xref: /openbmc/linux/fs/btrfs/ctree.c (revision e00f7308658622fbd483cb0d9fe41165bf9050d0)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25 
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 		      *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_key *ins_key,
30 		      struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 			  struct btrfs_root *root, struct extent_buffer *dst,
33 			  struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 			      struct btrfs_root *root,
36 			      struct extent_buffer *dst_buf,
37 			      struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 		   struct btrfs_path *path, int level, int slot);
40 
41 struct btrfs_path *btrfs_alloc_path(void)
42 {
43 	struct btrfs_path *path;
44 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
45 	if (path)
46 		path->reada = 1;
47 	return path;
48 }
49 
50 /*
51  * set all locked nodes in the path to blocking locks.  This should
52  * be done before scheduling
53  */
54 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
55 {
56 	int i;
57 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
58 		if (p->nodes[i] && p->locks[i])
59 			btrfs_set_lock_blocking(p->nodes[i]);
60 	}
61 }
62 
63 /*
64  * reset all the locked nodes in the patch to spinning locks.
65  */
66 noinline void btrfs_clear_path_blocking(struct btrfs_path *p)
67 {
68 	int i;
69 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
70 		if (p->nodes[i] && p->locks[i])
71 			btrfs_clear_lock_blocking(p->nodes[i]);
72 	}
73 }
74 
75 /* this also releases the path */
76 void btrfs_free_path(struct btrfs_path *p)
77 {
78 	btrfs_release_path(NULL, p);
79 	kmem_cache_free(btrfs_path_cachep, p);
80 }
81 
82 /*
83  * path release drops references on the extent buffers in the path
84  * and it drops any locks held by this path
85  *
86  * It is safe to call this on paths that no locks or extent buffers held.
87  */
88 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
89 {
90 	int i;
91 
92 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
93 		p->slots[i] = 0;
94 		if (!p->nodes[i])
95 			continue;
96 		if (p->locks[i]) {
97 			btrfs_tree_unlock(p->nodes[i]);
98 			p->locks[i] = 0;
99 		}
100 		free_extent_buffer(p->nodes[i]);
101 		p->nodes[i] = NULL;
102 	}
103 }
104 
105 /*
106  * safely gets a reference on the root node of a tree.  A lock
107  * is not taken, so a concurrent writer may put a different node
108  * at the root of the tree.  See btrfs_lock_root_node for the
109  * looping required.
110  *
111  * The extent buffer returned by this has a reference taken, so
112  * it won't disappear.  It may stop being the root of the tree
113  * at any time because there are no locks held.
114  */
115 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
116 {
117 	struct extent_buffer *eb;
118 	spin_lock(&root->node_lock);
119 	eb = root->node;
120 	extent_buffer_get(eb);
121 	spin_unlock(&root->node_lock);
122 	return eb;
123 }
124 
125 /* loop around taking references on and locking the root node of the
126  * tree until you end up with a lock on the root.  A locked buffer
127  * is returned, with a reference held.
128  */
129 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
130 {
131 	struct extent_buffer *eb;
132 
133 	while (1) {
134 		eb = btrfs_root_node(root);
135 		btrfs_tree_lock(eb);
136 
137 		spin_lock(&root->node_lock);
138 		if (eb == root->node) {
139 			spin_unlock(&root->node_lock);
140 			break;
141 		}
142 		spin_unlock(&root->node_lock);
143 
144 		btrfs_tree_unlock(eb);
145 		free_extent_buffer(eb);
146 	}
147 	return eb;
148 }
149 
150 /* cowonly root (everything not a reference counted cow subvolume), just get
151  * put onto a simple dirty list.  transaction.c walks this to make sure they
152  * get properly updated on disk.
153  */
154 static void add_root_to_dirty_list(struct btrfs_root *root)
155 {
156 	if (root->track_dirty && list_empty(&root->dirty_list)) {
157 		list_add(&root->dirty_list,
158 			 &root->fs_info->dirty_cowonly_roots);
159 	}
160 }
161 
162 /*
163  * used by snapshot creation to make a copy of a root for a tree with
164  * a given objectid.  The buffer with the new root node is returned in
165  * cow_ret, and this func returns zero on success or a negative error code.
166  */
167 int btrfs_copy_root(struct btrfs_trans_handle *trans,
168 		      struct btrfs_root *root,
169 		      struct extent_buffer *buf,
170 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
171 {
172 	struct extent_buffer *cow;
173 	u32 nritems;
174 	int ret = 0;
175 	int level;
176 	struct btrfs_root *new_root;
177 
178 	new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
179 	if (!new_root)
180 		return -ENOMEM;
181 
182 	memcpy(new_root, root, sizeof(*new_root));
183 	new_root->root_key.objectid = new_root_objectid;
184 
185 	WARN_ON(root->ref_cows && trans->transid !=
186 		root->fs_info->running_transaction->transid);
187 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
188 
189 	level = btrfs_header_level(buf);
190 	nritems = btrfs_header_nritems(buf);
191 
192 	cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
193 				     new_root_objectid, trans->transid,
194 				     level, buf->start, 0);
195 	if (IS_ERR(cow)) {
196 		kfree(new_root);
197 		return PTR_ERR(cow);
198 	}
199 
200 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
201 	btrfs_set_header_bytenr(cow, cow->start);
202 	btrfs_set_header_generation(cow, trans->transid);
203 	btrfs_set_header_owner(cow, new_root_objectid);
204 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
205 
206 	write_extent_buffer(cow, root->fs_info->fsid,
207 			    (unsigned long)btrfs_header_fsid(cow),
208 			    BTRFS_FSID_SIZE);
209 
210 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
211 	ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
212 	kfree(new_root);
213 
214 	if (ret)
215 		return ret;
216 
217 	btrfs_mark_buffer_dirty(cow);
218 	*cow_ret = cow;
219 	return 0;
220 }
221 
222 /*
223  * does the dirty work in cow of a single block.  The parent block (if
224  * supplied) is updated to point to the new cow copy.  The new buffer is marked
225  * dirty and returned locked.  If you modify the block it needs to be marked
226  * dirty again.
227  *
228  * search_start -- an allocation hint for the new block
229  *
230  * empty_size -- a hint that you plan on doing more cow.  This is the size in
231  * bytes the allocator should try to find free next to the block it returns.
232  * This is just a hint and may be ignored by the allocator.
233  *
234  * prealloc_dest -- if you have already reserved a destination for the cow,
235  * this uses that block instead of allocating a new one.
236  * btrfs_alloc_reserved_extent is used to finish the allocation.
237  */
238 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
239 			     struct btrfs_root *root,
240 			     struct extent_buffer *buf,
241 			     struct extent_buffer *parent, int parent_slot,
242 			     struct extent_buffer **cow_ret,
243 			     u64 search_start, u64 empty_size,
244 			     u64 prealloc_dest)
245 {
246 	u64 parent_start;
247 	struct extent_buffer *cow;
248 	u32 nritems;
249 	int ret = 0;
250 	int level;
251 	int unlock_orig = 0;
252 
253 	if (*cow_ret == buf)
254 		unlock_orig = 1;
255 
256 	WARN_ON(!btrfs_tree_locked(buf));
257 
258 	if (parent)
259 		parent_start = parent->start;
260 	else
261 		parent_start = 0;
262 
263 	WARN_ON(root->ref_cows && trans->transid !=
264 		root->fs_info->running_transaction->transid);
265 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
266 
267 	level = btrfs_header_level(buf);
268 	nritems = btrfs_header_nritems(buf);
269 
270 	if (prealloc_dest) {
271 		struct btrfs_key ins;
272 
273 		ins.objectid = prealloc_dest;
274 		ins.offset = buf->len;
275 		ins.type = BTRFS_EXTENT_ITEM_KEY;
276 
277 		ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
278 						  root->root_key.objectid,
279 						  trans->transid, level, &ins);
280 		BUG_ON(ret);
281 		cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
282 					    buf->len);
283 	} else {
284 		cow = btrfs_alloc_free_block(trans, root, buf->len,
285 					     parent_start,
286 					     root->root_key.objectid,
287 					     trans->transid, level,
288 					     search_start, empty_size);
289 	}
290 	if (IS_ERR(cow))
291 		return PTR_ERR(cow);
292 
293 	/* cow is set to blocking by btrfs_init_new_buffer */
294 
295 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
296 	btrfs_set_header_bytenr(cow, cow->start);
297 	btrfs_set_header_generation(cow, trans->transid);
298 	btrfs_set_header_owner(cow, root->root_key.objectid);
299 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
300 
301 	write_extent_buffer(cow, root->fs_info->fsid,
302 			    (unsigned long)btrfs_header_fsid(cow),
303 			    BTRFS_FSID_SIZE);
304 
305 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
306 	if (btrfs_header_generation(buf) != trans->transid) {
307 		u32 nr_extents;
308 		ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
309 		if (ret)
310 			return ret;
311 
312 		ret = btrfs_cache_ref(trans, root, buf, nr_extents);
313 		WARN_ON(ret);
314 	} else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
315 		/*
316 		 * There are only two places that can drop reference to
317 		 * tree blocks owned by living reloc trees, one is here,
318 		 * the other place is btrfs_drop_subtree. In both places,
319 		 * we check reference count while tree block is locked.
320 		 * Furthermore, if reference count is one, it won't get
321 		 * increased by someone else.
322 		 */
323 		u32 refs;
324 		ret = btrfs_lookup_extent_ref(trans, root, buf->start,
325 					      buf->len, &refs);
326 		BUG_ON(ret);
327 		if (refs == 1) {
328 			ret = btrfs_update_ref(trans, root, buf, cow,
329 					       0, nritems);
330 			clean_tree_block(trans, root, buf);
331 		} else {
332 			ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
333 		}
334 		BUG_ON(ret);
335 	} else {
336 		ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
337 		if (ret)
338 			return ret;
339 		clean_tree_block(trans, root, buf);
340 	}
341 
342 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
343 		ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
344 		WARN_ON(ret);
345 	}
346 
347 	if (buf == root->node) {
348 		WARN_ON(parent && parent != buf);
349 
350 		spin_lock(&root->node_lock);
351 		root->node = cow;
352 		extent_buffer_get(cow);
353 		spin_unlock(&root->node_lock);
354 
355 		if (buf != root->commit_root) {
356 			btrfs_free_extent(trans, root, buf->start,
357 					  buf->len, buf->start,
358 					  root->root_key.objectid,
359 					  btrfs_header_generation(buf),
360 					  level, 1);
361 		}
362 		free_extent_buffer(buf);
363 		add_root_to_dirty_list(root);
364 	} else {
365 		btrfs_set_node_blockptr(parent, parent_slot,
366 					cow->start);
367 		WARN_ON(trans->transid == 0);
368 		btrfs_set_node_ptr_generation(parent, parent_slot,
369 					      trans->transid);
370 		btrfs_mark_buffer_dirty(parent);
371 		WARN_ON(btrfs_header_generation(parent) != trans->transid);
372 		btrfs_free_extent(trans, root, buf->start, buf->len,
373 				  parent_start, btrfs_header_owner(parent),
374 				  btrfs_header_generation(parent), level, 1);
375 	}
376 	if (unlock_orig)
377 		btrfs_tree_unlock(buf);
378 	free_extent_buffer(buf);
379 	btrfs_mark_buffer_dirty(cow);
380 	*cow_ret = cow;
381 	return 0;
382 }
383 
384 /*
385  * cows a single block, see __btrfs_cow_block for the real work.
386  * This version of it has extra checks so that a block isn't cow'd more than
387  * once per transaction, as long as it hasn't been written yet
388  */
389 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
390 		    struct btrfs_root *root, struct extent_buffer *buf,
391 		    struct extent_buffer *parent, int parent_slot,
392 		    struct extent_buffer **cow_ret, u64 prealloc_dest)
393 {
394 	u64 search_start;
395 	int ret;
396 
397 	if (trans->transaction != root->fs_info->running_transaction) {
398 		printk(KERN_CRIT "trans %llu running %llu\n",
399 		       (unsigned long long)trans->transid,
400 		       (unsigned long long)
401 		       root->fs_info->running_transaction->transid);
402 		WARN_ON(1);
403 	}
404 	if (trans->transid != root->fs_info->generation) {
405 		printk(KERN_CRIT "trans %llu running %llu\n",
406 		       (unsigned long long)trans->transid,
407 		       (unsigned long long)root->fs_info->generation);
408 		WARN_ON(1);
409 	}
410 
411 	if (btrfs_header_generation(buf) == trans->transid &&
412 	    btrfs_header_owner(buf) == root->root_key.objectid &&
413 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
414 		*cow_ret = buf;
415 		WARN_ON(prealloc_dest);
416 		return 0;
417 	}
418 
419 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
420 
421 	if (parent)
422 		btrfs_set_lock_blocking(parent);
423 	btrfs_set_lock_blocking(buf);
424 
425 	ret = __btrfs_cow_block(trans, root, buf, parent,
426 				 parent_slot, cow_ret, search_start, 0,
427 				 prealloc_dest);
428 	return ret;
429 }
430 
431 /*
432  * helper function for defrag to decide if two blocks pointed to by a
433  * node are actually close by
434  */
435 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
436 {
437 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
438 		return 1;
439 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
440 		return 1;
441 	return 0;
442 }
443 
444 /*
445  * compare two keys in a memcmp fashion
446  */
447 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
448 {
449 	struct btrfs_key k1;
450 
451 	btrfs_disk_key_to_cpu(&k1, disk);
452 
453 	if (k1.objectid > k2->objectid)
454 		return 1;
455 	if (k1.objectid < k2->objectid)
456 		return -1;
457 	if (k1.type > k2->type)
458 		return 1;
459 	if (k1.type < k2->type)
460 		return -1;
461 	if (k1.offset > k2->offset)
462 		return 1;
463 	if (k1.offset < k2->offset)
464 		return -1;
465 	return 0;
466 }
467 
468 /*
469  * same as comp_keys only with two btrfs_key's
470  */
471 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
472 {
473 	if (k1->objectid > k2->objectid)
474 		return 1;
475 	if (k1->objectid < k2->objectid)
476 		return -1;
477 	if (k1->type > k2->type)
478 		return 1;
479 	if (k1->type < k2->type)
480 		return -1;
481 	if (k1->offset > k2->offset)
482 		return 1;
483 	if (k1->offset < k2->offset)
484 		return -1;
485 	return 0;
486 }
487 
488 /*
489  * this is used by the defrag code to go through all the
490  * leaves pointed to by a node and reallocate them so that
491  * disk order is close to key order
492  */
493 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
494 		       struct btrfs_root *root, struct extent_buffer *parent,
495 		       int start_slot, int cache_only, u64 *last_ret,
496 		       struct btrfs_key *progress)
497 {
498 	struct extent_buffer *cur;
499 	u64 blocknr;
500 	u64 gen;
501 	u64 search_start = *last_ret;
502 	u64 last_block = 0;
503 	u64 other;
504 	u32 parent_nritems;
505 	int end_slot;
506 	int i;
507 	int err = 0;
508 	int parent_level;
509 	int uptodate;
510 	u32 blocksize;
511 	int progress_passed = 0;
512 	struct btrfs_disk_key disk_key;
513 
514 	parent_level = btrfs_header_level(parent);
515 	if (cache_only && parent_level != 1)
516 		return 0;
517 
518 	if (trans->transaction != root->fs_info->running_transaction)
519 		WARN_ON(1);
520 	if (trans->transid != root->fs_info->generation)
521 		WARN_ON(1);
522 
523 	parent_nritems = btrfs_header_nritems(parent);
524 	blocksize = btrfs_level_size(root, parent_level - 1);
525 	end_slot = parent_nritems;
526 
527 	if (parent_nritems == 1)
528 		return 0;
529 
530 	btrfs_set_lock_blocking(parent);
531 
532 	for (i = start_slot; i < end_slot; i++) {
533 		int close = 1;
534 
535 		if (!parent->map_token) {
536 			map_extent_buffer(parent,
537 					btrfs_node_key_ptr_offset(i),
538 					sizeof(struct btrfs_key_ptr),
539 					&parent->map_token, &parent->kaddr,
540 					&parent->map_start, &parent->map_len,
541 					KM_USER1);
542 		}
543 		btrfs_node_key(parent, &disk_key, i);
544 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
545 			continue;
546 
547 		progress_passed = 1;
548 		blocknr = btrfs_node_blockptr(parent, i);
549 		gen = btrfs_node_ptr_generation(parent, i);
550 		if (last_block == 0)
551 			last_block = blocknr;
552 
553 		if (i > 0) {
554 			other = btrfs_node_blockptr(parent, i - 1);
555 			close = close_blocks(blocknr, other, blocksize);
556 		}
557 		if (!close && i < end_slot - 2) {
558 			other = btrfs_node_blockptr(parent, i + 1);
559 			close = close_blocks(blocknr, other, blocksize);
560 		}
561 		if (close) {
562 			last_block = blocknr;
563 			continue;
564 		}
565 		if (parent->map_token) {
566 			unmap_extent_buffer(parent, parent->map_token,
567 					    KM_USER1);
568 			parent->map_token = NULL;
569 		}
570 
571 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
572 		if (cur)
573 			uptodate = btrfs_buffer_uptodate(cur, gen);
574 		else
575 			uptodate = 0;
576 		if (!cur || !uptodate) {
577 			if (cache_only) {
578 				free_extent_buffer(cur);
579 				continue;
580 			}
581 			if (!cur) {
582 				cur = read_tree_block(root, blocknr,
583 							 blocksize, gen);
584 			} else if (!uptodate) {
585 				btrfs_read_buffer(cur, gen);
586 			}
587 		}
588 		if (search_start == 0)
589 			search_start = last_block;
590 
591 		btrfs_tree_lock(cur);
592 		btrfs_set_lock_blocking(cur);
593 		err = __btrfs_cow_block(trans, root, cur, parent, i,
594 					&cur, search_start,
595 					min(16 * blocksize,
596 					    (end_slot - i) * blocksize), 0);
597 		if (err) {
598 			btrfs_tree_unlock(cur);
599 			free_extent_buffer(cur);
600 			break;
601 		}
602 		search_start = cur->start;
603 		last_block = cur->start;
604 		*last_ret = search_start;
605 		btrfs_tree_unlock(cur);
606 		free_extent_buffer(cur);
607 	}
608 	if (parent->map_token) {
609 		unmap_extent_buffer(parent, parent->map_token,
610 				    KM_USER1);
611 		parent->map_token = NULL;
612 	}
613 	return err;
614 }
615 
616 /*
617  * The leaf data grows from end-to-front in the node.
618  * this returns the address of the start of the last item,
619  * which is the stop of the leaf data stack
620  */
621 static inline unsigned int leaf_data_end(struct btrfs_root *root,
622 					 struct extent_buffer *leaf)
623 {
624 	u32 nr = btrfs_header_nritems(leaf);
625 	if (nr == 0)
626 		return BTRFS_LEAF_DATA_SIZE(root);
627 	return btrfs_item_offset_nr(leaf, nr - 1);
628 }
629 
630 /*
631  * extra debugging checks to make sure all the items in a key are
632  * well formed and in the proper order
633  */
634 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
635 		      int level)
636 {
637 	struct extent_buffer *parent = NULL;
638 	struct extent_buffer *node = path->nodes[level];
639 	struct btrfs_disk_key parent_key;
640 	struct btrfs_disk_key node_key;
641 	int parent_slot;
642 	int slot;
643 	struct btrfs_key cpukey;
644 	u32 nritems = btrfs_header_nritems(node);
645 
646 	if (path->nodes[level + 1])
647 		parent = path->nodes[level + 1];
648 
649 	slot = path->slots[level];
650 	BUG_ON(nritems == 0);
651 	if (parent) {
652 		parent_slot = path->slots[level + 1];
653 		btrfs_node_key(parent, &parent_key, parent_slot);
654 		btrfs_node_key(node, &node_key, 0);
655 		BUG_ON(memcmp(&parent_key, &node_key,
656 			      sizeof(struct btrfs_disk_key)));
657 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
658 		       btrfs_header_bytenr(node));
659 	}
660 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
661 	if (slot != 0) {
662 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
663 		btrfs_node_key(node, &node_key, slot);
664 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
665 	}
666 	if (slot < nritems - 1) {
667 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
668 		btrfs_node_key(node, &node_key, slot);
669 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
670 	}
671 	return 0;
672 }
673 
674 /*
675  * extra checking to make sure all the items in a leaf are
676  * well formed and in the proper order
677  */
678 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
679 		      int level)
680 {
681 	struct extent_buffer *leaf = path->nodes[level];
682 	struct extent_buffer *parent = NULL;
683 	int parent_slot;
684 	struct btrfs_key cpukey;
685 	struct btrfs_disk_key parent_key;
686 	struct btrfs_disk_key leaf_key;
687 	int slot = path->slots[0];
688 
689 	u32 nritems = btrfs_header_nritems(leaf);
690 
691 	if (path->nodes[level + 1])
692 		parent = path->nodes[level + 1];
693 
694 	if (nritems == 0)
695 		return 0;
696 
697 	if (parent) {
698 		parent_slot = path->slots[level + 1];
699 		btrfs_node_key(parent, &parent_key, parent_slot);
700 		btrfs_item_key(leaf, &leaf_key, 0);
701 
702 		BUG_ON(memcmp(&parent_key, &leaf_key,
703 		       sizeof(struct btrfs_disk_key)));
704 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
705 		       btrfs_header_bytenr(leaf));
706 	}
707 	if (slot != 0 && slot < nritems - 1) {
708 		btrfs_item_key(leaf, &leaf_key, slot);
709 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
710 		if (comp_keys(&leaf_key, &cpukey) <= 0) {
711 			btrfs_print_leaf(root, leaf);
712 			printk(KERN_CRIT "slot %d offset bad key\n", slot);
713 			BUG_ON(1);
714 		}
715 		if (btrfs_item_offset_nr(leaf, slot - 1) !=
716 		       btrfs_item_end_nr(leaf, slot)) {
717 			btrfs_print_leaf(root, leaf);
718 			printk(KERN_CRIT "slot %d offset bad\n", slot);
719 			BUG_ON(1);
720 		}
721 	}
722 	if (slot < nritems - 1) {
723 		btrfs_item_key(leaf, &leaf_key, slot);
724 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
725 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
726 		if (btrfs_item_offset_nr(leaf, slot) !=
727 			btrfs_item_end_nr(leaf, slot + 1)) {
728 			btrfs_print_leaf(root, leaf);
729 			printk(KERN_CRIT "slot %d offset bad\n", slot);
730 			BUG_ON(1);
731 		}
732 	}
733 	BUG_ON(btrfs_item_offset_nr(leaf, 0) +
734 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
735 	return 0;
736 }
737 
738 static noinline int check_block(struct btrfs_root *root,
739 				struct btrfs_path *path, int level)
740 {
741 	return 0;
742 	if (level == 0)
743 		return check_leaf(root, path, level);
744 	return check_node(root, path, level);
745 }
746 
747 /*
748  * search for key in the extent_buffer.  The items start at offset p,
749  * and they are item_size apart.  There are 'max' items in p.
750  *
751  * the slot in the array is returned via slot, and it points to
752  * the place where you would insert key if it is not found in
753  * the array.
754  *
755  * slot may point to max if the key is bigger than all of the keys
756  */
757 static noinline int generic_bin_search(struct extent_buffer *eb,
758 				       unsigned long p,
759 				       int item_size, struct btrfs_key *key,
760 				       int max, int *slot)
761 {
762 	int low = 0;
763 	int high = max;
764 	int mid;
765 	int ret;
766 	struct btrfs_disk_key *tmp = NULL;
767 	struct btrfs_disk_key unaligned;
768 	unsigned long offset;
769 	char *map_token = NULL;
770 	char *kaddr = NULL;
771 	unsigned long map_start = 0;
772 	unsigned long map_len = 0;
773 	int err;
774 
775 	while (low < high) {
776 		mid = (low + high) / 2;
777 		offset = p + mid * item_size;
778 
779 		if (!map_token || offset < map_start ||
780 		    (offset + sizeof(struct btrfs_disk_key)) >
781 		    map_start + map_len) {
782 			if (map_token) {
783 				unmap_extent_buffer(eb, map_token, KM_USER0);
784 				map_token = NULL;
785 			}
786 
787 			err = map_private_extent_buffer(eb, offset,
788 						sizeof(struct btrfs_disk_key),
789 						&map_token, &kaddr,
790 						&map_start, &map_len, KM_USER0);
791 
792 			if (!err) {
793 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
794 							map_start);
795 			} else {
796 				read_extent_buffer(eb, &unaligned,
797 						   offset, sizeof(unaligned));
798 				tmp = &unaligned;
799 			}
800 
801 		} else {
802 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
803 							map_start);
804 		}
805 		ret = comp_keys(tmp, key);
806 
807 		if (ret < 0)
808 			low = mid + 1;
809 		else if (ret > 0)
810 			high = mid;
811 		else {
812 			*slot = mid;
813 			if (map_token)
814 				unmap_extent_buffer(eb, map_token, KM_USER0);
815 			return 0;
816 		}
817 	}
818 	*slot = low;
819 	if (map_token)
820 		unmap_extent_buffer(eb, map_token, KM_USER0);
821 	return 1;
822 }
823 
824 /*
825  * simple bin_search frontend that does the right thing for
826  * leaves vs nodes
827  */
828 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
829 		      int level, int *slot)
830 {
831 	if (level == 0) {
832 		return generic_bin_search(eb,
833 					  offsetof(struct btrfs_leaf, items),
834 					  sizeof(struct btrfs_item),
835 					  key, btrfs_header_nritems(eb),
836 					  slot);
837 	} else {
838 		return generic_bin_search(eb,
839 					  offsetof(struct btrfs_node, ptrs),
840 					  sizeof(struct btrfs_key_ptr),
841 					  key, btrfs_header_nritems(eb),
842 					  slot);
843 	}
844 	return -1;
845 }
846 
847 /* given a node and slot number, this reads the blocks it points to.  The
848  * extent buffer is returned with a reference taken (but unlocked).
849  * NULL is returned on error.
850  */
851 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
852 				   struct extent_buffer *parent, int slot)
853 {
854 	int level = btrfs_header_level(parent);
855 	if (slot < 0)
856 		return NULL;
857 	if (slot >= btrfs_header_nritems(parent))
858 		return NULL;
859 
860 	BUG_ON(level == 0);
861 
862 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
863 		       btrfs_level_size(root, level - 1),
864 		       btrfs_node_ptr_generation(parent, slot));
865 }
866 
867 /*
868  * node level balancing, used to make sure nodes are in proper order for
869  * item deletion.  We balance from the top down, so we have to make sure
870  * that a deletion won't leave an node completely empty later on.
871  */
872 static noinline int balance_level(struct btrfs_trans_handle *trans,
873 			 struct btrfs_root *root,
874 			 struct btrfs_path *path, int level)
875 {
876 	struct extent_buffer *right = NULL;
877 	struct extent_buffer *mid;
878 	struct extent_buffer *left = NULL;
879 	struct extent_buffer *parent = NULL;
880 	int ret = 0;
881 	int wret;
882 	int pslot;
883 	int orig_slot = path->slots[level];
884 	int err_on_enospc = 0;
885 	u64 orig_ptr;
886 
887 	if (level == 0)
888 		return 0;
889 
890 	mid = path->nodes[level];
891 
892 	WARN_ON(!path->locks[level]);
893 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
894 
895 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
896 
897 	if (level < BTRFS_MAX_LEVEL - 1)
898 		parent = path->nodes[level + 1];
899 	pslot = path->slots[level + 1];
900 
901 	/*
902 	 * deal with the case where there is only one pointer in the root
903 	 * by promoting the node below to a root
904 	 */
905 	if (!parent) {
906 		struct extent_buffer *child;
907 
908 		if (btrfs_header_nritems(mid) != 1)
909 			return 0;
910 
911 		/* promote the child to a root */
912 		child = read_node_slot(root, mid, 0);
913 		BUG_ON(!child);
914 		btrfs_tree_lock(child);
915 		btrfs_set_lock_blocking(child);
916 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
917 		BUG_ON(ret);
918 
919 		spin_lock(&root->node_lock);
920 		root->node = child;
921 		spin_unlock(&root->node_lock);
922 
923 		ret = btrfs_update_extent_ref(trans, root, child->start,
924 					      mid->start, child->start,
925 					      root->root_key.objectid,
926 					      trans->transid, level - 1);
927 		BUG_ON(ret);
928 
929 		add_root_to_dirty_list(root);
930 		btrfs_tree_unlock(child);
931 
932 		path->locks[level] = 0;
933 		path->nodes[level] = NULL;
934 		clean_tree_block(trans, root, mid);
935 		btrfs_tree_unlock(mid);
936 		/* once for the path */
937 		free_extent_buffer(mid);
938 		ret = btrfs_free_extent(trans, root, mid->start, mid->len,
939 					mid->start, root->root_key.objectid,
940 					btrfs_header_generation(mid),
941 					level, 1);
942 		/* once for the root ptr */
943 		free_extent_buffer(mid);
944 		return ret;
945 	}
946 	if (btrfs_header_nritems(mid) >
947 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
948 		return 0;
949 
950 	if (btrfs_header_nritems(mid) < 2)
951 		err_on_enospc = 1;
952 
953 	left = read_node_slot(root, parent, pslot - 1);
954 	if (left) {
955 		btrfs_tree_lock(left);
956 		btrfs_set_lock_blocking(left);
957 		wret = btrfs_cow_block(trans, root, left,
958 				       parent, pslot - 1, &left, 0);
959 		if (wret) {
960 			ret = wret;
961 			goto enospc;
962 		}
963 	}
964 	right = read_node_slot(root, parent, pslot + 1);
965 	if (right) {
966 		btrfs_tree_lock(right);
967 		btrfs_set_lock_blocking(right);
968 		wret = btrfs_cow_block(trans, root, right,
969 				       parent, pslot + 1, &right, 0);
970 		if (wret) {
971 			ret = wret;
972 			goto enospc;
973 		}
974 	}
975 
976 	/* first, try to make some room in the middle buffer */
977 	if (left) {
978 		orig_slot += btrfs_header_nritems(left);
979 		wret = push_node_left(trans, root, left, mid, 1);
980 		if (wret < 0)
981 			ret = wret;
982 		if (btrfs_header_nritems(mid) < 2)
983 			err_on_enospc = 1;
984 	}
985 
986 	/*
987 	 * then try to empty the right most buffer into the middle
988 	 */
989 	if (right) {
990 		wret = push_node_left(trans, root, mid, right, 1);
991 		if (wret < 0 && wret != -ENOSPC)
992 			ret = wret;
993 		if (btrfs_header_nritems(right) == 0) {
994 			u64 bytenr = right->start;
995 			u64 generation = btrfs_header_generation(parent);
996 			u32 blocksize = right->len;
997 
998 			clean_tree_block(trans, root, right);
999 			btrfs_tree_unlock(right);
1000 			free_extent_buffer(right);
1001 			right = NULL;
1002 			wret = del_ptr(trans, root, path, level + 1, pslot +
1003 				       1);
1004 			if (wret)
1005 				ret = wret;
1006 			wret = btrfs_free_extent(trans, root, bytenr,
1007 						 blocksize, parent->start,
1008 						 btrfs_header_owner(parent),
1009 						 generation, level, 1);
1010 			if (wret)
1011 				ret = wret;
1012 		} else {
1013 			struct btrfs_disk_key right_key;
1014 			btrfs_node_key(right, &right_key, 0);
1015 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1016 			btrfs_mark_buffer_dirty(parent);
1017 		}
1018 	}
1019 	if (btrfs_header_nritems(mid) == 1) {
1020 		/*
1021 		 * we're not allowed to leave a node with one item in the
1022 		 * tree during a delete.  A deletion from lower in the tree
1023 		 * could try to delete the only pointer in this node.
1024 		 * So, pull some keys from the left.
1025 		 * There has to be a left pointer at this point because
1026 		 * otherwise we would have pulled some pointers from the
1027 		 * right
1028 		 */
1029 		BUG_ON(!left);
1030 		wret = balance_node_right(trans, root, mid, left);
1031 		if (wret < 0) {
1032 			ret = wret;
1033 			goto enospc;
1034 		}
1035 		if (wret == 1) {
1036 			wret = push_node_left(trans, root, left, mid, 1);
1037 			if (wret < 0)
1038 				ret = wret;
1039 		}
1040 		BUG_ON(wret == 1);
1041 	}
1042 	if (btrfs_header_nritems(mid) == 0) {
1043 		/* we've managed to empty the middle node, drop it */
1044 		u64 root_gen = btrfs_header_generation(parent);
1045 		u64 bytenr = mid->start;
1046 		u32 blocksize = mid->len;
1047 
1048 		clean_tree_block(trans, root, mid);
1049 		btrfs_tree_unlock(mid);
1050 		free_extent_buffer(mid);
1051 		mid = NULL;
1052 		wret = del_ptr(trans, root, path, level + 1, pslot);
1053 		if (wret)
1054 			ret = wret;
1055 		wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1056 					 parent->start,
1057 					 btrfs_header_owner(parent),
1058 					 root_gen, level, 1);
1059 		if (wret)
1060 			ret = wret;
1061 	} else {
1062 		/* update the parent key to reflect our changes */
1063 		struct btrfs_disk_key mid_key;
1064 		btrfs_node_key(mid, &mid_key, 0);
1065 		btrfs_set_node_key(parent, &mid_key, pslot);
1066 		btrfs_mark_buffer_dirty(parent);
1067 	}
1068 
1069 	/* update the path */
1070 	if (left) {
1071 		if (btrfs_header_nritems(left) > orig_slot) {
1072 			extent_buffer_get(left);
1073 			/* left was locked after cow */
1074 			path->nodes[level] = left;
1075 			path->slots[level + 1] -= 1;
1076 			path->slots[level] = orig_slot;
1077 			if (mid) {
1078 				btrfs_tree_unlock(mid);
1079 				free_extent_buffer(mid);
1080 			}
1081 		} else {
1082 			orig_slot -= btrfs_header_nritems(left);
1083 			path->slots[level] = orig_slot;
1084 		}
1085 	}
1086 	/* double check we haven't messed things up */
1087 	check_block(root, path, level);
1088 	if (orig_ptr !=
1089 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1090 		BUG();
1091 enospc:
1092 	if (right) {
1093 		btrfs_tree_unlock(right);
1094 		free_extent_buffer(right);
1095 	}
1096 	if (left) {
1097 		if (path->nodes[level] != left)
1098 			btrfs_tree_unlock(left);
1099 		free_extent_buffer(left);
1100 	}
1101 	return ret;
1102 }
1103 
1104 /* Node balancing for insertion.  Here we only split or push nodes around
1105  * when they are completely full.  This is also done top down, so we
1106  * have to be pessimistic.
1107  */
1108 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1109 					  struct btrfs_root *root,
1110 					  struct btrfs_path *path, int level)
1111 {
1112 	struct extent_buffer *right = NULL;
1113 	struct extent_buffer *mid;
1114 	struct extent_buffer *left = NULL;
1115 	struct extent_buffer *parent = NULL;
1116 	int ret = 0;
1117 	int wret;
1118 	int pslot;
1119 	int orig_slot = path->slots[level];
1120 	u64 orig_ptr;
1121 
1122 	if (level == 0)
1123 		return 1;
1124 
1125 	mid = path->nodes[level];
1126 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1127 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1128 
1129 	if (level < BTRFS_MAX_LEVEL - 1)
1130 		parent = path->nodes[level + 1];
1131 	pslot = path->slots[level + 1];
1132 
1133 	if (!parent)
1134 		return 1;
1135 
1136 	left = read_node_slot(root, parent, pslot - 1);
1137 
1138 	/* first, try to make some room in the middle buffer */
1139 	if (left) {
1140 		u32 left_nr;
1141 
1142 		btrfs_tree_lock(left);
1143 		btrfs_set_lock_blocking(left);
1144 
1145 		left_nr = btrfs_header_nritems(left);
1146 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1147 			wret = 1;
1148 		} else {
1149 			ret = btrfs_cow_block(trans, root, left, parent,
1150 					      pslot - 1, &left, 0);
1151 			if (ret)
1152 				wret = 1;
1153 			else {
1154 				wret = push_node_left(trans, root,
1155 						      left, mid, 0);
1156 			}
1157 		}
1158 		if (wret < 0)
1159 			ret = wret;
1160 		if (wret == 0) {
1161 			struct btrfs_disk_key disk_key;
1162 			orig_slot += left_nr;
1163 			btrfs_node_key(mid, &disk_key, 0);
1164 			btrfs_set_node_key(parent, &disk_key, pslot);
1165 			btrfs_mark_buffer_dirty(parent);
1166 			if (btrfs_header_nritems(left) > orig_slot) {
1167 				path->nodes[level] = left;
1168 				path->slots[level + 1] -= 1;
1169 				path->slots[level] = orig_slot;
1170 				btrfs_tree_unlock(mid);
1171 				free_extent_buffer(mid);
1172 			} else {
1173 				orig_slot -=
1174 					btrfs_header_nritems(left);
1175 				path->slots[level] = orig_slot;
1176 				btrfs_tree_unlock(left);
1177 				free_extent_buffer(left);
1178 			}
1179 			return 0;
1180 		}
1181 		btrfs_tree_unlock(left);
1182 		free_extent_buffer(left);
1183 	}
1184 	right = read_node_slot(root, parent, pslot + 1);
1185 
1186 	/*
1187 	 * then try to empty the right most buffer into the middle
1188 	 */
1189 	if (right) {
1190 		u32 right_nr;
1191 
1192 		btrfs_tree_lock(right);
1193 		btrfs_set_lock_blocking(right);
1194 
1195 		right_nr = btrfs_header_nritems(right);
1196 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1197 			wret = 1;
1198 		} else {
1199 			ret = btrfs_cow_block(trans, root, right,
1200 					      parent, pslot + 1,
1201 					      &right, 0);
1202 			if (ret)
1203 				wret = 1;
1204 			else {
1205 				wret = balance_node_right(trans, root,
1206 							  right, mid);
1207 			}
1208 		}
1209 		if (wret < 0)
1210 			ret = wret;
1211 		if (wret == 0) {
1212 			struct btrfs_disk_key disk_key;
1213 
1214 			btrfs_node_key(right, &disk_key, 0);
1215 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1216 			btrfs_mark_buffer_dirty(parent);
1217 
1218 			if (btrfs_header_nritems(mid) <= orig_slot) {
1219 				path->nodes[level] = right;
1220 				path->slots[level + 1] += 1;
1221 				path->slots[level] = orig_slot -
1222 					btrfs_header_nritems(mid);
1223 				btrfs_tree_unlock(mid);
1224 				free_extent_buffer(mid);
1225 			} else {
1226 				btrfs_tree_unlock(right);
1227 				free_extent_buffer(right);
1228 			}
1229 			return 0;
1230 		}
1231 		btrfs_tree_unlock(right);
1232 		free_extent_buffer(right);
1233 	}
1234 	return 1;
1235 }
1236 
1237 /*
1238  * readahead one full node of leaves, finding things that are close
1239  * to the block in 'slot', and triggering ra on them.
1240  */
1241 static noinline void reada_for_search(struct btrfs_root *root,
1242 				      struct btrfs_path *path,
1243 				      int level, int slot, u64 objectid)
1244 {
1245 	struct extent_buffer *node;
1246 	struct btrfs_disk_key disk_key;
1247 	u32 nritems;
1248 	u64 search;
1249 	u64 target;
1250 	u64 nread = 0;
1251 	int direction = path->reada;
1252 	struct extent_buffer *eb;
1253 	u32 nr;
1254 	u32 blocksize;
1255 	u32 nscan = 0;
1256 
1257 	if (level != 1)
1258 		return;
1259 
1260 	if (!path->nodes[level])
1261 		return;
1262 
1263 	node = path->nodes[level];
1264 
1265 	search = btrfs_node_blockptr(node, slot);
1266 	blocksize = btrfs_level_size(root, level - 1);
1267 	eb = btrfs_find_tree_block(root, search, blocksize);
1268 	if (eb) {
1269 		free_extent_buffer(eb);
1270 		return;
1271 	}
1272 
1273 	target = search;
1274 
1275 	nritems = btrfs_header_nritems(node);
1276 	nr = slot;
1277 	while (1) {
1278 		if (direction < 0) {
1279 			if (nr == 0)
1280 				break;
1281 			nr--;
1282 		} else if (direction > 0) {
1283 			nr++;
1284 			if (nr >= nritems)
1285 				break;
1286 		}
1287 		if (path->reada < 0 && objectid) {
1288 			btrfs_node_key(node, &disk_key, nr);
1289 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1290 				break;
1291 		}
1292 		search = btrfs_node_blockptr(node, nr);
1293 		if ((search <= target && target - search <= 65536) ||
1294 		    (search > target && search - target <= 65536)) {
1295 			readahead_tree_block(root, search, blocksize,
1296 				     btrfs_node_ptr_generation(node, nr));
1297 			nread += blocksize;
1298 		}
1299 		nscan++;
1300 		if ((nread > 65536 || nscan > 32))
1301 			break;
1302 	}
1303 }
1304 
1305 /*
1306  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1307  * cache
1308  */
1309 static noinline int reada_for_balance(struct btrfs_root *root,
1310 				      struct btrfs_path *path, int level)
1311 {
1312 	int slot;
1313 	int nritems;
1314 	struct extent_buffer *parent;
1315 	struct extent_buffer *eb;
1316 	u64 gen;
1317 	u64 block1 = 0;
1318 	u64 block2 = 0;
1319 	int ret = 0;
1320 	int blocksize;
1321 
1322 	parent = path->nodes[level - 1];
1323 	if (!parent)
1324 		return 0;
1325 
1326 	nritems = btrfs_header_nritems(parent);
1327 	slot = path->slots[level];
1328 	blocksize = btrfs_level_size(root, level);
1329 
1330 	if (slot > 0) {
1331 		block1 = btrfs_node_blockptr(parent, slot - 1);
1332 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1333 		eb = btrfs_find_tree_block(root, block1, blocksize);
1334 		if (eb && btrfs_buffer_uptodate(eb, gen))
1335 			block1 = 0;
1336 		free_extent_buffer(eb);
1337 	}
1338 	if (slot < nritems) {
1339 		block2 = btrfs_node_blockptr(parent, slot + 1);
1340 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1341 		eb = btrfs_find_tree_block(root, block2, blocksize);
1342 		if (eb && btrfs_buffer_uptodate(eb, gen))
1343 			block2 = 0;
1344 		free_extent_buffer(eb);
1345 	}
1346 	if (block1 || block2) {
1347 		ret = -EAGAIN;
1348 		btrfs_release_path(root, path);
1349 		if (block1)
1350 			readahead_tree_block(root, block1, blocksize, 0);
1351 		if (block2)
1352 			readahead_tree_block(root, block2, blocksize, 0);
1353 
1354 		if (block1) {
1355 			eb = read_tree_block(root, block1, blocksize, 0);
1356 			free_extent_buffer(eb);
1357 		}
1358 		if (block1) {
1359 			eb = read_tree_block(root, block2, blocksize, 0);
1360 			free_extent_buffer(eb);
1361 		}
1362 	}
1363 	return ret;
1364 }
1365 
1366 
1367 /*
1368  * when we walk down the tree, it is usually safe to unlock the higher layers
1369  * in the tree.  The exceptions are when our path goes through slot 0, because
1370  * operations on the tree might require changing key pointers higher up in the
1371  * tree.
1372  *
1373  * callers might also have set path->keep_locks, which tells this code to keep
1374  * the lock if the path points to the last slot in the block.  This is part of
1375  * walking through the tree, and selecting the next slot in the higher block.
1376  *
1377  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1378  * if lowest_unlock is 1, level 0 won't be unlocked
1379  */
1380 static noinline void unlock_up(struct btrfs_path *path, int level,
1381 			       int lowest_unlock)
1382 {
1383 	int i;
1384 	int skip_level = level;
1385 	int no_skips = 0;
1386 	struct extent_buffer *t;
1387 
1388 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1389 		if (!path->nodes[i])
1390 			break;
1391 		if (!path->locks[i])
1392 			break;
1393 		if (!no_skips && path->slots[i] == 0) {
1394 			skip_level = i + 1;
1395 			continue;
1396 		}
1397 		if (!no_skips && path->keep_locks) {
1398 			u32 nritems;
1399 			t = path->nodes[i];
1400 			nritems = btrfs_header_nritems(t);
1401 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1402 				skip_level = i + 1;
1403 				continue;
1404 			}
1405 		}
1406 		if (skip_level < i && i >= lowest_unlock)
1407 			no_skips = 1;
1408 
1409 		t = path->nodes[i];
1410 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1411 			btrfs_tree_unlock(t);
1412 			path->locks[i] = 0;
1413 		}
1414 	}
1415 }
1416 
1417 /*
1418  * This releases any locks held in the path starting at level and
1419  * going all the way up to the root.
1420  *
1421  * btrfs_search_slot will keep the lock held on higher nodes in a few
1422  * corner cases, such as COW of the block at slot zero in the node.  This
1423  * ignores those rules, and it should only be called when there are no
1424  * more updates to be done higher up in the tree.
1425  */
1426 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1427 {
1428 	int i;
1429 
1430 	if (path->keep_locks || path->lowest_level)
1431 		return;
1432 
1433 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1434 		if (!path->nodes[i])
1435 			continue;
1436 		if (!path->locks[i])
1437 			continue;
1438 		btrfs_tree_unlock(path->nodes[i]);
1439 		path->locks[i] = 0;
1440 	}
1441 }
1442 
1443 /*
1444  * look for key in the tree.  path is filled in with nodes along the way
1445  * if key is found, we return zero and you can find the item in the leaf
1446  * level of the path (level 0)
1447  *
1448  * If the key isn't found, the path points to the slot where it should
1449  * be inserted, and 1 is returned.  If there are other errors during the
1450  * search a negative error number is returned.
1451  *
1452  * if ins_len > 0, nodes and leaves will be split as we walk down the
1453  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1454  * possible)
1455  */
1456 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1457 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1458 		      ins_len, int cow)
1459 {
1460 	struct extent_buffer *b;
1461 	struct extent_buffer *tmp;
1462 	int slot;
1463 	int ret;
1464 	int level;
1465 	int should_reada = p->reada;
1466 	int lowest_unlock = 1;
1467 	int blocksize;
1468 	u8 lowest_level = 0;
1469 	u64 blocknr;
1470 	u64 gen;
1471 	struct btrfs_key prealloc_block;
1472 
1473 	lowest_level = p->lowest_level;
1474 	WARN_ON(lowest_level && ins_len > 0);
1475 	WARN_ON(p->nodes[0] != NULL);
1476 
1477 	if (ins_len < 0)
1478 		lowest_unlock = 2;
1479 
1480 	prealloc_block.objectid = 0;
1481 
1482 again:
1483 	if (p->skip_locking)
1484 		b = btrfs_root_node(root);
1485 	else
1486 		b = btrfs_lock_root_node(root);
1487 
1488 	while (b) {
1489 		level = btrfs_header_level(b);
1490 
1491 		/*
1492 		 * setup the path here so we can release it under lock
1493 		 * contention with the cow code
1494 		 */
1495 		p->nodes[level] = b;
1496 		if (!p->skip_locking)
1497 			p->locks[level] = 1;
1498 
1499 		if (cow) {
1500 			int wret;
1501 
1502 			/* is a cow on this block not required */
1503 			if (btrfs_header_generation(b) == trans->transid &&
1504 			    btrfs_header_owner(b) == root->root_key.objectid &&
1505 			    !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1506 				goto cow_done;
1507 			}
1508 
1509 			/* ok, we have to cow, is our old prealloc the right
1510 			 * size?
1511 			 */
1512 			if (prealloc_block.objectid &&
1513 			    prealloc_block.offset != b->len) {
1514 				btrfs_release_path(root, p);
1515 				btrfs_free_reserved_extent(root,
1516 					   prealloc_block.objectid,
1517 					   prealloc_block.offset);
1518 				prealloc_block.objectid = 0;
1519 				goto again;
1520 			}
1521 
1522 			/*
1523 			 * for higher level blocks, try not to allocate blocks
1524 			 * with the block and the parent locks held.
1525 			 */
1526 			if (level > 0 && !prealloc_block.objectid) {
1527 				u32 size = b->len;
1528 				u64 hint = b->start;
1529 
1530 				btrfs_release_path(root, p);
1531 				ret = btrfs_reserve_extent(trans, root,
1532 							   size, size, 0,
1533 							   hint, (u64)-1,
1534 							   &prealloc_block, 0);
1535 				BUG_ON(ret);
1536 				goto again;
1537 			}
1538 
1539 			btrfs_set_path_blocking(p);
1540 
1541 			wret = btrfs_cow_block(trans, root, b,
1542 					       p->nodes[level + 1],
1543 					       p->slots[level + 1],
1544 					       &b, prealloc_block.objectid);
1545 			prealloc_block.objectid = 0;
1546 			if (wret) {
1547 				free_extent_buffer(b);
1548 				ret = wret;
1549 				goto done;
1550 			}
1551 		}
1552 cow_done:
1553 		BUG_ON(!cow && ins_len);
1554 		if (level != btrfs_header_level(b))
1555 			WARN_ON(1);
1556 		level = btrfs_header_level(b);
1557 
1558 		p->nodes[level] = b;
1559 		if (!p->skip_locking)
1560 			p->locks[level] = 1;
1561 
1562 		btrfs_clear_path_blocking(p);
1563 
1564 		/*
1565 		 * we have a lock on b and as long as we aren't changing
1566 		 * the tree, there is no way to for the items in b to change.
1567 		 * It is safe to drop the lock on our parent before we
1568 		 * go through the expensive btree search on b.
1569 		 *
1570 		 * If cow is true, then we might be changing slot zero,
1571 		 * which may require changing the parent.  So, we can't
1572 		 * drop the lock until after we know which slot we're
1573 		 * operating on.
1574 		 */
1575 		if (!cow)
1576 			btrfs_unlock_up_safe(p, level + 1);
1577 
1578 		ret = check_block(root, p, level);
1579 		if (ret) {
1580 			ret = -1;
1581 			goto done;
1582 		}
1583 
1584 		ret = bin_search(b, key, level, &slot);
1585 
1586 		if (level != 0) {
1587 			if (ret && slot > 0)
1588 				slot -= 1;
1589 			p->slots[level] = slot;
1590 			if ((p->search_for_split || ins_len > 0) &&
1591 			    btrfs_header_nritems(b) >=
1592 			    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1593 				int sret;
1594 
1595 				sret = reada_for_balance(root, p, level);
1596 				if (sret)
1597 					goto again;
1598 
1599 				btrfs_set_path_blocking(p);
1600 				sret = split_node(trans, root, p, level);
1601 				btrfs_clear_path_blocking(p);
1602 
1603 				BUG_ON(sret > 0);
1604 				if (sret) {
1605 					ret = sret;
1606 					goto done;
1607 				}
1608 				b = p->nodes[level];
1609 				slot = p->slots[level];
1610 			} else if (ins_len < 0 &&
1611 				   btrfs_header_nritems(b) <
1612 				   BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1613 				int sret;
1614 
1615 				sret = reada_for_balance(root, p, level);
1616 				if (sret)
1617 					goto again;
1618 
1619 				btrfs_set_path_blocking(p);
1620 				sret = balance_level(trans, root, p, level);
1621 				btrfs_clear_path_blocking(p);
1622 
1623 				if (sret) {
1624 					ret = sret;
1625 					goto done;
1626 				}
1627 				b = p->nodes[level];
1628 				if (!b) {
1629 					btrfs_release_path(NULL, p);
1630 					goto again;
1631 				}
1632 				slot = p->slots[level];
1633 				BUG_ON(btrfs_header_nritems(b) == 1);
1634 			}
1635 			unlock_up(p, level, lowest_unlock);
1636 
1637 			/* this is only true while dropping a snapshot */
1638 			if (level == lowest_level) {
1639 				ret = 0;
1640 				goto done;
1641 			}
1642 
1643 			blocknr = btrfs_node_blockptr(b, slot);
1644 			gen = btrfs_node_ptr_generation(b, slot);
1645 			blocksize = btrfs_level_size(root, level - 1);
1646 
1647 			tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1648 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1649 				b = tmp;
1650 			} else {
1651 				/*
1652 				 * reduce lock contention at high levels
1653 				 * of the btree by dropping locks before
1654 				 * we read.
1655 				 */
1656 				if (level > 0) {
1657 					btrfs_release_path(NULL, p);
1658 					if (tmp)
1659 						free_extent_buffer(tmp);
1660 					if (should_reada)
1661 						reada_for_search(root, p,
1662 								 level, slot,
1663 								 key->objectid);
1664 
1665 					tmp = read_tree_block(root, blocknr,
1666 							 blocksize, gen);
1667 					if (tmp)
1668 						free_extent_buffer(tmp);
1669 					goto again;
1670 				} else {
1671 					btrfs_set_path_blocking(p);
1672 					if (tmp)
1673 						free_extent_buffer(tmp);
1674 					if (should_reada)
1675 						reada_for_search(root, p,
1676 								 level, slot,
1677 								 key->objectid);
1678 					b = read_node_slot(root, b, slot);
1679 				}
1680 			}
1681 			if (!p->skip_locking) {
1682 				int lret;
1683 
1684 				btrfs_clear_path_blocking(p);
1685 				lret = btrfs_try_spin_lock(b);
1686 
1687 				if (!lret) {
1688 					btrfs_set_path_blocking(p);
1689 					btrfs_tree_lock(b);
1690 					btrfs_clear_path_blocking(p);
1691 				}
1692 			}
1693 		} else {
1694 			p->slots[level] = slot;
1695 			if (ins_len > 0 &&
1696 			    btrfs_leaf_free_space(root, b) < ins_len) {
1697 				int sret;
1698 
1699 				btrfs_set_path_blocking(p);
1700 				sret = split_leaf(trans, root, key,
1701 						      p, ins_len, ret == 0);
1702 				btrfs_clear_path_blocking(p);
1703 
1704 				BUG_ON(sret > 0);
1705 				if (sret) {
1706 					ret = sret;
1707 					goto done;
1708 				}
1709 			}
1710 			if (!p->search_for_split)
1711 				unlock_up(p, level, lowest_unlock);
1712 			goto done;
1713 		}
1714 	}
1715 	ret = 1;
1716 done:
1717 	/*
1718 	 * we don't really know what they plan on doing with the path
1719 	 * from here on, so for now just mark it as blocking
1720 	 */
1721 	btrfs_set_path_blocking(p);
1722 	if (prealloc_block.objectid) {
1723 		btrfs_free_reserved_extent(root,
1724 			   prealloc_block.objectid,
1725 			   prealloc_block.offset);
1726 	}
1727 	return ret;
1728 }
1729 
1730 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1731 		     struct btrfs_root *root,
1732 		     struct btrfs_key *node_keys,
1733 		     u64 *nodes, int lowest_level)
1734 {
1735 	struct extent_buffer *eb;
1736 	struct extent_buffer *parent;
1737 	struct btrfs_key key;
1738 	u64 bytenr;
1739 	u64 generation;
1740 	u32 blocksize;
1741 	int level;
1742 	int slot;
1743 	int key_match;
1744 	int ret;
1745 
1746 	eb = btrfs_lock_root_node(root);
1747 	ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
1748 	BUG_ON(ret);
1749 
1750 	btrfs_set_lock_blocking(eb);
1751 
1752 	parent = eb;
1753 	while (1) {
1754 		level = btrfs_header_level(parent);
1755 		if (level == 0 || level <= lowest_level)
1756 			break;
1757 
1758 		ret = bin_search(parent, &node_keys[lowest_level], level,
1759 				 &slot);
1760 		if (ret && slot > 0)
1761 			slot--;
1762 
1763 		bytenr = btrfs_node_blockptr(parent, slot);
1764 		if (nodes[level - 1] == bytenr)
1765 			break;
1766 
1767 		blocksize = btrfs_level_size(root, level - 1);
1768 		generation = btrfs_node_ptr_generation(parent, slot);
1769 		btrfs_node_key_to_cpu(eb, &key, slot);
1770 		key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1771 
1772 		if (generation == trans->transid) {
1773 			eb = read_tree_block(root, bytenr, blocksize,
1774 					     generation);
1775 			btrfs_tree_lock(eb);
1776 			btrfs_set_lock_blocking(eb);
1777 		}
1778 
1779 		/*
1780 		 * if node keys match and node pointer hasn't been modified
1781 		 * in the running transaction, we can merge the path. for
1782 		 * blocks owened by reloc trees, the node pointer check is
1783 		 * skipped, this is because these blocks are fully controlled
1784 		 * by the space balance code, no one else can modify them.
1785 		 */
1786 		if (!nodes[level - 1] || !key_match ||
1787 		    (generation == trans->transid &&
1788 		     btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1789 			if (level == 1 || level == lowest_level + 1) {
1790 				if (generation == trans->transid) {
1791 					btrfs_tree_unlock(eb);
1792 					free_extent_buffer(eb);
1793 				}
1794 				break;
1795 			}
1796 
1797 			if (generation != trans->transid) {
1798 				eb = read_tree_block(root, bytenr, blocksize,
1799 						generation);
1800 				btrfs_tree_lock(eb);
1801 				btrfs_set_lock_blocking(eb);
1802 			}
1803 
1804 			ret = btrfs_cow_block(trans, root, eb, parent, slot,
1805 					      &eb, 0);
1806 			BUG_ON(ret);
1807 
1808 			if (root->root_key.objectid ==
1809 			    BTRFS_TREE_RELOC_OBJECTID) {
1810 				if (!nodes[level - 1]) {
1811 					nodes[level - 1] = eb->start;
1812 					memcpy(&node_keys[level - 1], &key,
1813 					       sizeof(node_keys[0]));
1814 				} else {
1815 					WARN_ON(1);
1816 				}
1817 			}
1818 
1819 			btrfs_tree_unlock(parent);
1820 			free_extent_buffer(parent);
1821 			parent = eb;
1822 			continue;
1823 		}
1824 
1825 		btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1826 		btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1827 		btrfs_mark_buffer_dirty(parent);
1828 
1829 		ret = btrfs_inc_extent_ref(trans, root,
1830 					nodes[level - 1],
1831 					blocksize, parent->start,
1832 					btrfs_header_owner(parent),
1833 					btrfs_header_generation(parent),
1834 					level - 1);
1835 		BUG_ON(ret);
1836 
1837 		/*
1838 		 * If the block was created in the running transaction,
1839 		 * it's possible this is the last reference to it, so we
1840 		 * should drop the subtree.
1841 		 */
1842 		if (generation == trans->transid) {
1843 			ret = btrfs_drop_subtree(trans, root, eb, parent);
1844 			BUG_ON(ret);
1845 			btrfs_tree_unlock(eb);
1846 			free_extent_buffer(eb);
1847 		} else {
1848 			ret = btrfs_free_extent(trans, root, bytenr,
1849 					blocksize, parent->start,
1850 					btrfs_header_owner(parent),
1851 					btrfs_header_generation(parent),
1852 					level - 1, 1);
1853 			BUG_ON(ret);
1854 		}
1855 		break;
1856 	}
1857 	btrfs_tree_unlock(parent);
1858 	free_extent_buffer(parent);
1859 	return 0;
1860 }
1861 
1862 /*
1863  * adjust the pointers going up the tree, starting at level
1864  * making sure the right key of each node is points to 'key'.
1865  * This is used after shifting pointers to the left, so it stops
1866  * fixing up pointers when a given leaf/node is not in slot 0 of the
1867  * higher levels
1868  *
1869  * If this fails to write a tree block, it returns -1, but continues
1870  * fixing up the blocks in ram so the tree is consistent.
1871  */
1872 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1873 			  struct btrfs_root *root, struct btrfs_path *path,
1874 			  struct btrfs_disk_key *key, int level)
1875 {
1876 	int i;
1877 	int ret = 0;
1878 	struct extent_buffer *t;
1879 
1880 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1881 		int tslot = path->slots[i];
1882 		if (!path->nodes[i])
1883 			break;
1884 		t = path->nodes[i];
1885 		btrfs_set_node_key(t, key, tslot);
1886 		btrfs_mark_buffer_dirty(path->nodes[i]);
1887 		if (tslot != 0)
1888 			break;
1889 	}
1890 	return ret;
1891 }
1892 
1893 /*
1894  * update item key.
1895  *
1896  * This function isn't completely safe. It's the caller's responsibility
1897  * that the new key won't break the order
1898  */
1899 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1900 			    struct btrfs_root *root, struct btrfs_path *path,
1901 			    struct btrfs_key *new_key)
1902 {
1903 	struct btrfs_disk_key disk_key;
1904 	struct extent_buffer *eb;
1905 	int slot;
1906 
1907 	eb = path->nodes[0];
1908 	slot = path->slots[0];
1909 	if (slot > 0) {
1910 		btrfs_item_key(eb, &disk_key, slot - 1);
1911 		if (comp_keys(&disk_key, new_key) >= 0)
1912 			return -1;
1913 	}
1914 	if (slot < btrfs_header_nritems(eb) - 1) {
1915 		btrfs_item_key(eb, &disk_key, slot + 1);
1916 		if (comp_keys(&disk_key, new_key) <= 0)
1917 			return -1;
1918 	}
1919 
1920 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1921 	btrfs_set_item_key(eb, &disk_key, slot);
1922 	btrfs_mark_buffer_dirty(eb);
1923 	if (slot == 0)
1924 		fixup_low_keys(trans, root, path, &disk_key, 1);
1925 	return 0;
1926 }
1927 
1928 /*
1929  * try to push data from one node into the next node left in the
1930  * tree.
1931  *
1932  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1933  * error, and > 0 if there was no room in the left hand block.
1934  */
1935 static int push_node_left(struct btrfs_trans_handle *trans,
1936 			  struct btrfs_root *root, struct extent_buffer *dst,
1937 			  struct extent_buffer *src, int empty)
1938 {
1939 	int push_items = 0;
1940 	int src_nritems;
1941 	int dst_nritems;
1942 	int ret = 0;
1943 
1944 	src_nritems = btrfs_header_nritems(src);
1945 	dst_nritems = btrfs_header_nritems(dst);
1946 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1947 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1948 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1949 
1950 	if (!empty && src_nritems <= 8)
1951 		return 1;
1952 
1953 	if (push_items <= 0)
1954 		return 1;
1955 
1956 	if (empty) {
1957 		push_items = min(src_nritems, push_items);
1958 		if (push_items < src_nritems) {
1959 			/* leave at least 8 pointers in the node if
1960 			 * we aren't going to empty it
1961 			 */
1962 			if (src_nritems - push_items < 8) {
1963 				if (push_items <= 8)
1964 					return 1;
1965 				push_items -= 8;
1966 			}
1967 		}
1968 	} else
1969 		push_items = min(src_nritems - 8, push_items);
1970 
1971 	copy_extent_buffer(dst, src,
1972 			   btrfs_node_key_ptr_offset(dst_nritems),
1973 			   btrfs_node_key_ptr_offset(0),
1974 			   push_items * sizeof(struct btrfs_key_ptr));
1975 
1976 	if (push_items < src_nritems) {
1977 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1978 				      btrfs_node_key_ptr_offset(push_items),
1979 				      (src_nritems - push_items) *
1980 				      sizeof(struct btrfs_key_ptr));
1981 	}
1982 	btrfs_set_header_nritems(src, src_nritems - push_items);
1983 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1984 	btrfs_mark_buffer_dirty(src);
1985 	btrfs_mark_buffer_dirty(dst);
1986 
1987 	ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1988 	BUG_ON(ret);
1989 
1990 	return ret;
1991 }
1992 
1993 /*
1994  * try to push data from one node into the next node right in the
1995  * tree.
1996  *
1997  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1998  * error, and > 0 if there was no room in the right hand block.
1999  *
2000  * this will  only push up to 1/2 the contents of the left node over
2001  */
2002 static int balance_node_right(struct btrfs_trans_handle *trans,
2003 			      struct btrfs_root *root,
2004 			      struct extent_buffer *dst,
2005 			      struct extent_buffer *src)
2006 {
2007 	int push_items = 0;
2008 	int max_push;
2009 	int src_nritems;
2010 	int dst_nritems;
2011 	int ret = 0;
2012 
2013 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2014 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2015 
2016 	src_nritems = btrfs_header_nritems(src);
2017 	dst_nritems = btrfs_header_nritems(dst);
2018 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2019 	if (push_items <= 0)
2020 		return 1;
2021 
2022 	if (src_nritems < 4)
2023 		return 1;
2024 
2025 	max_push = src_nritems / 2 + 1;
2026 	/* don't try to empty the node */
2027 	if (max_push >= src_nritems)
2028 		return 1;
2029 
2030 	if (max_push < push_items)
2031 		push_items = max_push;
2032 
2033 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2034 				      btrfs_node_key_ptr_offset(0),
2035 				      (dst_nritems) *
2036 				      sizeof(struct btrfs_key_ptr));
2037 
2038 	copy_extent_buffer(dst, src,
2039 			   btrfs_node_key_ptr_offset(0),
2040 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2041 			   push_items * sizeof(struct btrfs_key_ptr));
2042 
2043 	btrfs_set_header_nritems(src, src_nritems - push_items);
2044 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2045 
2046 	btrfs_mark_buffer_dirty(src);
2047 	btrfs_mark_buffer_dirty(dst);
2048 
2049 	ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2050 	BUG_ON(ret);
2051 
2052 	return ret;
2053 }
2054 
2055 /*
2056  * helper function to insert a new root level in the tree.
2057  * A new node is allocated, and a single item is inserted to
2058  * point to the existing root
2059  *
2060  * returns zero on success or < 0 on failure.
2061  */
2062 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2063 			   struct btrfs_root *root,
2064 			   struct btrfs_path *path, int level)
2065 {
2066 	u64 lower_gen;
2067 	struct extent_buffer *lower;
2068 	struct extent_buffer *c;
2069 	struct extent_buffer *old;
2070 	struct btrfs_disk_key lower_key;
2071 	int ret;
2072 
2073 	BUG_ON(path->nodes[level]);
2074 	BUG_ON(path->nodes[level-1] != root->node);
2075 
2076 	lower = path->nodes[level-1];
2077 	if (level == 1)
2078 		btrfs_item_key(lower, &lower_key, 0);
2079 	else
2080 		btrfs_node_key(lower, &lower_key, 0);
2081 
2082 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2083 				   root->root_key.objectid, trans->transid,
2084 				   level, root->node->start, 0);
2085 	if (IS_ERR(c))
2086 		return PTR_ERR(c);
2087 
2088 	memset_extent_buffer(c, 0, 0, root->nodesize);
2089 	btrfs_set_header_nritems(c, 1);
2090 	btrfs_set_header_level(c, level);
2091 	btrfs_set_header_bytenr(c, c->start);
2092 	btrfs_set_header_generation(c, trans->transid);
2093 	btrfs_set_header_owner(c, root->root_key.objectid);
2094 
2095 	write_extent_buffer(c, root->fs_info->fsid,
2096 			    (unsigned long)btrfs_header_fsid(c),
2097 			    BTRFS_FSID_SIZE);
2098 
2099 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2100 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2101 			    BTRFS_UUID_SIZE);
2102 
2103 	btrfs_set_node_key(c, &lower_key, 0);
2104 	btrfs_set_node_blockptr(c, 0, lower->start);
2105 	lower_gen = btrfs_header_generation(lower);
2106 	WARN_ON(lower_gen != trans->transid);
2107 
2108 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2109 
2110 	btrfs_mark_buffer_dirty(c);
2111 
2112 	spin_lock(&root->node_lock);
2113 	old = root->node;
2114 	root->node = c;
2115 	spin_unlock(&root->node_lock);
2116 
2117 	ret = btrfs_update_extent_ref(trans, root, lower->start,
2118 				      lower->start, c->start,
2119 				      root->root_key.objectid,
2120 				      trans->transid, level - 1);
2121 	BUG_ON(ret);
2122 
2123 	/* the super has an extra ref to root->node */
2124 	free_extent_buffer(old);
2125 
2126 	add_root_to_dirty_list(root);
2127 	extent_buffer_get(c);
2128 	path->nodes[level] = c;
2129 	path->locks[level] = 1;
2130 	path->slots[level] = 0;
2131 	return 0;
2132 }
2133 
2134 /*
2135  * worker function to insert a single pointer in a node.
2136  * the node should have enough room for the pointer already
2137  *
2138  * slot and level indicate where you want the key to go, and
2139  * blocknr is the block the key points to.
2140  *
2141  * returns zero on success and < 0 on any error
2142  */
2143 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2144 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2145 		      *key, u64 bytenr, int slot, int level)
2146 {
2147 	struct extent_buffer *lower;
2148 	int nritems;
2149 
2150 	BUG_ON(!path->nodes[level]);
2151 	lower = path->nodes[level];
2152 	nritems = btrfs_header_nritems(lower);
2153 	if (slot > nritems)
2154 		BUG();
2155 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2156 		BUG();
2157 	if (slot != nritems) {
2158 		memmove_extent_buffer(lower,
2159 			      btrfs_node_key_ptr_offset(slot + 1),
2160 			      btrfs_node_key_ptr_offset(slot),
2161 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2162 	}
2163 	btrfs_set_node_key(lower, key, slot);
2164 	btrfs_set_node_blockptr(lower, slot, bytenr);
2165 	WARN_ON(trans->transid == 0);
2166 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2167 	btrfs_set_header_nritems(lower, nritems + 1);
2168 	btrfs_mark_buffer_dirty(lower);
2169 	return 0;
2170 }
2171 
2172 /*
2173  * split the node at the specified level in path in two.
2174  * The path is corrected to point to the appropriate node after the split
2175  *
2176  * Before splitting this tries to make some room in the node by pushing
2177  * left and right, if either one works, it returns right away.
2178  *
2179  * returns 0 on success and < 0 on failure
2180  */
2181 static noinline int split_node(struct btrfs_trans_handle *trans,
2182 			       struct btrfs_root *root,
2183 			       struct btrfs_path *path, int level)
2184 {
2185 	struct extent_buffer *c;
2186 	struct extent_buffer *split;
2187 	struct btrfs_disk_key disk_key;
2188 	int mid;
2189 	int ret;
2190 	int wret;
2191 	u32 c_nritems;
2192 
2193 	c = path->nodes[level];
2194 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2195 	if (c == root->node) {
2196 		/* trying to split the root, lets make a new one */
2197 		ret = insert_new_root(trans, root, path, level + 1);
2198 		if (ret)
2199 			return ret;
2200 	} else {
2201 		ret = push_nodes_for_insert(trans, root, path, level);
2202 		c = path->nodes[level];
2203 		if (!ret && btrfs_header_nritems(c) <
2204 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2205 			return 0;
2206 		if (ret < 0)
2207 			return ret;
2208 	}
2209 
2210 	c_nritems = btrfs_header_nritems(c);
2211 
2212 	split = btrfs_alloc_free_block(trans, root, root->nodesize,
2213 					path->nodes[level + 1]->start,
2214 					root->root_key.objectid,
2215 					trans->transid, level, c->start, 0);
2216 	if (IS_ERR(split))
2217 		return PTR_ERR(split);
2218 
2219 	btrfs_set_header_flags(split, btrfs_header_flags(c));
2220 	btrfs_set_header_level(split, btrfs_header_level(c));
2221 	btrfs_set_header_bytenr(split, split->start);
2222 	btrfs_set_header_generation(split, trans->transid);
2223 	btrfs_set_header_owner(split, root->root_key.objectid);
2224 	btrfs_set_header_flags(split, 0);
2225 	write_extent_buffer(split, root->fs_info->fsid,
2226 			    (unsigned long)btrfs_header_fsid(split),
2227 			    BTRFS_FSID_SIZE);
2228 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2229 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2230 			    BTRFS_UUID_SIZE);
2231 
2232 	mid = (c_nritems + 1) / 2;
2233 
2234 	copy_extent_buffer(split, c,
2235 			   btrfs_node_key_ptr_offset(0),
2236 			   btrfs_node_key_ptr_offset(mid),
2237 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2238 	btrfs_set_header_nritems(split, c_nritems - mid);
2239 	btrfs_set_header_nritems(c, mid);
2240 	ret = 0;
2241 
2242 	btrfs_mark_buffer_dirty(c);
2243 	btrfs_mark_buffer_dirty(split);
2244 
2245 	btrfs_node_key(split, &disk_key, 0);
2246 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2247 			  path->slots[level + 1] + 1,
2248 			  level + 1);
2249 	if (wret)
2250 		ret = wret;
2251 
2252 	ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2253 	BUG_ON(ret);
2254 
2255 	if (path->slots[level] >= mid) {
2256 		path->slots[level] -= mid;
2257 		btrfs_tree_unlock(c);
2258 		free_extent_buffer(c);
2259 		path->nodes[level] = split;
2260 		path->slots[level + 1] += 1;
2261 	} else {
2262 		btrfs_tree_unlock(split);
2263 		free_extent_buffer(split);
2264 	}
2265 	return ret;
2266 }
2267 
2268 /*
2269  * how many bytes are required to store the items in a leaf.  start
2270  * and nr indicate which items in the leaf to check.  This totals up the
2271  * space used both by the item structs and the item data
2272  */
2273 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2274 {
2275 	int data_len;
2276 	int nritems = btrfs_header_nritems(l);
2277 	int end = min(nritems, start + nr) - 1;
2278 
2279 	if (!nr)
2280 		return 0;
2281 	data_len = btrfs_item_end_nr(l, start);
2282 	data_len = data_len - btrfs_item_offset_nr(l, end);
2283 	data_len += sizeof(struct btrfs_item) * nr;
2284 	WARN_ON(data_len < 0);
2285 	return data_len;
2286 }
2287 
2288 /*
2289  * The space between the end of the leaf items and
2290  * the start of the leaf data.  IOW, how much room
2291  * the leaf has left for both items and data
2292  */
2293 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2294 				   struct extent_buffer *leaf)
2295 {
2296 	int nritems = btrfs_header_nritems(leaf);
2297 	int ret;
2298 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2299 	if (ret < 0) {
2300 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2301 		       "used %d nritems %d\n",
2302 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2303 		       leaf_space_used(leaf, 0, nritems), nritems);
2304 	}
2305 	return ret;
2306 }
2307 
2308 /*
2309  * push some data in the path leaf to the right, trying to free up at
2310  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2311  *
2312  * returns 1 if the push failed because the other node didn't have enough
2313  * room, 0 if everything worked out and < 0 if there were major errors.
2314  */
2315 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2316 			   *root, struct btrfs_path *path, int data_size,
2317 			   int empty)
2318 {
2319 	struct extent_buffer *left = path->nodes[0];
2320 	struct extent_buffer *right;
2321 	struct extent_buffer *upper;
2322 	struct btrfs_disk_key disk_key;
2323 	int slot;
2324 	u32 i;
2325 	int free_space;
2326 	int push_space = 0;
2327 	int push_items = 0;
2328 	struct btrfs_item *item;
2329 	u32 left_nritems;
2330 	u32 nr;
2331 	u32 right_nritems;
2332 	u32 data_end;
2333 	u32 this_item_size;
2334 	int ret;
2335 
2336 	slot = path->slots[1];
2337 	if (!path->nodes[1])
2338 		return 1;
2339 
2340 	upper = path->nodes[1];
2341 	if (slot >= btrfs_header_nritems(upper) - 1)
2342 		return 1;
2343 
2344 	WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2345 
2346 	right = read_node_slot(root, upper, slot + 1);
2347 	btrfs_tree_lock(right);
2348 	btrfs_set_lock_blocking(right);
2349 
2350 	free_space = btrfs_leaf_free_space(root, right);
2351 	if (free_space < data_size)
2352 		goto out_unlock;
2353 
2354 	/* cow and double check */
2355 	ret = btrfs_cow_block(trans, root, right, upper,
2356 			      slot + 1, &right, 0);
2357 	if (ret)
2358 		goto out_unlock;
2359 
2360 	free_space = btrfs_leaf_free_space(root, right);
2361 	if (free_space < data_size)
2362 		goto out_unlock;
2363 
2364 	left_nritems = btrfs_header_nritems(left);
2365 	if (left_nritems == 0)
2366 		goto out_unlock;
2367 
2368 	if (empty)
2369 		nr = 0;
2370 	else
2371 		nr = 1;
2372 
2373 	if (path->slots[0] >= left_nritems)
2374 		push_space += data_size;
2375 
2376 	i = left_nritems - 1;
2377 	while (i >= nr) {
2378 		item = btrfs_item_nr(left, i);
2379 
2380 		if (!empty && push_items > 0) {
2381 			if (path->slots[0] > i)
2382 				break;
2383 			if (path->slots[0] == i) {
2384 				int space = btrfs_leaf_free_space(root, left);
2385 				if (space + push_space * 2 > free_space)
2386 					break;
2387 			}
2388 		}
2389 
2390 		if (path->slots[0] == i)
2391 			push_space += data_size;
2392 
2393 		if (!left->map_token) {
2394 			map_extent_buffer(left, (unsigned long)item,
2395 					sizeof(struct btrfs_item),
2396 					&left->map_token, &left->kaddr,
2397 					&left->map_start, &left->map_len,
2398 					KM_USER1);
2399 		}
2400 
2401 		this_item_size = btrfs_item_size(left, item);
2402 		if (this_item_size + sizeof(*item) + push_space > free_space)
2403 			break;
2404 
2405 		push_items++;
2406 		push_space += this_item_size + sizeof(*item);
2407 		if (i == 0)
2408 			break;
2409 		i--;
2410 	}
2411 	if (left->map_token) {
2412 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2413 		left->map_token = NULL;
2414 	}
2415 
2416 	if (push_items == 0)
2417 		goto out_unlock;
2418 
2419 	if (!empty && push_items == left_nritems)
2420 		WARN_ON(1);
2421 
2422 	/* push left to right */
2423 	right_nritems = btrfs_header_nritems(right);
2424 
2425 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2426 	push_space -= leaf_data_end(root, left);
2427 
2428 	/* make room in the right data area */
2429 	data_end = leaf_data_end(root, right);
2430 	memmove_extent_buffer(right,
2431 			      btrfs_leaf_data(right) + data_end - push_space,
2432 			      btrfs_leaf_data(right) + data_end,
2433 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2434 
2435 	/* copy from the left data area */
2436 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2437 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2438 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2439 		     push_space);
2440 
2441 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2442 			      btrfs_item_nr_offset(0),
2443 			      right_nritems * sizeof(struct btrfs_item));
2444 
2445 	/* copy the items from left to right */
2446 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2447 		   btrfs_item_nr_offset(left_nritems - push_items),
2448 		   push_items * sizeof(struct btrfs_item));
2449 
2450 	/* update the item pointers */
2451 	right_nritems += push_items;
2452 	btrfs_set_header_nritems(right, right_nritems);
2453 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2454 	for (i = 0; i < right_nritems; i++) {
2455 		item = btrfs_item_nr(right, i);
2456 		if (!right->map_token) {
2457 			map_extent_buffer(right, (unsigned long)item,
2458 					sizeof(struct btrfs_item),
2459 					&right->map_token, &right->kaddr,
2460 					&right->map_start, &right->map_len,
2461 					KM_USER1);
2462 		}
2463 		push_space -= btrfs_item_size(right, item);
2464 		btrfs_set_item_offset(right, item, push_space);
2465 	}
2466 
2467 	if (right->map_token) {
2468 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2469 		right->map_token = NULL;
2470 	}
2471 	left_nritems -= push_items;
2472 	btrfs_set_header_nritems(left, left_nritems);
2473 
2474 	if (left_nritems)
2475 		btrfs_mark_buffer_dirty(left);
2476 	btrfs_mark_buffer_dirty(right);
2477 
2478 	ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2479 	BUG_ON(ret);
2480 
2481 	btrfs_item_key(right, &disk_key, 0);
2482 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2483 	btrfs_mark_buffer_dirty(upper);
2484 
2485 	/* then fixup the leaf pointer in the path */
2486 	if (path->slots[0] >= left_nritems) {
2487 		path->slots[0] -= left_nritems;
2488 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2489 			clean_tree_block(trans, root, path->nodes[0]);
2490 		btrfs_tree_unlock(path->nodes[0]);
2491 		free_extent_buffer(path->nodes[0]);
2492 		path->nodes[0] = right;
2493 		path->slots[1] += 1;
2494 	} else {
2495 		btrfs_tree_unlock(right);
2496 		free_extent_buffer(right);
2497 	}
2498 	return 0;
2499 
2500 out_unlock:
2501 	btrfs_tree_unlock(right);
2502 	free_extent_buffer(right);
2503 	return 1;
2504 }
2505 
2506 /*
2507  * push some data in the path leaf to the left, trying to free up at
2508  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2509  */
2510 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2511 			  *root, struct btrfs_path *path, int data_size,
2512 			  int empty)
2513 {
2514 	struct btrfs_disk_key disk_key;
2515 	struct extent_buffer *right = path->nodes[0];
2516 	struct extent_buffer *left;
2517 	int slot;
2518 	int i;
2519 	int free_space;
2520 	int push_space = 0;
2521 	int push_items = 0;
2522 	struct btrfs_item *item;
2523 	u32 old_left_nritems;
2524 	u32 right_nritems;
2525 	u32 nr;
2526 	int ret = 0;
2527 	int wret;
2528 	u32 this_item_size;
2529 	u32 old_left_item_size;
2530 
2531 	slot = path->slots[1];
2532 	if (slot == 0)
2533 		return 1;
2534 	if (!path->nodes[1])
2535 		return 1;
2536 
2537 	right_nritems = btrfs_header_nritems(right);
2538 	if (right_nritems == 0)
2539 		return 1;
2540 
2541 	WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2542 
2543 	left = read_node_slot(root, path->nodes[1], slot - 1);
2544 	btrfs_tree_lock(left);
2545 	btrfs_set_lock_blocking(left);
2546 
2547 	free_space = btrfs_leaf_free_space(root, left);
2548 	if (free_space < data_size) {
2549 		ret = 1;
2550 		goto out;
2551 	}
2552 
2553 	/* cow and double check */
2554 	ret = btrfs_cow_block(trans, root, left,
2555 			      path->nodes[1], slot - 1, &left, 0);
2556 	if (ret) {
2557 		/* we hit -ENOSPC, but it isn't fatal here */
2558 		ret = 1;
2559 		goto out;
2560 	}
2561 
2562 	free_space = btrfs_leaf_free_space(root, left);
2563 	if (free_space < data_size) {
2564 		ret = 1;
2565 		goto out;
2566 	}
2567 
2568 	if (empty)
2569 		nr = right_nritems;
2570 	else
2571 		nr = right_nritems - 1;
2572 
2573 	for (i = 0; i < nr; i++) {
2574 		item = btrfs_item_nr(right, i);
2575 		if (!right->map_token) {
2576 			map_extent_buffer(right, (unsigned long)item,
2577 					sizeof(struct btrfs_item),
2578 					&right->map_token, &right->kaddr,
2579 					&right->map_start, &right->map_len,
2580 					KM_USER1);
2581 		}
2582 
2583 		if (!empty && push_items > 0) {
2584 			if (path->slots[0] < i)
2585 				break;
2586 			if (path->slots[0] == i) {
2587 				int space = btrfs_leaf_free_space(root, right);
2588 				if (space + push_space * 2 > free_space)
2589 					break;
2590 			}
2591 		}
2592 
2593 		if (path->slots[0] == i)
2594 			push_space += data_size;
2595 
2596 		this_item_size = btrfs_item_size(right, item);
2597 		if (this_item_size + sizeof(*item) + push_space > free_space)
2598 			break;
2599 
2600 		push_items++;
2601 		push_space += this_item_size + sizeof(*item);
2602 	}
2603 
2604 	if (right->map_token) {
2605 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2606 		right->map_token = NULL;
2607 	}
2608 
2609 	if (push_items == 0) {
2610 		ret = 1;
2611 		goto out;
2612 	}
2613 	if (!empty && push_items == btrfs_header_nritems(right))
2614 		WARN_ON(1);
2615 
2616 	/* push data from right to left */
2617 	copy_extent_buffer(left, right,
2618 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2619 			   btrfs_item_nr_offset(0),
2620 			   push_items * sizeof(struct btrfs_item));
2621 
2622 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2623 		     btrfs_item_offset_nr(right, push_items - 1);
2624 
2625 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2626 		     leaf_data_end(root, left) - push_space,
2627 		     btrfs_leaf_data(right) +
2628 		     btrfs_item_offset_nr(right, push_items - 1),
2629 		     push_space);
2630 	old_left_nritems = btrfs_header_nritems(left);
2631 	BUG_ON(old_left_nritems <= 0);
2632 
2633 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2634 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2635 		u32 ioff;
2636 
2637 		item = btrfs_item_nr(left, i);
2638 		if (!left->map_token) {
2639 			map_extent_buffer(left, (unsigned long)item,
2640 					sizeof(struct btrfs_item),
2641 					&left->map_token, &left->kaddr,
2642 					&left->map_start, &left->map_len,
2643 					KM_USER1);
2644 		}
2645 
2646 		ioff = btrfs_item_offset(left, item);
2647 		btrfs_set_item_offset(left, item,
2648 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2649 	}
2650 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2651 	if (left->map_token) {
2652 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2653 		left->map_token = NULL;
2654 	}
2655 
2656 	/* fixup right node */
2657 	if (push_items > right_nritems) {
2658 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2659 		       right_nritems);
2660 		WARN_ON(1);
2661 	}
2662 
2663 	if (push_items < right_nritems) {
2664 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2665 						  leaf_data_end(root, right);
2666 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2667 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2668 				      btrfs_leaf_data(right) +
2669 				      leaf_data_end(root, right), push_space);
2670 
2671 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2672 			      btrfs_item_nr_offset(push_items),
2673 			     (btrfs_header_nritems(right) - push_items) *
2674 			     sizeof(struct btrfs_item));
2675 	}
2676 	right_nritems -= push_items;
2677 	btrfs_set_header_nritems(right, right_nritems);
2678 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2679 	for (i = 0; i < right_nritems; i++) {
2680 		item = btrfs_item_nr(right, i);
2681 
2682 		if (!right->map_token) {
2683 			map_extent_buffer(right, (unsigned long)item,
2684 					sizeof(struct btrfs_item),
2685 					&right->map_token, &right->kaddr,
2686 					&right->map_start, &right->map_len,
2687 					KM_USER1);
2688 		}
2689 
2690 		push_space = push_space - btrfs_item_size(right, item);
2691 		btrfs_set_item_offset(right, item, push_space);
2692 	}
2693 	if (right->map_token) {
2694 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2695 		right->map_token = NULL;
2696 	}
2697 
2698 	btrfs_mark_buffer_dirty(left);
2699 	if (right_nritems)
2700 		btrfs_mark_buffer_dirty(right);
2701 
2702 	ret = btrfs_update_ref(trans, root, right, left,
2703 			       old_left_nritems, push_items);
2704 	BUG_ON(ret);
2705 
2706 	btrfs_item_key(right, &disk_key, 0);
2707 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2708 	if (wret)
2709 		ret = wret;
2710 
2711 	/* then fixup the leaf pointer in the path */
2712 	if (path->slots[0] < push_items) {
2713 		path->slots[0] += old_left_nritems;
2714 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2715 			clean_tree_block(trans, root, path->nodes[0]);
2716 		btrfs_tree_unlock(path->nodes[0]);
2717 		free_extent_buffer(path->nodes[0]);
2718 		path->nodes[0] = left;
2719 		path->slots[1] -= 1;
2720 	} else {
2721 		btrfs_tree_unlock(left);
2722 		free_extent_buffer(left);
2723 		path->slots[0] -= push_items;
2724 	}
2725 	BUG_ON(path->slots[0] < 0);
2726 	return ret;
2727 out:
2728 	btrfs_tree_unlock(left);
2729 	free_extent_buffer(left);
2730 	return ret;
2731 }
2732 
2733 /*
2734  * split the path's leaf in two, making sure there is at least data_size
2735  * available for the resulting leaf level of the path.
2736  *
2737  * returns 0 if all went well and < 0 on failure.
2738  */
2739 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2740 			       struct btrfs_root *root,
2741 			       struct btrfs_key *ins_key,
2742 			       struct btrfs_path *path, int data_size,
2743 			       int extend)
2744 {
2745 	struct extent_buffer *l;
2746 	u32 nritems;
2747 	int mid;
2748 	int slot;
2749 	struct extent_buffer *right;
2750 	int data_copy_size;
2751 	int rt_data_off;
2752 	int i;
2753 	int ret = 0;
2754 	int wret;
2755 	int double_split;
2756 	int num_doubles = 0;
2757 	struct btrfs_disk_key disk_key;
2758 
2759 	/* first try to make some room by pushing left and right */
2760 	if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2761 		wret = push_leaf_right(trans, root, path, data_size, 0);
2762 		if (wret < 0)
2763 			return wret;
2764 		if (wret) {
2765 			wret = push_leaf_left(trans, root, path, data_size, 0);
2766 			if (wret < 0)
2767 				return wret;
2768 		}
2769 		l = path->nodes[0];
2770 
2771 		/* did the pushes work? */
2772 		if (btrfs_leaf_free_space(root, l) >= data_size)
2773 			return 0;
2774 	}
2775 
2776 	if (!path->nodes[1]) {
2777 		ret = insert_new_root(trans, root, path, 1);
2778 		if (ret)
2779 			return ret;
2780 	}
2781 again:
2782 	double_split = 0;
2783 	l = path->nodes[0];
2784 	slot = path->slots[0];
2785 	nritems = btrfs_header_nritems(l);
2786 	mid = (nritems + 1) / 2;
2787 
2788 	right = btrfs_alloc_free_block(trans, root, root->leafsize,
2789 					path->nodes[1]->start,
2790 					root->root_key.objectid,
2791 					trans->transid, 0, l->start, 0);
2792 	if (IS_ERR(right)) {
2793 		BUG_ON(1);
2794 		return PTR_ERR(right);
2795 	}
2796 
2797 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2798 	btrfs_set_header_bytenr(right, right->start);
2799 	btrfs_set_header_generation(right, trans->transid);
2800 	btrfs_set_header_owner(right, root->root_key.objectid);
2801 	btrfs_set_header_level(right, 0);
2802 	write_extent_buffer(right, root->fs_info->fsid,
2803 			    (unsigned long)btrfs_header_fsid(right),
2804 			    BTRFS_FSID_SIZE);
2805 
2806 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2807 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2808 			    BTRFS_UUID_SIZE);
2809 	if (mid <= slot) {
2810 		if (nritems == 1 ||
2811 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2812 			BTRFS_LEAF_DATA_SIZE(root)) {
2813 			if (slot >= nritems) {
2814 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2815 				btrfs_set_header_nritems(right, 0);
2816 				wret = insert_ptr(trans, root, path,
2817 						  &disk_key, right->start,
2818 						  path->slots[1] + 1, 1);
2819 				if (wret)
2820 					ret = wret;
2821 
2822 				btrfs_tree_unlock(path->nodes[0]);
2823 				free_extent_buffer(path->nodes[0]);
2824 				path->nodes[0] = right;
2825 				path->slots[0] = 0;
2826 				path->slots[1] += 1;
2827 				btrfs_mark_buffer_dirty(right);
2828 				return ret;
2829 			}
2830 			mid = slot;
2831 			if (mid != nritems &&
2832 			    leaf_space_used(l, mid, nritems - mid) +
2833 			    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2834 				double_split = 1;
2835 			}
2836 		}
2837 	} else {
2838 		if (leaf_space_used(l, 0, mid) + data_size >
2839 			BTRFS_LEAF_DATA_SIZE(root)) {
2840 			if (!extend && data_size && slot == 0) {
2841 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2842 				btrfs_set_header_nritems(right, 0);
2843 				wret = insert_ptr(trans, root, path,
2844 						  &disk_key,
2845 						  right->start,
2846 						  path->slots[1], 1);
2847 				if (wret)
2848 					ret = wret;
2849 				btrfs_tree_unlock(path->nodes[0]);
2850 				free_extent_buffer(path->nodes[0]);
2851 				path->nodes[0] = right;
2852 				path->slots[0] = 0;
2853 				if (path->slots[1] == 0) {
2854 					wret = fixup_low_keys(trans, root,
2855 						      path, &disk_key, 1);
2856 					if (wret)
2857 						ret = wret;
2858 				}
2859 				btrfs_mark_buffer_dirty(right);
2860 				return ret;
2861 			} else if ((extend || !data_size) && slot == 0) {
2862 				mid = 1;
2863 			} else {
2864 				mid = slot;
2865 				if (mid != nritems &&
2866 				    leaf_space_used(l, mid, nritems - mid) +
2867 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2868 					double_split = 1;
2869 				}
2870 			}
2871 		}
2872 	}
2873 	nritems = nritems - mid;
2874 	btrfs_set_header_nritems(right, nritems);
2875 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2876 
2877 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2878 			   btrfs_item_nr_offset(mid),
2879 			   nritems * sizeof(struct btrfs_item));
2880 
2881 	copy_extent_buffer(right, l,
2882 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2883 		     data_copy_size, btrfs_leaf_data(l) +
2884 		     leaf_data_end(root, l), data_copy_size);
2885 
2886 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2887 		      btrfs_item_end_nr(l, mid);
2888 
2889 	for (i = 0; i < nritems; i++) {
2890 		struct btrfs_item *item = btrfs_item_nr(right, i);
2891 		u32 ioff;
2892 
2893 		if (!right->map_token) {
2894 			map_extent_buffer(right, (unsigned long)item,
2895 					sizeof(struct btrfs_item),
2896 					&right->map_token, &right->kaddr,
2897 					&right->map_start, &right->map_len,
2898 					KM_USER1);
2899 		}
2900 
2901 		ioff = btrfs_item_offset(right, item);
2902 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2903 	}
2904 
2905 	if (right->map_token) {
2906 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2907 		right->map_token = NULL;
2908 	}
2909 
2910 	btrfs_set_header_nritems(l, mid);
2911 	ret = 0;
2912 	btrfs_item_key(right, &disk_key, 0);
2913 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2914 			  path->slots[1] + 1, 1);
2915 	if (wret)
2916 		ret = wret;
2917 
2918 	btrfs_mark_buffer_dirty(right);
2919 	btrfs_mark_buffer_dirty(l);
2920 	BUG_ON(path->slots[0] != slot);
2921 
2922 	ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2923 	BUG_ON(ret);
2924 
2925 	if (mid <= slot) {
2926 		btrfs_tree_unlock(path->nodes[0]);
2927 		free_extent_buffer(path->nodes[0]);
2928 		path->nodes[0] = right;
2929 		path->slots[0] -= mid;
2930 		path->slots[1] += 1;
2931 	} else {
2932 		btrfs_tree_unlock(right);
2933 		free_extent_buffer(right);
2934 	}
2935 
2936 	BUG_ON(path->slots[0] < 0);
2937 
2938 	if (double_split) {
2939 		BUG_ON(num_doubles != 0);
2940 		num_doubles++;
2941 		goto again;
2942 	}
2943 	return ret;
2944 }
2945 
2946 /*
2947  * This function splits a single item into two items,
2948  * giving 'new_key' to the new item and splitting the
2949  * old one at split_offset (from the start of the item).
2950  *
2951  * The path may be released by this operation.  After
2952  * the split, the path is pointing to the old item.  The
2953  * new item is going to be in the same node as the old one.
2954  *
2955  * Note, the item being split must be smaller enough to live alone on
2956  * a tree block with room for one extra struct btrfs_item
2957  *
2958  * This allows us to split the item in place, keeping a lock on the
2959  * leaf the entire time.
2960  */
2961 int btrfs_split_item(struct btrfs_trans_handle *trans,
2962 		     struct btrfs_root *root,
2963 		     struct btrfs_path *path,
2964 		     struct btrfs_key *new_key,
2965 		     unsigned long split_offset)
2966 {
2967 	u32 item_size;
2968 	struct extent_buffer *leaf;
2969 	struct btrfs_key orig_key;
2970 	struct btrfs_item *item;
2971 	struct btrfs_item *new_item;
2972 	int ret = 0;
2973 	int slot;
2974 	u32 nritems;
2975 	u32 orig_offset;
2976 	struct btrfs_disk_key disk_key;
2977 	char *buf;
2978 
2979 	leaf = path->nodes[0];
2980 	btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2981 	if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2982 		goto split;
2983 
2984 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2985 	btrfs_release_path(root, path);
2986 
2987 	path->search_for_split = 1;
2988 	path->keep_locks = 1;
2989 
2990 	ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2991 	path->search_for_split = 0;
2992 
2993 	/* if our item isn't there or got smaller, return now */
2994 	if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
2995 							path->slots[0])) {
2996 		path->keep_locks = 0;
2997 		return -EAGAIN;
2998 	}
2999 
3000 	ret = split_leaf(trans, root, &orig_key, path,
3001 			 sizeof(struct btrfs_item), 1);
3002 	path->keep_locks = 0;
3003 	BUG_ON(ret);
3004 
3005 	/*
3006 	 * make sure any changes to the path from split_leaf leave it
3007 	 * in a blocking state
3008 	 */
3009 	btrfs_set_path_blocking(path);
3010 
3011 	leaf = path->nodes[0];
3012 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3013 
3014 split:
3015 	item = btrfs_item_nr(leaf, path->slots[0]);
3016 	orig_offset = btrfs_item_offset(leaf, item);
3017 	item_size = btrfs_item_size(leaf, item);
3018 
3019 
3020 	buf = kmalloc(item_size, GFP_NOFS);
3021 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3022 			    path->slots[0]), item_size);
3023 	slot = path->slots[0] + 1;
3024 	leaf = path->nodes[0];
3025 
3026 	nritems = btrfs_header_nritems(leaf);
3027 
3028 	if (slot != nritems) {
3029 		/* shift the items */
3030 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3031 			      btrfs_item_nr_offset(slot),
3032 			      (nritems - slot) * sizeof(struct btrfs_item));
3033 
3034 	}
3035 
3036 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3037 	btrfs_set_item_key(leaf, &disk_key, slot);
3038 
3039 	new_item = btrfs_item_nr(leaf, slot);
3040 
3041 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3042 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3043 
3044 	btrfs_set_item_offset(leaf, item,
3045 			      orig_offset + item_size - split_offset);
3046 	btrfs_set_item_size(leaf, item, split_offset);
3047 
3048 	btrfs_set_header_nritems(leaf, nritems + 1);
3049 
3050 	/* write the data for the start of the original item */
3051 	write_extent_buffer(leaf, buf,
3052 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3053 			    split_offset);
3054 
3055 	/* write the data for the new item */
3056 	write_extent_buffer(leaf, buf + split_offset,
3057 			    btrfs_item_ptr_offset(leaf, slot),
3058 			    item_size - split_offset);
3059 	btrfs_mark_buffer_dirty(leaf);
3060 
3061 	ret = 0;
3062 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3063 		btrfs_print_leaf(root, leaf);
3064 		BUG();
3065 	}
3066 	kfree(buf);
3067 	return ret;
3068 }
3069 
3070 /*
3071  * make the item pointed to by the path smaller.  new_size indicates
3072  * how small to make it, and from_end tells us if we just chop bytes
3073  * off the end of the item or if we shift the item to chop bytes off
3074  * the front.
3075  */
3076 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3077 			struct btrfs_root *root,
3078 			struct btrfs_path *path,
3079 			u32 new_size, int from_end)
3080 {
3081 	int ret = 0;
3082 	int slot;
3083 	int slot_orig;
3084 	struct extent_buffer *leaf;
3085 	struct btrfs_item *item;
3086 	u32 nritems;
3087 	unsigned int data_end;
3088 	unsigned int old_data_start;
3089 	unsigned int old_size;
3090 	unsigned int size_diff;
3091 	int i;
3092 
3093 	slot_orig = path->slots[0];
3094 	leaf = path->nodes[0];
3095 	slot = path->slots[0];
3096 
3097 	old_size = btrfs_item_size_nr(leaf, slot);
3098 	if (old_size == new_size)
3099 		return 0;
3100 
3101 	nritems = btrfs_header_nritems(leaf);
3102 	data_end = leaf_data_end(root, leaf);
3103 
3104 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3105 
3106 	size_diff = old_size - new_size;
3107 
3108 	BUG_ON(slot < 0);
3109 	BUG_ON(slot >= nritems);
3110 
3111 	/*
3112 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3113 	 */
3114 	/* first correct the data pointers */
3115 	for (i = slot; i < nritems; i++) {
3116 		u32 ioff;
3117 		item = btrfs_item_nr(leaf, i);
3118 
3119 		if (!leaf->map_token) {
3120 			map_extent_buffer(leaf, (unsigned long)item,
3121 					sizeof(struct btrfs_item),
3122 					&leaf->map_token, &leaf->kaddr,
3123 					&leaf->map_start, &leaf->map_len,
3124 					KM_USER1);
3125 		}
3126 
3127 		ioff = btrfs_item_offset(leaf, item);
3128 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3129 	}
3130 
3131 	if (leaf->map_token) {
3132 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3133 		leaf->map_token = NULL;
3134 	}
3135 
3136 	/* shift the data */
3137 	if (from_end) {
3138 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3139 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3140 			      data_end, old_data_start + new_size - data_end);
3141 	} else {
3142 		struct btrfs_disk_key disk_key;
3143 		u64 offset;
3144 
3145 		btrfs_item_key(leaf, &disk_key, slot);
3146 
3147 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3148 			unsigned long ptr;
3149 			struct btrfs_file_extent_item *fi;
3150 
3151 			fi = btrfs_item_ptr(leaf, slot,
3152 					    struct btrfs_file_extent_item);
3153 			fi = (struct btrfs_file_extent_item *)(
3154 			     (unsigned long)fi - size_diff);
3155 
3156 			if (btrfs_file_extent_type(leaf, fi) ==
3157 			    BTRFS_FILE_EXTENT_INLINE) {
3158 				ptr = btrfs_item_ptr_offset(leaf, slot);
3159 				memmove_extent_buffer(leaf, ptr,
3160 				      (unsigned long)fi,
3161 				      offsetof(struct btrfs_file_extent_item,
3162 						 disk_bytenr));
3163 			}
3164 		}
3165 
3166 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3167 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3168 			      data_end, old_data_start - data_end);
3169 
3170 		offset = btrfs_disk_key_offset(&disk_key);
3171 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3172 		btrfs_set_item_key(leaf, &disk_key, slot);
3173 		if (slot == 0)
3174 			fixup_low_keys(trans, root, path, &disk_key, 1);
3175 	}
3176 
3177 	item = btrfs_item_nr(leaf, slot);
3178 	btrfs_set_item_size(leaf, item, new_size);
3179 	btrfs_mark_buffer_dirty(leaf);
3180 
3181 	ret = 0;
3182 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3183 		btrfs_print_leaf(root, leaf);
3184 		BUG();
3185 	}
3186 	return ret;
3187 }
3188 
3189 /*
3190  * make the item pointed to by the path bigger, data_size is the new size.
3191  */
3192 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3193 		      struct btrfs_root *root, struct btrfs_path *path,
3194 		      u32 data_size)
3195 {
3196 	int ret = 0;
3197 	int slot;
3198 	int slot_orig;
3199 	struct extent_buffer *leaf;
3200 	struct btrfs_item *item;
3201 	u32 nritems;
3202 	unsigned int data_end;
3203 	unsigned int old_data;
3204 	unsigned int old_size;
3205 	int i;
3206 
3207 	slot_orig = path->slots[0];
3208 	leaf = path->nodes[0];
3209 
3210 	nritems = btrfs_header_nritems(leaf);
3211 	data_end = leaf_data_end(root, leaf);
3212 
3213 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3214 		btrfs_print_leaf(root, leaf);
3215 		BUG();
3216 	}
3217 	slot = path->slots[0];
3218 	old_data = btrfs_item_end_nr(leaf, slot);
3219 
3220 	BUG_ON(slot < 0);
3221 	if (slot >= nritems) {
3222 		btrfs_print_leaf(root, leaf);
3223 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3224 		       slot, nritems);
3225 		BUG_ON(1);
3226 	}
3227 
3228 	/*
3229 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3230 	 */
3231 	/* first correct the data pointers */
3232 	for (i = slot; i < nritems; i++) {
3233 		u32 ioff;
3234 		item = btrfs_item_nr(leaf, i);
3235 
3236 		if (!leaf->map_token) {
3237 			map_extent_buffer(leaf, (unsigned long)item,
3238 					sizeof(struct btrfs_item),
3239 					&leaf->map_token, &leaf->kaddr,
3240 					&leaf->map_start, &leaf->map_len,
3241 					KM_USER1);
3242 		}
3243 		ioff = btrfs_item_offset(leaf, item);
3244 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3245 	}
3246 
3247 	if (leaf->map_token) {
3248 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3249 		leaf->map_token = NULL;
3250 	}
3251 
3252 	/* shift the data */
3253 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3254 		      data_end - data_size, btrfs_leaf_data(leaf) +
3255 		      data_end, old_data - data_end);
3256 
3257 	data_end = old_data;
3258 	old_size = btrfs_item_size_nr(leaf, slot);
3259 	item = btrfs_item_nr(leaf, slot);
3260 	btrfs_set_item_size(leaf, item, old_size + data_size);
3261 	btrfs_mark_buffer_dirty(leaf);
3262 
3263 	ret = 0;
3264 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3265 		btrfs_print_leaf(root, leaf);
3266 		BUG();
3267 	}
3268 	return ret;
3269 }
3270 
3271 /*
3272  * Given a key and some data, insert items into the tree.
3273  * This does all the path init required, making room in the tree if needed.
3274  * Returns the number of keys that were inserted.
3275  */
3276 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3277 			    struct btrfs_root *root,
3278 			    struct btrfs_path *path,
3279 			    struct btrfs_key *cpu_key, u32 *data_size,
3280 			    int nr)
3281 {
3282 	struct extent_buffer *leaf;
3283 	struct btrfs_item *item;
3284 	int ret = 0;
3285 	int slot;
3286 	int i;
3287 	u32 nritems;
3288 	u32 total_data = 0;
3289 	u32 total_size = 0;
3290 	unsigned int data_end;
3291 	struct btrfs_disk_key disk_key;
3292 	struct btrfs_key found_key;
3293 
3294 	for (i = 0; i < nr; i++) {
3295 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3296 		    BTRFS_LEAF_DATA_SIZE(root)) {
3297 			break;
3298 			nr = i;
3299 		}
3300 		total_data += data_size[i];
3301 		total_size += data_size[i] + sizeof(struct btrfs_item);
3302 	}
3303 	BUG_ON(nr == 0);
3304 
3305 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3306 	if (ret == 0)
3307 		return -EEXIST;
3308 	if (ret < 0)
3309 		goto out;
3310 
3311 	leaf = path->nodes[0];
3312 
3313 	nritems = btrfs_header_nritems(leaf);
3314 	data_end = leaf_data_end(root, leaf);
3315 
3316 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3317 		for (i = nr; i >= 0; i--) {
3318 			total_data -= data_size[i];
3319 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3320 			if (total_size < btrfs_leaf_free_space(root, leaf))
3321 				break;
3322 		}
3323 		nr = i;
3324 	}
3325 
3326 	slot = path->slots[0];
3327 	BUG_ON(slot < 0);
3328 
3329 	if (slot != nritems) {
3330 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3331 
3332 		item = btrfs_item_nr(leaf, slot);
3333 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3334 
3335 		/* figure out how many keys we can insert in here */
3336 		total_data = data_size[0];
3337 		for (i = 1; i < nr; i++) {
3338 			if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3339 				break;
3340 			total_data += data_size[i];
3341 		}
3342 		nr = i;
3343 
3344 		if (old_data < data_end) {
3345 			btrfs_print_leaf(root, leaf);
3346 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3347 			       slot, old_data, data_end);
3348 			BUG_ON(1);
3349 		}
3350 		/*
3351 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3352 		 */
3353 		/* first correct the data pointers */
3354 		WARN_ON(leaf->map_token);
3355 		for (i = slot; i < nritems; i++) {
3356 			u32 ioff;
3357 
3358 			item = btrfs_item_nr(leaf, i);
3359 			if (!leaf->map_token) {
3360 				map_extent_buffer(leaf, (unsigned long)item,
3361 					sizeof(struct btrfs_item),
3362 					&leaf->map_token, &leaf->kaddr,
3363 					&leaf->map_start, &leaf->map_len,
3364 					KM_USER1);
3365 			}
3366 
3367 			ioff = btrfs_item_offset(leaf, item);
3368 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3369 		}
3370 		if (leaf->map_token) {
3371 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3372 			leaf->map_token = NULL;
3373 		}
3374 
3375 		/* shift the items */
3376 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3377 			      btrfs_item_nr_offset(slot),
3378 			      (nritems - slot) * sizeof(struct btrfs_item));
3379 
3380 		/* shift the data */
3381 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3382 			      data_end - total_data, btrfs_leaf_data(leaf) +
3383 			      data_end, old_data - data_end);
3384 		data_end = old_data;
3385 	} else {
3386 		/*
3387 		 * this sucks but it has to be done, if we are inserting at
3388 		 * the end of the leaf only insert 1 of the items, since we
3389 		 * have no way of knowing whats on the next leaf and we'd have
3390 		 * to drop our current locks to figure it out
3391 		 */
3392 		nr = 1;
3393 	}
3394 
3395 	/* setup the item for the new data */
3396 	for (i = 0; i < nr; i++) {
3397 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3398 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3399 		item = btrfs_item_nr(leaf, slot + i);
3400 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3401 		data_end -= data_size[i];
3402 		btrfs_set_item_size(leaf, item, data_size[i]);
3403 	}
3404 	btrfs_set_header_nritems(leaf, nritems + nr);
3405 	btrfs_mark_buffer_dirty(leaf);
3406 
3407 	ret = 0;
3408 	if (slot == 0) {
3409 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3410 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3411 	}
3412 
3413 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3414 		btrfs_print_leaf(root, leaf);
3415 		BUG();
3416 	}
3417 out:
3418 	if (!ret)
3419 		ret = nr;
3420 	return ret;
3421 }
3422 
3423 /*
3424  * Given a key and some data, insert items into the tree.
3425  * This does all the path init required, making room in the tree if needed.
3426  */
3427 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3428 			    struct btrfs_root *root,
3429 			    struct btrfs_path *path,
3430 			    struct btrfs_key *cpu_key, u32 *data_size,
3431 			    int nr)
3432 {
3433 	struct extent_buffer *leaf;
3434 	struct btrfs_item *item;
3435 	int ret = 0;
3436 	int slot;
3437 	int slot_orig;
3438 	int i;
3439 	u32 nritems;
3440 	u32 total_size = 0;
3441 	u32 total_data = 0;
3442 	unsigned int data_end;
3443 	struct btrfs_disk_key disk_key;
3444 
3445 	for (i = 0; i < nr; i++)
3446 		total_data += data_size[i];
3447 
3448 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3449 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3450 	if (ret == 0)
3451 		return -EEXIST;
3452 	if (ret < 0)
3453 		goto out;
3454 
3455 	slot_orig = path->slots[0];
3456 	leaf = path->nodes[0];
3457 
3458 	nritems = btrfs_header_nritems(leaf);
3459 	data_end = leaf_data_end(root, leaf);
3460 
3461 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3462 		btrfs_print_leaf(root, leaf);
3463 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3464 		       total_size, btrfs_leaf_free_space(root, leaf));
3465 		BUG();
3466 	}
3467 
3468 	slot = path->slots[0];
3469 	BUG_ON(slot < 0);
3470 
3471 	if (slot != nritems) {
3472 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3473 
3474 		if (old_data < data_end) {
3475 			btrfs_print_leaf(root, leaf);
3476 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3477 			       slot, old_data, data_end);
3478 			BUG_ON(1);
3479 		}
3480 		/*
3481 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3482 		 */
3483 		/* first correct the data pointers */
3484 		WARN_ON(leaf->map_token);
3485 		for (i = slot; i < nritems; i++) {
3486 			u32 ioff;
3487 
3488 			item = btrfs_item_nr(leaf, i);
3489 			if (!leaf->map_token) {
3490 				map_extent_buffer(leaf, (unsigned long)item,
3491 					sizeof(struct btrfs_item),
3492 					&leaf->map_token, &leaf->kaddr,
3493 					&leaf->map_start, &leaf->map_len,
3494 					KM_USER1);
3495 			}
3496 
3497 			ioff = btrfs_item_offset(leaf, item);
3498 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3499 		}
3500 		if (leaf->map_token) {
3501 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3502 			leaf->map_token = NULL;
3503 		}
3504 
3505 		/* shift the items */
3506 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3507 			      btrfs_item_nr_offset(slot),
3508 			      (nritems - slot) * sizeof(struct btrfs_item));
3509 
3510 		/* shift the data */
3511 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3512 			      data_end - total_data, btrfs_leaf_data(leaf) +
3513 			      data_end, old_data - data_end);
3514 		data_end = old_data;
3515 	}
3516 
3517 	/* setup the item for the new data */
3518 	for (i = 0; i < nr; i++) {
3519 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3520 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3521 		item = btrfs_item_nr(leaf, slot + i);
3522 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3523 		data_end -= data_size[i];
3524 		btrfs_set_item_size(leaf, item, data_size[i]);
3525 	}
3526 	btrfs_set_header_nritems(leaf, nritems + nr);
3527 	btrfs_mark_buffer_dirty(leaf);
3528 
3529 	ret = 0;
3530 	if (slot == 0) {
3531 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3532 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3533 	}
3534 
3535 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3536 		btrfs_print_leaf(root, leaf);
3537 		BUG();
3538 	}
3539 out:
3540 	btrfs_unlock_up_safe(path, 1);
3541 	return ret;
3542 }
3543 
3544 /*
3545  * Given a key and some data, insert an item into the tree.
3546  * This does all the path init required, making room in the tree if needed.
3547  */
3548 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3549 		      *root, struct btrfs_key *cpu_key, void *data, u32
3550 		      data_size)
3551 {
3552 	int ret = 0;
3553 	struct btrfs_path *path;
3554 	struct extent_buffer *leaf;
3555 	unsigned long ptr;
3556 
3557 	path = btrfs_alloc_path();
3558 	BUG_ON(!path);
3559 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3560 	if (!ret) {
3561 		leaf = path->nodes[0];
3562 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3563 		write_extent_buffer(leaf, data, ptr, data_size);
3564 		btrfs_mark_buffer_dirty(leaf);
3565 	}
3566 	btrfs_free_path(path);
3567 	return ret;
3568 }
3569 
3570 /*
3571  * delete the pointer from a given node.
3572  *
3573  * the tree should have been previously balanced so the deletion does not
3574  * empty a node.
3575  */
3576 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3577 		   struct btrfs_path *path, int level, int slot)
3578 {
3579 	struct extent_buffer *parent = path->nodes[level];
3580 	u32 nritems;
3581 	int ret = 0;
3582 	int wret;
3583 
3584 	nritems = btrfs_header_nritems(parent);
3585 	if (slot != nritems - 1) {
3586 		memmove_extent_buffer(parent,
3587 			      btrfs_node_key_ptr_offset(slot),
3588 			      btrfs_node_key_ptr_offset(slot + 1),
3589 			      sizeof(struct btrfs_key_ptr) *
3590 			      (nritems - slot - 1));
3591 	}
3592 	nritems--;
3593 	btrfs_set_header_nritems(parent, nritems);
3594 	if (nritems == 0 && parent == root->node) {
3595 		BUG_ON(btrfs_header_level(root->node) != 1);
3596 		/* just turn the root into a leaf and break */
3597 		btrfs_set_header_level(root->node, 0);
3598 	} else if (slot == 0) {
3599 		struct btrfs_disk_key disk_key;
3600 
3601 		btrfs_node_key(parent, &disk_key, 0);
3602 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3603 		if (wret)
3604 			ret = wret;
3605 	}
3606 	btrfs_mark_buffer_dirty(parent);
3607 	return ret;
3608 }
3609 
3610 /*
3611  * a helper function to delete the leaf pointed to by path->slots[1] and
3612  * path->nodes[1].  bytenr is the node block pointer, but since the callers
3613  * already know it, it is faster to have them pass it down than to
3614  * read it out of the node again.
3615  *
3616  * This deletes the pointer in path->nodes[1] and frees the leaf
3617  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3618  *
3619  * The path must have already been setup for deleting the leaf, including
3620  * all the proper balancing.  path->nodes[1] must be locked.
3621  */
3622 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3623 			    struct btrfs_root *root,
3624 			    struct btrfs_path *path, u64 bytenr)
3625 {
3626 	int ret;
3627 	u64 root_gen = btrfs_header_generation(path->nodes[1]);
3628 	u64 parent_start = path->nodes[1]->start;
3629 	u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3630 
3631 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3632 	if (ret)
3633 		return ret;
3634 
3635 	/*
3636 	 * btrfs_free_extent is expensive, we want to make sure we
3637 	 * aren't holding any locks when we call it
3638 	 */
3639 	btrfs_unlock_up_safe(path, 0);
3640 
3641 	ret = btrfs_free_extent(trans, root, bytenr,
3642 				btrfs_level_size(root, 0),
3643 				parent_start, parent_owner,
3644 				root_gen, 0, 1);
3645 	return ret;
3646 }
3647 /*
3648  * delete the item at the leaf level in path.  If that empties
3649  * the leaf, remove it from the tree
3650  */
3651 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3652 		    struct btrfs_path *path, int slot, int nr)
3653 {
3654 	struct extent_buffer *leaf;
3655 	struct btrfs_item *item;
3656 	int last_off;
3657 	int dsize = 0;
3658 	int ret = 0;
3659 	int wret;
3660 	int i;
3661 	u32 nritems;
3662 
3663 	leaf = path->nodes[0];
3664 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3665 
3666 	for (i = 0; i < nr; i++)
3667 		dsize += btrfs_item_size_nr(leaf, slot + i);
3668 
3669 	nritems = btrfs_header_nritems(leaf);
3670 
3671 	if (slot + nr != nritems) {
3672 		int data_end = leaf_data_end(root, leaf);
3673 
3674 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3675 			      data_end + dsize,
3676 			      btrfs_leaf_data(leaf) + data_end,
3677 			      last_off - data_end);
3678 
3679 		for (i = slot + nr; i < nritems; i++) {
3680 			u32 ioff;
3681 
3682 			item = btrfs_item_nr(leaf, i);
3683 			if (!leaf->map_token) {
3684 				map_extent_buffer(leaf, (unsigned long)item,
3685 					sizeof(struct btrfs_item),
3686 					&leaf->map_token, &leaf->kaddr,
3687 					&leaf->map_start, &leaf->map_len,
3688 					KM_USER1);
3689 			}
3690 			ioff = btrfs_item_offset(leaf, item);
3691 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3692 		}
3693 
3694 		if (leaf->map_token) {
3695 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3696 			leaf->map_token = NULL;
3697 		}
3698 
3699 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3700 			      btrfs_item_nr_offset(slot + nr),
3701 			      sizeof(struct btrfs_item) *
3702 			      (nritems - slot - nr));
3703 	}
3704 	btrfs_set_header_nritems(leaf, nritems - nr);
3705 	nritems -= nr;
3706 
3707 	/* delete the leaf if we've emptied it */
3708 	if (nritems == 0) {
3709 		if (leaf == root->node) {
3710 			btrfs_set_header_level(leaf, 0);
3711 		} else {
3712 			ret = btrfs_del_leaf(trans, root, path, leaf->start);
3713 			BUG_ON(ret);
3714 		}
3715 	} else {
3716 		int used = leaf_space_used(leaf, 0, nritems);
3717 		if (slot == 0) {
3718 			struct btrfs_disk_key disk_key;
3719 
3720 			btrfs_item_key(leaf, &disk_key, 0);
3721 			wret = fixup_low_keys(trans, root, path,
3722 					      &disk_key, 1);
3723 			if (wret)
3724 				ret = wret;
3725 		}
3726 
3727 		/* delete the leaf if it is mostly empty */
3728 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
3729 			/* push_leaf_left fixes the path.
3730 			 * make sure the path still points to our leaf
3731 			 * for possible call to del_ptr below
3732 			 */
3733 			slot = path->slots[1];
3734 			extent_buffer_get(leaf);
3735 
3736 			wret = push_leaf_left(trans, root, path, 1, 1);
3737 			if (wret < 0 && wret != -ENOSPC)
3738 				ret = wret;
3739 
3740 			if (path->nodes[0] == leaf &&
3741 			    btrfs_header_nritems(leaf)) {
3742 				wret = push_leaf_right(trans, root, path, 1, 1);
3743 				if (wret < 0 && wret != -ENOSPC)
3744 					ret = wret;
3745 			}
3746 
3747 			if (btrfs_header_nritems(leaf) == 0) {
3748 				path->slots[1] = slot;
3749 				ret = btrfs_del_leaf(trans, root, path,
3750 						     leaf->start);
3751 				BUG_ON(ret);
3752 				free_extent_buffer(leaf);
3753 			} else {
3754 				/* if we're still in the path, make sure
3755 				 * we're dirty.  Otherwise, one of the
3756 				 * push_leaf functions must have already
3757 				 * dirtied this buffer
3758 				 */
3759 				if (path->nodes[0] == leaf)
3760 					btrfs_mark_buffer_dirty(leaf);
3761 				free_extent_buffer(leaf);
3762 			}
3763 		} else {
3764 			btrfs_mark_buffer_dirty(leaf);
3765 		}
3766 	}
3767 	return ret;
3768 }
3769 
3770 /*
3771  * search the tree again to find a leaf with lesser keys
3772  * returns 0 if it found something or 1 if there are no lesser leaves.
3773  * returns < 0 on io errors.
3774  *
3775  * This may release the path, and so you may lose any locks held at the
3776  * time you call it.
3777  */
3778 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3779 {
3780 	struct btrfs_key key;
3781 	struct btrfs_disk_key found_key;
3782 	int ret;
3783 
3784 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3785 
3786 	if (key.offset > 0)
3787 		key.offset--;
3788 	else if (key.type > 0)
3789 		key.type--;
3790 	else if (key.objectid > 0)
3791 		key.objectid--;
3792 	else
3793 		return 1;
3794 
3795 	btrfs_release_path(root, path);
3796 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3797 	if (ret < 0)
3798 		return ret;
3799 	btrfs_item_key(path->nodes[0], &found_key, 0);
3800 	ret = comp_keys(&found_key, &key);
3801 	if (ret < 0)
3802 		return 0;
3803 	return 1;
3804 }
3805 
3806 /*
3807  * A helper function to walk down the tree starting at min_key, and looking
3808  * for nodes or leaves that are either in cache or have a minimum
3809  * transaction id.  This is used by the btree defrag code, and tree logging
3810  *
3811  * This does not cow, but it does stuff the starting key it finds back
3812  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3813  * key and get a writable path.
3814  *
3815  * This does lock as it descends, and path->keep_locks should be set
3816  * to 1 by the caller.
3817  *
3818  * This honors path->lowest_level to prevent descent past a given level
3819  * of the tree.
3820  *
3821  * min_trans indicates the oldest transaction that you are interested
3822  * in walking through.  Any nodes or leaves older than min_trans are
3823  * skipped over (without reading them).
3824  *
3825  * returns zero if something useful was found, < 0 on error and 1 if there
3826  * was nothing in the tree that matched the search criteria.
3827  */
3828 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3829 			 struct btrfs_key *max_key,
3830 			 struct btrfs_path *path, int cache_only,
3831 			 u64 min_trans)
3832 {
3833 	struct extent_buffer *cur;
3834 	struct btrfs_key found_key;
3835 	int slot;
3836 	int sret;
3837 	u32 nritems;
3838 	int level;
3839 	int ret = 1;
3840 
3841 	WARN_ON(!path->keep_locks);
3842 again:
3843 	cur = btrfs_lock_root_node(root);
3844 	level = btrfs_header_level(cur);
3845 	WARN_ON(path->nodes[level]);
3846 	path->nodes[level] = cur;
3847 	path->locks[level] = 1;
3848 
3849 	if (btrfs_header_generation(cur) < min_trans) {
3850 		ret = 1;
3851 		goto out;
3852 	}
3853 	while (1) {
3854 		nritems = btrfs_header_nritems(cur);
3855 		level = btrfs_header_level(cur);
3856 		sret = bin_search(cur, min_key, level, &slot);
3857 
3858 		/* at the lowest level, we're done, setup the path and exit */
3859 		if (level == path->lowest_level) {
3860 			if (slot >= nritems)
3861 				goto find_next_key;
3862 			ret = 0;
3863 			path->slots[level] = slot;
3864 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3865 			goto out;
3866 		}
3867 		if (sret && slot > 0)
3868 			slot--;
3869 		/*
3870 		 * check this node pointer against the cache_only and
3871 		 * min_trans parameters.  If it isn't in cache or is too
3872 		 * old, skip to the next one.
3873 		 */
3874 		while (slot < nritems) {
3875 			u64 blockptr;
3876 			u64 gen;
3877 			struct extent_buffer *tmp;
3878 			struct btrfs_disk_key disk_key;
3879 
3880 			blockptr = btrfs_node_blockptr(cur, slot);
3881 			gen = btrfs_node_ptr_generation(cur, slot);
3882 			if (gen < min_trans) {
3883 				slot++;
3884 				continue;
3885 			}
3886 			if (!cache_only)
3887 				break;
3888 
3889 			if (max_key) {
3890 				btrfs_node_key(cur, &disk_key, slot);
3891 				if (comp_keys(&disk_key, max_key) >= 0) {
3892 					ret = 1;
3893 					goto out;
3894 				}
3895 			}
3896 
3897 			tmp = btrfs_find_tree_block(root, blockptr,
3898 					    btrfs_level_size(root, level - 1));
3899 
3900 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3901 				free_extent_buffer(tmp);
3902 				break;
3903 			}
3904 			if (tmp)
3905 				free_extent_buffer(tmp);
3906 			slot++;
3907 		}
3908 find_next_key:
3909 		/*
3910 		 * we didn't find a candidate key in this node, walk forward
3911 		 * and find another one
3912 		 */
3913 		if (slot >= nritems) {
3914 			path->slots[level] = slot;
3915 			btrfs_set_path_blocking(path);
3916 			sret = btrfs_find_next_key(root, path, min_key, level,
3917 						  cache_only, min_trans);
3918 			if (sret == 0) {
3919 				btrfs_release_path(root, path);
3920 				goto again;
3921 			} else {
3922 				btrfs_clear_path_blocking(path);
3923 				goto out;
3924 			}
3925 		}
3926 		/* save our key for returning back */
3927 		btrfs_node_key_to_cpu(cur, &found_key, slot);
3928 		path->slots[level] = slot;
3929 		if (level == path->lowest_level) {
3930 			ret = 0;
3931 			unlock_up(path, level, 1);
3932 			goto out;
3933 		}
3934 		btrfs_set_path_blocking(path);
3935 		cur = read_node_slot(root, cur, slot);
3936 
3937 		btrfs_tree_lock(cur);
3938 
3939 		path->locks[level - 1] = 1;
3940 		path->nodes[level - 1] = cur;
3941 		unlock_up(path, level, 1);
3942 		btrfs_clear_path_blocking(path);
3943 	}
3944 out:
3945 	if (ret == 0)
3946 		memcpy(min_key, &found_key, sizeof(found_key));
3947 	btrfs_set_path_blocking(path);
3948 	return ret;
3949 }
3950 
3951 /*
3952  * this is similar to btrfs_next_leaf, but does not try to preserve
3953  * and fixup the path.  It looks for and returns the next key in the
3954  * tree based on the current path and the cache_only and min_trans
3955  * parameters.
3956  *
3957  * 0 is returned if another key is found, < 0 if there are any errors
3958  * and 1 is returned if there are no higher keys in the tree
3959  *
3960  * path->keep_locks should be set to 1 on the search made before
3961  * calling this function.
3962  */
3963 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3964 			struct btrfs_key *key, int lowest_level,
3965 			int cache_only, u64 min_trans)
3966 {
3967 	int level = lowest_level;
3968 	int slot;
3969 	struct extent_buffer *c;
3970 
3971 	WARN_ON(!path->keep_locks);
3972 	while (level < BTRFS_MAX_LEVEL) {
3973 		if (!path->nodes[level])
3974 			return 1;
3975 
3976 		slot = path->slots[level] + 1;
3977 		c = path->nodes[level];
3978 next:
3979 		if (slot >= btrfs_header_nritems(c)) {
3980 			level++;
3981 			if (level == BTRFS_MAX_LEVEL)
3982 				return 1;
3983 			continue;
3984 		}
3985 		if (level == 0)
3986 			btrfs_item_key_to_cpu(c, key, slot);
3987 		else {
3988 			u64 blockptr = btrfs_node_blockptr(c, slot);
3989 			u64 gen = btrfs_node_ptr_generation(c, slot);
3990 
3991 			if (cache_only) {
3992 				struct extent_buffer *cur;
3993 				cur = btrfs_find_tree_block(root, blockptr,
3994 					    btrfs_level_size(root, level - 1));
3995 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
3996 					slot++;
3997 					if (cur)
3998 						free_extent_buffer(cur);
3999 					goto next;
4000 				}
4001 				free_extent_buffer(cur);
4002 			}
4003 			if (gen < min_trans) {
4004 				slot++;
4005 				goto next;
4006 			}
4007 			btrfs_node_key_to_cpu(c, key, slot);
4008 		}
4009 		return 0;
4010 	}
4011 	return 1;
4012 }
4013 
4014 /*
4015  * search the tree again to find a leaf with greater keys
4016  * returns 0 if it found something or 1 if there are no greater leaves.
4017  * returns < 0 on io errors.
4018  */
4019 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4020 {
4021 	int slot;
4022 	int level = 1;
4023 	struct extent_buffer *c;
4024 	struct extent_buffer *next = NULL;
4025 	struct btrfs_key key;
4026 	u32 nritems;
4027 	int ret;
4028 
4029 	nritems = btrfs_header_nritems(path->nodes[0]);
4030 	if (nritems == 0)
4031 		return 1;
4032 
4033 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4034 
4035 	btrfs_release_path(root, path);
4036 	path->keep_locks = 1;
4037 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4038 	path->keep_locks = 0;
4039 
4040 	if (ret < 0)
4041 		return ret;
4042 
4043 	btrfs_set_path_blocking(path);
4044 	nritems = btrfs_header_nritems(path->nodes[0]);
4045 	/*
4046 	 * by releasing the path above we dropped all our locks.  A balance
4047 	 * could have added more items next to the key that used to be
4048 	 * at the very end of the block.  So, check again here and
4049 	 * advance the path if there are now more items available.
4050 	 */
4051 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4052 		path->slots[0]++;
4053 		goto done;
4054 	}
4055 
4056 	while (level < BTRFS_MAX_LEVEL) {
4057 		if (!path->nodes[level])
4058 			return 1;
4059 
4060 		slot = path->slots[level] + 1;
4061 		c = path->nodes[level];
4062 		if (slot >= btrfs_header_nritems(c)) {
4063 			level++;
4064 			if (level == BTRFS_MAX_LEVEL)
4065 				return 1;
4066 			continue;
4067 		}
4068 
4069 		if (next) {
4070 			btrfs_tree_unlock(next);
4071 			free_extent_buffer(next);
4072 		}
4073 
4074 		/* the path was set to blocking above */
4075 		if (level == 1 && (path->locks[1] || path->skip_locking) &&
4076 		    path->reada)
4077 			reada_for_search(root, path, level, slot, 0);
4078 
4079 		next = read_node_slot(root, c, slot);
4080 		if (!path->skip_locking) {
4081 			WARN_ON(!btrfs_tree_locked(c));
4082 			btrfs_tree_lock(next);
4083 			btrfs_set_lock_blocking(next);
4084 		}
4085 		break;
4086 	}
4087 	path->slots[level] = slot;
4088 	while (1) {
4089 		level--;
4090 		c = path->nodes[level];
4091 		if (path->locks[level])
4092 			btrfs_tree_unlock(c);
4093 		free_extent_buffer(c);
4094 		path->nodes[level] = next;
4095 		path->slots[level] = 0;
4096 		if (!path->skip_locking)
4097 			path->locks[level] = 1;
4098 		if (!level)
4099 			break;
4100 
4101 		btrfs_set_path_blocking(path);
4102 		if (level == 1 && path->locks[1] && path->reada)
4103 			reada_for_search(root, path, level, slot, 0);
4104 		next = read_node_slot(root, next, 0);
4105 		if (!path->skip_locking) {
4106 			WARN_ON(!btrfs_tree_locked(path->nodes[level]));
4107 			btrfs_tree_lock(next);
4108 			btrfs_set_lock_blocking(next);
4109 		}
4110 	}
4111 done:
4112 	unlock_up(path, 0, 1);
4113 	return 0;
4114 }
4115 
4116 /*
4117  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4118  * searching until it gets past min_objectid or finds an item of 'type'
4119  *
4120  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4121  */
4122 int btrfs_previous_item(struct btrfs_root *root,
4123 			struct btrfs_path *path, u64 min_objectid,
4124 			int type)
4125 {
4126 	struct btrfs_key found_key;
4127 	struct extent_buffer *leaf;
4128 	u32 nritems;
4129 	int ret;
4130 
4131 	while (1) {
4132 		if (path->slots[0] == 0) {
4133 			btrfs_set_path_blocking(path);
4134 			ret = btrfs_prev_leaf(root, path);
4135 			if (ret != 0)
4136 				return ret;
4137 		} else {
4138 			path->slots[0]--;
4139 		}
4140 		leaf = path->nodes[0];
4141 		nritems = btrfs_header_nritems(leaf);
4142 		if (nritems == 0)
4143 			return 1;
4144 		if (path->slots[0] == nritems)
4145 			path->slots[0]--;
4146 
4147 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4148 		if (found_key.type == type)
4149 			return 0;
4150 		if (found_key.objectid < min_objectid)
4151 			break;
4152 		if (found_key.objectid == min_objectid &&
4153 		    found_key.type < type)
4154 			break;
4155 	}
4156 	return 1;
4157 }
4158