xref: /openbmc/linux/fs/btrfs/ctree.c (revision 7951f3cefbd711f4429a0cd014aa83a844c399a0)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25 
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 		      *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_key *ins_key,
30 		      struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 			  struct btrfs_root *root, struct extent_buffer *dst,
33 			  struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 			      struct btrfs_root *root,
36 			      struct extent_buffer *dst_buf,
37 			      struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39 		   struct btrfs_path *path, int level, int slot);
40 
41 inline void btrfs_init_path(struct btrfs_path *p)
42 {
43 	memset(p, 0, sizeof(*p));
44 }
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	struct btrfs_path *path;
49 	path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
50 	if (path) {
51 		btrfs_init_path(path);
52 		path->reada = 1;
53 	}
54 	return path;
55 }
56 
57 /*
58  * set all locked nodes in the path to blocking locks.  This should
59  * be done before scheduling
60  */
61 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
62 {
63 	int i;
64 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
65 		if (p->nodes[i] && p->locks[i])
66 			btrfs_set_lock_blocking(p->nodes[i]);
67 	}
68 }
69 
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  */
73 noinline void btrfs_clear_path_blocking(struct btrfs_path *p)
74 {
75 	int i;
76 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
77 		if (p->nodes[i] && p->locks[i])
78 			btrfs_clear_lock_blocking(p->nodes[i]);
79 	}
80 }
81 
82 /* this also releases the path */
83 void btrfs_free_path(struct btrfs_path *p)
84 {
85 	btrfs_release_path(NULL, p);
86 	kmem_cache_free(btrfs_path_cachep, p);
87 }
88 
89 /*
90  * path release drops references on the extent buffers in the path
91  * and it drops any locks held by this path
92  *
93  * It is safe to call this on paths that no locks or extent buffers held.
94  */
95 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
96 {
97 	int i;
98 
99 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
100 		p->slots[i] = 0;
101 		if (!p->nodes[i])
102 			continue;
103 		if (p->locks[i]) {
104 			btrfs_tree_unlock(p->nodes[i]);
105 			p->locks[i] = 0;
106 		}
107 		free_extent_buffer(p->nodes[i]);
108 		p->nodes[i] = NULL;
109 	}
110 }
111 
112 /*
113  * safely gets a reference on the root node of a tree.  A lock
114  * is not taken, so a concurrent writer may put a different node
115  * at the root of the tree.  See btrfs_lock_root_node for the
116  * looping required.
117  *
118  * The extent buffer returned by this has a reference taken, so
119  * it won't disappear.  It may stop being the root of the tree
120  * at any time because there are no locks held.
121  */
122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
123 {
124 	struct extent_buffer *eb;
125 	spin_lock(&root->node_lock);
126 	eb = root->node;
127 	extent_buffer_get(eb);
128 	spin_unlock(&root->node_lock);
129 	return eb;
130 }
131 
132 /* loop around taking references on and locking the root node of the
133  * tree until you end up with a lock on the root.  A locked buffer
134  * is returned, with a reference held.
135  */
136 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
137 {
138 	struct extent_buffer *eb;
139 
140 	while (1) {
141 		eb = btrfs_root_node(root);
142 		btrfs_tree_lock(eb);
143 
144 		spin_lock(&root->node_lock);
145 		if (eb == root->node) {
146 			spin_unlock(&root->node_lock);
147 			break;
148 		}
149 		spin_unlock(&root->node_lock);
150 
151 		btrfs_tree_unlock(eb);
152 		free_extent_buffer(eb);
153 	}
154 	return eb;
155 }
156 
157 /* cowonly root (everything not a reference counted cow subvolume), just get
158  * put onto a simple dirty list.  transaction.c walks this to make sure they
159  * get properly updated on disk.
160  */
161 static void add_root_to_dirty_list(struct btrfs_root *root)
162 {
163 	if (root->track_dirty && list_empty(&root->dirty_list)) {
164 		list_add(&root->dirty_list,
165 			 &root->fs_info->dirty_cowonly_roots);
166 	}
167 }
168 
169 /*
170  * used by snapshot creation to make a copy of a root for a tree with
171  * a given objectid.  The buffer with the new root node is returned in
172  * cow_ret, and this func returns zero on success or a negative error code.
173  */
174 int btrfs_copy_root(struct btrfs_trans_handle *trans,
175 		      struct btrfs_root *root,
176 		      struct extent_buffer *buf,
177 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
178 {
179 	struct extent_buffer *cow;
180 	u32 nritems;
181 	int ret = 0;
182 	int level;
183 	struct btrfs_root *new_root;
184 
185 	new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
186 	if (!new_root)
187 		return -ENOMEM;
188 
189 	memcpy(new_root, root, sizeof(*new_root));
190 	new_root->root_key.objectid = new_root_objectid;
191 
192 	WARN_ON(root->ref_cows && trans->transid !=
193 		root->fs_info->running_transaction->transid);
194 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
195 
196 	level = btrfs_header_level(buf);
197 	nritems = btrfs_header_nritems(buf);
198 
199 	cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
200 				     new_root_objectid, trans->transid,
201 				     level, buf->start, 0);
202 	if (IS_ERR(cow)) {
203 		kfree(new_root);
204 		return PTR_ERR(cow);
205 	}
206 
207 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
208 	btrfs_set_header_bytenr(cow, cow->start);
209 	btrfs_set_header_generation(cow, trans->transid);
210 	btrfs_set_header_owner(cow, new_root_objectid);
211 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
212 
213 	write_extent_buffer(cow, root->fs_info->fsid,
214 			    (unsigned long)btrfs_header_fsid(cow),
215 			    BTRFS_FSID_SIZE);
216 
217 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
218 	ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
219 	kfree(new_root);
220 
221 	if (ret)
222 		return ret;
223 
224 	btrfs_mark_buffer_dirty(cow);
225 	*cow_ret = cow;
226 	return 0;
227 }
228 
229 /*
230  * does the dirty work in cow of a single block.  The parent block (if
231  * supplied) is updated to point to the new cow copy.  The new buffer is marked
232  * dirty and returned locked.  If you modify the block it needs to be marked
233  * dirty again.
234  *
235  * search_start -- an allocation hint for the new block
236  *
237  * empty_size -- a hint that you plan on doing more cow.  This is the size in
238  * bytes the allocator should try to find free next to the block it returns.
239  * This is just a hint and may be ignored by the allocator.
240  *
241  * prealloc_dest -- if you have already reserved a destination for the cow,
242  * this uses that block instead of allocating a new one.
243  * btrfs_alloc_reserved_extent is used to finish the allocation.
244  */
245 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
246 			     struct btrfs_root *root,
247 			     struct extent_buffer *buf,
248 			     struct extent_buffer *parent, int parent_slot,
249 			     struct extent_buffer **cow_ret,
250 			     u64 search_start, u64 empty_size,
251 			     u64 prealloc_dest)
252 {
253 	u64 parent_start;
254 	struct extent_buffer *cow;
255 	u32 nritems;
256 	int ret = 0;
257 	int level;
258 	int unlock_orig = 0;
259 
260 	if (*cow_ret == buf)
261 		unlock_orig = 1;
262 
263 	WARN_ON(!btrfs_tree_locked(buf));
264 
265 	if (parent)
266 		parent_start = parent->start;
267 	else
268 		parent_start = 0;
269 
270 	WARN_ON(root->ref_cows && trans->transid !=
271 		root->fs_info->running_transaction->transid);
272 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
273 
274 	level = btrfs_header_level(buf);
275 	nritems = btrfs_header_nritems(buf);
276 
277 	if (prealloc_dest) {
278 		struct btrfs_key ins;
279 
280 		ins.objectid = prealloc_dest;
281 		ins.offset = buf->len;
282 		ins.type = BTRFS_EXTENT_ITEM_KEY;
283 
284 		ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
285 						  root->root_key.objectid,
286 						  trans->transid, level, &ins);
287 		BUG_ON(ret);
288 		cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
289 					    buf->len);
290 	} else {
291 		cow = btrfs_alloc_free_block(trans, root, buf->len,
292 					     parent_start,
293 					     root->root_key.objectid,
294 					     trans->transid, level,
295 					     search_start, empty_size);
296 	}
297 	if (IS_ERR(cow))
298 		return PTR_ERR(cow);
299 
300 	/* cow is set to blocking by btrfs_init_new_buffer */
301 
302 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
303 	btrfs_set_header_bytenr(cow, cow->start);
304 	btrfs_set_header_generation(cow, trans->transid);
305 	btrfs_set_header_owner(cow, root->root_key.objectid);
306 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
307 
308 	write_extent_buffer(cow, root->fs_info->fsid,
309 			    (unsigned long)btrfs_header_fsid(cow),
310 			    BTRFS_FSID_SIZE);
311 
312 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
313 	if (btrfs_header_generation(buf) != trans->transid) {
314 		u32 nr_extents;
315 		ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
316 		if (ret)
317 			return ret;
318 
319 		ret = btrfs_cache_ref(trans, root, buf, nr_extents);
320 		WARN_ON(ret);
321 	} else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
322 		/*
323 		 * There are only two places that can drop reference to
324 		 * tree blocks owned by living reloc trees, one is here,
325 		 * the other place is btrfs_drop_subtree. In both places,
326 		 * we check reference count while tree block is locked.
327 		 * Furthermore, if reference count is one, it won't get
328 		 * increased by someone else.
329 		 */
330 		u32 refs;
331 		ret = btrfs_lookup_extent_ref(trans, root, buf->start,
332 					      buf->len, &refs);
333 		BUG_ON(ret);
334 		if (refs == 1) {
335 			ret = btrfs_update_ref(trans, root, buf, cow,
336 					       0, nritems);
337 			clean_tree_block(trans, root, buf);
338 		} else {
339 			ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
340 		}
341 		BUG_ON(ret);
342 	} else {
343 		ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
344 		if (ret)
345 			return ret;
346 		clean_tree_block(trans, root, buf);
347 	}
348 
349 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
350 		ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
351 		WARN_ON(ret);
352 	}
353 
354 	if (buf == root->node) {
355 		WARN_ON(parent && parent != buf);
356 
357 		spin_lock(&root->node_lock);
358 		root->node = cow;
359 		extent_buffer_get(cow);
360 		spin_unlock(&root->node_lock);
361 
362 		if (buf != root->commit_root) {
363 			btrfs_free_extent(trans, root, buf->start,
364 					  buf->len, buf->start,
365 					  root->root_key.objectid,
366 					  btrfs_header_generation(buf),
367 					  level, 1);
368 		}
369 		free_extent_buffer(buf);
370 		add_root_to_dirty_list(root);
371 	} else {
372 		btrfs_set_node_blockptr(parent, parent_slot,
373 					cow->start);
374 		WARN_ON(trans->transid == 0);
375 		btrfs_set_node_ptr_generation(parent, parent_slot,
376 					      trans->transid);
377 		btrfs_mark_buffer_dirty(parent);
378 		WARN_ON(btrfs_header_generation(parent) != trans->transid);
379 		btrfs_free_extent(trans, root, buf->start, buf->len,
380 				  parent_start, btrfs_header_owner(parent),
381 				  btrfs_header_generation(parent), level, 1);
382 	}
383 	if (unlock_orig)
384 		btrfs_tree_unlock(buf);
385 	free_extent_buffer(buf);
386 	btrfs_mark_buffer_dirty(cow);
387 	*cow_ret = cow;
388 	return 0;
389 }
390 
391 /*
392  * cows a single block, see __btrfs_cow_block for the real work.
393  * This version of it has extra checks so that a block isn't cow'd more than
394  * once per transaction, as long as it hasn't been written yet
395  */
396 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
397 		    struct btrfs_root *root, struct extent_buffer *buf,
398 		    struct extent_buffer *parent, int parent_slot,
399 		    struct extent_buffer **cow_ret, u64 prealloc_dest)
400 {
401 	u64 search_start;
402 	int ret;
403 
404 	if (trans->transaction != root->fs_info->running_transaction) {
405 		printk(KERN_CRIT "trans %llu running %llu\n",
406 		       (unsigned long long)trans->transid,
407 		       (unsigned long long)
408 		       root->fs_info->running_transaction->transid);
409 		WARN_ON(1);
410 	}
411 	if (trans->transid != root->fs_info->generation) {
412 		printk(KERN_CRIT "trans %llu running %llu\n",
413 		       (unsigned long long)trans->transid,
414 		       (unsigned long long)root->fs_info->generation);
415 		WARN_ON(1);
416 	}
417 
418 	if (btrfs_header_generation(buf) == trans->transid &&
419 	    btrfs_header_owner(buf) == root->root_key.objectid &&
420 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
421 		*cow_ret = buf;
422 		WARN_ON(prealloc_dest);
423 		return 0;
424 	}
425 
426 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
427 
428 	if (parent)
429 		btrfs_set_lock_blocking(parent);
430 	btrfs_set_lock_blocking(buf);
431 
432 	ret = __btrfs_cow_block(trans, root, buf, parent,
433 				 parent_slot, cow_ret, search_start, 0,
434 				 prealloc_dest);
435 	return ret;
436 }
437 
438 /*
439  * helper function for defrag to decide if two blocks pointed to by a
440  * node are actually close by
441  */
442 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
443 {
444 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
445 		return 1;
446 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
447 		return 1;
448 	return 0;
449 }
450 
451 /*
452  * compare two keys in a memcmp fashion
453  */
454 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
455 {
456 	struct btrfs_key k1;
457 
458 	btrfs_disk_key_to_cpu(&k1, disk);
459 
460 	if (k1.objectid > k2->objectid)
461 		return 1;
462 	if (k1.objectid < k2->objectid)
463 		return -1;
464 	if (k1.type > k2->type)
465 		return 1;
466 	if (k1.type < k2->type)
467 		return -1;
468 	if (k1.offset > k2->offset)
469 		return 1;
470 	if (k1.offset < k2->offset)
471 		return -1;
472 	return 0;
473 }
474 
475 /*
476  * same as comp_keys only with two btrfs_key's
477  */
478 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
479 {
480 	if (k1->objectid > k2->objectid)
481 		return 1;
482 	if (k1->objectid < k2->objectid)
483 		return -1;
484 	if (k1->type > k2->type)
485 		return 1;
486 	if (k1->type < k2->type)
487 		return -1;
488 	if (k1->offset > k2->offset)
489 		return 1;
490 	if (k1->offset < k2->offset)
491 		return -1;
492 	return 0;
493 }
494 
495 /*
496  * this is used by the defrag code to go through all the
497  * leaves pointed to by a node and reallocate them so that
498  * disk order is close to key order
499  */
500 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
501 		       struct btrfs_root *root, struct extent_buffer *parent,
502 		       int start_slot, int cache_only, u64 *last_ret,
503 		       struct btrfs_key *progress)
504 {
505 	struct extent_buffer *cur;
506 	u64 blocknr;
507 	u64 gen;
508 	u64 search_start = *last_ret;
509 	u64 last_block = 0;
510 	u64 other;
511 	u32 parent_nritems;
512 	int end_slot;
513 	int i;
514 	int err = 0;
515 	int parent_level;
516 	int uptodate;
517 	u32 blocksize;
518 	int progress_passed = 0;
519 	struct btrfs_disk_key disk_key;
520 
521 	parent_level = btrfs_header_level(parent);
522 	if (cache_only && parent_level != 1)
523 		return 0;
524 
525 	if (trans->transaction != root->fs_info->running_transaction)
526 		WARN_ON(1);
527 	if (trans->transid != root->fs_info->generation)
528 		WARN_ON(1);
529 
530 	parent_nritems = btrfs_header_nritems(parent);
531 	blocksize = btrfs_level_size(root, parent_level - 1);
532 	end_slot = parent_nritems;
533 
534 	if (parent_nritems == 1)
535 		return 0;
536 
537 	btrfs_set_lock_blocking(parent);
538 
539 	for (i = start_slot; i < end_slot; i++) {
540 		int close = 1;
541 
542 		if (!parent->map_token) {
543 			map_extent_buffer(parent,
544 					btrfs_node_key_ptr_offset(i),
545 					sizeof(struct btrfs_key_ptr),
546 					&parent->map_token, &parent->kaddr,
547 					&parent->map_start, &parent->map_len,
548 					KM_USER1);
549 		}
550 		btrfs_node_key(parent, &disk_key, i);
551 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
552 			continue;
553 
554 		progress_passed = 1;
555 		blocknr = btrfs_node_blockptr(parent, i);
556 		gen = btrfs_node_ptr_generation(parent, i);
557 		if (last_block == 0)
558 			last_block = blocknr;
559 
560 		if (i > 0) {
561 			other = btrfs_node_blockptr(parent, i - 1);
562 			close = close_blocks(blocknr, other, blocksize);
563 		}
564 		if (!close && i < end_slot - 2) {
565 			other = btrfs_node_blockptr(parent, i + 1);
566 			close = close_blocks(blocknr, other, blocksize);
567 		}
568 		if (close) {
569 			last_block = blocknr;
570 			continue;
571 		}
572 		if (parent->map_token) {
573 			unmap_extent_buffer(parent, parent->map_token,
574 					    KM_USER1);
575 			parent->map_token = NULL;
576 		}
577 
578 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
579 		if (cur)
580 			uptodate = btrfs_buffer_uptodate(cur, gen);
581 		else
582 			uptodate = 0;
583 		if (!cur || !uptodate) {
584 			if (cache_only) {
585 				free_extent_buffer(cur);
586 				continue;
587 			}
588 			if (!cur) {
589 				cur = read_tree_block(root, blocknr,
590 							 blocksize, gen);
591 			} else if (!uptodate) {
592 				btrfs_read_buffer(cur, gen);
593 			}
594 		}
595 		if (search_start == 0)
596 			search_start = last_block;
597 
598 		btrfs_tree_lock(cur);
599 		btrfs_set_lock_blocking(cur);
600 		err = __btrfs_cow_block(trans, root, cur, parent, i,
601 					&cur, search_start,
602 					min(16 * blocksize,
603 					    (end_slot - i) * blocksize), 0);
604 		if (err) {
605 			btrfs_tree_unlock(cur);
606 			free_extent_buffer(cur);
607 			break;
608 		}
609 		search_start = cur->start;
610 		last_block = cur->start;
611 		*last_ret = search_start;
612 		btrfs_tree_unlock(cur);
613 		free_extent_buffer(cur);
614 	}
615 	if (parent->map_token) {
616 		unmap_extent_buffer(parent, parent->map_token,
617 				    KM_USER1);
618 		parent->map_token = NULL;
619 	}
620 	return err;
621 }
622 
623 /*
624  * The leaf data grows from end-to-front in the node.
625  * this returns the address of the start of the last item,
626  * which is the stop of the leaf data stack
627  */
628 static inline unsigned int leaf_data_end(struct btrfs_root *root,
629 					 struct extent_buffer *leaf)
630 {
631 	u32 nr = btrfs_header_nritems(leaf);
632 	if (nr == 0)
633 		return BTRFS_LEAF_DATA_SIZE(root);
634 	return btrfs_item_offset_nr(leaf, nr - 1);
635 }
636 
637 /*
638  * extra debugging checks to make sure all the items in a key are
639  * well formed and in the proper order
640  */
641 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
642 		      int level)
643 {
644 	struct extent_buffer *parent = NULL;
645 	struct extent_buffer *node = path->nodes[level];
646 	struct btrfs_disk_key parent_key;
647 	struct btrfs_disk_key node_key;
648 	int parent_slot;
649 	int slot;
650 	struct btrfs_key cpukey;
651 	u32 nritems = btrfs_header_nritems(node);
652 
653 	if (path->nodes[level + 1])
654 		parent = path->nodes[level + 1];
655 
656 	slot = path->slots[level];
657 	BUG_ON(nritems == 0);
658 	if (parent) {
659 		parent_slot = path->slots[level + 1];
660 		btrfs_node_key(parent, &parent_key, parent_slot);
661 		btrfs_node_key(node, &node_key, 0);
662 		BUG_ON(memcmp(&parent_key, &node_key,
663 			      sizeof(struct btrfs_disk_key)));
664 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
665 		       btrfs_header_bytenr(node));
666 	}
667 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
668 	if (slot != 0) {
669 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
670 		btrfs_node_key(node, &node_key, slot);
671 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
672 	}
673 	if (slot < nritems - 1) {
674 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
675 		btrfs_node_key(node, &node_key, slot);
676 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
677 	}
678 	return 0;
679 }
680 
681 /*
682  * extra checking to make sure all the items in a leaf are
683  * well formed and in the proper order
684  */
685 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
686 		      int level)
687 {
688 	struct extent_buffer *leaf = path->nodes[level];
689 	struct extent_buffer *parent = NULL;
690 	int parent_slot;
691 	struct btrfs_key cpukey;
692 	struct btrfs_disk_key parent_key;
693 	struct btrfs_disk_key leaf_key;
694 	int slot = path->slots[0];
695 
696 	u32 nritems = btrfs_header_nritems(leaf);
697 
698 	if (path->nodes[level + 1])
699 		parent = path->nodes[level + 1];
700 
701 	if (nritems == 0)
702 		return 0;
703 
704 	if (parent) {
705 		parent_slot = path->slots[level + 1];
706 		btrfs_node_key(parent, &parent_key, parent_slot);
707 		btrfs_item_key(leaf, &leaf_key, 0);
708 
709 		BUG_ON(memcmp(&parent_key, &leaf_key,
710 		       sizeof(struct btrfs_disk_key)));
711 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
712 		       btrfs_header_bytenr(leaf));
713 	}
714 	if (slot != 0 && slot < nritems - 1) {
715 		btrfs_item_key(leaf, &leaf_key, slot);
716 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
717 		if (comp_keys(&leaf_key, &cpukey) <= 0) {
718 			btrfs_print_leaf(root, leaf);
719 			printk(KERN_CRIT "slot %d offset bad key\n", slot);
720 			BUG_ON(1);
721 		}
722 		if (btrfs_item_offset_nr(leaf, slot - 1) !=
723 		       btrfs_item_end_nr(leaf, slot)) {
724 			btrfs_print_leaf(root, leaf);
725 			printk(KERN_CRIT "slot %d offset bad\n", slot);
726 			BUG_ON(1);
727 		}
728 	}
729 	if (slot < nritems - 1) {
730 		btrfs_item_key(leaf, &leaf_key, slot);
731 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
732 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
733 		if (btrfs_item_offset_nr(leaf, slot) !=
734 			btrfs_item_end_nr(leaf, slot + 1)) {
735 			btrfs_print_leaf(root, leaf);
736 			printk(KERN_CRIT "slot %d offset bad\n", slot);
737 			BUG_ON(1);
738 		}
739 	}
740 	BUG_ON(btrfs_item_offset_nr(leaf, 0) +
741 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
742 	return 0;
743 }
744 
745 static noinline int check_block(struct btrfs_root *root,
746 				struct btrfs_path *path, int level)
747 {
748 	return 0;
749 	if (level == 0)
750 		return check_leaf(root, path, level);
751 	return check_node(root, path, level);
752 }
753 
754 /*
755  * search for key in the extent_buffer.  The items start at offset p,
756  * and they are item_size apart.  There are 'max' items in p.
757  *
758  * the slot in the array is returned via slot, and it points to
759  * the place where you would insert key if it is not found in
760  * the array.
761  *
762  * slot may point to max if the key is bigger than all of the keys
763  */
764 static noinline int generic_bin_search(struct extent_buffer *eb,
765 				       unsigned long p,
766 				       int item_size, struct btrfs_key *key,
767 				       int max, int *slot)
768 {
769 	int low = 0;
770 	int high = max;
771 	int mid;
772 	int ret;
773 	struct btrfs_disk_key *tmp = NULL;
774 	struct btrfs_disk_key unaligned;
775 	unsigned long offset;
776 	char *map_token = NULL;
777 	char *kaddr = NULL;
778 	unsigned long map_start = 0;
779 	unsigned long map_len = 0;
780 	int err;
781 
782 	while (low < high) {
783 		mid = (low + high) / 2;
784 		offset = p + mid * item_size;
785 
786 		if (!map_token || offset < map_start ||
787 		    (offset + sizeof(struct btrfs_disk_key)) >
788 		    map_start + map_len) {
789 			if (map_token) {
790 				unmap_extent_buffer(eb, map_token, KM_USER0);
791 				map_token = NULL;
792 			}
793 
794 			err = map_private_extent_buffer(eb, offset,
795 						sizeof(struct btrfs_disk_key),
796 						&map_token, &kaddr,
797 						&map_start, &map_len, KM_USER0);
798 
799 			if (!err) {
800 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
801 							map_start);
802 			} else {
803 				read_extent_buffer(eb, &unaligned,
804 						   offset, sizeof(unaligned));
805 				tmp = &unaligned;
806 			}
807 
808 		} else {
809 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
810 							map_start);
811 		}
812 		ret = comp_keys(tmp, key);
813 
814 		if (ret < 0)
815 			low = mid + 1;
816 		else if (ret > 0)
817 			high = mid;
818 		else {
819 			*slot = mid;
820 			if (map_token)
821 				unmap_extent_buffer(eb, map_token, KM_USER0);
822 			return 0;
823 		}
824 	}
825 	*slot = low;
826 	if (map_token)
827 		unmap_extent_buffer(eb, map_token, KM_USER0);
828 	return 1;
829 }
830 
831 /*
832  * simple bin_search frontend that does the right thing for
833  * leaves vs nodes
834  */
835 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
836 		      int level, int *slot)
837 {
838 	if (level == 0) {
839 		return generic_bin_search(eb,
840 					  offsetof(struct btrfs_leaf, items),
841 					  sizeof(struct btrfs_item),
842 					  key, btrfs_header_nritems(eb),
843 					  slot);
844 	} else {
845 		return generic_bin_search(eb,
846 					  offsetof(struct btrfs_node, ptrs),
847 					  sizeof(struct btrfs_key_ptr),
848 					  key, btrfs_header_nritems(eb),
849 					  slot);
850 	}
851 	return -1;
852 }
853 
854 /* given a node and slot number, this reads the blocks it points to.  The
855  * extent buffer is returned with a reference taken (but unlocked).
856  * NULL is returned on error.
857  */
858 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
859 				   struct extent_buffer *parent, int slot)
860 {
861 	int level = btrfs_header_level(parent);
862 	if (slot < 0)
863 		return NULL;
864 	if (slot >= btrfs_header_nritems(parent))
865 		return NULL;
866 
867 	BUG_ON(level == 0);
868 
869 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
870 		       btrfs_level_size(root, level - 1),
871 		       btrfs_node_ptr_generation(parent, slot));
872 }
873 
874 /*
875  * node level balancing, used to make sure nodes are in proper order for
876  * item deletion.  We balance from the top down, so we have to make sure
877  * that a deletion won't leave an node completely empty later on.
878  */
879 static noinline int balance_level(struct btrfs_trans_handle *trans,
880 			 struct btrfs_root *root,
881 			 struct btrfs_path *path, int level)
882 {
883 	struct extent_buffer *right = NULL;
884 	struct extent_buffer *mid;
885 	struct extent_buffer *left = NULL;
886 	struct extent_buffer *parent = NULL;
887 	int ret = 0;
888 	int wret;
889 	int pslot;
890 	int orig_slot = path->slots[level];
891 	int err_on_enospc = 0;
892 	u64 orig_ptr;
893 
894 	if (level == 0)
895 		return 0;
896 
897 	mid = path->nodes[level];
898 
899 	WARN_ON(!path->locks[level]);
900 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
901 
902 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
903 
904 	if (level < BTRFS_MAX_LEVEL - 1)
905 		parent = path->nodes[level + 1];
906 	pslot = path->slots[level + 1];
907 
908 	/*
909 	 * deal with the case where there is only one pointer in the root
910 	 * by promoting the node below to a root
911 	 */
912 	if (!parent) {
913 		struct extent_buffer *child;
914 
915 		if (btrfs_header_nritems(mid) != 1)
916 			return 0;
917 
918 		/* promote the child to a root */
919 		child = read_node_slot(root, mid, 0);
920 		BUG_ON(!child);
921 		btrfs_tree_lock(child);
922 		btrfs_set_lock_blocking(child);
923 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
924 		BUG_ON(ret);
925 
926 		spin_lock(&root->node_lock);
927 		root->node = child;
928 		spin_unlock(&root->node_lock);
929 
930 		ret = btrfs_update_extent_ref(trans, root, child->start,
931 					      mid->start, child->start,
932 					      root->root_key.objectid,
933 					      trans->transid, level - 1);
934 		BUG_ON(ret);
935 
936 		add_root_to_dirty_list(root);
937 		btrfs_tree_unlock(child);
938 
939 		path->locks[level] = 0;
940 		path->nodes[level] = NULL;
941 		clean_tree_block(trans, root, mid);
942 		btrfs_tree_unlock(mid);
943 		/* once for the path */
944 		free_extent_buffer(mid);
945 		ret = btrfs_free_extent(trans, root, mid->start, mid->len,
946 					mid->start, root->root_key.objectid,
947 					btrfs_header_generation(mid),
948 					level, 1);
949 		/* once for the root ptr */
950 		free_extent_buffer(mid);
951 		return ret;
952 	}
953 	if (btrfs_header_nritems(mid) >
954 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
955 		return 0;
956 
957 	if (btrfs_header_nritems(mid) < 2)
958 		err_on_enospc = 1;
959 
960 	left = read_node_slot(root, parent, pslot - 1);
961 	if (left) {
962 		btrfs_tree_lock(left);
963 		btrfs_set_lock_blocking(left);
964 		wret = btrfs_cow_block(trans, root, left,
965 				       parent, pslot - 1, &left, 0);
966 		if (wret) {
967 			ret = wret;
968 			goto enospc;
969 		}
970 	}
971 	right = read_node_slot(root, parent, pslot + 1);
972 	if (right) {
973 		btrfs_tree_lock(right);
974 		btrfs_set_lock_blocking(right);
975 		wret = btrfs_cow_block(trans, root, right,
976 				       parent, pslot + 1, &right, 0);
977 		if (wret) {
978 			ret = wret;
979 			goto enospc;
980 		}
981 	}
982 
983 	/* first, try to make some room in the middle buffer */
984 	if (left) {
985 		orig_slot += btrfs_header_nritems(left);
986 		wret = push_node_left(trans, root, left, mid, 1);
987 		if (wret < 0)
988 			ret = wret;
989 		if (btrfs_header_nritems(mid) < 2)
990 			err_on_enospc = 1;
991 	}
992 
993 	/*
994 	 * then try to empty the right most buffer into the middle
995 	 */
996 	if (right) {
997 		wret = push_node_left(trans, root, mid, right, 1);
998 		if (wret < 0 && wret != -ENOSPC)
999 			ret = wret;
1000 		if (btrfs_header_nritems(right) == 0) {
1001 			u64 bytenr = right->start;
1002 			u64 generation = btrfs_header_generation(parent);
1003 			u32 blocksize = right->len;
1004 
1005 			clean_tree_block(trans, root, right);
1006 			btrfs_tree_unlock(right);
1007 			free_extent_buffer(right);
1008 			right = NULL;
1009 			wret = del_ptr(trans, root, path, level + 1, pslot +
1010 				       1);
1011 			if (wret)
1012 				ret = wret;
1013 			wret = btrfs_free_extent(trans, root, bytenr,
1014 						 blocksize, parent->start,
1015 						 btrfs_header_owner(parent),
1016 						 generation, level, 1);
1017 			if (wret)
1018 				ret = wret;
1019 		} else {
1020 			struct btrfs_disk_key right_key;
1021 			btrfs_node_key(right, &right_key, 0);
1022 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1023 			btrfs_mark_buffer_dirty(parent);
1024 		}
1025 	}
1026 	if (btrfs_header_nritems(mid) == 1) {
1027 		/*
1028 		 * we're not allowed to leave a node with one item in the
1029 		 * tree during a delete.  A deletion from lower in the tree
1030 		 * could try to delete the only pointer in this node.
1031 		 * So, pull some keys from the left.
1032 		 * There has to be a left pointer at this point because
1033 		 * otherwise we would have pulled some pointers from the
1034 		 * right
1035 		 */
1036 		BUG_ON(!left);
1037 		wret = balance_node_right(trans, root, mid, left);
1038 		if (wret < 0) {
1039 			ret = wret;
1040 			goto enospc;
1041 		}
1042 		if (wret == 1) {
1043 			wret = push_node_left(trans, root, left, mid, 1);
1044 			if (wret < 0)
1045 				ret = wret;
1046 		}
1047 		BUG_ON(wret == 1);
1048 	}
1049 	if (btrfs_header_nritems(mid) == 0) {
1050 		/* we've managed to empty the middle node, drop it */
1051 		u64 root_gen = btrfs_header_generation(parent);
1052 		u64 bytenr = mid->start;
1053 		u32 blocksize = mid->len;
1054 
1055 		clean_tree_block(trans, root, mid);
1056 		btrfs_tree_unlock(mid);
1057 		free_extent_buffer(mid);
1058 		mid = NULL;
1059 		wret = del_ptr(trans, root, path, level + 1, pslot);
1060 		if (wret)
1061 			ret = wret;
1062 		wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1063 					 parent->start,
1064 					 btrfs_header_owner(parent),
1065 					 root_gen, level, 1);
1066 		if (wret)
1067 			ret = wret;
1068 	} else {
1069 		/* update the parent key to reflect our changes */
1070 		struct btrfs_disk_key mid_key;
1071 		btrfs_node_key(mid, &mid_key, 0);
1072 		btrfs_set_node_key(parent, &mid_key, pslot);
1073 		btrfs_mark_buffer_dirty(parent);
1074 	}
1075 
1076 	/* update the path */
1077 	if (left) {
1078 		if (btrfs_header_nritems(left) > orig_slot) {
1079 			extent_buffer_get(left);
1080 			/* left was locked after cow */
1081 			path->nodes[level] = left;
1082 			path->slots[level + 1] -= 1;
1083 			path->slots[level] = orig_slot;
1084 			if (mid) {
1085 				btrfs_tree_unlock(mid);
1086 				free_extent_buffer(mid);
1087 			}
1088 		} else {
1089 			orig_slot -= btrfs_header_nritems(left);
1090 			path->slots[level] = orig_slot;
1091 		}
1092 	}
1093 	/* double check we haven't messed things up */
1094 	check_block(root, path, level);
1095 	if (orig_ptr !=
1096 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1097 		BUG();
1098 enospc:
1099 	if (right) {
1100 		btrfs_tree_unlock(right);
1101 		free_extent_buffer(right);
1102 	}
1103 	if (left) {
1104 		if (path->nodes[level] != left)
1105 			btrfs_tree_unlock(left);
1106 		free_extent_buffer(left);
1107 	}
1108 	return ret;
1109 }
1110 
1111 /* Node balancing for insertion.  Here we only split or push nodes around
1112  * when they are completely full.  This is also done top down, so we
1113  * have to be pessimistic.
1114  */
1115 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1116 					  struct btrfs_root *root,
1117 					  struct btrfs_path *path, int level)
1118 {
1119 	struct extent_buffer *right = NULL;
1120 	struct extent_buffer *mid;
1121 	struct extent_buffer *left = NULL;
1122 	struct extent_buffer *parent = NULL;
1123 	int ret = 0;
1124 	int wret;
1125 	int pslot;
1126 	int orig_slot = path->slots[level];
1127 	u64 orig_ptr;
1128 
1129 	if (level == 0)
1130 		return 1;
1131 
1132 	mid = path->nodes[level];
1133 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1134 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1135 
1136 	if (level < BTRFS_MAX_LEVEL - 1)
1137 		parent = path->nodes[level + 1];
1138 	pslot = path->slots[level + 1];
1139 
1140 	if (!parent)
1141 		return 1;
1142 
1143 	left = read_node_slot(root, parent, pslot - 1);
1144 
1145 	/* first, try to make some room in the middle buffer */
1146 	if (left) {
1147 		u32 left_nr;
1148 
1149 		btrfs_tree_lock(left);
1150 		btrfs_set_lock_blocking(left);
1151 
1152 		left_nr = btrfs_header_nritems(left);
1153 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1154 			wret = 1;
1155 		} else {
1156 			ret = btrfs_cow_block(trans, root, left, parent,
1157 					      pslot - 1, &left, 0);
1158 			if (ret)
1159 				wret = 1;
1160 			else {
1161 				wret = push_node_left(trans, root,
1162 						      left, mid, 0);
1163 			}
1164 		}
1165 		if (wret < 0)
1166 			ret = wret;
1167 		if (wret == 0) {
1168 			struct btrfs_disk_key disk_key;
1169 			orig_slot += left_nr;
1170 			btrfs_node_key(mid, &disk_key, 0);
1171 			btrfs_set_node_key(parent, &disk_key, pslot);
1172 			btrfs_mark_buffer_dirty(parent);
1173 			if (btrfs_header_nritems(left) > orig_slot) {
1174 				path->nodes[level] = left;
1175 				path->slots[level + 1] -= 1;
1176 				path->slots[level] = orig_slot;
1177 				btrfs_tree_unlock(mid);
1178 				free_extent_buffer(mid);
1179 			} else {
1180 				orig_slot -=
1181 					btrfs_header_nritems(left);
1182 				path->slots[level] = orig_slot;
1183 				btrfs_tree_unlock(left);
1184 				free_extent_buffer(left);
1185 			}
1186 			return 0;
1187 		}
1188 		btrfs_tree_unlock(left);
1189 		free_extent_buffer(left);
1190 	}
1191 	right = read_node_slot(root, parent, pslot + 1);
1192 
1193 	/*
1194 	 * then try to empty the right most buffer into the middle
1195 	 */
1196 	if (right) {
1197 		u32 right_nr;
1198 
1199 		btrfs_tree_lock(right);
1200 		btrfs_set_lock_blocking(right);
1201 
1202 		right_nr = btrfs_header_nritems(right);
1203 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1204 			wret = 1;
1205 		} else {
1206 			ret = btrfs_cow_block(trans, root, right,
1207 					      parent, pslot + 1,
1208 					      &right, 0);
1209 			if (ret)
1210 				wret = 1;
1211 			else {
1212 				wret = balance_node_right(trans, root,
1213 							  right, mid);
1214 			}
1215 		}
1216 		if (wret < 0)
1217 			ret = wret;
1218 		if (wret == 0) {
1219 			struct btrfs_disk_key disk_key;
1220 
1221 			btrfs_node_key(right, &disk_key, 0);
1222 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1223 			btrfs_mark_buffer_dirty(parent);
1224 
1225 			if (btrfs_header_nritems(mid) <= orig_slot) {
1226 				path->nodes[level] = right;
1227 				path->slots[level + 1] += 1;
1228 				path->slots[level] = orig_slot -
1229 					btrfs_header_nritems(mid);
1230 				btrfs_tree_unlock(mid);
1231 				free_extent_buffer(mid);
1232 			} else {
1233 				btrfs_tree_unlock(right);
1234 				free_extent_buffer(right);
1235 			}
1236 			return 0;
1237 		}
1238 		btrfs_tree_unlock(right);
1239 		free_extent_buffer(right);
1240 	}
1241 	return 1;
1242 }
1243 
1244 /*
1245  * readahead one full node of leaves, finding things that are close
1246  * to the block in 'slot', and triggering ra on them.
1247  */
1248 static noinline void reada_for_search(struct btrfs_root *root,
1249 				      struct btrfs_path *path,
1250 				      int level, int slot, u64 objectid)
1251 {
1252 	struct extent_buffer *node;
1253 	struct btrfs_disk_key disk_key;
1254 	u32 nritems;
1255 	u64 search;
1256 	u64 target;
1257 	u64 nread = 0;
1258 	int direction = path->reada;
1259 	struct extent_buffer *eb;
1260 	u32 nr;
1261 	u32 blocksize;
1262 	u32 nscan = 0;
1263 
1264 	if (level != 1)
1265 		return;
1266 
1267 	if (!path->nodes[level])
1268 		return;
1269 
1270 	node = path->nodes[level];
1271 
1272 	search = btrfs_node_blockptr(node, slot);
1273 	blocksize = btrfs_level_size(root, level - 1);
1274 	eb = btrfs_find_tree_block(root, search, blocksize);
1275 	if (eb) {
1276 		free_extent_buffer(eb);
1277 		return;
1278 	}
1279 
1280 	target = search;
1281 
1282 	nritems = btrfs_header_nritems(node);
1283 	nr = slot;
1284 	while (1) {
1285 		if (direction < 0) {
1286 			if (nr == 0)
1287 				break;
1288 			nr--;
1289 		} else if (direction > 0) {
1290 			nr++;
1291 			if (nr >= nritems)
1292 				break;
1293 		}
1294 		if (path->reada < 0 && objectid) {
1295 			btrfs_node_key(node, &disk_key, nr);
1296 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1297 				break;
1298 		}
1299 		search = btrfs_node_blockptr(node, nr);
1300 		if ((search <= target && target - search <= 65536) ||
1301 		    (search > target && search - target <= 65536)) {
1302 			readahead_tree_block(root, search, blocksize,
1303 				     btrfs_node_ptr_generation(node, nr));
1304 			nread += blocksize;
1305 		}
1306 		nscan++;
1307 		if ((nread > 65536 || nscan > 32))
1308 			break;
1309 	}
1310 }
1311 
1312 /*
1313  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1314  * cache
1315  */
1316 static noinline int reada_for_balance(struct btrfs_root *root,
1317 				      struct btrfs_path *path, int level)
1318 {
1319 	int slot;
1320 	int nritems;
1321 	struct extent_buffer *parent;
1322 	struct extent_buffer *eb;
1323 	u64 gen;
1324 	u64 block1 = 0;
1325 	u64 block2 = 0;
1326 	int ret = 0;
1327 	int blocksize;
1328 
1329 	parent = path->nodes[level - 1];
1330 	if (!parent)
1331 		return 0;
1332 
1333 	nritems = btrfs_header_nritems(parent);
1334 	slot = path->slots[level];
1335 	blocksize = btrfs_level_size(root, level);
1336 
1337 	if (slot > 0) {
1338 		block1 = btrfs_node_blockptr(parent, slot - 1);
1339 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1340 		eb = btrfs_find_tree_block(root, block1, blocksize);
1341 		if (eb && btrfs_buffer_uptodate(eb, gen))
1342 			block1 = 0;
1343 		free_extent_buffer(eb);
1344 	}
1345 	if (slot < nritems) {
1346 		block2 = btrfs_node_blockptr(parent, slot + 1);
1347 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1348 		eb = btrfs_find_tree_block(root, block2, blocksize);
1349 		if (eb && btrfs_buffer_uptodate(eb, gen))
1350 			block2 = 0;
1351 		free_extent_buffer(eb);
1352 	}
1353 	if (block1 || block2) {
1354 		ret = -EAGAIN;
1355 		btrfs_release_path(root, path);
1356 		if (block1)
1357 			readahead_tree_block(root, block1, blocksize, 0);
1358 		if (block2)
1359 			readahead_tree_block(root, block2, blocksize, 0);
1360 
1361 		if (block1) {
1362 			eb = read_tree_block(root, block1, blocksize, 0);
1363 			free_extent_buffer(eb);
1364 		}
1365 		if (block1) {
1366 			eb = read_tree_block(root, block2, blocksize, 0);
1367 			free_extent_buffer(eb);
1368 		}
1369 	}
1370 	return ret;
1371 }
1372 
1373 
1374 /*
1375  * when we walk down the tree, it is usually safe to unlock the higher layers
1376  * in the tree.  The exceptions are when our path goes through slot 0, because
1377  * operations on the tree might require changing key pointers higher up in the
1378  * tree.
1379  *
1380  * callers might also have set path->keep_locks, which tells this code to keep
1381  * the lock if the path points to the last slot in the block.  This is part of
1382  * walking through the tree, and selecting the next slot in the higher block.
1383  *
1384  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1385  * if lowest_unlock is 1, level 0 won't be unlocked
1386  */
1387 static noinline void unlock_up(struct btrfs_path *path, int level,
1388 			       int lowest_unlock)
1389 {
1390 	int i;
1391 	int skip_level = level;
1392 	int no_skips = 0;
1393 	struct extent_buffer *t;
1394 
1395 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1396 		if (!path->nodes[i])
1397 			break;
1398 		if (!path->locks[i])
1399 			break;
1400 		if (!no_skips && path->slots[i] == 0) {
1401 			skip_level = i + 1;
1402 			continue;
1403 		}
1404 		if (!no_skips && path->keep_locks) {
1405 			u32 nritems;
1406 			t = path->nodes[i];
1407 			nritems = btrfs_header_nritems(t);
1408 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1409 				skip_level = i + 1;
1410 				continue;
1411 			}
1412 		}
1413 		if (skip_level < i && i >= lowest_unlock)
1414 			no_skips = 1;
1415 
1416 		t = path->nodes[i];
1417 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1418 			btrfs_tree_unlock(t);
1419 			path->locks[i] = 0;
1420 		}
1421 	}
1422 }
1423 
1424 /*
1425  * This releases any locks held in the path starting at level and
1426  * going all the way up to the root.
1427  *
1428  * btrfs_search_slot will keep the lock held on higher nodes in a few
1429  * corner cases, such as COW of the block at slot zero in the node.  This
1430  * ignores those rules, and it should only be called when there are no
1431  * more updates to be done higher up in the tree.
1432  */
1433 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1434 {
1435 	int i;
1436 
1437 	if (path->keep_locks || path->lowest_level)
1438 		return;
1439 
1440 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1441 		if (!path->nodes[i])
1442 			continue;
1443 		if (!path->locks[i])
1444 			continue;
1445 		btrfs_tree_unlock(path->nodes[i]);
1446 		path->locks[i] = 0;
1447 	}
1448 }
1449 
1450 /*
1451  * look for key in the tree.  path is filled in with nodes along the way
1452  * if key is found, we return zero and you can find the item in the leaf
1453  * level of the path (level 0)
1454  *
1455  * If the key isn't found, the path points to the slot where it should
1456  * be inserted, and 1 is returned.  If there are other errors during the
1457  * search a negative error number is returned.
1458  *
1459  * if ins_len > 0, nodes and leaves will be split as we walk down the
1460  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1461  * possible)
1462  */
1463 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1464 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1465 		      ins_len, int cow)
1466 {
1467 	struct extent_buffer *b;
1468 	struct extent_buffer *tmp;
1469 	int slot;
1470 	int ret;
1471 	int level;
1472 	int should_reada = p->reada;
1473 	int lowest_unlock = 1;
1474 	int blocksize;
1475 	u8 lowest_level = 0;
1476 	u64 blocknr;
1477 	u64 gen;
1478 	struct btrfs_key prealloc_block;
1479 
1480 	lowest_level = p->lowest_level;
1481 	WARN_ON(lowest_level && ins_len > 0);
1482 	WARN_ON(p->nodes[0] != NULL);
1483 
1484 	if (ins_len < 0)
1485 		lowest_unlock = 2;
1486 
1487 	prealloc_block.objectid = 0;
1488 
1489 again:
1490 	if (p->skip_locking)
1491 		b = btrfs_root_node(root);
1492 	else
1493 		b = btrfs_lock_root_node(root);
1494 
1495 	while (b) {
1496 		level = btrfs_header_level(b);
1497 
1498 		/*
1499 		 * setup the path here so we can release it under lock
1500 		 * contention with the cow code
1501 		 */
1502 		p->nodes[level] = b;
1503 		if (!p->skip_locking)
1504 			p->locks[level] = 1;
1505 
1506 		if (cow) {
1507 			int wret;
1508 
1509 			/* is a cow on this block not required */
1510 			if (btrfs_header_generation(b) == trans->transid &&
1511 			    btrfs_header_owner(b) == root->root_key.objectid &&
1512 			    !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1513 				goto cow_done;
1514 			}
1515 
1516 			/* ok, we have to cow, is our old prealloc the right
1517 			 * size?
1518 			 */
1519 			if (prealloc_block.objectid &&
1520 			    prealloc_block.offset != b->len) {
1521 				btrfs_release_path(root, p);
1522 				btrfs_free_reserved_extent(root,
1523 					   prealloc_block.objectid,
1524 					   prealloc_block.offset);
1525 				prealloc_block.objectid = 0;
1526 				goto again;
1527 			}
1528 
1529 			/*
1530 			 * for higher level blocks, try not to allocate blocks
1531 			 * with the block and the parent locks held.
1532 			 */
1533 			if (level > 0 && !prealloc_block.objectid) {
1534 				u32 size = b->len;
1535 				u64 hint = b->start;
1536 
1537 				btrfs_release_path(root, p);
1538 				ret = btrfs_reserve_extent(trans, root,
1539 							   size, size, 0,
1540 							   hint, (u64)-1,
1541 							   &prealloc_block, 0);
1542 				BUG_ON(ret);
1543 				goto again;
1544 			}
1545 
1546 			btrfs_set_path_blocking(p);
1547 
1548 			wret = btrfs_cow_block(trans, root, b,
1549 					       p->nodes[level + 1],
1550 					       p->slots[level + 1],
1551 					       &b, prealloc_block.objectid);
1552 			prealloc_block.objectid = 0;
1553 			if (wret) {
1554 				free_extent_buffer(b);
1555 				ret = wret;
1556 				goto done;
1557 			}
1558 		}
1559 cow_done:
1560 		BUG_ON(!cow && ins_len);
1561 		if (level != btrfs_header_level(b))
1562 			WARN_ON(1);
1563 		level = btrfs_header_level(b);
1564 
1565 		p->nodes[level] = b;
1566 		if (!p->skip_locking)
1567 			p->locks[level] = 1;
1568 
1569 		btrfs_clear_path_blocking(p);
1570 
1571 		/*
1572 		 * we have a lock on b and as long as we aren't changing
1573 		 * the tree, there is no way to for the items in b to change.
1574 		 * It is safe to drop the lock on our parent before we
1575 		 * go through the expensive btree search on b.
1576 		 *
1577 		 * If cow is true, then we might be changing slot zero,
1578 		 * which may require changing the parent.  So, we can't
1579 		 * drop the lock until after we know which slot we're
1580 		 * operating on.
1581 		 */
1582 		if (!cow)
1583 			btrfs_unlock_up_safe(p, level + 1);
1584 
1585 		ret = check_block(root, p, level);
1586 		if (ret) {
1587 			ret = -1;
1588 			goto done;
1589 		}
1590 
1591 		ret = bin_search(b, key, level, &slot);
1592 
1593 		if (level != 0) {
1594 			if (ret && slot > 0)
1595 				slot -= 1;
1596 			p->slots[level] = slot;
1597 			if ((p->search_for_split || ins_len > 0) &&
1598 			    btrfs_header_nritems(b) >=
1599 			    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1600 				int sret;
1601 
1602 				sret = reada_for_balance(root, p, level);
1603 				if (sret)
1604 					goto again;
1605 
1606 				btrfs_set_path_blocking(p);
1607 				sret = split_node(trans, root, p, level);
1608 				btrfs_clear_path_blocking(p);
1609 
1610 				BUG_ON(sret > 0);
1611 				if (sret) {
1612 					ret = sret;
1613 					goto done;
1614 				}
1615 				b = p->nodes[level];
1616 				slot = p->slots[level];
1617 			} else if (ins_len < 0 &&
1618 				   btrfs_header_nritems(b) <
1619 				   BTRFS_NODEPTRS_PER_BLOCK(root) / 4) {
1620 				int sret;
1621 
1622 				sret = reada_for_balance(root, p, level);
1623 				if (sret)
1624 					goto again;
1625 
1626 				btrfs_set_path_blocking(p);
1627 				sret = balance_level(trans, root, p, level);
1628 				btrfs_clear_path_blocking(p);
1629 
1630 				if (sret) {
1631 					ret = sret;
1632 					goto done;
1633 				}
1634 				b = p->nodes[level];
1635 				if (!b) {
1636 					btrfs_release_path(NULL, p);
1637 					goto again;
1638 				}
1639 				slot = p->slots[level];
1640 				BUG_ON(btrfs_header_nritems(b) == 1);
1641 			}
1642 			unlock_up(p, level, lowest_unlock);
1643 
1644 			/* this is only true while dropping a snapshot */
1645 			if (level == lowest_level) {
1646 				ret = 0;
1647 				goto done;
1648 			}
1649 
1650 			blocknr = btrfs_node_blockptr(b, slot);
1651 			gen = btrfs_node_ptr_generation(b, slot);
1652 			blocksize = btrfs_level_size(root, level - 1);
1653 
1654 			tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1655 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1656 				b = tmp;
1657 			} else {
1658 				/*
1659 				 * reduce lock contention at high levels
1660 				 * of the btree by dropping locks before
1661 				 * we read.
1662 				 */
1663 				if (level > 0) {
1664 					btrfs_release_path(NULL, p);
1665 					if (tmp)
1666 						free_extent_buffer(tmp);
1667 					if (should_reada)
1668 						reada_for_search(root, p,
1669 								 level, slot,
1670 								 key->objectid);
1671 
1672 					tmp = read_tree_block(root, blocknr,
1673 							 blocksize, gen);
1674 					if (tmp)
1675 						free_extent_buffer(tmp);
1676 					goto again;
1677 				} else {
1678 					btrfs_set_path_blocking(p);
1679 					if (tmp)
1680 						free_extent_buffer(tmp);
1681 					if (should_reada)
1682 						reada_for_search(root, p,
1683 								 level, slot,
1684 								 key->objectid);
1685 					b = read_node_slot(root, b, slot);
1686 				}
1687 			}
1688 			if (!p->skip_locking) {
1689 				int lret;
1690 
1691 				btrfs_clear_path_blocking(p);
1692 				lret = btrfs_try_spin_lock(b);
1693 
1694 				if (!lret) {
1695 					btrfs_set_path_blocking(p);
1696 					btrfs_tree_lock(b);
1697 					btrfs_clear_path_blocking(p);
1698 				}
1699 			}
1700 		} else {
1701 			p->slots[level] = slot;
1702 			if (ins_len > 0 &&
1703 			    btrfs_leaf_free_space(root, b) < ins_len) {
1704 				int sret;
1705 
1706 				btrfs_set_path_blocking(p);
1707 				sret = split_leaf(trans, root, key,
1708 						      p, ins_len, ret == 0);
1709 				btrfs_clear_path_blocking(p);
1710 
1711 				BUG_ON(sret > 0);
1712 				if (sret) {
1713 					ret = sret;
1714 					goto done;
1715 				}
1716 			}
1717 			if (!p->search_for_split)
1718 				unlock_up(p, level, lowest_unlock);
1719 			goto done;
1720 		}
1721 	}
1722 	ret = 1;
1723 done:
1724 	/*
1725 	 * we don't really know what they plan on doing with the path
1726 	 * from here on, so for now just mark it as blocking
1727 	 */
1728 	btrfs_set_path_blocking(p);
1729 	if (prealloc_block.objectid) {
1730 		btrfs_free_reserved_extent(root,
1731 			   prealloc_block.objectid,
1732 			   prealloc_block.offset);
1733 	}
1734 	return ret;
1735 }
1736 
1737 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1738 		     struct btrfs_root *root,
1739 		     struct btrfs_key *node_keys,
1740 		     u64 *nodes, int lowest_level)
1741 {
1742 	struct extent_buffer *eb;
1743 	struct extent_buffer *parent;
1744 	struct btrfs_key key;
1745 	u64 bytenr;
1746 	u64 generation;
1747 	u32 blocksize;
1748 	int level;
1749 	int slot;
1750 	int key_match;
1751 	int ret;
1752 
1753 	eb = btrfs_lock_root_node(root);
1754 	ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
1755 	BUG_ON(ret);
1756 
1757 	btrfs_set_lock_blocking(eb);
1758 
1759 	parent = eb;
1760 	while (1) {
1761 		level = btrfs_header_level(parent);
1762 		if (level == 0 || level <= lowest_level)
1763 			break;
1764 
1765 		ret = bin_search(parent, &node_keys[lowest_level], level,
1766 				 &slot);
1767 		if (ret && slot > 0)
1768 			slot--;
1769 
1770 		bytenr = btrfs_node_blockptr(parent, slot);
1771 		if (nodes[level - 1] == bytenr)
1772 			break;
1773 
1774 		blocksize = btrfs_level_size(root, level - 1);
1775 		generation = btrfs_node_ptr_generation(parent, slot);
1776 		btrfs_node_key_to_cpu(eb, &key, slot);
1777 		key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1778 
1779 		if (generation == trans->transid) {
1780 			eb = read_tree_block(root, bytenr, blocksize,
1781 					     generation);
1782 			btrfs_tree_lock(eb);
1783 			btrfs_set_lock_blocking(eb);
1784 		}
1785 
1786 		/*
1787 		 * if node keys match and node pointer hasn't been modified
1788 		 * in the running transaction, we can merge the path. for
1789 		 * blocks owened by reloc trees, the node pointer check is
1790 		 * skipped, this is because these blocks are fully controlled
1791 		 * by the space balance code, no one else can modify them.
1792 		 */
1793 		if (!nodes[level - 1] || !key_match ||
1794 		    (generation == trans->transid &&
1795 		     btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1796 			if (level == 1 || level == lowest_level + 1) {
1797 				if (generation == trans->transid) {
1798 					btrfs_tree_unlock(eb);
1799 					free_extent_buffer(eb);
1800 				}
1801 				break;
1802 			}
1803 
1804 			if (generation != trans->transid) {
1805 				eb = read_tree_block(root, bytenr, blocksize,
1806 						generation);
1807 				btrfs_tree_lock(eb);
1808 				btrfs_set_lock_blocking(eb);
1809 			}
1810 
1811 			ret = btrfs_cow_block(trans, root, eb, parent, slot,
1812 					      &eb, 0);
1813 			BUG_ON(ret);
1814 
1815 			if (root->root_key.objectid ==
1816 			    BTRFS_TREE_RELOC_OBJECTID) {
1817 				if (!nodes[level - 1]) {
1818 					nodes[level - 1] = eb->start;
1819 					memcpy(&node_keys[level - 1], &key,
1820 					       sizeof(node_keys[0]));
1821 				} else {
1822 					WARN_ON(1);
1823 				}
1824 			}
1825 
1826 			btrfs_tree_unlock(parent);
1827 			free_extent_buffer(parent);
1828 			parent = eb;
1829 			continue;
1830 		}
1831 
1832 		btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1833 		btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1834 		btrfs_mark_buffer_dirty(parent);
1835 
1836 		ret = btrfs_inc_extent_ref(trans, root,
1837 					nodes[level - 1],
1838 					blocksize, parent->start,
1839 					btrfs_header_owner(parent),
1840 					btrfs_header_generation(parent),
1841 					level - 1);
1842 		BUG_ON(ret);
1843 
1844 		/*
1845 		 * If the block was created in the running transaction,
1846 		 * it's possible this is the last reference to it, so we
1847 		 * should drop the subtree.
1848 		 */
1849 		if (generation == trans->transid) {
1850 			ret = btrfs_drop_subtree(trans, root, eb, parent);
1851 			BUG_ON(ret);
1852 			btrfs_tree_unlock(eb);
1853 			free_extent_buffer(eb);
1854 		} else {
1855 			ret = btrfs_free_extent(trans, root, bytenr,
1856 					blocksize, parent->start,
1857 					btrfs_header_owner(parent),
1858 					btrfs_header_generation(parent),
1859 					level - 1, 1);
1860 			BUG_ON(ret);
1861 		}
1862 		break;
1863 	}
1864 	btrfs_tree_unlock(parent);
1865 	free_extent_buffer(parent);
1866 	return 0;
1867 }
1868 
1869 /*
1870  * adjust the pointers going up the tree, starting at level
1871  * making sure the right key of each node is points to 'key'.
1872  * This is used after shifting pointers to the left, so it stops
1873  * fixing up pointers when a given leaf/node is not in slot 0 of the
1874  * higher levels
1875  *
1876  * If this fails to write a tree block, it returns -1, but continues
1877  * fixing up the blocks in ram so the tree is consistent.
1878  */
1879 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1880 			  struct btrfs_root *root, struct btrfs_path *path,
1881 			  struct btrfs_disk_key *key, int level)
1882 {
1883 	int i;
1884 	int ret = 0;
1885 	struct extent_buffer *t;
1886 
1887 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1888 		int tslot = path->slots[i];
1889 		if (!path->nodes[i])
1890 			break;
1891 		t = path->nodes[i];
1892 		btrfs_set_node_key(t, key, tslot);
1893 		btrfs_mark_buffer_dirty(path->nodes[i]);
1894 		if (tslot != 0)
1895 			break;
1896 	}
1897 	return ret;
1898 }
1899 
1900 /*
1901  * update item key.
1902  *
1903  * This function isn't completely safe. It's the caller's responsibility
1904  * that the new key won't break the order
1905  */
1906 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1907 			    struct btrfs_root *root, struct btrfs_path *path,
1908 			    struct btrfs_key *new_key)
1909 {
1910 	struct btrfs_disk_key disk_key;
1911 	struct extent_buffer *eb;
1912 	int slot;
1913 
1914 	eb = path->nodes[0];
1915 	slot = path->slots[0];
1916 	if (slot > 0) {
1917 		btrfs_item_key(eb, &disk_key, slot - 1);
1918 		if (comp_keys(&disk_key, new_key) >= 0)
1919 			return -1;
1920 	}
1921 	if (slot < btrfs_header_nritems(eb) - 1) {
1922 		btrfs_item_key(eb, &disk_key, slot + 1);
1923 		if (comp_keys(&disk_key, new_key) <= 0)
1924 			return -1;
1925 	}
1926 
1927 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1928 	btrfs_set_item_key(eb, &disk_key, slot);
1929 	btrfs_mark_buffer_dirty(eb);
1930 	if (slot == 0)
1931 		fixup_low_keys(trans, root, path, &disk_key, 1);
1932 	return 0;
1933 }
1934 
1935 /*
1936  * try to push data from one node into the next node left in the
1937  * tree.
1938  *
1939  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1940  * error, and > 0 if there was no room in the left hand block.
1941  */
1942 static int push_node_left(struct btrfs_trans_handle *trans,
1943 			  struct btrfs_root *root, struct extent_buffer *dst,
1944 			  struct extent_buffer *src, int empty)
1945 {
1946 	int push_items = 0;
1947 	int src_nritems;
1948 	int dst_nritems;
1949 	int ret = 0;
1950 
1951 	src_nritems = btrfs_header_nritems(src);
1952 	dst_nritems = btrfs_header_nritems(dst);
1953 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1954 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1955 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1956 
1957 	if (!empty && src_nritems <= 8)
1958 		return 1;
1959 
1960 	if (push_items <= 0)
1961 		return 1;
1962 
1963 	if (empty) {
1964 		push_items = min(src_nritems, push_items);
1965 		if (push_items < src_nritems) {
1966 			/* leave at least 8 pointers in the node if
1967 			 * we aren't going to empty it
1968 			 */
1969 			if (src_nritems - push_items < 8) {
1970 				if (push_items <= 8)
1971 					return 1;
1972 				push_items -= 8;
1973 			}
1974 		}
1975 	} else
1976 		push_items = min(src_nritems - 8, push_items);
1977 
1978 	copy_extent_buffer(dst, src,
1979 			   btrfs_node_key_ptr_offset(dst_nritems),
1980 			   btrfs_node_key_ptr_offset(0),
1981 			   push_items * sizeof(struct btrfs_key_ptr));
1982 
1983 	if (push_items < src_nritems) {
1984 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1985 				      btrfs_node_key_ptr_offset(push_items),
1986 				      (src_nritems - push_items) *
1987 				      sizeof(struct btrfs_key_ptr));
1988 	}
1989 	btrfs_set_header_nritems(src, src_nritems - push_items);
1990 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1991 	btrfs_mark_buffer_dirty(src);
1992 	btrfs_mark_buffer_dirty(dst);
1993 
1994 	ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1995 	BUG_ON(ret);
1996 
1997 	return ret;
1998 }
1999 
2000 /*
2001  * try to push data from one node into the next node right in the
2002  * tree.
2003  *
2004  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2005  * error, and > 0 if there was no room in the right hand block.
2006  *
2007  * this will  only push up to 1/2 the contents of the left node over
2008  */
2009 static int balance_node_right(struct btrfs_trans_handle *trans,
2010 			      struct btrfs_root *root,
2011 			      struct extent_buffer *dst,
2012 			      struct extent_buffer *src)
2013 {
2014 	int push_items = 0;
2015 	int max_push;
2016 	int src_nritems;
2017 	int dst_nritems;
2018 	int ret = 0;
2019 
2020 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2021 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2022 
2023 	src_nritems = btrfs_header_nritems(src);
2024 	dst_nritems = btrfs_header_nritems(dst);
2025 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2026 	if (push_items <= 0)
2027 		return 1;
2028 
2029 	if (src_nritems < 4)
2030 		return 1;
2031 
2032 	max_push = src_nritems / 2 + 1;
2033 	/* don't try to empty the node */
2034 	if (max_push >= src_nritems)
2035 		return 1;
2036 
2037 	if (max_push < push_items)
2038 		push_items = max_push;
2039 
2040 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2041 				      btrfs_node_key_ptr_offset(0),
2042 				      (dst_nritems) *
2043 				      sizeof(struct btrfs_key_ptr));
2044 
2045 	copy_extent_buffer(dst, src,
2046 			   btrfs_node_key_ptr_offset(0),
2047 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2048 			   push_items * sizeof(struct btrfs_key_ptr));
2049 
2050 	btrfs_set_header_nritems(src, src_nritems - push_items);
2051 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2052 
2053 	btrfs_mark_buffer_dirty(src);
2054 	btrfs_mark_buffer_dirty(dst);
2055 
2056 	ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2057 	BUG_ON(ret);
2058 
2059 	return ret;
2060 }
2061 
2062 /*
2063  * helper function to insert a new root level in the tree.
2064  * A new node is allocated, and a single item is inserted to
2065  * point to the existing root
2066  *
2067  * returns zero on success or < 0 on failure.
2068  */
2069 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2070 			   struct btrfs_root *root,
2071 			   struct btrfs_path *path, int level)
2072 {
2073 	u64 lower_gen;
2074 	struct extent_buffer *lower;
2075 	struct extent_buffer *c;
2076 	struct extent_buffer *old;
2077 	struct btrfs_disk_key lower_key;
2078 	int ret;
2079 
2080 	BUG_ON(path->nodes[level]);
2081 	BUG_ON(path->nodes[level-1] != root->node);
2082 
2083 	lower = path->nodes[level-1];
2084 	if (level == 1)
2085 		btrfs_item_key(lower, &lower_key, 0);
2086 	else
2087 		btrfs_node_key(lower, &lower_key, 0);
2088 
2089 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2090 				   root->root_key.objectid, trans->transid,
2091 				   level, root->node->start, 0);
2092 	if (IS_ERR(c))
2093 		return PTR_ERR(c);
2094 
2095 	memset_extent_buffer(c, 0, 0, root->nodesize);
2096 	btrfs_set_header_nritems(c, 1);
2097 	btrfs_set_header_level(c, level);
2098 	btrfs_set_header_bytenr(c, c->start);
2099 	btrfs_set_header_generation(c, trans->transid);
2100 	btrfs_set_header_owner(c, root->root_key.objectid);
2101 
2102 	write_extent_buffer(c, root->fs_info->fsid,
2103 			    (unsigned long)btrfs_header_fsid(c),
2104 			    BTRFS_FSID_SIZE);
2105 
2106 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2107 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2108 			    BTRFS_UUID_SIZE);
2109 
2110 	btrfs_set_node_key(c, &lower_key, 0);
2111 	btrfs_set_node_blockptr(c, 0, lower->start);
2112 	lower_gen = btrfs_header_generation(lower);
2113 	WARN_ON(lower_gen != trans->transid);
2114 
2115 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2116 
2117 	btrfs_mark_buffer_dirty(c);
2118 
2119 	spin_lock(&root->node_lock);
2120 	old = root->node;
2121 	root->node = c;
2122 	spin_unlock(&root->node_lock);
2123 
2124 	ret = btrfs_update_extent_ref(trans, root, lower->start,
2125 				      lower->start, c->start,
2126 				      root->root_key.objectid,
2127 				      trans->transid, level - 1);
2128 	BUG_ON(ret);
2129 
2130 	/* the super has an extra ref to root->node */
2131 	free_extent_buffer(old);
2132 
2133 	add_root_to_dirty_list(root);
2134 	extent_buffer_get(c);
2135 	path->nodes[level] = c;
2136 	path->locks[level] = 1;
2137 	path->slots[level] = 0;
2138 	return 0;
2139 }
2140 
2141 /*
2142  * worker function to insert a single pointer in a node.
2143  * the node should have enough room for the pointer already
2144  *
2145  * slot and level indicate where you want the key to go, and
2146  * blocknr is the block the key points to.
2147  *
2148  * returns zero on success and < 0 on any error
2149  */
2150 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2151 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2152 		      *key, u64 bytenr, int slot, int level)
2153 {
2154 	struct extent_buffer *lower;
2155 	int nritems;
2156 
2157 	BUG_ON(!path->nodes[level]);
2158 	lower = path->nodes[level];
2159 	nritems = btrfs_header_nritems(lower);
2160 	if (slot > nritems)
2161 		BUG();
2162 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2163 		BUG();
2164 	if (slot != nritems) {
2165 		memmove_extent_buffer(lower,
2166 			      btrfs_node_key_ptr_offset(slot + 1),
2167 			      btrfs_node_key_ptr_offset(slot),
2168 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2169 	}
2170 	btrfs_set_node_key(lower, key, slot);
2171 	btrfs_set_node_blockptr(lower, slot, bytenr);
2172 	WARN_ON(trans->transid == 0);
2173 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2174 	btrfs_set_header_nritems(lower, nritems + 1);
2175 	btrfs_mark_buffer_dirty(lower);
2176 	return 0;
2177 }
2178 
2179 /*
2180  * split the node at the specified level in path in two.
2181  * The path is corrected to point to the appropriate node after the split
2182  *
2183  * Before splitting this tries to make some room in the node by pushing
2184  * left and right, if either one works, it returns right away.
2185  *
2186  * returns 0 on success and < 0 on failure
2187  */
2188 static noinline int split_node(struct btrfs_trans_handle *trans,
2189 			       struct btrfs_root *root,
2190 			       struct btrfs_path *path, int level)
2191 {
2192 	struct extent_buffer *c;
2193 	struct extent_buffer *split;
2194 	struct btrfs_disk_key disk_key;
2195 	int mid;
2196 	int ret;
2197 	int wret;
2198 	u32 c_nritems;
2199 
2200 	c = path->nodes[level];
2201 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2202 	if (c == root->node) {
2203 		/* trying to split the root, lets make a new one */
2204 		ret = insert_new_root(trans, root, path, level + 1);
2205 		if (ret)
2206 			return ret;
2207 	} else {
2208 		ret = push_nodes_for_insert(trans, root, path, level);
2209 		c = path->nodes[level];
2210 		if (!ret && btrfs_header_nritems(c) <
2211 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2212 			return 0;
2213 		if (ret < 0)
2214 			return ret;
2215 	}
2216 
2217 	c_nritems = btrfs_header_nritems(c);
2218 
2219 	split = btrfs_alloc_free_block(trans, root, root->nodesize,
2220 					path->nodes[level + 1]->start,
2221 					root->root_key.objectid,
2222 					trans->transid, level, c->start, 0);
2223 	if (IS_ERR(split))
2224 		return PTR_ERR(split);
2225 
2226 	btrfs_set_header_flags(split, btrfs_header_flags(c));
2227 	btrfs_set_header_level(split, btrfs_header_level(c));
2228 	btrfs_set_header_bytenr(split, split->start);
2229 	btrfs_set_header_generation(split, trans->transid);
2230 	btrfs_set_header_owner(split, root->root_key.objectid);
2231 	btrfs_set_header_flags(split, 0);
2232 	write_extent_buffer(split, root->fs_info->fsid,
2233 			    (unsigned long)btrfs_header_fsid(split),
2234 			    BTRFS_FSID_SIZE);
2235 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2236 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2237 			    BTRFS_UUID_SIZE);
2238 
2239 	mid = (c_nritems + 1) / 2;
2240 
2241 	copy_extent_buffer(split, c,
2242 			   btrfs_node_key_ptr_offset(0),
2243 			   btrfs_node_key_ptr_offset(mid),
2244 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2245 	btrfs_set_header_nritems(split, c_nritems - mid);
2246 	btrfs_set_header_nritems(c, mid);
2247 	ret = 0;
2248 
2249 	btrfs_mark_buffer_dirty(c);
2250 	btrfs_mark_buffer_dirty(split);
2251 
2252 	btrfs_node_key(split, &disk_key, 0);
2253 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2254 			  path->slots[level + 1] + 1,
2255 			  level + 1);
2256 	if (wret)
2257 		ret = wret;
2258 
2259 	ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2260 	BUG_ON(ret);
2261 
2262 	if (path->slots[level] >= mid) {
2263 		path->slots[level] -= mid;
2264 		btrfs_tree_unlock(c);
2265 		free_extent_buffer(c);
2266 		path->nodes[level] = split;
2267 		path->slots[level + 1] += 1;
2268 	} else {
2269 		btrfs_tree_unlock(split);
2270 		free_extent_buffer(split);
2271 	}
2272 	return ret;
2273 }
2274 
2275 /*
2276  * how many bytes are required to store the items in a leaf.  start
2277  * and nr indicate which items in the leaf to check.  This totals up the
2278  * space used both by the item structs and the item data
2279  */
2280 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2281 {
2282 	int data_len;
2283 	int nritems = btrfs_header_nritems(l);
2284 	int end = min(nritems, start + nr) - 1;
2285 
2286 	if (!nr)
2287 		return 0;
2288 	data_len = btrfs_item_end_nr(l, start);
2289 	data_len = data_len - btrfs_item_offset_nr(l, end);
2290 	data_len += sizeof(struct btrfs_item) * nr;
2291 	WARN_ON(data_len < 0);
2292 	return data_len;
2293 }
2294 
2295 /*
2296  * The space between the end of the leaf items and
2297  * the start of the leaf data.  IOW, how much room
2298  * the leaf has left for both items and data
2299  */
2300 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2301 				   struct extent_buffer *leaf)
2302 {
2303 	int nritems = btrfs_header_nritems(leaf);
2304 	int ret;
2305 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2306 	if (ret < 0) {
2307 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2308 		       "used %d nritems %d\n",
2309 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2310 		       leaf_space_used(leaf, 0, nritems), nritems);
2311 	}
2312 	return ret;
2313 }
2314 
2315 /*
2316  * push some data in the path leaf to the right, trying to free up at
2317  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2318  *
2319  * returns 1 if the push failed because the other node didn't have enough
2320  * room, 0 if everything worked out and < 0 if there were major errors.
2321  */
2322 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2323 			   *root, struct btrfs_path *path, int data_size,
2324 			   int empty)
2325 {
2326 	struct extent_buffer *left = path->nodes[0];
2327 	struct extent_buffer *right;
2328 	struct extent_buffer *upper;
2329 	struct btrfs_disk_key disk_key;
2330 	int slot;
2331 	u32 i;
2332 	int free_space;
2333 	int push_space = 0;
2334 	int push_items = 0;
2335 	struct btrfs_item *item;
2336 	u32 left_nritems;
2337 	u32 nr;
2338 	u32 right_nritems;
2339 	u32 data_end;
2340 	u32 this_item_size;
2341 	int ret;
2342 
2343 	slot = path->slots[1];
2344 	if (!path->nodes[1])
2345 		return 1;
2346 
2347 	upper = path->nodes[1];
2348 	if (slot >= btrfs_header_nritems(upper) - 1)
2349 		return 1;
2350 
2351 	WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2352 
2353 	right = read_node_slot(root, upper, slot + 1);
2354 	btrfs_tree_lock(right);
2355 	btrfs_set_lock_blocking(right);
2356 
2357 	free_space = btrfs_leaf_free_space(root, right);
2358 	if (free_space < data_size)
2359 		goto out_unlock;
2360 
2361 	/* cow and double check */
2362 	ret = btrfs_cow_block(trans, root, right, upper,
2363 			      slot + 1, &right, 0);
2364 	if (ret)
2365 		goto out_unlock;
2366 
2367 	free_space = btrfs_leaf_free_space(root, right);
2368 	if (free_space < data_size)
2369 		goto out_unlock;
2370 
2371 	left_nritems = btrfs_header_nritems(left);
2372 	if (left_nritems == 0)
2373 		goto out_unlock;
2374 
2375 	if (empty)
2376 		nr = 0;
2377 	else
2378 		nr = 1;
2379 
2380 	if (path->slots[0] >= left_nritems)
2381 		push_space += data_size;
2382 
2383 	i = left_nritems - 1;
2384 	while (i >= nr) {
2385 		item = btrfs_item_nr(left, i);
2386 
2387 		if (!empty && push_items > 0) {
2388 			if (path->slots[0] > i)
2389 				break;
2390 			if (path->slots[0] == i) {
2391 				int space = btrfs_leaf_free_space(root, left);
2392 				if (space + push_space * 2 > free_space)
2393 					break;
2394 			}
2395 		}
2396 
2397 		if (path->slots[0] == i)
2398 			push_space += data_size;
2399 
2400 		if (!left->map_token) {
2401 			map_extent_buffer(left, (unsigned long)item,
2402 					sizeof(struct btrfs_item),
2403 					&left->map_token, &left->kaddr,
2404 					&left->map_start, &left->map_len,
2405 					KM_USER1);
2406 		}
2407 
2408 		this_item_size = btrfs_item_size(left, item);
2409 		if (this_item_size + sizeof(*item) + push_space > free_space)
2410 			break;
2411 
2412 		push_items++;
2413 		push_space += this_item_size + sizeof(*item);
2414 		if (i == 0)
2415 			break;
2416 		i--;
2417 	}
2418 	if (left->map_token) {
2419 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2420 		left->map_token = NULL;
2421 	}
2422 
2423 	if (push_items == 0)
2424 		goto out_unlock;
2425 
2426 	if (!empty && push_items == left_nritems)
2427 		WARN_ON(1);
2428 
2429 	/* push left to right */
2430 	right_nritems = btrfs_header_nritems(right);
2431 
2432 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2433 	push_space -= leaf_data_end(root, left);
2434 
2435 	/* make room in the right data area */
2436 	data_end = leaf_data_end(root, right);
2437 	memmove_extent_buffer(right,
2438 			      btrfs_leaf_data(right) + data_end - push_space,
2439 			      btrfs_leaf_data(right) + data_end,
2440 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2441 
2442 	/* copy from the left data area */
2443 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2444 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2445 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2446 		     push_space);
2447 
2448 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2449 			      btrfs_item_nr_offset(0),
2450 			      right_nritems * sizeof(struct btrfs_item));
2451 
2452 	/* copy the items from left to right */
2453 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2454 		   btrfs_item_nr_offset(left_nritems - push_items),
2455 		   push_items * sizeof(struct btrfs_item));
2456 
2457 	/* update the item pointers */
2458 	right_nritems += push_items;
2459 	btrfs_set_header_nritems(right, right_nritems);
2460 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2461 	for (i = 0; i < right_nritems; i++) {
2462 		item = btrfs_item_nr(right, i);
2463 		if (!right->map_token) {
2464 			map_extent_buffer(right, (unsigned long)item,
2465 					sizeof(struct btrfs_item),
2466 					&right->map_token, &right->kaddr,
2467 					&right->map_start, &right->map_len,
2468 					KM_USER1);
2469 		}
2470 		push_space -= btrfs_item_size(right, item);
2471 		btrfs_set_item_offset(right, item, push_space);
2472 	}
2473 
2474 	if (right->map_token) {
2475 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2476 		right->map_token = NULL;
2477 	}
2478 	left_nritems -= push_items;
2479 	btrfs_set_header_nritems(left, left_nritems);
2480 
2481 	if (left_nritems)
2482 		btrfs_mark_buffer_dirty(left);
2483 	btrfs_mark_buffer_dirty(right);
2484 
2485 	ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2486 	BUG_ON(ret);
2487 
2488 	btrfs_item_key(right, &disk_key, 0);
2489 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2490 	btrfs_mark_buffer_dirty(upper);
2491 
2492 	/* then fixup the leaf pointer in the path */
2493 	if (path->slots[0] >= left_nritems) {
2494 		path->slots[0] -= left_nritems;
2495 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2496 			clean_tree_block(trans, root, path->nodes[0]);
2497 		btrfs_tree_unlock(path->nodes[0]);
2498 		free_extent_buffer(path->nodes[0]);
2499 		path->nodes[0] = right;
2500 		path->slots[1] += 1;
2501 	} else {
2502 		btrfs_tree_unlock(right);
2503 		free_extent_buffer(right);
2504 	}
2505 	return 0;
2506 
2507 out_unlock:
2508 	btrfs_tree_unlock(right);
2509 	free_extent_buffer(right);
2510 	return 1;
2511 }
2512 
2513 /*
2514  * push some data in the path leaf to the left, trying to free up at
2515  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2516  */
2517 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2518 			  *root, struct btrfs_path *path, int data_size,
2519 			  int empty)
2520 {
2521 	struct btrfs_disk_key disk_key;
2522 	struct extent_buffer *right = path->nodes[0];
2523 	struct extent_buffer *left;
2524 	int slot;
2525 	int i;
2526 	int free_space;
2527 	int push_space = 0;
2528 	int push_items = 0;
2529 	struct btrfs_item *item;
2530 	u32 old_left_nritems;
2531 	u32 right_nritems;
2532 	u32 nr;
2533 	int ret = 0;
2534 	int wret;
2535 	u32 this_item_size;
2536 	u32 old_left_item_size;
2537 
2538 	slot = path->slots[1];
2539 	if (slot == 0)
2540 		return 1;
2541 	if (!path->nodes[1])
2542 		return 1;
2543 
2544 	right_nritems = btrfs_header_nritems(right);
2545 	if (right_nritems == 0)
2546 		return 1;
2547 
2548 	WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2549 
2550 	left = read_node_slot(root, path->nodes[1], slot - 1);
2551 	btrfs_tree_lock(left);
2552 	btrfs_set_lock_blocking(left);
2553 
2554 	free_space = btrfs_leaf_free_space(root, left);
2555 	if (free_space < data_size) {
2556 		ret = 1;
2557 		goto out;
2558 	}
2559 
2560 	/* cow and double check */
2561 	ret = btrfs_cow_block(trans, root, left,
2562 			      path->nodes[1], slot - 1, &left, 0);
2563 	if (ret) {
2564 		/* we hit -ENOSPC, but it isn't fatal here */
2565 		ret = 1;
2566 		goto out;
2567 	}
2568 
2569 	free_space = btrfs_leaf_free_space(root, left);
2570 	if (free_space < data_size) {
2571 		ret = 1;
2572 		goto out;
2573 	}
2574 
2575 	if (empty)
2576 		nr = right_nritems;
2577 	else
2578 		nr = right_nritems - 1;
2579 
2580 	for (i = 0; i < nr; i++) {
2581 		item = btrfs_item_nr(right, i);
2582 		if (!right->map_token) {
2583 			map_extent_buffer(right, (unsigned long)item,
2584 					sizeof(struct btrfs_item),
2585 					&right->map_token, &right->kaddr,
2586 					&right->map_start, &right->map_len,
2587 					KM_USER1);
2588 		}
2589 
2590 		if (!empty && push_items > 0) {
2591 			if (path->slots[0] < i)
2592 				break;
2593 			if (path->slots[0] == i) {
2594 				int space = btrfs_leaf_free_space(root, right);
2595 				if (space + push_space * 2 > free_space)
2596 					break;
2597 			}
2598 		}
2599 
2600 		if (path->slots[0] == i)
2601 			push_space += data_size;
2602 
2603 		this_item_size = btrfs_item_size(right, item);
2604 		if (this_item_size + sizeof(*item) + push_space > free_space)
2605 			break;
2606 
2607 		push_items++;
2608 		push_space += this_item_size + sizeof(*item);
2609 	}
2610 
2611 	if (right->map_token) {
2612 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2613 		right->map_token = NULL;
2614 	}
2615 
2616 	if (push_items == 0) {
2617 		ret = 1;
2618 		goto out;
2619 	}
2620 	if (!empty && push_items == btrfs_header_nritems(right))
2621 		WARN_ON(1);
2622 
2623 	/* push data from right to left */
2624 	copy_extent_buffer(left, right,
2625 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2626 			   btrfs_item_nr_offset(0),
2627 			   push_items * sizeof(struct btrfs_item));
2628 
2629 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2630 		     btrfs_item_offset_nr(right, push_items - 1);
2631 
2632 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2633 		     leaf_data_end(root, left) - push_space,
2634 		     btrfs_leaf_data(right) +
2635 		     btrfs_item_offset_nr(right, push_items - 1),
2636 		     push_space);
2637 	old_left_nritems = btrfs_header_nritems(left);
2638 	BUG_ON(old_left_nritems <= 0);
2639 
2640 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2641 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2642 		u32 ioff;
2643 
2644 		item = btrfs_item_nr(left, i);
2645 		if (!left->map_token) {
2646 			map_extent_buffer(left, (unsigned long)item,
2647 					sizeof(struct btrfs_item),
2648 					&left->map_token, &left->kaddr,
2649 					&left->map_start, &left->map_len,
2650 					KM_USER1);
2651 		}
2652 
2653 		ioff = btrfs_item_offset(left, item);
2654 		btrfs_set_item_offset(left, item,
2655 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2656 	}
2657 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2658 	if (left->map_token) {
2659 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2660 		left->map_token = NULL;
2661 	}
2662 
2663 	/* fixup right node */
2664 	if (push_items > right_nritems) {
2665 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2666 		       right_nritems);
2667 		WARN_ON(1);
2668 	}
2669 
2670 	if (push_items < right_nritems) {
2671 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2672 						  leaf_data_end(root, right);
2673 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2674 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2675 				      btrfs_leaf_data(right) +
2676 				      leaf_data_end(root, right), push_space);
2677 
2678 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2679 			      btrfs_item_nr_offset(push_items),
2680 			     (btrfs_header_nritems(right) - push_items) *
2681 			     sizeof(struct btrfs_item));
2682 	}
2683 	right_nritems -= push_items;
2684 	btrfs_set_header_nritems(right, right_nritems);
2685 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2686 	for (i = 0; i < right_nritems; i++) {
2687 		item = btrfs_item_nr(right, i);
2688 
2689 		if (!right->map_token) {
2690 			map_extent_buffer(right, (unsigned long)item,
2691 					sizeof(struct btrfs_item),
2692 					&right->map_token, &right->kaddr,
2693 					&right->map_start, &right->map_len,
2694 					KM_USER1);
2695 		}
2696 
2697 		push_space = push_space - btrfs_item_size(right, item);
2698 		btrfs_set_item_offset(right, item, push_space);
2699 	}
2700 	if (right->map_token) {
2701 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2702 		right->map_token = NULL;
2703 	}
2704 
2705 	btrfs_mark_buffer_dirty(left);
2706 	if (right_nritems)
2707 		btrfs_mark_buffer_dirty(right);
2708 
2709 	ret = btrfs_update_ref(trans, root, right, left,
2710 			       old_left_nritems, push_items);
2711 	BUG_ON(ret);
2712 
2713 	btrfs_item_key(right, &disk_key, 0);
2714 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2715 	if (wret)
2716 		ret = wret;
2717 
2718 	/* then fixup the leaf pointer in the path */
2719 	if (path->slots[0] < push_items) {
2720 		path->slots[0] += old_left_nritems;
2721 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2722 			clean_tree_block(trans, root, path->nodes[0]);
2723 		btrfs_tree_unlock(path->nodes[0]);
2724 		free_extent_buffer(path->nodes[0]);
2725 		path->nodes[0] = left;
2726 		path->slots[1] -= 1;
2727 	} else {
2728 		btrfs_tree_unlock(left);
2729 		free_extent_buffer(left);
2730 		path->slots[0] -= push_items;
2731 	}
2732 	BUG_ON(path->slots[0] < 0);
2733 	return ret;
2734 out:
2735 	btrfs_tree_unlock(left);
2736 	free_extent_buffer(left);
2737 	return ret;
2738 }
2739 
2740 /*
2741  * split the path's leaf in two, making sure there is at least data_size
2742  * available for the resulting leaf level of the path.
2743  *
2744  * returns 0 if all went well and < 0 on failure.
2745  */
2746 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2747 			       struct btrfs_root *root,
2748 			       struct btrfs_key *ins_key,
2749 			       struct btrfs_path *path, int data_size,
2750 			       int extend)
2751 {
2752 	struct extent_buffer *l;
2753 	u32 nritems;
2754 	int mid;
2755 	int slot;
2756 	struct extent_buffer *right;
2757 	int data_copy_size;
2758 	int rt_data_off;
2759 	int i;
2760 	int ret = 0;
2761 	int wret;
2762 	int double_split;
2763 	int num_doubles = 0;
2764 	struct btrfs_disk_key disk_key;
2765 
2766 	/* first try to make some room by pushing left and right */
2767 	if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2768 		wret = push_leaf_right(trans, root, path, data_size, 0);
2769 		if (wret < 0)
2770 			return wret;
2771 		if (wret) {
2772 			wret = push_leaf_left(trans, root, path, data_size, 0);
2773 			if (wret < 0)
2774 				return wret;
2775 		}
2776 		l = path->nodes[0];
2777 
2778 		/* did the pushes work? */
2779 		if (btrfs_leaf_free_space(root, l) >= data_size)
2780 			return 0;
2781 	}
2782 
2783 	if (!path->nodes[1]) {
2784 		ret = insert_new_root(trans, root, path, 1);
2785 		if (ret)
2786 			return ret;
2787 	}
2788 again:
2789 	double_split = 0;
2790 	l = path->nodes[0];
2791 	slot = path->slots[0];
2792 	nritems = btrfs_header_nritems(l);
2793 	mid = (nritems + 1) / 2;
2794 
2795 	right = btrfs_alloc_free_block(trans, root, root->leafsize,
2796 					path->nodes[1]->start,
2797 					root->root_key.objectid,
2798 					trans->transid, 0, l->start, 0);
2799 	if (IS_ERR(right)) {
2800 		BUG_ON(1);
2801 		return PTR_ERR(right);
2802 	}
2803 
2804 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2805 	btrfs_set_header_bytenr(right, right->start);
2806 	btrfs_set_header_generation(right, trans->transid);
2807 	btrfs_set_header_owner(right, root->root_key.objectid);
2808 	btrfs_set_header_level(right, 0);
2809 	write_extent_buffer(right, root->fs_info->fsid,
2810 			    (unsigned long)btrfs_header_fsid(right),
2811 			    BTRFS_FSID_SIZE);
2812 
2813 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2814 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2815 			    BTRFS_UUID_SIZE);
2816 	if (mid <= slot) {
2817 		if (nritems == 1 ||
2818 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2819 			BTRFS_LEAF_DATA_SIZE(root)) {
2820 			if (slot >= nritems) {
2821 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2822 				btrfs_set_header_nritems(right, 0);
2823 				wret = insert_ptr(trans, root, path,
2824 						  &disk_key, right->start,
2825 						  path->slots[1] + 1, 1);
2826 				if (wret)
2827 					ret = wret;
2828 
2829 				btrfs_tree_unlock(path->nodes[0]);
2830 				free_extent_buffer(path->nodes[0]);
2831 				path->nodes[0] = right;
2832 				path->slots[0] = 0;
2833 				path->slots[1] += 1;
2834 				btrfs_mark_buffer_dirty(right);
2835 				return ret;
2836 			}
2837 			mid = slot;
2838 			if (mid != nritems &&
2839 			    leaf_space_used(l, mid, nritems - mid) +
2840 			    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2841 				double_split = 1;
2842 			}
2843 		}
2844 	} else {
2845 		if (leaf_space_used(l, 0, mid) + data_size >
2846 			BTRFS_LEAF_DATA_SIZE(root)) {
2847 			if (!extend && data_size && slot == 0) {
2848 				btrfs_cpu_key_to_disk(&disk_key, ins_key);
2849 				btrfs_set_header_nritems(right, 0);
2850 				wret = insert_ptr(trans, root, path,
2851 						  &disk_key,
2852 						  right->start,
2853 						  path->slots[1], 1);
2854 				if (wret)
2855 					ret = wret;
2856 				btrfs_tree_unlock(path->nodes[0]);
2857 				free_extent_buffer(path->nodes[0]);
2858 				path->nodes[0] = right;
2859 				path->slots[0] = 0;
2860 				if (path->slots[1] == 0) {
2861 					wret = fixup_low_keys(trans, root,
2862 						      path, &disk_key, 1);
2863 					if (wret)
2864 						ret = wret;
2865 				}
2866 				btrfs_mark_buffer_dirty(right);
2867 				return ret;
2868 			} else if ((extend || !data_size) && slot == 0) {
2869 				mid = 1;
2870 			} else {
2871 				mid = slot;
2872 				if (mid != nritems &&
2873 				    leaf_space_used(l, mid, nritems - mid) +
2874 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2875 					double_split = 1;
2876 				}
2877 			}
2878 		}
2879 	}
2880 	nritems = nritems - mid;
2881 	btrfs_set_header_nritems(right, nritems);
2882 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2883 
2884 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2885 			   btrfs_item_nr_offset(mid),
2886 			   nritems * sizeof(struct btrfs_item));
2887 
2888 	copy_extent_buffer(right, l,
2889 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2890 		     data_copy_size, btrfs_leaf_data(l) +
2891 		     leaf_data_end(root, l), data_copy_size);
2892 
2893 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2894 		      btrfs_item_end_nr(l, mid);
2895 
2896 	for (i = 0; i < nritems; i++) {
2897 		struct btrfs_item *item = btrfs_item_nr(right, i);
2898 		u32 ioff;
2899 
2900 		if (!right->map_token) {
2901 			map_extent_buffer(right, (unsigned long)item,
2902 					sizeof(struct btrfs_item),
2903 					&right->map_token, &right->kaddr,
2904 					&right->map_start, &right->map_len,
2905 					KM_USER1);
2906 		}
2907 
2908 		ioff = btrfs_item_offset(right, item);
2909 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2910 	}
2911 
2912 	if (right->map_token) {
2913 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2914 		right->map_token = NULL;
2915 	}
2916 
2917 	btrfs_set_header_nritems(l, mid);
2918 	ret = 0;
2919 	btrfs_item_key(right, &disk_key, 0);
2920 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2921 			  path->slots[1] + 1, 1);
2922 	if (wret)
2923 		ret = wret;
2924 
2925 	btrfs_mark_buffer_dirty(right);
2926 	btrfs_mark_buffer_dirty(l);
2927 	BUG_ON(path->slots[0] != slot);
2928 
2929 	ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2930 	BUG_ON(ret);
2931 
2932 	if (mid <= slot) {
2933 		btrfs_tree_unlock(path->nodes[0]);
2934 		free_extent_buffer(path->nodes[0]);
2935 		path->nodes[0] = right;
2936 		path->slots[0] -= mid;
2937 		path->slots[1] += 1;
2938 	} else {
2939 		btrfs_tree_unlock(right);
2940 		free_extent_buffer(right);
2941 	}
2942 
2943 	BUG_ON(path->slots[0] < 0);
2944 
2945 	if (double_split) {
2946 		BUG_ON(num_doubles != 0);
2947 		num_doubles++;
2948 		goto again;
2949 	}
2950 	return ret;
2951 }
2952 
2953 /*
2954  * This function splits a single item into two items,
2955  * giving 'new_key' to the new item and splitting the
2956  * old one at split_offset (from the start of the item).
2957  *
2958  * The path may be released by this operation.  After
2959  * the split, the path is pointing to the old item.  The
2960  * new item is going to be in the same node as the old one.
2961  *
2962  * Note, the item being split must be smaller enough to live alone on
2963  * a tree block with room for one extra struct btrfs_item
2964  *
2965  * This allows us to split the item in place, keeping a lock on the
2966  * leaf the entire time.
2967  */
2968 int btrfs_split_item(struct btrfs_trans_handle *trans,
2969 		     struct btrfs_root *root,
2970 		     struct btrfs_path *path,
2971 		     struct btrfs_key *new_key,
2972 		     unsigned long split_offset)
2973 {
2974 	u32 item_size;
2975 	struct extent_buffer *leaf;
2976 	struct btrfs_key orig_key;
2977 	struct btrfs_item *item;
2978 	struct btrfs_item *new_item;
2979 	int ret = 0;
2980 	int slot;
2981 	u32 nritems;
2982 	u32 orig_offset;
2983 	struct btrfs_disk_key disk_key;
2984 	char *buf;
2985 
2986 	leaf = path->nodes[0];
2987 	btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2988 	if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2989 		goto split;
2990 
2991 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2992 	btrfs_release_path(root, path);
2993 
2994 	path->search_for_split = 1;
2995 	path->keep_locks = 1;
2996 
2997 	ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2998 	path->search_for_split = 0;
2999 
3000 	/* if our item isn't there or got smaller, return now */
3001 	if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3002 							path->slots[0])) {
3003 		path->keep_locks = 0;
3004 		return -EAGAIN;
3005 	}
3006 
3007 	ret = split_leaf(trans, root, &orig_key, path,
3008 			 sizeof(struct btrfs_item), 1);
3009 	path->keep_locks = 0;
3010 	BUG_ON(ret);
3011 
3012 	/*
3013 	 * make sure any changes to the path from split_leaf leave it
3014 	 * in a blocking state
3015 	 */
3016 	btrfs_set_path_blocking(path);
3017 
3018 	leaf = path->nodes[0];
3019 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3020 
3021 split:
3022 	item = btrfs_item_nr(leaf, path->slots[0]);
3023 	orig_offset = btrfs_item_offset(leaf, item);
3024 	item_size = btrfs_item_size(leaf, item);
3025 
3026 
3027 	buf = kmalloc(item_size, GFP_NOFS);
3028 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3029 			    path->slots[0]), item_size);
3030 	slot = path->slots[0] + 1;
3031 	leaf = path->nodes[0];
3032 
3033 	nritems = btrfs_header_nritems(leaf);
3034 
3035 	if (slot != nritems) {
3036 		/* shift the items */
3037 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3038 			      btrfs_item_nr_offset(slot),
3039 			      (nritems - slot) * sizeof(struct btrfs_item));
3040 
3041 	}
3042 
3043 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3044 	btrfs_set_item_key(leaf, &disk_key, slot);
3045 
3046 	new_item = btrfs_item_nr(leaf, slot);
3047 
3048 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3049 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3050 
3051 	btrfs_set_item_offset(leaf, item,
3052 			      orig_offset + item_size - split_offset);
3053 	btrfs_set_item_size(leaf, item, split_offset);
3054 
3055 	btrfs_set_header_nritems(leaf, nritems + 1);
3056 
3057 	/* write the data for the start of the original item */
3058 	write_extent_buffer(leaf, buf,
3059 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3060 			    split_offset);
3061 
3062 	/* write the data for the new item */
3063 	write_extent_buffer(leaf, buf + split_offset,
3064 			    btrfs_item_ptr_offset(leaf, slot),
3065 			    item_size - split_offset);
3066 	btrfs_mark_buffer_dirty(leaf);
3067 
3068 	ret = 0;
3069 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3070 		btrfs_print_leaf(root, leaf);
3071 		BUG();
3072 	}
3073 	kfree(buf);
3074 	return ret;
3075 }
3076 
3077 /*
3078  * make the item pointed to by the path smaller.  new_size indicates
3079  * how small to make it, and from_end tells us if we just chop bytes
3080  * off the end of the item or if we shift the item to chop bytes off
3081  * the front.
3082  */
3083 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3084 			struct btrfs_root *root,
3085 			struct btrfs_path *path,
3086 			u32 new_size, int from_end)
3087 {
3088 	int ret = 0;
3089 	int slot;
3090 	int slot_orig;
3091 	struct extent_buffer *leaf;
3092 	struct btrfs_item *item;
3093 	u32 nritems;
3094 	unsigned int data_end;
3095 	unsigned int old_data_start;
3096 	unsigned int old_size;
3097 	unsigned int size_diff;
3098 	int i;
3099 
3100 	slot_orig = path->slots[0];
3101 	leaf = path->nodes[0];
3102 	slot = path->slots[0];
3103 
3104 	old_size = btrfs_item_size_nr(leaf, slot);
3105 	if (old_size == new_size)
3106 		return 0;
3107 
3108 	nritems = btrfs_header_nritems(leaf);
3109 	data_end = leaf_data_end(root, leaf);
3110 
3111 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3112 
3113 	size_diff = old_size - new_size;
3114 
3115 	BUG_ON(slot < 0);
3116 	BUG_ON(slot >= nritems);
3117 
3118 	/*
3119 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3120 	 */
3121 	/* first correct the data pointers */
3122 	for (i = slot; i < nritems; i++) {
3123 		u32 ioff;
3124 		item = btrfs_item_nr(leaf, i);
3125 
3126 		if (!leaf->map_token) {
3127 			map_extent_buffer(leaf, (unsigned long)item,
3128 					sizeof(struct btrfs_item),
3129 					&leaf->map_token, &leaf->kaddr,
3130 					&leaf->map_start, &leaf->map_len,
3131 					KM_USER1);
3132 		}
3133 
3134 		ioff = btrfs_item_offset(leaf, item);
3135 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3136 	}
3137 
3138 	if (leaf->map_token) {
3139 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3140 		leaf->map_token = NULL;
3141 	}
3142 
3143 	/* shift the data */
3144 	if (from_end) {
3145 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3146 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3147 			      data_end, old_data_start + new_size - data_end);
3148 	} else {
3149 		struct btrfs_disk_key disk_key;
3150 		u64 offset;
3151 
3152 		btrfs_item_key(leaf, &disk_key, slot);
3153 
3154 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3155 			unsigned long ptr;
3156 			struct btrfs_file_extent_item *fi;
3157 
3158 			fi = btrfs_item_ptr(leaf, slot,
3159 					    struct btrfs_file_extent_item);
3160 			fi = (struct btrfs_file_extent_item *)(
3161 			     (unsigned long)fi - size_diff);
3162 
3163 			if (btrfs_file_extent_type(leaf, fi) ==
3164 			    BTRFS_FILE_EXTENT_INLINE) {
3165 				ptr = btrfs_item_ptr_offset(leaf, slot);
3166 				memmove_extent_buffer(leaf, ptr,
3167 				      (unsigned long)fi,
3168 				      offsetof(struct btrfs_file_extent_item,
3169 						 disk_bytenr));
3170 			}
3171 		}
3172 
3173 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3174 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3175 			      data_end, old_data_start - data_end);
3176 
3177 		offset = btrfs_disk_key_offset(&disk_key);
3178 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3179 		btrfs_set_item_key(leaf, &disk_key, slot);
3180 		if (slot == 0)
3181 			fixup_low_keys(trans, root, path, &disk_key, 1);
3182 	}
3183 
3184 	item = btrfs_item_nr(leaf, slot);
3185 	btrfs_set_item_size(leaf, item, new_size);
3186 	btrfs_mark_buffer_dirty(leaf);
3187 
3188 	ret = 0;
3189 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3190 		btrfs_print_leaf(root, leaf);
3191 		BUG();
3192 	}
3193 	return ret;
3194 }
3195 
3196 /*
3197  * make the item pointed to by the path bigger, data_size is the new size.
3198  */
3199 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3200 		      struct btrfs_root *root, struct btrfs_path *path,
3201 		      u32 data_size)
3202 {
3203 	int ret = 0;
3204 	int slot;
3205 	int slot_orig;
3206 	struct extent_buffer *leaf;
3207 	struct btrfs_item *item;
3208 	u32 nritems;
3209 	unsigned int data_end;
3210 	unsigned int old_data;
3211 	unsigned int old_size;
3212 	int i;
3213 
3214 	slot_orig = path->slots[0];
3215 	leaf = path->nodes[0];
3216 
3217 	nritems = btrfs_header_nritems(leaf);
3218 	data_end = leaf_data_end(root, leaf);
3219 
3220 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3221 		btrfs_print_leaf(root, leaf);
3222 		BUG();
3223 	}
3224 	slot = path->slots[0];
3225 	old_data = btrfs_item_end_nr(leaf, slot);
3226 
3227 	BUG_ON(slot < 0);
3228 	if (slot >= nritems) {
3229 		btrfs_print_leaf(root, leaf);
3230 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3231 		       slot, nritems);
3232 		BUG_ON(1);
3233 	}
3234 
3235 	/*
3236 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3237 	 */
3238 	/* first correct the data pointers */
3239 	for (i = slot; i < nritems; i++) {
3240 		u32 ioff;
3241 		item = btrfs_item_nr(leaf, i);
3242 
3243 		if (!leaf->map_token) {
3244 			map_extent_buffer(leaf, (unsigned long)item,
3245 					sizeof(struct btrfs_item),
3246 					&leaf->map_token, &leaf->kaddr,
3247 					&leaf->map_start, &leaf->map_len,
3248 					KM_USER1);
3249 		}
3250 		ioff = btrfs_item_offset(leaf, item);
3251 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3252 	}
3253 
3254 	if (leaf->map_token) {
3255 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3256 		leaf->map_token = NULL;
3257 	}
3258 
3259 	/* shift the data */
3260 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3261 		      data_end - data_size, btrfs_leaf_data(leaf) +
3262 		      data_end, old_data - data_end);
3263 
3264 	data_end = old_data;
3265 	old_size = btrfs_item_size_nr(leaf, slot);
3266 	item = btrfs_item_nr(leaf, slot);
3267 	btrfs_set_item_size(leaf, item, old_size + data_size);
3268 	btrfs_mark_buffer_dirty(leaf);
3269 
3270 	ret = 0;
3271 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3272 		btrfs_print_leaf(root, leaf);
3273 		BUG();
3274 	}
3275 	return ret;
3276 }
3277 
3278 /*
3279  * Given a key and some data, insert items into the tree.
3280  * This does all the path init required, making room in the tree if needed.
3281  * Returns the number of keys that were inserted.
3282  */
3283 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3284 			    struct btrfs_root *root,
3285 			    struct btrfs_path *path,
3286 			    struct btrfs_key *cpu_key, u32 *data_size,
3287 			    int nr)
3288 {
3289 	struct extent_buffer *leaf;
3290 	struct btrfs_item *item;
3291 	int ret = 0;
3292 	int slot;
3293 	int i;
3294 	u32 nritems;
3295 	u32 total_data = 0;
3296 	u32 total_size = 0;
3297 	unsigned int data_end;
3298 	struct btrfs_disk_key disk_key;
3299 	struct btrfs_key found_key;
3300 
3301 	for (i = 0; i < nr; i++) {
3302 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3303 		    BTRFS_LEAF_DATA_SIZE(root)) {
3304 			break;
3305 			nr = i;
3306 		}
3307 		total_data += data_size[i];
3308 		total_size += data_size[i] + sizeof(struct btrfs_item);
3309 	}
3310 	BUG_ON(nr == 0);
3311 
3312 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3313 	if (ret == 0)
3314 		return -EEXIST;
3315 	if (ret < 0)
3316 		goto out;
3317 
3318 	leaf = path->nodes[0];
3319 
3320 	nritems = btrfs_header_nritems(leaf);
3321 	data_end = leaf_data_end(root, leaf);
3322 
3323 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3324 		for (i = nr; i >= 0; i--) {
3325 			total_data -= data_size[i];
3326 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3327 			if (total_size < btrfs_leaf_free_space(root, leaf))
3328 				break;
3329 		}
3330 		nr = i;
3331 	}
3332 
3333 	slot = path->slots[0];
3334 	BUG_ON(slot < 0);
3335 
3336 	if (slot != nritems) {
3337 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3338 
3339 		item = btrfs_item_nr(leaf, slot);
3340 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3341 
3342 		/* figure out how many keys we can insert in here */
3343 		total_data = data_size[0];
3344 		for (i = 1; i < nr; i++) {
3345 			if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3346 				break;
3347 			total_data += data_size[i];
3348 		}
3349 		nr = i;
3350 
3351 		if (old_data < data_end) {
3352 			btrfs_print_leaf(root, leaf);
3353 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3354 			       slot, old_data, data_end);
3355 			BUG_ON(1);
3356 		}
3357 		/*
3358 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3359 		 */
3360 		/* first correct the data pointers */
3361 		WARN_ON(leaf->map_token);
3362 		for (i = slot; i < nritems; i++) {
3363 			u32 ioff;
3364 
3365 			item = btrfs_item_nr(leaf, i);
3366 			if (!leaf->map_token) {
3367 				map_extent_buffer(leaf, (unsigned long)item,
3368 					sizeof(struct btrfs_item),
3369 					&leaf->map_token, &leaf->kaddr,
3370 					&leaf->map_start, &leaf->map_len,
3371 					KM_USER1);
3372 			}
3373 
3374 			ioff = btrfs_item_offset(leaf, item);
3375 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3376 		}
3377 		if (leaf->map_token) {
3378 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3379 			leaf->map_token = NULL;
3380 		}
3381 
3382 		/* shift the items */
3383 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3384 			      btrfs_item_nr_offset(slot),
3385 			      (nritems - slot) * sizeof(struct btrfs_item));
3386 
3387 		/* shift the data */
3388 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3389 			      data_end - total_data, btrfs_leaf_data(leaf) +
3390 			      data_end, old_data - data_end);
3391 		data_end = old_data;
3392 	} else {
3393 		/*
3394 		 * this sucks but it has to be done, if we are inserting at
3395 		 * the end of the leaf only insert 1 of the items, since we
3396 		 * have no way of knowing whats on the next leaf and we'd have
3397 		 * to drop our current locks to figure it out
3398 		 */
3399 		nr = 1;
3400 	}
3401 
3402 	/* setup the item for the new data */
3403 	for (i = 0; i < nr; i++) {
3404 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3405 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3406 		item = btrfs_item_nr(leaf, slot + i);
3407 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3408 		data_end -= data_size[i];
3409 		btrfs_set_item_size(leaf, item, data_size[i]);
3410 	}
3411 	btrfs_set_header_nritems(leaf, nritems + nr);
3412 	btrfs_mark_buffer_dirty(leaf);
3413 
3414 	ret = 0;
3415 	if (slot == 0) {
3416 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3417 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3418 	}
3419 
3420 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3421 		btrfs_print_leaf(root, leaf);
3422 		BUG();
3423 	}
3424 out:
3425 	if (!ret)
3426 		ret = nr;
3427 	return ret;
3428 }
3429 
3430 /*
3431  * Given a key and some data, insert items into the tree.
3432  * This does all the path init required, making room in the tree if needed.
3433  */
3434 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3435 			    struct btrfs_root *root,
3436 			    struct btrfs_path *path,
3437 			    struct btrfs_key *cpu_key, u32 *data_size,
3438 			    int nr)
3439 {
3440 	struct extent_buffer *leaf;
3441 	struct btrfs_item *item;
3442 	int ret = 0;
3443 	int slot;
3444 	int slot_orig;
3445 	int i;
3446 	u32 nritems;
3447 	u32 total_size = 0;
3448 	u32 total_data = 0;
3449 	unsigned int data_end;
3450 	struct btrfs_disk_key disk_key;
3451 
3452 	for (i = 0; i < nr; i++)
3453 		total_data += data_size[i];
3454 
3455 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3456 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3457 	if (ret == 0)
3458 		return -EEXIST;
3459 	if (ret < 0)
3460 		goto out;
3461 
3462 	slot_orig = path->slots[0];
3463 	leaf = path->nodes[0];
3464 
3465 	nritems = btrfs_header_nritems(leaf);
3466 	data_end = leaf_data_end(root, leaf);
3467 
3468 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3469 		btrfs_print_leaf(root, leaf);
3470 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3471 		       total_size, btrfs_leaf_free_space(root, leaf));
3472 		BUG();
3473 	}
3474 
3475 	slot = path->slots[0];
3476 	BUG_ON(slot < 0);
3477 
3478 	if (slot != nritems) {
3479 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3480 
3481 		if (old_data < data_end) {
3482 			btrfs_print_leaf(root, leaf);
3483 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3484 			       slot, old_data, data_end);
3485 			BUG_ON(1);
3486 		}
3487 		/*
3488 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3489 		 */
3490 		/* first correct the data pointers */
3491 		WARN_ON(leaf->map_token);
3492 		for (i = slot; i < nritems; i++) {
3493 			u32 ioff;
3494 
3495 			item = btrfs_item_nr(leaf, i);
3496 			if (!leaf->map_token) {
3497 				map_extent_buffer(leaf, (unsigned long)item,
3498 					sizeof(struct btrfs_item),
3499 					&leaf->map_token, &leaf->kaddr,
3500 					&leaf->map_start, &leaf->map_len,
3501 					KM_USER1);
3502 			}
3503 
3504 			ioff = btrfs_item_offset(leaf, item);
3505 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3506 		}
3507 		if (leaf->map_token) {
3508 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3509 			leaf->map_token = NULL;
3510 		}
3511 
3512 		/* shift the items */
3513 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3514 			      btrfs_item_nr_offset(slot),
3515 			      (nritems - slot) * sizeof(struct btrfs_item));
3516 
3517 		/* shift the data */
3518 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3519 			      data_end - total_data, btrfs_leaf_data(leaf) +
3520 			      data_end, old_data - data_end);
3521 		data_end = old_data;
3522 	}
3523 
3524 	/* setup the item for the new data */
3525 	for (i = 0; i < nr; i++) {
3526 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3527 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3528 		item = btrfs_item_nr(leaf, slot + i);
3529 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3530 		data_end -= data_size[i];
3531 		btrfs_set_item_size(leaf, item, data_size[i]);
3532 	}
3533 	btrfs_set_header_nritems(leaf, nritems + nr);
3534 	btrfs_mark_buffer_dirty(leaf);
3535 
3536 	ret = 0;
3537 	if (slot == 0) {
3538 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3539 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3540 	}
3541 
3542 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3543 		btrfs_print_leaf(root, leaf);
3544 		BUG();
3545 	}
3546 out:
3547 	btrfs_unlock_up_safe(path, 1);
3548 	return ret;
3549 }
3550 
3551 /*
3552  * Given a key and some data, insert an item into the tree.
3553  * This does all the path init required, making room in the tree if needed.
3554  */
3555 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3556 		      *root, struct btrfs_key *cpu_key, void *data, u32
3557 		      data_size)
3558 {
3559 	int ret = 0;
3560 	struct btrfs_path *path;
3561 	struct extent_buffer *leaf;
3562 	unsigned long ptr;
3563 
3564 	path = btrfs_alloc_path();
3565 	BUG_ON(!path);
3566 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3567 	if (!ret) {
3568 		leaf = path->nodes[0];
3569 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3570 		write_extent_buffer(leaf, data, ptr, data_size);
3571 		btrfs_mark_buffer_dirty(leaf);
3572 	}
3573 	btrfs_free_path(path);
3574 	return ret;
3575 }
3576 
3577 /*
3578  * delete the pointer from a given node.
3579  *
3580  * the tree should have been previously balanced so the deletion does not
3581  * empty a node.
3582  */
3583 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3584 		   struct btrfs_path *path, int level, int slot)
3585 {
3586 	struct extent_buffer *parent = path->nodes[level];
3587 	u32 nritems;
3588 	int ret = 0;
3589 	int wret;
3590 
3591 	nritems = btrfs_header_nritems(parent);
3592 	if (slot != nritems - 1) {
3593 		memmove_extent_buffer(parent,
3594 			      btrfs_node_key_ptr_offset(slot),
3595 			      btrfs_node_key_ptr_offset(slot + 1),
3596 			      sizeof(struct btrfs_key_ptr) *
3597 			      (nritems - slot - 1));
3598 	}
3599 	nritems--;
3600 	btrfs_set_header_nritems(parent, nritems);
3601 	if (nritems == 0 && parent == root->node) {
3602 		BUG_ON(btrfs_header_level(root->node) != 1);
3603 		/* just turn the root into a leaf and break */
3604 		btrfs_set_header_level(root->node, 0);
3605 	} else if (slot == 0) {
3606 		struct btrfs_disk_key disk_key;
3607 
3608 		btrfs_node_key(parent, &disk_key, 0);
3609 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3610 		if (wret)
3611 			ret = wret;
3612 	}
3613 	btrfs_mark_buffer_dirty(parent);
3614 	return ret;
3615 }
3616 
3617 /*
3618  * a helper function to delete the leaf pointed to by path->slots[1] and
3619  * path->nodes[1].  bytenr is the node block pointer, but since the callers
3620  * already know it, it is faster to have them pass it down than to
3621  * read it out of the node again.
3622  *
3623  * This deletes the pointer in path->nodes[1] and frees the leaf
3624  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3625  *
3626  * The path must have already been setup for deleting the leaf, including
3627  * all the proper balancing.  path->nodes[1] must be locked.
3628  */
3629 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3630 			    struct btrfs_root *root,
3631 			    struct btrfs_path *path, u64 bytenr)
3632 {
3633 	int ret;
3634 	u64 root_gen = btrfs_header_generation(path->nodes[1]);
3635 	u64 parent_start = path->nodes[1]->start;
3636 	u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3637 
3638 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3639 	if (ret)
3640 		return ret;
3641 
3642 	/*
3643 	 * btrfs_free_extent is expensive, we want to make sure we
3644 	 * aren't holding any locks when we call it
3645 	 */
3646 	btrfs_unlock_up_safe(path, 0);
3647 
3648 	ret = btrfs_free_extent(trans, root, bytenr,
3649 				btrfs_level_size(root, 0),
3650 				parent_start, parent_owner,
3651 				root_gen, 0, 1);
3652 	return ret;
3653 }
3654 /*
3655  * delete the item at the leaf level in path.  If that empties
3656  * the leaf, remove it from the tree
3657  */
3658 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3659 		    struct btrfs_path *path, int slot, int nr)
3660 {
3661 	struct extent_buffer *leaf;
3662 	struct btrfs_item *item;
3663 	int last_off;
3664 	int dsize = 0;
3665 	int ret = 0;
3666 	int wret;
3667 	int i;
3668 	u32 nritems;
3669 
3670 	leaf = path->nodes[0];
3671 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3672 
3673 	for (i = 0; i < nr; i++)
3674 		dsize += btrfs_item_size_nr(leaf, slot + i);
3675 
3676 	nritems = btrfs_header_nritems(leaf);
3677 
3678 	if (slot + nr != nritems) {
3679 		int data_end = leaf_data_end(root, leaf);
3680 
3681 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3682 			      data_end + dsize,
3683 			      btrfs_leaf_data(leaf) + data_end,
3684 			      last_off - data_end);
3685 
3686 		for (i = slot + nr; i < nritems; i++) {
3687 			u32 ioff;
3688 
3689 			item = btrfs_item_nr(leaf, i);
3690 			if (!leaf->map_token) {
3691 				map_extent_buffer(leaf, (unsigned long)item,
3692 					sizeof(struct btrfs_item),
3693 					&leaf->map_token, &leaf->kaddr,
3694 					&leaf->map_start, &leaf->map_len,
3695 					KM_USER1);
3696 			}
3697 			ioff = btrfs_item_offset(leaf, item);
3698 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3699 		}
3700 
3701 		if (leaf->map_token) {
3702 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3703 			leaf->map_token = NULL;
3704 		}
3705 
3706 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3707 			      btrfs_item_nr_offset(slot + nr),
3708 			      sizeof(struct btrfs_item) *
3709 			      (nritems - slot - nr));
3710 	}
3711 	btrfs_set_header_nritems(leaf, nritems - nr);
3712 	nritems -= nr;
3713 
3714 	/* delete the leaf if we've emptied it */
3715 	if (nritems == 0) {
3716 		if (leaf == root->node) {
3717 			btrfs_set_header_level(leaf, 0);
3718 		} else {
3719 			ret = btrfs_del_leaf(trans, root, path, leaf->start);
3720 			BUG_ON(ret);
3721 		}
3722 	} else {
3723 		int used = leaf_space_used(leaf, 0, nritems);
3724 		if (slot == 0) {
3725 			struct btrfs_disk_key disk_key;
3726 
3727 			btrfs_item_key(leaf, &disk_key, 0);
3728 			wret = fixup_low_keys(trans, root, path,
3729 					      &disk_key, 1);
3730 			if (wret)
3731 				ret = wret;
3732 		}
3733 
3734 		/* delete the leaf if it is mostly empty */
3735 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
3736 			/* push_leaf_left fixes the path.
3737 			 * make sure the path still points to our leaf
3738 			 * for possible call to del_ptr below
3739 			 */
3740 			slot = path->slots[1];
3741 			extent_buffer_get(leaf);
3742 
3743 			wret = push_leaf_left(trans, root, path, 1, 1);
3744 			if (wret < 0 && wret != -ENOSPC)
3745 				ret = wret;
3746 
3747 			if (path->nodes[0] == leaf &&
3748 			    btrfs_header_nritems(leaf)) {
3749 				wret = push_leaf_right(trans, root, path, 1, 1);
3750 				if (wret < 0 && wret != -ENOSPC)
3751 					ret = wret;
3752 			}
3753 
3754 			if (btrfs_header_nritems(leaf) == 0) {
3755 				path->slots[1] = slot;
3756 				ret = btrfs_del_leaf(trans, root, path,
3757 						     leaf->start);
3758 				BUG_ON(ret);
3759 				free_extent_buffer(leaf);
3760 			} else {
3761 				/* if we're still in the path, make sure
3762 				 * we're dirty.  Otherwise, one of the
3763 				 * push_leaf functions must have already
3764 				 * dirtied this buffer
3765 				 */
3766 				if (path->nodes[0] == leaf)
3767 					btrfs_mark_buffer_dirty(leaf);
3768 				free_extent_buffer(leaf);
3769 			}
3770 		} else {
3771 			btrfs_mark_buffer_dirty(leaf);
3772 		}
3773 	}
3774 	return ret;
3775 }
3776 
3777 /*
3778  * search the tree again to find a leaf with lesser keys
3779  * returns 0 if it found something or 1 if there are no lesser leaves.
3780  * returns < 0 on io errors.
3781  *
3782  * This may release the path, and so you may lose any locks held at the
3783  * time you call it.
3784  */
3785 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3786 {
3787 	struct btrfs_key key;
3788 	struct btrfs_disk_key found_key;
3789 	int ret;
3790 
3791 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3792 
3793 	if (key.offset > 0)
3794 		key.offset--;
3795 	else if (key.type > 0)
3796 		key.type--;
3797 	else if (key.objectid > 0)
3798 		key.objectid--;
3799 	else
3800 		return 1;
3801 
3802 	btrfs_release_path(root, path);
3803 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3804 	if (ret < 0)
3805 		return ret;
3806 	btrfs_item_key(path->nodes[0], &found_key, 0);
3807 	ret = comp_keys(&found_key, &key);
3808 	if (ret < 0)
3809 		return 0;
3810 	return 1;
3811 }
3812 
3813 /*
3814  * A helper function to walk down the tree starting at min_key, and looking
3815  * for nodes or leaves that are either in cache or have a minimum
3816  * transaction id.  This is used by the btree defrag code, and tree logging
3817  *
3818  * This does not cow, but it does stuff the starting key it finds back
3819  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3820  * key and get a writable path.
3821  *
3822  * This does lock as it descends, and path->keep_locks should be set
3823  * to 1 by the caller.
3824  *
3825  * This honors path->lowest_level to prevent descent past a given level
3826  * of the tree.
3827  *
3828  * min_trans indicates the oldest transaction that you are interested
3829  * in walking through.  Any nodes or leaves older than min_trans are
3830  * skipped over (without reading them).
3831  *
3832  * returns zero if something useful was found, < 0 on error and 1 if there
3833  * was nothing in the tree that matched the search criteria.
3834  */
3835 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3836 			 struct btrfs_key *max_key,
3837 			 struct btrfs_path *path, int cache_only,
3838 			 u64 min_trans)
3839 {
3840 	struct extent_buffer *cur;
3841 	struct btrfs_key found_key;
3842 	int slot;
3843 	int sret;
3844 	u32 nritems;
3845 	int level;
3846 	int ret = 1;
3847 
3848 	WARN_ON(!path->keep_locks);
3849 again:
3850 	cur = btrfs_lock_root_node(root);
3851 	level = btrfs_header_level(cur);
3852 	WARN_ON(path->nodes[level]);
3853 	path->nodes[level] = cur;
3854 	path->locks[level] = 1;
3855 
3856 	if (btrfs_header_generation(cur) < min_trans) {
3857 		ret = 1;
3858 		goto out;
3859 	}
3860 	while (1) {
3861 		nritems = btrfs_header_nritems(cur);
3862 		level = btrfs_header_level(cur);
3863 		sret = bin_search(cur, min_key, level, &slot);
3864 
3865 		/* at the lowest level, we're done, setup the path and exit */
3866 		if (level == path->lowest_level) {
3867 			if (slot >= nritems)
3868 				goto find_next_key;
3869 			ret = 0;
3870 			path->slots[level] = slot;
3871 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3872 			goto out;
3873 		}
3874 		if (sret && slot > 0)
3875 			slot--;
3876 		/*
3877 		 * check this node pointer against the cache_only and
3878 		 * min_trans parameters.  If it isn't in cache or is too
3879 		 * old, skip to the next one.
3880 		 */
3881 		while (slot < nritems) {
3882 			u64 blockptr;
3883 			u64 gen;
3884 			struct extent_buffer *tmp;
3885 			struct btrfs_disk_key disk_key;
3886 
3887 			blockptr = btrfs_node_blockptr(cur, slot);
3888 			gen = btrfs_node_ptr_generation(cur, slot);
3889 			if (gen < min_trans) {
3890 				slot++;
3891 				continue;
3892 			}
3893 			if (!cache_only)
3894 				break;
3895 
3896 			if (max_key) {
3897 				btrfs_node_key(cur, &disk_key, slot);
3898 				if (comp_keys(&disk_key, max_key) >= 0) {
3899 					ret = 1;
3900 					goto out;
3901 				}
3902 			}
3903 
3904 			tmp = btrfs_find_tree_block(root, blockptr,
3905 					    btrfs_level_size(root, level - 1));
3906 
3907 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3908 				free_extent_buffer(tmp);
3909 				break;
3910 			}
3911 			if (tmp)
3912 				free_extent_buffer(tmp);
3913 			slot++;
3914 		}
3915 find_next_key:
3916 		/*
3917 		 * we didn't find a candidate key in this node, walk forward
3918 		 * and find another one
3919 		 */
3920 		if (slot >= nritems) {
3921 			path->slots[level] = slot;
3922 			btrfs_set_path_blocking(path);
3923 			sret = btrfs_find_next_key(root, path, min_key, level,
3924 						  cache_only, min_trans);
3925 			if (sret == 0) {
3926 				btrfs_release_path(root, path);
3927 				goto again;
3928 			} else {
3929 				btrfs_clear_path_blocking(path);
3930 				goto out;
3931 			}
3932 		}
3933 		/* save our key for returning back */
3934 		btrfs_node_key_to_cpu(cur, &found_key, slot);
3935 		path->slots[level] = slot;
3936 		if (level == path->lowest_level) {
3937 			ret = 0;
3938 			unlock_up(path, level, 1);
3939 			goto out;
3940 		}
3941 		btrfs_set_path_blocking(path);
3942 		cur = read_node_slot(root, cur, slot);
3943 
3944 		btrfs_tree_lock(cur);
3945 
3946 		path->locks[level - 1] = 1;
3947 		path->nodes[level - 1] = cur;
3948 		unlock_up(path, level, 1);
3949 		btrfs_clear_path_blocking(path);
3950 	}
3951 out:
3952 	if (ret == 0)
3953 		memcpy(min_key, &found_key, sizeof(found_key));
3954 	btrfs_set_path_blocking(path);
3955 	return ret;
3956 }
3957 
3958 /*
3959  * this is similar to btrfs_next_leaf, but does not try to preserve
3960  * and fixup the path.  It looks for and returns the next key in the
3961  * tree based on the current path and the cache_only and min_trans
3962  * parameters.
3963  *
3964  * 0 is returned if another key is found, < 0 if there are any errors
3965  * and 1 is returned if there are no higher keys in the tree
3966  *
3967  * path->keep_locks should be set to 1 on the search made before
3968  * calling this function.
3969  */
3970 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3971 			struct btrfs_key *key, int lowest_level,
3972 			int cache_only, u64 min_trans)
3973 {
3974 	int level = lowest_level;
3975 	int slot;
3976 	struct extent_buffer *c;
3977 
3978 	WARN_ON(!path->keep_locks);
3979 	while (level < BTRFS_MAX_LEVEL) {
3980 		if (!path->nodes[level])
3981 			return 1;
3982 
3983 		slot = path->slots[level] + 1;
3984 		c = path->nodes[level];
3985 next:
3986 		if (slot >= btrfs_header_nritems(c)) {
3987 			level++;
3988 			if (level == BTRFS_MAX_LEVEL)
3989 				return 1;
3990 			continue;
3991 		}
3992 		if (level == 0)
3993 			btrfs_item_key_to_cpu(c, key, slot);
3994 		else {
3995 			u64 blockptr = btrfs_node_blockptr(c, slot);
3996 			u64 gen = btrfs_node_ptr_generation(c, slot);
3997 
3998 			if (cache_only) {
3999 				struct extent_buffer *cur;
4000 				cur = btrfs_find_tree_block(root, blockptr,
4001 					    btrfs_level_size(root, level - 1));
4002 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4003 					slot++;
4004 					if (cur)
4005 						free_extent_buffer(cur);
4006 					goto next;
4007 				}
4008 				free_extent_buffer(cur);
4009 			}
4010 			if (gen < min_trans) {
4011 				slot++;
4012 				goto next;
4013 			}
4014 			btrfs_node_key_to_cpu(c, key, slot);
4015 		}
4016 		return 0;
4017 	}
4018 	return 1;
4019 }
4020 
4021 /*
4022  * search the tree again to find a leaf with greater keys
4023  * returns 0 if it found something or 1 if there are no greater leaves.
4024  * returns < 0 on io errors.
4025  */
4026 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4027 {
4028 	int slot;
4029 	int level = 1;
4030 	struct extent_buffer *c;
4031 	struct extent_buffer *next = NULL;
4032 	struct btrfs_key key;
4033 	u32 nritems;
4034 	int ret;
4035 
4036 	nritems = btrfs_header_nritems(path->nodes[0]);
4037 	if (nritems == 0)
4038 		return 1;
4039 
4040 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4041 
4042 	btrfs_release_path(root, path);
4043 	path->keep_locks = 1;
4044 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4045 	path->keep_locks = 0;
4046 
4047 	if (ret < 0)
4048 		return ret;
4049 
4050 	btrfs_set_path_blocking(path);
4051 	nritems = btrfs_header_nritems(path->nodes[0]);
4052 	/*
4053 	 * by releasing the path above we dropped all our locks.  A balance
4054 	 * could have added more items next to the key that used to be
4055 	 * at the very end of the block.  So, check again here and
4056 	 * advance the path if there are now more items available.
4057 	 */
4058 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4059 		path->slots[0]++;
4060 		goto done;
4061 	}
4062 
4063 	while (level < BTRFS_MAX_LEVEL) {
4064 		if (!path->nodes[level])
4065 			return 1;
4066 
4067 		slot = path->slots[level] + 1;
4068 		c = path->nodes[level];
4069 		if (slot >= btrfs_header_nritems(c)) {
4070 			level++;
4071 			if (level == BTRFS_MAX_LEVEL)
4072 				return 1;
4073 			continue;
4074 		}
4075 
4076 		if (next) {
4077 			btrfs_tree_unlock(next);
4078 			free_extent_buffer(next);
4079 		}
4080 
4081 		/* the path was set to blocking above */
4082 		if (level == 1 && (path->locks[1] || path->skip_locking) &&
4083 		    path->reada)
4084 			reada_for_search(root, path, level, slot, 0);
4085 
4086 		next = read_node_slot(root, c, slot);
4087 		if (!path->skip_locking) {
4088 			WARN_ON(!btrfs_tree_locked(c));
4089 			btrfs_tree_lock(next);
4090 			btrfs_set_lock_blocking(next);
4091 		}
4092 		break;
4093 	}
4094 	path->slots[level] = slot;
4095 	while (1) {
4096 		level--;
4097 		c = path->nodes[level];
4098 		if (path->locks[level])
4099 			btrfs_tree_unlock(c);
4100 		free_extent_buffer(c);
4101 		path->nodes[level] = next;
4102 		path->slots[level] = 0;
4103 		if (!path->skip_locking)
4104 			path->locks[level] = 1;
4105 		if (!level)
4106 			break;
4107 
4108 		btrfs_set_path_blocking(path);
4109 		if (level == 1 && path->locks[1] && path->reada)
4110 			reada_for_search(root, path, level, slot, 0);
4111 		next = read_node_slot(root, next, 0);
4112 		if (!path->skip_locking) {
4113 			WARN_ON(!btrfs_tree_locked(path->nodes[level]));
4114 			btrfs_tree_lock(next);
4115 			btrfs_set_lock_blocking(next);
4116 		}
4117 	}
4118 done:
4119 	unlock_up(path, 0, 1);
4120 	return 0;
4121 }
4122 
4123 /*
4124  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4125  * searching until it gets past min_objectid or finds an item of 'type'
4126  *
4127  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4128  */
4129 int btrfs_previous_item(struct btrfs_root *root,
4130 			struct btrfs_path *path, u64 min_objectid,
4131 			int type)
4132 {
4133 	struct btrfs_key found_key;
4134 	struct extent_buffer *leaf;
4135 	u32 nritems;
4136 	int ret;
4137 
4138 	while (1) {
4139 		if (path->slots[0] == 0) {
4140 			btrfs_set_path_blocking(path);
4141 			ret = btrfs_prev_leaf(root, path);
4142 			if (ret != 0)
4143 				return ret;
4144 		} else {
4145 			path->slots[0]--;
4146 		}
4147 		leaf = path->nodes[0];
4148 		nritems = btrfs_header_nritems(leaf);
4149 		if (nritems == 0)
4150 			return 1;
4151 		if (path->slots[0] == nritems)
4152 			path->slots[0]--;
4153 
4154 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4155 		if (found_key.type == type)
4156 			return 0;
4157 		if (found_key.objectid < min_objectid)
4158 			break;
4159 		if (found_key.objectid == min_objectid &&
4160 		    found_key.type < type)
4161 			break;
4162 	}
4163 	return 1;
4164 }
4165