1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 41 struct btrfs_path *path, int level, int slot, 42 int tree_mod_log); 43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr, 46 u32 blocksize, u64 parent_transid, 47 u64 time_seq); 48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root, 49 u64 bytenr, u32 blocksize, 50 u64 time_seq); 51 52 struct btrfs_path *btrfs_alloc_path(void) 53 { 54 struct btrfs_path *path; 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 56 return path; 57 } 58 59 /* 60 * set all locked nodes in the path to blocking locks. This should 61 * be done before scheduling 62 */ 63 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 64 { 65 int i; 66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 67 if (!p->nodes[i] || !p->locks[i]) 68 continue; 69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 70 if (p->locks[i] == BTRFS_READ_LOCK) 71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 72 else if (p->locks[i] == BTRFS_WRITE_LOCK) 73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 74 } 75 } 76 77 /* 78 * reset all the locked nodes in the patch to spinning locks. 79 * 80 * held is used to keep lockdep happy, when lockdep is enabled 81 * we set held to a blocking lock before we go around and 82 * retake all the spinlocks in the path. You can safely use NULL 83 * for held 84 */ 85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 86 struct extent_buffer *held, int held_rw) 87 { 88 int i; 89 90 #ifdef CONFIG_DEBUG_LOCK_ALLOC 91 /* lockdep really cares that we take all of these spinlocks 92 * in the right order. If any of the locks in the path are not 93 * currently blocking, it is going to complain. So, make really 94 * really sure by forcing the path to blocking before we clear 95 * the path blocking. 96 */ 97 if (held) { 98 btrfs_set_lock_blocking_rw(held, held_rw); 99 if (held_rw == BTRFS_WRITE_LOCK) 100 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 101 else if (held_rw == BTRFS_READ_LOCK) 102 held_rw = BTRFS_READ_LOCK_BLOCKING; 103 } 104 btrfs_set_path_blocking(p); 105 #endif 106 107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 108 if (p->nodes[i] && p->locks[i]) { 109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 111 p->locks[i] = BTRFS_WRITE_LOCK; 112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 113 p->locks[i] = BTRFS_READ_LOCK; 114 } 115 } 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 if (held) 119 btrfs_clear_lock_blocking_rw(held, held_rw); 120 #endif 121 } 122 123 /* this also releases the path */ 124 void btrfs_free_path(struct btrfs_path *p) 125 { 126 if (!p) 127 return; 128 btrfs_release_path(p); 129 kmem_cache_free(btrfs_path_cachep, p); 130 } 131 132 /* 133 * path release drops references on the extent buffers in the path 134 * and it drops any locks held by this path 135 * 136 * It is safe to call this on paths that no locks or extent buffers held. 137 */ 138 noinline void btrfs_release_path(struct btrfs_path *p) 139 { 140 int i; 141 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 143 p->slots[i] = 0; 144 if (!p->nodes[i]) 145 continue; 146 if (p->locks[i]) { 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 148 p->locks[i] = 0; 149 } 150 free_extent_buffer(p->nodes[i]); 151 p->nodes[i] = NULL; 152 } 153 } 154 155 /* 156 * safely gets a reference on the root node of a tree. A lock 157 * is not taken, so a concurrent writer may put a different node 158 * at the root of the tree. See btrfs_lock_root_node for the 159 * looping required. 160 * 161 * The extent buffer returned by this has a reference taken, so 162 * it won't disappear. It may stop being the root of the tree 163 * at any time because there are no locks held. 164 */ 165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 166 { 167 struct extent_buffer *eb; 168 169 while (1) { 170 rcu_read_lock(); 171 eb = rcu_dereference(root->node); 172 173 /* 174 * RCU really hurts here, we could free up the root node because 175 * it was cow'ed but we may not get the new root node yet so do 176 * the inc_not_zero dance and if it doesn't work then 177 * synchronize_rcu and try again. 178 */ 179 if (atomic_inc_not_zero(&eb->refs)) { 180 rcu_read_unlock(); 181 break; 182 } 183 rcu_read_unlock(); 184 synchronize_rcu(); 185 } 186 return eb; 187 } 188 189 /* loop around taking references on and locking the root node of the 190 * tree until you end up with a lock on the root. A locked buffer 191 * is returned, with a reference held. 192 */ 193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 194 { 195 struct extent_buffer *eb; 196 197 while (1) { 198 eb = btrfs_root_node(root); 199 btrfs_tree_lock(eb); 200 if (eb == root->node) 201 break; 202 btrfs_tree_unlock(eb); 203 free_extent_buffer(eb); 204 } 205 return eb; 206 } 207 208 /* loop around taking references on and locking the root node of the 209 * tree until you end up with a lock on the root. A locked buffer 210 * is returned, with a reference held. 211 */ 212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 213 { 214 struct extent_buffer *eb; 215 216 while (1) { 217 eb = btrfs_root_node(root); 218 btrfs_tree_read_lock(eb); 219 if (eb == root->node) 220 break; 221 btrfs_tree_read_unlock(eb); 222 free_extent_buffer(eb); 223 } 224 return eb; 225 } 226 227 /* cowonly root (everything not a reference counted cow subvolume), just get 228 * put onto a simple dirty list. transaction.c walks this to make sure they 229 * get properly updated on disk. 230 */ 231 static void add_root_to_dirty_list(struct btrfs_root *root) 232 { 233 spin_lock(&root->fs_info->trans_lock); 234 if (root->track_dirty && list_empty(&root->dirty_list)) { 235 list_add(&root->dirty_list, 236 &root->fs_info->dirty_cowonly_roots); 237 } 238 spin_unlock(&root->fs_info->trans_lock); 239 } 240 241 /* 242 * used by snapshot creation to make a copy of a root for a tree with 243 * a given objectid. The buffer with the new root node is returned in 244 * cow_ret, and this func returns zero on success or a negative error code. 245 */ 246 int btrfs_copy_root(struct btrfs_trans_handle *trans, 247 struct btrfs_root *root, 248 struct extent_buffer *buf, 249 struct extent_buffer **cow_ret, u64 new_root_objectid) 250 { 251 struct extent_buffer *cow; 252 int ret = 0; 253 int level; 254 struct btrfs_disk_key disk_key; 255 256 WARN_ON(root->ref_cows && trans->transid != 257 root->fs_info->running_transaction->transid); 258 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 259 260 level = btrfs_header_level(buf); 261 if (level == 0) 262 btrfs_item_key(buf, &disk_key, 0); 263 else 264 btrfs_node_key(buf, &disk_key, 0); 265 266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 267 new_root_objectid, &disk_key, level, 268 buf->start, 0); 269 if (IS_ERR(cow)) 270 return PTR_ERR(cow); 271 272 copy_extent_buffer(cow, buf, 0, 0, cow->len); 273 btrfs_set_header_bytenr(cow, cow->start); 274 btrfs_set_header_generation(cow, trans->transid); 275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 277 BTRFS_HEADER_FLAG_RELOC); 278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 280 else 281 btrfs_set_header_owner(cow, new_root_objectid); 282 283 write_extent_buffer(cow, root->fs_info->fsid, 284 (unsigned long)btrfs_header_fsid(cow), 285 BTRFS_FSID_SIZE); 286 287 WARN_ON(btrfs_header_generation(buf) > trans->transid); 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 290 else 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 292 293 if (ret) 294 return ret; 295 296 btrfs_mark_buffer_dirty(cow); 297 *cow_ret = cow; 298 return 0; 299 } 300 301 enum mod_log_op { 302 MOD_LOG_KEY_REPLACE, 303 MOD_LOG_KEY_ADD, 304 MOD_LOG_KEY_REMOVE, 305 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 306 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 307 MOD_LOG_MOVE_KEYS, 308 MOD_LOG_ROOT_REPLACE, 309 }; 310 311 struct tree_mod_move { 312 int dst_slot; 313 int nr_items; 314 }; 315 316 struct tree_mod_root { 317 u64 logical; 318 u8 level; 319 }; 320 321 struct tree_mod_elem { 322 struct rb_node node; 323 u64 index; /* shifted logical */ 324 struct seq_list elem; 325 enum mod_log_op op; 326 327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 328 int slot; 329 330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 331 u64 generation; 332 333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 334 struct btrfs_disk_key key; 335 u64 blockptr; 336 337 /* this is used for op == MOD_LOG_MOVE_KEYS */ 338 struct tree_mod_move move; 339 340 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 341 struct tree_mod_root old_root; 342 }; 343 344 static inline void 345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem) 346 { 347 elem->seq = atomic_inc_return(&fs_info->tree_mod_seq); 348 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 349 } 350 351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 352 struct seq_list *elem) 353 { 354 elem->flags = 1; 355 spin_lock(&fs_info->tree_mod_seq_lock); 356 __get_tree_mod_seq(fs_info, elem); 357 spin_unlock(&fs_info->tree_mod_seq_lock); 358 } 359 360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 361 struct seq_list *elem) 362 { 363 struct rb_root *tm_root; 364 struct rb_node *node; 365 struct rb_node *next; 366 struct seq_list *cur_elem; 367 struct tree_mod_elem *tm; 368 u64 min_seq = (u64)-1; 369 u64 seq_putting = elem->seq; 370 371 if (!seq_putting) 372 return; 373 374 BUG_ON(!(elem->flags & 1)); 375 spin_lock(&fs_info->tree_mod_seq_lock); 376 list_del(&elem->list); 377 378 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 379 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) { 380 if (seq_putting > cur_elem->seq) { 381 /* 382 * blocker with lower sequence number exists, we 383 * cannot remove anything from the log 384 */ 385 goto out; 386 } 387 min_seq = cur_elem->seq; 388 } 389 } 390 391 /* 392 * anything that's lower than the lowest existing (read: blocked) 393 * sequence number can be removed from the tree. 394 */ 395 write_lock(&fs_info->tree_mod_log_lock); 396 tm_root = &fs_info->tree_mod_log; 397 for (node = rb_first(tm_root); node; node = next) { 398 next = rb_next(node); 399 tm = container_of(node, struct tree_mod_elem, node); 400 if (tm->elem.seq > min_seq) 401 continue; 402 rb_erase(node, tm_root); 403 list_del(&tm->elem.list); 404 kfree(tm); 405 } 406 write_unlock(&fs_info->tree_mod_log_lock); 407 out: 408 spin_unlock(&fs_info->tree_mod_seq_lock); 409 } 410 411 /* 412 * key order of the log: 413 * index -> sequence 414 * 415 * the index is the shifted logical of the *new* root node for root replace 416 * operations, or the shifted logical of the affected block for all other 417 * operations. 418 */ 419 static noinline int 420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 421 { 422 struct rb_root *tm_root; 423 struct rb_node **new; 424 struct rb_node *parent = NULL; 425 struct tree_mod_elem *cur; 426 int ret = 0; 427 428 BUG_ON(!tm || !tm->elem.seq); 429 430 write_lock(&fs_info->tree_mod_log_lock); 431 tm_root = &fs_info->tree_mod_log; 432 new = &tm_root->rb_node; 433 while (*new) { 434 cur = container_of(*new, struct tree_mod_elem, node); 435 parent = *new; 436 if (cur->index < tm->index) 437 new = &((*new)->rb_left); 438 else if (cur->index > tm->index) 439 new = &((*new)->rb_right); 440 else if (cur->elem.seq < tm->elem.seq) 441 new = &((*new)->rb_left); 442 else if (cur->elem.seq > tm->elem.seq) 443 new = &((*new)->rb_right); 444 else { 445 kfree(tm); 446 ret = -EEXIST; 447 goto unlock; 448 } 449 } 450 451 rb_link_node(&tm->node, parent, new); 452 rb_insert_color(&tm->node, tm_root); 453 unlock: 454 write_unlock(&fs_info->tree_mod_log_lock); 455 return ret; 456 } 457 458 int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags, 459 struct tree_mod_elem **tm_ret) 460 { 461 struct tree_mod_elem *tm; 462 u64 seq = 0; 463 464 smp_mb(); 465 if (list_empty(&fs_info->tree_mod_seq_list)) 466 return 0; 467 468 tm = *tm_ret = kzalloc(sizeof(*tm), flags); 469 if (!tm) 470 return -ENOMEM; 471 472 __get_tree_mod_seq(fs_info, &tm->elem); 473 seq = tm->elem.seq; 474 tm->elem.flags = 0; 475 476 return seq; 477 } 478 479 static noinline int 480 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info, 481 struct extent_buffer *eb, int slot, 482 enum mod_log_op op, gfp_t flags) 483 { 484 struct tree_mod_elem *tm; 485 int ret; 486 487 ret = tree_mod_alloc(fs_info, flags, &tm); 488 if (ret <= 0) 489 return ret; 490 491 tm->index = eb->start >> PAGE_CACHE_SHIFT; 492 if (op != MOD_LOG_KEY_ADD) { 493 btrfs_node_key(eb, &tm->key, slot); 494 tm->blockptr = btrfs_node_blockptr(eb, slot); 495 } 496 tm->op = op; 497 tm->slot = slot; 498 tm->generation = btrfs_node_ptr_generation(eb, slot); 499 500 return __tree_mod_log_insert(fs_info, tm); 501 } 502 503 static noinline int 504 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 505 int slot, enum mod_log_op op) 506 { 507 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS); 508 } 509 510 static noinline int 511 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 512 struct extent_buffer *eb, int dst_slot, int src_slot, 513 int nr_items, gfp_t flags) 514 { 515 struct tree_mod_elem *tm; 516 int ret; 517 int i; 518 519 ret = tree_mod_alloc(fs_info, flags, &tm); 520 if (ret <= 0) 521 return ret; 522 523 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 524 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot, 525 MOD_LOG_KEY_REMOVE_WHILE_MOVING); 526 BUG_ON(ret < 0); 527 } 528 529 tm->index = eb->start >> PAGE_CACHE_SHIFT; 530 tm->slot = src_slot; 531 tm->move.dst_slot = dst_slot; 532 tm->move.nr_items = nr_items; 533 tm->op = MOD_LOG_MOVE_KEYS; 534 535 return __tree_mod_log_insert(fs_info, tm); 536 } 537 538 static noinline int 539 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 540 struct extent_buffer *old_root, 541 struct extent_buffer *new_root, gfp_t flags) 542 { 543 struct tree_mod_elem *tm; 544 int ret; 545 546 ret = tree_mod_alloc(fs_info, flags, &tm); 547 if (ret <= 0) 548 return ret; 549 550 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 551 tm->old_root.logical = old_root->start; 552 tm->old_root.level = btrfs_header_level(old_root); 553 tm->generation = btrfs_header_generation(old_root); 554 tm->op = MOD_LOG_ROOT_REPLACE; 555 556 return __tree_mod_log_insert(fs_info, tm); 557 } 558 559 static struct tree_mod_elem * 560 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 561 int smallest) 562 { 563 struct rb_root *tm_root; 564 struct rb_node *node; 565 struct tree_mod_elem *cur = NULL; 566 struct tree_mod_elem *found = NULL; 567 u64 index = start >> PAGE_CACHE_SHIFT; 568 569 read_lock(&fs_info->tree_mod_log_lock); 570 tm_root = &fs_info->tree_mod_log; 571 node = tm_root->rb_node; 572 while (node) { 573 cur = container_of(node, struct tree_mod_elem, node); 574 if (cur->index < index) { 575 node = node->rb_left; 576 } else if (cur->index > index) { 577 node = node->rb_right; 578 } else if (cur->elem.seq < min_seq) { 579 node = node->rb_left; 580 } else if (!smallest) { 581 /* we want the node with the highest seq */ 582 if (found) 583 BUG_ON(found->elem.seq > cur->elem.seq); 584 found = cur; 585 node = node->rb_left; 586 } else if (cur->elem.seq > min_seq) { 587 /* we want the node with the smallest seq */ 588 if (found) 589 BUG_ON(found->elem.seq < cur->elem.seq); 590 found = cur; 591 node = node->rb_right; 592 } else { 593 found = cur; 594 break; 595 } 596 } 597 read_unlock(&fs_info->tree_mod_log_lock); 598 599 return found; 600 } 601 602 /* 603 * this returns the element from the log with the smallest time sequence 604 * value that's in the log (the oldest log item). any element with a time 605 * sequence lower than min_seq will be ignored. 606 */ 607 static struct tree_mod_elem * 608 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 609 u64 min_seq) 610 { 611 return __tree_mod_log_search(fs_info, start, min_seq, 1); 612 } 613 614 /* 615 * this returns the element from the log with the largest time sequence 616 * value that's in the log (the most recent log item). any element with 617 * a time sequence lower than min_seq will be ignored. 618 */ 619 static struct tree_mod_elem * 620 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 621 { 622 return __tree_mod_log_search(fs_info, start, min_seq, 0); 623 } 624 625 static inline void 626 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 627 struct extent_buffer *src, unsigned long dst_offset, 628 unsigned long src_offset, int nr_items) 629 { 630 int ret; 631 int i; 632 633 smp_mb(); 634 if (list_empty(&fs_info->tree_mod_seq_list)) 635 return; 636 637 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 638 return; 639 640 /* speed this up by single seq for all operations? */ 641 for (i = 0; i < nr_items; i++) { 642 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset, 643 MOD_LOG_KEY_REMOVE); 644 BUG_ON(ret < 0); 645 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset, 646 MOD_LOG_KEY_ADD); 647 BUG_ON(ret < 0); 648 } 649 } 650 651 static inline void 652 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 653 int dst_offset, int src_offset, int nr_items) 654 { 655 int ret; 656 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 657 nr_items, GFP_NOFS); 658 BUG_ON(ret < 0); 659 } 660 661 static inline void 662 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 663 struct extent_buffer *eb, 664 struct btrfs_disk_key *disk_key, int slot, int atomic) 665 { 666 int ret; 667 668 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot, 669 MOD_LOG_KEY_REPLACE, 670 atomic ? GFP_ATOMIC : GFP_NOFS); 671 BUG_ON(ret < 0); 672 } 673 674 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 675 struct extent_buffer *eb) 676 { 677 int i; 678 int ret; 679 u32 nritems; 680 681 smp_mb(); 682 if (list_empty(&fs_info->tree_mod_seq_list)) 683 return; 684 685 if (btrfs_header_level(eb) == 0) 686 return; 687 688 nritems = btrfs_header_nritems(eb); 689 for (i = nritems - 1; i >= 0; i--) { 690 ret = tree_mod_log_insert_key(fs_info, eb, i, 691 MOD_LOG_KEY_REMOVE_WHILE_FREEING); 692 BUG_ON(ret < 0); 693 } 694 } 695 696 static inline void 697 tree_mod_log_set_root_pointer(struct btrfs_root *root, 698 struct extent_buffer *new_root_node) 699 { 700 int ret; 701 tree_mod_log_free_eb(root->fs_info, root->node); 702 ret = tree_mod_log_insert_root(root->fs_info, root->node, 703 new_root_node, GFP_NOFS); 704 BUG_ON(ret < 0); 705 } 706 707 /* 708 * check if the tree block can be shared by multiple trees 709 */ 710 int btrfs_block_can_be_shared(struct btrfs_root *root, 711 struct extent_buffer *buf) 712 { 713 /* 714 * Tree blocks not in refernece counted trees and tree roots 715 * are never shared. If a block was allocated after the last 716 * snapshot and the block was not allocated by tree relocation, 717 * we know the block is not shared. 718 */ 719 if (root->ref_cows && 720 buf != root->node && buf != root->commit_root && 721 (btrfs_header_generation(buf) <= 722 btrfs_root_last_snapshot(&root->root_item) || 723 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 724 return 1; 725 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 726 if (root->ref_cows && 727 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 728 return 1; 729 #endif 730 return 0; 731 } 732 733 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 734 struct btrfs_root *root, 735 struct extent_buffer *buf, 736 struct extent_buffer *cow, 737 int *last_ref) 738 { 739 u64 refs; 740 u64 owner; 741 u64 flags; 742 u64 new_flags = 0; 743 int ret; 744 745 /* 746 * Backrefs update rules: 747 * 748 * Always use full backrefs for extent pointers in tree block 749 * allocated by tree relocation. 750 * 751 * If a shared tree block is no longer referenced by its owner 752 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 753 * use full backrefs for extent pointers in tree block. 754 * 755 * If a tree block is been relocating 756 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 757 * use full backrefs for extent pointers in tree block. 758 * The reason for this is some operations (such as drop tree) 759 * are only allowed for blocks use full backrefs. 760 */ 761 762 if (btrfs_block_can_be_shared(root, buf)) { 763 ret = btrfs_lookup_extent_info(trans, root, buf->start, 764 buf->len, &refs, &flags); 765 if (ret) 766 return ret; 767 if (refs == 0) { 768 ret = -EROFS; 769 btrfs_std_error(root->fs_info, ret); 770 return ret; 771 } 772 } else { 773 refs = 1; 774 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 775 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 776 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 777 else 778 flags = 0; 779 } 780 781 owner = btrfs_header_owner(buf); 782 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 783 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 784 785 if (refs > 1) { 786 if ((owner == root->root_key.objectid || 787 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 788 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 789 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 790 BUG_ON(ret); /* -ENOMEM */ 791 792 if (root->root_key.objectid == 793 BTRFS_TREE_RELOC_OBJECTID) { 794 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 795 BUG_ON(ret); /* -ENOMEM */ 796 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 797 BUG_ON(ret); /* -ENOMEM */ 798 } 799 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 800 } else { 801 802 if (root->root_key.objectid == 803 BTRFS_TREE_RELOC_OBJECTID) 804 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 805 else 806 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 807 BUG_ON(ret); /* -ENOMEM */ 808 } 809 if (new_flags != 0) { 810 ret = btrfs_set_disk_extent_flags(trans, root, 811 buf->start, 812 buf->len, 813 new_flags, 0); 814 if (ret) 815 return ret; 816 } 817 } else { 818 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 819 if (root->root_key.objectid == 820 BTRFS_TREE_RELOC_OBJECTID) 821 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 822 else 823 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 824 BUG_ON(ret); /* -ENOMEM */ 825 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 826 BUG_ON(ret); /* -ENOMEM */ 827 } 828 /* 829 * don't log freeing in case we're freeing the root node, this 830 * is done by tree_mod_log_set_root_pointer later 831 */ 832 if (buf != root->node && btrfs_header_level(buf) != 0) 833 tree_mod_log_free_eb(root->fs_info, buf); 834 clean_tree_block(trans, root, buf); 835 *last_ref = 1; 836 } 837 return 0; 838 } 839 840 /* 841 * does the dirty work in cow of a single block. The parent block (if 842 * supplied) is updated to point to the new cow copy. The new buffer is marked 843 * dirty and returned locked. If you modify the block it needs to be marked 844 * dirty again. 845 * 846 * search_start -- an allocation hint for the new block 847 * 848 * empty_size -- a hint that you plan on doing more cow. This is the size in 849 * bytes the allocator should try to find free next to the block it returns. 850 * This is just a hint and may be ignored by the allocator. 851 */ 852 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 853 struct btrfs_root *root, 854 struct extent_buffer *buf, 855 struct extent_buffer *parent, int parent_slot, 856 struct extent_buffer **cow_ret, 857 u64 search_start, u64 empty_size) 858 { 859 struct btrfs_disk_key disk_key; 860 struct extent_buffer *cow; 861 int level, ret; 862 int last_ref = 0; 863 int unlock_orig = 0; 864 u64 parent_start; 865 866 if (*cow_ret == buf) 867 unlock_orig = 1; 868 869 btrfs_assert_tree_locked(buf); 870 871 WARN_ON(root->ref_cows && trans->transid != 872 root->fs_info->running_transaction->transid); 873 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 874 875 level = btrfs_header_level(buf); 876 877 if (level == 0) 878 btrfs_item_key(buf, &disk_key, 0); 879 else 880 btrfs_node_key(buf, &disk_key, 0); 881 882 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 883 if (parent) 884 parent_start = parent->start; 885 else 886 parent_start = 0; 887 } else 888 parent_start = 0; 889 890 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 891 root->root_key.objectid, &disk_key, 892 level, search_start, empty_size); 893 if (IS_ERR(cow)) 894 return PTR_ERR(cow); 895 896 /* cow is set to blocking by btrfs_init_new_buffer */ 897 898 copy_extent_buffer(cow, buf, 0, 0, cow->len); 899 btrfs_set_header_bytenr(cow, cow->start); 900 btrfs_set_header_generation(cow, trans->transid); 901 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 902 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 903 BTRFS_HEADER_FLAG_RELOC); 904 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 905 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 906 else 907 btrfs_set_header_owner(cow, root->root_key.objectid); 908 909 write_extent_buffer(cow, root->fs_info->fsid, 910 (unsigned long)btrfs_header_fsid(cow), 911 BTRFS_FSID_SIZE); 912 913 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 914 if (ret) { 915 btrfs_abort_transaction(trans, root, ret); 916 return ret; 917 } 918 919 if (root->ref_cows) 920 btrfs_reloc_cow_block(trans, root, buf, cow); 921 922 if (buf == root->node) { 923 WARN_ON(parent && parent != buf); 924 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 925 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 926 parent_start = buf->start; 927 else 928 parent_start = 0; 929 930 extent_buffer_get(cow); 931 tree_mod_log_set_root_pointer(root, cow); 932 rcu_assign_pointer(root->node, cow); 933 934 btrfs_free_tree_block(trans, root, buf, parent_start, 935 last_ref); 936 free_extent_buffer(buf); 937 add_root_to_dirty_list(root); 938 } else { 939 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 940 parent_start = parent->start; 941 else 942 parent_start = 0; 943 944 WARN_ON(trans->transid != btrfs_header_generation(parent)); 945 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 946 MOD_LOG_KEY_REPLACE); 947 btrfs_set_node_blockptr(parent, parent_slot, 948 cow->start); 949 btrfs_set_node_ptr_generation(parent, parent_slot, 950 trans->transid); 951 btrfs_mark_buffer_dirty(parent); 952 btrfs_free_tree_block(trans, root, buf, parent_start, 953 last_ref); 954 } 955 if (unlock_orig) 956 btrfs_tree_unlock(buf); 957 free_extent_buffer_stale(buf); 958 btrfs_mark_buffer_dirty(cow); 959 *cow_ret = cow; 960 return 0; 961 } 962 963 /* 964 * returns the logical address of the oldest predecessor of the given root. 965 * entries older than time_seq are ignored. 966 */ 967 static struct tree_mod_elem * 968 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 969 struct btrfs_root *root, u64 time_seq) 970 { 971 struct tree_mod_elem *tm; 972 struct tree_mod_elem *found = NULL; 973 u64 root_logical = root->node->start; 974 int looped = 0; 975 976 if (!time_seq) 977 return 0; 978 979 /* 980 * the very last operation that's logged for a root is the replacement 981 * operation (if it is replaced at all). this has the index of the *new* 982 * root, making it the very first operation that's logged for this root. 983 */ 984 while (1) { 985 tm = tree_mod_log_search_oldest(fs_info, root_logical, 986 time_seq); 987 if (!looped && !tm) 988 return 0; 989 /* 990 * we must have key remove operations in the log before the 991 * replace operation. 992 */ 993 BUG_ON(!tm); 994 995 if (tm->op != MOD_LOG_ROOT_REPLACE) 996 break; 997 998 found = tm; 999 root_logical = tm->old_root.logical; 1000 BUG_ON(root_logical == root->node->start); 1001 looped = 1; 1002 } 1003 1004 return found; 1005 } 1006 1007 /* 1008 * tm is a pointer to the first operation to rewind within eb. then, all 1009 * previous operations will be rewinded (until we reach something older than 1010 * time_seq). 1011 */ 1012 static void 1013 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq, 1014 struct tree_mod_elem *first_tm) 1015 { 1016 u32 n; 1017 struct rb_node *next; 1018 struct tree_mod_elem *tm = first_tm; 1019 unsigned long o_dst; 1020 unsigned long o_src; 1021 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1022 1023 n = btrfs_header_nritems(eb); 1024 while (tm && tm->elem.seq >= time_seq) { 1025 /* 1026 * all the operations are recorded with the operator used for 1027 * the modification. as we're going backwards, we do the 1028 * opposite of each operation here. 1029 */ 1030 switch (tm->op) { 1031 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1032 BUG_ON(tm->slot < n); 1033 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1034 case MOD_LOG_KEY_REMOVE: 1035 btrfs_set_node_key(eb, &tm->key, tm->slot); 1036 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1037 btrfs_set_node_ptr_generation(eb, tm->slot, 1038 tm->generation); 1039 n++; 1040 break; 1041 case MOD_LOG_KEY_REPLACE: 1042 BUG_ON(tm->slot >= n); 1043 btrfs_set_node_key(eb, &tm->key, tm->slot); 1044 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1045 btrfs_set_node_ptr_generation(eb, tm->slot, 1046 tm->generation); 1047 break; 1048 case MOD_LOG_KEY_ADD: 1049 if (tm->slot != n - 1) { 1050 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1051 o_src = btrfs_node_key_ptr_offset(tm->slot + 1); 1052 memmove_extent_buffer(eb, o_dst, o_src, p_size); 1053 } 1054 n--; 1055 break; 1056 case MOD_LOG_MOVE_KEYS: 1057 memmove_extent_buffer(eb, tm->slot, tm->move.dst_slot, 1058 tm->move.nr_items * p_size); 1059 break; 1060 case MOD_LOG_ROOT_REPLACE: 1061 /* 1062 * this operation is special. for roots, this must be 1063 * handled explicitly before rewinding. 1064 * for non-roots, this operation may exist if the node 1065 * was a root: root A -> child B; then A gets empty and 1066 * B is promoted to the new root. in the mod log, we'll 1067 * have a root-replace operation for B, a tree block 1068 * that is no root. we simply ignore that operation. 1069 */ 1070 break; 1071 } 1072 next = rb_next(&tm->node); 1073 if (!next) 1074 break; 1075 tm = container_of(next, struct tree_mod_elem, node); 1076 if (tm->index != first_tm->index) 1077 break; 1078 } 1079 btrfs_set_header_nritems(eb, n); 1080 } 1081 1082 static struct extent_buffer * 1083 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1084 u64 time_seq) 1085 { 1086 struct extent_buffer *eb_rewin; 1087 struct tree_mod_elem *tm; 1088 1089 if (!time_seq) 1090 return eb; 1091 1092 if (btrfs_header_level(eb) == 0) 1093 return eb; 1094 1095 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1096 if (!tm) 1097 return eb; 1098 1099 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1100 BUG_ON(tm->slot != 0); 1101 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1102 fs_info->tree_root->nodesize); 1103 BUG_ON(!eb_rewin); 1104 btrfs_set_header_bytenr(eb_rewin, eb->start); 1105 btrfs_set_header_backref_rev(eb_rewin, 1106 btrfs_header_backref_rev(eb)); 1107 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1108 } else { 1109 eb_rewin = btrfs_clone_extent_buffer(eb); 1110 BUG_ON(!eb_rewin); 1111 } 1112 1113 extent_buffer_get(eb_rewin); 1114 free_extent_buffer(eb); 1115 1116 __tree_mod_log_rewind(eb_rewin, time_seq, tm); 1117 1118 return eb_rewin; 1119 } 1120 1121 static inline struct extent_buffer * 1122 get_old_root(struct btrfs_root *root, u64 time_seq) 1123 { 1124 struct tree_mod_elem *tm; 1125 struct extent_buffer *eb; 1126 struct tree_mod_root *old_root; 1127 u64 old_generation; 1128 1129 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq); 1130 if (!tm) 1131 return root->node; 1132 1133 old_root = &tm->old_root; 1134 old_generation = tm->generation; 1135 1136 tm = tree_mod_log_search(root->fs_info, old_root->logical, time_seq); 1137 /* 1138 * there was an item in the log when __tree_mod_log_oldest_root 1139 * returned. this one must not go away, because the time_seq passed to 1140 * us must be blocking its removal. 1141 */ 1142 BUG_ON(!tm); 1143 1144 if (old_root->logical == root->node->start) { 1145 /* there are logged operations for the current root */ 1146 eb = btrfs_clone_extent_buffer(root->node); 1147 } else { 1148 /* there's a root replace operation for the current root */ 1149 eb = alloc_dummy_extent_buffer(tm->index << PAGE_CACHE_SHIFT, 1150 root->nodesize); 1151 btrfs_set_header_bytenr(eb, eb->start); 1152 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1153 btrfs_set_header_owner(eb, root->root_key.objectid); 1154 } 1155 if (!eb) 1156 return NULL; 1157 btrfs_set_header_level(eb, old_root->level); 1158 btrfs_set_header_generation(eb, old_generation); 1159 __tree_mod_log_rewind(eb, time_seq, tm); 1160 1161 return eb; 1162 } 1163 1164 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1165 struct btrfs_root *root, 1166 struct extent_buffer *buf) 1167 { 1168 /* ensure we can see the force_cow */ 1169 smp_rmb(); 1170 1171 /* 1172 * We do not need to cow a block if 1173 * 1) this block is not created or changed in this transaction; 1174 * 2) this block does not belong to TREE_RELOC tree; 1175 * 3) the root is not forced COW. 1176 * 1177 * What is forced COW: 1178 * when we create snapshot during commiting the transaction, 1179 * after we've finished coping src root, we must COW the shared 1180 * block to ensure the metadata consistency. 1181 */ 1182 if (btrfs_header_generation(buf) == trans->transid && 1183 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1184 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1185 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1186 !root->force_cow) 1187 return 0; 1188 return 1; 1189 } 1190 1191 /* 1192 * cows a single block, see __btrfs_cow_block for the real work. 1193 * This version of it has extra checks so that a block isn't cow'd more than 1194 * once per transaction, as long as it hasn't been written yet 1195 */ 1196 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1197 struct btrfs_root *root, struct extent_buffer *buf, 1198 struct extent_buffer *parent, int parent_slot, 1199 struct extent_buffer **cow_ret) 1200 { 1201 u64 search_start; 1202 int ret; 1203 1204 if (trans->transaction != root->fs_info->running_transaction) { 1205 printk(KERN_CRIT "trans %llu running %llu\n", 1206 (unsigned long long)trans->transid, 1207 (unsigned long long) 1208 root->fs_info->running_transaction->transid); 1209 WARN_ON(1); 1210 } 1211 if (trans->transid != root->fs_info->generation) { 1212 printk(KERN_CRIT "trans %llu running %llu\n", 1213 (unsigned long long)trans->transid, 1214 (unsigned long long)root->fs_info->generation); 1215 WARN_ON(1); 1216 } 1217 1218 if (!should_cow_block(trans, root, buf)) { 1219 *cow_ret = buf; 1220 return 0; 1221 } 1222 1223 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1224 1225 if (parent) 1226 btrfs_set_lock_blocking(parent); 1227 btrfs_set_lock_blocking(buf); 1228 1229 ret = __btrfs_cow_block(trans, root, buf, parent, 1230 parent_slot, cow_ret, search_start, 0); 1231 1232 trace_btrfs_cow_block(root, buf, *cow_ret); 1233 1234 return ret; 1235 } 1236 1237 /* 1238 * helper function for defrag to decide if two blocks pointed to by a 1239 * node are actually close by 1240 */ 1241 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1242 { 1243 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1244 return 1; 1245 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1246 return 1; 1247 return 0; 1248 } 1249 1250 /* 1251 * compare two keys in a memcmp fashion 1252 */ 1253 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1254 { 1255 struct btrfs_key k1; 1256 1257 btrfs_disk_key_to_cpu(&k1, disk); 1258 1259 return btrfs_comp_cpu_keys(&k1, k2); 1260 } 1261 1262 /* 1263 * same as comp_keys only with two btrfs_key's 1264 */ 1265 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1266 { 1267 if (k1->objectid > k2->objectid) 1268 return 1; 1269 if (k1->objectid < k2->objectid) 1270 return -1; 1271 if (k1->type > k2->type) 1272 return 1; 1273 if (k1->type < k2->type) 1274 return -1; 1275 if (k1->offset > k2->offset) 1276 return 1; 1277 if (k1->offset < k2->offset) 1278 return -1; 1279 return 0; 1280 } 1281 1282 /* 1283 * this is used by the defrag code to go through all the 1284 * leaves pointed to by a node and reallocate them so that 1285 * disk order is close to key order 1286 */ 1287 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1288 struct btrfs_root *root, struct extent_buffer *parent, 1289 int start_slot, int cache_only, u64 *last_ret, 1290 struct btrfs_key *progress) 1291 { 1292 struct extent_buffer *cur; 1293 u64 blocknr; 1294 u64 gen; 1295 u64 search_start = *last_ret; 1296 u64 last_block = 0; 1297 u64 other; 1298 u32 parent_nritems; 1299 int end_slot; 1300 int i; 1301 int err = 0; 1302 int parent_level; 1303 int uptodate; 1304 u32 blocksize; 1305 int progress_passed = 0; 1306 struct btrfs_disk_key disk_key; 1307 1308 parent_level = btrfs_header_level(parent); 1309 if (cache_only && parent_level != 1) 1310 return 0; 1311 1312 if (trans->transaction != root->fs_info->running_transaction) 1313 WARN_ON(1); 1314 if (trans->transid != root->fs_info->generation) 1315 WARN_ON(1); 1316 1317 parent_nritems = btrfs_header_nritems(parent); 1318 blocksize = btrfs_level_size(root, parent_level - 1); 1319 end_slot = parent_nritems; 1320 1321 if (parent_nritems == 1) 1322 return 0; 1323 1324 btrfs_set_lock_blocking(parent); 1325 1326 for (i = start_slot; i < end_slot; i++) { 1327 int close = 1; 1328 1329 btrfs_node_key(parent, &disk_key, i); 1330 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1331 continue; 1332 1333 progress_passed = 1; 1334 blocknr = btrfs_node_blockptr(parent, i); 1335 gen = btrfs_node_ptr_generation(parent, i); 1336 if (last_block == 0) 1337 last_block = blocknr; 1338 1339 if (i > 0) { 1340 other = btrfs_node_blockptr(parent, i - 1); 1341 close = close_blocks(blocknr, other, blocksize); 1342 } 1343 if (!close && i < end_slot - 2) { 1344 other = btrfs_node_blockptr(parent, i + 1); 1345 close = close_blocks(blocknr, other, blocksize); 1346 } 1347 if (close) { 1348 last_block = blocknr; 1349 continue; 1350 } 1351 1352 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1353 if (cur) 1354 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1355 else 1356 uptodate = 0; 1357 if (!cur || !uptodate) { 1358 if (cache_only) { 1359 free_extent_buffer(cur); 1360 continue; 1361 } 1362 if (!cur) { 1363 cur = read_tree_block(root, blocknr, 1364 blocksize, gen); 1365 if (!cur) 1366 return -EIO; 1367 } else if (!uptodate) { 1368 btrfs_read_buffer(cur, gen); 1369 } 1370 } 1371 if (search_start == 0) 1372 search_start = last_block; 1373 1374 btrfs_tree_lock(cur); 1375 btrfs_set_lock_blocking(cur); 1376 err = __btrfs_cow_block(trans, root, cur, parent, i, 1377 &cur, search_start, 1378 min(16 * blocksize, 1379 (end_slot - i) * blocksize)); 1380 if (err) { 1381 btrfs_tree_unlock(cur); 1382 free_extent_buffer(cur); 1383 break; 1384 } 1385 search_start = cur->start; 1386 last_block = cur->start; 1387 *last_ret = search_start; 1388 btrfs_tree_unlock(cur); 1389 free_extent_buffer(cur); 1390 } 1391 return err; 1392 } 1393 1394 /* 1395 * The leaf data grows from end-to-front in the node. 1396 * this returns the address of the start of the last item, 1397 * which is the stop of the leaf data stack 1398 */ 1399 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1400 struct extent_buffer *leaf) 1401 { 1402 u32 nr = btrfs_header_nritems(leaf); 1403 if (nr == 0) 1404 return BTRFS_LEAF_DATA_SIZE(root); 1405 return btrfs_item_offset_nr(leaf, nr - 1); 1406 } 1407 1408 1409 /* 1410 * search for key in the extent_buffer. The items start at offset p, 1411 * and they are item_size apart. There are 'max' items in p. 1412 * 1413 * the slot in the array is returned via slot, and it points to 1414 * the place where you would insert key if it is not found in 1415 * the array. 1416 * 1417 * slot may point to max if the key is bigger than all of the keys 1418 */ 1419 static noinline int generic_bin_search(struct extent_buffer *eb, 1420 unsigned long p, 1421 int item_size, struct btrfs_key *key, 1422 int max, int *slot) 1423 { 1424 int low = 0; 1425 int high = max; 1426 int mid; 1427 int ret; 1428 struct btrfs_disk_key *tmp = NULL; 1429 struct btrfs_disk_key unaligned; 1430 unsigned long offset; 1431 char *kaddr = NULL; 1432 unsigned long map_start = 0; 1433 unsigned long map_len = 0; 1434 int err; 1435 1436 while (low < high) { 1437 mid = (low + high) / 2; 1438 offset = p + mid * item_size; 1439 1440 if (!kaddr || offset < map_start || 1441 (offset + sizeof(struct btrfs_disk_key)) > 1442 map_start + map_len) { 1443 1444 err = map_private_extent_buffer(eb, offset, 1445 sizeof(struct btrfs_disk_key), 1446 &kaddr, &map_start, &map_len); 1447 1448 if (!err) { 1449 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1450 map_start); 1451 } else { 1452 read_extent_buffer(eb, &unaligned, 1453 offset, sizeof(unaligned)); 1454 tmp = &unaligned; 1455 } 1456 1457 } else { 1458 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1459 map_start); 1460 } 1461 ret = comp_keys(tmp, key); 1462 1463 if (ret < 0) 1464 low = mid + 1; 1465 else if (ret > 0) 1466 high = mid; 1467 else { 1468 *slot = mid; 1469 return 0; 1470 } 1471 } 1472 *slot = low; 1473 return 1; 1474 } 1475 1476 /* 1477 * simple bin_search frontend that does the right thing for 1478 * leaves vs nodes 1479 */ 1480 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1481 int level, int *slot) 1482 { 1483 if (level == 0) { 1484 return generic_bin_search(eb, 1485 offsetof(struct btrfs_leaf, items), 1486 sizeof(struct btrfs_item), 1487 key, btrfs_header_nritems(eb), 1488 slot); 1489 } else { 1490 return generic_bin_search(eb, 1491 offsetof(struct btrfs_node, ptrs), 1492 sizeof(struct btrfs_key_ptr), 1493 key, btrfs_header_nritems(eb), 1494 slot); 1495 } 1496 return -1; 1497 } 1498 1499 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1500 int level, int *slot) 1501 { 1502 return bin_search(eb, key, level, slot); 1503 } 1504 1505 static void root_add_used(struct btrfs_root *root, u32 size) 1506 { 1507 spin_lock(&root->accounting_lock); 1508 btrfs_set_root_used(&root->root_item, 1509 btrfs_root_used(&root->root_item) + size); 1510 spin_unlock(&root->accounting_lock); 1511 } 1512 1513 static void root_sub_used(struct btrfs_root *root, u32 size) 1514 { 1515 spin_lock(&root->accounting_lock); 1516 btrfs_set_root_used(&root->root_item, 1517 btrfs_root_used(&root->root_item) - size); 1518 spin_unlock(&root->accounting_lock); 1519 } 1520 1521 /* given a node and slot number, this reads the blocks it points to. The 1522 * extent buffer is returned with a reference taken (but unlocked). 1523 * NULL is returned on error. 1524 */ 1525 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1526 struct extent_buffer *parent, int slot) 1527 { 1528 int level = btrfs_header_level(parent); 1529 if (slot < 0) 1530 return NULL; 1531 if (slot >= btrfs_header_nritems(parent)) 1532 return NULL; 1533 1534 BUG_ON(level == 0); 1535 1536 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 1537 btrfs_level_size(root, level - 1), 1538 btrfs_node_ptr_generation(parent, slot)); 1539 } 1540 1541 /* 1542 * node level balancing, used to make sure nodes are in proper order for 1543 * item deletion. We balance from the top down, so we have to make sure 1544 * that a deletion won't leave an node completely empty later on. 1545 */ 1546 static noinline int balance_level(struct btrfs_trans_handle *trans, 1547 struct btrfs_root *root, 1548 struct btrfs_path *path, int level) 1549 { 1550 struct extent_buffer *right = NULL; 1551 struct extent_buffer *mid; 1552 struct extent_buffer *left = NULL; 1553 struct extent_buffer *parent = NULL; 1554 int ret = 0; 1555 int wret; 1556 int pslot; 1557 int orig_slot = path->slots[level]; 1558 u64 orig_ptr; 1559 1560 if (level == 0) 1561 return 0; 1562 1563 mid = path->nodes[level]; 1564 1565 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1566 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1567 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1568 1569 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1570 1571 if (level < BTRFS_MAX_LEVEL - 1) { 1572 parent = path->nodes[level + 1]; 1573 pslot = path->slots[level + 1]; 1574 } 1575 1576 /* 1577 * deal with the case where there is only one pointer in the root 1578 * by promoting the node below to a root 1579 */ 1580 if (!parent) { 1581 struct extent_buffer *child; 1582 1583 if (btrfs_header_nritems(mid) != 1) 1584 return 0; 1585 1586 /* promote the child to a root */ 1587 child = read_node_slot(root, mid, 0); 1588 if (!child) { 1589 ret = -EROFS; 1590 btrfs_std_error(root->fs_info, ret); 1591 goto enospc; 1592 } 1593 1594 btrfs_tree_lock(child); 1595 btrfs_set_lock_blocking(child); 1596 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1597 if (ret) { 1598 btrfs_tree_unlock(child); 1599 free_extent_buffer(child); 1600 goto enospc; 1601 } 1602 1603 tree_mod_log_set_root_pointer(root, child); 1604 rcu_assign_pointer(root->node, child); 1605 1606 add_root_to_dirty_list(root); 1607 btrfs_tree_unlock(child); 1608 1609 path->locks[level] = 0; 1610 path->nodes[level] = NULL; 1611 clean_tree_block(trans, root, mid); 1612 btrfs_tree_unlock(mid); 1613 /* once for the path */ 1614 free_extent_buffer(mid); 1615 1616 root_sub_used(root, mid->len); 1617 btrfs_free_tree_block(trans, root, mid, 0, 1); 1618 /* once for the root ptr */ 1619 free_extent_buffer_stale(mid); 1620 return 0; 1621 } 1622 if (btrfs_header_nritems(mid) > 1623 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1624 return 0; 1625 1626 btrfs_header_nritems(mid); 1627 1628 left = read_node_slot(root, parent, pslot - 1); 1629 if (left) { 1630 btrfs_tree_lock(left); 1631 btrfs_set_lock_blocking(left); 1632 wret = btrfs_cow_block(trans, root, left, 1633 parent, pslot - 1, &left); 1634 if (wret) { 1635 ret = wret; 1636 goto enospc; 1637 } 1638 } 1639 right = read_node_slot(root, parent, pslot + 1); 1640 if (right) { 1641 btrfs_tree_lock(right); 1642 btrfs_set_lock_blocking(right); 1643 wret = btrfs_cow_block(trans, root, right, 1644 parent, pslot + 1, &right); 1645 if (wret) { 1646 ret = wret; 1647 goto enospc; 1648 } 1649 } 1650 1651 /* first, try to make some room in the middle buffer */ 1652 if (left) { 1653 orig_slot += btrfs_header_nritems(left); 1654 wret = push_node_left(trans, root, left, mid, 1); 1655 if (wret < 0) 1656 ret = wret; 1657 btrfs_header_nritems(mid); 1658 } 1659 1660 /* 1661 * then try to empty the right most buffer into the middle 1662 */ 1663 if (right) { 1664 wret = push_node_left(trans, root, mid, right, 1); 1665 if (wret < 0 && wret != -ENOSPC) 1666 ret = wret; 1667 if (btrfs_header_nritems(right) == 0) { 1668 clean_tree_block(trans, root, right); 1669 btrfs_tree_unlock(right); 1670 del_ptr(trans, root, path, level + 1, pslot + 1, 1); 1671 root_sub_used(root, right->len); 1672 btrfs_free_tree_block(trans, root, right, 0, 1); 1673 free_extent_buffer_stale(right); 1674 right = NULL; 1675 } else { 1676 struct btrfs_disk_key right_key; 1677 btrfs_node_key(right, &right_key, 0); 1678 tree_mod_log_set_node_key(root->fs_info, parent, 1679 &right_key, pslot + 1, 0); 1680 btrfs_set_node_key(parent, &right_key, pslot + 1); 1681 btrfs_mark_buffer_dirty(parent); 1682 } 1683 } 1684 if (btrfs_header_nritems(mid) == 1) { 1685 /* 1686 * we're not allowed to leave a node with one item in the 1687 * tree during a delete. A deletion from lower in the tree 1688 * could try to delete the only pointer in this node. 1689 * So, pull some keys from the left. 1690 * There has to be a left pointer at this point because 1691 * otherwise we would have pulled some pointers from the 1692 * right 1693 */ 1694 if (!left) { 1695 ret = -EROFS; 1696 btrfs_std_error(root->fs_info, ret); 1697 goto enospc; 1698 } 1699 wret = balance_node_right(trans, root, mid, left); 1700 if (wret < 0) { 1701 ret = wret; 1702 goto enospc; 1703 } 1704 if (wret == 1) { 1705 wret = push_node_left(trans, root, left, mid, 1); 1706 if (wret < 0) 1707 ret = wret; 1708 } 1709 BUG_ON(wret == 1); 1710 } 1711 if (btrfs_header_nritems(mid) == 0) { 1712 clean_tree_block(trans, root, mid); 1713 btrfs_tree_unlock(mid); 1714 del_ptr(trans, root, path, level + 1, pslot, 1); 1715 root_sub_used(root, mid->len); 1716 btrfs_free_tree_block(trans, root, mid, 0, 1); 1717 free_extent_buffer_stale(mid); 1718 mid = NULL; 1719 } else { 1720 /* update the parent key to reflect our changes */ 1721 struct btrfs_disk_key mid_key; 1722 btrfs_node_key(mid, &mid_key, 0); 1723 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key, 1724 pslot, 0); 1725 btrfs_set_node_key(parent, &mid_key, pslot); 1726 btrfs_mark_buffer_dirty(parent); 1727 } 1728 1729 /* update the path */ 1730 if (left) { 1731 if (btrfs_header_nritems(left) > orig_slot) { 1732 extent_buffer_get(left); 1733 /* left was locked after cow */ 1734 path->nodes[level] = left; 1735 path->slots[level + 1] -= 1; 1736 path->slots[level] = orig_slot; 1737 if (mid) { 1738 btrfs_tree_unlock(mid); 1739 free_extent_buffer(mid); 1740 } 1741 } else { 1742 orig_slot -= btrfs_header_nritems(left); 1743 path->slots[level] = orig_slot; 1744 } 1745 } 1746 /* double check we haven't messed things up */ 1747 if (orig_ptr != 1748 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1749 BUG(); 1750 enospc: 1751 if (right) { 1752 btrfs_tree_unlock(right); 1753 free_extent_buffer(right); 1754 } 1755 if (left) { 1756 if (path->nodes[level] != left) 1757 btrfs_tree_unlock(left); 1758 free_extent_buffer(left); 1759 } 1760 return ret; 1761 } 1762 1763 /* Node balancing for insertion. Here we only split or push nodes around 1764 * when they are completely full. This is also done top down, so we 1765 * have to be pessimistic. 1766 */ 1767 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1768 struct btrfs_root *root, 1769 struct btrfs_path *path, int level) 1770 { 1771 struct extent_buffer *right = NULL; 1772 struct extent_buffer *mid; 1773 struct extent_buffer *left = NULL; 1774 struct extent_buffer *parent = NULL; 1775 int ret = 0; 1776 int wret; 1777 int pslot; 1778 int orig_slot = path->slots[level]; 1779 1780 if (level == 0) 1781 return 1; 1782 1783 mid = path->nodes[level]; 1784 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1785 1786 if (level < BTRFS_MAX_LEVEL - 1) { 1787 parent = path->nodes[level + 1]; 1788 pslot = path->slots[level + 1]; 1789 } 1790 1791 if (!parent) 1792 return 1; 1793 1794 left = read_node_slot(root, parent, pslot - 1); 1795 1796 /* first, try to make some room in the middle buffer */ 1797 if (left) { 1798 u32 left_nr; 1799 1800 btrfs_tree_lock(left); 1801 btrfs_set_lock_blocking(left); 1802 1803 left_nr = btrfs_header_nritems(left); 1804 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1805 wret = 1; 1806 } else { 1807 ret = btrfs_cow_block(trans, root, left, parent, 1808 pslot - 1, &left); 1809 if (ret) 1810 wret = 1; 1811 else { 1812 wret = push_node_left(trans, root, 1813 left, mid, 0); 1814 } 1815 } 1816 if (wret < 0) 1817 ret = wret; 1818 if (wret == 0) { 1819 struct btrfs_disk_key disk_key; 1820 orig_slot += left_nr; 1821 btrfs_node_key(mid, &disk_key, 0); 1822 tree_mod_log_set_node_key(root->fs_info, parent, 1823 &disk_key, pslot, 0); 1824 btrfs_set_node_key(parent, &disk_key, pslot); 1825 btrfs_mark_buffer_dirty(parent); 1826 if (btrfs_header_nritems(left) > orig_slot) { 1827 path->nodes[level] = left; 1828 path->slots[level + 1] -= 1; 1829 path->slots[level] = orig_slot; 1830 btrfs_tree_unlock(mid); 1831 free_extent_buffer(mid); 1832 } else { 1833 orig_slot -= 1834 btrfs_header_nritems(left); 1835 path->slots[level] = orig_slot; 1836 btrfs_tree_unlock(left); 1837 free_extent_buffer(left); 1838 } 1839 return 0; 1840 } 1841 btrfs_tree_unlock(left); 1842 free_extent_buffer(left); 1843 } 1844 right = read_node_slot(root, parent, pslot + 1); 1845 1846 /* 1847 * then try to empty the right most buffer into the middle 1848 */ 1849 if (right) { 1850 u32 right_nr; 1851 1852 btrfs_tree_lock(right); 1853 btrfs_set_lock_blocking(right); 1854 1855 right_nr = btrfs_header_nritems(right); 1856 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1857 wret = 1; 1858 } else { 1859 ret = btrfs_cow_block(trans, root, right, 1860 parent, pslot + 1, 1861 &right); 1862 if (ret) 1863 wret = 1; 1864 else { 1865 wret = balance_node_right(trans, root, 1866 right, mid); 1867 } 1868 } 1869 if (wret < 0) 1870 ret = wret; 1871 if (wret == 0) { 1872 struct btrfs_disk_key disk_key; 1873 1874 btrfs_node_key(right, &disk_key, 0); 1875 tree_mod_log_set_node_key(root->fs_info, parent, 1876 &disk_key, pslot + 1, 0); 1877 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1878 btrfs_mark_buffer_dirty(parent); 1879 1880 if (btrfs_header_nritems(mid) <= orig_slot) { 1881 path->nodes[level] = right; 1882 path->slots[level + 1] += 1; 1883 path->slots[level] = orig_slot - 1884 btrfs_header_nritems(mid); 1885 btrfs_tree_unlock(mid); 1886 free_extent_buffer(mid); 1887 } else { 1888 btrfs_tree_unlock(right); 1889 free_extent_buffer(right); 1890 } 1891 return 0; 1892 } 1893 btrfs_tree_unlock(right); 1894 free_extent_buffer(right); 1895 } 1896 return 1; 1897 } 1898 1899 /* 1900 * readahead one full node of leaves, finding things that are close 1901 * to the block in 'slot', and triggering ra on them. 1902 */ 1903 static void reada_for_search(struct btrfs_root *root, 1904 struct btrfs_path *path, 1905 int level, int slot, u64 objectid) 1906 { 1907 struct extent_buffer *node; 1908 struct btrfs_disk_key disk_key; 1909 u32 nritems; 1910 u64 search; 1911 u64 target; 1912 u64 nread = 0; 1913 u64 gen; 1914 int direction = path->reada; 1915 struct extent_buffer *eb; 1916 u32 nr; 1917 u32 blocksize; 1918 u32 nscan = 0; 1919 1920 if (level != 1) 1921 return; 1922 1923 if (!path->nodes[level]) 1924 return; 1925 1926 node = path->nodes[level]; 1927 1928 search = btrfs_node_blockptr(node, slot); 1929 blocksize = btrfs_level_size(root, level - 1); 1930 eb = btrfs_find_tree_block(root, search, blocksize); 1931 if (eb) { 1932 free_extent_buffer(eb); 1933 return; 1934 } 1935 1936 target = search; 1937 1938 nritems = btrfs_header_nritems(node); 1939 nr = slot; 1940 1941 while (1) { 1942 if (direction < 0) { 1943 if (nr == 0) 1944 break; 1945 nr--; 1946 } else if (direction > 0) { 1947 nr++; 1948 if (nr >= nritems) 1949 break; 1950 } 1951 if (path->reada < 0 && objectid) { 1952 btrfs_node_key(node, &disk_key, nr); 1953 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1954 break; 1955 } 1956 search = btrfs_node_blockptr(node, nr); 1957 if ((search <= target && target - search <= 65536) || 1958 (search > target && search - target <= 65536)) { 1959 gen = btrfs_node_ptr_generation(node, nr); 1960 readahead_tree_block(root, search, blocksize, gen); 1961 nread += blocksize; 1962 } 1963 nscan++; 1964 if ((nread > 65536 || nscan > 32)) 1965 break; 1966 } 1967 } 1968 1969 /* 1970 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1971 * cache 1972 */ 1973 static noinline int reada_for_balance(struct btrfs_root *root, 1974 struct btrfs_path *path, int level) 1975 { 1976 int slot; 1977 int nritems; 1978 struct extent_buffer *parent; 1979 struct extent_buffer *eb; 1980 u64 gen; 1981 u64 block1 = 0; 1982 u64 block2 = 0; 1983 int ret = 0; 1984 int blocksize; 1985 1986 parent = path->nodes[level + 1]; 1987 if (!parent) 1988 return 0; 1989 1990 nritems = btrfs_header_nritems(parent); 1991 slot = path->slots[level + 1]; 1992 blocksize = btrfs_level_size(root, level); 1993 1994 if (slot > 0) { 1995 block1 = btrfs_node_blockptr(parent, slot - 1); 1996 gen = btrfs_node_ptr_generation(parent, slot - 1); 1997 eb = btrfs_find_tree_block(root, block1, blocksize); 1998 /* 1999 * if we get -eagain from btrfs_buffer_uptodate, we 2000 * don't want to return eagain here. That will loop 2001 * forever 2002 */ 2003 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2004 block1 = 0; 2005 free_extent_buffer(eb); 2006 } 2007 if (slot + 1 < nritems) { 2008 block2 = btrfs_node_blockptr(parent, slot + 1); 2009 gen = btrfs_node_ptr_generation(parent, slot + 1); 2010 eb = btrfs_find_tree_block(root, block2, blocksize); 2011 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2012 block2 = 0; 2013 free_extent_buffer(eb); 2014 } 2015 if (block1 || block2) { 2016 ret = -EAGAIN; 2017 2018 /* release the whole path */ 2019 btrfs_release_path(path); 2020 2021 /* read the blocks */ 2022 if (block1) 2023 readahead_tree_block(root, block1, blocksize, 0); 2024 if (block2) 2025 readahead_tree_block(root, block2, blocksize, 0); 2026 2027 if (block1) { 2028 eb = read_tree_block(root, block1, blocksize, 0); 2029 free_extent_buffer(eb); 2030 } 2031 if (block2) { 2032 eb = read_tree_block(root, block2, blocksize, 0); 2033 free_extent_buffer(eb); 2034 } 2035 } 2036 return ret; 2037 } 2038 2039 2040 /* 2041 * when we walk down the tree, it is usually safe to unlock the higher layers 2042 * in the tree. The exceptions are when our path goes through slot 0, because 2043 * operations on the tree might require changing key pointers higher up in the 2044 * tree. 2045 * 2046 * callers might also have set path->keep_locks, which tells this code to keep 2047 * the lock if the path points to the last slot in the block. This is part of 2048 * walking through the tree, and selecting the next slot in the higher block. 2049 * 2050 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2051 * if lowest_unlock is 1, level 0 won't be unlocked 2052 */ 2053 static noinline void unlock_up(struct btrfs_path *path, int level, 2054 int lowest_unlock, int min_write_lock_level, 2055 int *write_lock_level) 2056 { 2057 int i; 2058 int skip_level = level; 2059 int no_skips = 0; 2060 struct extent_buffer *t; 2061 2062 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2063 if (!path->nodes[i]) 2064 break; 2065 if (!path->locks[i]) 2066 break; 2067 if (!no_skips && path->slots[i] == 0) { 2068 skip_level = i + 1; 2069 continue; 2070 } 2071 if (!no_skips && path->keep_locks) { 2072 u32 nritems; 2073 t = path->nodes[i]; 2074 nritems = btrfs_header_nritems(t); 2075 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2076 skip_level = i + 1; 2077 continue; 2078 } 2079 } 2080 if (skip_level < i && i >= lowest_unlock) 2081 no_skips = 1; 2082 2083 t = path->nodes[i]; 2084 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2085 btrfs_tree_unlock_rw(t, path->locks[i]); 2086 path->locks[i] = 0; 2087 if (write_lock_level && 2088 i > min_write_lock_level && 2089 i <= *write_lock_level) { 2090 *write_lock_level = i - 1; 2091 } 2092 } 2093 } 2094 } 2095 2096 /* 2097 * This releases any locks held in the path starting at level and 2098 * going all the way up to the root. 2099 * 2100 * btrfs_search_slot will keep the lock held on higher nodes in a few 2101 * corner cases, such as COW of the block at slot zero in the node. This 2102 * ignores those rules, and it should only be called when there are no 2103 * more updates to be done higher up in the tree. 2104 */ 2105 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2106 { 2107 int i; 2108 2109 if (path->keep_locks) 2110 return; 2111 2112 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2113 if (!path->nodes[i]) 2114 continue; 2115 if (!path->locks[i]) 2116 continue; 2117 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2118 path->locks[i] = 0; 2119 } 2120 } 2121 2122 /* 2123 * helper function for btrfs_search_slot. The goal is to find a block 2124 * in cache without setting the path to blocking. If we find the block 2125 * we return zero and the path is unchanged. 2126 * 2127 * If we can't find the block, we set the path blocking and do some 2128 * reada. -EAGAIN is returned and the search must be repeated. 2129 */ 2130 static int 2131 read_block_for_search(struct btrfs_trans_handle *trans, 2132 struct btrfs_root *root, struct btrfs_path *p, 2133 struct extent_buffer **eb_ret, int level, int slot, 2134 struct btrfs_key *key, u64 time_seq) 2135 { 2136 u64 blocknr; 2137 u64 gen; 2138 u32 blocksize; 2139 struct extent_buffer *b = *eb_ret; 2140 struct extent_buffer *tmp; 2141 int ret; 2142 2143 blocknr = btrfs_node_blockptr(b, slot); 2144 gen = btrfs_node_ptr_generation(b, slot); 2145 blocksize = btrfs_level_size(root, level - 1); 2146 2147 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2148 if (tmp) { 2149 /* first we do an atomic uptodate check */ 2150 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) { 2151 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2152 /* 2153 * we found an up to date block without 2154 * sleeping, return 2155 * right away 2156 */ 2157 *eb_ret = tmp; 2158 return 0; 2159 } 2160 /* the pages were up to date, but we failed 2161 * the generation number check. Do a full 2162 * read for the generation number that is correct. 2163 * We must do this without dropping locks so 2164 * we can trust our generation number 2165 */ 2166 free_extent_buffer(tmp); 2167 btrfs_set_path_blocking(p); 2168 2169 /* now we're allowed to do a blocking uptodate check */ 2170 tmp = read_tree_block(root, blocknr, blocksize, gen); 2171 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) { 2172 *eb_ret = tmp; 2173 return 0; 2174 } 2175 free_extent_buffer(tmp); 2176 btrfs_release_path(p); 2177 return -EIO; 2178 } 2179 } 2180 2181 /* 2182 * reduce lock contention at high levels 2183 * of the btree by dropping locks before 2184 * we read. Don't release the lock on the current 2185 * level because we need to walk this node to figure 2186 * out which blocks to read. 2187 */ 2188 btrfs_unlock_up_safe(p, level + 1); 2189 btrfs_set_path_blocking(p); 2190 2191 free_extent_buffer(tmp); 2192 if (p->reada) 2193 reada_for_search(root, p, level, slot, key->objectid); 2194 2195 btrfs_release_path(p); 2196 2197 ret = -EAGAIN; 2198 tmp = read_tree_block(root, blocknr, blocksize, 0); 2199 if (tmp) { 2200 /* 2201 * If the read above didn't mark this buffer up to date, 2202 * it will never end up being up to date. Set ret to EIO now 2203 * and give up so that our caller doesn't loop forever 2204 * on our EAGAINs. 2205 */ 2206 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2207 ret = -EIO; 2208 free_extent_buffer(tmp); 2209 } 2210 return ret; 2211 } 2212 2213 /* 2214 * helper function for btrfs_search_slot. This does all of the checks 2215 * for node-level blocks and does any balancing required based on 2216 * the ins_len. 2217 * 2218 * If no extra work was required, zero is returned. If we had to 2219 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2220 * start over 2221 */ 2222 static int 2223 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2224 struct btrfs_root *root, struct btrfs_path *p, 2225 struct extent_buffer *b, int level, int ins_len, 2226 int *write_lock_level) 2227 { 2228 int ret; 2229 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2230 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2231 int sret; 2232 2233 if (*write_lock_level < level + 1) { 2234 *write_lock_level = level + 1; 2235 btrfs_release_path(p); 2236 goto again; 2237 } 2238 2239 sret = reada_for_balance(root, p, level); 2240 if (sret) 2241 goto again; 2242 2243 btrfs_set_path_blocking(p); 2244 sret = split_node(trans, root, p, level); 2245 btrfs_clear_path_blocking(p, NULL, 0); 2246 2247 BUG_ON(sret > 0); 2248 if (sret) { 2249 ret = sret; 2250 goto done; 2251 } 2252 b = p->nodes[level]; 2253 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2254 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2255 int sret; 2256 2257 if (*write_lock_level < level + 1) { 2258 *write_lock_level = level + 1; 2259 btrfs_release_path(p); 2260 goto again; 2261 } 2262 2263 sret = reada_for_balance(root, p, level); 2264 if (sret) 2265 goto again; 2266 2267 btrfs_set_path_blocking(p); 2268 sret = balance_level(trans, root, p, level); 2269 btrfs_clear_path_blocking(p, NULL, 0); 2270 2271 if (sret) { 2272 ret = sret; 2273 goto done; 2274 } 2275 b = p->nodes[level]; 2276 if (!b) { 2277 btrfs_release_path(p); 2278 goto again; 2279 } 2280 BUG_ON(btrfs_header_nritems(b) == 1); 2281 } 2282 return 0; 2283 2284 again: 2285 ret = -EAGAIN; 2286 done: 2287 return ret; 2288 } 2289 2290 /* 2291 * look for key in the tree. path is filled in with nodes along the way 2292 * if key is found, we return zero and you can find the item in the leaf 2293 * level of the path (level 0) 2294 * 2295 * If the key isn't found, the path points to the slot where it should 2296 * be inserted, and 1 is returned. If there are other errors during the 2297 * search a negative error number is returned. 2298 * 2299 * if ins_len > 0, nodes and leaves will be split as we walk down the 2300 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2301 * possible) 2302 */ 2303 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2304 *root, struct btrfs_key *key, struct btrfs_path *p, int 2305 ins_len, int cow) 2306 { 2307 struct extent_buffer *b; 2308 int slot; 2309 int ret; 2310 int err; 2311 int level; 2312 int lowest_unlock = 1; 2313 int root_lock; 2314 /* everything at write_lock_level or lower must be write locked */ 2315 int write_lock_level = 0; 2316 u8 lowest_level = 0; 2317 int min_write_lock_level; 2318 2319 lowest_level = p->lowest_level; 2320 WARN_ON(lowest_level && ins_len > 0); 2321 WARN_ON(p->nodes[0] != NULL); 2322 2323 if (ins_len < 0) { 2324 lowest_unlock = 2; 2325 2326 /* when we are removing items, we might have to go up to level 2327 * two as we update tree pointers Make sure we keep write 2328 * for those levels as well 2329 */ 2330 write_lock_level = 2; 2331 } else if (ins_len > 0) { 2332 /* 2333 * for inserting items, make sure we have a write lock on 2334 * level 1 so we can update keys 2335 */ 2336 write_lock_level = 1; 2337 } 2338 2339 if (!cow) 2340 write_lock_level = -1; 2341 2342 if (cow && (p->keep_locks || p->lowest_level)) 2343 write_lock_level = BTRFS_MAX_LEVEL; 2344 2345 min_write_lock_level = write_lock_level; 2346 2347 again: 2348 /* 2349 * we try very hard to do read locks on the root 2350 */ 2351 root_lock = BTRFS_READ_LOCK; 2352 level = 0; 2353 if (p->search_commit_root) { 2354 /* 2355 * the commit roots are read only 2356 * so we always do read locks 2357 */ 2358 b = root->commit_root; 2359 extent_buffer_get(b); 2360 level = btrfs_header_level(b); 2361 if (!p->skip_locking) 2362 btrfs_tree_read_lock(b); 2363 } else { 2364 if (p->skip_locking) { 2365 b = btrfs_root_node(root); 2366 level = btrfs_header_level(b); 2367 } else { 2368 /* we don't know the level of the root node 2369 * until we actually have it read locked 2370 */ 2371 b = btrfs_read_lock_root_node(root); 2372 level = btrfs_header_level(b); 2373 if (level <= write_lock_level) { 2374 /* whoops, must trade for write lock */ 2375 btrfs_tree_read_unlock(b); 2376 free_extent_buffer(b); 2377 b = btrfs_lock_root_node(root); 2378 root_lock = BTRFS_WRITE_LOCK; 2379 2380 /* the level might have changed, check again */ 2381 level = btrfs_header_level(b); 2382 } 2383 } 2384 } 2385 p->nodes[level] = b; 2386 if (!p->skip_locking) 2387 p->locks[level] = root_lock; 2388 2389 while (b) { 2390 level = btrfs_header_level(b); 2391 2392 /* 2393 * setup the path here so we can release it under lock 2394 * contention with the cow code 2395 */ 2396 if (cow) { 2397 /* 2398 * if we don't really need to cow this block 2399 * then we don't want to set the path blocking, 2400 * so we test it here 2401 */ 2402 if (!should_cow_block(trans, root, b)) 2403 goto cow_done; 2404 2405 btrfs_set_path_blocking(p); 2406 2407 /* 2408 * must have write locks on this node and the 2409 * parent 2410 */ 2411 if (level + 1 > write_lock_level) { 2412 write_lock_level = level + 1; 2413 btrfs_release_path(p); 2414 goto again; 2415 } 2416 2417 err = btrfs_cow_block(trans, root, b, 2418 p->nodes[level + 1], 2419 p->slots[level + 1], &b); 2420 if (err) { 2421 ret = err; 2422 goto done; 2423 } 2424 } 2425 cow_done: 2426 BUG_ON(!cow && ins_len); 2427 2428 p->nodes[level] = b; 2429 btrfs_clear_path_blocking(p, NULL, 0); 2430 2431 /* 2432 * we have a lock on b and as long as we aren't changing 2433 * the tree, there is no way to for the items in b to change. 2434 * It is safe to drop the lock on our parent before we 2435 * go through the expensive btree search on b. 2436 * 2437 * If cow is true, then we might be changing slot zero, 2438 * which may require changing the parent. So, we can't 2439 * drop the lock until after we know which slot we're 2440 * operating on. 2441 */ 2442 if (!cow) 2443 btrfs_unlock_up_safe(p, level + 1); 2444 2445 ret = bin_search(b, key, level, &slot); 2446 2447 if (level != 0) { 2448 int dec = 0; 2449 if (ret && slot > 0) { 2450 dec = 1; 2451 slot -= 1; 2452 } 2453 p->slots[level] = slot; 2454 err = setup_nodes_for_search(trans, root, p, b, level, 2455 ins_len, &write_lock_level); 2456 if (err == -EAGAIN) 2457 goto again; 2458 if (err) { 2459 ret = err; 2460 goto done; 2461 } 2462 b = p->nodes[level]; 2463 slot = p->slots[level]; 2464 2465 /* 2466 * slot 0 is special, if we change the key 2467 * we have to update the parent pointer 2468 * which means we must have a write lock 2469 * on the parent 2470 */ 2471 if (slot == 0 && cow && 2472 write_lock_level < level + 1) { 2473 write_lock_level = level + 1; 2474 btrfs_release_path(p); 2475 goto again; 2476 } 2477 2478 unlock_up(p, level, lowest_unlock, 2479 min_write_lock_level, &write_lock_level); 2480 2481 if (level == lowest_level) { 2482 if (dec) 2483 p->slots[level]++; 2484 goto done; 2485 } 2486 2487 err = read_block_for_search(trans, root, p, 2488 &b, level, slot, key, 0); 2489 if (err == -EAGAIN) 2490 goto again; 2491 if (err) { 2492 ret = err; 2493 goto done; 2494 } 2495 2496 if (!p->skip_locking) { 2497 level = btrfs_header_level(b); 2498 if (level <= write_lock_level) { 2499 err = btrfs_try_tree_write_lock(b); 2500 if (!err) { 2501 btrfs_set_path_blocking(p); 2502 btrfs_tree_lock(b); 2503 btrfs_clear_path_blocking(p, b, 2504 BTRFS_WRITE_LOCK); 2505 } 2506 p->locks[level] = BTRFS_WRITE_LOCK; 2507 } else { 2508 err = btrfs_try_tree_read_lock(b); 2509 if (!err) { 2510 btrfs_set_path_blocking(p); 2511 btrfs_tree_read_lock(b); 2512 btrfs_clear_path_blocking(p, b, 2513 BTRFS_READ_LOCK); 2514 } 2515 p->locks[level] = BTRFS_READ_LOCK; 2516 } 2517 p->nodes[level] = b; 2518 } 2519 } else { 2520 p->slots[level] = slot; 2521 if (ins_len > 0 && 2522 btrfs_leaf_free_space(root, b) < ins_len) { 2523 if (write_lock_level < 1) { 2524 write_lock_level = 1; 2525 btrfs_release_path(p); 2526 goto again; 2527 } 2528 2529 btrfs_set_path_blocking(p); 2530 err = split_leaf(trans, root, key, 2531 p, ins_len, ret == 0); 2532 btrfs_clear_path_blocking(p, NULL, 0); 2533 2534 BUG_ON(err > 0); 2535 if (err) { 2536 ret = err; 2537 goto done; 2538 } 2539 } 2540 if (!p->search_for_split) 2541 unlock_up(p, level, lowest_unlock, 2542 min_write_lock_level, &write_lock_level); 2543 goto done; 2544 } 2545 } 2546 ret = 1; 2547 done: 2548 /* 2549 * we don't really know what they plan on doing with the path 2550 * from here on, so for now just mark it as blocking 2551 */ 2552 if (!p->leave_spinning) 2553 btrfs_set_path_blocking(p); 2554 if (ret < 0) 2555 btrfs_release_path(p); 2556 return ret; 2557 } 2558 2559 /* 2560 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2561 * current state of the tree together with the operations recorded in the tree 2562 * modification log to search for the key in a previous version of this tree, as 2563 * denoted by the time_seq parameter. 2564 * 2565 * Naturally, there is no support for insert, delete or cow operations. 2566 * 2567 * The resulting path and return value will be set up as if we called 2568 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2569 */ 2570 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2571 struct btrfs_path *p, u64 time_seq) 2572 { 2573 struct extent_buffer *b; 2574 int slot; 2575 int ret; 2576 int err; 2577 int level; 2578 int lowest_unlock = 1; 2579 u8 lowest_level = 0; 2580 2581 lowest_level = p->lowest_level; 2582 WARN_ON(p->nodes[0] != NULL); 2583 2584 if (p->search_commit_root) { 2585 BUG_ON(time_seq); 2586 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2587 } 2588 2589 again: 2590 level = 0; 2591 b = get_old_root(root, time_seq); 2592 extent_buffer_get(b); 2593 level = btrfs_header_level(b); 2594 btrfs_tree_read_lock(b); 2595 p->locks[level] = BTRFS_READ_LOCK; 2596 2597 while (b) { 2598 level = btrfs_header_level(b); 2599 p->nodes[level] = b; 2600 btrfs_clear_path_blocking(p, NULL, 0); 2601 2602 /* 2603 * we have a lock on b and as long as we aren't changing 2604 * the tree, there is no way to for the items in b to change. 2605 * It is safe to drop the lock on our parent before we 2606 * go through the expensive btree search on b. 2607 */ 2608 btrfs_unlock_up_safe(p, level + 1); 2609 2610 ret = bin_search(b, key, level, &slot); 2611 2612 if (level != 0) { 2613 int dec = 0; 2614 if (ret && slot > 0) { 2615 dec = 1; 2616 slot -= 1; 2617 } 2618 p->slots[level] = slot; 2619 unlock_up(p, level, lowest_unlock, 0, NULL); 2620 2621 if (level == lowest_level) { 2622 if (dec) 2623 p->slots[level]++; 2624 goto done; 2625 } 2626 2627 err = read_block_for_search(NULL, root, p, &b, level, 2628 slot, key, time_seq); 2629 if (err == -EAGAIN) 2630 goto again; 2631 if (err) { 2632 ret = err; 2633 goto done; 2634 } 2635 2636 level = btrfs_header_level(b); 2637 err = btrfs_try_tree_read_lock(b); 2638 if (!err) { 2639 btrfs_set_path_blocking(p); 2640 btrfs_tree_read_lock(b); 2641 btrfs_clear_path_blocking(p, b, 2642 BTRFS_READ_LOCK); 2643 } 2644 p->locks[level] = BTRFS_READ_LOCK; 2645 p->nodes[level] = b; 2646 b = tree_mod_log_rewind(root->fs_info, b, time_seq); 2647 if (b != p->nodes[level]) { 2648 btrfs_tree_unlock_rw(p->nodes[level], 2649 p->locks[level]); 2650 p->locks[level] = 0; 2651 p->nodes[level] = b; 2652 } 2653 } else { 2654 p->slots[level] = slot; 2655 unlock_up(p, level, lowest_unlock, 0, NULL); 2656 goto done; 2657 } 2658 } 2659 ret = 1; 2660 done: 2661 if (!p->leave_spinning) 2662 btrfs_set_path_blocking(p); 2663 if (ret < 0) 2664 btrfs_release_path(p); 2665 2666 return ret; 2667 } 2668 2669 /* 2670 * adjust the pointers going up the tree, starting at level 2671 * making sure the right key of each node is points to 'key'. 2672 * This is used after shifting pointers to the left, so it stops 2673 * fixing up pointers when a given leaf/node is not in slot 0 of the 2674 * higher levels 2675 * 2676 */ 2677 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2678 struct btrfs_root *root, struct btrfs_path *path, 2679 struct btrfs_disk_key *key, int level) 2680 { 2681 int i; 2682 struct extent_buffer *t; 2683 2684 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2685 int tslot = path->slots[i]; 2686 if (!path->nodes[i]) 2687 break; 2688 t = path->nodes[i]; 2689 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1); 2690 btrfs_set_node_key(t, key, tslot); 2691 btrfs_mark_buffer_dirty(path->nodes[i]); 2692 if (tslot != 0) 2693 break; 2694 } 2695 } 2696 2697 /* 2698 * update item key. 2699 * 2700 * This function isn't completely safe. It's the caller's responsibility 2701 * that the new key won't break the order 2702 */ 2703 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2704 struct btrfs_root *root, struct btrfs_path *path, 2705 struct btrfs_key *new_key) 2706 { 2707 struct btrfs_disk_key disk_key; 2708 struct extent_buffer *eb; 2709 int slot; 2710 2711 eb = path->nodes[0]; 2712 slot = path->slots[0]; 2713 if (slot > 0) { 2714 btrfs_item_key(eb, &disk_key, slot - 1); 2715 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2716 } 2717 if (slot < btrfs_header_nritems(eb) - 1) { 2718 btrfs_item_key(eb, &disk_key, slot + 1); 2719 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2720 } 2721 2722 btrfs_cpu_key_to_disk(&disk_key, new_key); 2723 btrfs_set_item_key(eb, &disk_key, slot); 2724 btrfs_mark_buffer_dirty(eb); 2725 if (slot == 0) 2726 fixup_low_keys(trans, root, path, &disk_key, 1); 2727 } 2728 2729 /* 2730 * try to push data from one node into the next node left in the 2731 * tree. 2732 * 2733 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2734 * error, and > 0 if there was no room in the left hand block. 2735 */ 2736 static int push_node_left(struct btrfs_trans_handle *trans, 2737 struct btrfs_root *root, struct extent_buffer *dst, 2738 struct extent_buffer *src, int empty) 2739 { 2740 int push_items = 0; 2741 int src_nritems; 2742 int dst_nritems; 2743 int ret = 0; 2744 2745 src_nritems = btrfs_header_nritems(src); 2746 dst_nritems = btrfs_header_nritems(dst); 2747 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2748 WARN_ON(btrfs_header_generation(src) != trans->transid); 2749 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2750 2751 if (!empty && src_nritems <= 8) 2752 return 1; 2753 2754 if (push_items <= 0) 2755 return 1; 2756 2757 if (empty) { 2758 push_items = min(src_nritems, push_items); 2759 if (push_items < src_nritems) { 2760 /* leave at least 8 pointers in the node if 2761 * we aren't going to empty it 2762 */ 2763 if (src_nritems - push_items < 8) { 2764 if (push_items <= 8) 2765 return 1; 2766 push_items -= 8; 2767 } 2768 } 2769 } else 2770 push_items = min(src_nritems - 8, push_items); 2771 2772 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 2773 push_items); 2774 copy_extent_buffer(dst, src, 2775 btrfs_node_key_ptr_offset(dst_nritems), 2776 btrfs_node_key_ptr_offset(0), 2777 push_items * sizeof(struct btrfs_key_ptr)); 2778 2779 if (push_items < src_nritems) { 2780 tree_mod_log_eb_move(root->fs_info, src, 0, push_items, 2781 src_nritems - push_items); 2782 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2783 btrfs_node_key_ptr_offset(push_items), 2784 (src_nritems - push_items) * 2785 sizeof(struct btrfs_key_ptr)); 2786 } 2787 btrfs_set_header_nritems(src, src_nritems - push_items); 2788 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2789 btrfs_mark_buffer_dirty(src); 2790 btrfs_mark_buffer_dirty(dst); 2791 2792 return ret; 2793 } 2794 2795 /* 2796 * try to push data from one node into the next node right in the 2797 * tree. 2798 * 2799 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2800 * error, and > 0 if there was no room in the right hand block. 2801 * 2802 * this will only push up to 1/2 the contents of the left node over 2803 */ 2804 static int balance_node_right(struct btrfs_trans_handle *trans, 2805 struct btrfs_root *root, 2806 struct extent_buffer *dst, 2807 struct extent_buffer *src) 2808 { 2809 int push_items = 0; 2810 int max_push; 2811 int src_nritems; 2812 int dst_nritems; 2813 int ret = 0; 2814 2815 WARN_ON(btrfs_header_generation(src) != trans->transid); 2816 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2817 2818 src_nritems = btrfs_header_nritems(src); 2819 dst_nritems = btrfs_header_nritems(dst); 2820 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2821 if (push_items <= 0) 2822 return 1; 2823 2824 if (src_nritems < 4) 2825 return 1; 2826 2827 max_push = src_nritems / 2 + 1; 2828 /* don't try to empty the node */ 2829 if (max_push >= src_nritems) 2830 return 1; 2831 2832 if (max_push < push_items) 2833 push_items = max_push; 2834 2835 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 2836 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2837 btrfs_node_key_ptr_offset(0), 2838 (dst_nritems) * 2839 sizeof(struct btrfs_key_ptr)); 2840 2841 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 2842 src_nritems - push_items, push_items); 2843 copy_extent_buffer(dst, src, 2844 btrfs_node_key_ptr_offset(0), 2845 btrfs_node_key_ptr_offset(src_nritems - push_items), 2846 push_items * sizeof(struct btrfs_key_ptr)); 2847 2848 btrfs_set_header_nritems(src, src_nritems - push_items); 2849 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2850 2851 btrfs_mark_buffer_dirty(src); 2852 btrfs_mark_buffer_dirty(dst); 2853 2854 return ret; 2855 } 2856 2857 /* 2858 * helper function to insert a new root level in the tree. 2859 * A new node is allocated, and a single item is inserted to 2860 * point to the existing root 2861 * 2862 * returns zero on success or < 0 on failure. 2863 */ 2864 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2865 struct btrfs_root *root, 2866 struct btrfs_path *path, int level) 2867 { 2868 u64 lower_gen; 2869 struct extent_buffer *lower; 2870 struct extent_buffer *c; 2871 struct extent_buffer *old; 2872 struct btrfs_disk_key lower_key; 2873 2874 BUG_ON(path->nodes[level]); 2875 BUG_ON(path->nodes[level-1] != root->node); 2876 2877 lower = path->nodes[level-1]; 2878 if (level == 1) 2879 btrfs_item_key(lower, &lower_key, 0); 2880 else 2881 btrfs_node_key(lower, &lower_key, 0); 2882 2883 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2884 root->root_key.objectid, &lower_key, 2885 level, root->node->start, 0); 2886 if (IS_ERR(c)) 2887 return PTR_ERR(c); 2888 2889 root_add_used(root, root->nodesize); 2890 2891 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2892 btrfs_set_header_nritems(c, 1); 2893 btrfs_set_header_level(c, level); 2894 btrfs_set_header_bytenr(c, c->start); 2895 btrfs_set_header_generation(c, trans->transid); 2896 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2897 btrfs_set_header_owner(c, root->root_key.objectid); 2898 2899 write_extent_buffer(c, root->fs_info->fsid, 2900 (unsigned long)btrfs_header_fsid(c), 2901 BTRFS_FSID_SIZE); 2902 2903 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2904 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2905 BTRFS_UUID_SIZE); 2906 2907 btrfs_set_node_key(c, &lower_key, 0); 2908 btrfs_set_node_blockptr(c, 0, lower->start); 2909 lower_gen = btrfs_header_generation(lower); 2910 WARN_ON(lower_gen != trans->transid); 2911 2912 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2913 2914 btrfs_mark_buffer_dirty(c); 2915 2916 old = root->node; 2917 tree_mod_log_set_root_pointer(root, c); 2918 rcu_assign_pointer(root->node, c); 2919 2920 /* the super has an extra ref to root->node */ 2921 free_extent_buffer(old); 2922 2923 add_root_to_dirty_list(root); 2924 extent_buffer_get(c); 2925 path->nodes[level] = c; 2926 path->locks[level] = BTRFS_WRITE_LOCK; 2927 path->slots[level] = 0; 2928 return 0; 2929 } 2930 2931 /* 2932 * worker function to insert a single pointer in a node. 2933 * the node should have enough room for the pointer already 2934 * 2935 * slot and level indicate where you want the key to go, and 2936 * blocknr is the block the key points to. 2937 */ 2938 static void insert_ptr(struct btrfs_trans_handle *trans, 2939 struct btrfs_root *root, struct btrfs_path *path, 2940 struct btrfs_disk_key *key, u64 bytenr, 2941 int slot, int level, int tree_mod_log) 2942 { 2943 struct extent_buffer *lower; 2944 int nritems; 2945 int ret; 2946 2947 BUG_ON(!path->nodes[level]); 2948 btrfs_assert_tree_locked(path->nodes[level]); 2949 lower = path->nodes[level]; 2950 nritems = btrfs_header_nritems(lower); 2951 BUG_ON(slot > nritems); 2952 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 2953 if (slot != nritems) { 2954 if (tree_mod_log && level) 2955 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 2956 slot, nritems - slot); 2957 memmove_extent_buffer(lower, 2958 btrfs_node_key_ptr_offset(slot + 1), 2959 btrfs_node_key_ptr_offset(slot), 2960 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2961 } 2962 if (tree_mod_log && level) { 2963 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 2964 MOD_LOG_KEY_ADD); 2965 BUG_ON(ret < 0); 2966 } 2967 btrfs_set_node_key(lower, key, slot); 2968 btrfs_set_node_blockptr(lower, slot, bytenr); 2969 WARN_ON(trans->transid == 0); 2970 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2971 btrfs_set_header_nritems(lower, nritems + 1); 2972 btrfs_mark_buffer_dirty(lower); 2973 } 2974 2975 /* 2976 * split the node at the specified level in path in two. 2977 * The path is corrected to point to the appropriate node after the split 2978 * 2979 * Before splitting this tries to make some room in the node by pushing 2980 * left and right, if either one works, it returns right away. 2981 * 2982 * returns 0 on success and < 0 on failure 2983 */ 2984 static noinline int split_node(struct btrfs_trans_handle *trans, 2985 struct btrfs_root *root, 2986 struct btrfs_path *path, int level) 2987 { 2988 struct extent_buffer *c; 2989 struct extent_buffer *split; 2990 struct btrfs_disk_key disk_key; 2991 int mid; 2992 int ret; 2993 u32 c_nritems; 2994 2995 c = path->nodes[level]; 2996 WARN_ON(btrfs_header_generation(c) != trans->transid); 2997 if (c == root->node) { 2998 /* trying to split the root, lets make a new one */ 2999 ret = insert_new_root(trans, root, path, level + 1); 3000 if (ret) 3001 return ret; 3002 } else { 3003 ret = push_nodes_for_insert(trans, root, path, level); 3004 c = path->nodes[level]; 3005 if (!ret && btrfs_header_nritems(c) < 3006 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3007 return 0; 3008 if (ret < 0) 3009 return ret; 3010 } 3011 3012 c_nritems = btrfs_header_nritems(c); 3013 mid = (c_nritems + 1) / 2; 3014 btrfs_node_key(c, &disk_key, mid); 3015 3016 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3017 root->root_key.objectid, 3018 &disk_key, level, c->start, 0); 3019 if (IS_ERR(split)) 3020 return PTR_ERR(split); 3021 3022 root_add_used(root, root->nodesize); 3023 3024 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3025 btrfs_set_header_level(split, btrfs_header_level(c)); 3026 btrfs_set_header_bytenr(split, split->start); 3027 btrfs_set_header_generation(split, trans->transid); 3028 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3029 btrfs_set_header_owner(split, root->root_key.objectid); 3030 write_extent_buffer(split, root->fs_info->fsid, 3031 (unsigned long)btrfs_header_fsid(split), 3032 BTRFS_FSID_SIZE); 3033 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3034 (unsigned long)btrfs_header_chunk_tree_uuid(split), 3035 BTRFS_UUID_SIZE); 3036 3037 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3038 copy_extent_buffer(split, c, 3039 btrfs_node_key_ptr_offset(0), 3040 btrfs_node_key_ptr_offset(mid), 3041 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3042 btrfs_set_header_nritems(split, c_nritems - mid); 3043 btrfs_set_header_nritems(c, mid); 3044 ret = 0; 3045 3046 btrfs_mark_buffer_dirty(c); 3047 btrfs_mark_buffer_dirty(split); 3048 3049 insert_ptr(trans, root, path, &disk_key, split->start, 3050 path->slots[level + 1] + 1, level + 1, 1); 3051 3052 if (path->slots[level] >= mid) { 3053 path->slots[level] -= mid; 3054 btrfs_tree_unlock(c); 3055 free_extent_buffer(c); 3056 path->nodes[level] = split; 3057 path->slots[level + 1] += 1; 3058 } else { 3059 btrfs_tree_unlock(split); 3060 free_extent_buffer(split); 3061 } 3062 return ret; 3063 } 3064 3065 /* 3066 * how many bytes are required to store the items in a leaf. start 3067 * and nr indicate which items in the leaf to check. This totals up the 3068 * space used both by the item structs and the item data 3069 */ 3070 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3071 { 3072 int data_len; 3073 int nritems = btrfs_header_nritems(l); 3074 int end = min(nritems, start + nr) - 1; 3075 3076 if (!nr) 3077 return 0; 3078 data_len = btrfs_item_end_nr(l, start); 3079 data_len = data_len - btrfs_item_offset_nr(l, end); 3080 data_len += sizeof(struct btrfs_item) * nr; 3081 WARN_ON(data_len < 0); 3082 return data_len; 3083 } 3084 3085 /* 3086 * The space between the end of the leaf items and 3087 * the start of the leaf data. IOW, how much room 3088 * the leaf has left for both items and data 3089 */ 3090 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3091 struct extent_buffer *leaf) 3092 { 3093 int nritems = btrfs_header_nritems(leaf); 3094 int ret; 3095 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3096 if (ret < 0) { 3097 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3098 "used %d nritems %d\n", 3099 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3100 leaf_space_used(leaf, 0, nritems), nritems); 3101 } 3102 return ret; 3103 } 3104 3105 /* 3106 * min slot controls the lowest index we're willing to push to the 3107 * right. We'll push up to and including min_slot, but no lower 3108 */ 3109 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3110 struct btrfs_root *root, 3111 struct btrfs_path *path, 3112 int data_size, int empty, 3113 struct extent_buffer *right, 3114 int free_space, u32 left_nritems, 3115 u32 min_slot) 3116 { 3117 struct extent_buffer *left = path->nodes[0]; 3118 struct extent_buffer *upper = path->nodes[1]; 3119 struct btrfs_map_token token; 3120 struct btrfs_disk_key disk_key; 3121 int slot; 3122 u32 i; 3123 int push_space = 0; 3124 int push_items = 0; 3125 struct btrfs_item *item; 3126 u32 nr; 3127 u32 right_nritems; 3128 u32 data_end; 3129 u32 this_item_size; 3130 3131 btrfs_init_map_token(&token); 3132 3133 if (empty) 3134 nr = 0; 3135 else 3136 nr = max_t(u32, 1, min_slot); 3137 3138 if (path->slots[0] >= left_nritems) 3139 push_space += data_size; 3140 3141 slot = path->slots[1]; 3142 i = left_nritems - 1; 3143 while (i >= nr) { 3144 item = btrfs_item_nr(left, i); 3145 3146 if (!empty && push_items > 0) { 3147 if (path->slots[0] > i) 3148 break; 3149 if (path->slots[0] == i) { 3150 int space = btrfs_leaf_free_space(root, left); 3151 if (space + push_space * 2 > free_space) 3152 break; 3153 } 3154 } 3155 3156 if (path->slots[0] == i) 3157 push_space += data_size; 3158 3159 this_item_size = btrfs_item_size(left, item); 3160 if (this_item_size + sizeof(*item) + push_space > free_space) 3161 break; 3162 3163 push_items++; 3164 push_space += this_item_size + sizeof(*item); 3165 if (i == 0) 3166 break; 3167 i--; 3168 } 3169 3170 if (push_items == 0) 3171 goto out_unlock; 3172 3173 if (!empty && push_items == left_nritems) 3174 WARN_ON(1); 3175 3176 /* push left to right */ 3177 right_nritems = btrfs_header_nritems(right); 3178 3179 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3180 push_space -= leaf_data_end(root, left); 3181 3182 /* make room in the right data area */ 3183 data_end = leaf_data_end(root, right); 3184 memmove_extent_buffer(right, 3185 btrfs_leaf_data(right) + data_end - push_space, 3186 btrfs_leaf_data(right) + data_end, 3187 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3188 3189 /* copy from the left data area */ 3190 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3191 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3192 btrfs_leaf_data(left) + leaf_data_end(root, left), 3193 push_space); 3194 3195 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3196 btrfs_item_nr_offset(0), 3197 right_nritems * sizeof(struct btrfs_item)); 3198 3199 /* copy the items from left to right */ 3200 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3201 btrfs_item_nr_offset(left_nritems - push_items), 3202 push_items * sizeof(struct btrfs_item)); 3203 3204 /* update the item pointers */ 3205 right_nritems += push_items; 3206 btrfs_set_header_nritems(right, right_nritems); 3207 push_space = BTRFS_LEAF_DATA_SIZE(root); 3208 for (i = 0; i < right_nritems; i++) { 3209 item = btrfs_item_nr(right, i); 3210 push_space -= btrfs_token_item_size(right, item, &token); 3211 btrfs_set_token_item_offset(right, item, push_space, &token); 3212 } 3213 3214 left_nritems -= push_items; 3215 btrfs_set_header_nritems(left, left_nritems); 3216 3217 if (left_nritems) 3218 btrfs_mark_buffer_dirty(left); 3219 else 3220 clean_tree_block(trans, root, left); 3221 3222 btrfs_mark_buffer_dirty(right); 3223 3224 btrfs_item_key(right, &disk_key, 0); 3225 btrfs_set_node_key(upper, &disk_key, slot + 1); 3226 btrfs_mark_buffer_dirty(upper); 3227 3228 /* then fixup the leaf pointer in the path */ 3229 if (path->slots[0] >= left_nritems) { 3230 path->slots[0] -= left_nritems; 3231 if (btrfs_header_nritems(path->nodes[0]) == 0) 3232 clean_tree_block(trans, root, path->nodes[0]); 3233 btrfs_tree_unlock(path->nodes[0]); 3234 free_extent_buffer(path->nodes[0]); 3235 path->nodes[0] = right; 3236 path->slots[1] += 1; 3237 } else { 3238 btrfs_tree_unlock(right); 3239 free_extent_buffer(right); 3240 } 3241 return 0; 3242 3243 out_unlock: 3244 btrfs_tree_unlock(right); 3245 free_extent_buffer(right); 3246 return 1; 3247 } 3248 3249 /* 3250 * push some data in the path leaf to the right, trying to free up at 3251 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3252 * 3253 * returns 1 if the push failed because the other node didn't have enough 3254 * room, 0 if everything worked out and < 0 if there were major errors. 3255 * 3256 * this will push starting from min_slot to the end of the leaf. It won't 3257 * push any slot lower than min_slot 3258 */ 3259 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3260 *root, struct btrfs_path *path, 3261 int min_data_size, int data_size, 3262 int empty, u32 min_slot) 3263 { 3264 struct extent_buffer *left = path->nodes[0]; 3265 struct extent_buffer *right; 3266 struct extent_buffer *upper; 3267 int slot; 3268 int free_space; 3269 u32 left_nritems; 3270 int ret; 3271 3272 if (!path->nodes[1]) 3273 return 1; 3274 3275 slot = path->slots[1]; 3276 upper = path->nodes[1]; 3277 if (slot >= btrfs_header_nritems(upper) - 1) 3278 return 1; 3279 3280 btrfs_assert_tree_locked(path->nodes[1]); 3281 3282 right = read_node_slot(root, upper, slot + 1); 3283 if (right == NULL) 3284 return 1; 3285 3286 btrfs_tree_lock(right); 3287 btrfs_set_lock_blocking(right); 3288 3289 free_space = btrfs_leaf_free_space(root, right); 3290 if (free_space < data_size) 3291 goto out_unlock; 3292 3293 /* cow and double check */ 3294 ret = btrfs_cow_block(trans, root, right, upper, 3295 slot + 1, &right); 3296 if (ret) 3297 goto out_unlock; 3298 3299 free_space = btrfs_leaf_free_space(root, right); 3300 if (free_space < data_size) 3301 goto out_unlock; 3302 3303 left_nritems = btrfs_header_nritems(left); 3304 if (left_nritems == 0) 3305 goto out_unlock; 3306 3307 return __push_leaf_right(trans, root, path, min_data_size, empty, 3308 right, free_space, left_nritems, min_slot); 3309 out_unlock: 3310 btrfs_tree_unlock(right); 3311 free_extent_buffer(right); 3312 return 1; 3313 } 3314 3315 /* 3316 * push some data in the path leaf to the left, trying to free up at 3317 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3318 * 3319 * max_slot can put a limit on how far into the leaf we'll push items. The 3320 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3321 * items 3322 */ 3323 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3324 struct btrfs_root *root, 3325 struct btrfs_path *path, int data_size, 3326 int empty, struct extent_buffer *left, 3327 int free_space, u32 right_nritems, 3328 u32 max_slot) 3329 { 3330 struct btrfs_disk_key disk_key; 3331 struct extent_buffer *right = path->nodes[0]; 3332 int i; 3333 int push_space = 0; 3334 int push_items = 0; 3335 struct btrfs_item *item; 3336 u32 old_left_nritems; 3337 u32 nr; 3338 int ret = 0; 3339 u32 this_item_size; 3340 u32 old_left_item_size; 3341 struct btrfs_map_token token; 3342 3343 btrfs_init_map_token(&token); 3344 3345 if (empty) 3346 nr = min(right_nritems, max_slot); 3347 else 3348 nr = min(right_nritems - 1, max_slot); 3349 3350 for (i = 0; i < nr; i++) { 3351 item = btrfs_item_nr(right, i); 3352 3353 if (!empty && push_items > 0) { 3354 if (path->slots[0] < i) 3355 break; 3356 if (path->slots[0] == i) { 3357 int space = btrfs_leaf_free_space(root, right); 3358 if (space + push_space * 2 > free_space) 3359 break; 3360 } 3361 } 3362 3363 if (path->slots[0] == i) 3364 push_space += data_size; 3365 3366 this_item_size = btrfs_item_size(right, item); 3367 if (this_item_size + sizeof(*item) + push_space > free_space) 3368 break; 3369 3370 push_items++; 3371 push_space += this_item_size + sizeof(*item); 3372 } 3373 3374 if (push_items == 0) { 3375 ret = 1; 3376 goto out; 3377 } 3378 if (!empty && push_items == btrfs_header_nritems(right)) 3379 WARN_ON(1); 3380 3381 /* push data from right to left */ 3382 copy_extent_buffer(left, right, 3383 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3384 btrfs_item_nr_offset(0), 3385 push_items * sizeof(struct btrfs_item)); 3386 3387 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3388 btrfs_item_offset_nr(right, push_items - 1); 3389 3390 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3391 leaf_data_end(root, left) - push_space, 3392 btrfs_leaf_data(right) + 3393 btrfs_item_offset_nr(right, push_items - 1), 3394 push_space); 3395 old_left_nritems = btrfs_header_nritems(left); 3396 BUG_ON(old_left_nritems <= 0); 3397 3398 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3399 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3400 u32 ioff; 3401 3402 item = btrfs_item_nr(left, i); 3403 3404 ioff = btrfs_token_item_offset(left, item, &token); 3405 btrfs_set_token_item_offset(left, item, 3406 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3407 &token); 3408 } 3409 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3410 3411 /* fixup right node */ 3412 if (push_items > right_nritems) { 3413 printk(KERN_CRIT "push items %d nr %u\n", push_items, 3414 right_nritems); 3415 WARN_ON(1); 3416 } 3417 3418 if (push_items < right_nritems) { 3419 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3420 leaf_data_end(root, right); 3421 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3422 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3423 btrfs_leaf_data(right) + 3424 leaf_data_end(root, right), push_space); 3425 3426 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3427 btrfs_item_nr_offset(push_items), 3428 (btrfs_header_nritems(right) - push_items) * 3429 sizeof(struct btrfs_item)); 3430 } 3431 right_nritems -= push_items; 3432 btrfs_set_header_nritems(right, right_nritems); 3433 push_space = BTRFS_LEAF_DATA_SIZE(root); 3434 for (i = 0; i < right_nritems; i++) { 3435 item = btrfs_item_nr(right, i); 3436 3437 push_space = push_space - btrfs_token_item_size(right, 3438 item, &token); 3439 btrfs_set_token_item_offset(right, item, push_space, &token); 3440 } 3441 3442 btrfs_mark_buffer_dirty(left); 3443 if (right_nritems) 3444 btrfs_mark_buffer_dirty(right); 3445 else 3446 clean_tree_block(trans, root, right); 3447 3448 btrfs_item_key(right, &disk_key, 0); 3449 fixup_low_keys(trans, root, path, &disk_key, 1); 3450 3451 /* then fixup the leaf pointer in the path */ 3452 if (path->slots[0] < push_items) { 3453 path->slots[0] += old_left_nritems; 3454 btrfs_tree_unlock(path->nodes[0]); 3455 free_extent_buffer(path->nodes[0]); 3456 path->nodes[0] = left; 3457 path->slots[1] -= 1; 3458 } else { 3459 btrfs_tree_unlock(left); 3460 free_extent_buffer(left); 3461 path->slots[0] -= push_items; 3462 } 3463 BUG_ON(path->slots[0] < 0); 3464 return ret; 3465 out: 3466 btrfs_tree_unlock(left); 3467 free_extent_buffer(left); 3468 return ret; 3469 } 3470 3471 /* 3472 * push some data in the path leaf to the left, trying to free up at 3473 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3474 * 3475 * max_slot can put a limit on how far into the leaf we'll push items. The 3476 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3477 * items 3478 */ 3479 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3480 *root, struct btrfs_path *path, int min_data_size, 3481 int data_size, int empty, u32 max_slot) 3482 { 3483 struct extent_buffer *right = path->nodes[0]; 3484 struct extent_buffer *left; 3485 int slot; 3486 int free_space; 3487 u32 right_nritems; 3488 int ret = 0; 3489 3490 slot = path->slots[1]; 3491 if (slot == 0) 3492 return 1; 3493 if (!path->nodes[1]) 3494 return 1; 3495 3496 right_nritems = btrfs_header_nritems(right); 3497 if (right_nritems == 0) 3498 return 1; 3499 3500 btrfs_assert_tree_locked(path->nodes[1]); 3501 3502 left = read_node_slot(root, path->nodes[1], slot - 1); 3503 if (left == NULL) 3504 return 1; 3505 3506 btrfs_tree_lock(left); 3507 btrfs_set_lock_blocking(left); 3508 3509 free_space = btrfs_leaf_free_space(root, left); 3510 if (free_space < data_size) { 3511 ret = 1; 3512 goto out; 3513 } 3514 3515 /* cow and double check */ 3516 ret = btrfs_cow_block(trans, root, left, 3517 path->nodes[1], slot - 1, &left); 3518 if (ret) { 3519 /* we hit -ENOSPC, but it isn't fatal here */ 3520 if (ret == -ENOSPC) 3521 ret = 1; 3522 goto out; 3523 } 3524 3525 free_space = btrfs_leaf_free_space(root, left); 3526 if (free_space < data_size) { 3527 ret = 1; 3528 goto out; 3529 } 3530 3531 return __push_leaf_left(trans, root, path, min_data_size, 3532 empty, left, free_space, right_nritems, 3533 max_slot); 3534 out: 3535 btrfs_tree_unlock(left); 3536 free_extent_buffer(left); 3537 return ret; 3538 } 3539 3540 /* 3541 * split the path's leaf in two, making sure there is at least data_size 3542 * available for the resulting leaf level of the path. 3543 */ 3544 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3545 struct btrfs_root *root, 3546 struct btrfs_path *path, 3547 struct extent_buffer *l, 3548 struct extent_buffer *right, 3549 int slot, int mid, int nritems) 3550 { 3551 int data_copy_size; 3552 int rt_data_off; 3553 int i; 3554 struct btrfs_disk_key disk_key; 3555 struct btrfs_map_token token; 3556 3557 btrfs_init_map_token(&token); 3558 3559 nritems = nritems - mid; 3560 btrfs_set_header_nritems(right, nritems); 3561 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3562 3563 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3564 btrfs_item_nr_offset(mid), 3565 nritems * sizeof(struct btrfs_item)); 3566 3567 copy_extent_buffer(right, l, 3568 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3569 data_copy_size, btrfs_leaf_data(l) + 3570 leaf_data_end(root, l), data_copy_size); 3571 3572 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3573 btrfs_item_end_nr(l, mid); 3574 3575 for (i = 0; i < nritems; i++) { 3576 struct btrfs_item *item = btrfs_item_nr(right, i); 3577 u32 ioff; 3578 3579 ioff = btrfs_token_item_offset(right, item, &token); 3580 btrfs_set_token_item_offset(right, item, 3581 ioff + rt_data_off, &token); 3582 } 3583 3584 btrfs_set_header_nritems(l, mid); 3585 btrfs_item_key(right, &disk_key, 0); 3586 insert_ptr(trans, root, path, &disk_key, right->start, 3587 path->slots[1] + 1, 1, 0); 3588 3589 btrfs_mark_buffer_dirty(right); 3590 btrfs_mark_buffer_dirty(l); 3591 BUG_ON(path->slots[0] != slot); 3592 3593 if (mid <= slot) { 3594 btrfs_tree_unlock(path->nodes[0]); 3595 free_extent_buffer(path->nodes[0]); 3596 path->nodes[0] = right; 3597 path->slots[0] -= mid; 3598 path->slots[1] += 1; 3599 } else { 3600 btrfs_tree_unlock(right); 3601 free_extent_buffer(right); 3602 } 3603 3604 BUG_ON(path->slots[0] < 0); 3605 } 3606 3607 /* 3608 * double splits happen when we need to insert a big item in the middle 3609 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3610 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3611 * A B C 3612 * 3613 * We avoid this by trying to push the items on either side of our target 3614 * into the adjacent leaves. If all goes well we can avoid the double split 3615 * completely. 3616 */ 3617 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3618 struct btrfs_root *root, 3619 struct btrfs_path *path, 3620 int data_size) 3621 { 3622 int ret; 3623 int progress = 0; 3624 int slot; 3625 u32 nritems; 3626 3627 slot = path->slots[0]; 3628 3629 /* 3630 * try to push all the items after our slot into the 3631 * right leaf 3632 */ 3633 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3634 if (ret < 0) 3635 return ret; 3636 3637 if (ret == 0) 3638 progress++; 3639 3640 nritems = btrfs_header_nritems(path->nodes[0]); 3641 /* 3642 * our goal is to get our slot at the start or end of a leaf. If 3643 * we've done so we're done 3644 */ 3645 if (path->slots[0] == 0 || path->slots[0] == nritems) 3646 return 0; 3647 3648 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3649 return 0; 3650 3651 /* try to push all the items before our slot into the next leaf */ 3652 slot = path->slots[0]; 3653 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3654 if (ret < 0) 3655 return ret; 3656 3657 if (ret == 0) 3658 progress++; 3659 3660 if (progress) 3661 return 0; 3662 return 1; 3663 } 3664 3665 /* 3666 * split the path's leaf in two, making sure there is at least data_size 3667 * available for the resulting leaf level of the path. 3668 * 3669 * returns 0 if all went well and < 0 on failure. 3670 */ 3671 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3672 struct btrfs_root *root, 3673 struct btrfs_key *ins_key, 3674 struct btrfs_path *path, int data_size, 3675 int extend) 3676 { 3677 struct btrfs_disk_key disk_key; 3678 struct extent_buffer *l; 3679 u32 nritems; 3680 int mid; 3681 int slot; 3682 struct extent_buffer *right; 3683 int ret = 0; 3684 int wret; 3685 int split; 3686 int num_doubles = 0; 3687 int tried_avoid_double = 0; 3688 3689 l = path->nodes[0]; 3690 slot = path->slots[0]; 3691 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3692 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3693 return -EOVERFLOW; 3694 3695 /* first try to make some room by pushing left and right */ 3696 if (data_size) { 3697 wret = push_leaf_right(trans, root, path, data_size, 3698 data_size, 0, 0); 3699 if (wret < 0) 3700 return wret; 3701 if (wret) { 3702 wret = push_leaf_left(trans, root, path, data_size, 3703 data_size, 0, (u32)-1); 3704 if (wret < 0) 3705 return wret; 3706 } 3707 l = path->nodes[0]; 3708 3709 /* did the pushes work? */ 3710 if (btrfs_leaf_free_space(root, l) >= data_size) 3711 return 0; 3712 } 3713 3714 if (!path->nodes[1]) { 3715 ret = insert_new_root(trans, root, path, 1); 3716 if (ret) 3717 return ret; 3718 } 3719 again: 3720 split = 1; 3721 l = path->nodes[0]; 3722 slot = path->slots[0]; 3723 nritems = btrfs_header_nritems(l); 3724 mid = (nritems + 1) / 2; 3725 3726 if (mid <= slot) { 3727 if (nritems == 1 || 3728 leaf_space_used(l, mid, nritems - mid) + data_size > 3729 BTRFS_LEAF_DATA_SIZE(root)) { 3730 if (slot >= nritems) { 3731 split = 0; 3732 } else { 3733 mid = slot; 3734 if (mid != nritems && 3735 leaf_space_used(l, mid, nritems - mid) + 3736 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3737 if (data_size && !tried_avoid_double) 3738 goto push_for_double; 3739 split = 2; 3740 } 3741 } 3742 } 3743 } else { 3744 if (leaf_space_used(l, 0, mid) + data_size > 3745 BTRFS_LEAF_DATA_SIZE(root)) { 3746 if (!extend && data_size && slot == 0) { 3747 split = 0; 3748 } else if ((extend || !data_size) && slot == 0) { 3749 mid = 1; 3750 } else { 3751 mid = slot; 3752 if (mid != nritems && 3753 leaf_space_used(l, mid, nritems - mid) + 3754 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3755 if (data_size && !tried_avoid_double) 3756 goto push_for_double; 3757 split = 2 ; 3758 } 3759 } 3760 } 3761 } 3762 3763 if (split == 0) 3764 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3765 else 3766 btrfs_item_key(l, &disk_key, mid); 3767 3768 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 3769 root->root_key.objectid, 3770 &disk_key, 0, l->start, 0); 3771 if (IS_ERR(right)) 3772 return PTR_ERR(right); 3773 3774 root_add_used(root, root->leafsize); 3775 3776 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3777 btrfs_set_header_bytenr(right, right->start); 3778 btrfs_set_header_generation(right, trans->transid); 3779 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3780 btrfs_set_header_owner(right, root->root_key.objectid); 3781 btrfs_set_header_level(right, 0); 3782 write_extent_buffer(right, root->fs_info->fsid, 3783 (unsigned long)btrfs_header_fsid(right), 3784 BTRFS_FSID_SIZE); 3785 3786 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3787 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3788 BTRFS_UUID_SIZE); 3789 3790 if (split == 0) { 3791 if (mid <= slot) { 3792 btrfs_set_header_nritems(right, 0); 3793 insert_ptr(trans, root, path, &disk_key, right->start, 3794 path->slots[1] + 1, 1, 0); 3795 btrfs_tree_unlock(path->nodes[0]); 3796 free_extent_buffer(path->nodes[0]); 3797 path->nodes[0] = right; 3798 path->slots[0] = 0; 3799 path->slots[1] += 1; 3800 } else { 3801 btrfs_set_header_nritems(right, 0); 3802 insert_ptr(trans, root, path, &disk_key, right->start, 3803 path->slots[1], 1, 0); 3804 btrfs_tree_unlock(path->nodes[0]); 3805 free_extent_buffer(path->nodes[0]); 3806 path->nodes[0] = right; 3807 path->slots[0] = 0; 3808 if (path->slots[1] == 0) 3809 fixup_low_keys(trans, root, path, 3810 &disk_key, 1); 3811 } 3812 btrfs_mark_buffer_dirty(right); 3813 return ret; 3814 } 3815 3816 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3817 3818 if (split == 2) { 3819 BUG_ON(num_doubles != 0); 3820 num_doubles++; 3821 goto again; 3822 } 3823 3824 return 0; 3825 3826 push_for_double: 3827 push_for_double_split(trans, root, path, data_size); 3828 tried_avoid_double = 1; 3829 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3830 return 0; 3831 goto again; 3832 } 3833 3834 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3835 struct btrfs_root *root, 3836 struct btrfs_path *path, int ins_len) 3837 { 3838 struct btrfs_key key; 3839 struct extent_buffer *leaf; 3840 struct btrfs_file_extent_item *fi; 3841 u64 extent_len = 0; 3842 u32 item_size; 3843 int ret; 3844 3845 leaf = path->nodes[0]; 3846 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3847 3848 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3849 key.type != BTRFS_EXTENT_CSUM_KEY); 3850 3851 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3852 return 0; 3853 3854 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3855 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3856 fi = btrfs_item_ptr(leaf, path->slots[0], 3857 struct btrfs_file_extent_item); 3858 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3859 } 3860 btrfs_release_path(path); 3861 3862 path->keep_locks = 1; 3863 path->search_for_split = 1; 3864 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3865 path->search_for_split = 0; 3866 if (ret < 0) 3867 goto err; 3868 3869 ret = -EAGAIN; 3870 leaf = path->nodes[0]; 3871 /* if our item isn't there or got smaller, return now */ 3872 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3873 goto err; 3874 3875 /* the leaf has changed, it now has room. return now */ 3876 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 3877 goto err; 3878 3879 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3880 fi = btrfs_item_ptr(leaf, path->slots[0], 3881 struct btrfs_file_extent_item); 3882 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3883 goto err; 3884 } 3885 3886 btrfs_set_path_blocking(path); 3887 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3888 if (ret) 3889 goto err; 3890 3891 path->keep_locks = 0; 3892 btrfs_unlock_up_safe(path, 1); 3893 return 0; 3894 err: 3895 path->keep_locks = 0; 3896 return ret; 3897 } 3898 3899 static noinline int split_item(struct btrfs_trans_handle *trans, 3900 struct btrfs_root *root, 3901 struct btrfs_path *path, 3902 struct btrfs_key *new_key, 3903 unsigned long split_offset) 3904 { 3905 struct extent_buffer *leaf; 3906 struct btrfs_item *item; 3907 struct btrfs_item *new_item; 3908 int slot; 3909 char *buf; 3910 u32 nritems; 3911 u32 item_size; 3912 u32 orig_offset; 3913 struct btrfs_disk_key disk_key; 3914 3915 leaf = path->nodes[0]; 3916 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3917 3918 btrfs_set_path_blocking(path); 3919 3920 item = btrfs_item_nr(leaf, path->slots[0]); 3921 orig_offset = btrfs_item_offset(leaf, item); 3922 item_size = btrfs_item_size(leaf, item); 3923 3924 buf = kmalloc(item_size, GFP_NOFS); 3925 if (!buf) 3926 return -ENOMEM; 3927 3928 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3929 path->slots[0]), item_size); 3930 3931 slot = path->slots[0] + 1; 3932 nritems = btrfs_header_nritems(leaf); 3933 if (slot != nritems) { 3934 /* shift the items */ 3935 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3936 btrfs_item_nr_offset(slot), 3937 (nritems - slot) * sizeof(struct btrfs_item)); 3938 } 3939 3940 btrfs_cpu_key_to_disk(&disk_key, new_key); 3941 btrfs_set_item_key(leaf, &disk_key, slot); 3942 3943 new_item = btrfs_item_nr(leaf, slot); 3944 3945 btrfs_set_item_offset(leaf, new_item, orig_offset); 3946 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3947 3948 btrfs_set_item_offset(leaf, item, 3949 orig_offset + item_size - split_offset); 3950 btrfs_set_item_size(leaf, item, split_offset); 3951 3952 btrfs_set_header_nritems(leaf, nritems + 1); 3953 3954 /* write the data for the start of the original item */ 3955 write_extent_buffer(leaf, buf, 3956 btrfs_item_ptr_offset(leaf, path->slots[0]), 3957 split_offset); 3958 3959 /* write the data for the new item */ 3960 write_extent_buffer(leaf, buf + split_offset, 3961 btrfs_item_ptr_offset(leaf, slot), 3962 item_size - split_offset); 3963 btrfs_mark_buffer_dirty(leaf); 3964 3965 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 3966 kfree(buf); 3967 return 0; 3968 } 3969 3970 /* 3971 * This function splits a single item into two items, 3972 * giving 'new_key' to the new item and splitting the 3973 * old one at split_offset (from the start of the item). 3974 * 3975 * The path may be released by this operation. After 3976 * the split, the path is pointing to the old item. The 3977 * new item is going to be in the same node as the old one. 3978 * 3979 * Note, the item being split must be smaller enough to live alone on 3980 * a tree block with room for one extra struct btrfs_item 3981 * 3982 * This allows us to split the item in place, keeping a lock on the 3983 * leaf the entire time. 3984 */ 3985 int btrfs_split_item(struct btrfs_trans_handle *trans, 3986 struct btrfs_root *root, 3987 struct btrfs_path *path, 3988 struct btrfs_key *new_key, 3989 unsigned long split_offset) 3990 { 3991 int ret; 3992 ret = setup_leaf_for_split(trans, root, path, 3993 sizeof(struct btrfs_item)); 3994 if (ret) 3995 return ret; 3996 3997 ret = split_item(trans, root, path, new_key, split_offset); 3998 return ret; 3999 } 4000 4001 /* 4002 * This function duplicate a item, giving 'new_key' to the new item. 4003 * It guarantees both items live in the same tree leaf and the new item 4004 * is contiguous with the original item. 4005 * 4006 * This allows us to split file extent in place, keeping a lock on the 4007 * leaf the entire time. 4008 */ 4009 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4010 struct btrfs_root *root, 4011 struct btrfs_path *path, 4012 struct btrfs_key *new_key) 4013 { 4014 struct extent_buffer *leaf; 4015 int ret; 4016 u32 item_size; 4017 4018 leaf = path->nodes[0]; 4019 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4020 ret = setup_leaf_for_split(trans, root, path, 4021 item_size + sizeof(struct btrfs_item)); 4022 if (ret) 4023 return ret; 4024 4025 path->slots[0]++; 4026 setup_items_for_insert(trans, root, path, new_key, &item_size, 4027 item_size, item_size + 4028 sizeof(struct btrfs_item), 1); 4029 leaf = path->nodes[0]; 4030 memcpy_extent_buffer(leaf, 4031 btrfs_item_ptr_offset(leaf, path->slots[0]), 4032 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4033 item_size); 4034 return 0; 4035 } 4036 4037 /* 4038 * make the item pointed to by the path smaller. new_size indicates 4039 * how small to make it, and from_end tells us if we just chop bytes 4040 * off the end of the item or if we shift the item to chop bytes off 4041 * the front. 4042 */ 4043 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 4044 struct btrfs_root *root, 4045 struct btrfs_path *path, 4046 u32 new_size, int from_end) 4047 { 4048 int slot; 4049 struct extent_buffer *leaf; 4050 struct btrfs_item *item; 4051 u32 nritems; 4052 unsigned int data_end; 4053 unsigned int old_data_start; 4054 unsigned int old_size; 4055 unsigned int size_diff; 4056 int i; 4057 struct btrfs_map_token token; 4058 4059 btrfs_init_map_token(&token); 4060 4061 leaf = path->nodes[0]; 4062 slot = path->slots[0]; 4063 4064 old_size = btrfs_item_size_nr(leaf, slot); 4065 if (old_size == new_size) 4066 return; 4067 4068 nritems = btrfs_header_nritems(leaf); 4069 data_end = leaf_data_end(root, leaf); 4070 4071 old_data_start = btrfs_item_offset_nr(leaf, slot); 4072 4073 size_diff = old_size - new_size; 4074 4075 BUG_ON(slot < 0); 4076 BUG_ON(slot >= nritems); 4077 4078 /* 4079 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4080 */ 4081 /* first correct the data pointers */ 4082 for (i = slot; i < nritems; i++) { 4083 u32 ioff; 4084 item = btrfs_item_nr(leaf, i); 4085 4086 ioff = btrfs_token_item_offset(leaf, item, &token); 4087 btrfs_set_token_item_offset(leaf, item, 4088 ioff + size_diff, &token); 4089 } 4090 4091 /* shift the data */ 4092 if (from_end) { 4093 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4094 data_end + size_diff, btrfs_leaf_data(leaf) + 4095 data_end, old_data_start + new_size - data_end); 4096 } else { 4097 struct btrfs_disk_key disk_key; 4098 u64 offset; 4099 4100 btrfs_item_key(leaf, &disk_key, slot); 4101 4102 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4103 unsigned long ptr; 4104 struct btrfs_file_extent_item *fi; 4105 4106 fi = btrfs_item_ptr(leaf, slot, 4107 struct btrfs_file_extent_item); 4108 fi = (struct btrfs_file_extent_item *)( 4109 (unsigned long)fi - size_diff); 4110 4111 if (btrfs_file_extent_type(leaf, fi) == 4112 BTRFS_FILE_EXTENT_INLINE) { 4113 ptr = btrfs_item_ptr_offset(leaf, slot); 4114 memmove_extent_buffer(leaf, ptr, 4115 (unsigned long)fi, 4116 offsetof(struct btrfs_file_extent_item, 4117 disk_bytenr)); 4118 } 4119 } 4120 4121 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4122 data_end + size_diff, btrfs_leaf_data(leaf) + 4123 data_end, old_data_start - data_end); 4124 4125 offset = btrfs_disk_key_offset(&disk_key); 4126 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4127 btrfs_set_item_key(leaf, &disk_key, slot); 4128 if (slot == 0) 4129 fixup_low_keys(trans, root, path, &disk_key, 1); 4130 } 4131 4132 item = btrfs_item_nr(leaf, slot); 4133 btrfs_set_item_size(leaf, item, new_size); 4134 btrfs_mark_buffer_dirty(leaf); 4135 4136 if (btrfs_leaf_free_space(root, leaf) < 0) { 4137 btrfs_print_leaf(root, leaf); 4138 BUG(); 4139 } 4140 } 4141 4142 /* 4143 * make the item pointed to by the path bigger, data_size is the new size. 4144 */ 4145 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4146 struct btrfs_root *root, struct btrfs_path *path, 4147 u32 data_size) 4148 { 4149 int slot; 4150 struct extent_buffer *leaf; 4151 struct btrfs_item *item; 4152 u32 nritems; 4153 unsigned int data_end; 4154 unsigned int old_data; 4155 unsigned int old_size; 4156 int i; 4157 struct btrfs_map_token token; 4158 4159 btrfs_init_map_token(&token); 4160 4161 leaf = path->nodes[0]; 4162 4163 nritems = btrfs_header_nritems(leaf); 4164 data_end = leaf_data_end(root, leaf); 4165 4166 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4167 btrfs_print_leaf(root, leaf); 4168 BUG(); 4169 } 4170 slot = path->slots[0]; 4171 old_data = btrfs_item_end_nr(leaf, slot); 4172 4173 BUG_ON(slot < 0); 4174 if (slot >= nritems) { 4175 btrfs_print_leaf(root, leaf); 4176 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4177 slot, nritems); 4178 BUG_ON(1); 4179 } 4180 4181 /* 4182 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4183 */ 4184 /* first correct the data pointers */ 4185 for (i = slot; i < nritems; i++) { 4186 u32 ioff; 4187 item = btrfs_item_nr(leaf, i); 4188 4189 ioff = btrfs_token_item_offset(leaf, item, &token); 4190 btrfs_set_token_item_offset(leaf, item, 4191 ioff - data_size, &token); 4192 } 4193 4194 /* shift the data */ 4195 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4196 data_end - data_size, btrfs_leaf_data(leaf) + 4197 data_end, old_data - data_end); 4198 4199 data_end = old_data; 4200 old_size = btrfs_item_size_nr(leaf, slot); 4201 item = btrfs_item_nr(leaf, slot); 4202 btrfs_set_item_size(leaf, item, old_size + data_size); 4203 btrfs_mark_buffer_dirty(leaf); 4204 4205 if (btrfs_leaf_free_space(root, leaf) < 0) { 4206 btrfs_print_leaf(root, leaf); 4207 BUG(); 4208 } 4209 } 4210 4211 /* 4212 * Given a key and some data, insert items into the tree. 4213 * This does all the path init required, making room in the tree if needed. 4214 * Returns the number of keys that were inserted. 4215 */ 4216 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 4217 struct btrfs_root *root, 4218 struct btrfs_path *path, 4219 struct btrfs_key *cpu_key, u32 *data_size, 4220 int nr) 4221 { 4222 struct extent_buffer *leaf; 4223 struct btrfs_item *item; 4224 int ret = 0; 4225 int slot; 4226 int i; 4227 u32 nritems; 4228 u32 total_data = 0; 4229 u32 total_size = 0; 4230 unsigned int data_end; 4231 struct btrfs_disk_key disk_key; 4232 struct btrfs_key found_key; 4233 struct btrfs_map_token token; 4234 4235 btrfs_init_map_token(&token); 4236 4237 for (i = 0; i < nr; i++) { 4238 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 4239 BTRFS_LEAF_DATA_SIZE(root)) { 4240 break; 4241 nr = i; 4242 } 4243 total_data += data_size[i]; 4244 total_size += data_size[i] + sizeof(struct btrfs_item); 4245 } 4246 BUG_ON(nr == 0); 4247 4248 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4249 if (ret == 0) 4250 return -EEXIST; 4251 if (ret < 0) 4252 goto out; 4253 4254 leaf = path->nodes[0]; 4255 4256 nritems = btrfs_header_nritems(leaf); 4257 data_end = leaf_data_end(root, leaf); 4258 4259 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4260 for (i = nr; i >= 0; i--) { 4261 total_data -= data_size[i]; 4262 total_size -= data_size[i] + sizeof(struct btrfs_item); 4263 if (total_size < btrfs_leaf_free_space(root, leaf)) 4264 break; 4265 } 4266 nr = i; 4267 } 4268 4269 slot = path->slots[0]; 4270 BUG_ON(slot < 0); 4271 4272 if (slot != nritems) { 4273 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4274 4275 item = btrfs_item_nr(leaf, slot); 4276 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4277 4278 /* figure out how many keys we can insert in here */ 4279 total_data = data_size[0]; 4280 for (i = 1; i < nr; i++) { 4281 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 4282 break; 4283 total_data += data_size[i]; 4284 } 4285 nr = i; 4286 4287 if (old_data < data_end) { 4288 btrfs_print_leaf(root, leaf); 4289 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4290 slot, old_data, data_end); 4291 BUG_ON(1); 4292 } 4293 /* 4294 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4295 */ 4296 /* first correct the data pointers */ 4297 for (i = slot; i < nritems; i++) { 4298 u32 ioff; 4299 4300 item = btrfs_item_nr(leaf, i); 4301 ioff = btrfs_token_item_offset(leaf, item, &token); 4302 btrfs_set_token_item_offset(leaf, item, 4303 ioff - total_data, &token); 4304 } 4305 /* shift the items */ 4306 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4307 btrfs_item_nr_offset(slot), 4308 (nritems - slot) * sizeof(struct btrfs_item)); 4309 4310 /* shift the data */ 4311 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4312 data_end - total_data, btrfs_leaf_data(leaf) + 4313 data_end, old_data - data_end); 4314 data_end = old_data; 4315 } else { 4316 /* 4317 * this sucks but it has to be done, if we are inserting at 4318 * the end of the leaf only insert 1 of the items, since we 4319 * have no way of knowing whats on the next leaf and we'd have 4320 * to drop our current locks to figure it out 4321 */ 4322 nr = 1; 4323 } 4324 4325 /* setup the item for the new data */ 4326 for (i = 0; i < nr; i++) { 4327 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4328 btrfs_set_item_key(leaf, &disk_key, slot + i); 4329 item = btrfs_item_nr(leaf, slot + i); 4330 btrfs_set_token_item_offset(leaf, item, 4331 data_end - data_size[i], &token); 4332 data_end -= data_size[i]; 4333 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4334 } 4335 btrfs_set_header_nritems(leaf, nritems + nr); 4336 btrfs_mark_buffer_dirty(leaf); 4337 4338 ret = 0; 4339 if (slot == 0) { 4340 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4341 fixup_low_keys(trans, root, path, &disk_key, 1); 4342 } 4343 4344 if (btrfs_leaf_free_space(root, leaf) < 0) { 4345 btrfs_print_leaf(root, leaf); 4346 BUG(); 4347 } 4348 out: 4349 if (!ret) 4350 ret = nr; 4351 return ret; 4352 } 4353 4354 /* 4355 * this is a helper for btrfs_insert_empty_items, the main goal here is 4356 * to save stack depth by doing the bulk of the work in a function 4357 * that doesn't call btrfs_search_slot 4358 */ 4359 void setup_items_for_insert(struct btrfs_trans_handle *trans, 4360 struct btrfs_root *root, struct btrfs_path *path, 4361 struct btrfs_key *cpu_key, u32 *data_size, 4362 u32 total_data, u32 total_size, int nr) 4363 { 4364 struct btrfs_item *item; 4365 int i; 4366 u32 nritems; 4367 unsigned int data_end; 4368 struct btrfs_disk_key disk_key; 4369 struct extent_buffer *leaf; 4370 int slot; 4371 struct btrfs_map_token token; 4372 4373 btrfs_init_map_token(&token); 4374 4375 leaf = path->nodes[0]; 4376 slot = path->slots[0]; 4377 4378 nritems = btrfs_header_nritems(leaf); 4379 data_end = leaf_data_end(root, leaf); 4380 4381 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4382 btrfs_print_leaf(root, leaf); 4383 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4384 total_size, btrfs_leaf_free_space(root, leaf)); 4385 BUG(); 4386 } 4387 4388 if (slot != nritems) { 4389 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4390 4391 if (old_data < data_end) { 4392 btrfs_print_leaf(root, leaf); 4393 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4394 slot, old_data, data_end); 4395 BUG_ON(1); 4396 } 4397 /* 4398 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4399 */ 4400 /* first correct the data pointers */ 4401 for (i = slot; i < nritems; i++) { 4402 u32 ioff; 4403 4404 item = btrfs_item_nr(leaf, i); 4405 ioff = btrfs_token_item_offset(leaf, item, &token); 4406 btrfs_set_token_item_offset(leaf, item, 4407 ioff - total_data, &token); 4408 } 4409 /* shift the items */ 4410 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4411 btrfs_item_nr_offset(slot), 4412 (nritems - slot) * sizeof(struct btrfs_item)); 4413 4414 /* shift the data */ 4415 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4416 data_end - total_data, btrfs_leaf_data(leaf) + 4417 data_end, old_data - data_end); 4418 data_end = old_data; 4419 } 4420 4421 /* setup the item for the new data */ 4422 for (i = 0; i < nr; i++) { 4423 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4424 btrfs_set_item_key(leaf, &disk_key, slot + i); 4425 item = btrfs_item_nr(leaf, slot + i); 4426 btrfs_set_token_item_offset(leaf, item, 4427 data_end - data_size[i], &token); 4428 data_end -= data_size[i]; 4429 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4430 } 4431 4432 btrfs_set_header_nritems(leaf, nritems + nr); 4433 4434 if (slot == 0) { 4435 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4436 fixup_low_keys(trans, root, path, &disk_key, 1); 4437 } 4438 btrfs_unlock_up_safe(path, 1); 4439 btrfs_mark_buffer_dirty(leaf); 4440 4441 if (btrfs_leaf_free_space(root, leaf) < 0) { 4442 btrfs_print_leaf(root, leaf); 4443 BUG(); 4444 } 4445 } 4446 4447 /* 4448 * Given a key and some data, insert items into the tree. 4449 * This does all the path init required, making room in the tree if needed. 4450 */ 4451 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4452 struct btrfs_root *root, 4453 struct btrfs_path *path, 4454 struct btrfs_key *cpu_key, u32 *data_size, 4455 int nr) 4456 { 4457 int ret = 0; 4458 int slot; 4459 int i; 4460 u32 total_size = 0; 4461 u32 total_data = 0; 4462 4463 for (i = 0; i < nr; i++) 4464 total_data += data_size[i]; 4465 4466 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4467 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4468 if (ret == 0) 4469 return -EEXIST; 4470 if (ret < 0) 4471 return ret; 4472 4473 slot = path->slots[0]; 4474 BUG_ON(slot < 0); 4475 4476 setup_items_for_insert(trans, root, path, cpu_key, data_size, 4477 total_data, total_size, nr); 4478 return 0; 4479 } 4480 4481 /* 4482 * Given a key and some data, insert an item into the tree. 4483 * This does all the path init required, making room in the tree if needed. 4484 */ 4485 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4486 *root, struct btrfs_key *cpu_key, void *data, u32 4487 data_size) 4488 { 4489 int ret = 0; 4490 struct btrfs_path *path; 4491 struct extent_buffer *leaf; 4492 unsigned long ptr; 4493 4494 path = btrfs_alloc_path(); 4495 if (!path) 4496 return -ENOMEM; 4497 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4498 if (!ret) { 4499 leaf = path->nodes[0]; 4500 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4501 write_extent_buffer(leaf, data, ptr, data_size); 4502 btrfs_mark_buffer_dirty(leaf); 4503 } 4504 btrfs_free_path(path); 4505 return ret; 4506 } 4507 4508 /* 4509 * delete the pointer from a given node. 4510 * 4511 * the tree should have been previously balanced so the deletion does not 4512 * empty a node. 4513 */ 4514 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4515 struct btrfs_path *path, int level, int slot, 4516 int tree_mod_log) 4517 { 4518 struct extent_buffer *parent = path->nodes[level]; 4519 u32 nritems; 4520 int ret; 4521 4522 nritems = btrfs_header_nritems(parent); 4523 if (slot != nritems - 1) { 4524 if (tree_mod_log && level) 4525 tree_mod_log_eb_move(root->fs_info, parent, slot, 4526 slot + 1, nritems - slot - 1); 4527 memmove_extent_buffer(parent, 4528 btrfs_node_key_ptr_offset(slot), 4529 btrfs_node_key_ptr_offset(slot + 1), 4530 sizeof(struct btrfs_key_ptr) * 4531 (nritems - slot - 1)); 4532 } 4533 4534 if (tree_mod_log && level) { 4535 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4536 MOD_LOG_KEY_REMOVE); 4537 BUG_ON(ret < 0); 4538 } 4539 4540 nritems--; 4541 btrfs_set_header_nritems(parent, nritems); 4542 if (nritems == 0 && parent == root->node) { 4543 BUG_ON(btrfs_header_level(root->node) != 1); 4544 /* just turn the root into a leaf and break */ 4545 btrfs_set_header_level(root->node, 0); 4546 } else if (slot == 0) { 4547 struct btrfs_disk_key disk_key; 4548 4549 btrfs_node_key(parent, &disk_key, 0); 4550 fixup_low_keys(trans, root, path, &disk_key, level + 1); 4551 } 4552 btrfs_mark_buffer_dirty(parent); 4553 } 4554 4555 /* 4556 * a helper function to delete the leaf pointed to by path->slots[1] and 4557 * path->nodes[1]. 4558 * 4559 * This deletes the pointer in path->nodes[1] and frees the leaf 4560 * block extent. zero is returned if it all worked out, < 0 otherwise. 4561 * 4562 * The path must have already been setup for deleting the leaf, including 4563 * all the proper balancing. path->nodes[1] must be locked. 4564 */ 4565 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4566 struct btrfs_root *root, 4567 struct btrfs_path *path, 4568 struct extent_buffer *leaf) 4569 { 4570 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4571 del_ptr(trans, root, path, 1, path->slots[1], 1); 4572 4573 /* 4574 * btrfs_free_extent is expensive, we want to make sure we 4575 * aren't holding any locks when we call it 4576 */ 4577 btrfs_unlock_up_safe(path, 0); 4578 4579 root_sub_used(root, leaf->len); 4580 4581 extent_buffer_get(leaf); 4582 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4583 free_extent_buffer_stale(leaf); 4584 } 4585 /* 4586 * delete the item at the leaf level in path. If that empties 4587 * the leaf, remove it from the tree 4588 */ 4589 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4590 struct btrfs_path *path, int slot, int nr) 4591 { 4592 struct extent_buffer *leaf; 4593 struct btrfs_item *item; 4594 int last_off; 4595 int dsize = 0; 4596 int ret = 0; 4597 int wret; 4598 int i; 4599 u32 nritems; 4600 struct btrfs_map_token token; 4601 4602 btrfs_init_map_token(&token); 4603 4604 leaf = path->nodes[0]; 4605 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4606 4607 for (i = 0; i < nr; i++) 4608 dsize += btrfs_item_size_nr(leaf, slot + i); 4609 4610 nritems = btrfs_header_nritems(leaf); 4611 4612 if (slot + nr != nritems) { 4613 int data_end = leaf_data_end(root, leaf); 4614 4615 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4616 data_end + dsize, 4617 btrfs_leaf_data(leaf) + data_end, 4618 last_off - data_end); 4619 4620 for (i = slot + nr; i < nritems; i++) { 4621 u32 ioff; 4622 4623 item = btrfs_item_nr(leaf, i); 4624 ioff = btrfs_token_item_offset(leaf, item, &token); 4625 btrfs_set_token_item_offset(leaf, item, 4626 ioff + dsize, &token); 4627 } 4628 4629 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4630 btrfs_item_nr_offset(slot + nr), 4631 sizeof(struct btrfs_item) * 4632 (nritems - slot - nr)); 4633 } 4634 btrfs_set_header_nritems(leaf, nritems - nr); 4635 nritems -= nr; 4636 4637 /* delete the leaf if we've emptied it */ 4638 if (nritems == 0) { 4639 if (leaf == root->node) { 4640 btrfs_set_header_level(leaf, 0); 4641 } else { 4642 btrfs_set_path_blocking(path); 4643 clean_tree_block(trans, root, leaf); 4644 btrfs_del_leaf(trans, root, path, leaf); 4645 } 4646 } else { 4647 int used = leaf_space_used(leaf, 0, nritems); 4648 if (slot == 0) { 4649 struct btrfs_disk_key disk_key; 4650 4651 btrfs_item_key(leaf, &disk_key, 0); 4652 fixup_low_keys(trans, root, path, &disk_key, 1); 4653 } 4654 4655 /* delete the leaf if it is mostly empty */ 4656 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4657 /* push_leaf_left fixes the path. 4658 * make sure the path still points to our leaf 4659 * for possible call to del_ptr below 4660 */ 4661 slot = path->slots[1]; 4662 extent_buffer_get(leaf); 4663 4664 btrfs_set_path_blocking(path); 4665 wret = push_leaf_left(trans, root, path, 1, 1, 4666 1, (u32)-1); 4667 if (wret < 0 && wret != -ENOSPC) 4668 ret = wret; 4669 4670 if (path->nodes[0] == leaf && 4671 btrfs_header_nritems(leaf)) { 4672 wret = push_leaf_right(trans, root, path, 1, 4673 1, 1, 0); 4674 if (wret < 0 && wret != -ENOSPC) 4675 ret = wret; 4676 } 4677 4678 if (btrfs_header_nritems(leaf) == 0) { 4679 path->slots[1] = slot; 4680 btrfs_del_leaf(trans, root, path, leaf); 4681 free_extent_buffer(leaf); 4682 ret = 0; 4683 } else { 4684 /* if we're still in the path, make sure 4685 * we're dirty. Otherwise, one of the 4686 * push_leaf functions must have already 4687 * dirtied this buffer 4688 */ 4689 if (path->nodes[0] == leaf) 4690 btrfs_mark_buffer_dirty(leaf); 4691 free_extent_buffer(leaf); 4692 } 4693 } else { 4694 btrfs_mark_buffer_dirty(leaf); 4695 } 4696 } 4697 return ret; 4698 } 4699 4700 /* 4701 * search the tree again to find a leaf with lesser keys 4702 * returns 0 if it found something or 1 if there are no lesser leaves. 4703 * returns < 0 on io errors. 4704 * 4705 * This may release the path, and so you may lose any locks held at the 4706 * time you call it. 4707 */ 4708 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4709 { 4710 struct btrfs_key key; 4711 struct btrfs_disk_key found_key; 4712 int ret; 4713 4714 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4715 4716 if (key.offset > 0) 4717 key.offset--; 4718 else if (key.type > 0) 4719 key.type--; 4720 else if (key.objectid > 0) 4721 key.objectid--; 4722 else 4723 return 1; 4724 4725 btrfs_release_path(path); 4726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4727 if (ret < 0) 4728 return ret; 4729 btrfs_item_key(path->nodes[0], &found_key, 0); 4730 ret = comp_keys(&found_key, &key); 4731 if (ret < 0) 4732 return 0; 4733 return 1; 4734 } 4735 4736 /* 4737 * A helper function to walk down the tree starting at min_key, and looking 4738 * for nodes or leaves that are either in cache or have a minimum 4739 * transaction id. This is used by the btree defrag code, and tree logging 4740 * 4741 * This does not cow, but it does stuff the starting key it finds back 4742 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4743 * key and get a writable path. 4744 * 4745 * This does lock as it descends, and path->keep_locks should be set 4746 * to 1 by the caller. 4747 * 4748 * This honors path->lowest_level to prevent descent past a given level 4749 * of the tree. 4750 * 4751 * min_trans indicates the oldest transaction that you are interested 4752 * in walking through. Any nodes or leaves older than min_trans are 4753 * skipped over (without reading them). 4754 * 4755 * returns zero if something useful was found, < 0 on error and 1 if there 4756 * was nothing in the tree that matched the search criteria. 4757 */ 4758 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4759 struct btrfs_key *max_key, 4760 struct btrfs_path *path, int cache_only, 4761 u64 min_trans) 4762 { 4763 struct extent_buffer *cur; 4764 struct btrfs_key found_key; 4765 int slot; 4766 int sret; 4767 u32 nritems; 4768 int level; 4769 int ret = 1; 4770 4771 WARN_ON(!path->keep_locks); 4772 again: 4773 cur = btrfs_read_lock_root_node(root); 4774 level = btrfs_header_level(cur); 4775 WARN_ON(path->nodes[level]); 4776 path->nodes[level] = cur; 4777 path->locks[level] = BTRFS_READ_LOCK; 4778 4779 if (btrfs_header_generation(cur) < min_trans) { 4780 ret = 1; 4781 goto out; 4782 } 4783 while (1) { 4784 nritems = btrfs_header_nritems(cur); 4785 level = btrfs_header_level(cur); 4786 sret = bin_search(cur, min_key, level, &slot); 4787 4788 /* at the lowest level, we're done, setup the path and exit */ 4789 if (level == path->lowest_level) { 4790 if (slot >= nritems) 4791 goto find_next_key; 4792 ret = 0; 4793 path->slots[level] = slot; 4794 btrfs_item_key_to_cpu(cur, &found_key, slot); 4795 goto out; 4796 } 4797 if (sret && slot > 0) 4798 slot--; 4799 /* 4800 * check this node pointer against the cache_only and 4801 * min_trans parameters. If it isn't in cache or is too 4802 * old, skip to the next one. 4803 */ 4804 while (slot < nritems) { 4805 u64 blockptr; 4806 u64 gen; 4807 struct extent_buffer *tmp; 4808 struct btrfs_disk_key disk_key; 4809 4810 blockptr = btrfs_node_blockptr(cur, slot); 4811 gen = btrfs_node_ptr_generation(cur, slot); 4812 if (gen < min_trans) { 4813 slot++; 4814 continue; 4815 } 4816 if (!cache_only) 4817 break; 4818 4819 if (max_key) { 4820 btrfs_node_key(cur, &disk_key, slot); 4821 if (comp_keys(&disk_key, max_key) >= 0) { 4822 ret = 1; 4823 goto out; 4824 } 4825 } 4826 4827 tmp = btrfs_find_tree_block(root, blockptr, 4828 btrfs_level_size(root, level - 1)); 4829 4830 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 4831 free_extent_buffer(tmp); 4832 break; 4833 } 4834 if (tmp) 4835 free_extent_buffer(tmp); 4836 slot++; 4837 } 4838 find_next_key: 4839 /* 4840 * we didn't find a candidate key in this node, walk forward 4841 * and find another one 4842 */ 4843 if (slot >= nritems) { 4844 path->slots[level] = slot; 4845 btrfs_set_path_blocking(path); 4846 sret = btrfs_find_next_key(root, path, min_key, level, 4847 cache_only, min_trans); 4848 if (sret == 0) { 4849 btrfs_release_path(path); 4850 goto again; 4851 } else { 4852 goto out; 4853 } 4854 } 4855 /* save our key for returning back */ 4856 btrfs_node_key_to_cpu(cur, &found_key, slot); 4857 path->slots[level] = slot; 4858 if (level == path->lowest_level) { 4859 ret = 0; 4860 unlock_up(path, level, 1, 0, NULL); 4861 goto out; 4862 } 4863 btrfs_set_path_blocking(path); 4864 cur = read_node_slot(root, cur, slot); 4865 BUG_ON(!cur); /* -ENOMEM */ 4866 4867 btrfs_tree_read_lock(cur); 4868 4869 path->locks[level - 1] = BTRFS_READ_LOCK; 4870 path->nodes[level - 1] = cur; 4871 unlock_up(path, level, 1, 0, NULL); 4872 btrfs_clear_path_blocking(path, NULL, 0); 4873 } 4874 out: 4875 if (ret == 0) 4876 memcpy(min_key, &found_key, sizeof(found_key)); 4877 btrfs_set_path_blocking(path); 4878 return ret; 4879 } 4880 4881 /* 4882 * this is similar to btrfs_next_leaf, but does not try to preserve 4883 * and fixup the path. It looks for and returns the next key in the 4884 * tree based on the current path and the cache_only and min_trans 4885 * parameters. 4886 * 4887 * 0 is returned if another key is found, < 0 if there are any errors 4888 * and 1 is returned if there are no higher keys in the tree 4889 * 4890 * path->keep_locks should be set to 1 on the search made before 4891 * calling this function. 4892 */ 4893 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4894 struct btrfs_key *key, int level, 4895 int cache_only, u64 min_trans) 4896 { 4897 int slot; 4898 struct extent_buffer *c; 4899 4900 WARN_ON(!path->keep_locks); 4901 while (level < BTRFS_MAX_LEVEL) { 4902 if (!path->nodes[level]) 4903 return 1; 4904 4905 slot = path->slots[level] + 1; 4906 c = path->nodes[level]; 4907 next: 4908 if (slot >= btrfs_header_nritems(c)) { 4909 int ret; 4910 int orig_lowest; 4911 struct btrfs_key cur_key; 4912 if (level + 1 >= BTRFS_MAX_LEVEL || 4913 !path->nodes[level + 1]) 4914 return 1; 4915 4916 if (path->locks[level + 1]) { 4917 level++; 4918 continue; 4919 } 4920 4921 slot = btrfs_header_nritems(c) - 1; 4922 if (level == 0) 4923 btrfs_item_key_to_cpu(c, &cur_key, slot); 4924 else 4925 btrfs_node_key_to_cpu(c, &cur_key, slot); 4926 4927 orig_lowest = path->lowest_level; 4928 btrfs_release_path(path); 4929 path->lowest_level = level; 4930 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4931 0, 0); 4932 path->lowest_level = orig_lowest; 4933 if (ret < 0) 4934 return ret; 4935 4936 c = path->nodes[level]; 4937 slot = path->slots[level]; 4938 if (ret == 0) 4939 slot++; 4940 goto next; 4941 } 4942 4943 if (level == 0) 4944 btrfs_item_key_to_cpu(c, key, slot); 4945 else { 4946 u64 blockptr = btrfs_node_blockptr(c, slot); 4947 u64 gen = btrfs_node_ptr_generation(c, slot); 4948 4949 if (cache_only) { 4950 struct extent_buffer *cur; 4951 cur = btrfs_find_tree_block(root, blockptr, 4952 btrfs_level_size(root, level - 1)); 4953 if (!cur || 4954 btrfs_buffer_uptodate(cur, gen, 1) <= 0) { 4955 slot++; 4956 if (cur) 4957 free_extent_buffer(cur); 4958 goto next; 4959 } 4960 free_extent_buffer(cur); 4961 } 4962 if (gen < min_trans) { 4963 slot++; 4964 goto next; 4965 } 4966 btrfs_node_key_to_cpu(c, key, slot); 4967 } 4968 return 0; 4969 } 4970 return 1; 4971 } 4972 4973 /* 4974 * search the tree again to find a leaf with greater keys 4975 * returns 0 if it found something or 1 if there are no greater leaves. 4976 * returns < 0 on io errors. 4977 */ 4978 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4979 { 4980 int slot; 4981 int level; 4982 struct extent_buffer *c; 4983 struct extent_buffer *next; 4984 struct btrfs_key key; 4985 u32 nritems; 4986 int ret; 4987 int old_spinning = path->leave_spinning; 4988 int next_rw_lock = 0; 4989 4990 nritems = btrfs_header_nritems(path->nodes[0]); 4991 if (nritems == 0) 4992 return 1; 4993 4994 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4995 again: 4996 level = 1; 4997 next = NULL; 4998 next_rw_lock = 0; 4999 btrfs_release_path(path); 5000 5001 path->keep_locks = 1; 5002 path->leave_spinning = 1; 5003 5004 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5005 path->keep_locks = 0; 5006 5007 if (ret < 0) 5008 return ret; 5009 5010 nritems = btrfs_header_nritems(path->nodes[0]); 5011 /* 5012 * by releasing the path above we dropped all our locks. A balance 5013 * could have added more items next to the key that used to be 5014 * at the very end of the block. So, check again here and 5015 * advance the path if there are now more items available. 5016 */ 5017 if (nritems > 0 && path->slots[0] < nritems - 1) { 5018 if (ret == 0) 5019 path->slots[0]++; 5020 ret = 0; 5021 goto done; 5022 } 5023 5024 while (level < BTRFS_MAX_LEVEL) { 5025 if (!path->nodes[level]) { 5026 ret = 1; 5027 goto done; 5028 } 5029 5030 slot = path->slots[level] + 1; 5031 c = path->nodes[level]; 5032 if (slot >= btrfs_header_nritems(c)) { 5033 level++; 5034 if (level == BTRFS_MAX_LEVEL) { 5035 ret = 1; 5036 goto done; 5037 } 5038 continue; 5039 } 5040 5041 if (next) { 5042 btrfs_tree_unlock_rw(next, next_rw_lock); 5043 free_extent_buffer(next); 5044 } 5045 5046 next = c; 5047 next_rw_lock = path->locks[level]; 5048 ret = read_block_for_search(NULL, root, path, &next, level, 5049 slot, &key, 0); 5050 if (ret == -EAGAIN) 5051 goto again; 5052 5053 if (ret < 0) { 5054 btrfs_release_path(path); 5055 goto done; 5056 } 5057 5058 if (!path->skip_locking) { 5059 ret = btrfs_try_tree_read_lock(next); 5060 if (!ret) { 5061 btrfs_set_path_blocking(path); 5062 btrfs_tree_read_lock(next); 5063 btrfs_clear_path_blocking(path, next, 5064 BTRFS_READ_LOCK); 5065 } 5066 next_rw_lock = BTRFS_READ_LOCK; 5067 } 5068 break; 5069 } 5070 path->slots[level] = slot; 5071 while (1) { 5072 level--; 5073 c = path->nodes[level]; 5074 if (path->locks[level]) 5075 btrfs_tree_unlock_rw(c, path->locks[level]); 5076 5077 free_extent_buffer(c); 5078 path->nodes[level] = next; 5079 path->slots[level] = 0; 5080 if (!path->skip_locking) 5081 path->locks[level] = next_rw_lock; 5082 if (!level) 5083 break; 5084 5085 ret = read_block_for_search(NULL, root, path, &next, level, 5086 0, &key, 0); 5087 if (ret == -EAGAIN) 5088 goto again; 5089 5090 if (ret < 0) { 5091 btrfs_release_path(path); 5092 goto done; 5093 } 5094 5095 if (!path->skip_locking) { 5096 ret = btrfs_try_tree_read_lock(next); 5097 if (!ret) { 5098 btrfs_set_path_blocking(path); 5099 btrfs_tree_read_lock(next); 5100 btrfs_clear_path_blocking(path, next, 5101 BTRFS_READ_LOCK); 5102 } 5103 next_rw_lock = BTRFS_READ_LOCK; 5104 } 5105 } 5106 ret = 0; 5107 done: 5108 unlock_up(path, 0, 1, 0, NULL); 5109 path->leave_spinning = old_spinning; 5110 if (!old_spinning) 5111 btrfs_set_path_blocking(path); 5112 5113 return ret; 5114 } 5115 5116 /* 5117 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5118 * searching until it gets past min_objectid or finds an item of 'type' 5119 * 5120 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5121 */ 5122 int btrfs_previous_item(struct btrfs_root *root, 5123 struct btrfs_path *path, u64 min_objectid, 5124 int type) 5125 { 5126 struct btrfs_key found_key; 5127 struct extent_buffer *leaf; 5128 u32 nritems; 5129 int ret; 5130 5131 while (1) { 5132 if (path->slots[0] == 0) { 5133 btrfs_set_path_blocking(path); 5134 ret = btrfs_prev_leaf(root, path); 5135 if (ret != 0) 5136 return ret; 5137 } else { 5138 path->slots[0]--; 5139 } 5140 leaf = path->nodes[0]; 5141 nritems = btrfs_header_nritems(leaf); 5142 if (nritems == 0) 5143 return 1; 5144 if (path->slots[0] == nritems) 5145 path->slots[0]--; 5146 5147 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5148 if (found_key.objectid < min_objectid) 5149 break; 5150 if (found_key.type == type) 5151 return 0; 5152 if (found_key.objectid == min_objectid && 5153 found_key.type < type) 5154 break; 5155 } 5156 return 1; 5157 } 5158