xref: /openbmc/linux/fs/btrfs/ctree.c (revision ba1bfbd592c1adddd5d0005f587a6e308e25c949)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 		    struct btrfs_path *path, int level, int slot,
42 		    int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 				 struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 					  u32 blocksize, u64 parent_transid,
47 					  u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 						u64 bytenr, u32 blocksize,
50 						u64 time_seq);
51 
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54 	struct btrfs_path *path;
55 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56 	return path;
57 }
58 
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65 	int i;
66 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 		if (!p->nodes[i] || !p->locks[i])
68 			continue;
69 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 		if (p->locks[i] == BTRFS_READ_LOCK)
71 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74 	}
75 }
76 
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86 					struct extent_buffer *held, int held_rw)
87 {
88 	int i;
89 
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 	/* lockdep really cares that we take all of these spinlocks
92 	 * in the right order.  If any of the locks in the path are not
93 	 * currently blocking, it is going to complain.  So, make really
94 	 * really sure by forcing the path to blocking before we clear
95 	 * the path blocking.
96 	 */
97 	if (held) {
98 		btrfs_set_lock_blocking_rw(held, held_rw);
99 		if (held_rw == BTRFS_WRITE_LOCK)
100 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 		else if (held_rw == BTRFS_READ_LOCK)
102 			held_rw = BTRFS_READ_LOCK_BLOCKING;
103 	}
104 	btrfs_set_path_blocking(p);
105 #endif
106 
107 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 		if (p->nodes[i] && p->locks[i]) {
109 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 				p->locks[i] = BTRFS_WRITE_LOCK;
112 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 				p->locks[i] = BTRFS_READ_LOCK;
114 		}
115 	}
116 
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 	if (held)
119 		btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122 
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126 	if (!p)
127 		return;
128 	btrfs_release_path(p);
129 	kmem_cache_free(btrfs_path_cachep, p);
130 }
131 
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140 	int i;
141 
142 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143 		p->slots[i] = 0;
144 		if (!p->nodes[i])
145 			continue;
146 		if (p->locks[i]) {
147 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148 			p->locks[i] = 0;
149 		}
150 		free_extent_buffer(p->nodes[i]);
151 		p->nodes[i] = NULL;
152 	}
153 }
154 
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167 	struct extent_buffer *eb;
168 
169 	while (1) {
170 		rcu_read_lock();
171 		eb = rcu_dereference(root->node);
172 
173 		/*
174 		 * RCU really hurts here, we could free up the root node because
175 		 * it was cow'ed but we may not get the new root node yet so do
176 		 * the inc_not_zero dance and if it doesn't work then
177 		 * synchronize_rcu and try again.
178 		 */
179 		if (atomic_inc_not_zero(&eb->refs)) {
180 			rcu_read_unlock();
181 			break;
182 		}
183 		rcu_read_unlock();
184 		synchronize_rcu();
185 	}
186 	return eb;
187 }
188 
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195 	struct extent_buffer *eb;
196 
197 	while (1) {
198 		eb = btrfs_root_node(root);
199 		btrfs_tree_lock(eb);
200 		if (eb == root->node)
201 			break;
202 		btrfs_tree_unlock(eb);
203 		free_extent_buffer(eb);
204 	}
205 	return eb;
206 }
207 
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214 	struct extent_buffer *eb;
215 
216 	while (1) {
217 		eb = btrfs_root_node(root);
218 		btrfs_tree_read_lock(eb);
219 		if (eb == root->node)
220 			break;
221 		btrfs_tree_read_unlock(eb);
222 		free_extent_buffer(eb);
223 	}
224 	return eb;
225 }
226 
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233 	spin_lock(&root->fs_info->trans_lock);
234 	if (root->track_dirty && list_empty(&root->dirty_list)) {
235 		list_add(&root->dirty_list,
236 			 &root->fs_info->dirty_cowonly_roots);
237 	}
238 	spin_unlock(&root->fs_info->trans_lock);
239 }
240 
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 		      struct btrfs_root *root,
248 		      struct extent_buffer *buf,
249 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251 	struct extent_buffer *cow;
252 	int ret = 0;
253 	int level;
254 	struct btrfs_disk_key disk_key;
255 
256 	WARN_ON(root->ref_cows && trans->transid !=
257 		root->fs_info->running_transaction->transid);
258 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259 
260 	level = btrfs_header_level(buf);
261 	if (level == 0)
262 		btrfs_item_key(buf, &disk_key, 0);
263 	else
264 		btrfs_node_key(buf, &disk_key, 0);
265 
266 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 				     new_root_objectid, &disk_key, level,
268 				     buf->start, 0);
269 	if (IS_ERR(cow))
270 		return PTR_ERR(cow);
271 
272 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 	btrfs_set_header_bytenr(cow, cow->start);
274 	btrfs_set_header_generation(cow, trans->transid);
275 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 				     BTRFS_HEADER_FLAG_RELOC);
278 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 	else
281 		btrfs_set_header_owner(cow, new_root_objectid);
282 
283 	write_extent_buffer(cow, root->fs_info->fsid,
284 			    (unsigned long)btrfs_header_fsid(cow),
285 			    BTRFS_FSID_SIZE);
286 
287 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
288 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290 	else
291 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292 
293 	if (ret)
294 		return ret;
295 
296 	btrfs_mark_buffer_dirty(cow);
297 	*cow_ret = cow;
298 	return 0;
299 }
300 
301 enum mod_log_op {
302 	MOD_LOG_KEY_REPLACE,
303 	MOD_LOG_KEY_ADD,
304 	MOD_LOG_KEY_REMOVE,
305 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 	MOD_LOG_MOVE_KEYS,
308 	MOD_LOG_ROOT_REPLACE,
309 };
310 
311 struct tree_mod_move {
312 	int dst_slot;
313 	int nr_items;
314 };
315 
316 struct tree_mod_root {
317 	u64 logical;
318 	u8 level;
319 };
320 
321 struct tree_mod_elem {
322 	struct rb_node node;
323 	u64 index;		/* shifted logical */
324 	u64 seq;
325 	enum mod_log_op op;
326 
327 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 	int slot;
329 
330 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 	u64 generation;
332 
333 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 	struct btrfs_disk_key key;
335 	u64 blockptr;
336 
337 	/* this is used for op == MOD_LOG_MOVE_KEYS */
338 	struct tree_mod_move move;
339 
340 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
341 	struct tree_mod_root old_root;
342 };
343 
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345 {
346 	read_lock(&fs_info->tree_mod_log_lock);
347 }
348 
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350 {
351 	read_unlock(&fs_info->tree_mod_log_lock);
352 }
353 
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355 {
356 	write_lock(&fs_info->tree_mod_log_lock);
357 }
358 
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360 {
361 	write_unlock(&fs_info->tree_mod_log_lock);
362 }
363 
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 			   struct seq_list *elem)
374 {
375 	u64 seq;
376 
377 	tree_mod_log_write_lock(fs_info);
378 	spin_lock(&fs_info->tree_mod_seq_lock);
379 	if (!elem->seq) {
380 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 	}
383 	seq = btrfs_inc_tree_mod_seq(fs_info);
384 	spin_unlock(&fs_info->tree_mod_seq_lock);
385 	tree_mod_log_write_unlock(fs_info);
386 
387 	return seq;
388 }
389 
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391 			    struct seq_list *elem)
392 {
393 	struct rb_root *tm_root;
394 	struct rb_node *node;
395 	struct rb_node *next;
396 	struct seq_list *cur_elem;
397 	struct tree_mod_elem *tm;
398 	u64 min_seq = (u64)-1;
399 	u64 seq_putting = elem->seq;
400 
401 	if (!seq_putting)
402 		return;
403 
404 	spin_lock(&fs_info->tree_mod_seq_lock);
405 	list_del(&elem->list);
406 	elem->seq = 0;
407 
408 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409 		if (cur_elem->seq < min_seq) {
410 			if (seq_putting > cur_elem->seq) {
411 				/*
412 				 * blocker with lower sequence number exists, we
413 				 * cannot remove anything from the log
414 				 */
415 				spin_unlock(&fs_info->tree_mod_seq_lock);
416 				return;
417 			}
418 			min_seq = cur_elem->seq;
419 		}
420 	}
421 	spin_unlock(&fs_info->tree_mod_seq_lock);
422 
423 	/*
424 	 * anything that's lower than the lowest existing (read: blocked)
425 	 * sequence number can be removed from the tree.
426 	 */
427 	tree_mod_log_write_lock(fs_info);
428 	tm_root = &fs_info->tree_mod_log;
429 	for (node = rb_first(tm_root); node; node = next) {
430 		next = rb_next(node);
431 		tm = container_of(node, struct tree_mod_elem, node);
432 		if (tm->seq > min_seq)
433 			continue;
434 		rb_erase(node, tm_root);
435 		kfree(tm);
436 	}
437 	tree_mod_log_write_unlock(fs_info);
438 }
439 
440 /*
441  * key order of the log:
442  *       index -> sequence
443  *
444  * the index is the shifted logical of the *new* root node for root replace
445  * operations, or the shifted logical of the affected block for all other
446  * operations.
447  */
448 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 {
451 	struct rb_root *tm_root;
452 	struct rb_node **new;
453 	struct rb_node *parent = NULL;
454 	struct tree_mod_elem *cur;
455 
456 	BUG_ON(!tm || !tm->seq);
457 
458 	tm_root = &fs_info->tree_mod_log;
459 	new = &tm_root->rb_node;
460 	while (*new) {
461 		cur = container_of(*new, struct tree_mod_elem, node);
462 		parent = *new;
463 		if (cur->index < tm->index)
464 			new = &((*new)->rb_left);
465 		else if (cur->index > tm->index)
466 			new = &((*new)->rb_right);
467 		else if (cur->seq < tm->seq)
468 			new = &((*new)->rb_left);
469 		else if (cur->seq > tm->seq)
470 			new = &((*new)->rb_right);
471 		else {
472 			kfree(tm);
473 			return -EEXIST;
474 		}
475 	}
476 
477 	rb_link_node(&tm->node, parent, new);
478 	rb_insert_color(&tm->node, tm_root);
479 	return 0;
480 }
481 
482 /*
483  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484  * returns zero with the tree_mod_log_lock acquired. The caller must hold
485  * this until all tree mod log insertions are recorded in the rb tree and then
486  * call tree_mod_log_write_unlock() to release.
487  */
488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 				    struct extent_buffer *eb) {
490 	smp_mb();
491 	if (list_empty(&(fs_info)->tree_mod_seq_list))
492 		return 1;
493 	if (eb && btrfs_header_level(eb) == 0)
494 		return 1;
495 
496 	tree_mod_log_write_lock(fs_info);
497 	if (list_empty(&fs_info->tree_mod_seq_list)) {
498 		/*
499 		 * someone emptied the list while we were waiting for the lock.
500 		 * we must not add to the list when no blocker exists.
501 		 */
502 		tree_mod_log_write_unlock(fs_info);
503 		return 1;
504 	}
505 
506 	return 0;
507 }
508 
509 /*
510  * This allocates memory and gets a tree modification sequence number.
511  *
512  * Returns <0 on error.
513  * Returns >0 (the added sequence number) on success.
514  */
515 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
516 				 struct tree_mod_elem **tm_ret)
517 {
518 	struct tree_mod_elem *tm;
519 
520 	/*
521 	 * once we switch from spin locks to something different, we should
522 	 * honor the flags parameter here.
523 	 */
524 	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
525 	if (!tm)
526 		return -ENOMEM;
527 
528 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
529 	return tm->seq;
530 }
531 
532 static inline int
533 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
534 			  struct extent_buffer *eb, int slot,
535 			  enum mod_log_op op, gfp_t flags)
536 {
537 	int ret;
538 	struct tree_mod_elem *tm;
539 
540 	ret = tree_mod_alloc(fs_info, flags, &tm);
541 	if (ret < 0)
542 		return ret;
543 
544 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
545 	if (op != MOD_LOG_KEY_ADD) {
546 		btrfs_node_key(eb, &tm->key, slot);
547 		tm->blockptr = btrfs_node_blockptr(eb, slot);
548 	}
549 	tm->op = op;
550 	tm->slot = slot;
551 	tm->generation = btrfs_node_ptr_generation(eb, slot);
552 
553 	return __tree_mod_log_insert(fs_info, tm);
554 }
555 
556 static noinline int
557 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
558 			     struct extent_buffer *eb, int slot,
559 			     enum mod_log_op op, gfp_t flags)
560 {
561 	int ret;
562 
563 	if (tree_mod_dont_log(fs_info, eb))
564 		return 0;
565 
566 	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
567 
568 	tree_mod_log_write_unlock(fs_info);
569 	return ret;
570 }
571 
572 static noinline int
573 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
574 			int slot, enum mod_log_op op)
575 {
576 	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
577 }
578 
579 static noinline int
580 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
581 			     struct extent_buffer *eb, int slot,
582 			     enum mod_log_op op)
583 {
584 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
585 }
586 
587 static noinline int
588 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
589 			 struct extent_buffer *eb, int dst_slot, int src_slot,
590 			 int nr_items, gfp_t flags)
591 {
592 	struct tree_mod_elem *tm;
593 	int ret;
594 	int i;
595 
596 	if (tree_mod_dont_log(fs_info, eb))
597 		return 0;
598 
599 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
601 					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
602 		BUG_ON(ret < 0);
603 	}
604 
605 	ret = tree_mod_alloc(fs_info, flags, &tm);
606 	if (ret < 0)
607 		goto out;
608 
609 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
610 	tm->slot = src_slot;
611 	tm->move.dst_slot = dst_slot;
612 	tm->move.nr_items = nr_items;
613 	tm->op = MOD_LOG_MOVE_KEYS;
614 
615 	ret = __tree_mod_log_insert(fs_info, tm);
616 out:
617 	tree_mod_log_write_unlock(fs_info);
618 	return ret;
619 }
620 
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624 	int i;
625 	u32 nritems;
626 	int ret;
627 
628 	if (btrfs_header_level(eb) == 0)
629 		return;
630 
631 	nritems = btrfs_header_nritems(eb);
632 	for (i = nritems - 1; i >= 0; i--) {
633 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
634 					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
635 		BUG_ON(ret < 0);
636 	}
637 }
638 
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641 			 struct extent_buffer *old_root,
642 			 struct extent_buffer *new_root, gfp_t flags)
643 {
644 	struct tree_mod_elem *tm;
645 	int ret;
646 
647 	if (tree_mod_dont_log(fs_info, NULL))
648 		return 0;
649 
650 	ret = tree_mod_alloc(fs_info, flags, &tm);
651 	if (ret < 0)
652 		goto out;
653 
654 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
655 	tm->old_root.logical = old_root->start;
656 	tm->old_root.level = btrfs_header_level(old_root);
657 	tm->generation = btrfs_header_generation(old_root);
658 	tm->op = MOD_LOG_ROOT_REPLACE;
659 
660 	ret = __tree_mod_log_insert(fs_info, tm);
661 out:
662 	tree_mod_log_write_unlock(fs_info);
663 	return ret;
664 }
665 
666 static struct tree_mod_elem *
667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668 		      int smallest)
669 {
670 	struct rb_root *tm_root;
671 	struct rb_node *node;
672 	struct tree_mod_elem *cur = NULL;
673 	struct tree_mod_elem *found = NULL;
674 	u64 index = start >> PAGE_CACHE_SHIFT;
675 
676 	tree_mod_log_read_lock(fs_info);
677 	tm_root = &fs_info->tree_mod_log;
678 	node = tm_root->rb_node;
679 	while (node) {
680 		cur = container_of(node, struct tree_mod_elem, node);
681 		if (cur->index < index) {
682 			node = node->rb_left;
683 		} else if (cur->index > index) {
684 			node = node->rb_right;
685 		} else if (cur->seq < min_seq) {
686 			node = node->rb_left;
687 		} else if (!smallest) {
688 			/* we want the node with the highest seq */
689 			if (found)
690 				BUG_ON(found->seq > cur->seq);
691 			found = cur;
692 			node = node->rb_left;
693 		} else if (cur->seq > min_seq) {
694 			/* we want the node with the smallest seq */
695 			if (found)
696 				BUG_ON(found->seq < cur->seq);
697 			found = cur;
698 			node = node->rb_right;
699 		} else {
700 			found = cur;
701 			break;
702 		}
703 	}
704 	tree_mod_log_read_unlock(fs_info);
705 
706 	return found;
707 }
708 
709 /*
710  * this returns the element from the log with the smallest time sequence
711  * value that's in the log (the oldest log item). any element with a time
712  * sequence lower than min_seq will be ignored.
713  */
714 static struct tree_mod_elem *
715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
716 			   u64 min_seq)
717 {
718 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 }
720 
721 /*
722  * this returns the element from the log with the largest time sequence
723  * value that's in the log (the most recent log item). any element with
724  * a time sequence lower than min_seq will be ignored.
725  */
726 static struct tree_mod_elem *
727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
728 {
729 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
730 }
731 
732 static noinline void
733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
734 		     struct extent_buffer *src, unsigned long dst_offset,
735 		     unsigned long src_offset, int nr_items)
736 {
737 	int ret;
738 	int i;
739 
740 	if (tree_mod_dont_log(fs_info, NULL))
741 		return;
742 
743 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
744 		tree_mod_log_write_unlock(fs_info);
745 		return;
746 	}
747 
748 	for (i = 0; i < nr_items; i++) {
749 		ret = tree_mod_log_insert_key_locked(fs_info, src,
750 						     i + src_offset,
751 						     MOD_LOG_KEY_REMOVE);
752 		BUG_ON(ret < 0);
753 		ret = tree_mod_log_insert_key_locked(fs_info, dst,
754 						     i + dst_offset,
755 						     MOD_LOG_KEY_ADD);
756 		BUG_ON(ret < 0);
757 	}
758 
759 	tree_mod_log_write_unlock(fs_info);
760 }
761 
762 static inline void
763 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
764 		     int dst_offset, int src_offset, int nr_items)
765 {
766 	int ret;
767 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
768 				       nr_items, GFP_NOFS);
769 	BUG_ON(ret < 0);
770 }
771 
772 static noinline void
773 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
774 			  struct extent_buffer *eb,
775 			  struct btrfs_disk_key *disk_key, int slot, int atomic)
776 {
777 	int ret;
778 
779 	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
780 					   MOD_LOG_KEY_REPLACE,
781 					   atomic ? GFP_ATOMIC : GFP_NOFS);
782 	BUG_ON(ret < 0);
783 }
784 
785 static noinline void
786 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
787 {
788 	if (tree_mod_dont_log(fs_info, eb))
789 		return;
790 
791 	__tree_mod_log_free_eb(fs_info, eb);
792 
793 	tree_mod_log_write_unlock(fs_info);
794 }
795 
796 static noinline void
797 tree_mod_log_set_root_pointer(struct btrfs_root *root,
798 			      struct extent_buffer *new_root_node)
799 {
800 	int ret;
801 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
802 				       new_root_node, GFP_NOFS);
803 	BUG_ON(ret < 0);
804 }
805 
806 /*
807  * check if the tree block can be shared by multiple trees
808  */
809 int btrfs_block_can_be_shared(struct btrfs_root *root,
810 			      struct extent_buffer *buf)
811 {
812 	/*
813 	 * Tree blocks not in refernece counted trees and tree roots
814 	 * are never shared. If a block was allocated after the last
815 	 * snapshot and the block was not allocated by tree relocation,
816 	 * we know the block is not shared.
817 	 */
818 	if (root->ref_cows &&
819 	    buf != root->node && buf != root->commit_root &&
820 	    (btrfs_header_generation(buf) <=
821 	     btrfs_root_last_snapshot(&root->root_item) ||
822 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
823 		return 1;
824 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
825 	if (root->ref_cows &&
826 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
827 		return 1;
828 #endif
829 	return 0;
830 }
831 
832 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
833 				       struct btrfs_root *root,
834 				       struct extent_buffer *buf,
835 				       struct extent_buffer *cow,
836 				       int *last_ref)
837 {
838 	u64 refs;
839 	u64 owner;
840 	u64 flags;
841 	u64 new_flags = 0;
842 	int ret;
843 
844 	/*
845 	 * Backrefs update rules:
846 	 *
847 	 * Always use full backrefs for extent pointers in tree block
848 	 * allocated by tree relocation.
849 	 *
850 	 * If a shared tree block is no longer referenced by its owner
851 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
852 	 * use full backrefs for extent pointers in tree block.
853 	 *
854 	 * If a tree block is been relocating
855 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
856 	 * use full backrefs for extent pointers in tree block.
857 	 * The reason for this is some operations (such as drop tree)
858 	 * are only allowed for blocks use full backrefs.
859 	 */
860 
861 	if (btrfs_block_can_be_shared(root, buf)) {
862 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
863 					       buf->len, &refs, &flags);
864 		if (ret)
865 			return ret;
866 		if (refs == 0) {
867 			ret = -EROFS;
868 			btrfs_std_error(root->fs_info, ret);
869 			return ret;
870 		}
871 	} else {
872 		refs = 1;
873 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
874 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
875 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
876 		else
877 			flags = 0;
878 	}
879 
880 	owner = btrfs_header_owner(buf);
881 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
882 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
883 
884 	if (refs > 1) {
885 		if ((owner == root->root_key.objectid ||
886 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
887 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
888 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
889 			BUG_ON(ret); /* -ENOMEM */
890 
891 			if (root->root_key.objectid ==
892 			    BTRFS_TREE_RELOC_OBJECTID) {
893 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
894 				BUG_ON(ret); /* -ENOMEM */
895 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
896 				BUG_ON(ret); /* -ENOMEM */
897 			}
898 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
899 		} else {
900 
901 			if (root->root_key.objectid ==
902 			    BTRFS_TREE_RELOC_OBJECTID)
903 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
904 			else
905 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
906 			BUG_ON(ret); /* -ENOMEM */
907 		}
908 		if (new_flags != 0) {
909 			ret = btrfs_set_disk_extent_flags(trans, root,
910 							  buf->start,
911 							  buf->len,
912 							  new_flags, 0);
913 			if (ret)
914 				return ret;
915 		}
916 	} else {
917 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
918 			if (root->root_key.objectid ==
919 			    BTRFS_TREE_RELOC_OBJECTID)
920 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
921 			else
922 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
923 			BUG_ON(ret); /* -ENOMEM */
924 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
925 			BUG_ON(ret); /* -ENOMEM */
926 		}
927 		tree_mod_log_free_eb(root->fs_info, buf);
928 		clean_tree_block(trans, root, buf);
929 		*last_ref = 1;
930 	}
931 	return 0;
932 }
933 
934 /*
935  * does the dirty work in cow of a single block.  The parent block (if
936  * supplied) is updated to point to the new cow copy.  The new buffer is marked
937  * dirty and returned locked.  If you modify the block it needs to be marked
938  * dirty again.
939  *
940  * search_start -- an allocation hint for the new block
941  *
942  * empty_size -- a hint that you plan on doing more cow.  This is the size in
943  * bytes the allocator should try to find free next to the block it returns.
944  * This is just a hint and may be ignored by the allocator.
945  */
946 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
947 			     struct btrfs_root *root,
948 			     struct extent_buffer *buf,
949 			     struct extent_buffer *parent, int parent_slot,
950 			     struct extent_buffer **cow_ret,
951 			     u64 search_start, u64 empty_size)
952 {
953 	struct btrfs_disk_key disk_key;
954 	struct extent_buffer *cow;
955 	int level, ret;
956 	int last_ref = 0;
957 	int unlock_orig = 0;
958 	u64 parent_start;
959 
960 	if (*cow_ret == buf)
961 		unlock_orig = 1;
962 
963 	btrfs_assert_tree_locked(buf);
964 
965 	WARN_ON(root->ref_cows && trans->transid !=
966 		root->fs_info->running_transaction->transid);
967 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
968 
969 	level = btrfs_header_level(buf);
970 
971 	if (level == 0)
972 		btrfs_item_key(buf, &disk_key, 0);
973 	else
974 		btrfs_node_key(buf, &disk_key, 0);
975 
976 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
977 		if (parent)
978 			parent_start = parent->start;
979 		else
980 			parent_start = 0;
981 	} else
982 		parent_start = 0;
983 
984 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
985 				     root->root_key.objectid, &disk_key,
986 				     level, search_start, empty_size);
987 	if (IS_ERR(cow))
988 		return PTR_ERR(cow);
989 
990 	/* cow is set to blocking by btrfs_init_new_buffer */
991 
992 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
993 	btrfs_set_header_bytenr(cow, cow->start);
994 	btrfs_set_header_generation(cow, trans->transid);
995 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
996 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
997 				     BTRFS_HEADER_FLAG_RELOC);
998 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
999 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1000 	else
1001 		btrfs_set_header_owner(cow, root->root_key.objectid);
1002 
1003 	write_extent_buffer(cow, root->fs_info->fsid,
1004 			    (unsigned long)btrfs_header_fsid(cow),
1005 			    BTRFS_FSID_SIZE);
1006 
1007 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1008 	if (ret) {
1009 		btrfs_abort_transaction(trans, root, ret);
1010 		return ret;
1011 	}
1012 
1013 	if (root->ref_cows)
1014 		btrfs_reloc_cow_block(trans, root, buf, cow);
1015 
1016 	if (buf == root->node) {
1017 		WARN_ON(parent && parent != buf);
1018 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1019 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1020 			parent_start = buf->start;
1021 		else
1022 			parent_start = 0;
1023 
1024 		extent_buffer_get(cow);
1025 		tree_mod_log_set_root_pointer(root, cow);
1026 		rcu_assign_pointer(root->node, cow);
1027 
1028 		btrfs_free_tree_block(trans, root, buf, parent_start,
1029 				      last_ref);
1030 		free_extent_buffer(buf);
1031 		add_root_to_dirty_list(root);
1032 	} else {
1033 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1034 			parent_start = parent->start;
1035 		else
1036 			parent_start = 0;
1037 
1038 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1039 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1040 					MOD_LOG_KEY_REPLACE);
1041 		btrfs_set_node_blockptr(parent, parent_slot,
1042 					cow->start);
1043 		btrfs_set_node_ptr_generation(parent, parent_slot,
1044 					      trans->transid);
1045 		btrfs_mark_buffer_dirty(parent);
1046 		btrfs_free_tree_block(trans, root, buf, parent_start,
1047 				      last_ref);
1048 	}
1049 	if (unlock_orig)
1050 		btrfs_tree_unlock(buf);
1051 	free_extent_buffer_stale(buf);
1052 	btrfs_mark_buffer_dirty(cow);
1053 	*cow_ret = cow;
1054 	return 0;
1055 }
1056 
1057 /*
1058  * returns the logical address of the oldest predecessor of the given root.
1059  * entries older than time_seq are ignored.
1060  */
1061 static struct tree_mod_elem *
1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1063 			   struct btrfs_root *root, u64 time_seq)
1064 {
1065 	struct tree_mod_elem *tm;
1066 	struct tree_mod_elem *found = NULL;
1067 	u64 root_logical = root->node->start;
1068 	int looped = 0;
1069 
1070 	if (!time_seq)
1071 		return 0;
1072 
1073 	/*
1074 	 * the very last operation that's logged for a root is the replacement
1075 	 * operation (if it is replaced at all). this has the index of the *new*
1076 	 * root, making it the very first operation that's logged for this root.
1077 	 */
1078 	while (1) {
1079 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1080 						time_seq);
1081 		if (!looped && !tm)
1082 			return 0;
1083 		/*
1084 		 * if there are no tree operation for the oldest root, we simply
1085 		 * return it. this should only happen if that (old) root is at
1086 		 * level 0.
1087 		 */
1088 		if (!tm)
1089 			break;
1090 
1091 		/*
1092 		 * if there's an operation that's not a root replacement, we
1093 		 * found the oldest version of our root. normally, we'll find a
1094 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1095 		 */
1096 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1097 			break;
1098 
1099 		found = tm;
1100 		root_logical = tm->old_root.logical;
1101 		BUG_ON(root_logical == root->node->start);
1102 		looped = 1;
1103 	}
1104 
1105 	/* if there's no old root to return, return what we found instead */
1106 	if (!found)
1107 		found = tm;
1108 
1109 	return found;
1110 }
1111 
1112 /*
1113  * tm is a pointer to the first operation to rewind within eb. then, all
1114  * previous operations will be rewinded (until we reach something older than
1115  * time_seq).
1116  */
1117 static void
1118 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1119 		      struct tree_mod_elem *first_tm)
1120 {
1121 	u32 n;
1122 	struct rb_node *next;
1123 	struct tree_mod_elem *tm = first_tm;
1124 	unsigned long o_dst;
1125 	unsigned long o_src;
1126 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1127 
1128 	n = btrfs_header_nritems(eb);
1129 	while (tm && tm->seq >= time_seq) {
1130 		/*
1131 		 * all the operations are recorded with the operator used for
1132 		 * the modification. as we're going backwards, we do the
1133 		 * opposite of each operation here.
1134 		 */
1135 		switch (tm->op) {
1136 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1137 			BUG_ON(tm->slot < n);
1138 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1139 		case MOD_LOG_KEY_REMOVE:
1140 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1141 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1142 			btrfs_set_node_ptr_generation(eb, tm->slot,
1143 						      tm->generation);
1144 			n++;
1145 			break;
1146 		case MOD_LOG_KEY_REPLACE:
1147 			BUG_ON(tm->slot >= n);
1148 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1149 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1150 			btrfs_set_node_ptr_generation(eb, tm->slot,
1151 						      tm->generation);
1152 			break;
1153 		case MOD_LOG_KEY_ADD:
1154 			/* if a move operation is needed it's in the log */
1155 			n--;
1156 			break;
1157 		case MOD_LOG_MOVE_KEYS:
1158 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1159 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1160 			memmove_extent_buffer(eb, o_dst, o_src,
1161 					      tm->move.nr_items * p_size);
1162 			break;
1163 		case MOD_LOG_ROOT_REPLACE:
1164 			/*
1165 			 * this operation is special. for roots, this must be
1166 			 * handled explicitly before rewinding.
1167 			 * for non-roots, this operation may exist if the node
1168 			 * was a root: root A -> child B; then A gets empty and
1169 			 * B is promoted to the new root. in the mod log, we'll
1170 			 * have a root-replace operation for B, a tree block
1171 			 * that is no root. we simply ignore that operation.
1172 			 */
1173 			break;
1174 		}
1175 		next = rb_next(&tm->node);
1176 		if (!next)
1177 			break;
1178 		tm = container_of(next, struct tree_mod_elem, node);
1179 		if (tm->index != first_tm->index)
1180 			break;
1181 	}
1182 	btrfs_set_header_nritems(eb, n);
1183 }
1184 
1185 static struct extent_buffer *
1186 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1187 		    u64 time_seq)
1188 {
1189 	struct extent_buffer *eb_rewin;
1190 	struct tree_mod_elem *tm;
1191 
1192 	if (!time_seq)
1193 		return eb;
1194 
1195 	if (btrfs_header_level(eb) == 0)
1196 		return eb;
1197 
1198 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1199 	if (!tm)
1200 		return eb;
1201 
1202 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1203 		BUG_ON(tm->slot != 0);
1204 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1205 						fs_info->tree_root->nodesize);
1206 		BUG_ON(!eb_rewin);
1207 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1208 		btrfs_set_header_backref_rev(eb_rewin,
1209 					     btrfs_header_backref_rev(eb));
1210 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1211 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1212 	} else {
1213 		eb_rewin = btrfs_clone_extent_buffer(eb);
1214 		BUG_ON(!eb_rewin);
1215 	}
1216 
1217 	extent_buffer_get(eb_rewin);
1218 	free_extent_buffer(eb);
1219 
1220 	__tree_mod_log_rewind(eb_rewin, time_seq, tm);
1221 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1222 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
1223 
1224 	return eb_rewin;
1225 }
1226 
1227 /*
1228  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1229  * value. If there are no changes, the current root->root_node is returned. If
1230  * anything changed in between, there's a fresh buffer allocated on which the
1231  * rewind operations are done. In any case, the returned buffer is read locked.
1232  * Returns NULL on error (with no locks held).
1233  */
1234 static inline struct extent_buffer *
1235 get_old_root(struct btrfs_root *root, u64 time_seq)
1236 {
1237 	struct tree_mod_elem *tm;
1238 	struct extent_buffer *eb;
1239 	struct tree_mod_root *old_root = NULL;
1240 	u64 old_generation = 0;
1241 	u64 logical;
1242 
1243 	eb = btrfs_read_lock_root_node(root);
1244 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1245 	if (!tm)
1246 		return root->node;
1247 
1248 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1249 		old_root = &tm->old_root;
1250 		old_generation = tm->generation;
1251 		logical = old_root->logical;
1252 	} else {
1253 		logical = root->node->start;
1254 	}
1255 
1256 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1257 	if (old_root)
1258 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1259 	else
1260 		eb = btrfs_clone_extent_buffer(root->node);
1261 	btrfs_tree_read_unlock(root->node);
1262 	free_extent_buffer(root->node);
1263 	if (!eb)
1264 		return NULL;
1265 	btrfs_tree_read_lock(eb);
1266 	if (old_root) {
1267 		btrfs_set_header_bytenr(eb, eb->start);
1268 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1269 		btrfs_set_header_owner(eb, root->root_key.objectid);
1270 		btrfs_set_header_level(eb, old_root->level);
1271 		btrfs_set_header_generation(eb, old_generation);
1272 	}
1273 	if (tm)
1274 		__tree_mod_log_rewind(eb, time_seq, tm);
1275 	else
1276 		WARN_ON(btrfs_header_level(eb) != 0);
1277 	extent_buffer_get(eb);
1278 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1279 
1280 	return eb;
1281 }
1282 
1283 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1284 				   struct btrfs_root *root,
1285 				   struct extent_buffer *buf)
1286 {
1287 	/* ensure we can see the force_cow */
1288 	smp_rmb();
1289 
1290 	/*
1291 	 * We do not need to cow a block if
1292 	 * 1) this block is not created or changed in this transaction;
1293 	 * 2) this block does not belong to TREE_RELOC tree;
1294 	 * 3) the root is not forced COW.
1295 	 *
1296 	 * What is forced COW:
1297 	 *    when we create snapshot during commiting the transaction,
1298 	 *    after we've finished coping src root, we must COW the shared
1299 	 *    block to ensure the metadata consistency.
1300 	 */
1301 	if (btrfs_header_generation(buf) == trans->transid &&
1302 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1303 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1304 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1305 	    !root->force_cow)
1306 		return 0;
1307 	return 1;
1308 }
1309 
1310 /*
1311  * cows a single block, see __btrfs_cow_block for the real work.
1312  * This version of it has extra checks so that a block isn't cow'd more than
1313  * once per transaction, as long as it hasn't been written yet
1314  */
1315 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1316 		    struct btrfs_root *root, struct extent_buffer *buf,
1317 		    struct extent_buffer *parent, int parent_slot,
1318 		    struct extent_buffer **cow_ret)
1319 {
1320 	u64 search_start;
1321 	int ret;
1322 
1323 	if (trans->transaction != root->fs_info->running_transaction) {
1324 		printk(KERN_CRIT "trans %llu running %llu\n",
1325 		       (unsigned long long)trans->transid,
1326 		       (unsigned long long)
1327 		       root->fs_info->running_transaction->transid);
1328 		WARN_ON(1);
1329 	}
1330 	if (trans->transid != root->fs_info->generation) {
1331 		printk(KERN_CRIT "trans %llu running %llu\n",
1332 		       (unsigned long long)trans->transid,
1333 		       (unsigned long long)root->fs_info->generation);
1334 		WARN_ON(1);
1335 	}
1336 
1337 	if (!should_cow_block(trans, root, buf)) {
1338 		*cow_ret = buf;
1339 		return 0;
1340 	}
1341 
1342 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1343 
1344 	if (parent)
1345 		btrfs_set_lock_blocking(parent);
1346 	btrfs_set_lock_blocking(buf);
1347 
1348 	ret = __btrfs_cow_block(trans, root, buf, parent,
1349 				 parent_slot, cow_ret, search_start, 0);
1350 
1351 	trace_btrfs_cow_block(root, buf, *cow_ret);
1352 
1353 	return ret;
1354 }
1355 
1356 /*
1357  * helper function for defrag to decide if two blocks pointed to by a
1358  * node are actually close by
1359  */
1360 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1361 {
1362 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1363 		return 1;
1364 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1365 		return 1;
1366 	return 0;
1367 }
1368 
1369 /*
1370  * compare two keys in a memcmp fashion
1371  */
1372 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1373 {
1374 	struct btrfs_key k1;
1375 
1376 	btrfs_disk_key_to_cpu(&k1, disk);
1377 
1378 	return btrfs_comp_cpu_keys(&k1, k2);
1379 }
1380 
1381 /*
1382  * same as comp_keys only with two btrfs_key's
1383  */
1384 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1385 {
1386 	if (k1->objectid > k2->objectid)
1387 		return 1;
1388 	if (k1->objectid < k2->objectid)
1389 		return -1;
1390 	if (k1->type > k2->type)
1391 		return 1;
1392 	if (k1->type < k2->type)
1393 		return -1;
1394 	if (k1->offset > k2->offset)
1395 		return 1;
1396 	if (k1->offset < k2->offset)
1397 		return -1;
1398 	return 0;
1399 }
1400 
1401 /*
1402  * this is used by the defrag code to go through all the
1403  * leaves pointed to by a node and reallocate them so that
1404  * disk order is close to key order
1405  */
1406 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1407 		       struct btrfs_root *root, struct extent_buffer *parent,
1408 		       int start_slot, int cache_only, u64 *last_ret,
1409 		       struct btrfs_key *progress)
1410 {
1411 	struct extent_buffer *cur;
1412 	u64 blocknr;
1413 	u64 gen;
1414 	u64 search_start = *last_ret;
1415 	u64 last_block = 0;
1416 	u64 other;
1417 	u32 parent_nritems;
1418 	int end_slot;
1419 	int i;
1420 	int err = 0;
1421 	int parent_level;
1422 	int uptodate;
1423 	u32 blocksize;
1424 	int progress_passed = 0;
1425 	struct btrfs_disk_key disk_key;
1426 
1427 	parent_level = btrfs_header_level(parent);
1428 	if (cache_only && parent_level != 1)
1429 		return 0;
1430 
1431 	if (trans->transaction != root->fs_info->running_transaction)
1432 		WARN_ON(1);
1433 	if (trans->transid != root->fs_info->generation)
1434 		WARN_ON(1);
1435 
1436 	parent_nritems = btrfs_header_nritems(parent);
1437 	blocksize = btrfs_level_size(root, parent_level - 1);
1438 	end_slot = parent_nritems;
1439 
1440 	if (parent_nritems == 1)
1441 		return 0;
1442 
1443 	btrfs_set_lock_blocking(parent);
1444 
1445 	for (i = start_slot; i < end_slot; i++) {
1446 		int close = 1;
1447 
1448 		btrfs_node_key(parent, &disk_key, i);
1449 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1450 			continue;
1451 
1452 		progress_passed = 1;
1453 		blocknr = btrfs_node_blockptr(parent, i);
1454 		gen = btrfs_node_ptr_generation(parent, i);
1455 		if (last_block == 0)
1456 			last_block = blocknr;
1457 
1458 		if (i > 0) {
1459 			other = btrfs_node_blockptr(parent, i - 1);
1460 			close = close_blocks(blocknr, other, blocksize);
1461 		}
1462 		if (!close && i < end_slot - 2) {
1463 			other = btrfs_node_blockptr(parent, i + 1);
1464 			close = close_blocks(blocknr, other, blocksize);
1465 		}
1466 		if (close) {
1467 			last_block = blocknr;
1468 			continue;
1469 		}
1470 
1471 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1472 		if (cur)
1473 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1474 		else
1475 			uptodate = 0;
1476 		if (!cur || !uptodate) {
1477 			if (cache_only) {
1478 				free_extent_buffer(cur);
1479 				continue;
1480 			}
1481 			if (!cur) {
1482 				cur = read_tree_block(root, blocknr,
1483 							 blocksize, gen);
1484 				if (!cur)
1485 					return -EIO;
1486 			} else if (!uptodate) {
1487 				err = btrfs_read_buffer(cur, gen);
1488 				if (err) {
1489 					free_extent_buffer(cur);
1490 					return err;
1491 				}
1492 			}
1493 		}
1494 		if (search_start == 0)
1495 			search_start = last_block;
1496 
1497 		btrfs_tree_lock(cur);
1498 		btrfs_set_lock_blocking(cur);
1499 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1500 					&cur, search_start,
1501 					min(16 * blocksize,
1502 					    (end_slot - i) * blocksize));
1503 		if (err) {
1504 			btrfs_tree_unlock(cur);
1505 			free_extent_buffer(cur);
1506 			break;
1507 		}
1508 		search_start = cur->start;
1509 		last_block = cur->start;
1510 		*last_ret = search_start;
1511 		btrfs_tree_unlock(cur);
1512 		free_extent_buffer(cur);
1513 	}
1514 	return err;
1515 }
1516 
1517 /*
1518  * The leaf data grows from end-to-front in the node.
1519  * this returns the address of the start of the last item,
1520  * which is the stop of the leaf data stack
1521  */
1522 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1523 					 struct extent_buffer *leaf)
1524 {
1525 	u32 nr = btrfs_header_nritems(leaf);
1526 	if (nr == 0)
1527 		return BTRFS_LEAF_DATA_SIZE(root);
1528 	return btrfs_item_offset_nr(leaf, nr - 1);
1529 }
1530 
1531 
1532 /*
1533  * search for key in the extent_buffer.  The items start at offset p,
1534  * and they are item_size apart.  There are 'max' items in p.
1535  *
1536  * the slot in the array is returned via slot, and it points to
1537  * the place where you would insert key if it is not found in
1538  * the array.
1539  *
1540  * slot may point to max if the key is bigger than all of the keys
1541  */
1542 static noinline int generic_bin_search(struct extent_buffer *eb,
1543 				       unsigned long p,
1544 				       int item_size, struct btrfs_key *key,
1545 				       int max, int *slot)
1546 {
1547 	int low = 0;
1548 	int high = max;
1549 	int mid;
1550 	int ret;
1551 	struct btrfs_disk_key *tmp = NULL;
1552 	struct btrfs_disk_key unaligned;
1553 	unsigned long offset;
1554 	char *kaddr = NULL;
1555 	unsigned long map_start = 0;
1556 	unsigned long map_len = 0;
1557 	int err;
1558 
1559 	while (low < high) {
1560 		mid = (low + high) / 2;
1561 		offset = p + mid * item_size;
1562 
1563 		if (!kaddr || offset < map_start ||
1564 		    (offset + sizeof(struct btrfs_disk_key)) >
1565 		    map_start + map_len) {
1566 
1567 			err = map_private_extent_buffer(eb, offset,
1568 						sizeof(struct btrfs_disk_key),
1569 						&kaddr, &map_start, &map_len);
1570 
1571 			if (!err) {
1572 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1573 							map_start);
1574 			} else {
1575 				read_extent_buffer(eb, &unaligned,
1576 						   offset, sizeof(unaligned));
1577 				tmp = &unaligned;
1578 			}
1579 
1580 		} else {
1581 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1582 							map_start);
1583 		}
1584 		ret = comp_keys(tmp, key);
1585 
1586 		if (ret < 0)
1587 			low = mid + 1;
1588 		else if (ret > 0)
1589 			high = mid;
1590 		else {
1591 			*slot = mid;
1592 			return 0;
1593 		}
1594 	}
1595 	*slot = low;
1596 	return 1;
1597 }
1598 
1599 /*
1600  * simple bin_search frontend that does the right thing for
1601  * leaves vs nodes
1602  */
1603 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1604 		      int level, int *slot)
1605 {
1606 	if (level == 0)
1607 		return generic_bin_search(eb,
1608 					  offsetof(struct btrfs_leaf, items),
1609 					  sizeof(struct btrfs_item),
1610 					  key, btrfs_header_nritems(eb),
1611 					  slot);
1612 	else
1613 		return generic_bin_search(eb,
1614 					  offsetof(struct btrfs_node, ptrs),
1615 					  sizeof(struct btrfs_key_ptr),
1616 					  key, btrfs_header_nritems(eb),
1617 					  slot);
1618 }
1619 
1620 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1621 		     int level, int *slot)
1622 {
1623 	return bin_search(eb, key, level, slot);
1624 }
1625 
1626 static void root_add_used(struct btrfs_root *root, u32 size)
1627 {
1628 	spin_lock(&root->accounting_lock);
1629 	btrfs_set_root_used(&root->root_item,
1630 			    btrfs_root_used(&root->root_item) + size);
1631 	spin_unlock(&root->accounting_lock);
1632 }
1633 
1634 static void root_sub_used(struct btrfs_root *root, u32 size)
1635 {
1636 	spin_lock(&root->accounting_lock);
1637 	btrfs_set_root_used(&root->root_item,
1638 			    btrfs_root_used(&root->root_item) - size);
1639 	spin_unlock(&root->accounting_lock);
1640 }
1641 
1642 /* given a node and slot number, this reads the blocks it points to.  The
1643  * extent buffer is returned with a reference taken (but unlocked).
1644  * NULL is returned on error.
1645  */
1646 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1647 				   struct extent_buffer *parent, int slot)
1648 {
1649 	int level = btrfs_header_level(parent);
1650 	if (slot < 0)
1651 		return NULL;
1652 	if (slot >= btrfs_header_nritems(parent))
1653 		return NULL;
1654 
1655 	BUG_ON(level == 0);
1656 
1657 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1658 		       btrfs_level_size(root, level - 1),
1659 		       btrfs_node_ptr_generation(parent, slot));
1660 }
1661 
1662 /*
1663  * node level balancing, used to make sure nodes are in proper order for
1664  * item deletion.  We balance from the top down, so we have to make sure
1665  * that a deletion won't leave an node completely empty later on.
1666  */
1667 static noinline int balance_level(struct btrfs_trans_handle *trans,
1668 			 struct btrfs_root *root,
1669 			 struct btrfs_path *path, int level)
1670 {
1671 	struct extent_buffer *right = NULL;
1672 	struct extent_buffer *mid;
1673 	struct extent_buffer *left = NULL;
1674 	struct extent_buffer *parent = NULL;
1675 	int ret = 0;
1676 	int wret;
1677 	int pslot;
1678 	int orig_slot = path->slots[level];
1679 	u64 orig_ptr;
1680 
1681 	if (level == 0)
1682 		return 0;
1683 
1684 	mid = path->nodes[level];
1685 
1686 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1687 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1688 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1689 
1690 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1691 
1692 	if (level < BTRFS_MAX_LEVEL - 1) {
1693 		parent = path->nodes[level + 1];
1694 		pslot = path->slots[level + 1];
1695 	}
1696 
1697 	/*
1698 	 * deal with the case where there is only one pointer in the root
1699 	 * by promoting the node below to a root
1700 	 */
1701 	if (!parent) {
1702 		struct extent_buffer *child;
1703 
1704 		if (btrfs_header_nritems(mid) != 1)
1705 			return 0;
1706 
1707 		/* promote the child to a root */
1708 		child = read_node_slot(root, mid, 0);
1709 		if (!child) {
1710 			ret = -EROFS;
1711 			btrfs_std_error(root->fs_info, ret);
1712 			goto enospc;
1713 		}
1714 
1715 		btrfs_tree_lock(child);
1716 		btrfs_set_lock_blocking(child);
1717 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1718 		if (ret) {
1719 			btrfs_tree_unlock(child);
1720 			free_extent_buffer(child);
1721 			goto enospc;
1722 		}
1723 
1724 		tree_mod_log_free_eb(root->fs_info, root->node);
1725 		tree_mod_log_set_root_pointer(root, child);
1726 		rcu_assign_pointer(root->node, child);
1727 
1728 		add_root_to_dirty_list(root);
1729 		btrfs_tree_unlock(child);
1730 
1731 		path->locks[level] = 0;
1732 		path->nodes[level] = NULL;
1733 		clean_tree_block(trans, root, mid);
1734 		btrfs_tree_unlock(mid);
1735 		/* once for the path */
1736 		free_extent_buffer(mid);
1737 
1738 		root_sub_used(root, mid->len);
1739 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1740 		/* once for the root ptr */
1741 		free_extent_buffer_stale(mid);
1742 		return 0;
1743 	}
1744 	if (btrfs_header_nritems(mid) >
1745 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1746 		return 0;
1747 
1748 	left = read_node_slot(root, parent, pslot - 1);
1749 	if (left) {
1750 		btrfs_tree_lock(left);
1751 		btrfs_set_lock_blocking(left);
1752 		wret = btrfs_cow_block(trans, root, left,
1753 				       parent, pslot - 1, &left);
1754 		if (wret) {
1755 			ret = wret;
1756 			goto enospc;
1757 		}
1758 	}
1759 	right = read_node_slot(root, parent, pslot + 1);
1760 	if (right) {
1761 		btrfs_tree_lock(right);
1762 		btrfs_set_lock_blocking(right);
1763 		wret = btrfs_cow_block(trans, root, right,
1764 				       parent, pslot + 1, &right);
1765 		if (wret) {
1766 			ret = wret;
1767 			goto enospc;
1768 		}
1769 	}
1770 
1771 	/* first, try to make some room in the middle buffer */
1772 	if (left) {
1773 		orig_slot += btrfs_header_nritems(left);
1774 		wret = push_node_left(trans, root, left, mid, 1);
1775 		if (wret < 0)
1776 			ret = wret;
1777 	}
1778 
1779 	/*
1780 	 * then try to empty the right most buffer into the middle
1781 	 */
1782 	if (right) {
1783 		wret = push_node_left(trans, root, mid, right, 1);
1784 		if (wret < 0 && wret != -ENOSPC)
1785 			ret = wret;
1786 		if (btrfs_header_nritems(right) == 0) {
1787 			clean_tree_block(trans, root, right);
1788 			btrfs_tree_unlock(right);
1789 			del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1790 			root_sub_used(root, right->len);
1791 			btrfs_free_tree_block(trans, root, right, 0, 1);
1792 			free_extent_buffer_stale(right);
1793 			right = NULL;
1794 		} else {
1795 			struct btrfs_disk_key right_key;
1796 			btrfs_node_key(right, &right_key, 0);
1797 			tree_mod_log_set_node_key(root->fs_info, parent,
1798 						  &right_key, pslot + 1, 0);
1799 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1800 			btrfs_mark_buffer_dirty(parent);
1801 		}
1802 	}
1803 	if (btrfs_header_nritems(mid) == 1) {
1804 		/*
1805 		 * we're not allowed to leave a node with one item in the
1806 		 * tree during a delete.  A deletion from lower in the tree
1807 		 * could try to delete the only pointer in this node.
1808 		 * So, pull some keys from the left.
1809 		 * There has to be a left pointer at this point because
1810 		 * otherwise we would have pulled some pointers from the
1811 		 * right
1812 		 */
1813 		if (!left) {
1814 			ret = -EROFS;
1815 			btrfs_std_error(root->fs_info, ret);
1816 			goto enospc;
1817 		}
1818 		wret = balance_node_right(trans, root, mid, left);
1819 		if (wret < 0) {
1820 			ret = wret;
1821 			goto enospc;
1822 		}
1823 		if (wret == 1) {
1824 			wret = push_node_left(trans, root, left, mid, 1);
1825 			if (wret < 0)
1826 				ret = wret;
1827 		}
1828 		BUG_ON(wret == 1);
1829 	}
1830 	if (btrfs_header_nritems(mid) == 0) {
1831 		clean_tree_block(trans, root, mid);
1832 		btrfs_tree_unlock(mid);
1833 		del_ptr(trans, root, path, level + 1, pslot, 1);
1834 		root_sub_used(root, mid->len);
1835 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1836 		free_extent_buffer_stale(mid);
1837 		mid = NULL;
1838 	} else {
1839 		/* update the parent key to reflect our changes */
1840 		struct btrfs_disk_key mid_key;
1841 		btrfs_node_key(mid, &mid_key, 0);
1842 		tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1843 					  pslot, 0);
1844 		btrfs_set_node_key(parent, &mid_key, pslot);
1845 		btrfs_mark_buffer_dirty(parent);
1846 	}
1847 
1848 	/* update the path */
1849 	if (left) {
1850 		if (btrfs_header_nritems(left) > orig_slot) {
1851 			extent_buffer_get(left);
1852 			/* left was locked after cow */
1853 			path->nodes[level] = left;
1854 			path->slots[level + 1] -= 1;
1855 			path->slots[level] = orig_slot;
1856 			if (mid) {
1857 				btrfs_tree_unlock(mid);
1858 				free_extent_buffer(mid);
1859 			}
1860 		} else {
1861 			orig_slot -= btrfs_header_nritems(left);
1862 			path->slots[level] = orig_slot;
1863 		}
1864 	}
1865 	/* double check we haven't messed things up */
1866 	if (orig_ptr !=
1867 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1868 		BUG();
1869 enospc:
1870 	if (right) {
1871 		btrfs_tree_unlock(right);
1872 		free_extent_buffer(right);
1873 	}
1874 	if (left) {
1875 		if (path->nodes[level] != left)
1876 			btrfs_tree_unlock(left);
1877 		free_extent_buffer(left);
1878 	}
1879 	return ret;
1880 }
1881 
1882 /* Node balancing for insertion.  Here we only split or push nodes around
1883  * when they are completely full.  This is also done top down, so we
1884  * have to be pessimistic.
1885  */
1886 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1887 					  struct btrfs_root *root,
1888 					  struct btrfs_path *path, int level)
1889 {
1890 	struct extent_buffer *right = NULL;
1891 	struct extent_buffer *mid;
1892 	struct extent_buffer *left = NULL;
1893 	struct extent_buffer *parent = NULL;
1894 	int ret = 0;
1895 	int wret;
1896 	int pslot;
1897 	int orig_slot = path->slots[level];
1898 
1899 	if (level == 0)
1900 		return 1;
1901 
1902 	mid = path->nodes[level];
1903 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1904 
1905 	if (level < BTRFS_MAX_LEVEL - 1) {
1906 		parent = path->nodes[level + 1];
1907 		pslot = path->slots[level + 1];
1908 	}
1909 
1910 	if (!parent)
1911 		return 1;
1912 
1913 	left = read_node_slot(root, parent, pslot - 1);
1914 
1915 	/* first, try to make some room in the middle buffer */
1916 	if (left) {
1917 		u32 left_nr;
1918 
1919 		btrfs_tree_lock(left);
1920 		btrfs_set_lock_blocking(left);
1921 
1922 		left_nr = btrfs_header_nritems(left);
1923 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1924 			wret = 1;
1925 		} else {
1926 			ret = btrfs_cow_block(trans, root, left, parent,
1927 					      pslot - 1, &left);
1928 			if (ret)
1929 				wret = 1;
1930 			else {
1931 				wret = push_node_left(trans, root,
1932 						      left, mid, 0);
1933 			}
1934 		}
1935 		if (wret < 0)
1936 			ret = wret;
1937 		if (wret == 0) {
1938 			struct btrfs_disk_key disk_key;
1939 			orig_slot += left_nr;
1940 			btrfs_node_key(mid, &disk_key, 0);
1941 			tree_mod_log_set_node_key(root->fs_info, parent,
1942 						  &disk_key, pslot, 0);
1943 			btrfs_set_node_key(parent, &disk_key, pslot);
1944 			btrfs_mark_buffer_dirty(parent);
1945 			if (btrfs_header_nritems(left) > orig_slot) {
1946 				path->nodes[level] = left;
1947 				path->slots[level + 1] -= 1;
1948 				path->slots[level] = orig_slot;
1949 				btrfs_tree_unlock(mid);
1950 				free_extent_buffer(mid);
1951 			} else {
1952 				orig_slot -=
1953 					btrfs_header_nritems(left);
1954 				path->slots[level] = orig_slot;
1955 				btrfs_tree_unlock(left);
1956 				free_extent_buffer(left);
1957 			}
1958 			return 0;
1959 		}
1960 		btrfs_tree_unlock(left);
1961 		free_extent_buffer(left);
1962 	}
1963 	right = read_node_slot(root, parent, pslot + 1);
1964 
1965 	/*
1966 	 * then try to empty the right most buffer into the middle
1967 	 */
1968 	if (right) {
1969 		u32 right_nr;
1970 
1971 		btrfs_tree_lock(right);
1972 		btrfs_set_lock_blocking(right);
1973 
1974 		right_nr = btrfs_header_nritems(right);
1975 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1976 			wret = 1;
1977 		} else {
1978 			ret = btrfs_cow_block(trans, root, right,
1979 					      parent, pslot + 1,
1980 					      &right);
1981 			if (ret)
1982 				wret = 1;
1983 			else {
1984 				wret = balance_node_right(trans, root,
1985 							  right, mid);
1986 			}
1987 		}
1988 		if (wret < 0)
1989 			ret = wret;
1990 		if (wret == 0) {
1991 			struct btrfs_disk_key disk_key;
1992 
1993 			btrfs_node_key(right, &disk_key, 0);
1994 			tree_mod_log_set_node_key(root->fs_info, parent,
1995 						  &disk_key, pslot + 1, 0);
1996 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1997 			btrfs_mark_buffer_dirty(parent);
1998 
1999 			if (btrfs_header_nritems(mid) <= orig_slot) {
2000 				path->nodes[level] = right;
2001 				path->slots[level + 1] += 1;
2002 				path->slots[level] = orig_slot -
2003 					btrfs_header_nritems(mid);
2004 				btrfs_tree_unlock(mid);
2005 				free_extent_buffer(mid);
2006 			} else {
2007 				btrfs_tree_unlock(right);
2008 				free_extent_buffer(right);
2009 			}
2010 			return 0;
2011 		}
2012 		btrfs_tree_unlock(right);
2013 		free_extent_buffer(right);
2014 	}
2015 	return 1;
2016 }
2017 
2018 /*
2019  * readahead one full node of leaves, finding things that are close
2020  * to the block in 'slot', and triggering ra on them.
2021  */
2022 static void reada_for_search(struct btrfs_root *root,
2023 			     struct btrfs_path *path,
2024 			     int level, int slot, u64 objectid)
2025 {
2026 	struct extent_buffer *node;
2027 	struct btrfs_disk_key disk_key;
2028 	u32 nritems;
2029 	u64 search;
2030 	u64 target;
2031 	u64 nread = 0;
2032 	u64 gen;
2033 	int direction = path->reada;
2034 	struct extent_buffer *eb;
2035 	u32 nr;
2036 	u32 blocksize;
2037 	u32 nscan = 0;
2038 
2039 	if (level != 1)
2040 		return;
2041 
2042 	if (!path->nodes[level])
2043 		return;
2044 
2045 	node = path->nodes[level];
2046 
2047 	search = btrfs_node_blockptr(node, slot);
2048 	blocksize = btrfs_level_size(root, level - 1);
2049 	eb = btrfs_find_tree_block(root, search, blocksize);
2050 	if (eb) {
2051 		free_extent_buffer(eb);
2052 		return;
2053 	}
2054 
2055 	target = search;
2056 
2057 	nritems = btrfs_header_nritems(node);
2058 	nr = slot;
2059 
2060 	while (1) {
2061 		if (direction < 0) {
2062 			if (nr == 0)
2063 				break;
2064 			nr--;
2065 		} else if (direction > 0) {
2066 			nr++;
2067 			if (nr >= nritems)
2068 				break;
2069 		}
2070 		if (path->reada < 0 && objectid) {
2071 			btrfs_node_key(node, &disk_key, nr);
2072 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2073 				break;
2074 		}
2075 		search = btrfs_node_blockptr(node, nr);
2076 		if ((search <= target && target - search <= 65536) ||
2077 		    (search > target && search - target <= 65536)) {
2078 			gen = btrfs_node_ptr_generation(node, nr);
2079 			readahead_tree_block(root, search, blocksize, gen);
2080 			nread += blocksize;
2081 		}
2082 		nscan++;
2083 		if ((nread > 65536 || nscan > 32))
2084 			break;
2085 	}
2086 }
2087 
2088 /*
2089  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2090  * cache
2091  */
2092 static noinline int reada_for_balance(struct btrfs_root *root,
2093 				      struct btrfs_path *path, int level)
2094 {
2095 	int slot;
2096 	int nritems;
2097 	struct extent_buffer *parent;
2098 	struct extent_buffer *eb;
2099 	u64 gen;
2100 	u64 block1 = 0;
2101 	u64 block2 = 0;
2102 	int ret = 0;
2103 	int blocksize;
2104 
2105 	parent = path->nodes[level + 1];
2106 	if (!parent)
2107 		return 0;
2108 
2109 	nritems = btrfs_header_nritems(parent);
2110 	slot = path->slots[level + 1];
2111 	blocksize = btrfs_level_size(root, level);
2112 
2113 	if (slot > 0) {
2114 		block1 = btrfs_node_blockptr(parent, slot - 1);
2115 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2116 		eb = btrfs_find_tree_block(root, block1, blocksize);
2117 		/*
2118 		 * if we get -eagain from btrfs_buffer_uptodate, we
2119 		 * don't want to return eagain here.  That will loop
2120 		 * forever
2121 		 */
2122 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2123 			block1 = 0;
2124 		free_extent_buffer(eb);
2125 	}
2126 	if (slot + 1 < nritems) {
2127 		block2 = btrfs_node_blockptr(parent, slot + 1);
2128 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2129 		eb = btrfs_find_tree_block(root, block2, blocksize);
2130 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2131 			block2 = 0;
2132 		free_extent_buffer(eb);
2133 	}
2134 	if (block1 || block2) {
2135 		ret = -EAGAIN;
2136 
2137 		/* release the whole path */
2138 		btrfs_release_path(path);
2139 
2140 		/* read the blocks */
2141 		if (block1)
2142 			readahead_tree_block(root, block1, blocksize, 0);
2143 		if (block2)
2144 			readahead_tree_block(root, block2, blocksize, 0);
2145 
2146 		if (block1) {
2147 			eb = read_tree_block(root, block1, blocksize, 0);
2148 			free_extent_buffer(eb);
2149 		}
2150 		if (block2) {
2151 			eb = read_tree_block(root, block2, blocksize, 0);
2152 			free_extent_buffer(eb);
2153 		}
2154 	}
2155 	return ret;
2156 }
2157 
2158 
2159 /*
2160  * when we walk down the tree, it is usually safe to unlock the higher layers
2161  * in the tree.  The exceptions are when our path goes through slot 0, because
2162  * operations on the tree might require changing key pointers higher up in the
2163  * tree.
2164  *
2165  * callers might also have set path->keep_locks, which tells this code to keep
2166  * the lock if the path points to the last slot in the block.  This is part of
2167  * walking through the tree, and selecting the next slot in the higher block.
2168  *
2169  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2170  * if lowest_unlock is 1, level 0 won't be unlocked
2171  */
2172 static noinline void unlock_up(struct btrfs_path *path, int level,
2173 			       int lowest_unlock, int min_write_lock_level,
2174 			       int *write_lock_level)
2175 {
2176 	int i;
2177 	int skip_level = level;
2178 	int no_skips = 0;
2179 	struct extent_buffer *t;
2180 
2181 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2182 		if (!path->nodes[i])
2183 			break;
2184 		if (!path->locks[i])
2185 			break;
2186 		if (!no_skips && path->slots[i] == 0) {
2187 			skip_level = i + 1;
2188 			continue;
2189 		}
2190 		if (!no_skips && path->keep_locks) {
2191 			u32 nritems;
2192 			t = path->nodes[i];
2193 			nritems = btrfs_header_nritems(t);
2194 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2195 				skip_level = i + 1;
2196 				continue;
2197 			}
2198 		}
2199 		if (skip_level < i && i >= lowest_unlock)
2200 			no_skips = 1;
2201 
2202 		t = path->nodes[i];
2203 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2204 			btrfs_tree_unlock_rw(t, path->locks[i]);
2205 			path->locks[i] = 0;
2206 			if (write_lock_level &&
2207 			    i > min_write_lock_level &&
2208 			    i <= *write_lock_level) {
2209 				*write_lock_level = i - 1;
2210 			}
2211 		}
2212 	}
2213 }
2214 
2215 /*
2216  * This releases any locks held in the path starting at level and
2217  * going all the way up to the root.
2218  *
2219  * btrfs_search_slot will keep the lock held on higher nodes in a few
2220  * corner cases, such as COW of the block at slot zero in the node.  This
2221  * ignores those rules, and it should only be called when there are no
2222  * more updates to be done higher up in the tree.
2223  */
2224 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2225 {
2226 	int i;
2227 
2228 	if (path->keep_locks)
2229 		return;
2230 
2231 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2232 		if (!path->nodes[i])
2233 			continue;
2234 		if (!path->locks[i])
2235 			continue;
2236 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2237 		path->locks[i] = 0;
2238 	}
2239 }
2240 
2241 /*
2242  * helper function for btrfs_search_slot.  The goal is to find a block
2243  * in cache without setting the path to blocking.  If we find the block
2244  * we return zero and the path is unchanged.
2245  *
2246  * If we can't find the block, we set the path blocking and do some
2247  * reada.  -EAGAIN is returned and the search must be repeated.
2248  */
2249 static int
2250 read_block_for_search(struct btrfs_trans_handle *trans,
2251 		       struct btrfs_root *root, struct btrfs_path *p,
2252 		       struct extent_buffer **eb_ret, int level, int slot,
2253 		       struct btrfs_key *key, u64 time_seq)
2254 {
2255 	u64 blocknr;
2256 	u64 gen;
2257 	u32 blocksize;
2258 	struct extent_buffer *b = *eb_ret;
2259 	struct extent_buffer *tmp;
2260 	int ret;
2261 
2262 	blocknr = btrfs_node_blockptr(b, slot);
2263 	gen = btrfs_node_ptr_generation(b, slot);
2264 	blocksize = btrfs_level_size(root, level - 1);
2265 
2266 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2267 	if (tmp) {
2268 		/* first we do an atomic uptodate check */
2269 		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2270 			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2271 				/*
2272 				 * we found an up to date block without
2273 				 * sleeping, return
2274 				 * right away
2275 				 */
2276 				*eb_ret = tmp;
2277 				return 0;
2278 			}
2279 			/* the pages were up to date, but we failed
2280 			 * the generation number check.  Do a full
2281 			 * read for the generation number that is correct.
2282 			 * We must do this without dropping locks so
2283 			 * we can trust our generation number
2284 			 */
2285 			free_extent_buffer(tmp);
2286 			btrfs_set_path_blocking(p);
2287 
2288 			/* now we're allowed to do a blocking uptodate check */
2289 			tmp = read_tree_block(root, blocknr, blocksize, gen);
2290 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2291 				*eb_ret = tmp;
2292 				return 0;
2293 			}
2294 			free_extent_buffer(tmp);
2295 			btrfs_release_path(p);
2296 			return -EIO;
2297 		}
2298 	}
2299 
2300 	/*
2301 	 * reduce lock contention at high levels
2302 	 * of the btree by dropping locks before
2303 	 * we read.  Don't release the lock on the current
2304 	 * level because we need to walk this node to figure
2305 	 * out which blocks to read.
2306 	 */
2307 	btrfs_unlock_up_safe(p, level + 1);
2308 	btrfs_set_path_blocking(p);
2309 
2310 	free_extent_buffer(tmp);
2311 	if (p->reada)
2312 		reada_for_search(root, p, level, slot, key->objectid);
2313 
2314 	btrfs_release_path(p);
2315 
2316 	ret = -EAGAIN;
2317 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2318 	if (tmp) {
2319 		/*
2320 		 * If the read above didn't mark this buffer up to date,
2321 		 * it will never end up being up to date.  Set ret to EIO now
2322 		 * and give up so that our caller doesn't loop forever
2323 		 * on our EAGAINs.
2324 		 */
2325 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2326 			ret = -EIO;
2327 		free_extent_buffer(tmp);
2328 	}
2329 	return ret;
2330 }
2331 
2332 /*
2333  * helper function for btrfs_search_slot.  This does all of the checks
2334  * for node-level blocks and does any balancing required based on
2335  * the ins_len.
2336  *
2337  * If no extra work was required, zero is returned.  If we had to
2338  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2339  * start over
2340  */
2341 static int
2342 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2343 		       struct btrfs_root *root, struct btrfs_path *p,
2344 		       struct extent_buffer *b, int level, int ins_len,
2345 		       int *write_lock_level)
2346 {
2347 	int ret;
2348 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2349 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2350 		int sret;
2351 
2352 		if (*write_lock_level < level + 1) {
2353 			*write_lock_level = level + 1;
2354 			btrfs_release_path(p);
2355 			goto again;
2356 		}
2357 
2358 		sret = reada_for_balance(root, p, level);
2359 		if (sret)
2360 			goto again;
2361 
2362 		btrfs_set_path_blocking(p);
2363 		sret = split_node(trans, root, p, level);
2364 		btrfs_clear_path_blocking(p, NULL, 0);
2365 
2366 		BUG_ON(sret > 0);
2367 		if (sret) {
2368 			ret = sret;
2369 			goto done;
2370 		}
2371 		b = p->nodes[level];
2372 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2373 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2374 		int sret;
2375 
2376 		if (*write_lock_level < level + 1) {
2377 			*write_lock_level = level + 1;
2378 			btrfs_release_path(p);
2379 			goto again;
2380 		}
2381 
2382 		sret = reada_for_balance(root, p, level);
2383 		if (sret)
2384 			goto again;
2385 
2386 		btrfs_set_path_blocking(p);
2387 		sret = balance_level(trans, root, p, level);
2388 		btrfs_clear_path_blocking(p, NULL, 0);
2389 
2390 		if (sret) {
2391 			ret = sret;
2392 			goto done;
2393 		}
2394 		b = p->nodes[level];
2395 		if (!b) {
2396 			btrfs_release_path(p);
2397 			goto again;
2398 		}
2399 		BUG_ON(btrfs_header_nritems(b) == 1);
2400 	}
2401 	return 0;
2402 
2403 again:
2404 	ret = -EAGAIN;
2405 done:
2406 	return ret;
2407 }
2408 
2409 /*
2410  * look for key in the tree.  path is filled in with nodes along the way
2411  * if key is found, we return zero and you can find the item in the leaf
2412  * level of the path (level 0)
2413  *
2414  * If the key isn't found, the path points to the slot where it should
2415  * be inserted, and 1 is returned.  If there are other errors during the
2416  * search a negative error number is returned.
2417  *
2418  * if ins_len > 0, nodes and leaves will be split as we walk down the
2419  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2420  * possible)
2421  */
2422 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2423 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2424 		      ins_len, int cow)
2425 {
2426 	struct extent_buffer *b;
2427 	int slot;
2428 	int ret;
2429 	int err;
2430 	int level;
2431 	int lowest_unlock = 1;
2432 	int root_lock;
2433 	/* everything at write_lock_level or lower must be write locked */
2434 	int write_lock_level = 0;
2435 	u8 lowest_level = 0;
2436 	int min_write_lock_level;
2437 
2438 	lowest_level = p->lowest_level;
2439 	WARN_ON(lowest_level && ins_len > 0);
2440 	WARN_ON(p->nodes[0] != NULL);
2441 
2442 	if (ins_len < 0) {
2443 		lowest_unlock = 2;
2444 
2445 		/* when we are removing items, we might have to go up to level
2446 		 * two as we update tree pointers  Make sure we keep write
2447 		 * for those levels as well
2448 		 */
2449 		write_lock_level = 2;
2450 	} else if (ins_len > 0) {
2451 		/*
2452 		 * for inserting items, make sure we have a write lock on
2453 		 * level 1 so we can update keys
2454 		 */
2455 		write_lock_level = 1;
2456 	}
2457 
2458 	if (!cow)
2459 		write_lock_level = -1;
2460 
2461 	if (cow && (p->keep_locks || p->lowest_level))
2462 		write_lock_level = BTRFS_MAX_LEVEL;
2463 
2464 	min_write_lock_level = write_lock_level;
2465 
2466 again:
2467 	/*
2468 	 * we try very hard to do read locks on the root
2469 	 */
2470 	root_lock = BTRFS_READ_LOCK;
2471 	level = 0;
2472 	if (p->search_commit_root) {
2473 		/*
2474 		 * the commit roots are read only
2475 		 * so we always do read locks
2476 		 */
2477 		b = root->commit_root;
2478 		extent_buffer_get(b);
2479 		level = btrfs_header_level(b);
2480 		if (!p->skip_locking)
2481 			btrfs_tree_read_lock(b);
2482 	} else {
2483 		if (p->skip_locking) {
2484 			b = btrfs_root_node(root);
2485 			level = btrfs_header_level(b);
2486 		} else {
2487 			/* we don't know the level of the root node
2488 			 * until we actually have it read locked
2489 			 */
2490 			b = btrfs_read_lock_root_node(root);
2491 			level = btrfs_header_level(b);
2492 			if (level <= write_lock_level) {
2493 				/* whoops, must trade for write lock */
2494 				btrfs_tree_read_unlock(b);
2495 				free_extent_buffer(b);
2496 				b = btrfs_lock_root_node(root);
2497 				root_lock = BTRFS_WRITE_LOCK;
2498 
2499 				/* the level might have changed, check again */
2500 				level = btrfs_header_level(b);
2501 			}
2502 		}
2503 	}
2504 	p->nodes[level] = b;
2505 	if (!p->skip_locking)
2506 		p->locks[level] = root_lock;
2507 
2508 	while (b) {
2509 		level = btrfs_header_level(b);
2510 
2511 		/*
2512 		 * setup the path here so we can release it under lock
2513 		 * contention with the cow code
2514 		 */
2515 		if (cow) {
2516 			/*
2517 			 * if we don't really need to cow this block
2518 			 * then we don't want to set the path blocking,
2519 			 * so we test it here
2520 			 */
2521 			if (!should_cow_block(trans, root, b))
2522 				goto cow_done;
2523 
2524 			btrfs_set_path_blocking(p);
2525 
2526 			/*
2527 			 * must have write locks on this node and the
2528 			 * parent
2529 			 */
2530 			if (level + 1 > write_lock_level) {
2531 				write_lock_level = level + 1;
2532 				btrfs_release_path(p);
2533 				goto again;
2534 			}
2535 
2536 			err = btrfs_cow_block(trans, root, b,
2537 					      p->nodes[level + 1],
2538 					      p->slots[level + 1], &b);
2539 			if (err) {
2540 				ret = err;
2541 				goto done;
2542 			}
2543 		}
2544 cow_done:
2545 		BUG_ON(!cow && ins_len);
2546 
2547 		p->nodes[level] = b;
2548 		btrfs_clear_path_blocking(p, NULL, 0);
2549 
2550 		/*
2551 		 * we have a lock on b and as long as we aren't changing
2552 		 * the tree, there is no way to for the items in b to change.
2553 		 * It is safe to drop the lock on our parent before we
2554 		 * go through the expensive btree search on b.
2555 		 *
2556 		 * If cow is true, then we might be changing slot zero,
2557 		 * which may require changing the parent.  So, we can't
2558 		 * drop the lock until after we know which slot we're
2559 		 * operating on.
2560 		 */
2561 		if (!cow)
2562 			btrfs_unlock_up_safe(p, level + 1);
2563 
2564 		ret = bin_search(b, key, level, &slot);
2565 
2566 		if (level != 0) {
2567 			int dec = 0;
2568 			if (ret && slot > 0) {
2569 				dec = 1;
2570 				slot -= 1;
2571 			}
2572 			p->slots[level] = slot;
2573 			err = setup_nodes_for_search(trans, root, p, b, level,
2574 					     ins_len, &write_lock_level);
2575 			if (err == -EAGAIN)
2576 				goto again;
2577 			if (err) {
2578 				ret = err;
2579 				goto done;
2580 			}
2581 			b = p->nodes[level];
2582 			slot = p->slots[level];
2583 
2584 			/*
2585 			 * slot 0 is special, if we change the key
2586 			 * we have to update the parent pointer
2587 			 * which means we must have a write lock
2588 			 * on the parent
2589 			 */
2590 			if (slot == 0 && cow &&
2591 			    write_lock_level < level + 1) {
2592 				write_lock_level = level + 1;
2593 				btrfs_release_path(p);
2594 				goto again;
2595 			}
2596 
2597 			unlock_up(p, level, lowest_unlock,
2598 				  min_write_lock_level, &write_lock_level);
2599 
2600 			if (level == lowest_level) {
2601 				if (dec)
2602 					p->slots[level]++;
2603 				goto done;
2604 			}
2605 
2606 			err = read_block_for_search(trans, root, p,
2607 						    &b, level, slot, key, 0);
2608 			if (err == -EAGAIN)
2609 				goto again;
2610 			if (err) {
2611 				ret = err;
2612 				goto done;
2613 			}
2614 
2615 			if (!p->skip_locking) {
2616 				level = btrfs_header_level(b);
2617 				if (level <= write_lock_level) {
2618 					err = btrfs_try_tree_write_lock(b);
2619 					if (!err) {
2620 						btrfs_set_path_blocking(p);
2621 						btrfs_tree_lock(b);
2622 						btrfs_clear_path_blocking(p, b,
2623 								  BTRFS_WRITE_LOCK);
2624 					}
2625 					p->locks[level] = BTRFS_WRITE_LOCK;
2626 				} else {
2627 					err = btrfs_try_tree_read_lock(b);
2628 					if (!err) {
2629 						btrfs_set_path_blocking(p);
2630 						btrfs_tree_read_lock(b);
2631 						btrfs_clear_path_blocking(p, b,
2632 								  BTRFS_READ_LOCK);
2633 					}
2634 					p->locks[level] = BTRFS_READ_LOCK;
2635 				}
2636 				p->nodes[level] = b;
2637 			}
2638 		} else {
2639 			p->slots[level] = slot;
2640 			if (ins_len > 0 &&
2641 			    btrfs_leaf_free_space(root, b) < ins_len) {
2642 				if (write_lock_level < 1) {
2643 					write_lock_level = 1;
2644 					btrfs_release_path(p);
2645 					goto again;
2646 				}
2647 
2648 				btrfs_set_path_blocking(p);
2649 				err = split_leaf(trans, root, key,
2650 						 p, ins_len, ret == 0);
2651 				btrfs_clear_path_blocking(p, NULL, 0);
2652 
2653 				BUG_ON(err > 0);
2654 				if (err) {
2655 					ret = err;
2656 					goto done;
2657 				}
2658 			}
2659 			if (!p->search_for_split)
2660 				unlock_up(p, level, lowest_unlock,
2661 					  min_write_lock_level, &write_lock_level);
2662 			goto done;
2663 		}
2664 	}
2665 	ret = 1;
2666 done:
2667 	/*
2668 	 * we don't really know what they plan on doing with the path
2669 	 * from here on, so for now just mark it as blocking
2670 	 */
2671 	if (!p->leave_spinning)
2672 		btrfs_set_path_blocking(p);
2673 	if (ret < 0)
2674 		btrfs_release_path(p);
2675 	return ret;
2676 }
2677 
2678 /*
2679  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2680  * current state of the tree together with the operations recorded in the tree
2681  * modification log to search for the key in a previous version of this tree, as
2682  * denoted by the time_seq parameter.
2683  *
2684  * Naturally, there is no support for insert, delete or cow operations.
2685  *
2686  * The resulting path and return value will be set up as if we called
2687  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2688  */
2689 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2690 			  struct btrfs_path *p, u64 time_seq)
2691 {
2692 	struct extent_buffer *b;
2693 	int slot;
2694 	int ret;
2695 	int err;
2696 	int level;
2697 	int lowest_unlock = 1;
2698 	u8 lowest_level = 0;
2699 
2700 	lowest_level = p->lowest_level;
2701 	WARN_ON(p->nodes[0] != NULL);
2702 
2703 	if (p->search_commit_root) {
2704 		BUG_ON(time_seq);
2705 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2706 	}
2707 
2708 again:
2709 	b = get_old_root(root, time_seq);
2710 	level = btrfs_header_level(b);
2711 	p->locks[level] = BTRFS_READ_LOCK;
2712 
2713 	while (b) {
2714 		level = btrfs_header_level(b);
2715 		p->nodes[level] = b;
2716 		btrfs_clear_path_blocking(p, NULL, 0);
2717 
2718 		/*
2719 		 * we have a lock on b and as long as we aren't changing
2720 		 * the tree, there is no way to for the items in b to change.
2721 		 * It is safe to drop the lock on our parent before we
2722 		 * go through the expensive btree search on b.
2723 		 */
2724 		btrfs_unlock_up_safe(p, level + 1);
2725 
2726 		ret = bin_search(b, key, level, &slot);
2727 
2728 		if (level != 0) {
2729 			int dec = 0;
2730 			if (ret && slot > 0) {
2731 				dec = 1;
2732 				slot -= 1;
2733 			}
2734 			p->slots[level] = slot;
2735 			unlock_up(p, level, lowest_unlock, 0, NULL);
2736 
2737 			if (level == lowest_level) {
2738 				if (dec)
2739 					p->slots[level]++;
2740 				goto done;
2741 			}
2742 
2743 			err = read_block_for_search(NULL, root, p, &b, level,
2744 						    slot, key, time_seq);
2745 			if (err == -EAGAIN)
2746 				goto again;
2747 			if (err) {
2748 				ret = err;
2749 				goto done;
2750 			}
2751 
2752 			level = btrfs_header_level(b);
2753 			err = btrfs_try_tree_read_lock(b);
2754 			if (!err) {
2755 				btrfs_set_path_blocking(p);
2756 				btrfs_tree_read_lock(b);
2757 				btrfs_clear_path_blocking(p, b,
2758 							  BTRFS_READ_LOCK);
2759 			}
2760 			p->locks[level] = BTRFS_READ_LOCK;
2761 			p->nodes[level] = b;
2762 			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2763 			if (b != p->nodes[level]) {
2764 				btrfs_tree_unlock_rw(p->nodes[level],
2765 						     p->locks[level]);
2766 				p->locks[level] = 0;
2767 				p->nodes[level] = b;
2768 			}
2769 		} else {
2770 			p->slots[level] = slot;
2771 			unlock_up(p, level, lowest_unlock, 0, NULL);
2772 			goto done;
2773 		}
2774 	}
2775 	ret = 1;
2776 done:
2777 	if (!p->leave_spinning)
2778 		btrfs_set_path_blocking(p);
2779 	if (ret < 0)
2780 		btrfs_release_path(p);
2781 
2782 	return ret;
2783 }
2784 
2785 /*
2786  * helper to use instead of search slot if no exact match is needed but
2787  * instead the next or previous item should be returned.
2788  * When find_higher is true, the next higher item is returned, the next lower
2789  * otherwise.
2790  * When return_any and find_higher are both true, and no higher item is found,
2791  * return the next lower instead.
2792  * When return_any is true and find_higher is false, and no lower item is found,
2793  * return the next higher instead.
2794  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2795  * < 0 on error
2796  */
2797 int btrfs_search_slot_for_read(struct btrfs_root *root,
2798 			       struct btrfs_key *key, struct btrfs_path *p,
2799 			       int find_higher, int return_any)
2800 {
2801 	int ret;
2802 	struct extent_buffer *leaf;
2803 
2804 again:
2805 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2806 	if (ret <= 0)
2807 		return ret;
2808 	/*
2809 	 * a return value of 1 means the path is at the position where the
2810 	 * item should be inserted. Normally this is the next bigger item,
2811 	 * but in case the previous item is the last in a leaf, path points
2812 	 * to the first free slot in the previous leaf, i.e. at an invalid
2813 	 * item.
2814 	 */
2815 	leaf = p->nodes[0];
2816 
2817 	if (find_higher) {
2818 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2819 			ret = btrfs_next_leaf(root, p);
2820 			if (ret <= 0)
2821 				return ret;
2822 			if (!return_any)
2823 				return 1;
2824 			/*
2825 			 * no higher item found, return the next
2826 			 * lower instead
2827 			 */
2828 			return_any = 0;
2829 			find_higher = 0;
2830 			btrfs_release_path(p);
2831 			goto again;
2832 		}
2833 	} else {
2834 		if (p->slots[0] == 0) {
2835 			ret = btrfs_prev_leaf(root, p);
2836 			if (ret < 0)
2837 				return ret;
2838 			if (!ret) {
2839 				p->slots[0] = btrfs_header_nritems(leaf) - 1;
2840 				return 0;
2841 			}
2842 			if (!return_any)
2843 				return 1;
2844 			/*
2845 			 * no lower item found, return the next
2846 			 * higher instead
2847 			 */
2848 			return_any = 0;
2849 			find_higher = 1;
2850 			btrfs_release_path(p);
2851 			goto again;
2852 		} else {
2853 			--p->slots[0];
2854 		}
2855 	}
2856 	return 0;
2857 }
2858 
2859 /*
2860  * adjust the pointers going up the tree, starting at level
2861  * making sure the right key of each node is points to 'key'.
2862  * This is used after shifting pointers to the left, so it stops
2863  * fixing up pointers when a given leaf/node is not in slot 0 of the
2864  * higher levels
2865  *
2866  */
2867 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2868 			   struct btrfs_root *root, struct btrfs_path *path,
2869 			   struct btrfs_disk_key *key, int level)
2870 {
2871 	int i;
2872 	struct extent_buffer *t;
2873 
2874 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2875 		int tslot = path->slots[i];
2876 		if (!path->nodes[i])
2877 			break;
2878 		t = path->nodes[i];
2879 		tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2880 		btrfs_set_node_key(t, key, tslot);
2881 		btrfs_mark_buffer_dirty(path->nodes[i]);
2882 		if (tslot != 0)
2883 			break;
2884 	}
2885 }
2886 
2887 /*
2888  * update item key.
2889  *
2890  * This function isn't completely safe. It's the caller's responsibility
2891  * that the new key won't break the order
2892  */
2893 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2894 			     struct btrfs_root *root, struct btrfs_path *path,
2895 			     struct btrfs_key *new_key)
2896 {
2897 	struct btrfs_disk_key disk_key;
2898 	struct extent_buffer *eb;
2899 	int slot;
2900 
2901 	eb = path->nodes[0];
2902 	slot = path->slots[0];
2903 	if (slot > 0) {
2904 		btrfs_item_key(eb, &disk_key, slot - 1);
2905 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2906 	}
2907 	if (slot < btrfs_header_nritems(eb) - 1) {
2908 		btrfs_item_key(eb, &disk_key, slot + 1);
2909 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2910 	}
2911 
2912 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2913 	btrfs_set_item_key(eb, &disk_key, slot);
2914 	btrfs_mark_buffer_dirty(eb);
2915 	if (slot == 0)
2916 		fixup_low_keys(trans, root, path, &disk_key, 1);
2917 }
2918 
2919 /*
2920  * try to push data from one node into the next node left in the
2921  * tree.
2922  *
2923  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2924  * error, and > 0 if there was no room in the left hand block.
2925  */
2926 static int push_node_left(struct btrfs_trans_handle *trans,
2927 			  struct btrfs_root *root, struct extent_buffer *dst,
2928 			  struct extent_buffer *src, int empty)
2929 {
2930 	int push_items = 0;
2931 	int src_nritems;
2932 	int dst_nritems;
2933 	int ret = 0;
2934 
2935 	src_nritems = btrfs_header_nritems(src);
2936 	dst_nritems = btrfs_header_nritems(dst);
2937 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2938 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2939 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2940 
2941 	if (!empty && src_nritems <= 8)
2942 		return 1;
2943 
2944 	if (push_items <= 0)
2945 		return 1;
2946 
2947 	if (empty) {
2948 		push_items = min(src_nritems, push_items);
2949 		if (push_items < src_nritems) {
2950 			/* leave at least 8 pointers in the node if
2951 			 * we aren't going to empty it
2952 			 */
2953 			if (src_nritems - push_items < 8) {
2954 				if (push_items <= 8)
2955 					return 1;
2956 				push_items -= 8;
2957 			}
2958 		}
2959 	} else
2960 		push_items = min(src_nritems - 8, push_items);
2961 
2962 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2963 			     push_items);
2964 	copy_extent_buffer(dst, src,
2965 			   btrfs_node_key_ptr_offset(dst_nritems),
2966 			   btrfs_node_key_ptr_offset(0),
2967 			   push_items * sizeof(struct btrfs_key_ptr));
2968 
2969 	if (push_items < src_nritems) {
2970 		/*
2971 		 * don't call tree_mod_log_eb_move here, key removal was already
2972 		 * fully logged by tree_mod_log_eb_copy above.
2973 		 */
2974 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2975 				      btrfs_node_key_ptr_offset(push_items),
2976 				      (src_nritems - push_items) *
2977 				      sizeof(struct btrfs_key_ptr));
2978 	}
2979 	btrfs_set_header_nritems(src, src_nritems - push_items);
2980 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2981 	btrfs_mark_buffer_dirty(src);
2982 	btrfs_mark_buffer_dirty(dst);
2983 
2984 	return ret;
2985 }
2986 
2987 /*
2988  * try to push data from one node into the next node right in the
2989  * tree.
2990  *
2991  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2992  * error, and > 0 if there was no room in the right hand block.
2993  *
2994  * this will  only push up to 1/2 the contents of the left node over
2995  */
2996 static int balance_node_right(struct btrfs_trans_handle *trans,
2997 			      struct btrfs_root *root,
2998 			      struct extent_buffer *dst,
2999 			      struct extent_buffer *src)
3000 {
3001 	int push_items = 0;
3002 	int max_push;
3003 	int src_nritems;
3004 	int dst_nritems;
3005 	int ret = 0;
3006 
3007 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3008 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3009 
3010 	src_nritems = btrfs_header_nritems(src);
3011 	dst_nritems = btrfs_header_nritems(dst);
3012 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3013 	if (push_items <= 0)
3014 		return 1;
3015 
3016 	if (src_nritems < 4)
3017 		return 1;
3018 
3019 	max_push = src_nritems / 2 + 1;
3020 	/* don't try to empty the node */
3021 	if (max_push >= src_nritems)
3022 		return 1;
3023 
3024 	if (max_push < push_items)
3025 		push_items = max_push;
3026 
3027 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3028 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3029 				      btrfs_node_key_ptr_offset(0),
3030 				      (dst_nritems) *
3031 				      sizeof(struct btrfs_key_ptr));
3032 
3033 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3034 			     src_nritems - push_items, push_items);
3035 	copy_extent_buffer(dst, src,
3036 			   btrfs_node_key_ptr_offset(0),
3037 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3038 			   push_items * sizeof(struct btrfs_key_ptr));
3039 
3040 	btrfs_set_header_nritems(src, src_nritems - push_items);
3041 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3042 
3043 	btrfs_mark_buffer_dirty(src);
3044 	btrfs_mark_buffer_dirty(dst);
3045 
3046 	return ret;
3047 }
3048 
3049 /*
3050  * helper function to insert a new root level in the tree.
3051  * A new node is allocated, and a single item is inserted to
3052  * point to the existing root
3053  *
3054  * returns zero on success or < 0 on failure.
3055  */
3056 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3057 			   struct btrfs_root *root,
3058 			   struct btrfs_path *path, int level)
3059 {
3060 	u64 lower_gen;
3061 	struct extent_buffer *lower;
3062 	struct extent_buffer *c;
3063 	struct extent_buffer *old;
3064 	struct btrfs_disk_key lower_key;
3065 
3066 	BUG_ON(path->nodes[level]);
3067 	BUG_ON(path->nodes[level-1] != root->node);
3068 
3069 	lower = path->nodes[level-1];
3070 	if (level == 1)
3071 		btrfs_item_key(lower, &lower_key, 0);
3072 	else
3073 		btrfs_node_key(lower, &lower_key, 0);
3074 
3075 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3076 				   root->root_key.objectid, &lower_key,
3077 				   level, root->node->start, 0);
3078 	if (IS_ERR(c))
3079 		return PTR_ERR(c);
3080 
3081 	root_add_used(root, root->nodesize);
3082 
3083 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3084 	btrfs_set_header_nritems(c, 1);
3085 	btrfs_set_header_level(c, level);
3086 	btrfs_set_header_bytenr(c, c->start);
3087 	btrfs_set_header_generation(c, trans->transid);
3088 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3089 	btrfs_set_header_owner(c, root->root_key.objectid);
3090 
3091 	write_extent_buffer(c, root->fs_info->fsid,
3092 			    (unsigned long)btrfs_header_fsid(c),
3093 			    BTRFS_FSID_SIZE);
3094 
3095 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3096 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
3097 			    BTRFS_UUID_SIZE);
3098 
3099 	btrfs_set_node_key(c, &lower_key, 0);
3100 	btrfs_set_node_blockptr(c, 0, lower->start);
3101 	lower_gen = btrfs_header_generation(lower);
3102 	WARN_ON(lower_gen != trans->transid);
3103 
3104 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3105 
3106 	btrfs_mark_buffer_dirty(c);
3107 
3108 	old = root->node;
3109 	tree_mod_log_set_root_pointer(root, c);
3110 	rcu_assign_pointer(root->node, c);
3111 
3112 	/* the super has an extra ref to root->node */
3113 	free_extent_buffer(old);
3114 
3115 	add_root_to_dirty_list(root);
3116 	extent_buffer_get(c);
3117 	path->nodes[level] = c;
3118 	path->locks[level] = BTRFS_WRITE_LOCK;
3119 	path->slots[level] = 0;
3120 	return 0;
3121 }
3122 
3123 /*
3124  * worker function to insert a single pointer in a node.
3125  * the node should have enough room for the pointer already
3126  *
3127  * slot and level indicate where you want the key to go, and
3128  * blocknr is the block the key points to.
3129  */
3130 static void insert_ptr(struct btrfs_trans_handle *trans,
3131 		       struct btrfs_root *root, struct btrfs_path *path,
3132 		       struct btrfs_disk_key *key, u64 bytenr,
3133 		       int slot, int level)
3134 {
3135 	struct extent_buffer *lower;
3136 	int nritems;
3137 	int ret;
3138 
3139 	BUG_ON(!path->nodes[level]);
3140 	btrfs_assert_tree_locked(path->nodes[level]);
3141 	lower = path->nodes[level];
3142 	nritems = btrfs_header_nritems(lower);
3143 	BUG_ON(slot > nritems);
3144 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3145 	if (slot != nritems) {
3146 		if (level)
3147 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3148 					     slot, nritems - slot);
3149 		memmove_extent_buffer(lower,
3150 			      btrfs_node_key_ptr_offset(slot + 1),
3151 			      btrfs_node_key_ptr_offset(slot),
3152 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3153 	}
3154 	if (level) {
3155 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3156 					      MOD_LOG_KEY_ADD);
3157 		BUG_ON(ret < 0);
3158 	}
3159 	btrfs_set_node_key(lower, key, slot);
3160 	btrfs_set_node_blockptr(lower, slot, bytenr);
3161 	WARN_ON(trans->transid == 0);
3162 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3163 	btrfs_set_header_nritems(lower, nritems + 1);
3164 	btrfs_mark_buffer_dirty(lower);
3165 }
3166 
3167 /*
3168  * split the node at the specified level in path in two.
3169  * The path is corrected to point to the appropriate node after the split
3170  *
3171  * Before splitting this tries to make some room in the node by pushing
3172  * left and right, if either one works, it returns right away.
3173  *
3174  * returns 0 on success and < 0 on failure
3175  */
3176 static noinline int split_node(struct btrfs_trans_handle *trans,
3177 			       struct btrfs_root *root,
3178 			       struct btrfs_path *path, int level)
3179 {
3180 	struct extent_buffer *c;
3181 	struct extent_buffer *split;
3182 	struct btrfs_disk_key disk_key;
3183 	int mid;
3184 	int ret;
3185 	u32 c_nritems;
3186 
3187 	c = path->nodes[level];
3188 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3189 	if (c == root->node) {
3190 		/* trying to split the root, lets make a new one */
3191 		ret = insert_new_root(trans, root, path, level + 1);
3192 		if (ret)
3193 			return ret;
3194 	} else {
3195 		ret = push_nodes_for_insert(trans, root, path, level);
3196 		c = path->nodes[level];
3197 		if (!ret && btrfs_header_nritems(c) <
3198 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3199 			return 0;
3200 		if (ret < 0)
3201 			return ret;
3202 	}
3203 
3204 	c_nritems = btrfs_header_nritems(c);
3205 	mid = (c_nritems + 1) / 2;
3206 	btrfs_node_key(c, &disk_key, mid);
3207 
3208 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3209 					root->root_key.objectid,
3210 					&disk_key, level, c->start, 0);
3211 	if (IS_ERR(split))
3212 		return PTR_ERR(split);
3213 
3214 	root_add_used(root, root->nodesize);
3215 
3216 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3217 	btrfs_set_header_level(split, btrfs_header_level(c));
3218 	btrfs_set_header_bytenr(split, split->start);
3219 	btrfs_set_header_generation(split, trans->transid);
3220 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3221 	btrfs_set_header_owner(split, root->root_key.objectid);
3222 	write_extent_buffer(split, root->fs_info->fsid,
3223 			    (unsigned long)btrfs_header_fsid(split),
3224 			    BTRFS_FSID_SIZE);
3225 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3226 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
3227 			    BTRFS_UUID_SIZE);
3228 
3229 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3230 	copy_extent_buffer(split, c,
3231 			   btrfs_node_key_ptr_offset(0),
3232 			   btrfs_node_key_ptr_offset(mid),
3233 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3234 	btrfs_set_header_nritems(split, c_nritems - mid);
3235 	btrfs_set_header_nritems(c, mid);
3236 	ret = 0;
3237 
3238 	btrfs_mark_buffer_dirty(c);
3239 	btrfs_mark_buffer_dirty(split);
3240 
3241 	insert_ptr(trans, root, path, &disk_key, split->start,
3242 		   path->slots[level + 1] + 1, level + 1);
3243 
3244 	if (path->slots[level] >= mid) {
3245 		path->slots[level] -= mid;
3246 		btrfs_tree_unlock(c);
3247 		free_extent_buffer(c);
3248 		path->nodes[level] = split;
3249 		path->slots[level + 1] += 1;
3250 	} else {
3251 		btrfs_tree_unlock(split);
3252 		free_extent_buffer(split);
3253 	}
3254 	return ret;
3255 }
3256 
3257 /*
3258  * how many bytes are required to store the items in a leaf.  start
3259  * and nr indicate which items in the leaf to check.  This totals up the
3260  * space used both by the item structs and the item data
3261  */
3262 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3263 {
3264 	int data_len;
3265 	int nritems = btrfs_header_nritems(l);
3266 	int end = min(nritems, start + nr) - 1;
3267 
3268 	if (!nr)
3269 		return 0;
3270 	data_len = btrfs_item_end_nr(l, start);
3271 	data_len = data_len - btrfs_item_offset_nr(l, end);
3272 	data_len += sizeof(struct btrfs_item) * nr;
3273 	WARN_ON(data_len < 0);
3274 	return data_len;
3275 }
3276 
3277 /*
3278  * The space between the end of the leaf items and
3279  * the start of the leaf data.  IOW, how much room
3280  * the leaf has left for both items and data
3281  */
3282 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3283 				   struct extent_buffer *leaf)
3284 {
3285 	int nritems = btrfs_header_nritems(leaf);
3286 	int ret;
3287 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3288 	if (ret < 0) {
3289 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3290 		       "used %d nritems %d\n",
3291 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3292 		       leaf_space_used(leaf, 0, nritems), nritems);
3293 	}
3294 	return ret;
3295 }
3296 
3297 /*
3298  * min slot controls the lowest index we're willing to push to the
3299  * right.  We'll push up to and including min_slot, but no lower
3300  */
3301 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3302 				      struct btrfs_root *root,
3303 				      struct btrfs_path *path,
3304 				      int data_size, int empty,
3305 				      struct extent_buffer *right,
3306 				      int free_space, u32 left_nritems,
3307 				      u32 min_slot)
3308 {
3309 	struct extent_buffer *left = path->nodes[0];
3310 	struct extent_buffer *upper = path->nodes[1];
3311 	struct btrfs_map_token token;
3312 	struct btrfs_disk_key disk_key;
3313 	int slot;
3314 	u32 i;
3315 	int push_space = 0;
3316 	int push_items = 0;
3317 	struct btrfs_item *item;
3318 	u32 nr;
3319 	u32 right_nritems;
3320 	u32 data_end;
3321 	u32 this_item_size;
3322 
3323 	btrfs_init_map_token(&token);
3324 
3325 	if (empty)
3326 		nr = 0;
3327 	else
3328 		nr = max_t(u32, 1, min_slot);
3329 
3330 	if (path->slots[0] >= left_nritems)
3331 		push_space += data_size;
3332 
3333 	slot = path->slots[1];
3334 	i = left_nritems - 1;
3335 	while (i >= nr) {
3336 		item = btrfs_item_nr(left, i);
3337 
3338 		if (!empty && push_items > 0) {
3339 			if (path->slots[0] > i)
3340 				break;
3341 			if (path->slots[0] == i) {
3342 				int space = btrfs_leaf_free_space(root, left);
3343 				if (space + push_space * 2 > free_space)
3344 					break;
3345 			}
3346 		}
3347 
3348 		if (path->slots[0] == i)
3349 			push_space += data_size;
3350 
3351 		this_item_size = btrfs_item_size(left, item);
3352 		if (this_item_size + sizeof(*item) + push_space > free_space)
3353 			break;
3354 
3355 		push_items++;
3356 		push_space += this_item_size + sizeof(*item);
3357 		if (i == 0)
3358 			break;
3359 		i--;
3360 	}
3361 
3362 	if (push_items == 0)
3363 		goto out_unlock;
3364 
3365 	if (!empty && push_items == left_nritems)
3366 		WARN_ON(1);
3367 
3368 	/* push left to right */
3369 	right_nritems = btrfs_header_nritems(right);
3370 
3371 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3372 	push_space -= leaf_data_end(root, left);
3373 
3374 	/* make room in the right data area */
3375 	data_end = leaf_data_end(root, right);
3376 	memmove_extent_buffer(right,
3377 			      btrfs_leaf_data(right) + data_end - push_space,
3378 			      btrfs_leaf_data(right) + data_end,
3379 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3380 
3381 	/* copy from the left data area */
3382 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3383 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3384 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3385 		     push_space);
3386 
3387 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3388 			      btrfs_item_nr_offset(0),
3389 			      right_nritems * sizeof(struct btrfs_item));
3390 
3391 	/* copy the items from left to right */
3392 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3393 		   btrfs_item_nr_offset(left_nritems - push_items),
3394 		   push_items * sizeof(struct btrfs_item));
3395 
3396 	/* update the item pointers */
3397 	right_nritems += push_items;
3398 	btrfs_set_header_nritems(right, right_nritems);
3399 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3400 	for (i = 0; i < right_nritems; i++) {
3401 		item = btrfs_item_nr(right, i);
3402 		push_space -= btrfs_token_item_size(right, item, &token);
3403 		btrfs_set_token_item_offset(right, item, push_space, &token);
3404 	}
3405 
3406 	left_nritems -= push_items;
3407 	btrfs_set_header_nritems(left, left_nritems);
3408 
3409 	if (left_nritems)
3410 		btrfs_mark_buffer_dirty(left);
3411 	else
3412 		clean_tree_block(trans, root, left);
3413 
3414 	btrfs_mark_buffer_dirty(right);
3415 
3416 	btrfs_item_key(right, &disk_key, 0);
3417 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3418 	btrfs_mark_buffer_dirty(upper);
3419 
3420 	/* then fixup the leaf pointer in the path */
3421 	if (path->slots[0] >= left_nritems) {
3422 		path->slots[0] -= left_nritems;
3423 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3424 			clean_tree_block(trans, root, path->nodes[0]);
3425 		btrfs_tree_unlock(path->nodes[0]);
3426 		free_extent_buffer(path->nodes[0]);
3427 		path->nodes[0] = right;
3428 		path->slots[1] += 1;
3429 	} else {
3430 		btrfs_tree_unlock(right);
3431 		free_extent_buffer(right);
3432 	}
3433 	return 0;
3434 
3435 out_unlock:
3436 	btrfs_tree_unlock(right);
3437 	free_extent_buffer(right);
3438 	return 1;
3439 }
3440 
3441 /*
3442  * push some data in the path leaf to the right, trying to free up at
3443  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3444  *
3445  * returns 1 if the push failed because the other node didn't have enough
3446  * room, 0 if everything worked out and < 0 if there were major errors.
3447  *
3448  * this will push starting from min_slot to the end of the leaf.  It won't
3449  * push any slot lower than min_slot
3450  */
3451 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3452 			   *root, struct btrfs_path *path,
3453 			   int min_data_size, int data_size,
3454 			   int empty, u32 min_slot)
3455 {
3456 	struct extent_buffer *left = path->nodes[0];
3457 	struct extent_buffer *right;
3458 	struct extent_buffer *upper;
3459 	int slot;
3460 	int free_space;
3461 	u32 left_nritems;
3462 	int ret;
3463 
3464 	if (!path->nodes[1])
3465 		return 1;
3466 
3467 	slot = path->slots[1];
3468 	upper = path->nodes[1];
3469 	if (slot >= btrfs_header_nritems(upper) - 1)
3470 		return 1;
3471 
3472 	btrfs_assert_tree_locked(path->nodes[1]);
3473 
3474 	right = read_node_slot(root, upper, slot + 1);
3475 	if (right == NULL)
3476 		return 1;
3477 
3478 	btrfs_tree_lock(right);
3479 	btrfs_set_lock_blocking(right);
3480 
3481 	free_space = btrfs_leaf_free_space(root, right);
3482 	if (free_space < data_size)
3483 		goto out_unlock;
3484 
3485 	/* cow and double check */
3486 	ret = btrfs_cow_block(trans, root, right, upper,
3487 			      slot + 1, &right);
3488 	if (ret)
3489 		goto out_unlock;
3490 
3491 	free_space = btrfs_leaf_free_space(root, right);
3492 	if (free_space < data_size)
3493 		goto out_unlock;
3494 
3495 	left_nritems = btrfs_header_nritems(left);
3496 	if (left_nritems == 0)
3497 		goto out_unlock;
3498 
3499 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3500 				right, free_space, left_nritems, min_slot);
3501 out_unlock:
3502 	btrfs_tree_unlock(right);
3503 	free_extent_buffer(right);
3504 	return 1;
3505 }
3506 
3507 /*
3508  * push some data in the path leaf to the left, trying to free up at
3509  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3510  *
3511  * max_slot can put a limit on how far into the leaf we'll push items.  The
3512  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3513  * items
3514  */
3515 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3516 				     struct btrfs_root *root,
3517 				     struct btrfs_path *path, int data_size,
3518 				     int empty, struct extent_buffer *left,
3519 				     int free_space, u32 right_nritems,
3520 				     u32 max_slot)
3521 {
3522 	struct btrfs_disk_key disk_key;
3523 	struct extent_buffer *right = path->nodes[0];
3524 	int i;
3525 	int push_space = 0;
3526 	int push_items = 0;
3527 	struct btrfs_item *item;
3528 	u32 old_left_nritems;
3529 	u32 nr;
3530 	int ret = 0;
3531 	u32 this_item_size;
3532 	u32 old_left_item_size;
3533 	struct btrfs_map_token token;
3534 
3535 	btrfs_init_map_token(&token);
3536 
3537 	if (empty)
3538 		nr = min(right_nritems, max_slot);
3539 	else
3540 		nr = min(right_nritems - 1, max_slot);
3541 
3542 	for (i = 0; i < nr; i++) {
3543 		item = btrfs_item_nr(right, i);
3544 
3545 		if (!empty && push_items > 0) {
3546 			if (path->slots[0] < i)
3547 				break;
3548 			if (path->slots[0] == i) {
3549 				int space = btrfs_leaf_free_space(root, right);
3550 				if (space + push_space * 2 > free_space)
3551 					break;
3552 			}
3553 		}
3554 
3555 		if (path->slots[0] == i)
3556 			push_space += data_size;
3557 
3558 		this_item_size = btrfs_item_size(right, item);
3559 		if (this_item_size + sizeof(*item) + push_space > free_space)
3560 			break;
3561 
3562 		push_items++;
3563 		push_space += this_item_size + sizeof(*item);
3564 	}
3565 
3566 	if (push_items == 0) {
3567 		ret = 1;
3568 		goto out;
3569 	}
3570 	if (!empty && push_items == btrfs_header_nritems(right))
3571 		WARN_ON(1);
3572 
3573 	/* push data from right to left */
3574 	copy_extent_buffer(left, right,
3575 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3576 			   btrfs_item_nr_offset(0),
3577 			   push_items * sizeof(struct btrfs_item));
3578 
3579 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3580 		     btrfs_item_offset_nr(right, push_items - 1);
3581 
3582 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3583 		     leaf_data_end(root, left) - push_space,
3584 		     btrfs_leaf_data(right) +
3585 		     btrfs_item_offset_nr(right, push_items - 1),
3586 		     push_space);
3587 	old_left_nritems = btrfs_header_nritems(left);
3588 	BUG_ON(old_left_nritems <= 0);
3589 
3590 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3591 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3592 		u32 ioff;
3593 
3594 		item = btrfs_item_nr(left, i);
3595 
3596 		ioff = btrfs_token_item_offset(left, item, &token);
3597 		btrfs_set_token_item_offset(left, item,
3598 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3599 		      &token);
3600 	}
3601 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3602 
3603 	/* fixup right node */
3604 	if (push_items > right_nritems) {
3605 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
3606 		       right_nritems);
3607 		WARN_ON(1);
3608 	}
3609 
3610 	if (push_items < right_nritems) {
3611 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3612 						  leaf_data_end(root, right);
3613 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3614 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3615 				      btrfs_leaf_data(right) +
3616 				      leaf_data_end(root, right), push_space);
3617 
3618 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3619 			      btrfs_item_nr_offset(push_items),
3620 			     (btrfs_header_nritems(right) - push_items) *
3621 			     sizeof(struct btrfs_item));
3622 	}
3623 	right_nritems -= push_items;
3624 	btrfs_set_header_nritems(right, right_nritems);
3625 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3626 	for (i = 0; i < right_nritems; i++) {
3627 		item = btrfs_item_nr(right, i);
3628 
3629 		push_space = push_space - btrfs_token_item_size(right,
3630 								item, &token);
3631 		btrfs_set_token_item_offset(right, item, push_space, &token);
3632 	}
3633 
3634 	btrfs_mark_buffer_dirty(left);
3635 	if (right_nritems)
3636 		btrfs_mark_buffer_dirty(right);
3637 	else
3638 		clean_tree_block(trans, root, right);
3639 
3640 	btrfs_item_key(right, &disk_key, 0);
3641 	fixup_low_keys(trans, root, path, &disk_key, 1);
3642 
3643 	/* then fixup the leaf pointer in the path */
3644 	if (path->slots[0] < push_items) {
3645 		path->slots[0] += old_left_nritems;
3646 		btrfs_tree_unlock(path->nodes[0]);
3647 		free_extent_buffer(path->nodes[0]);
3648 		path->nodes[0] = left;
3649 		path->slots[1] -= 1;
3650 	} else {
3651 		btrfs_tree_unlock(left);
3652 		free_extent_buffer(left);
3653 		path->slots[0] -= push_items;
3654 	}
3655 	BUG_ON(path->slots[0] < 0);
3656 	return ret;
3657 out:
3658 	btrfs_tree_unlock(left);
3659 	free_extent_buffer(left);
3660 	return ret;
3661 }
3662 
3663 /*
3664  * push some data in the path leaf to the left, trying to free up at
3665  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3666  *
3667  * max_slot can put a limit on how far into the leaf we'll push items.  The
3668  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3669  * items
3670  */
3671 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3672 			  *root, struct btrfs_path *path, int min_data_size,
3673 			  int data_size, int empty, u32 max_slot)
3674 {
3675 	struct extent_buffer *right = path->nodes[0];
3676 	struct extent_buffer *left;
3677 	int slot;
3678 	int free_space;
3679 	u32 right_nritems;
3680 	int ret = 0;
3681 
3682 	slot = path->slots[1];
3683 	if (slot == 0)
3684 		return 1;
3685 	if (!path->nodes[1])
3686 		return 1;
3687 
3688 	right_nritems = btrfs_header_nritems(right);
3689 	if (right_nritems == 0)
3690 		return 1;
3691 
3692 	btrfs_assert_tree_locked(path->nodes[1]);
3693 
3694 	left = read_node_slot(root, path->nodes[1], slot - 1);
3695 	if (left == NULL)
3696 		return 1;
3697 
3698 	btrfs_tree_lock(left);
3699 	btrfs_set_lock_blocking(left);
3700 
3701 	free_space = btrfs_leaf_free_space(root, left);
3702 	if (free_space < data_size) {
3703 		ret = 1;
3704 		goto out;
3705 	}
3706 
3707 	/* cow and double check */
3708 	ret = btrfs_cow_block(trans, root, left,
3709 			      path->nodes[1], slot - 1, &left);
3710 	if (ret) {
3711 		/* we hit -ENOSPC, but it isn't fatal here */
3712 		if (ret == -ENOSPC)
3713 			ret = 1;
3714 		goto out;
3715 	}
3716 
3717 	free_space = btrfs_leaf_free_space(root, left);
3718 	if (free_space < data_size) {
3719 		ret = 1;
3720 		goto out;
3721 	}
3722 
3723 	return __push_leaf_left(trans, root, path, min_data_size,
3724 			       empty, left, free_space, right_nritems,
3725 			       max_slot);
3726 out:
3727 	btrfs_tree_unlock(left);
3728 	free_extent_buffer(left);
3729 	return ret;
3730 }
3731 
3732 /*
3733  * split the path's leaf in two, making sure there is at least data_size
3734  * available for the resulting leaf level of the path.
3735  */
3736 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3737 				    struct btrfs_root *root,
3738 				    struct btrfs_path *path,
3739 				    struct extent_buffer *l,
3740 				    struct extent_buffer *right,
3741 				    int slot, int mid, int nritems)
3742 {
3743 	int data_copy_size;
3744 	int rt_data_off;
3745 	int i;
3746 	struct btrfs_disk_key disk_key;
3747 	struct btrfs_map_token token;
3748 
3749 	btrfs_init_map_token(&token);
3750 
3751 	nritems = nritems - mid;
3752 	btrfs_set_header_nritems(right, nritems);
3753 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3754 
3755 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3756 			   btrfs_item_nr_offset(mid),
3757 			   nritems * sizeof(struct btrfs_item));
3758 
3759 	copy_extent_buffer(right, l,
3760 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3761 		     data_copy_size, btrfs_leaf_data(l) +
3762 		     leaf_data_end(root, l), data_copy_size);
3763 
3764 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3765 		      btrfs_item_end_nr(l, mid);
3766 
3767 	for (i = 0; i < nritems; i++) {
3768 		struct btrfs_item *item = btrfs_item_nr(right, i);
3769 		u32 ioff;
3770 
3771 		ioff = btrfs_token_item_offset(right, item, &token);
3772 		btrfs_set_token_item_offset(right, item,
3773 					    ioff + rt_data_off, &token);
3774 	}
3775 
3776 	btrfs_set_header_nritems(l, mid);
3777 	btrfs_item_key(right, &disk_key, 0);
3778 	insert_ptr(trans, root, path, &disk_key, right->start,
3779 		   path->slots[1] + 1, 1);
3780 
3781 	btrfs_mark_buffer_dirty(right);
3782 	btrfs_mark_buffer_dirty(l);
3783 	BUG_ON(path->slots[0] != slot);
3784 
3785 	if (mid <= slot) {
3786 		btrfs_tree_unlock(path->nodes[0]);
3787 		free_extent_buffer(path->nodes[0]);
3788 		path->nodes[0] = right;
3789 		path->slots[0] -= mid;
3790 		path->slots[1] += 1;
3791 	} else {
3792 		btrfs_tree_unlock(right);
3793 		free_extent_buffer(right);
3794 	}
3795 
3796 	BUG_ON(path->slots[0] < 0);
3797 }
3798 
3799 /*
3800  * double splits happen when we need to insert a big item in the middle
3801  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3802  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3803  *          A                 B                 C
3804  *
3805  * We avoid this by trying to push the items on either side of our target
3806  * into the adjacent leaves.  If all goes well we can avoid the double split
3807  * completely.
3808  */
3809 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3810 					  struct btrfs_root *root,
3811 					  struct btrfs_path *path,
3812 					  int data_size)
3813 {
3814 	int ret;
3815 	int progress = 0;
3816 	int slot;
3817 	u32 nritems;
3818 
3819 	slot = path->slots[0];
3820 
3821 	/*
3822 	 * try to push all the items after our slot into the
3823 	 * right leaf
3824 	 */
3825 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3826 	if (ret < 0)
3827 		return ret;
3828 
3829 	if (ret == 0)
3830 		progress++;
3831 
3832 	nritems = btrfs_header_nritems(path->nodes[0]);
3833 	/*
3834 	 * our goal is to get our slot at the start or end of a leaf.  If
3835 	 * we've done so we're done
3836 	 */
3837 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3838 		return 0;
3839 
3840 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3841 		return 0;
3842 
3843 	/* try to push all the items before our slot into the next leaf */
3844 	slot = path->slots[0];
3845 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3846 	if (ret < 0)
3847 		return ret;
3848 
3849 	if (ret == 0)
3850 		progress++;
3851 
3852 	if (progress)
3853 		return 0;
3854 	return 1;
3855 }
3856 
3857 /*
3858  * split the path's leaf in two, making sure there is at least data_size
3859  * available for the resulting leaf level of the path.
3860  *
3861  * returns 0 if all went well and < 0 on failure.
3862  */
3863 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3864 			       struct btrfs_root *root,
3865 			       struct btrfs_key *ins_key,
3866 			       struct btrfs_path *path, int data_size,
3867 			       int extend)
3868 {
3869 	struct btrfs_disk_key disk_key;
3870 	struct extent_buffer *l;
3871 	u32 nritems;
3872 	int mid;
3873 	int slot;
3874 	struct extent_buffer *right;
3875 	int ret = 0;
3876 	int wret;
3877 	int split;
3878 	int num_doubles = 0;
3879 	int tried_avoid_double = 0;
3880 
3881 	l = path->nodes[0];
3882 	slot = path->slots[0];
3883 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3884 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3885 		return -EOVERFLOW;
3886 
3887 	/* first try to make some room by pushing left and right */
3888 	if (data_size) {
3889 		wret = push_leaf_right(trans, root, path, data_size,
3890 				       data_size, 0, 0);
3891 		if (wret < 0)
3892 			return wret;
3893 		if (wret) {
3894 			wret = push_leaf_left(trans, root, path, data_size,
3895 					      data_size, 0, (u32)-1);
3896 			if (wret < 0)
3897 				return wret;
3898 		}
3899 		l = path->nodes[0];
3900 
3901 		/* did the pushes work? */
3902 		if (btrfs_leaf_free_space(root, l) >= data_size)
3903 			return 0;
3904 	}
3905 
3906 	if (!path->nodes[1]) {
3907 		ret = insert_new_root(trans, root, path, 1);
3908 		if (ret)
3909 			return ret;
3910 	}
3911 again:
3912 	split = 1;
3913 	l = path->nodes[0];
3914 	slot = path->slots[0];
3915 	nritems = btrfs_header_nritems(l);
3916 	mid = (nritems + 1) / 2;
3917 
3918 	if (mid <= slot) {
3919 		if (nritems == 1 ||
3920 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3921 			BTRFS_LEAF_DATA_SIZE(root)) {
3922 			if (slot >= nritems) {
3923 				split = 0;
3924 			} else {
3925 				mid = slot;
3926 				if (mid != nritems &&
3927 				    leaf_space_used(l, mid, nritems - mid) +
3928 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3929 					if (data_size && !tried_avoid_double)
3930 						goto push_for_double;
3931 					split = 2;
3932 				}
3933 			}
3934 		}
3935 	} else {
3936 		if (leaf_space_used(l, 0, mid) + data_size >
3937 			BTRFS_LEAF_DATA_SIZE(root)) {
3938 			if (!extend && data_size && slot == 0) {
3939 				split = 0;
3940 			} else if ((extend || !data_size) && slot == 0) {
3941 				mid = 1;
3942 			} else {
3943 				mid = slot;
3944 				if (mid != nritems &&
3945 				    leaf_space_used(l, mid, nritems - mid) +
3946 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3947 					if (data_size && !tried_avoid_double)
3948 						goto push_for_double;
3949 					split = 2 ;
3950 				}
3951 			}
3952 		}
3953 	}
3954 
3955 	if (split == 0)
3956 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3957 	else
3958 		btrfs_item_key(l, &disk_key, mid);
3959 
3960 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3961 					root->root_key.objectid,
3962 					&disk_key, 0, l->start, 0);
3963 	if (IS_ERR(right))
3964 		return PTR_ERR(right);
3965 
3966 	root_add_used(root, root->leafsize);
3967 
3968 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3969 	btrfs_set_header_bytenr(right, right->start);
3970 	btrfs_set_header_generation(right, trans->transid);
3971 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3972 	btrfs_set_header_owner(right, root->root_key.objectid);
3973 	btrfs_set_header_level(right, 0);
3974 	write_extent_buffer(right, root->fs_info->fsid,
3975 			    (unsigned long)btrfs_header_fsid(right),
3976 			    BTRFS_FSID_SIZE);
3977 
3978 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3979 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
3980 			    BTRFS_UUID_SIZE);
3981 
3982 	if (split == 0) {
3983 		if (mid <= slot) {
3984 			btrfs_set_header_nritems(right, 0);
3985 			insert_ptr(trans, root, path, &disk_key, right->start,
3986 				   path->slots[1] + 1, 1);
3987 			btrfs_tree_unlock(path->nodes[0]);
3988 			free_extent_buffer(path->nodes[0]);
3989 			path->nodes[0] = right;
3990 			path->slots[0] = 0;
3991 			path->slots[1] += 1;
3992 		} else {
3993 			btrfs_set_header_nritems(right, 0);
3994 			insert_ptr(trans, root, path, &disk_key, right->start,
3995 					  path->slots[1], 1);
3996 			btrfs_tree_unlock(path->nodes[0]);
3997 			free_extent_buffer(path->nodes[0]);
3998 			path->nodes[0] = right;
3999 			path->slots[0] = 0;
4000 			if (path->slots[1] == 0)
4001 				fixup_low_keys(trans, root, path,
4002 					       &disk_key, 1);
4003 		}
4004 		btrfs_mark_buffer_dirty(right);
4005 		return ret;
4006 	}
4007 
4008 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4009 
4010 	if (split == 2) {
4011 		BUG_ON(num_doubles != 0);
4012 		num_doubles++;
4013 		goto again;
4014 	}
4015 
4016 	return 0;
4017 
4018 push_for_double:
4019 	push_for_double_split(trans, root, path, data_size);
4020 	tried_avoid_double = 1;
4021 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4022 		return 0;
4023 	goto again;
4024 }
4025 
4026 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4027 					 struct btrfs_root *root,
4028 					 struct btrfs_path *path, int ins_len)
4029 {
4030 	struct btrfs_key key;
4031 	struct extent_buffer *leaf;
4032 	struct btrfs_file_extent_item *fi;
4033 	u64 extent_len = 0;
4034 	u32 item_size;
4035 	int ret;
4036 
4037 	leaf = path->nodes[0];
4038 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4039 
4040 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4041 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4042 
4043 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4044 		return 0;
4045 
4046 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4047 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4048 		fi = btrfs_item_ptr(leaf, path->slots[0],
4049 				    struct btrfs_file_extent_item);
4050 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4051 	}
4052 	btrfs_release_path(path);
4053 
4054 	path->keep_locks = 1;
4055 	path->search_for_split = 1;
4056 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4057 	path->search_for_split = 0;
4058 	if (ret < 0)
4059 		goto err;
4060 
4061 	ret = -EAGAIN;
4062 	leaf = path->nodes[0];
4063 	/* if our item isn't there or got smaller, return now */
4064 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4065 		goto err;
4066 
4067 	/* the leaf has  changed, it now has room.  return now */
4068 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4069 		goto err;
4070 
4071 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4072 		fi = btrfs_item_ptr(leaf, path->slots[0],
4073 				    struct btrfs_file_extent_item);
4074 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4075 			goto err;
4076 	}
4077 
4078 	btrfs_set_path_blocking(path);
4079 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4080 	if (ret)
4081 		goto err;
4082 
4083 	path->keep_locks = 0;
4084 	btrfs_unlock_up_safe(path, 1);
4085 	return 0;
4086 err:
4087 	path->keep_locks = 0;
4088 	return ret;
4089 }
4090 
4091 static noinline int split_item(struct btrfs_trans_handle *trans,
4092 			       struct btrfs_root *root,
4093 			       struct btrfs_path *path,
4094 			       struct btrfs_key *new_key,
4095 			       unsigned long split_offset)
4096 {
4097 	struct extent_buffer *leaf;
4098 	struct btrfs_item *item;
4099 	struct btrfs_item *new_item;
4100 	int slot;
4101 	char *buf;
4102 	u32 nritems;
4103 	u32 item_size;
4104 	u32 orig_offset;
4105 	struct btrfs_disk_key disk_key;
4106 
4107 	leaf = path->nodes[0];
4108 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4109 
4110 	btrfs_set_path_blocking(path);
4111 
4112 	item = btrfs_item_nr(leaf, path->slots[0]);
4113 	orig_offset = btrfs_item_offset(leaf, item);
4114 	item_size = btrfs_item_size(leaf, item);
4115 
4116 	buf = kmalloc(item_size, GFP_NOFS);
4117 	if (!buf)
4118 		return -ENOMEM;
4119 
4120 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4121 			    path->slots[0]), item_size);
4122 
4123 	slot = path->slots[0] + 1;
4124 	nritems = btrfs_header_nritems(leaf);
4125 	if (slot != nritems) {
4126 		/* shift the items */
4127 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4128 				btrfs_item_nr_offset(slot),
4129 				(nritems - slot) * sizeof(struct btrfs_item));
4130 	}
4131 
4132 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4133 	btrfs_set_item_key(leaf, &disk_key, slot);
4134 
4135 	new_item = btrfs_item_nr(leaf, slot);
4136 
4137 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4138 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4139 
4140 	btrfs_set_item_offset(leaf, item,
4141 			      orig_offset + item_size - split_offset);
4142 	btrfs_set_item_size(leaf, item, split_offset);
4143 
4144 	btrfs_set_header_nritems(leaf, nritems + 1);
4145 
4146 	/* write the data for the start of the original item */
4147 	write_extent_buffer(leaf, buf,
4148 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4149 			    split_offset);
4150 
4151 	/* write the data for the new item */
4152 	write_extent_buffer(leaf, buf + split_offset,
4153 			    btrfs_item_ptr_offset(leaf, slot),
4154 			    item_size - split_offset);
4155 	btrfs_mark_buffer_dirty(leaf);
4156 
4157 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4158 	kfree(buf);
4159 	return 0;
4160 }
4161 
4162 /*
4163  * This function splits a single item into two items,
4164  * giving 'new_key' to the new item and splitting the
4165  * old one at split_offset (from the start of the item).
4166  *
4167  * The path may be released by this operation.  After
4168  * the split, the path is pointing to the old item.  The
4169  * new item is going to be in the same node as the old one.
4170  *
4171  * Note, the item being split must be smaller enough to live alone on
4172  * a tree block with room for one extra struct btrfs_item
4173  *
4174  * This allows us to split the item in place, keeping a lock on the
4175  * leaf the entire time.
4176  */
4177 int btrfs_split_item(struct btrfs_trans_handle *trans,
4178 		     struct btrfs_root *root,
4179 		     struct btrfs_path *path,
4180 		     struct btrfs_key *new_key,
4181 		     unsigned long split_offset)
4182 {
4183 	int ret;
4184 	ret = setup_leaf_for_split(trans, root, path,
4185 				   sizeof(struct btrfs_item));
4186 	if (ret)
4187 		return ret;
4188 
4189 	ret = split_item(trans, root, path, new_key, split_offset);
4190 	return ret;
4191 }
4192 
4193 /*
4194  * This function duplicate a item, giving 'new_key' to the new item.
4195  * It guarantees both items live in the same tree leaf and the new item
4196  * is contiguous with the original item.
4197  *
4198  * This allows us to split file extent in place, keeping a lock on the
4199  * leaf the entire time.
4200  */
4201 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4202 			 struct btrfs_root *root,
4203 			 struct btrfs_path *path,
4204 			 struct btrfs_key *new_key)
4205 {
4206 	struct extent_buffer *leaf;
4207 	int ret;
4208 	u32 item_size;
4209 
4210 	leaf = path->nodes[0];
4211 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4212 	ret = setup_leaf_for_split(trans, root, path,
4213 				   item_size + sizeof(struct btrfs_item));
4214 	if (ret)
4215 		return ret;
4216 
4217 	path->slots[0]++;
4218 	setup_items_for_insert(trans, root, path, new_key, &item_size,
4219 			       item_size, item_size +
4220 			       sizeof(struct btrfs_item), 1);
4221 	leaf = path->nodes[0];
4222 	memcpy_extent_buffer(leaf,
4223 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4224 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4225 			     item_size);
4226 	return 0;
4227 }
4228 
4229 /*
4230  * make the item pointed to by the path smaller.  new_size indicates
4231  * how small to make it, and from_end tells us if we just chop bytes
4232  * off the end of the item or if we shift the item to chop bytes off
4233  * the front.
4234  */
4235 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4236 			 struct btrfs_root *root,
4237 			 struct btrfs_path *path,
4238 			 u32 new_size, int from_end)
4239 {
4240 	int slot;
4241 	struct extent_buffer *leaf;
4242 	struct btrfs_item *item;
4243 	u32 nritems;
4244 	unsigned int data_end;
4245 	unsigned int old_data_start;
4246 	unsigned int old_size;
4247 	unsigned int size_diff;
4248 	int i;
4249 	struct btrfs_map_token token;
4250 
4251 	btrfs_init_map_token(&token);
4252 
4253 	leaf = path->nodes[0];
4254 	slot = path->slots[0];
4255 
4256 	old_size = btrfs_item_size_nr(leaf, slot);
4257 	if (old_size == new_size)
4258 		return;
4259 
4260 	nritems = btrfs_header_nritems(leaf);
4261 	data_end = leaf_data_end(root, leaf);
4262 
4263 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4264 
4265 	size_diff = old_size - new_size;
4266 
4267 	BUG_ON(slot < 0);
4268 	BUG_ON(slot >= nritems);
4269 
4270 	/*
4271 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4272 	 */
4273 	/* first correct the data pointers */
4274 	for (i = slot; i < nritems; i++) {
4275 		u32 ioff;
4276 		item = btrfs_item_nr(leaf, i);
4277 
4278 		ioff = btrfs_token_item_offset(leaf, item, &token);
4279 		btrfs_set_token_item_offset(leaf, item,
4280 					    ioff + size_diff, &token);
4281 	}
4282 
4283 	/* shift the data */
4284 	if (from_end) {
4285 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4286 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4287 			      data_end, old_data_start + new_size - data_end);
4288 	} else {
4289 		struct btrfs_disk_key disk_key;
4290 		u64 offset;
4291 
4292 		btrfs_item_key(leaf, &disk_key, slot);
4293 
4294 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4295 			unsigned long ptr;
4296 			struct btrfs_file_extent_item *fi;
4297 
4298 			fi = btrfs_item_ptr(leaf, slot,
4299 					    struct btrfs_file_extent_item);
4300 			fi = (struct btrfs_file_extent_item *)(
4301 			     (unsigned long)fi - size_diff);
4302 
4303 			if (btrfs_file_extent_type(leaf, fi) ==
4304 			    BTRFS_FILE_EXTENT_INLINE) {
4305 				ptr = btrfs_item_ptr_offset(leaf, slot);
4306 				memmove_extent_buffer(leaf, ptr,
4307 				      (unsigned long)fi,
4308 				      offsetof(struct btrfs_file_extent_item,
4309 						 disk_bytenr));
4310 			}
4311 		}
4312 
4313 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4314 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4315 			      data_end, old_data_start - data_end);
4316 
4317 		offset = btrfs_disk_key_offset(&disk_key);
4318 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4319 		btrfs_set_item_key(leaf, &disk_key, slot);
4320 		if (slot == 0)
4321 			fixup_low_keys(trans, root, path, &disk_key, 1);
4322 	}
4323 
4324 	item = btrfs_item_nr(leaf, slot);
4325 	btrfs_set_item_size(leaf, item, new_size);
4326 	btrfs_mark_buffer_dirty(leaf);
4327 
4328 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4329 		btrfs_print_leaf(root, leaf);
4330 		BUG();
4331 	}
4332 }
4333 
4334 /*
4335  * make the item pointed to by the path bigger, data_size is the new size.
4336  */
4337 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4338 		       struct btrfs_root *root, struct btrfs_path *path,
4339 		       u32 data_size)
4340 {
4341 	int slot;
4342 	struct extent_buffer *leaf;
4343 	struct btrfs_item *item;
4344 	u32 nritems;
4345 	unsigned int data_end;
4346 	unsigned int old_data;
4347 	unsigned int old_size;
4348 	int i;
4349 	struct btrfs_map_token token;
4350 
4351 	btrfs_init_map_token(&token);
4352 
4353 	leaf = path->nodes[0];
4354 
4355 	nritems = btrfs_header_nritems(leaf);
4356 	data_end = leaf_data_end(root, leaf);
4357 
4358 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4359 		btrfs_print_leaf(root, leaf);
4360 		BUG();
4361 	}
4362 	slot = path->slots[0];
4363 	old_data = btrfs_item_end_nr(leaf, slot);
4364 
4365 	BUG_ON(slot < 0);
4366 	if (slot >= nritems) {
4367 		btrfs_print_leaf(root, leaf);
4368 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4369 		       slot, nritems);
4370 		BUG_ON(1);
4371 	}
4372 
4373 	/*
4374 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4375 	 */
4376 	/* first correct the data pointers */
4377 	for (i = slot; i < nritems; i++) {
4378 		u32 ioff;
4379 		item = btrfs_item_nr(leaf, i);
4380 
4381 		ioff = btrfs_token_item_offset(leaf, item, &token);
4382 		btrfs_set_token_item_offset(leaf, item,
4383 					    ioff - data_size, &token);
4384 	}
4385 
4386 	/* shift the data */
4387 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4388 		      data_end - data_size, btrfs_leaf_data(leaf) +
4389 		      data_end, old_data - data_end);
4390 
4391 	data_end = old_data;
4392 	old_size = btrfs_item_size_nr(leaf, slot);
4393 	item = btrfs_item_nr(leaf, slot);
4394 	btrfs_set_item_size(leaf, item, old_size + data_size);
4395 	btrfs_mark_buffer_dirty(leaf);
4396 
4397 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4398 		btrfs_print_leaf(root, leaf);
4399 		BUG();
4400 	}
4401 }
4402 
4403 /*
4404  * this is a helper for btrfs_insert_empty_items, the main goal here is
4405  * to save stack depth by doing the bulk of the work in a function
4406  * that doesn't call btrfs_search_slot
4407  */
4408 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4409 			    struct btrfs_root *root, struct btrfs_path *path,
4410 			    struct btrfs_key *cpu_key, u32 *data_size,
4411 			    u32 total_data, u32 total_size, int nr)
4412 {
4413 	struct btrfs_item *item;
4414 	int i;
4415 	u32 nritems;
4416 	unsigned int data_end;
4417 	struct btrfs_disk_key disk_key;
4418 	struct extent_buffer *leaf;
4419 	int slot;
4420 	struct btrfs_map_token token;
4421 
4422 	btrfs_init_map_token(&token);
4423 
4424 	leaf = path->nodes[0];
4425 	slot = path->slots[0];
4426 
4427 	nritems = btrfs_header_nritems(leaf);
4428 	data_end = leaf_data_end(root, leaf);
4429 
4430 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4431 		btrfs_print_leaf(root, leaf);
4432 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4433 		       total_size, btrfs_leaf_free_space(root, leaf));
4434 		BUG();
4435 	}
4436 
4437 	if (slot != nritems) {
4438 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4439 
4440 		if (old_data < data_end) {
4441 			btrfs_print_leaf(root, leaf);
4442 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4443 			       slot, old_data, data_end);
4444 			BUG_ON(1);
4445 		}
4446 		/*
4447 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4448 		 */
4449 		/* first correct the data pointers */
4450 		for (i = slot; i < nritems; i++) {
4451 			u32 ioff;
4452 
4453 			item = btrfs_item_nr(leaf, i);
4454 			ioff = btrfs_token_item_offset(leaf, item, &token);
4455 			btrfs_set_token_item_offset(leaf, item,
4456 						    ioff - total_data, &token);
4457 		}
4458 		/* shift the items */
4459 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4460 			      btrfs_item_nr_offset(slot),
4461 			      (nritems - slot) * sizeof(struct btrfs_item));
4462 
4463 		/* shift the data */
4464 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4465 			      data_end - total_data, btrfs_leaf_data(leaf) +
4466 			      data_end, old_data - data_end);
4467 		data_end = old_data;
4468 	}
4469 
4470 	/* setup the item for the new data */
4471 	for (i = 0; i < nr; i++) {
4472 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4473 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4474 		item = btrfs_item_nr(leaf, slot + i);
4475 		btrfs_set_token_item_offset(leaf, item,
4476 					    data_end - data_size[i], &token);
4477 		data_end -= data_size[i];
4478 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4479 	}
4480 
4481 	btrfs_set_header_nritems(leaf, nritems + nr);
4482 
4483 	if (slot == 0) {
4484 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4485 		fixup_low_keys(trans, root, path, &disk_key, 1);
4486 	}
4487 	btrfs_unlock_up_safe(path, 1);
4488 	btrfs_mark_buffer_dirty(leaf);
4489 
4490 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4491 		btrfs_print_leaf(root, leaf);
4492 		BUG();
4493 	}
4494 }
4495 
4496 /*
4497  * Given a key and some data, insert items into the tree.
4498  * This does all the path init required, making room in the tree if needed.
4499  */
4500 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4501 			    struct btrfs_root *root,
4502 			    struct btrfs_path *path,
4503 			    struct btrfs_key *cpu_key, u32 *data_size,
4504 			    int nr)
4505 {
4506 	int ret = 0;
4507 	int slot;
4508 	int i;
4509 	u32 total_size = 0;
4510 	u32 total_data = 0;
4511 
4512 	for (i = 0; i < nr; i++)
4513 		total_data += data_size[i];
4514 
4515 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4516 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4517 	if (ret == 0)
4518 		return -EEXIST;
4519 	if (ret < 0)
4520 		return ret;
4521 
4522 	slot = path->slots[0];
4523 	BUG_ON(slot < 0);
4524 
4525 	setup_items_for_insert(trans, root, path, cpu_key, data_size,
4526 			       total_data, total_size, nr);
4527 	return 0;
4528 }
4529 
4530 /*
4531  * Given a key and some data, insert an item into the tree.
4532  * This does all the path init required, making room in the tree if needed.
4533  */
4534 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4535 		      *root, struct btrfs_key *cpu_key, void *data, u32
4536 		      data_size)
4537 {
4538 	int ret = 0;
4539 	struct btrfs_path *path;
4540 	struct extent_buffer *leaf;
4541 	unsigned long ptr;
4542 
4543 	path = btrfs_alloc_path();
4544 	if (!path)
4545 		return -ENOMEM;
4546 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4547 	if (!ret) {
4548 		leaf = path->nodes[0];
4549 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4550 		write_extent_buffer(leaf, data, ptr, data_size);
4551 		btrfs_mark_buffer_dirty(leaf);
4552 	}
4553 	btrfs_free_path(path);
4554 	return ret;
4555 }
4556 
4557 /*
4558  * delete the pointer from a given node.
4559  *
4560  * the tree should have been previously balanced so the deletion does not
4561  * empty a node.
4562  */
4563 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4564 		    struct btrfs_path *path, int level, int slot,
4565 		    int tree_mod_log)
4566 {
4567 	struct extent_buffer *parent = path->nodes[level];
4568 	u32 nritems;
4569 	int ret;
4570 
4571 	nritems = btrfs_header_nritems(parent);
4572 	if (slot != nritems - 1) {
4573 		if (tree_mod_log && level)
4574 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4575 					     slot + 1, nritems - slot - 1);
4576 		memmove_extent_buffer(parent,
4577 			      btrfs_node_key_ptr_offset(slot),
4578 			      btrfs_node_key_ptr_offset(slot + 1),
4579 			      sizeof(struct btrfs_key_ptr) *
4580 			      (nritems - slot - 1));
4581 	} else if (tree_mod_log && level) {
4582 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4583 					      MOD_LOG_KEY_REMOVE);
4584 		BUG_ON(ret < 0);
4585 	}
4586 
4587 	nritems--;
4588 	btrfs_set_header_nritems(parent, nritems);
4589 	if (nritems == 0 && parent == root->node) {
4590 		BUG_ON(btrfs_header_level(root->node) != 1);
4591 		/* just turn the root into a leaf and break */
4592 		btrfs_set_header_level(root->node, 0);
4593 	} else if (slot == 0) {
4594 		struct btrfs_disk_key disk_key;
4595 
4596 		btrfs_node_key(parent, &disk_key, 0);
4597 		fixup_low_keys(trans, root, path, &disk_key, level + 1);
4598 	}
4599 	btrfs_mark_buffer_dirty(parent);
4600 }
4601 
4602 /*
4603  * a helper function to delete the leaf pointed to by path->slots[1] and
4604  * path->nodes[1].
4605  *
4606  * This deletes the pointer in path->nodes[1] and frees the leaf
4607  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4608  *
4609  * The path must have already been setup for deleting the leaf, including
4610  * all the proper balancing.  path->nodes[1] must be locked.
4611  */
4612 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4613 				    struct btrfs_root *root,
4614 				    struct btrfs_path *path,
4615 				    struct extent_buffer *leaf)
4616 {
4617 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4618 	del_ptr(trans, root, path, 1, path->slots[1], 1);
4619 
4620 	/*
4621 	 * btrfs_free_extent is expensive, we want to make sure we
4622 	 * aren't holding any locks when we call it
4623 	 */
4624 	btrfs_unlock_up_safe(path, 0);
4625 
4626 	root_sub_used(root, leaf->len);
4627 
4628 	extent_buffer_get(leaf);
4629 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4630 	free_extent_buffer_stale(leaf);
4631 }
4632 /*
4633  * delete the item at the leaf level in path.  If that empties
4634  * the leaf, remove it from the tree
4635  */
4636 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4637 		    struct btrfs_path *path, int slot, int nr)
4638 {
4639 	struct extent_buffer *leaf;
4640 	struct btrfs_item *item;
4641 	int last_off;
4642 	int dsize = 0;
4643 	int ret = 0;
4644 	int wret;
4645 	int i;
4646 	u32 nritems;
4647 	struct btrfs_map_token token;
4648 
4649 	btrfs_init_map_token(&token);
4650 
4651 	leaf = path->nodes[0];
4652 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4653 
4654 	for (i = 0; i < nr; i++)
4655 		dsize += btrfs_item_size_nr(leaf, slot + i);
4656 
4657 	nritems = btrfs_header_nritems(leaf);
4658 
4659 	if (slot + nr != nritems) {
4660 		int data_end = leaf_data_end(root, leaf);
4661 
4662 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4663 			      data_end + dsize,
4664 			      btrfs_leaf_data(leaf) + data_end,
4665 			      last_off - data_end);
4666 
4667 		for (i = slot + nr; i < nritems; i++) {
4668 			u32 ioff;
4669 
4670 			item = btrfs_item_nr(leaf, i);
4671 			ioff = btrfs_token_item_offset(leaf, item, &token);
4672 			btrfs_set_token_item_offset(leaf, item,
4673 						    ioff + dsize, &token);
4674 		}
4675 
4676 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4677 			      btrfs_item_nr_offset(slot + nr),
4678 			      sizeof(struct btrfs_item) *
4679 			      (nritems - slot - nr));
4680 	}
4681 	btrfs_set_header_nritems(leaf, nritems - nr);
4682 	nritems -= nr;
4683 
4684 	/* delete the leaf if we've emptied it */
4685 	if (nritems == 0) {
4686 		if (leaf == root->node) {
4687 			btrfs_set_header_level(leaf, 0);
4688 		} else {
4689 			btrfs_set_path_blocking(path);
4690 			clean_tree_block(trans, root, leaf);
4691 			btrfs_del_leaf(trans, root, path, leaf);
4692 		}
4693 	} else {
4694 		int used = leaf_space_used(leaf, 0, nritems);
4695 		if (slot == 0) {
4696 			struct btrfs_disk_key disk_key;
4697 
4698 			btrfs_item_key(leaf, &disk_key, 0);
4699 			fixup_low_keys(trans, root, path, &disk_key, 1);
4700 		}
4701 
4702 		/* delete the leaf if it is mostly empty */
4703 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4704 			/* push_leaf_left fixes the path.
4705 			 * make sure the path still points to our leaf
4706 			 * for possible call to del_ptr below
4707 			 */
4708 			slot = path->slots[1];
4709 			extent_buffer_get(leaf);
4710 
4711 			btrfs_set_path_blocking(path);
4712 			wret = push_leaf_left(trans, root, path, 1, 1,
4713 					      1, (u32)-1);
4714 			if (wret < 0 && wret != -ENOSPC)
4715 				ret = wret;
4716 
4717 			if (path->nodes[0] == leaf &&
4718 			    btrfs_header_nritems(leaf)) {
4719 				wret = push_leaf_right(trans, root, path, 1,
4720 						       1, 1, 0);
4721 				if (wret < 0 && wret != -ENOSPC)
4722 					ret = wret;
4723 			}
4724 
4725 			if (btrfs_header_nritems(leaf) == 0) {
4726 				path->slots[1] = slot;
4727 				btrfs_del_leaf(trans, root, path, leaf);
4728 				free_extent_buffer(leaf);
4729 				ret = 0;
4730 			} else {
4731 				/* if we're still in the path, make sure
4732 				 * we're dirty.  Otherwise, one of the
4733 				 * push_leaf functions must have already
4734 				 * dirtied this buffer
4735 				 */
4736 				if (path->nodes[0] == leaf)
4737 					btrfs_mark_buffer_dirty(leaf);
4738 				free_extent_buffer(leaf);
4739 			}
4740 		} else {
4741 			btrfs_mark_buffer_dirty(leaf);
4742 		}
4743 	}
4744 	return ret;
4745 }
4746 
4747 /*
4748  * search the tree again to find a leaf with lesser keys
4749  * returns 0 if it found something or 1 if there are no lesser leaves.
4750  * returns < 0 on io errors.
4751  *
4752  * This may release the path, and so you may lose any locks held at the
4753  * time you call it.
4754  */
4755 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4756 {
4757 	struct btrfs_key key;
4758 	struct btrfs_disk_key found_key;
4759 	int ret;
4760 
4761 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4762 
4763 	if (key.offset > 0)
4764 		key.offset--;
4765 	else if (key.type > 0)
4766 		key.type--;
4767 	else if (key.objectid > 0)
4768 		key.objectid--;
4769 	else
4770 		return 1;
4771 
4772 	btrfs_release_path(path);
4773 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4774 	if (ret < 0)
4775 		return ret;
4776 	btrfs_item_key(path->nodes[0], &found_key, 0);
4777 	ret = comp_keys(&found_key, &key);
4778 	if (ret < 0)
4779 		return 0;
4780 	return 1;
4781 }
4782 
4783 /*
4784  * A helper function to walk down the tree starting at min_key, and looking
4785  * for nodes or leaves that are either in cache or have a minimum
4786  * transaction id.  This is used by the btree defrag code, and tree logging
4787  *
4788  * This does not cow, but it does stuff the starting key it finds back
4789  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4790  * key and get a writable path.
4791  *
4792  * This does lock as it descends, and path->keep_locks should be set
4793  * to 1 by the caller.
4794  *
4795  * This honors path->lowest_level to prevent descent past a given level
4796  * of the tree.
4797  *
4798  * min_trans indicates the oldest transaction that you are interested
4799  * in walking through.  Any nodes or leaves older than min_trans are
4800  * skipped over (without reading them).
4801  *
4802  * returns zero if something useful was found, < 0 on error and 1 if there
4803  * was nothing in the tree that matched the search criteria.
4804  */
4805 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4806 			 struct btrfs_key *max_key,
4807 			 struct btrfs_path *path, int cache_only,
4808 			 u64 min_trans)
4809 {
4810 	struct extent_buffer *cur;
4811 	struct btrfs_key found_key;
4812 	int slot;
4813 	int sret;
4814 	u32 nritems;
4815 	int level;
4816 	int ret = 1;
4817 
4818 	WARN_ON(!path->keep_locks);
4819 again:
4820 	cur = btrfs_read_lock_root_node(root);
4821 	level = btrfs_header_level(cur);
4822 	WARN_ON(path->nodes[level]);
4823 	path->nodes[level] = cur;
4824 	path->locks[level] = BTRFS_READ_LOCK;
4825 
4826 	if (btrfs_header_generation(cur) < min_trans) {
4827 		ret = 1;
4828 		goto out;
4829 	}
4830 	while (1) {
4831 		nritems = btrfs_header_nritems(cur);
4832 		level = btrfs_header_level(cur);
4833 		sret = bin_search(cur, min_key, level, &slot);
4834 
4835 		/* at the lowest level, we're done, setup the path and exit */
4836 		if (level == path->lowest_level) {
4837 			if (slot >= nritems)
4838 				goto find_next_key;
4839 			ret = 0;
4840 			path->slots[level] = slot;
4841 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4842 			goto out;
4843 		}
4844 		if (sret && slot > 0)
4845 			slot--;
4846 		/*
4847 		 * check this node pointer against the cache_only and
4848 		 * min_trans parameters.  If it isn't in cache or is too
4849 		 * old, skip to the next one.
4850 		 */
4851 		while (slot < nritems) {
4852 			u64 blockptr;
4853 			u64 gen;
4854 			struct extent_buffer *tmp;
4855 			struct btrfs_disk_key disk_key;
4856 
4857 			blockptr = btrfs_node_blockptr(cur, slot);
4858 			gen = btrfs_node_ptr_generation(cur, slot);
4859 			if (gen < min_trans) {
4860 				slot++;
4861 				continue;
4862 			}
4863 			if (!cache_only)
4864 				break;
4865 
4866 			if (max_key) {
4867 				btrfs_node_key(cur, &disk_key, slot);
4868 				if (comp_keys(&disk_key, max_key) >= 0) {
4869 					ret = 1;
4870 					goto out;
4871 				}
4872 			}
4873 
4874 			tmp = btrfs_find_tree_block(root, blockptr,
4875 					    btrfs_level_size(root, level - 1));
4876 
4877 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4878 				free_extent_buffer(tmp);
4879 				break;
4880 			}
4881 			if (tmp)
4882 				free_extent_buffer(tmp);
4883 			slot++;
4884 		}
4885 find_next_key:
4886 		/*
4887 		 * we didn't find a candidate key in this node, walk forward
4888 		 * and find another one
4889 		 */
4890 		if (slot >= nritems) {
4891 			path->slots[level] = slot;
4892 			btrfs_set_path_blocking(path);
4893 			sret = btrfs_find_next_key(root, path, min_key, level,
4894 						  cache_only, min_trans);
4895 			if (sret == 0) {
4896 				btrfs_release_path(path);
4897 				goto again;
4898 			} else {
4899 				goto out;
4900 			}
4901 		}
4902 		/* save our key for returning back */
4903 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4904 		path->slots[level] = slot;
4905 		if (level == path->lowest_level) {
4906 			ret = 0;
4907 			unlock_up(path, level, 1, 0, NULL);
4908 			goto out;
4909 		}
4910 		btrfs_set_path_blocking(path);
4911 		cur = read_node_slot(root, cur, slot);
4912 		BUG_ON(!cur); /* -ENOMEM */
4913 
4914 		btrfs_tree_read_lock(cur);
4915 
4916 		path->locks[level - 1] = BTRFS_READ_LOCK;
4917 		path->nodes[level - 1] = cur;
4918 		unlock_up(path, level, 1, 0, NULL);
4919 		btrfs_clear_path_blocking(path, NULL, 0);
4920 	}
4921 out:
4922 	if (ret == 0)
4923 		memcpy(min_key, &found_key, sizeof(found_key));
4924 	btrfs_set_path_blocking(path);
4925 	return ret;
4926 }
4927 
4928 static void tree_move_down(struct btrfs_root *root,
4929 			   struct btrfs_path *path,
4930 			   int *level, int root_level)
4931 {
4932 	BUG_ON(*level == 0);
4933 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4934 					path->slots[*level]);
4935 	path->slots[*level - 1] = 0;
4936 	(*level)--;
4937 }
4938 
4939 static int tree_move_next_or_upnext(struct btrfs_root *root,
4940 				    struct btrfs_path *path,
4941 				    int *level, int root_level)
4942 {
4943 	int ret = 0;
4944 	int nritems;
4945 	nritems = btrfs_header_nritems(path->nodes[*level]);
4946 
4947 	path->slots[*level]++;
4948 
4949 	while (path->slots[*level] >= nritems) {
4950 		if (*level == root_level)
4951 			return -1;
4952 
4953 		/* move upnext */
4954 		path->slots[*level] = 0;
4955 		free_extent_buffer(path->nodes[*level]);
4956 		path->nodes[*level] = NULL;
4957 		(*level)++;
4958 		path->slots[*level]++;
4959 
4960 		nritems = btrfs_header_nritems(path->nodes[*level]);
4961 		ret = 1;
4962 	}
4963 	return ret;
4964 }
4965 
4966 /*
4967  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4968  * or down.
4969  */
4970 static int tree_advance(struct btrfs_root *root,
4971 			struct btrfs_path *path,
4972 			int *level, int root_level,
4973 			int allow_down,
4974 			struct btrfs_key *key)
4975 {
4976 	int ret;
4977 
4978 	if (*level == 0 || !allow_down) {
4979 		ret = tree_move_next_or_upnext(root, path, level, root_level);
4980 	} else {
4981 		tree_move_down(root, path, level, root_level);
4982 		ret = 0;
4983 	}
4984 	if (ret >= 0) {
4985 		if (*level == 0)
4986 			btrfs_item_key_to_cpu(path->nodes[*level], key,
4987 					path->slots[*level]);
4988 		else
4989 			btrfs_node_key_to_cpu(path->nodes[*level], key,
4990 					path->slots[*level]);
4991 	}
4992 	return ret;
4993 }
4994 
4995 static int tree_compare_item(struct btrfs_root *left_root,
4996 			     struct btrfs_path *left_path,
4997 			     struct btrfs_path *right_path,
4998 			     char *tmp_buf)
4999 {
5000 	int cmp;
5001 	int len1, len2;
5002 	unsigned long off1, off2;
5003 
5004 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5005 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5006 	if (len1 != len2)
5007 		return 1;
5008 
5009 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5010 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5011 				right_path->slots[0]);
5012 
5013 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5014 
5015 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5016 	if (cmp)
5017 		return 1;
5018 	return 0;
5019 }
5020 
5021 #define ADVANCE 1
5022 #define ADVANCE_ONLY_NEXT -1
5023 
5024 /*
5025  * This function compares two trees and calls the provided callback for
5026  * every changed/new/deleted item it finds.
5027  * If shared tree blocks are encountered, whole subtrees are skipped, making
5028  * the compare pretty fast on snapshotted subvolumes.
5029  *
5030  * This currently works on commit roots only. As commit roots are read only,
5031  * we don't do any locking. The commit roots are protected with transactions.
5032  * Transactions are ended and rejoined when a commit is tried in between.
5033  *
5034  * This function checks for modifications done to the trees while comparing.
5035  * If it detects a change, it aborts immediately.
5036  */
5037 int btrfs_compare_trees(struct btrfs_root *left_root,
5038 			struct btrfs_root *right_root,
5039 			btrfs_changed_cb_t changed_cb, void *ctx)
5040 {
5041 	int ret;
5042 	int cmp;
5043 	struct btrfs_trans_handle *trans = NULL;
5044 	struct btrfs_path *left_path = NULL;
5045 	struct btrfs_path *right_path = NULL;
5046 	struct btrfs_key left_key;
5047 	struct btrfs_key right_key;
5048 	char *tmp_buf = NULL;
5049 	int left_root_level;
5050 	int right_root_level;
5051 	int left_level;
5052 	int right_level;
5053 	int left_end_reached;
5054 	int right_end_reached;
5055 	int advance_left;
5056 	int advance_right;
5057 	u64 left_blockptr;
5058 	u64 right_blockptr;
5059 	u64 left_start_ctransid;
5060 	u64 right_start_ctransid;
5061 	u64 ctransid;
5062 
5063 	left_path = btrfs_alloc_path();
5064 	if (!left_path) {
5065 		ret = -ENOMEM;
5066 		goto out;
5067 	}
5068 	right_path = btrfs_alloc_path();
5069 	if (!right_path) {
5070 		ret = -ENOMEM;
5071 		goto out;
5072 	}
5073 
5074 	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5075 	if (!tmp_buf) {
5076 		ret = -ENOMEM;
5077 		goto out;
5078 	}
5079 
5080 	left_path->search_commit_root = 1;
5081 	left_path->skip_locking = 1;
5082 	right_path->search_commit_root = 1;
5083 	right_path->skip_locking = 1;
5084 
5085 	spin_lock(&left_root->root_times_lock);
5086 	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5087 	spin_unlock(&left_root->root_times_lock);
5088 
5089 	spin_lock(&right_root->root_times_lock);
5090 	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5091 	spin_unlock(&right_root->root_times_lock);
5092 
5093 	trans = btrfs_join_transaction(left_root);
5094 	if (IS_ERR(trans)) {
5095 		ret = PTR_ERR(trans);
5096 		trans = NULL;
5097 		goto out;
5098 	}
5099 
5100 	/*
5101 	 * Strategy: Go to the first items of both trees. Then do
5102 	 *
5103 	 * If both trees are at level 0
5104 	 *   Compare keys of current items
5105 	 *     If left < right treat left item as new, advance left tree
5106 	 *       and repeat
5107 	 *     If left > right treat right item as deleted, advance right tree
5108 	 *       and repeat
5109 	 *     If left == right do deep compare of items, treat as changed if
5110 	 *       needed, advance both trees and repeat
5111 	 * If both trees are at the same level but not at level 0
5112 	 *   Compare keys of current nodes/leafs
5113 	 *     If left < right advance left tree and repeat
5114 	 *     If left > right advance right tree and repeat
5115 	 *     If left == right compare blockptrs of the next nodes/leafs
5116 	 *       If they match advance both trees but stay at the same level
5117 	 *         and repeat
5118 	 *       If they don't match advance both trees while allowing to go
5119 	 *         deeper and repeat
5120 	 * If tree levels are different
5121 	 *   Advance the tree that needs it and repeat
5122 	 *
5123 	 * Advancing a tree means:
5124 	 *   If we are at level 0, try to go to the next slot. If that's not
5125 	 *   possible, go one level up and repeat. Stop when we found a level
5126 	 *   where we could go to the next slot. We may at this point be on a
5127 	 *   node or a leaf.
5128 	 *
5129 	 *   If we are not at level 0 and not on shared tree blocks, go one
5130 	 *   level deeper.
5131 	 *
5132 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5133 	 *   the right if possible or go up and right.
5134 	 */
5135 
5136 	left_level = btrfs_header_level(left_root->commit_root);
5137 	left_root_level = left_level;
5138 	left_path->nodes[left_level] = left_root->commit_root;
5139 	extent_buffer_get(left_path->nodes[left_level]);
5140 
5141 	right_level = btrfs_header_level(right_root->commit_root);
5142 	right_root_level = right_level;
5143 	right_path->nodes[right_level] = right_root->commit_root;
5144 	extent_buffer_get(right_path->nodes[right_level]);
5145 
5146 	if (left_level == 0)
5147 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5148 				&left_key, left_path->slots[left_level]);
5149 	else
5150 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5151 				&left_key, left_path->slots[left_level]);
5152 	if (right_level == 0)
5153 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5154 				&right_key, right_path->slots[right_level]);
5155 	else
5156 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5157 				&right_key, right_path->slots[right_level]);
5158 
5159 	left_end_reached = right_end_reached = 0;
5160 	advance_left = advance_right = 0;
5161 
5162 	while (1) {
5163 		/*
5164 		 * We need to make sure the transaction does not get committed
5165 		 * while we do anything on commit roots. This means, we need to
5166 		 * join and leave transactions for every item that we process.
5167 		 */
5168 		if (trans && btrfs_should_end_transaction(trans, left_root)) {
5169 			btrfs_release_path(left_path);
5170 			btrfs_release_path(right_path);
5171 
5172 			ret = btrfs_end_transaction(trans, left_root);
5173 			trans = NULL;
5174 			if (ret < 0)
5175 				goto out;
5176 		}
5177 		/* now rejoin the transaction */
5178 		if (!trans) {
5179 			trans = btrfs_join_transaction(left_root);
5180 			if (IS_ERR(trans)) {
5181 				ret = PTR_ERR(trans);
5182 				trans = NULL;
5183 				goto out;
5184 			}
5185 
5186 			spin_lock(&left_root->root_times_lock);
5187 			ctransid = btrfs_root_ctransid(&left_root->root_item);
5188 			spin_unlock(&left_root->root_times_lock);
5189 			if (ctransid != left_start_ctransid)
5190 				left_start_ctransid = 0;
5191 
5192 			spin_lock(&right_root->root_times_lock);
5193 			ctransid = btrfs_root_ctransid(&right_root->root_item);
5194 			spin_unlock(&right_root->root_times_lock);
5195 			if (ctransid != right_start_ctransid)
5196 				right_start_ctransid = 0;
5197 
5198 			if (!left_start_ctransid || !right_start_ctransid) {
5199 				WARN(1, KERN_WARNING
5200 					"btrfs: btrfs_compare_tree detected "
5201 					"a change in one of the trees while "
5202 					"iterating. This is probably a "
5203 					"bug.\n");
5204 				ret = -EIO;
5205 				goto out;
5206 			}
5207 
5208 			/*
5209 			 * the commit root may have changed, so start again
5210 			 * where we stopped
5211 			 */
5212 			left_path->lowest_level = left_level;
5213 			right_path->lowest_level = right_level;
5214 			ret = btrfs_search_slot(NULL, left_root,
5215 					&left_key, left_path, 0, 0);
5216 			if (ret < 0)
5217 				goto out;
5218 			ret = btrfs_search_slot(NULL, right_root,
5219 					&right_key, right_path, 0, 0);
5220 			if (ret < 0)
5221 				goto out;
5222 		}
5223 
5224 		if (advance_left && !left_end_reached) {
5225 			ret = tree_advance(left_root, left_path, &left_level,
5226 					left_root_level,
5227 					advance_left != ADVANCE_ONLY_NEXT,
5228 					&left_key);
5229 			if (ret < 0)
5230 				left_end_reached = ADVANCE;
5231 			advance_left = 0;
5232 		}
5233 		if (advance_right && !right_end_reached) {
5234 			ret = tree_advance(right_root, right_path, &right_level,
5235 					right_root_level,
5236 					advance_right != ADVANCE_ONLY_NEXT,
5237 					&right_key);
5238 			if (ret < 0)
5239 				right_end_reached = ADVANCE;
5240 			advance_right = 0;
5241 		}
5242 
5243 		if (left_end_reached && right_end_reached) {
5244 			ret = 0;
5245 			goto out;
5246 		} else if (left_end_reached) {
5247 			if (right_level == 0) {
5248 				ret = changed_cb(left_root, right_root,
5249 						left_path, right_path,
5250 						&right_key,
5251 						BTRFS_COMPARE_TREE_DELETED,
5252 						ctx);
5253 				if (ret < 0)
5254 					goto out;
5255 			}
5256 			advance_right = ADVANCE;
5257 			continue;
5258 		} else if (right_end_reached) {
5259 			if (left_level == 0) {
5260 				ret = changed_cb(left_root, right_root,
5261 						left_path, right_path,
5262 						&left_key,
5263 						BTRFS_COMPARE_TREE_NEW,
5264 						ctx);
5265 				if (ret < 0)
5266 					goto out;
5267 			}
5268 			advance_left = ADVANCE;
5269 			continue;
5270 		}
5271 
5272 		if (left_level == 0 && right_level == 0) {
5273 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5274 			if (cmp < 0) {
5275 				ret = changed_cb(left_root, right_root,
5276 						left_path, right_path,
5277 						&left_key,
5278 						BTRFS_COMPARE_TREE_NEW,
5279 						ctx);
5280 				if (ret < 0)
5281 					goto out;
5282 				advance_left = ADVANCE;
5283 			} else if (cmp > 0) {
5284 				ret = changed_cb(left_root, right_root,
5285 						left_path, right_path,
5286 						&right_key,
5287 						BTRFS_COMPARE_TREE_DELETED,
5288 						ctx);
5289 				if (ret < 0)
5290 					goto out;
5291 				advance_right = ADVANCE;
5292 			} else {
5293 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5294 				ret = tree_compare_item(left_root, left_path,
5295 						right_path, tmp_buf);
5296 				if (ret) {
5297 					WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5298 					ret = changed_cb(left_root, right_root,
5299 						left_path, right_path,
5300 						&left_key,
5301 						BTRFS_COMPARE_TREE_CHANGED,
5302 						ctx);
5303 					if (ret < 0)
5304 						goto out;
5305 				}
5306 				advance_left = ADVANCE;
5307 				advance_right = ADVANCE;
5308 			}
5309 		} else if (left_level == right_level) {
5310 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5311 			if (cmp < 0) {
5312 				advance_left = ADVANCE;
5313 			} else if (cmp > 0) {
5314 				advance_right = ADVANCE;
5315 			} else {
5316 				left_blockptr = btrfs_node_blockptr(
5317 						left_path->nodes[left_level],
5318 						left_path->slots[left_level]);
5319 				right_blockptr = btrfs_node_blockptr(
5320 						right_path->nodes[right_level],
5321 						right_path->slots[right_level]);
5322 				if (left_blockptr == right_blockptr) {
5323 					/*
5324 					 * As we're on a shared block, don't
5325 					 * allow to go deeper.
5326 					 */
5327 					advance_left = ADVANCE_ONLY_NEXT;
5328 					advance_right = ADVANCE_ONLY_NEXT;
5329 				} else {
5330 					advance_left = ADVANCE;
5331 					advance_right = ADVANCE;
5332 				}
5333 			}
5334 		} else if (left_level < right_level) {
5335 			advance_right = ADVANCE;
5336 		} else {
5337 			advance_left = ADVANCE;
5338 		}
5339 	}
5340 
5341 out:
5342 	btrfs_free_path(left_path);
5343 	btrfs_free_path(right_path);
5344 	kfree(tmp_buf);
5345 
5346 	if (trans) {
5347 		if (!ret)
5348 			ret = btrfs_end_transaction(trans, left_root);
5349 		else
5350 			btrfs_end_transaction(trans, left_root);
5351 	}
5352 
5353 	return ret;
5354 }
5355 
5356 /*
5357  * this is similar to btrfs_next_leaf, but does not try to preserve
5358  * and fixup the path.  It looks for and returns the next key in the
5359  * tree based on the current path and the cache_only and min_trans
5360  * parameters.
5361  *
5362  * 0 is returned if another key is found, < 0 if there are any errors
5363  * and 1 is returned if there are no higher keys in the tree
5364  *
5365  * path->keep_locks should be set to 1 on the search made before
5366  * calling this function.
5367  */
5368 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5369 			struct btrfs_key *key, int level,
5370 			int cache_only, u64 min_trans)
5371 {
5372 	int slot;
5373 	struct extent_buffer *c;
5374 
5375 	WARN_ON(!path->keep_locks);
5376 	while (level < BTRFS_MAX_LEVEL) {
5377 		if (!path->nodes[level])
5378 			return 1;
5379 
5380 		slot = path->slots[level] + 1;
5381 		c = path->nodes[level];
5382 next:
5383 		if (slot >= btrfs_header_nritems(c)) {
5384 			int ret;
5385 			int orig_lowest;
5386 			struct btrfs_key cur_key;
5387 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5388 			    !path->nodes[level + 1])
5389 				return 1;
5390 
5391 			if (path->locks[level + 1]) {
5392 				level++;
5393 				continue;
5394 			}
5395 
5396 			slot = btrfs_header_nritems(c) - 1;
5397 			if (level == 0)
5398 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5399 			else
5400 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5401 
5402 			orig_lowest = path->lowest_level;
5403 			btrfs_release_path(path);
5404 			path->lowest_level = level;
5405 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5406 						0, 0);
5407 			path->lowest_level = orig_lowest;
5408 			if (ret < 0)
5409 				return ret;
5410 
5411 			c = path->nodes[level];
5412 			slot = path->slots[level];
5413 			if (ret == 0)
5414 				slot++;
5415 			goto next;
5416 		}
5417 
5418 		if (level == 0)
5419 			btrfs_item_key_to_cpu(c, key, slot);
5420 		else {
5421 			u64 blockptr = btrfs_node_blockptr(c, slot);
5422 			u64 gen = btrfs_node_ptr_generation(c, slot);
5423 
5424 			if (cache_only) {
5425 				struct extent_buffer *cur;
5426 				cur = btrfs_find_tree_block(root, blockptr,
5427 					    btrfs_level_size(root, level - 1));
5428 				if (!cur ||
5429 				    btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5430 					slot++;
5431 					if (cur)
5432 						free_extent_buffer(cur);
5433 					goto next;
5434 				}
5435 				free_extent_buffer(cur);
5436 			}
5437 			if (gen < min_trans) {
5438 				slot++;
5439 				goto next;
5440 			}
5441 			btrfs_node_key_to_cpu(c, key, slot);
5442 		}
5443 		return 0;
5444 	}
5445 	return 1;
5446 }
5447 
5448 /*
5449  * search the tree again to find a leaf with greater keys
5450  * returns 0 if it found something or 1 if there are no greater leaves.
5451  * returns < 0 on io errors.
5452  */
5453 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5454 {
5455 	return btrfs_next_old_leaf(root, path, 0);
5456 }
5457 
5458 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5459 			u64 time_seq)
5460 {
5461 	int slot;
5462 	int level;
5463 	struct extent_buffer *c;
5464 	struct extent_buffer *next;
5465 	struct btrfs_key key;
5466 	u32 nritems;
5467 	int ret;
5468 	int old_spinning = path->leave_spinning;
5469 	int next_rw_lock = 0;
5470 
5471 	nritems = btrfs_header_nritems(path->nodes[0]);
5472 	if (nritems == 0)
5473 		return 1;
5474 
5475 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5476 again:
5477 	level = 1;
5478 	next = NULL;
5479 	next_rw_lock = 0;
5480 	btrfs_release_path(path);
5481 
5482 	path->keep_locks = 1;
5483 	path->leave_spinning = 1;
5484 
5485 	if (time_seq)
5486 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5487 	else
5488 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5489 	path->keep_locks = 0;
5490 
5491 	if (ret < 0)
5492 		return ret;
5493 
5494 	nritems = btrfs_header_nritems(path->nodes[0]);
5495 	/*
5496 	 * by releasing the path above we dropped all our locks.  A balance
5497 	 * could have added more items next to the key that used to be
5498 	 * at the very end of the block.  So, check again here and
5499 	 * advance the path if there are now more items available.
5500 	 */
5501 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5502 		if (ret == 0)
5503 			path->slots[0]++;
5504 		ret = 0;
5505 		goto done;
5506 	}
5507 
5508 	while (level < BTRFS_MAX_LEVEL) {
5509 		if (!path->nodes[level]) {
5510 			ret = 1;
5511 			goto done;
5512 		}
5513 
5514 		slot = path->slots[level] + 1;
5515 		c = path->nodes[level];
5516 		if (slot >= btrfs_header_nritems(c)) {
5517 			level++;
5518 			if (level == BTRFS_MAX_LEVEL) {
5519 				ret = 1;
5520 				goto done;
5521 			}
5522 			continue;
5523 		}
5524 
5525 		if (next) {
5526 			btrfs_tree_unlock_rw(next, next_rw_lock);
5527 			free_extent_buffer(next);
5528 		}
5529 
5530 		next = c;
5531 		next_rw_lock = path->locks[level];
5532 		ret = read_block_for_search(NULL, root, path, &next, level,
5533 					    slot, &key, 0);
5534 		if (ret == -EAGAIN)
5535 			goto again;
5536 
5537 		if (ret < 0) {
5538 			btrfs_release_path(path);
5539 			goto done;
5540 		}
5541 
5542 		if (!path->skip_locking) {
5543 			ret = btrfs_try_tree_read_lock(next);
5544 			if (!ret && time_seq) {
5545 				/*
5546 				 * If we don't get the lock, we may be racing
5547 				 * with push_leaf_left, holding that lock while
5548 				 * itself waiting for the leaf we've currently
5549 				 * locked. To solve this situation, we give up
5550 				 * on our lock and cycle.
5551 				 */
5552 				free_extent_buffer(next);
5553 				btrfs_release_path(path);
5554 				cond_resched();
5555 				goto again;
5556 			}
5557 			if (!ret) {
5558 				btrfs_set_path_blocking(path);
5559 				btrfs_tree_read_lock(next);
5560 				btrfs_clear_path_blocking(path, next,
5561 							  BTRFS_READ_LOCK);
5562 			}
5563 			next_rw_lock = BTRFS_READ_LOCK;
5564 		}
5565 		break;
5566 	}
5567 	path->slots[level] = slot;
5568 	while (1) {
5569 		level--;
5570 		c = path->nodes[level];
5571 		if (path->locks[level])
5572 			btrfs_tree_unlock_rw(c, path->locks[level]);
5573 
5574 		free_extent_buffer(c);
5575 		path->nodes[level] = next;
5576 		path->slots[level] = 0;
5577 		if (!path->skip_locking)
5578 			path->locks[level] = next_rw_lock;
5579 		if (!level)
5580 			break;
5581 
5582 		ret = read_block_for_search(NULL, root, path, &next, level,
5583 					    0, &key, 0);
5584 		if (ret == -EAGAIN)
5585 			goto again;
5586 
5587 		if (ret < 0) {
5588 			btrfs_release_path(path);
5589 			goto done;
5590 		}
5591 
5592 		if (!path->skip_locking) {
5593 			ret = btrfs_try_tree_read_lock(next);
5594 			if (!ret) {
5595 				btrfs_set_path_blocking(path);
5596 				btrfs_tree_read_lock(next);
5597 				btrfs_clear_path_blocking(path, next,
5598 							  BTRFS_READ_LOCK);
5599 			}
5600 			next_rw_lock = BTRFS_READ_LOCK;
5601 		}
5602 	}
5603 	ret = 0;
5604 done:
5605 	unlock_up(path, 0, 1, 0, NULL);
5606 	path->leave_spinning = old_spinning;
5607 	if (!old_spinning)
5608 		btrfs_set_path_blocking(path);
5609 
5610 	return ret;
5611 }
5612 
5613 /*
5614  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5615  * searching until it gets past min_objectid or finds an item of 'type'
5616  *
5617  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5618  */
5619 int btrfs_previous_item(struct btrfs_root *root,
5620 			struct btrfs_path *path, u64 min_objectid,
5621 			int type)
5622 {
5623 	struct btrfs_key found_key;
5624 	struct extent_buffer *leaf;
5625 	u32 nritems;
5626 	int ret;
5627 
5628 	while (1) {
5629 		if (path->slots[0] == 0) {
5630 			btrfs_set_path_blocking(path);
5631 			ret = btrfs_prev_leaf(root, path);
5632 			if (ret != 0)
5633 				return ret;
5634 		} else {
5635 			path->slots[0]--;
5636 		}
5637 		leaf = path->nodes[0];
5638 		nritems = btrfs_header_nritems(leaf);
5639 		if (nritems == 0)
5640 			return 1;
5641 		if (path->slots[0] == nritems)
5642 			path->slots[0]--;
5643 
5644 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5645 		if (found_key.objectid < min_objectid)
5646 			break;
5647 		if (found_key.type == type)
5648 			return 0;
5649 		if (found_key.objectid == min_objectid &&
5650 		    found_key.type < type)
5651 			break;
5652 	}
5653 	return 1;
5654 }
5655