left_level == 0 && right_level == 0) { 5318 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5319 if (cmp < 0) { 5320 ret = changed_cb(left_root, right_root, 5321 left_path, right_path, 5322 &left_key, 5323 BTRFS_COMPARE_TREE_NEW, 5324 ctx); 5325 if (ret < 0) 5326 goto out; 5327 advance_left = ADVANCE; 5328 } else if (cmp > 0) { 5329 ret = changed_cb(left_root, right_root, 5330 left_path, right_path, 5331 &right_key, 5332 BTRFS_COMPARE_TREE_DELETED, 5333 ctx); 5334 if (ret < 0) 5335 goto out; 5336 advance_right = ADVANCE; 5337 } else { 5338 enum btrfs_compare_tree_result cmp; 5339 5340 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5341 ret = tree_compare_item(left_root, left_path, 5342 right_path, tmp_buf); 5343 if (ret) 5344 cmp = BTRFS_COMPARE_TREE_CHANGED; 5345 else 5346 cmp = BTRFS_COMPARE_TREE_SAME; 5347 ret = changed_cb(left_root, right_root, 5348 left_path, right_path, 5349 &left_key, cmp, ctx); 5350 if (ret < 0) 5351 goto out; 5352 advance_left = ADVANCE; 5353 advance_right = ADVANCE; 5354 } 5355 } else if (left_level == right_level) { 5356 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5357 if (cmp < 0) { 5358 advance_left = ADVANCE; 5359 } else if (cmp > 0) { 5360 advance_right = ADVANCE; 5361 } else { 5362 left_blockptr = btrfs_node_blockptr( 5363 left_path->nodes[left_level], 5364 left_path->slots[left_level]); 5365 right_blockptr = btrfs_node_blockptr( 5366 right_path->nodes[right_level], 5367 right_path->slots[right_level]); 5368 if (left_blockptr == right_blockptr) { 5369 /* 5370 * As we're on a shared block, don't 5371 * allow to go deeper. 5372 */ 5373 advance_left = ADVANCE_ONLY_NEXT; 5374 advance_right = ADVANCE_ONLY_NEXT; 5375 } else { 5376 advance_left = ADVANCE; 5377 advance_right = ADVANCE; 5378 } 5379 } 5380 } else if (left_level < right_level) { 5381 advance_right = ADVANCE; 5382 } else { 5383 advance_left = ADVANCE; 5384 } 5385 } 5386 5387 out: 5388 btrfs_free_path(left_path); 5389 btrfs_free_path(right_path); 5390 kfree(tmp_buf); 5391 5392 if (trans) { 5393 if (!ret) 5394 ret = btrfs_end_transaction(trans, left_root); 5395 else 5396 btrfs_end_transaction(trans, left_root); 5397 } 5398 5399 return ret; 5400 } 5401 5402 /* 5403 * this is similar to btrfs_next_leaf, but does not try to preserve 5404 * and fixup the path. It looks for and returns the next key in the 5405 * tree based on the current path and the min_trans parameters. 5406 * 5407 * 0 is returned if another key is found, < 0 if there are any errors 5408 * and 1 is returned if there are no higher keys in the tree 5409 * 5410 * path->keep_locks should be set to 1 on the search made before 5411 * calling this function. 5412 */ 5413 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5414 struct btrfs_key *key, int level, u64 min_trans) 5415 { 5416 int slot; 5417 struct extent_buffer *c; 5418 5419 WARN_ON(!path->keep_locks); 5420 while (level < BTRFS_MAX_LEVEL) { 5421 if (!path->nodes[level]) 5422 return 1; 5423 5424 slot = path->slots[level] + 1; 5425 c = path->nodes[level]; 5426 next: 5427 if (slot >= btrfs_header_nritems(c)) { 5428 int ret; 5429 int orig_lowest; 5430 struct btrfs_key cur_key; 5431 if (level + 1 >= BTRFS_MAX_LEVEL || 5432 !path->nodes[level + 1]) 5433 return 1; 5434 5435 if (path->locks[level + 1]) { 5436 level++; 5437 continue; 5438 } 5439 5440 slot = btrfs_header_nritems(c) - 1; 5441 if (level == 0) 5442 btrfs_item_key_to_cpu(c, &cur_key, slot); 5443 else 5444 btrfs_node_key_to_cpu(c, &cur_key, slot); 5445 5446 orig_lowest = path->lowest_level; 5447 btrfs_release_path(path); 5448 path->lowest_level = level; 5449 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5450 0, 0); 5451 path->lowest_level = orig_lowest; 5452 if (ret < 0) 5453 return ret; 5454 5455 c = path->nodes[level]; 5456 slot = path->slots[level]; 5457 if (ret == 0) 5458 slot++; 5459 goto next; 5460 } 5461 5462 if (level == 0) 5463 btrfs_item_key_to_cpu(c, key, slot); 5464 else { 5465 u64 gen = btrfs_node_ptr_generation(c, slot); 5466 5467 if (gen < min_trans) { 5468 slot++; 5469 goto next; 5470 } 5471 btrfs_node_key_to_cpu(c, key, slot); 5472 } 5473 return 0; 5474 } 5475 return 1; 5476 } 5477 5478 /* 5479 * search the tree again to find a leaf with greater keys 5480 * returns 0 if it found something or 1 if there are no greater leaves. 5481 * returns < 0 on io errors. 5482 */ 5483 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5484 { 5485 return btrfs_next_old_leaf(root, path, 0); 5486 } 5487 5488 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5489 u64 time_seq) 5490 { 5491 int slot; 5492 int level; 5493 struct extent_buffer *c; 5494 struct extent_buffer *next; 5495 struct btrfs_key key; 5496 u32 nritems; 5497 int ret; 5498 int old_spinning = path->leave_spinning; 5499 int next_rw_lock = 0; 5500 5501 nritems = btrfs_header_nritems(path->nodes[0]); 5502 if (nritems == 0) 5503 return 1; 5504 5505 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5506 again: 5507 level = 1; 5508 next = NULL; 5509 next_rw_lock = 0; 5510 btrfs_release_path(path); 5511 5512 path->keep_locks = 1; 5513 path->leave_spinning = 1; 5514 5515 if (time_seq) 5516 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5517 else 5518 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5519 path->keep_locks = 0; 5520 5521 if (ret < 0) 5522 return ret; 5523 5524 nritems = btrfs_header_nritems(path->nodes[0]); 5525 /* 5526 * by releasing the path above we dropped all our locks. A balance 5527 * could have added more items next to the key that used to be 5528 * at the very end of the block. So, check again here and 5529 * advance the path if there are now more items available. 5530 */ 5531 if (nritems > 0 && path->slots[0] < nritems - 1) { 5532 if (ret == 0) 5533 path->slots[0]++; 5534 ret = 0; 5535 goto done; 5536 } 5537 5538 while (level < BTRFS_MAX_LEVEL) { 5539 if (!path->nodes[level]) { 5540 ret = 1; 5541 goto done; 5542 } 5543 5544 slot = path->slots[level] + 1; 5545 c = path->nodes[level]; 5546 if (slot >= btrfs_header_nritems(c)) { 5547 level++; 5548 if (level == BTRFS_MAX_LEVEL) { 5549 ret = 1; 5550 goto done; 5551 } 5552 continue; 5553 } 5554 5555 if (next) { 5556 btrfs_tree_unlock_rw(next, next_rw_lock); 5557 free_extent_buffer(next); 5558 } 5559 5560 next = c; 5561 next_rw_lock = path->locks[level]; 5562 ret = read_block_for_search(NULL, root, path, &next, level, 5563 slot, &key, 0); 5564 if (ret == -EAGAIN) 5565 goto again; 5566 5567 if (ret < 0) { 5568 btrfs_release_path(path); 5569 goto done; 5570 } 5571 5572 if (!path->skip_locking) { 5573 ret = btrfs_try_tree_read_lock(next); 5574 if (!ret && time_seq) { 5575 /* 5576 * If we don't get the lock, we may be racing 5577 * with push_leaf_left, holding that lock while 5578 * itself waiting for the leaf we've currently 5579 * locked. To solve this situation, we give up 5580 * on our lock and cycle. 5581 */ 5582 free_extent_buffer(next); 5583 btrfs_release_path(path); 5584 cond_resched(); 5585 goto again; 5586 } 5587 if (!ret) { 5588 btrfs_set_path_blocking(path); 5589 btrfs_tree_read_lock(next); 5590 btrfs_clear_path_blocking(path, next, 5591 BTRFS_READ_LOCK); 5592 } 5593 next_rw_lock = BTRFS_READ_LOCK; 5594 } 5595 break; 5596 } 5597 path->slots[level] = slot; 5598 while (1) { 5599 level--; 5600 c = path->nodes[level]; 5601 if (path->locks[level]) 5602 btrfs_tree_unlock_rw(c, path->locks[level]); 5603 5604 free_extent_buffer(c); 5605 path->nodes[level] = next; 5606 path->slots[level] = 0; 5607 if (!path->skip_locking) 5608 path->locks[level] = next_rw_lock; 5609 if (!level) 5610 break; 5611 5612 ret = read_block_for_search(NULL, root, path, &next, level, 5613 0, &key, 0); 5614 if (ret == -EAGAIN) 5615 goto again; 5616 5617 if (ret < 0) { 5618 btrfs_release_path(path); 5619 goto done; 5620 } 5621 5622 if (!path->skip_locking) { 5623 ret = btrfs_try_tree_read_lock(next); 5624 if (!ret) { 5625 btrfs_set_path_blocking(path); 5626 btrfs_tree_read_lock(next); 5627 btrfs_clear_path_blocking(path, next, 5628 BTRFS_READ_LOCK); 5629 } 5630 next_rw_lock = BTRFS_READ_LOCK; 5631 } 5632 } 5633 ret = 0; 5634 done: 5635 unlock_up(path, 0, 1, 0, NULL); 5636 path->leave_spinning = old_spinning; 5637 if (!old_spinning) 5638 btrfs_set_path_blocking(path); 5639 5640 return ret; 5641 } 5642 5643 /* 5644 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5645 * searching until it gets past min_objectid or finds an item of 'type' 5646 * 5647 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5648 */ 5649 int btrfs_previous_item(struct btrfs_root *root, 5650 struct btrfs_path *path, u64 min_objectid, 5651 int type) 5652 { 5653 struct btrfs_key found_key; 5654 struct extent_buffer *leaf; 5655 u32 nritems; 5656 int ret; 5657 5658 while (1) { 5659 if (path->slots[0] == 0) { 5660 btrfs_set_path_blocking(path); 5661 ret = btrfs_prev_leaf(root, path); 5662 if (ret != 0) 5663 return ret; 5664 } else { 5665 path->slots[0]--; 5666 } 5667 leaf = path->nodes[0]; 5668 nritems = btrfs_header_nritems(leaf); 5669 if (nritems == 0) 5670 return 1; 5671 if (path->slots[0] == nritems) 5672 path->slots[0]--; 5673 5674 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5675 if (found_key.objectid < min_objectid) 5676 break; 5677 if (found_key.type == type) 5678 return 0; 5679 if (found_key.objectid == min_objectid && 5680 found_key.type < type) 5681 break; 5682 } 5683 return 1; 5684 } 5685