xref: /openbmc/linux/fs/btrfs/ctree.c (revision 809d6902b3b05fd6b4494ff1460c227b99fcb4c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 #include "tree-mod-log.h"
18 
19 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
20 		      *root, struct btrfs_path *path, int level);
21 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
22 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
23 		      int data_size, int extend);
24 static int push_node_left(struct btrfs_trans_handle *trans,
25 			  struct extent_buffer *dst,
26 			  struct extent_buffer *src, int empty);
27 static int balance_node_right(struct btrfs_trans_handle *trans,
28 			      struct extent_buffer *dst_buf,
29 			      struct extent_buffer *src_buf);
30 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
31 		    int level, int slot);
32 
33 static const struct btrfs_csums {
34 	u16		size;
35 	const char	name[10];
36 	const char	driver[12];
37 } btrfs_csums[] = {
38 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
39 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
40 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
41 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
42 				     .driver = "blake2b-256" },
43 };
44 
45 int btrfs_super_csum_size(const struct btrfs_super_block *s)
46 {
47 	u16 t = btrfs_super_csum_type(s);
48 	/*
49 	 * csum type is validated at mount time
50 	 */
51 	return btrfs_csums[t].size;
52 }
53 
54 const char *btrfs_super_csum_name(u16 csum_type)
55 {
56 	/* csum type is validated at mount time */
57 	return btrfs_csums[csum_type].name;
58 }
59 
60 /*
61  * Return driver name if defined, otherwise the name that's also a valid driver
62  * name
63  */
64 const char *btrfs_super_csum_driver(u16 csum_type)
65 {
66 	/* csum type is validated at mount time */
67 	return btrfs_csums[csum_type].driver[0] ?
68 		btrfs_csums[csum_type].driver :
69 		btrfs_csums[csum_type].name;
70 }
71 
72 size_t __attribute_const__ btrfs_get_num_csums(void)
73 {
74 	return ARRAY_SIZE(btrfs_csums);
75 }
76 
77 struct btrfs_path *btrfs_alloc_path(void)
78 {
79 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
80 }
81 
82 /* this also releases the path */
83 void btrfs_free_path(struct btrfs_path *p)
84 {
85 	if (!p)
86 		return;
87 	btrfs_release_path(p);
88 	kmem_cache_free(btrfs_path_cachep, p);
89 }
90 
91 /*
92  * path release drops references on the extent buffers in the path
93  * and it drops any locks held by this path
94  *
95  * It is safe to call this on paths that no locks or extent buffers held.
96  */
97 noinline void btrfs_release_path(struct btrfs_path *p)
98 {
99 	int i;
100 
101 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
102 		p->slots[i] = 0;
103 		if (!p->nodes[i])
104 			continue;
105 		if (p->locks[i]) {
106 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
107 			p->locks[i] = 0;
108 		}
109 		free_extent_buffer(p->nodes[i]);
110 		p->nodes[i] = NULL;
111 	}
112 }
113 
114 /*
115  * safely gets a reference on the root node of a tree.  A lock
116  * is not taken, so a concurrent writer may put a different node
117  * at the root of the tree.  See btrfs_lock_root_node for the
118  * looping required.
119  *
120  * The extent buffer returned by this has a reference taken, so
121  * it won't disappear.  It may stop being the root of the tree
122  * at any time because there are no locks held.
123  */
124 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
125 {
126 	struct extent_buffer *eb;
127 
128 	while (1) {
129 		rcu_read_lock();
130 		eb = rcu_dereference(root->node);
131 
132 		/*
133 		 * RCU really hurts here, we could free up the root node because
134 		 * it was COWed but we may not get the new root node yet so do
135 		 * the inc_not_zero dance and if it doesn't work then
136 		 * synchronize_rcu and try again.
137 		 */
138 		if (atomic_inc_not_zero(&eb->refs)) {
139 			rcu_read_unlock();
140 			break;
141 		}
142 		rcu_read_unlock();
143 		synchronize_rcu();
144 	}
145 	return eb;
146 }
147 
148 /*
149  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
150  * just get put onto a simple dirty list.  Transaction walks this list to make
151  * sure they get properly updated on disk.
152  */
153 static void add_root_to_dirty_list(struct btrfs_root *root)
154 {
155 	struct btrfs_fs_info *fs_info = root->fs_info;
156 
157 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
158 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
159 		return;
160 
161 	spin_lock(&fs_info->trans_lock);
162 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
163 		/* Want the extent tree to be the last on the list */
164 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
165 			list_move_tail(&root->dirty_list,
166 				       &fs_info->dirty_cowonly_roots);
167 		else
168 			list_move(&root->dirty_list,
169 				  &fs_info->dirty_cowonly_roots);
170 	}
171 	spin_unlock(&fs_info->trans_lock);
172 }
173 
174 /*
175  * used by snapshot creation to make a copy of a root for a tree with
176  * a given objectid.  The buffer with the new root node is returned in
177  * cow_ret, and this func returns zero on success or a negative error code.
178  */
179 int btrfs_copy_root(struct btrfs_trans_handle *trans,
180 		      struct btrfs_root *root,
181 		      struct extent_buffer *buf,
182 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
183 {
184 	struct btrfs_fs_info *fs_info = root->fs_info;
185 	struct extent_buffer *cow;
186 	int ret = 0;
187 	int level;
188 	struct btrfs_disk_key disk_key;
189 
190 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
191 		trans->transid != fs_info->running_transaction->transid);
192 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
193 		trans->transid != root->last_trans);
194 
195 	level = btrfs_header_level(buf);
196 	if (level == 0)
197 		btrfs_item_key(buf, &disk_key, 0);
198 	else
199 		btrfs_node_key(buf, &disk_key, 0);
200 
201 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
202 				     &disk_key, level, buf->start, 0,
203 				     BTRFS_NESTING_NEW_ROOT);
204 	if (IS_ERR(cow))
205 		return PTR_ERR(cow);
206 
207 	copy_extent_buffer_full(cow, buf);
208 	btrfs_set_header_bytenr(cow, cow->start);
209 	btrfs_set_header_generation(cow, trans->transid);
210 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
211 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
212 				     BTRFS_HEADER_FLAG_RELOC);
213 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
214 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
215 	else
216 		btrfs_set_header_owner(cow, new_root_objectid);
217 
218 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
219 
220 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
221 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
222 		ret = btrfs_inc_ref(trans, root, cow, 1);
223 	else
224 		ret = btrfs_inc_ref(trans, root, cow, 0);
225 	if (ret) {
226 		btrfs_tree_unlock(cow);
227 		free_extent_buffer(cow);
228 		btrfs_abort_transaction(trans, ret);
229 		return ret;
230 	}
231 
232 	btrfs_mark_buffer_dirty(cow);
233 	*cow_ret = cow;
234 	return 0;
235 }
236 
237 /*
238  * check if the tree block can be shared by multiple trees
239  */
240 int btrfs_block_can_be_shared(struct btrfs_root *root,
241 			      struct extent_buffer *buf)
242 {
243 	/*
244 	 * Tree blocks not in shareable trees and tree roots are never shared.
245 	 * If a block was allocated after the last snapshot and the block was
246 	 * not allocated by tree relocation, we know the block is not shared.
247 	 */
248 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
249 	    buf != root->node && buf != root->commit_root &&
250 	    (btrfs_header_generation(buf) <=
251 	     btrfs_root_last_snapshot(&root->root_item) ||
252 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
253 		return 1;
254 
255 	return 0;
256 }
257 
258 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
259 				       struct btrfs_root *root,
260 				       struct extent_buffer *buf,
261 				       struct extent_buffer *cow,
262 				       int *last_ref)
263 {
264 	struct btrfs_fs_info *fs_info = root->fs_info;
265 	u64 refs;
266 	u64 owner;
267 	u64 flags;
268 	u64 new_flags = 0;
269 	int ret;
270 
271 	/*
272 	 * Backrefs update rules:
273 	 *
274 	 * Always use full backrefs for extent pointers in tree block
275 	 * allocated by tree relocation.
276 	 *
277 	 * If a shared tree block is no longer referenced by its owner
278 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
279 	 * use full backrefs for extent pointers in tree block.
280 	 *
281 	 * If a tree block is been relocating
282 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
283 	 * use full backrefs for extent pointers in tree block.
284 	 * The reason for this is some operations (such as drop tree)
285 	 * are only allowed for blocks use full backrefs.
286 	 */
287 
288 	if (btrfs_block_can_be_shared(root, buf)) {
289 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
290 					       btrfs_header_level(buf), 1,
291 					       &refs, &flags);
292 		if (ret)
293 			return ret;
294 		if (refs == 0) {
295 			ret = -EROFS;
296 			btrfs_handle_fs_error(fs_info, ret, NULL);
297 			return ret;
298 		}
299 	} else {
300 		refs = 1;
301 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
302 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
303 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
304 		else
305 			flags = 0;
306 	}
307 
308 	owner = btrfs_header_owner(buf);
309 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
310 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
311 
312 	if (refs > 1) {
313 		if ((owner == root->root_key.objectid ||
314 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
315 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
316 			ret = btrfs_inc_ref(trans, root, buf, 1);
317 			if (ret)
318 				return ret;
319 
320 			if (root->root_key.objectid ==
321 			    BTRFS_TREE_RELOC_OBJECTID) {
322 				ret = btrfs_dec_ref(trans, root, buf, 0);
323 				if (ret)
324 					return ret;
325 				ret = btrfs_inc_ref(trans, root, cow, 1);
326 				if (ret)
327 					return ret;
328 			}
329 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
330 		} else {
331 
332 			if (root->root_key.objectid ==
333 			    BTRFS_TREE_RELOC_OBJECTID)
334 				ret = btrfs_inc_ref(trans, root, cow, 1);
335 			else
336 				ret = btrfs_inc_ref(trans, root, cow, 0);
337 			if (ret)
338 				return ret;
339 		}
340 		if (new_flags != 0) {
341 			int level = btrfs_header_level(buf);
342 
343 			ret = btrfs_set_disk_extent_flags(trans, buf,
344 							  new_flags, level, 0);
345 			if (ret)
346 				return ret;
347 		}
348 	} else {
349 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
350 			if (root->root_key.objectid ==
351 			    BTRFS_TREE_RELOC_OBJECTID)
352 				ret = btrfs_inc_ref(trans, root, cow, 1);
353 			else
354 				ret = btrfs_inc_ref(trans, root, cow, 0);
355 			if (ret)
356 				return ret;
357 			ret = btrfs_dec_ref(trans, root, buf, 1);
358 			if (ret)
359 				return ret;
360 		}
361 		btrfs_clean_tree_block(buf);
362 		*last_ref = 1;
363 	}
364 	return 0;
365 }
366 
367 /*
368  * does the dirty work in cow of a single block.  The parent block (if
369  * supplied) is updated to point to the new cow copy.  The new buffer is marked
370  * dirty and returned locked.  If you modify the block it needs to be marked
371  * dirty again.
372  *
373  * search_start -- an allocation hint for the new block
374  *
375  * empty_size -- a hint that you plan on doing more cow.  This is the size in
376  * bytes the allocator should try to find free next to the block it returns.
377  * This is just a hint and may be ignored by the allocator.
378  */
379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
380 			     struct btrfs_root *root,
381 			     struct extent_buffer *buf,
382 			     struct extent_buffer *parent, int parent_slot,
383 			     struct extent_buffer **cow_ret,
384 			     u64 search_start, u64 empty_size,
385 			     enum btrfs_lock_nesting nest)
386 {
387 	struct btrfs_fs_info *fs_info = root->fs_info;
388 	struct btrfs_disk_key disk_key;
389 	struct extent_buffer *cow;
390 	int level, ret;
391 	int last_ref = 0;
392 	int unlock_orig = 0;
393 	u64 parent_start = 0;
394 
395 	if (*cow_ret == buf)
396 		unlock_orig = 1;
397 
398 	btrfs_assert_tree_locked(buf);
399 
400 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
401 		trans->transid != fs_info->running_transaction->transid);
402 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
403 		trans->transid != root->last_trans);
404 
405 	level = btrfs_header_level(buf);
406 
407 	if (level == 0)
408 		btrfs_item_key(buf, &disk_key, 0);
409 	else
410 		btrfs_node_key(buf, &disk_key, 0);
411 
412 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
413 		parent_start = parent->start;
414 
415 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
416 				     root->root_key.objectid, &disk_key, level,
417 				     search_start, empty_size, nest);
418 	if (IS_ERR(cow))
419 		return PTR_ERR(cow);
420 
421 	/* cow is set to blocking by btrfs_init_new_buffer */
422 
423 	copy_extent_buffer_full(cow, buf);
424 	btrfs_set_header_bytenr(cow, cow->start);
425 	btrfs_set_header_generation(cow, trans->transid);
426 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
427 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
428 				     BTRFS_HEADER_FLAG_RELOC);
429 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
430 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
431 	else
432 		btrfs_set_header_owner(cow, root->root_key.objectid);
433 
434 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
435 
436 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
437 	if (ret) {
438 		btrfs_tree_unlock(cow);
439 		free_extent_buffer(cow);
440 		btrfs_abort_transaction(trans, ret);
441 		return ret;
442 	}
443 
444 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
445 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
446 		if (ret) {
447 			btrfs_tree_unlock(cow);
448 			free_extent_buffer(cow);
449 			btrfs_abort_transaction(trans, ret);
450 			return ret;
451 		}
452 	}
453 
454 	if (buf == root->node) {
455 		WARN_ON(parent && parent != buf);
456 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
457 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458 			parent_start = buf->start;
459 
460 		atomic_inc(&cow->refs);
461 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
462 		BUG_ON(ret < 0);
463 		rcu_assign_pointer(root->node, cow);
464 
465 		btrfs_free_tree_block(trans, root, buf, parent_start,
466 				      last_ref);
467 		free_extent_buffer(buf);
468 		add_root_to_dirty_list(root);
469 	} else {
470 		WARN_ON(trans->transid != btrfs_header_generation(parent));
471 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
472 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
473 		btrfs_set_node_blockptr(parent, parent_slot,
474 					cow->start);
475 		btrfs_set_node_ptr_generation(parent, parent_slot,
476 					      trans->transid);
477 		btrfs_mark_buffer_dirty(parent);
478 		if (last_ref) {
479 			ret = btrfs_tree_mod_log_free_eb(buf);
480 			if (ret) {
481 				btrfs_tree_unlock(cow);
482 				free_extent_buffer(cow);
483 				btrfs_abort_transaction(trans, ret);
484 				return ret;
485 			}
486 		}
487 		btrfs_free_tree_block(trans, root, buf, parent_start,
488 				      last_ref);
489 	}
490 	if (unlock_orig)
491 		btrfs_tree_unlock(buf);
492 	free_extent_buffer_stale(buf);
493 	btrfs_mark_buffer_dirty(cow);
494 	*cow_ret = cow;
495 	return 0;
496 }
497 
498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
499 				   struct btrfs_root *root,
500 				   struct extent_buffer *buf)
501 {
502 	if (btrfs_is_testing(root->fs_info))
503 		return 0;
504 
505 	/* Ensure we can see the FORCE_COW bit */
506 	smp_mb__before_atomic();
507 
508 	/*
509 	 * We do not need to cow a block if
510 	 * 1) this block is not created or changed in this transaction;
511 	 * 2) this block does not belong to TREE_RELOC tree;
512 	 * 3) the root is not forced COW.
513 	 *
514 	 * What is forced COW:
515 	 *    when we create snapshot during committing the transaction,
516 	 *    after we've finished copying src root, we must COW the shared
517 	 *    block to ensure the metadata consistency.
518 	 */
519 	if (btrfs_header_generation(buf) == trans->transid &&
520 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
521 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
522 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
523 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
524 		return 0;
525 	return 1;
526 }
527 
528 /*
529  * cows a single block, see __btrfs_cow_block for the real work.
530  * This version of it has extra checks so that a block isn't COWed more than
531  * once per transaction, as long as it hasn't been written yet
532  */
533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
534 		    struct btrfs_root *root, struct extent_buffer *buf,
535 		    struct extent_buffer *parent, int parent_slot,
536 		    struct extent_buffer **cow_ret,
537 		    enum btrfs_lock_nesting nest)
538 {
539 	struct btrfs_fs_info *fs_info = root->fs_info;
540 	u64 search_start;
541 	int ret;
542 
543 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
544 		btrfs_err(fs_info,
545 			"COW'ing blocks on a fs root that's being dropped");
546 
547 	if (trans->transaction != fs_info->running_transaction)
548 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
549 		       trans->transid,
550 		       fs_info->running_transaction->transid);
551 
552 	if (trans->transid != fs_info->generation)
553 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
554 		       trans->transid, fs_info->generation);
555 
556 	if (!should_cow_block(trans, root, buf)) {
557 		*cow_ret = buf;
558 		return 0;
559 	}
560 
561 	search_start = buf->start & ~((u64)SZ_1G - 1);
562 
563 	/*
564 	 * Before CoWing this block for later modification, check if it's
565 	 * the subtree root and do the delayed subtree trace if needed.
566 	 *
567 	 * Also We don't care about the error, as it's handled internally.
568 	 */
569 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
570 	ret = __btrfs_cow_block(trans, root, buf, parent,
571 				 parent_slot, cow_ret, search_start, 0, nest);
572 
573 	trace_btrfs_cow_block(root, buf, *cow_ret);
574 
575 	return ret;
576 }
577 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
578 
579 /*
580  * helper function for defrag to decide if two blocks pointed to by a
581  * node are actually close by
582  */
583 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
584 {
585 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
586 		return 1;
587 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
588 		return 1;
589 	return 0;
590 }
591 
592 #ifdef __LITTLE_ENDIAN
593 
594 /*
595  * Compare two keys, on little-endian the disk order is same as CPU order and
596  * we can avoid the conversion.
597  */
598 static int comp_keys(const struct btrfs_disk_key *disk_key,
599 		     const struct btrfs_key *k2)
600 {
601 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
602 
603 	return btrfs_comp_cpu_keys(k1, k2);
604 }
605 
606 #else
607 
608 /*
609  * compare two keys in a memcmp fashion
610  */
611 static int comp_keys(const struct btrfs_disk_key *disk,
612 		     const struct btrfs_key *k2)
613 {
614 	struct btrfs_key k1;
615 
616 	btrfs_disk_key_to_cpu(&k1, disk);
617 
618 	return btrfs_comp_cpu_keys(&k1, k2);
619 }
620 #endif
621 
622 /*
623  * same as comp_keys only with two btrfs_key's
624  */
625 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
626 {
627 	if (k1->objectid > k2->objectid)
628 		return 1;
629 	if (k1->objectid < k2->objectid)
630 		return -1;
631 	if (k1->type > k2->type)
632 		return 1;
633 	if (k1->type < k2->type)
634 		return -1;
635 	if (k1->offset > k2->offset)
636 		return 1;
637 	if (k1->offset < k2->offset)
638 		return -1;
639 	return 0;
640 }
641 
642 /*
643  * this is used by the defrag code to go through all the
644  * leaves pointed to by a node and reallocate them so that
645  * disk order is close to key order
646  */
647 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
648 		       struct btrfs_root *root, struct extent_buffer *parent,
649 		       int start_slot, u64 *last_ret,
650 		       struct btrfs_key *progress)
651 {
652 	struct btrfs_fs_info *fs_info = root->fs_info;
653 	struct extent_buffer *cur;
654 	u64 blocknr;
655 	u64 search_start = *last_ret;
656 	u64 last_block = 0;
657 	u64 other;
658 	u32 parent_nritems;
659 	int end_slot;
660 	int i;
661 	int err = 0;
662 	u32 blocksize;
663 	int progress_passed = 0;
664 	struct btrfs_disk_key disk_key;
665 
666 	WARN_ON(trans->transaction != fs_info->running_transaction);
667 	WARN_ON(trans->transid != fs_info->generation);
668 
669 	parent_nritems = btrfs_header_nritems(parent);
670 	blocksize = fs_info->nodesize;
671 	end_slot = parent_nritems - 1;
672 
673 	if (parent_nritems <= 1)
674 		return 0;
675 
676 	for (i = start_slot; i <= end_slot; i++) {
677 		int close = 1;
678 
679 		btrfs_node_key(parent, &disk_key, i);
680 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
681 			continue;
682 
683 		progress_passed = 1;
684 		blocknr = btrfs_node_blockptr(parent, i);
685 		if (last_block == 0)
686 			last_block = blocknr;
687 
688 		if (i > 0) {
689 			other = btrfs_node_blockptr(parent, i - 1);
690 			close = close_blocks(blocknr, other, blocksize);
691 		}
692 		if (!close && i < end_slot) {
693 			other = btrfs_node_blockptr(parent, i + 1);
694 			close = close_blocks(blocknr, other, blocksize);
695 		}
696 		if (close) {
697 			last_block = blocknr;
698 			continue;
699 		}
700 
701 		cur = btrfs_read_node_slot(parent, i);
702 		if (IS_ERR(cur))
703 			return PTR_ERR(cur);
704 		if (search_start == 0)
705 			search_start = last_block;
706 
707 		btrfs_tree_lock(cur);
708 		err = __btrfs_cow_block(trans, root, cur, parent, i,
709 					&cur, search_start,
710 					min(16 * blocksize,
711 					    (end_slot - i) * blocksize),
712 					BTRFS_NESTING_COW);
713 		if (err) {
714 			btrfs_tree_unlock(cur);
715 			free_extent_buffer(cur);
716 			break;
717 		}
718 		search_start = cur->start;
719 		last_block = cur->start;
720 		*last_ret = search_start;
721 		btrfs_tree_unlock(cur);
722 		free_extent_buffer(cur);
723 	}
724 	return err;
725 }
726 
727 /*
728  * search for key in the extent_buffer.  The items start at offset p,
729  * and they are item_size apart.
730  *
731  * the slot in the array is returned via slot, and it points to
732  * the place where you would insert key if it is not found in
733  * the array.
734  *
735  * Slot may point to total number of items if the key is bigger than
736  * all of the keys
737  */
738 static noinline int generic_bin_search(struct extent_buffer *eb,
739 				       unsigned long p, int item_size,
740 				       const struct btrfs_key *key, int *slot)
741 {
742 	int low = 0;
743 	int high = btrfs_header_nritems(eb);
744 	int ret;
745 	const int key_size = sizeof(struct btrfs_disk_key);
746 
747 	if (low > high) {
748 		btrfs_err(eb->fs_info,
749 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
750 			  __func__, low, high, eb->start,
751 			  btrfs_header_owner(eb), btrfs_header_level(eb));
752 		return -EINVAL;
753 	}
754 
755 	while (low < high) {
756 		unsigned long oip;
757 		unsigned long offset;
758 		struct btrfs_disk_key *tmp;
759 		struct btrfs_disk_key unaligned;
760 		int mid;
761 
762 		mid = (low + high) / 2;
763 		offset = p + mid * item_size;
764 		oip = offset_in_page(offset);
765 
766 		if (oip + key_size <= PAGE_SIZE) {
767 			const unsigned long idx = get_eb_page_index(offset);
768 			char *kaddr = page_address(eb->pages[idx]);
769 
770 			oip = get_eb_offset_in_page(eb, offset);
771 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
772 		} else {
773 			read_extent_buffer(eb, &unaligned, offset, key_size);
774 			tmp = &unaligned;
775 		}
776 
777 		ret = comp_keys(tmp, key);
778 
779 		if (ret < 0)
780 			low = mid + 1;
781 		else if (ret > 0)
782 			high = mid;
783 		else {
784 			*slot = mid;
785 			return 0;
786 		}
787 	}
788 	*slot = low;
789 	return 1;
790 }
791 
792 /*
793  * simple bin_search frontend that does the right thing for
794  * leaves vs nodes
795  */
796 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
797 		     int *slot)
798 {
799 	if (btrfs_header_level(eb) == 0)
800 		return generic_bin_search(eb,
801 					  offsetof(struct btrfs_leaf, items),
802 					  sizeof(struct btrfs_item), key, slot);
803 	else
804 		return generic_bin_search(eb,
805 					  offsetof(struct btrfs_node, ptrs),
806 					  sizeof(struct btrfs_key_ptr), key, slot);
807 }
808 
809 static void root_add_used(struct btrfs_root *root, u32 size)
810 {
811 	spin_lock(&root->accounting_lock);
812 	btrfs_set_root_used(&root->root_item,
813 			    btrfs_root_used(&root->root_item) + size);
814 	spin_unlock(&root->accounting_lock);
815 }
816 
817 static void root_sub_used(struct btrfs_root *root, u32 size)
818 {
819 	spin_lock(&root->accounting_lock);
820 	btrfs_set_root_used(&root->root_item,
821 			    btrfs_root_used(&root->root_item) - size);
822 	spin_unlock(&root->accounting_lock);
823 }
824 
825 /* given a node and slot number, this reads the blocks it points to.  The
826  * extent buffer is returned with a reference taken (but unlocked).
827  */
828 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
829 					   int slot)
830 {
831 	int level = btrfs_header_level(parent);
832 	struct extent_buffer *eb;
833 	struct btrfs_key first_key;
834 
835 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
836 		return ERR_PTR(-ENOENT);
837 
838 	BUG_ON(level == 0);
839 
840 	btrfs_node_key_to_cpu(parent, &first_key, slot);
841 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
842 			     btrfs_header_owner(parent),
843 			     btrfs_node_ptr_generation(parent, slot),
844 			     level - 1, &first_key);
845 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
846 		free_extent_buffer(eb);
847 		eb = ERR_PTR(-EIO);
848 	}
849 
850 	return eb;
851 }
852 
853 /*
854  * node level balancing, used to make sure nodes are in proper order for
855  * item deletion.  We balance from the top down, so we have to make sure
856  * that a deletion won't leave an node completely empty later on.
857  */
858 static noinline int balance_level(struct btrfs_trans_handle *trans,
859 			 struct btrfs_root *root,
860 			 struct btrfs_path *path, int level)
861 {
862 	struct btrfs_fs_info *fs_info = root->fs_info;
863 	struct extent_buffer *right = NULL;
864 	struct extent_buffer *mid;
865 	struct extent_buffer *left = NULL;
866 	struct extent_buffer *parent = NULL;
867 	int ret = 0;
868 	int wret;
869 	int pslot;
870 	int orig_slot = path->slots[level];
871 	u64 orig_ptr;
872 
873 	ASSERT(level > 0);
874 
875 	mid = path->nodes[level];
876 
877 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
878 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
879 
880 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
881 
882 	if (level < BTRFS_MAX_LEVEL - 1) {
883 		parent = path->nodes[level + 1];
884 		pslot = path->slots[level + 1];
885 	}
886 
887 	/*
888 	 * deal with the case where there is only one pointer in the root
889 	 * by promoting the node below to a root
890 	 */
891 	if (!parent) {
892 		struct extent_buffer *child;
893 
894 		if (btrfs_header_nritems(mid) != 1)
895 			return 0;
896 
897 		/* promote the child to a root */
898 		child = btrfs_read_node_slot(mid, 0);
899 		if (IS_ERR(child)) {
900 			ret = PTR_ERR(child);
901 			btrfs_handle_fs_error(fs_info, ret, NULL);
902 			goto enospc;
903 		}
904 
905 		btrfs_tree_lock(child);
906 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
907 				      BTRFS_NESTING_COW);
908 		if (ret) {
909 			btrfs_tree_unlock(child);
910 			free_extent_buffer(child);
911 			goto enospc;
912 		}
913 
914 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
915 		BUG_ON(ret < 0);
916 		rcu_assign_pointer(root->node, child);
917 
918 		add_root_to_dirty_list(root);
919 		btrfs_tree_unlock(child);
920 
921 		path->locks[level] = 0;
922 		path->nodes[level] = NULL;
923 		btrfs_clean_tree_block(mid);
924 		btrfs_tree_unlock(mid);
925 		/* once for the path */
926 		free_extent_buffer(mid);
927 
928 		root_sub_used(root, mid->len);
929 		btrfs_free_tree_block(trans, root, mid, 0, 1);
930 		/* once for the root ptr */
931 		free_extent_buffer_stale(mid);
932 		return 0;
933 	}
934 	if (btrfs_header_nritems(mid) >
935 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
936 		return 0;
937 
938 	left = btrfs_read_node_slot(parent, pslot - 1);
939 	if (IS_ERR(left))
940 		left = NULL;
941 
942 	if (left) {
943 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
944 		wret = btrfs_cow_block(trans, root, left,
945 				       parent, pslot - 1, &left,
946 				       BTRFS_NESTING_LEFT_COW);
947 		if (wret) {
948 			ret = wret;
949 			goto enospc;
950 		}
951 	}
952 
953 	right = btrfs_read_node_slot(parent, pslot + 1);
954 	if (IS_ERR(right))
955 		right = NULL;
956 
957 	if (right) {
958 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
959 		wret = btrfs_cow_block(trans, root, right,
960 				       parent, pslot + 1, &right,
961 				       BTRFS_NESTING_RIGHT_COW);
962 		if (wret) {
963 			ret = wret;
964 			goto enospc;
965 		}
966 	}
967 
968 	/* first, try to make some room in the middle buffer */
969 	if (left) {
970 		orig_slot += btrfs_header_nritems(left);
971 		wret = push_node_left(trans, left, mid, 1);
972 		if (wret < 0)
973 			ret = wret;
974 	}
975 
976 	/*
977 	 * then try to empty the right most buffer into the middle
978 	 */
979 	if (right) {
980 		wret = push_node_left(trans, mid, right, 1);
981 		if (wret < 0 && wret != -ENOSPC)
982 			ret = wret;
983 		if (btrfs_header_nritems(right) == 0) {
984 			btrfs_clean_tree_block(right);
985 			btrfs_tree_unlock(right);
986 			del_ptr(root, path, level + 1, pslot + 1);
987 			root_sub_used(root, right->len);
988 			btrfs_free_tree_block(trans, root, right, 0, 1);
989 			free_extent_buffer_stale(right);
990 			right = NULL;
991 		} else {
992 			struct btrfs_disk_key right_key;
993 			btrfs_node_key(right, &right_key, 0);
994 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
995 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
996 			BUG_ON(ret < 0);
997 			btrfs_set_node_key(parent, &right_key, pslot + 1);
998 			btrfs_mark_buffer_dirty(parent);
999 		}
1000 	}
1001 	if (btrfs_header_nritems(mid) == 1) {
1002 		/*
1003 		 * we're not allowed to leave a node with one item in the
1004 		 * tree during a delete.  A deletion from lower in the tree
1005 		 * could try to delete the only pointer in this node.
1006 		 * So, pull some keys from the left.
1007 		 * There has to be a left pointer at this point because
1008 		 * otherwise we would have pulled some pointers from the
1009 		 * right
1010 		 */
1011 		if (!left) {
1012 			ret = -EROFS;
1013 			btrfs_handle_fs_error(fs_info, ret, NULL);
1014 			goto enospc;
1015 		}
1016 		wret = balance_node_right(trans, mid, left);
1017 		if (wret < 0) {
1018 			ret = wret;
1019 			goto enospc;
1020 		}
1021 		if (wret == 1) {
1022 			wret = push_node_left(trans, left, mid, 1);
1023 			if (wret < 0)
1024 				ret = wret;
1025 		}
1026 		BUG_ON(wret == 1);
1027 	}
1028 	if (btrfs_header_nritems(mid) == 0) {
1029 		btrfs_clean_tree_block(mid);
1030 		btrfs_tree_unlock(mid);
1031 		del_ptr(root, path, level + 1, pslot);
1032 		root_sub_used(root, mid->len);
1033 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1034 		free_extent_buffer_stale(mid);
1035 		mid = NULL;
1036 	} else {
1037 		/* update the parent key to reflect our changes */
1038 		struct btrfs_disk_key mid_key;
1039 		btrfs_node_key(mid, &mid_key, 0);
1040 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1041 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1042 		BUG_ON(ret < 0);
1043 		btrfs_set_node_key(parent, &mid_key, pslot);
1044 		btrfs_mark_buffer_dirty(parent);
1045 	}
1046 
1047 	/* update the path */
1048 	if (left) {
1049 		if (btrfs_header_nritems(left) > orig_slot) {
1050 			atomic_inc(&left->refs);
1051 			/* left was locked after cow */
1052 			path->nodes[level] = left;
1053 			path->slots[level + 1] -= 1;
1054 			path->slots[level] = orig_slot;
1055 			if (mid) {
1056 				btrfs_tree_unlock(mid);
1057 				free_extent_buffer(mid);
1058 			}
1059 		} else {
1060 			orig_slot -= btrfs_header_nritems(left);
1061 			path->slots[level] = orig_slot;
1062 		}
1063 	}
1064 	/* double check we haven't messed things up */
1065 	if (orig_ptr !=
1066 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1067 		BUG();
1068 enospc:
1069 	if (right) {
1070 		btrfs_tree_unlock(right);
1071 		free_extent_buffer(right);
1072 	}
1073 	if (left) {
1074 		if (path->nodes[level] != left)
1075 			btrfs_tree_unlock(left);
1076 		free_extent_buffer(left);
1077 	}
1078 	return ret;
1079 }
1080 
1081 /* Node balancing for insertion.  Here we only split or push nodes around
1082  * when they are completely full.  This is also done top down, so we
1083  * have to be pessimistic.
1084  */
1085 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1086 					  struct btrfs_root *root,
1087 					  struct btrfs_path *path, int level)
1088 {
1089 	struct btrfs_fs_info *fs_info = root->fs_info;
1090 	struct extent_buffer *right = NULL;
1091 	struct extent_buffer *mid;
1092 	struct extent_buffer *left = NULL;
1093 	struct extent_buffer *parent = NULL;
1094 	int ret = 0;
1095 	int wret;
1096 	int pslot;
1097 	int orig_slot = path->slots[level];
1098 
1099 	if (level == 0)
1100 		return 1;
1101 
1102 	mid = path->nodes[level];
1103 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1104 
1105 	if (level < BTRFS_MAX_LEVEL - 1) {
1106 		parent = path->nodes[level + 1];
1107 		pslot = path->slots[level + 1];
1108 	}
1109 
1110 	if (!parent)
1111 		return 1;
1112 
1113 	left = btrfs_read_node_slot(parent, pslot - 1);
1114 	if (IS_ERR(left))
1115 		left = NULL;
1116 
1117 	/* first, try to make some room in the middle buffer */
1118 	if (left) {
1119 		u32 left_nr;
1120 
1121 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1122 
1123 		left_nr = btrfs_header_nritems(left);
1124 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1125 			wret = 1;
1126 		} else {
1127 			ret = btrfs_cow_block(trans, root, left, parent,
1128 					      pslot - 1, &left,
1129 					      BTRFS_NESTING_LEFT_COW);
1130 			if (ret)
1131 				wret = 1;
1132 			else {
1133 				wret = push_node_left(trans, left, mid, 0);
1134 			}
1135 		}
1136 		if (wret < 0)
1137 			ret = wret;
1138 		if (wret == 0) {
1139 			struct btrfs_disk_key disk_key;
1140 			orig_slot += left_nr;
1141 			btrfs_node_key(mid, &disk_key, 0);
1142 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1143 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1144 			BUG_ON(ret < 0);
1145 			btrfs_set_node_key(parent, &disk_key, pslot);
1146 			btrfs_mark_buffer_dirty(parent);
1147 			if (btrfs_header_nritems(left) > orig_slot) {
1148 				path->nodes[level] = left;
1149 				path->slots[level + 1] -= 1;
1150 				path->slots[level] = orig_slot;
1151 				btrfs_tree_unlock(mid);
1152 				free_extent_buffer(mid);
1153 			} else {
1154 				orig_slot -=
1155 					btrfs_header_nritems(left);
1156 				path->slots[level] = orig_slot;
1157 				btrfs_tree_unlock(left);
1158 				free_extent_buffer(left);
1159 			}
1160 			return 0;
1161 		}
1162 		btrfs_tree_unlock(left);
1163 		free_extent_buffer(left);
1164 	}
1165 	right = btrfs_read_node_slot(parent, pslot + 1);
1166 	if (IS_ERR(right))
1167 		right = NULL;
1168 
1169 	/*
1170 	 * then try to empty the right most buffer into the middle
1171 	 */
1172 	if (right) {
1173 		u32 right_nr;
1174 
1175 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1176 
1177 		right_nr = btrfs_header_nritems(right);
1178 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1179 			wret = 1;
1180 		} else {
1181 			ret = btrfs_cow_block(trans, root, right,
1182 					      parent, pslot + 1,
1183 					      &right, BTRFS_NESTING_RIGHT_COW);
1184 			if (ret)
1185 				wret = 1;
1186 			else {
1187 				wret = balance_node_right(trans, right, mid);
1188 			}
1189 		}
1190 		if (wret < 0)
1191 			ret = wret;
1192 		if (wret == 0) {
1193 			struct btrfs_disk_key disk_key;
1194 
1195 			btrfs_node_key(right, &disk_key, 0);
1196 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1197 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1198 			BUG_ON(ret < 0);
1199 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1200 			btrfs_mark_buffer_dirty(parent);
1201 
1202 			if (btrfs_header_nritems(mid) <= orig_slot) {
1203 				path->nodes[level] = right;
1204 				path->slots[level + 1] += 1;
1205 				path->slots[level] = orig_slot -
1206 					btrfs_header_nritems(mid);
1207 				btrfs_tree_unlock(mid);
1208 				free_extent_buffer(mid);
1209 			} else {
1210 				btrfs_tree_unlock(right);
1211 				free_extent_buffer(right);
1212 			}
1213 			return 0;
1214 		}
1215 		btrfs_tree_unlock(right);
1216 		free_extent_buffer(right);
1217 	}
1218 	return 1;
1219 }
1220 
1221 /*
1222  * readahead one full node of leaves, finding things that are close
1223  * to the block in 'slot', and triggering ra on them.
1224  */
1225 static void reada_for_search(struct btrfs_fs_info *fs_info,
1226 			     struct btrfs_path *path,
1227 			     int level, int slot, u64 objectid)
1228 {
1229 	struct extent_buffer *node;
1230 	struct btrfs_disk_key disk_key;
1231 	u32 nritems;
1232 	u64 search;
1233 	u64 target;
1234 	u64 nread = 0;
1235 	u64 nread_max;
1236 	u32 nr;
1237 	u32 blocksize;
1238 	u32 nscan = 0;
1239 
1240 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1241 		return;
1242 
1243 	if (!path->nodes[level])
1244 		return;
1245 
1246 	node = path->nodes[level];
1247 
1248 	/*
1249 	 * Since the time between visiting leaves is much shorter than the time
1250 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1251 	 * much IO at once (possibly random).
1252 	 */
1253 	if (path->reada == READA_FORWARD_ALWAYS) {
1254 		if (level > 1)
1255 			nread_max = node->fs_info->nodesize;
1256 		else
1257 			nread_max = SZ_128K;
1258 	} else {
1259 		nread_max = SZ_64K;
1260 	}
1261 
1262 	search = btrfs_node_blockptr(node, slot);
1263 	blocksize = fs_info->nodesize;
1264 	if (path->reada != READA_FORWARD_ALWAYS) {
1265 		struct extent_buffer *eb;
1266 
1267 		eb = find_extent_buffer(fs_info, search);
1268 		if (eb) {
1269 			free_extent_buffer(eb);
1270 			return;
1271 		}
1272 	}
1273 
1274 	target = search;
1275 
1276 	nritems = btrfs_header_nritems(node);
1277 	nr = slot;
1278 
1279 	while (1) {
1280 		if (path->reada == READA_BACK) {
1281 			if (nr == 0)
1282 				break;
1283 			nr--;
1284 		} else if (path->reada == READA_FORWARD ||
1285 			   path->reada == READA_FORWARD_ALWAYS) {
1286 			nr++;
1287 			if (nr >= nritems)
1288 				break;
1289 		}
1290 		if (path->reada == READA_BACK && objectid) {
1291 			btrfs_node_key(node, &disk_key, nr);
1292 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1293 				break;
1294 		}
1295 		search = btrfs_node_blockptr(node, nr);
1296 		if (path->reada == READA_FORWARD_ALWAYS ||
1297 		    (search <= target && target - search <= 65536) ||
1298 		    (search > target && search - target <= 65536)) {
1299 			btrfs_readahead_node_child(node, nr);
1300 			nread += blocksize;
1301 		}
1302 		nscan++;
1303 		if (nread > nread_max || nscan > 32)
1304 			break;
1305 	}
1306 }
1307 
1308 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1309 {
1310 	struct extent_buffer *parent;
1311 	int slot;
1312 	int nritems;
1313 
1314 	parent = path->nodes[level + 1];
1315 	if (!parent)
1316 		return;
1317 
1318 	nritems = btrfs_header_nritems(parent);
1319 	slot = path->slots[level + 1];
1320 
1321 	if (slot > 0)
1322 		btrfs_readahead_node_child(parent, slot - 1);
1323 	if (slot + 1 < nritems)
1324 		btrfs_readahead_node_child(parent, slot + 1);
1325 }
1326 
1327 
1328 /*
1329  * when we walk down the tree, it is usually safe to unlock the higher layers
1330  * in the tree.  The exceptions are when our path goes through slot 0, because
1331  * operations on the tree might require changing key pointers higher up in the
1332  * tree.
1333  *
1334  * callers might also have set path->keep_locks, which tells this code to keep
1335  * the lock if the path points to the last slot in the block.  This is part of
1336  * walking through the tree, and selecting the next slot in the higher block.
1337  *
1338  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1339  * if lowest_unlock is 1, level 0 won't be unlocked
1340  */
1341 static noinline void unlock_up(struct btrfs_path *path, int level,
1342 			       int lowest_unlock, int min_write_lock_level,
1343 			       int *write_lock_level)
1344 {
1345 	int i;
1346 	int skip_level = level;
1347 	int no_skips = 0;
1348 	struct extent_buffer *t;
1349 
1350 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1351 		if (!path->nodes[i])
1352 			break;
1353 		if (!path->locks[i])
1354 			break;
1355 		if (!no_skips && path->slots[i] == 0) {
1356 			skip_level = i + 1;
1357 			continue;
1358 		}
1359 		if (!no_skips && path->keep_locks) {
1360 			u32 nritems;
1361 			t = path->nodes[i];
1362 			nritems = btrfs_header_nritems(t);
1363 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1364 				skip_level = i + 1;
1365 				continue;
1366 			}
1367 		}
1368 		if (skip_level < i && i >= lowest_unlock)
1369 			no_skips = 1;
1370 
1371 		t = path->nodes[i];
1372 		if (i >= lowest_unlock && i > skip_level) {
1373 			btrfs_tree_unlock_rw(t, path->locks[i]);
1374 			path->locks[i] = 0;
1375 			if (write_lock_level &&
1376 			    i > min_write_lock_level &&
1377 			    i <= *write_lock_level) {
1378 				*write_lock_level = i - 1;
1379 			}
1380 		}
1381 	}
1382 }
1383 
1384 /*
1385  * helper function for btrfs_search_slot.  The goal is to find a block
1386  * in cache without setting the path to blocking.  If we find the block
1387  * we return zero and the path is unchanged.
1388  *
1389  * If we can't find the block, we set the path blocking and do some
1390  * reada.  -EAGAIN is returned and the search must be repeated.
1391  */
1392 static int
1393 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1394 		      struct extent_buffer **eb_ret, int level, int slot,
1395 		      const struct btrfs_key *key)
1396 {
1397 	struct btrfs_fs_info *fs_info = root->fs_info;
1398 	u64 blocknr;
1399 	u64 gen;
1400 	struct extent_buffer *tmp;
1401 	struct btrfs_key first_key;
1402 	int ret;
1403 	int parent_level;
1404 
1405 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1406 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1407 	parent_level = btrfs_header_level(*eb_ret);
1408 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1409 
1410 	tmp = find_extent_buffer(fs_info, blocknr);
1411 	if (tmp) {
1412 		if (p->reada == READA_FORWARD_ALWAYS)
1413 			reada_for_search(fs_info, p, level, slot, key->objectid);
1414 
1415 		/* first we do an atomic uptodate check */
1416 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1417 			/*
1418 			 * Do extra check for first_key, eb can be stale due to
1419 			 * being cached, read from scrub, or have multiple
1420 			 * parents (shared tree blocks).
1421 			 */
1422 			if (btrfs_verify_level_key(tmp,
1423 					parent_level - 1, &first_key, gen)) {
1424 				free_extent_buffer(tmp);
1425 				return -EUCLEAN;
1426 			}
1427 			*eb_ret = tmp;
1428 			return 0;
1429 		}
1430 
1431 		/* now we're allowed to do a blocking uptodate check */
1432 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1433 		if (!ret) {
1434 			*eb_ret = tmp;
1435 			return 0;
1436 		}
1437 		free_extent_buffer(tmp);
1438 		btrfs_release_path(p);
1439 		return -EIO;
1440 	}
1441 
1442 	/*
1443 	 * reduce lock contention at high levels
1444 	 * of the btree by dropping locks before
1445 	 * we read.  Don't release the lock on the current
1446 	 * level because we need to walk this node to figure
1447 	 * out which blocks to read.
1448 	 */
1449 	btrfs_unlock_up_safe(p, level + 1);
1450 
1451 	if (p->reada != READA_NONE)
1452 		reada_for_search(fs_info, p, level, slot, key->objectid);
1453 
1454 	ret = -EAGAIN;
1455 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1456 			      gen, parent_level - 1, &first_key);
1457 	if (!IS_ERR(tmp)) {
1458 		/*
1459 		 * If the read above didn't mark this buffer up to date,
1460 		 * it will never end up being up to date.  Set ret to EIO now
1461 		 * and give up so that our caller doesn't loop forever
1462 		 * on our EAGAINs.
1463 		 */
1464 		if (!extent_buffer_uptodate(tmp))
1465 			ret = -EIO;
1466 		free_extent_buffer(tmp);
1467 	} else {
1468 		ret = PTR_ERR(tmp);
1469 	}
1470 
1471 	btrfs_release_path(p);
1472 	return ret;
1473 }
1474 
1475 /*
1476  * helper function for btrfs_search_slot.  This does all of the checks
1477  * for node-level blocks and does any balancing required based on
1478  * the ins_len.
1479  *
1480  * If no extra work was required, zero is returned.  If we had to
1481  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1482  * start over
1483  */
1484 static int
1485 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1486 		       struct btrfs_root *root, struct btrfs_path *p,
1487 		       struct extent_buffer *b, int level, int ins_len,
1488 		       int *write_lock_level)
1489 {
1490 	struct btrfs_fs_info *fs_info = root->fs_info;
1491 	int ret = 0;
1492 
1493 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1494 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1495 
1496 		if (*write_lock_level < level + 1) {
1497 			*write_lock_level = level + 1;
1498 			btrfs_release_path(p);
1499 			return -EAGAIN;
1500 		}
1501 
1502 		reada_for_balance(p, level);
1503 		ret = split_node(trans, root, p, level);
1504 
1505 		b = p->nodes[level];
1506 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1507 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1508 
1509 		if (*write_lock_level < level + 1) {
1510 			*write_lock_level = level + 1;
1511 			btrfs_release_path(p);
1512 			return -EAGAIN;
1513 		}
1514 
1515 		reada_for_balance(p, level);
1516 		ret = balance_level(trans, root, p, level);
1517 		if (ret)
1518 			return ret;
1519 
1520 		b = p->nodes[level];
1521 		if (!b) {
1522 			btrfs_release_path(p);
1523 			return -EAGAIN;
1524 		}
1525 		BUG_ON(btrfs_header_nritems(b) == 1);
1526 	}
1527 	return ret;
1528 }
1529 
1530 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1531 		u64 iobjectid, u64 ioff, u8 key_type,
1532 		struct btrfs_key *found_key)
1533 {
1534 	int ret;
1535 	struct btrfs_key key;
1536 	struct extent_buffer *eb;
1537 
1538 	ASSERT(path);
1539 	ASSERT(found_key);
1540 
1541 	key.type = key_type;
1542 	key.objectid = iobjectid;
1543 	key.offset = ioff;
1544 
1545 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1546 	if (ret < 0)
1547 		return ret;
1548 
1549 	eb = path->nodes[0];
1550 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1551 		ret = btrfs_next_leaf(fs_root, path);
1552 		if (ret)
1553 			return ret;
1554 		eb = path->nodes[0];
1555 	}
1556 
1557 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1558 	if (found_key->type != key.type ||
1559 			found_key->objectid != key.objectid)
1560 		return 1;
1561 
1562 	return 0;
1563 }
1564 
1565 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1566 							struct btrfs_path *p,
1567 							int write_lock_level)
1568 {
1569 	struct btrfs_fs_info *fs_info = root->fs_info;
1570 	struct extent_buffer *b;
1571 	int root_lock;
1572 	int level = 0;
1573 
1574 	/* We try very hard to do read locks on the root */
1575 	root_lock = BTRFS_READ_LOCK;
1576 
1577 	if (p->search_commit_root) {
1578 		/*
1579 		 * The commit roots are read only so we always do read locks,
1580 		 * and we always must hold the commit_root_sem when doing
1581 		 * searches on them, the only exception is send where we don't
1582 		 * want to block transaction commits for a long time, so
1583 		 * we need to clone the commit root in order to avoid races
1584 		 * with transaction commits that create a snapshot of one of
1585 		 * the roots used by a send operation.
1586 		 */
1587 		if (p->need_commit_sem) {
1588 			down_read(&fs_info->commit_root_sem);
1589 			b = btrfs_clone_extent_buffer(root->commit_root);
1590 			up_read(&fs_info->commit_root_sem);
1591 			if (!b)
1592 				return ERR_PTR(-ENOMEM);
1593 
1594 		} else {
1595 			b = root->commit_root;
1596 			atomic_inc(&b->refs);
1597 		}
1598 		level = btrfs_header_level(b);
1599 		/*
1600 		 * Ensure that all callers have set skip_locking when
1601 		 * p->search_commit_root = 1.
1602 		 */
1603 		ASSERT(p->skip_locking == 1);
1604 
1605 		goto out;
1606 	}
1607 
1608 	if (p->skip_locking) {
1609 		b = btrfs_root_node(root);
1610 		level = btrfs_header_level(b);
1611 		goto out;
1612 	}
1613 
1614 	/*
1615 	 * If the level is set to maximum, we can skip trying to get the read
1616 	 * lock.
1617 	 */
1618 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1619 		/*
1620 		 * We don't know the level of the root node until we actually
1621 		 * have it read locked
1622 		 */
1623 		b = btrfs_read_lock_root_node(root);
1624 		level = btrfs_header_level(b);
1625 		if (level > write_lock_level)
1626 			goto out;
1627 
1628 		/* Whoops, must trade for write lock */
1629 		btrfs_tree_read_unlock(b);
1630 		free_extent_buffer(b);
1631 	}
1632 
1633 	b = btrfs_lock_root_node(root);
1634 	root_lock = BTRFS_WRITE_LOCK;
1635 
1636 	/* The level might have changed, check again */
1637 	level = btrfs_header_level(b);
1638 
1639 out:
1640 	p->nodes[level] = b;
1641 	if (!p->skip_locking)
1642 		p->locks[level] = root_lock;
1643 	/*
1644 	 * Callers are responsible for dropping b's references.
1645 	 */
1646 	return b;
1647 }
1648 
1649 
1650 /*
1651  * btrfs_search_slot - look for a key in a tree and perform necessary
1652  * modifications to preserve tree invariants.
1653  *
1654  * @trans:	Handle of transaction, used when modifying the tree
1655  * @p:		Holds all btree nodes along the search path
1656  * @root:	The root node of the tree
1657  * @key:	The key we are looking for
1658  * @ins_len:	Indicates purpose of search:
1659  *              >0  for inserts it's size of item inserted (*)
1660  *              <0  for deletions
1661  *               0  for plain searches, not modifying the tree
1662  *
1663  *              (*) If size of item inserted doesn't include
1664  *              sizeof(struct btrfs_item), then p->search_for_extension must
1665  *              be set.
1666  * @cow:	boolean should CoW operations be performed. Must always be 1
1667  *		when modifying the tree.
1668  *
1669  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1670  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1671  *
1672  * If @key is found, 0 is returned and you can find the item in the leaf level
1673  * of the path (level 0)
1674  *
1675  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1676  * points to the slot where it should be inserted
1677  *
1678  * If an error is encountered while searching the tree a negative error number
1679  * is returned
1680  */
1681 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1682 		      const struct btrfs_key *key, struct btrfs_path *p,
1683 		      int ins_len, int cow)
1684 {
1685 	struct extent_buffer *b;
1686 	int slot;
1687 	int ret;
1688 	int err;
1689 	int level;
1690 	int lowest_unlock = 1;
1691 	/* everything at write_lock_level or lower must be write locked */
1692 	int write_lock_level = 0;
1693 	u8 lowest_level = 0;
1694 	int min_write_lock_level;
1695 	int prev_cmp;
1696 
1697 	lowest_level = p->lowest_level;
1698 	WARN_ON(lowest_level && ins_len > 0);
1699 	WARN_ON(p->nodes[0] != NULL);
1700 	BUG_ON(!cow && ins_len);
1701 
1702 	if (ins_len < 0) {
1703 		lowest_unlock = 2;
1704 
1705 		/* when we are removing items, we might have to go up to level
1706 		 * two as we update tree pointers  Make sure we keep write
1707 		 * for those levels as well
1708 		 */
1709 		write_lock_level = 2;
1710 	} else if (ins_len > 0) {
1711 		/*
1712 		 * for inserting items, make sure we have a write lock on
1713 		 * level 1 so we can update keys
1714 		 */
1715 		write_lock_level = 1;
1716 	}
1717 
1718 	if (!cow)
1719 		write_lock_level = -1;
1720 
1721 	if (cow && (p->keep_locks || p->lowest_level))
1722 		write_lock_level = BTRFS_MAX_LEVEL;
1723 
1724 	min_write_lock_level = write_lock_level;
1725 
1726 again:
1727 	prev_cmp = -1;
1728 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1729 	if (IS_ERR(b)) {
1730 		ret = PTR_ERR(b);
1731 		goto done;
1732 	}
1733 
1734 	while (b) {
1735 		int dec = 0;
1736 
1737 		level = btrfs_header_level(b);
1738 
1739 		if (cow) {
1740 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1741 
1742 			/*
1743 			 * if we don't really need to cow this block
1744 			 * then we don't want to set the path blocking,
1745 			 * so we test it here
1746 			 */
1747 			if (!should_cow_block(trans, root, b))
1748 				goto cow_done;
1749 
1750 			/*
1751 			 * must have write locks on this node and the
1752 			 * parent
1753 			 */
1754 			if (level > write_lock_level ||
1755 			    (level + 1 > write_lock_level &&
1756 			    level + 1 < BTRFS_MAX_LEVEL &&
1757 			    p->nodes[level + 1])) {
1758 				write_lock_level = level + 1;
1759 				btrfs_release_path(p);
1760 				goto again;
1761 			}
1762 
1763 			if (last_level)
1764 				err = btrfs_cow_block(trans, root, b, NULL, 0,
1765 						      &b,
1766 						      BTRFS_NESTING_COW);
1767 			else
1768 				err = btrfs_cow_block(trans, root, b,
1769 						      p->nodes[level + 1],
1770 						      p->slots[level + 1], &b,
1771 						      BTRFS_NESTING_COW);
1772 			if (err) {
1773 				ret = err;
1774 				goto done;
1775 			}
1776 		}
1777 cow_done:
1778 		p->nodes[level] = b;
1779 		/*
1780 		 * Leave path with blocking locks to avoid massive
1781 		 * lock context switch, this is made on purpose.
1782 		 */
1783 
1784 		/*
1785 		 * we have a lock on b and as long as we aren't changing
1786 		 * the tree, there is no way to for the items in b to change.
1787 		 * It is safe to drop the lock on our parent before we
1788 		 * go through the expensive btree search on b.
1789 		 *
1790 		 * If we're inserting or deleting (ins_len != 0), then we might
1791 		 * be changing slot zero, which may require changing the parent.
1792 		 * So, we can't drop the lock until after we know which slot
1793 		 * we're operating on.
1794 		 */
1795 		if (!ins_len && !p->keep_locks) {
1796 			int u = level + 1;
1797 
1798 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1799 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1800 				p->locks[u] = 0;
1801 			}
1802 		}
1803 
1804 		/*
1805 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1806 		 * we can safely assume the target key will always be in slot 0
1807 		 * on lower levels due to the invariants BTRFS' btree provides,
1808 		 * namely that a btrfs_key_ptr entry always points to the
1809 		 * lowest key in the child node, thus we can skip searching
1810 		 * lower levels
1811 		 */
1812 		if (prev_cmp == 0) {
1813 			slot = 0;
1814 			ret = 0;
1815 		} else {
1816 			ret = btrfs_bin_search(b, key, &slot);
1817 			prev_cmp = ret;
1818 			if (ret < 0)
1819 				goto done;
1820 		}
1821 
1822 		if (level == 0) {
1823 			p->slots[level] = slot;
1824 			/*
1825 			 * Item key already exists. In this case, if we are
1826 			 * allowed to insert the item (for example, in dir_item
1827 			 * case, item key collision is allowed), it will be
1828 			 * merged with the original item. Only the item size
1829 			 * grows, no new btrfs item will be added. If
1830 			 * search_for_extension is not set, ins_len already
1831 			 * accounts the size btrfs_item, deduct it here so leaf
1832 			 * space check will be correct.
1833 			 */
1834 			if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1835 				ASSERT(ins_len >= sizeof(struct btrfs_item));
1836 				ins_len -= sizeof(struct btrfs_item);
1837 			}
1838 			if (ins_len > 0 &&
1839 			    btrfs_leaf_free_space(b) < ins_len) {
1840 				if (write_lock_level < 1) {
1841 					write_lock_level = 1;
1842 					btrfs_release_path(p);
1843 					goto again;
1844 				}
1845 
1846 				err = split_leaf(trans, root, key,
1847 						 p, ins_len, ret == 0);
1848 
1849 				BUG_ON(err > 0);
1850 				if (err) {
1851 					ret = err;
1852 					goto done;
1853 				}
1854 			}
1855 			if (!p->search_for_split)
1856 				unlock_up(p, level, lowest_unlock,
1857 					  min_write_lock_level, NULL);
1858 			goto done;
1859 		}
1860 		if (ret && slot > 0) {
1861 			dec = 1;
1862 			slot--;
1863 		}
1864 		p->slots[level] = slot;
1865 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1866 					     &write_lock_level);
1867 		if (err == -EAGAIN)
1868 			goto again;
1869 		if (err) {
1870 			ret = err;
1871 			goto done;
1872 		}
1873 		b = p->nodes[level];
1874 		slot = p->slots[level];
1875 
1876 		/*
1877 		 * Slot 0 is special, if we change the key we have to update
1878 		 * the parent pointer which means we must have a write lock on
1879 		 * the parent
1880 		 */
1881 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
1882 			write_lock_level = level + 1;
1883 			btrfs_release_path(p);
1884 			goto again;
1885 		}
1886 
1887 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
1888 			  &write_lock_level);
1889 
1890 		if (level == lowest_level) {
1891 			if (dec)
1892 				p->slots[level]++;
1893 			goto done;
1894 		}
1895 
1896 		err = read_block_for_search(root, p, &b, level, slot, key);
1897 		if (err == -EAGAIN)
1898 			goto again;
1899 		if (err) {
1900 			ret = err;
1901 			goto done;
1902 		}
1903 
1904 		if (!p->skip_locking) {
1905 			level = btrfs_header_level(b);
1906 			if (level <= write_lock_level) {
1907 				btrfs_tree_lock(b);
1908 				p->locks[level] = BTRFS_WRITE_LOCK;
1909 			} else {
1910 				btrfs_tree_read_lock(b);
1911 				p->locks[level] = BTRFS_READ_LOCK;
1912 			}
1913 			p->nodes[level] = b;
1914 		}
1915 	}
1916 	ret = 1;
1917 done:
1918 	if (ret < 0 && !p->skip_release_on_error)
1919 		btrfs_release_path(p);
1920 	return ret;
1921 }
1922 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1923 
1924 /*
1925  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1926  * current state of the tree together with the operations recorded in the tree
1927  * modification log to search for the key in a previous version of this tree, as
1928  * denoted by the time_seq parameter.
1929  *
1930  * Naturally, there is no support for insert, delete or cow operations.
1931  *
1932  * The resulting path and return value will be set up as if we called
1933  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1934  */
1935 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1936 			  struct btrfs_path *p, u64 time_seq)
1937 {
1938 	struct btrfs_fs_info *fs_info = root->fs_info;
1939 	struct extent_buffer *b;
1940 	int slot;
1941 	int ret;
1942 	int err;
1943 	int level;
1944 	int lowest_unlock = 1;
1945 	u8 lowest_level = 0;
1946 
1947 	lowest_level = p->lowest_level;
1948 	WARN_ON(p->nodes[0] != NULL);
1949 
1950 	if (p->search_commit_root) {
1951 		BUG_ON(time_seq);
1952 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
1953 	}
1954 
1955 again:
1956 	b = btrfs_get_old_root(root, time_seq);
1957 	if (!b) {
1958 		ret = -EIO;
1959 		goto done;
1960 	}
1961 	level = btrfs_header_level(b);
1962 	p->locks[level] = BTRFS_READ_LOCK;
1963 
1964 	while (b) {
1965 		int dec = 0;
1966 
1967 		level = btrfs_header_level(b);
1968 		p->nodes[level] = b;
1969 
1970 		/*
1971 		 * we have a lock on b and as long as we aren't changing
1972 		 * the tree, there is no way to for the items in b to change.
1973 		 * It is safe to drop the lock on our parent before we
1974 		 * go through the expensive btree search on b.
1975 		 */
1976 		btrfs_unlock_up_safe(p, level + 1);
1977 
1978 		ret = btrfs_bin_search(b, key, &slot);
1979 		if (ret < 0)
1980 			goto done;
1981 
1982 		if (level == 0) {
1983 			p->slots[level] = slot;
1984 			unlock_up(p, level, lowest_unlock, 0, NULL);
1985 			goto done;
1986 		}
1987 
1988 		if (ret && slot > 0) {
1989 			dec = 1;
1990 			slot--;
1991 		}
1992 		p->slots[level] = slot;
1993 		unlock_up(p, level, lowest_unlock, 0, NULL);
1994 
1995 		if (level == lowest_level) {
1996 			if (dec)
1997 				p->slots[level]++;
1998 			goto done;
1999 		}
2000 
2001 		err = read_block_for_search(root, p, &b, level, slot, key);
2002 		if (err == -EAGAIN)
2003 			goto again;
2004 		if (err) {
2005 			ret = err;
2006 			goto done;
2007 		}
2008 
2009 		level = btrfs_header_level(b);
2010 		btrfs_tree_read_lock(b);
2011 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2012 		if (!b) {
2013 			ret = -ENOMEM;
2014 			goto done;
2015 		}
2016 		p->locks[level] = BTRFS_READ_LOCK;
2017 		p->nodes[level] = b;
2018 	}
2019 	ret = 1;
2020 done:
2021 	if (ret < 0)
2022 		btrfs_release_path(p);
2023 
2024 	return ret;
2025 }
2026 
2027 /*
2028  * helper to use instead of search slot if no exact match is needed but
2029  * instead the next or previous item should be returned.
2030  * When find_higher is true, the next higher item is returned, the next lower
2031  * otherwise.
2032  * When return_any and find_higher are both true, and no higher item is found,
2033  * return the next lower instead.
2034  * When return_any is true and find_higher is false, and no lower item is found,
2035  * return the next higher instead.
2036  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2037  * < 0 on error
2038  */
2039 int btrfs_search_slot_for_read(struct btrfs_root *root,
2040 			       const struct btrfs_key *key,
2041 			       struct btrfs_path *p, int find_higher,
2042 			       int return_any)
2043 {
2044 	int ret;
2045 	struct extent_buffer *leaf;
2046 
2047 again:
2048 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2049 	if (ret <= 0)
2050 		return ret;
2051 	/*
2052 	 * a return value of 1 means the path is at the position where the
2053 	 * item should be inserted. Normally this is the next bigger item,
2054 	 * but in case the previous item is the last in a leaf, path points
2055 	 * to the first free slot in the previous leaf, i.e. at an invalid
2056 	 * item.
2057 	 */
2058 	leaf = p->nodes[0];
2059 
2060 	if (find_higher) {
2061 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2062 			ret = btrfs_next_leaf(root, p);
2063 			if (ret <= 0)
2064 				return ret;
2065 			if (!return_any)
2066 				return 1;
2067 			/*
2068 			 * no higher item found, return the next
2069 			 * lower instead
2070 			 */
2071 			return_any = 0;
2072 			find_higher = 0;
2073 			btrfs_release_path(p);
2074 			goto again;
2075 		}
2076 	} else {
2077 		if (p->slots[0] == 0) {
2078 			ret = btrfs_prev_leaf(root, p);
2079 			if (ret < 0)
2080 				return ret;
2081 			if (!ret) {
2082 				leaf = p->nodes[0];
2083 				if (p->slots[0] == btrfs_header_nritems(leaf))
2084 					p->slots[0]--;
2085 				return 0;
2086 			}
2087 			if (!return_any)
2088 				return 1;
2089 			/*
2090 			 * no lower item found, return the next
2091 			 * higher instead
2092 			 */
2093 			return_any = 0;
2094 			find_higher = 1;
2095 			btrfs_release_path(p);
2096 			goto again;
2097 		} else {
2098 			--p->slots[0];
2099 		}
2100 	}
2101 	return 0;
2102 }
2103 
2104 /*
2105  * adjust the pointers going up the tree, starting at level
2106  * making sure the right key of each node is points to 'key'.
2107  * This is used after shifting pointers to the left, so it stops
2108  * fixing up pointers when a given leaf/node is not in slot 0 of the
2109  * higher levels
2110  *
2111  */
2112 static void fixup_low_keys(struct btrfs_path *path,
2113 			   struct btrfs_disk_key *key, int level)
2114 {
2115 	int i;
2116 	struct extent_buffer *t;
2117 	int ret;
2118 
2119 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2120 		int tslot = path->slots[i];
2121 
2122 		if (!path->nodes[i])
2123 			break;
2124 		t = path->nodes[i];
2125 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2126 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2127 		BUG_ON(ret < 0);
2128 		btrfs_set_node_key(t, key, tslot);
2129 		btrfs_mark_buffer_dirty(path->nodes[i]);
2130 		if (tslot != 0)
2131 			break;
2132 	}
2133 }
2134 
2135 /*
2136  * update item key.
2137  *
2138  * This function isn't completely safe. It's the caller's responsibility
2139  * that the new key won't break the order
2140  */
2141 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2142 			     struct btrfs_path *path,
2143 			     const struct btrfs_key *new_key)
2144 {
2145 	struct btrfs_disk_key disk_key;
2146 	struct extent_buffer *eb;
2147 	int slot;
2148 
2149 	eb = path->nodes[0];
2150 	slot = path->slots[0];
2151 	if (slot > 0) {
2152 		btrfs_item_key(eb, &disk_key, slot - 1);
2153 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2154 			btrfs_crit(fs_info,
2155 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2156 				   slot, btrfs_disk_key_objectid(&disk_key),
2157 				   btrfs_disk_key_type(&disk_key),
2158 				   btrfs_disk_key_offset(&disk_key),
2159 				   new_key->objectid, new_key->type,
2160 				   new_key->offset);
2161 			btrfs_print_leaf(eb);
2162 			BUG();
2163 		}
2164 	}
2165 	if (slot < btrfs_header_nritems(eb) - 1) {
2166 		btrfs_item_key(eb, &disk_key, slot + 1);
2167 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2168 			btrfs_crit(fs_info,
2169 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2170 				   slot, btrfs_disk_key_objectid(&disk_key),
2171 				   btrfs_disk_key_type(&disk_key),
2172 				   btrfs_disk_key_offset(&disk_key),
2173 				   new_key->objectid, new_key->type,
2174 				   new_key->offset);
2175 			btrfs_print_leaf(eb);
2176 			BUG();
2177 		}
2178 	}
2179 
2180 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2181 	btrfs_set_item_key(eb, &disk_key, slot);
2182 	btrfs_mark_buffer_dirty(eb);
2183 	if (slot == 0)
2184 		fixup_low_keys(path, &disk_key, 1);
2185 }
2186 
2187 /*
2188  * Check key order of two sibling extent buffers.
2189  *
2190  * Return true if something is wrong.
2191  * Return false if everything is fine.
2192  *
2193  * Tree-checker only works inside one tree block, thus the following
2194  * corruption can not be detected by tree-checker:
2195  *
2196  * Leaf @left			| Leaf @right
2197  * --------------------------------------------------------------
2198  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2199  *
2200  * Key f6 in leaf @left itself is valid, but not valid when the next
2201  * key in leaf @right is 7.
2202  * This can only be checked at tree block merge time.
2203  * And since tree checker has ensured all key order in each tree block
2204  * is correct, we only need to bother the last key of @left and the first
2205  * key of @right.
2206  */
2207 static bool check_sibling_keys(struct extent_buffer *left,
2208 			       struct extent_buffer *right)
2209 {
2210 	struct btrfs_key left_last;
2211 	struct btrfs_key right_first;
2212 	int level = btrfs_header_level(left);
2213 	int nr_left = btrfs_header_nritems(left);
2214 	int nr_right = btrfs_header_nritems(right);
2215 
2216 	/* No key to check in one of the tree blocks */
2217 	if (!nr_left || !nr_right)
2218 		return false;
2219 
2220 	if (level) {
2221 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2222 		btrfs_node_key_to_cpu(right, &right_first, 0);
2223 	} else {
2224 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2225 		btrfs_item_key_to_cpu(right, &right_first, 0);
2226 	}
2227 
2228 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2229 		btrfs_crit(left->fs_info,
2230 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2231 			   left_last.objectid, left_last.type,
2232 			   left_last.offset, right_first.objectid,
2233 			   right_first.type, right_first.offset);
2234 		return true;
2235 	}
2236 	return false;
2237 }
2238 
2239 /*
2240  * try to push data from one node into the next node left in the
2241  * tree.
2242  *
2243  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2244  * error, and > 0 if there was no room in the left hand block.
2245  */
2246 static int push_node_left(struct btrfs_trans_handle *trans,
2247 			  struct extent_buffer *dst,
2248 			  struct extent_buffer *src, int empty)
2249 {
2250 	struct btrfs_fs_info *fs_info = trans->fs_info;
2251 	int push_items = 0;
2252 	int src_nritems;
2253 	int dst_nritems;
2254 	int ret = 0;
2255 
2256 	src_nritems = btrfs_header_nritems(src);
2257 	dst_nritems = btrfs_header_nritems(dst);
2258 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2259 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2260 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2261 
2262 	if (!empty && src_nritems <= 8)
2263 		return 1;
2264 
2265 	if (push_items <= 0)
2266 		return 1;
2267 
2268 	if (empty) {
2269 		push_items = min(src_nritems, push_items);
2270 		if (push_items < src_nritems) {
2271 			/* leave at least 8 pointers in the node if
2272 			 * we aren't going to empty it
2273 			 */
2274 			if (src_nritems - push_items < 8) {
2275 				if (push_items <= 8)
2276 					return 1;
2277 				push_items -= 8;
2278 			}
2279 		}
2280 	} else
2281 		push_items = min(src_nritems - 8, push_items);
2282 
2283 	/* dst is the left eb, src is the middle eb */
2284 	if (check_sibling_keys(dst, src)) {
2285 		ret = -EUCLEAN;
2286 		btrfs_abort_transaction(trans, ret);
2287 		return ret;
2288 	}
2289 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2290 	if (ret) {
2291 		btrfs_abort_transaction(trans, ret);
2292 		return ret;
2293 	}
2294 	copy_extent_buffer(dst, src,
2295 			   btrfs_node_key_ptr_offset(dst_nritems),
2296 			   btrfs_node_key_ptr_offset(0),
2297 			   push_items * sizeof(struct btrfs_key_ptr));
2298 
2299 	if (push_items < src_nritems) {
2300 		/*
2301 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2302 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2303 		 */
2304 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2305 				      btrfs_node_key_ptr_offset(push_items),
2306 				      (src_nritems - push_items) *
2307 				      sizeof(struct btrfs_key_ptr));
2308 	}
2309 	btrfs_set_header_nritems(src, src_nritems - push_items);
2310 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2311 	btrfs_mark_buffer_dirty(src);
2312 	btrfs_mark_buffer_dirty(dst);
2313 
2314 	return ret;
2315 }
2316 
2317 /*
2318  * try to push data from one node into the next node right in the
2319  * tree.
2320  *
2321  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2322  * error, and > 0 if there was no room in the right hand block.
2323  *
2324  * this will  only push up to 1/2 the contents of the left node over
2325  */
2326 static int balance_node_right(struct btrfs_trans_handle *trans,
2327 			      struct extent_buffer *dst,
2328 			      struct extent_buffer *src)
2329 {
2330 	struct btrfs_fs_info *fs_info = trans->fs_info;
2331 	int push_items = 0;
2332 	int max_push;
2333 	int src_nritems;
2334 	int dst_nritems;
2335 	int ret = 0;
2336 
2337 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2338 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2339 
2340 	src_nritems = btrfs_header_nritems(src);
2341 	dst_nritems = btrfs_header_nritems(dst);
2342 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2343 	if (push_items <= 0)
2344 		return 1;
2345 
2346 	if (src_nritems < 4)
2347 		return 1;
2348 
2349 	max_push = src_nritems / 2 + 1;
2350 	/* don't try to empty the node */
2351 	if (max_push >= src_nritems)
2352 		return 1;
2353 
2354 	if (max_push < push_items)
2355 		push_items = max_push;
2356 
2357 	/* dst is the right eb, src is the middle eb */
2358 	if (check_sibling_keys(src, dst)) {
2359 		ret = -EUCLEAN;
2360 		btrfs_abort_transaction(trans, ret);
2361 		return ret;
2362 	}
2363 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2364 	BUG_ON(ret < 0);
2365 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2366 				      btrfs_node_key_ptr_offset(0),
2367 				      (dst_nritems) *
2368 				      sizeof(struct btrfs_key_ptr));
2369 
2370 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2371 					 push_items);
2372 	if (ret) {
2373 		btrfs_abort_transaction(trans, ret);
2374 		return ret;
2375 	}
2376 	copy_extent_buffer(dst, src,
2377 			   btrfs_node_key_ptr_offset(0),
2378 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2379 			   push_items * sizeof(struct btrfs_key_ptr));
2380 
2381 	btrfs_set_header_nritems(src, src_nritems - push_items);
2382 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2383 
2384 	btrfs_mark_buffer_dirty(src);
2385 	btrfs_mark_buffer_dirty(dst);
2386 
2387 	return ret;
2388 }
2389 
2390 /*
2391  * helper function to insert a new root level in the tree.
2392  * A new node is allocated, and a single item is inserted to
2393  * point to the existing root
2394  *
2395  * returns zero on success or < 0 on failure.
2396  */
2397 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2398 			   struct btrfs_root *root,
2399 			   struct btrfs_path *path, int level)
2400 {
2401 	struct btrfs_fs_info *fs_info = root->fs_info;
2402 	u64 lower_gen;
2403 	struct extent_buffer *lower;
2404 	struct extent_buffer *c;
2405 	struct extent_buffer *old;
2406 	struct btrfs_disk_key lower_key;
2407 	int ret;
2408 
2409 	BUG_ON(path->nodes[level]);
2410 	BUG_ON(path->nodes[level-1] != root->node);
2411 
2412 	lower = path->nodes[level-1];
2413 	if (level == 1)
2414 		btrfs_item_key(lower, &lower_key, 0);
2415 	else
2416 		btrfs_node_key(lower, &lower_key, 0);
2417 
2418 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2419 				   &lower_key, level, root->node->start, 0,
2420 				   BTRFS_NESTING_NEW_ROOT);
2421 	if (IS_ERR(c))
2422 		return PTR_ERR(c);
2423 
2424 	root_add_used(root, fs_info->nodesize);
2425 
2426 	btrfs_set_header_nritems(c, 1);
2427 	btrfs_set_node_key(c, &lower_key, 0);
2428 	btrfs_set_node_blockptr(c, 0, lower->start);
2429 	lower_gen = btrfs_header_generation(lower);
2430 	WARN_ON(lower_gen != trans->transid);
2431 
2432 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2433 
2434 	btrfs_mark_buffer_dirty(c);
2435 
2436 	old = root->node;
2437 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2438 	BUG_ON(ret < 0);
2439 	rcu_assign_pointer(root->node, c);
2440 
2441 	/* the super has an extra ref to root->node */
2442 	free_extent_buffer(old);
2443 
2444 	add_root_to_dirty_list(root);
2445 	atomic_inc(&c->refs);
2446 	path->nodes[level] = c;
2447 	path->locks[level] = BTRFS_WRITE_LOCK;
2448 	path->slots[level] = 0;
2449 	return 0;
2450 }
2451 
2452 /*
2453  * worker function to insert a single pointer in a node.
2454  * the node should have enough room for the pointer already
2455  *
2456  * slot and level indicate where you want the key to go, and
2457  * blocknr is the block the key points to.
2458  */
2459 static void insert_ptr(struct btrfs_trans_handle *trans,
2460 		       struct btrfs_path *path,
2461 		       struct btrfs_disk_key *key, u64 bytenr,
2462 		       int slot, int level)
2463 {
2464 	struct extent_buffer *lower;
2465 	int nritems;
2466 	int ret;
2467 
2468 	BUG_ON(!path->nodes[level]);
2469 	btrfs_assert_tree_locked(path->nodes[level]);
2470 	lower = path->nodes[level];
2471 	nritems = btrfs_header_nritems(lower);
2472 	BUG_ON(slot > nritems);
2473 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2474 	if (slot != nritems) {
2475 		if (level) {
2476 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2477 					slot, nritems - slot);
2478 			BUG_ON(ret < 0);
2479 		}
2480 		memmove_extent_buffer(lower,
2481 			      btrfs_node_key_ptr_offset(slot + 1),
2482 			      btrfs_node_key_ptr_offset(slot),
2483 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2484 	}
2485 	if (level) {
2486 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2487 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2488 		BUG_ON(ret < 0);
2489 	}
2490 	btrfs_set_node_key(lower, key, slot);
2491 	btrfs_set_node_blockptr(lower, slot, bytenr);
2492 	WARN_ON(trans->transid == 0);
2493 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2494 	btrfs_set_header_nritems(lower, nritems + 1);
2495 	btrfs_mark_buffer_dirty(lower);
2496 }
2497 
2498 /*
2499  * split the node at the specified level in path in two.
2500  * The path is corrected to point to the appropriate node after the split
2501  *
2502  * Before splitting this tries to make some room in the node by pushing
2503  * left and right, if either one works, it returns right away.
2504  *
2505  * returns 0 on success and < 0 on failure
2506  */
2507 static noinline int split_node(struct btrfs_trans_handle *trans,
2508 			       struct btrfs_root *root,
2509 			       struct btrfs_path *path, int level)
2510 {
2511 	struct btrfs_fs_info *fs_info = root->fs_info;
2512 	struct extent_buffer *c;
2513 	struct extent_buffer *split;
2514 	struct btrfs_disk_key disk_key;
2515 	int mid;
2516 	int ret;
2517 	u32 c_nritems;
2518 
2519 	c = path->nodes[level];
2520 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2521 	if (c == root->node) {
2522 		/*
2523 		 * trying to split the root, lets make a new one
2524 		 *
2525 		 * tree mod log: We don't log_removal old root in
2526 		 * insert_new_root, because that root buffer will be kept as a
2527 		 * normal node. We are going to log removal of half of the
2528 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2529 		 * holding a tree lock on the buffer, which is why we cannot
2530 		 * race with other tree_mod_log users.
2531 		 */
2532 		ret = insert_new_root(trans, root, path, level + 1);
2533 		if (ret)
2534 			return ret;
2535 	} else {
2536 		ret = push_nodes_for_insert(trans, root, path, level);
2537 		c = path->nodes[level];
2538 		if (!ret && btrfs_header_nritems(c) <
2539 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2540 			return 0;
2541 		if (ret < 0)
2542 			return ret;
2543 	}
2544 
2545 	c_nritems = btrfs_header_nritems(c);
2546 	mid = (c_nritems + 1) / 2;
2547 	btrfs_node_key(c, &disk_key, mid);
2548 
2549 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2550 				       &disk_key, level, c->start, 0,
2551 				       BTRFS_NESTING_SPLIT);
2552 	if (IS_ERR(split))
2553 		return PTR_ERR(split);
2554 
2555 	root_add_used(root, fs_info->nodesize);
2556 	ASSERT(btrfs_header_level(c) == level);
2557 
2558 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2559 	if (ret) {
2560 		btrfs_abort_transaction(trans, ret);
2561 		return ret;
2562 	}
2563 	copy_extent_buffer(split, c,
2564 			   btrfs_node_key_ptr_offset(0),
2565 			   btrfs_node_key_ptr_offset(mid),
2566 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2567 	btrfs_set_header_nritems(split, c_nritems - mid);
2568 	btrfs_set_header_nritems(c, mid);
2569 
2570 	btrfs_mark_buffer_dirty(c);
2571 	btrfs_mark_buffer_dirty(split);
2572 
2573 	insert_ptr(trans, path, &disk_key, split->start,
2574 		   path->slots[level + 1] + 1, level + 1);
2575 
2576 	if (path->slots[level] >= mid) {
2577 		path->slots[level] -= mid;
2578 		btrfs_tree_unlock(c);
2579 		free_extent_buffer(c);
2580 		path->nodes[level] = split;
2581 		path->slots[level + 1] += 1;
2582 	} else {
2583 		btrfs_tree_unlock(split);
2584 		free_extent_buffer(split);
2585 	}
2586 	return 0;
2587 }
2588 
2589 /*
2590  * how many bytes are required to store the items in a leaf.  start
2591  * and nr indicate which items in the leaf to check.  This totals up the
2592  * space used both by the item structs and the item data
2593  */
2594 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2595 {
2596 	struct btrfs_item *start_item;
2597 	struct btrfs_item *end_item;
2598 	int data_len;
2599 	int nritems = btrfs_header_nritems(l);
2600 	int end = min(nritems, start + nr) - 1;
2601 
2602 	if (!nr)
2603 		return 0;
2604 	start_item = btrfs_item_nr(start);
2605 	end_item = btrfs_item_nr(end);
2606 	data_len = btrfs_item_offset(l, start_item) +
2607 		   btrfs_item_size(l, start_item);
2608 	data_len = data_len - btrfs_item_offset(l, end_item);
2609 	data_len += sizeof(struct btrfs_item) * nr;
2610 	WARN_ON(data_len < 0);
2611 	return data_len;
2612 }
2613 
2614 /*
2615  * The space between the end of the leaf items and
2616  * the start of the leaf data.  IOW, how much room
2617  * the leaf has left for both items and data
2618  */
2619 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2620 {
2621 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2622 	int nritems = btrfs_header_nritems(leaf);
2623 	int ret;
2624 
2625 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2626 	if (ret < 0) {
2627 		btrfs_crit(fs_info,
2628 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2629 			   ret,
2630 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2631 			   leaf_space_used(leaf, 0, nritems), nritems);
2632 	}
2633 	return ret;
2634 }
2635 
2636 /*
2637  * min slot controls the lowest index we're willing to push to the
2638  * right.  We'll push up to and including min_slot, but no lower
2639  */
2640 static noinline int __push_leaf_right(struct btrfs_path *path,
2641 				      int data_size, int empty,
2642 				      struct extent_buffer *right,
2643 				      int free_space, u32 left_nritems,
2644 				      u32 min_slot)
2645 {
2646 	struct btrfs_fs_info *fs_info = right->fs_info;
2647 	struct extent_buffer *left = path->nodes[0];
2648 	struct extent_buffer *upper = path->nodes[1];
2649 	struct btrfs_map_token token;
2650 	struct btrfs_disk_key disk_key;
2651 	int slot;
2652 	u32 i;
2653 	int push_space = 0;
2654 	int push_items = 0;
2655 	struct btrfs_item *item;
2656 	u32 nr;
2657 	u32 right_nritems;
2658 	u32 data_end;
2659 	u32 this_item_size;
2660 
2661 	if (empty)
2662 		nr = 0;
2663 	else
2664 		nr = max_t(u32, 1, min_slot);
2665 
2666 	if (path->slots[0] >= left_nritems)
2667 		push_space += data_size;
2668 
2669 	slot = path->slots[1];
2670 	i = left_nritems - 1;
2671 	while (i >= nr) {
2672 		item = btrfs_item_nr(i);
2673 
2674 		if (!empty && push_items > 0) {
2675 			if (path->slots[0] > i)
2676 				break;
2677 			if (path->slots[0] == i) {
2678 				int space = btrfs_leaf_free_space(left);
2679 
2680 				if (space + push_space * 2 > free_space)
2681 					break;
2682 			}
2683 		}
2684 
2685 		if (path->slots[0] == i)
2686 			push_space += data_size;
2687 
2688 		this_item_size = btrfs_item_size(left, item);
2689 		if (this_item_size + sizeof(*item) + push_space > free_space)
2690 			break;
2691 
2692 		push_items++;
2693 		push_space += this_item_size + sizeof(*item);
2694 		if (i == 0)
2695 			break;
2696 		i--;
2697 	}
2698 
2699 	if (push_items == 0)
2700 		goto out_unlock;
2701 
2702 	WARN_ON(!empty && push_items == left_nritems);
2703 
2704 	/* push left to right */
2705 	right_nritems = btrfs_header_nritems(right);
2706 
2707 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2708 	push_space -= leaf_data_end(left);
2709 
2710 	/* make room in the right data area */
2711 	data_end = leaf_data_end(right);
2712 	memmove_extent_buffer(right,
2713 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2714 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2715 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2716 
2717 	/* copy from the left data area */
2718 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2719 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2720 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2721 		     push_space);
2722 
2723 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2724 			      btrfs_item_nr_offset(0),
2725 			      right_nritems * sizeof(struct btrfs_item));
2726 
2727 	/* copy the items from left to right */
2728 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2729 		   btrfs_item_nr_offset(left_nritems - push_items),
2730 		   push_items * sizeof(struct btrfs_item));
2731 
2732 	/* update the item pointers */
2733 	btrfs_init_map_token(&token, right);
2734 	right_nritems += push_items;
2735 	btrfs_set_header_nritems(right, right_nritems);
2736 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2737 	for (i = 0; i < right_nritems; i++) {
2738 		item = btrfs_item_nr(i);
2739 		push_space -= btrfs_token_item_size(&token, item);
2740 		btrfs_set_token_item_offset(&token, item, push_space);
2741 	}
2742 
2743 	left_nritems -= push_items;
2744 	btrfs_set_header_nritems(left, left_nritems);
2745 
2746 	if (left_nritems)
2747 		btrfs_mark_buffer_dirty(left);
2748 	else
2749 		btrfs_clean_tree_block(left);
2750 
2751 	btrfs_mark_buffer_dirty(right);
2752 
2753 	btrfs_item_key(right, &disk_key, 0);
2754 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2755 	btrfs_mark_buffer_dirty(upper);
2756 
2757 	/* then fixup the leaf pointer in the path */
2758 	if (path->slots[0] >= left_nritems) {
2759 		path->slots[0] -= left_nritems;
2760 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2761 			btrfs_clean_tree_block(path->nodes[0]);
2762 		btrfs_tree_unlock(path->nodes[0]);
2763 		free_extent_buffer(path->nodes[0]);
2764 		path->nodes[0] = right;
2765 		path->slots[1] += 1;
2766 	} else {
2767 		btrfs_tree_unlock(right);
2768 		free_extent_buffer(right);
2769 	}
2770 	return 0;
2771 
2772 out_unlock:
2773 	btrfs_tree_unlock(right);
2774 	free_extent_buffer(right);
2775 	return 1;
2776 }
2777 
2778 /*
2779  * push some data in the path leaf to the right, trying to free up at
2780  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2781  *
2782  * returns 1 if the push failed because the other node didn't have enough
2783  * room, 0 if everything worked out and < 0 if there were major errors.
2784  *
2785  * this will push starting from min_slot to the end of the leaf.  It won't
2786  * push any slot lower than min_slot
2787  */
2788 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2789 			   *root, struct btrfs_path *path,
2790 			   int min_data_size, int data_size,
2791 			   int empty, u32 min_slot)
2792 {
2793 	struct extent_buffer *left = path->nodes[0];
2794 	struct extent_buffer *right;
2795 	struct extent_buffer *upper;
2796 	int slot;
2797 	int free_space;
2798 	u32 left_nritems;
2799 	int ret;
2800 
2801 	if (!path->nodes[1])
2802 		return 1;
2803 
2804 	slot = path->slots[1];
2805 	upper = path->nodes[1];
2806 	if (slot >= btrfs_header_nritems(upper) - 1)
2807 		return 1;
2808 
2809 	btrfs_assert_tree_locked(path->nodes[1]);
2810 
2811 	right = btrfs_read_node_slot(upper, slot + 1);
2812 	/*
2813 	 * slot + 1 is not valid or we fail to read the right node,
2814 	 * no big deal, just return.
2815 	 */
2816 	if (IS_ERR(right))
2817 		return 1;
2818 
2819 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2820 
2821 	free_space = btrfs_leaf_free_space(right);
2822 	if (free_space < data_size)
2823 		goto out_unlock;
2824 
2825 	/* cow and double check */
2826 	ret = btrfs_cow_block(trans, root, right, upper,
2827 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2828 	if (ret)
2829 		goto out_unlock;
2830 
2831 	free_space = btrfs_leaf_free_space(right);
2832 	if (free_space < data_size)
2833 		goto out_unlock;
2834 
2835 	left_nritems = btrfs_header_nritems(left);
2836 	if (left_nritems == 0)
2837 		goto out_unlock;
2838 
2839 	if (check_sibling_keys(left, right)) {
2840 		ret = -EUCLEAN;
2841 		btrfs_tree_unlock(right);
2842 		free_extent_buffer(right);
2843 		return ret;
2844 	}
2845 	if (path->slots[0] == left_nritems && !empty) {
2846 		/* Key greater than all keys in the leaf, right neighbor has
2847 		 * enough room for it and we're not emptying our leaf to delete
2848 		 * it, therefore use right neighbor to insert the new item and
2849 		 * no need to touch/dirty our left leaf. */
2850 		btrfs_tree_unlock(left);
2851 		free_extent_buffer(left);
2852 		path->nodes[0] = right;
2853 		path->slots[0] = 0;
2854 		path->slots[1]++;
2855 		return 0;
2856 	}
2857 
2858 	return __push_leaf_right(path, min_data_size, empty,
2859 				right, free_space, left_nritems, min_slot);
2860 out_unlock:
2861 	btrfs_tree_unlock(right);
2862 	free_extent_buffer(right);
2863 	return 1;
2864 }
2865 
2866 /*
2867  * push some data in the path leaf to the left, trying to free up at
2868  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2869  *
2870  * max_slot can put a limit on how far into the leaf we'll push items.  The
2871  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2872  * items
2873  */
2874 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2875 				     int empty, struct extent_buffer *left,
2876 				     int free_space, u32 right_nritems,
2877 				     u32 max_slot)
2878 {
2879 	struct btrfs_fs_info *fs_info = left->fs_info;
2880 	struct btrfs_disk_key disk_key;
2881 	struct extent_buffer *right = path->nodes[0];
2882 	int i;
2883 	int push_space = 0;
2884 	int push_items = 0;
2885 	struct btrfs_item *item;
2886 	u32 old_left_nritems;
2887 	u32 nr;
2888 	int ret = 0;
2889 	u32 this_item_size;
2890 	u32 old_left_item_size;
2891 	struct btrfs_map_token token;
2892 
2893 	if (empty)
2894 		nr = min(right_nritems, max_slot);
2895 	else
2896 		nr = min(right_nritems - 1, max_slot);
2897 
2898 	for (i = 0; i < nr; i++) {
2899 		item = btrfs_item_nr(i);
2900 
2901 		if (!empty && push_items > 0) {
2902 			if (path->slots[0] < i)
2903 				break;
2904 			if (path->slots[0] == i) {
2905 				int space = btrfs_leaf_free_space(right);
2906 
2907 				if (space + push_space * 2 > free_space)
2908 					break;
2909 			}
2910 		}
2911 
2912 		if (path->slots[0] == i)
2913 			push_space += data_size;
2914 
2915 		this_item_size = btrfs_item_size(right, item);
2916 		if (this_item_size + sizeof(*item) + push_space > free_space)
2917 			break;
2918 
2919 		push_items++;
2920 		push_space += this_item_size + sizeof(*item);
2921 	}
2922 
2923 	if (push_items == 0) {
2924 		ret = 1;
2925 		goto out;
2926 	}
2927 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2928 
2929 	/* push data from right to left */
2930 	copy_extent_buffer(left, right,
2931 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2932 			   btrfs_item_nr_offset(0),
2933 			   push_items * sizeof(struct btrfs_item));
2934 
2935 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
2936 		     btrfs_item_offset_nr(right, push_items - 1);
2937 
2938 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2939 		     leaf_data_end(left) - push_space,
2940 		     BTRFS_LEAF_DATA_OFFSET +
2941 		     btrfs_item_offset_nr(right, push_items - 1),
2942 		     push_space);
2943 	old_left_nritems = btrfs_header_nritems(left);
2944 	BUG_ON(old_left_nritems <= 0);
2945 
2946 	btrfs_init_map_token(&token, left);
2947 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2948 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2949 		u32 ioff;
2950 
2951 		item = btrfs_item_nr(i);
2952 
2953 		ioff = btrfs_token_item_offset(&token, item);
2954 		btrfs_set_token_item_offset(&token, item,
2955 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
2956 	}
2957 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2958 
2959 	/* fixup right node */
2960 	if (push_items > right_nritems)
2961 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
2962 		       right_nritems);
2963 
2964 	if (push_items < right_nritems) {
2965 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2966 						  leaf_data_end(right);
2967 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
2968 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2969 				      BTRFS_LEAF_DATA_OFFSET +
2970 				      leaf_data_end(right), push_space);
2971 
2972 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2973 			      btrfs_item_nr_offset(push_items),
2974 			     (btrfs_header_nritems(right) - push_items) *
2975 			     sizeof(struct btrfs_item));
2976 	}
2977 
2978 	btrfs_init_map_token(&token, right);
2979 	right_nritems -= push_items;
2980 	btrfs_set_header_nritems(right, right_nritems);
2981 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2982 	for (i = 0; i < right_nritems; i++) {
2983 		item = btrfs_item_nr(i);
2984 
2985 		push_space = push_space - btrfs_token_item_size(&token, item);
2986 		btrfs_set_token_item_offset(&token, item, push_space);
2987 	}
2988 
2989 	btrfs_mark_buffer_dirty(left);
2990 	if (right_nritems)
2991 		btrfs_mark_buffer_dirty(right);
2992 	else
2993 		btrfs_clean_tree_block(right);
2994 
2995 	btrfs_item_key(right, &disk_key, 0);
2996 	fixup_low_keys(path, &disk_key, 1);
2997 
2998 	/* then fixup the leaf pointer in the path */
2999 	if (path->slots[0] < push_items) {
3000 		path->slots[0] += old_left_nritems;
3001 		btrfs_tree_unlock(path->nodes[0]);
3002 		free_extent_buffer(path->nodes[0]);
3003 		path->nodes[0] = left;
3004 		path->slots[1] -= 1;
3005 	} else {
3006 		btrfs_tree_unlock(left);
3007 		free_extent_buffer(left);
3008 		path->slots[0] -= push_items;
3009 	}
3010 	BUG_ON(path->slots[0] < 0);
3011 	return ret;
3012 out:
3013 	btrfs_tree_unlock(left);
3014 	free_extent_buffer(left);
3015 	return ret;
3016 }
3017 
3018 /*
3019  * push some data in the path leaf to the left, trying to free up at
3020  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3021  *
3022  * max_slot can put a limit on how far into the leaf we'll push items.  The
3023  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3024  * items
3025  */
3026 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3027 			  *root, struct btrfs_path *path, int min_data_size,
3028 			  int data_size, int empty, u32 max_slot)
3029 {
3030 	struct extent_buffer *right = path->nodes[0];
3031 	struct extent_buffer *left;
3032 	int slot;
3033 	int free_space;
3034 	u32 right_nritems;
3035 	int ret = 0;
3036 
3037 	slot = path->slots[1];
3038 	if (slot == 0)
3039 		return 1;
3040 	if (!path->nodes[1])
3041 		return 1;
3042 
3043 	right_nritems = btrfs_header_nritems(right);
3044 	if (right_nritems == 0)
3045 		return 1;
3046 
3047 	btrfs_assert_tree_locked(path->nodes[1]);
3048 
3049 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3050 	/*
3051 	 * slot - 1 is not valid or we fail to read the left node,
3052 	 * no big deal, just return.
3053 	 */
3054 	if (IS_ERR(left))
3055 		return 1;
3056 
3057 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3058 
3059 	free_space = btrfs_leaf_free_space(left);
3060 	if (free_space < data_size) {
3061 		ret = 1;
3062 		goto out;
3063 	}
3064 
3065 	/* cow and double check */
3066 	ret = btrfs_cow_block(trans, root, left,
3067 			      path->nodes[1], slot - 1, &left,
3068 			      BTRFS_NESTING_LEFT_COW);
3069 	if (ret) {
3070 		/* we hit -ENOSPC, but it isn't fatal here */
3071 		if (ret == -ENOSPC)
3072 			ret = 1;
3073 		goto out;
3074 	}
3075 
3076 	free_space = btrfs_leaf_free_space(left);
3077 	if (free_space < data_size) {
3078 		ret = 1;
3079 		goto out;
3080 	}
3081 
3082 	if (check_sibling_keys(left, right)) {
3083 		ret = -EUCLEAN;
3084 		goto out;
3085 	}
3086 	return __push_leaf_left(path, min_data_size,
3087 			       empty, left, free_space, right_nritems,
3088 			       max_slot);
3089 out:
3090 	btrfs_tree_unlock(left);
3091 	free_extent_buffer(left);
3092 	return ret;
3093 }
3094 
3095 /*
3096  * split the path's leaf in two, making sure there is at least data_size
3097  * available for the resulting leaf level of the path.
3098  */
3099 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3100 				    struct btrfs_path *path,
3101 				    struct extent_buffer *l,
3102 				    struct extent_buffer *right,
3103 				    int slot, int mid, int nritems)
3104 {
3105 	struct btrfs_fs_info *fs_info = trans->fs_info;
3106 	int data_copy_size;
3107 	int rt_data_off;
3108 	int i;
3109 	struct btrfs_disk_key disk_key;
3110 	struct btrfs_map_token token;
3111 
3112 	nritems = nritems - mid;
3113 	btrfs_set_header_nritems(right, nritems);
3114 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3115 
3116 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3117 			   btrfs_item_nr_offset(mid),
3118 			   nritems * sizeof(struct btrfs_item));
3119 
3120 	copy_extent_buffer(right, l,
3121 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3122 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3123 		     leaf_data_end(l), data_copy_size);
3124 
3125 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3126 
3127 	btrfs_init_map_token(&token, right);
3128 	for (i = 0; i < nritems; i++) {
3129 		struct btrfs_item *item = btrfs_item_nr(i);
3130 		u32 ioff;
3131 
3132 		ioff = btrfs_token_item_offset(&token, item);
3133 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3134 	}
3135 
3136 	btrfs_set_header_nritems(l, mid);
3137 	btrfs_item_key(right, &disk_key, 0);
3138 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3139 
3140 	btrfs_mark_buffer_dirty(right);
3141 	btrfs_mark_buffer_dirty(l);
3142 	BUG_ON(path->slots[0] != slot);
3143 
3144 	if (mid <= slot) {
3145 		btrfs_tree_unlock(path->nodes[0]);
3146 		free_extent_buffer(path->nodes[0]);
3147 		path->nodes[0] = right;
3148 		path->slots[0] -= mid;
3149 		path->slots[1] += 1;
3150 	} else {
3151 		btrfs_tree_unlock(right);
3152 		free_extent_buffer(right);
3153 	}
3154 
3155 	BUG_ON(path->slots[0] < 0);
3156 }
3157 
3158 /*
3159  * double splits happen when we need to insert a big item in the middle
3160  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3161  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3162  *          A                 B                 C
3163  *
3164  * We avoid this by trying to push the items on either side of our target
3165  * into the adjacent leaves.  If all goes well we can avoid the double split
3166  * completely.
3167  */
3168 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3169 					  struct btrfs_root *root,
3170 					  struct btrfs_path *path,
3171 					  int data_size)
3172 {
3173 	int ret;
3174 	int progress = 0;
3175 	int slot;
3176 	u32 nritems;
3177 	int space_needed = data_size;
3178 
3179 	slot = path->slots[0];
3180 	if (slot < btrfs_header_nritems(path->nodes[0]))
3181 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3182 
3183 	/*
3184 	 * try to push all the items after our slot into the
3185 	 * right leaf
3186 	 */
3187 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3188 	if (ret < 0)
3189 		return ret;
3190 
3191 	if (ret == 0)
3192 		progress++;
3193 
3194 	nritems = btrfs_header_nritems(path->nodes[0]);
3195 	/*
3196 	 * our goal is to get our slot at the start or end of a leaf.  If
3197 	 * we've done so we're done
3198 	 */
3199 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3200 		return 0;
3201 
3202 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3203 		return 0;
3204 
3205 	/* try to push all the items before our slot into the next leaf */
3206 	slot = path->slots[0];
3207 	space_needed = data_size;
3208 	if (slot > 0)
3209 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3210 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3211 	if (ret < 0)
3212 		return ret;
3213 
3214 	if (ret == 0)
3215 		progress++;
3216 
3217 	if (progress)
3218 		return 0;
3219 	return 1;
3220 }
3221 
3222 /*
3223  * split the path's leaf in two, making sure there is at least data_size
3224  * available for the resulting leaf level of the path.
3225  *
3226  * returns 0 if all went well and < 0 on failure.
3227  */
3228 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3229 			       struct btrfs_root *root,
3230 			       const struct btrfs_key *ins_key,
3231 			       struct btrfs_path *path, int data_size,
3232 			       int extend)
3233 {
3234 	struct btrfs_disk_key disk_key;
3235 	struct extent_buffer *l;
3236 	u32 nritems;
3237 	int mid;
3238 	int slot;
3239 	struct extent_buffer *right;
3240 	struct btrfs_fs_info *fs_info = root->fs_info;
3241 	int ret = 0;
3242 	int wret;
3243 	int split;
3244 	int num_doubles = 0;
3245 	int tried_avoid_double = 0;
3246 
3247 	l = path->nodes[0];
3248 	slot = path->slots[0];
3249 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3250 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3251 		return -EOVERFLOW;
3252 
3253 	/* first try to make some room by pushing left and right */
3254 	if (data_size && path->nodes[1]) {
3255 		int space_needed = data_size;
3256 
3257 		if (slot < btrfs_header_nritems(l))
3258 			space_needed -= btrfs_leaf_free_space(l);
3259 
3260 		wret = push_leaf_right(trans, root, path, space_needed,
3261 				       space_needed, 0, 0);
3262 		if (wret < 0)
3263 			return wret;
3264 		if (wret) {
3265 			space_needed = data_size;
3266 			if (slot > 0)
3267 				space_needed -= btrfs_leaf_free_space(l);
3268 			wret = push_leaf_left(trans, root, path, space_needed,
3269 					      space_needed, 0, (u32)-1);
3270 			if (wret < 0)
3271 				return wret;
3272 		}
3273 		l = path->nodes[0];
3274 
3275 		/* did the pushes work? */
3276 		if (btrfs_leaf_free_space(l) >= data_size)
3277 			return 0;
3278 	}
3279 
3280 	if (!path->nodes[1]) {
3281 		ret = insert_new_root(trans, root, path, 1);
3282 		if (ret)
3283 			return ret;
3284 	}
3285 again:
3286 	split = 1;
3287 	l = path->nodes[0];
3288 	slot = path->slots[0];
3289 	nritems = btrfs_header_nritems(l);
3290 	mid = (nritems + 1) / 2;
3291 
3292 	if (mid <= slot) {
3293 		if (nritems == 1 ||
3294 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3295 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3296 			if (slot >= nritems) {
3297 				split = 0;
3298 			} else {
3299 				mid = slot;
3300 				if (mid != nritems &&
3301 				    leaf_space_used(l, mid, nritems - mid) +
3302 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3303 					if (data_size && !tried_avoid_double)
3304 						goto push_for_double;
3305 					split = 2;
3306 				}
3307 			}
3308 		}
3309 	} else {
3310 		if (leaf_space_used(l, 0, mid) + data_size >
3311 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3312 			if (!extend && data_size && slot == 0) {
3313 				split = 0;
3314 			} else if ((extend || !data_size) && slot == 0) {
3315 				mid = 1;
3316 			} else {
3317 				mid = slot;
3318 				if (mid != nritems &&
3319 				    leaf_space_used(l, mid, nritems - mid) +
3320 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3321 					if (data_size && !tried_avoid_double)
3322 						goto push_for_double;
3323 					split = 2;
3324 				}
3325 			}
3326 		}
3327 	}
3328 
3329 	if (split == 0)
3330 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3331 	else
3332 		btrfs_item_key(l, &disk_key, mid);
3333 
3334 	/*
3335 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3336 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3337 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3338 	 * out.  In the future we could add a
3339 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3340 	 * use BTRFS_NESTING_NEW_ROOT.
3341 	 */
3342 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3343 				       &disk_key, 0, l->start, 0,
3344 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3345 				       BTRFS_NESTING_SPLIT);
3346 	if (IS_ERR(right))
3347 		return PTR_ERR(right);
3348 
3349 	root_add_used(root, fs_info->nodesize);
3350 
3351 	if (split == 0) {
3352 		if (mid <= slot) {
3353 			btrfs_set_header_nritems(right, 0);
3354 			insert_ptr(trans, path, &disk_key,
3355 				   right->start, path->slots[1] + 1, 1);
3356 			btrfs_tree_unlock(path->nodes[0]);
3357 			free_extent_buffer(path->nodes[0]);
3358 			path->nodes[0] = right;
3359 			path->slots[0] = 0;
3360 			path->slots[1] += 1;
3361 		} else {
3362 			btrfs_set_header_nritems(right, 0);
3363 			insert_ptr(trans, path, &disk_key,
3364 				   right->start, path->slots[1], 1);
3365 			btrfs_tree_unlock(path->nodes[0]);
3366 			free_extent_buffer(path->nodes[0]);
3367 			path->nodes[0] = right;
3368 			path->slots[0] = 0;
3369 			if (path->slots[1] == 0)
3370 				fixup_low_keys(path, &disk_key, 1);
3371 		}
3372 		/*
3373 		 * We create a new leaf 'right' for the required ins_len and
3374 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3375 		 * the content of ins_len to 'right'.
3376 		 */
3377 		return ret;
3378 	}
3379 
3380 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3381 
3382 	if (split == 2) {
3383 		BUG_ON(num_doubles != 0);
3384 		num_doubles++;
3385 		goto again;
3386 	}
3387 
3388 	return 0;
3389 
3390 push_for_double:
3391 	push_for_double_split(trans, root, path, data_size);
3392 	tried_avoid_double = 1;
3393 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3394 		return 0;
3395 	goto again;
3396 }
3397 
3398 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3399 					 struct btrfs_root *root,
3400 					 struct btrfs_path *path, int ins_len)
3401 {
3402 	struct btrfs_key key;
3403 	struct extent_buffer *leaf;
3404 	struct btrfs_file_extent_item *fi;
3405 	u64 extent_len = 0;
3406 	u32 item_size;
3407 	int ret;
3408 
3409 	leaf = path->nodes[0];
3410 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3411 
3412 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3413 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3414 
3415 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3416 		return 0;
3417 
3418 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3419 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3420 		fi = btrfs_item_ptr(leaf, path->slots[0],
3421 				    struct btrfs_file_extent_item);
3422 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3423 	}
3424 	btrfs_release_path(path);
3425 
3426 	path->keep_locks = 1;
3427 	path->search_for_split = 1;
3428 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3429 	path->search_for_split = 0;
3430 	if (ret > 0)
3431 		ret = -EAGAIN;
3432 	if (ret < 0)
3433 		goto err;
3434 
3435 	ret = -EAGAIN;
3436 	leaf = path->nodes[0];
3437 	/* if our item isn't there, return now */
3438 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3439 		goto err;
3440 
3441 	/* the leaf has  changed, it now has room.  return now */
3442 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3443 		goto err;
3444 
3445 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3446 		fi = btrfs_item_ptr(leaf, path->slots[0],
3447 				    struct btrfs_file_extent_item);
3448 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3449 			goto err;
3450 	}
3451 
3452 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3453 	if (ret)
3454 		goto err;
3455 
3456 	path->keep_locks = 0;
3457 	btrfs_unlock_up_safe(path, 1);
3458 	return 0;
3459 err:
3460 	path->keep_locks = 0;
3461 	return ret;
3462 }
3463 
3464 static noinline int split_item(struct btrfs_path *path,
3465 			       const struct btrfs_key *new_key,
3466 			       unsigned long split_offset)
3467 {
3468 	struct extent_buffer *leaf;
3469 	struct btrfs_item *item;
3470 	struct btrfs_item *new_item;
3471 	int slot;
3472 	char *buf;
3473 	u32 nritems;
3474 	u32 item_size;
3475 	u32 orig_offset;
3476 	struct btrfs_disk_key disk_key;
3477 
3478 	leaf = path->nodes[0];
3479 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3480 
3481 	item = btrfs_item_nr(path->slots[0]);
3482 	orig_offset = btrfs_item_offset(leaf, item);
3483 	item_size = btrfs_item_size(leaf, item);
3484 
3485 	buf = kmalloc(item_size, GFP_NOFS);
3486 	if (!buf)
3487 		return -ENOMEM;
3488 
3489 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3490 			    path->slots[0]), item_size);
3491 
3492 	slot = path->slots[0] + 1;
3493 	nritems = btrfs_header_nritems(leaf);
3494 	if (slot != nritems) {
3495 		/* shift the items */
3496 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3497 				btrfs_item_nr_offset(slot),
3498 				(nritems - slot) * sizeof(struct btrfs_item));
3499 	}
3500 
3501 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3502 	btrfs_set_item_key(leaf, &disk_key, slot);
3503 
3504 	new_item = btrfs_item_nr(slot);
3505 
3506 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3507 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3508 
3509 	btrfs_set_item_offset(leaf, item,
3510 			      orig_offset + item_size - split_offset);
3511 	btrfs_set_item_size(leaf, item, split_offset);
3512 
3513 	btrfs_set_header_nritems(leaf, nritems + 1);
3514 
3515 	/* write the data for the start of the original item */
3516 	write_extent_buffer(leaf, buf,
3517 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3518 			    split_offset);
3519 
3520 	/* write the data for the new item */
3521 	write_extent_buffer(leaf, buf + split_offset,
3522 			    btrfs_item_ptr_offset(leaf, slot),
3523 			    item_size - split_offset);
3524 	btrfs_mark_buffer_dirty(leaf);
3525 
3526 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3527 	kfree(buf);
3528 	return 0;
3529 }
3530 
3531 /*
3532  * This function splits a single item into two items,
3533  * giving 'new_key' to the new item and splitting the
3534  * old one at split_offset (from the start of the item).
3535  *
3536  * The path may be released by this operation.  After
3537  * the split, the path is pointing to the old item.  The
3538  * new item is going to be in the same node as the old one.
3539  *
3540  * Note, the item being split must be smaller enough to live alone on
3541  * a tree block with room for one extra struct btrfs_item
3542  *
3543  * This allows us to split the item in place, keeping a lock on the
3544  * leaf the entire time.
3545  */
3546 int btrfs_split_item(struct btrfs_trans_handle *trans,
3547 		     struct btrfs_root *root,
3548 		     struct btrfs_path *path,
3549 		     const struct btrfs_key *new_key,
3550 		     unsigned long split_offset)
3551 {
3552 	int ret;
3553 	ret = setup_leaf_for_split(trans, root, path,
3554 				   sizeof(struct btrfs_item));
3555 	if (ret)
3556 		return ret;
3557 
3558 	ret = split_item(path, new_key, split_offset);
3559 	return ret;
3560 }
3561 
3562 /*
3563  * This function duplicate a item, giving 'new_key' to the new item.
3564  * It guarantees both items live in the same tree leaf and the new item
3565  * is contiguous with the original item.
3566  *
3567  * This allows us to split file extent in place, keeping a lock on the
3568  * leaf the entire time.
3569  */
3570 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3571 			 struct btrfs_root *root,
3572 			 struct btrfs_path *path,
3573 			 const struct btrfs_key *new_key)
3574 {
3575 	struct extent_buffer *leaf;
3576 	int ret;
3577 	u32 item_size;
3578 
3579 	leaf = path->nodes[0];
3580 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3581 	ret = setup_leaf_for_split(trans, root, path,
3582 				   item_size + sizeof(struct btrfs_item));
3583 	if (ret)
3584 		return ret;
3585 
3586 	path->slots[0]++;
3587 	setup_items_for_insert(root, path, new_key, &item_size, 1);
3588 	leaf = path->nodes[0];
3589 	memcpy_extent_buffer(leaf,
3590 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3591 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3592 			     item_size);
3593 	return 0;
3594 }
3595 
3596 /*
3597  * make the item pointed to by the path smaller.  new_size indicates
3598  * how small to make it, and from_end tells us if we just chop bytes
3599  * off the end of the item or if we shift the item to chop bytes off
3600  * the front.
3601  */
3602 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3603 {
3604 	int slot;
3605 	struct extent_buffer *leaf;
3606 	struct btrfs_item *item;
3607 	u32 nritems;
3608 	unsigned int data_end;
3609 	unsigned int old_data_start;
3610 	unsigned int old_size;
3611 	unsigned int size_diff;
3612 	int i;
3613 	struct btrfs_map_token token;
3614 
3615 	leaf = path->nodes[0];
3616 	slot = path->slots[0];
3617 
3618 	old_size = btrfs_item_size_nr(leaf, slot);
3619 	if (old_size == new_size)
3620 		return;
3621 
3622 	nritems = btrfs_header_nritems(leaf);
3623 	data_end = leaf_data_end(leaf);
3624 
3625 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3626 
3627 	size_diff = old_size - new_size;
3628 
3629 	BUG_ON(slot < 0);
3630 	BUG_ON(slot >= nritems);
3631 
3632 	/*
3633 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3634 	 */
3635 	/* first correct the data pointers */
3636 	btrfs_init_map_token(&token, leaf);
3637 	for (i = slot; i < nritems; i++) {
3638 		u32 ioff;
3639 		item = btrfs_item_nr(i);
3640 
3641 		ioff = btrfs_token_item_offset(&token, item);
3642 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3643 	}
3644 
3645 	/* shift the data */
3646 	if (from_end) {
3647 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3648 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3649 			      data_end, old_data_start + new_size - data_end);
3650 	} else {
3651 		struct btrfs_disk_key disk_key;
3652 		u64 offset;
3653 
3654 		btrfs_item_key(leaf, &disk_key, slot);
3655 
3656 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3657 			unsigned long ptr;
3658 			struct btrfs_file_extent_item *fi;
3659 
3660 			fi = btrfs_item_ptr(leaf, slot,
3661 					    struct btrfs_file_extent_item);
3662 			fi = (struct btrfs_file_extent_item *)(
3663 			     (unsigned long)fi - size_diff);
3664 
3665 			if (btrfs_file_extent_type(leaf, fi) ==
3666 			    BTRFS_FILE_EXTENT_INLINE) {
3667 				ptr = btrfs_item_ptr_offset(leaf, slot);
3668 				memmove_extent_buffer(leaf, ptr,
3669 				      (unsigned long)fi,
3670 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3671 			}
3672 		}
3673 
3674 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3675 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3676 			      data_end, old_data_start - data_end);
3677 
3678 		offset = btrfs_disk_key_offset(&disk_key);
3679 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3680 		btrfs_set_item_key(leaf, &disk_key, slot);
3681 		if (slot == 0)
3682 			fixup_low_keys(path, &disk_key, 1);
3683 	}
3684 
3685 	item = btrfs_item_nr(slot);
3686 	btrfs_set_item_size(leaf, item, new_size);
3687 	btrfs_mark_buffer_dirty(leaf);
3688 
3689 	if (btrfs_leaf_free_space(leaf) < 0) {
3690 		btrfs_print_leaf(leaf);
3691 		BUG();
3692 	}
3693 }
3694 
3695 /*
3696  * make the item pointed to by the path bigger, data_size is the added size.
3697  */
3698 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3699 {
3700 	int slot;
3701 	struct extent_buffer *leaf;
3702 	struct btrfs_item *item;
3703 	u32 nritems;
3704 	unsigned int data_end;
3705 	unsigned int old_data;
3706 	unsigned int old_size;
3707 	int i;
3708 	struct btrfs_map_token token;
3709 
3710 	leaf = path->nodes[0];
3711 
3712 	nritems = btrfs_header_nritems(leaf);
3713 	data_end = leaf_data_end(leaf);
3714 
3715 	if (btrfs_leaf_free_space(leaf) < data_size) {
3716 		btrfs_print_leaf(leaf);
3717 		BUG();
3718 	}
3719 	slot = path->slots[0];
3720 	old_data = btrfs_item_end_nr(leaf, slot);
3721 
3722 	BUG_ON(slot < 0);
3723 	if (slot >= nritems) {
3724 		btrfs_print_leaf(leaf);
3725 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3726 			   slot, nritems);
3727 		BUG();
3728 	}
3729 
3730 	/*
3731 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3732 	 */
3733 	/* first correct the data pointers */
3734 	btrfs_init_map_token(&token, leaf);
3735 	for (i = slot; i < nritems; i++) {
3736 		u32 ioff;
3737 		item = btrfs_item_nr(i);
3738 
3739 		ioff = btrfs_token_item_offset(&token, item);
3740 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
3741 	}
3742 
3743 	/* shift the data */
3744 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3745 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3746 		      data_end, old_data - data_end);
3747 
3748 	data_end = old_data;
3749 	old_size = btrfs_item_size_nr(leaf, slot);
3750 	item = btrfs_item_nr(slot);
3751 	btrfs_set_item_size(leaf, item, old_size + data_size);
3752 	btrfs_mark_buffer_dirty(leaf);
3753 
3754 	if (btrfs_leaf_free_space(leaf) < 0) {
3755 		btrfs_print_leaf(leaf);
3756 		BUG();
3757 	}
3758 }
3759 
3760 /**
3761  * setup_items_for_insert - Helper called before inserting one or more items
3762  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3763  * in a function that doesn't call btrfs_search_slot
3764  *
3765  * @root:	root we are inserting items to
3766  * @path:	points to the leaf/slot where we are going to insert new items
3767  * @cpu_key:	array of keys for items to be inserted
3768  * @data_size:	size of the body of each item we are going to insert
3769  * @nr:		size of @cpu_key/@data_size arrays
3770  */
3771 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3772 			    const struct btrfs_key *cpu_key, u32 *data_size,
3773 			    int nr)
3774 {
3775 	struct btrfs_fs_info *fs_info = root->fs_info;
3776 	struct btrfs_item *item;
3777 	int i;
3778 	u32 nritems;
3779 	unsigned int data_end;
3780 	struct btrfs_disk_key disk_key;
3781 	struct extent_buffer *leaf;
3782 	int slot;
3783 	struct btrfs_map_token token;
3784 	u32 total_size;
3785 	u32 total_data = 0;
3786 
3787 	for (i = 0; i < nr; i++)
3788 		total_data += data_size[i];
3789 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3790 
3791 	if (path->slots[0] == 0) {
3792 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3793 		fixup_low_keys(path, &disk_key, 1);
3794 	}
3795 	btrfs_unlock_up_safe(path, 1);
3796 
3797 	leaf = path->nodes[0];
3798 	slot = path->slots[0];
3799 
3800 	nritems = btrfs_header_nritems(leaf);
3801 	data_end = leaf_data_end(leaf);
3802 
3803 	if (btrfs_leaf_free_space(leaf) < total_size) {
3804 		btrfs_print_leaf(leaf);
3805 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
3806 			   total_size, btrfs_leaf_free_space(leaf));
3807 		BUG();
3808 	}
3809 
3810 	btrfs_init_map_token(&token, leaf);
3811 	if (slot != nritems) {
3812 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3813 
3814 		if (old_data < data_end) {
3815 			btrfs_print_leaf(leaf);
3816 			btrfs_crit(fs_info,
3817 		"item at slot %d with data offset %u beyond data end of leaf %u",
3818 				   slot, old_data, data_end);
3819 			BUG();
3820 		}
3821 		/*
3822 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3823 		 */
3824 		/* first correct the data pointers */
3825 		for (i = slot; i < nritems; i++) {
3826 			u32 ioff;
3827 
3828 			item = btrfs_item_nr(i);
3829 			ioff = btrfs_token_item_offset(&token, item);
3830 			btrfs_set_token_item_offset(&token, item,
3831 						    ioff - total_data);
3832 		}
3833 		/* shift the items */
3834 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3835 			      btrfs_item_nr_offset(slot),
3836 			      (nritems - slot) * sizeof(struct btrfs_item));
3837 
3838 		/* shift the data */
3839 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3840 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
3841 			      data_end, old_data - data_end);
3842 		data_end = old_data;
3843 	}
3844 
3845 	/* setup the item for the new data */
3846 	for (i = 0; i < nr; i++) {
3847 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3848 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3849 		item = btrfs_item_nr(slot + i);
3850 		data_end -= data_size[i];
3851 		btrfs_set_token_item_offset(&token, item, data_end);
3852 		btrfs_set_token_item_size(&token, item, data_size[i]);
3853 	}
3854 
3855 	btrfs_set_header_nritems(leaf, nritems + nr);
3856 	btrfs_mark_buffer_dirty(leaf);
3857 
3858 	if (btrfs_leaf_free_space(leaf) < 0) {
3859 		btrfs_print_leaf(leaf);
3860 		BUG();
3861 	}
3862 }
3863 
3864 /*
3865  * Given a key and some data, insert items into the tree.
3866  * This does all the path init required, making room in the tree if needed.
3867  */
3868 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3869 			    struct btrfs_root *root,
3870 			    struct btrfs_path *path,
3871 			    const struct btrfs_key *cpu_key, u32 *data_size,
3872 			    int nr)
3873 {
3874 	int ret = 0;
3875 	int slot;
3876 	int i;
3877 	u32 total_size = 0;
3878 	u32 total_data = 0;
3879 
3880 	for (i = 0; i < nr; i++)
3881 		total_data += data_size[i];
3882 
3883 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3884 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3885 	if (ret == 0)
3886 		return -EEXIST;
3887 	if (ret < 0)
3888 		return ret;
3889 
3890 	slot = path->slots[0];
3891 	BUG_ON(slot < 0);
3892 
3893 	setup_items_for_insert(root, path, cpu_key, data_size, nr);
3894 	return 0;
3895 }
3896 
3897 /*
3898  * Given a key and some data, insert an item into the tree.
3899  * This does all the path init required, making room in the tree if needed.
3900  */
3901 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3902 		      const struct btrfs_key *cpu_key, void *data,
3903 		      u32 data_size)
3904 {
3905 	int ret = 0;
3906 	struct btrfs_path *path;
3907 	struct extent_buffer *leaf;
3908 	unsigned long ptr;
3909 
3910 	path = btrfs_alloc_path();
3911 	if (!path)
3912 		return -ENOMEM;
3913 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3914 	if (!ret) {
3915 		leaf = path->nodes[0];
3916 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3917 		write_extent_buffer(leaf, data, ptr, data_size);
3918 		btrfs_mark_buffer_dirty(leaf);
3919 	}
3920 	btrfs_free_path(path);
3921 	return ret;
3922 }
3923 
3924 /*
3925  * delete the pointer from a given node.
3926  *
3927  * the tree should have been previously balanced so the deletion does not
3928  * empty a node.
3929  */
3930 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
3931 		    int level, int slot)
3932 {
3933 	struct extent_buffer *parent = path->nodes[level];
3934 	u32 nritems;
3935 	int ret;
3936 
3937 	nritems = btrfs_header_nritems(parent);
3938 	if (slot != nritems - 1) {
3939 		if (level) {
3940 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
3941 					slot + 1, nritems - slot - 1);
3942 			BUG_ON(ret < 0);
3943 		}
3944 		memmove_extent_buffer(parent,
3945 			      btrfs_node_key_ptr_offset(slot),
3946 			      btrfs_node_key_ptr_offset(slot + 1),
3947 			      sizeof(struct btrfs_key_ptr) *
3948 			      (nritems - slot - 1));
3949 	} else if (level) {
3950 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
3951 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
3952 		BUG_ON(ret < 0);
3953 	}
3954 
3955 	nritems--;
3956 	btrfs_set_header_nritems(parent, nritems);
3957 	if (nritems == 0 && parent == root->node) {
3958 		BUG_ON(btrfs_header_level(root->node) != 1);
3959 		/* just turn the root into a leaf and break */
3960 		btrfs_set_header_level(root->node, 0);
3961 	} else if (slot == 0) {
3962 		struct btrfs_disk_key disk_key;
3963 
3964 		btrfs_node_key(parent, &disk_key, 0);
3965 		fixup_low_keys(path, &disk_key, level + 1);
3966 	}
3967 	btrfs_mark_buffer_dirty(parent);
3968 }
3969 
3970 /*
3971  * a helper function to delete the leaf pointed to by path->slots[1] and
3972  * path->nodes[1].
3973  *
3974  * This deletes the pointer in path->nodes[1] and frees the leaf
3975  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3976  *
3977  * The path must have already been setup for deleting the leaf, including
3978  * all the proper balancing.  path->nodes[1] must be locked.
3979  */
3980 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
3981 				    struct btrfs_root *root,
3982 				    struct btrfs_path *path,
3983 				    struct extent_buffer *leaf)
3984 {
3985 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3986 	del_ptr(root, path, 1, path->slots[1]);
3987 
3988 	/*
3989 	 * btrfs_free_extent is expensive, we want to make sure we
3990 	 * aren't holding any locks when we call it
3991 	 */
3992 	btrfs_unlock_up_safe(path, 0);
3993 
3994 	root_sub_used(root, leaf->len);
3995 
3996 	atomic_inc(&leaf->refs);
3997 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3998 	free_extent_buffer_stale(leaf);
3999 }
4000 /*
4001  * delete the item at the leaf level in path.  If that empties
4002  * the leaf, remove it from the tree
4003  */
4004 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4005 		    struct btrfs_path *path, int slot, int nr)
4006 {
4007 	struct btrfs_fs_info *fs_info = root->fs_info;
4008 	struct extent_buffer *leaf;
4009 	struct btrfs_item *item;
4010 	u32 last_off;
4011 	u32 dsize = 0;
4012 	int ret = 0;
4013 	int wret;
4014 	int i;
4015 	u32 nritems;
4016 
4017 	leaf = path->nodes[0];
4018 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4019 
4020 	for (i = 0; i < nr; i++)
4021 		dsize += btrfs_item_size_nr(leaf, slot + i);
4022 
4023 	nritems = btrfs_header_nritems(leaf);
4024 
4025 	if (slot + nr != nritems) {
4026 		int data_end = leaf_data_end(leaf);
4027 		struct btrfs_map_token token;
4028 
4029 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4030 			      data_end + dsize,
4031 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4032 			      last_off - data_end);
4033 
4034 		btrfs_init_map_token(&token, leaf);
4035 		for (i = slot + nr; i < nritems; i++) {
4036 			u32 ioff;
4037 
4038 			item = btrfs_item_nr(i);
4039 			ioff = btrfs_token_item_offset(&token, item);
4040 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4041 		}
4042 
4043 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4044 			      btrfs_item_nr_offset(slot + nr),
4045 			      sizeof(struct btrfs_item) *
4046 			      (nritems - slot - nr));
4047 	}
4048 	btrfs_set_header_nritems(leaf, nritems - nr);
4049 	nritems -= nr;
4050 
4051 	/* delete the leaf if we've emptied it */
4052 	if (nritems == 0) {
4053 		if (leaf == root->node) {
4054 			btrfs_set_header_level(leaf, 0);
4055 		} else {
4056 			btrfs_clean_tree_block(leaf);
4057 			btrfs_del_leaf(trans, root, path, leaf);
4058 		}
4059 	} else {
4060 		int used = leaf_space_used(leaf, 0, nritems);
4061 		if (slot == 0) {
4062 			struct btrfs_disk_key disk_key;
4063 
4064 			btrfs_item_key(leaf, &disk_key, 0);
4065 			fixup_low_keys(path, &disk_key, 1);
4066 		}
4067 
4068 		/* delete the leaf if it is mostly empty */
4069 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4070 			/* push_leaf_left fixes the path.
4071 			 * make sure the path still points to our leaf
4072 			 * for possible call to del_ptr below
4073 			 */
4074 			slot = path->slots[1];
4075 			atomic_inc(&leaf->refs);
4076 
4077 			wret = push_leaf_left(trans, root, path, 1, 1,
4078 					      1, (u32)-1);
4079 			if (wret < 0 && wret != -ENOSPC)
4080 				ret = wret;
4081 
4082 			if (path->nodes[0] == leaf &&
4083 			    btrfs_header_nritems(leaf)) {
4084 				wret = push_leaf_right(trans, root, path, 1,
4085 						       1, 1, 0);
4086 				if (wret < 0 && wret != -ENOSPC)
4087 					ret = wret;
4088 			}
4089 
4090 			if (btrfs_header_nritems(leaf) == 0) {
4091 				path->slots[1] = slot;
4092 				btrfs_del_leaf(trans, root, path, leaf);
4093 				free_extent_buffer(leaf);
4094 				ret = 0;
4095 			} else {
4096 				/* if we're still in the path, make sure
4097 				 * we're dirty.  Otherwise, one of the
4098 				 * push_leaf functions must have already
4099 				 * dirtied this buffer
4100 				 */
4101 				if (path->nodes[0] == leaf)
4102 					btrfs_mark_buffer_dirty(leaf);
4103 				free_extent_buffer(leaf);
4104 			}
4105 		} else {
4106 			btrfs_mark_buffer_dirty(leaf);
4107 		}
4108 	}
4109 	return ret;
4110 }
4111 
4112 /*
4113  * search the tree again to find a leaf with lesser keys
4114  * returns 0 if it found something or 1 if there are no lesser leaves.
4115  * returns < 0 on io errors.
4116  *
4117  * This may release the path, and so you may lose any locks held at the
4118  * time you call it.
4119  */
4120 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4121 {
4122 	struct btrfs_key key;
4123 	struct btrfs_disk_key found_key;
4124 	int ret;
4125 
4126 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4127 
4128 	if (key.offset > 0) {
4129 		key.offset--;
4130 	} else if (key.type > 0) {
4131 		key.type--;
4132 		key.offset = (u64)-1;
4133 	} else if (key.objectid > 0) {
4134 		key.objectid--;
4135 		key.type = (u8)-1;
4136 		key.offset = (u64)-1;
4137 	} else {
4138 		return 1;
4139 	}
4140 
4141 	btrfs_release_path(path);
4142 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4143 	if (ret < 0)
4144 		return ret;
4145 	btrfs_item_key(path->nodes[0], &found_key, 0);
4146 	ret = comp_keys(&found_key, &key);
4147 	/*
4148 	 * We might have had an item with the previous key in the tree right
4149 	 * before we released our path. And after we released our path, that
4150 	 * item might have been pushed to the first slot (0) of the leaf we
4151 	 * were holding due to a tree balance. Alternatively, an item with the
4152 	 * previous key can exist as the only element of a leaf (big fat item).
4153 	 * Therefore account for these 2 cases, so that our callers (like
4154 	 * btrfs_previous_item) don't miss an existing item with a key matching
4155 	 * the previous key we computed above.
4156 	 */
4157 	if (ret <= 0)
4158 		return 0;
4159 	return 1;
4160 }
4161 
4162 /*
4163  * A helper function to walk down the tree starting at min_key, and looking
4164  * for nodes or leaves that are have a minimum transaction id.
4165  * This is used by the btree defrag code, and tree logging
4166  *
4167  * This does not cow, but it does stuff the starting key it finds back
4168  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4169  * key and get a writable path.
4170  *
4171  * This honors path->lowest_level to prevent descent past a given level
4172  * of the tree.
4173  *
4174  * min_trans indicates the oldest transaction that you are interested
4175  * in walking through.  Any nodes or leaves older than min_trans are
4176  * skipped over (without reading them).
4177  *
4178  * returns zero if something useful was found, < 0 on error and 1 if there
4179  * was nothing in the tree that matched the search criteria.
4180  */
4181 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4182 			 struct btrfs_path *path,
4183 			 u64 min_trans)
4184 {
4185 	struct extent_buffer *cur;
4186 	struct btrfs_key found_key;
4187 	int slot;
4188 	int sret;
4189 	u32 nritems;
4190 	int level;
4191 	int ret = 1;
4192 	int keep_locks = path->keep_locks;
4193 
4194 	path->keep_locks = 1;
4195 again:
4196 	cur = btrfs_read_lock_root_node(root);
4197 	level = btrfs_header_level(cur);
4198 	WARN_ON(path->nodes[level]);
4199 	path->nodes[level] = cur;
4200 	path->locks[level] = BTRFS_READ_LOCK;
4201 
4202 	if (btrfs_header_generation(cur) < min_trans) {
4203 		ret = 1;
4204 		goto out;
4205 	}
4206 	while (1) {
4207 		nritems = btrfs_header_nritems(cur);
4208 		level = btrfs_header_level(cur);
4209 		sret = btrfs_bin_search(cur, min_key, &slot);
4210 		if (sret < 0) {
4211 			ret = sret;
4212 			goto out;
4213 		}
4214 
4215 		/* at the lowest level, we're done, setup the path and exit */
4216 		if (level == path->lowest_level) {
4217 			if (slot >= nritems)
4218 				goto find_next_key;
4219 			ret = 0;
4220 			path->slots[level] = slot;
4221 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4222 			goto out;
4223 		}
4224 		if (sret && slot > 0)
4225 			slot--;
4226 		/*
4227 		 * check this node pointer against the min_trans parameters.
4228 		 * If it is too old, skip to the next one.
4229 		 */
4230 		while (slot < nritems) {
4231 			u64 gen;
4232 
4233 			gen = btrfs_node_ptr_generation(cur, slot);
4234 			if (gen < min_trans) {
4235 				slot++;
4236 				continue;
4237 			}
4238 			break;
4239 		}
4240 find_next_key:
4241 		/*
4242 		 * we didn't find a candidate key in this node, walk forward
4243 		 * and find another one
4244 		 */
4245 		if (slot >= nritems) {
4246 			path->slots[level] = slot;
4247 			sret = btrfs_find_next_key(root, path, min_key, level,
4248 						  min_trans);
4249 			if (sret == 0) {
4250 				btrfs_release_path(path);
4251 				goto again;
4252 			} else {
4253 				goto out;
4254 			}
4255 		}
4256 		/* save our key for returning back */
4257 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4258 		path->slots[level] = slot;
4259 		if (level == path->lowest_level) {
4260 			ret = 0;
4261 			goto out;
4262 		}
4263 		cur = btrfs_read_node_slot(cur, slot);
4264 		if (IS_ERR(cur)) {
4265 			ret = PTR_ERR(cur);
4266 			goto out;
4267 		}
4268 
4269 		btrfs_tree_read_lock(cur);
4270 
4271 		path->locks[level - 1] = BTRFS_READ_LOCK;
4272 		path->nodes[level - 1] = cur;
4273 		unlock_up(path, level, 1, 0, NULL);
4274 	}
4275 out:
4276 	path->keep_locks = keep_locks;
4277 	if (ret == 0) {
4278 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4279 		memcpy(min_key, &found_key, sizeof(found_key));
4280 	}
4281 	return ret;
4282 }
4283 
4284 /*
4285  * this is similar to btrfs_next_leaf, but does not try to preserve
4286  * and fixup the path.  It looks for and returns the next key in the
4287  * tree based on the current path and the min_trans parameters.
4288  *
4289  * 0 is returned if another key is found, < 0 if there are any errors
4290  * and 1 is returned if there are no higher keys in the tree
4291  *
4292  * path->keep_locks should be set to 1 on the search made before
4293  * calling this function.
4294  */
4295 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4296 			struct btrfs_key *key, int level, u64 min_trans)
4297 {
4298 	int slot;
4299 	struct extent_buffer *c;
4300 
4301 	WARN_ON(!path->keep_locks && !path->skip_locking);
4302 	while (level < BTRFS_MAX_LEVEL) {
4303 		if (!path->nodes[level])
4304 			return 1;
4305 
4306 		slot = path->slots[level] + 1;
4307 		c = path->nodes[level];
4308 next:
4309 		if (slot >= btrfs_header_nritems(c)) {
4310 			int ret;
4311 			int orig_lowest;
4312 			struct btrfs_key cur_key;
4313 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4314 			    !path->nodes[level + 1])
4315 				return 1;
4316 
4317 			if (path->locks[level + 1] || path->skip_locking) {
4318 				level++;
4319 				continue;
4320 			}
4321 
4322 			slot = btrfs_header_nritems(c) - 1;
4323 			if (level == 0)
4324 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4325 			else
4326 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4327 
4328 			orig_lowest = path->lowest_level;
4329 			btrfs_release_path(path);
4330 			path->lowest_level = level;
4331 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4332 						0, 0);
4333 			path->lowest_level = orig_lowest;
4334 			if (ret < 0)
4335 				return ret;
4336 
4337 			c = path->nodes[level];
4338 			slot = path->slots[level];
4339 			if (ret == 0)
4340 				slot++;
4341 			goto next;
4342 		}
4343 
4344 		if (level == 0)
4345 			btrfs_item_key_to_cpu(c, key, slot);
4346 		else {
4347 			u64 gen = btrfs_node_ptr_generation(c, slot);
4348 
4349 			if (gen < min_trans) {
4350 				slot++;
4351 				goto next;
4352 			}
4353 			btrfs_node_key_to_cpu(c, key, slot);
4354 		}
4355 		return 0;
4356 	}
4357 	return 1;
4358 }
4359 
4360 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4361 			u64 time_seq)
4362 {
4363 	int slot;
4364 	int level;
4365 	struct extent_buffer *c;
4366 	struct extent_buffer *next;
4367 	struct btrfs_key key;
4368 	u32 nritems;
4369 	int ret;
4370 	int i;
4371 
4372 	nritems = btrfs_header_nritems(path->nodes[0]);
4373 	if (nritems == 0)
4374 		return 1;
4375 
4376 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4377 again:
4378 	level = 1;
4379 	next = NULL;
4380 	btrfs_release_path(path);
4381 
4382 	path->keep_locks = 1;
4383 
4384 	if (time_seq)
4385 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4386 	else
4387 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4388 	path->keep_locks = 0;
4389 
4390 	if (ret < 0)
4391 		return ret;
4392 
4393 	nritems = btrfs_header_nritems(path->nodes[0]);
4394 	/*
4395 	 * by releasing the path above we dropped all our locks.  A balance
4396 	 * could have added more items next to the key that used to be
4397 	 * at the very end of the block.  So, check again here and
4398 	 * advance the path if there are now more items available.
4399 	 */
4400 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4401 		if (ret == 0)
4402 			path->slots[0]++;
4403 		ret = 0;
4404 		goto done;
4405 	}
4406 	/*
4407 	 * So the above check misses one case:
4408 	 * - after releasing the path above, someone has removed the item that
4409 	 *   used to be at the very end of the block, and balance between leafs
4410 	 *   gets another one with bigger key.offset to replace it.
4411 	 *
4412 	 * This one should be returned as well, or we can get leaf corruption
4413 	 * later(esp. in __btrfs_drop_extents()).
4414 	 *
4415 	 * And a bit more explanation about this check,
4416 	 * with ret > 0, the key isn't found, the path points to the slot
4417 	 * where it should be inserted, so the path->slots[0] item must be the
4418 	 * bigger one.
4419 	 */
4420 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4421 		ret = 0;
4422 		goto done;
4423 	}
4424 
4425 	while (level < BTRFS_MAX_LEVEL) {
4426 		if (!path->nodes[level]) {
4427 			ret = 1;
4428 			goto done;
4429 		}
4430 
4431 		slot = path->slots[level] + 1;
4432 		c = path->nodes[level];
4433 		if (slot >= btrfs_header_nritems(c)) {
4434 			level++;
4435 			if (level == BTRFS_MAX_LEVEL) {
4436 				ret = 1;
4437 				goto done;
4438 			}
4439 			continue;
4440 		}
4441 
4442 
4443 		/*
4444 		 * Our current level is where we're going to start from, and to
4445 		 * make sure lockdep doesn't complain we need to drop our locks
4446 		 * and nodes from 0 to our current level.
4447 		 */
4448 		for (i = 0; i < level; i++) {
4449 			if (path->locks[level]) {
4450 				btrfs_tree_read_unlock(path->nodes[i]);
4451 				path->locks[i] = 0;
4452 			}
4453 			free_extent_buffer(path->nodes[i]);
4454 			path->nodes[i] = NULL;
4455 		}
4456 
4457 		next = c;
4458 		ret = read_block_for_search(root, path, &next, level,
4459 					    slot, &key);
4460 		if (ret == -EAGAIN)
4461 			goto again;
4462 
4463 		if (ret < 0) {
4464 			btrfs_release_path(path);
4465 			goto done;
4466 		}
4467 
4468 		if (!path->skip_locking) {
4469 			ret = btrfs_try_tree_read_lock(next);
4470 			if (!ret && time_seq) {
4471 				/*
4472 				 * If we don't get the lock, we may be racing
4473 				 * with push_leaf_left, holding that lock while
4474 				 * itself waiting for the leaf we've currently
4475 				 * locked. To solve this situation, we give up
4476 				 * on our lock and cycle.
4477 				 */
4478 				free_extent_buffer(next);
4479 				btrfs_release_path(path);
4480 				cond_resched();
4481 				goto again;
4482 			}
4483 			if (!ret)
4484 				btrfs_tree_read_lock(next);
4485 		}
4486 		break;
4487 	}
4488 	path->slots[level] = slot;
4489 	while (1) {
4490 		level--;
4491 		path->nodes[level] = next;
4492 		path->slots[level] = 0;
4493 		if (!path->skip_locking)
4494 			path->locks[level] = BTRFS_READ_LOCK;
4495 		if (!level)
4496 			break;
4497 
4498 		ret = read_block_for_search(root, path, &next, level,
4499 					    0, &key);
4500 		if (ret == -EAGAIN)
4501 			goto again;
4502 
4503 		if (ret < 0) {
4504 			btrfs_release_path(path);
4505 			goto done;
4506 		}
4507 
4508 		if (!path->skip_locking)
4509 			btrfs_tree_read_lock(next);
4510 	}
4511 	ret = 0;
4512 done:
4513 	unlock_up(path, 0, 1, 0, NULL);
4514 
4515 	return ret;
4516 }
4517 
4518 /*
4519  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4520  * searching until it gets past min_objectid or finds an item of 'type'
4521  *
4522  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4523  */
4524 int btrfs_previous_item(struct btrfs_root *root,
4525 			struct btrfs_path *path, u64 min_objectid,
4526 			int type)
4527 {
4528 	struct btrfs_key found_key;
4529 	struct extent_buffer *leaf;
4530 	u32 nritems;
4531 	int ret;
4532 
4533 	while (1) {
4534 		if (path->slots[0] == 0) {
4535 			ret = btrfs_prev_leaf(root, path);
4536 			if (ret != 0)
4537 				return ret;
4538 		} else {
4539 			path->slots[0]--;
4540 		}
4541 		leaf = path->nodes[0];
4542 		nritems = btrfs_header_nritems(leaf);
4543 		if (nritems == 0)
4544 			return 1;
4545 		if (path->slots[0] == nritems)
4546 			path->slots[0]--;
4547 
4548 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4549 		if (found_key.objectid < min_objectid)
4550 			break;
4551 		if (found_key.type == type)
4552 			return 0;
4553 		if (found_key.objectid == min_objectid &&
4554 		    found_key.type < type)
4555 			break;
4556 	}
4557 	return 1;
4558 }
4559 
4560 /*
4561  * search in extent tree to find a previous Metadata/Data extent item with
4562  * min objecitd.
4563  *
4564  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4565  */
4566 int btrfs_previous_extent_item(struct btrfs_root *root,
4567 			struct btrfs_path *path, u64 min_objectid)
4568 {
4569 	struct btrfs_key found_key;
4570 	struct extent_buffer *leaf;
4571 	u32 nritems;
4572 	int ret;
4573 
4574 	while (1) {
4575 		if (path->slots[0] == 0) {
4576 			ret = btrfs_prev_leaf(root, path);
4577 			if (ret != 0)
4578 				return ret;
4579 		} else {
4580 			path->slots[0]--;
4581 		}
4582 		leaf = path->nodes[0];
4583 		nritems = btrfs_header_nritems(leaf);
4584 		if (nritems == 0)
4585 			return 1;
4586 		if (path->slots[0] == nritems)
4587 			path->slots[0]--;
4588 
4589 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4590 		if (found_key.objectid < min_objectid)
4591 			break;
4592 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4593 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4594 			return 0;
4595 		if (found_key.objectid == min_objectid &&
4596 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4597 			break;
4598 	}
4599 	return 1;
4600 }
4601