xref: /openbmc/linux/fs/btrfs/ctree.c (revision 7b1287662304c3cb05cb38f5e3e2d69f386e8f10)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25 
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 		      *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_key *ins_key,
30 		      struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 			  struct btrfs_root *root, struct extent_buffer *dst,
33 			  struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 			      struct btrfs_root *root,
36 			      struct extent_buffer *dst_buf,
37 			      struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 		   struct btrfs_path *path, int level, int slot);
40 
41 inline void btrfs_init_path(struct btrfs_path *p)
42 {
43 	memset(p, 0, sizeof(*p));
44 }
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	struct btrfs_path *path;
49 	path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
50 	if (path) {
51 		btrfs_init_path(path);
52 		path->reada = 1;
53 	}
54 	return path;
55 }
56 
57 void btrfs_free_path(struct btrfs_path *p)
58 {
59 	btrfs_release_path(NULL, p);
60 	kmem_cache_free(btrfs_path_cachep, p);
61 }
62 
63 void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
64 {
65 	int i;
66 
67 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
68 		p->slots[i] = 0;
69 		if (!p->nodes[i])
70 			continue;
71 		if (p->locks[i]) {
72 			btrfs_tree_unlock(p->nodes[i]);
73 			p->locks[i] = 0;
74 		}
75 		free_extent_buffer(p->nodes[i]);
76 		p->nodes[i] = NULL;
77 	}
78 }
79 
80 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
81 {
82 	struct extent_buffer *eb;
83 	spin_lock(&root->node_lock);
84 	eb = root->node;
85 	extent_buffer_get(eb);
86 	spin_unlock(&root->node_lock);
87 	return eb;
88 }
89 
90 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
91 {
92 	struct extent_buffer *eb;
93 
94 	while(1) {
95 		eb = btrfs_root_node(root);
96 		btrfs_tree_lock(eb);
97 
98 		spin_lock(&root->node_lock);
99 		if (eb == root->node) {
100 			spin_unlock(&root->node_lock);
101 			break;
102 		}
103 		spin_unlock(&root->node_lock);
104 
105 		btrfs_tree_unlock(eb);
106 		free_extent_buffer(eb);
107 	}
108 	return eb;
109 }
110 
111 static void add_root_to_dirty_list(struct btrfs_root *root)
112 {
113 	if (root->track_dirty && list_empty(&root->dirty_list)) {
114 		list_add(&root->dirty_list,
115 			 &root->fs_info->dirty_cowonly_roots);
116 	}
117 }
118 
119 int btrfs_copy_root(struct btrfs_trans_handle *trans,
120 		      struct btrfs_root *root,
121 		      struct extent_buffer *buf,
122 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
123 {
124 	struct extent_buffer *cow;
125 	u32 nritems;
126 	int ret = 0;
127 	int level;
128 	struct btrfs_key first_key;
129 	struct btrfs_root *new_root;
130 
131 	new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
132 	if (!new_root)
133 		return -ENOMEM;
134 
135 	memcpy(new_root, root, sizeof(*new_root));
136 	new_root->root_key.objectid = new_root_objectid;
137 
138 	WARN_ON(root->ref_cows && trans->transid !=
139 		root->fs_info->running_transaction->transid);
140 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
141 
142 	level = btrfs_header_level(buf);
143 	nritems = btrfs_header_nritems(buf);
144 	if (nritems) {
145 		if (level == 0)
146 			btrfs_item_key_to_cpu(buf, &first_key, 0);
147 		else
148 			btrfs_node_key_to_cpu(buf, &first_key, 0);
149 	} else {
150 		first_key.objectid = 0;
151 	}
152 	cow = btrfs_alloc_free_block(trans, new_root, buf->len,
153 				       new_root_objectid,
154 				       trans->transid, first_key.objectid,
155 				       level, buf->start, 0);
156 	if (IS_ERR(cow)) {
157 		kfree(new_root);
158 		return PTR_ERR(cow);
159 	}
160 
161 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
162 	btrfs_set_header_bytenr(cow, cow->start);
163 	btrfs_set_header_generation(cow, trans->transid);
164 	btrfs_set_header_owner(cow, new_root_objectid);
165 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
166 
167 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
168 	ret = btrfs_inc_ref(trans, new_root, buf);
169 	kfree(new_root);
170 
171 	if (ret)
172 		return ret;
173 
174 	btrfs_mark_buffer_dirty(cow);
175 	*cow_ret = cow;
176 	return 0;
177 }
178 
179 int __btrfs_cow_block(struct btrfs_trans_handle *trans,
180 			     struct btrfs_root *root,
181 			     struct extent_buffer *buf,
182 			     struct extent_buffer *parent, int parent_slot,
183 			     struct extent_buffer **cow_ret,
184 			     u64 search_start, u64 empty_size)
185 {
186 	u64 root_gen;
187 	struct extent_buffer *cow;
188 	u32 nritems;
189 	int ret = 0;
190 	int different_trans = 0;
191 	int level;
192 	int unlock_orig = 0;
193 	struct btrfs_key first_key;
194 
195 	if (*cow_ret == buf)
196 		unlock_orig = 1;
197 
198 	WARN_ON(!btrfs_tree_locked(buf));
199 
200 	if (root->ref_cows) {
201 		root_gen = trans->transid;
202 	} else {
203 		root_gen = 0;
204 	}
205 	WARN_ON(root->ref_cows && trans->transid !=
206 		root->fs_info->running_transaction->transid);
207 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
208 
209 	level = btrfs_header_level(buf);
210 	nritems = btrfs_header_nritems(buf);
211 	if (nritems) {
212 		if (level == 0)
213 			btrfs_item_key_to_cpu(buf, &first_key, 0);
214 		else
215 			btrfs_node_key_to_cpu(buf, &first_key, 0);
216 	} else {
217 		first_key.objectid = 0;
218 	}
219 	cow = btrfs_alloc_free_block(trans, root, buf->len,
220 				     root->root_key.objectid,
221 				     root_gen, first_key.objectid, level,
222 				     search_start, empty_size);
223 	if (IS_ERR(cow))
224 		return PTR_ERR(cow);
225 
226 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
227 	btrfs_set_header_bytenr(cow, cow->start);
228 	btrfs_set_header_generation(cow, trans->transid);
229 	btrfs_set_header_owner(cow, root->root_key.objectid);
230 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
231 
232 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
233 	if (btrfs_header_generation(buf) != trans->transid) {
234 		different_trans = 1;
235 		ret = btrfs_inc_ref(trans, root, buf);
236 		if (ret)
237 			return ret;
238 	} else {
239 		clean_tree_block(trans, root, buf);
240 	}
241 
242 	if (buf == root->node) {
243 		WARN_ON(parent && parent != buf);
244 		root_gen = btrfs_header_generation(buf);
245 
246 		spin_lock(&root->node_lock);
247 		root->node = cow;
248 		extent_buffer_get(cow);
249 		spin_unlock(&root->node_lock);
250 
251 		if (buf != root->commit_root) {
252 			btrfs_free_extent(trans, root, buf->start,
253 					  buf->len, root->root_key.objectid,
254 					  root_gen, 0, 0, 1);
255 		}
256 		free_extent_buffer(buf);
257 		add_root_to_dirty_list(root);
258 	} else {
259 		root_gen = btrfs_header_generation(parent);
260 		btrfs_set_node_blockptr(parent, parent_slot,
261 					cow->start);
262 		WARN_ON(trans->transid == 0);
263 		btrfs_set_node_ptr_generation(parent, parent_slot,
264 					      trans->transid);
265 		btrfs_mark_buffer_dirty(parent);
266 		WARN_ON(btrfs_header_generation(parent) != trans->transid);
267 		btrfs_free_extent(trans, root, buf->start, buf->len,
268 				  btrfs_header_owner(parent), root_gen,
269 				  0, 0, 1);
270 	}
271 	if (unlock_orig)
272 		btrfs_tree_unlock(buf);
273 	free_extent_buffer(buf);
274 	btrfs_mark_buffer_dirty(cow);
275 	*cow_ret = cow;
276 	return 0;
277 }
278 
279 int btrfs_cow_block(struct btrfs_trans_handle *trans,
280 		    struct btrfs_root *root, struct extent_buffer *buf,
281 		    struct extent_buffer *parent, int parent_slot,
282 		    struct extent_buffer **cow_ret)
283 {
284 	u64 search_start;
285 	u64 header_trans;
286 	int ret;
287 
288 	if (trans->transaction != root->fs_info->running_transaction) {
289 		printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
290 		       root->fs_info->running_transaction->transid);
291 		WARN_ON(1);
292 	}
293 	if (trans->transid != root->fs_info->generation) {
294 		printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
295 		       root->fs_info->generation);
296 		WARN_ON(1);
297 	}
298 
299 	header_trans = btrfs_header_generation(buf);
300 	spin_lock(&root->fs_info->hash_lock);
301 	if (header_trans == trans->transid &&
302 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
303 		*cow_ret = buf;
304 		spin_unlock(&root->fs_info->hash_lock);
305 		return 0;
306 	}
307 	spin_unlock(&root->fs_info->hash_lock);
308 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
309 	ret = __btrfs_cow_block(trans, root, buf, parent,
310 				 parent_slot, cow_ret, search_start, 0);
311 	return ret;
312 }
313 
314 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
315 {
316 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
317 		return 1;
318 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
319 		return 1;
320 	return 0;
321 }
322 
323 /*
324  * compare two keys in a memcmp fashion
325  */
326 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
327 {
328 	struct btrfs_key k1;
329 
330 	btrfs_disk_key_to_cpu(&k1, disk);
331 
332 	if (k1.objectid > k2->objectid)
333 		return 1;
334 	if (k1.objectid < k2->objectid)
335 		return -1;
336 	if (k1.type > k2->type)
337 		return 1;
338 	if (k1.type < k2->type)
339 		return -1;
340 	if (k1.offset > k2->offset)
341 		return 1;
342 	if (k1.offset < k2->offset)
343 		return -1;
344 	return 0;
345 }
346 
347 
348 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
349 		       struct btrfs_root *root, struct extent_buffer *parent,
350 		       int start_slot, int cache_only, u64 *last_ret,
351 		       struct btrfs_key *progress)
352 {
353 	struct extent_buffer *cur;
354 	u64 blocknr;
355 	u64 gen;
356 	u64 search_start = *last_ret;
357 	u64 last_block = 0;
358 	u64 other;
359 	u32 parent_nritems;
360 	int end_slot;
361 	int i;
362 	int err = 0;
363 	int parent_level;
364 	int uptodate;
365 	u32 blocksize;
366 	int progress_passed = 0;
367 	struct btrfs_disk_key disk_key;
368 
369 	parent_level = btrfs_header_level(parent);
370 	if (cache_only && parent_level != 1)
371 		return 0;
372 
373 	if (trans->transaction != root->fs_info->running_transaction) {
374 		printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
375 		       root->fs_info->running_transaction->transid);
376 		WARN_ON(1);
377 	}
378 	if (trans->transid != root->fs_info->generation) {
379 		printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
380 		       root->fs_info->generation);
381 		WARN_ON(1);
382 	}
383 
384 	parent_nritems = btrfs_header_nritems(parent);
385 	blocksize = btrfs_level_size(root, parent_level - 1);
386 	end_slot = parent_nritems;
387 
388 	if (parent_nritems == 1)
389 		return 0;
390 
391 	for (i = start_slot; i < end_slot; i++) {
392 		int close = 1;
393 
394 		if (!parent->map_token) {
395 			map_extent_buffer(parent,
396 					btrfs_node_key_ptr_offset(i),
397 					sizeof(struct btrfs_key_ptr),
398 					&parent->map_token, &parent->kaddr,
399 					&parent->map_start, &parent->map_len,
400 					KM_USER1);
401 		}
402 		btrfs_node_key(parent, &disk_key, i);
403 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
404 			continue;
405 
406 		progress_passed = 1;
407 		blocknr = btrfs_node_blockptr(parent, i);
408 		gen = btrfs_node_ptr_generation(parent, i);
409 		if (last_block == 0)
410 			last_block = blocknr;
411 
412 		if (i > 0) {
413 			other = btrfs_node_blockptr(parent, i - 1);
414 			close = close_blocks(blocknr, other, blocksize);
415 		}
416 		if (!close && i < end_slot - 2) {
417 			other = btrfs_node_blockptr(parent, i + 1);
418 			close = close_blocks(blocknr, other, blocksize);
419 		}
420 		if (close) {
421 			last_block = blocknr;
422 			continue;
423 		}
424 		if (parent->map_token) {
425 			unmap_extent_buffer(parent, parent->map_token,
426 					    KM_USER1);
427 			parent->map_token = NULL;
428 		}
429 
430 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
431 		if (cur)
432 			uptodate = btrfs_buffer_uptodate(cur, gen);
433 		else
434 			uptodate = 0;
435 		if (!cur || !uptodate) {
436 			if (cache_only) {
437 				free_extent_buffer(cur);
438 				continue;
439 			}
440 			if (!cur) {
441 				cur = read_tree_block(root, blocknr,
442 							 blocksize, gen);
443 			} else if (!uptodate) {
444 				btrfs_read_buffer(cur, gen);
445 			}
446 		}
447 		if (search_start == 0)
448 			search_start = last_block;
449 
450 		btrfs_tree_lock(cur);
451 		err = __btrfs_cow_block(trans, root, cur, parent, i,
452 					&cur, search_start,
453 					min(16 * blocksize,
454 					    (end_slot - i) * blocksize));
455 		if (err) {
456 			btrfs_tree_unlock(cur);
457 			free_extent_buffer(cur);
458 			break;
459 		}
460 		search_start = cur->start;
461 		last_block = cur->start;
462 		*last_ret = search_start;
463 		btrfs_tree_unlock(cur);
464 		free_extent_buffer(cur);
465 	}
466 	if (parent->map_token) {
467 		unmap_extent_buffer(parent, parent->map_token,
468 				    KM_USER1);
469 		parent->map_token = NULL;
470 	}
471 	return err;
472 }
473 
474 /*
475  * The leaf data grows from end-to-front in the node.
476  * this returns the address of the start of the last item,
477  * which is the stop of the leaf data stack
478  */
479 static inline unsigned int leaf_data_end(struct btrfs_root *root,
480 					 struct extent_buffer *leaf)
481 {
482 	u32 nr = btrfs_header_nritems(leaf);
483 	if (nr == 0)
484 		return BTRFS_LEAF_DATA_SIZE(root);
485 	return btrfs_item_offset_nr(leaf, nr - 1);
486 }
487 
488 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
489 		      int level)
490 {
491 	struct extent_buffer *parent = NULL;
492 	struct extent_buffer *node = path->nodes[level];
493 	struct btrfs_disk_key parent_key;
494 	struct btrfs_disk_key node_key;
495 	int parent_slot;
496 	int slot;
497 	struct btrfs_key cpukey;
498 	u32 nritems = btrfs_header_nritems(node);
499 
500 	if (path->nodes[level + 1])
501 		parent = path->nodes[level + 1];
502 
503 	slot = path->slots[level];
504 	BUG_ON(nritems == 0);
505 	if (parent) {
506 		parent_slot = path->slots[level + 1];
507 		btrfs_node_key(parent, &parent_key, parent_slot);
508 		btrfs_node_key(node, &node_key, 0);
509 		BUG_ON(memcmp(&parent_key, &node_key,
510 			      sizeof(struct btrfs_disk_key)));
511 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
512 		       btrfs_header_bytenr(node));
513 	}
514 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
515 	if (slot != 0) {
516 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
517 		btrfs_node_key(node, &node_key, slot);
518 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
519 	}
520 	if (slot < nritems - 1) {
521 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
522 		btrfs_node_key(node, &node_key, slot);
523 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
524 	}
525 	return 0;
526 }
527 
528 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
529 		      int level)
530 {
531 	struct extent_buffer *leaf = path->nodes[level];
532 	struct extent_buffer *parent = NULL;
533 	int parent_slot;
534 	struct btrfs_key cpukey;
535 	struct btrfs_disk_key parent_key;
536 	struct btrfs_disk_key leaf_key;
537 	int slot = path->slots[0];
538 
539 	u32 nritems = btrfs_header_nritems(leaf);
540 
541 	if (path->nodes[level + 1])
542 		parent = path->nodes[level + 1];
543 
544 	if (nritems == 0)
545 		return 0;
546 
547 	if (parent) {
548 		parent_slot = path->slots[level + 1];
549 		btrfs_node_key(parent, &parent_key, parent_slot);
550 		btrfs_item_key(leaf, &leaf_key, 0);
551 
552 		BUG_ON(memcmp(&parent_key, &leaf_key,
553 		       sizeof(struct btrfs_disk_key)));
554 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
555 		       btrfs_header_bytenr(leaf));
556 	}
557 #if 0
558 	for (i = 0; nritems > 1 && i < nritems - 2; i++) {
559 		btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
560 		btrfs_item_key(leaf, &leaf_key, i);
561 		if (comp_keys(&leaf_key, &cpukey) >= 0) {
562 			btrfs_print_leaf(root, leaf);
563 			printk("slot %d offset bad key\n", i);
564 			BUG_ON(1);
565 		}
566 		if (btrfs_item_offset_nr(leaf, i) !=
567 			btrfs_item_end_nr(leaf, i + 1)) {
568 			btrfs_print_leaf(root, leaf);
569 			printk("slot %d offset bad\n", i);
570 			BUG_ON(1);
571 		}
572 		if (i == 0) {
573 			if (btrfs_item_offset_nr(leaf, i) +
574 			       btrfs_item_size_nr(leaf, i) !=
575 			       BTRFS_LEAF_DATA_SIZE(root)) {
576 				btrfs_print_leaf(root, leaf);
577 				printk("slot %d first offset bad\n", i);
578 				BUG_ON(1);
579 			}
580 		}
581 	}
582 	if (nritems > 0) {
583 		if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
584 				btrfs_print_leaf(root, leaf);
585 				printk("slot %d bad size \n", nritems - 1);
586 				BUG_ON(1);
587 		}
588 	}
589 #endif
590 	if (slot != 0 && slot < nritems - 1) {
591 		btrfs_item_key(leaf, &leaf_key, slot);
592 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
593 		if (comp_keys(&leaf_key, &cpukey) <= 0) {
594 			btrfs_print_leaf(root, leaf);
595 			printk("slot %d offset bad key\n", slot);
596 			BUG_ON(1);
597 		}
598 		if (btrfs_item_offset_nr(leaf, slot - 1) !=
599 		       btrfs_item_end_nr(leaf, slot)) {
600 			btrfs_print_leaf(root, leaf);
601 			printk("slot %d offset bad\n", slot);
602 			BUG_ON(1);
603 		}
604 	}
605 	if (slot < nritems - 1) {
606 		btrfs_item_key(leaf, &leaf_key, slot);
607 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
608 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
609 		if (btrfs_item_offset_nr(leaf, slot) !=
610 			btrfs_item_end_nr(leaf, slot + 1)) {
611 			btrfs_print_leaf(root, leaf);
612 			printk("slot %d offset bad\n", slot);
613 			BUG_ON(1);
614 		}
615 	}
616 	BUG_ON(btrfs_item_offset_nr(leaf, 0) +
617 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
618 	return 0;
619 }
620 
621 static int noinline check_block(struct btrfs_root *root,
622 				struct btrfs_path *path, int level)
623 {
624 	u64 found_start;
625 	return 0;
626 	if (btrfs_header_level(path->nodes[level]) != level)
627 	    printk("warning: bad level %Lu wanted %d found %d\n",
628 		   path->nodes[level]->start, level,
629 		   btrfs_header_level(path->nodes[level]));
630 	found_start = btrfs_header_bytenr(path->nodes[level]);
631 	if (found_start != path->nodes[level]->start) {
632 	    printk("warning: bad bytentr %Lu found %Lu\n",
633 		   path->nodes[level]->start, found_start);
634 	}
635 #if 0
636 	struct extent_buffer *buf = path->nodes[level];
637 
638 	if (memcmp_extent_buffer(buf, root->fs_info->fsid,
639 				 (unsigned long)btrfs_header_fsid(buf),
640 				 BTRFS_FSID_SIZE)) {
641 		printk("warning bad block %Lu\n", buf->start);
642 		return 1;
643 	}
644 #endif
645 	if (level == 0)
646 		return check_leaf(root, path, level);
647 	return check_node(root, path, level);
648 }
649 
650 /*
651  * search for key in the extent_buffer.  The items start at offset p,
652  * and they are item_size apart.  There are 'max' items in p.
653  *
654  * the slot in the array is returned via slot, and it points to
655  * the place where you would insert key if it is not found in
656  * the array.
657  *
658  * slot may point to max if the key is bigger than all of the keys
659  */
660 static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
661 			      int item_size, struct btrfs_key *key,
662 			      int max, int *slot)
663 {
664 	int low = 0;
665 	int high = max;
666 	int mid;
667 	int ret;
668 	struct btrfs_disk_key *tmp = NULL;
669 	struct btrfs_disk_key unaligned;
670 	unsigned long offset;
671 	char *map_token = NULL;
672 	char *kaddr = NULL;
673 	unsigned long map_start = 0;
674 	unsigned long map_len = 0;
675 	int err;
676 
677 	while(low < high) {
678 		mid = (low + high) / 2;
679 		offset = p + mid * item_size;
680 
681 		if (!map_token || offset < map_start ||
682 		    (offset + sizeof(struct btrfs_disk_key)) >
683 		    map_start + map_len) {
684 			if (map_token) {
685 				unmap_extent_buffer(eb, map_token, KM_USER0);
686 				map_token = NULL;
687 			}
688 			err = map_extent_buffer(eb, offset,
689 						sizeof(struct btrfs_disk_key),
690 						&map_token, &kaddr,
691 						&map_start, &map_len, KM_USER0);
692 
693 			if (!err) {
694 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
695 							map_start);
696 			} else {
697 				read_extent_buffer(eb, &unaligned,
698 						   offset, sizeof(unaligned));
699 				tmp = &unaligned;
700 			}
701 
702 		} else {
703 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
704 							map_start);
705 		}
706 		ret = comp_keys(tmp, key);
707 
708 		if (ret < 0)
709 			low = mid + 1;
710 		else if (ret > 0)
711 			high = mid;
712 		else {
713 			*slot = mid;
714 			if (map_token)
715 				unmap_extent_buffer(eb, map_token, KM_USER0);
716 			return 0;
717 		}
718 	}
719 	*slot = low;
720 	if (map_token)
721 		unmap_extent_buffer(eb, map_token, KM_USER0);
722 	return 1;
723 }
724 
725 /*
726  * simple bin_search frontend that does the right thing for
727  * leaves vs nodes
728  */
729 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
730 		      int level, int *slot)
731 {
732 	if (level == 0) {
733 		return generic_bin_search(eb,
734 					  offsetof(struct btrfs_leaf, items),
735 					  sizeof(struct btrfs_item),
736 					  key, btrfs_header_nritems(eb),
737 					  slot);
738 	} else {
739 		return generic_bin_search(eb,
740 					  offsetof(struct btrfs_node, ptrs),
741 					  sizeof(struct btrfs_key_ptr),
742 					  key, btrfs_header_nritems(eb),
743 					  slot);
744 	}
745 	return -1;
746 }
747 
748 static struct extent_buffer *read_node_slot(struct btrfs_root *root,
749 				   struct extent_buffer *parent, int slot)
750 {
751 	int level = btrfs_header_level(parent);
752 	if (slot < 0)
753 		return NULL;
754 	if (slot >= btrfs_header_nritems(parent))
755 		return NULL;
756 
757 	BUG_ON(level == 0);
758 
759 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
760 		       btrfs_level_size(root, level - 1),
761 		       btrfs_node_ptr_generation(parent, slot));
762 }
763 
764 static int balance_level(struct btrfs_trans_handle *trans,
765 			 struct btrfs_root *root,
766 			 struct btrfs_path *path, int level)
767 {
768 	struct extent_buffer *right = NULL;
769 	struct extent_buffer *mid;
770 	struct extent_buffer *left = NULL;
771 	struct extent_buffer *parent = NULL;
772 	int ret = 0;
773 	int wret;
774 	int pslot;
775 	int orig_slot = path->slots[level];
776 	int err_on_enospc = 0;
777 	u64 orig_ptr;
778 
779 	if (level == 0)
780 		return 0;
781 
782 	mid = path->nodes[level];
783 	WARN_ON(!path->locks[level]);
784 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
785 
786 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
787 
788 	if (level < BTRFS_MAX_LEVEL - 1)
789 		parent = path->nodes[level + 1];
790 	pslot = path->slots[level + 1];
791 
792 	/*
793 	 * deal with the case where there is only one pointer in the root
794 	 * by promoting the node below to a root
795 	 */
796 	if (!parent) {
797 		struct extent_buffer *child;
798 
799 		if (btrfs_header_nritems(mid) != 1)
800 			return 0;
801 
802 		/* promote the child to a root */
803 		child = read_node_slot(root, mid, 0);
804 		btrfs_tree_lock(child);
805 		BUG_ON(!child);
806 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
807 		BUG_ON(ret);
808 
809 		spin_lock(&root->node_lock);
810 		root->node = child;
811 		spin_unlock(&root->node_lock);
812 
813 		add_root_to_dirty_list(root);
814 		btrfs_tree_unlock(child);
815 		path->locks[level] = 0;
816 		path->nodes[level] = NULL;
817 		clean_tree_block(trans, root, mid);
818 		btrfs_tree_unlock(mid);
819 		/* once for the path */
820 		free_extent_buffer(mid);
821 		ret = btrfs_free_extent(trans, root, mid->start, mid->len,
822 					root->root_key.objectid,
823 					btrfs_header_generation(mid), 0, 0, 1);
824 		/* once for the root ptr */
825 		free_extent_buffer(mid);
826 		return ret;
827 	}
828 	if (btrfs_header_nritems(mid) >
829 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
830 		return 0;
831 
832 	if (btrfs_header_nritems(mid) < 2)
833 		err_on_enospc = 1;
834 
835 	left = read_node_slot(root, parent, pslot - 1);
836 	if (left) {
837 		btrfs_tree_lock(left);
838 		wret = btrfs_cow_block(trans, root, left,
839 				       parent, pslot - 1, &left);
840 		if (wret) {
841 			ret = wret;
842 			goto enospc;
843 		}
844 	}
845 	right = read_node_slot(root, parent, pslot + 1);
846 	if (right) {
847 		btrfs_tree_lock(right);
848 		wret = btrfs_cow_block(trans, root, right,
849 				       parent, pslot + 1, &right);
850 		if (wret) {
851 			ret = wret;
852 			goto enospc;
853 		}
854 	}
855 
856 	/* first, try to make some room in the middle buffer */
857 	if (left) {
858 		orig_slot += btrfs_header_nritems(left);
859 		wret = push_node_left(trans, root, left, mid, 1);
860 		if (wret < 0)
861 			ret = wret;
862 		if (btrfs_header_nritems(mid) < 2)
863 			err_on_enospc = 1;
864 	}
865 
866 	/*
867 	 * then try to empty the right most buffer into the middle
868 	 */
869 	if (right) {
870 		wret = push_node_left(trans, root, mid, right, 1);
871 		if (wret < 0 && wret != -ENOSPC)
872 			ret = wret;
873 		if (btrfs_header_nritems(right) == 0) {
874 			u64 bytenr = right->start;
875 			u64 generation = btrfs_header_generation(parent);
876 			u32 blocksize = right->len;
877 
878 			clean_tree_block(trans, root, right);
879 			btrfs_tree_unlock(right);
880 			free_extent_buffer(right);
881 			right = NULL;
882 			wret = del_ptr(trans, root, path, level + 1, pslot +
883 				       1);
884 			if (wret)
885 				ret = wret;
886 			wret = btrfs_free_extent(trans, root, bytenr,
887 						 blocksize,
888 						 btrfs_header_owner(parent),
889 						 generation, 0, 0, 1);
890 			if (wret)
891 				ret = wret;
892 		} else {
893 			struct btrfs_disk_key right_key;
894 			btrfs_node_key(right, &right_key, 0);
895 			btrfs_set_node_key(parent, &right_key, pslot + 1);
896 			btrfs_mark_buffer_dirty(parent);
897 		}
898 	}
899 	if (btrfs_header_nritems(mid) == 1) {
900 		/*
901 		 * we're not allowed to leave a node with one item in the
902 		 * tree during a delete.  A deletion from lower in the tree
903 		 * could try to delete the only pointer in this node.
904 		 * So, pull some keys from the left.
905 		 * There has to be a left pointer at this point because
906 		 * otherwise we would have pulled some pointers from the
907 		 * right
908 		 */
909 		BUG_ON(!left);
910 		wret = balance_node_right(trans, root, mid, left);
911 		if (wret < 0) {
912 			ret = wret;
913 			goto enospc;
914 		}
915 		if (wret == 1) {
916 			wret = push_node_left(trans, root, left, mid, 1);
917 			if (wret < 0)
918 				ret = wret;
919 		}
920 		BUG_ON(wret == 1);
921 	}
922 	if (btrfs_header_nritems(mid) == 0) {
923 		/* we've managed to empty the middle node, drop it */
924 		u64 root_gen = btrfs_header_generation(parent);
925 		u64 bytenr = mid->start;
926 		u32 blocksize = mid->len;
927 
928 		clean_tree_block(trans, root, mid);
929 		btrfs_tree_unlock(mid);
930 		free_extent_buffer(mid);
931 		mid = NULL;
932 		wret = del_ptr(trans, root, path, level + 1, pslot);
933 		if (wret)
934 			ret = wret;
935 		wret = btrfs_free_extent(trans, root, bytenr, blocksize,
936 					 btrfs_header_owner(parent),
937 					 root_gen, 0, 0, 1);
938 		if (wret)
939 			ret = wret;
940 	} else {
941 		/* update the parent key to reflect our changes */
942 		struct btrfs_disk_key mid_key;
943 		btrfs_node_key(mid, &mid_key, 0);
944 		btrfs_set_node_key(parent, &mid_key, pslot);
945 		btrfs_mark_buffer_dirty(parent);
946 	}
947 
948 	/* update the path */
949 	if (left) {
950 		if (btrfs_header_nritems(left) > orig_slot) {
951 			extent_buffer_get(left);
952 			/* left was locked after cow */
953 			path->nodes[level] = left;
954 			path->slots[level + 1] -= 1;
955 			path->slots[level] = orig_slot;
956 			if (mid) {
957 				btrfs_tree_unlock(mid);
958 				free_extent_buffer(mid);
959 			}
960 		} else {
961 			orig_slot -= btrfs_header_nritems(left);
962 			path->slots[level] = orig_slot;
963 		}
964 	}
965 	/* double check we haven't messed things up */
966 	check_block(root, path, level);
967 	if (orig_ptr !=
968 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
969 		BUG();
970 enospc:
971 	if (right) {
972 		btrfs_tree_unlock(right);
973 		free_extent_buffer(right);
974 	}
975 	if (left) {
976 		if (path->nodes[level] != left)
977 			btrfs_tree_unlock(left);
978 		free_extent_buffer(left);
979 	}
980 	return ret;
981 }
982 
983 /* returns zero if the push worked, non-zero otherwise */
984 static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
985 					  struct btrfs_root *root,
986 					  struct btrfs_path *path, int level)
987 {
988 	struct extent_buffer *right = NULL;
989 	struct extent_buffer *mid;
990 	struct extent_buffer *left = NULL;
991 	struct extent_buffer *parent = NULL;
992 	int ret = 0;
993 	int wret;
994 	int pslot;
995 	int orig_slot = path->slots[level];
996 	u64 orig_ptr;
997 
998 	if (level == 0)
999 		return 1;
1000 
1001 	mid = path->nodes[level];
1002 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1003 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1004 
1005 	if (level < BTRFS_MAX_LEVEL - 1)
1006 		parent = path->nodes[level + 1];
1007 	pslot = path->slots[level + 1];
1008 
1009 	if (!parent)
1010 		return 1;
1011 
1012 	left = read_node_slot(root, parent, pslot - 1);
1013 
1014 	/* first, try to make some room in the middle buffer */
1015 	if (left) {
1016 		u32 left_nr;
1017 
1018 		btrfs_tree_lock(left);
1019 		left_nr = btrfs_header_nritems(left);
1020 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1021 			wret = 1;
1022 		} else {
1023 			ret = btrfs_cow_block(trans, root, left, parent,
1024 					      pslot - 1, &left);
1025 			if (ret)
1026 				wret = 1;
1027 			else {
1028 				wret = push_node_left(trans, root,
1029 						      left, mid, 0);
1030 			}
1031 		}
1032 		if (wret < 0)
1033 			ret = wret;
1034 		if (wret == 0) {
1035 			struct btrfs_disk_key disk_key;
1036 			orig_slot += left_nr;
1037 			btrfs_node_key(mid, &disk_key, 0);
1038 			btrfs_set_node_key(parent, &disk_key, pslot);
1039 			btrfs_mark_buffer_dirty(parent);
1040 			if (btrfs_header_nritems(left) > orig_slot) {
1041 				path->nodes[level] = left;
1042 				path->slots[level + 1] -= 1;
1043 				path->slots[level] = orig_slot;
1044 				btrfs_tree_unlock(mid);
1045 				free_extent_buffer(mid);
1046 			} else {
1047 				orig_slot -=
1048 					btrfs_header_nritems(left);
1049 				path->slots[level] = orig_slot;
1050 				btrfs_tree_unlock(left);
1051 				free_extent_buffer(left);
1052 			}
1053 			return 0;
1054 		}
1055 		btrfs_tree_unlock(left);
1056 		free_extent_buffer(left);
1057 	}
1058 	right = read_node_slot(root, parent, pslot + 1);
1059 
1060 	/*
1061 	 * then try to empty the right most buffer into the middle
1062 	 */
1063 	if (right) {
1064 		u32 right_nr;
1065 		btrfs_tree_lock(right);
1066 		right_nr = btrfs_header_nritems(right);
1067 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1068 			wret = 1;
1069 		} else {
1070 			ret = btrfs_cow_block(trans, root, right,
1071 					      parent, pslot + 1,
1072 					      &right);
1073 			if (ret)
1074 				wret = 1;
1075 			else {
1076 				wret = balance_node_right(trans, root,
1077 							  right, mid);
1078 			}
1079 		}
1080 		if (wret < 0)
1081 			ret = wret;
1082 		if (wret == 0) {
1083 			struct btrfs_disk_key disk_key;
1084 
1085 			btrfs_node_key(right, &disk_key, 0);
1086 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1087 			btrfs_mark_buffer_dirty(parent);
1088 
1089 			if (btrfs_header_nritems(mid) <= orig_slot) {
1090 				path->nodes[level] = right;
1091 				path->slots[level + 1] += 1;
1092 				path->slots[level] = orig_slot -
1093 					btrfs_header_nritems(mid);
1094 				btrfs_tree_unlock(mid);
1095 				free_extent_buffer(mid);
1096 			} else {
1097 				btrfs_tree_unlock(right);
1098 				free_extent_buffer(right);
1099 			}
1100 			return 0;
1101 		}
1102 		btrfs_tree_unlock(right);
1103 		free_extent_buffer(right);
1104 	}
1105 	return 1;
1106 }
1107 
1108 /*
1109  * readahead one full node of leaves
1110  */
1111 static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
1112 			     int level, int slot, u64 objectid)
1113 {
1114 	struct extent_buffer *node;
1115 	struct btrfs_disk_key disk_key;
1116 	u32 nritems;
1117 	u64 search;
1118 	u64 lowest_read;
1119 	u64 highest_read;
1120 	u64 nread = 0;
1121 	int direction = path->reada;
1122 	struct extent_buffer *eb;
1123 	u32 nr;
1124 	u32 blocksize;
1125 	u32 nscan = 0;
1126 
1127 	if (level != 1)
1128 		return;
1129 
1130 	if (!path->nodes[level])
1131 		return;
1132 
1133 	node = path->nodes[level];
1134 
1135 	search = btrfs_node_blockptr(node, slot);
1136 	blocksize = btrfs_level_size(root, level - 1);
1137 	eb = btrfs_find_tree_block(root, search, blocksize);
1138 	if (eb) {
1139 		free_extent_buffer(eb);
1140 		return;
1141 	}
1142 
1143 	highest_read = search;
1144 	lowest_read = search;
1145 
1146 	nritems = btrfs_header_nritems(node);
1147 	nr = slot;
1148 	while(1) {
1149 		if (direction < 0) {
1150 			if (nr == 0)
1151 				break;
1152 			nr--;
1153 		} else if (direction > 0) {
1154 			nr++;
1155 			if (nr >= nritems)
1156 				break;
1157 		}
1158 		if (path->reada < 0 && objectid) {
1159 			btrfs_node_key(node, &disk_key, nr);
1160 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1161 				break;
1162 		}
1163 		search = btrfs_node_blockptr(node, nr);
1164 		if ((search >= lowest_read && search <= highest_read) ||
1165 		    (search < lowest_read && lowest_read - search <= 32768) ||
1166 		    (search > highest_read && search - highest_read <= 32768)) {
1167 			readahead_tree_block(root, search, blocksize,
1168 				     btrfs_node_ptr_generation(node, nr));
1169 			nread += blocksize;
1170 		}
1171 		nscan++;
1172 		if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
1173 			break;
1174 		if(nread > (1024 * 1024) || nscan > 128)
1175 			break;
1176 
1177 		if (search < lowest_read)
1178 			lowest_read = search;
1179 		if (search > highest_read)
1180 			highest_read = search;
1181 	}
1182 }
1183 
1184 static void unlock_up(struct btrfs_path *path, int level, int lowest_unlock)
1185 {
1186 	int i;
1187 	int skip_level = level;
1188 	int no_skips = 0;
1189 	struct extent_buffer *t;
1190 
1191 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1192 		if (!path->nodes[i])
1193 			break;
1194 		if (!path->locks[i])
1195 			break;
1196 		if (!no_skips && path->slots[i] == 0) {
1197 			skip_level = i + 1;
1198 			continue;
1199 		}
1200 		if (!no_skips && path->keep_locks) {
1201 			u32 nritems;
1202 			t = path->nodes[i];
1203 			nritems = btrfs_header_nritems(t);
1204 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1205 				skip_level = i + 1;
1206 				continue;
1207 			}
1208 		}
1209 		if (skip_level < i && i >= lowest_unlock)
1210 			no_skips = 1;
1211 
1212 		t = path->nodes[i];
1213 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1214 			btrfs_tree_unlock(t);
1215 			path->locks[i] = 0;
1216 		}
1217 	}
1218 }
1219 
1220 /*
1221  * look for key in the tree.  path is filled in with nodes along the way
1222  * if key is found, we return zero and you can find the item in the leaf
1223  * level of the path (level 0)
1224  *
1225  * If the key isn't found, the path points to the slot where it should
1226  * be inserted, and 1 is returned.  If there are other errors during the
1227  * search a negative error number is returned.
1228  *
1229  * if ins_len > 0, nodes and leaves will be split as we walk down the
1230  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1231  * possible)
1232  */
1233 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1234 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1235 		      ins_len, int cow)
1236 {
1237 	struct extent_buffer *b;
1238 	struct extent_buffer *tmp;
1239 	int slot;
1240 	int ret;
1241 	int level;
1242 	int should_reada = p->reada;
1243 	int lowest_unlock = 1;
1244 	int blocksize;
1245 	u8 lowest_level = 0;
1246 	u64 blocknr;
1247 	u64 gen;
1248 
1249 	lowest_level = p->lowest_level;
1250 	WARN_ON(lowest_level && ins_len);
1251 	WARN_ON(p->nodes[0] != NULL);
1252 	WARN_ON(cow && root == root->fs_info->extent_root &&
1253 		!mutex_is_locked(&root->fs_info->alloc_mutex));
1254 	if (ins_len < 0)
1255 		lowest_unlock = 2;
1256 again:
1257 	if (p->skip_locking)
1258 		b = btrfs_root_node(root);
1259 	else
1260 		b = btrfs_lock_root_node(root);
1261 
1262 	while (b) {
1263 		level = btrfs_header_level(b);
1264 		if (cow) {
1265 			int wret;
1266 			wret = btrfs_cow_block(trans, root, b,
1267 					       p->nodes[level + 1],
1268 					       p->slots[level + 1],
1269 					       &b);
1270 			if (wret) {
1271 				free_extent_buffer(b);
1272 				return wret;
1273 			}
1274 		}
1275 		BUG_ON(!cow && ins_len);
1276 		if (level != btrfs_header_level(b))
1277 			WARN_ON(1);
1278 		level = btrfs_header_level(b);
1279 		p->nodes[level] = b;
1280 		if (!p->skip_locking)
1281 			p->locks[level] = 1;
1282 		ret = check_block(root, p, level);
1283 		if (ret)
1284 			return -1;
1285 
1286 		ret = bin_search(b, key, level, &slot);
1287 		if (level != 0) {
1288 			if (ret && slot > 0)
1289 				slot -= 1;
1290 			p->slots[level] = slot;
1291 			if (ins_len > 0 && btrfs_header_nritems(b) >=
1292 			    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1293 				int sret = split_node(trans, root, p, level);
1294 				BUG_ON(sret > 0);
1295 				if (sret)
1296 					return sret;
1297 				b = p->nodes[level];
1298 				slot = p->slots[level];
1299 			} else if (ins_len < 0) {
1300 				int sret = balance_level(trans, root, p,
1301 							 level);
1302 				if (sret)
1303 					return sret;
1304 				b = p->nodes[level];
1305 				if (!b) {
1306 					btrfs_release_path(NULL, p);
1307 					goto again;
1308 				}
1309 				slot = p->slots[level];
1310 				BUG_ON(btrfs_header_nritems(b) == 1);
1311 			}
1312 			unlock_up(p, level, lowest_unlock);
1313 
1314 			/* this is only true while dropping a snapshot */
1315 			if (level == lowest_level) {
1316 				break;
1317 			}
1318 
1319 			blocknr = btrfs_node_blockptr(b, slot);
1320 			gen = btrfs_node_ptr_generation(b, slot);
1321 			blocksize = btrfs_level_size(root, level - 1);
1322 
1323 			tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1324 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1325 				b = tmp;
1326 			} else {
1327 				/*
1328 				 * reduce lock contention at high levels
1329 				 * of the btree by dropping locks before
1330 				 * we read.
1331 				 */
1332 				if (level > 1) {
1333 					btrfs_release_path(NULL, p);
1334 					if (tmp)
1335 						free_extent_buffer(tmp);
1336 					if (should_reada)
1337 						reada_for_search(root, p,
1338 								 level, slot,
1339 								 key->objectid);
1340 
1341 					tmp = read_tree_block(root, blocknr,
1342 							 blocksize, gen);
1343 					if (tmp)
1344 						free_extent_buffer(tmp);
1345 					goto again;
1346 				} else {
1347 					if (tmp)
1348 						free_extent_buffer(tmp);
1349 					if (should_reada)
1350 						reada_for_search(root, p,
1351 								 level, slot,
1352 								 key->objectid);
1353 					b = read_node_slot(root, b, slot);
1354 				}
1355 			}
1356 			if (!p->skip_locking)
1357 				btrfs_tree_lock(b);
1358 		} else {
1359 			p->slots[level] = slot;
1360 			if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
1361 			    sizeof(struct btrfs_item) + ins_len) {
1362 				int sret = split_leaf(trans, root, key,
1363 						      p, ins_len, ret == 0);
1364 				BUG_ON(sret > 0);
1365 				if (sret)
1366 					return sret;
1367 			}
1368 			unlock_up(p, level, lowest_unlock);
1369 			return ret;
1370 		}
1371 	}
1372 	return 1;
1373 }
1374 
1375 /*
1376  * adjust the pointers going up the tree, starting at level
1377  * making sure the right key of each node is points to 'key'.
1378  * This is used after shifting pointers to the left, so it stops
1379  * fixing up pointers when a given leaf/node is not in slot 0 of the
1380  * higher levels
1381  *
1382  * If this fails to write a tree block, it returns -1, but continues
1383  * fixing up the blocks in ram so the tree is consistent.
1384  */
1385 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1386 			  struct btrfs_root *root, struct btrfs_path *path,
1387 			  struct btrfs_disk_key *key, int level)
1388 {
1389 	int i;
1390 	int ret = 0;
1391 	struct extent_buffer *t;
1392 
1393 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1394 		int tslot = path->slots[i];
1395 		if (!path->nodes[i])
1396 			break;
1397 		t = path->nodes[i];
1398 		btrfs_set_node_key(t, key, tslot);
1399 		btrfs_mark_buffer_dirty(path->nodes[i]);
1400 		if (tslot != 0)
1401 			break;
1402 	}
1403 	return ret;
1404 }
1405 
1406 /*
1407  * try to push data from one node into the next node left in the
1408  * tree.
1409  *
1410  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1411  * error, and > 0 if there was no room in the left hand block.
1412  */
1413 static int push_node_left(struct btrfs_trans_handle *trans,
1414 			  struct btrfs_root *root, struct extent_buffer *dst,
1415 			  struct extent_buffer *src, int empty)
1416 {
1417 	int push_items = 0;
1418 	int src_nritems;
1419 	int dst_nritems;
1420 	int ret = 0;
1421 
1422 	src_nritems = btrfs_header_nritems(src);
1423 	dst_nritems = btrfs_header_nritems(dst);
1424 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1425 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1426 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1427 
1428 	if (!empty && src_nritems <= 8)
1429 		return 1;
1430 
1431 	if (push_items <= 0) {
1432 		return 1;
1433 	}
1434 
1435 	if (empty) {
1436 		push_items = min(src_nritems, push_items);
1437 		if (push_items < src_nritems) {
1438 			/* leave at least 8 pointers in the node if
1439 			 * we aren't going to empty it
1440 			 */
1441 			if (src_nritems - push_items < 8) {
1442 				if (push_items <= 8)
1443 					return 1;
1444 				push_items -= 8;
1445 			}
1446 		}
1447 	} else
1448 		push_items = min(src_nritems - 8, push_items);
1449 
1450 	copy_extent_buffer(dst, src,
1451 			   btrfs_node_key_ptr_offset(dst_nritems),
1452 			   btrfs_node_key_ptr_offset(0),
1453 		           push_items * sizeof(struct btrfs_key_ptr));
1454 
1455 	if (push_items < src_nritems) {
1456 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1457 				      btrfs_node_key_ptr_offset(push_items),
1458 				      (src_nritems - push_items) *
1459 				      sizeof(struct btrfs_key_ptr));
1460 	}
1461 	btrfs_set_header_nritems(src, src_nritems - push_items);
1462 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1463 	btrfs_mark_buffer_dirty(src);
1464 	btrfs_mark_buffer_dirty(dst);
1465 	return ret;
1466 }
1467 
1468 /*
1469  * try to push data from one node into the next node right in the
1470  * tree.
1471  *
1472  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1473  * error, and > 0 if there was no room in the right hand block.
1474  *
1475  * this will  only push up to 1/2 the contents of the left node over
1476  */
1477 static int balance_node_right(struct btrfs_trans_handle *trans,
1478 			      struct btrfs_root *root,
1479 			      struct extent_buffer *dst,
1480 			      struct extent_buffer *src)
1481 {
1482 	int push_items = 0;
1483 	int max_push;
1484 	int src_nritems;
1485 	int dst_nritems;
1486 	int ret = 0;
1487 
1488 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1489 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1490 
1491 	src_nritems = btrfs_header_nritems(src);
1492 	dst_nritems = btrfs_header_nritems(dst);
1493 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1494 	if (push_items <= 0) {
1495 		return 1;
1496 	}
1497 
1498 	if (src_nritems < 4) {
1499 		return 1;
1500 	}
1501 
1502 	max_push = src_nritems / 2 + 1;
1503 	/* don't try to empty the node */
1504 	if (max_push >= src_nritems) {
1505 		return 1;
1506 	}
1507 
1508 	if (max_push < push_items)
1509 		push_items = max_push;
1510 
1511 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1512 				      btrfs_node_key_ptr_offset(0),
1513 				      (dst_nritems) *
1514 				      sizeof(struct btrfs_key_ptr));
1515 
1516 	copy_extent_buffer(dst, src,
1517 			   btrfs_node_key_ptr_offset(0),
1518 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
1519 		           push_items * sizeof(struct btrfs_key_ptr));
1520 
1521 	btrfs_set_header_nritems(src, src_nritems - push_items);
1522 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1523 
1524 	btrfs_mark_buffer_dirty(src);
1525 	btrfs_mark_buffer_dirty(dst);
1526 	return ret;
1527 }
1528 
1529 /*
1530  * helper function to insert a new root level in the tree.
1531  * A new node is allocated, and a single item is inserted to
1532  * point to the existing root
1533  *
1534  * returns zero on success or < 0 on failure.
1535  */
1536 static int noinline insert_new_root(struct btrfs_trans_handle *trans,
1537 			   struct btrfs_root *root,
1538 			   struct btrfs_path *path, int level)
1539 {
1540 	u64 root_gen;
1541 	u64 lower_gen;
1542 	struct extent_buffer *lower;
1543 	struct extent_buffer *c;
1544 	struct extent_buffer *old;
1545 	struct btrfs_disk_key lower_key;
1546 
1547 	BUG_ON(path->nodes[level]);
1548 	BUG_ON(path->nodes[level-1] != root->node);
1549 
1550 	if (root->ref_cows)
1551 		root_gen = trans->transid;
1552 	else
1553 		root_gen = 0;
1554 
1555 	lower = path->nodes[level-1];
1556 	if (level == 1)
1557 		btrfs_item_key(lower, &lower_key, 0);
1558 	else
1559 		btrfs_node_key(lower, &lower_key, 0);
1560 
1561 	c = btrfs_alloc_free_block(trans, root, root->nodesize,
1562 				   root->root_key.objectid,
1563 				   root_gen, lower_key.objectid, level,
1564 				   root->node->start, 0);
1565 	if (IS_ERR(c))
1566 		return PTR_ERR(c);
1567 
1568 	memset_extent_buffer(c, 0, 0, root->nodesize);
1569 	btrfs_set_header_nritems(c, 1);
1570 	btrfs_set_header_level(c, level);
1571 	btrfs_set_header_bytenr(c, c->start);
1572 	btrfs_set_header_generation(c, trans->transid);
1573 	btrfs_set_header_owner(c, root->root_key.objectid);
1574 
1575 	write_extent_buffer(c, root->fs_info->fsid,
1576 			    (unsigned long)btrfs_header_fsid(c),
1577 			    BTRFS_FSID_SIZE);
1578 
1579 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1580 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
1581 			    BTRFS_UUID_SIZE);
1582 
1583 	btrfs_set_node_key(c, &lower_key, 0);
1584 	btrfs_set_node_blockptr(c, 0, lower->start);
1585 	lower_gen = btrfs_header_generation(lower);
1586 	WARN_ON(lower_gen == 0);
1587 
1588 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
1589 
1590 	btrfs_mark_buffer_dirty(c);
1591 
1592 	spin_lock(&root->node_lock);
1593 	old = root->node;
1594 	root->node = c;
1595 	spin_unlock(&root->node_lock);
1596 
1597 	/* the super has an extra ref to root->node */
1598 	free_extent_buffer(old);
1599 
1600 	add_root_to_dirty_list(root);
1601 	extent_buffer_get(c);
1602 	path->nodes[level] = c;
1603 	path->locks[level] = 1;
1604 	path->slots[level] = 0;
1605 
1606 	if (root->ref_cows && lower_gen != trans->transid) {
1607 		struct btrfs_path *back_path = btrfs_alloc_path();
1608 		int ret;
1609 		mutex_lock(&root->fs_info->alloc_mutex);
1610 		ret = btrfs_insert_extent_backref(trans,
1611 						  root->fs_info->extent_root,
1612 						  path, lower->start,
1613 						  root->root_key.objectid,
1614 						  trans->transid, 0, 0);
1615 		BUG_ON(ret);
1616 		mutex_unlock(&root->fs_info->alloc_mutex);
1617 		btrfs_free_path(back_path);
1618 	}
1619 	return 0;
1620 }
1621 
1622 /*
1623  * worker function to insert a single pointer in a node.
1624  * the node should have enough room for the pointer already
1625  *
1626  * slot and level indicate where you want the key to go, and
1627  * blocknr is the block the key points to.
1628  *
1629  * returns zero on success and < 0 on any error
1630  */
1631 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1632 		      *root, struct btrfs_path *path, struct btrfs_disk_key
1633 		      *key, u64 bytenr, int slot, int level)
1634 {
1635 	struct extent_buffer *lower;
1636 	int nritems;
1637 
1638 	BUG_ON(!path->nodes[level]);
1639 	lower = path->nodes[level];
1640 	nritems = btrfs_header_nritems(lower);
1641 	if (slot > nritems)
1642 		BUG();
1643 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1644 		BUG();
1645 	if (slot != nritems) {
1646 		memmove_extent_buffer(lower,
1647 			      btrfs_node_key_ptr_offset(slot + 1),
1648 			      btrfs_node_key_ptr_offset(slot),
1649 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
1650 	}
1651 	btrfs_set_node_key(lower, key, slot);
1652 	btrfs_set_node_blockptr(lower, slot, bytenr);
1653 	WARN_ON(trans->transid == 0);
1654 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
1655 	btrfs_set_header_nritems(lower, nritems + 1);
1656 	btrfs_mark_buffer_dirty(lower);
1657 	return 0;
1658 }
1659 
1660 /*
1661  * split the node at the specified level in path in two.
1662  * The path is corrected to point to the appropriate node after the split
1663  *
1664  * Before splitting this tries to make some room in the node by pushing
1665  * left and right, if either one works, it returns right away.
1666  *
1667  * returns 0 on success and < 0 on failure
1668  */
1669 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1670 		      *root, struct btrfs_path *path, int level)
1671 {
1672 	u64 root_gen;
1673 	struct extent_buffer *c;
1674 	struct extent_buffer *split;
1675 	struct btrfs_disk_key disk_key;
1676 	int mid;
1677 	int ret;
1678 	int wret;
1679 	u32 c_nritems;
1680 
1681 	c = path->nodes[level];
1682 	WARN_ON(btrfs_header_generation(c) != trans->transid);
1683 	if (c == root->node) {
1684 		/* trying to split the root, lets make a new one */
1685 		ret = insert_new_root(trans, root, path, level + 1);
1686 		if (ret)
1687 			return ret;
1688 	} else {
1689 		ret = push_nodes_for_insert(trans, root, path, level);
1690 		c = path->nodes[level];
1691 		if (!ret && btrfs_header_nritems(c) <
1692 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
1693 			return 0;
1694 		if (ret < 0)
1695 			return ret;
1696 	}
1697 
1698 	c_nritems = btrfs_header_nritems(c);
1699 	if (root->ref_cows)
1700 		root_gen = trans->transid;
1701 	else
1702 		root_gen = 0;
1703 
1704 	btrfs_node_key(c, &disk_key, 0);
1705 	split = btrfs_alloc_free_block(trans, root, root->nodesize,
1706 					 root->root_key.objectid,
1707 					 root_gen,
1708 					 btrfs_disk_key_objectid(&disk_key),
1709 					 level, c->start, 0);
1710 	if (IS_ERR(split))
1711 		return PTR_ERR(split);
1712 
1713 	btrfs_set_header_flags(split, btrfs_header_flags(c));
1714 	btrfs_set_header_level(split, btrfs_header_level(c));
1715 	btrfs_set_header_bytenr(split, split->start);
1716 	btrfs_set_header_generation(split, trans->transid);
1717 	btrfs_set_header_owner(split, root->root_key.objectid);
1718 	btrfs_set_header_flags(split, 0);
1719 	write_extent_buffer(split, root->fs_info->fsid,
1720 			    (unsigned long)btrfs_header_fsid(split),
1721 			    BTRFS_FSID_SIZE);
1722 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
1723 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
1724 			    BTRFS_UUID_SIZE);
1725 
1726 	mid = (c_nritems + 1) / 2;
1727 
1728 	copy_extent_buffer(split, c,
1729 			   btrfs_node_key_ptr_offset(0),
1730 			   btrfs_node_key_ptr_offset(mid),
1731 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1732 	btrfs_set_header_nritems(split, c_nritems - mid);
1733 	btrfs_set_header_nritems(c, mid);
1734 	ret = 0;
1735 
1736 	btrfs_mark_buffer_dirty(c);
1737 	btrfs_mark_buffer_dirty(split);
1738 
1739 	btrfs_node_key(split, &disk_key, 0);
1740 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
1741 			  path->slots[level + 1] + 1,
1742 			  level + 1);
1743 	if (wret)
1744 		ret = wret;
1745 
1746 	if (path->slots[level] >= mid) {
1747 		path->slots[level] -= mid;
1748 		btrfs_tree_unlock(c);
1749 		free_extent_buffer(c);
1750 		path->nodes[level] = split;
1751 		path->slots[level + 1] += 1;
1752 	} else {
1753 		btrfs_tree_unlock(split);
1754 		free_extent_buffer(split);
1755 	}
1756 	return ret;
1757 }
1758 
1759 /*
1760  * how many bytes are required to store the items in a leaf.  start
1761  * and nr indicate which items in the leaf to check.  This totals up the
1762  * space used both by the item structs and the item data
1763  */
1764 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
1765 {
1766 	int data_len;
1767 	int nritems = btrfs_header_nritems(l);
1768 	int end = min(nritems, start + nr) - 1;
1769 
1770 	if (!nr)
1771 		return 0;
1772 	data_len = btrfs_item_end_nr(l, start);
1773 	data_len = data_len - btrfs_item_offset_nr(l, end);
1774 	data_len += sizeof(struct btrfs_item) * nr;
1775 	WARN_ON(data_len < 0);
1776 	return data_len;
1777 }
1778 
1779 /*
1780  * The space between the end of the leaf items and
1781  * the start of the leaf data.  IOW, how much room
1782  * the leaf has left for both items and data
1783  */
1784 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
1785 {
1786 	int nritems = btrfs_header_nritems(leaf);
1787 	int ret;
1788 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1789 	if (ret < 0) {
1790 		printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
1791 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
1792 		       leaf_space_used(leaf, 0, nritems), nritems);
1793 	}
1794 	return ret;
1795 }
1796 
1797 /*
1798  * push some data in the path leaf to the right, trying to free up at
1799  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1800  *
1801  * returns 1 if the push failed because the other node didn't have enough
1802  * room, 0 if everything worked out and < 0 if there were major errors.
1803  */
1804 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1805 			   *root, struct btrfs_path *path, int data_size,
1806 			   int empty)
1807 {
1808 	struct extent_buffer *left = path->nodes[0];
1809 	struct extent_buffer *right;
1810 	struct extent_buffer *upper;
1811 	struct btrfs_disk_key disk_key;
1812 	int slot;
1813 	u32 i;
1814 	int free_space;
1815 	int push_space = 0;
1816 	int push_items = 0;
1817 	struct btrfs_item *item;
1818 	u32 left_nritems;
1819 	u32 nr;
1820 	u32 right_nritems;
1821 	u32 data_end;
1822 	u32 this_item_size;
1823 	int ret;
1824 
1825 	slot = path->slots[1];
1826 	if (!path->nodes[1]) {
1827 		return 1;
1828 	}
1829 	upper = path->nodes[1];
1830 	if (slot >= btrfs_header_nritems(upper) - 1)
1831 		return 1;
1832 
1833 	WARN_ON(!btrfs_tree_locked(path->nodes[1]));
1834 
1835 	right = read_node_slot(root, upper, slot + 1);
1836 	btrfs_tree_lock(right);
1837 	free_space = btrfs_leaf_free_space(root, right);
1838 	if (free_space < data_size + sizeof(struct btrfs_item))
1839 		goto out_unlock;
1840 
1841 	/* cow and double check */
1842 	ret = btrfs_cow_block(trans, root, right, upper,
1843 			      slot + 1, &right);
1844 	if (ret)
1845 		goto out_unlock;
1846 
1847 	free_space = btrfs_leaf_free_space(root, right);
1848 	if (free_space < data_size + sizeof(struct btrfs_item))
1849 		goto out_unlock;
1850 
1851 	left_nritems = btrfs_header_nritems(left);
1852 	if (left_nritems == 0)
1853 		goto out_unlock;
1854 
1855 	if (empty)
1856 		nr = 0;
1857 	else
1858 		nr = 1;
1859 
1860 	i = left_nritems - 1;
1861 	while (i >= nr) {
1862 		item = btrfs_item_nr(left, i);
1863 
1864 		if (path->slots[0] == i)
1865 			push_space += data_size + sizeof(*item);
1866 
1867 		if (!left->map_token) {
1868 			map_extent_buffer(left, (unsigned long)item,
1869 					sizeof(struct btrfs_item),
1870 					&left->map_token, &left->kaddr,
1871 					&left->map_start, &left->map_len,
1872 					KM_USER1);
1873 		}
1874 
1875 		this_item_size = btrfs_item_size(left, item);
1876 		if (this_item_size + sizeof(*item) + push_space > free_space)
1877 			break;
1878 		push_items++;
1879 		push_space += this_item_size + sizeof(*item);
1880 		if (i == 0)
1881 			break;
1882 		i--;
1883 	}
1884 	if (left->map_token) {
1885 		unmap_extent_buffer(left, left->map_token, KM_USER1);
1886 		left->map_token = NULL;
1887 	}
1888 
1889 	if (push_items == 0)
1890 		goto out_unlock;
1891 
1892 	if (!empty && push_items == left_nritems)
1893 		WARN_ON(1);
1894 
1895 	/* push left to right */
1896 	right_nritems = btrfs_header_nritems(right);
1897 
1898 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
1899 	push_space -= leaf_data_end(root, left);
1900 
1901 	/* make room in the right data area */
1902 	data_end = leaf_data_end(root, right);
1903 	memmove_extent_buffer(right,
1904 			      btrfs_leaf_data(right) + data_end - push_space,
1905 			      btrfs_leaf_data(right) + data_end,
1906 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
1907 
1908 	/* copy from the left data area */
1909 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
1910 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
1911 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
1912 		     push_space);
1913 
1914 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
1915 			      btrfs_item_nr_offset(0),
1916 			      right_nritems * sizeof(struct btrfs_item));
1917 
1918 	/* copy the items from left to right */
1919 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
1920 		   btrfs_item_nr_offset(left_nritems - push_items),
1921 		   push_items * sizeof(struct btrfs_item));
1922 
1923 	/* update the item pointers */
1924 	right_nritems += push_items;
1925 	btrfs_set_header_nritems(right, right_nritems);
1926 	push_space = BTRFS_LEAF_DATA_SIZE(root);
1927 	for (i = 0; i < right_nritems; i++) {
1928 		item = btrfs_item_nr(right, i);
1929 		if (!right->map_token) {
1930 			map_extent_buffer(right, (unsigned long)item,
1931 					sizeof(struct btrfs_item),
1932 					&right->map_token, &right->kaddr,
1933 					&right->map_start, &right->map_len,
1934 					KM_USER1);
1935 		}
1936 		push_space -= btrfs_item_size(right, item);
1937 		btrfs_set_item_offset(right, item, push_space);
1938 	}
1939 
1940 	if (right->map_token) {
1941 		unmap_extent_buffer(right, right->map_token, KM_USER1);
1942 		right->map_token = NULL;
1943 	}
1944 	left_nritems -= push_items;
1945 	btrfs_set_header_nritems(left, left_nritems);
1946 
1947 	if (left_nritems)
1948 		btrfs_mark_buffer_dirty(left);
1949 	btrfs_mark_buffer_dirty(right);
1950 
1951 	btrfs_item_key(right, &disk_key, 0);
1952 	btrfs_set_node_key(upper, &disk_key, slot + 1);
1953 	btrfs_mark_buffer_dirty(upper);
1954 
1955 	/* then fixup the leaf pointer in the path */
1956 	if (path->slots[0] >= left_nritems) {
1957 		path->slots[0] -= left_nritems;
1958 		if (btrfs_header_nritems(path->nodes[0]) == 0)
1959 			clean_tree_block(trans, root, path->nodes[0]);
1960 		btrfs_tree_unlock(path->nodes[0]);
1961 		free_extent_buffer(path->nodes[0]);
1962 		path->nodes[0] = right;
1963 		path->slots[1] += 1;
1964 	} else {
1965 		btrfs_tree_unlock(right);
1966 		free_extent_buffer(right);
1967 	}
1968 	return 0;
1969 
1970 out_unlock:
1971 	btrfs_tree_unlock(right);
1972 	free_extent_buffer(right);
1973 	return 1;
1974 }
1975 
1976 /*
1977  * push some data in the path leaf to the left, trying to free up at
1978  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1979  */
1980 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1981 			  *root, struct btrfs_path *path, int data_size,
1982 			  int empty)
1983 {
1984 	struct btrfs_disk_key disk_key;
1985 	struct extent_buffer *right = path->nodes[0];
1986 	struct extent_buffer *left;
1987 	int slot;
1988 	int i;
1989 	int free_space;
1990 	int push_space = 0;
1991 	int push_items = 0;
1992 	struct btrfs_item *item;
1993 	u32 old_left_nritems;
1994 	u32 right_nritems;
1995 	u32 nr;
1996 	int ret = 0;
1997 	int wret;
1998 	u32 this_item_size;
1999 	u32 old_left_item_size;
2000 
2001 	slot = path->slots[1];
2002 	if (slot == 0)
2003 		return 1;
2004 	if (!path->nodes[1])
2005 		return 1;
2006 
2007 	right_nritems = btrfs_header_nritems(right);
2008 	if (right_nritems == 0) {
2009 		return 1;
2010 	}
2011 
2012 	WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2013 
2014 	left = read_node_slot(root, path->nodes[1], slot - 1);
2015 	btrfs_tree_lock(left);
2016 	free_space = btrfs_leaf_free_space(root, left);
2017 	if (free_space < data_size + sizeof(struct btrfs_item)) {
2018 		ret = 1;
2019 		goto out;
2020 	}
2021 
2022 	/* cow and double check */
2023 	ret = btrfs_cow_block(trans, root, left,
2024 			      path->nodes[1], slot - 1, &left);
2025 	if (ret) {
2026 		/* we hit -ENOSPC, but it isn't fatal here */
2027 		ret = 1;
2028 		goto out;
2029 	}
2030 
2031 	free_space = btrfs_leaf_free_space(root, left);
2032 	if (free_space < data_size + sizeof(struct btrfs_item)) {
2033 		ret = 1;
2034 		goto out;
2035 	}
2036 
2037 	if (empty)
2038 		nr = right_nritems;
2039 	else
2040 		nr = right_nritems - 1;
2041 
2042 	for (i = 0; i < nr; i++) {
2043 		item = btrfs_item_nr(right, i);
2044 		if (!right->map_token) {
2045 			map_extent_buffer(right, (unsigned long)item,
2046 					sizeof(struct btrfs_item),
2047 					&right->map_token, &right->kaddr,
2048 					&right->map_start, &right->map_len,
2049 					KM_USER1);
2050 		}
2051 
2052 		if (path->slots[0] == i)
2053 			push_space += data_size + sizeof(*item);
2054 
2055 		this_item_size = btrfs_item_size(right, item);
2056 		if (this_item_size + sizeof(*item) + push_space > free_space)
2057 			break;
2058 
2059 		push_items++;
2060 		push_space += this_item_size + sizeof(*item);
2061 	}
2062 
2063 	if (right->map_token) {
2064 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2065 		right->map_token = NULL;
2066 	}
2067 
2068 	if (push_items == 0) {
2069 		ret = 1;
2070 		goto out;
2071 	}
2072 	if (!empty && push_items == btrfs_header_nritems(right))
2073 		WARN_ON(1);
2074 
2075 	/* push data from right to left */
2076 	copy_extent_buffer(left, right,
2077 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2078 			   btrfs_item_nr_offset(0),
2079 			   push_items * sizeof(struct btrfs_item));
2080 
2081 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2082 		     btrfs_item_offset_nr(right, push_items -1);
2083 
2084 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2085 		     leaf_data_end(root, left) - push_space,
2086 		     btrfs_leaf_data(right) +
2087 		     btrfs_item_offset_nr(right, push_items - 1),
2088 		     push_space);
2089 	old_left_nritems = btrfs_header_nritems(left);
2090 	BUG_ON(old_left_nritems < 0);
2091 
2092 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2093 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2094 		u32 ioff;
2095 
2096 		item = btrfs_item_nr(left, i);
2097 		if (!left->map_token) {
2098 			map_extent_buffer(left, (unsigned long)item,
2099 					sizeof(struct btrfs_item),
2100 					&left->map_token, &left->kaddr,
2101 					&left->map_start, &left->map_len,
2102 					KM_USER1);
2103 		}
2104 
2105 		ioff = btrfs_item_offset(left, item);
2106 		btrfs_set_item_offset(left, item,
2107 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2108 	}
2109 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2110 	if (left->map_token) {
2111 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2112 		left->map_token = NULL;
2113 	}
2114 
2115 	/* fixup right node */
2116 	if (push_items > right_nritems) {
2117 		printk("push items %d nr %u\n", push_items, right_nritems);
2118 		WARN_ON(1);
2119 	}
2120 
2121 	if (push_items < right_nritems) {
2122 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2123 						  leaf_data_end(root, right);
2124 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2125 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2126 				      btrfs_leaf_data(right) +
2127 				      leaf_data_end(root, right), push_space);
2128 
2129 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2130 			      btrfs_item_nr_offset(push_items),
2131 			     (btrfs_header_nritems(right) - push_items) *
2132 			     sizeof(struct btrfs_item));
2133 	}
2134 	right_nritems -= push_items;
2135 	btrfs_set_header_nritems(right, right_nritems);
2136 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2137 	for (i = 0; i < right_nritems; i++) {
2138 		item = btrfs_item_nr(right, i);
2139 
2140 		if (!right->map_token) {
2141 			map_extent_buffer(right, (unsigned long)item,
2142 					sizeof(struct btrfs_item),
2143 					&right->map_token, &right->kaddr,
2144 					&right->map_start, &right->map_len,
2145 					KM_USER1);
2146 		}
2147 
2148 		push_space = push_space - btrfs_item_size(right, item);
2149 		btrfs_set_item_offset(right, item, push_space);
2150 	}
2151 	if (right->map_token) {
2152 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2153 		right->map_token = NULL;
2154 	}
2155 
2156 	btrfs_mark_buffer_dirty(left);
2157 	if (right_nritems)
2158 		btrfs_mark_buffer_dirty(right);
2159 
2160 	btrfs_item_key(right, &disk_key, 0);
2161 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2162 	if (wret)
2163 		ret = wret;
2164 
2165 	/* then fixup the leaf pointer in the path */
2166 	if (path->slots[0] < push_items) {
2167 		path->slots[0] += old_left_nritems;
2168 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2169 			clean_tree_block(trans, root, path->nodes[0]);
2170 		btrfs_tree_unlock(path->nodes[0]);
2171 		free_extent_buffer(path->nodes[0]);
2172 		path->nodes[0] = left;
2173 		path->slots[1] -= 1;
2174 	} else {
2175 		btrfs_tree_unlock(left);
2176 		free_extent_buffer(left);
2177 		path->slots[0] -= push_items;
2178 	}
2179 	BUG_ON(path->slots[0] < 0);
2180 	return ret;
2181 out:
2182 	btrfs_tree_unlock(left);
2183 	free_extent_buffer(left);
2184 	return ret;
2185 }
2186 
2187 /*
2188  * split the path's leaf in two, making sure there is at least data_size
2189  * available for the resulting leaf level of the path.
2190  *
2191  * returns 0 if all went well and < 0 on failure.
2192  */
2193 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
2194 		      *root, struct btrfs_key *ins_key,
2195 		      struct btrfs_path *path, int data_size, int extend)
2196 {
2197 	u64 root_gen;
2198 	struct extent_buffer *l;
2199 	u32 nritems;
2200 	int mid;
2201 	int slot;
2202 	struct extent_buffer *right;
2203 	int space_needed = data_size + sizeof(struct btrfs_item);
2204 	int data_copy_size;
2205 	int rt_data_off;
2206 	int i;
2207 	int ret = 0;
2208 	int wret;
2209 	int double_split;
2210 	int num_doubles = 0;
2211 	struct btrfs_disk_key disk_key;
2212 
2213 	if (extend)
2214 		space_needed = data_size;
2215 
2216 	if (root->ref_cows)
2217 		root_gen = trans->transid;
2218 	else
2219 		root_gen = 0;
2220 
2221 	/* first try to make some room by pushing left and right */
2222 	if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
2223 		wret = push_leaf_right(trans, root, path, data_size, 0);
2224 		if (wret < 0) {
2225 			return wret;
2226 		}
2227 		if (wret) {
2228 			wret = push_leaf_left(trans, root, path, data_size, 0);
2229 			if (wret < 0)
2230 				return wret;
2231 		}
2232 		l = path->nodes[0];
2233 
2234 		/* did the pushes work? */
2235 		if (btrfs_leaf_free_space(root, l) >= space_needed)
2236 			return 0;
2237 	}
2238 
2239 	if (!path->nodes[1]) {
2240 		ret = insert_new_root(trans, root, path, 1);
2241 		if (ret)
2242 			return ret;
2243 	}
2244 again:
2245 	double_split = 0;
2246 	l = path->nodes[0];
2247 	slot = path->slots[0];
2248 	nritems = btrfs_header_nritems(l);
2249 	mid = (nritems + 1)/ 2;
2250 
2251 	btrfs_item_key(l, &disk_key, 0);
2252 
2253 	right = btrfs_alloc_free_block(trans, root, root->leafsize,
2254 					 root->root_key.objectid,
2255 					 root_gen, disk_key.objectid, 0,
2256 					 l->start, 0);
2257 	if (IS_ERR(right)) {
2258 		BUG_ON(1);
2259 		return PTR_ERR(right);
2260 	}
2261 
2262 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2263 	btrfs_set_header_bytenr(right, right->start);
2264 	btrfs_set_header_generation(right, trans->transid);
2265 	btrfs_set_header_owner(right, root->root_key.objectid);
2266 	btrfs_set_header_level(right, 0);
2267 	write_extent_buffer(right, root->fs_info->fsid,
2268 			    (unsigned long)btrfs_header_fsid(right),
2269 			    BTRFS_FSID_SIZE);
2270 
2271 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2272 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2273 			    BTRFS_UUID_SIZE);
2274 	if (mid <= slot) {
2275 		if (nritems == 1 ||
2276 		    leaf_space_used(l, mid, nritems - mid) + space_needed >
2277 			BTRFS_LEAF_DATA_SIZE(root)) {
2278 			if (slot >= nritems) {
2279 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2280 				btrfs_set_header_nritems(right, 0);
2281 				wret = insert_ptr(trans, root, path,
2282 						  &disk_key, right->start,
2283 						  path->slots[1] + 1, 1);
2284 				if (wret)
2285 					ret = wret;
2286 
2287 				btrfs_tree_unlock(path->nodes[0]);
2288 				free_extent_buffer(path->nodes[0]);
2289 				path->nodes[0] = right;
2290 				path->slots[0] = 0;
2291 				path->slots[1] += 1;
2292 				btrfs_mark_buffer_dirty(right);
2293 				return ret;
2294 			}
2295 			mid = slot;
2296 			if (mid != nritems &&
2297 			    leaf_space_used(l, mid, nritems - mid) +
2298 			    space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
2299 				double_split = 1;
2300 			}
2301 		}
2302 	} else {
2303 		if (leaf_space_used(l, 0, mid + 1) + space_needed >
2304 			BTRFS_LEAF_DATA_SIZE(root)) {
2305 			if (!extend && slot == 0) {
2306 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2307 				btrfs_set_header_nritems(right, 0);
2308 				wret = insert_ptr(trans, root, path,
2309 						  &disk_key,
2310 						  right->start,
2311 						  path->slots[1], 1);
2312 				if (wret)
2313 					ret = wret;
2314 				btrfs_tree_unlock(path->nodes[0]);
2315 				free_extent_buffer(path->nodes[0]);
2316 				path->nodes[0] = right;
2317 				path->slots[0] = 0;
2318 				if (path->slots[1] == 0) {
2319 					wret = fixup_low_keys(trans, root,
2320 					           path, &disk_key, 1);
2321 					if (wret)
2322 						ret = wret;
2323 				}
2324 				btrfs_mark_buffer_dirty(right);
2325 				return ret;
2326 			} else if (extend && slot == 0) {
2327 				mid = 1;
2328 			} else {
2329 				mid = slot;
2330 				if (mid != nritems &&
2331 				    leaf_space_used(l, mid, nritems - mid) +
2332 				    space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
2333 					double_split = 1;
2334 				}
2335 			}
2336 		}
2337 	}
2338 	nritems = nritems - mid;
2339 	btrfs_set_header_nritems(right, nritems);
2340 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2341 
2342 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2343 			   btrfs_item_nr_offset(mid),
2344 			   nritems * sizeof(struct btrfs_item));
2345 
2346 	copy_extent_buffer(right, l,
2347 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2348 		     data_copy_size, btrfs_leaf_data(l) +
2349 		     leaf_data_end(root, l), data_copy_size);
2350 
2351 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2352 		      btrfs_item_end_nr(l, mid);
2353 
2354 	for (i = 0; i < nritems; i++) {
2355 		struct btrfs_item *item = btrfs_item_nr(right, i);
2356 		u32 ioff;
2357 
2358 		if (!right->map_token) {
2359 			map_extent_buffer(right, (unsigned long)item,
2360 					sizeof(struct btrfs_item),
2361 					&right->map_token, &right->kaddr,
2362 					&right->map_start, &right->map_len,
2363 					KM_USER1);
2364 		}
2365 
2366 		ioff = btrfs_item_offset(right, item);
2367 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2368 	}
2369 
2370 	if (right->map_token) {
2371 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2372 		right->map_token = NULL;
2373 	}
2374 
2375 	btrfs_set_header_nritems(l, mid);
2376 	ret = 0;
2377 	btrfs_item_key(right, &disk_key, 0);
2378 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2379 			  path->slots[1] + 1, 1);
2380 	if (wret)
2381 		ret = wret;
2382 
2383 	btrfs_mark_buffer_dirty(right);
2384 	btrfs_mark_buffer_dirty(l);
2385 	BUG_ON(path->slots[0] != slot);
2386 
2387 	if (mid <= slot) {
2388 		btrfs_tree_unlock(path->nodes[0]);
2389 		free_extent_buffer(path->nodes[0]);
2390 		path->nodes[0] = right;
2391 		path->slots[0] -= mid;
2392 		path->slots[1] += 1;
2393 	} else {
2394 		btrfs_tree_unlock(right);
2395 		free_extent_buffer(right);
2396 	}
2397 
2398 	BUG_ON(path->slots[0] < 0);
2399 
2400 	if (double_split) {
2401 		BUG_ON(num_doubles != 0);
2402 		num_doubles++;
2403 		goto again;
2404 	}
2405 	return ret;
2406 }
2407 
2408 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
2409 			struct btrfs_root *root,
2410 			struct btrfs_path *path,
2411 			u32 new_size, int from_end)
2412 {
2413 	int ret = 0;
2414 	int slot;
2415 	int slot_orig;
2416 	struct extent_buffer *leaf;
2417 	struct btrfs_item *item;
2418 	u32 nritems;
2419 	unsigned int data_end;
2420 	unsigned int old_data_start;
2421 	unsigned int old_size;
2422 	unsigned int size_diff;
2423 	int i;
2424 
2425 	slot_orig = path->slots[0];
2426 	leaf = path->nodes[0];
2427 	slot = path->slots[0];
2428 
2429 	old_size = btrfs_item_size_nr(leaf, slot);
2430 	if (old_size == new_size)
2431 		return 0;
2432 
2433 	nritems = btrfs_header_nritems(leaf);
2434 	data_end = leaf_data_end(root, leaf);
2435 
2436 	old_data_start = btrfs_item_offset_nr(leaf, slot);
2437 
2438 	size_diff = old_size - new_size;
2439 
2440 	BUG_ON(slot < 0);
2441 	BUG_ON(slot >= nritems);
2442 
2443 	/*
2444 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2445 	 */
2446 	/* first correct the data pointers */
2447 	for (i = slot; i < nritems; i++) {
2448 		u32 ioff;
2449 		item = btrfs_item_nr(leaf, i);
2450 
2451 		if (!leaf->map_token) {
2452 			map_extent_buffer(leaf, (unsigned long)item,
2453 					sizeof(struct btrfs_item),
2454 					&leaf->map_token, &leaf->kaddr,
2455 					&leaf->map_start, &leaf->map_len,
2456 					KM_USER1);
2457 		}
2458 
2459 		ioff = btrfs_item_offset(leaf, item);
2460 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
2461 	}
2462 
2463 	if (leaf->map_token) {
2464 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2465 		leaf->map_token = NULL;
2466 	}
2467 
2468 	/* shift the data */
2469 	if (from_end) {
2470 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2471 			      data_end + size_diff, btrfs_leaf_data(leaf) +
2472 			      data_end, old_data_start + new_size - data_end);
2473 	} else {
2474 		struct btrfs_disk_key disk_key;
2475 		u64 offset;
2476 
2477 		btrfs_item_key(leaf, &disk_key, slot);
2478 
2479 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
2480 			unsigned long ptr;
2481 			struct btrfs_file_extent_item *fi;
2482 
2483 			fi = btrfs_item_ptr(leaf, slot,
2484 					    struct btrfs_file_extent_item);
2485 			fi = (struct btrfs_file_extent_item *)(
2486 			     (unsigned long)fi - size_diff);
2487 
2488 			if (btrfs_file_extent_type(leaf, fi) ==
2489 			    BTRFS_FILE_EXTENT_INLINE) {
2490 				ptr = btrfs_item_ptr_offset(leaf, slot);
2491 				memmove_extent_buffer(leaf, ptr,
2492 				        (unsigned long)fi,
2493 				        offsetof(struct btrfs_file_extent_item,
2494 						 disk_bytenr));
2495 			}
2496 		}
2497 
2498 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2499 			      data_end + size_diff, btrfs_leaf_data(leaf) +
2500 			      data_end, old_data_start - data_end);
2501 
2502 		offset = btrfs_disk_key_offset(&disk_key);
2503 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
2504 		btrfs_set_item_key(leaf, &disk_key, slot);
2505 		if (slot == 0)
2506 			fixup_low_keys(trans, root, path, &disk_key, 1);
2507 	}
2508 
2509 	item = btrfs_item_nr(leaf, slot);
2510 	btrfs_set_item_size(leaf, item, new_size);
2511 	btrfs_mark_buffer_dirty(leaf);
2512 
2513 	ret = 0;
2514 	if (btrfs_leaf_free_space(root, leaf) < 0) {
2515 		btrfs_print_leaf(root, leaf);
2516 		BUG();
2517 	}
2518 	return ret;
2519 }
2520 
2521 int btrfs_extend_item(struct btrfs_trans_handle *trans,
2522 		      struct btrfs_root *root, struct btrfs_path *path,
2523 		      u32 data_size)
2524 {
2525 	int ret = 0;
2526 	int slot;
2527 	int slot_orig;
2528 	struct extent_buffer *leaf;
2529 	struct btrfs_item *item;
2530 	u32 nritems;
2531 	unsigned int data_end;
2532 	unsigned int old_data;
2533 	unsigned int old_size;
2534 	int i;
2535 
2536 	slot_orig = path->slots[0];
2537 	leaf = path->nodes[0];
2538 
2539 	nritems = btrfs_header_nritems(leaf);
2540 	data_end = leaf_data_end(root, leaf);
2541 
2542 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
2543 		btrfs_print_leaf(root, leaf);
2544 		BUG();
2545 	}
2546 	slot = path->slots[0];
2547 	old_data = btrfs_item_end_nr(leaf, slot);
2548 
2549 	BUG_ON(slot < 0);
2550 	if (slot >= nritems) {
2551 		btrfs_print_leaf(root, leaf);
2552 		printk("slot %d too large, nritems %d\n", slot, nritems);
2553 		BUG_ON(1);
2554 	}
2555 
2556 	/*
2557 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2558 	 */
2559 	/* first correct the data pointers */
2560 	for (i = slot; i < nritems; i++) {
2561 		u32 ioff;
2562 		item = btrfs_item_nr(leaf, i);
2563 
2564 		if (!leaf->map_token) {
2565 			map_extent_buffer(leaf, (unsigned long)item,
2566 					sizeof(struct btrfs_item),
2567 					&leaf->map_token, &leaf->kaddr,
2568 					&leaf->map_start, &leaf->map_len,
2569 					KM_USER1);
2570 		}
2571 		ioff = btrfs_item_offset(leaf, item);
2572 		btrfs_set_item_offset(leaf, item, ioff - data_size);
2573 	}
2574 
2575 	if (leaf->map_token) {
2576 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2577 		leaf->map_token = NULL;
2578 	}
2579 
2580 	/* shift the data */
2581 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2582 		      data_end - data_size, btrfs_leaf_data(leaf) +
2583 		      data_end, old_data - data_end);
2584 
2585 	data_end = old_data;
2586 	old_size = btrfs_item_size_nr(leaf, slot);
2587 	item = btrfs_item_nr(leaf, slot);
2588 	btrfs_set_item_size(leaf, item, old_size + data_size);
2589 	btrfs_mark_buffer_dirty(leaf);
2590 
2591 	ret = 0;
2592 	if (btrfs_leaf_free_space(root, leaf) < 0) {
2593 		btrfs_print_leaf(root, leaf);
2594 		BUG();
2595 	}
2596 	return ret;
2597 }
2598 
2599 /*
2600  * Given a key and some data, insert an item into the tree.
2601  * This does all the path init required, making room in the tree if needed.
2602  */
2603 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2604 			    struct btrfs_root *root,
2605 			    struct btrfs_path *path,
2606 			    struct btrfs_key *cpu_key, u32 *data_size,
2607 			    int nr)
2608 {
2609 	struct extent_buffer *leaf;
2610 	struct btrfs_item *item;
2611 	int ret = 0;
2612 	int slot;
2613 	int slot_orig;
2614 	int i;
2615 	u32 nritems;
2616 	u32 total_size = 0;
2617 	u32 total_data = 0;
2618 	unsigned int data_end;
2619 	struct btrfs_disk_key disk_key;
2620 
2621 	for (i = 0; i < nr; i++) {
2622 		total_data += data_size[i];
2623 	}
2624 
2625 	total_size = total_data + (nr * sizeof(struct btrfs_item));
2626 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
2627 	if (ret == 0) {
2628 		return -EEXIST;
2629 	}
2630 	if (ret < 0)
2631 		goto out;
2632 
2633 	slot_orig = path->slots[0];
2634 	leaf = path->nodes[0];
2635 
2636 	nritems = btrfs_header_nritems(leaf);
2637 	data_end = leaf_data_end(root, leaf);
2638 
2639 	if (btrfs_leaf_free_space(root, leaf) <
2640 	    sizeof(struct btrfs_item) + total_size) {
2641 		btrfs_print_leaf(root, leaf);
2642 		printk("not enough freespace need %u have %d\n",
2643 		       total_size, btrfs_leaf_free_space(root, leaf));
2644 		BUG();
2645 	}
2646 
2647 	slot = path->slots[0];
2648 	BUG_ON(slot < 0);
2649 
2650 	if (slot != nritems) {
2651 		int i;
2652 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
2653 
2654 		if (old_data < data_end) {
2655 			btrfs_print_leaf(root, leaf);
2656 			printk("slot %d old_data %d data_end %d\n",
2657 			       slot, old_data, data_end);
2658 			BUG_ON(1);
2659 		}
2660 		/*
2661 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2662 		 */
2663 		/* first correct the data pointers */
2664 		WARN_ON(leaf->map_token);
2665 		for (i = slot; i < nritems; i++) {
2666 			u32 ioff;
2667 
2668 			item = btrfs_item_nr(leaf, i);
2669 			if (!leaf->map_token) {
2670 				map_extent_buffer(leaf, (unsigned long)item,
2671 					sizeof(struct btrfs_item),
2672 					&leaf->map_token, &leaf->kaddr,
2673 					&leaf->map_start, &leaf->map_len,
2674 					KM_USER1);
2675 			}
2676 
2677 			ioff = btrfs_item_offset(leaf, item);
2678 			btrfs_set_item_offset(leaf, item, ioff - total_data);
2679 		}
2680 		if (leaf->map_token) {
2681 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2682 			leaf->map_token = NULL;
2683 		}
2684 
2685 		/* shift the items */
2686 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
2687 			      btrfs_item_nr_offset(slot),
2688 			      (nritems - slot) * sizeof(struct btrfs_item));
2689 
2690 		/* shift the data */
2691 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2692 			      data_end - total_data, btrfs_leaf_data(leaf) +
2693 			      data_end, old_data - data_end);
2694 		data_end = old_data;
2695 	}
2696 
2697 	/* setup the item for the new data */
2698 	for (i = 0; i < nr; i++) {
2699 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
2700 		btrfs_set_item_key(leaf, &disk_key, slot + i);
2701 		item = btrfs_item_nr(leaf, slot + i);
2702 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
2703 		data_end -= data_size[i];
2704 		btrfs_set_item_size(leaf, item, data_size[i]);
2705 	}
2706 	btrfs_set_header_nritems(leaf, nritems + nr);
2707 	btrfs_mark_buffer_dirty(leaf);
2708 
2709 	ret = 0;
2710 	if (slot == 0) {
2711 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
2712 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
2713 	}
2714 
2715 	if (btrfs_leaf_free_space(root, leaf) < 0) {
2716 		btrfs_print_leaf(root, leaf);
2717 		BUG();
2718 	}
2719 out:
2720 	return ret;
2721 }
2722 
2723 /*
2724  * Given a key and some data, insert an item into the tree.
2725  * This does all the path init required, making room in the tree if needed.
2726  */
2727 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2728 		      *root, struct btrfs_key *cpu_key, void *data, u32
2729 		      data_size)
2730 {
2731 	int ret = 0;
2732 	struct btrfs_path *path;
2733 	struct extent_buffer *leaf;
2734 	unsigned long ptr;
2735 
2736 	path = btrfs_alloc_path();
2737 	BUG_ON(!path);
2738 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
2739 	if (!ret) {
2740 		leaf = path->nodes[0];
2741 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2742 		write_extent_buffer(leaf, data, ptr, data_size);
2743 		btrfs_mark_buffer_dirty(leaf);
2744 	}
2745 	btrfs_free_path(path);
2746 	return ret;
2747 }
2748 
2749 /*
2750  * delete the pointer from a given node.
2751  *
2752  * If the delete empties a node, the node is removed from the tree,
2753  * continuing all the way the root if required.  The root is converted into
2754  * a leaf if all the nodes are emptied.
2755  */
2756 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2757 		   struct btrfs_path *path, int level, int slot)
2758 {
2759 	struct extent_buffer *parent = path->nodes[level];
2760 	u32 nritems;
2761 	int ret = 0;
2762 	int wret;
2763 
2764 	nritems = btrfs_header_nritems(parent);
2765 	if (slot != nritems -1) {
2766 		memmove_extent_buffer(parent,
2767 			      btrfs_node_key_ptr_offset(slot),
2768 			      btrfs_node_key_ptr_offset(slot + 1),
2769 			      sizeof(struct btrfs_key_ptr) *
2770 			      (nritems - slot - 1));
2771 	}
2772 	nritems--;
2773 	btrfs_set_header_nritems(parent, nritems);
2774 	if (nritems == 0 && parent == root->node) {
2775 		BUG_ON(btrfs_header_level(root->node) != 1);
2776 		/* just turn the root into a leaf and break */
2777 		btrfs_set_header_level(root->node, 0);
2778 	} else if (slot == 0) {
2779 		struct btrfs_disk_key disk_key;
2780 
2781 		btrfs_node_key(parent, &disk_key, 0);
2782 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
2783 		if (wret)
2784 			ret = wret;
2785 	}
2786 	btrfs_mark_buffer_dirty(parent);
2787 	return ret;
2788 }
2789 
2790 /*
2791  * delete the item at the leaf level in path.  If that empties
2792  * the leaf, remove it from the tree
2793  */
2794 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2795 		    struct btrfs_path *path, int slot, int nr)
2796 {
2797 	struct extent_buffer *leaf;
2798 	struct btrfs_item *item;
2799 	int last_off;
2800 	int dsize = 0;
2801 	int ret = 0;
2802 	int wret;
2803 	int i;
2804 	u32 nritems;
2805 
2806 	leaf = path->nodes[0];
2807 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
2808 
2809 	for (i = 0; i < nr; i++)
2810 		dsize += btrfs_item_size_nr(leaf, slot + i);
2811 
2812 	nritems = btrfs_header_nritems(leaf);
2813 
2814 	if (slot + nr != nritems) {
2815 		int i;
2816 		int data_end = leaf_data_end(root, leaf);
2817 
2818 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2819 			      data_end + dsize,
2820 			      btrfs_leaf_data(leaf) + data_end,
2821 			      last_off - data_end);
2822 
2823 		for (i = slot + nr; i < nritems; i++) {
2824 			u32 ioff;
2825 
2826 			item = btrfs_item_nr(leaf, i);
2827 			if (!leaf->map_token) {
2828 				map_extent_buffer(leaf, (unsigned long)item,
2829 					sizeof(struct btrfs_item),
2830 					&leaf->map_token, &leaf->kaddr,
2831 					&leaf->map_start, &leaf->map_len,
2832 					KM_USER1);
2833 			}
2834 			ioff = btrfs_item_offset(leaf, item);
2835 			btrfs_set_item_offset(leaf, item, ioff + dsize);
2836 		}
2837 
2838 		if (leaf->map_token) {
2839 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2840 			leaf->map_token = NULL;
2841 		}
2842 
2843 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
2844 			      btrfs_item_nr_offset(slot + nr),
2845 			      sizeof(struct btrfs_item) *
2846 			      (nritems - slot - nr));
2847 	}
2848 	btrfs_set_header_nritems(leaf, nritems - nr);
2849 	nritems -= nr;
2850 
2851 	/* delete the leaf if we've emptied it */
2852 	if (nritems == 0) {
2853 		if (leaf == root->node) {
2854 			btrfs_set_header_level(leaf, 0);
2855 		} else {
2856 			u64 root_gen = btrfs_header_generation(path->nodes[1]);
2857 			wret = del_ptr(trans, root, path, 1, path->slots[1]);
2858 			if (wret)
2859 				ret = wret;
2860 			wret = btrfs_free_extent(trans, root,
2861 					 leaf->start, leaf->len,
2862 					 btrfs_header_owner(path->nodes[1]),
2863 					 root_gen, 0, 0, 1);
2864 			if (wret)
2865 				ret = wret;
2866 		}
2867 	} else {
2868 		int used = leaf_space_used(leaf, 0, nritems);
2869 		if (slot == 0) {
2870 			struct btrfs_disk_key disk_key;
2871 
2872 			btrfs_item_key(leaf, &disk_key, 0);
2873 			wret = fixup_low_keys(trans, root, path,
2874 					      &disk_key, 1);
2875 			if (wret)
2876 				ret = wret;
2877 		}
2878 
2879 		/* delete the leaf if it is mostly empty */
2880 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
2881 			/* push_leaf_left fixes the path.
2882 			 * make sure the path still points to our leaf
2883 			 * for possible call to del_ptr below
2884 			 */
2885 			slot = path->slots[1];
2886 			extent_buffer_get(leaf);
2887 
2888 			wret = push_leaf_left(trans, root, path, 1, 1);
2889 			if (wret < 0 && wret != -ENOSPC)
2890 				ret = wret;
2891 
2892 			if (path->nodes[0] == leaf &&
2893 			    btrfs_header_nritems(leaf)) {
2894 				wret = push_leaf_right(trans, root, path, 1, 1);
2895 				if (wret < 0 && wret != -ENOSPC)
2896 					ret = wret;
2897 			}
2898 
2899 			if (btrfs_header_nritems(leaf) == 0) {
2900 				u64 root_gen;
2901 				u64 bytenr = leaf->start;
2902 				u32 blocksize = leaf->len;
2903 
2904 				root_gen = btrfs_header_generation(
2905 							   path->nodes[1]);
2906 
2907 				wret = del_ptr(trans, root, path, 1, slot);
2908 				if (wret)
2909 					ret = wret;
2910 
2911 				free_extent_buffer(leaf);
2912 				wret = btrfs_free_extent(trans, root, bytenr,
2913 					     blocksize,
2914 					     btrfs_header_owner(path->nodes[1]),
2915 					     root_gen, 0, 0, 1);
2916 				if (wret)
2917 					ret = wret;
2918 			} else {
2919 				/* if we're still in the path, make sure
2920 				 * we're dirty.  Otherwise, one of the
2921 				 * push_leaf functions must have already
2922 				 * dirtied this buffer
2923 				 */
2924 				if (path->nodes[0] == leaf)
2925 					btrfs_mark_buffer_dirty(leaf);
2926 				free_extent_buffer(leaf);
2927 			}
2928 		} else {
2929 			btrfs_mark_buffer_dirty(leaf);
2930 		}
2931 	}
2932 	return ret;
2933 }
2934 
2935 /*
2936  * search the tree again to find a leaf with lesser keys
2937  * returns 0 if it found something or 1 if there are no lesser leaves.
2938  * returns < 0 on io errors.
2939  */
2940 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2941 {
2942 	struct btrfs_key key;
2943 	struct btrfs_disk_key found_key;
2944 	int ret;
2945 
2946 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2947 
2948 	if (key.offset > 0)
2949 		key.offset--;
2950 	else if (key.type > 0)
2951 		key.type--;
2952 	else if (key.objectid > 0)
2953 		key.objectid--;
2954 	else
2955 		return 1;
2956 
2957 	btrfs_release_path(root, path);
2958 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2959 	if (ret < 0)
2960 		return ret;
2961 	btrfs_item_key(path->nodes[0], &found_key, 0);
2962 	ret = comp_keys(&found_key, &key);
2963 	if (ret < 0)
2964 		return 0;
2965 	return 1;
2966 }
2967 
2968 /*
2969  * A helper function to walk down the tree starting at min_key, and looking
2970  * for nodes or leaves that are either in cache or have a minimum
2971  * transaction id.  This is used by the btree defrag code, but could
2972  * also be used to search for blocks that have changed since a given
2973  * transaction id.
2974  *
2975  * This does not cow, but it does stuff the starting key it finds back
2976  * into min_key, so you can call btrfs_search_slot with cow=1 on the
2977  * key and get a writable path.
2978  *
2979  * This does lock as it descends, and path->keep_locks should be set
2980  * to 1 by the caller.
2981  *
2982  * This honors path->lowest_level to prevent descent past a given level
2983  * of the tree.
2984  *
2985  * returns zero if something useful was found, < 0 on error and 1 if there
2986  * was nothing in the tree that matched the search criteria.
2987  */
2988 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2989 			 struct btrfs_path *path, int cache_only,
2990 			 u64 min_trans)
2991 {
2992 	struct extent_buffer *cur;
2993 	struct btrfs_key found_key;
2994 	int slot;
2995 	u32 nritems;
2996 	int level;
2997 	int ret = 1;
2998 
2999 again:
3000 	cur = btrfs_lock_root_node(root);
3001 	level = btrfs_header_level(cur);
3002 	path->nodes[level] = cur;
3003 	path->locks[level] = 1;
3004 
3005 	if (btrfs_header_generation(cur) < min_trans) {
3006 		ret = 1;
3007 		goto out;
3008 	}
3009 	while(1) {
3010 		nritems = btrfs_header_nritems(cur);
3011 		level = btrfs_header_level(cur);
3012 		bin_search(cur, min_key, level, &slot);
3013 
3014 		/* at level = 0, we're done, setup the path and exit */
3015 		if (level == 0) {
3016 			ret = 0;
3017 			path->slots[level] = slot;
3018 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3019 			goto out;
3020 		}
3021 		/*
3022 		 * check this node pointer against the cache_only and
3023 		 * min_trans parameters.  If it isn't in cache or is too
3024 		 * old, skip to the next one.
3025 		 */
3026 		while(slot < nritems) {
3027 			u64 blockptr;
3028 			u64 gen;
3029 			struct extent_buffer *tmp;
3030 			blockptr = btrfs_node_blockptr(cur, slot);
3031 			gen = btrfs_node_ptr_generation(cur, slot);
3032 			if (gen < min_trans) {
3033 				slot++;
3034 				continue;
3035 			}
3036 			if (!cache_only)
3037 				break;
3038 
3039 			tmp = btrfs_find_tree_block(root, blockptr,
3040 					    btrfs_level_size(root, level - 1));
3041 
3042 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3043 				free_extent_buffer(tmp);
3044 				break;
3045 			}
3046 			if (tmp)
3047 				free_extent_buffer(tmp);
3048 			slot++;
3049 		}
3050 		/*
3051 		 * we didn't find a candidate key in this node, walk forward
3052 		 * and find another one
3053 		 */
3054 		if (slot >= nritems) {
3055 			ret = btrfs_find_next_key(root, path, min_key, level,
3056 						  cache_only, min_trans);
3057 			if (ret == 0) {
3058 				btrfs_release_path(root, path);
3059 				goto again;
3060 			} else {
3061 				goto out;
3062 			}
3063 		}
3064 		/* save our key for returning back */
3065 		btrfs_node_key_to_cpu(cur, &found_key, slot);
3066 		path->slots[level] = slot;
3067 		if (level == path->lowest_level) {
3068 			ret = 0;
3069 			unlock_up(path, level, 1);
3070 			goto out;
3071 		}
3072 		cur = read_node_slot(root, cur, slot);
3073 
3074 		btrfs_tree_lock(cur);
3075 		path->locks[level - 1] = 1;
3076 		path->nodes[level - 1] = cur;
3077 		unlock_up(path, level, 1);
3078 	}
3079 out:
3080 	if (ret == 0)
3081 		memcpy(min_key, &found_key, sizeof(found_key));
3082 	return ret;
3083 }
3084 
3085 /*
3086  * this is similar to btrfs_next_leaf, but does not try to preserve
3087  * and fixup the path.  It looks for and returns the next key in the
3088  * tree based on the current path and the cache_only and min_trans
3089  * parameters.
3090  *
3091  * 0 is returned if another key is found, < 0 if there are any errors
3092  * and 1 is returned if there are no higher keys in the tree
3093  *
3094  * path->keep_locks should be set to 1 on the search made before
3095  * calling this function.
3096  */
3097 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3098 			struct btrfs_key *key, int lowest_level,
3099 			int cache_only, u64 min_trans)
3100 {
3101 	int level = lowest_level;
3102 	int slot;
3103 	struct extent_buffer *c;
3104 
3105 	while(level < BTRFS_MAX_LEVEL) {
3106 		if (!path->nodes[level])
3107 			return 1;
3108 
3109 		slot = path->slots[level] + 1;
3110 		c = path->nodes[level];
3111 next:
3112 		if (slot >= btrfs_header_nritems(c)) {
3113 			level++;
3114 			if (level == BTRFS_MAX_LEVEL) {
3115 				return 1;
3116 			}
3117 			continue;
3118 		}
3119 		if (level == 0)
3120 			btrfs_item_key_to_cpu(c, key, slot);
3121 		else {
3122 			u64 blockptr = btrfs_node_blockptr(c, slot);
3123 			u64 gen = btrfs_node_ptr_generation(c, slot);
3124 
3125 			if (cache_only) {
3126 				struct extent_buffer *cur;
3127 				cur = btrfs_find_tree_block(root, blockptr,
3128 					    btrfs_level_size(root, level - 1));
3129 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
3130 					slot++;
3131 					if (cur)
3132 						free_extent_buffer(cur);
3133 					goto next;
3134 				}
3135 				free_extent_buffer(cur);
3136 			}
3137 			if (gen < min_trans) {
3138 				slot++;
3139 				goto next;
3140 			}
3141 			btrfs_node_key_to_cpu(c, key, slot);
3142 		}
3143 		return 0;
3144 	}
3145 	return 1;
3146 }
3147 
3148 /*
3149  * search the tree again to find a leaf with greater keys
3150  * returns 0 if it found something or 1 if there are no greater leaves.
3151  * returns < 0 on io errors.
3152  */
3153 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3154 {
3155 	int slot;
3156 	int level = 1;
3157 	struct extent_buffer *c;
3158 	struct extent_buffer *next = NULL;
3159 	struct btrfs_key key;
3160 	u32 nritems;
3161 	int ret;
3162 
3163 	nritems = btrfs_header_nritems(path->nodes[0]);
3164 	if (nritems == 0) {
3165 		return 1;
3166 	}
3167 
3168 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
3169 
3170 	btrfs_release_path(root, path);
3171 	path->keep_locks = 1;
3172 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3173 	path->keep_locks = 0;
3174 
3175 	if (ret < 0)
3176 		return ret;
3177 
3178 	nritems = btrfs_header_nritems(path->nodes[0]);
3179 	/*
3180 	 * by releasing the path above we dropped all our locks.  A balance
3181 	 * could have added more items next to the key that used to be
3182 	 * at the very end of the block.  So, check again here and
3183 	 * advance the path if there are now more items available.
3184 	 */
3185 	if (nritems > 0 && path->slots[0] < nritems - 1) {
3186 		path->slots[0]++;
3187 		goto done;
3188 	}
3189 
3190 	while(level < BTRFS_MAX_LEVEL) {
3191 		if (!path->nodes[level])
3192 			return 1;
3193 
3194 		slot = path->slots[level] + 1;
3195 		c = path->nodes[level];
3196 		if (slot >= btrfs_header_nritems(c)) {
3197 			level++;
3198 			if (level == BTRFS_MAX_LEVEL) {
3199 				return 1;
3200 			}
3201 			continue;
3202 		}
3203 
3204 		if (next) {
3205 			btrfs_tree_unlock(next);
3206 			free_extent_buffer(next);
3207 		}
3208 
3209 		if (level == 1 && (path->locks[1] || path->skip_locking) &&
3210 		    path->reada)
3211 			reada_for_search(root, path, level, slot, 0);
3212 
3213 		next = read_node_slot(root, c, slot);
3214 		if (!path->skip_locking) {
3215 			WARN_ON(!btrfs_tree_locked(c));
3216 			btrfs_tree_lock(next);
3217 		}
3218 		break;
3219 	}
3220 	path->slots[level] = slot;
3221 	while(1) {
3222 		level--;
3223 		c = path->nodes[level];
3224 		if (path->locks[level])
3225 			btrfs_tree_unlock(c);
3226 		free_extent_buffer(c);
3227 		path->nodes[level] = next;
3228 		path->slots[level] = 0;
3229 		if (!path->skip_locking)
3230 			path->locks[level] = 1;
3231 		if (!level)
3232 			break;
3233 		if (level == 1 && path->locks[1] && path->reada)
3234 			reada_for_search(root, path, level, slot, 0);
3235 		next = read_node_slot(root, next, 0);
3236 		if (!path->skip_locking) {
3237 			WARN_ON(!btrfs_tree_locked(path->nodes[level]));
3238 			btrfs_tree_lock(next);
3239 		}
3240 	}
3241 done:
3242 	unlock_up(path, 0, 1);
3243 	return 0;
3244 }
3245 
3246 /*
3247  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
3248  * searching until it gets past min_objectid or finds an item of 'type'
3249  *
3250  * returns 0 if something is found, 1 if nothing was found and < 0 on error
3251  */
3252 int btrfs_previous_item(struct btrfs_root *root,
3253 			struct btrfs_path *path, u64 min_objectid,
3254 			int type)
3255 {
3256 	struct btrfs_key found_key;
3257 	struct extent_buffer *leaf;
3258 	int ret;
3259 
3260 	while(1) {
3261 		if (path->slots[0] == 0) {
3262 			ret = btrfs_prev_leaf(root, path);
3263 			if (ret != 0)
3264 				return ret;
3265 		} else {
3266 			path->slots[0]--;
3267 		}
3268 		leaf = path->nodes[0];
3269 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3270 		if (found_key.type == type)
3271 			return 0;
3272 	}
3273 	return 1;
3274 }
3275 
3276