1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "locking.h" 25 26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 27 *root, struct btrfs_path *path, int level); 28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_key *ins_key, 30 struct btrfs_path *path, int data_size, int extend); 31 static int push_node_left(struct btrfs_trans_handle *trans, 32 struct btrfs_root *root, struct extent_buffer *dst, 33 struct extent_buffer *src, int empty); 34 static int balance_node_right(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, 36 struct extent_buffer *dst_buf, 37 struct extent_buffer *src_buf); 38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 39 struct btrfs_path *path, int level, int slot); 40 41 inline void btrfs_init_path(struct btrfs_path *p) 42 { 43 memset(p, 0, sizeof(*p)); 44 } 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS); 50 if (path) { 51 btrfs_init_path(path); 52 path->reada = 1; 53 } 54 return path; 55 } 56 57 /* 58 * set all locked nodes in the path to blocking locks. This should 59 * be done before scheduling 60 */ 61 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 62 { 63 int i; 64 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 65 if (p->nodes[i] && p->locks[i]) 66 btrfs_set_lock_blocking(p->nodes[i]); 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 */ 73 noinline void btrfs_clear_path_blocking(struct btrfs_path *p) 74 { 75 int i; 76 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 77 if (p->nodes[i] && p->locks[i]) 78 btrfs_clear_lock_blocking(p->nodes[i]); 79 } 80 } 81 82 /* this also releases the path */ 83 void btrfs_free_path(struct btrfs_path *p) 84 { 85 btrfs_release_path(NULL, p); 86 kmem_cache_free(btrfs_path_cachep, p); 87 } 88 89 /* 90 * path release drops references on the extent buffers in the path 91 * and it drops any locks held by this path 92 * 93 * It is safe to call this on paths that no locks or extent buffers held. 94 */ 95 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 96 { 97 int i; 98 99 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 100 p->slots[i] = 0; 101 if (!p->nodes[i]) 102 continue; 103 if (p->locks[i]) { 104 btrfs_tree_unlock(p->nodes[i]); 105 p->locks[i] = 0; 106 } 107 free_extent_buffer(p->nodes[i]); 108 p->nodes[i] = NULL; 109 } 110 } 111 112 /* 113 * safely gets a reference on the root node of a tree. A lock 114 * is not taken, so a concurrent writer may put a different node 115 * at the root of the tree. See btrfs_lock_root_node for the 116 * looping required. 117 * 118 * The extent buffer returned by this has a reference taken, so 119 * it won't disappear. It may stop being the root of the tree 120 * at any time because there are no locks held. 121 */ 122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 123 { 124 struct extent_buffer *eb; 125 spin_lock(&root->node_lock); 126 eb = root->node; 127 extent_buffer_get(eb); 128 spin_unlock(&root->node_lock); 129 return eb; 130 } 131 132 /* loop around taking references on and locking the root node of the 133 * tree until you end up with a lock on the root. A locked buffer 134 * is returned, with a reference held. 135 */ 136 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 137 { 138 struct extent_buffer *eb; 139 140 while (1) { 141 eb = btrfs_root_node(root); 142 btrfs_tree_lock(eb); 143 144 spin_lock(&root->node_lock); 145 if (eb == root->node) { 146 spin_unlock(&root->node_lock); 147 break; 148 } 149 spin_unlock(&root->node_lock); 150 151 btrfs_tree_unlock(eb); 152 free_extent_buffer(eb); 153 } 154 return eb; 155 } 156 157 /* cowonly root (everything not a reference counted cow subvolume), just get 158 * put onto a simple dirty list. transaction.c walks this to make sure they 159 * get properly updated on disk. 160 */ 161 static void add_root_to_dirty_list(struct btrfs_root *root) 162 { 163 if (root->track_dirty && list_empty(&root->dirty_list)) { 164 list_add(&root->dirty_list, 165 &root->fs_info->dirty_cowonly_roots); 166 } 167 } 168 169 /* 170 * used by snapshot creation to make a copy of a root for a tree with 171 * a given objectid. The buffer with the new root node is returned in 172 * cow_ret, and this func returns zero on success or a negative error code. 173 */ 174 int btrfs_copy_root(struct btrfs_trans_handle *trans, 175 struct btrfs_root *root, 176 struct extent_buffer *buf, 177 struct extent_buffer **cow_ret, u64 new_root_objectid) 178 { 179 struct extent_buffer *cow; 180 u32 nritems; 181 int ret = 0; 182 int level; 183 struct btrfs_root *new_root; 184 185 new_root = kmalloc(sizeof(*new_root), GFP_NOFS); 186 if (!new_root) 187 return -ENOMEM; 188 189 memcpy(new_root, root, sizeof(*new_root)); 190 new_root->root_key.objectid = new_root_objectid; 191 192 WARN_ON(root->ref_cows && trans->transid != 193 root->fs_info->running_transaction->transid); 194 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 195 196 level = btrfs_header_level(buf); 197 nritems = btrfs_header_nritems(buf); 198 199 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0, 200 new_root_objectid, trans->transid, 201 level, buf->start, 0); 202 if (IS_ERR(cow)) { 203 kfree(new_root); 204 return PTR_ERR(cow); 205 } 206 207 copy_extent_buffer(cow, buf, 0, 0, cow->len); 208 btrfs_set_header_bytenr(cow, cow->start); 209 btrfs_set_header_generation(cow, trans->transid); 210 btrfs_set_header_owner(cow, new_root_objectid); 211 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 212 213 write_extent_buffer(cow, root->fs_info->fsid, 214 (unsigned long)btrfs_header_fsid(cow), 215 BTRFS_FSID_SIZE); 216 217 WARN_ON(btrfs_header_generation(buf) > trans->transid); 218 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL); 219 kfree(new_root); 220 221 if (ret) 222 return ret; 223 224 btrfs_mark_buffer_dirty(cow); 225 *cow_ret = cow; 226 return 0; 227 } 228 229 /* 230 * does the dirty work in cow of a single block. The parent block (if 231 * supplied) is updated to point to the new cow copy. The new buffer is marked 232 * dirty and returned locked. If you modify the block it needs to be marked 233 * dirty again. 234 * 235 * search_start -- an allocation hint for the new block 236 * 237 * empty_size -- a hint that you plan on doing more cow. This is the size in 238 * bytes the allocator should try to find free next to the block it returns. 239 * This is just a hint and may be ignored by the allocator. 240 * 241 * prealloc_dest -- if you have already reserved a destination for the cow, 242 * this uses that block instead of allocating a new one. 243 * btrfs_alloc_reserved_extent is used to finish the allocation. 244 */ 245 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 246 struct btrfs_root *root, 247 struct extent_buffer *buf, 248 struct extent_buffer *parent, int parent_slot, 249 struct extent_buffer **cow_ret, 250 u64 search_start, u64 empty_size, 251 u64 prealloc_dest) 252 { 253 u64 parent_start; 254 struct extent_buffer *cow; 255 u32 nritems; 256 int ret = 0; 257 int level; 258 int unlock_orig = 0; 259 260 if (*cow_ret == buf) 261 unlock_orig = 1; 262 263 WARN_ON(!btrfs_tree_locked(buf)); 264 265 if (parent) 266 parent_start = parent->start; 267 else 268 parent_start = 0; 269 270 WARN_ON(root->ref_cows && trans->transid != 271 root->fs_info->running_transaction->transid); 272 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 273 274 level = btrfs_header_level(buf); 275 nritems = btrfs_header_nritems(buf); 276 277 if (prealloc_dest) { 278 struct btrfs_key ins; 279 280 ins.objectid = prealloc_dest; 281 ins.offset = buf->len; 282 ins.type = BTRFS_EXTENT_ITEM_KEY; 283 284 ret = btrfs_alloc_reserved_extent(trans, root, parent_start, 285 root->root_key.objectid, 286 trans->transid, level, &ins); 287 BUG_ON(ret); 288 cow = btrfs_init_new_buffer(trans, root, prealloc_dest, 289 buf->len); 290 } else { 291 cow = btrfs_alloc_free_block(trans, root, buf->len, 292 parent_start, 293 root->root_key.objectid, 294 trans->transid, level, 295 search_start, empty_size); 296 } 297 if (IS_ERR(cow)) 298 return PTR_ERR(cow); 299 300 /* cow is set to blocking by btrfs_init_new_buffer */ 301 302 copy_extent_buffer(cow, buf, 0, 0, cow->len); 303 btrfs_set_header_bytenr(cow, cow->start); 304 btrfs_set_header_generation(cow, trans->transid); 305 btrfs_set_header_owner(cow, root->root_key.objectid); 306 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 307 308 write_extent_buffer(cow, root->fs_info->fsid, 309 (unsigned long)btrfs_header_fsid(cow), 310 BTRFS_FSID_SIZE); 311 312 WARN_ON(btrfs_header_generation(buf) > trans->transid); 313 if (btrfs_header_generation(buf) != trans->transid) { 314 u32 nr_extents; 315 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents); 316 if (ret) 317 return ret; 318 319 ret = btrfs_cache_ref(trans, root, buf, nr_extents); 320 WARN_ON(ret); 321 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) { 322 /* 323 * There are only two places that can drop reference to 324 * tree blocks owned by living reloc trees, one is here, 325 * the other place is btrfs_drop_subtree. In both places, 326 * we check reference count while tree block is locked. 327 * Furthermore, if reference count is one, it won't get 328 * increased by someone else. 329 */ 330 u32 refs; 331 ret = btrfs_lookup_extent_ref(trans, root, buf->start, 332 buf->len, &refs); 333 BUG_ON(ret); 334 if (refs == 1) { 335 ret = btrfs_update_ref(trans, root, buf, cow, 336 0, nritems); 337 clean_tree_block(trans, root, buf); 338 } else { 339 ret = btrfs_inc_ref(trans, root, buf, cow, NULL); 340 } 341 BUG_ON(ret); 342 } else { 343 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems); 344 if (ret) 345 return ret; 346 clean_tree_block(trans, root, buf); 347 } 348 349 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 350 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start); 351 WARN_ON(ret); 352 } 353 354 if (buf == root->node) { 355 WARN_ON(parent && parent != buf); 356 357 spin_lock(&root->node_lock); 358 root->node = cow; 359 extent_buffer_get(cow); 360 spin_unlock(&root->node_lock); 361 362 if (buf != root->commit_root) { 363 btrfs_free_extent(trans, root, buf->start, 364 buf->len, buf->start, 365 root->root_key.objectid, 366 btrfs_header_generation(buf), 367 level, 1); 368 } 369 free_extent_buffer(buf); 370 add_root_to_dirty_list(root); 371 } else { 372 btrfs_set_node_blockptr(parent, parent_slot, 373 cow->start); 374 WARN_ON(trans->transid == 0); 375 btrfs_set_node_ptr_generation(parent, parent_slot, 376 trans->transid); 377 btrfs_mark_buffer_dirty(parent); 378 WARN_ON(btrfs_header_generation(parent) != trans->transid); 379 btrfs_free_extent(trans, root, buf->start, buf->len, 380 parent_start, btrfs_header_owner(parent), 381 btrfs_header_generation(parent), level, 1); 382 } 383 if (unlock_orig) 384 btrfs_tree_unlock(buf); 385 free_extent_buffer(buf); 386 btrfs_mark_buffer_dirty(cow); 387 *cow_ret = cow; 388 return 0; 389 } 390 391 /* 392 * cows a single block, see __btrfs_cow_block for the real work. 393 * This version of it has extra checks so that a block isn't cow'd more than 394 * once per transaction, as long as it hasn't been written yet 395 */ 396 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 397 struct btrfs_root *root, struct extent_buffer *buf, 398 struct extent_buffer *parent, int parent_slot, 399 struct extent_buffer **cow_ret, u64 prealloc_dest) 400 { 401 u64 search_start; 402 int ret; 403 404 if (trans->transaction != root->fs_info->running_transaction) { 405 printk(KERN_CRIT "trans %llu running %llu\n", 406 (unsigned long long)trans->transid, 407 (unsigned long long) 408 root->fs_info->running_transaction->transid); 409 WARN_ON(1); 410 } 411 if (trans->transid != root->fs_info->generation) { 412 printk(KERN_CRIT "trans %llu running %llu\n", 413 (unsigned long long)trans->transid, 414 (unsigned long long)root->fs_info->generation); 415 WARN_ON(1); 416 } 417 418 if (btrfs_header_generation(buf) == trans->transid && 419 btrfs_header_owner(buf) == root->root_key.objectid && 420 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 421 *cow_ret = buf; 422 WARN_ON(prealloc_dest); 423 return 0; 424 } 425 426 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 427 428 if (parent) 429 btrfs_set_lock_blocking(parent); 430 btrfs_set_lock_blocking(buf); 431 432 ret = __btrfs_cow_block(trans, root, buf, parent, 433 parent_slot, cow_ret, search_start, 0, 434 prealloc_dest); 435 return ret; 436 } 437 438 /* 439 * helper function for defrag to decide if two blocks pointed to by a 440 * node are actually close by 441 */ 442 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 443 { 444 if (blocknr < other && other - (blocknr + blocksize) < 32768) 445 return 1; 446 if (blocknr > other && blocknr - (other + blocksize) < 32768) 447 return 1; 448 return 0; 449 } 450 451 /* 452 * compare two keys in a memcmp fashion 453 */ 454 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 455 { 456 struct btrfs_key k1; 457 458 btrfs_disk_key_to_cpu(&k1, disk); 459 460 if (k1.objectid > k2->objectid) 461 return 1; 462 if (k1.objectid < k2->objectid) 463 return -1; 464 if (k1.type > k2->type) 465 return 1; 466 if (k1.type < k2->type) 467 return -1; 468 if (k1.offset > k2->offset) 469 return 1; 470 if (k1.offset < k2->offset) 471 return -1; 472 return 0; 473 } 474 475 /* 476 * same as comp_keys only with two btrfs_key's 477 */ 478 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 479 { 480 if (k1->objectid > k2->objectid) 481 return 1; 482 if (k1->objectid < k2->objectid) 483 return -1; 484 if (k1->type > k2->type) 485 return 1; 486 if (k1->type < k2->type) 487 return -1; 488 if (k1->offset > k2->offset) 489 return 1; 490 if (k1->offset < k2->offset) 491 return -1; 492 return 0; 493 } 494 495 /* 496 * this is used by the defrag code to go through all the 497 * leaves pointed to by a node and reallocate them so that 498 * disk order is close to key order 499 */ 500 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 501 struct btrfs_root *root, struct extent_buffer *parent, 502 int start_slot, int cache_only, u64 *last_ret, 503 struct btrfs_key *progress) 504 { 505 struct extent_buffer *cur; 506 u64 blocknr; 507 u64 gen; 508 u64 search_start = *last_ret; 509 u64 last_block = 0; 510 u64 other; 511 u32 parent_nritems; 512 int end_slot; 513 int i; 514 int err = 0; 515 int parent_level; 516 int uptodate; 517 u32 blocksize; 518 int progress_passed = 0; 519 struct btrfs_disk_key disk_key; 520 521 parent_level = btrfs_header_level(parent); 522 if (cache_only && parent_level != 1) 523 return 0; 524 525 if (trans->transaction != root->fs_info->running_transaction) 526 WARN_ON(1); 527 if (trans->transid != root->fs_info->generation) 528 WARN_ON(1); 529 530 parent_nritems = btrfs_header_nritems(parent); 531 blocksize = btrfs_level_size(root, parent_level - 1); 532 end_slot = parent_nritems; 533 534 if (parent_nritems == 1) 535 return 0; 536 537 btrfs_set_lock_blocking(parent); 538 539 for (i = start_slot; i < end_slot; i++) { 540 int close = 1; 541 542 if (!parent->map_token) { 543 map_extent_buffer(parent, 544 btrfs_node_key_ptr_offset(i), 545 sizeof(struct btrfs_key_ptr), 546 &parent->map_token, &parent->kaddr, 547 &parent->map_start, &parent->map_len, 548 KM_USER1); 549 } 550 btrfs_node_key(parent, &disk_key, i); 551 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 552 continue; 553 554 progress_passed = 1; 555 blocknr = btrfs_node_blockptr(parent, i); 556 gen = btrfs_node_ptr_generation(parent, i); 557 if (last_block == 0) 558 last_block = blocknr; 559 560 if (i > 0) { 561 other = btrfs_node_blockptr(parent, i - 1); 562 close = close_blocks(blocknr, other, blocksize); 563 } 564 if (!close && i < end_slot - 2) { 565 other = btrfs_node_blockptr(parent, i + 1); 566 close = close_blocks(blocknr, other, blocksize); 567 } 568 if (close) { 569 last_block = blocknr; 570 continue; 571 } 572 if (parent->map_token) { 573 unmap_extent_buffer(parent, parent->map_token, 574 KM_USER1); 575 parent->map_token = NULL; 576 } 577 578 cur = btrfs_find_tree_block(root, blocknr, blocksize); 579 if (cur) 580 uptodate = btrfs_buffer_uptodate(cur, gen); 581 else 582 uptodate = 0; 583 if (!cur || !uptodate) { 584 if (cache_only) { 585 free_extent_buffer(cur); 586 continue; 587 } 588 if (!cur) { 589 cur = read_tree_block(root, blocknr, 590 blocksize, gen); 591 } else if (!uptodate) { 592 btrfs_read_buffer(cur, gen); 593 } 594 } 595 if (search_start == 0) 596 search_start = last_block; 597 598 btrfs_tree_lock(cur); 599 btrfs_set_lock_blocking(cur); 600 err = __btrfs_cow_block(trans, root, cur, parent, i, 601 &cur, search_start, 602 min(16 * blocksize, 603 (end_slot - i) * blocksize), 0); 604 if (err) { 605 btrfs_tree_unlock(cur); 606 free_extent_buffer(cur); 607 break; 608 } 609 search_start = cur->start; 610 last_block = cur->start; 611 *last_ret = search_start; 612 btrfs_tree_unlock(cur); 613 free_extent_buffer(cur); 614 } 615 if (parent->map_token) { 616 unmap_extent_buffer(parent, parent->map_token, 617 KM_USER1); 618 parent->map_token = NULL; 619 } 620 return err; 621 } 622 623 /* 624 * The leaf data grows from end-to-front in the node. 625 * this returns the address of the start of the last item, 626 * which is the stop of the leaf data stack 627 */ 628 static inline unsigned int leaf_data_end(struct btrfs_root *root, 629 struct extent_buffer *leaf) 630 { 631 u32 nr = btrfs_header_nritems(leaf); 632 if (nr == 0) 633 return BTRFS_LEAF_DATA_SIZE(root); 634 return btrfs_item_offset_nr(leaf, nr - 1); 635 } 636 637 /* 638 * extra debugging checks to make sure all the items in a key are 639 * well formed and in the proper order 640 */ 641 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 642 int level) 643 { 644 struct extent_buffer *parent = NULL; 645 struct extent_buffer *node = path->nodes[level]; 646 struct btrfs_disk_key parent_key; 647 struct btrfs_disk_key node_key; 648 int parent_slot; 649 int slot; 650 struct btrfs_key cpukey; 651 u32 nritems = btrfs_header_nritems(node); 652 653 if (path->nodes[level + 1]) 654 parent = path->nodes[level + 1]; 655 656 slot = path->slots[level]; 657 BUG_ON(nritems == 0); 658 if (parent) { 659 parent_slot = path->slots[level + 1]; 660 btrfs_node_key(parent, &parent_key, parent_slot); 661 btrfs_node_key(node, &node_key, 0); 662 BUG_ON(memcmp(&parent_key, &node_key, 663 sizeof(struct btrfs_disk_key))); 664 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 665 btrfs_header_bytenr(node)); 666 } 667 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 668 if (slot != 0) { 669 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 670 btrfs_node_key(node, &node_key, slot); 671 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 672 } 673 if (slot < nritems - 1) { 674 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 675 btrfs_node_key(node, &node_key, slot); 676 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 677 } 678 return 0; 679 } 680 681 /* 682 * extra checking to make sure all the items in a leaf are 683 * well formed and in the proper order 684 */ 685 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 686 int level) 687 { 688 struct extent_buffer *leaf = path->nodes[level]; 689 struct extent_buffer *parent = NULL; 690 int parent_slot; 691 struct btrfs_key cpukey; 692 struct btrfs_disk_key parent_key; 693 struct btrfs_disk_key leaf_key; 694 int slot = path->slots[0]; 695 696 u32 nritems = btrfs_header_nritems(leaf); 697 698 if (path->nodes[level + 1]) 699 parent = path->nodes[level + 1]; 700 701 if (nritems == 0) 702 return 0; 703 704 if (parent) { 705 parent_slot = path->slots[level + 1]; 706 btrfs_node_key(parent, &parent_key, parent_slot); 707 btrfs_item_key(leaf, &leaf_key, 0); 708 709 BUG_ON(memcmp(&parent_key, &leaf_key, 710 sizeof(struct btrfs_disk_key))); 711 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 712 btrfs_header_bytenr(leaf)); 713 } 714 if (slot != 0 && slot < nritems - 1) { 715 btrfs_item_key(leaf, &leaf_key, slot); 716 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 717 if (comp_keys(&leaf_key, &cpukey) <= 0) { 718 btrfs_print_leaf(root, leaf); 719 printk(KERN_CRIT "slot %d offset bad key\n", slot); 720 BUG_ON(1); 721 } 722 if (btrfs_item_offset_nr(leaf, slot - 1) != 723 btrfs_item_end_nr(leaf, slot)) { 724 btrfs_print_leaf(root, leaf); 725 printk(KERN_CRIT "slot %d offset bad\n", slot); 726 BUG_ON(1); 727 } 728 } 729 if (slot < nritems - 1) { 730 btrfs_item_key(leaf, &leaf_key, slot); 731 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 732 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 733 if (btrfs_item_offset_nr(leaf, slot) != 734 btrfs_item_end_nr(leaf, slot + 1)) { 735 btrfs_print_leaf(root, leaf); 736 printk(KERN_CRIT "slot %d offset bad\n", slot); 737 BUG_ON(1); 738 } 739 } 740 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 741 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 742 return 0; 743 } 744 745 static noinline int check_block(struct btrfs_root *root, 746 struct btrfs_path *path, int level) 747 { 748 return 0; 749 if (level == 0) 750 return check_leaf(root, path, level); 751 return check_node(root, path, level); 752 } 753 754 /* 755 * search for key in the extent_buffer. The items start at offset p, 756 * and they are item_size apart. There are 'max' items in p. 757 * 758 * the slot in the array is returned via slot, and it points to 759 * the place where you would insert key if it is not found in 760 * the array. 761 * 762 * slot may point to max if the key is bigger than all of the keys 763 */ 764 static noinline int generic_bin_search(struct extent_buffer *eb, 765 unsigned long p, 766 int item_size, struct btrfs_key *key, 767 int max, int *slot) 768 { 769 int low = 0; 770 int high = max; 771 int mid; 772 int ret; 773 struct btrfs_disk_key *tmp = NULL; 774 struct btrfs_disk_key unaligned; 775 unsigned long offset; 776 char *map_token = NULL; 777 char *kaddr = NULL; 778 unsigned long map_start = 0; 779 unsigned long map_len = 0; 780 int err; 781 782 while (low < high) { 783 mid = (low + high) / 2; 784 offset = p + mid * item_size; 785 786 if (!map_token || offset < map_start || 787 (offset + sizeof(struct btrfs_disk_key)) > 788 map_start + map_len) { 789 if (map_token) { 790 unmap_extent_buffer(eb, map_token, KM_USER0); 791 map_token = NULL; 792 } 793 794 err = map_private_extent_buffer(eb, offset, 795 sizeof(struct btrfs_disk_key), 796 &map_token, &kaddr, 797 &map_start, &map_len, KM_USER0); 798 799 if (!err) { 800 tmp = (struct btrfs_disk_key *)(kaddr + offset - 801 map_start); 802 } else { 803 read_extent_buffer(eb, &unaligned, 804 offset, sizeof(unaligned)); 805 tmp = &unaligned; 806 } 807 808 } else { 809 tmp = (struct btrfs_disk_key *)(kaddr + offset - 810 map_start); 811 } 812 ret = comp_keys(tmp, key); 813 814 if (ret < 0) 815 low = mid + 1; 816 else if (ret > 0) 817 high = mid; 818 else { 819 *slot = mid; 820 if (map_token) 821 unmap_extent_buffer(eb, map_token, KM_USER0); 822 return 0; 823 } 824 } 825 *slot = low; 826 if (map_token) 827 unmap_extent_buffer(eb, map_token, KM_USER0); 828 return 1; 829 } 830 831 /* 832 * simple bin_search frontend that does the right thing for 833 * leaves vs nodes 834 */ 835 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 836 int level, int *slot) 837 { 838 if (level == 0) { 839 return generic_bin_search(eb, 840 offsetof(struct btrfs_leaf, items), 841 sizeof(struct btrfs_item), 842 key, btrfs_header_nritems(eb), 843 slot); 844 } else { 845 return generic_bin_search(eb, 846 offsetof(struct btrfs_node, ptrs), 847 sizeof(struct btrfs_key_ptr), 848 key, btrfs_header_nritems(eb), 849 slot); 850 } 851 return -1; 852 } 853 854 /* given a node and slot number, this reads the blocks it points to. The 855 * extent buffer is returned with a reference taken (but unlocked). 856 * NULL is returned on error. 857 */ 858 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 859 struct extent_buffer *parent, int slot) 860 { 861 int level = btrfs_header_level(parent); 862 if (slot < 0) 863 return NULL; 864 if (slot >= btrfs_header_nritems(parent)) 865 return NULL; 866 867 BUG_ON(level == 0); 868 869 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 870 btrfs_level_size(root, level - 1), 871 btrfs_node_ptr_generation(parent, slot)); 872 } 873 874 /* 875 * node level balancing, used to make sure nodes are in proper order for 876 * item deletion. We balance from the top down, so we have to make sure 877 * that a deletion won't leave an node completely empty later on. 878 */ 879 static noinline int balance_level(struct btrfs_trans_handle *trans, 880 struct btrfs_root *root, 881 struct btrfs_path *path, int level) 882 { 883 struct extent_buffer *right = NULL; 884 struct extent_buffer *mid; 885 struct extent_buffer *left = NULL; 886 struct extent_buffer *parent = NULL; 887 int ret = 0; 888 int wret; 889 int pslot; 890 int orig_slot = path->slots[level]; 891 int err_on_enospc = 0; 892 u64 orig_ptr; 893 894 if (level == 0) 895 return 0; 896 897 mid = path->nodes[level]; 898 899 WARN_ON(!path->locks[level]); 900 WARN_ON(btrfs_header_generation(mid) != trans->transid); 901 902 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 903 904 if (level < BTRFS_MAX_LEVEL - 1) 905 parent = path->nodes[level + 1]; 906 pslot = path->slots[level + 1]; 907 908 /* 909 * deal with the case where there is only one pointer in the root 910 * by promoting the node below to a root 911 */ 912 if (!parent) { 913 struct extent_buffer *child; 914 915 if (btrfs_header_nritems(mid) != 1) 916 return 0; 917 918 /* promote the child to a root */ 919 child = read_node_slot(root, mid, 0); 920 BUG_ON(!child); 921 btrfs_tree_lock(child); 922 btrfs_set_lock_blocking(child); 923 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0); 924 BUG_ON(ret); 925 926 spin_lock(&root->node_lock); 927 root->node = child; 928 spin_unlock(&root->node_lock); 929 930 ret = btrfs_update_extent_ref(trans, root, child->start, 931 mid->start, child->start, 932 root->root_key.objectid, 933 trans->transid, level - 1); 934 BUG_ON(ret); 935 936 add_root_to_dirty_list(root); 937 btrfs_tree_unlock(child); 938 939 path->locks[level] = 0; 940 path->nodes[level] = NULL; 941 clean_tree_block(trans, root, mid); 942 btrfs_tree_unlock(mid); 943 /* once for the path */ 944 free_extent_buffer(mid); 945 ret = btrfs_free_extent(trans, root, mid->start, mid->len, 946 mid->start, root->root_key.objectid, 947 btrfs_header_generation(mid), 948 level, 1); 949 /* once for the root ptr */ 950 free_extent_buffer(mid); 951 return ret; 952 } 953 if (btrfs_header_nritems(mid) > 954 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 955 return 0; 956 957 if (btrfs_header_nritems(mid) < 2) 958 err_on_enospc = 1; 959 960 left = read_node_slot(root, parent, pslot - 1); 961 if (left) { 962 btrfs_tree_lock(left); 963 btrfs_set_lock_blocking(left); 964 wret = btrfs_cow_block(trans, root, left, 965 parent, pslot - 1, &left, 0); 966 if (wret) { 967 ret = wret; 968 goto enospc; 969 } 970 } 971 right = read_node_slot(root, parent, pslot + 1); 972 if (right) { 973 btrfs_tree_lock(right); 974 btrfs_set_lock_blocking(right); 975 wret = btrfs_cow_block(trans, root, right, 976 parent, pslot + 1, &right, 0); 977 if (wret) { 978 ret = wret; 979 goto enospc; 980 } 981 } 982 983 /* first, try to make some room in the middle buffer */ 984 if (left) { 985 orig_slot += btrfs_header_nritems(left); 986 wret = push_node_left(trans, root, left, mid, 1); 987 if (wret < 0) 988 ret = wret; 989 if (btrfs_header_nritems(mid) < 2) 990 err_on_enospc = 1; 991 } 992 993 /* 994 * then try to empty the right most buffer into the middle 995 */ 996 if (right) { 997 wret = push_node_left(trans, root, mid, right, 1); 998 if (wret < 0 && wret != -ENOSPC) 999 ret = wret; 1000 if (btrfs_header_nritems(right) == 0) { 1001 u64 bytenr = right->start; 1002 u64 generation = btrfs_header_generation(parent); 1003 u32 blocksize = right->len; 1004 1005 clean_tree_block(trans, root, right); 1006 btrfs_tree_unlock(right); 1007 free_extent_buffer(right); 1008 right = NULL; 1009 wret = del_ptr(trans, root, path, level + 1, pslot + 1010 1); 1011 if (wret) 1012 ret = wret; 1013 wret = btrfs_free_extent(trans, root, bytenr, 1014 blocksize, parent->start, 1015 btrfs_header_owner(parent), 1016 generation, level, 1); 1017 if (wret) 1018 ret = wret; 1019 } else { 1020 struct btrfs_disk_key right_key; 1021 btrfs_node_key(right, &right_key, 0); 1022 btrfs_set_node_key(parent, &right_key, pslot + 1); 1023 btrfs_mark_buffer_dirty(parent); 1024 } 1025 } 1026 if (btrfs_header_nritems(mid) == 1) { 1027 /* 1028 * we're not allowed to leave a node with one item in the 1029 * tree during a delete. A deletion from lower in the tree 1030 * could try to delete the only pointer in this node. 1031 * So, pull some keys from the left. 1032 * There has to be a left pointer at this point because 1033 * otherwise we would have pulled some pointers from the 1034 * right 1035 */ 1036 BUG_ON(!left); 1037 wret = balance_node_right(trans, root, mid, left); 1038 if (wret < 0) { 1039 ret = wret; 1040 goto enospc; 1041 } 1042 if (wret == 1) { 1043 wret = push_node_left(trans, root, left, mid, 1); 1044 if (wret < 0) 1045 ret = wret; 1046 } 1047 BUG_ON(wret == 1); 1048 } 1049 if (btrfs_header_nritems(mid) == 0) { 1050 /* we've managed to empty the middle node, drop it */ 1051 u64 root_gen = btrfs_header_generation(parent); 1052 u64 bytenr = mid->start; 1053 u32 blocksize = mid->len; 1054 1055 clean_tree_block(trans, root, mid); 1056 btrfs_tree_unlock(mid); 1057 free_extent_buffer(mid); 1058 mid = NULL; 1059 wret = del_ptr(trans, root, path, level + 1, pslot); 1060 if (wret) 1061 ret = wret; 1062 wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1063 parent->start, 1064 btrfs_header_owner(parent), 1065 root_gen, level, 1); 1066 if (wret) 1067 ret = wret; 1068 } else { 1069 /* update the parent key to reflect our changes */ 1070 struct btrfs_disk_key mid_key; 1071 btrfs_node_key(mid, &mid_key, 0); 1072 btrfs_set_node_key(parent, &mid_key, pslot); 1073 btrfs_mark_buffer_dirty(parent); 1074 } 1075 1076 /* update the path */ 1077 if (left) { 1078 if (btrfs_header_nritems(left) > orig_slot) { 1079 extent_buffer_get(left); 1080 /* left was locked after cow */ 1081 path->nodes[level] = left; 1082 path->slots[level + 1] -= 1; 1083 path->slots[level] = orig_slot; 1084 if (mid) { 1085 btrfs_tree_unlock(mid); 1086 free_extent_buffer(mid); 1087 } 1088 } else { 1089 orig_slot -= btrfs_header_nritems(left); 1090 path->slots[level] = orig_slot; 1091 } 1092 } 1093 /* double check we haven't messed things up */ 1094 check_block(root, path, level); 1095 if (orig_ptr != 1096 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1097 BUG(); 1098 enospc: 1099 if (right) { 1100 btrfs_tree_unlock(right); 1101 free_extent_buffer(right); 1102 } 1103 if (left) { 1104 if (path->nodes[level] != left) 1105 btrfs_tree_unlock(left); 1106 free_extent_buffer(left); 1107 } 1108 return ret; 1109 } 1110 1111 /* Node balancing for insertion. Here we only split or push nodes around 1112 * when they are completely full. This is also done top down, so we 1113 * have to be pessimistic. 1114 */ 1115 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1116 struct btrfs_root *root, 1117 struct btrfs_path *path, int level) 1118 { 1119 struct extent_buffer *right = NULL; 1120 struct extent_buffer *mid; 1121 struct extent_buffer *left = NULL; 1122 struct extent_buffer *parent = NULL; 1123 int ret = 0; 1124 int wret; 1125 int pslot; 1126 int orig_slot = path->slots[level]; 1127 u64 orig_ptr; 1128 1129 if (level == 0) 1130 return 1; 1131 1132 mid = path->nodes[level]; 1133 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1134 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1135 1136 if (level < BTRFS_MAX_LEVEL - 1) 1137 parent = path->nodes[level + 1]; 1138 pslot = path->slots[level + 1]; 1139 1140 if (!parent) 1141 return 1; 1142 1143 left = read_node_slot(root, parent, pslot - 1); 1144 1145 /* first, try to make some room in the middle buffer */ 1146 if (left) { 1147 u32 left_nr; 1148 1149 btrfs_tree_lock(left); 1150 btrfs_set_lock_blocking(left); 1151 1152 left_nr = btrfs_header_nritems(left); 1153 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1154 wret = 1; 1155 } else { 1156 ret = btrfs_cow_block(trans, root, left, parent, 1157 pslot - 1, &left, 0); 1158 if (ret) 1159 wret = 1; 1160 else { 1161 wret = push_node_left(trans, root, 1162 left, mid, 0); 1163 } 1164 } 1165 if (wret < 0) 1166 ret = wret; 1167 if (wret == 0) { 1168 struct btrfs_disk_key disk_key; 1169 orig_slot += left_nr; 1170 btrfs_node_key(mid, &disk_key, 0); 1171 btrfs_set_node_key(parent, &disk_key, pslot); 1172 btrfs_mark_buffer_dirty(parent); 1173 if (btrfs_header_nritems(left) > orig_slot) { 1174 path->nodes[level] = left; 1175 path->slots[level + 1] -= 1; 1176 path->slots[level] = orig_slot; 1177 btrfs_tree_unlock(mid); 1178 free_extent_buffer(mid); 1179 } else { 1180 orig_slot -= 1181 btrfs_header_nritems(left); 1182 path->slots[level] = orig_slot; 1183 btrfs_tree_unlock(left); 1184 free_extent_buffer(left); 1185 } 1186 return 0; 1187 } 1188 btrfs_tree_unlock(left); 1189 free_extent_buffer(left); 1190 } 1191 right = read_node_slot(root, parent, pslot + 1); 1192 1193 /* 1194 * then try to empty the right most buffer into the middle 1195 */ 1196 if (right) { 1197 u32 right_nr; 1198 1199 btrfs_tree_lock(right); 1200 btrfs_set_lock_blocking(right); 1201 1202 right_nr = btrfs_header_nritems(right); 1203 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1204 wret = 1; 1205 } else { 1206 ret = btrfs_cow_block(trans, root, right, 1207 parent, pslot + 1, 1208 &right, 0); 1209 if (ret) 1210 wret = 1; 1211 else { 1212 wret = balance_node_right(trans, root, 1213 right, mid); 1214 } 1215 } 1216 if (wret < 0) 1217 ret = wret; 1218 if (wret == 0) { 1219 struct btrfs_disk_key disk_key; 1220 1221 btrfs_node_key(right, &disk_key, 0); 1222 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1223 btrfs_mark_buffer_dirty(parent); 1224 1225 if (btrfs_header_nritems(mid) <= orig_slot) { 1226 path->nodes[level] = right; 1227 path->slots[level + 1] += 1; 1228 path->slots[level] = orig_slot - 1229 btrfs_header_nritems(mid); 1230 btrfs_tree_unlock(mid); 1231 free_extent_buffer(mid); 1232 } else { 1233 btrfs_tree_unlock(right); 1234 free_extent_buffer(right); 1235 } 1236 return 0; 1237 } 1238 btrfs_tree_unlock(right); 1239 free_extent_buffer(right); 1240 } 1241 return 1; 1242 } 1243 1244 /* 1245 * readahead one full node of leaves, finding things that are close 1246 * to the block in 'slot', and triggering ra on them. 1247 */ 1248 static noinline void reada_for_search(struct btrfs_root *root, 1249 struct btrfs_path *path, 1250 int level, int slot, u64 objectid) 1251 { 1252 struct extent_buffer *node; 1253 struct btrfs_disk_key disk_key; 1254 u32 nritems; 1255 u64 search; 1256 u64 target; 1257 u64 nread = 0; 1258 int direction = path->reada; 1259 struct extent_buffer *eb; 1260 u32 nr; 1261 u32 blocksize; 1262 u32 nscan = 0; 1263 1264 if (level != 1) 1265 return; 1266 1267 if (!path->nodes[level]) 1268 return; 1269 1270 node = path->nodes[level]; 1271 1272 search = btrfs_node_blockptr(node, slot); 1273 blocksize = btrfs_level_size(root, level - 1); 1274 eb = btrfs_find_tree_block(root, search, blocksize); 1275 if (eb) { 1276 free_extent_buffer(eb); 1277 return; 1278 } 1279 1280 target = search; 1281 1282 nritems = btrfs_header_nritems(node); 1283 nr = slot; 1284 while (1) { 1285 if (direction < 0) { 1286 if (nr == 0) 1287 break; 1288 nr--; 1289 } else if (direction > 0) { 1290 nr++; 1291 if (nr >= nritems) 1292 break; 1293 } 1294 if (path->reada < 0 && objectid) { 1295 btrfs_node_key(node, &disk_key, nr); 1296 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1297 break; 1298 } 1299 search = btrfs_node_blockptr(node, nr); 1300 if ((search <= target && target - search <= 65536) || 1301 (search > target && search - target <= 65536)) { 1302 readahead_tree_block(root, search, blocksize, 1303 btrfs_node_ptr_generation(node, nr)); 1304 nread += blocksize; 1305 } 1306 nscan++; 1307 if ((nread > 65536 || nscan > 32)) 1308 break; 1309 } 1310 } 1311 1312 /* 1313 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1314 * cache 1315 */ 1316 static noinline int reada_for_balance(struct btrfs_root *root, 1317 struct btrfs_path *path, int level) 1318 { 1319 int slot; 1320 int nritems; 1321 struct extent_buffer *parent; 1322 struct extent_buffer *eb; 1323 u64 gen; 1324 u64 block1 = 0; 1325 u64 block2 = 0; 1326 int ret = 0; 1327 int blocksize; 1328 1329 parent = path->nodes[level - 1]; 1330 if (!parent) 1331 return 0; 1332 1333 nritems = btrfs_header_nritems(parent); 1334 slot = path->slots[level]; 1335 blocksize = btrfs_level_size(root, level); 1336 1337 if (slot > 0) { 1338 block1 = btrfs_node_blockptr(parent, slot - 1); 1339 gen = btrfs_node_ptr_generation(parent, slot - 1); 1340 eb = btrfs_find_tree_block(root, block1, blocksize); 1341 if (eb && btrfs_buffer_uptodate(eb, gen)) 1342 block1 = 0; 1343 free_extent_buffer(eb); 1344 } 1345 if (slot < nritems) { 1346 block2 = btrfs_node_blockptr(parent, slot + 1); 1347 gen = btrfs_node_ptr_generation(parent, slot + 1); 1348 eb = btrfs_find_tree_block(root, block2, blocksize); 1349 if (eb && btrfs_buffer_uptodate(eb, gen)) 1350 block2 = 0; 1351 free_extent_buffer(eb); 1352 } 1353 if (block1 || block2) { 1354 ret = -EAGAIN; 1355 btrfs_release_path(root, path); 1356 if (block1) 1357 readahead_tree_block(root, block1, blocksize, 0); 1358 if (block2) 1359 readahead_tree_block(root, block2, blocksize, 0); 1360 1361 if (block1) { 1362 eb = read_tree_block(root, block1, blocksize, 0); 1363 free_extent_buffer(eb); 1364 } 1365 if (block1) { 1366 eb = read_tree_block(root, block2, blocksize, 0); 1367 free_extent_buffer(eb); 1368 } 1369 } 1370 return ret; 1371 } 1372 1373 1374 /* 1375 * when we walk down the tree, it is usually safe to unlock the higher layers 1376 * in the tree. The exceptions are when our path goes through slot 0, because 1377 * operations on the tree might require changing key pointers higher up in the 1378 * tree. 1379 * 1380 * callers might also have set path->keep_locks, which tells this code to keep 1381 * the lock if the path points to the last slot in the block. This is part of 1382 * walking through the tree, and selecting the next slot in the higher block. 1383 * 1384 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1385 * if lowest_unlock is 1, level 0 won't be unlocked 1386 */ 1387 static noinline void unlock_up(struct btrfs_path *path, int level, 1388 int lowest_unlock) 1389 { 1390 int i; 1391 int skip_level = level; 1392 int no_skips = 0; 1393 struct extent_buffer *t; 1394 1395 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1396 if (!path->nodes[i]) 1397 break; 1398 if (!path->locks[i]) 1399 break; 1400 if (!no_skips && path->slots[i] == 0) { 1401 skip_level = i + 1; 1402 continue; 1403 } 1404 if (!no_skips && path->keep_locks) { 1405 u32 nritems; 1406 t = path->nodes[i]; 1407 nritems = btrfs_header_nritems(t); 1408 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1409 skip_level = i + 1; 1410 continue; 1411 } 1412 } 1413 if (skip_level < i && i >= lowest_unlock) 1414 no_skips = 1; 1415 1416 t = path->nodes[i]; 1417 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1418 btrfs_tree_unlock(t); 1419 path->locks[i] = 0; 1420 } 1421 } 1422 } 1423 1424 /* 1425 * This releases any locks held in the path starting at level and 1426 * going all the way up to the root. 1427 * 1428 * btrfs_search_slot will keep the lock held on higher nodes in a few 1429 * corner cases, such as COW of the block at slot zero in the node. This 1430 * ignores those rules, and it should only be called when there are no 1431 * more updates to be done higher up in the tree. 1432 */ 1433 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1434 { 1435 int i; 1436 1437 if (path->keep_locks || path->lowest_level) 1438 return; 1439 1440 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1441 if (!path->nodes[i]) 1442 continue; 1443 if (!path->locks[i]) 1444 continue; 1445 btrfs_tree_unlock(path->nodes[i]); 1446 path->locks[i] = 0; 1447 } 1448 } 1449 1450 /* 1451 * look for key in the tree. path is filled in with nodes along the way 1452 * if key is found, we return zero and you can find the item in the leaf 1453 * level of the path (level 0) 1454 * 1455 * If the key isn't found, the path points to the slot where it should 1456 * be inserted, and 1 is returned. If there are other errors during the 1457 * search a negative error number is returned. 1458 * 1459 * if ins_len > 0, nodes and leaves will be split as we walk down the 1460 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1461 * possible) 1462 */ 1463 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1464 *root, struct btrfs_key *key, struct btrfs_path *p, int 1465 ins_len, int cow) 1466 { 1467 struct extent_buffer *b; 1468 struct extent_buffer *tmp; 1469 int slot; 1470 int ret; 1471 int level; 1472 int should_reada = p->reada; 1473 int lowest_unlock = 1; 1474 int blocksize; 1475 u8 lowest_level = 0; 1476 u64 blocknr; 1477 u64 gen; 1478 struct btrfs_key prealloc_block; 1479 1480 lowest_level = p->lowest_level; 1481 WARN_ON(lowest_level && ins_len > 0); 1482 WARN_ON(p->nodes[0] != NULL); 1483 1484 if (ins_len < 0) 1485 lowest_unlock = 2; 1486 1487 prealloc_block.objectid = 0; 1488 1489 again: 1490 if (p->skip_locking) 1491 b = btrfs_root_node(root); 1492 else 1493 b = btrfs_lock_root_node(root); 1494 1495 while (b) { 1496 level = btrfs_header_level(b); 1497 1498 /* 1499 * setup the path here so we can release it under lock 1500 * contention with the cow code 1501 */ 1502 p->nodes[level] = b; 1503 if (!p->skip_locking) 1504 p->locks[level] = 1; 1505 1506 if (cow) { 1507 int wret; 1508 1509 /* is a cow on this block not required */ 1510 if (btrfs_header_generation(b) == trans->transid && 1511 btrfs_header_owner(b) == root->root_key.objectid && 1512 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) { 1513 goto cow_done; 1514 } 1515 1516 /* ok, we have to cow, is our old prealloc the right 1517 * size? 1518 */ 1519 if (prealloc_block.objectid && 1520 prealloc_block.offset != b->len) { 1521 btrfs_release_path(root, p); 1522 btrfs_free_reserved_extent(root, 1523 prealloc_block.objectid, 1524 prealloc_block.offset); 1525 prealloc_block.objectid = 0; 1526 goto again; 1527 } 1528 1529 /* 1530 * for higher level blocks, try not to allocate blocks 1531 * with the block and the parent locks held. 1532 */ 1533 if (level > 0 && !prealloc_block.objectid) { 1534 u32 size = b->len; 1535 u64 hint = b->start; 1536 1537 btrfs_release_path(root, p); 1538 ret = btrfs_reserve_extent(trans, root, 1539 size, size, 0, 1540 hint, (u64)-1, 1541 &prealloc_block, 0); 1542 BUG_ON(ret); 1543 goto again; 1544 } 1545 1546 btrfs_set_path_blocking(p); 1547 1548 wret = btrfs_cow_block(trans, root, b, 1549 p->nodes[level + 1], 1550 p->slots[level + 1], 1551 &b, prealloc_block.objectid); 1552 prealloc_block.objectid = 0; 1553 if (wret) { 1554 free_extent_buffer(b); 1555 ret = wret; 1556 goto done; 1557 } 1558 } 1559 cow_done: 1560 BUG_ON(!cow && ins_len); 1561 if (level != btrfs_header_level(b)) 1562 WARN_ON(1); 1563 level = btrfs_header_level(b); 1564 1565 p->nodes[level] = b; 1566 if (!p->skip_locking) 1567 p->locks[level] = 1; 1568 1569 btrfs_clear_path_blocking(p); 1570 1571 /* 1572 * we have a lock on b and as long as we aren't changing 1573 * the tree, there is no way to for the items in b to change. 1574 * It is safe to drop the lock on our parent before we 1575 * go through the expensive btree search on b. 1576 * 1577 * If cow is true, then we might be changing slot zero, 1578 * which may require changing the parent. So, we can't 1579 * drop the lock until after we know which slot we're 1580 * operating on. 1581 */ 1582 if (!cow) 1583 btrfs_unlock_up_safe(p, level + 1); 1584 1585 ret = check_block(root, p, level); 1586 if (ret) { 1587 ret = -1; 1588 goto done; 1589 } 1590 1591 ret = bin_search(b, key, level, &slot); 1592 1593 if (level != 0) { 1594 if (ret && slot > 0) 1595 slot -= 1; 1596 p->slots[level] = slot; 1597 if ((p->search_for_split || ins_len > 0) && 1598 btrfs_header_nritems(b) >= 1599 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1600 int sret; 1601 1602 sret = reada_for_balance(root, p, level); 1603 if (sret) 1604 goto again; 1605 1606 btrfs_set_path_blocking(p); 1607 sret = split_node(trans, root, p, level); 1608 btrfs_clear_path_blocking(p); 1609 1610 BUG_ON(sret > 0); 1611 if (sret) { 1612 ret = sret; 1613 goto done; 1614 } 1615 b = p->nodes[level]; 1616 slot = p->slots[level]; 1617 } else if (ins_len < 0 && 1618 btrfs_header_nritems(b) < 1619 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) { 1620 int sret; 1621 1622 sret = reada_for_balance(root, p, level); 1623 if (sret) 1624 goto again; 1625 1626 btrfs_set_path_blocking(p); 1627 sret = balance_level(trans, root, p, level); 1628 btrfs_clear_path_blocking(p); 1629 1630 if (sret) { 1631 ret = sret; 1632 goto done; 1633 } 1634 b = p->nodes[level]; 1635 if (!b) { 1636 btrfs_release_path(NULL, p); 1637 goto again; 1638 } 1639 slot = p->slots[level]; 1640 BUG_ON(btrfs_header_nritems(b) == 1); 1641 } 1642 unlock_up(p, level, lowest_unlock); 1643 1644 /* this is only true while dropping a snapshot */ 1645 if (level == lowest_level) { 1646 ret = 0; 1647 goto done; 1648 } 1649 1650 blocknr = btrfs_node_blockptr(b, slot); 1651 gen = btrfs_node_ptr_generation(b, slot); 1652 blocksize = btrfs_level_size(root, level - 1); 1653 1654 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1655 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1656 b = tmp; 1657 } else { 1658 /* 1659 * reduce lock contention at high levels 1660 * of the btree by dropping locks before 1661 * we read. 1662 */ 1663 if (level > 0) { 1664 btrfs_release_path(NULL, p); 1665 if (tmp) 1666 free_extent_buffer(tmp); 1667 if (should_reada) 1668 reada_for_search(root, p, 1669 level, slot, 1670 key->objectid); 1671 1672 tmp = read_tree_block(root, blocknr, 1673 blocksize, gen); 1674 if (tmp) 1675 free_extent_buffer(tmp); 1676 goto again; 1677 } else { 1678 btrfs_set_path_blocking(p); 1679 if (tmp) 1680 free_extent_buffer(tmp); 1681 if (should_reada) 1682 reada_for_search(root, p, 1683 level, slot, 1684 key->objectid); 1685 b = read_node_slot(root, b, slot); 1686 } 1687 } 1688 if (!p->skip_locking) { 1689 int lret; 1690 1691 btrfs_clear_path_blocking(p); 1692 lret = btrfs_try_spin_lock(b); 1693 1694 if (!lret) { 1695 btrfs_set_path_blocking(p); 1696 btrfs_tree_lock(b); 1697 btrfs_clear_path_blocking(p); 1698 } 1699 } 1700 } else { 1701 p->slots[level] = slot; 1702 if (ins_len > 0 && 1703 btrfs_leaf_free_space(root, b) < ins_len) { 1704 int sret; 1705 1706 btrfs_set_path_blocking(p); 1707 sret = split_leaf(trans, root, key, 1708 p, ins_len, ret == 0); 1709 btrfs_clear_path_blocking(p); 1710 1711 BUG_ON(sret > 0); 1712 if (sret) { 1713 ret = sret; 1714 goto done; 1715 } 1716 } 1717 if (!p->search_for_split) 1718 unlock_up(p, level, lowest_unlock); 1719 goto done; 1720 } 1721 } 1722 ret = 1; 1723 done: 1724 /* 1725 * we don't really know what they plan on doing with the path 1726 * from here on, so for now just mark it as blocking 1727 */ 1728 btrfs_set_path_blocking(p); 1729 if (prealloc_block.objectid) { 1730 btrfs_free_reserved_extent(root, 1731 prealloc_block.objectid, 1732 prealloc_block.offset); 1733 } 1734 return ret; 1735 } 1736 1737 int btrfs_merge_path(struct btrfs_trans_handle *trans, 1738 struct btrfs_root *root, 1739 struct btrfs_key *node_keys, 1740 u64 *nodes, int lowest_level) 1741 { 1742 struct extent_buffer *eb; 1743 struct extent_buffer *parent; 1744 struct btrfs_key key; 1745 u64 bytenr; 1746 u64 generation; 1747 u32 blocksize; 1748 int level; 1749 int slot; 1750 int key_match; 1751 int ret; 1752 1753 eb = btrfs_lock_root_node(root); 1754 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0); 1755 BUG_ON(ret); 1756 1757 btrfs_set_lock_blocking(eb); 1758 1759 parent = eb; 1760 while (1) { 1761 level = btrfs_header_level(parent); 1762 if (level == 0 || level <= lowest_level) 1763 break; 1764 1765 ret = bin_search(parent, &node_keys[lowest_level], level, 1766 &slot); 1767 if (ret && slot > 0) 1768 slot--; 1769 1770 bytenr = btrfs_node_blockptr(parent, slot); 1771 if (nodes[level - 1] == bytenr) 1772 break; 1773 1774 blocksize = btrfs_level_size(root, level - 1); 1775 generation = btrfs_node_ptr_generation(parent, slot); 1776 btrfs_node_key_to_cpu(eb, &key, slot); 1777 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key)); 1778 1779 if (generation == trans->transid) { 1780 eb = read_tree_block(root, bytenr, blocksize, 1781 generation); 1782 btrfs_tree_lock(eb); 1783 btrfs_set_lock_blocking(eb); 1784 } 1785 1786 /* 1787 * if node keys match and node pointer hasn't been modified 1788 * in the running transaction, we can merge the path. for 1789 * blocks owened by reloc trees, the node pointer check is 1790 * skipped, this is because these blocks are fully controlled 1791 * by the space balance code, no one else can modify them. 1792 */ 1793 if (!nodes[level - 1] || !key_match || 1794 (generation == trans->transid && 1795 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) { 1796 if (level == 1 || level == lowest_level + 1) { 1797 if (generation == trans->transid) { 1798 btrfs_tree_unlock(eb); 1799 free_extent_buffer(eb); 1800 } 1801 break; 1802 } 1803 1804 if (generation != trans->transid) { 1805 eb = read_tree_block(root, bytenr, blocksize, 1806 generation); 1807 btrfs_tree_lock(eb); 1808 btrfs_set_lock_blocking(eb); 1809 } 1810 1811 ret = btrfs_cow_block(trans, root, eb, parent, slot, 1812 &eb, 0); 1813 BUG_ON(ret); 1814 1815 if (root->root_key.objectid == 1816 BTRFS_TREE_RELOC_OBJECTID) { 1817 if (!nodes[level - 1]) { 1818 nodes[level - 1] = eb->start; 1819 memcpy(&node_keys[level - 1], &key, 1820 sizeof(node_keys[0])); 1821 } else { 1822 WARN_ON(1); 1823 } 1824 } 1825 1826 btrfs_tree_unlock(parent); 1827 free_extent_buffer(parent); 1828 parent = eb; 1829 continue; 1830 } 1831 1832 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]); 1833 btrfs_set_node_ptr_generation(parent, slot, trans->transid); 1834 btrfs_mark_buffer_dirty(parent); 1835 1836 ret = btrfs_inc_extent_ref(trans, root, 1837 nodes[level - 1], 1838 blocksize, parent->start, 1839 btrfs_header_owner(parent), 1840 btrfs_header_generation(parent), 1841 level - 1); 1842 BUG_ON(ret); 1843 1844 /* 1845 * If the block was created in the running transaction, 1846 * it's possible this is the last reference to it, so we 1847 * should drop the subtree. 1848 */ 1849 if (generation == trans->transid) { 1850 ret = btrfs_drop_subtree(trans, root, eb, parent); 1851 BUG_ON(ret); 1852 btrfs_tree_unlock(eb); 1853 free_extent_buffer(eb); 1854 } else { 1855 ret = btrfs_free_extent(trans, root, bytenr, 1856 blocksize, parent->start, 1857 btrfs_header_owner(parent), 1858 btrfs_header_generation(parent), 1859 level - 1, 1); 1860 BUG_ON(ret); 1861 } 1862 break; 1863 } 1864 btrfs_tree_unlock(parent); 1865 free_extent_buffer(parent); 1866 return 0; 1867 } 1868 1869 /* 1870 * adjust the pointers going up the tree, starting at level 1871 * making sure the right key of each node is points to 'key'. 1872 * This is used after shifting pointers to the left, so it stops 1873 * fixing up pointers when a given leaf/node is not in slot 0 of the 1874 * higher levels 1875 * 1876 * If this fails to write a tree block, it returns -1, but continues 1877 * fixing up the blocks in ram so the tree is consistent. 1878 */ 1879 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1880 struct btrfs_root *root, struct btrfs_path *path, 1881 struct btrfs_disk_key *key, int level) 1882 { 1883 int i; 1884 int ret = 0; 1885 struct extent_buffer *t; 1886 1887 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1888 int tslot = path->slots[i]; 1889 if (!path->nodes[i]) 1890 break; 1891 t = path->nodes[i]; 1892 btrfs_set_node_key(t, key, tslot); 1893 btrfs_mark_buffer_dirty(path->nodes[i]); 1894 if (tslot != 0) 1895 break; 1896 } 1897 return ret; 1898 } 1899 1900 /* 1901 * update item key. 1902 * 1903 * This function isn't completely safe. It's the caller's responsibility 1904 * that the new key won't break the order 1905 */ 1906 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1907 struct btrfs_root *root, struct btrfs_path *path, 1908 struct btrfs_key *new_key) 1909 { 1910 struct btrfs_disk_key disk_key; 1911 struct extent_buffer *eb; 1912 int slot; 1913 1914 eb = path->nodes[0]; 1915 slot = path->slots[0]; 1916 if (slot > 0) { 1917 btrfs_item_key(eb, &disk_key, slot - 1); 1918 if (comp_keys(&disk_key, new_key) >= 0) 1919 return -1; 1920 } 1921 if (slot < btrfs_header_nritems(eb) - 1) { 1922 btrfs_item_key(eb, &disk_key, slot + 1); 1923 if (comp_keys(&disk_key, new_key) <= 0) 1924 return -1; 1925 } 1926 1927 btrfs_cpu_key_to_disk(&disk_key, new_key); 1928 btrfs_set_item_key(eb, &disk_key, slot); 1929 btrfs_mark_buffer_dirty(eb); 1930 if (slot == 0) 1931 fixup_low_keys(trans, root, path, &disk_key, 1); 1932 return 0; 1933 } 1934 1935 /* 1936 * try to push data from one node into the next node left in the 1937 * tree. 1938 * 1939 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1940 * error, and > 0 if there was no room in the left hand block. 1941 */ 1942 static int push_node_left(struct btrfs_trans_handle *trans, 1943 struct btrfs_root *root, struct extent_buffer *dst, 1944 struct extent_buffer *src, int empty) 1945 { 1946 int push_items = 0; 1947 int src_nritems; 1948 int dst_nritems; 1949 int ret = 0; 1950 1951 src_nritems = btrfs_header_nritems(src); 1952 dst_nritems = btrfs_header_nritems(dst); 1953 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1954 WARN_ON(btrfs_header_generation(src) != trans->transid); 1955 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1956 1957 if (!empty && src_nritems <= 8) 1958 return 1; 1959 1960 if (push_items <= 0) 1961 return 1; 1962 1963 if (empty) { 1964 push_items = min(src_nritems, push_items); 1965 if (push_items < src_nritems) { 1966 /* leave at least 8 pointers in the node if 1967 * we aren't going to empty it 1968 */ 1969 if (src_nritems - push_items < 8) { 1970 if (push_items <= 8) 1971 return 1; 1972 push_items -= 8; 1973 } 1974 } 1975 } else 1976 push_items = min(src_nritems - 8, push_items); 1977 1978 copy_extent_buffer(dst, src, 1979 btrfs_node_key_ptr_offset(dst_nritems), 1980 btrfs_node_key_ptr_offset(0), 1981 push_items * sizeof(struct btrfs_key_ptr)); 1982 1983 if (push_items < src_nritems) { 1984 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 1985 btrfs_node_key_ptr_offset(push_items), 1986 (src_nritems - push_items) * 1987 sizeof(struct btrfs_key_ptr)); 1988 } 1989 btrfs_set_header_nritems(src, src_nritems - push_items); 1990 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1991 btrfs_mark_buffer_dirty(src); 1992 btrfs_mark_buffer_dirty(dst); 1993 1994 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items); 1995 BUG_ON(ret); 1996 1997 return ret; 1998 } 1999 2000 /* 2001 * try to push data from one node into the next node right in the 2002 * tree. 2003 * 2004 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2005 * error, and > 0 if there was no room in the right hand block. 2006 * 2007 * this will only push up to 1/2 the contents of the left node over 2008 */ 2009 static int balance_node_right(struct btrfs_trans_handle *trans, 2010 struct btrfs_root *root, 2011 struct extent_buffer *dst, 2012 struct extent_buffer *src) 2013 { 2014 int push_items = 0; 2015 int max_push; 2016 int src_nritems; 2017 int dst_nritems; 2018 int ret = 0; 2019 2020 WARN_ON(btrfs_header_generation(src) != trans->transid); 2021 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2022 2023 src_nritems = btrfs_header_nritems(src); 2024 dst_nritems = btrfs_header_nritems(dst); 2025 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2026 if (push_items <= 0) 2027 return 1; 2028 2029 if (src_nritems < 4) 2030 return 1; 2031 2032 max_push = src_nritems / 2 + 1; 2033 /* don't try to empty the node */ 2034 if (max_push >= src_nritems) 2035 return 1; 2036 2037 if (max_push < push_items) 2038 push_items = max_push; 2039 2040 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2041 btrfs_node_key_ptr_offset(0), 2042 (dst_nritems) * 2043 sizeof(struct btrfs_key_ptr)); 2044 2045 copy_extent_buffer(dst, src, 2046 btrfs_node_key_ptr_offset(0), 2047 btrfs_node_key_ptr_offset(src_nritems - push_items), 2048 push_items * sizeof(struct btrfs_key_ptr)); 2049 2050 btrfs_set_header_nritems(src, src_nritems - push_items); 2051 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2052 2053 btrfs_mark_buffer_dirty(src); 2054 btrfs_mark_buffer_dirty(dst); 2055 2056 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items); 2057 BUG_ON(ret); 2058 2059 return ret; 2060 } 2061 2062 /* 2063 * helper function to insert a new root level in the tree. 2064 * A new node is allocated, and a single item is inserted to 2065 * point to the existing root 2066 * 2067 * returns zero on success or < 0 on failure. 2068 */ 2069 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2070 struct btrfs_root *root, 2071 struct btrfs_path *path, int level) 2072 { 2073 u64 lower_gen; 2074 struct extent_buffer *lower; 2075 struct extent_buffer *c; 2076 struct extent_buffer *old; 2077 struct btrfs_disk_key lower_key; 2078 int ret; 2079 2080 BUG_ON(path->nodes[level]); 2081 BUG_ON(path->nodes[level-1] != root->node); 2082 2083 lower = path->nodes[level-1]; 2084 if (level == 1) 2085 btrfs_item_key(lower, &lower_key, 0); 2086 else 2087 btrfs_node_key(lower, &lower_key, 0); 2088 2089 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2090 root->root_key.objectid, trans->transid, 2091 level, root->node->start, 0); 2092 if (IS_ERR(c)) 2093 return PTR_ERR(c); 2094 2095 memset_extent_buffer(c, 0, 0, root->nodesize); 2096 btrfs_set_header_nritems(c, 1); 2097 btrfs_set_header_level(c, level); 2098 btrfs_set_header_bytenr(c, c->start); 2099 btrfs_set_header_generation(c, trans->transid); 2100 btrfs_set_header_owner(c, root->root_key.objectid); 2101 2102 write_extent_buffer(c, root->fs_info->fsid, 2103 (unsigned long)btrfs_header_fsid(c), 2104 BTRFS_FSID_SIZE); 2105 2106 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2107 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2108 BTRFS_UUID_SIZE); 2109 2110 btrfs_set_node_key(c, &lower_key, 0); 2111 btrfs_set_node_blockptr(c, 0, lower->start); 2112 lower_gen = btrfs_header_generation(lower); 2113 WARN_ON(lower_gen != trans->transid); 2114 2115 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2116 2117 btrfs_mark_buffer_dirty(c); 2118 2119 spin_lock(&root->node_lock); 2120 old = root->node; 2121 root->node = c; 2122 spin_unlock(&root->node_lock); 2123 2124 ret = btrfs_update_extent_ref(trans, root, lower->start, 2125 lower->start, c->start, 2126 root->root_key.objectid, 2127 trans->transid, level - 1); 2128 BUG_ON(ret); 2129 2130 /* the super has an extra ref to root->node */ 2131 free_extent_buffer(old); 2132 2133 add_root_to_dirty_list(root); 2134 extent_buffer_get(c); 2135 path->nodes[level] = c; 2136 path->locks[level] = 1; 2137 path->slots[level] = 0; 2138 return 0; 2139 } 2140 2141 /* 2142 * worker function to insert a single pointer in a node. 2143 * the node should have enough room for the pointer already 2144 * 2145 * slot and level indicate where you want the key to go, and 2146 * blocknr is the block the key points to. 2147 * 2148 * returns zero on success and < 0 on any error 2149 */ 2150 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2151 *root, struct btrfs_path *path, struct btrfs_disk_key 2152 *key, u64 bytenr, int slot, int level) 2153 { 2154 struct extent_buffer *lower; 2155 int nritems; 2156 2157 BUG_ON(!path->nodes[level]); 2158 lower = path->nodes[level]; 2159 nritems = btrfs_header_nritems(lower); 2160 if (slot > nritems) 2161 BUG(); 2162 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2163 BUG(); 2164 if (slot != nritems) { 2165 memmove_extent_buffer(lower, 2166 btrfs_node_key_ptr_offset(slot + 1), 2167 btrfs_node_key_ptr_offset(slot), 2168 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2169 } 2170 btrfs_set_node_key(lower, key, slot); 2171 btrfs_set_node_blockptr(lower, slot, bytenr); 2172 WARN_ON(trans->transid == 0); 2173 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2174 btrfs_set_header_nritems(lower, nritems + 1); 2175 btrfs_mark_buffer_dirty(lower); 2176 return 0; 2177 } 2178 2179 /* 2180 * split the node at the specified level in path in two. 2181 * The path is corrected to point to the appropriate node after the split 2182 * 2183 * Before splitting this tries to make some room in the node by pushing 2184 * left and right, if either one works, it returns right away. 2185 * 2186 * returns 0 on success and < 0 on failure 2187 */ 2188 static noinline int split_node(struct btrfs_trans_handle *trans, 2189 struct btrfs_root *root, 2190 struct btrfs_path *path, int level) 2191 { 2192 struct extent_buffer *c; 2193 struct extent_buffer *split; 2194 struct btrfs_disk_key disk_key; 2195 int mid; 2196 int ret; 2197 int wret; 2198 u32 c_nritems; 2199 2200 c = path->nodes[level]; 2201 WARN_ON(btrfs_header_generation(c) != trans->transid); 2202 if (c == root->node) { 2203 /* trying to split the root, lets make a new one */ 2204 ret = insert_new_root(trans, root, path, level + 1); 2205 if (ret) 2206 return ret; 2207 } else { 2208 ret = push_nodes_for_insert(trans, root, path, level); 2209 c = path->nodes[level]; 2210 if (!ret && btrfs_header_nritems(c) < 2211 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2212 return 0; 2213 if (ret < 0) 2214 return ret; 2215 } 2216 2217 c_nritems = btrfs_header_nritems(c); 2218 2219 split = btrfs_alloc_free_block(trans, root, root->nodesize, 2220 path->nodes[level + 1]->start, 2221 root->root_key.objectid, 2222 trans->transid, level, c->start, 0); 2223 if (IS_ERR(split)) 2224 return PTR_ERR(split); 2225 2226 btrfs_set_header_flags(split, btrfs_header_flags(c)); 2227 btrfs_set_header_level(split, btrfs_header_level(c)); 2228 btrfs_set_header_bytenr(split, split->start); 2229 btrfs_set_header_generation(split, trans->transid); 2230 btrfs_set_header_owner(split, root->root_key.objectid); 2231 btrfs_set_header_flags(split, 0); 2232 write_extent_buffer(split, root->fs_info->fsid, 2233 (unsigned long)btrfs_header_fsid(split), 2234 BTRFS_FSID_SIZE); 2235 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2236 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2237 BTRFS_UUID_SIZE); 2238 2239 mid = (c_nritems + 1) / 2; 2240 2241 copy_extent_buffer(split, c, 2242 btrfs_node_key_ptr_offset(0), 2243 btrfs_node_key_ptr_offset(mid), 2244 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2245 btrfs_set_header_nritems(split, c_nritems - mid); 2246 btrfs_set_header_nritems(c, mid); 2247 ret = 0; 2248 2249 btrfs_mark_buffer_dirty(c); 2250 btrfs_mark_buffer_dirty(split); 2251 2252 btrfs_node_key(split, &disk_key, 0); 2253 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2254 path->slots[level + 1] + 1, 2255 level + 1); 2256 if (wret) 2257 ret = wret; 2258 2259 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid); 2260 BUG_ON(ret); 2261 2262 if (path->slots[level] >= mid) { 2263 path->slots[level] -= mid; 2264 btrfs_tree_unlock(c); 2265 free_extent_buffer(c); 2266 path->nodes[level] = split; 2267 path->slots[level + 1] += 1; 2268 } else { 2269 btrfs_tree_unlock(split); 2270 free_extent_buffer(split); 2271 } 2272 return ret; 2273 } 2274 2275 /* 2276 * how many bytes are required to store the items in a leaf. start 2277 * and nr indicate which items in the leaf to check. This totals up the 2278 * space used both by the item structs and the item data 2279 */ 2280 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2281 { 2282 int data_len; 2283 int nritems = btrfs_header_nritems(l); 2284 int end = min(nritems, start + nr) - 1; 2285 2286 if (!nr) 2287 return 0; 2288 data_len = btrfs_item_end_nr(l, start); 2289 data_len = data_len - btrfs_item_offset_nr(l, end); 2290 data_len += sizeof(struct btrfs_item) * nr; 2291 WARN_ON(data_len < 0); 2292 return data_len; 2293 } 2294 2295 /* 2296 * The space between the end of the leaf items and 2297 * the start of the leaf data. IOW, how much room 2298 * the leaf has left for both items and data 2299 */ 2300 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2301 struct extent_buffer *leaf) 2302 { 2303 int nritems = btrfs_header_nritems(leaf); 2304 int ret; 2305 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2306 if (ret < 0) { 2307 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2308 "used %d nritems %d\n", 2309 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2310 leaf_space_used(leaf, 0, nritems), nritems); 2311 } 2312 return ret; 2313 } 2314 2315 /* 2316 * push some data in the path leaf to the right, trying to free up at 2317 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2318 * 2319 * returns 1 if the push failed because the other node didn't have enough 2320 * room, 0 if everything worked out and < 0 if there were major errors. 2321 */ 2322 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2323 *root, struct btrfs_path *path, int data_size, 2324 int empty) 2325 { 2326 struct extent_buffer *left = path->nodes[0]; 2327 struct extent_buffer *right; 2328 struct extent_buffer *upper; 2329 struct btrfs_disk_key disk_key; 2330 int slot; 2331 u32 i; 2332 int free_space; 2333 int push_space = 0; 2334 int push_items = 0; 2335 struct btrfs_item *item; 2336 u32 left_nritems; 2337 u32 nr; 2338 u32 right_nritems; 2339 u32 data_end; 2340 u32 this_item_size; 2341 int ret; 2342 2343 slot = path->slots[1]; 2344 if (!path->nodes[1]) 2345 return 1; 2346 2347 upper = path->nodes[1]; 2348 if (slot >= btrfs_header_nritems(upper) - 1) 2349 return 1; 2350 2351 WARN_ON(!btrfs_tree_locked(path->nodes[1])); 2352 2353 right = read_node_slot(root, upper, slot + 1); 2354 btrfs_tree_lock(right); 2355 btrfs_set_lock_blocking(right); 2356 2357 free_space = btrfs_leaf_free_space(root, right); 2358 if (free_space < data_size) 2359 goto out_unlock; 2360 2361 /* cow and double check */ 2362 ret = btrfs_cow_block(trans, root, right, upper, 2363 slot + 1, &right, 0); 2364 if (ret) 2365 goto out_unlock; 2366 2367 free_space = btrfs_leaf_free_space(root, right); 2368 if (free_space < data_size) 2369 goto out_unlock; 2370 2371 left_nritems = btrfs_header_nritems(left); 2372 if (left_nritems == 0) 2373 goto out_unlock; 2374 2375 if (empty) 2376 nr = 0; 2377 else 2378 nr = 1; 2379 2380 if (path->slots[0] >= left_nritems) 2381 push_space += data_size; 2382 2383 i = left_nritems - 1; 2384 while (i >= nr) { 2385 item = btrfs_item_nr(left, i); 2386 2387 if (!empty && push_items > 0) { 2388 if (path->slots[0] > i) 2389 break; 2390 if (path->slots[0] == i) { 2391 int space = btrfs_leaf_free_space(root, left); 2392 if (space + push_space * 2 > free_space) 2393 break; 2394 } 2395 } 2396 2397 if (path->slots[0] == i) 2398 push_space += data_size; 2399 2400 if (!left->map_token) { 2401 map_extent_buffer(left, (unsigned long)item, 2402 sizeof(struct btrfs_item), 2403 &left->map_token, &left->kaddr, 2404 &left->map_start, &left->map_len, 2405 KM_USER1); 2406 } 2407 2408 this_item_size = btrfs_item_size(left, item); 2409 if (this_item_size + sizeof(*item) + push_space > free_space) 2410 break; 2411 2412 push_items++; 2413 push_space += this_item_size + sizeof(*item); 2414 if (i == 0) 2415 break; 2416 i--; 2417 } 2418 if (left->map_token) { 2419 unmap_extent_buffer(left, left->map_token, KM_USER1); 2420 left->map_token = NULL; 2421 } 2422 2423 if (push_items == 0) 2424 goto out_unlock; 2425 2426 if (!empty && push_items == left_nritems) 2427 WARN_ON(1); 2428 2429 /* push left to right */ 2430 right_nritems = btrfs_header_nritems(right); 2431 2432 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2433 push_space -= leaf_data_end(root, left); 2434 2435 /* make room in the right data area */ 2436 data_end = leaf_data_end(root, right); 2437 memmove_extent_buffer(right, 2438 btrfs_leaf_data(right) + data_end - push_space, 2439 btrfs_leaf_data(right) + data_end, 2440 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2441 2442 /* copy from the left data area */ 2443 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2444 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2445 btrfs_leaf_data(left) + leaf_data_end(root, left), 2446 push_space); 2447 2448 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2449 btrfs_item_nr_offset(0), 2450 right_nritems * sizeof(struct btrfs_item)); 2451 2452 /* copy the items from left to right */ 2453 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2454 btrfs_item_nr_offset(left_nritems - push_items), 2455 push_items * sizeof(struct btrfs_item)); 2456 2457 /* update the item pointers */ 2458 right_nritems += push_items; 2459 btrfs_set_header_nritems(right, right_nritems); 2460 push_space = BTRFS_LEAF_DATA_SIZE(root); 2461 for (i = 0; i < right_nritems; i++) { 2462 item = btrfs_item_nr(right, i); 2463 if (!right->map_token) { 2464 map_extent_buffer(right, (unsigned long)item, 2465 sizeof(struct btrfs_item), 2466 &right->map_token, &right->kaddr, 2467 &right->map_start, &right->map_len, 2468 KM_USER1); 2469 } 2470 push_space -= btrfs_item_size(right, item); 2471 btrfs_set_item_offset(right, item, push_space); 2472 } 2473 2474 if (right->map_token) { 2475 unmap_extent_buffer(right, right->map_token, KM_USER1); 2476 right->map_token = NULL; 2477 } 2478 left_nritems -= push_items; 2479 btrfs_set_header_nritems(left, left_nritems); 2480 2481 if (left_nritems) 2482 btrfs_mark_buffer_dirty(left); 2483 btrfs_mark_buffer_dirty(right); 2484 2485 ret = btrfs_update_ref(trans, root, left, right, 0, push_items); 2486 BUG_ON(ret); 2487 2488 btrfs_item_key(right, &disk_key, 0); 2489 btrfs_set_node_key(upper, &disk_key, slot + 1); 2490 btrfs_mark_buffer_dirty(upper); 2491 2492 /* then fixup the leaf pointer in the path */ 2493 if (path->slots[0] >= left_nritems) { 2494 path->slots[0] -= left_nritems; 2495 if (btrfs_header_nritems(path->nodes[0]) == 0) 2496 clean_tree_block(trans, root, path->nodes[0]); 2497 btrfs_tree_unlock(path->nodes[0]); 2498 free_extent_buffer(path->nodes[0]); 2499 path->nodes[0] = right; 2500 path->slots[1] += 1; 2501 } else { 2502 btrfs_tree_unlock(right); 2503 free_extent_buffer(right); 2504 } 2505 return 0; 2506 2507 out_unlock: 2508 btrfs_tree_unlock(right); 2509 free_extent_buffer(right); 2510 return 1; 2511 } 2512 2513 /* 2514 * push some data in the path leaf to the left, trying to free up at 2515 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2516 */ 2517 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2518 *root, struct btrfs_path *path, int data_size, 2519 int empty) 2520 { 2521 struct btrfs_disk_key disk_key; 2522 struct extent_buffer *right = path->nodes[0]; 2523 struct extent_buffer *left; 2524 int slot; 2525 int i; 2526 int free_space; 2527 int push_space = 0; 2528 int push_items = 0; 2529 struct btrfs_item *item; 2530 u32 old_left_nritems; 2531 u32 right_nritems; 2532 u32 nr; 2533 int ret = 0; 2534 int wret; 2535 u32 this_item_size; 2536 u32 old_left_item_size; 2537 2538 slot = path->slots[1]; 2539 if (slot == 0) 2540 return 1; 2541 if (!path->nodes[1]) 2542 return 1; 2543 2544 right_nritems = btrfs_header_nritems(right); 2545 if (right_nritems == 0) 2546 return 1; 2547 2548 WARN_ON(!btrfs_tree_locked(path->nodes[1])); 2549 2550 left = read_node_slot(root, path->nodes[1], slot - 1); 2551 btrfs_tree_lock(left); 2552 btrfs_set_lock_blocking(left); 2553 2554 free_space = btrfs_leaf_free_space(root, left); 2555 if (free_space < data_size) { 2556 ret = 1; 2557 goto out; 2558 } 2559 2560 /* cow and double check */ 2561 ret = btrfs_cow_block(trans, root, left, 2562 path->nodes[1], slot - 1, &left, 0); 2563 if (ret) { 2564 /* we hit -ENOSPC, but it isn't fatal here */ 2565 ret = 1; 2566 goto out; 2567 } 2568 2569 free_space = btrfs_leaf_free_space(root, left); 2570 if (free_space < data_size) { 2571 ret = 1; 2572 goto out; 2573 } 2574 2575 if (empty) 2576 nr = right_nritems; 2577 else 2578 nr = right_nritems - 1; 2579 2580 for (i = 0; i < nr; i++) { 2581 item = btrfs_item_nr(right, i); 2582 if (!right->map_token) { 2583 map_extent_buffer(right, (unsigned long)item, 2584 sizeof(struct btrfs_item), 2585 &right->map_token, &right->kaddr, 2586 &right->map_start, &right->map_len, 2587 KM_USER1); 2588 } 2589 2590 if (!empty && push_items > 0) { 2591 if (path->slots[0] < i) 2592 break; 2593 if (path->slots[0] == i) { 2594 int space = btrfs_leaf_free_space(root, right); 2595 if (space + push_space * 2 > free_space) 2596 break; 2597 } 2598 } 2599 2600 if (path->slots[0] == i) 2601 push_space += data_size; 2602 2603 this_item_size = btrfs_item_size(right, item); 2604 if (this_item_size + sizeof(*item) + push_space > free_space) 2605 break; 2606 2607 push_items++; 2608 push_space += this_item_size + sizeof(*item); 2609 } 2610 2611 if (right->map_token) { 2612 unmap_extent_buffer(right, right->map_token, KM_USER1); 2613 right->map_token = NULL; 2614 } 2615 2616 if (push_items == 0) { 2617 ret = 1; 2618 goto out; 2619 } 2620 if (!empty && push_items == btrfs_header_nritems(right)) 2621 WARN_ON(1); 2622 2623 /* push data from right to left */ 2624 copy_extent_buffer(left, right, 2625 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2626 btrfs_item_nr_offset(0), 2627 push_items * sizeof(struct btrfs_item)); 2628 2629 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2630 btrfs_item_offset_nr(right, push_items - 1); 2631 2632 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2633 leaf_data_end(root, left) - push_space, 2634 btrfs_leaf_data(right) + 2635 btrfs_item_offset_nr(right, push_items - 1), 2636 push_space); 2637 old_left_nritems = btrfs_header_nritems(left); 2638 BUG_ON(old_left_nritems <= 0); 2639 2640 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2641 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2642 u32 ioff; 2643 2644 item = btrfs_item_nr(left, i); 2645 if (!left->map_token) { 2646 map_extent_buffer(left, (unsigned long)item, 2647 sizeof(struct btrfs_item), 2648 &left->map_token, &left->kaddr, 2649 &left->map_start, &left->map_len, 2650 KM_USER1); 2651 } 2652 2653 ioff = btrfs_item_offset(left, item); 2654 btrfs_set_item_offset(left, item, 2655 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2656 } 2657 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2658 if (left->map_token) { 2659 unmap_extent_buffer(left, left->map_token, KM_USER1); 2660 left->map_token = NULL; 2661 } 2662 2663 /* fixup right node */ 2664 if (push_items > right_nritems) { 2665 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2666 right_nritems); 2667 WARN_ON(1); 2668 } 2669 2670 if (push_items < right_nritems) { 2671 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2672 leaf_data_end(root, right); 2673 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2674 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2675 btrfs_leaf_data(right) + 2676 leaf_data_end(root, right), push_space); 2677 2678 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2679 btrfs_item_nr_offset(push_items), 2680 (btrfs_header_nritems(right) - push_items) * 2681 sizeof(struct btrfs_item)); 2682 } 2683 right_nritems -= push_items; 2684 btrfs_set_header_nritems(right, right_nritems); 2685 push_space = BTRFS_LEAF_DATA_SIZE(root); 2686 for (i = 0; i < right_nritems; i++) { 2687 item = btrfs_item_nr(right, i); 2688 2689 if (!right->map_token) { 2690 map_extent_buffer(right, (unsigned long)item, 2691 sizeof(struct btrfs_item), 2692 &right->map_token, &right->kaddr, 2693 &right->map_start, &right->map_len, 2694 KM_USER1); 2695 } 2696 2697 push_space = push_space - btrfs_item_size(right, item); 2698 btrfs_set_item_offset(right, item, push_space); 2699 } 2700 if (right->map_token) { 2701 unmap_extent_buffer(right, right->map_token, KM_USER1); 2702 right->map_token = NULL; 2703 } 2704 2705 btrfs_mark_buffer_dirty(left); 2706 if (right_nritems) 2707 btrfs_mark_buffer_dirty(right); 2708 2709 ret = btrfs_update_ref(trans, root, right, left, 2710 old_left_nritems, push_items); 2711 BUG_ON(ret); 2712 2713 btrfs_item_key(right, &disk_key, 0); 2714 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2715 if (wret) 2716 ret = wret; 2717 2718 /* then fixup the leaf pointer in the path */ 2719 if (path->slots[0] < push_items) { 2720 path->slots[0] += old_left_nritems; 2721 if (btrfs_header_nritems(path->nodes[0]) == 0) 2722 clean_tree_block(trans, root, path->nodes[0]); 2723 btrfs_tree_unlock(path->nodes[0]); 2724 free_extent_buffer(path->nodes[0]); 2725 path->nodes[0] = left; 2726 path->slots[1] -= 1; 2727 } else { 2728 btrfs_tree_unlock(left); 2729 free_extent_buffer(left); 2730 path->slots[0] -= push_items; 2731 } 2732 BUG_ON(path->slots[0] < 0); 2733 return ret; 2734 out: 2735 btrfs_tree_unlock(left); 2736 free_extent_buffer(left); 2737 return ret; 2738 } 2739 2740 /* 2741 * split the path's leaf in two, making sure there is at least data_size 2742 * available for the resulting leaf level of the path. 2743 * 2744 * returns 0 if all went well and < 0 on failure. 2745 */ 2746 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2747 struct btrfs_root *root, 2748 struct btrfs_key *ins_key, 2749 struct btrfs_path *path, int data_size, 2750 int extend) 2751 { 2752 struct extent_buffer *l; 2753 u32 nritems; 2754 int mid; 2755 int slot; 2756 struct extent_buffer *right; 2757 int data_copy_size; 2758 int rt_data_off; 2759 int i; 2760 int ret = 0; 2761 int wret; 2762 int double_split; 2763 int num_doubles = 0; 2764 struct btrfs_disk_key disk_key; 2765 2766 /* first try to make some room by pushing left and right */ 2767 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) { 2768 wret = push_leaf_right(trans, root, path, data_size, 0); 2769 if (wret < 0) 2770 return wret; 2771 if (wret) { 2772 wret = push_leaf_left(trans, root, path, data_size, 0); 2773 if (wret < 0) 2774 return wret; 2775 } 2776 l = path->nodes[0]; 2777 2778 /* did the pushes work? */ 2779 if (btrfs_leaf_free_space(root, l) >= data_size) 2780 return 0; 2781 } 2782 2783 if (!path->nodes[1]) { 2784 ret = insert_new_root(trans, root, path, 1); 2785 if (ret) 2786 return ret; 2787 } 2788 again: 2789 double_split = 0; 2790 l = path->nodes[0]; 2791 slot = path->slots[0]; 2792 nritems = btrfs_header_nritems(l); 2793 mid = (nritems + 1) / 2; 2794 2795 right = btrfs_alloc_free_block(trans, root, root->leafsize, 2796 path->nodes[1]->start, 2797 root->root_key.objectid, 2798 trans->transid, 0, l->start, 0); 2799 if (IS_ERR(right)) { 2800 BUG_ON(1); 2801 return PTR_ERR(right); 2802 } 2803 2804 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2805 btrfs_set_header_bytenr(right, right->start); 2806 btrfs_set_header_generation(right, trans->transid); 2807 btrfs_set_header_owner(right, root->root_key.objectid); 2808 btrfs_set_header_level(right, 0); 2809 write_extent_buffer(right, root->fs_info->fsid, 2810 (unsigned long)btrfs_header_fsid(right), 2811 BTRFS_FSID_SIZE); 2812 2813 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2814 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2815 BTRFS_UUID_SIZE); 2816 if (mid <= slot) { 2817 if (nritems == 1 || 2818 leaf_space_used(l, mid, nritems - mid) + data_size > 2819 BTRFS_LEAF_DATA_SIZE(root)) { 2820 if (slot >= nritems) { 2821 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2822 btrfs_set_header_nritems(right, 0); 2823 wret = insert_ptr(trans, root, path, 2824 &disk_key, right->start, 2825 path->slots[1] + 1, 1); 2826 if (wret) 2827 ret = wret; 2828 2829 btrfs_tree_unlock(path->nodes[0]); 2830 free_extent_buffer(path->nodes[0]); 2831 path->nodes[0] = right; 2832 path->slots[0] = 0; 2833 path->slots[1] += 1; 2834 btrfs_mark_buffer_dirty(right); 2835 return ret; 2836 } 2837 mid = slot; 2838 if (mid != nritems && 2839 leaf_space_used(l, mid, nritems - mid) + 2840 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2841 double_split = 1; 2842 } 2843 } 2844 } else { 2845 if (leaf_space_used(l, 0, mid) + data_size > 2846 BTRFS_LEAF_DATA_SIZE(root)) { 2847 if (!extend && data_size && slot == 0) { 2848 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2849 btrfs_set_header_nritems(right, 0); 2850 wret = insert_ptr(trans, root, path, 2851 &disk_key, 2852 right->start, 2853 path->slots[1], 1); 2854 if (wret) 2855 ret = wret; 2856 btrfs_tree_unlock(path->nodes[0]); 2857 free_extent_buffer(path->nodes[0]); 2858 path->nodes[0] = right; 2859 path->slots[0] = 0; 2860 if (path->slots[1] == 0) { 2861 wret = fixup_low_keys(trans, root, 2862 path, &disk_key, 1); 2863 if (wret) 2864 ret = wret; 2865 } 2866 btrfs_mark_buffer_dirty(right); 2867 return ret; 2868 } else if ((extend || !data_size) && slot == 0) { 2869 mid = 1; 2870 } else { 2871 mid = slot; 2872 if (mid != nritems && 2873 leaf_space_used(l, mid, nritems - mid) + 2874 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2875 double_split = 1; 2876 } 2877 } 2878 } 2879 } 2880 nritems = nritems - mid; 2881 btrfs_set_header_nritems(right, nritems); 2882 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2883 2884 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2885 btrfs_item_nr_offset(mid), 2886 nritems * sizeof(struct btrfs_item)); 2887 2888 copy_extent_buffer(right, l, 2889 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2890 data_copy_size, btrfs_leaf_data(l) + 2891 leaf_data_end(root, l), data_copy_size); 2892 2893 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2894 btrfs_item_end_nr(l, mid); 2895 2896 for (i = 0; i < nritems; i++) { 2897 struct btrfs_item *item = btrfs_item_nr(right, i); 2898 u32 ioff; 2899 2900 if (!right->map_token) { 2901 map_extent_buffer(right, (unsigned long)item, 2902 sizeof(struct btrfs_item), 2903 &right->map_token, &right->kaddr, 2904 &right->map_start, &right->map_len, 2905 KM_USER1); 2906 } 2907 2908 ioff = btrfs_item_offset(right, item); 2909 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2910 } 2911 2912 if (right->map_token) { 2913 unmap_extent_buffer(right, right->map_token, KM_USER1); 2914 right->map_token = NULL; 2915 } 2916 2917 btrfs_set_header_nritems(l, mid); 2918 ret = 0; 2919 btrfs_item_key(right, &disk_key, 0); 2920 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2921 path->slots[1] + 1, 1); 2922 if (wret) 2923 ret = wret; 2924 2925 btrfs_mark_buffer_dirty(right); 2926 btrfs_mark_buffer_dirty(l); 2927 BUG_ON(path->slots[0] != slot); 2928 2929 ret = btrfs_update_ref(trans, root, l, right, 0, nritems); 2930 BUG_ON(ret); 2931 2932 if (mid <= slot) { 2933 btrfs_tree_unlock(path->nodes[0]); 2934 free_extent_buffer(path->nodes[0]); 2935 path->nodes[0] = right; 2936 path->slots[0] -= mid; 2937 path->slots[1] += 1; 2938 } else { 2939 btrfs_tree_unlock(right); 2940 free_extent_buffer(right); 2941 } 2942 2943 BUG_ON(path->slots[0] < 0); 2944 2945 if (double_split) { 2946 BUG_ON(num_doubles != 0); 2947 num_doubles++; 2948 goto again; 2949 } 2950 return ret; 2951 } 2952 2953 /* 2954 * This function splits a single item into two items, 2955 * giving 'new_key' to the new item and splitting the 2956 * old one at split_offset (from the start of the item). 2957 * 2958 * The path may be released by this operation. After 2959 * the split, the path is pointing to the old item. The 2960 * new item is going to be in the same node as the old one. 2961 * 2962 * Note, the item being split must be smaller enough to live alone on 2963 * a tree block with room for one extra struct btrfs_item 2964 * 2965 * This allows us to split the item in place, keeping a lock on the 2966 * leaf the entire time. 2967 */ 2968 int btrfs_split_item(struct btrfs_trans_handle *trans, 2969 struct btrfs_root *root, 2970 struct btrfs_path *path, 2971 struct btrfs_key *new_key, 2972 unsigned long split_offset) 2973 { 2974 u32 item_size; 2975 struct extent_buffer *leaf; 2976 struct btrfs_key orig_key; 2977 struct btrfs_item *item; 2978 struct btrfs_item *new_item; 2979 int ret = 0; 2980 int slot; 2981 u32 nritems; 2982 u32 orig_offset; 2983 struct btrfs_disk_key disk_key; 2984 char *buf; 2985 2986 leaf = path->nodes[0]; 2987 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); 2988 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) 2989 goto split; 2990 2991 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2992 btrfs_release_path(root, path); 2993 2994 path->search_for_split = 1; 2995 path->keep_locks = 1; 2996 2997 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); 2998 path->search_for_split = 0; 2999 3000 /* if our item isn't there or got smaller, return now */ 3001 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], 3002 path->slots[0])) { 3003 path->keep_locks = 0; 3004 return -EAGAIN; 3005 } 3006 3007 ret = split_leaf(trans, root, &orig_key, path, 3008 sizeof(struct btrfs_item), 1); 3009 path->keep_locks = 0; 3010 BUG_ON(ret); 3011 3012 /* 3013 * make sure any changes to the path from split_leaf leave it 3014 * in a blocking state 3015 */ 3016 btrfs_set_path_blocking(path); 3017 3018 leaf = path->nodes[0]; 3019 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3020 3021 split: 3022 item = btrfs_item_nr(leaf, path->slots[0]); 3023 orig_offset = btrfs_item_offset(leaf, item); 3024 item_size = btrfs_item_size(leaf, item); 3025 3026 3027 buf = kmalloc(item_size, GFP_NOFS); 3028 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3029 path->slots[0]), item_size); 3030 slot = path->slots[0] + 1; 3031 leaf = path->nodes[0]; 3032 3033 nritems = btrfs_header_nritems(leaf); 3034 3035 if (slot != nritems) { 3036 /* shift the items */ 3037 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3038 btrfs_item_nr_offset(slot), 3039 (nritems - slot) * sizeof(struct btrfs_item)); 3040 3041 } 3042 3043 btrfs_cpu_key_to_disk(&disk_key, new_key); 3044 btrfs_set_item_key(leaf, &disk_key, slot); 3045 3046 new_item = btrfs_item_nr(leaf, slot); 3047 3048 btrfs_set_item_offset(leaf, new_item, orig_offset); 3049 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3050 3051 btrfs_set_item_offset(leaf, item, 3052 orig_offset + item_size - split_offset); 3053 btrfs_set_item_size(leaf, item, split_offset); 3054 3055 btrfs_set_header_nritems(leaf, nritems + 1); 3056 3057 /* write the data for the start of the original item */ 3058 write_extent_buffer(leaf, buf, 3059 btrfs_item_ptr_offset(leaf, path->slots[0]), 3060 split_offset); 3061 3062 /* write the data for the new item */ 3063 write_extent_buffer(leaf, buf + split_offset, 3064 btrfs_item_ptr_offset(leaf, slot), 3065 item_size - split_offset); 3066 btrfs_mark_buffer_dirty(leaf); 3067 3068 ret = 0; 3069 if (btrfs_leaf_free_space(root, leaf) < 0) { 3070 btrfs_print_leaf(root, leaf); 3071 BUG(); 3072 } 3073 kfree(buf); 3074 return ret; 3075 } 3076 3077 /* 3078 * make the item pointed to by the path smaller. new_size indicates 3079 * how small to make it, and from_end tells us if we just chop bytes 3080 * off the end of the item or if we shift the item to chop bytes off 3081 * the front. 3082 */ 3083 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3084 struct btrfs_root *root, 3085 struct btrfs_path *path, 3086 u32 new_size, int from_end) 3087 { 3088 int ret = 0; 3089 int slot; 3090 int slot_orig; 3091 struct extent_buffer *leaf; 3092 struct btrfs_item *item; 3093 u32 nritems; 3094 unsigned int data_end; 3095 unsigned int old_data_start; 3096 unsigned int old_size; 3097 unsigned int size_diff; 3098 int i; 3099 3100 slot_orig = path->slots[0]; 3101 leaf = path->nodes[0]; 3102 slot = path->slots[0]; 3103 3104 old_size = btrfs_item_size_nr(leaf, slot); 3105 if (old_size == new_size) 3106 return 0; 3107 3108 nritems = btrfs_header_nritems(leaf); 3109 data_end = leaf_data_end(root, leaf); 3110 3111 old_data_start = btrfs_item_offset_nr(leaf, slot); 3112 3113 size_diff = old_size - new_size; 3114 3115 BUG_ON(slot < 0); 3116 BUG_ON(slot >= nritems); 3117 3118 /* 3119 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3120 */ 3121 /* first correct the data pointers */ 3122 for (i = slot; i < nritems; i++) { 3123 u32 ioff; 3124 item = btrfs_item_nr(leaf, i); 3125 3126 if (!leaf->map_token) { 3127 map_extent_buffer(leaf, (unsigned long)item, 3128 sizeof(struct btrfs_item), 3129 &leaf->map_token, &leaf->kaddr, 3130 &leaf->map_start, &leaf->map_len, 3131 KM_USER1); 3132 } 3133 3134 ioff = btrfs_item_offset(leaf, item); 3135 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3136 } 3137 3138 if (leaf->map_token) { 3139 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3140 leaf->map_token = NULL; 3141 } 3142 3143 /* shift the data */ 3144 if (from_end) { 3145 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3146 data_end + size_diff, btrfs_leaf_data(leaf) + 3147 data_end, old_data_start + new_size - data_end); 3148 } else { 3149 struct btrfs_disk_key disk_key; 3150 u64 offset; 3151 3152 btrfs_item_key(leaf, &disk_key, slot); 3153 3154 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3155 unsigned long ptr; 3156 struct btrfs_file_extent_item *fi; 3157 3158 fi = btrfs_item_ptr(leaf, slot, 3159 struct btrfs_file_extent_item); 3160 fi = (struct btrfs_file_extent_item *)( 3161 (unsigned long)fi - size_diff); 3162 3163 if (btrfs_file_extent_type(leaf, fi) == 3164 BTRFS_FILE_EXTENT_INLINE) { 3165 ptr = btrfs_item_ptr_offset(leaf, slot); 3166 memmove_extent_buffer(leaf, ptr, 3167 (unsigned long)fi, 3168 offsetof(struct btrfs_file_extent_item, 3169 disk_bytenr)); 3170 } 3171 } 3172 3173 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3174 data_end + size_diff, btrfs_leaf_data(leaf) + 3175 data_end, old_data_start - data_end); 3176 3177 offset = btrfs_disk_key_offset(&disk_key); 3178 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3179 btrfs_set_item_key(leaf, &disk_key, slot); 3180 if (slot == 0) 3181 fixup_low_keys(trans, root, path, &disk_key, 1); 3182 } 3183 3184 item = btrfs_item_nr(leaf, slot); 3185 btrfs_set_item_size(leaf, item, new_size); 3186 btrfs_mark_buffer_dirty(leaf); 3187 3188 ret = 0; 3189 if (btrfs_leaf_free_space(root, leaf) < 0) { 3190 btrfs_print_leaf(root, leaf); 3191 BUG(); 3192 } 3193 return ret; 3194 } 3195 3196 /* 3197 * make the item pointed to by the path bigger, data_size is the new size. 3198 */ 3199 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3200 struct btrfs_root *root, struct btrfs_path *path, 3201 u32 data_size) 3202 { 3203 int ret = 0; 3204 int slot; 3205 int slot_orig; 3206 struct extent_buffer *leaf; 3207 struct btrfs_item *item; 3208 u32 nritems; 3209 unsigned int data_end; 3210 unsigned int old_data; 3211 unsigned int old_size; 3212 int i; 3213 3214 slot_orig = path->slots[0]; 3215 leaf = path->nodes[0]; 3216 3217 nritems = btrfs_header_nritems(leaf); 3218 data_end = leaf_data_end(root, leaf); 3219 3220 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3221 btrfs_print_leaf(root, leaf); 3222 BUG(); 3223 } 3224 slot = path->slots[0]; 3225 old_data = btrfs_item_end_nr(leaf, slot); 3226 3227 BUG_ON(slot < 0); 3228 if (slot >= nritems) { 3229 btrfs_print_leaf(root, leaf); 3230 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3231 slot, nritems); 3232 BUG_ON(1); 3233 } 3234 3235 /* 3236 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3237 */ 3238 /* first correct the data pointers */ 3239 for (i = slot; i < nritems; i++) { 3240 u32 ioff; 3241 item = btrfs_item_nr(leaf, i); 3242 3243 if (!leaf->map_token) { 3244 map_extent_buffer(leaf, (unsigned long)item, 3245 sizeof(struct btrfs_item), 3246 &leaf->map_token, &leaf->kaddr, 3247 &leaf->map_start, &leaf->map_len, 3248 KM_USER1); 3249 } 3250 ioff = btrfs_item_offset(leaf, item); 3251 btrfs_set_item_offset(leaf, item, ioff - data_size); 3252 } 3253 3254 if (leaf->map_token) { 3255 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3256 leaf->map_token = NULL; 3257 } 3258 3259 /* shift the data */ 3260 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3261 data_end - data_size, btrfs_leaf_data(leaf) + 3262 data_end, old_data - data_end); 3263 3264 data_end = old_data; 3265 old_size = btrfs_item_size_nr(leaf, slot); 3266 item = btrfs_item_nr(leaf, slot); 3267 btrfs_set_item_size(leaf, item, old_size + data_size); 3268 btrfs_mark_buffer_dirty(leaf); 3269 3270 ret = 0; 3271 if (btrfs_leaf_free_space(root, leaf) < 0) { 3272 btrfs_print_leaf(root, leaf); 3273 BUG(); 3274 } 3275 return ret; 3276 } 3277 3278 /* 3279 * Given a key and some data, insert items into the tree. 3280 * This does all the path init required, making room in the tree if needed. 3281 * Returns the number of keys that were inserted. 3282 */ 3283 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3284 struct btrfs_root *root, 3285 struct btrfs_path *path, 3286 struct btrfs_key *cpu_key, u32 *data_size, 3287 int nr) 3288 { 3289 struct extent_buffer *leaf; 3290 struct btrfs_item *item; 3291 int ret = 0; 3292 int slot; 3293 int i; 3294 u32 nritems; 3295 u32 total_data = 0; 3296 u32 total_size = 0; 3297 unsigned int data_end; 3298 struct btrfs_disk_key disk_key; 3299 struct btrfs_key found_key; 3300 3301 for (i = 0; i < nr; i++) { 3302 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3303 BTRFS_LEAF_DATA_SIZE(root)) { 3304 break; 3305 nr = i; 3306 } 3307 total_data += data_size[i]; 3308 total_size += data_size[i] + sizeof(struct btrfs_item); 3309 } 3310 BUG_ON(nr == 0); 3311 3312 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3313 if (ret == 0) 3314 return -EEXIST; 3315 if (ret < 0) 3316 goto out; 3317 3318 leaf = path->nodes[0]; 3319 3320 nritems = btrfs_header_nritems(leaf); 3321 data_end = leaf_data_end(root, leaf); 3322 3323 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3324 for (i = nr; i >= 0; i--) { 3325 total_data -= data_size[i]; 3326 total_size -= data_size[i] + sizeof(struct btrfs_item); 3327 if (total_size < btrfs_leaf_free_space(root, leaf)) 3328 break; 3329 } 3330 nr = i; 3331 } 3332 3333 slot = path->slots[0]; 3334 BUG_ON(slot < 0); 3335 3336 if (slot != nritems) { 3337 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3338 3339 item = btrfs_item_nr(leaf, slot); 3340 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3341 3342 /* figure out how many keys we can insert in here */ 3343 total_data = data_size[0]; 3344 for (i = 1; i < nr; i++) { 3345 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3346 break; 3347 total_data += data_size[i]; 3348 } 3349 nr = i; 3350 3351 if (old_data < data_end) { 3352 btrfs_print_leaf(root, leaf); 3353 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3354 slot, old_data, data_end); 3355 BUG_ON(1); 3356 } 3357 /* 3358 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3359 */ 3360 /* first correct the data pointers */ 3361 WARN_ON(leaf->map_token); 3362 for (i = slot; i < nritems; i++) { 3363 u32 ioff; 3364 3365 item = btrfs_item_nr(leaf, i); 3366 if (!leaf->map_token) { 3367 map_extent_buffer(leaf, (unsigned long)item, 3368 sizeof(struct btrfs_item), 3369 &leaf->map_token, &leaf->kaddr, 3370 &leaf->map_start, &leaf->map_len, 3371 KM_USER1); 3372 } 3373 3374 ioff = btrfs_item_offset(leaf, item); 3375 btrfs_set_item_offset(leaf, item, ioff - total_data); 3376 } 3377 if (leaf->map_token) { 3378 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3379 leaf->map_token = NULL; 3380 } 3381 3382 /* shift the items */ 3383 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3384 btrfs_item_nr_offset(slot), 3385 (nritems - slot) * sizeof(struct btrfs_item)); 3386 3387 /* shift the data */ 3388 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3389 data_end - total_data, btrfs_leaf_data(leaf) + 3390 data_end, old_data - data_end); 3391 data_end = old_data; 3392 } else { 3393 /* 3394 * this sucks but it has to be done, if we are inserting at 3395 * the end of the leaf only insert 1 of the items, since we 3396 * have no way of knowing whats on the next leaf and we'd have 3397 * to drop our current locks to figure it out 3398 */ 3399 nr = 1; 3400 } 3401 3402 /* setup the item for the new data */ 3403 for (i = 0; i < nr; i++) { 3404 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3405 btrfs_set_item_key(leaf, &disk_key, slot + i); 3406 item = btrfs_item_nr(leaf, slot + i); 3407 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3408 data_end -= data_size[i]; 3409 btrfs_set_item_size(leaf, item, data_size[i]); 3410 } 3411 btrfs_set_header_nritems(leaf, nritems + nr); 3412 btrfs_mark_buffer_dirty(leaf); 3413 3414 ret = 0; 3415 if (slot == 0) { 3416 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3417 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3418 } 3419 3420 if (btrfs_leaf_free_space(root, leaf) < 0) { 3421 btrfs_print_leaf(root, leaf); 3422 BUG(); 3423 } 3424 out: 3425 if (!ret) 3426 ret = nr; 3427 return ret; 3428 } 3429 3430 /* 3431 * Given a key and some data, insert items into the tree. 3432 * This does all the path init required, making room in the tree if needed. 3433 */ 3434 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3435 struct btrfs_root *root, 3436 struct btrfs_path *path, 3437 struct btrfs_key *cpu_key, u32 *data_size, 3438 int nr) 3439 { 3440 struct extent_buffer *leaf; 3441 struct btrfs_item *item; 3442 int ret = 0; 3443 int slot; 3444 int slot_orig; 3445 int i; 3446 u32 nritems; 3447 u32 total_size = 0; 3448 u32 total_data = 0; 3449 unsigned int data_end; 3450 struct btrfs_disk_key disk_key; 3451 3452 for (i = 0; i < nr; i++) 3453 total_data += data_size[i]; 3454 3455 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3456 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3457 if (ret == 0) 3458 return -EEXIST; 3459 if (ret < 0) 3460 goto out; 3461 3462 slot_orig = path->slots[0]; 3463 leaf = path->nodes[0]; 3464 3465 nritems = btrfs_header_nritems(leaf); 3466 data_end = leaf_data_end(root, leaf); 3467 3468 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3469 btrfs_print_leaf(root, leaf); 3470 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3471 total_size, btrfs_leaf_free_space(root, leaf)); 3472 BUG(); 3473 } 3474 3475 slot = path->slots[0]; 3476 BUG_ON(slot < 0); 3477 3478 if (slot != nritems) { 3479 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3480 3481 if (old_data < data_end) { 3482 btrfs_print_leaf(root, leaf); 3483 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3484 slot, old_data, data_end); 3485 BUG_ON(1); 3486 } 3487 /* 3488 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3489 */ 3490 /* first correct the data pointers */ 3491 WARN_ON(leaf->map_token); 3492 for (i = slot; i < nritems; i++) { 3493 u32 ioff; 3494 3495 item = btrfs_item_nr(leaf, i); 3496 if (!leaf->map_token) { 3497 map_extent_buffer(leaf, (unsigned long)item, 3498 sizeof(struct btrfs_item), 3499 &leaf->map_token, &leaf->kaddr, 3500 &leaf->map_start, &leaf->map_len, 3501 KM_USER1); 3502 } 3503 3504 ioff = btrfs_item_offset(leaf, item); 3505 btrfs_set_item_offset(leaf, item, ioff - total_data); 3506 } 3507 if (leaf->map_token) { 3508 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3509 leaf->map_token = NULL; 3510 } 3511 3512 /* shift the items */ 3513 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3514 btrfs_item_nr_offset(slot), 3515 (nritems - slot) * sizeof(struct btrfs_item)); 3516 3517 /* shift the data */ 3518 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3519 data_end - total_data, btrfs_leaf_data(leaf) + 3520 data_end, old_data - data_end); 3521 data_end = old_data; 3522 } 3523 3524 /* setup the item for the new data */ 3525 for (i = 0; i < nr; i++) { 3526 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3527 btrfs_set_item_key(leaf, &disk_key, slot + i); 3528 item = btrfs_item_nr(leaf, slot + i); 3529 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3530 data_end -= data_size[i]; 3531 btrfs_set_item_size(leaf, item, data_size[i]); 3532 } 3533 btrfs_set_header_nritems(leaf, nritems + nr); 3534 btrfs_mark_buffer_dirty(leaf); 3535 3536 ret = 0; 3537 if (slot == 0) { 3538 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3539 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3540 } 3541 3542 if (btrfs_leaf_free_space(root, leaf) < 0) { 3543 btrfs_print_leaf(root, leaf); 3544 BUG(); 3545 } 3546 out: 3547 btrfs_unlock_up_safe(path, 1); 3548 return ret; 3549 } 3550 3551 /* 3552 * Given a key and some data, insert an item into the tree. 3553 * This does all the path init required, making room in the tree if needed. 3554 */ 3555 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3556 *root, struct btrfs_key *cpu_key, void *data, u32 3557 data_size) 3558 { 3559 int ret = 0; 3560 struct btrfs_path *path; 3561 struct extent_buffer *leaf; 3562 unsigned long ptr; 3563 3564 path = btrfs_alloc_path(); 3565 BUG_ON(!path); 3566 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3567 if (!ret) { 3568 leaf = path->nodes[0]; 3569 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3570 write_extent_buffer(leaf, data, ptr, data_size); 3571 btrfs_mark_buffer_dirty(leaf); 3572 } 3573 btrfs_free_path(path); 3574 return ret; 3575 } 3576 3577 /* 3578 * delete the pointer from a given node. 3579 * 3580 * the tree should have been previously balanced so the deletion does not 3581 * empty a node. 3582 */ 3583 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3584 struct btrfs_path *path, int level, int slot) 3585 { 3586 struct extent_buffer *parent = path->nodes[level]; 3587 u32 nritems; 3588 int ret = 0; 3589 int wret; 3590 3591 nritems = btrfs_header_nritems(parent); 3592 if (slot != nritems - 1) { 3593 memmove_extent_buffer(parent, 3594 btrfs_node_key_ptr_offset(slot), 3595 btrfs_node_key_ptr_offset(slot + 1), 3596 sizeof(struct btrfs_key_ptr) * 3597 (nritems - slot - 1)); 3598 } 3599 nritems--; 3600 btrfs_set_header_nritems(parent, nritems); 3601 if (nritems == 0 && parent == root->node) { 3602 BUG_ON(btrfs_header_level(root->node) != 1); 3603 /* just turn the root into a leaf and break */ 3604 btrfs_set_header_level(root->node, 0); 3605 } else if (slot == 0) { 3606 struct btrfs_disk_key disk_key; 3607 3608 btrfs_node_key(parent, &disk_key, 0); 3609 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3610 if (wret) 3611 ret = wret; 3612 } 3613 btrfs_mark_buffer_dirty(parent); 3614 return ret; 3615 } 3616 3617 /* 3618 * a helper function to delete the leaf pointed to by path->slots[1] and 3619 * path->nodes[1]. bytenr is the node block pointer, but since the callers 3620 * already know it, it is faster to have them pass it down than to 3621 * read it out of the node again. 3622 * 3623 * This deletes the pointer in path->nodes[1] and frees the leaf 3624 * block extent. zero is returned if it all worked out, < 0 otherwise. 3625 * 3626 * The path must have already been setup for deleting the leaf, including 3627 * all the proper balancing. path->nodes[1] must be locked. 3628 */ 3629 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3630 struct btrfs_root *root, 3631 struct btrfs_path *path, u64 bytenr) 3632 { 3633 int ret; 3634 u64 root_gen = btrfs_header_generation(path->nodes[1]); 3635 u64 parent_start = path->nodes[1]->start; 3636 u64 parent_owner = btrfs_header_owner(path->nodes[1]); 3637 3638 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3639 if (ret) 3640 return ret; 3641 3642 /* 3643 * btrfs_free_extent is expensive, we want to make sure we 3644 * aren't holding any locks when we call it 3645 */ 3646 btrfs_unlock_up_safe(path, 0); 3647 3648 ret = btrfs_free_extent(trans, root, bytenr, 3649 btrfs_level_size(root, 0), 3650 parent_start, parent_owner, 3651 root_gen, 0, 1); 3652 return ret; 3653 } 3654 /* 3655 * delete the item at the leaf level in path. If that empties 3656 * the leaf, remove it from the tree 3657 */ 3658 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3659 struct btrfs_path *path, int slot, int nr) 3660 { 3661 struct extent_buffer *leaf; 3662 struct btrfs_item *item; 3663 int last_off; 3664 int dsize = 0; 3665 int ret = 0; 3666 int wret; 3667 int i; 3668 u32 nritems; 3669 3670 leaf = path->nodes[0]; 3671 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3672 3673 for (i = 0; i < nr; i++) 3674 dsize += btrfs_item_size_nr(leaf, slot + i); 3675 3676 nritems = btrfs_header_nritems(leaf); 3677 3678 if (slot + nr != nritems) { 3679 int data_end = leaf_data_end(root, leaf); 3680 3681 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3682 data_end + dsize, 3683 btrfs_leaf_data(leaf) + data_end, 3684 last_off - data_end); 3685 3686 for (i = slot + nr; i < nritems; i++) { 3687 u32 ioff; 3688 3689 item = btrfs_item_nr(leaf, i); 3690 if (!leaf->map_token) { 3691 map_extent_buffer(leaf, (unsigned long)item, 3692 sizeof(struct btrfs_item), 3693 &leaf->map_token, &leaf->kaddr, 3694 &leaf->map_start, &leaf->map_len, 3695 KM_USER1); 3696 } 3697 ioff = btrfs_item_offset(leaf, item); 3698 btrfs_set_item_offset(leaf, item, ioff + dsize); 3699 } 3700 3701 if (leaf->map_token) { 3702 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3703 leaf->map_token = NULL; 3704 } 3705 3706 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3707 btrfs_item_nr_offset(slot + nr), 3708 sizeof(struct btrfs_item) * 3709 (nritems - slot - nr)); 3710 } 3711 btrfs_set_header_nritems(leaf, nritems - nr); 3712 nritems -= nr; 3713 3714 /* delete the leaf if we've emptied it */ 3715 if (nritems == 0) { 3716 if (leaf == root->node) { 3717 btrfs_set_header_level(leaf, 0); 3718 } else { 3719 ret = btrfs_del_leaf(trans, root, path, leaf->start); 3720 BUG_ON(ret); 3721 } 3722 } else { 3723 int used = leaf_space_used(leaf, 0, nritems); 3724 if (slot == 0) { 3725 struct btrfs_disk_key disk_key; 3726 3727 btrfs_item_key(leaf, &disk_key, 0); 3728 wret = fixup_low_keys(trans, root, path, 3729 &disk_key, 1); 3730 if (wret) 3731 ret = wret; 3732 } 3733 3734 /* delete the leaf if it is mostly empty */ 3735 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) { 3736 /* push_leaf_left fixes the path. 3737 * make sure the path still points to our leaf 3738 * for possible call to del_ptr below 3739 */ 3740 slot = path->slots[1]; 3741 extent_buffer_get(leaf); 3742 3743 wret = push_leaf_left(trans, root, path, 1, 1); 3744 if (wret < 0 && wret != -ENOSPC) 3745 ret = wret; 3746 3747 if (path->nodes[0] == leaf && 3748 btrfs_header_nritems(leaf)) { 3749 wret = push_leaf_right(trans, root, path, 1, 1); 3750 if (wret < 0 && wret != -ENOSPC) 3751 ret = wret; 3752 } 3753 3754 if (btrfs_header_nritems(leaf) == 0) { 3755 path->slots[1] = slot; 3756 ret = btrfs_del_leaf(trans, root, path, 3757 leaf->start); 3758 BUG_ON(ret); 3759 free_extent_buffer(leaf); 3760 } else { 3761 /* if we're still in the path, make sure 3762 * we're dirty. Otherwise, one of the 3763 * push_leaf functions must have already 3764 * dirtied this buffer 3765 */ 3766 if (path->nodes[0] == leaf) 3767 btrfs_mark_buffer_dirty(leaf); 3768 free_extent_buffer(leaf); 3769 } 3770 } else { 3771 btrfs_mark_buffer_dirty(leaf); 3772 } 3773 } 3774 return ret; 3775 } 3776 3777 /* 3778 * search the tree again to find a leaf with lesser keys 3779 * returns 0 if it found something or 1 if there are no lesser leaves. 3780 * returns < 0 on io errors. 3781 * 3782 * This may release the path, and so you may lose any locks held at the 3783 * time you call it. 3784 */ 3785 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3786 { 3787 struct btrfs_key key; 3788 struct btrfs_disk_key found_key; 3789 int ret; 3790 3791 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3792 3793 if (key.offset > 0) 3794 key.offset--; 3795 else if (key.type > 0) 3796 key.type--; 3797 else if (key.objectid > 0) 3798 key.objectid--; 3799 else 3800 return 1; 3801 3802 btrfs_release_path(root, path); 3803 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3804 if (ret < 0) 3805 return ret; 3806 btrfs_item_key(path->nodes[0], &found_key, 0); 3807 ret = comp_keys(&found_key, &key); 3808 if (ret < 0) 3809 return 0; 3810 return 1; 3811 } 3812 3813 /* 3814 * A helper function to walk down the tree starting at min_key, and looking 3815 * for nodes or leaves that are either in cache or have a minimum 3816 * transaction id. This is used by the btree defrag code, and tree logging 3817 * 3818 * This does not cow, but it does stuff the starting key it finds back 3819 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3820 * key and get a writable path. 3821 * 3822 * This does lock as it descends, and path->keep_locks should be set 3823 * to 1 by the caller. 3824 * 3825 * This honors path->lowest_level to prevent descent past a given level 3826 * of the tree. 3827 * 3828 * min_trans indicates the oldest transaction that you are interested 3829 * in walking through. Any nodes or leaves older than min_trans are 3830 * skipped over (without reading them). 3831 * 3832 * returns zero if something useful was found, < 0 on error and 1 if there 3833 * was nothing in the tree that matched the search criteria. 3834 */ 3835 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3836 struct btrfs_key *max_key, 3837 struct btrfs_path *path, int cache_only, 3838 u64 min_trans) 3839 { 3840 struct extent_buffer *cur; 3841 struct btrfs_key found_key; 3842 int slot; 3843 int sret; 3844 u32 nritems; 3845 int level; 3846 int ret = 1; 3847 3848 WARN_ON(!path->keep_locks); 3849 again: 3850 cur = btrfs_lock_root_node(root); 3851 level = btrfs_header_level(cur); 3852 WARN_ON(path->nodes[level]); 3853 path->nodes[level] = cur; 3854 path->locks[level] = 1; 3855 3856 if (btrfs_header_generation(cur) < min_trans) { 3857 ret = 1; 3858 goto out; 3859 } 3860 while (1) { 3861 nritems = btrfs_header_nritems(cur); 3862 level = btrfs_header_level(cur); 3863 sret = bin_search(cur, min_key, level, &slot); 3864 3865 /* at the lowest level, we're done, setup the path and exit */ 3866 if (level == path->lowest_level) { 3867 if (slot >= nritems) 3868 goto find_next_key; 3869 ret = 0; 3870 path->slots[level] = slot; 3871 btrfs_item_key_to_cpu(cur, &found_key, slot); 3872 goto out; 3873 } 3874 if (sret && slot > 0) 3875 slot--; 3876 /* 3877 * check this node pointer against the cache_only and 3878 * min_trans parameters. If it isn't in cache or is too 3879 * old, skip to the next one. 3880 */ 3881 while (slot < nritems) { 3882 u64 blockptr; 3883 u64 gen; 3884 struct extent_buffer *tmp; 3885 struct btrfs_disk_key disk_key; 3886 3887 blockptr = btrfs_node_blockptr(cur, slot); 3888 gen = btrfs_node_ptr_generation(cur, slot); 3889 if (gen < min_trans) { 3890 slot++; 3891 continue; 3892 } 3893 if (!cache_only) 3894 break; 3895 3896 if (max_key) { 3897 btrfs_node_key(cur, &disk_key, slot); 3898 if (comp_keys(&disk_key, max_key) >= 0) { 3899 ret = 1; 3900 goto out; 3901 } 3902 } 3903 3904 tmp = btrfs_find_tree_block(root, blockptr, 3905 btrfs_level_size(root, level - 1)); 3906 3907 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 3908 free_extent_buffer(tmp); 3909 break; 3910 } 3911 if (tmp) 3912 free_extent_buffer(tmp); 3913 slot++; 3914 } 3915 find_next_key: 3916 /* 3917 * we didn't find a candidate key in this node, walk forward 3918 * and find another one 3919 */ 3920 if (slot >= nritems) { 3921 path->slots[level] = slot; 3922 btrfs_set_path_blocking(path); 3923 sret = btrfs_find_next_key(root, path, min_key, level, 3924 cache_only, min_trans); 3925 if (sret == 0) { 3926 btrfs_release_path(root, path); 3927 goto again; 3928 } else { 3929 btrfs_clear_path_blocking(path); 3930 goto out; 3931 } 3932 } 3933 /* save our key for returning back */ 3934 btrfs_node_key_to_cpu(cur, &found_key, slot); 3935 path->slots[level] = slot; 3936 if (level == path->lowest_level) { 3937 ret = 0; 3938 unlock_up(path, level, 1); 3939 goto out; 3940 } 3941 btrfs_set_path_blocking(path); 3942 cur = read_node_slot(root, cur, slot); 3943 3944 btrfs_tree_lock(cur); 3945 3946 path->locks[level - 1] = 1; 3947 path->nodes[level - 1] = cur; 3948 unlock_up(path, level, 1); 3949 btrfs_clear_path_blocking(path); 3950 } 3951 out: 3952 if (ret == 0) 3953 memcpy(min_key, &found_key, sizeof(found_key)); 3954 btrfs_set_path_blocking(path); 3955 return ret; 3956 } 3957 3958 /* 3959 * this is similar to btrfs_next_leaf, but does not try to preserve 3960 * and fixup the path. It looks for and returns the next key in the 3961 * tree based on the current path and the cache_only and min_trans 3962 * parameters. 3963 * 3964 * 0 is returned if another key is found, < 0 if there are any errors 3965 * and 1 is returned if there are no higher keys in the tree 3966 * 3967 * path->keep_locks should be set to 1 on the search made before 3968 * calling this function. 3969 */ 3970 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 3971 struct btrfs_key *key, int lowest_level, 3972 int cache_only, u64 min_trans) 3973 { 3974 int level = lowest_level; 3975 int slot; 3976 struct extent_buffer *c; 3977 3978 WARN_ON(!path->keep_locks); 3979 while (level < BTRFS_MAX_LEVEL) { 3980 if (!path->nodes[level]) 3981 return 1; 3982 3983 slot = path->slots[level] + 1; 3984 c = path->nodes[level]; 3985 next: 3986 if (slot >= btrfs_header_nritems(c)) { 3987 level++; 3988 if (level == BTRFS_MAX_LEVEL) 3989 return 1; 3990 continue; 3991 } 3992 if (level == 0) 3993 btrfs_item_key_to_cpu(c, key, slot); 3994 else { 3995 u64 blockptr = btrfs_node_blockptr(c, slot); 3996 u64 gen = btrfs_node_ptr_generation(c, slot); 3997 3998 if (cache_only) { 3999 struct extent_buffer *cur; 4000 cur = btrfs_find_tree_block(root, blockptr, 4001 btrfs_level_size(root, level - 1)); 4002 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4003 slot++; 4004 if (cur) 4005 free_extent_buffer(cur); 4006 goto next; 4007 } 4008 free_extent_buffer(cur); 4009 } 4010 if (gen < min_trans) { 4011 slot++; 4012 goto next; 4013 } 4014 btrfs_node_key_to_cpu(c, key, slot); 4015 } 4016 return 0; 4017 } 4018 return 1; 4019 } 4020 4021 /* 4022 * search the tree again to find a leaf with greater keys 4023 * returns 0 if it found something or 1 if there are no greater leaves. 4024 * returns < 0 on io errors. 4025 */ 4026 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4027 { 4028 int slot; 4029 int level = 1; 4030 struct extent_buffer *c; 4031 struct extent_buffer *next = NULL; 4032 struct btrfs_key key; 4033 u32 nritems; 4034 int ret; 4035 4036 nritems = btrfs_header_nritems(path->nodes[0]); 4037 if (nritems == 0) 4038 return 1; 4039 4040 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4041 4042 btrfs_release_path(root, path); 4043 path->keep_locks = 1; 4044 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4045 path->keep_locks = 0; 4046 4047 if (ret < 0) 4048 return ret; 4049 4050 btrfs_set_path_blocking(path); 4051 nritems = btrfs_header_nritems(path->nodes[0]); 4052 /* 4053 * by releasing the path above we dropped all our locks. A balance 4054 * could have added more items next to the key that used to be 4055 * at the very end of the block. So, check again here and 4056 * advance the path if there are now more items available. 4057 */ 4058 if (nritems > 0 && path->slots[0] < nritems - 1) { 4059 path->slots[0]++; 4060 goto done; 4061 } 4062 4063 while (level < BTRFS_MAX_LEVEL) { 4064 if (!path->nodes[level]) 4065 return 1; 4066 4067 slot = path->slots[level] + 1; 4068 c = path->nodes[level]; 4069 if (slot >= btrfs_header_nritems(c)) { 4070 level++; 4071 if (level == BTRFS_MAX_LEVEL) 4072 return 1; 4073 continue; 4074 } 4075 4076 if (next) { 4077 btrfs_tree_unlock(next); 4078 free_extent_buffer(next); 4079 } 4080 4081 /* the path was set to blocking above */ 4082 if (level == 1 && (path->locks[1] || path->skip_locking) && 4083 path->reada) 4084 reada_for_search(root, path, level, slot, 0); 4085 4086 next = read_node_slot(root, c, slot); 4087 if (!path->skip_locking) { 4088 WARN_ON(!btrfs_tree_locked(c)); 4089 btrfs_tree_lock(next); 4090 btrfs_set_lock_blocking(next); 4091 } 4092 break; 4093 } 4094 path->slots[level] = slot; 4095 while (1) { 4096 level--; 4097 c = path->nodes[level]; 4098 if (path->locks[level]) 4099 btrfs_tree_unlock(c); 4100 free_extent_buffer(c); 4101 path->nodes[level] = next; 4102 path->slots[level] = 0; 4103 if (!path->skip_locking) 4104 path->locks[level] = 1; 4105 if (!level) 4106 break; 4107 4108 btrfs_set_path_blocking(path); 4109 if (level == 1 && path->locks[1] && path->reada) 4110 reada_for_search(root, path, level, slot, 0); 4111 next = read_node_slot(root, next, 0); 4112 if (!path->skip_locking) { 4113 WARN_ON(!btrfs_tree_locked(path->nodes[level])); 4114 btrfs_tree_lock(next); 4115 btrfs_set_lock_blocking(next); 4116 } 4117 } 4118 done: 4119 unlock_up(path, 0, 1); 4120 return 0; 4121 } 4122 4123 /* 4124 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4125 * searching until it gets past min_objectid or finds an item of 'type' 4126 * 4127 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4128 */ 4129 int btrfs_previous_item(struct btrfs_root *root, 4130 struct btrfs_path *path, u64 min_objectid, 4131 int type) 4132 { 4133 struct btrfs_key found_key; 4134 struct extent_buffer *leaf; 4135 u32 nritems; 4136 int ret; 4137 4138 while (1) { 4139 if (path->slots[0] == 0) { 4140 btrfs_set_path_blocking(path); 4141 ret = btrfs_prev_leaf(root, path); 4142 if (ret != 0) 4143 return ret; 4144 } else { 4145 path->slots[0]--; 4146 } 4147 leaf = path->nodes[0]; 4148 nritems = btrfs_header_nritems(leaf); 4149 if (nritems == 0) 4150 return 1; 4151 if (path->slots[0] == nritems) 4152 path->slots[0]--; 4153 4154 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4155 if (found_key.type == type) 4156 return 0; 4157 if (found_key.objectid < min_objectid) 4158 break; 4159 if (found_key.objectid == min_objectid && 4160 found_key.type < type) 4161 break; 4162 } 4163 return 1; 4164 } 4165