1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 #include "tree-mod-log.h" 18 19 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 20 *root, struct btrfs_path *path, int level); 21 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 22 const struct btrfs_key *ins_key, struct btrfs_path *path, 23 int data_size, int extend); 24 static int push_node_left(struct btrfs_trans_handle *trans, 25 struct extent_buffer *dst, 26 struct extent_buffer *src, int empty); 27 static int balance_node_right(struct btrfs_trans_handle *trans, 28 struct extent_buffer *dst_buf, 29 struct extent_buffer *src_buf); 30 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 31 int level, int slot); 32 33 static const struct btrfs_csums { 34 u16 size; 35 const char name[10]; 36 const char driver[12]; 37 } btrfs_csums[] = { 38 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 39 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 40 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 41 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 42 .driver = "blake2b-256" }, 43 }; 44 45 int btrfs_super_csum_size(const struct btrfs_super_block *s) 46 { 47 u16 t = btrfs_super_csum_type(s); 48 /* 49 * csum type is validated at mount time 50 */ 51 return btrfs_csums[t].size; 52 } 53 54 const char *btrfs_super_csum_name(u16 csum_type) 55 { 56 /* csum type is validated at mount time */ 57 return btrfs_csums[csum_type].name; 58 } 59 60 /* 61 * Return driver name if defined, otherwise the name that's also a valid driver 62 * name 63 */ 64 const char *btrfs_super_csum_driver(u16 csum_type) 65 { 66 /* csum type is validated at mount time */ 67 return btrfs_csums[csum_type].driver[0] ? 68 btrfs_csums[csum_type].driver : 69 btrfs_csums[csum_type].name; 70 } 71 72 size_t __attribute_const__ btrfs_get_num_csums(void) 73 { 74 return ARRAY_SIZE(btrfs_csums); 75 } 76 77 struct btrfs_path *btrfs_alloc_path(void) 78 { 79 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 80 } 81 82 /* this also releases the path */ 83 void btrfs_free_path(struct btrfs_path *p) 84 { 85 if (!p) 86 return; 87 btrfs_release_path(p); 88 kmem_cache_free(btrfs_path_cachep, p); 89 } 90 91 /* 92 * path release drops references on the extent buffers in the path 93 * and it drops any locks held by this path 94 * 95 * It is safe to call this on paths that no locks or extent buffers held. 96 */ 97 noinline void btrfs_release_path(struct btrfs_path *p) 98 { 99 int i; 100 101 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 102 p->slots[i] = 0; 103 if (!p->nodes[i]) 104 continue; 105 if (p->locks[i]) { 106 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 107 p->locks[i] = 0; 108 } 109 free_extent_buffer(p->nodes[i]); 110 p->nodes[i] = NULL; 111 } 112 } 113 114 /* 115 * safely gets a reference on the root node of a tree. A lock 116 * is not taken, so a concurrent writer may put a different node 117 * at the root of the tree. See btrfs_lock_root_node for the 118 * looping required. 119 * 120 * The extent buffer returned by this has a reference taken, so 121 * it won't disappear. It may stop being the root of the tree 122 * at any time because there are no locks held. 123 */ 124 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 125 { 126 struct extent_buffer *eb; 127 128 while (1) { 129 rcu_read_lock(); 130 eb = rcu_dereference(root->node); 131 132 /* 133 * RCU really hurts here, we could free up the root node because 134 * it was COWed but we may not get the new root node yet so do 135 * the inc_not_zero dance and if it doesn't work then 136 * synchronize_rcu and try again. 137 */ 138 if (atomic_inc_not_zero(&eb->refs)) { 139 rcu_read_unlock(); 140 break; 141 } 142 rcu_read_unlock(); 143 synchronize_rcu(); 144 } 145 return eb; 146 } 147 148 /* 149 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 150 * just get put onto a simple dirty list. Transaction walks this list to make 151 * sure they get properly updated on disk. 152 */ 153 static void add_root_to_dirty_list(struct btrfs_root *root) 154 { 155 struct btrfs_fs_info *fs_info = root->fs_info; 156 157 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 158 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 159 return; 160 161 spin_lock(&fs_info->trans_lock); 162 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 163 /* Want the extent tree to be the last on the list */ 164 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 165 list_move_tail(&root->dirty_list, 166 &fs_info->dirty_cowonly_roots); 167 else 168 list_move(&root->dirty_list, 169 &fs_info->dirty_cowonly_roots); 170 } 171 spin_unlock(&fs_info->trans_lock); 172 } 173 174 /* 175 * used by snapshot creation to make a copy of a root for a tree with 176 * a given objectid. The buffer with the new root node is returned in 177 * cow_ret, and this func returns zero on success or a negative error code. 178 */ 179 int btrfs_copy_root(struct btrfs_trans_handle *trans, 180 struct btrfs_root *root, 181 struct extent_buffer *buf, 182 struct extent_buffer **cow_ret, u64 new_root_objectid) 183 { 184 struct btrfs_fs_info *fs_info = root->fs_info; 185 struct extent_buffer *cow; 186 int ret = 0; 187 int level; 188 struct btrfs_disk_key disk_key; 189 190 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 191 trans->transid != fs_info->running_transaction->transid); 192 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 193 trans->transid != root->last_trans); 194 195 level = btrfs_header_level(buf); 196 if (level == 0) 197 btrfs_item_key(buf, &disk_key, 0); 198 else 199 btrfs_node_key(buf, &disk_key, 0); 200 201 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 202 &disk_key, level, buf->start, 0, 203 BTRFS_NESTING_NEW_ROOT); 204 if (IS_ERR(cow)) 205 return PTR_ERR(cow); 206 207 copy_extent_buffer_full(cow, buf); 208 btrfs_set_header_bytenr(cow, cow->start); 209 btrfs_set_header_generation(cow, trans->transid); 210 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 211 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 212 BTRFS_HEADER_FLAG_RELOC); 213 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 214 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 215 else 216 btrfs_set_header_owner(cow, new_root_objectid); 217 218 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 219 220 WARN_ON(btrfs_header_generation(buf) > trans->transid); 221 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 222 ret = btrfs_inc_ref(trans, root, cow, 1); 223 else 224 ret = btrfs_inc_ref(trans, root, cow, 0); 225 if (ret) { 226 btrfs_tree_unlock(cow); 227 free_extent_buffer(cow); 228 btrfs_abort_transaction(trans, ret); 229 return ret; 230 } 231 232 btrfs_mark_buffer_dirty(cow); 233 *cow_ret = cow; 234 return 0; 235 } 236 237 /* 238 * check if the tree block can be shared by multiple trees 239 */ 240 int btrfs_block_can_be_shared(struct btrfs_root *root, 241 struct extent_buffer *buf) 242 { 243 /* 244 * Tree blocks not in shareable trees and tree roots are never shared. 245 * If a block was allocated after the last snapshot and the block was 246 * not allocated by tree relocation, we know the block is not shared. 247 */ 248 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 249 buf != root->node && buf != root->commit_root && 250 (btrfs_header_generation(buf) <= 251 btrfs_root_last_snapshot(&root->root_item) || 252 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 253 return 1; 254 255 return 0; 256 } 257 258 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 259 struct btrfs_root *root, 260 struct extent_buffer *buf, 261 struct extent_buffer *cow, 262 int *last_ref) 263 { 264 struct btrfs_fs_info *fs_info = root->fs_info; 265 u64 refs; 266 u64 owner; 267 u64 flags; 268 u64 new_flags = 0; 269 int ret; 270 271 /* 272 * Backrefs update rules: 273 * 274 * Always use full backrefs for extent pointers in tree block 275 * allocated by tree relocation. 276 * 277 * If a shared tree block is no longer referenced by its owner 278 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 279 * use full backrefs for extent pointers in tree block. 280 * 281 * If a tree block is been relocating 282 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 283 * use full backrefs for extent pointers in tree block. 284 * The reason for this is some operations (such as drop tree) 285 * are only allowed for blocks use full backrefs. 286 */ 287 288 if (btrfs_block_can_be_shared(root, buf)) { 289 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 290 btrfs_header_level(buf), 1, 291 &refs, &flags); 292 if (ret) 293 return ret; 294 if (refs == 0) { 295 ret = -EROFS; 296 btrfs_handle_fs_error(fs_info, ret, NULL); 297 return ret; 298 } 299 } else { 300 refs = 1; 301 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 302 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 303 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 304 else 305 flags = 0; 306 } 307 308 owner = btrfs_header_owner(buf); 309 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 310 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 311 312 if (refs > 1) { 313 if ((owner == root->root_key.objectid || 314 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 315 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 316 ret = btrfs_inc_ref(trans, root, buf, 1); 317 if (ret) 318 return ret; 319 320 if (root->root_key.objectid == 321 BTRFS_TREE_RELOC_OBJECTID) { 322 ret = btrfs_dec_ref(trans, root, buf, 0); 323 if (ret) 324 return ret; 325 ret = btrfs_inc_ref(trans, root, cow, 1); 326 if (ret) 327 return ret; 328 } 329 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 330 } else { 331 332 if (root->root_key.objectid == 333 BTRFS_TREE_RELOC_OBJECTID) 334 ret = btrfs_inc_ref(trans, root, cow, 1); 335 else 336 ret = btrfs_inc_ref(trans, root, cow, 0); 337 if (ret) 338 return ret; 339 } 340 if (new_flags != 0) { 341 int level = btrfs_header_level(buf); 342 343 ret = btrfs_set_disk_extent_flags(trans, buf, 344 new_flags, level, 0); 345 if (ret) 346 return ret; 347 } 348 } else { 349 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 350 if (root->root_key.objectid == 351 BTRFS_TREE_RELOC_OBJECTID) 352 ret = btrfs_inc_ref(trans, root, cow, 1); 353 else 354 ret = btrfs_inc_ref(trans, root, cow, 0); 355 if (ret) 356 return ret; 357 ret = btrfs_dec_ref(trans, root, buf, 1); 358 if (ret) 359 return ret; 360 } 361 btrfs_clean_tree_block(buf); 362 *last_ref = 1; 363 } 364 return 0; 365 } 366 367 /* 368 * does the dirty work in cow of a single block. The parent block (if 369 * supplied) is updated to point to the new cow copy. The new buffer is marked 370 * dirty and returned locked. If you modify the block it needs to be marked 371 * dirty again. 372 * 373 * search_start -- an allocation hint for the new block 374 * 375 * empty_size -- a hint that you plan on doing more cow. This is the size in 376 * bytes the allocator should try to find free next to the block it returns. 377 * This is just a hint and may be ignored by the allocator. 378 */ 379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 380 struct btrfs_root *root, 381 struct extent_buffer *buf, 382 struct extent_buffer *parent, int parent_slot, 383 struct extent_buffer **cow_ret, 384 u64 search_start, u64 empty_size, 385 enum btrfs_lock_nesting nest) 386 { 387 struct btrfs_fs_info *fs_info = root->fs_info; 388 struct btrfs_disk_key disk_key; 389 struct extent_buffer *cow; 390 int level, ret; 391 int last_ref = 0; 392 int unlock_orig = 0; 393 u64 parent_start = 0; 394 395 if (*cow_ret == buf) 396 unlock_orig = 1; 397 398 btrfs_assert_tree_locked(buf); 399 400 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 401 trans->transid != fs_info->running_transaction->transid); 402 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 403 trans->transid != root->last_trans); 404 405 level = btrfs_header_level(buf); 406 407 if (level == 0) 408 btrfs_item_key(buf, &disk_key, 0); 409 else 410 btrfs_node_key(buf, &disk_key, 0); 411 412 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 413 parent_start = parent->start; 414 415 cow = btrfs_alloc_tree_block(trans, root, parent_start, 416 root->root_key.objectid, &disk_key, level, 417 search_start, empty_size, nest); 418 if (IS_ERR(cow)) 419 return PTR_ERR(cow); 420 421 /* cow is set to blocking by btrfs_init_new_buffer */ 422 423 copy_extent_buffer_full(cow, buf); 424 btrfs_set_header_bytenr(cow, cow->start); 425 btrfs_set_header_generation(cow, trans->transid); 426 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 427 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 428 BTRFS_HEADER_FLAG_RELOC); 429 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 430 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 431 else 432 btrfs_set_header_owner(cow, root->root_key.objectid); 433 434 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 435 436 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 437 if (ret) { 438 btrfs_tree_unlock(cow); 439 free_extent_buffer(cow); 440 btrfs_abort_transaction(trans, ret); 441 return ret; 442 } 443 444 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 445 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 446 if (ret) { 447 btrfs_tree_unlock(cow); 448 free_extent_buffer(cow); 449 btrfs_abort_transaction(trans, ret); 450 return ret; 451 } 452 } 453 454 if (buf == root->node) { 455 WARN_ON(parent && parent != buf); 456 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 457 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 458 parent_start = buf->start; 459 460 atomic_inc(&cow->refs); 461 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 462 BUG_ON(ret < 0); 463 rcu_assign_pointer(root->node, cow); 464 465 btrfs_free_tree_block(trans, root, buf, parent_start, 466 last_ref); 467 free_extent_buffer(buf); 468 add_root_to_dirty_list(root); 469 } else { 470 WARN_ON(trans->transid != btrfs_header_generation(parent)); 471 btrfs_tree_mod_log_insert_key(parent, parent_slot, 472 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 473 btrfs_set_node_blockptr(parent, parent_slot, 474 cow->start); 475 btrfs_set_node_ptr_generation(parent, parent_slot, 476 trans->transid); 477 btrfs_mark_buffer_dirty(parent); 478 if (last_ref) { 479 ret = btrfs_tree_mod_log_free_eb(buf); 480 if (ret) { 481 btrfs_tree_unlock(cow); 482 free_extent_buffer(cow); 483 btrfs_abort_transaction(trans, ret); 484 return ret; 485 } 486 } 487 btrfs_free_tree_block(trans, root, buf, parent_start, 488 last_ref); 489 } 490 if (unlock_orig) 491 btrfs_tree_unlock(buf); 492 free_extent_buffer_stale(buf); 493 btrfs_mark_buffer_dirty(cow); 494 *cow_ret = cow; 495 return 0; 496 } 497 498 static inline int should_cow_block(struct btrfs_trans_handle *trans, 499 struct btrfs_root *root, 500 struct extent_buffer *buf) 501 { 502 if (btrfs_is_testing(root->fs_info)) 503 return 0; 504 505 /* Ensure we can see the FORCE_COW bit */ 506 smp_mb__before_atomic(); 507 508 /* 509 * We do not need to cow a block if 510 * 1) this block is not created or changed in this transaction; 511 * 2) this block does not belong to TREE_RELOC tree; 512 * 3) the root is not forced COW. 513 * 514 * What is forced COW: 515 * when we create snapshot during committing the transaction, 516 * after we've finished copying src root, we must COW the shared 517 * block to ensure the metadata consistency. 518 */ 519 if (btrfs_header_generation(buf) == trans->transid && 520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 524 return 0; 525 return 1; 526 } 527 528 /* 529 * cows a single block, see __btrfs_cow_block for the real work. 530 * This version of it has extra checks so that a block isn't COWed more than 531 * once per transaction, as long as it hasn't been written yet 532 */ 533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 534 struct btrfs_root *root, struct extent_buffer *buf, 535 struct extent_buffer *parent, int parent_slot, 536 struct extent_buffer **cow_ret, 537 enum btrfs_lock_nesting nest) 538 { 539 struct btrfs_fs_info *fs_info = root->fs_info; 540 u64 search_start; 541 int ret; 542 543 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 544 btrfs_err(fs_info, 545 "COW'ing blocks on a fs root that's being dropped"); 546 547 if (trans->transaction != fs_info->running_transaction) 548 WARN(1, KERN_CRIT "trans %llu running %llu\n", 549 trans->transid, 550 fs_info->running_transaction->transid); 551 552 if (trans->transid != fs_info->generation) 553 WARN(1, KERN_CRIT "trans %llu running %llu\n", 554 trans->transid, fs_info->generation); 555 556 if (!should_cow_block(trans, root, buf)) { 557 *cow_ret = buf; 558 return 0; 559 } 560 561 search_start = buf->start & ~((u64)SZ_1G - 1); 562 563 /* 564 * Before CoWing this block for later modification, check if it's 565 * the subtree root and do the delayed subtree trace if needed. 566 * 567 * Also We don't care about the error, as it's handled internally. 568 */ 569 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 570 ret = __btrfs_cow_block(trans, root, buf, parent, 571 parent_slot, cow_ret, search_start, 0, nest); 572 573 trace_btrfs_cow_block(root, buf, *cow_ret); 574 575 return ret; 576 } 577 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 578 579 /* 580 * helper function for defrag to decide if two blocks pointed to by a 581 * node are actually close by 582 */ 583 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 584 { 585 if (blocknr < other && other - (blocknr + blocksize) < 32768) 586 return 1; 587 if (blocknr > other && blocknr - (other + blocksize) < 32768) 588 return 1; 589 return 0; 590 } 591 592 #ifdef __LITTLE_ENDIAN 593 594 /* 595 * Compare two keys, on little-endian the disk order is same as CPU order and 596 * we can avoid the conversion. 597 */ 598 static int comp_keys(const struct btrfs_disk_key *disk_key, 599 const struct btrfs_key *k2) 600 { 601 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 602 603 return btrfs_comp_cpu_keys(k1, k2); 604 } 605 606 #else 607 608 /* 609 * compare two keys in a memcmp fashion 610 */ 611 static int comp_keys(const struct btrfs_disk_key *disk, 612 const struct btrfs_key *k2) 613 { 614 struct btrfs_key k1; 615 616 btrfs_disk_key_to_cpu(&k1, disk); 617 618 return btrfs_comp_cpu_keys(&k1, k2); 619 } 620 #endif 621 622 /* 623 * same as comp_keys only with two btrfs_key's 624 */ 625 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 626 { 627 if (k1->objectid > k2->objectid) 628 return 1; 629 if (k1->objectid < k2->objectid) 630 return -1; 631 if (k1->type > k2->type) 632 return 1; 633 if (k1->type < k2->type) 634 return -1; 635 if (k1->offset > k2->offset) 636 return 1; 637 if (k1->offset < k2->offset) 638 return -1; 639 return 0; 640 } 641 642 /* 643 * this is used by the defrag code to go through all the 644 * leaves pointed to by a node and reallocate them so that 645 * disk order is close to key order 646 */ 647 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 648 struct btrfs_root *root, struct extent_buffer *parent, 649 int start_slot, u64 *last_ret, 650 struct btrfs_key *progress) 651 { 652 struct btrfs_fs_info *fs_info = root->fs_info; 653 struct extent_buffer *cur; 654 u64 blocknr; 655 u64 search_start = *last_ret; 656 u64 last_block = 0; 657 u64 other; 658 u32 parent_nritems; 659 int end_slot; 660 int i; 661 int err = 0; 662 u32 blocksize; 663 int progress_passed = 0; 664 struct btrfs_disk_key disk_key; 665 666 WARN_ON(trans->transaction != fs_info->running_transaction); 667 WARN_ON(trans->transid != fs_info->generation); 668 669 parent_nritems = btrfs_header_nritems(parent); 670 blocksize = fs_info->nodesize; 671 end_slot = parent_nritems - 1; 672 673 if (parent_nritems <= 1) 674 return 0; 675 676 for (i = start_slot; i <= end_slot; i++) { 677 int close = 1; 678 679 btrfs_node_key(parent, &disk_key, i); 680 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 681 continue; 682 683 progress_passed = 1; 684 blocknr = btrfs_node_blockptr(parent, i); 685 if (last_block == 0) 686 last_block = blocknr; 687 688 if (i > 0) { 689 other = btrfs_node_blockptr(parent, i - 1); 690 close = close_blocks(blocknr, other, blocksize); 691 } 692 if (!close && i < end_slot) { 693 other = btrfs_node_blockptr(parent, i + 1); 694 close = close_blocks(blocknr, other, blocksize); 695 } 696 if (close) { 697 last_block = blocknr; 698 continue; 699 } 700 701 cur = btrfs_read_node_slot(parent, i); 702 if (IS_ERR(cur)) 703 return PTR_ERR(cur); 704 if (search_start == 0) 705 search_start = last_block; 706 707 btrfs_tree_lock(cur); 708 err = __btrfs_cow_block(trans, root, cur, parent, i, 709 &cur, search_start, 710 min(16 * blocksize, 711 (end_slot - i) * blocksize), 712 BTRFS_NESTING_COW); 713 if (err) { 714 btrfs_tree_unlock(cur); 715 free_extent_buffer(cur); 716 break; 717 } 718 search_start = cur->start; 719 last_block = cur->start; 720 *last_ret = search_start; 721 btrfs_tree_unlock(cur); 722 free_extent_buffer(cur); 723 } 724 return err; 725 } 726 727 /* 728 * search for key in the extent_buffer. The items start at offset p, 729 * and they are item_size apart. 730 * 731 * the slot in the array is returned via slot, and it points to 732 * the place where you would insert key if it is not found in 733 * the array. 734 * 735 * Slot may point to total number of items if the key is bigger than 736 * all of the keys 737 */ 738 static noinline int generic_bin_search(struct extent_buffer *eb, 739 unsigned long p, int item_size, 740 const struct btrfs_key *key, int *slot) 741 { 742 int low = 0; 743 int high = btrfs_header_nritems(eb); 744 int ret; 745 const int key_size = sizeof(struct btrfs_disk_key); 746 747 if (low > high) { 748 btrfs_err(eb->fs_info, 749 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 750 __func__, low, high, eb->start, 751 btrfs_header_owner(eb), btrfs_header_level(eb)); 752 return -EINVAL; 753 } 754 755 while (low < high) { 756 unsigned long oip; 757 unsigned long offset; 758 struct btrfs_disk_key *tmp; 759 struct btrfs_disk_key unaligned; 760 int mid; 761 762 mid = (low + high) / 2; 763 offset = p + mid * item_size; 764 oip = offset_in_page(offset); 765 766 if (oip + key_size <= PAGE_SIZE) { 767 const unsigned long idx = get_eb_page_index(offset); 768 char *kaddr = page_address(eb->pages[idx]); 769 770 oip = get_eb_offset_in_page(eb, offset); 771 tmp = (struct btrfs_disk_key *)(kaddr + oip); 772 } else { 773 read_extent_buffer(eb, &unaligned, offset, key_size); 774 tmp = &unaligned; 775 } 776 777 ret = comp_keys(tmp, key); 778 779 if (ret < 0) 780 low = mid + 1; 781 else if (ret > 0) 782 high = mid; 783 else { 784 *slot = mid; 785 return 0; 786 } 787 } 788 *slot = low; 789 return 1; 790 } 791 792 /* 793 * simple bin_search frontend that does the right thing for 794 * leaves vs nodes 795 */ 796 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 797 int *slot) 798 { 799 if (btrfs_header_level(eb) == 0) 800 return generic_bin_search(eb, 801 offsetof(struct btrfs_leaf, items), 802 sizeof(struct btrfs_item), key, slot); 803 else 804 return generic_bin_search(eb, 805 offsetof(struct btrfs_node, ptrs), 806 sizeof(struct btrfs_key_ptr), key, slot); 807 } 808 809 static void root_add_used(struct btrfs_root *root, u32 size) 810 { 811 spin_lock(&root->accounting_lock); 812 btrfs_set_root_used(&root->root_item, 813 btrfs_root_used(&root->root_item) + size); 814 spin_unlock(&root->accounting_lock); 815 } 816 817 static void root_sub_used(struct btrfs_root *root, u32 size) 818 { 819 spin_lock(&root->accounting_lock); 820 btrfs_set_root_used(&root->root_item, 821 btrfs_root_used(&root->root_item) - size); 822 spin_unlock(&root->accounting_lock); 823 } 824 825 /* given a node and slot number, this reads the blocks it points to. The 826 * extent buffer is returned with a reference taken (but unlocked). 827 */ 828 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 829 int slot) 830 { 831 int level = btrfs_header_level(parent); 832 struct extent_buffer *eb; 833 struct btrfs_key first_key; 834 835 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 836 return ERR_PTR(-ENOENT); 837 838 BUG_ON(level == 0); 839 840 btrfs_node_key_to_cpu(parent, &first_key, slot); 841 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 842 btrfs_header_owner(parent), 843 btrfs_node_ptr_generation(parent, slot), 844 level - 1, &first_key); 845 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 846 free_extent_buffer(eb); 847 eb = ERR_PTR(-EIO); 848 } 849 850 return eb; 851 } 852 853 /* 854 * node level balancing, used to make sure nodes are in proper order for 855 * item deletion. We balance from the top down, so we have to make sure 856 * that a deletion won't leave an node completely empty later on. 857 */ 858 static noinline int balance_level(struct btrfs_trans_handle *trans, 859 struct btrfs_root *root, 860 struct btrfs_path *path, int level) 861 { 862 struct btrfs_fs_info *fs_info = root->fs_info; 863 struct extent_buffer *right = NULL; 864 struct extent_buffer *mid; 865 struct extent_buffer *left = NULL; 866 struct extent_buffer *parent = NULL; 867 int ret = 0; 868 int wret; 869 int pslot; 870 int orig_slot = path->slots[level]; 871 u64 orig_ptr; 872 873 ASSERT(level > 0); 874 875 mid = path->nodes[level]; 876 877 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 878 WARN_ON(btrfs_header_generation(mid) != trans->transid); 879 880 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 881 882 if (level < BTRFS_MAX_LEVEL - 1) { 883 parent = path->nodes[level + 1]; 884 pslot = path->slots[level + 1]; 885 } 886 887 /* 888 * deal with the case where there is only one pointer in the root 889 * by promoting the node below to a root 890 */ 891 if (!parent) { 892 struct extent_buffer *child; 893 894 if (btrfs_header_nritems(mid) != 1) 895 return 0; 896 897 /* promote the child to a root */ 898 child = btrfs_read_node_slot(mid, 0); 899 if (IS_ERR(child)) { 900 ret = PTR_ERR(child); 901 btrfs_handle_fs_error(fs_info, ret, NULL); 902 goto enospc; 903 } 904 905 btrfs_tree_lock(child); 906 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 907 BTRFS_NESTING_COW); 908 if (ret) { 909 btrfs_tree_unlock(child); 910 free_extent_buffer(child); 911 goto enospc; 912 } 913 914 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 915 BUG_ON(ret < 0); 916 rcu_assign_pointer(root->node, child); 917 918 add_root_to_dirty_list(root); 919 btrfs_tree_unlock(child); 920 921 path->locks[level] = 0; 922 path->nodes[level] = NULL; 923 btrfs_clean_tree_block(mid); 924 btrfs_tree_unlock(mid); 925 /* once for the path */ 926 free_extent_buffer(mid); 927 928 root_sub_used(root, mid->len); 929 btrfs_free_tree_block(trans, root, mid, 0, 1); 930 /* once for the root ptr */ 931 free_extent_buffer_stale(mid); 932 return 0; 933 } 934 if (btrfs_header_nritems(mid) > 935 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 936 return 0; 937 938 left = btrfs_read_node_slot(parent, pslot - 1); 939 if (IS_ERR(left)) 940 left = NULL; 941 942 if (left) { 943 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 944 wret = btrfs_cow_block(trans, root, left, 945 parent, pslot - 1, &left, 946 BTRFS_NESTING_LEFT_COW); 947 if (wret) { 948 ret = wret; 949 goto enospc; 950 } 951 } 952 953 right = btrfs_read_node_slot(parent, pslot + 1); 954 if (IS_ERR(right)) 955 right = NULL; 956 957 if (right) { 958 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 959 wret = btrfs_cow_block(trans, root, right, 960 parent, pslot + 1, &right, 961 BTRFS_NESTING_RIGHT_COW); 962 if (wret) { 963 ret = wret; 964 goto enospc; 965 } 966 } 967 968 /* first, try to make some room in the middle buffer */ 969 if (left) { 970 orig_slot += btrfs_header_nritems(left); 971 wret = push_node_left(trans, left, mid, 1); 972 if (wret < 0) 973 ret = wret; 974 } 975 976 /* 977 * then try to empty the right most buffer into the middle 978 */ 979 if (right) { 980 wret = push_node_left(trans, mid, right, 1); 981 if (wret < 0 && wret != -ENOSPC) 982 ret = wret; 983 if (btrfs_header_nritems(right) == 0) { 984 btrfs_clean_tree_block(right); 985 btrfs_tree_unlock(right); 986 del_ptr(root, path, level + 1, pslot + 1); 987 root_sub_used(root, right->len); 988 btrfs_free_tree_block(trans, root, right, 0, 1); 989 free_extent_buffer_stale(right); 990 right = NULL; 991 } else { 992 struct btrfs_disk_key right_key; 993 btrfs_node_key(right, &right_key, 0); 994 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 995 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 996 BUG_ON(ret < 0); 997 btrfs_set_node_key(parent, &right_key, pslot + 1); 998 btrfs_mark_buffer_dirty(parent); 999 } 1000 } 1001 if (btrfs_header_nritems(mid) == 1) { 1002 /* 1003 * we're not allowed to leave a node with one item in the 1004 * tree during a delete. A deletion from lower in the tree 1005 * could try to delete the only pointer in this node. 1006 * So, pull some keys from the left. 1007 * There has to be a left pointer at this point because 1008 * otherwise we would have pulled some pointers from the 1009 * right 1010 */ 1011 if (!left) { 1012 ret = -EROFS; 1013 btrfs_handle_fs_error(fs_info, ret, NULL); 1014 goto enospc; 1015 } 1016 wret = balance_node_right(trans, mid, left); 1017 if (wret < 0) { 1018 ret = wret; 1019 goto enospc; 1020 } 1021 if (wret == 1) { 1022 wret = push_node_left(trans, left, mid, 1); 1023 if (wret < 0) 1024 ret = wret; 1025 } 1026 BUG_ON(wret == 1); 1027 } 1028 if (btrfs_header_nritems(mid) == 0) { 1029 btrfs_clean_tree_block(mid); 1030 btrfs_tree_unlock(mid); 1031 del_ptr(root, path, level + 1, pslot); 1032 root_sub_used(root, mid->len); 1033 btrfs_free_tree_block(trans, root, mid, 0, 1); 1034 free_extent_buffer_stale(mid); 1035 mid = NULL; 1036 } else { 1037 /* update the parent key to reflect our changes */ 1038 struct btrfs_disk_key mid_key; 1039 btrfs_node_key(mid, &mid_key, 0); 1040 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1041 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1042 BUG_ON(ret < 0); 1043 btrfs_set_node_key(parent, &mid_key, pslot); 1044 btrfs_mark_buffer_dirty(parent); 1045 } 1046 1047 /* update the path */ 1048 if (left) { 1049 if (btrfs_header_nritems(left) > orig_slot) { 1050 atomic_inc(&left->refs); 1051 /* left was locked after cow */ 1052 path->nodes[level] = left; 1053 path->slots[level + 1] -= 1; 1054 path->slots[level] = orig_slot; 1055 if (mid) { 1056 btrfs_tree_unlock(mid); 1057 free_extent_buffer(mid); 1058 } 1059 } else { 1060 orig_slot -= btrfs_header_nritems(left); 1061 path->slots[level] = orig_slot; 1062 } 1063 } 1064 /* double check we haven't messed things up */ 1065 if (orig_ptr != 1066 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1067 BUG(); 1068 enospc: 1069 if (right) { 1070 btrfs_tree_unlock(right); 1071 free_extent_buffer(right); 1072 } 1073 if (left) { 1074 if (path->nodes[level] != left) 1075 btrfs_tree_unlock(left); 1076 free_extent_buffer(left); 1077 } 1078 return ret; 1079 } 1080 1081 /* Node balancing for insertion. Here we only split or push nodes around 1082 * when they are completely full. This is also done top down, so we 1083 * have to be pessimistic. 1084 */ 1085 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1086 struct btrfs_root *root, 1087 struct btrfs_path *path, int level) 1088 { 1089 struct btrfs_fs_info *fs_info = root->fs_info; 1090 struct extent_buffer *right = NULL; 1091 struct extent_buffer *mid; 1092 struct extent_buffer *left = NULL; 1093 struct extent_buffer *parent = NULL; 1094 int ret = 0; 1095 int wret; 1096 int pslot; 1097 int orig_slot = path->slots[level]; 1098 1099 if (level == 0) 1100 return 1; 1101 1102 mid = path->nodes[level]; 1103 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1104 1105 if (level < BTRFS_MAX_LEVEL - 1) { 1106 parent = path->nodes[level + 1]; 1107 pslot = path->slots[level + 1]; 1108 } 1109 1110 if (!parent) 1111 return 1; 1112 1113 left = btrfs_read_node_slot(parent, pslot - 1); 1114 if (IS_ERR(left)) 1115 left = NULL; 1116 1117 /* first, try to make some room in the middle buffer */ 1118 if (left) { 1119 u32 left_nr; 1120 1121 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1122 1123 left_nr = btrfs_header_nritems(left); 1124 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1125 wret = 1; 1126 } else { 1127 ret = btrfs_cow_block(trans, root, left, parent, 1128 pslot - 1, &left, 1129 BTRFS_NESTING_LEFT_COW); 1130 if (ret) 1131 wret = 1; 1132 else { 1133 wret = push_node_left(trans, left, mid, 0); 1134 } 1135 } 1136 if (wret < 0) 1137 ret = wret; 1138 if (wret == 0) { 1139 struct btrfs_disk_key disk_key; 1140 orig_slot += left_nr; 1141 btrfs_node_key(mid, &disk_key, 0); 1142 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1143 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1144 BUG_ON(ret < 0); 1145 btrfs_set_node_key(parent, &disk_key, pslot); 1146 btrfs_mark_buffer_dirty(parent); 1147 if (btrfs_header_nritems(left) > orig_slot) { 1148 path->nodes[level] = left; 1149 path->slots[level + 1] -= 1; 1150 path->slots[level] = orig_slot; 1151 btrfs_tree_unlock(mid); 1152 free_extent_buffer(mid); 1153 } else { 1154 orig_slot -= 1155 btrfs_header_nritems(left); 1156 path->slots[level] = orig_slot; 1157 btrfs_tree_unlock(left); 1158 free_extent_buffer(left); 1159 } 1160 return 0; 1161 } 1162 btrfs_tree_unlock(left); 1163 free_extent_buffer(left); 1164 } 1165 right = btrfs_read_node_slot(parent, pslot + 1); 1166 if (IS_ERR(right)) 1167 right = NULL; 1168 1169 /* 1170 * then try to empty the right most buffer into the middle 1171 */ 1172 if (right) { 1173 u32 right_nr; 1174 1175 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1176 1177 right_nr = btrfs_header_nritems(right); 1178 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1179 wret = 1; 1180 } else { 1181 ret = btrfs_cow_block(trans, root, right, 1182 parent, pslot + 1, 1183 &right, BTRFS_NESTING_RIGHT_COW); 1184 if (ret) 1185 wret = 1; 1186 else { 1187 wret = balance_node_right(trans, right, mid); 1188 } 1189 } 1190 if (wret < 0) 1191 ret = wret; 1192 if (wret == 0) { 1193 struct btrfs_disk_key disk_key; 1194 1195 btrfs_node_key(right, &disk_key, 0); 1196 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1197 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS); 1198 BUG_ON(ret < 0); 1199 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1200 btrfs_mark_buffer_dirty(parent); 1201 1202 if (btrfs_header_nritems(mid) <= orig_slot) { 1203 path->nodes[level] = right; 1204 path->slots[level + 1] += 1; 1205 path->slots[level] = orig_slot - 1206 btrfs_header_nritems(mid); 1207 btrfs_tree_unlock(mid); 1208 free_extent_buffer(mid); 1209 } else { 1210 btrfs_tree_unlock(right); 1211 free_extent_buffer(right); 1212 } 1213 return 0; 1214 } 1215 btrfs_tree_unlock(right); 1216 free_extent_buffer(right); 1217 } 1218 return 1; 1219 } 1220 1221 /* 1222 * readahead one full node of leaves, finding things that are close 1223 * to the block in 'slot', and triggering ra on them. 1224 */ 1225 static void reada_for_search(struct btrfs_fs_info *fs_info, 1226 struct btrfs_path *path, 1227 int level, int slot, u64 objectid) 1228 { 1229 struct extent_buffer *node; 1230 struct btrfs_disk_key disk_key; 1231 u32 nritems; 1232 u64 search; 1233 u64 target; 1234 u64 nread = 0; 1235 u64 nread_max; 1236 u32 nr; 1237 u32 blocksize; 1238 u32 nscan = 0; 1239 1240 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1241 return; 1242 1243 if (!path->nodes[level]) 1244 return; 1245 1246 node = path->nodes[level]; 1247 1248 /* 1249 * Since the time between visiting leaves is much shorter than the time 1250 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1251 * much IO at once (possibly random). 1252 */ 1253 if (path->reada == READA_FORWARD_ALWAYS) { 1254 if (level > 1) 1255 nread_max = node->fs_info->nodesize; 1256 else 1257 nread_max = SZ_128K; 1258 } else { 1259 nread_max = SZ_64K; 1260 } 1261 1262 search = btrfs_node_blockptr(node, slot); 1263 blocksize = fs_info->nodesize; 1264 if (path->reada != READA_FORWARD_ALWAYS) { 1265 struct extent_buffer *eb; 1266 1267 eb = find_extent_buffer(fs_info, search); 1268 if (eb) { 1269 free_extent_buffer(eb); 1270 return; 1271 } 1272 } 1273 1274 target = search; 1275 1276 nritems = btrfs_header_nritems(node); 1277 nr = slot; 1278 1279 while (1) { 1280 if (path->reada == READA_BACK) { 1281 if (nr == 0) 1282 break; 1283 nr--; 1284 } else if (path->reada == READA_FORWARD || 1285 path->reada == READA_FORWARD_ALWAYS) { 1286 nr++; 1287 if (nr >= nritems) 1288 break; 1289 } 1290 if (path->reada == READA_BACK && objectid) { 1291 btrfs_node_key(node, &disk_key, nr); 1292 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1293 break; 1294 } 1295 search = btrfs_node_blockptr(node, nr); 1296 if (path->reada == READA_FORWARD_ALWAYS || 1297 (search <= target && target - search <= 65536) || 1298 (search > target && search - target <= 65536)) { 1299 btrfs_readahead_node_child(node, nr); 1300 nread += blocksize; 1301 } 1302 nscan++; 1303 if (nread > nread_max || nscan > 32) 1304 break; 1305 } 1306 } 1307 1308 static noinline void reada_for_balance(struct btrfs_path *path, int level) 1309 { 1310 struct extent_buffer *parent; 1311 int slot; 1312 int nritems; 1313 1314 parent = path->nodes[level + 1]; 1315 if (!parent) 1316 return; 1317 1318 nritems = btrfs_header_nritems(parent); 1319 slot = path->slots[level + 1]; 1320 1321 if (slot > 0) 1322 btrfs_readahead_node_child(parent, slot - 1); 1323 if (slot + 1 < nritems) 1324 btrfs_readahead_node_child(parent, slot + 1); 1325 } 1326 1327 1328 /* 1329 * when we walk down the tree, it is usually safe to unlock the higher layers 1330 * in the tree. The exceptions are when our path goes through slot 0, because 1331 * operations on the tree might require changing key pointers higher up in the 1332 * tree. 1333 * 1334 * callers might also have set path->keep_locks, which tells this code to keep 1335 * the lock if the path points to the last slot in the block. This is part of 1336 * walking through the tree, and selecting the next slot in the higher block. 1337 * 1338 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1339 * if lowest_unlock is 1, level 0 won't be unlocked 1340 */ 1341 static noinline void unlock_up(struct btrfs_path *path, int level, 1342 int lowest_unlock, int min_write_lock_level, 1343 int *write_lock_level) 1344 { 1345 int i; 1346 int skip_level = level; 1347 int no_skips = 0; 1348 struct extent_buffer *t; 1349 1350 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1351 if (!path->nodes[i]) 1352 break; 1353 if (!path->locks[i]) 1354 break; 1355 if (!no_skips && path->slots[i] == 0) { 1356 skip_level = i + 1; 1357 continue; 1358 } 1359 if (!no_skips && path->keep_locks) { 1360 u32 nritems; 1361 t = path->nodes[i]; 1362 nritems = btrfs_header_nritems(t); 1363 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1364 skip_level = i + 1; 1365 continue; 1366 } 1367 } 1368 if (skip_level < i && i >= lowest_unlock) 1369 no_skips = 1; 1370 1371 t = path->nodes[i]; 1372 if (i >= lowest_unlock && i > skip_level) { 1373 btrfs_tree_unlock_rw(t, path->locks[i]); 1374 path->locks[i] = 0; 1375 if (write_lock_level && 1376 i > min_write_lock_level && 1377 i <= *write_lock_level) { 1378 *write_lock_level = i - 1; 1379 } 1380 } 1381 } 1382 } 1383 1384 /* 1385 * helper function for btrfs_search_slot. The goal is to find a block 1386 * in cache without setting the path to blocking. If we find the block 1387 * we return zero and the path is unchanged. 1388 * 1389 * If we can't find the block, we set the path blocking and do some 1390 * reada. -EAGAIN is returned and the search must be repeated. 1391 */ 1392 static int 1393 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1394 struct extent_buffer **eb_ret, int level, int slot, 1395 const struct btrfs_key *key) 1396 { 1397 struct btrfs_fs_info *fs_info = root->fs_info; 1398 u64 blocknr; 1399 u64 gen; 1400 struct extent_buffer *tmp; 1401 struct btrfs_key first_key; 1402 int ret; 1403 int parent_level; 1404 1405 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1406 gen = btrfs_node_ptr_generation(*eb_ret, slot); 1407 parent_level = btrfs_header_level(*eb_ret); 1408 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 1409 1410 tmp = find_extent_buffer(fs_info, blocknr); 1411 if (tmp) { 1412 if (p->reada == READA_FORWARD_ALWAYS) 1413 reada_for_search(fs_info, p, level, slot, key->objectid); 1414 1415 /* first we do an atomic uptodate check */ 1416 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1417 /* 1418 * Do extra check for first_key, eb can be stale due to 1419 * being cached, read from scrub, or have multiple 1420 * parents (shared tree blocks). 1421 */ 1422 if (btrfs_verify_level_key(tmp, 1423 parent_level - 1, &first_key, gen)) { 1424 free_extent_buffer(tmp); 1425 return -EUCLEAN; 1426 } 1427 *eb_ret = tmp; 1428 return 0; 1429 } 1430 1431 /* now we're allowed to do a blocking uptodate check */ 1432 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 1433 if (!ret) { 1434 *eb_ret = tmp; 1435 return 0; 1436 } 1437 free_extent_buffer(tmp); 1438 btrfs_release_path(p); 1439 return -EIO; 1440 } 1441 1442 /* 1443 * reduce lock contention at high levels 1444 * of the btree by dropping locks before 1445 * we read. Don't release the lock on the current 1446 * level because we need to walk this node to figure 1447 * out which blocks to read. 1448 */ 1449 btrfs_unlock_up_safe(p, level + 1); 1450 1451 if (p->reada != READA_NONE) 1452 reada_for_search(fs_info, p, level, slot, key->objectid); 1453 1454 ret = -EAGAIN; 1455 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid, 1456 gen, parent_level - 1, &first_key); 1457 if (!IS_ERR(tmp)) { 1458 /* 1459 * If the read above didn't mark this buffer up to date, 1460 * it will never end up being up to date. Set ret to EIO now 1461 * and give up so that our caller doesn't loop forever 1462 * on our EAGAINs. 1463 */ 1464 if (!extent_buffer_uptodate(tmp)) 1465 ret = -EIO; 1466 free_extent_buffer(tmp); 1467 } else { 1468 ret = PTR_ERR(tmp); 1469 } 1470 1471 btrfs_release_path(p); 1472 return ret; 1473 } 1474 1475 /* 1476 * helper function for btrfs_search_slot. This does all of the checks 1477 * for node-level blocks and does any balancing required based on 1478 * the ins_len. 1479 * 1480 * If no extra work was required, zero is returned. If we had to 1481 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1482 * start over 1483 */ 1484 static int 1485 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1486 struct btrfs_root *root, struct btrfs_path *p, 1487 struct extent_buffer *b, int level, int ins_len, 1488 int *write_lock_level) 1489 { 1490 struct btrfs_fs_info *fs_info = root->fs_info; 1491 int ret = 0; 1492 1493 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1494 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1495 1496 if (*write_lock_level < level + 1) { 1497 *write_lock_level = level + 1; 1498 btrfs_release_path(p); 1499 return -EAGAIN; 1500 } 1501 1502 reada_for_balance(p, level); 1503 ret = split_node(trans, root, p, level); 1504 1505 b = p->nodes[level]; 1506 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1507 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1508 1509 if (*write_lock_level < level + 1) { 1510 *write_lock_level = level + 1; 1511 btrfs_release_path(p); 1512 return -EAGAIN; 1513 } 1514 1515 reada_for_balance(p, level); 1516 ret = balance_level(trans, root, p, level); 1517 if (ret) 1518 return ret; 1519 1520 b = p->nodes[level]; 1521 if (!b) { 1522 btrfs_release_path(p); 1523 return -EAGAIN; 1524 } 1525 BUG_ON(btrfs_header_nritems(b) == 1); 1526 } 1527 return ret; 1528 } 1529 1530 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1531 u64 iobjectid, u64 ioff, u8 key_type, 1532 struct btrfs_key *found_key) 1533 { 1534 int ret; 1535 struct btrfs_key key; 1536 struct extent_buffer *eb; 1537 1538 ASSERT(path); 1539 ASSERT(found_key); 1540 1541 key.type = key_type; 1542 key.objectid = iobjectid; 1543 key.offset = ioff; 1544 1545 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1546 if (ret < 0) 1547 return ret; 1548 1549 eb = path->nodes[0]; 1550 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1551 ret = btrfs_next_leaf(fs_root, path); 1552 if (ret) 1553 return ret; 1554 eb = path->nodes[0]; 1555 } 1556 1557 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1558 if (found_key->type != key.type || 1559 found_key->objectid != key.objectid) 1560 return 1; 1561 1562 return 0; 1563 } 1564 1565 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1566 struct btrfs_path *p, 1567 int write_lock_level) 1568 { 1569 struct btrfs_fs_info *fs_info = root->fs_info; 1570 struct extent_buffer *b; 1571 int root_lock; 1572 int level = 0; 1573 1574 /* We try very hard to do read locks on the root */ 1575 root_lock = BTRFS_READ_LOCK; 1576 1577 if (p->search_commit_root) { 1578 /* 1579 * The commit roots are read only so we always do read locks, 1580 * and we always must hold the commit_root_sem when doing 1581 * searches on them, the only exception is send where we don't 1582 * want to block transaction commits for a long time, so 1583 * we need to clone the commit root in order to avoid races 1584 * with transaction commits that create a snapshot of one of 1585 * the roots used by a send operation. 1586 */ 1587 if (p->need_commit_sem) { 1588 down_read(&fs_info->commit_root_sem); 1589 b = btrfs_clone_extent_buffer(root->commit_root); 1590 up_read(&fs_info->commit_root_sem); 1591 if (!b) 1592 return ERR_PTR(-ENOMEM); 1593 1594 } else { 1595 b = root->commit_root; 1596 atomic_inc(&b->refs); 1597 } 1598 level = btrfs_header_level(b); 1599 /* 1600 * Ensure that all callers have set skip_locking when 1601 * p->search_commit_root = 1. 1602 */ 1603 ASSERT(p->skip_locking == 1); 1604 1605 goto out; 1606 } 1607 1608 if (p->skip_locking) { 1609 b = btrfs_root_node(root); 1610 level = btrfs_header_level(b); 1611 goto out; 1612 } 1613 1614 /* 1615 * If the level is set to maximum, we can skip trying to get the read 1616 * lock. 1617 */ 1618 if (write_lock_level < BTRFS_MAX_LEVEL) { 1619 /* 1620 * We don't know the level of the root node until we actually 1621 * have it read locked 1622 */ 1623 b = btrfs_read_lock_root_node(root); 1624 level = btrfs_header_level(b); 1625 if (level > write_lock_level) 1626 goto out; 1627 1628 /* Whoops, must trade for write lock */ 1629 btrfs_tree_read_unlock(b); 1630 free_extent_buffer(b); 1631 } 1632 1633 b = btrfs_lock_root_node(root); 1634 root_lock = BTRFS_WRITE_LOCK; 1635 1636 /* The level might have changed, check again */ 1637 level = btrfs_header_level(b); 1638 1639 out: 1640 p->nodes[level] = b; 1641 if (!p->skip_locking) 1642 p->locks[level] = root_lock; 1643 /* 1644 * Callers are responsible for dropping b's references. 1645 */ 1646 return b; 1647 } 1648 1649 1650 /* 1651 * btrfs_search_slot - look for a key in a tree and perform necessary 1652 * modifications to preserve tree invariants. 1653 * 1654 * @trans: Handle of transaction, used when modifying the tree 1655 * @p: Holds all btree nodes along the search path 1656 * @root: The root node of the tree 1657 * @key: The key we are looking for 1658 * @ins_len: Indicates purpose of search: 1659 * >0 for inserts it's size of item inserted (*) 1660 * <0 for deletions 1661 * 0 for plain searches, not modifying the tree 1662 * 1663 * (*) If size of item inserted doesn't include 1664 * sizeof(struct btrfs_item), then p->search_for_extension must 1665 * be set. 1666 * @cow: boolean should CoW operations be performed. Must always be 1 1667 * when modifying the tree. 1668 * 1669 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 1670 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 1671 * 1672 * If @key is found, 0 is returned and you can find the item in the leaf level 1673 * of the path (level 0) 1674 * 1675 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 1676 * points to the slot where it should be inserted 1677 * 1678 * If an error is encountered while searching the tree a negative error number 1679 * is returned 1680 */ 1681 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1682 const struct btrfs_key *key, struct btrfs_path *p, 1683 int ins_len, int cow) 1684 { 1685 struct extent_buffer *b; 1686 int slot; 1687 int ret; 1688 int err; 1689 int level; 1690 int lowest_unlock = 1; 1691 /* everything at write_lock_level or lower must be write locked */ 1692 int write_lock_level = 0; 1693 u8 lowest_level = 0; 1694 int min_write_lock_level; 1695 int prev_cmp; 1696 1697 lowest_level = p->lowest_level; 1698 WARN_ON(lowest_level && ins_len > 0); 1699 WARN_ON(p->nodes[0] != NULL); 1700 BUG_ON(!cow && ins_len); 1701 1702 if (ins_len < 0) { 1703 lowest_unlock = 2; 1704 1705 /* when we are removing items, we might have to go up to level 1706 * two as we update tree pointers Make sure we keep write 1707 * for those levels as well 1708 */ 1709 write_lock_level = 2; 1710 } else if (ins_len > 0) { 1711 /* 1712 * for inserting items, make sure we have a write lock on 1713 * level 1 so we can update keys 1714 */ 1715 write_lock_level = 1; 1716 } 1717 1718 if (!cow) 1719 write_lock_level = -1; 1720 1721 if (cow && (p->keep_locks || p->lowest_level)) 1722 write_lock_level = BTRFS_MAX_LEVEL; 1723 1724 min_write_lock_level = write_lock_level; 1725 1726 again: 1727 prev_cmp = -1; 1728 b = btrfs_search_slot_get_root(root, p, write_lock_level); 1729 if (IS_ERR(b)) { 1730 ret = PTR_ERR(b); 1731 goto done; 1732 } 1733 1734 while (b) { 1735 int dec = 0; 1736 1737 level = btrfs_header_level(b); 1738 1739 if (cow) { 1740 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 1741 1742 /* 1743 * if we don't really need to cow this block 1744 * then we don't want to set the path blocking, 1745 * so we test it here 1746 */ 1747 if (!should_cow_block(trans, root, b)) 1748 goto cow_done; 1749 1750 /* 1751 * must have write locks on this node and the 1752 * parent 1753 */ 1754 if (level > write_lock_level || 1755 (level + 1 > write_lock_level && 1756 level + 1 < BTRFS_MAX_LEVEL && 1757 p->nodes[level + 1])) { 1758 write_lock_level = level + 1; 1759 btrfs_release_path(p); 1760 goto again; 1761 } 1762 1763 if (last_level) 1764 err = btrfs_cow_block(trans, root, b, NULL, 0, 1765 &b, 1766 BTRFS_NESTING_COW); 1767 else 1768 err = btrfs_cow_block(trans, root, b, 1769 p->nodes[level + 1], 1770 p->slots[level + 1], &b, 1771 BTRFS_NESTING_COW); 1772 if (err) { 1773 ret = err; 1774 goto done; 1775 } 1776 } 1777 cow_done: 1778 p->nodes[level] = b; 1779 /* 1780 * Leave path with blocking locks to avoid massive 1781 * lock context switch, this is made on purpose. 1782 */ 1783 1784 /* 1785 * we have a lock on b and as long as we aren't changing 1786 * the tree, there is no way to for the items in b to change. 1787 * It is safe to drop the lock on our parent before we 1788 * go through the expensive btree search on b. 1789 * 1790 * If we're inserting or deleting (ins_len != 0), then we might 1791 * be changing slot zero, which may require changing the parent. 1792 * So, we can't drop the lock until after we know which slot 1793 * we're operating on. 1794 */ 1795 if (!ins_len && !p->keep_locks) { 1796 int u = level + 1; 1797 1798 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 1799 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 1800 p->locks[u] = 0; 1801 } 1802 } 1803 1804 /* 1805 * If btrfs_bin_search returns an exact match (prev_cmp == 0) 1806 * we can safely assume the target key will always be in slot 0 1807 * on lower levels due to the invariants BTRFS' btree provides, 1808 * namely that a btrfs_key_ptr entry always points to the 1809 * lowest key in the child node, thus we can skip searching 1810 * lower levels 1811 */ 1812 if (prev_cmp == 0) { 1813 slot = 0; 1814 ret = 0; 1815 } else { 1816 ret = btrfs_bin_search(b, key, &slot); 1817 prev_cmp = ret; 1818 if (ret < 0) 1819 goto done; 1820 } 1821 1822 if (level == 0) { 1823 p->slots[level] = slot; 1824 /* 1825 * Item key already exists. In this case, if we are 1826 * allowed to insert the item (for example, in dir_item 1827 * case, item key collision is allowed), it will be 1828 * merged with the original item. Only the item size 1829 * grows, no new btrfs item will be added. If 1830 * search_for_extension is not set, ins_len already 1831 * accounts the size btrfs_item, deduct it here so leaf 1832 * space check will be correct. 1833 */ 1834 if (ret == 0 && ins_len > 0 && !p->search_for_extension) { 1835 ASSERT(ins_len >= sizeof(struct btrfs_item)); 1836 ins_len -= sizeof(struct btrfs_item); 1837 } 1838 if (ins_len > 0 && 1839 btrfs_leaf_free_space(b) < ins_len) { 1840 if (write_lock_level < 1) { 1841 write_lock_level = 1; 1842 btrfs_release_path(p); 1843 goto again; 1844 } 1845 1846 err = split_leaf(trans, root, key, 1847 p, ins_len, ret == 0); 1848 1849 BUG_ON(err > 0); 1850 if (err) { 1851 ret = err; 1852 goto done; 1853 } 1854 } 1855 if (!p->search_for_split) 1856 unlock_up(p, level, lowest_unlock, 1857 min_write_lock_level, NULL); 1858 goto done; 1859 } 1860 if (ret && slot > 0) { 1861 dec = 1; 1862 slot--; 1863 } 1864 p->slots[level] = slot; 1865 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 1866 &write_lock_level); 1867 if (err == -EAGAIN) 1868 goto again; 1869 if (err) { 1870 ret = err; 1871 goto done; 1872 } 1873 b = p->nodes[level]; 1874 slot = p->slots[level]; 1875 1876 /* 1877 * Slot 0 is special, if we change the key we have to update 1878 * the parent pointer which means we must have a write lock on 1879 * the parent 1880 */ 1881 if (slot == 0 && ins_len && write_lock_level < level + 1) { 1882 write_lock_level = level + 1; 1883 btrfs_release_path(p); 1884 goto again; 1885 } 1886 1887 unlock_up(p, level, lowest_unlock, min_write_lock_level, 1888 &write_lock_level); 1889 1890 if (level == lowest_level) { 1891 if (dec) 1892 p->slots[level]++; 1893 goto done; 1894 } 1895 1896 err = read_block_for_search(root, p, &b, level, slot, key); 1897 if (err == -EAGAIN) 1898 goto again; 1899 if (err) { 1900 ret = err; 1901 goto done; 1902 } 1903 1904 if (!p->skip_locking) { 1905 level = btrfs_header_level(b); 1906 if (level <= write_lock_level) { 1907 btrfs_tree_lock(b); 1908 p->locks[level] = BTRFS_WRITE_LOCK; 1909 } else { 1910 btrfs_tree_read_lock(b); 1911 p->locks[level] = BTRFS_READ_LOCK; 1912 } 1913 p->nodes[level] = b; 1914 } 1915 } 1916 ret = 1; 1917 done: 1918 if (ret < 0 && !p->skip_release_on_error) 1919 btrfs_release_path(p); 1920 return ret; 1921 } 1922 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 1923 1924 /* 1925 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 1926 * current state of the tree together with the operations recorded in the tree 1927 * modification log to search for the key in a previous version of this tree, as 1928 * denoted by the time_seq parameter. 1929 * 1930 * Naturally, there is no support for insert, delete or cow operations. 1931 * 1932 * The resulting path and return value will be set up as if we called 1933 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 1934 */ 1935 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 1936 struct btrfs_path *p, u64 time_seq) 1937 { 1938 struct btrfs_fs_info *fs_info = root->fs_info; 1939 struct extent_buffer *b; 1940 int slot; 1941 int ret; 1942 int err; 1943 int level; 1944 int lowest_unlock = 1; 1945 u8 lowest_level = 0; 1946 1947 lowest_level = p->lowest_level; 1948 WARN_ON(p->nodes[0] != NULL); 1949 1950 if (p->search_commit_root) { 1951 BUG_ON(time_seq); 1952 return btrfs_search_slot(NULL, root, key, p, 0, 0); 1953 } 1954 1955 again: 1956 b = btrfs_get_old_root(root, time_seq); 1957 if (!b) { 1958 ret = -EIO; 1959 goto done; 1960 } 1961 level = btrfs_header_level(b); 1962 p->locks[level] = BTRFS_READ_LOCK; 1963 1964 while (b) { 1965 int dec = 0; 1966 1967 level = btrfs_header_level(b); 1968 p->nodes[level] = b; 1969 1970 /* 1971 * we have a lock on b and as long as we aren't changing 1972 * the tree, there is no way to for the items in b to change. 1973 * It is safe to drop the lock on our parent before we 1974 * go through the expensive btree search on b. 1975 */ 1976 btrfs_unlock_up_safe(p, level + 1); 1977 1978 ret = btrfs_bin_search(b, key, &slot); 1979 if (ret < 0) 1980 goto done; 1981 1982 if (level == 0) { 1983 p->slots[level] = slot; 1984 unlock_up(p, level, lowest_unlock, 0, NULL); 1985 goto done; 1986 } 1987 1988 if (ret && slot > 0) { 1989 dec = 1; 1990 slot--; 1991 } 1992 p->slots[level] = slot; 1993 unlock_up(p, level, lowest_unlock, 0, NULL); 1994 1995 if (level == lowest_level) { 1996 if (dec) 1997 p->slots[level]++; 1998 goto done; 1999 } 2000 2001 err = read_block_for_search(root, p, &b, level, slot, key); 2002 if (err == -EAGAIN) 2003 goto again; 2004 if (err) { 2005 ret = err; 2006 goto done; 2007 } 2008 2009 level = btrfs_header_level(b); 2010 btrfs_tree_read_lock(b); 2011 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); 2012 if (!b) { 2013 ret = -ENOMEM; 2014 goto done; 2015 } 2016 p->locks[level] = BTRFS_READ_LOCK; 2017 p->nodes[level] = b; 2018 } 2019 ret = 1; 2020 done: 2021 if (ret < 0) 2022 btrfs_release_path(p); 2023 2024 return ret; 2025 } 2026 2027 /* 2028 * helper to use instead of search slot if no exact match is needed but 2029 * instead the next or previous item should be returned. 2030 * When find_higher is true, the next higher item is returned, the next lower 2031 * otherwise. 2032 * When return_any and find_higher are both true, and no higher item is found, 2033 * return the next lower instead. 2034 * When return_any is true and find_higher is false, and no lower item is found, 2035 * return the next higher instead. 2036 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2037 * < 0 on error 2038 */ 2039 int btrfs_search_slot_for_read(struct btrfs_root *root, 2040 const struct btrfs_key *key, 2041 struct btrfs_path *p, int find_higher, 2042 int return_any) 2043 { 2044 int ret; 2045 struct extent_buffer *leaf; 2046 2047 again: 2048 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2049 if (ret <= 0) 2050 return ret; 2051 /* 2052 * a return value of 1 means the path is at the position where the 2053 * item should be inserted. Normally this is the next bigger item, 2054 * but in case the previous item is the last in a leaf, path points 2055 * to the first free slot in the previous leaf, i.e. at an invalid 2056 * item. 2057 */ 2058 leaf = p->nodes[0]; 2059 2060 if (find_higher) { 2061 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2062 ret = btrfs_next_leaf(root, p); 2063 if (ret <= 0) 2064 return ret; 2065 if (!return_any) 2066 return 1; 2067 /* 2068 * no higher item found, return the next 2069 * lower instead 2070 */ 2071 return_any = 0; 2072 find_higher = 0; 2073 btrfs_release_path(p); 2074 goto again; 2075 } 2076 } else { 2077 if (p->slots[0] == 0) { 2078 ret = btrfs_prev_leaf(root, p); 2079 if (ret < 0) 2080 return ret; 2081 if (!ret) { 2082 leaf = p->nodes[0]; 2083 if (p->slots[0] == btrfs_header_nritems(leaf)) 2084 p->slots[0]--; 2085 return 0; 2086 } 2087 if (!return_any) 2088 return 1; 2089 /* 2090 * no lower item found, return the next 2091 * higher instead 2092 */ 2093 return_any = 0; 2094 find_higher = 1; 2095 btrfs_release_path(p); 2096 goto again; 2097 } else { 2098 --p->slots[0]; 2099 } 2100 } 2101 return 0; 2102 } 2103 2104 /* 2105 * adjust the pointers going up the tree, starting at level 2106 * making sure the right key of each node is points to 'key'. 2107 * This is used after shifting pointers to the left, so it stops 2108 * fixing up pointers when a given leaf/node is not in slot 0 of the 2109 * higher levels 2110 * 2111 */ 2112 static void fixup_low_keys(struct btrfs_path *path, 2113 struct btrfs_disk_key *key, int level) 2114 { 2115 int i; 2116 struct extent_buffer *t; 2117 int ret; 2118 2119 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2120 int tslot = path->slots[i]; 2121 2122 if (!path->nodes[i]) 2123 break; 2124 t = path->nodes[i]; 2125 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2126 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC); 2127 BUG_ON(ret < 0); 2128 btrfs_set_node_key(t, key, tslot); 2129 btrfs_mark_buffer_dirty(path->nodes[i]); 2130 if (tslot != 0) 2131 break; 2132 } 2133 } 2134 2135 /* 2136 * update item key. 2137 * 2138 * This function isn't completely safe. It's the caller's responsibility 2139 * that the new key won't break the order 2140 */ 2141 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2142 struct btrfs_path *path, 2143 const struct btrfs_key *new_key) 2144 { 2145 struct btrfs_disk_key disk_key; 2146 struct extent_buffer *eb; 2147 int slot; 2148 2149 eb = path->nodes[0]; 2150 slot = path->slots[0]; 2151 if (slot > 0) { 2152 btrfs_item_key(eb, &disk_key, slot - 1); 2153 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 2154 btrfs_crit(fs_info, 2155 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2156 slot, btrfs_disk_key_objectid(&disk_key), 2157 btrfs_disk_key_type(&disk_key), 2158 btrfs_disk_key_offset(&disk_key), 2159 new_key->objectid, new_key->type, 2160 new_key->offset); 2161 btrfs_print_leaf(eb); 2162 BUG(); 2163 } 2164 } 2165 if (slot < btrfs_header_nritems(eb) - 1) { 2166 btrfs_item_key(eb, &disk_key, slot + 1); 2167 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 2168 btrfs_crit(fs_info, 2169 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2170 slot, btrfs_disk_key_objectid(&disk_key), 2171 btrfs_disk_key_type(&disk_key), 2172 btrfs_disk_key_offset(&disk_key), 2173 new_key->objectid, new_key->type, 2174 new_key->offset); 2175 btrfs_print_leaf(eb); 2176 BUG(); 2177 } 2178 } 2179 2180 btrfs_cpu_key_to_disk(&disk_key, new_key); 2181 btrfs_set_item_key(eb, &disk_key, slot); 2182 btrfs_mark_buffer_dirty(eb); 2183 if (slot == 0) 2184 fixup_low_keys(path, &disk_key, 1); 2185 } 2186 2187 /* 2188 * Check key order of two sibling extent buffers. 2189 * 2190 * Return true if something is wrong. 2191 * Return false if everything is fine. 2192 * 2193 * Tree-checker only works inside one tree block, thus the following 2194 * corruption can not be detected by tree-checker: 2195 * 2196 * Leaf @left | Leaf @right 2197 * -------------------------------------------------------------- 2198 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2199 * 2200 * Key f6 in leaf @left itself is valid, but not valid when the next 2201 * key in leaf @right is 7. 2202 * This can only be checked at tree block merge time. 2203 * And since tree checker has ensured all key order in each tree block 2204 * is correct, we only need to bother the last key of @left and the first 2205 * key of @right. 2206 */ 2207 static bool check_sibling_keys(struct extent_buffer *left, 2208 struct extent_buffer *right) 2209 { 2210 struct btrfs_key left_last; 2211 struct btrfs_key right_first; 2212 int level = btrfs_header_level(left); 2213 int nr_left = btrfs_header_nritems(left); 2214 int nr_right = btrfs_header_nritems(right); 2215 2216 /* No key to check in one of the tree blocks */ 2217 if (!nr_left || !nr_right) 2218 return false; 2219 2220 if (level) { 2221 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2222 btrfs_node_key_to_cpu(right, &right_first, 0); 2223 } else { 2224 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2225 btrfs_item_key_to_cpu(right, &right_first, 0); 2226 } 2227 2228 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 2229 btrfs_crit(left->fs_info, 2230 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2231 left_last.objectid, left_last.type, 2232 left_last.offset, right_first.objectid, 2233 right_first.type, right_first.offset); 2234 return true; 2235 } 2236 return false; 2237 } 2238 2239 /* 2240 * try to push data from one node into the next node left in the 2241 * tree. 2242 * 2243 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2244 * error, and > 0 if there was no room in the left hand block. 2245 */ 2246 static int push_node_left(struct btrfs_trans_handle *trans, 2247 struct extent_buffer *dst, 2248 struct extent_buffer *src, int empty) 2249 { 2250 struct btrfs_fs_info *fs_info = trans->fs_info; 2251 int push_items = 0; 2252 int src_nritems; 2253 int dst_nritems; 2254 int ret = 0; 2255 2256 src_nritems = btrfs_header_nritems(src); 2257 dst_nritems = btrfs_header_nritems(dst); 2258 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2259 WARN_ON(btrfs_header_generation(src) != trans->transid); 2260 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2261 2262 if (!empty && src_nritems <= 8) 2263 return 1; 2264 2265 if (push_items <= 0) 2266 return 1; 2267 2268 if (empty) { 2269 push_items = min(src_nritems, push_items); 2270 if (push_items < src_nritems) { 2271 /* leave at least 8 pointers in the node if 2272 * we aren't going to empty it 2273 */ 2274 if (src_nritems - push_items < 8) { 2275 if (push_items <= 8) 2276 return 1; 2277 push_items -= 8; 2278 } 2279 } 2280 } else 2281 push_items = min(src_nritems - 8, push_items); 2282 2283 /* dst is the left eb, src is the middle eb */ 2284 if (check_sibling_keys(dst, src)) { 2285 ret = -EUCLEAN; 2286 btrfs_abort_transaction(trans, ret); 2287 return ret; 2288 } 2289 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2290 if (ret) { 2291 btrfs_abort_transaction(trans, ret); 2292 return ret; 2293 } 2294 copy_extent_buffer(dst, src, 2295 btrfs_node_key_ptr_offset(dst_nritems), 2296 btrfs_node_key_ptr_offset(0), 2297 push_items * sizeof(struct btrfs_key_ptr)); 2298 2299 if (push_items < src_nritems) { 2300 /* 2301 * Don't call btrfs_tree_mod_log_insert_move() here, key removal 2302 * was already fully logged by btrfs_tree_mod_log_eb_copy() above. 2303 */ 2304 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2305 btrfs_node_key_ptr_offset(push_items), 2306 (src_nritems - push_items) * 2307 sizeof(struct btrfs_key_ptr)); 2308 } 2309 btrfs_set_header_nritems(src, src_nritems - push_items); 2310 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2311 btrfs_mark_buffer_dirty(src); 2312 btrfs_mark_buffer_dirty(dst); 2313 2314 return ret; 2315 } 2316 2317 /* 2318 * try to push data from one node into the next node right in the 2319 * tree. 2320 * 2321 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2322 * error, and > 0 if there was no room in the right hand block. 2323 * 2324 * this will only push up to 1/2 the contents of the left node over 2325 */ 2326 static int balance_node_right(struct btrfs_trans_handle *trans, 2327 struct extent_buffer *dst, 2328 struct extent_buffer *src) 2329 { 2330 struct btrfs_fs_info *fs_info = trans->fs_info; 2331 int push_items = 0; 2332 int max_push; 2333 int src_nritems; 2334 int dst_nritems; 2335 int ret = 0; 2336 2337 WARN_ON(btrfs_header_generation(src) != trans->transid); 2338 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2339 2340 src_nritems = btrfs_header_nritems(src); 2341 dst_nritems = btrfs_header_nritems(dst); 2342 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2343 if (push_items <= 0) 2344 return 1; 2345 2346 if (src_nritems < 4) 2347 return 1; 2348 2349 max_push = src_nritems / 2 + 1; 2350 /* don't try to empty the node */ 2351 if (max_push >= src_nritems) 2352 return 1; 2353 2354 if (max_push < push_items) 2355 push_items = max_push; 2356 2357 /* dst is the right eb, src is the middle eb */ 2358 if (check_sibling_keys(src, dst)) { 2359 ret = -EUCLEAN; 2360 btrfs_abort_transaction(trans, ret); 2361 return ret; 2362 } 2363 ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 2364 BUG_ON(ret < 0); 2365 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2366 btrfs_node_key_ptr_offset(0), 2367 (dst_nritems) * 2368 sizeof(struct btrfs_key_ptr)); 2369 2370 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2371 push_items); 2372 if (ret) { 2373 btrfs_abort_transaction(trans, ret); 2374 return ret; 2375 } 2376 copy_extent_buffer(dst, src, 2377 btrfs_node_key_ptr_offset(0), 2378 btrfs_node_key_ptr_offset(src_nritems - push_items), 2379 push_items * sizeof(struct btrfs_key_ptr)); 2380 2381 btrfs_set_header_nritems(src, src_nritems - push_items); 2382 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2383 2384 btrfs_mark_buffer_dirty(src); 2385 btrfs_mark_buffer_dirty(dst); 2386 2387 return ret; 2388 } 2389 2390 /* 2391 * helper function to insert a new root level in the tree. 2392 * A new node is allocated, and a single item is inserted to 2393 * point to the existing root 2394 * 2395 * returns zero on success or < 0 on failure. 2396 */ 2397 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2398 struct btrfs_root *root, 2399 struct btrfs_path *path, int level) 2400 { 2401 struct btrfs_fs_info *fs_info = root->fs_info; 2402 u64 lower_gen; 2403 struct extent_buffer *lower; 2404 struct extent_buffer *c; 2405 struct extent_buffer *old; 2406 struct btrfs_disk_key lower_key; 2407 int ret; 2408 2409 BUG_ON(path->nodes[level]); 2410 BUG_ON(path->nodes[level-1] != root->node); 2411 2412 lower = path->nodes[level-1]; 2413 if (level == 1) 2414 btrfs_item_key(lower, &lower_key, 0); 2415 else 2416 btrfs_node_key(lower, &lower_key, 0); 2417 2418 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2419 &lower_key, level, root->node->start, 0, 2420 BTRFS_NESTING_NEW_ROOT); 2421 if (IS_ERR(c)) 2422 return PTR_ERR(c); 2423 2424 root_add_used(root, fs_info->nodesize); 2425 2426 btrfs_set_header_nritems(c, 1); 2427 btrfs_set_node_key(c, &lower_key, 0); 2428 btrfs_set_node_blockptr(c, 0, lower->start); 2429 lower_gen = btrfs_header_generation(lower); 2430 WARN_ON(lower_gen != trans->transid); 2431 2432 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2433 2434 btrfs_mark_buffer_dirty(c); 2435 2436 old = root->node; 2437 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 2438 BUG_ON(ret < 0); 2439 rcu_assign_pointer(root->node, c); 2440 2441 /* the super has an extra ref to root->node */ 2442 free_extent_buffer(old); 2443 2444 add_root_to_dirty_list(root); 2445 atomic_inc(&c->refs); 2446 path->nodes[level] = c; 2447 path->locks[level] = BTRFS_WRITE_LOCK; 2448 path->slots[level] = 0; 2449 return 0; 2450 } 2451 2452 /* 2453 * worker function to insert a single pointer in a node. 2454 * the node should have enough room for the pointer already 2455 * 2456 * slot and level indicate where you want the key to go, and 2457 * blocknr is the block the key points to. 2458 */ 2459 static void insert_ptr(struct btrfs_trans_handle *trans, 2460 struct btrfs_path *path, 2461 struct btrfs_disk_key *key, u64 bytenr, 2462 int slot, int level) 2463 { 2464 struct extent_buffer *lower; 2465 int nritems; 2466 int ret; 2467 2468 BUG_ON(!path->nodes[level]); 2469 btrfs_assert_tree_locked(path->nodes[level]); 2470 lower = path->nodes[level]; 2471 nritems = btrfs_header_nritems(lower); 2472 BUG_ON(slot > nritems); 2473 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 2474 if (slot != nritems) { 2475 if (level) { 2476 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 2477 slot, nritems - slot); 2478 BUG_ON(ret < 0); 2479 } 2480 memmove_extent_buffer(lower, 2481 btrfs_node_key_ptr_offset(slot + 1), 2482 btrfs_node_key_ptr_offset(slot), 2483 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2484 } 2485 if (level) { 2486 ret = btrfs_tree_mod_log_insert_key(lower, slot, 2487 BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS); 2488 BUG_ON(ret < 0); 2489 } 2490 btrfs_set_node_key(lower, key, slot); 2491 btrfs_set_node_blockptr(lower, slot, bytenr); 2492 WARN_ON(trans->transid == 0); 2493 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2494 btrfs_set_header_nritems(lower, nritems + 1); 2495 btrfs_mark_buffer_dirty(lower); 2496 } 2497 2498 /* 2499 * split the node at the specified level in path in two. 2500 * The path is corrected to point to the appropriate node after the split 2501 * 2502 * Before splitting this tries to make some room in the node by pushing 2503 * left and right, if either one works, it returns right away. 2504 * 2505 * returns 0 on success and < 0 on failure 2506 */ 2507 static noinline int split_node(struct btrfs_trans_handle *trans, 2508 struct btrfs_root *root, 2509 struct btrfs_path *path, int level) 2510 { 2511 struct btrfs_fs_info *fs_info = root->fs_info; 2512 struct extent_buffer *c; 2513 struct extent_buffer *split; 2514 struct btrfs_disk_key disk_key; 2515 int mid; 2516 int ret; 2517 u32 c_nritems; 2518 2519 c = path->nodes[level]; 2520 WARN_ON(btrfs_header_generation(c) != trans->transid); 2521 if (c == root->node) { 2522 /* 2523 * trying to split the root, lets make a new one 2524 * 2525 * tree mod log: We don't log_removal old root in 2526 * insert_new_root, because that root buffer will be kept as a 2527 * normal node. We are going to log removal of half of the 2528 * elements below with btrfs_tree_mod_log_eb_copy(). We're 2529 * holding a tree lock on the buffer, which is why we cannot 2530 * race with other tree_mod_log users. 2531 */ 2532 ret = insert_new_root(trans, root, path, level + 1); 2533 if (ret) 2534 return ret; 2535 } else { 2536 ret = push_nodes_for_insert(trans, root, path, level); 2537 c = path->nodes[level]; 2538 if (!ret && btrfs_header_nritems(c) < 2539 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 2540 return 0; 2541 if (ret < 0) 2542 return ret; 2543 } 2544 2545 c_nritems = btrfs_header_nritems(c); 2546 mid = (c_nritems + 1) / 2; 2547 btrfs_node_key(c, &disk_key, mid); 2548 2549 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 2550 &disk_key, level, c->start, 0, 2551 BTRFS_NESTING_SPLIT); 2552 if (IS_ERR(split)) 2553 return PTR_ERR(split); 2554 2555 root_add_used(root, fs_info->nodesize); 2556 ASSERT(btrfs_header_level(c) == level); 2557 2558 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 2559 if (ret) { 2560 btrfs_abort_transaction(trans, ret); 2561 return ret; 2562 } 2563 copy_extent_buffer(split, c, 2564 btrfs_node_key_ptr_offset(0), 2565 btrfs_node_key_ptr_offset(mid), 2566 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2567 btrfs_set_header_nritems(split, c_nritems - mid); 2568 btrfs_set_header_nritems(c, mid); 2569 2570 btrfs_mark_buffer_dirty(c); 2571 btrfs_mark_buffer_dirty(split); 2572 2573 insert_ptr(trans, path, &disk_key, split->start, 2574 path->slots[level + 1] + 1, level + 1); 2575 2576 if (path->slots[level] >= mid) { 2577 path->slots[level] -= mid; 2578 btrfs_tree_unlock(c); 2579 free_extent_buffer(c); 2580 path->nodes[level] = split; 2581 path->slots[level + 1] += 1; 2582 } else { 2583 btrfs_tree_unlock(split); 2584 free_extent_buffer(split); 2585 } 2586 return 0; 2587 } 2588 2589 /* 2590 * how many bytes are required to store the items in a leaf. start 2591 * and nr indicate which items in the leaf to check. This totals up the 2592 * space used both by the item structs and the item data 2593 */ 2594 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2595 { 2596 struct btrfs_item *start_item; 2597 struct btrfs_item *end_item; 2598 int data_len; 2599 int nritems = btrfs_header_nritems(l); 2600 int end = min(nritems, start + nr) - 1; 2601 2602 if (!nr) 2603 return 0; 2604 start_item = btrfs_item_nr(start); 2605 end_item = btrfs_item_nr(end); 2606 data_len = btrfs_item_offset(l, start_item) + 2607 btrfs_item_size(l, start_item); 2608 data_len = data_len - btrfs_item_offset(l, end_item); 2609 data_len += sizeof(struct btrfs_item) * nr; 2610 WARN_ON(data_len < 0); 2611 return data_len; 2612 } 2613 2614 /* 2615 * The space between the end of the leaf items and 2616 * the start of the leaf data. IOW, how much room 2617 * the leaf has left for both items and data 2618 */ 2619 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 2620 { 2621 struct btrfs_fs_info *fs_info = leaf->fs_info; 2622 int nritems = btrfs_header_nritems(leaf); 2623 int ret; 2624 2625 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 2626 if (ret < 0) { 2627 btrfs_crit(fs_info, 2628 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 2629 ret, 2630 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 2631 leaf_space_used(leaf, 0, nritems), nritems); 2632 } 2633 return ret; 2634 } 2635 2636 /* 2637 * min slot controls the lowest index we're willing to push to the 2638 * right. We'll push up to and including min_slot, but no lower 2639 */ 2640 static noinline int __push_leaf_right(struct btrfs_path *path, 2641 int data_size, int empty, 2642 struct extent_buffer *right, 2643 int free_space, u32 left_nritems, 2644 u32 min_slot) 2645 { 2646 struct btrfs_fs_info *fs_info = right->fs_info; 2647 struct extent_buffer *left = path->nodes[0]; 2648 struct extent_buffer *upper = path->nodes[1]; 2649 struct btrfs_map_token token; 2650 struct btrfs_disk_key disk_key; 2651 int slot; 2652 u32 i; 2653 int push_space = 0; 2654 int push_items = 0; 2655 struct btrfs_item *item; 2656 u32 nr; 2657 u32 right_nritems; 2658 u32 data_end; 2659 u32 this_item_size; 2660 2661 if (empty) 2662 nr = 0; 2663 else 2664 nr = max_t(u32, 1, min_slot); 2665 2666 if (path->slots[0] >= left_nritems) 2667 push_space += data_size; 2668 2669 slot = path->slots[1]; 2670 i = left_nritems - 1; 2671 while (i >= nr) { 2672 item = btrfs_item_nr(i); 2673 2674 if (!empty && push_items > 0) { 2675 if (path->slots[0] > i) 2676 break; 2677 if (path->slots[0] == i) { 2678 int space = btrfs_leaf_free_space(left); 2679 2680 if (space + push_space * 2 > free_space) 2681 break; 2682 } 2683 } 2684 2685 if (path->slots[0] == i) 2686 push_space += data_size; 2687 2688 this_item_size = btrfs_item_size(left, item); 2689 if (this_item_size + sizeof(*item) + push_space > free_space) 2690 break; 2691 2692 push_items++; 2693 push_space += this_item_size + sizeof(*item); 2694 if (i == 0) 2695 break; 2696 i--; 2697 } 2698 2699 if (push_items == 0) 2700 goto out_unlock; 2701 2702 WARN_ON(!empty && push_items == left_nritems); 2703 2704 /* push left to right */ 2705 right_nritems = btrfs_header_nritems(right); 2706 2707 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2708 push_space -= leaf_data_end(left); 2709 2710 /* make room in the right data area */ 2711 data_end = leaf_data_end(right); 2712 memmove_extent_buffer(right, 2713 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 2714 BTRFS_LEAF_DATA_OFFSET + data_end, 2715 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 2716 2717 /* copy from the left data area */ 2718 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 2719 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 2720 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 2721 push_space); 2722 2723 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2724 btrfs_item_nr_offset(0), 2725 right_nritems * sizeof(struct btrfs_item)); 2726 2727 /* copy the items from left to right */ 2728 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2729 btrfs_item_nr_offset(left_nritems - push_items), 2730 push_items * sizeof(struct btrfs_item)); 2731 2732 /* update the item pointers */ 2733 btrfs_init_map_token(&token, right); 2734 right_nritems += push_items; 2735 btrfs_set_header_nritems(right, right_nritems); 2736 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 2737 for (i = 0; i < right_nritems; i++) { 2738 item = btrfs_item_nr(i); 2739 push_space -= btrfs_token_item_size(&token, item); 2740 btrfs_set_token_item_offset(&token, item, push_space); 2741 } 2742 2743 left_nritems -= push_items; 2744 btrfs_set_header_nritems(left, left_nritems); 2745 2746 if (left_nritems) 2747 btrfs_mark_buffer_dirty(left); 2748 else 2749 btrfs_clean_tree_block(left); 2750 2751 btrfs_mark_buffer_dirty(right); 2752 2753 btrfs_item_key(right, &disk_key, 0); 2754 btrfs_set_node_key(upper, &disk_key, slot + 1); 2755 btrfs_mark_buffer_dirty(upper); 2756 2757 /* then fixup the leaf pointer in the path */ 2758 if (path->slots[0] >= left_nritems) { 2759 path->slots[0] -= left_nritems; 2760 if (btrfs_header_nritems(path->nodes[0]) == 0) 2761 btrfs_clean_tree_block(path->nodes[0]); 2762 btrfs_tree_unlock(path->nodes[0]); 2763 free_extent_buffer(path->nodes[0]); 2764 path->nodes[0] = right; 2765 path->slots[1] += 1; 2766 } else { 2767 btrfs_tree_unlock(right); 2768 free_extent_buffer(right); 2769 } 2770 return 0; 2771 2772 out_unlock: 2773 btrfs_tree_unlock(right); 2774 free_extent_buffer(right); 2775 return 1; 2776 } 2777 2778 /* 2779 * push some data in the path leaf to the right, trying to free up at 2780 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2781 * 2782 * returns 1 if the push failed because the other node didn't have enough 2783 * room, 0 if everything worked out and < 0 if there were major errors. 2784 * 2785 * this will push starting from min_slot to the end of the leaf. It won't 2786 * push any slot lower than min_slot 2787 */ 2788 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2789 *root, struct btrfs_path *path, 2790 int min_data_size, int data_size, 2791 int empty, u32 min_slot) 2792 { 2793 struct extent_buffer *left = path->nodes[0]; 2794 struct extent_buffer *right; 2795 struct extent_buffer *upper; 2796 int slot; 2797 int free_space; 2798 u32 left_nritems; 2799 int ret; 2800 2801 if (!path->nodes[1]) 2802 return 1; 2803 2804 slot = path->slots[1]; 2805 upper = path->nodes[1]; 2806 if (slot >= btrfs_header_nritems(upper) - 1) 2807 return 1; 2808 2809 btrfs_assert_tree_locked(path->nodes[1]); 2810 2811 right = btrfs_read_node_slot(upper, slot + 1); 2812 /* 2813 * slot + 1 is not valid or we fail to read the right node, 2814 * no big deal, just return. 2815 */ 2816 if (IS_ERR(right)) 2817 return 1; 2818 2819 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 2820 2821 free_space = btrfs_leaf_free_space(right); 2822 if (free_space < data_size) 2823 goto out_unlock; 2824 2825 /* cow and double check */ 2826 ret = btrfs_cow_block(trans, root, right, upper, 2827 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 2828 if (ret) 2829 goto out_unlock; 2830 2831 free_space = btrfs_leaf_free_space(right); 2832 if (free_space < data_size) 2833 goto out_unlock; 2834 2835 left_nritems = btrfs_header_nritems(left); 2836 if (left_nritems == 0) 2837 goto out_unlock; 2838 2839 if (check_sibling_keys(left, right)) { 2840 ret = -EUCLEAN; 2841 btrfs_tree_unlock(right); 2842 free_extent_buffer(right); 2843 return ret; 2844 } 2845 if (path->slots[0] == left_nritems && !empty) { 2846 /* Key greater than all keys in the leaf, right neighbor has 2847 * enough room for it and we're not emptying our leaf to delete 2848 * it, therefore use right neighbor to insert the new item and 2849 * no need to touch/dirty our left leaf. */ 2850 btrfs_tree_unlock(left); 2851 free_extent_buffer(left); 2852 path->nodes[0] = right; 2853 path->slots[0] = 0; 2854 path->slots[1]++; 2855 return 0; 2856 } 2857 2858 return __push_leaf_right(path, min_data_size, empty, 2859 right, free_space, left_nritems, min_slot); 2860 out_unlock: 2861 btrfs_tree_unlock(right); 2862 free_extent_buffer(right); 2863 return 1; 2864 } 2865 2866 /* 2867 * push some data in the path leaf to the left, trying to free up at 2868 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2869 * 2870 * max_slot can put a limit on how far into the leaf we'll push items. The 2871 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 2872 * items 2873 */ 2874 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 2875 int empty, struct extent_buffer *left, 2876 int free_space, u32 right_nritems, 2877 u32 max_slot) 2878 { 2879 struct btrfs_fs_info *fs_info = left->fs_info; 2880 struct btrfs_disk_key disk_key; 2881 struct extent_buffer *right = path->nodes[0]; 2882 int i; 2883 int push_space = 0; 2884 int push_items = 0; 2885 struct btrfs_item *item; 2886 u32 old_left_nritems; 2887 u32 nr; 2888 int ret = 0; 2889 u32 this_item_size; 2890 u32 old_left_item_size; 2891 struct btrfs_map_token token; 2892 2893 if (empty) 2894 nr = min(right_nritems, max_slot); 2895 else 2896 nr = min(right_nritems - 1, max_slot); 2897 2898 for (i = 0; i < nr; i++) { 2899 item = btrfs_item_nr(i); 2900 2901 if (!empty && push_items > 0) { 2902 if (path->slots[0] < i) 2903 break; 2904 if (path->slots[0] == i) { 2905 int space = btrfs_leaf_free_space(right); 2906 2907 if (space + push_space * 2 > free_space) 2908 break; 2909 } 2910 } 2911 2912 if (path->slots[0] == i) 2913 push_space += data_size; 2914 2915 this_item_size = btrfs_item_size(right, item); 2916 if (this_item_size + sizeof(*item) + push_space > free_space) 2917 break; 2918 2919 push_items++; 2920 push_space += this_item_size + sizeof(*item); 2921 } 2922 2923 if (push_items == 0) { 2924 ret = 1; 2925 goto out; 2926 } 2927 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 2928 2929 /* push data from right to left */ 2930 copy_extent_buffer(left, right, 2931 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2932 btrfs_item_nr_offset(0), 2933 push_items * sizeof(struct btrfs_item)); 2934 2935 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 2936 btrfs_item_offset_nr(right, push_items - 1); 2937 2938 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 2939 leaf_data_end(left) - push_space, 2940 BTRFS_LEAF_DATA_OFFSET + 2941 btrfs_item_offset_nr(right, push_items - 1), 2942 push_space); 2943 old_left_nritems = btrfs_header_nritems(left); 2944 BUG_ON(old_left_nritems <= 0); 2945 2946 btrfs_init_map_token(&token, left); 2947 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2948 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2949 u32 ioff; 2950 2951 item = btrfs_item_nr(i); 2952 2953 ioff = btrfs_token_item_offset(&token, item); 2954 btrfs_set_token_item_offset(&token, item, 2955 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 2956 } 2957 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2958 2959 /* fixup right node */ 2960 if (push_items > right_nritems) 2961 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 2962 right_nritems); 2963 2964 if (push_items < right_nritems) { 2965 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2966 leaf_data_end(right); 2967 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 2968 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 2969 BTRFS_LEAF_DATA_OFFSET + 2970 leaf_data_end(right), push_space); 2971 2972 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2973 btrfs_item_nr_offset(push_items), 2974 (btrfs_header_nritems(right) - push_items) * 2975 sizeof(struct btrfs_item)); 2976 } 2977 2978 btrfs_init_map_token(&token, right); 2979 right_nritems -= push_items; 2980 btrfs_set_header_nritems(right, right_nritems); 2981 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 2982 for (i = 0; i < right_nritems; i++) { 2983 item = btrfs_item_nr(i); 2984 2985 push_space = push_space - btrfs_token_item_size(&token, item); 2986 btrfs_set_token_item_offset(&token, item, push_space); 2987 } 2988 2989 btrfs_mark_buffer_dirty(left); 2990 if (right_nritems) 2991 btrfs_mark_buffer_dirty(right); 2992 else 2993 btrfs_clean_tree_block(right); 2994 2995 btrfs_item_key(right, &disk_key, 0); 2996 fixup_low_keys(path, &disk_key, 1); 2997 2998 /* then fixup the leaf pointer in the path */ 2999 if (path->slots[0] < push_items) { 3000 path->slots[0] += old_left_nritems; 3001 btrfs_tree_unlock(path->nodes[0]); 3002 free_extent_buffer(path->nodes[0]); 3003 path->nodes[0] = left; 3004 path->slots[1] -= 1; 3005 } else { 3006 btrfs_tree_unlock(left); 3007 free_extent_buffer(left); 3008 path->slots[0] -= push_items; 3009 } 3010 BUG_ON(path->slots[0] < 0); 3011 return ret; 3012 out: 3013 btrfs_tree_unlock(left); 3014 free_extent_buffer(left); 3015 return ret; 3016 } 3017 3018 /* 3019 * push some data in the path leaf to the left, trying to free up at 3020 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3021 * 3022 * max_slot can put a limit on how far into the leaf we'll push items. The 3023 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3024 * items 3025 */ 3026 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3027 *root, struct btrfs_path *path, int min_data_size, 3028 int data_size, int empty, u32 max_slot) 3029 { 3030 struct extent_buffer *right = path->nodes[0]; 3031 struct extent_buffer *left; 3032 int slot; 3033 int free_space; 3034 u32 right_nritems; 3035 int ret = 0; 3036 3037 slot = path->slots[1]; 3038 if (slot == 0) 3039 return 1; 3040 if (!path->nodes[1]) 3041 return 1; 3042 3043 right_nritems = btrfs_header_nritems(right); 3044 if (right_nritems == 0) 3045 return 1; 3046 3047 btrfs_assert_tree_locked(path->nodes[1]); 3048 3049 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3050 /* 3051 * slot - 1 is not valid or we fail to read the left node, 3052 * no big deal, just return. 3053 */ 3054 if (IS_ERR(left)) 3055 return 1; 3056 3057 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 3058 3059 free_space = btrfs_leaf_free_space(left); 3060 if (free_space < data_size) { 3061 ret = 1; 3062 goto out; 3063 } 3064 3065 /* cow and double check */ 3066 ret = btrfs_cow_block(trans, root, left, 3067 path->nodes[1], slot - 1, &left, 3068 BTRFS_NESTING_LEFT_COW); 3069 if (ret) { 3070 /* we hit -ENOSPC, but it isn't fatal here */ 3071 if (ret == -ENOSPC) 3072 ret = 1; 3073 goto out; 3074 } 3075 3076 free_space = btrfs_leaf_free_space(left); 3077 if (free_space < data_size) { 3078 ret = 1; 3079 goto out; 3080 } 3081 3082 if (check_sibling_keys(left, right)) { 3083 ret = -EUCLEAN; 3084 goto out; 3085 } 3086 return __push_leaf_left(path, min_data_size, 3087 empty, left, free_space, right_nritems, 3088 max_slot); 3089 out: 3090 btrfs_tree_unlock(left); 3091 free_extent_buffer(left); 3092 return ret; 3093 } 3094 3095 /* 3096 * split the path's leaf in two, making sure there is at least data_size 3097 * available for the resulting leaf level of the path. 3098 */ 3099 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3100 struct btrfs_path *path, 3101 struct extent_buffer *l, 3102 struct extent_buffer *right, 3103 int slot, int mid, int nritems) 3104 { 3105 struct btrfs_fs_info *fs_info = trans->fs_info; 3106 int data_copy_size; 3107 int rt_data_off; 3108 int i; 3109 struct btrfs_disk_key disk_key; 3110 struct btrfs_map_token token; 3111 3112 nritems = nritems - mid; 3113 btrfs_set_header_nritems(right, nritems); 3114 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 3115 3116 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3117 btrfs_item_nr_offset(mid), 3118 nritems * sizeof(struct btrfs_item)); 3119 3120 copy_extent_buffer(right, l, 3121 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 3122 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 3123 leaf_data_end(l), data_copy_size); 3124 3125 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 3126 3127 btrfs_init_map_token(&token, right); 3128 for (i = 0; i < nritems; i++) { 3129 struct btrfs_item *item = btrfs_item_nr(i); 3130 u32 ioff; 3131 3132 ioff = btrfs_token_item_offset(&token, item); 3133 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off); 3134 } 3135 3136 btrfs_set_header_nritems(l, mid); 3137 btrfs_item_key(right, &disk_key, 0); 3138 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3139 3140 btrfs_mark_buffer_dirty(right); 3141 btrfs_mark_buffer_dirty(l); 3142 BUG_ON(path->slots[0] != slot); 3143 3144 if (mid <= slot) { 3145 btrfs_tree_unlock(path->nodes[0]); 3146 free_extent_buffer(path->nodes[0]); 3147 path->nodes[0] = right; 3148 path->slots[0] -= mid; 3149 path->slots[1] += 1; 3150 } else { 3151 btrfs_tree_unlock(right); 3152 free_extent_buffer(right); 3153 } 3154 3155 BUG_ON(path->slots[0] < 0); 3156 } 3157 3158 /* 3159 * double splits happen when we need to insert a big item in the middle 3160 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3161 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3162 * A B C 3163 * 3164 * We avoid this by trying to push the items on either side of our target 3165 * into the adjacent leaves. If all goes well we can avoid the double split 3166 * completely. 3167 */ 3168 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3169 struct btrfs_root *root, 3170 struct btrfs_path *path, 3171 int data_size) 3172 { 3173 int ret; 3174 int progress = 0; 3175 int slot; 3176 u32 nritems; 3177 int space_needed = data_size; 3178 3179 slot = path->slots[0]; 3180 if (slot < btrfs_header_nritems(path->nodes[0])) 3181 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3182 3183 /* 3184 * try to push all the items after our slot into the 3185 * right leaf 3186 */ 3187 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3188 if (ret < 0) 3189 return ret; 3190 3191 if (ret == 0) 3192 progress++; 3193 3194 nritems = btrfs_header_nritems(path->nodes[0]); 3195 /* 3196 * our goal is to get our slot at the start or end of a leaf. If 3197 * we've done so we're done 3198 */ 3199 if (path->slots[0] == 0 || path->slots[0] == nritems) 3200 return 0; 3201 3202 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3203 return 0; 3204 3205 /* try to push all the items before our slot into the next leaf */ 3206 slot = path->slots[0]; 3207 space_needed = data_size; 3208 if (slot > 0) 3209 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3210 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3211 if (ret < 0) 3212 return ret; 3213 3214 if (ret == 0) 3215 progress++; 3216 3217 if (progress) 3218 return 0; 3219 return 1; 3220 } 3221 3222 /* 3223 * split the path's leaf in two, making sure there is at least data_size 3224 * available for the resulting leaf level of the path. 3225 * 3226 * returns 0 if all went well and < 0 on failure. 3227 */ 3228 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3229 struct btrfs_root *root, 3230 const struct btrfs_key *ins_key, 3231 struct btrfs_path *path, int data_size, 3232 int extend) 3233 { 3234 struct btrfs_disk_key disk_key; 3235 struct extent_buffer *l; 3236 u32 nritems; 3237 int mid; 3238 int slot; 3239 struct extent_buffer *right; 3240 struct btrfs_fs_info *fs_info = root->fs_info; 3241 int ret = 0; 3242 int wret; 3243 int split; 3244 int num_doubles = 0; 3245 int tried_avoid_double = 0; 3246 3247 l = path->nodes[0]; 3248 slot = path->slots[0]; 3249 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3250 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3251 return -EOVERFLOW; 3252 3253 /* first try to make some room by pushing left and right */ 3254 if (data_size && path->nodes[1]) { 3255 int space_needed = data_size; 3256 3257 if (slot < btrfs_header_nritems(l)) 3258 space_needed -= btrfs_leaf_free_space(l); 3259 3260 wret = push_leaf_right(trans, root, path, space_needed, 3261 space_needed, 0, 0); 3262 if (wret < 0) 3263 return wret; 3264 if (wret) { 3265 space_needed = data_size; 3266 if (slot > 0) 3267 space_needed -= btrfs_leaf_free_space(l); 3268 wret = push_leaf_left(trans, root, path, space_needed, 3269 space_needed, 0, (u32)-1); 3270 if (wret < 0) 3271 return wret; 3272 } 3273 l = path->nodes[0]; 3274 3275 /* did the pushes work? */ 3276 if (btrfs_leaf_free_space(l) >= data_size) 3277 return 0; 3278 } 3279 3280 if (!path->nodes[1]) { 3281 ret = insert_new_root(trans, root, path, 1); 3282 if (ret) 3283 return ret; 3284 } 3285 again: 3286 split = 1; 3287 l = path->nodes[0]; 3288 slot = path->slots[0]; 3289 nritems = btrfs_header_nritems(l); 3290 mid = (nritems + 1) / 2; 3291 3292 if (mid <= slot) { 3293 if (nritems == 1 || 3294 leaf_space_used(l, mid, nritems - mid) + data_size > 3295 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3296 if (slot >= nritems) { 3297 split = 0; 3298 } else { 3299 mid = slot; 3300 if (mid != nritems && 3301 leaf_space_used(l, mid, nritems - mid) + 3302 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3303 if (data_size && !tried_avoid_double) 3304 goto push_for_double; 3305 split = 2; 3306 } 3307 } 3308 } 3309 } else { 3310 if (leaf_space_used(l, 0, mid) + data_size > 3311 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3312 if (!extend && data_size && slot == 0) { 3313 split = 0; 3314 } else if ((extend || !data_size) && slot == 0) { 3315 mid = 1; 3316 } else { 3317 mid = slot; 3318 if (mid != nritems && 3319 leaf_space_used(l, mid, nritems - mid) + 3320 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3321 if (data_size && !tried_avoid_double) 3322 goto push_for_double; 3323 split = 2; 3324 } 3325 } 3326 } 3327 } 3328 3329 if (split == 0) 3330 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3331 else 3332 btrfs_item_key(l, &disk_key, mid); 3333 3334 /* 3335 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3336 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3337 * subclasses, which is 8 at the time of this patch, and we've maxed it 3338 * out. In the future we could add a 3339 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3340 * use BTRFS_NESTING_NEW_ROOT. 3341 */ 3342 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3343 &disk_key, 0, l->start, 0, 3344 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3345 BTRFS_NESTING_SPLIT); 3346 if (IS_ERR(right)) 3347 return PTR_ERR(right); 3348 3349 root_add_used(root, fs_info->nodesize); 3350 3351 if (split == 0) { 3352 if (mid <= slot) { 3353 btrfs_set_header_nritems(right, 0); 3354 insert_ptr(trans, path, &disk_key, 3355 right->start, path->slots[1] + 1, 1); 3356 btrfs_tree_unlock(path->nodes[0]); 3357 free_extent_buffer(path->nodes[0]); 3358 path->nodes[0] = right; 3359 path->slots[0] = 0; 3360 path->slots[1] += 1; 3361 } else { 3362 btrfs_set_header_nritems(right, 0); 3363 insert_ptr(trans, path, &disk_key, 3364 right->start, path->slots[1], 1); 3365 btrfs_tree_unlock(path->nodes[0]); 3366 free_extent_buffer(path->nodes[0]); 3367 path->nodes[0] = right; 3368 path->slots[0] = 0; 3369 if (path->slots[1] == 0) 3370 fixup_low_keys(path, &disk_key, 1); 3371 } 3372 /* 3373 * We create a new leaf 'right' for the required ins_len and 3374 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3375 * the content of ins_len to 'right'. 3376 */ 3377 return ret; 3378 } 3379 3380 copy_for_split(trans, path, l, right, slot, mid, nritems); 3381 3382 if (split == 2) { 3383 BUG_ON(num_doubles != 0); 3384 num_doubles++; 3385 goto again; 3386 } 3387 3388 return 0; 3389 3390 push_for_double: 3391 push_for_double_split(trans, root, path, data_size); 3392 tried_avoid_double = 1; 3393 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3394 return 0; 3395 goto again; 3396 } 3397 3398 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3399 struct btrfs_root *root, 3400 struct btrfs_path *path, int ins_len) 3401 { 3402 struct btrfs_key key; 3403 struct extent_buffer *leaf; 3404 struct btrfs_file_extent_item *fi; 3405 u64 extent_len = 0; 3406 u32 item_size; 3407 int ret; 3408 3409 leaf = path->nodes[0]; 3410 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3411 3412 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3413 key.type != BTRFS_EXTENT_CSUM_KEY); 3414 3415 if (btrfs_leaf_free_space(leaf) >= ins_len) 3416 return 0; 3417 3418 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3419 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3420 fi = btrfs_item_ptr(leaf, path->slots[0], 3421 struct btrfs_file_extent_item); 3422 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3423 } 3424 btrfs_release_path(path); 3425 3426 path->keep_locks = 1; 3427 path->search_for_split = 1; 3428 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3429 path->search_for_split = 0; 3430 if (ret > 0) 3431 ret = -EAGAIN; 3432 if (ret < 0) 3433 goto err; 3434 3435 ret = -EAGAIN; 3436 leaf = path->nodes[0]; 3437 /* if our item isn't there, return now */ 3438 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3439 goto err; 3440 3441 /* the leaf has changed, it now has room. return now */ 3442 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 3443 goto err; 3444 3445 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3446 fi = btrfs_item_ptr(leaf, path->slots[0], 3447 struct btrfs_file_extent_item); 3448 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3449 goto err; 3450 } 3451 3452 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3453 if (ret) 3454 goto err; 3455 3456 path->keep_locks = 0; 3457 btrfs_unlock_up_safe(path, 1); 3458 return 0; 3459 err: 3460 path->keep_locks = 0; 3461 return ret; 3462 } 3463 3464 static noinline int split_item(struct btrfs_path *path, 3465 const struct btrfs_key *new_key, 3466 unsigned long split_offset) 3467 { 3468 struct extent_buffer *leaf; 3469 struct btrfs_item *item; 3470 struct btrfs_item *new_item; 3471 int slot; 3472 char *buf; 3473 u32 nritems; 3474 u32 item_size; 3475 u32 orig_offset; 3476 struct btrfs_disk_key disk_key; 3477 3478 leaf = path->nodes[0]; 3479 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 3480 3481 item = btrfs_item_nr(path->slots[0]); 3482 orig_offset = btrfs_item_offset(leaf, item); 3483 item_size = btrfs_item_size(leaf, item); 3484 3485 buf = kmalloc(item_size, GFP_NOFS); 3486 if (!buf) 3487 return -ENOMEM; 3488 3489 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3490 path->slots[0]), item_size); 3491 3492 slot = path->slots[0] + 1; 3493 nritems = btrfs_header_nritems(leaf); 3494 if (slot != nritems) { 3495 /* shift the items */ 3496 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3497 btrfs_item_nr_offset(slot), 3498 (nritems - slot) * sizeof(struct btrfs_item)); 3499 } 3500 3501 btrfs_cpu_key_to_disk(&disk_key, new_key); 3502 btrfs_set_item_key(leaf, &disk_key, slot); 3503 3504 new_item = btrfs_item_nr(slot); 3505 3506 btrfs_set_item_offset(leaf, new_item, orig_offset); 3507 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3508 3509 btrfs_set_item_offset(leaf, item, 3510 orig_offset + item_size - split_offset); 3511 btrfs_set_item_size(leaf, item, split_offset); 3512 3513 btrfs_set_header_nritems(leaf, nritems + 1); 3514 3515 /* write the data for the start of the original item */ 3516 write_extent_buffer(leaf, buf, 3517 btrfs_item_ptr_offset(leaf, path->slots[0]), 3518 split_offset); 3519 3520 /* write the data for the new item */ 3521 write_extent_buffer(leaf, buf + split_offset, 3522 btrfs_item_ptr_offset(leaf, slot), 3523 item_size - split_offset); 3524 btrfs_mark_buffer_dirty(leaf); 3525 3526 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 3527 kfree(buf); 3528 return 0; 3529 } 3530 3531 /* 3532 * This function splits a single item into two items, 3533 * giving 'new_key' to the new item and splitting the 3534 * old one at split_offset (from the start of the item). 3535 * 3536 * The path may be released by this operation. After 3537 * the split, the path is pointing to the old item. The 3538 * new item is going to be in the same node as the old one. 3539 * 3540 * Note, the item being split must be smaller enough to live alone on 3541 * a tree block with room for one extra struct btrfs_item 3542 * 3543 * This allows us to split the item in place, keeping a lock on the 3544 * leaf the entire time. 3545 */ 3546 int btrfs_split_item(struct btrfs_trans_handle *trans, 3547 struct btrfs_root *root, 3548 struct btrfs_path *path, 3549 const struct btrfs_key *new_key, 3550 unsigned long split_offset) 3551 { 3552 int ret; 3553 ret = setup_leaf_for_split(trans, root, path, 3554 sizeof(struct btrfs_item)); 3555 if (ret) 3556 return ret; 3557 3558 ret = split_item(path, new_key, split_offset); 3559 return ret; 3560 } 3561 3562 /* 3563 * This function duplicate a item, giving 'new_key' to the new item. 3564 * It guarantees both items live in the same tree leaf and the new item 3565 * is contiguous with the original item. 3566 * 3567 * This allows us to split file extent in place, keeping a lock on the 3568 * leaf the entire time. 3569 */ 3570 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3571 struct btrfs_root *root, 3572 struct btrfs_path *path, 3573 const struct btrfs_key *new_key) 3574 { 3575 struct extent_buffer *leaf; 3576 int ret; 3577 u32 item_size; 3578 3579 leaf = path->nodes[0]; 3580 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3581 ret = setup_leaf_for_split(trans, root, path, 3582 item_size + sizeof(struct btrfs_item)); 3583 if (ret) 3584 return ret; 3585 3586 path->slots[0]++; 3587 setup_items_for_insert(root, path, new_key, &item_size, 1); 3588 leaf = path->nodes[0]; 3589 memcpy_extent_buffer(leaf, 3590 btrfs_item_ptr_offset(leaf, path->slots[0]), 3591 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3592 item_size); 3593 return 0; 3594 } 3595 3596 /* 3597 * make the item pointed to by the path smaller. new_size indicates 3598 * how small to make it, and from_end tells us if we just chop bytes 3599 * off the end of the item or if we shift the item to chop bytes off 3600 * the front. 3601 */ 3602 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 3603 { 3604 int slot; 3605 struct extent_buffer *leaf; 3606 struct btrfs_item *item; 3607 u32 nritems; 3608 unsigned int data_end; 3609 unsigned int old_data_start; 3610 unsigned int old_size; 3611 unsigned int size_diff; 3612 int i; 3613 struct btrfs_map_token token; 3614 3615 leaf = path->nodes[0]; 3616 slot = path->slots[0]; 3617 3618 old_size = btrfs_item_size_nr(leaf, slot); 3619 if (old_size == new_size) 3620 return; 3621 3622 nritems = btrfs_header_nritems(leaf); 3623 data_end = leaf_data_end(leaf); 3624 3625 old_data_start = btrfs_item_offset_nr(leaf, slot); 3626 3627 size_diff = old_size - new_size; 3628 3629 BUG_ON(slot < 0); 3630 BUG_ON(slot >= nritems); 3631 3632 /* 3633 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3634 */ 3635 /* first correct the data pointers */ 3636 btrfs_init_map_token(&token, leaf); 3637 for (i = slot; i < nritems; i++) { 3638 u32 ioff; 3639 item = btrfs_item_nr(i); 3640 3641 ioff = btrfs_token_item_offset(&token, item); 3642 btrfs_set_token_item_offset(&token, item, ioff + size_diff); 3643 } 3644 3645 /* shift the data */ 3646 if (from_end) { 3647 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3648 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3649 data_end, old_data_start + new_size - data_end); 3650 } else { 3651 struct btrfs_disk_key disk_key; 3652 u64 offset; 3653 3654 btrfs_item_key(leaf, &disk_key, slot); 3655 3656 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3657 unsigned long ptr; 3658 struct btrfs_file_extent_item *fi; 3659 3660 fi = btrfs_item_ptr(leaf, slot, 3661 struct btrfs_file_extent_item); 3662 fi = (struct btrfs_file_extent_item *)( 3663 (unsigned long)fi - size_diff); 3664 3665 if (btrfs_file_extent_type(leaf, fi) == 3666 BTRFS_FILE_EXTENT_INLINE) { 3667 ptr = btrfs_item_ptr_offset(leaf, slot); 3668 memmove_extent_buffer(leaf, ptr, 3669 (unsigned long)fi, 3670 BTRFS_FILE_EXTENT_INLINE_DATA_START); 3671 } 3672 } 3673 3674 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3675 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 3676 data_end, old_data_start - data_end); 3677 3678 offset = btrfs_disk_key_offset(&disk_key); 3679 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3680 btrfs_set_item_key(leaf, &disk_key, slot); 3681 if (slot == 0) 3682 fixup_low_keys(path, &disk_key, 1); 3683 } 3684 3685 item = btrfs_item_nr(slot); 3686 btrfs_set_item_size(leaf, item, new_size); 3687 btrfs_mark_buffer_dirty(leaf); 3688 3689 if (btrfs_leaf_free_space(leaf) < 0) { 3690 btrfs_print_leaf(leaf); 3691 BUG(); 3692 } 3693 } 3694 3695 /* 3696 * make the item pointed to by the path bigger, data_size is the added size. 3697 */ 3698 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 3699 { 3700 int slot; 3701 struct extent_buffer *leaf; 3702 struct btrfs_item *item; 3703 u32 nritems; 3704 unsigned int data_end; 3705 unsigned int old_data; 3706 unsigned int old_size; 3707 int i; 3708 struct btrfs_map_token token; 3709 3710 leaf = path->nodes[0]; 3711 3712 nritems = btrfs_header_nritems(leaf); 3713 data_end = leaf_data_end(leaf); 3714 3715 if (btrfs_leaf_free_space(leaf) < data_size) { 3716 btrfs_print_leaf(leaf); 3717 BUG(); 3718 } 3719 slot = path->slots[0]; 3720 old_data = btrfs_item_end_nr(leaf, slot); 3721 3722 BUG_ON(slot < 0); 3723 if (slot >= nritems) { 3724 btrfs_print_leaf(leaf); 3725 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 3726 slot, nritems); 3727 BUG(); 3728 } 3729 3730 /* 3731 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3732 */ 3733 /* first correct the data pointers */ 3734 btrfs_init_map_token(&token, leaf); 3735 for (i = slot; i < nritems; i++) { 3736 u32 ioff; 3737 item = btrfs_item_nr(i); 3738 3739 ioff = btrfs_token_item_offset(&token, item); 3740 btrfs_set_token_item_offset(&token, item, ioff - data_size); 3741 } 3742 3743 /* shift the data */ 3744 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3745 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 3746 data_end, old_data - data_end); 3747 3748 data_end = old_data; 3749 old_size = btrfs_item_size_nr(leaf, slot); 3750 item = btrfs_item_nr(slot); 3751 btrfs_set_item_size(leaf, item, old_size + data_size); 3752 btrfs_mark_buffer_dirty(leaf); 3753 3754 if (btrfs_leaf_free_space(leaf) < 0) { 3755 btrfs_print_leaf(leaf); 3756 BUG(); 3757 } 3758 } 3759 3760 /** 3761 * setup_items_for_insert - Helper called before inserting one or more items 3762 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work 3763 * in a function that doesn't call btrfs_search_slot 3764 * 3765 * @root: root we are inserting items to 3766 * @path: points to the leaf/slot where we are going to insert new items 3767 * @cpu_key: array of keys for items to be inserted 3768 * @data_size: size of the body of each item we are going to insert 3769 * @nr: size of @cpu_key/@data_size arrays 3770 */ 3771 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 3772 const struct btrfs_key *cpu_key, u32 *data_size, 3773 int nr) 3774 { 3775 struct btrfs_fs_info *fs_info = root->fs_info; 3776 struct btrfs_item *item; 3777 int i; 3778 u32 nritems; 3779 unsigned int data_end; 3780 struct btrfs_disk_key disk_key; 3781 struct extent_buffer *leaf; 3782 int slot; 3783 struct btrfs_map_token token; 3784 u32 total_size; 3785 u32 total_data = 0; 3786 3787 for (i = 0; i < nr; i++) 3788 total_data += data_size[i]; 3789 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3790 3791 if (path->slots[0] == 0) { 3792 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3793 fixup_low_keys(path, &disk_key, 1); 3794 } 3795 btrfs_unlock_up_safe(path, 1); 3796 3797 leaf = path->nodes[0]; 3798 slot = path->slots[0]; 3799 3800 nritems = btrfs_header_nritems(leaf); 3801 data_end = leaf_data_end(leaf); 3802 3803 if (btrfs_leaf_free_space(leaf) < total_size) { 3804 btrfs_print_leaf(leaf); 3805 btrfs_crit(fs_info, "not enough freespace need %u have %d", 3806 total_size, btrfs_leaf_free_space(leaf)); 3807 BUG(); 3808 } 3809 3810 btrfs_init_map_token(&token, leaf); 3811 if (slot != nritems) { 3812 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3813 3814 if (old_data < data_end) { 3815 btrfs_print_leaf(leaf); 3816 btrfs_crit(fs_info, 3817 "item at slot %d with data offset %u beyond data end of leaf %u", 3818 slot, old_data, data_end); 3819 BUG(); 3820 } 3821 /* 3822 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3823 */ 3824 /* first correct the data pointers */ 3825 for (i = slot; i < nritems; i++) { 3826 u32 ioff; 3827 3828 item = btrfs_item_nr(i); 3829 ioff = btrfs_token_item_offset(&token, item); 3830 btrfs_set_token_item_offset(&token, item, 3831 ioff - total_data); 3832 } 3833 /* shift the items */ 3834 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3835 btrfs_item_nr_offset(slot), 3836 (nritems - slot) * sizeof(struct btrfs_item)); 3837 3838 /* shift the data */ 3839 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 3840 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 3841 data_end, old_data - data_end); 3842 data_end = old_data; 3843 } 3844 3845 /* setup the item for the new data */ 3846 for (i = 0; i < nr; i++) { 3847 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3848 btrfs_set_item_key(leaf, &disk_key, slot + i); 3849 item = btrfs_item_nr(slot + i); 3850 data_end -= data_size[i]; 3851 btrfs_set_token_item_offset(&token, item, data_end); 3852 btrfs_set_token_item_size(&token, item, data_size[i]); 3853 } 3854 3855 btrfs_set_header_nritems(leaf, nritems + nr); 3856 btrfs_mark_buffer_dirty(leaf); 3857 3858 if (btrfs_leaf_free_space(leaf) < 0) { 3859 btrfs_print_leaf(leaf); 3860 BUG(); 3861 } 3862 } 3863 3864 /* 3865 * Given a key and some data, insert items into the tree. 3866 * This does all the path init required, making room in the tree if needed. 3867 */ 3868 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3869 struct btrfs_root *root, 3870 struct btrfs_path *path, 3871 const struct btrfs_key *cpu_key, u32 *data_size, 3872 int nr) 3873 { 3874 int ret = 0; 3875 int slot; 3876 int i; 3877 u32 total_size = 0; 3878 u32 total_data = 0; 3879 3880 for (i = 0; i < nr; i++) 3881 total_data += data_size[i]; 3882 3883 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3884 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3885 if (ret == 0) 3886 return -EEXIST; 3887 if (ret < 0) 3888 return ret; 3889 3890 slot = path->slots[0]; 3891 BUG_ON(slot < 0); 3892 3893 setup_items_for_insert(root, path, cpu_key, data_size, nr); 3894 return 0; 3895 } 3896 3897 /* 3898 * Given a key and some data, insert an item into the tree. 3899 * This does all the path init required, making room in the tree if needed. 3900 */ 3901 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3902 const struct btrfs_key *cpu_key, void *data, 3903 u32 data_size) 3904 { 3905 int ret = 0; 3906 struct btrfs_path *path; 3907 struct extent_buffer *leaf; 3908 unsigned long ptr; 3909 3910 path = btrfs_alloc_path(); 3911 if (!path) 3912 return -ENOMEM; 3913 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3914 if (!ret) { 3915 leaf = path->nodes[0]; 3916 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3917 write_extent_buffer(leaf, data, ptr, data_size); 3918 btrfs_mark_buffer_dirty(leaf); 3919 } 3920 btrfs_free_path(path); 3921 return ret; 3922 } 3923 3924 /* 3925 * delete the pointer from a given node. 3926 * 3927 * the tree should have been previously balanced so the deletion does not 3928 * empty a node. 3929 */ 3930 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 3931 int level, int slot) 3932 { 3933 struct extent_buffer *parent = path->nodes[level]; 3934 u32 nritems; 3935 int ret; 3936 3937 nritems = btrfs_header_nritems(parent); 3938 if (slot != nritems - 1) { 3939 if (level) { 3940 ret = btrfs_tree_mod_log_insert_move(parent, slot, 3941 slot + 1, nritems - slot - 1); 3942 BUG_ON(ret < 0); 3943 } 3944 memmove_extent_buffer(parent, 3945 btrfs_node_key_ptr_offset(slot), 3946 btrfs_node_key_ptr_offset(slot + 1), 3947 sizeof(struct btrfs_key_ptr) * 3948 (nritems - slot - 1)); 3949 } else if (level) { 3950 ret = btrfs_tree_mod_log_insert_key(parent, slot, 3951 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS); 3952 BUG_ON(ret < 0); 3953 } 3954 3955 nritems--; 3956 btrfs_set_header_nritems(parent, nritems); 3957 if (nritems == 0 && parent == root->node) { 3958 BUG_ON(btrfs_header_level(root->node) != 1); 3959 /* just turn the root into a leaf and break */ 3960 btrfs_set_header_level(root->node, 0); 3961 } else if (slot == 0) { 3962 struct btrfs_disk_key disk_key; 3963 3964 btrfs_node_key(parent, &disk_key, 0); 3965 fixup_low_keys(path, &disk_key, level + 1); 3966 } 3967 btrfs_mark_buffer_dirty(parent); 3968 } 3969 3970 /* 3971 * a helper function to delete the leaf pointed to by path->slots[1] and 3972 * path->nodes[1]. 3973 * 3974 * This deletes the pointer in path->nodes[1] and frees the leaf 3975 * block extent. zero is returned if it all worked out, < 0 otherwise. 3976 * 3977 * The path must have already been setup for deleting the leaf, including 3978 * all the proper balancing. path->nodes[1] must be locked. 3979 */ 3980 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 3981 struct btrfs_root *root, 3982 struct btrfs_path *path, 3983 struct extent_buffer *leaf) 3984 { 3985 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3986 del_ptr(root, path, 1, path->slots[1]); 3987 3988 /* 3989 * btrfs_free_extent is expensive, we want to make sure we 3990 * aren't holding any locks when we call it 3991 */ 3992 btrfs_unlock_up_safe(path, 0); 3993 3994 root_sub_used(root, leaf->len); 3995 3996 atomic_inc(&leaf->refs); 3997 btrfs_free_tree_block(trans, root, leaf, 0, 1); 3998 free_extent_buffer_stale(leaf); 3999 } 4000 /* 4001 * delete the item at the leaf level in path. If that empties 4002 * the leaf, remove it from the tree 4003 */ 4004 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4005 struct btrfs_path *path, int slot, int nr) 4006 { 4007 struct btrfs_fs_info *fs_info = root->fs_info; 4008 struct extent_buffer *leaf; 4009 struct btrfs_item *item; 4010 u32 last_off; 4011 u32 dsize = 0; 4012 int ret = 0; 4013 int wret; 4014 int i; 4015 u32 nritems; 4016 4017 leaf = path->nodes[0]; 4018 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4019 4020 for (i = 0; i < nr; i++) 4021 dsize += btrfs_item_size_nr(leaf, slot + i); 4022 4023 nritems = btrfs_header_nritems(leaf); 4024 4025 if (slot + nr != nritems) { 4026 int data_end = leaf_data_end(leaf); 4027 struct btrfs_map_token token; 4028 4029 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4030 data_end + dsize, 4031 BTRFS_LEAF_DATA_OFFSET + data_end, 4032 last_off - data_end); 4033 4034 btrfs_init_map_token(&token, leaf); 4035 for (i = slot + nr; i < nritems; i++) { 4036 u32 ioff; 4037 4038 item = btrfs_item_nr(i); 4039 ioff = btrfs_token_item_offset(&token, item); 4040 btrfs_set_token_item_offset(&token, item, ioff + dsize); 4041 } 4042 4043 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4044 btrfs_item_nr_offset(slot + nr), 4045 sizeof(struct btrfs_item) * 4046 (nritems - slot - nr)); 4047 } 4048 btrfs_set_header_nritems(leaf, nritems - nr); 4049 nritems -= nr; 4050 4051 /* delete the leaf if we've emptied it */ 4052 if (nritems == 0) { 4053 if (leaf == root->node) { 4054 btrfs_set_header_level(leaf, 0); 4055 } else { 4056 btrfs_clean_tree_block(leaf); 4057 btrfs_del_leaf(trans, root, path, leaf); 4058 } 4059 } else { 4060 int used = leaf_space_used(leaf, 0, nritems); 4061 if (slot == 0) { 4062 struct btrfs_disk_key disk_key; 4063 4064 btrfs_item_key(leaf, &disk_key, 0); 4065 fixup_low_keys(path, &disk_key, 1); 4066 } 4067 4068 /* delete the leaf if it is mostly empty */ 4069 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4070 /* push_leaf_left fixes the path. 4071 * make sure the path still points to our leaf 4072 * for possible call to del_ptr below 4073 */ 4074 slot = path->slots[1]; 4075 atomic_inc(&leaf->refs); 4076 4077 wret = push_leaf_left(trans, root, path, 1, 1, 4078 1, (u32)-1); 4079 if (wret < 0 && wret != -ENOSPC) 4080 ret = wret; 4081 4082 if (path->nodes[0] == leaf && 4083 btrfs_header_nritems(leaf)) { 4084 wret = push_leaf_right(trans, root, path, 1, 4085 1, 1, 0); 4086 if (wret < 0 && wret != -ENOSPC) 4087 ret = wret; 4088 } 4089 4090 if (btrfs_header_nritems(leaf) == 0) { 4091 path->slots[1] = slot; 4092 btrfs_del_leaf(trans, root, path, leaf); 4093 free_extent_buffer(leaf); 4094 ret = 0; 4095 } else { 4096 /* if we're still in the path, make sure 4097 * we're dirty. Otherwise, one of the 4098 * push_leaf functions must have already 4099 * dirtied this buffer 4100 */ 4101 if (path->nodes[0] == leaf) 4102 btrfs_mark_buffer_dirty(leaf); 4103 free_extent_buffer(leaf); 4104 } 4105 } else { 4106 btrfs_mark_buffer_dirty(leaf); 4107 } 4108 } 4109 return ret; 4110 } 4111 4112 /* 4113 * search the tree again to find a leaf with lesser keys 4114 * returns 0 if it found something or 1 if there are no lesser leaves. 4115 * returns < 0 on io errors. 4116 * 4117 * This may release the path, and so you may lose any locks held at the 4118 * time you call it. 4119 */ 4120 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4121 { 4122 struct btrfs_key key; 4123 struct btrfs_disk_key found_key; 4124 int ret; 4125 4126 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4127 4128 if (key.offset > 0) { 4129 key.offset--; 4130 } else if (key.type > 0) { 4131 key.type--; 4132 key.offset = (u64)-1; 4133 } else if (key.objectid > 0) { 4134 key.objectid--; 4135 key.type = (u8)-1; 4136 key.offset = (u64)-1; 4137 } else { 4138 return 1; 4139 } 4140 4141 btrfs_release_path(path); 4142 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4143 if (ret < 0) 4144 return ret; 4145 btrfs_item_key(path->nodes[0], &found_key, 0); 4146 ret = comp_keys(&found_key, &key); 4147 /* 4148 * We might have had an item with the previous key in the tree right 4149 * before we released our path. And after we released our path, that 4150 * item might have been pushed to the first slot (0) of the leaf we 4151 * were holding due to a tree balance. Alternatively, an item with the 4152 * previous key can exist as the only element of a leaf (big fat item). 4153 * Therefore account for these 2 cases, so that our callers (like 4154 * btrfs_previous_item) don't miss an existing item with a key matching 4155 * the previous key we computed above. 4156 */ 4157 if (ret <= 0) 4158 return 0; 4159 return 1; 4160 } 4161 4162 /* 4163 * A helper function to walk down the tree starting at min_key, and looking 4164 * for nodes or leaves that are have a minimum transaction id. 4165 * This is used by the btree defrag code, and tree logging 4166 * 4167 * This does not cow, but it does stuff the starting key it finds back 4168 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4169 * key and get a writable path. 4170 * 4171 * This honors path->lowest_level to prevent descent past a given level 4172 * of the tree. 4173 * 4174 * min_trans indicates the oldest transaction that you are interested 4175 * in walking through. Any nodes or leaves older than min_trans are 4176 * skipped over (without reading them). 4177 * 4178 * returns zero if something useful was found, < 0 on error and 1 if there 4179 * was nothing in the tree that matched the search criteria. 4180 */ 4181 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4182 struct btrfs_path *path, 4183 u64 min_trans) 4184 { 4185 struct extent_buffer *cur; 4186 struct btrfs_key found_key; 4187 int slot; 4188 int sret; 4189 u32 nritems; 4190 int level; 4191 int ret = 1; 4192 int keep_locks = path->keep_locks; 4193 4194 path->keep_locks = 1; 4195 again: 4196 cur = btrfs_read_lock_root_node(root); 4197 level = btrfs_header_level(cur); 4198 WARN_ON(path->nodes[level]); 4199 path->nodes[level] = cur; 4200 path->locks[level] = BTRFS_READ_LOCK; 4201 4202 if (btrfs_header_generation(cur) < min_trans) { 4203 ret = 1; 4204 goto out; 4205 } 4206 while (1) { 4207 nritems = btrfs_header_nritems(cur); 4208 level = btrfs_header_level(cur); 4209 sret = btrfs_bin_search(cur, min_key, &slot); 4210 if (sret < 0) { 4211 ret = sret; 4212 goto out; 4213 } 4214 4215 /* at the lowest level, we're done, setup the path and exit */ 4216 if (level == path->lowest_level) { 4217 if (slot >= nritems) 4218 goto find_next_key; 4219 ret = 0; 4220 path->slots[level] = slot; 4221 btrfs_item_key_to_cpu(cur, &found_key, slot); 4222 goto out; 4223 } 4224 if (sret && slot > 0) 4225 slot--; 4226 /* 4227 * check this node pointer against the min_trans parameters. 4228 * If it is too old, skip to the next one. 4229 */ 4230 while (slot < nritems) { 4231 u64 gen; 4232 4233 gen = btrfs_node_ptr_generation(cur, slot); 4234 if (gen < min_trans) { 4235 slot++; 4236 continue; 4237 } 4238 break; 4239 } 4240 find_next_key: 4241 /* 4242 * we didn't find a candidate key in this node, walk forward 4243 * and find another one 4244 */ 4245 if (slot >= nritems) { 4246 path->slots[level] = slot; 4247 sret = btrfs_find_next_key(root, path, min_key, level, 4248 min_trans); 4249 if (sret == 0) { 4250 btrfs_release_path(path); 4251 goto again; 4252 } else { 4253 goto out; 4254 } 4255 } 4256 /* save our key for returning back */ 4257 btrfs_node_key_to_cpu(cur, &found_key, slot); 4258 path->slots[level] = slot; 4259 if (level == path->lowest_level) { 4260 ret = 0; 4261 goto out; 4262 } 4263 cur = btrfs_read_node_slot(cur, slot); 4264 if (IS_ERR(cur)) { 4265 ret = PTR_ERR(cur); 4266 goto out; 4267 } 4268 4269 btrfs_tree_read_lock(cur); 4270 4271 path->locks[level - 1] = BTRFS_READ_LOCK; 4272 path->nodes[level - 1] = cur; 4273 unlock_up(path, level, 1, 0, NULL); 4274 } 4275 out: 4276 path->keep_locks = keep_locks; 4277 if (ret == 0) { 4278 btrfs_unlock_up_safe(path, path->lowest_level + 1); 4279 memcpy(min_key, &found_key, sizeof(found_key)); 4280 } 4281 return ret; 4282 } 4283 4284 /* 4285 * this is similar to btrfs_next_leaf, but does not try to preserve 4286 * and fixup the path. It looks for and returns the next key in the 4287 * tree based on the current path and the min_trans parameters. 4288 * 4289 * 0 is returned if another key is found, < 0 if there are any errors 4290 * and 1 is returned if there are no higher keys in the tree 4291 * 4292 * path->keep_locks should be set to 1 on the search made before 4293 * calling this function. 4294 */ 4295 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4296 struct btrfs_key *key, int level, u64 min_trans) 4297 { 4298 int slot; 4299 struct extent_buffer *c; 4300 4301 WARN_ON(!path->keep_locks && !path->skip_locking); 4302 while (level < BTRFS_MAX_LEVEL) { 4303 if (!path->nodes[level]) 4304 return 1; 4305 4306 slot = path->slots[level] + 1; 4307 c = path->nodes[level]; 4308 next: 4309 if (slot >= btrfs_header_nritems(c)) { 4310 int ret; 4311 int orig_lowest; 4312 struct btrfs_key cur_key; 4313 if (level + 1 >= BTRFS_MAX_LEVEL || 4314 !path->nodes[level + 1]) 4315 return 1; 4316 4317 if (path->locks[level + 1] || path->skip_locking) { 4318 level++; 4319 continue; 4320 } 4321 4322 slot = btrfs_header_nritems(c) - 1; 4323 if (level == 0) 4324 btrfs_item_key_to_cpu(c, &cur_key, slot); 4325 else 4326 btrfs_node_key_to_cpu(c, &cur_key, slot); 4327 4328 orig_lowest = path->lowest_level; 4329 btrfs_release_path(path); 4330 path->lowest_level = level; 4331 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4332 0, 0); 4333 path->lowest_level = orig_lowest; 4334 if (ret < 0) 4335 return ret; 4336 4337 c = path->nodes[level]; 4338 slot = path->slots[level]; 4339 if (ret == 0) 4340 slot++; 4341 goto next; 4342 } 4343 4344 if (level == 0) 4345 btrfs_item_key_to_cpu(c, key, slot); 4346 else { 4347 u64 gen = btrfs_node_ptr_generation(c, slot); 4348 4349 if (gen < min_trans) { 4350 slot++; 4351 goto next; 4352 } 4353 btrfs_node_key_to_cpu(c, key, slot); 4354 } 4355 return 0; 4356 } 4357 return 1; 4358 } 4359 4360 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4361 u64 time_seq) 4362 { 4363 int slot; 4364 int level; 4365 struct extent_buffer *c; 4366 struct extent_buffer *next; 4367 struct btrfs_key key; 4368 u32 nritems; 4369 int ret; 4370 int i; 4371 4372 nritems = btrfs_header_nritems(path->nodes[0]); 4373 if (nritems == 0) 4374 return 1; 4375 4376 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4377 again: 4378 level = 1; 4379 next = NULL; 4380 btrfs_release_path(path); 4381 4382 path->keep_locks = 1; 4383 4384 if (time_seq) 4385 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4386 else 4387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4388 path->keep_locks = 0; 4389 4390 if (ret < 0) 4391 return ret; 4392 4393 nritems = btrfs_header_nritems(path->nodes[0]); 4394 /* 4395 * by releasing the path above we dropped all our locks. A balance 4396 * could have added more items next to the key that used to be 4397 * at the very end of the block. So, check again here and 4398 * advance the path if there are now more items available. 4399 */ 4400 if (nritems > 0 && path->slots[0] < nritems - 1) { 4401 if (ret == 0) 4402 path->slots[0]++; 4403 ret = 0; 4404 goto done; 4405 } 4406 /* 4407 * So the above check misses one case: 4408 * - after releasing the path above, someone has removed the item that 4409 * used to be at the very end of the block, and balance between leafs 4410 * gets another one with bigger key.offset to replace it. 4411 * 4412 * This one should be returned as well, or we can get leaf corruption 4413 * later(esp. in __btrfs_drop_extents()). 4414 * 4415 * And a bit more explanation about this check, 4416 * with ret > 0, the key isn't found, the path points to the slot 4417 * where it should be inserted, so the path->slots[0] item must be the 4418 * bigger one. 4419 */ 4420 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 4421 ret = 0; 4422 goto done; 4423 } 4424 4425 while (level < BTRFS_MAX_LEVEL) { 4426 if (!path->nodes[level]) { 4427 ret = 1; 4428 goto done; 4429 } 4430 4431 slot = path->slots[level] + 1; 4432 c = path->nodes[level]; 4433 if (slot >= btrfs_header_nritems(c)) { 4434 level++; 4435 if (level == BTRFS_MAX_LEVEL) { 4436 ret = 1; 4437 goto done; 4438 } 4439 continue; 4440 } 4441 4442 4443 /* 4444 * Our current level is where we're going to start from, and to 4445 * make sure lockdep doesn't complain we need to drop our locks 4446 * and nodes from 0 to our current level. 4447 */ 4448 for (i = 0; i < level; i++) { 4449 if (path->locks[level]) { 4450 btrfs_tree_read_unlock(path->nodes[i]); 4451 path->locks[i] = 0; 4452 } 4453 free_extent_buffer(path->nodes[i]); 4454 path->nodes[i] = NULL; 4455 } 4456 4457 next = c; 4458 ret = read_block_for_search(root, path, &next, level, 4459 slot, &key); 4460 if (ret == -EAGAIN) 4461 goto again; 4462 4463 if (ret < 0) { 4464 btrfs_release_path(path); 4465 goto done; 4466 } 4467 4468 if (!path->skip_locking) { 4469 ret = btrfs_try_tree_read_lock(next); 4470 if (!ret && time_seq) { 4471 /* 4472 * If we don't get the lock, we may be racing 4473 * with push_leaf_left, holding that lock while 4474 * itself waiting for the leaf we've currently 4475 * locked. To solve this situation, we give up 4476 * on our lock and cycle. 4477 */ 4478 free_extent_buffer(next); 4479 btrfs_release_path(path); 4480 cond_resched(); 4481 goto again; 4482 } 4483 if (!ret) 4484 btrfs_tree_read_lock(next); 4485 } 4486 break; 4487 } 4488 path->slots[level] = slot; 4489 while (1) { 4490 level--; 4491 path->nodes[level] = next; 4492 path->slots[level] = 0; 4493 if (!path->skip_locking) 4494 path->locks[level] = BTRFS_READ_LOCK; 4495 if (!level) 4496 break; 4497 4498 ret = read_block_for_search(root, path, &next, level, 4499 0, &key); 4500 if (ret == -EAGAIN) 4501 goto again; 4502 4503 if (ret < 0) { 4504 btrfs_release_path(path); 4505 goto done; 4506 } 4507 4508 if (!path->skip_locking) 4509 btrfs_tree_read_lock(next); 4510 } 4511 ret = 0; 4512 done: 4513 unlock_up(path, 0, 1, 0, NULL); 4514 4515 return ret; 4516 } 4517 4518 /* 4519 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4520 * searching until it gets past min_objectid or finds an item of 'type' 4521 * 4522 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4523 */ 4524 int btrfs_previous_item(struct btrfs_root *root, 4525 struct btrfs_path *path, u64 min_objectid, 4526 int type) 4527 { 4528 struct btrfs_key found_key; 4529 struct extent_buffer *leaf; 4530 u32 nritems; 4531 int ret; 4532 4533 while (1) { 4534 if (path->slots[0] == 0) { 4535 ret = btrfs_prev_leaf(root, path); 4536 if (ret != 0) 4537 return ret; 4538 } else { 4539 path->slots[0]--; 4540 } 4541 leaf = path->nodes[0]; 4542 nritems = btrfs_header_nritems(leaf); 4543 if (nritems == 0) 4544 return 1; 4545 if (path->slots[0] == nritems) 4546 path->slots[0]--; 4547 4548 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4549 if (found_key.objectid < min_objectid) 4550 break; 4551 if (found_key.type == type) 4552 return 0; 4553 if (found_key.objectid == min_objectid && 4554 found_key.type < type) 4555 break; 4556 } 4557 return 1; 4558 } 4559 4560 /* 4561 * search in extent tree to find a previous Metadata/Data extent item with 4562 * min objecitd. 4563 * 4564 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4565 */ 4566 int btrfs_previous_extent_item(struct btrfs_root *root, 4567 struct btrfs_path *path, u64 min_objectid) 4568 { 4569 struct btrfs_key found_key; 4570 struct extent_buffer *leaf; 4571 u32 nritems; 4572 int ret; 4573 4574 while (1) { 4575 if (path->slots[0] == 0) { 4576 ret = btrfs_prev_leaf(root, path); 4577 if (ret != 0) 4578 return ret; 4579 } else { 4580 path->slots[0]--; 4581 } 4582 leaf = path->nodes[0]; 4583 nritems = btrfs_header_nritems(leaf); 4584 if (nritems == 0) 4585 return 1; 4586 if (path->slots[0] == nritems) 4587 path->slots[0]--; 4588 4589 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4590 if (found_key.objectid < min_objectid) 4591 break; 4592 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 4593 found_key.type == BTRFS_METADATA_ITEM_KEY) 4594 return 0; 4595 if (found_key.objectid == min_objectid && 4596 found_key.type < BTRFS_EXTENT_ITEM_KEY) 4597 break; 4598 } 4599 return 1; 4600 } 4601