1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 41 struct btrfs_path *path, int level, int slot, 42 int tree_mod_log); 43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr, 46 u32 blocksize, u64 parent_transid, 47 u64 time_seq); 48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root, 49 u64 bytenr, u32 blocksize, 50 u64 time_seq); 51 52 struct btrfs_path *btrfs_alloc_path(void) 53 { 54 struct btrfs_path *path; 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 56 return path; 57 } 58 59 /* 60 * set all locked nodes in the path to blocking locks. This should 61 * be done before scheduling 62 */ 63 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 64 { 65 int i; 66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 67 if (!p->nodes[i] || !p->locks[i]) 68 continue; 69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 70 if (p->locks[i] == BTRFS_READ_LOCK) 71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 72 else if (p->locks[i] == BTRFS_WRITE_LOCK) 73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 74 } 75 } 76 77 /* 78 * reset all the locked nodes in the patch to spinning locks. 79 * 80 * held is used to keep lockdep happy, when lockdep is enabled 81 * we set held to a blocking lock before we go around and 82 * retake all the spinlocks in the path. You can safely use NULL 83 * for held 84 */ 85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 86 struct extent_buffer *held, int held_rw) 87 { 88 int i; 89 90 #ifdef CONFIG_DEBUG_LOCK_ALLOC 91 /* lockdep really cares that we take all of these spinlocks 92 * in the right order. If any of the locks in the path are not 93 * currently blocking, it is going to complain. So, make really 94 * really sure by forcing the path to blocking before we clear 95 * the path blocking. 96 */ 97 if (held) { 98 btrfs_set_lock_blocking_rw(held, held_rw); 99 if (held_rw == BTRFS_WRITE_LOCK) 100 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 101 else if (held_rw == BTRFS_READ_LOCK) 102 held_rw = BTRFS_READ_LOCK_BLOCKING; 103 } 104 btrfs_set_path_blocking(p); 105 #endif 106 107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 108 if (p->nodes[i] && p->locks[i]) { 109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 111 p->locks[i] = BTRFS_WRITE_LOCK; 112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 113 p->locks[i] = BTRFS_READ_LOCK; 114 } 115 } 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 if (held) 119 btrfs_clear_lock_blocking_rw(held, held_rw); 120 #endif 121 } 122 123 /* this also releases the path */ 124 void btrfs_free_path(struct btrfs_path *p) 125 { 126 if (!p) 127 return; 128 btrfs_release_path(p); 129 kmem_cache_free(btrfs_path_cachep, p); 130 } 131 132 /* 133 * path release drops references on the extent buffers in the path 134 * and it drops any locks held by this path 135 * 136 * It is safe to call this on paths that no locks or extent buffers held. 137 */ 138 noinline void btrfs_release_path(struct btrfs_path *p) 139 { 140 int i; 141 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 143 p->slots[i] = 0; 144 if (!p->nodes[i]) 145 continue; 146 if (p->locks[i]) { 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 148 p->locks[i] = 0; 149 } 150 free_extent_buffer(p->nodes[i]); 151 p->nodes[i] = NULL; 152 } 153 } 154 155 /* 156 * safely gets a reference on the root node of a tree. A lock 157 * is not taken, so a concurrent writer may put a different node 158 * at the root of the tree. See btrfs_lock_root_node for the 159 * looping required. 160 * 161 * The extent buffer returned by this has a reference taken, so 162 * it won't disappear. It may stop being the root of the tree 163 * at any time because there are no locks held. 164 */ 165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 166 { 167 struct extent_buffer *eb; 168 169 while (1) { 170 rcu_read_lock(); 171 eb = rcu_dereference(root->node); 172 173 /* 174 * RCU really hurts here, we could free up the root node because 175 * it was cow'ed but we may not get the new root node yet so do 176 * the inc_not_zero dance and if it doesn't work then 177 * synchronize_rcu and try again. 178 */ 179 if (atomic_inc_not_zero(&eb->refs)) { 180 rcu_read_unlock(); 181 break; 182 } 183 rcu_read_unlock(); 184 synchronize_rcu(); 185 } 186 return eb; 187 } 188 189 /* loop around taking references on and locking the root node of the 190 * tree until you end up with a lock on the root. A locked buffer 191 * is returned, with a reference held. 192 */ 193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 194 { 195 struct extent_buffer *eb; 196 197 while (1) { 198 eb = btrfs_root_node(root); 199 btrfs_tree_lock(eb); 200 if (eb == root->node) 201 break; 202 btrfs_tree_unlock(eb); 203 free_extent_buffer(eb); 204 } 205 return eb; 206 } 207 208 /* loop around taking references on and locking the root node of the 209 * tree until you end up with a lock on the root. A locked buffer 210 * is returned, with a reference held. 211 */ 212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 213 { 214 struct extent_buffer *eb; 215 216 while (1) { 217 eb = btrfs_root_node(root); 218 btrfs_tree_read_lock(eb); 219 if (eb == root->node) 220 break; 221 btrfs_tree_read_unlock(eb); 222 free_extent_buffer(eb); 223 } 224 return eb; 225 } 226 227 /* cowonly root (everything not a reference counted cow subvolume), just get 228 * put onto a simple dirty list. transaction.c walks this to make sure they 229 * get properly updated on disk. 230 */ 231 static void add_root_to_dirty_list(struct btrfs_root *root) 232 { 233 spin_lock(&root->fs_info->trans_lock); 234 if (root->track_dirty && list_empty(&root->dirty_list)) { 235 list_add(&root->dirty_list, 236 &root->fs_info->dirty_cowonly_roots); 237 } 238 spin_unlock(&root->fs_info->trans_lock); 239 } 240 241 /* 242 * used by snapshot creation to make a copy of a root for a tree with 243 * a given objectid. The buffer with the new root node is returned in 244 * cow_ret, and this func returns zero on success or a negative error code. 245 */ 246 int btrfs_copy_root(struct btrfs_trans_handle *trans, 247 struct btrfs_root *root, 248 struct extent_buffer *buf, 249 struct extent_buffer **cow_ret, u64 new_root_objectid) 250 { 251 struct extent_buffer *cow; 252 int ret = 0; 253 int level; 254 struct btrfs_disk_key disk_key; 255 256 WARN_ON(root->ref_cows && trans->transid != 257 root->fs_info->running_transaction->transid); 258 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 259 260 level = btrfs_header_level(buf); 261 if (level == 0) 262 btrfs_item_key(buf, &disk_key, 0); 263 else 264 btrfs_node_key(buf, &disk_key, 0); 265 266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 267 new_root_objectid, &disk_key, level, 268 buf->start, 0); 269 if (IS_ERR(cow)) 270 return PTR_ERR(cow); 271 272 copy_extent_buffer(cow, buf, 0, 0, cow->len); 273 btrfs_set_header_bytenr(cow, cow->start); 274 btrfs_set_header_generation(cow, trans->transid); 275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 277 BTRFS_HEADER_FLAG_RELOC); 278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 280 else 281 btrfs_set_header_owner(cow, new_root_objectid); 282 283 write_extent_buffer(cow, root->fs_info->fsid, 284 (unsigned long)btrfs_header_fsid(cow), 285 BTRFS_FSID_SIZE); 286 287 WARN_ON(btrfs_header_generation(buf) > trans->transid); 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 290 else 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 292 293 if (ret) 294 return ret; 295 296 btrfs_mark_buffer_dirty(cow); 297 *cow_ret = cow; 298 return 0; 299 } 300 301 enum mod_log_op { 302 MOD_LOG_KEY_REPLACE, 303 MOD_LOG_KEY_ADD, 304 MOD_LOG_KEY_REMOVE, 305 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 306 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 307 MOD_LOG_MOVE_KEYS, 308 MOD_LOG_ROOT_REPLACE, 309 }; 310 311 struct tree_mod_move { 312 int dst_slot; 313 int nr_items; 314 }; 315 316 struct tree_mod_root { 317 u64 logical; 318 u8 level; 319 }; 320 321 struct tree_mod_elem { 322 struct rb_node node; 323 u64 index; /* shifted logical */ 324 u64 seq; 325 enum mod_log_op op; 326 327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 328 int slot; 329 330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 331 u64 generation; 332 333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 334 struct btrfs_disk_key key; 335 u64 blockptr; 336 337 /* this is used for op == MOD_LOG_MOVE_KEYS */ 338 struct tree_mod_move move; 339 340 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 341 struct tree_mod_root old_root; 342 }; 343 344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 345 { 346 read_lock(&fs_info->tree_mod_log_lock); 347 } 348 349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 350 { 351 read_unlock(&fs_info->tree_mod_log_lock); 352 } 353 354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 355 { 356 write_lock(&fs_info->tree_mod_log_lock); 357 } 358 359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 360 { 361 write_unlock(&fs_info->tree_mod_log_lock); 362 } 363 364 /* 365 * This adds a new blocker to the tree mod log's blocker list if the @elem 366 * passed does not already have a sequence number set. So when a caller expects 367 * to record tree modifications, it should ensure to set elem->seq to zero 368 * before calling btrfs_get_tree_mod_seq. 369 * Returns a fresh, unused tree log modification sequence number, even if no new 370 * blocker was added. 371 */ 372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 373 struct seq_list *elem) 374 { 375 u64 seq; 376 377 tree_mod_log_write_lock(fs_info); 378 spin_lock(&fs_info->tree_mod_seq_lock); 379 if (!elem->seq) { 380 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 382 } 383 seq = btrfs_inc_tree_mod_seq(fs_info); 384 spin_unlock(&fs_info->tree_mod_seq_lock); 385 tree_mod_log_write_unlock(fs_info); 386 387 return seq; 388 } 389 390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 391 struct seq_list *elem) 392 { 393 struct rb_root *tm_root; 394 struct rb_node *node; 395 struct rb_node *next; 396 struct seq_list *cur_elem; 397 struct tree_mod_elem *tm; 398 u64 min_seq = (u64)-1; 399 u64 seq_putting = elem->seq; 400 401 if (!seq_putting) 402 return; 403 404 spin_lock(&fs_info->tree_mod_seq_lock); 405 list_del(&elem->list); 406 elem->seq = 0; 407 408 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 409 if (cur_elem->seq < min_seq) { 410 if (seq_putting > cur_elem->seq) { 411 /* 412 * blocker with lower sequence number exists, we 413 * cannot remove anything from the log 414 */ 415 spin_unlock(&fs_info->tree_mod_seq_lock); 416 return; 417 } 418 min_seq = cur_elem->seq; 419 } 420 } 421 spin_unlock(&fs_info->tree_mod_seq_lock); 422 423 /* 424 * anything that's lower than the lowest existing (read: blocked) 425 * sequence number can be removed from the tree. 426 */ 427 tree_mod_log_write_lock(fs_info); 428 tm_root = &fs_info->tree_mod_log; 429 for (node = rb_first(tm_root); node; node = next) { 430 next = rb_next(node); 431 tm = container_of(node, struct tree_mod_elem, node); 432 if (tm->seq > min_seq) 433 continue; 434 rb_erase(node, tm_root); 435 kfree(tm); 436 } 437 tree_mod_log_write_unlock(fs_info); 438 } 439 440 /* 441 * key order of the log: 442 * index -> sequence 443 * 444 * the index is the shifted logical of the *new* root node for root replace 445 * operations, or the shifted logical of the affected block for all other 446 * operations. 447 */ 448 static noinline int 449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 450 { 451 struct rb_root *tm_root; 452 struct rb_node **new; 453 struct rb_node *parent = NULL; 454 struct tree_mod_elem *cur; 455 456 BUG_ON(!tm || !tm->seq); 457 458 tm_root = &fs_info->tree_mod_log; 459 new = &tm_root->rb_node; 460 while (*new) { 461 cur = container_of(*new, struct tree_mod_elem, node); 462 parent = *new; 463 if (cur->index < tm->index) 464 new = &((*new)->rb_left); 465 else if (cur->index > tm->index) 466 new = &((*new)->rb_right); 467 else if (cur->seq < tm->seq) 468 new = &((*new)->rb_left); 469 else if (cur->seq > tm->seq) 470 new = &((*new)->rb_right); 471 else { 472 kfree(tm); 473 return -EEXIST; 474 } 475 } 476 477 rb_link_node(&tm->node, parent, new); 478 rb_insert_color(&tm->node, tm_root); 479 return 0; 480 } 481 482 /* 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold 485 * this until all tree mod log insertions are recorded in the rb tree and then 486 * call tree_mod_log_write_unlock() to release. 487 */ 488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 489 struct extent_buffer *eb) { 490 smp_mb(); 491 if (list_empty(&(fs_info)->tree_mod_seq_list)) 492 return 1; 493 if (eb && btrfs_header_level(eb) == 0) 494 return 1; 495 496 tree_mod_log_write_lock(fs_info); 497 if (list_empty(&fs_info->tree_mod_seq_list)) { 498 /* 499 * someone emptied the list while we were waiting for the lock. 500 * we must not add to the list when no blocker exists. 501 */ 502 tree_mod_log_write_unlock(fs_info); 503 return 1; 504 } 505 506 return 0; 507 } 508 509 /* 510 * This allocates memory and gets a tree modification sequence number. 511 * 512 * Returns <0 on error. 513 * Returns >0 (the added sequence number) on success. 514 */ 515 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags, 516 struct tree_mod_elem **tm_ret) 517 { 518 struct tree_mod_elem *tm; 519 520 /* 521 * once we switch from spin locks to something different, we should 522 * honor the flags parameter here. 523 */ 524 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC); 525 if (!tm) 526 return -ENOMEM; 527 528 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 529 return tm->seq; 530 } 531 532 static inline int 533 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 534 struct extent_buffer *eb, int slot, 535 enum mod_log_op op, gfp_t flags) 536 { 537 int ret; 538 struct tree_mod_elem *tm; 539 540 ret = tree_mod_alloc(fs_info, flags, &tm); 541 if (ret < 0) 542 return ret; 543 544 tm->index = eb->start >> PAGE_CACHE_SHIFT; 545 if (op != MOD_LOG_KEY_ADD) { 546 btrfs_node_key(eb, &tm->key, slot); 547 tm->blockptr = btrfs_node_blockptr(eb, slot); 548 } 549 tm->op = op; 550 tm->slot = slot; 551 tm->generation = btrfs_node_ptr_generation(eb, slot); 552 553 return __tree_mod_log_insert(fs_info, tm); 554 } 555 556 static noinline int 557 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info, 558 struct extent_buffer *eb, int slot, 559 enum mod_log_op op, gfp_t flags) 560 { 561 int ret; 562 563 if (tree_mod_dont_log(fs_info, eb)) 564 return 0; 565 566 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags); 567 568 tree_mod_log_write_unlock(fs_info); 569 return ret; 570 } 571 572 static noinline int 573 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 574 int slot, enum mod_log_op op) 575 { 576 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS); 577 } 578 579 static noinline int 580 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info, 581 struct extent_buffer *eb, int slot, 582 enum mod_log_op op) 583 { 584 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS); 585 } 586 587 static noinline int 588 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 589 struct extent_buffer *eb, int dst_slot, int src_slot, 590 int nr_items, gfp_t flags) 591 { 592 struct tree_mod_elem *tm; 593 int ret; 594 int i; 595 596 if (tree_mod_dont_log(fs_info, eb)) 597 return 0; 598 599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 600 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot, 601 MOD_LOG_KEY_REMOVE_WHILE_MOVING); 602 BUG_ON(ret < 0); 603 } 604 605 ret = tree_mod_alloc(fs_info, flags, &tm); 606 if (ret < 0) 607 goto out; 608 609 tm->index = eb->start >> PAGE_CACHE_SHIFT; 610 tm->slot = src_slot; 611 tm->move.dst_slot = dst_slot; 612 tm->move.nr_items = nr_items; 613 tm->op = MOD_LOG_MOVE_KEYS; 614 615 ret = __tree_mod_log_insert(fs_info, tm); 616 out: 617 tree_mod_log_write_unlock(fs_info); 618 return ret; 619 } 620 621 static inline void 622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 623 { 624 int i; 625 u32 nritems; 626 int ret; 627 628 if (btrfs_header_level(eb) == 0) 629 return; 630 631 nritems = btrfs_header_nritems(eb); 632 for (i = nritems - 1; i >= 0; i--) { 633 ret = tree_mod_log_insert_key_locked(fs_info, eb, i, 634 MOD_LOG_KEY_REMOVE_WHILE_FREEING); 635 BUG_ON(ret < 0); 636 } 637 } 638 639 static noinline int 640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 641 struct extent_buffer *old_root, 642 struct extent_buffer *new_root, gfp_t flags) 643 { 644 struct tree_mod_elem *tm; 645 int ret; 646 647 if (tree_mod_dont_log(fs_info, NULL)) 648 return 0; 649 650 ret = tree_mod_alloc(fs_info, flags, &tm); 651 if (ret < 0) 652 goto out; 653 654 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 655 tm->old_root.logical = old_root->start; 656 tm->old_root.level = btrfs_header_level(old_root); 657 tm->generation = btrfs_header_generation(old_root); 658 tm->op = MOD_LOG_ROOT_REPLACE; 659 660 ret = __tree_mod_log_insert(fs_info, tm); 661 out: 662 tree_mod_log_write_unlock(fs_info); 663 return ret; 664 } 665 666 static struct tree_mod_elem * 667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 668 int smallest) 669 { 670 struct rb_root *tm_root; 671 struct rb_node *node; 672 struct tree_mod_elem *cur = NULL; 673 struct tree_mod_elem *found = NULL; 674 u64 index = start >> PAGE_CACHE_SHIFT; 675 676 tree_mod_log_read_lock(fs_info); 677 tm_root = &fs_info->tree_mod_log; 678 node = tm_root->rb_node; 679 while (node) { 680 cur = container_of(node, struct tree_mod_elem, node); 681 if (cur->index < index) { 682 node = node->rb_left; 683 } else if (cur->index > index) { 684 node = node->rb_right; 685 } else if (cur->seq < min_seq) { 686 node = node->rb_left; 687 } else if (!smallest) { 688 /* we want the node with the highest seq */ 689 if (found) 690 BUG_ON(found->seq > cur->seq); 691 found = cur; 692 node = node->rb_left; 693 } else if (cur->seq > min_seq) { 694 /* we want the node with the smallest seq */ 695 if (found) 696 BUG_ON(found->seq < cur->seq); 697 found = cur; 698 node = node->rb_right; 699 } else { 700 found = cur; 701 break; 702 } 703 } 704 tree_mod_log_read_unlock(fs_info); 705 706 return found; 707 } 708 709 /* 710 * this returns the element from the log with the smallest time sequence 711 * value that's in the log (the oldest log item). any element with a time 712 * sequence lower than min_seq will be ignored. 713 */ 714 static struct tree_mod_elem * 715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 716 u64 min_seq) 717 { 718 return __tree_mod_log_search(fs_info, start, min_seq, 1); 719 } 720 721 /* 722 * this returns the element from the log with the largest time sequence 723 * value that's in the log (the most recent log item). any element with 724 * a time sequence lower than min_seq will be ignored. 725 */ 726 static struct tree_mod_elem * 727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 728 { 729 return __tree_mod_log_search(fs_info, start, min_seq, 0); 730 } 731 732 static noinline void 733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 734 struct extent_buffer *src, unsigned long dst_offset, 735 unsigned long src_offset, int nr_items) 736 { 737 int ret; 738 int i; 739 740 if (tree_mod_dont_log(fs_info, NULL)) 741 return; 742 743 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) { 744 tree_mod_log_write_unlock(fs_info); 745 return; 746 } 747 748 for (i = 0; i < nr_items; i++) { 749 ret = tree_mod_log_insert_key_locked(fs_info, src, 750 i + src_offset, 751 MOD_LOG_KEY_REMOVE); 752 BUG_ON(ret < 0); 753 ret = tree_mod_log_insert_key_locked(fs_info, dst, 754 i + dst_offset, 755 MOD_LOG_KEY_ADD); 756 BUG_ON(ret < 0); 757 } 758 759 tree_mod_log_write_unlock(fs_info); 760 } 761 762 static inline void 763 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 764 int dst_offset, int src_offset, int nr_items) 765 { 766 int ret; 767 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 768 nr_items, GFP_NOFS); 769 BUG_ON(ret < 0); 770 } 771 772 static noinline void 773 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 774 struct extent_buffer *eb, 775 struct btrfs_disk_key *disk_key, int slot, int atomic) 776 { 777 int ret; 778 779 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot, 780 MOD_LOG_KEY_REPLACE, 781 atomic ? GFP_ATOMIC : GFP_NOFS); 782 BUG_ON(ret < 0); 783 } 784 785 static noinline void 786 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 787 { 788 if (tree_mod_dont_log(fs_info, eb)) 789 return; 790 791 __tree_mod_log_free_eb(fs_info, eb); 792 793 tree_mod_log_write_unlock(fs_info); 794 } 795 796 static noinline void 797 tree_mod_log_set_root_pointer(struct btrfs_root *root, 798 struct extent_buffer *new_root_node) 799 { 800 int ret; 801 ret = tree_mod_log_insert_root(root->fs_info, root->node, 802 new_root_node, GFP_NOFS); 803 BUG_ON(ret < 0); 804 } 805 806 /* 807 * check if the tree block can be shared by multiple trees 808 */ 809 int btrfs_block_can_be_shared(struct btrfs_root *root, 810 struct extent_buffer *buf) 811 { 812 /* 813 * Tree blocks not in refernece counted trees and tree roots 814 * are never shared. If a block was allocated after the last 815 * snapshot and the block was not allocated by tree relocation, 816 * we know the block is not shared. 817 */ 818 if (root->ref_cows && 819 buf != root->node && buf != root->commit_root && 820 (btrfs_header_generation(buf) <= 821 btrfs_root_last_snapshot(&root->root_item) || 822 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 823 return 1; 824 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 825 if (root->ref_cows && 826 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 827 return 1; 828 #endif 829 return 0; 830 } 831 832 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 833 struct btrfs_root *root, 834 struct extent_buffer *buf, 835 struct extent_buffer *cow, 836 int *last_ref) 837 { 838 u64 refs; 839 u64 owner; 840 u64 flags; 841 u64 new_flags = 0; 842 int ret; 843 844 /* 845 * Backrefs update rules: 846 * 847 * Always use full backrefs for extent pointers in tree block 848 * allocated by tree relocation. 849 * 850 * If a shared tree block is no longer referenced by its owner 851 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 852 * use full backrefs for extent pointers in tree block. 853 * 854 * If a tree block is been relocating 855 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 856 * use full backrefs for extent pointers in tree block. 857 * The reason for this is some operations (such as drop tree) 858 * are only allowed for blocks use full backrefs. 859 */ 860 861 if (btrfs_block_can_be_shared(root, buf)) { 862 ret = btrfs_lookup_extent_info(trans, root, buf->start, 863 buf->len, &refs, &flags); 864 if (ret) 865 return ret; 866 if (refs == 0) { 867 ret = -EROFS; 868 btrfs_std_error(root->fs_info, ret); 869 return ret; 870 } 871 } else { 872 refs = 1; 873 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 874 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 875 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 876 else 877 flags = 0; 878 } 879 880 owner = btrfs_header_owner(buf); 881 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 882 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 883 884 if (refs > 1) { 885 if ((owner == root->root_key.objectid || 886 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 887 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 888 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 889 BUG_ON(ret); /* -ENOMEM */ 890 891 if (root->root_key.objectid == 892 BTRFS_TREE_RELOC_OBJECTID) { 893 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 894 BUG_ON(ret); /* -ENOMEM */ 895 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 896 BUG_ON(ret); /* -ENOMEM */ 897 } 898 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 899 } else { 900 901 if (root->root_key.objectid == 902 BTRFS_TREE_RELOC_OBJECTID) 903 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 904 else 905 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 906 BUG_ON(ret); /* -ENOMEM */ 907 } 908 if (new_flags != 0) { 909 ret = btrfs_set_disk_extent_flags(trans, root, 910 buf->start, 911 buf->len, 912 new_flags, 0); 913 if (ret) 914 return ret; 915 } 916 } else { 917 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 918 if (root->root_key.objectid == 919 BTRFS_TREE_RELOC_OBJECTID) 920 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 921 else 922 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 923 BUG_ON(ret); /* -ENOMEM */ 924 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 925 BUG_ON(ret); /* -ENOMEM */ 926 } 927 tree_mod_log_free_eb(root->fs_info, buf); 928 clean_tree_block(trans, root, buf); 929 *last_ref = 1; 930 } 931 return 0; 932 } 933 934 /* 935 * does the dirty work in cow of a single block. The parent block (if 936 * supplied) is updated to point to the new cow copy. The new buffer is marked 937 * dirty and returned locked. If you modify the block it needs to be marked 938 * dirty again. 939 * 940 * search_start -- an allocation hint for the new block 941 * 942 * empty_size -- a hint that you plan on doing more cow. This is the size in 943 * bytes the allocator should try to find free next to the block it returns. 944 * This is just a hint and may be ignored by the allocator. 945 */ 946 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 947 struct btrfs_root *root, 948 struct extent_buffer *buf, 949 struct extent_buffer *parent, int parent_slot, 950 struct extent_buffer **cow_ret, 951 u64 search_start, u64 empty_size) 952 { 953 struct btrfs_disk_key disk_key; 954 struct extent_buffer *cow; 955 int level, ret; 956 int last_ref = 0; 957 int unlock_orig = 0; 958 u64 parent_start; 959 960 if (*cow_ret == buf) 961 unlock_orig = 1; 962 963 btrfs_assert_tree_locked(buf); 964 965 WARN_ON(root->ref_cows && trans->transid != 966 root->fs_info->running_transaction->transid); 967 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 968 969 level = btrfs_header_level(buf); 970 971 if (level == 0) 972 btrfs_item_key(buf, &disk_key, 0); 973 else 974 btrfs_node_key(buf, &disk_key, 0); 975 976 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 977 if (parent) 978 parent_start = parent->start; 979 else 980 parent_start = 0; 981 } else 982 parent_start = 0; 983 984 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 985 root->root_key.objectid, &disk_key, 986 level, search_start, empty_size); 987 if (IS_ERR(cow)) 988 return PTR_ERR(cow); 989 990 /* cow is set to blocking by btrfs_init_new_buffer */ 991 992 copy_extent_buffer(cow, buf, 0, 0, cow->len); 993 btrfs_set_header_bytenr(cow, cow->start); 994 btrfs_set_header_generation(cow, trans->transid); 995 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 996 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 997 BTRFS_HEADER_FLAG_RELOC); 998 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 999 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1000 else 1001 btrfs_set_header_owner(cow, root->root_key.objectid); 1002 1003 write_extent_buffer(cow, root->fs_info->fsid, 1004 (unsigned long)btrfs_header_fsid(cow), 1005 BTRFS_FSID_SIZE); 1006 1007 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1008 if (ret) { 1009 btrfs_abort_transaction(trans, root, ret); 1010 return ret; 1011 } 1012 1013 if (root->ref_cows) 1014 btrfs_reloc_cow_block(trans, root, buf, cow); 1015 1016 if (buf == root->node) { 1017 WARN_ON(parent && parent != buf); 1018 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1019 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1020 parent_start = buf->start; 1021 else 1022 parent_start = 0; 1023 1024 extent_buffer_get(cow); 1025 tree_mod_log_set_root_pointer(root, cow); 1026 rcu_assign_pointer(root->node, cow); 1027 1028 btrfs_free_tree_block(trans, root, buf, parent_start, 1029 last_ref); 1030 free_extent_buffer(buf); 1031 add_root_to_dirty_list(root); 1032 } else { 1033 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1034 parent_start = parent->start; 1035 else 1036 parent_start = 0; 1037 1038 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1039 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1040 MOD_LOG_KEY_REPLACE); 1041 btrfs_set_node_blockptr(parent, parent_slot, 1042 cow->start); 1043 btrfs_set_node_ptr_generation(parent, parent_slot, 1044 trans->transid); 1045 btrfs_mark_buffer_dirty(parent); 1046 btrfs_free_tree_block(trans, root, buf, parent_start, 1047 last_ref); 1048 } 1049 if (unlock_orig) 1050 btrfs_tree_unlock(buf); 1051 free_extent_buffer_stale(buf); 1052 btrfs_mark_buffer_dirty(cow); 1053 *cow_ret = cow; 1054 return 0; 1055 } 1056 1057 /* 1058 * returns the logical address of the oldest predecessor of the given root. 1059 * entries older than time_seq are ignored. 1060 */ 1061 static struct tree_mod_elem * 1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1063 struct btrfs_root *root, u64 time_seq) 1064 { 1065 struct tree_mod_elem *tm; 1066 struct tree_mod_elem *found = NULL; 1067 u64 root_logical = root->node->start; 1068 int looped = 0; 1069 1070 if (!time_seq) 1071 return 0; 1072 1073 /* 1074 * the very last operation that's logged for a root is the replacement 1075 * operation (if it is replaced at all). this has the index of the *new* 1076 * root, making it the very first operation that's logged for this root. 1077 */ 1078 while (1) { 1079 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1080 time_seq); 1081 if (!looped && !tm) 1082 return 0; 1083 /* 1084 * if there are no tree operation for the oldest root, we simply 1085 * return it. this should only happen if that (old) root is at 1086 * level 0. 1087 */ 1088 if (!tm) 1089 break; 1090 1091 /* 1092 * if there's an operation that's not a root replacement, we 1093 * found the oldest version of our root. normally, we'll find a 1094 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1095 */ 1096 if (tm->op != MOD_LOG_ROOT_REPLACE) 1097 break; 1098 1099 found = tm; 1100 root_logical = tm->old_root.logical; 1101 BUG_ON(root_logical == root->node->start); 1102 looped = 1; 1103 } 1104 1105 /* if there's no old root to return, return what we found instead */ 1106 if (!found) 1107 found = tm; 1108 1109 return found; 1110 } 1111 1112 /* 1113 * tm is a pointer to the first operation to rewind within eb. then, all 1114 * previous operations will be rewinded (until we reach something older than 1115 * time_seq). 1116 */ 1117 static void 1118 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq, 1119 struct tree_mod_elem *first_tm) 1120 { 1121 u32 n; 1122 struct rb_node *next; 1123 struct tree_mod_elem *tm = first_tm; 1124 unsigned long o_dst; 1125 unsigned long o_src; 1126 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1127 1128 n = btrfs_header_nritems(eb); 1129 while (tm && tm->seq >= time_seq) { 1130 /* 1131 * all the operations are recorded with the operator used for 1132 * the modification. as we're going backwards, we do the 1133 * opposite of each operation here. 1134 */ 1135 switch (tm->op) { 1136 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1137 BUG_ON(tm->slot < n); 1138 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1139 case MOD_LOG_KEY_REMOVE: 1140 btrfs_set_node_key(eb, &tm->key, tm->slot); 1141 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1142 btrfs_set_node_ptr_generation(eb, tm->slot, 1143 tm->generation); 1144 n++; 1145 break; 1146 case MOD_LOG_KEY_REPLACE: 1147 BUG_ON(tm->slot >= n); 1148 btrfs_set_node_key(eb, &tm->key, tm->slot); 1149 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1150 btrfs_set_node_ptr_generation(eb, tm->slot, 1151 tm->generation); 1152 break; 1153 case MOD_LOG_KEY_ADD: 1154 /* if a move operation is needed it's in the log */ 1155 n--; 1156 break; 1157 case MOD_LOG_MOVE_KEYS: 1158 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1159 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1160 memmove_extent_buffer(eb, o_dst, o_src, 1161 tm->move.nr_items * p_size); 1162 break; 1163 case MOD_LOG_ROOT_REPLACE: 1164 /* 1165 * this operation is special. for roots, this must be 1166 * handled explicitly before rewinding. 1167 * for non-roots, this operation may exist if the node 1168 * was a root: root A -> child B; then A gets empty and 1169 * B is promoted to the new root. in the mod log, we'll 1170 * have a root-replace operation for B, a tree block 1171 * that is no root. we simply ignore that operation. 1172 */ 1173 break; 1174 } 1175 next = rb_next(&tm->node); 1176 if (!next) 1177 break; 1178 tm = container_of(next, struct tree_mod_elem, node); 1179 if (tm->index != first_tm->index) 1180 break; 1181 } 1182 btrfs_set_header_nritems(eb, n); 1183 } 1184 1185 static struct extent_buffer * 1186 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1187 u64 time_seq) 1188 { 1189 struct extent_buffer *eb_rewin; 1190 struct tree_mod_elem *tm; 1191 1192 if (!time_seq) 1193 return eb; 1194 1195 if (btrfs_header_level(eb) == 0) 1196 return eb; 1197 1198 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1199 if (!tm) 1200 return eb; 1201 1202 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1203 BUG_ON(tm->slot != 0); 1204 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1205 fs_info->tree_root->nodesize); 1206 BUG_ON(!eb_rewin); 1207 btrfs_set_header_bytenr(eb_rewin, eb->start); 1208 btrfs_set_header_backref_rev(eb_rewin, 1209 btrfs_header_backref_rev(eb)); 1210 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1211 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1212 } else { 1213 eb_rewin = btrfs_clone_extent_buffer(eb); 1214 BUG_ON(!eb_rewin); 1215 } 1216 1217 extent_buffer_get(eb_rewin); 1218 free_extent_buffer(eb); 1219 1220 __tree_mod_log_rewind(eb_rewin, time_seq, tm); 1221 WARN_ON(btrfs_header_nritems(eb_rewin) > 1222 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root)); 1223 1224 return eb_rewin; 1225 } 1226 1227 /* 1228 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1229 * value. If there are no changes, the current root->root_node is returned. If 1230 * anything changed in between, there's a fresh buffer allocated on which the 1231 * rewind operations are done. In any case, the returned buffer is read locked. 1232 * Returns NULL on error (with no locks held). 1233 */ 1234 static inline struct extent_buffer * 1235 get_old_root(struct btrfs_root *root, u64 time_seq) 1236 { 1237 struct tree_mod_elem *tm; 1238 struct extent_buffer *eb; 1239 struct tree_mod_root *old_root = NULL; 1240 u64 old_generation = 0; 1241 u64 logical; 1242 1243 eb = btrfs_read_lock_root_node(root); 1244 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq); 1245 if (!tm) 1246 return root->node; 1247 1248 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1249 old_root = &tm->old_root; 1250 old_generation = tm->generation; 1251 logical = old_root->logical; 1252 } else { 1253 logical = root->node->start; 1254 } 1255 1256 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1257 if (old_root) 1258 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1259 else 1260 eb = btrfs_clone_extent_buffer(root->node); 1261 btrfs_tree_read_unlock(root->node); 1262 free_extent_buffer(root->node); 1263 if (!eb) 1264 return NULL; 1265 btrfs_tree_read_lock(eb); 1266 if (old_root) { 1267 btrfs_set_header_bytenr(eb, eb->start); 1268 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1269 btrfs_set_header_owner(eb, root->root_key.objectid); 1270 btrfs_set_header_level(eb, old_root->level); 1271 btrfs_set_header_generation(eb, old_generation); 1272 } 1273 if (tm) 1274 __tree_mod_log_rewind(eb, time_seq, tm); 1275 else 1276 WARN_ON(btrfs_header_level(eb) != 0); 1277 extent_buffer_get(eb); 1278 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1279 1280 return eb; 1281 } 1282 1283 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1284 struct btrfs_root *root, 1285 struct extent_buffer *buf) 1286 { 1287 /* ensure we can see the force_cow */ 1288 smp_rmb(); 1289 1290 /* 1291 * We do not need to cow a block if 1292 * 1) this block is not created or changed in this transaction; 1293 * 2) this block does not belong to TREE_RELOC tree; 1294 * 3) the root is not forced COW. 1295 * 1296 * What is forced COW: 1297 * when we create snapshot during commiting the transaction, 1298 * after we've finished coping src root, we must COW the shared 1299 * block to ensure the metadata consistency. 1300 */ 1301 if (btrfs_header_generation(buf) == trans->transid && 1302 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1303 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1304 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1305 !root->force_cow) 1306 return 0; 1307 return 1; 1308 } 1309 1310 /* 1311 * cows a single block, see __btrfs_cow_block for the real work. 1312 * This version of it has extra checks so that a block isn't cow'd more than 1313 * once per transaction, as long as it hasn't been written yet 1314 */ 1315 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1316 struct btrfs_root *root, struct extent_buffer *buf, 1317 struct extent_buffer *parent, int parent_slot, 1318 struct extent_buffer **cow_ret) 1319 { 1320 u64 search_start; 1321 int ret; 1322 1323 if (trans->transaction != root->fs_info->running_transaction) { 1324 printk(KERN_CRIT "trans %llu running %llu\n", 1325 (unsigned long long)trans->transid, 1326 (unsigned long long) 1327 root->fs_info->running_transaction->transid); 1328 WARN_ON(1); 1329 } 1330 if (trans->transid != root->fs_info->generation) { 1331 printk(KERN_CRIT "trans %llu running %llu\n", 1332 (unsigned long long)trans->transid, 1333 (unsigned long long)root->fs_info->generation); 1334 WARN_ON(1); 1335 } 1336 1337 if (!should_cow_block(trans, root, buf)) { 1338 *cow_ret = buf; 1339 return 0; 1340 } 1341 1342 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1343 1344 if (parent) 1345 btrfs_set_lock_blocking(parent); 1346 btrfs_set_lock_blocking(buf); 1347 1348 ret = __btrfs_cow_block(trans, root, buf, parent, 1349 parent_slot, cow_ret, search_start, 0); 1350 1351 trace_btrfs_cow_block(root, buf, *cow_ret); 1352 1353 return ret; 1354 } 1355 1356 /* 1357 * helper function for defrag to decide if two blocks pointed to by a 1358 * node are actually close by 1359 */ 1360 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1361 { 1362 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1363 return 1; 1364 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1365 return 1; 1366 return 0; 1367 } 1368 1369 /* 1370 * compare two keys in a memcmp fashion 1371 */ 1372 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1373 { 1374 struct btrfs_key k1; 1375 1376 btrfs_disk_key_to_cpu(&k1, disk); 1377 1378 return btrfs_comp_cpu_keys(&k1, k2); 1379 } 1380 1381 /* 1382 * same as comp_keys only with two btrfs_key's 1383 */ 1384 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1385 { 1386 if (k1->objectid > k2->objectid) 1387 return 1; 1388 if (k1->objectid < k2->objectid) 1389 return -1; 1390 if (k1->type > k2->type) 1391 return 1; 1392 if (k1->type < k2->type) 1393 return -1; 1394 if (k1->offset > k2->offset) 1395 return 1; 1396 if (k1->offset < k2->offset) 1397 return -1; 1398 return 0; 1399 } 1400 1401 /* 1402 * this is used by the defrag code to go through all the 1403 * leaves pointed to by a node and reallocate them so that 1404 * disk order is close to key order 1405 */ 1406 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1407 struct btrfs_root *root, struct extent_buffer *parent, 1408 int start_slot, int cache_only, u64 *last_ret, 1409 struct btrfs_key *progress) 1410 { 1411 struct extent_buffer *cur; 1412 u64 blocknr; 1413 u64 gen; 1414 u64 search_start = *last_ret; 1415 u64 last_block = 0; 1416 u64 other; 1417 u32 parent_nritems; 1418 int end_slot; 1419 int i; 1420 int err = 0; 1421 int parent_level; 1422 int uptodate; 1423 u32 blocksize; 1424 int progress_passed = 0; 1425 struct btrfs_disk_key disk_key; 1426 1427 parent_level = btrfs_header_level(parent); 1428 if (cache_only && parent_level != 1) 1429 return 0; 1430 1431 if (trans->transaction != root->fs_info->running_transaction) 1432 WARN_ON(1); 1433 if (trans->transid != root->fs_info->generation) 1434 WARN_ON(1); 1435 1436 parent_nritems = btrfs_header_nritems(parent); 1437 blocksize = btrfs_level_size(root, parent_level - 1); 1438 end_slot = parent_nritems; 1439 1440 if (parent_nritems == 1) 1441 return 0; 1442 1443 btrfs_set_lock_blocking(parent); 1444 1445 for (i = start_slot; i < end_slot; i++) { 1446 int close = 1; 1447 1448 btrfs_node_key(parent, &disk_key, i); 1449 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1450 continue; 1451 1452 progress_passed = 1; 1453 blocknr = btrfs_node_blockptr(parent, i); 1454 gen = btrfs_node_ptr_generation(parent, i); 1455 if (last_block == 0) 1456 last_block = blocknr; 1457 1458 if (i > 0) { 1459 other = btrfs_node_blockptr(parent, i - 1); 1460 close = close_blocks(blocknr, other, blocksize); 1461 } 1462 if (!close && i < end_slot - 2) { 1463 other = btrfs_node_blockptr(parent, i + 1); 1464 close = close_blocks(blocknr, other, blocksize); 1465 } 1466 if (close) { 1467 last_block = blocknr; 1468 continue; 1469 } 1470 1471 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1472 if (cur) 1473 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1474 else 1475 uptodate = 0; 1476 if (!cur || !uptodate) { 1477 if (cache_only) { 1478 free_extent_buffer(cur); 1479 continue; 1480 } 1481 if (!cur) { 1482 cur = read_tree_block(root, blocknr, 1483 blocksize, gen); 1484 if (!cur) 1485 return -EIO; 1486 } else if (!uptodate) { 1487 err = btrfs_read_buffer(cur, gen); 1488 if (err) { 1489 free_extent_buffer(cur); 1490 return err; 1491 } 1492 } 1493 } 1494 if (search_start == 0) 1495 search_start = last_block; 1496 1497 btrfs_tree_lock(cur); 1498 btrfs_set_lock_blocking(cur); 1499 err = __btrfs_cow_block(trans, root, cur, parent, i, 1500 &cur, search_start, 1501 min(16 * blocksize, 1502 (end_slot - i) * blocksize)); 1503 if (err) { 1504 btrfs_tree_unlock(cur); 1505 free_extent_buffer(cur); 1506 break; 1507 } 1508 search_start = cur->start; 1509 last_block = cur->start; 1510 *last_ret = search_start; 1511 btrfs_tree_unlock(cur); 1512 free_extent_buffer(cur); 1513 } 1514 return err; 1515 } 1516 1517 /* 1518 * The leaf data grows from end-to-front in the node. 1519 * this returns the address of the start of the last item, 1520 * which is the stop of the leaf data stack 1521 */ 1522 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1523 struct extent_buffer *leaf) 1524 { 1525 u32 nr = btrfs_header_nritems(leaf); 1526 if (nr == 0) 1527 return BTRFS_LEAF_DATA_SIZE(root); 1528 return btrfs_item_offset_nr(leaf, nr - 1); 1529 } 1530 1531 1532 /* 1533 * search for key in the extent_buffer. The items start at offset p, 1534 * and they are item_size apart. There are 'max' items in p. 1535 * 1536 * the slot in the array is returned via slot, and it points to 1537 * the place where you would insert key if it is not found in 1538 * the array. 1539 * 1540 * slot may point to max if the key is bigger than all of the keys 1541 */ 1542 static noinline int generic_bin_search(struct extent_buffer *eb, 1543 unsigned long p, 1544 int item_size, struct btrfs_key *key, 1545 int max, int *slot) 1546 { 1547 int low = 0; 1548 int high = max; 1549 int mid; 1550 int ret; 1551 struct btrfs_disk_key *tmp = NULL; 1552 struct btrfs_disk_key unaligned; 1553 unsigned long offset; 1554 char *kaddr = NULL; 1555 unsigned long map_start = 0; 1556 unsigned long map_len = 0; 1557 int err; 1558 1559 while (low < high) { 1560 mid = (low + high) / 2; 1561 offset = p + mid * item_size; 1562 1563 if (!kaddr || offset < map_start || 1564 (offset + sizeof(struct btrfs_disk_key)) > 1565 map_start + map_len) { 1566 1567 err = map_private_extent_buffer(eb, offset, 1568 sizeof(struct btrfs_disk_key), 1569 &kaddr, &map_start, &map_len); 1570 1571 if (!err) { 1572 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1573 map_start); 1574 } else { 1575 read_extent_buffer(eb, &unaligned, 1576 offset, sizeof(unaligned)); 1577 tmp = &unaligned; 1578 } 1579 1580 } else { 1581 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1582 map_start); 1583 } 1584 ret = comp_keys(tmp, key); 1585 1586 if (ret < 0) 1587 low = mid + 1; 1588 else if (ret > 0) 1589 high = mid; 1590 else { 1591 *slot = mid; 1592 return 0; 1593 } 1594 } 1595 *slot = low; 1596 return 1; 1597 } 1598 1599 /* 1600 * simple bin_search frontend that does the right thing for 1601 * leaves vs nodes 1602 */ 1603 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1604 int level, int *slot) 1605 { 1606 if (level == 0) 1607 return generic_bin_search(eb, 1608 offsetof(struct btrfs_leaf, items), 1609 sizeof(struct btrfs_item), 1610 key, btrfs_header_nritems(eb), 1611 slot); 1612 else 1613 return generic_bin_search(eb, 1614 offsetof(struct btrfs_node, ptrs), 1615 sizeof(struct btrfs_key_ptr), 1616 key, btrfs_header_nritems(eb), 1617 slot); 1618 } 1619 1620 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1621 int level, int *slot) 1622 { 1623 return bin_search(eb, key, level, slot); 1624 } 1625 1626 static void root_add_used(struct btrfs_root *root, u32 size) 1627 { 1628 spin_lock(&root->accounting_lock); 1629 btrfs_set_root_used(&root->root_item, 1630 btrfs_root_used(&root->root_item) + size); 1631 spin_unlock(&root->accounting_lock); 1632 } 1633 1634 static void root_sub_used(struct btrfs_root *root, u32 size) 1635 { 1636 spin_lock(&root->accounting_lock); 1637 btrfs_set_root_used(&root->root_item, 1638 btrfs_root_used(&root->root_item) - size); 1639 spin_unlock(&root->accounting_lock); 1640 } 1641 1642 /* given a node and slot number, this reads the blocks it points to. The 1643 * extent buffer is returned with a reference taken (but unlocked). 1644 * NULL is returned on error. 1645 */ 1646 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1647 struct extent_buffer *parent, int slot) 1648 { 1649 int level = btrfs_header_level(parent); 1650 if (slot < 0) 1651 return NULL; 1652 if (slot >= btrfs_header_nritems(parent)) 1653 return NULL; 1654 1655 BUG_ON(level == 0); 1656 1657 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 1658 btrfs_level_size(root, level - 1), 1659 btrfs_node_ptr_generation(parent, slot)); 1660 } 1661 1662 /* 1663 * node level balancing, used to make sure nodes are in proper order for 1664 * item deletion. We balance from the top down, so we have to make sure 1665 * that a deletion won't leave an node completely empty later on. 1666 */ 1667 static noinline int balance_level(struct btrfs_trans_handle *trans, 1668 struct btrfs_root *root, 1669 struct btrfs_path *path, int level) 1670 { 1671 struct extent_buffer *right = NULL; 1672 struct extent_buffer *mid; 1673 struct extent_buffer *left = NULL; 1674 struct extent_buffer *parent = NULL; 1675 int ret = 0; 1676 int wret; 1677 int pslot; 1678 int orig_slot = path->slots[level]; 1679 u64 orig_ptr; 1680 1681 if (level == 0) 1682 return 0; 1683 1684 mid = path->nodes[level]; 1685 1686 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1687 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1688 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1689 1690 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1691 1692 if (level < BTRFS_MAX_LEVEL - 1) { 1693 parent = path->nodes[level + 1]; 1694 pslot = path->slots[level + 1]; 1695 } 1696 1697 /* 1698 * deal with the case where there is only one pointer in the root 1699 * by promoting the node below to a root 1700 */ 1701 if (!parent) { 1702 struct extent_buffer *child; 1703 1704 if (btrfs_header_nritems(mid) != 1) 1705 return 0; 1706 1707 /* promote the child to a root */ 1708 child = read_node_slot(root, mid, 0); 1709 if (!child) { 1710 ret = -EROFS; 1711 btrfs_std_error(root->fs_info, ret); 1712 goto enospc; 1713 } 1714 1715 btrfs_tree_lock(child); 1716 btrfs_set_lock_blocking(child); 1717 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1718 if (ret) { 1719 btrfs_tree_unlock(child); 1720 free_extent_buffer(child); 1721 goto enospc; 1722 } 1723 1724 tree_mod_log_free_eb(root->fs_info, root->node); 1725 tree_mod_log_set_root_pointer(root, child); 1726 rcu_assign_pointer(root->node, child); 1727 1728 add_root_to_dirty_list(root); 1729 btrfs_tree_unlock(child); 1730 1731 path->locks[level] = 0; 1732 path->nodes[level] = NULL; 1733 clean_tree_block(trans, root, mid); 1734 btrfs_tree_unlock(mid); 1735 /* once for the path */ 1736 free_extent_buffer(mid); 1737 1738 root_sub_used(root, mid->len); 1739 btrfs_free_tree_block(trans, root, mid, 0, 1); 1740 /* once for the root ptr */ 1741 free_extent_buffer_stale(mid); 1742 return 0; 1743 } 1744 if (btrfs_header_nritems(mid) > 1745 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1746 return 0; 1747 1748 left = read_node_slot(root, parent, pslot - 1); 1749 if (left) { 1750 btrfs_tree_lock(left); 1751 btrfs_set_lock_blocking(left); 1752 wret = btrfs_cow_block(trans, root, left, 1753 parent, pslot - 1, &left); 1754 if (wret) { 1755 ret = wret; 1756 goto enospc; 1757 } 1758 } 1759 right = read_node_slot(root, parent, pslot + 1); 1760 if (right) { 1761 btrfs_tree_lock(right); 1762 btrfs_set_lock_blocking(right); 1763 wret = btrfs_cow_block(trans, root, right, 1764 parent, pslot + 1, &right); 1765 if (wret) { 1766 ret = wret; 1767 goto enospc; 1768 } 1769 } 1770 1771 /* first, try to make some room in the middle buffer */ 1772 if (left) { 1773 orig_slot += btrfs_header_nritems(left); 1774 wret = push_node_left(trans, root, left, mid, 1); 1775 if (wret < 0) 1776 ret = wret; 1777 } 1778 1779 /* 1780 * then try to empty the right most buffer into the middle 1781 */ 1782 if (right) { 1783 wret = push_node_left(trans, root, mid, right, 1); 1784 if (wret < 0 && wret != -ENOSPC) 1785 ret = wret; 1786 if (btrfs_header_nritems(right) == 0) { 1787 clean_tree_block(trans, root, right); 1788 btrfs_tree_unlock(right); 1789 del_ptr(trans, root, path, level + 1, pslot + 1, 1); 1790 root_sub_used(root, right->len); 1791 btrfs_free_tree_block(trans, root, right, 0, 1); 1792 free_extent_buffer_stale(right); 1793 right = NULL; 1794 } else { 1795 struct btrfs_disk_key right_key; 1796 btrfs_node_key(right, &right_key, 0); 1797 tree_mod_log_set_node_key(root->fs_info, parent, 1798 &right_key, pslot + 1, 0); 1799 btrfs_set_node_key(parent, &right_key, pslot + 1); 1800 btrfs_mark_buffer_dirty(parent); 1801 } 1802 } 1803 if (btrfs_header_nritems(mid) == 1) { 1804 /* 1805 * we're not allowed to leave a node with one item in the 1806 * tree during a delete. A deletion from lower in the tree 1807 * could try to delete the only pointer in this node. 1808 * So, pull some keys from the left. 1809 * There has to be a left pointer at this point because 1810 * otherwise we would have pulled some pointers from the 1811 * right 1812 */ 1813 if (!left) { 1814 ret = -EROFS; 1815 btrfs_std_error(root->fs_info, ret); 1816 goto enospc; 1817 } 1818 wret = balance_node_right(trans, root, mid, left); 1819 if (wret < 0) { 1820 ret = wret; 1821 goto enospc; 1822 } 1823 if (wret == 1) { 1824 wret = push_node_left(trans, root, left, mid, 1); 1825 if (wret < 0) 1826 ret = wret; 1827 } 1828 BUG_ON(wret == 1); 1829 } 1830 if (btrfs_header_nritems(mid) == 0) { 1831 clean_tree_block(trans, root, mid); 1832 btrfs_tree_unlock(mid); 1833 del_ptr(trans, root, path, level + 1, pslot, 1); 1834 root_sub_used(root, mid->len); 1835 btrfs_free_tree_block(trans, root, mid, 0, 1); 1836 free_extent_buffer_stale(mid); 1837 mid = NULL; 1838 } else { 1839 /* update the parent key to reflect our changes */ 1840 struct btrfs_disk_key mid_key; 1841 btrfs_node_key(mid, &mid_key, 0); 1842 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key, 1843 pslot, 0); 1844 btrfs_set_node_key(parent, &mid_key, pslot); 1845 btrfs_mark_buffer_dirty(parent); 1846 } 1847 1848 /* update the path */ 1849 if (left) { 1850 if (btrfs_header_nritems(left) > orig_slot) { 1851 extent_buffer_get(left); 1852 /* left was locked after cow */ 1853 path->nodes[level] = left; 1854 path->slots[level + 1] -= 1; 1855 path->slots[level] = orig_slot; 1856 if (mid) { 1857 btrfs_tree_unlock(mid); 1858 free_extent_buffer(mid); 1859 } 1860 } else { 1861 orig_slot -= btrfs_header_nritems(left); 1862 path->slots[level] = orig_slot; 1863 } 1864 } 1865 /* double check we haven't messed things up */ 1866 if (orig_ptr != 1867 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1868 BUG(); 1869 enospc: 1870 if (right) { 1871 btrfs_tree_unlock(right); 1872 free_extent_buffer(right); 1873 } 1874 if (left) { 1875 if (path->nodes[level] != left) 1876 btrfs_tree_unlock(left); 1877 free_extent_buffer(left); 1878 } 1879 return ret; 1880 } 1881 1882 /* Node balancing for insertion. Here we only split or push nodes around 1883 * when they are completely full. This is also done top down, so we 1884 * have to be pessimistic. 1885 */ 1886 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1887 struct btrfs_root *root, 1888 struct btrfs_path *path, int level) 1889 { 1890 struct extent_buffer *right = NULL; 1891 struct extent_buffer *mid; 1892 struct extent_buffer *left = NULL; 1893 struct extent_buffer *parent = NULL; 1894 int ret = 0; 1895 int wret; 1896 int pslot; 1897 int orig_slot = path->slots[level]; 1898 1899 if (level == 0) 1900 return 1; 1901 1902 mid = path->nodes[level]; 1903 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1904 1905 if (level < BTRFS_MAX_LEVEL - 1) { 1906 parent = path->nodes[level + 1]; 1907 pslot = path->slots[level + 1]; 1908 } 1909 1910 if (!parent) 1911 return 1; 1912 1913 left = read_node_slot(root, parent, pslot - 1); 1914 1915 /* first, try to make some room in the middle buffer */ 1916 if (left) { 1917 u32 left_nr; 1918 1919 btrfs_tree_lock(left); 1920 btrfs_set_lock_blocking(left); 1921 1922 left_nr = btrfs_header_nritems(left); 1923 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1924 wret = 1; 1925 } else { 1926 ret = btrfs_cow_block(trans, root, left, parent, 1927 pslot - 1, &left); 1928 if (ret) 1929 wret = 1; 1930 else { 1931 wret = push_node_left(trans, root, 1932 left, mid, 0); 1933 } 1934 } 1935 if (wret < 0) 1936 ret = wret; 1937 if (wret == 0) { 1938 struct btrfs_disk_key disk_key; 1939 orig_slot += left_nr; 1940 btrfs_node_key(mid, &disk_key, 0); 1941 tree_mod_log_set_node_key(root->fs_info, parent, 1942 &disk_key, pslot, 0); 1943 btrfs_set_node_key(parent, &disk_key, pslot); 1944 btrfs_mark_buffer_dirty(parent); 1945 if (btrfs_header_nritems(left) > orig_slot) { 1946 path->nodes[level] = left; 1947 path->slots[level + 1] -= 1; 1948 path->slots[level] = orig_slot; 1949 btrfs_tree_unlock(mid); 1950 free_extent_buffer(mid); 1951 } else { 1952 orig_slot -= 1953 btrfs_header_nritems(left); 1954 path->slots[level] = orig_slot; 1955 btrfs_tree_unlock(left); 1956 free_extent_buffer(left); 1957 } 1958 return 0; 1959 } 1960 btrfs_tree_unlock(left); 1961 free_extent_buffer(left); 1962 } 1963 right = read_node_slot(root, parent, pslot + 1); 1964 1965 /* 1966 * then try to empty the right most buffer into the middle 1967 */ 1968 if (right) { 1969 u32 right_nr; 1970 1971 btrfs_tree_lock(right); 1972 btrfs_set_lock_blocking(right); 1973 1974 right_nr = btrfs_header_nritems(right); 1975 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1976 wret = 1; 1977 } else { 1978 ret = btrfs_cow_block(trans, root, right, 1979 parent, pslot + 1, 1980 &right); 1981 if (ret) 1982 wret = 1; 1983 else { 1984 wret = balance_node_right(trans, root, 1985 right, mid); 1986 } 1987 } 1988 if (wret < 0) 1989 ret = wret; 1990 if (wret == 0) { 1991 struct btrfs_disk_key disk_key; 1992 1993 btrfs_node_key(right, &disk_key, 0); 1994 tree_mod_log_set_node_key(root->fs_info, parent, 1995 &disk_key, pslot + 1, 0); 1996 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1997 btrfs_mark_buffer_dirty(parent); 1998 1999 if (btrfs_header_nritems(mid) <= orig_slot) { 2000 path->nodes[level] = right; 2001 path->slots[level + 1] += 1; 2002 path->slots[level] = orig_slot - 2003 btrfs_header_nritems(mid); 2004 btrfs_tree_unlock(mid); 2005 free_extent_buffer(mid); 2006 } else { 2007 btrfs_tree_unlock(right); 2008 free_extent_buffer(right); 2009 } 2010 return 0; 2011 } 2012 btrfs_tree_unlock(right); 2013 free_extent_buffer(right); 2014 } 2015 return 1; 2016 } 2017 2018 /* 2019 * readahead one full node of leaves, finding things that are close 2020 * to the block in 'slot', and triggering ra on them. 2021 */ 2022 static void reada_for_search(struct btrfs_root *root, 2023 struct btrfs_path *path, 2024 int level, int slot, u64 objectid) 2025 { 2026 struct extent_buffer *node; 2027 struct btrfs_disk_key disk_key; 2028 u32 nritems; 2029 u64 search; 2030 u64 target; 2031 u64 nread = 0; 2032 u64 gen; 2033 int direction = path->reada; 2034 struct extent_buffer *eb; 2035 u32 nr; 2036 u32 blocksize; 2037 u32 nscan = 0; 2038 2039 if (level != 1) 2040 return; 2041 2042 if (!path->nodes[level]) 2043 return; 2044 2045 node = path->nodes[level]; 2046 2047 search = btrfs_node_blockptr(node, slot); 2048 blocksize = btrfs_level_size(root, level - 1); 2049 eb = btrfs_find_tree_block(root, search, blocksize); 2050 if (eb) { 2051 free_extent_buffer(eb); 2052 return; 2053 } 2054 2055 target = search; 2056 2057 nritems = btrfs_header_nritems(node); 2058 nr = slot; 2059 2060 while (1) { 2061 if (direction < 0) { 2062 if (nr == 0) 2063 break; 2064 nr--; 2065 } else if (direction > 0) { 2066 nr++; 2067 if (nr >= nritems) 2068 break; 2069 } 2070 if (path->reada < 0 && objectid) { 2071 btrfs_node_key(node, &disk_key, nr); 2072 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2073 break; 2074 } 2075 search = btrfs_node_blockptr(node, nr); 2076 if ((search <= target && target - search <= 65536) || 2077 (search > target && search - target <= 65536)) { 2078 gen = btrfs_node_ptr_generation(node, nr); 2079 readahead_tree_block(root, search, blocksize, gen); 2080 nread += blocksize; 2081 } 2082 nscan++; 2083 if ((nread > 65536 || nscan > 32)) 2084 break; 2085 } 2086 } 2087 2088 /* 2089 * returns -EAGAIN if it had to drop the path, or zero if everything was in 2090 * cache 2091 */ 2092 static noinline int reada_for_balance(struct btrfs_root *root, 2093 struct btrfs_path *path, int level) 2094 { 2095 int slot; 2096 int nritems; 2097 struct extent_buffer *parent; 2098 struct extent_buffer *eb; 2099 u64 gen; 2100 u64 block1 = 0; 2101 u64 block2 = 0; 2102 int ret = 0; 2103 int blocksize; 2104 2105 parent = path->nodes[level + 1]; 2106 if (!parent) 2107 return 0; 2108 2109 nritems = btrfs_header_nritems(parent); 2110 slot = path->slots[level + 1]; 2111 blocksize = btrfs_level_size(root, level); 2112 2113 if (slot > 0) { 2114 block1 = btrfs_node_blockptr(parent, slot - 1); 2115 gen = btrfs_node_ptr_generation(parent, slot - 1); 2116 eb = btrfs_find_tree_block(root, block1, blocksize); 2117 /* 2118 * if we get -eagain from btrfs_buffer_uptodate, we 2119 * don't want to return eagain here. That will loop 2120 * forever 2121 */ 2122 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2123 block1 = 0; 2124 free_extent_buffer(eb); 2125 } 2126 if (slot + 1 < nritems) { 2127 block2 = btrfs_node_blockptr(parent, slot + 1); 2128 gen = btrfs_node_ptr_generation(parent, slot + 1); 2129 eb = btrfs_find_tree_block(root, block2, blocksize); 2130 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2131 block2 = 0; 2132 free_extent_buffer(eb); 2133 } 2134 if (block1 || block2) { 2135 ret = -EAGAIN; 2136 2137 /* release the whole path */ 2138 btrfs_release_path(path); 2139 2140 /* read the blocks */ 2141 if (block1) 2142 readahead_tree_block(root, block1, blocksize, 0); 2143 if (block2) 2144 readahead_tree_block(root, block2, blocksize, 0); 2145 2146 if (block1) { 2147 eb = read_tree_block(root, block1, blocksize, 0); 2148 free_extent_buffer(eb); 2149 } 2150 if (block2) { 2151 eb = read_tree_block(root, block2, blocksize, 0); 2152 free_extent_buffer(eb); 2153 } 2154 } 2155 return ret; 2156 } 2157 2158 2159 /* 2160 * when we walk down the tree, it is usually safe to unlock the higher layers 2161 * in the tree. The exceptions are when our path goes through slot 0, because 2162 * operations on the tree might require changing key pointers higher up in the 2163 * tree. 2164 * 2165 * callers might also have set path->keep_locks, which tells this code to keep 2166 * the lock if the path points to the last slot in the block. This is part of 2167 * walking through the tree, and selecting the next slot in the higher block. 2168 * 2169 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2170 * if lowest_unlock is 1, level 0 won't be unlocked 2171 */ 2172 static noinline void unlock_up(struct btrfs_path *path, int level, 2173 int lowest_unlock, int min_write_lock_level, 2174 int *write_lock_level) 2175 { 2176 int i; 2177 int skip_level = level; 2178 int no_skips = 0; 2179 struct extent_buffer *t; 2180 2181 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2182 if (!path->nodes[i]) 2183 break; 2184 if (!path->locks[i]) 2185 break; 2186 if (!no_skips && path->slots[i] == 0) { 2187 skip_level = i + 1; 2188 continue; 2189 } 2190 if (!no_skips && path->keep_locks) { 2191 u32 nritems; 2192 t = path->nodes[i]; 2193 nritems = btrfs_header_nritems(t); 2194 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2195 skip_level = i + 1; 2196 continue; 2197 } 2198 } 2199 if (skip_level < i && i >= lowest_unlock) 2200 no_skips = 1; 2201 2202 t = path->nodes[i]; 2203 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2204 btrfs_tree_unlock_rw(t, path->locks[i]); 2205 path->locks[i] = 0; 2206 if (write_lock_level && 2207 i > min_write_lock_level && 2208 i <= *write_lock_level) { 2209 *write_lock_level = i - 1; 2210 } 2211 } 2212 } 2213 } 2214 2215 /* 2216 * This releases any locks held in the path starting at level and 2217 * going all the way up to the root. 2218 * 2219 * btrfs_search_slot will keep the lock held on higher nodes in a few 2220 * corner cases, such as COW of the block at slot zero in the node. This 2221 * ignores those rules, and it should only be called when there are no 2222 * more updates to be done higher up in the tree. 2223 */ 2224 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2225 { 2226 int i; 2227 2228 if (path->keep_locks) 2229 return; 2230 2231 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2232 if (!path->nodes[i]) 2233 continue; 2234 if (!path->locks[i]) 2235 continue; 2236 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2237 path->locks[i] = 0; 2238 } 2239 } 2240 2241 /* 2242 * helper function for btrfs_search_slot. The goal is to find a block 2243 * in cache without setting the path to blocking. If we find the block 2244 * we return zero and the path is unchanged. 2245 * 2246 * If we can't find the block, we set the path blocking and do some 2247 * reada. -EAGAIN is returned and the search must be repeated. 2248 */ 2249 static int 2250 read_block_for_search(struct btrfs_trans_handle *trans, 2251 struct btrfs_root *root, struct btrfs_path *p, 2252 struct extent_buffer **eb_ret, int level, int slot, 2253 struct btrfs_key *key, u64 time_seq) 2254 { 2255 u64 blocknr; 2256 u64 gen; 2257 u32 blocksize; 2258 struct extent_buffer *b = *eb_ret; 2259 struct extent_buffer *tmp; 2260 int ret; 2261 2262 blocknr = btrfs_node_blockptr(b, slot); 2263 gen = btrfs_node_ptr_generation(b, slot); 2264 blocksize = btrfs_level_size(root, level - 1); 2265 2266 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2267 if (tmp) { 2268 /* first we do an atomic uptodate check */ 2269 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) { 2270 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2271 /* 2272 * we found an up to date block without 2273 * sleeping, return 2274 * right away 2275 */ 2276 *eb_ret = tmp; 2277 return 0; 2278 } 2279 /* the pages were up to date, but we failed 2280 * the generation number check. Do a full 2281 * read for the generation number that is correct. 2282 * We must do this without dropping locks so 2283 * we can trust our generation number 2284 */ 2285 free_extent_buffer(tmp); 2286 btrfs_set_path_blocking(p); 2287 2288 /* now we're allowed to do a blocking uptodate check */ 2289 tmp = read_tree_block(root, blocknr, blocksize, gen); 2290 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) { 2291 *eb_ret = tmp; 2292 return 0; 2293 } 2294 free_extent_buffer(tmp); 2295 btrfs_release_path(p); 2296 return -EIO; 2297 } 2298 } 2299 2300 /* 2301 * reduce lock contention at high levels 2302 * of the btree by dropping locks before 2303 * we read. Don't release the lock on the current 2304 * level because we need to walk this node to figure 2305 * out which blocks to read. 2306 */ 2307 btrfs_unlock_up_safe(p, level + 1); 2308 btrfs_set_path_blocking(p); 2309 2310 free_extent_buffer(tmp); 2311 if (p->reada) 2312 reada_for_search(root, p, level, slot, key->objectid); 2313 2314 btrfs_release_path(p); 2315 2316 ret = -EAGAIN; 2317 tmp = read_tree_block(root, blocknr, blocksize, 0); 2318 if (tmp) { 2319 /* 2320 * If the read above didn't mark this buffer up to date, 2321 * it will never end up being up to date. Set ret to EIO now 2322 * and give up so that our caller doesn't loop forever 2323 * on our EAGAINs. 2324 */ 2325 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2326 ret = -EIO; 2327 free_extent_buffer(tmp); 2328 } 2329 return ret; 2330 } 2331 2332 /* 2333 * helper function for btrfs_search_slot. This does all of the checks 2334 * for node-level blocks and does any balancing required based on 2335 * the ins_len. 2336 * 2337 * If no extra work was required, zero is returned. If we had to 2338 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2339 * start over 2340 */ 2341 static int 2342 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2343 struct btrfs_root *root, struct btrfs_path *p, 2344 struct extent_buffer *b, int level, int ins_len, 2345 int *write_lock_level) 2346 { 2347 int ret; 2348 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2349 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2350 int sret; 2351 2352 if (*write_lock_level < level + 1) { 2353 *write_lock_level = level + 1; 2354 btrfs_release_path(p); 2355 goto again; 2356 } 2357 2358 sret = reada_for_balance(root, p, level); 2359 if (sret) 2360 goto again; 2361 2362 btrfs_set_path_blocking(p); 2363 sret = split_node(trans, root, p, level); 2364 btrfs_clear_path_blocking(p, NULL, 0); 2365 2366 BUG_ON(sret > 0); 2367 if (sret) { 2368 ret = sret; 2369 goto done; 2370 } 2371 b = p->nodes[level]; 2372 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2373 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2374 int sret; 2375 2376 if (*write_lock_level < level + 1) { 2377 *write_lock_level = level + 1; 2378 btrfs_release_path(p); 2379 goto again; 2380 } 2381 2382 sret = reada_for_balance(root, p, level); 2383 if (sret) 2384 goto again; 2385 2386 btrfs_set_path_blocking(p); 2387 sret = balance_level(trans, root, p, level); 2388 btrfs_clear_path_blocking(p, NULL, 0); 2389 2390 if (sret) { 2391 ret = sret; 2392 goto done; 2393 } 2394 b = p->nodes[level]; 2395 if (!b) { 2396 btrfs_release_path(p); 2397 goto again; 2398 } 2399 BUG_ON(btrfs_header_nritems(b) == 1); 2400 } 2401 return 0; 2402 2403 again: 2404 ret = -EAGAIN; 2405 done: 2406 return ret; 2407 } 2408 2409 /* 2410 * look for key in the tree. path is filled in with nodes along the way 2411 * if key is found, we return zero and you can find the item in the leaf 2412 * level of the path (level 0) 2413 * 2414 * If the key isn't found, the path points to the slot where it should 2415 * be inserted, and 1 is returned. If there are other errors during the 2416 * search a negative error number is returned. 2417 * 2418 * if ins_len > 0, nodes and leaves will be split as we walk down the 2419 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2420 * possible) 2421 */ 2422 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2423 *root, struct btrfs_key *key, struct btrfs_path *p, int 2424 ins_len, int cow) 2425 { 2426 struct extent_buffer *b; 2427 int slot; 2428 int ret; 2429 int err; 2430 int level; 2431 int lowest_unlock = 1; 2432 int root_lock; 2433 /* everything at write_lock_level or lower must be write locked */ 2434 int write_lock_level = 0; 2435 u8 lowest_level = 0; 2436 int min_write_lock_level; 2437 2438 lowest_level = p->lowest_level; 2439 WARN_ON(lowest_level && ins_len > 0); 2440 WARN_ON(p->nodes[0] != NULL); 2441 2442 if (ins_len < 0) { 2443 lowest_unlock = 2; 2444 2445 /* when we are removing items, we might have to go up to level 2446 * two as we update tree pointers Make sure we keep write 2447 * for those levels as well 2448 */ 2449 write_lock_level = 2; 2450 } else if (ins_len > 0) { 2451 /* 2452 * for inserting items, make sure we have a write lock on 2453 * level 1 so we can update keys 2454 */ 2455 write_lock_level = 1; 2456 } 2457 2458 if (!cow) 2459 write_lock_level = -1; 2460 2461 if (cow && (p->keep_locks || p->lowest_level)) 2462 write_lock_level = BTRFS_MAX_LEVEL; 2463 2464 min_write_lock_level = write_lock_level; 2465 2466 again: 2467 /* 2468 * we try very hard to do read locks on the root 2469 */ 2470 root_lock = BTRFS_READ_LOCK; 2471 level = 0; 2472 if (p->search_commit_root) { 2473 /* 2474 * the commit roots are read only 2475 * so we always do read locks 2476 */ 2477 b = root->commit_root; 2478 extent_buffer_get(b); 2479 level = btrfs_header_level(b); 2480 if (!p->skip_locking) 2481 btrfs_tree_read_lock(b); 2482 } else { 2483 if (p->skip_locking) { 2484 b = btrfs_root_node(root); 2485 level = btrfs_header_level(b); 2486 } else { 2487 /* we don't know the level of the root node 2488 * until we actually have it read locked 2489 */ 2490 b = btrfs_read_lock_root_node(root); 2491 level = btrfs_header_level(b); 2492 if (level <= write_lock_level) { 2493 /* whoops, must trade for write lock */ 2494 btrfs_tree_read_unlock(b); 2495 free_extent_buffer(b); 2496 b = btrfs_lock_root_node(root); 2497 root_lock = BTRFS_WRITE_LOCK; 2498 2499 /* the level might have changed, check again */ 2500 level = btrfs_header_level(b); 2501 } 2502 } 2503 } 2504 p->nodes[level] = b; 2505 if (!p->skip_locking) 2506 p->locks[level] = root_lock; 2507 2508 while (b) { 2509 level = btrfs_header_level(b); 2510 2511 /* 2512 * setup the path here so we can release it under lock 2513 * contention with the cow code 2514 */ 2515 if (cow) { 2516 /* 2517 * if we don't really need to cow this block 2518 * then we don't want to set the path blocking, 2519 * so we test it here 2520 */ 2521 if (!should_cow_block(trans, root, b)) 2522 goto cow_done; 2523 2524 btrfs_set_path_blocking(p); 2525 2526 /* 2527 * must have write locks on this node and the 2528 * parent 2529 */ 2530 if (level + 1 > write_lock_level) { 2531 write_lock_level = level + 1; 2532 btrfs_release_path(p); 2533 goto again; 2534 } 2535 2536 err = btrfs_cow_block(trans, root, b, 2537 p->nodes[level + 1], 2538 p->slots[level + 1], &b); 2539 if (err) { 2540 ret = err; 2541 goto done; 2542 } 2543 } 2544 cow_done: 2545 BUG_ON(!cow && ins_len); 2546 2547 p->nodes[level] = b; 2548 btrfs_clear_path_blocking(p, NULL, 0); 2549 2550 /* 2551 * we have a lock on b and as long as we aren't changing 2552 * the tree, there is no way to for the items in b to change. 2553 * It is safe to drop the lock on our parent before we 2554 * go through the expensive btree search on b. 2555 * 2556 * If cow is true, then we might be changing slot zero, 2557 * which may require changing the parent. So, we can't 2558 * drop the lock until after we know which slot we're 2559 * operating on. 2560 */ 2561 if (!cow) 2562 btrfs_unlock_up_safe(p, level + 1); 2563 2564 ret = bin_search(b, key, level, &slot); 2565 2566 if (level != 0) { 2567 int dec = 0; 2568 if (ret && slot > 0) { 2569 dec = 1; 2570 slot -= 1; 2571 } 2572 p->slots[level] = slot; 2573 err = setup_nodes_for_search(trans, root, p, b, level, 2574 ins_len, &write_lock_level); 2575 if (err == -EAGAIN) 2576 goto again; 2577 if (err) { 2578 ret = err; 2579 goto done; 2580 } 2581 b = p->nodes[level]; 2582 slot = p->slots[level]; 2583 2584 /* 2585 * slot 0 is special, if we change the key 2586 * we have to update the parent pointer 2587 * which means we must have a write lock 2588 * on the parent 2589 */ 2590 if (slot == 0 && cow && 2591 write_lock_level < level + 1) { 2592 write_lock_level = level + 1; 2593 btrfs_release_path(p); 2594 goto again; 2595 } 2596 2597 unlock_up(p, level, lowest_unlock, 2598 min_write_lock_level, &write_lock_level); 2599 2600 if (level == lowest_level) { 2601 if (dec) 2602 p->slots[level]++; 2603 goto done; 2604 } 2605 2606 err = read_block_for_search(trans, root, p, 2607 &b, level, slot, key, 0); 2608 if (err == -EAGAIN) 2609 goto again; 2610 if (err) { 2611 ret = err; 2612 goto done; 2613 } 2614 2615 if (!p->skip_locking) { 2616 level = btrfs_header_level(b); 2617 if (level <= write_lock_level) { 2618 err = btrfs_try_tree_write_lock(b); 2619 if (!err) { 2620 btrfs_set_path_blocking(p); 2621 btrfs_tree_lock(b); 2622 btrfs_clear_path_blocking(p, b, 2623 BTRFS_WRITE_LOCK); 2624 } 2625 p->locks[level] = BTRFS_WRITE_LOCK; 2626 } else { 2627 err = btrfs_try_tree_read_lock(b); 2628 if (!err) { 2629 btrfs_set_path_blocking(p); 2630 btrfs_tree_read_lock(b); 2631 btrfs_clear_path_blocking(p, b, 2632 BTRFS_READ_LOCK); 2633 } 2634 p->locks[level] = BTRFS_READ_LOCK; 2635 } 2636 p->nodes[level] = b; 2637 } 2638 } else { 2639 p->slots[level] = slot; 2640 if (ins_len > 0 && 2641 btrfs_leaf_free_space(root, b) < ins_len) { 2642 if (write_lock_level < 1) { 2643 write_lock_level = 1; 2644 btrfs_release_path(p); 2645 goto again; 2646 } 2647 2648 btrfs_set_path_blocking(p); 2649 err = split_leaf(trans, root, key, 2650 p, ins_len, ret == 0); 2651 btrfs_clear_path_blocking(p, NULL, 0); 2652 2653 BUG_ON(err > 0); 2654 if (err) { 2655 ret = err; 2656 goto done; 2657 } 2658 } 2659 if (!p->search_for_split) 2660 unlock_up(p, level, lowest_unlock, 2661 min_write_lock_level, &write_lock_level); 2662 goto done; 2663 } 2664 } 2665 ret = 1; 2666 done: 2667 /* 2668 * we don't really know what they plan on doing with the path 2669 * from here on, so for now just mark it as blocking 2670 */ 2671 if (!p->leave_spinning) 2672 btrfs_set_path_blocking(p); 2673 if (ret < 0) 2674 btrfs_release_path(p); 2675 return ret; 2676 } 2677 2678 /* 2679 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2680 * current state of the tree together with the operations recorded in the tree 2681 * modification log to search for the key in a previous version of this tree, as 2682 * denoted by the time_seq parameter. 2683 * 2684 * Naturally, there is no support for insert, delete or cow operations. 2685 * 2686 * The resulting path and return value will be set up as if we called 2687 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2688 */ 2689 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2690 struct btrfs_path *p, u64 time_seq) 2691 { 2692 struct extent_buffer *b; 2693 int slot; 2694 int ret; 2695 int err; 2696 int level; 2697 int lowest_unlock = 1; 2698 u8 lowest_level = 0; 2699 2700 lowest_level = p->lowest_level; 2701 WARN_ON(p->nodes[0] != NULL); 2702 2703 if (p->search_commit_root) { 2704 BUG_ON(time_seq); 2705 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2706 } 2707 2708 again: 2709 b = get_old_root(root, time_seq); 2710 level = btrfs_header_level(b); 2711 p->locks[level] = BTRFS_READ_LOCK; 2712 2713 while (b) { 2714 level = btrfs_header_level(b); 2715 p->nodes[level] = b; 2716 btrfs_clear_path_blocking(p, NULL, 0); 2717 2718 /* 2719 * we have a lock on b and as long as we aren't changing 2720 * the tree, there is no way to for the items in b to change. 2721 * It is safe to drop the lock on our parent before we 2722 * go through the expensive btree search on b. 2723 */ 2724 btrfs_unlock_up_safe(p, level + 1); 2725 2726 ret = bin_search(b, key, level, &slot); 2727 2728 if (level != 0) { 2729 int dec = 0; 2730 if (ret && slot > 0) { 2731 dec = 1; 2732 slot -= 1; 2733 } 2734 p->slots[level] = slot; 2735 unlock_up(p, level, lowest_unlock, 0, NULL); 2736 2737 if (level == lowest_level) { 2738 if (dec) 2739 p->slots[level]++; 2740 goto done; 2741 } 2742 2743 err = read_block_for_search(NULL, root, p, &b, level, 2744 slot, key, time_seq); 2745 if (err == -EAGAIN) 2746 goto again; 2747 if (err) { 2748 ret = err; 2749 goto done; 2750 } 2751 2752 level = btrfs_header_level(b); 2753 err = btrfs_try_tree_read_lock(b); 2754 if (!err) { 2755 btrfs_set_path_blocking(p); 2756 btrfs_tree_read_lock(b); 2757 btrfs_clear_path_blocking(p, b, 2758 BTRFS_READ_LOCK); 2759 } 2760 p->locks[level] = BTRFS_READ_LOCK; 2761 p->nodes[level] = b; 2762 b = tree_mod_log_rewind(root->fs_info, b, time_seq); 2763 if (b != p->nodes[level]) { 2764 btrfs_tree_unlock_rw(p->nodes[level], 2765 p->locks[level]); 2766 p->locks[level] = 0; 2767 p->nodes[level] = b; 2768 } 2769 } else { 2770 p->slots[level] = slot; 2771 unlock_up(p, level, lowest_unlock, 0, NULL); 2772 goto done; 2773 } 2774 } 2775 ret = 1; 2776 done: 2777 if (!p->leave_spinning) 2778 btrfs_set_path_blocking(p); 2779 if (ret < 0) 2780 btrfs_release_path(p); 2781 2782 return ret; 2783 } 2784 2785 /* 2786 * helper to use instead of search slot if no exact match is needed but 2787 * instead the next or previous item should be returned. 2788 * When find_higher is true, the next higher item is returned, the next lower 2789 * otherwise. 2790 * When return_any and find_higher are both true, and no higher item is found, 2791 * return the next lower instead. 2792 * When return_any is true and find_higher is false, and no lower item is found, 2793 * return the next higher instead. 2794 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2795 * < 0 on error 2796 */ 2797 int btrfs_search_slot_for_read(struct btrfs_root *root, 2798 struct btrfs_key *key, struct btrfs_path *p, 2799 int find_higher, int return_any) 2800 { 2801 int ret; 2802 struct extent_buffer *leaf; 2803 2804 again: 2805 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2806 if (ret <= 0) 2807 return ret; 2808 /* 2809 * a return value of 1 means the path is at the position where the 2810 * item should be inserted. Normally this is the next bigger item, 2811 * but in case the previous item is the last in a leaf, path points 2812 * to the first free slot in the previous leaf, i.e. at an invalid 2813 * item. 2814 */ 2815 leaf = p->nodes[0]; 2816 2817 if (find_higher) { 2818 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2819 ret = btrfs_next_leaf(root, p); 2820 if (ret <= 0) 2821 return ret; 2822 if (!return_any) 2823 return 1; 2824 /* 2825 * no higher item found, return the next 2826 * lower instead 2827 */ 2828 return_any = 0; 2829 find_higher = 0; 2830 btrfs_release_path(p); 2831 goto again; 2832 } 2833 } else { 2834 if (p->slots[0] == 0) { 2835 ret = btrfs_prev_leaf(root, p); 2836 if (ret < 0) 2837 return ret; 2838 if (!ret) { 2839 p->slots[0] = btrfs_header_nritems(leaf) - 1; 2840 return 0; 2841 } 2842 if (!return_any) 2843 return 1; 2844 /* 2845 * no lower item found, return the next 2846 * higher instead 2847 */ 2848 return_any = 0; 2849 find_higher = 1; 2850 btrfs_release_path(p); 2851 goto again; 2852 } else { 2853 --p->slots[0]; 2854 } 2855 } 2856 return 0; 2857 } 2858 2859 /* 2860 * adjust the pointers going up the tree, starting at level 2861 * making sure the right key of each node is points to 'key'. 2862 * This is used after shifting pointers to the left, so it stops 2863 * fixing up pointers when a given leaf/node is not in slot 0 of the 2864 * higher levels 2865 * 2866 */ 2867 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2868 struct btrfs_root *root, struct btrfs_path *path, 2869 struct btrfs_disk_key *key, int level) 2870 { 2871 int i; 2872 struct extent_buffer *t; 2873 2874 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2875 int tslot = path->slots[i]; 2876 if (!path->nodes[i]) 2877 break; 2878 t = path->nodes[i]; 2879 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1); 2880 btrfs_set_node_key(t, key, tslot); 2881 btrfs_mark_buffer_dirty(path->nodes[i]); 2882 if (tslot != 0) 2883 break; 2884 } 2885 } 2886 2887 /* 2888 * update item key. 2889 * 2890 * This function isn't completely safe. It's the caller's responsibility 2891 * that the new key won't break the order 2892 */ 2893 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2894 struct btrfs_root *root, struct btrfs_path *path, 2895 struct btrfs_key *new_key) 2896 { 2897 struct btrfs_disk_key disk_key; 2898 struct extent_buffer *eb; 2899 int slot; 2900 2901 eb = path->nodes[0]; 2902 slot = path->slots[0]; 2903 if (slot > 0) { 2904 btrfs_item_key(eb, &disk_key, slot - 1); 2905 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2906 } 2907 if (slot < btrfs_header_nritems(eb) - 1) { 2908 btrfs_item_key(eb, &disk_key, slot + 1); 2909 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2910 } 2911 2912 btrfs_cpu_key_to_disk(&disk_key, new_key); 2913 btrfs_set_item_key(eb, &disk_key, slot); 2914 btrfs_mark_buffer_dirty(eb); 2915 if (slot == 0) 2916 fixup_low_keys(trans, root, path, &disk_key, 1); 2917 } 2918 2919 /* 2920 * try to push data from one node into the next node left in the 2921 * tree. 2922 * 2923 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2924 * error, and > 0 if there was no room in the left hand block. 2925 */ 2926 static int push_node_left(struct btrfs_trans_handle *trans, 2927 struct btrfs_root *root, struct extent_buffer *dst, 2928 struct extent_buffer *src, int empty) 2929 { 2930 int push_items = 0; 2931 int src_nritems; 2932 int dst_nritems; 2933 int ret = 0; 2934 2935 src_nritems = btrfs_header_nritems(src); 2936 dst_nritems = btrfs_header_nritems(dst); 2937 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2938 WARN_ON(btrfs_header_generation(src) != trans->transid); 2939 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2940 2941 if (!empty && src_nritems <= 8) 2942 return 1; 2943 2944 if (push_items <= 0) 2945 return 1; 2946 2947 if (empty) { 2948 push_items = min(src_nritems, push_items); 2949 if (push_items < src_nritems) { 2950 /* leave at least 8 pointers in the node if 2951 * we aren't going to empty it 2952 */ 2953 if (src_nritems - push_items < 8) { 2954 if (push_items <= 8) 2955 return 1; 2956 push_items -= 8; 2957 } 2958 } 2959 } else 2960 push_items = min(src_nritems - 8, push_items); 2961 2962 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 2963 push_items); 2964 copy_extent_buffer(dst, src, 2965 btrfs_node_key_ptr_offset(dst_nritems), 2966 btrfs_node_key_ptr_offset(0), 2967 push_items * sizeof(struct btrfs_key_ptr)); 2968 2969 if (push_items < src_nritems) { 2970 /* 2971 * don't call tree_mod_log_eb_move here, key removal was already 2972 * fully logged by tree_mod_log_eb_copy above. 2973 */ 2974 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2975 btrfs_node_key_ptr_offset(push_items), 2976 (src_nritems - push_items) * 2977 sizeof(struct btrfs_key_ptr)); 2978 } 2979 btrfs_set_header_nritems(src, src_nritems - push_items); 2980 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2981 btrfs_mark_buffer_dirty(src); 2982 btrfs_mark_buffer_dirty(dst); 2983 2984 return ret; 2985 } 2986 2987 /* 2988 * try to push data from one node into the next node right in the 2989 * tree. 2990 * 2991 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2992 * error, and > 0 if there was no room in the right hand block. 2993 * 2994 * this will only push up to 1/2 the contents of the left node over 2995 */ 2996 static int balance_node_right(struct btrfs_trans_handle *trans, 2997 struct btrfs_root *root, 2998 struct extent_buffer *dst, 2999 struct extent_buffer *src) 3000 { 3001 int push_items = 0; 3002 int max_push; 3003 int src_nritems; 3004 int dst_nritems; 3005 int ret = 0; 3006 3007 WARN_ON(btrfs_header_generation(src) != trans->transid); 3008 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3009 3010 src_nritems = btrfs_header_nritems(src); 3011 dst_nritems = btrfs_header_nritems(dst); 3012 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3013 if (push_items <= 0) 3014 return 1; 3015 3016 if (src_nritems < 4) 3017 return 1; 3018 3019 max_push = src_nritems / 2 + 1; 3020 /* don't try to empty the node */ 3021 if (max_push >= src_nritems) 3022 return 1; 3023 3024 if (max_push < push_items) 3025 push_items = max_push; 3026 3027 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3028 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3029 btrfs_node_key_ptr_offset(0), 3030 (dst_nritems) * 3031 sizeof(struct btrfs_key_ptr)); 3032 3033 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3034 src_nritems - push_items, push_items); 3035 copy_extent_buffer(dst, src, 3036 btrfs_node_key_ptr_offset(0), 3037 btrfs_node_key_ptr_offset(src_nritems - push_items), 3038 push_items * sizeof(struct btrfs_key_ptr)); 3039 3040 btrfs_set_header_nritems(src, src_nritems - push_items); 3041 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3042 3043 btrfs_mark_buffer_dirty(src); 3044 btrfs_mark_buffer_dirty(dst); 3045 3046 return ret; 3047 } 3048 3049 /* 3050 * helper function to insert a new root level in the tree. 3051 * A new node is allocated, and a single item is inserted to 3052 * point to the existing root 3053 * 3054 * returns zero on success or < 0 on failure. 3055 */ 3056 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3057 struct btrfs_root *root, 3058 struct btrfs_path *path, int level) 3059 { 3060 u64 lower_gen; 3061 struct extent_buffer *lower; 3062 struct extent_buffer *c; 3063 struct extent_buffer *old; 3064 struct btrfs_disk_key lower_key; 3065 3066 BUG_ON(path->nodes[level]); 3067 BUG_ON(path->nodes[level-1] != root->node); 3068 3069 lower = path->nodes[level-1]; 3070 if (level == 1) 3071 btrfs_item_key(lower, &lower_key, 0); 3072 else 3073 btrfs_node_key(lower, &lower_key, 0); 3074 3075 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3076 root->root_key.objectid, &lower_key, 3077 level, root->node->start, 0); 3078 if (IS_ERR(c)) 3079 return PTR_ERR(c); 3080 3081 root_add_used(root, root->nodesize); 3082 3083 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3084 btrfs_set_header_nritems(c, 1); 3085 btrfs_set_header_level(c, level); 3086 btrfs_set_header_bytenr(c, c->start); 3087 btrfs_set_header_generation(c, trans->transid); 3088 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3089 btrfs_set_header_owner(c, root->root_key.objectid); 3090 3091 write_extent_buffer(c, root->fs_info->fsid, 3092 (unsigned long)btrfs_header_fsid(c), 3093 BTRFS_FSID_SIZE); 3094 3095 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3096 (unsigned long)btrfs_header_chunk_tree_uuid(c), 3097 BTRFS_UUID_SIZE); 3098 3099 btrfs_set_node_key(c, &lower_key, 0); 3100 btrfs_set_node_blockptr(c, 0, lower->start); 3101 lower_gen = btrfs_header_generation(lower); 3102 WARN_ON(lower_gen != trans->transid); 3103 3104 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3105 3106 btrfs_mark_buffer_dirty(c); 3107 3108 old = root->node; 3109 tree_mod_log_set_root_pointer(root, c); 3110 rcu_assign_pointer(root->node, c); 3111 3112 /* the super has an extra ref to root->node */ 3113 free_extent_buffer(old); 3114 3115 add_root_to_dirty_list(root); 3116 extent_buffer_get(c); 3117 path->nodes[level] = c; 3118 path->locks[level] = BTRFS_WRITE_LOCK; 3119 path->slots[level] = 0; 3120 return 0; 3121 } 3122 3123 /* 3124 * worker function to insert a single pointer in a node. 3125 * the node should have enough room for the pointer already 3126 * 3127 * slot and level indicate where you want the key to go, and 3128 * blocknr is the block the key points to. 3129 */ 3130 static void insert_ptr(struct btrfs_trans_handle *trans, 3131 struct btrfs_root *root, struct btrfs_path *path, 3132 struct btrfs_disk_key *key, u64 bytenr, 3133 int slot, int level) 3134 { 3135 struct extent_buffer *lower; 3136 int nritems; 3137 int ret; 3138 3139 BUG_ON(!path->nodes[level]); 3140 btrfs_assert_tree_locked(path->nodes[level]); 3141 lower = path->nodes[level]; 3142 nritems = btrfs_header_nritems(lower); 3143 BUG_ON(slot > nritems); 3144 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3145 if (slot != nritems) { 3146 if (level) 3147 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3148 slot, nritems - slot); 3149 memmove_extent_buffer(lower, 3150 btrfs_node_key_ptr_offset(slot + 1), 3151 btrfs_node_key_ptr_offset(slot), 3152 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3153 } 3154 if (level) { 3155 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3156 MOD_LOG_KEY_ADD); 3157 BUG_ON(ret < 0); 3158 } 3159 btrfs_set_node_key(lower, key, slot); 3160 btrfs_set_node_blockptr(lower, slot, bytenr); 3161 WARN_ON(trans->transid == 0); 3162 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3163 btrfs_set_header_nritems(lower, nritems + 1); 3164 btrfs_mark_buffer_dirty(lower); 3165 } 3166 3167 /* 3168 * split the node at the specified level in path in two. 3169 * The path is corrected to point to the appropriate node after the split 3170 * 3171 * Before splitting this tries to make some room in the node by pushing 3172 * left and right, if either one works, it returns right away. 3173 * 3174 * returns 0 on success and < 0 on failure 3175 */ 3176 static noinline int split_node(struct btrfs_trans_handle *trans, 3177 struct btrfs_root *root, 3178 struct btrfs_path *path, int level) 3179 { 3180 struct extent_buffer *c; 3181 struct extent_buffer *split; 3182 struct btrfs_disk_key disk_key; 3183 int mid; 3184 int ret; 3185 u32 c_nritems; 3186 3187 c = path->nodes[level]; 3188 WARN_ON(btrfs_header_generation(c) != trans->transid); 3189 if (c == root->node) { 3190 /* trying to split the root, lets make a new one */ 3191 ret = insert_new_root(trans, root, path, level + 1); 3192 if (ret) 3193 return ret; 3194 } else { 3195 ret = push_nodes_for_insert(trans, root, path, level); 3196 c = path->nodes[level]; 3197 if (!ret && btrfs_header_nritems(c) < 3198 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3199 return 0; 3200 if (ret < 0) 3201 return ret; 3202 } 3203 3204 c_nritems = btrfs_header_nritems(c); 3205 mid = (c_nritems + 1) / 2; 3206 btrfs_node_key(c, &disk_key, mid); 3207 3208 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3209 root->root_key.objectid, 3210 &disk_key, level, c->start, 0); 3211 if (IS_ERR(split)) 3212 return PTR_ERR(split); 3213 3214 root_add_used(root, root->nodesize); 3215 3216 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3217 btrfs_set_header_level(split, btrfs_header_level(c)); 3218 btrfs_set_header_bytenr(split, split->start); 3219 btrfs_set_header_generation(split, trans->transid); 3220 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3221 btrfs_set_header_owner(split, root->root_key.objectid); 3222 write_extent_buffer(split, root->fs_info->fsid, 3223 (unsigned long)btrfs_header_fsid(split), 3224 BTRFS_FSID_SIZE); 3225 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3226 (unsigned long)btrfs_header_chunk_tree_uuid(split), 3227 BTRFS_UUID_SIZE); 3228 3229 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3230 copy_extent_buffer(split, c, 3231 btrfs_node_key_ptr_offset(0), 3232 btrfs_node_key_ptr_offset(mid), 3233 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3234 btrfs_set_header_nritems(split, c_nritems - mid); 3235 btrfs_set_header_nritems(c, mid); 3236 ret = 0; 3237 3238 btrfs_mark_buffer_dirty(c); 3239 btrfs_mark_buffer_dirty(split); 3240 3241 insert_ptr(trans, root, path, &disk_key, split->start, 3242 path->slots[level + 1] + 1, level + 1); 3243 3244 if (path->slots[level] >= mid) { 3245 path->slots[level] -= mid; 3246 btrfs_tree_unlock(c); 3247 free_extent_buffer(c); 3248 path->nodes[level] = split; 3249 path->slots[level + 1] += 1; 3250 } else { 3251 btrfs_tree_unlock(split); 3252 free_extent_buffer(split); 3253 } 3254 return ret; 3255 } 3256 3257 /* 3258 * how many bytes are required to store the items in a leaf. start 3259 * and nr indicate which items in the leaf to check. This totals up the 3260 * space used both by the item structs and the item data 3261 */ 3262 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3263 { 3264 int data_len; 3265 int nritems = btrfs_header_nritems(l); 3266 int end = min(nritems, start + nr) - 1; 3267 3268 if (!nr) 3269 return 0; 3270 data_len = btrfs_item_end_nr(l, start); 3271 data_len = data_len - btrfs_item_offset_nr(l, end); 3272 data_len += sizeof(struct btrfs_item) * nr; 3273 WARN_ON(data_len < 0); 3274 return data_len; 3275 } 3276 3277 /* 3278 * The space between the end of the leaf items and 3279 * the start of the leaf data. IOW, how much room 3280 * the leaf has left for both items and data 3281 */ 3282 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3283 struct extent_buffer *leaf) 3284 { 3285 int nritems = btrfs_header_nritems(leaf); 3286 int ret; 3287 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3288 if (ret < 0) { 3289 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3290 "used %d nritems %d\n", 3291 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3292 leaf_space_used(leaf, 0, nritems), nritems); 3293 } 3294 return ret; 3295 } 3296 3297 /* 3298 * min slot controls the lowest index we're willing to push to the 3299 * right. We'll push up to and including min_slot, but no lower 3300 */ 3301 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3302 struct btrfs_root *root, 3303 struct btrfs_path *path, 3304 int data_size, int empty, 3305 struct extent_buffer *right, 3306 int free_space, u32 left_nritems, 3307 u32 min_slot) 3308 { 3309 struct extent_buffer *left = path->nodes[0]; 3310 struct extent_buffer *upper = path->nodes[1]; 3311 struct btrfs_map_token token; 3312 struct btrfs_disk_key disk_key; 3313 int slot; 3314 u32 i; 3315 int push_space = 0; 3316 int push_items = 0; 3317 struct btrfs_item *item; 3318 u32 nr; 3319 u32 right_nritems; 3320 u32 data_end; 3321 u32 this_item_size; 3322 3323 btrfs_init_map_token(&token); 3324 3325 if (empty) 3326 nr = 0; 3327 else 3328 nr = max_t(u32, 1, min_slot); 3329 3330 if (path->slots[0] >= left_nritems) 3331 push_space += data_size; 3332 3333 slot = path->slots[1]; 3334 i = left_nritems - 1; 3335 while (i >= nr) { 3336 item = btrfs_item_nr(left, i); 3337 3338 if (!empty && push_items > 0) { 3339 if (path->slots[0] > i) 3340 break; 3341 if (path->slots[0] == i) { 3342 int space = btrfs_leaf_free_space(root, left); 3343 if (space + push_space * 2 > free_space) 3344 break; 3345 } 3346 } 3347 3348 if (path->slots[0] == i) 3349 push_space += data_size; 3350 3351 this_item_size = btrfs_item_size(left, item); 3352 if (this_item_size + sizeof(*item) + push_space > free_space) 3353 break; 3354 3355 push_items++; 3356 push_space += this_item_size + sizeof(*item); 3357 if (i == 0) 3358 break; 3359 i--; 3360 } 3361 3362 if (push_items == 0) 3363 goto out_unlock; 3364 3365 if (!empty && push_items == left_nritems) 3366 WARN_ON(1); 3367 3368 /* push left to right */ 3369 right_nritems = btrfs_header_nritems(right); 3370 3371 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3372 push_space -= leaf_data_end(root, left); 3373 3374 /* make room in the right data area */ 3375 data_end = leaf_data_end(root, right); 3376 memmove_extent_buffer(right, 3377 btrfs_leaf_data(right) + data_end - push_space, 3378 btrfs_leaf_data(right) + data_end, 3379 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3380 3381 /* copy from the left data area */ 3382 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3383 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3384 btrfs_leaf_data(left) + leaf_data_end(root, left), 3385 push_space); 3386 3387 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3388 btrfs_item_nr_offset(0), 3389 right_nritems * sizeof(struct btrfs_item)); 3390 3391 /* copy the items from left to right */ 3392 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3393 btrfs_item_nr_offset(left_nritems - push_items), 3394 push_items * sizeof(struct btrfs_item)); 3395 3396 /* update the item pointers */ 3397 right_nritems += push_items; 3398 btrfs_set_header_nritems(right, right_nritems); 3399 push_space = BTRFS_LEAF_DATA_SIZE(root); 3400 for (i = 0; i < right_nritems; i++) { 3401 item = btrfs_item_nr(right, i); 3402 push_space -= btrfs_token_item_size(right, item, &token); 3403 btrfs_set_token_item_offset(right, item, push_space, &token); 3404 } 3405 3406 left_nritems -= push_items; 3407 btrfs_set_header_nritems(left, left_nritems); 3408 3409 if (left_nritems) 3410 btrfs_mark_buffer_dirty(left); 3411 else 3412 clean_tree_block(trans, root, left); 3413 3414 btrfs_mark_buffer_dirty(right); 3415 3416 btrfs_item_key(right, &disk_key, 0); 3417 btrfs_set_node_key(upper, &disk_key, slot + 1); 3418 btrfs_mark_buffer_dirty(upper); 3419 3420 /* then fixup the leaf pointer in the path */ 3421 if (path->slots[0] >= left_nritems) { 3422 path->slots[0] -= left_nritems; 3423 if (btrfs_header_nritems(path->nodes[0]) == 0) 3424 clean_tree_block(trans, root, path->nodes[0]); 3425 btrfs_tree_unlock(path->nodes[0]); 3426 free_extent_buffer(path->nodes[0]); 3427 path->nodes[0] = right; 3428 path->slots[1] += 1; 3429 } else { 3430 btrfs_tree_unlock(right); 3431 free_extent_buffer(right); 3432 } 3433 return 0; 3434 3435 out_unlock: 3436 btrfs_tree_unlock(right); 3437 free_extent_buffer(right); 3438 return 1; 3439 } 3440 3441 /* 3442 * push some data in the path leaf to the right, trying to free up at 3443 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3444 * 3445 * returns 1 if the push failed because the other node didn't have enough 3446 * room, 0 if everything worked out and < 0 if there were major errors. 3447 * 3448 * this will push starting from min_slot to the end of the leaf. It won't 3449 * push any slot lower than min_slot 3450 */ 3451 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3452 *root, struct btrfs_path *path, 3453 int min_data_size, int data_size, 3454 int empty, u32 min_slot) 3455 { 3456 struct extent_buffer *left = path->nodes[0]; 3457 struct extent_buffer *right; 3458 struct extent_buffer *upper; 3459 int slot; 3460 int free_space; 3461 u32 left_nritems; 3462 int ret; 3463 3464 if (!path->nodes[1]) 3465 return 1; 3466 3467 slot = path->slots[1]; 3468 upper = path->nodes[1]; 3469 if (slot >= btrfs_header_nritems(upper) - 1) 3470 return 1; 3471 3472 btrfs_assert_tree_locked(path->nodes[1]); 3473 3474 right = read_node_slot(root, upper, slot + 1); 3475 if (right == NULL) 3476 return 1; 3477 3478 btrfs_tree_lock(right); 3479 btrfs_set_lock_blocking(right); 3480 3481 free_space = btrfs_leaf_free_space(root, right); 3482 if (free_space < data_size) 3483 goto out_unlock; 3484 3485 /* cow and double check */ 3486 ret = btrfs_cow_block(trans, root, right, upper, 3487 slot + 1, &right); 3488 if (ret) 3489 goto out_unlock; 3490 3491 free_space = btrfs_leaf_free_space(root, right); 3492 if (free_space < data_size) 3493 goto out_unlock; 3494 3495 left_nritems = btrfs_header_nritems(left); 3496 if (left_nritems == 0) 3497 goto out_unlock; 3498 3499 return __push_leaf_right(trans, root, path, min_data_size, empty, 3500 right, free_space, left_nritems, min_slot); 3501 out_unlock: 3502 btrfs_tree_unlock(right); 3503 free_extent_buffer(right); 3504 return 1; 3505 } 3506 3507 /* 3508 * push some data in the path leaf to the left, trying to free up at 3509 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3510 * 3511 * max_slot can put a limit on how far into the leaf we'll push items. The 3512 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3513 * items 3514 */ 3515 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3516 struct btrfs_root *root, 3517 struct btrfs_path *path, int data_size, 3518 int empty, struct extent_buffer *left, 3519 int free_space, u32 right_nritems, 3520 u32 max_slot) 3521 { 3522 struct btrfs_disk_key disk_key; 3523 struct extent_buffer *right = path->nodes[0]; 3524 int i; 3525 int push_space = 0; 3526 int push_items = 0; 3527 struct btrfs_item *item; 3528 u32 old_left_nritems; 3529 u32 nr; 3530 int ret = 0; 3531 u32 this_item_size; 3532 u32 old_left_item_size; 3533 struct btrfs_map_token token; 3534 3535 btrfs_init_map_token(&token); 3536 3537 if (empty) 3538 nr = min(right_nritems, max_slot); 3539 else 3540 nr = min(right_nritems - 1, max_slot); 3541 3542 for (i = 0; i < nr; i++) { 3543 item = btrfs_item_nr(right, i); 3544 3545 if (!empty && push_items > 0) { 3546 if (path->slots[0] < i) 3547 break; 3548 if (path->slots[0] == i) { 3549 int space = btrfs_leaf_free_space(root, right); 3550 if (space + push_space * 2 > free_space) 3551 break; 3552 } 3553 } 3554 3555 if (path->slots[0] == i) 3556 push_space += data_size; 3557 3558 this_item_size = btrfs_item_size(right, item); 3559 if (this_item_size + sizeof(*item) + push_space > free_space) 3560 break; 3561 3562 push_items++; 3563 push_space += this_item_size + sizeof(*item); 3564 } 3565 3566 if (push_items == 0) { 3567 ret = 1; 3568 goto out; 3569 } 3570 if (!empty && push_items == btrfs_header_nritems(right)) 3571 WARN_ON(1); 3572 3573 /* push data from right to left */ 3574 copy_extent_buffer(left, right, 3575 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3576 btrfs_item_nr_offset(0), 3577 push_items * sizeof(struct btrfs_item)); 3578 3579 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3580 btrfs_item_offset_nr(right, push_items - 1); 3581 3582 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3583 leaf_data_end(root, left) - push_space, 3584 btrfs_leaf_data(right) + 3585 btrfs_item_offset_nr(right, push_items - 1), 3586 push_space); 3587 old_left_nritems = btrfs_header_nritems(left); 3588 BUG_ON(old_left_nritems <= 0); 3589 3590 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3591 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3592 u32 ioff; 3593 3594 item = btrfs_item_nr(left, i); 3595 3596 ioff = btrfs_token_item_offset(left, item, &token); 3597 btrfs_set_token_item_offset(left, item, 3598 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3599 &token); 3600 } 3601 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3602 3603 /* fixup right node */ 3604 if (push_items > right_nritems) { 3605 printk(KERN_CRIT "push items %d nr %u\n", push_items, 3606 right_nritems); 3607 WARN_ON(1); 3608 } 3609 3610 if (push_items < right_nritems) { 3611 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3612 leaf_data_end(root, right); 3613 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3614 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3615 btrfs_leaf_data(right) + 3616 leaf_data_end(root, right), push_space); 3617 3618 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3619 btrfs_item_nr_offset(push_items), 3620 (btrfs_header_nritems(right) - push_items) * 3621 sizeof(struct btrfs_item)); 3622 } 3623 right_nritems -= push_items; 3624 btrfs_set_header_nritems(right, right_nritems); 3625 push_space = BTRFS_LEAF_DATA_SIZE(root); 3626 for (i = 0; i < right_nritems; i++) { 3627 item = btrfs_item_nr(right, i); 3628 3629 push_space = push_space - btrfs_token_item_size(right, 3630 item, &token); 3631 btrfs_set_token_item_offset(right, item, push_space, &token); 3632 } 3633 3634 btrfs_mark_buffer_dirty(left); 3635 if (right_nritems) 3636 btrfs_mark_buffer_dirty(right); 3637 else 3638 clean_tree_block(trans, root, right); 3639 3640 btrfs_item_key(right, &disk_key, 0); 3641 fixup_low_keys(trans, root, path, &disk_key, 1); 3642 3643 /* then fixup the leaf pointer in the path */ 3644 if (path->slots[0] < push_items) { 3645 path->slots[0] += old_left_nritems; 3646 btrfs_tree_unlock(path->nodes[0]); 3647 free_extent_buffer(path->nodes[0]); 3648 path->nodes[0] = left; 3649 path->slots[1] -= 1; 3650 } else { 3651 btrfs_tree_unlock(left); 3652 free_extent_buffer(left); 3653 path->slots[0] -= push_items; 3654 } 3655 BUG_ON(path->slots[0] < 0); 3656 return ret; 3657 out: 3658 btrfs_tree_unlock(left); 3659 free_extent_buffer(left); 3660 return ret; 3661 } 3662 3663 /* 3664 * push some data in the path leaf to the left, trying to free up at 3665 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3666 * 3667 * max_slot can put a limit on how far into the leaf we'll push items. The 3668 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3669 * items 3670 */ 3671 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3672 *root, struct btrfs_path *path, int min_data_size, 3673 int data_size, int empty, u32 max_slot) 3674 { 3675 struct extent_buffer *right = path->nodes[0]; 3676 struct extent_buffer *left; 3677 int slot; 3678 int free_space; 3679 u32 right_nritems; 3680 int ret = 0; 3681 3682 slot = path->slots[1]; 3683 if (slot == 0) 3684 return 1; 3685 if (!path->nodes[1]) 3686 return 1; 3687 3688 right_nritems = btrfs_header_nritems(right); 3689 if (right_nritems == 0) 3690 return 1; 3691 3692 btrfs_assert_tree_locked(path->nodes[1]); 3693 3694 left = read_node_slot(root, path->nodes[1], slot - 1); 3695 if (left == NULL) 3696 return 1; 3697 3698 btrfs_tree_lock(left); 3699 btrfs_set_lock_blocking(left); 3700 3701 free_space = btrfs_leaf_free_space(root, left); 3702 if (free_space < data_size) { 3703 ret = 1; 3704 goto out; 3705 } 3706 3707 /* cow and double check */ 3708 ret = btrfs_cow_block(trans, root, left, 3709 path->nodes[1], slot - 1, &left); 3710 if (ret) { 3711 /* we hit -ENOSPC, but it isn't fatal here */ 3712 if (ret == -ENOSPC) 3713 ret = 1; 3714 goto out; 3715 } 3716 3717 free_space = btrfs_leaf_free_space(root, left); 3718 if (free_space < data_size) { 3719 ret = 1; 3720 goto out; 3721 } 3722 3723 return __push_leaf_left(trans, root, path, min_data_size, 3724 empty, left, free_space, right_nritems, 3725 max_slot); 3726 out: 3727 btrfs_tree_unlock(left); 3728 free_extent_buffer(left); 3729 return ret; 3730 } 3731 3732 /* 3733 * split the path's leaf in two, making sure there is at least data_size 3734 * available for the resulting leaf level of the path. 3735 */ 3736 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3737 struct btrfs_root *root, 3738 struct btrfs_path *path, 3739 struct extent_buffer *l, 3740 struct extent_buffer *right, 3741 int slot, int mid, int nritems) 3742 { 3743 int data_copy_size; 3744 int rt_data_off; 3745 int i; 3746 struct btrfs_disk_key disk_key; 3747 struct btrfs_map_token token; 3748 3749 btrfs_init_map_token(&token); 3750 3751 nritems = nritems - mid; 3752 btrfs_set_header_nritems(right, nritems); 3753 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3754 3755 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3756 btrfs_item_nr_offset(mid), 3757 nritems * sizeof(struct btrfs_item)); 3758 3759 copy_extent_buffer(right, l, 3760 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3761 data_copy_size, btrfs_leaf_data(l) + 3762 leaf_data_end(root, l), data_copy_size); 3763 3764 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3765 btrfs_item_end_nr(l, mid); 3766 3767 for (i = 0; i < nritems; i++) { 3768 struct btrfs_item *item = btrfs_item_nr(right, i); 3769 u32 ioff; 3770 3771 ioff = btrfs_token_item_offset(right, item, &token); 3772 btrfs_set_token_item_offset(right, item, 3773 ioff + rt_data_off, &token); 3774 } 3775 3776 btrfs_set_header_nritems(l, mid); 3777 btrfs_item_key(right, &disk_key, 0); 3778 insert_ptr(trans, root, path, &disk_key, right->start, 3779 path->slots[1] + 1, 1); 3780 3781 btrfs_mark_buffer_dirty(right); 3782 btrfs_mark_buffer_dirty(l); 3783 BUG_ON(path->slots[0] != slot); 3784 3785 if (mid <= slot) { 3786 btrfs_tree_unlock(path->nodes[0]); 3787 free_extent_buffer(path->nodes[0]); 3788 path->nodes[0] = right; 3789 path->slots[0] -= mid; 3790 path->slots[1] += 1; 3791 } else { 3792 btrfs_tree_unlock(right); 3793 free_extent_buffer(right); 3794 } 3795 3796 BUG_ON(path->slots[0] < 0); 3797 } 3798 3799 /* 3800 * double splits happen when we need to insert a big item in the middle 3801 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3802 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3803 * A B C 3804 * 3805 * We avoid this by trying to push the items on either side of our target 3806 * into the adjacent leaves. If all goes well we can avoid the double split 3807 * completely. 3808 */ 3809 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3810 struct btrfs_root *root, 3811 struct btrfs_path *path, 3812 int data_size) 3813 { 3814 int ret; 3815 int progress = 0; 3816 int slot; 3817 u32 nritems; 3818 3819 slot = path->slots[0]; 3820 3821 /* 3822 * try to push all the items after our slot into the 3823 * right leaf 3824 */ 3825 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3826 if (ret < 0) 3827 return ret; 3828 3829 if (ret == 0) 3830 progress++; 3831 3832 nritems = btrfs_header_nritems(path->nodes[0]); 3833 /* 3834 * our goal is to get our slot at the start or end of a leaf. If 3835 * we've done so we're done 3836 */ 3837 if (path->slots[0] == 0 || path->slots[0] == nritems) 3838 return 0; 3839 3840 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3841 return 0; 3842 3843 /* try to push all the items before our slot into the next leaf */ 3844 slot = path->slots[0]; 3845 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3846 if (ret < 0) 3847 return ret; 3848 3849 if (ret == 0) 3850 progress++; 3851 3852 if (progress) 3853 return 0; 3854 return 1; 3855 } 3856 3857 /* 3858 * split the path's leaf in two, making sure there is at least data_size 3859 * available for the resulting leaf level of the path. 3860 * 3861 * returns 0 if all went well and < 0 on failure. 3862 */ 3863 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3864 struct btrfs_root *root, 3865 struct btrfs_key *ins_key, 3866 struct btrfs_path *path, int data_size, 3867 int extend) 3868 { 3869 struct btrfs_disk_key disk_key; 3870 struct extent_buffer *l; 3871 u32 nritems; 3872 int mid; 3873 int slot; 3874 struct extent_buffer *right; 3875 int ret = 0; 3876 int wret; 3877 int split; 3878 int num_doubles = 0; 3879 int tried_avoid_double = 0; 3880 3881 l = path->nodes[0]; 3882 slot = path->slots[0]; 3883 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3884 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3885 return -EOVERFLOW; 3886 3887 /* first try to make some room by pushing left and right */ 3888 if (data_size) { 3889 wret = push_leaf_right(trans, root, path, data_size, 3890 data_size, 0, 0); 3891 if (wret < 0) 3892 return wret; 3893 if (wret) { 3894 wret = push_leaf_left(trans, root, path, data_size, 3895 data_size, 0, (u32)-1); 3896 if (wret < 0) 3897 return wret; 3898 } 3899 l = path->nodes[0]; 3900 3901 /* did the pushes work? */ 3902 if (btrfs_leaf_free_space(root, l) >= data_size) 3903 return 0; 3904 } 3905 3906 if (!path->nodes[1]) { 3907 ret = insert_new_root(trans, root, path, 1); 3908 if (ret) 3909 return ret; 3910 } 3911 again: 3912 split = 1; 3913 l = path->nodes[0]; 3914 slot = path->slots[0]; 3915 nritems = btrfs_header_nritems(l); 3916 mid = (nritems + 1) / 2; 3917 3918 if (mid <= slot) { 3919 if (nritems == 1 || 3920 leaf_space_used(l, mid, nritems - mid) + data_size > 3921 BTRFS_LEAF_DATA_SIZE(root)) { 3922 if (slot >= nritems) { 3923 split = 0; 3924 } else { 3925 mid = slot; 3926 if (mid != nritems && 3927 leaf_space_used(l, mid, nritems - mid) + 3928 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3929 if (data_size && !tried_avoid_double) 3930 goto push_for_double; 3931 split = 2; 3932 } 3933 } 3934 } 3935 } else { 3936 if (leaf_space_used(l, 0, mid) + data_size > 3937 BTRFS_LEAF_DATA_SIZE(root)) { 3938 if (!extend && data_size && slot == 0) { 3939 split = 0; 3940 } else if ((extend || !data_size) && slot == 0) { 3941 mid = 1; 3942 } else { 3943 mid = slot; 3944 if (mid != nritems && 3945 leaf_space_used(l, mid, nritems - mid) + 3946 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3947 if (data_size && !tried_avoid_double) 3948 goto push_for_double; 3949 split = 2 ; 3950 } 3951 } 3952 } 3953 } 3954 3955 if (split == 0) 3956 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3957 else 3958 btrfs_item_key(l, &disk_key, mid); 3959 3960 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 3961 root->root_key.objectid, 3962 &disk_key, 0, l->start, 0); 3963 if (IS_ERR(right)) 3964 return PTR_ERR(right); 3965 3966 root_add_used(root, root->leafsize); 3967 3968 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3969 btrfs_set_header_bytenr(right, right->start); 3970 btrfs_set_header_generation(right, trans->transid); 3971 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3972 btrfs_set_header_owner(right, root->root_key.objectid); 3973 btrfs_set_header_level(right, 0); 3974 write_extent_buffer(right, root->fs_info->fsid, 3975 (unsigned long)btrfs_header_fsid(right), 3976 BTRFS_FSID_SIZE); 3977 3978 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3979 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3980 BTRFS_UUID_SIZE); 3981 3982 if (split == 0) { 3983 if (mid <= slot) { 3984 btrfs_set_header_nritems(right, 0); 3985 insert_ptr(trans, root, path, &disk_key, right->start, 3986 path->slots[1] + 1, 1); 3987 btrfs_tree_unlock(path->nodes[0]); 3988 free_extent_buffer(path->nodes[0]); 3989 path->nodes[0] = right; 3990 path->slots[0] = 0; 3991 path->slots[1] += 1; 3992 } else { 3993 btrfs_set_header_nritems(right, 0); 3994 insert_ptr(trans, root, path, &disk_key, right->start, 3995 path->slots[1], 1); 3996 btrfs_tree_unlock(path->nodes[0]); 3997 free_extent_buffer(path->nodes[0]); 3998 path->nodes[0] = right; 3999 path->slots[0] = 0; 4000 if (path->slots[1] == 0) 4001 fixup_low_keys(trans, root, path, 4002 &disk_key, 1); 4003 } 4004 btrfs_mark_buffer_dirty(right); 4005 return ret; 4006 } 4007 4008 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4009 4010 if (split == 2) { 4011 BUG_ON(num_doubles != 0); 4012 num_doubles++; 4013 goto again; 4014 } 4015 4016 return 0; 4017 4018 push_for_double: 4019 push_for_double_split(trans, root, path, data_size); 4020 tried_avoid_double = 1; 4021 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4022 return 0; 4023 goto again; 4024 } 4025 4026 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4027 struct btrfs_root *root, 4028 struct btrfs_path *path, int ins_len) 4029 { 4030 struct btrfs_key key; 4031 struct extent_buffer *leaf; 4032 struct btrfs_file_extent_item *fi; 4033 u64 extent_len = 0; 4034 u32 item_size; 4035 int ret; 4036 4037 leaf = path->nodes[0]; 4038 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4039 4040 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4041 key.type != BTRFS_EXTENT_CSUM_KEY); 4042 4043 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4044 return 0; 4045 4046 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4047 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4048 fi = btrfs_item_ptr(leaf, path->slots[0], 4049 struct btrfs_file_extent_item); 4050 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4051 } 4052 btrfs_release_path(path); 4053 4054 path->keep_locks = 1; 4055 path->search_for_split = 1; 4056 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4057 path->search_for_split = 0; 4058 if (ret < 0) 4059 goto err; 4060 4061 ret = -EAGAIN; 4062 leaf = path->nodes[0]; 4063 /* if our item isn't there or got smaller, return now */ 4064 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4065 goto err; 4066 4067 /* the leaf has changed, it now has room. return now */ 4068 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4069 goto err; 4070 4071 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4072 fi = btrfs_item_ptr(leaf, path->slots[0], 4073 struct btrfs_file_extent_item); 4074 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4075 goto err; 4076 } 4077 4078 btrfs_set_path_blocking(path); 4079 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4080 if (ret) 4081 goto err; 4082 4083 path->keep_locks = 0; 4084 btrfs_unlock_up_safe(path, 1); 4085 return 0; 4086 err: 4087 path->keep_locks = 0; 4088 return ret; 4089 } 4090 4091 static noinline int split_item(struct btrfs_trans_handle *trans, 4092 struct btrfs_root *root, 4093 struct btrfs_path *path, 4094 struct btrfs_key *new_key, 4095 unsigned long split_offset) 4096 { 4097 struct extent_buffer *leaf; 4098 struct btrfs_item *item; 4099 struct btrfs_item *new_item; 4100 int slot; 4101 char *buf; 4102 u32 nritems; 4103 u32 item_size; 4104 u32 orig_offset; 4105 struct btrfs_disk_key disk_key; 4106 4107 leaf = path->nodes[0]; 4108 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4109 4110 btrfs_set_path_blocking(path); 4111 4112 item = btrfs_item_nr(leaf, path->slots[0]); 4113 orig_offset = btrfs_item_offset(leaf, item); 4114 item_size = btrfs_item_size(leaf, item); 4115 4116 buf = kmalloc(item_size, GFP_NOFS); 4117 if (!buf) 4118 return -ENOMEM; 4119 4120 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4121 path->slots[0]), item_size); 4122 4123 slot = path->slots[0] + 1; 4124 nritems = btrfs_header_nritems(leaf); 4125 if (slot != nritems) { 4126 /* shift the items */ 4127 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4128 btrfs_item_nr_offset(slot), 4129 (nritems - slot) * sizeof(struct btrfs_item)); 4130 } 4131 4132 btrfs_cpu_key_to_disk(&disk_key, new_key); 4133 btrfs_set_item_key(leaf, &disk_key, slot); 4134 4135 new_item = btrfs_item_nr(leaf, slot); 4136 4137 btrfs_set_item_offset(leaf, new_item, orig_offset); 4138 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4139 4140 btrfs_set_item_offset(leaf, item, 4141 orig_offset + item_size - split_offset); 4142 btrfs_set_item_size(leaf, item, split_offset); 4143 4144 btrfs_set_header_nritems(leaf, nritems + 1); 4145 4146 /* write the data for the start of the original item */ 4147 write_extent_buffer(leaf, buf, 4148 btrfs_item_ptr_offset(leaf, path->slots[0]), 4149 split_offset); 4150 4151 /* write the data for the new item */ 4152 write_extent_buffer(leaf, buf + split_offset, 4153 btrfs_item_ptr_offset(leaf, slot), 4154 item_size - split_offset); 4155 btrfs_mark_buffer_dirty(leaf); 4156 4157 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4158 kfree(buf); 4159 return 0; 4160 } 4161 4162 /* 4163 * This function splits a single item into two items, 4164 * giving 'new_key' to the new item and splitting the 4165 * old one at split_offset (from the start of the item). 4166 * 4167 * The path may be released by this operation. After 4168 * the split, the path is pointing to the old item. The 4169 * new item is going to be in the same node as the old one. 4170 * 4171 * Note, the item being split must be smaller enough to live alone on 4172 * a tree block with room for one extra struct btrfs_item 4173 * 4174 * This allows us to split the item in place, keeping a lock on the 4175 * leaf the entire time. 4176 */ 4177 int btrfs_split_item(struct btrfs_trans_handle *trans, 4178 struct btrfs_root *root, 4179 struct btrfs_path *path, 4180 struct btrfs_key *new_key, 4181 unsigned long split_offset) 4182 { 4183 int ret; 4184 ret = setup_leaf_for_split(trans, root, path, 4185 sizeof(struct btrfs_item)); 4186 if (ret) 4187 return ret; 4188 4189 ret = split_item(trans, root, path, new_key, split_offset); 4190 return ret; 4191 } 4192 4193 /* 4194 * This function duplicate a item, giving 'new_key' to the new item. 4195 * It guarantees both items live in the same tree leaf and the new item 4196 * is contiguous with the original item. 4197 * 4198 * This allows us to split file extent in place, keeping a lock on the 4199 * leaf the entire time. 4200 */ 4201 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4202 struct btrfs_root *root, 4203 struct btrfs_path *path, 4204 struct btrfs_key *new_key) 4205 { 4206 struct extent_buffer *leaf; 4207 int ret; 4208 u32 item_size; 4209 4210 leaf = path->nodes[0]; 4211 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4212 ret = setup_leaf_for_split(trans, root, path, 4213 item_size + sizeof(struct btrfs_item)); 4214 if (ret) 4215 return ret; 4216 4217 path->slots[0]++; 4218 setup_items_for_insert(trans, root, path, new_key, &item_size, 4219 item_size, item_size + 4220 sizeof(struct btrfs_item), 1); 4221 leaf = path->nodes[0]; 4222 memcpy_extent_buffer(leaf, 4223 btrfs_item_ptr_offset(leaf, path->slots[0]), 4224 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4225 item_size); 4226 return 0; 4227 } 4228 4229 /* 4230 * make the item pointed to by the path smaller. new_size indicates 4231 * how small to make it, and from_end tells us if we just chop bytes 4232 * off the end of the item or if we shift the item to chop bytes off 4233 * the front. 4234 */ 4235 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 4236 struct btrfs_root *root, 4237 struct btrfs_path *path, 4238 u32 new_size, int from_end) 4239 { 4240 int slot; 4241 struct extent_buffer *leaf; 4242 struct btrfs_item *item; 4243 u32 nritems; 4244 unsigned int data_end; 4245 unsigned int old_data_start; 4246 unsigned int old_size; 4247 unsigned int size_diff; 4248 int i; 4249 struct btrfs_map_token token; 4250 4251 btrfs_init_map_token(&token); 4252 4253 leaf = path->nodes[0]; 4254 slot = path->slots[0]; 4255 4256 old_size = btrfs_item_size_nr(leaf, slot); 4257 if (old_size == new_size) 4258 return; 4259 4260 nritems = btrfs_header_nritems(leaf); 4261 data_end = leaf_data_end(root, leaf); 4262 4263 old_data_start = btrfs_item_offset_nr(leaf, slot); 4264 4265 size_diff = old_size - new_size; 4266 4267 BUG_ON(slot < 0); 4268 BUG_ON(slot >= nritems); 4269 4270 /* 4271 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4272 */ 4273 /* first correct the data pointers */ 4274 for (i = slot; i < nritems; i++) { 4275 u32 ioff; 4276 item = btrfs_item_nr(leaf, i); 4277 4278 ioff = btrfs_token_item_offset(leaf, item, &token); 4279 btrfs_set_token_item_offset(leaf, item, 4280 ioff + size_diff, &token); 4281 } 4282 4283 /* shift the data */ 4284 if (from_end) { 4285 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4286 data_end + size_diff, btrfs_leaf_data(leaf) + 4287 data_end, old_data_start + new_size - data_end); 4288 } else { 4289 struct btrfs_disk_key disk_key; 4290 u64 offset; 4291 4292 btrfs_item_key(leaf, &disk_key, slot); 4293 4294 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4295 unsigned long ptr; 4296 struct btrfs_file_extent_item *fi; 4297 4298 fi = btrfs_item_ptr(leaf, slot, 4299 struct btrfs_file_extent_item); 4300 fi = (struct btrfs_file_extent_item *)( 4301 (unsigned long)fi - size_diff); 4302 4303 if (btrfs_file_extent_type(leaf, fi) == 4304 BTRFS_FILE_EXTENT_INLINE) { 4305 ptr = btrfs_item_ptr_offset(leaf, slot); 4306 memmove_extent_buffer(leaf, ptr, 4307 (unsigned long)fi, 4308 offsetof(struct btrfs_file_extent_item, 4309 disk_bytenr)); 4310 } 4311 } 4312 4313 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4314 data_end + size_diff, btrfs_leaf_data(leaf) + 4315 data_end, old_data_start - data_end); 4316 4317 offset = btrfs_disk_key_offset(&disk_key); 4318 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4319 btrfs_set_item_key(leaf, &disk_key, slot); 4320 if (slot == 0) 4321 fixup_low_keys(trans, root, path, &disk_key, 1); 4322 } 4323 4324 item = btrfs_item_nr(leaf, slot); 4325 btrfs_set_item_size(leaf, item, new_size); 4326 btrfs_mark_buffer_dirty(leaf); 4327 4328 if (btrfs_leaf_free_space(root, leaf) < 0) { 4329 btrfs_print_leaf(root, leaf); 4330 BUG(); 4331 } 4332 } 4333 4334 /* 4335 * make the item pointed to by the path bigger, data_size is the new size. 4336 */ 4337 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4338 struct btrfs_root *root, struct btrfs_path *path, 4339 u32 data_size) 4340 { 4341 int slot; 4342 struct extent_buffer *leaf; 4343 struct btrfs_item *item; 4344 u32 nritems; 4345 unsigned int data_end; 4346 unsigned int old_data; 4347 unsigned int old_size; 4348 int i; 4349 struct btrfs_map_token token; 4350 4351 btrfs_init_map_token(&token); 4352 4353 leaf = path->nodes[0]; 4354 4355 nritems = btrfs_header_nritems(leaf); 4356 data_end = leaf_data_end(root, leaf); 4357 4358 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4359 btrfs_print_leaf(root, leaf); 4360 BUG(); 4361 } 4362 slot = path->slots[0]; 4363 old_data = btrfs_item_end_nr(leaf, slot); 4364 4365 BUG_ON(slot < 0); 4366 if (slot >= nritems) { 4367 btrfs_print_leaf(root, leaf); 4368 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4369 slot, nritems); 4370 BUG_ON(1); 4371 } 4372 4373 /* 4374 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4375 */ 4376 /* first correct the data pointers */ 4377 for (i = slot; i < nritems; i++) { 4378 u32 ioff; 4379 item = btrfs_item_nr(leaf, i); 4380 4381 ioff = btrfs_token_item_offset(leaf, item, &token); 4382 btrfs_set_token_item_offset(leaf, item, 4383 ioff - data_size, &token); 4384 } 4385 4386 /* shift the data */ 4387 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4388 data_end - data_size, btrfs_leaf_data(leaf) + 4389 data_end, old_data - data_end); 4390 4391 data_end = old_data; 4392 old_size = btrfs_item_size_nr(leaf, slot); 4393 item = btrfs_item_nr(leaf, slot); 4394 btrfs_set_item_size(leaf, item, old_size + data_size); 4395 btrfs_mark_buffer_dirty(leaf); 4396 4397 if (btrfs_leaf_free_space(root, leaf) < 0) { 4398 btrfs_print_leaf(root, leaf); 4399 BUG(); 4400 } 4401 } 4402 4403 /* 4404 * this is a helper for btrfs_insert_empty_items, the main goal here is 4405 * to save stack depth by doing the bulk of the work in a function 4406 * that doesn't call btrfs_search_slot 4407 */ 4408 void setup_items_for_insert(struct btrfs_trans_handle *trans, 4409 struct btrfs_root *root, struct btrfs_path *path, 4410 struct btrfs_key *cpu_key, u32 *data_size, 4411 u32 total_data, u32 total_size, int nr) 4412 { 4413 struct btrfs_item *item; 4414 int i; 4415 u32 nritems; 4416 unsigned int data_end; 4417 struct btrfs_disk_key disk_key; 4418 struct extent_buffer *leaf; 4419 int slot; 4420 struct btrfs_map_token token; 4421 4422 btrfs_init_map_token(&token); 4423 4424 leaf = path->nodes[0]; 4425 slot = path->slots[0]; 4426 4427 nritems = btrfs_header_nritems(leaf); 4428 data_end = leaf_data_end(root, leaf); 4429 4430 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4431 btrfs_print_leaf(root, leaf); 4432 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4433 total_size, btrfs_leaf_free_space(root, leaf)); 4434 BUG(); 4435 } 4436 4437 if (slot != nritems) { 4438 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4439 4440 if (old_data < data_end) { 4441 btrfs_print_leaf(root, leaf); 4442 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4443 slot, old_data, data_end); 4444 BUG_ON(1); 4445 } 4446 /* 4447 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4448 */ 4449 /* first correct the data pointers */ 4450 for (i = slot; i < nritems; i++) { 4451 u32 ioff; 4452 4453 item = btrfs_item_nr(leaf, i); 4454 ioff = btrfs_token_item_offset(leaf, item, &token); 4455 btrfs_set_token_item_offset(leaf, item, 4456 ioff - total_data, &token); 4457 } 4458 /* shift the items */ 4459 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4460 btrfs_item_nr_offset(slot), 4461 (nritems - slot) * sizeof(struct btrfs_item)); 4462 4463 /* shift the data */ 4464 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4465 data_end - total_data, btrfs_leaf_data(leaf) + 4466 data_end, old_data - data_end); 4467 data_end = old_data; 4468 } 4469 4470 /* setup the item for the new data */ 4471 for (i = 0; i < nr; i++) { 4472 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4473 btrfs_set_item_key(leaf, &disk_key, slot + i); 4474 item = btrfs_item_nr(leaf, slot + i); 4475 btrfs_set_token_item_offset(leaf, item, 4476 data_end - data_size[i], &token); 4477 data_end -= data_size[i]; 4478 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4479 } 4480 4481 btrfs_set_header_nritems(leaf, nritems + nr); 4482 4483 if (slot == 0) { 4484 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4485 fixup_low_keys(trans, root, path, &disk_key, 1); 4486 } 4487 btrfs_unlock_up_safe(path, 1); 4488 btrfs_mark_buffer_dirty(leaf); 4489 4490 if (btrfs_leaf_free_space(root, leaf) < 0) { 4491 btrfs_print_leaf(root, leaf); 4492 BUG(); 4493 } 4494 } 4495 4496 /* 4497 * Given a key and some data, insert items into the tree. 4498 * This does all the path init required, making room in the tree if needed. 4499 */ 4500 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4501 struct btrfs_root *root, 4502 struct btrfs_path *path, 4503 struct btrfs_key *cpu_key, u32 *data_size, 4504 int nr) 4505 { 4506 int ret = 0; 4507 int slot; 4508 int i; 4509 u32 total_size = 0; 4510 u32 total_data = 0; 4511 4512 for (i = 0; i < nr; i++) 4513 total_data += data_size[i]; 4514 4515 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4516 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4517 if (ret == 0) 4518 return -EEXIST; 4519 if (ret < 0) 4520 return ret; 4521 4522 slot = path->slots[0]; 4523 BUG_ON(slot < 0); 4524 4525 setup_items_for_insert(trans, root, path, cpu_key, data_size, 4526 total_data, total_size, nr); 4527 return 0; 4528 } 4529 4530 /* 4531 * Given a key and some data, insert an item into the tree. 4532 * This does all the path init required, making room in the tree if needed. 4533 */ 4534 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4535 *root, struct btrfs_key *cpu_key, void *data, u32 4536 data_size) 4537 { 4538 int ret = 0; 4539 struct btrfs_path *path; 4540 struct extent_buffer *leaf; 4541 unsigned long ptr; 4542 4543 path = btrfs_alloc_path(); 4544 if (!path) 4545 return -ENOMEM; 4546 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4547 if (!ret) { 4548 leaf = path->nodes[0]; 4549 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4550 write_extent_buffer(leaf, data, ptr, data_size); 4551 btrfs_mark_buffer_dirty(leaf); 4552 } 4553 btrfs_free_path(path); 4554 return ret; 4555 } 4556 4557 /* 4558 * delete the pointer from a given node. 4559 * 4560 * the tree should have been previously balanced so the deletion does not 4561 * empty a node. 4562 */ 4563 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4564 struct btrfs_path *path, int level, int slot, 4565 int tree_mod_log) 4566 { 4567 struct extent_buffer *parent = path->nodes[level]; 4568 u32 nritems; 4569 int ret; 4570 4571 nritems = btrfs_header_nritems(parent); 4572 if (slot != nritems - 1) { 4573 if (tree_mod_log && level) 4574 tree_mod_log_eb_move(root->fs_info, parent, slot, 4575 slot + 1, nritems - slot - 1); 4576 memmove_extent_buffer(parent, 4577 btrfs_node_key_ptr_offset(slot), 4578 btrfs_node_key_ptr_offset(slot + 1), 4579 sizeof(struct btrfs_key_ptr) * 4580 (nritems - slot - 1)); 4581 } else if (tree_mod_log && level) { 4582 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4583 MOD_LOG_KEY_REMOVE); 4584 BUG_ON(ret < 0); 4585 } 4586 4587 nritems--; 4588 btrfs_set_header_nritems(parent, nritems); 4589 if (nritems == 0 && parent == root->node) { 4590 BUG_ON(btrfs_header_level(root->node) != 1); 4591 /* just turn the root into a leaf and break */ 4592 btrfs_set_header_level(root->node, 0); 4593 } else if (slot == 0) { 4594 struct btrfs_disk_key disk_key; 4595 4596 btrfs_node_key(parent, &disk_key, 0); 4597 fixup_low_keys(trans, root, path, &disk_key, level + 1); 4598 } 4599 btrfs_mark_buffer_dirty(parent); 4600 } 4601 4602 /* 4603 * a helper function to delete the leaf pointed to by path->slots[1] and 4604 * path->nodes[1]. 4605 * 4606 * This deletes the pointer in path->nodes[1] and frees the leaf 4607 * block extent. zero is returned if it all worked out, < 0 otherwise. 4608 * 4609 * The path must have already been setup for deleting the leaf, including 4610 * all the proper balancing. path->nodes[1] must be locked. 4611 */ 4612 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4613 struct btrfs_root *root, 4614 struct btrfs_path *path, 4615 struct extent_buffer *leaf) 4616 { 4617 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4618 del_ptr(trans, root, path, 1, path->slots[1], 1); 4619 4620 /* 4621 * btrfs_free_extent is expensive, we want to make sure we 4622 * aren't holding any locks when we call it 4623 */ 4624 btrfs_unlock_up_safe(path, 0); 4625 4626 root_sub_used(root, leaf->len); 4627 4628 extent_buffer_get(leaf); 4629 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4630 free_extent_buffer_stale(leaf); 4631 } 4632 /* 4633 * delete the item at the leaf level in path. If that empties 4634 * the leaf, remove it from the tree 4635 */ 4636 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4637 struct btrfs_path *path, int slot, int nr) 4638 { 4639 struct extent_buffer *leaf; 4640 struct btrfs_item *item; 4641 int last_off; 4642 int dsize = 0; 4643 int ret = 0; 4644 int wret; 4645 int i; 4646 u32 nritems; 4647 struct btrfs_map_token token; 4648 4649 btrfs_init_map_token(&token); 4650 4651 leaf = path->nodes[0]; 4652 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4653 4654 for (i = 0; i < nr; i++) 4655 dsize += btrfs_item_size_nr(leaf, slot + i); 4656 4657 nritems = btrfs_header_nritems(leaf); 4658 4659 if (slot + nr != nritems) { 4660 int data_end = leaf_data_end(root, leaf); 4661 4662 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4663 data_end + dsize, 4664 btrfs_leaf_data(leaf) + data_end, 4665 last_off - data_end); 4666 4667 for (i = slot + nr; i < nritems; i++) { 4668 u32 ioff; 4669 4670 item = btrfs_item_nr(leaf, i); 4671 ioff = btrfs_token_item_offset(leaf, item, &token); 4672 btrfs_set_token_item_offset(leaf, item, 4673 ioff + dsize, &token); 4674 } 4675 4676 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4677 btrfs_item_nr_offset(slot + nr), 4678 sizeof(struct btrfs_item) * 4679 (nritems - slot - nr)); 4680 } 4681 btrfs_set_header_nritems(leaf, nritems - nr); 4682 nritems -= nr; 4683 4684 /* delete the leaf if we've emptied it */ 4685 if (nritems == 0) { 4686 if (leaf == root->node) { 4687 btrfs_set_header_level(leaf, 0); 4688 } else { 4689 btrfs_set_path_blocking(path); 4690 clean_tree_block(trans, root, leaf); 4691 btrfs_del_leaf(trans, root, path, leaf); 4692 } 4693 } else { 4694 int used = leaf_space_used(leaf, 0, nritems); 4695 if (slot == 0) { 4696 struct btrfs_disk_key disk_key; 4697 4698 btrfs_item_key(leaf, &disk_key, 0); 4699 fixup_low_keys(trans, root, path, &disk_key, 1); 4700 } 4701 4702 /* delete the leaf if it is mostly empty */ 4703 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4704 /* push_leaf_left fixes the path. 4705 * make sure the path still points to our leaf 4706 * for possible call to del_ptr below 4707 */ 4708 slot = path->slots[1]; 4709 extent_buffer_get(leaf); 4710 4711 btrfs_set_path_blocking(path); 4712 wret = push_leaf_left(trans, root, path, 1, 1, 4713 1, (u32)-1); 4714 if (wret < 0 && wret != -ENOSPC) 4715 ret = wret; 4716 4717 if (path->nodes[0] == leaf && 4718 btrfs_header_nritems(leaf)) { 4719 wret = push_leaf_right(trans, root, path, 1, 4720 1, 1, 0); 4721 if (wret < 0 && wret != -ENOSPC) 4722 ret = wret; 4723 } 4724 4725 if (btrfs_header_nritems(leaf) == 0) { 4726 path->slots[1] = slot; 4727 btrfs_del_leaf(trans, root, path, leaf); 4728 free_extent_buffer(leaf); 4729 ret = 0; 4730 } else { 4731 /* if we're still in the path, make sure 4732 * we're dirty. Otherwise, one of the 4733 * push_leaf functions must have already 4734 * dirtied this buffer 4735 */ 4736 if (path->nodes[0] == leaf) 4737 btrfs_mark_buffer_dirty(leaf); 4738 free_extent_buffer(leaf); 4739 } 4740 } else { 4741 btrfs_mark_buffer_dirty(leaf); 4742 } 4743 } 4744 return ret; 4745 } 4746 4747 /* 4748 * search the tree again to find a leaf with lesser keys 4749 * returns 0 if it found something or 1 if there are no lesser leaves. 4750 * returns < 0 on io errors. 4751 * 4752 * This may release the path, and so you may lose any locks held at the 4753 * time you call it. 4754 */ 4755 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4756 { 4757 struct btrfs_key key; 4758 struct btrfs_disk_key found_key; 4759 int ret; 4760 4761 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4762 4763 if (key.offset > 0) 4764 key.offset--; 4765 else if (key.type > 0) 4766 key.type--; 4767 else if (key.objectid > 0) 4768 key.objectid--; 4769 else 4770 return 1; 4771 4772 btrfs_release_path(path); 4773 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4774 if (ret < 0) 4775 return ret; 4776 btrfs_item_key(path->nodes[0], &found_key, 0); 4777 ret = comp_keys(&found_key, &key); 4778 if (ret < 0) 4779 return 0; 4780 return 1; 4781 } 4782 4783 /* 4784 * A helper function to walk down the tree starting at min_key, and looking 4785 * for nodes or leaves that are either in cache or have a minimum 4786 * transaction id. This is used by the btree defrag code, and tree logging 4787 * 4788 * This does not cow, but it does stuff the starting key it finds back 4789 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4790 * key and get a writable path. 4791 * 4792 * This does lock as it descends, and path->keep_locks should be set 4793 * to 1 by the caller. 4794 * 4795 * This honors path->lowest_level to prevent descent past a given level 4796 * of the tree. 4797 * 4798 * min_trans indicates the oldest transaction that you are interested 4799 * in walking through. Any nodes or leaves older than min_trans are 4800 * skipped over (without reading them). 4801 * 4802 * returns zero if something useful was found, < 0 on error and 1 if there 4803 * was nothing in the tree that matched the search criteria. 4804 */ 4805 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4806 struct btrfs_key *max_key, 4807 struct btrfs_path *path, int cache_only, 4808 u64 min_trans) 4809 { 4810 struct extent_buffer *cur; 4811 struct btrfs_key found_key; 4812 int slot; 4813 int sret; 4814 u32 nritems; 4815 int level; 4816 int ret = 1; 4817 4818 WARN_ON(!path->keep_locks); 4819 again: 4820 cur = btrfs_read_lock_root_node(root); 4821 level = btrfs_header_level(cur); 4822 WARN_ON(path->nodes[level]); 4823 path->nodes[level] = cur; 4824 path->locks[level] = BTRFS_READ_LOCK; 4825 4826 if (btrfs_header_generation(cur) < min_trans) { 4827 ret = 1; 4828 goto out; 4829 } 4830 while (1) { 4831 nritems = btrfs_header_nritems(cur); 4832 level = btrfs_header_level(cur); 4833 sret = bin_search(cur, min_key, level, &slot); 4834 4835 /* at the lowest level, we're done, setup the path and exit */ 4836 if (level == path->lowest_level) { 4837 if (slot >= nritems) 4838 goto find_next_key; 4839 ret = 0; 4840 path->slots[level] = slot; 4841 btrfs_item_key_to_cpu(cur, &found_key, slot); 4842 goto out; 4843 } 4844 if (sret && slot > 0) 4845 slot--; 4846 /* 4847 * check this node pointer against the cache_only and 4848 * min_trans parameters. If it isn't in cache or is too 4849 * old, skip to the next one. 4850 */ 4851 while (slot < nritems) { 4852 u64 blockptr; 4853 u64 gen; 4854 struct extent_buffer *tmp; 4855 struct btrfs_disk_key disk_key; 4856 4857 blockptr = btrfs_node_blockptr(cur, slot); 4858 gen = btrfs_node_ptr_generation(cur, slot); 4859 if (gen < min_trans) { 4860 slot++; 4861 continue; 4862 } 4863 if (!cache_only) 4864 break; 4865 4866 if (max_key) { 4867 btrfs_node_key(cur, &disk_key, slot); 4868 if (comp_keys(&disk_key, max_key) >= 0) { 4869 ret = 1; 4870 goto out; 4871 } 4872 } 4873 4874 tmp = btrfs_find_tree_block(root, blockptr, 4875 btrfs_level_size(root, level - 1)); 4876 4877 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 4878 free_extent_buffer(tmp); 4879 break; 4880 } 4881 if (tmp) 4882 free_extent_buffer(tmp); 4883 slot++; 4884 } 4885 find_next_key: 4886 /* 4887 * we didn't find a candidate key in this node, walk forward 4888 * and find another one 4889 */ 4890 if (slot >= nritems) { 4891 path->slots[level] = slot; 4892 btrfs_set_path_blocking(path); 4893 sret = btrfs_find_next_key(root, path, min_key, level, 4894 cache_only, min_trans); 4895 if (sret == 0) { 4896 btrfs_release_path(path); 4897 goto again; 4898 } else { 4899 goto out; 4900 } 4901 } 4902 /* save our key for returning back */ 4903 btrfs_node_key_to_cpu(cur, &found_key, slot); 4904 path->slots[level] = slot; 4905 if (level == path->lowest_level) { 4906 ret = 0; 4907 unlock_up(path, level, 1, 0, NULL); 4908 goto out; 4909 } 4910 btrfs_set_path_blocking(path); 4911 cur = read_node_slot(root, cur, slot); 4912 BUG_ON(!cur); /* -ENOMEM */ 4913 4914 btrfs_tree_read_lock(cur); 4915 4916 path->locks[level - 1] = BTRFS_READ_LOCK; 4917 path->nodes[level - 1] = cur; 4918 unlock_up(path, level, 1, 0, NULL); 4919 btrfs_clear_path_blocking(path, NULL, 0); 4920 } 4921 out: 4922 if (ret == 0) 4923 memcpy(min_key, &found_key, sizeof(found_key)); 4924 btrfs_set_path_blocking(path); 4925 return ret; 4926 } 4927 4928 static void tree_move_down(struct btrfs_root *root, 4929 struct btrfs_path *path, 4930 int *level, int root_level) 4931 { 4932 BUG_ON(*level == 0); 4933 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 4934 path->slots[*level]); 4935 path->slots[*level - 1] = 0; 4936 (*level)--; 4937 } 4938 4939 static int tree_move_next_or_upnext(struct btrfs_root *root, 4940 struct btrfs_path *path, 4941 int *level, int root_level) 4942 { 4943 int ret = 0; 4944 int nritems; 4945 nritems = btrfs_header_nritems(path->nodes[*level]); 4946 4947 path->slots[*level]++; 4948 4949 while (path->slots[*level] >= nritems) { 4950 if (*level == root_level) 4951 return -1; 4952 4953 /* move upnext */ 4954 path->slots[*level] = 0; 4955 free_extent_buffer(path->nodes[*level]); 4956 path->nodes[*level] = NULL; 4957 (*level)++; 4958 path->slots[*level]++; 4959 4960 nritems = btrfs_header_nritems(path->nodes[*level]); 4961 ret = 1; 4962 } 4963 return ret; 4964 } 4965 4966 /* 4967 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 4968 * or down. 4969 */ 4970 static int tree_advance(struct btrfs_root *root, 4971 struct btrfs_path *path, 4972 int *level, int root_level, 4973 int allow_down, 4974 struct btrfs_key *key) 4975 { 4976 int ret; 4977 4978 if (*level == 0 || !allow_down) { 4979 ret = tree_move_next_or_upnext(root, path, level, root_level); 4980 } else { 4981 tree_move_down(root, path, level, root_level); 4982 ret = 0; 4983 } 4984 if (ret >= 0) { 4985 if (*level == 0) 4986 btrfs_item_key_to_cpu(path->nodes[*level], key, 4987 path->slots[*level]); 4988 else 4989 btrfs_node_key_to_cpu(path->nodes[*level], key, 4990 path->slots[*level]); 4991 } 4992 return ret; 4993 } 4994 4995 static int tree_compare_item(struct btrfs_root *left_root, 4996 struct btrfs_path *left_path, 4997 struct btrfs_path *right_path, 4998 char *tmp_buf) 4999 { 5000 int cmp; 5001 int len1, len2; 5002 unsigned long off1, off2; 5003 5004 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5005 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5006 if (len1 != len2) 5007 return 1; 5008 5009 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5010 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5011 right_path->slots[0]); 5012 5013 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5014 5015 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5016 if (cmp) 5017 return 1; 5018 return 0; 5019 } 5020 5021 #define ADVANCE 1 5022 #define ADVANCE_ONLY_NEXT -1 5023 5024 /* 5025 * This function compares two trees and calls the provided callback for 5026 * every changed/new/deleted item it finds. 5027 * If shared tree blocks are encountered, whole subtrees are skipped, making 5028 * the compare pretty fast on snapshotted subvolumes. 5029 * 5030 * This currently works on commit roots only. As commit roots are read only, 5031 * we don't do any locking. The commit roots are protected with transactions. 5032 * Transactions are ended and rejoined when a commit is tried in between. 5033 * 5034 * This function checks for modifications done to the trees while comparing. 5035 * If it detects a change, it aborts immediately. 5036 */ 5037 int btrfs_compare_trees(struct btrfs_root *left_root, 5038 struct btrfs_root *right_root, 5039 btrfs_changed_cb_t changed_cb, void *ctx) 5040 { 5041 int ret; 5042 int cmp; 5043 struct btrfs_trans_handle *trans = NULL; 5044 struct btrfs_path *left_path = NULL; 5045 struct btrfs_path *right_path = NULL; 5046 struct btrfs_key left_key; 5047 struct btrfs_key right_key; 5048 char *tmp_buf = NULL; 5049 int left_root_level; 5050 int right_root_level; 5051 int left_level; 5052 int right_level; 5053 int left_end_reached; 5054 int right_end_reached; 5055 int advance_left; 5056 int advance_right; 5057 u64 left_blockptr; 5058 u64 right_blockptr; 5059 u64 left_start_ctransid; 5060 u64 right_start_ctransid; 5061 u64 ctransid; 5062 5063 left_path = btrfs_alloc_path(); 5064 if (!left_path) { 5065 ret = -ENOMEM; 5066 goto out; 5067 } 5068 right_path = btrfs_alloc_path(); 5069 if (!right_path) { 5070 ret = -ENOMEM; 5071 goto out; 5072 } 5073 5074 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5075 if (!tmp_buf) { 5076 ret = -ENOMEM; 5077 goto out; 5078 } 5079 5080 left_path->search_commit_root = 1; 5081 left_path->skip_locking = 1; 5082 right_path->search_commit_root = 1; 5083 right_path->skip_locking = 1; 5084 5085 spin_lock(&left_root->root_times_lock); 5086 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5087 spin_unlock(&left_root->root_times_lock); 5088 5089 spin_lock(&right_root->root_times_lock); 5090 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5091 spin_unlock(&right_root->root_times_lock); 5092 5093 trans = btrfs_join_transaction(left_root); 5094 if (IS_ERR(trans)) { 5095 ret = PTR_ERR(trans); 5096 trans = NULL; 5097 goto out; 5098 } 5099 5100 /* 5101 * Strategy: Go to the first items of both trees. Then do 5102 * 5103 * If both trees are at level 0 5104 * Compare keys of current items 5105 * If left < right treat left item as new, advance left tree 5106 * and repeat 5107 * If left > right treat right item as deleted, advance right tree 5108 * and repeat 5109 * If left == right do deep compare of items, treat as changed if 5110 * needed, advance both trees and repeat 5111 * If both trees are at the same level but not at level 0 5112 * Compare keys of current nodes/leafs 5113 * If left < right advance left tree and repeat 5114 * If left > right advance right tree and repeat 5115 * If left == right compare blockptrs of the next nodes/leafs 5116 * If they match advance both trees but stay at the same level 5117 * and repeat 5118 * If they don't match advance both trees while allowing to go 5119 * deeper and repeat 5120 * If tree levels are different 5121 * Advance the tree that needs it and repeat 5122 * 5123 * Advancing a tree means: 5124 * If we are at level 0, try to go to the next slot. If that's not 5125 * possible, go one level up and repeat. Stop when we found a level 5126 * where we could go to the next slot. We may at this point be on a 5127 * node or a leaf. 5128 * 5129 * If we are not at level 0 and not on shared tree blocks, go one 5130 * level deeper. 5131 * 5132 * If we are not at level 0 and on shared tree blocks, go one slot to 5133 * the right if possible or go up and right. 5134 */ 5135 5136 left_level = btrfs_header_level(left_root->commit_root); 5137 left_root_level = left_level; 5138 left_path->nodes[left_level] = left_root->commit_root; 5139 extent_buffer_get(left_path->nodes[left_level]); 5140 5141 right_level = btrfs_header_level(right_root->commit_root); 5142 right_root_level = right_level; 5143 right_path->nodes[right_level] = right_root->commit_root; 5144 extent_buffer_get(right_path->nodes[right_level]); 5145 5146 if (left_level == 0) 5147 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5148 &left_key, left_path->slots[left_level]); 5149 else 5150 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5151 &left_key, left_path->slots[left_level]); 5152 if (right_level == 0) 5153 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5154 &right_key, right_path->slots[right_level]); 5155 else 5156 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5157 &right_key, right_path->slots[right_level]); 5158 5159 left_end_reached = right_end_reached = 0; 5160 advance_left = advance_right = 0; 5161 5162 while (1) { 5163 /* 5164 * We need to make sure the transaction does not get committed 5165 * while we do anything on commit roots. This means, we need to 5166 * join and leave transactions for every item that we process. 5167 */ 5168 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5169 btrfs_release_path(left_path); 5170 btrfs_release_path(right_path); 5171 5172 ret = btrfs_end_transaction(trans, left_root); 5173 trans = NULL; 5174 if (ret < 0) 5175 goto out; 5176 } 5177 /* now rejoin the transaction */ 5178 if (!trans) { 5179 trans = btrfs_join_transaction(left_root); 5180 if (IS_ERR(trans)) { 5181 ret = PTR_ERR(trans); 5182 trans = NULL; 5183 goto out; 5184 } 5185 5186 spin_lock(&left_root->root_times_lock); 5187 ctransid = btrfs_root_ctransid(&left_root->root_item); 5188 spin_unlock(&left_root->root_times_lock); 5189 if (ctransid != left_start_ctransid) 5190 left_start_ctransid = 0; 5191 5192 spin_lock(&right_root->root_times_lock); 5193 ctransid = btrfs_root_ctransid(&right_root->root_item); 5194 spin_unlock(&right_root->root_times_lock); 5195 if (ctransid != right_start_ctransid) 5196 right_start_ctransid = 0; 5197 5198 if (!left_start_ctransid || !right_start_ctransid) { 5199 WARN(1, KERN_WARNING 5200 "btrfs: btrfs_compare_tree detected " 5201 "a change in one of the trees while " 5202 "iterating. This is probably a " 5203 "bug.\n"); 5204 ret = -EIO; 5205 goto out; 5206 } 5207 5208 /* 5209 * the commit root may have changed, so start again 5210 * where we stopped 5211 */ 5212 left_path->lowest_level = left_level; 5213 right_path->lowest_level = right_level; 5214 ret = btrfs_search_slot(NULL, left_root, 5215 &left_key, left_path, 0, 0); 5216 if (ret < 0) 5217 goto out; 5218 ret = btrfs_search_slot(NULL, right_root, 5219 &right_key, right_path, 0, 0); 5220 if (ret < 0) 5221 goto out; 5222 } 5223 5224 if (advance_left && !left_end_reached) { 5225 ret = tree_advance(left_root, left_path, &left_level, 5226 left_root_level, 5227 advance_left != ADVANCE_ONLY_NEXT, 5228 &left_key); 5229 if (ret < 0) 5230 left_end_reached = ADVANCE; 5231 advance_left = 0; 5232 } 5233 if (advance_right && !right_end_reached) { 5234 ret = tree_advance(right_root, right_path, &right_level, 5235 right_root_level, 5236 advance_right != ADVANCE_ONLY_NEXT, 5237 &right_key); 5238 if (ret < 0) 5239 right_end_reached = ADVANCE; 5240 advance_right = 0; 5241 } 5242 5243 if (left_end_reached && right_end_reached) { 5244 ret = 0; 5245 goto out; 5246 } else if (left_end_reached) { 5247 if (right_level == 0) { 5248 ret = changed_cb(left_root, right_root, 5249 left_path, right_path, 5250 &right_key, 5251 BTRFS_COMPARE_TREE_DELETED, 5252 ctx); 5253 if (ret < 0) 5254 goto out; 5255 } 5256 advance_right = ADVANCE; 5257 continue; 5258 } else if (right_end_reached) { 5259 if (left_level == 0) { 5260 ret = changed_cb(left_root, right_root, 5261 left_path, right_path, 5262 &left_key, 5263 BTRFS_COMPARE_TREE_NEW, 5264 ctx); 5265 if (ret < 0) 5266 goto out; 5267 } 5268 advance_left = ADVANCE; 5269 continue; 5270 } 5271 5272 if (left_level == 0 && right_level == 0) { 5273 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5274 if (cmp < 0) { 5275 ret = changed_cb(left_root, right_root, 5276 left_path, right_path, 5277 &left_key, 5278 BTRFS_COMPARE_TREE_NEW, 5279 ctx); 5280 if (ret < 0) 5281 goto out; 5282 advance_left = ADVANCE; 5283 } else if (cmp > 0) { 5284 ret = changed_cb(left_root, right_root, 5285 left_path, right_path, 5286 &right_key, 5287 BTRFS_COMPARE_TREE_DELETED, 5288 ctx); 5289 if (ret < 0) 5290 goto out; 5291 advance_right = ADVANCE; 5292 } else { 5293 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5294 ret = tree_compare_item(left_root, left_path, 5295 right_path, tmp_buf); 5296 if (ret) { 5297 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5298 ret = changed_cb(left_root, right_root, 5299 left_path, right_path, 5300 &left_key, 5301 BTRFS_COMPARE_TREE_CHANGED, 5302 ctx); 5303 if (ret < 0) 5304 goto out; 5305 } 5306 advance_left = ADVANCE; 5307 advance_right = ADVANCE; 5308 } 5309 } else if (left_level == right_level) { 5310 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5311 if (cmp < 0) { 5312 advance_left = ADVANCE; 5313 } else if (cmp > 0) { 5314 advance_right = ADVANCE; 5315 } else { 5316 left_blockptr = btrfs_node_blockptr( 5317 left_path->nodes[left_level], 5318 left_path->slots[left_level]); 5319 right_blockptr = btrfs_node_blockptr( 5320 right_path->nodes[right_level], 5321 right_path->slots[right_level]); 5322 if (left_blockptr == right_blockptr) { 5323 /* 5324 * As we're on a shared block, don't 5325 * allow to go deeper. 5326 */ 5327 advance_left = ADVANCE_ONLY_NEXT; 5328 advance_right = ADVANCE_ONLY_NEXT; 5329 } else { 5330 advance_left = ADVANCE; 5331 advance_right = ADVANCE; 5332 } 5333 } 5334 } else if (left_level < right_level) { 5335 advance_right = ADVANCE; 5336 } else { 5337 advance_left = ADVANCE; 5338 } 5339 } 5340 5341 out: 5342 btrfs_free_path(left_path); 5343 btrfs_free_path(right_path); 5344 kfree(tmp_buf); 5345 5346 if (trans) { 5347 if (!ret) 5348 ret = btrfs_end_transaction(trans, left_root); 5349 else 5350 btrfs_end_transaction(trans, left_root); 5351 } 5352 5353 return ret; 5354 } 5355 5356 /* 5357 * this is similar to btrfs_next_leaf, but does not try to preserve 5358 * and fixup the path. It looks for and returns the next key in the 5359 * tree based on the current path and the cache_only and min_trans 5360 * parameters. 5361 * 5362 * 0 is returned if another key is found, < 0 if there are any errors 5363 * and 1 is returned if there are no higher keys in the tree 5364 * 5365 * path->keep_locks should be set to 1 on the search made before 5366 * calling this function. 5367 */ 5368 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5369 struct btrfs_key *key, int level, 5370 int cache_only, u64 min_trans) 5371 { 5372 int slot; 5373 struct extent_buffer *c; 5374 5375 WARN_ON(!path->keep_locks); 5376 while (level < BTRFS_MAX_LEVEL) { 5377 if (!path->nodes[level]) 5378 return 1; 5379 5380 slot = path->slots[level] + 1; 5381 c = path->nodes[level]; 5382 next: 5383 if (slot >= btrfs_header_nritems(c)) { 5384 int ret; 5385 int orig_lowest; 5386 struct btrfs_key cur_key; 5387 if (level + 1 >= BTRFS_MAX_LEVEL || 5388 !path->nodes[level + 1]) 5389 return 1; 5390 5391 if (path->locks[level + 1]) { 5392 level++; 5393 continue; 5394 } 5395 5396 slot = btrfs_header_nritems(c) - 1; 5397 if (level == 0) 5398 btrfs_item_key_to_cpu(c, &cur_key, slot); 5399 else 5400 btrfs_node_key_to_cpu(c, &cur_key, slot); 5401 5402 orig_lowest = path->lowest_level; 5403 btrfs_release_path(path); 5404 path->lowest_level = level; 5405 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5406 0, 0); 5407 path->lowest_level = orig_lowest; 5408 if (ret < 0) 5409 return ret; 5410 5411 c = path->nodes[level]; 5412 slot = path->slots[level]; 5413 if (ret == 0) 5414 slot++; 5415 goto next; 5416 } 5417 5418 if (level == 0) 5419 btrfs_item_key_to_cpu(c, key, slot); 5420 else { 5421 u64 blockptr = btrfs_node_blockptr(c, slot); 5422 u64 gen = btrfs_node_ptr_generation(c, slot); 5423 5424 if (cache_only) { 5425 struct extent_buffer *cur; 5426 cur = btrfs_find_tree_block(root, blockptr, 5427 btrfs_level_size(root, level - 1)); 5428 if (!cur || 5429 btrfs_buffer_uptodate(cur, gen, 1) <= 0) { 5430 slot++; 5431 if (cur) 5432 free_extent_buffer(cur); 5433 goto next; 5434 } 5435 free_extent_buffer(cur); 5436 } 5437 if (gen < min_trans) { 5438 slot++; 5439 goto next; 5440 } 5441 btrfs_node_key_to_cpu(c, key, slot); 5442 } 5443 return 0; 5444 } 5445 return 1; 5446 } 5447 5448 /* 5449 * search the tree again to find a leaf with greater keys 5450 * returns 0 if it found something or 1 if there are no greater leaves. 5451 * returns < 0 on io errors. 5452 */ 5453 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5454 { 5455 return btrfs_next_old_leaf(root, path, 0); 5456 } 5457 5458 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5459 u64 time_seq) 5460 { 5461 int slot; 5462 int level; 5463 struct extent_buffer *c; 5464 struct extent_buffer *next; 5465 struct btrfs_key key; 5466 u32 nritems; 5467 int ret; 5468 int old_spinning = path->leave_spinning; 5469 int next_rw_lock = 0; 5470 5471 nritems = btrfs_header_nritems(path->nodes[0]); 5472 if (nritems == 0) 5473 return 1; 5474 5475 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5476 again: 5477 level = 1; 5478 next = NULL; 5479 next_rw_lock = 0; 5480 btrfs_release_path(path); 5481 5482 path->keep_locks = 1; 5483 path->leave_spinning = 1; 5484 5485 if (time_seq) 5486 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5487 else 5488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5489 path->keep_locks = 0; 5490 5491 if (ret < 0) 5492 return ret; 5493 5494 nritems = btrfs_header_nritems(path->nodes[0]); 5495 /* 5496 * by releasing the path above we dropped all our locks. A balance 5497 * could have added more items next to the key that used to be 5498 * at the very end of the block. So, check again here and 5499 * advance the path if there are now more items available. 5500 */ 5501 if (nritems > 0 && path->slots[0] < nritems - 1) { 5502 if (ret == 0) 5503 path->slots[0]++; 5504 ret = 0; 5505 goto done; 5506 } 5507 5508 while (level < BTRFS_MAX_LEVEL) { 5509 if (!path->nodes[level]) { 5510 ret = 1; 5511 goto done; 5512 } 5513 5514 slot = path->slots[level] + 1; 5515 c = path->nodes[level]; 5516 if (slot >= btrfs_header_nritems(c)) { 5517 level++; 5518 if (level == BTRFS_MAX_LEVEL) { 5519 ret = 1; 5520 goto done; 5521 } 5522 continue; 5523 } 5524 5525 if (next) { 5526 btrfs_tree_unlock_rw(next, next_rw_lock); 5527 free_extent_buffer(next); 5528 } 5529 5530 next = c; 5531 next_rw_lock = path->locks[level]; 5532 ret = read_block_for_search(NULL, root, path, &next, level, 5533 slot, &key, 0); 5534 if (ret == -EAGAIN) 5535 goto again; 5536 5537 if (ret < 0) { 5538 btrfs_release_path(path); 5539 goto done; 5540 } 5541 5542 if (!path->skip_locking) { 5543 ret = btrfs_try_tree_read_lock(next); 5544 if (!ret && time_seq) { 5545 /* 5546 * If we don't get the lock, we may be racing 5547 * with push_leaf_left, holding that lock while 5548 * itself waiting for the leaf we've currently 5549 * locked. To solve this situation, we give up 5550 * on our lock and cycle. 5551 */ 5552 free_extent_buffer(next); 5553 btrfs_release_path(path); 5554 cond_resched(); 5555 goto again; 5556 } 5557 if (!ret) { 5558 btrfs_set_path_blocking(path); 5559 btrfs_tree_read_lock(next); 5560 btrfs_clear_path_blocking(path, next, 5561 BTRFS_READ_LOCK); 5562 } 5563 next_rw_lock = BTRFS_READ_LOCK; 5564 } 5565 break; 5566 } 5567 path->slots[level] = slot; 5568 while (1) { 5569 level--; 5570 c = path->nodes[level]; 5571 if (path->locks[level]) 5572 btrfs_tree_unlock_rw(c, path->locks[level]); 5573 5574 free_extent_buffer(c); 5575 path->nodes[level] = next; 5576 path->slots[level] = 0; 5577 if (!path->skip_locking) 5578 path->locks[level] = next_rw_lock; 5579 if (!level) 5580 break; 5581 5582 ret = read_block_for_search(NULL, root, path, &next, level, 5583 0, &key, 0); 5584 if (ret == -EAGAIN) 5585 goto again; 5586 5587 if (ret < 0) { 5588 btrfs_release_path(path); 5589 goto done; 5590 } 5591 5592 if (!path->skip_locking) { 5593 ret = btrfs_try_tree_read_lock(next); 5594 if (!ret) { 5595 btrfs_set_path_blocking(path); 5596 btrfs_tree_read_lock(next); 5597 btrfs_clear_path_blocking(path, next, 5598 BTRFS_READ_LOCK); 5599 } 5600 next_rw_lock = BTRFS_READ_LOCK; 5601 } 5602 } 5603 ret = 0; 5604 done: 5605 unlock_up(path, 0, 1, 0, NULL); 5606 path->leave_spinning = old_spinning; 5607 if (!old_spinning) 5608 btrfs_set_path_blocking(path); 5609 5610 return ret; 5611 } 5612 5613 /* 5614 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5615 * searching until it gets past min_objectid or finds an item of 'type' 5616 * 5617 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5618 */ 5619 int btrfs_previous_item(struct btrfs_root *root, 5620 struct btrfs_path *path, u64 min_objectid, 5621 int type) 5622 { 5623 struct btrfs_key found_key; 5624 struct extent_buffer *leaf; 5625 u32 nritems; 5626 int ret; 5627 5628 while (1) { 5629 if (path->slots[0] == 0) { 5630 btrfs_set_path_blocking(path); 5631 ret = btrfs_prev_leaf(root, path); 5632 if (ret != 0) 5633 return ret; 5634 } else { 5635 path->slots[0]--; 5636 } 5637 leaf = path->nodes[0]; 5638 nritems = btrfs_header_nritems(leaf); 5639 if (nritems == 0) 5640 return 1; 5641 if (path->slots[0] == nritems) 5642 path->slots[0]--; 5643 5644 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5645 if (found_key.objectid < min_objectid) 5646 break; 5647 if (found_key.type == type) 5648 return 0; 5649 if (found_key.objectid == min_objectid && 5650 found_key.type < type) 5651 break; 5652 } 5653 return 1; 5654 } 5655