1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 41 struct btrfs_path *path, int level, int slot, 42 int tree_mod_log); 43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr, 46 u32 blocksize, u64 parent_transid, 47 u64 time_seq); 48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root, 49 u64 bytenr, u32 blocksize, 50 u64 time_seq); 51 52 struct btrfs_path *btrfs_alloc_path(void) 53 { 54 struct btrfs_path *path; 55 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 56 return path; 57 } 58 59 /* 60 * set all locked nodes in the path to blocking locks. This should 61 * be done before scheduling 62 */ 63 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 64 { 65 int i; 66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 67 if (!p->nodes[i] || !p->locks[i]) 68 continue; 69 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 70 if (p->locks[i] == BTRFS_READ_LOCK) 71 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 72 else if (p->locks[i] == BTRFS_WRITE_LOCK) 73 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 74 } 75 } 76 77 /* 78 * reset all the locked nodes in the patch to spinning locks. 79 * 80 * held is used to keep lockdep happy, when lockdep is enabled 81 * we set held to a blocking lock before we go around and 82 * retake all the spinlocks in the path. You can safely use NULL 83 * for held 84 */ 85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 86 struct extent_buffer *held, int held_rw) 87 { 88 int i; 89 90 #ifdef CONFIG_DEBUG_LOCK_ALLOC 91 /* lockdep really cares that we take all of these spinlocks 92 * in the right order. If any of the locks in the path are not 93 * currently blocking, it is going to complain. So, make really 94 * really sure by forcing the path to blocking before we clear 95 * the path blocking. 96 */ 97 if (held) { 98 btrfs_set_lock_blocking_rw(held, held_rw); 99 if (held_rw == BTRFS_WRITE_LOCK) 100 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 101 else if (held_rw == BTRFS_READ_LOCK) 102 held_rw = BTRFS_READ_LOCK_BLOCKING; 103 } 104 btrfs_set_path_blocking(p); 105 #endif 106 107 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 108 if (p->nodes[i] && p->locks[i]) { 109 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 110 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 111 p->locks[i] = BTRFS_WRITE_LOCK; 112 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 113 p->locks[i] = BTRFS_READ_LOCK; 114 } 115 } 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 if (held) 119 btrfs_clear_lock_blocking_rw(held, held_rw); 120 #endif 121 } 122 123 /* this also releases the path */ 124 void btrfs_free_path(struct btrfs_path *p) 125 { 126 if (!p) 127 return; 128 btrfs_release_path(p); 129 kmem_cache_free(btrfs_path_cachep, p); 130 } 131 132 /* 133 * path release drops references on the extent buffers in the path 134 * and it drops any locks held by this path 135 * 136 * It is safe to call this on paths that no locks or extent buffers held. 137 */ 138 noinline void btrfs_release_path(struct btrfs_path *p) 139 { 140 int i; 141 142 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 143 p->slots[i] = 0; 144 if (!p->nodes[i]) 145 continue; 146 if (p->locks[i]) { 147 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 148 p->locks[i] = 0; 149 } 150 free_extent_buffer(p->nodes[i]); 151 p->nodes[i] = NULL; 152 } 153 } 154 155 /* 156 * safely gets a reference on the root node of a tree. A lock 157 * is not taken, so a concurrent writer may put a different node 158 * at the root of the tree. See btrfs_lock_root_node for the 159 * looping required. 160 * 161 * The extent buffer returned by this has a reference taken, so 162 * it won't disappear. It may stop being the root of the tree 163 * at any time because there are no locks held. 164 */ 165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 166 { 167 struct extent_buffer *eb; 168 169 while (1) { 170 rcu_read_lock(); 171 eb = rcu_dereference(root->node); 172 173 /* 174 * RCU really hurts here, we could free up the root node because 175 * it was cow'ed but we may not get the new root node yet so do 176 * the inc_not_zero dance and if it doesn't work then 177 * synchronize_rcu and try again. 178 */ 179 if (atomic_inc_not_zero(&eb->refs)) { 180 rcu_read_unlock(); 181 break; 182 } 183 rcu_read_unlock(); 184 synchronize_rcu(); 185 } 186 return eb; 187 } 188 189 /* loop around taking references on and locking the root node of the 190 * tree until you end up with a lock on the root. A locked buffer 191 * is returned, with a reference held. 192 */ 193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 194 { 195 struct extent_buffer *eb; 196 197 while (1) { 198 eb = btrfs_root_node(root); 199 btrfs_tree_lock(eb); 200 if (eb == root->node) 201 break; 202 btrfs_tree_unlock(eb); 203 free_extent_buffer(eb); 204 } 205 return eb; 206 } 207 208 /* loop around taking references on and locking the root node of the 209 * tree until you end up with a lock on the root. A locked buffer 210 * is returned, with a reference held. 211 */ 212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 213 { 214 struct extent_buffer *eb; 215 216 while (1) { 217 eb = btrfs_root_node(root); 218 btrfs_tree_read_lock(eb); 219 if (eb == root->node) 220 break; 221 btrfs_tree_read_unlock(eb); 222 free_extent_buffer(eb); 223 } 224 return eb; 225 } 226 227 /* cowonly root (everything not a reference counted cow subvolume), just get 228 * put onto a simple dirty list. transaction.c walks this to make sure they 229 * get properly updated on disk. 230 */ 231 static void add_root_to_dirty_list(struct btrfs_root *root) 232 { 233 spin_lock(&root->fs_info->trans_lock); 234 if (root->track_dirty && list_empty(&root->dirty_list)) { 235 list_add(&root->dirty_list, 236 &root->fs_info->dirty_cowonly_roots); 237 } 238 spin_unlock(&root->fs_info->trans_lock); 239 } 240 241 /* 242 * used by snapshot creation to make a copy of a root for a tree with 243 * a given objectid. The buffer with the new root node is returned in 244 * cow_ret, and this func returns zero on success or a negative error code. 245 */ 246 int btrfs_copy_root(struct btrfs_trans_handle *trans, 247 struct btrfs_root *root, 248 struct extent_buffer *buf, 249 struct extent_buffer **cow_ret, u64 new_root_objectid) 250 { 251 struct extent_buffer *cow; 252 int ret = 0; 253 int level; 254 struct btrfs_disk_key disk_key; 255 256 WARN_ON(root->ref_cows && trans->transid != 257 root->fs_info->running_transaction->transid); 258 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 259 260 level = btrfs_header_level(buf); 261 if (level == 0) 262 btrfs_item_key(buf, &disk_key, 0); 263 else 264 btrfs_node_key(buf, &disk_key, 0); 265 266 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 267 new_root_objectid, &disk_key, level, 268 buf->start, 0); 269 if (IS_ERR(cow)) 270 return PTR_ERR(cow); 271 272 copy_extent_buffer(cow, buf, 0, 0, cow->len); 273 btrfs_set_header_bytenr(cow, cow->start); 274 btrfs_set_header_generation(cow, trans->transid); 275 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 276 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 277 BTRFS_HEADER_FLAG_RELOC); 278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 279 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 280 else 281 btrfs_set_header_owner(cow, new_root_objectid); 282 283 write_extent_buffer(cow, root->fs_info->fsid, 284 (unsigned long)btrfs_header_fsid(cow), 285 BTRFS_FSID_SIZE); 286 287 WARN_ON(btrfs_header_generation(buf) > trans->transid); 288 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 289 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 290 else 291 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 292 293 if (ret) 294 return ret; 295 296 btrfs_mark_buffer_dirty(cow); 297 *cow_ret = cow; 298 return 0; 299 } 300 301 enum mod_log_op { 302 MOD_LOG_KEY_REPLACE, 303 MOD_LOG_KEY_ADD, 304 MOD_LOG_KEY_REMOVE, 305 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 306 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 307 MOD_LOG_MOVE_KEYS, 308 MOD_LOG_ROOT_REPLACE, 309 }; 310 311 struct tree_mod_move { 312 int dst_slot; 313 int nr_items; 314 }; 315 316 struct tree_mod_root { 317 u64 logical; 318 u8 level; 319 }; 320 321 struct tree_mod_elem { 322 struct rb_node node; 323 u64 index; /* shifted logical */ 324 u64 seq; 325 enum mod_log_op op; 326 327 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 328 int slot; 329 330 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 331 u64 generation; 332 333 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 334 struct btrfs_disk_key key; 335 u64 blockptr; 336 337 /* this is used for op == MOD_LOG_MOVE_KEYS */ 338 struct tree_mod_move move; 339 340 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 341 struct tree_mod_root old_root; 342 }; 343 344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 345 { 346 read_lock(&fs_info->tree_mod_log_lock); 347 } 348 349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 350 { 351 read_unlock(&fs_info->tree_mod_log_lock); 352 } 353 354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 355 { 356 write_lock(&fs_info->tree_mod_log_lock); 357 } 358 359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 360 { 361 write_unlock(&fs_info->tree_mod_log_lock); 362 } 363 364 /* 365 * This adds a new blocker to the tree mod log's blocker list if the @elem 366 * passed does not already have a sequence number set. So when a caller expects 367 * to record tree modifications, it should ensure to set elem->seq to zero 368 * before calling btrfs_get_tree_mod_seq. 369 * Returns a fresh, unused tree log modification sequence number, even if no new 370 * blocker was added. 371 */ 372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 373 struct seq_list *elem) 374 { 375 u64 seq; 376 377 tree_mod_log_write_lock(fs_info); 378 spin_lock(&fs_info->tree_mod_seq_lock); 379 if (!elem->seq) { 380 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 382 } 383 seq = btrfs_inc_tree_mod_seq(fs_info); 384 spin_unlock(&fs_info->tree_mod_seq_lock); 385 tree_mod_log_write_unlock(fs_info); 386 387 return seq; 388 } 389 390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 391 struct seq_list *elem) 392 { 393 struct rb_root *tm_root; 394 struct rb_node *node; 395 struct rb_node *next; 396 struct seq_list *cur_elem; 397 struct tree_mod_elem *tm; 398 u64 min_seq = (u64)-1; 399 u64 seq_putting = elem->seq; 400 401 if (!seq_putting) 402 return; 403 404 spin_lock(&fs_info->tree_mod_seq_lock); 405 list_del(&elem->list); 406 elem->seq = 0; 407 408 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 409 if (cur_elem->seq < min_seq) { 410 if (seq_putting > cur_elem->seq) { 411 /* 412 * blocker with lower sequence number exists, we 413 * cannot remove anything from the log 414 */ 415 spin_unlock(&fs_info->tree_mod_seq_lock); 416 return; 417 } 418 min_seq = cur_elem->seq; 419 } 420 } 421 spin_unlock(&fs_info->tree_mod_seq_lock); 422 423 /* 424 * anything that's lower than the lowest existing (read: blocked) 425 * sequence number can be removed from the tree. 426 */ 427 tree_mod_log_write_lock(fs_info); 428 tm_root = &fs_info->tree_mod_log; 429 for (node = rb_first(tm_root); node; node = next) { 430 next = rb_next(node); 431 tm = container_of(node, struct tree_mod_elem, node); 432 if (tm->seq > min_seq) 433 continue; 434 rb_erase(node, tm_root); 435 kfree(tm); 436 } 437 tree_mod_log_write_unlock(fs_info); 438 } 439 440 /* 441 * key order of the log: 442 * index -> sequence 443 * 444 * the index is the shifted logical of the *new* root node for root replace 445 * operations, or the shifted logical of the affected block for all other 446 * operations. 447 */ 448 static noinline int 449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 450 { 451 struct rb_root *tm_root; 452 struct rb_node **new; 453 struct rb_node *parent = NULL; 454 struct tree_mod_elem *cur; 455 456 BUG_ON(!tm || !tm->seq); 457 458 tm_root = &fs_info->tree_mod_log; 459 new = &tm_root->rb_node; 460 while (*new) { 461 cur = container_of(*new, struct tree_mod_elem, node); 462 parent = *new; 463 if (cur->index < tm->index) 464 new = &((*new)->rb_left); 465 else if (cur->index > tm->index) 466 new = &((*new)->rb_right); 467 else if (cur->seq < tm->seq) 468 new = &((*new)->rb_left); 469 else if (cur->seq > tm->seq) 470 new = &((*new)->rb_right); 471 else { 472 kfree(tm); 473 return -EEXIST; 474 } 475 } 476 477 rb_link_node(&tm->node, parent, new); 478 rb_insert_color(&tm->node, tm_root); 479 return 0; 480 } 481 482 /* 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold 485 * this until all tree mod log insertions are recorded in the rb tree and then 486 * call tree_mod_log_write_unlock() to release. 487 */ 488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 489 struct extent_buffer *eb) { 490 smp_mb(); 491 if (list_empty(&(fs_info)->tree_mod_seq_list)) 492 return 1; 493 if (eb && btrfs_header_level(eb) == 0) 494 return 1; 495 496 tree_mod_log_write_lock(fs_info); 497 if (list_empty(&fs_info->tree_mod_seq_list)) { 498 /* 499 * someone emptied the list while we were waiting for the lock. 500 * we must not add to the list when no blocker exists. 501 */ 502 tree_mod_log_write_unlock(fs_info); 503 return 1; 504 } 505 506 return 0; 507 } 508 509 /* 510 * This allocates memory and gets a tree modification sequence number. 511 * 512 * Returns <0 on error. 513 * Returns >0 (the added sequence number) on success. 514 */ 515 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags, 516 struct tree_mod_elem **tm_ret) 517 { 518 struct tree_mod_elem *tm; 519 520 /* 521 * once we switch from spin locks to something different, we should 522 * honor the flags parameter here. 523 */ 524 tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC); 525 if (!tm) 526 return -ENOMEM; 527 528 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 529 return tm->seq; 530 } 531 532 static inline int 533 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 534 struct extent_buffer *eb, int slot, 535 enum mod_log_op op, gfp_t flags) 536 { 537 int ret; 538 struct tree_mod_elem *tm; 539 540 ret = tree_mod_alloc(fs_info, flags, &tm); 541 if (ret < 0) 542 return ret; 543 544 tm->index = eb->start >> PAGE_CACHE_SHIFT; 545 if (op != MOD_LOG_KEY_ADD) { 546 btrfs_node_key(eb, &tm->key, slot); 547 tm->blockptr = btrfs_node_blockptr(eb, slot); 548 } 549 tm->op = op; 550 tm->slot = slot; 551 tm->generation = btrfs_node_ptr_generation(eb, slot); 552 553 return __tree_mod_log_insert(fs_info, tm); 554 } 555 556 static noinline int 557 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info, 558 struct extent_buffer *eb, int slot, 559 enum mod_log_op op, gfp_t flags) 560 { 561 int ret; 562 563 if (tree_mod_dont_log(fs_info, eb)) 564 return 0; 565 566 ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags); 567 568 tree_mod_log_write_unlock(fs_info); 569 return ret; 570 } 571 572 static noinline int 573 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 574 int slot, enum mod_log_op op) 575 { 576 return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS); 577 } 578 579 static noinline int 580 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info, 581 struct extent_buffer *eb, int slot, 582 enum mod_log_op op) 583 { 584 return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS); 585 } 586 587 static noinline int 588 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 589 struct extent_buffer *eb, int dst_slot, int src_slot, 590 int nr_items, gfp_t flags) 591 { 592 struct tree_mod_elem *tm; 593 int ret; 594 int i; 595 596 if (tree_mod_dont_log(fs_info, eb)) 597 return 0; 598 599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 600 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot, 601 MOD_LOG_KEY_REMOVE_WHILE_MOVING); 602 BUG_ON(ret < 0); 603 } 604 605 ret = tree_mod_alloc(fs_info, flags, &tm); 606 if (ret < 0) 607 goto out; 608 609 tm->index = eb->start >> PAGE_CACHE_SHIFT; 610 tm->slot = src_slot; 611 tm->move.dst_slot = dst_slot; 612 tm->move.nr_items = nr_items; 613 tm->op = MOD_LOG_MOVE_KEYS; 614 615 ret = __tree_mod_log_insert(fs_info, tm); 616 out: 617 tree_mod_log_write_unlock(fs_info); 618 return ret; 619 } 620 621 static inline void 622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 623 { 624 int i; 625 u32 nritems; 626 int ret; 627 628 if (btrfs_header_level(eb) == 0) 629 return; 630 631 nritems = btrfs_header_nritems(eb); 632 for (i = nritems - 1; i >= 0; i--) { 633 ret = tree_mod_log_insert_key_locked(fs_info, eb, i, 634 MOD_LOG_KEY_REMOVE_WHILE_FREEING); 635 BUG_ON(ret < 0); 636 } 637 } 638 639 static noinline int 640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 641 struct extent_buffer *old_root, 642 struct extent_buffer *new_root, gfp_t flags) 643 { 644 struct tree_mod_elem *tm; 645 int ret; 646 647 if (tree_mod_dont_log(fs_info, NULL)) 648 return 0; 649 650 __tree_mod_log_free_eb(fs_info, old_root); 651 652 ret = tree_mod_alloc(fs_info, flags, &tm); 653 if (ret < 0) 654 goto out; 655 656 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 657 tm->old_root.logical = old_root->start; 658 tm->old_root.level = btrfs_header_level(old_root); 659 tm->generation = btrfs_header_generation(old_root); 660 tm->op = MOD_LOG_ROOT_REPLACE; 661 662 ret = __tree_mod_log_insert(fs_info, tm); 663 out: 664 tree_mod_log_write_unlock(fs_info); 665 return ret; 666 } 667 668 static struct tree_mod_elem * 669 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 670 int smallest) 671 { 672 struct rb_root *tm_root; 673 struct rb_node *node; 674 struct tree_mod_elem *cur = NULL; 675 struct tree_mod_elem *found = NULL; 676 u64 index = start >> PAGE_CACHE_SHIFT; 677 678 tree_mod_log_read_lock(fs_info); 679 tm_root = &fs_info->tree_mod_log; 680 node = tm_root->rb_node; 681 while (node) { 682 cur = container_of(node, struct tree_mod_elem, node); 683 if (cur->index < index) { 684 node = node->rb_left; 685 } else if (cur->index > index) { 686 node = node->rb_right; 687 } else if (cur->seq < min_seq) { 688 node = node->rb_left; 689 } else if (!smallest) { 690 /* we want the node with the highest seq */ 691 if (found) 692 BUG_ON(found->seq > cur->seq); 693 found = cur; 694 node = node->rb_left; 695 } else if (cur->seq > min_seq) { 696 /* we want the node with the smallest seq */ 697 if (found) 698 BUG_ON(found->seq < cur->seq); 699 found = cur; 700 node = node->rb_right; 701 } else { 702 found = cur; 703 break; 704 } 705 } 706 tree_mod_log_read_unlock(fs_info); 707 708 return found; 709 } 710 711 /* 712 * this returns the element from the log with the smallest time sequence 713 * value that's in the log (the oldest log item). any element with a time 714 * sequence lower than min_seq will be ignored. 715 */ 716 static struct tree_mod_elem * 717 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 718 u64 min_seq) 719 { 720 return __tree_mod_log_search(fs_info, start, min_seq, 1); 721 } 722 723 /* 724 * this returns the element from the log with the largest time sequence 725 * value that's in the log (the most recent log item). any element with 726 * a time sequence lower than min_seq will be ignored. 727 */ 728 static struct tree_mod_elem * 729 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 730 { 731 return __tree_mod_log_search(fs_info, start, min_seq, 0); 732 } 733 734 static noinline void 735 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 736 struct extent_buffer *src, unsigned long dst_offset, 737 unsigned long src_offset, int nr_items) 738 { 739 int ret; 740 int i; 741 742 if (tree_mod_dont_log(fs_info, NULL)) 743 return; 744 745 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) { 746 tree_mod_log_write_unlock(fs_info); 747 return; 748 } 749 750 for (i = 0; i < nr_items; i++) { 751 ret = tree_mod_log_insert_key_locked(fs_info, src, 752 i + src_offset, 753 MOD_LOG_KEY_REMOVE); 754 BUG_ON(ret < 0); 755 ret = tree_mod_log_insert_key_locked(fs_info, dst, 756 i + dst_offset, 757 MOD_LOG_KEY_ADD); 758 BUG_ON(ret < 0); 759 } 760 761 tree_mod_log_write_unlock(fs_info); 762 } 763 764 static inline void 765 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 766 int dst_offset, int src_offset, int nr_items) 767 { 768 int ret; 769 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 770 nr_items, GFP_NOFS); 771 BUG_ON(ret < 0); 772 } 773 774 static noinline void 775 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 776 struct extent_buffer *eb, 777 struct btrfs_disk_key *disk_key, int slot, int atomic) 778 { 779 int ret; 780 781 ret = tree_mod_log_insert_key_mask(fs_info, eb, slot, 782 MOD_LOG_KEY_REPLACE, 783 atomic ? GFP_ATOMIC : GFP_NOFS); 784 BUG_ON(ret < 0); 785 } 786 787 static noinline void 788 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 789 { 790 if (tree_mod_dont_log(fs_info, eb)) 791 return; 792 793 __tree_mod_log_free_eb(fs_info, eb); 794 795 tree_mod_log_write_unlock(fs_info); 796 } 797 798 static noinline void 799 tree_mod_log_set_root_pointer(struct btrfs_root *root, 800 struct extent_buffer *new_root_node) 801 { 802 int ret; 803 ret = tree_mod_log_insert_root(root->fs_info, root->node, 804 new_root_node, GFP_NOFS); 805 BUG_ON(ret < 0); 806 } 807 808 /* 809 * check if the tree block can be shared by multiple trees 810 */ 811 int btrfs_block_can_be_shared(struct btrfs_root *root, 812 struct extent_buffer *buf) 813 { 814 /* 815 * Tree blocks not in refernece counted trees and tree roots 816 * are never shared. If a block was allocated after the last 817 * snapshot and the block was not allocated by tree relocation, 818 * we know the block is not shared. 819 */ 820 if (root->ref_cows && 821 buf != root->node && buf != root->commit_root && 822 (btrfs_header_generation(buf) <= 823 btrfs_root_last_snapshot(&root->root_item) || 824 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 825 return 1; 826 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 827 if (root->ref_cows && 828 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 829 return 1; 830 #endif 831 return 0; 832 } 833 834 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 835 struct btrfs_root *root, 836 struct extent_buffer *buf, 837 struct extent_buffer *cow, 838 int *last_ref) 839 { 840 u64 refs; 841 u64 owner; 842 u64 flags; 843 u64 new_flags = 0; 844 int ret; 845 846 /* 847 * Backrefs update rules: 848 * 849 * Always use full backrefs for extent pointers in tree block 850 * allocated by tree relocation. 851 * 852 * If a shared tree block is no longer referenced by its owner 853 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 854 * use full backrefs for extent pointers in tree block. 855 * 856 * If a tree block is been relocating 857 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 858 * use full backrefs for extent pointers in tree block. 859 * The reason for this is some operations (such as drop tree) 860 * are only allowed for blocks use full backrefs. 861 */ 862 863 if (btrfs_block_can_be_shared(root, buf)) { 864 ret = btrfs_lookup_extent_info(trans, root, buf->start, 865 buf->len, &refs, &flags); 866 if (ret) 867 return ret; 868 if (refs == 0) { 869 ret = -EROFS; 870 btrfs_std_error(root->fs_info, ret); 871 return ret; 872 } 873 } else { 874 refs = 1; 875 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 876 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 877 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 878 else 879 flags = 0; 880 } 881 882 owner = btrfs_header_owner(buf); 883 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 884 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 885 886 if (refs > 1) { 887 if ((owner == root->root_key.objectid || 888 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 889 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 890 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 891 BUG_ON(ret); /* -ENOMEM */ 892 893 if (root->root_key.objectid == 894 BTRFS_TREE_RELOC_OBJECTID) { 895 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 896 BUG_ON(ret); /* -ENOMEM */ 897 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 898 BUG_ON(ret); /* -ENOMEM */ 899 } 900 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 901 } else { 902 903 if (root->root_key.objectid == 904 BTRFS_TREE_RELOC_OBJECTID) 905 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 906 else 907 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 908 BUG_ON(ret); /* -ENOMEM */ 909 } 910 if (new_flags != 0) { 911 ret = btrfs_set_disk_extent_flags(trans, root, 912 buf->start, 913 buf->len, 914 new_flags, 0); 915 if (ret) 916 return ret; 917 } 918 } else { 919 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 920 if (root->root_key.objectid == 921 BTRFS_TREE_RELOC_OBJECTID) 922 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 923 else 924 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 925 BUG_ON(ret); /* -ENOMEM */ 926 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 927 BUG_ON(ret); /* -ENOMEM */ 928 } 929 /* 930 * don't log freeing in case we're freeing the root node, this 931 * is done by tree_mod_log_set_root_pointer later 932 */ 933 if (buf != root->node && btrfs_header_level(buf) != 0) 934 tree_mod_log_free_eb(root->fs_info, buf); 935 clean_tree_block(trans, root, buf); 936 *last_ref = 1; 937 } 938 return 0; 939 } 940 941 /* 942 * does the dirty work in cow of a single block. The parent block (if 943 * supplied) is updated to point to the new cow copy. The new buffer is marked 944 * dirty and returned locked. If you modify the block it needs to be marked 945 * dirty again. 946 * 947 * search_start -- an allocation hint for the new block 948 * 949 * empty_size -- a hint that you plan on doing more cow. This is the size in 950 * bytes the allocator should try to find free next to the block it returns. 951 * This is just a hint and may be ignored by the allocator. 952 */ 953 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 954 struct btrfs_root *root, 955 struct extent_buffer *buf, 956 struct extent_buffer *parent, int parent_slot, 957 struct extent_buffer **cow_ret, 958 u64 search_start, u64 empty_size) 959 { 960 struct btrfs_disk_key disk_key; 961 struct extent_buffer *cow; 962 int level, ret; 963 int last_ref = 0; 964 int unlock_orig = 0; 965 u64 parent_start; 966 967 if (*cow_ret == buf) 968 unlock_orig = 1; 969 970 btrfs_assert_tree_locked(buf); 971 972 WARN_ON(root->ref_cows && trans->transid != 973 root->fs_info->running_transaction->transid); 974 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 975 976 level = btrfs_header_level(buf); 977 978 if (level == 0) 979 btrfs_item_key(buf, &disk_key, 0); 980 else 981 btrfs_node_key(buf, &disk_key, 0); 982 983 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 984 if (parent) 985 parent_start = parent->start; 986 else 987 parent_start = 0; 988 } else 989 parent_start = 0; 990 991 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 992 root->root_key.objectid, &disk_key, 993 level, search_start, empty_size); 994 if (IS_ERR(cow)) 995 return PTR_ERR(cow); 996 997 /* cow is set to blocking by btrfs_init_new_buffer */ 998 999 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1000 btrfs_set_header_bytenr(cow, cow->start); 1001 btrfs_set_header_generation(cow, trans->transid); 1002 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1003 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1004 BTRFS_HEADER_FLAG_RELOC); 1005 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1006 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1007 else 1008 btrfs_set_header_owner(cow, root->root_key.objectid); 1009 1010 write_extent_buffer(cow, root->fs_info->fsid, 1011 (unsigned long)btrfs_header_fsid(cow), 1012 BTRFS_FSID_SIZE); 1013 1014 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1015 if (ret) { 1016 btrfs_abort_transaction(trans, root, ret); 1017 return ret; 1018 } 1019 1020 if (root->ref_cows) 1021 btrfs_reloc_cow_block(trans, root, buf, cow); 1022 1023 if (buf == root->node) { 1024 WARN_ON(parent && parent != buf); 1025 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1026 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1027 parent_start = buf->start; 1028 else 1029 parent_start = 0; 1030 1031 extent_buffer_get(cow); 1032 tree_mod_log_set_root_pointer(root, cow); 1033 rcu_assign_pointer(root->node, cow); 1034 1035 btrfs_free_tree_block(trans, root, buf, parent_start, 1036 last_ref); 1037 free_extent_buffer(buf); 1038 add_root_to_dirty_list(root); 1039 } else { 1040 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1041 parent_start = parent->start; 1042 else 1043 parent_start = 0; 1044 1045 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1046 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1047 MOD_LOG_KEY_REPLACE); 1048 btrfs_set_node_blockptr(parent, parent_slot, 1049 cow->start); 1050 btrfs_set_node_ptr_generation(parent, parent_slot, 1051 trans->transid); 1052 btrfs_mark_buffer_dirty(parent); 1053 btrfs_free_tree_block(trans, root, buf, parent_start, 1054 last_ref); 1055 } 1056 if (unlock_orig) 1057 btrfs_tree_unlock(buf); 1058 free_extent_buffer_stale(buf); 1059 btrfs_mark_buffer_dirty(cow); 1060 *cow_ret = cow; 1061 return 0; 1062 } 1063 1064 /* 1065 * returns the logical address of the oldest predecessor of the given root. 1066 * entries older than time_seq are ignored. 1067 */ 1068 static struct tree_mod_elem * 1069 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1070 struct btrfs_root *root, u64 time_seq) 1071 { 1072 struct tree_mod_elem *tm; 1073 struct tree_mod_elem *found = NULL; 1074 u64 root_logical = root->node->start; 1075 int looped = 0; 1076 1077 if (!time_seq) 1078 return 0; 1079 1080 /* 1081 * the very last operation that's logged for a root is the replacement 1082 * operation (if it is replaced at all). this has the index of the *new* 1083 * root, making it the very first operation that's logged for this root. 1084 */ 1085 while (1) { 1086 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1087 time_seq); 1088 if (!looped && !tm) 1089 return 0; 1090 /* 1091 * if there are no tree operation for the oldest root, we simply 1092 * return it. this should only happen if that (old) root is at 1093 * level 0. 1094 */ 1095 if (!tm) 1096 break; 1097 1098 /* 1099 * if there's an operation that's not a root replacement, we 1100 * found the oldest version of our root. normally, we'll find a 1101 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1102 */ 1103 if (tm->op != MOD_LOG_ROOT_REPLACE) 1104 break; 1105 1106 found = tm; 1107 root_logical = tm->old_root.logical; 1108 BUG_ON(root_logical == root->node->start); 1109 looped = 1; 1110 } 1111 1112 /* if there's no old root to return, return what we found instead */ 1113 if (!found) 1114 found = tm; 1115 1116 return found; 1117 } 1118 1119 /* 1120 * tm is a pointer to the first operation to rewind within eb. then, all 1121 * previous operations will be rewinded (until we reach something older than 1122 * time_seq). 1123 */ 1124 static void 1125 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq, 1126 struct tree_mod_elem *first_tm) 1127 { 1128 u32 n; 1129 struct rb_node *next; 1130 struct tree_mod_elem *tm = first_tm; 1131 unsigned long o_dst; 1132 unsigned long o_src; 1133 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1134 1135 n = btrfs_header_nritems(eb); 1136 while (tm && tm->seq >= time_seq) { 1137 /* 1138 * all the operations are recorded with the operator used for 1139 * the modification. as we're going backwards, we do the 1140 * opposite of each operation here. 1141 */ 1142 switch (tm->op) { 1143 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1144 BUG_ON(tm->slot < n); 1145 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1146 case MOD_LOG_KEY_REMOVE: 1147 btrfs_set_node_key(eb, &tm->key, tm->slot); 1148 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1149 btrfs_set_node_ptr_generation(eb, tm->slot, 1150 tm->generation); 1151 n++; 1152 break; 1153 case MOD_LOG_KEY_REPLACE: 1154 BUG_ON(tm->slot >= n); 1155 btrfs_set_node_key(eb, &tm->key, tm->slot); 1156 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1157 btrfs_set_node_ptr_generation(eb, tm->slot, 1158 tm->generation); 1159 break; 1160 case MOD_LOG_KEY_ADD: 1161 /* if a move operation is needed it's in the log */ 1162 n--; 1163 break; 1164 case MOD_LOG_MOVE_KEYS: 1165 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1166 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1167 memmove_extent_buffer(eb, o_dst, o_src, 1168 tm->move.nr_items * p_size); 1169 break; 1170 case MOD_LOG_ROOT_REPLACE: 1171 /* 1172 * this operation is special. for roots, this must be 1173 * handled explicitly before rewinding. 1174 * for non-roots, this operation may exist if the node 1175 * was a root: root A -> child B; then A gets empty and 1176 * B is promoted to the new root. in the mod log, we'll 1177 * have a root-replace operation for B, a tree block 1178 * that is no root. we simply ignore that operation. 1179 */ 1180 break; 1181 } 1182 next = rb_next(&tm->node); 1183 if (!next) 1184 break; 1185 tm = container_of(next, struct tree_mod_elem, node); 1186 if (tm->index != first_tm->index) 1187 break; 1188 } 1189 btrfs_set_header_nritems(eb, n); 1190 } 1191 1192 static struct extent_buffer * 1193 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1194 u64 time_seq) 1195 { 1196 struct extent_buffer *eb_rewin; 1197 struct tree_mod_elem *tm; 1198 1199 if (!time_seq) 1200 return eb; 1201 1202 if (btrfs_header_level(eb) == 0) 1203 return eb; 1204 1205 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1206 if (!tm) 1207 return eb; 1208 1209 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1210 BUG_ON(tm->slot != 0); 1211 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1212 fs_info->tree_root->nodesize); 1213 BUG_ON(!eb_rewin); 1214 btrfs_set_header_bytenr(eb_rewin, eb->start); 1215 btrfs_set_header_backref_rev(eb_rewin, 1216 btrfs_header_backref_rev(eb)); 1217 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1218 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1219 } else { 1220 eb_rewin = btrfs_clone_extent_buffer(eb); 1221 BUG_ON(!eb_rewin); 1222 } 1223 1224 extent_buffer_get(eb_rewin); 1225 free_extent_buffer(eb); 1226 1227 __tree_mod_log_rewind(eb_rewin, time_seq, tm); 1228 WARN_ON(btrfs_header_nritems(eb_rewin) > 1229 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root)); 1230 1231 return eb_rewin; 1232 } 1233 1234 /* 1235 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1236 * value. If there are no changes, the current root->root_node is returned. If 1237 * anything changed in between, there's a fresh buffer allocated on which the 1238 * rewind operations are done. In any case, the returned buffer is read locked. 1239 * Returns NULL on error (with no locks held). 1240 */ 1241 static inline struct extent_buffer * 1242 get_old_root(struct btrfs_root *root, u64 time_seq) 1243 { 1244 struct tree_mod_elem *tm; 1245 struct extent_buffer *eb; 1246 struct tree_mod_root *old_root = NULL; 1247 u64 old_generation = 0; 1248 u64 logical; 1249 1250 eb = btrfs_read_lock_root_node(root); 1251 tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq); 1252 if (!tm) 1253 return root->node; 1254 1255 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1256 old_root = &tm->old_root; 1257 old_generation = tm->generation; 1258 logical = old_root->logical; 1259 } else { 1260 logical = root->node->start; 1261 } 1262 1263 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1264 if (old_root) 1265 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1266 else 1267 eb = btrfs_clone_extent_buffer(root->node); 1268 btrfs_tree_read_unlock(root->node); 1269 free_extent_buffer(root->node); 1270 if (!eb) 1271 return NULL; 1272 btrfs_tree_read_lock(eb); 1273 if (old_root) { 1274 btrfs_set_header_bytenr(eb, eb->start); 1275 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1276 btrfs_set_header_owner(eb, root->root_key.objectid); 1277 btrfs_set_header_level(eb, old_root->level); 1278 btrfs_set_header_generation(eb, old_generation); 1279 } 1280 if (tm) 1281 __tree_mod_log_rewind(eb, time_seq, tm); 1282 else 1283 WARN_ON(btrfs_header_level(eb) != 0); 1284 extent_buffer_get(eb); 1285 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1286 1287 return eb; 1288 } 1289 1290 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1291 struct btrfs_root *root, 1292 struct extent_buffer *buf) 1293 { 1294 /* ensure we can see the force_cow */ 1295 smp_rmb(); 1296 1297 /* 1298 * We do not need to cow a block if 1299 * 1) this block is not created or changed in this transaction; 1300 * 2) this block does not belong to TREE_RELOC tree; 1301 * 3) the root is not forced COW. 1302 * 1303 * What is forced COW: 1304 * when we create snapshot during commiting the transaction, 1305 * after we've finished coping src root, we must COW the shared 1306 * block to ensure the metadata consistency. 1307 */ 1308 if (btrfs_header_generation(buf) == trans->transid && 1309 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1310 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1311 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1312 !root->force_cow) 1313 return 0; 1314 return 1; 1315 } 1316 1317 /* 1318 * cows a single block, see __btrfs_cow_block for the real work. 1319 * This version of it has extra checks so that a block isn't cow'd more than 1320 * once per transaction, as long as it hasn't been written yet 1321 */ 1322 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1323 struct btrfs_root *root, struct extent_buffer *buf, 1324 struct extent_buffer *parent, int parent_slot, 1325 struct extent_buffer **cow_ret) 1326 { 1327 u64 search_start; 1328 int ret; 1329 1330 if (trans->transaction != root->fs_info->running_transaction) { 1331 printk(KERN_CRIT "trans %llu running %llu\n", 1332 (unsigned long long)trans->transid, 1333 (unsigned long long) 1334 root->fs_info->running_transaction->transid); 1335 WARN_ON(1); 1336 } 1337 if (trans->transid != root->fs_info->generation) { 1338 printk(KERN_CRIT "trans %llu running %llu\n", 1339 (unsigned long long)trans->transid, 1340 (unsigned long long)root->fs_info->generation); 1341 WARN_ON(1); 1342 } 1343 1344 if (!should_cow_block(trans, root, buf)) { 1345 *cow_ret = buf; 1346 return 0; 1347 } 1348 1349 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1350 1351 if (parent) 1352 btrfs_set_lock_blocking(parent); 1353 btrfs_set_lock_blocking(buf); 1354 1355 ret = __btrfs_cow_block(trans, root, buf, parent, 1356 parent_slot, cow_ret, search_start, 0); 1357 1358 trace_btrfs_cow_block(root, buf, *cow_ret); 1359 1360 return ret; 1361 } 1362 1363 /* 1364 * helper function for defrag to decide if two blocks pointed to by a 1365 * node are actually close by 1366 */ 1367 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1368 { 1369 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1370 return 1; 1371 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1372 return 1; 1373 return 0; 1374 } 1375 1376 /* 1377 * compare two keys in a memcmp fashion 1378 */ 1379 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1380 { 1381 struct btrfs_key k1; 1382 1383 btrfs_disk_key_to_cpu(&k1, disk); 1384 1385 return btrfs_comp_cpu_keys(&k1, k2); 1386 } 1387 1388 /* 1389 * same as comp_keys only with two btrfs_key's 1390 */ 1391 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1392 { 1393 if (k1->objectid > k2->objectid) 1394 return 1; 1395 if (k1->objectid < k2->objectid) 1396 return -1; 1397 if (k1->type > k2->type) 1398 return 1; 1399 if (k1->type < k2->type) 1400 return -1; 1401 if (k1->offset > k2->offset) 1402 return 1; 1403 if (k1->offset < k2->offset) 1404 return -1; 1405 return 0; 1406 } 1407 1408 /* 1409 * this is used by the defrag code to go through all the 1410 * leaves pointed to by a node and reallocate them so that 1411 * disk order is close to key order 1412 */ 1413 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1414 struct btrfs_root *root, struct extent_buffer *parent, 1415 int start_slot, int cache_only, u64 *last_ret, 1416 struct btrfs_key *progress) 1417 { 1418 struct extent_buffer *cur; 1419 u64 blocknr; 1420 u64 gen; 1421 u64 search_start = *last_ret; 1422 u64 last_block = 0; 1423 u64 other; 1424 u32 parent_nritems; 1425 int end_slot; 1426 int i; 1427 int err = 0; 1428 int parent_level; 1429 int uptodate; 1430 u32 blocksize; 1431 int progress_passed = 0; 1432 struct btrfs_disk_key disk_key; 1433 1434 parent_level = btrfs_header_level(parent); 1435 if (cache_only && parent_level != 1) 1436 return 0; 1437 1438 if (trans->transaction != root->fs_info->running_transaction) 1439 WARN_ON(1); 1440 if (trans->transid != root->fs_info->generation) 1441 WARN_ON(1); 1442 1443 parent_nritems = btrfs_header_nritems(parent); 1444 blocksize = btrfs_level_size(root, parent_level - 1); 1445 end_slot = parent_nritems; 1446 1447 if (parent_nritems == 1) 1448 return 0; 1449 1450 btrfs_set_lock_blocking(parent); 1451 1452 for (i = start_slot; i < end_slot; i++) { 1453 int close = 1; 1454 1455 btrfs_node_key(parent, &disk_key, i); 1456 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1457 continue; 1458 1459 progress_passed = 1; 1460 blocknr = btrfs_node_blockptr(parent, i); 1461 gen = btrfs_node_ptr_generation(parent, i); 1462 if (last_block == 0) 1463 last_block = blocknr; 1464 1465 if (i > 0) { 1466 other = btrfs_node_blockptr(parent, i - 1); 1467 close = close_blocks(blocknr, other, blocksize); 1468 } 1469 if (!close && i < end_slot - 2) { 1470 other = btrfs_node_blockptr(parent, i + 1); 1471 close = close_blocks(blocknr, other, blocksize); 1472 } 1473 if (close) { 1474 last_block = blocknr; 1475 continue; 1476 } 1477 1478 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1479 if (cur) 1480 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1481 else 1482 uptodate = 0; 1483 if (!cur || !uptodate) { 1484 if (cache_only) { 1485 free_extent_buffer(cur); 1486 continue; 1487 } 1488 if (!cur) { 1489 cur = read_tree_block(root, blocknr, 1490 blocksize, gen); 1491 if (!cur) 1492 return -EIO; 1493 } else if (!uptodate) { 1494 err = btrfs_read_buffer(cur, gen); 1495 if (err) { 1496 free_extent_buffer(cur); 1497 return err; 1498 } 1499 } 1500 } 1501 if (search_start == 0) 1502 search_start = last_block; 1503 1504 btrfs_tree_lock(cur); 1505 btrfs_set_lock_blocking(cur); 1506 err = __btrfs_cow_block(trans, root, cur, parent, i, 1507 &cur, search_start, 1508 min(16 * blocksize, 1509 (end_slot - i) * blocksize)); 1510 if (err) { 1511 btrfs_tree_unlock(cur); 1512 free_extent_buffer(cur); 1513 break; 1514 } 1515 search_start = cur->start; 1516 last_block = cur->start; 1517 *last_ret = search_start; 1518 btrfs_tree_unlock(cur); 1519 free_extent_buffer(cur); 1520 } 1521 return err; 1522 } 1523 1524 /* 1525 * The leaf data grows from end-to-front in the node. 1526 * this returns the address of the start of the last item, 1527 * which is the stop of the leaf data stack 1528 */ 1529 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1530 struct extent_buffer *leaf) 1531 { 1532 u32 nr = btrfs_header_nritems(leaf); 1533 if (nr == 0) 1534 return BTRFS_LEAF_DATA_SIZE(root); 1535 return btrfs_item_offset_nr(leaf, nr - 1); 1536 } 1537 1538 1539 /* 1540 * search for key in the extent_buffer. The items start at offset p, 1541 * and they are item_size apart. There are 'max' items in p. 1542 * 1543 * the slot in the array is returned via slot, and it points to 1544 * the place where you would insert key if it is not found in 1545 * the array. 1546 * 1547 * slot may point to max if the key is bigger than all of the keys 1548 */ 1549 static noinline int generic_bin_search(struct extent_buffer *eb, 1550 unsigned long p, 1551 int item_size, struct btrfs_key *key, 1552 int max, int *slot) 1553 { 1554 int low = 0; 1555 int high = max; 1556 int mid; 1557 int ret; 1558 struct btrfs_disk_key *tmp = NULL; 1559 struct btrfs_disk_key unaligned; 1560 unsigned long offset; 1561 char *kaddr = NULL; 1562 unsigned long map_start = 0; 1563 unsigned long map_len = 0; 1564 int err; 1565 1566 while (low < high) { 1567 mid = (low + high) / 2; 1568 offset = p + mid * item_size; 1569 1570 if (!kaddr || offset < map_start || 1571 (offset + sizeof(struct btrfs_disk_key)) > 1572 map_start + map_len) { 1573 1574 err = map_private_extent_buffer(eb, offset, 1575 sizeof(struct btrfs_disk_key), 1576 &kaddr, &map_start, &map_len); 1577 1578 if (!err) { 1579 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1580 map_start); 1581 } else { 1582 read_extent_buffer(eb, &unaligned, 1583 offset, sizeof(unaligned)); 1584 tmp = &unaligned; 1585 } 1586 1587 } else { 1588 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1589 map_start); 1590 } 1591 ret = comp_keys(tmp, key); 1592 1593 if (ret < 0) 1594 low = mid + 1; 1595 else if (ret > 0) 1596 high = mid; 1597 else { 1598 *slot = mid; 1599 return 0; 1600 } 1601 } 1602 *slot = low; 1603 return 1; 1604 } 1605 1606 /* 1607 * simple bin_search frontend that does the right thing for 1608 * leaves vs nodes 1609 */ 1610 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1611 int level, int *slot) 1612 { 1613 if (level == 0) 1614 return generic_bin_search(eb, 1615 offsetof(struct btrfs_leaf, items), 1616 sizeof(struct btrfs_item), 1617 key, btrfs_header_nritems(eb), 1618 slot); 1619 else 1620 return generic_bin_search(eb, 1621 offsetof(struct btrfs_node, ptrs), 1622 sizeof(struct btrfs_key_ptr), 1623 key, btrfs_header_nritems(eb), 1624 slot); 1625 } 1626 1627 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1628 int level, int *slot) 1629 { 1630 return bin_search(eb, key, level, slot); 1631 } 1632 1633 static void root_add_used(struct btrfs_root *root, u32 size) 1634 { 1635 spin_lock(&root->accounting_lock); 1636 btrfs_set_root_used(&root->root_item, 1637 btrfs_root_used(&root->root_item) + size); 1638 spin_unlock(&root->accounting_lock); 1639 } 1640 1641 static void root_sub_used(struct btrfs_root *root, u32 size) 1642 { 1643 spin_lock(&root->accounting_lock); 1644 btrfs_set_root_used(&root->root_item, 1645 btrfs_root_used(&root->root_item) - size); 1646 spin_unlock(&root->accounting_lock); 1647 } 1648 1649 /* given a node and slot number, this reads the blocks it points to. The 1650 * extent buffer is returned with a reference taken (but unlocked). 1651 * NULL is returned on error. 1652 */ 1653 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1654 struct extent_buffer *parent, int slot) 1655 { 1656 int level = btrfs_header_level(parent); 1657 if (slot < 0) 1658 return NULL; 1659 if (slot >= btrfs_header_nritems(parent)) 1660 return NULL; 1661 1662 BUG_ON(level == 0); 1663 1664 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 1665 btrfs_level_size(root, level - 1), 1666 btrfs_node_ptr_generation(parent, slot)); 1667 } 1668 1669 /* 1670 * node level balancing, used to make sure nodes are in proper order for 1671 * item deletion. We balance from the top down, so we have to make sure 1672 * that a deletion won't leave an node completely empty later on. 1673 */ 1674 static noinline int balance_level(struct btrfs_trans_handle *trans, 1675 struct btrfs_root *root, 1676 struct btrfs_path *path, int level) 1677 { 1678 struct extent_buffer *right = NULL; 1679 struct extent_buffer *mid; 1680 struct extent_buffer *left = NULL; 1681 struct extent_buffer *parent = NULL; 1682 int ret = 0; 1683 int wret; 1684 int pslot; 1685 int orig_slot = path->slots[level]; 1686 u64 orig_ptr; 1687 1688 if (level == 0) 1689 return 0; 1690 1691 mid = path->nodes[level]; 1692 1693 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1694 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1695 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1696 1697 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1698 1699 if (level < BTRFS_MAX_LEVEL - 1) { 1700 parent = path->nodes[level + 1]; 1701 pslot = path->slots[level + 1]; 1702 } 1703 1704 /* 1705 * deal with the case where there is only one pointer in the root 1706 * by promoting the node below to a root 1707 */ 1708 if (!parent) { 1709 struct extent_buffer *child; 1710 1711 if (btrfs_header_nritems(mid) != 1) 1712 return 0; 1713 1714 /* promote the child to a root */ 1715 child = read_node_slot(root, mid, 0); 1716 if (!child) { 1717 ret = -EROFS; 1718 btrfs_std_error(root->fs_info, ret); 1719 goto enospc; 1720 } 1721 1722 btrfs_tree_lock(child); 1723 btrfs_set_lock_blocking(child); 1724 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1725 if (ret) { 1726 btrfs_tree_unlock(child); 1727 free_extent_buffer(child); 1728 goto enospc; 1729 } 1730 1731 tree_mod_log_set_root_pointer(root, child); 1732 rcu_assign_pointer(root->node, child); 1733 1734 add_root_to_dirty_list(root); 1735 btrfs_tree_unlock(child); 1736 1737 path->locks[level] = 0; 1738 path->nodes[level] = NULL; 1739 clean_tree_block(trans, root, mid); 1740 btrfs_tree_unlock(mid); 1741 /* once for the path */ 1742 free_extent_buffer(mid); 1743 1744 root_sub_used(root, mid->len); 1745 btrfs_free_tree_block(trans, root, mid, 0, 1); 1746 /* once for the root ptr */ 1747 free_extent_buffer_stale(mid); 1748 return 0; 1749 } 1750 if (btrfs_header_nritems(mid) > 1751 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1752 return 0; 1753 1754 left = read_node_slot(root, parent, pslot - 1); 1755 if (left) { 1756 btrfs_tree_lock(left); 1757 btrfs_set_lock_blocking(left); 1758 wret = btrfs_cow_block(trans, root, left, 1759 parent, pslot - 1, &left); 1760 if (wret) { 1761 ret = wret; 1762 goto enospc; 1763 } 1764 } 1765 right = read_node_slot(root, parent, pslot + 1); 1766 if (right) { 1767 btrfs_tree_lock(right); 1768 btrfs_set_lock_blocking(right); 1769 wret = btrfs_cow_block(trans, root, right, 1770 parent, pslot + 1, &right); 1771 if (wret) { 1772 ret = wret; 1773 goto enospc; 1774 } 1775 } 1776 1777 /* first, try to make some room in the middle buffer */ 1778 if (left) { 1779 orig_slot += btrfs_header_nritems(left); 1780 wret = push_node_left(trans, root, left, mid, 1); 1781 if (wret < 0) 1782 ret = wret; 1783 } 1784 1785 /* 1786 * then try to empty the right most buffer into the middle 1787 */ 1788 if (right) { 1789 wret = push_node_left(trans, root, mid, right, 1); 1790 if (wret < 0 && wret != -ENOSPC) 1791 ret = wret; 1792 if (btrfs_header_nritems(right) == 0) { 1793 clean_tree_block(trans, root, right); 1794 btrfs_tree_unlock(right); 1795 del_ptr(trans, root, path, level + 1, pslot + 1, 1); 1796 root_sub_used(root, right->len); 1797 btrfs_free_tree_block(trans, root, right, 0, 1); 1798 free_extent_buffer_stale(right); 1799 right = NULL; 1800 } else { 1801 struct btrfs_disk_key right_key; 1802 btrfs_node_key(right, &right_key, 0); 1803 tree_mod_log_set_node_key(root->fs_info, parent, 1804 &right_key, pslot + 1, 0); 1805 btrfs_set_node_key(parent, &right_key, pslot + 1); 1806 btrfs_mark_buffer_dirty(parent); 1807 } 1808 } 1809 if (btrfs_header_nritems(mid) == 1) { 1810 /* 1811 * we're not allowed to leave a node with one item in the 1812 * tree during a delete. A deletion from lower in the tree 1813 * could try to delete the only pointer in this node. 1814 * So, pull some keys from the left. 1815 * There has to be a left pointer at this point because 1816 * otherwise we would have pulled some pointers from the 1817 * right 1818 */ 1819 if (!left) { 1820 ret = -EROFS; 1821 btrfs_std_error(root->fs_info, ret); 1822 goto enospc; 1823 } 1824 wret = balance_node_right(trans, root, mid, left); 1825 if (wret < 0) { 1826 ret = wret; 1827 goto enospc; 1828 } 1829 if (wret == 1) { 1830 wret = push_node_left(trans, root, left, mid, 1); 1831 if (wret < 0) 1832 ret = wret; 1833 } 1834 BUG_ON(wret == 1); 1835 } 1836 if (btrfs_header_nritems(mid) == 0) { 1837 clean_tree_block(trans, root, mid); 1838 btrfs_tree_unlock(mid); 1839 del_ptr(trans, root, path, level + 1, pslot, 1); 1840 root_sub_used(root, mid->len); 1841 btrfs_free_tree_block(trans, root, mid, 0, 1); 1842 free_extent_buffer_stale(mid); 1843 mid = NULL; 1844 } else { 1845 /* update the parent key to reflect our changes */ 1846 struct btrfs_disk_key mid_key; 1847 btrfs_node_key(mid, &mid_key, 0); 1848 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key, 1849 pslot, 0); 1850 btrfs_set_node_key(parent, &mid_key, pslot); 1851 btrfs_mark_buffer_dirty(parent); 1852 } 1853 1854 /* update the path */ 1855 if (left) { 1856 if (btrfs_header_nritems(left) > orig_slot) { 1857 extent_buffer_get(left); 1858 /* left was locked after cow */ 1859 path->nodes[level] = left; 1860 path->slots[level + 1] -= 1; 1861 path->slots[level] = orig_slot; 1862 if (mid) { 1863 btrfs_tree_unlock(mid); 1864 free_extent_buffer(mid); 1865 } 1866 } else { 1867 orig_slot -= btrfs_header_nritems(left); 1868 path->slots[level] = orig_slot; 1869 } 1870 } 1871 /* double check we haven't messed things up */ 1872 if (orig_ptr != 1873 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1874 BUG(); 1875 enospc: 1876 if (right) { 1877 btrfs_tree_unlock(right); 1878 free_extent_buffer(right); 1879 } 1880 if (left) { 1881 if (path->nodes[level] != left) 1882 btrfs_tree_unlock(left); 1883 free_extent_buffer(left); 1884 } 1885 return ret; 1886 } 1887 1888 /* Node balancing for insertion. Here we only split or push nodes around 1889 * when they are completely full. This is also done top down, so we 1890 * have to be pessimistic. 1891 */ 1892 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1893 struct btrfs_root *root, 1894 struct btrfs_path *path, int level) 1895 { 1896 struct extent_buffer *right = NULL; 1897 struct extent_buffer *mid; 1898 struct extent_buffer *left = NULL; 1899 struct extent_buffer *parent = NULL; 1900 int ret = 0; 1901 int wret; 1902 int pslot; 1903 int orig_slot = path->slots[level]; 1904 1905 if (level == 0) 1906 return 1; 1907 1908 mid = path->nodes[level]; 1909 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1910 1911 if (level < BTRFS_MAX_LEVEL - 1) { 1912 parent = path->nodes[level + 1]; 1913 pslot = path->slots[level + 1]; 1914 } 1915 1916 if (!parent) 1917 return 1; 1918 1919 left = read_node_slot(root, parent, pslot - 1); 1920 1921 /* first, try to make some room in the middle buffer */ 1922 if (left) { 1923 u32 left_nr; 1924 1925 btrfs_tree_lock(left); 1926 btrfs_set_lock_blocking(left); 1927 1928 left_nr = btrfs_header_nritems(left); 1929 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1930 wret = 1; 1931 } else { 1932 ret = btrfs_cow_block(trans, root, left, parent, 1933 pslot - 1, &left); 1934 if (ret) 1935 wret = 1; 1936 else { 1937 wret = push_node_left(trans, root, 1938 left, mid, 0); 1939 } 1940 } 1941 if (wret < 0) 1942 ret = wret; 1943 if (wret == 0) { 1944 struct btrfs_disk_key disk_key; 1945 orig_slot += left_nr; 1946 btrfs_node_key(mid, &disk_key, 0); 1947 tree_mod_log_set_node_key(root->fs_info, parent, 1948 &disk_key, pslot, 0); 1949 btrfs_set_node_key(parent, &disk_key, pslot); 1950 btrfs_mark_buffer_dirty(parent); 1951 if (btrfs_header_nritems(left) > orig_slot) { 1952 path->nodes[level] = left; 1953 path->slots[level + 1] -= 1; 1954 path->slots[level] = orig_slot; 1955 btrfs_tree_unlock(mid); 1956 free_extent_buffer(mid); 1957 } else { 1958 orig_slot -= 1959 btrfs_header_nritems(left); 1960 path->slots[level] = orig_slot; 1961 btrfs_tree_unlock(left); 1962 free_extent_buffer(left); 1963 } 1964 return 0; 1965 } 1966 btrfs_tree_unlock(left); 1967 free_extent_buffer(left); 1968 } 1969 right = read_node_slot(root, parent, pslot + 1); 1970 1971 /* 1972 * then try to empty the right most buffer into the middle 1973 */ 1974 if (right) { 1975 u32 right_nr; 1976 1977 btrfs_tree_lock(right); 1978 btrfs_set_lock_blocking(right); 1979 1980 right_nr = btrfs_header_nritems(right); 1981 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1982 wret = 1; 1983 } else { 1984 ret = btrfs_cow_block(trans, root, right, 1985 parent, pslot + 1, 1986 &right); 1987 if (ret) 1988 wret = 1; 1989 else { 1990 wret = balance_node_right(trans, root, 1991 right, mid); 1992 } 1993 } 1994 if (wret < 0) 1995 ret = wret; 1996 if (wret == 0) { 1997 struct btrfs_disk_key disk_key; 1998 1999 btrfs_node_key(right, &disk_key, 0); 2000 tree_mod_log_set_node_key(root->fs_info, parent, 2001 &disk_key, pslot + 1, 0); 2002 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2003 btrfs_mark_buffer_dirty(parent); 2004 2005 if (btrfs_header_nritems(mid) <= orig_slot) { 2006 path->nodes[level] = right; 2007 path->slots[level + 1] += 1; 2008 path->slots[level] = orig_slot - 2009 btrfs_header_nritems(mid); 2010 btrfs_tree_unlock(mid); 2011 free_extent_buffer(mid); 2012 } else { 2013 btrfs_tree_unlock(right); 2014 free_extent_buffer(right); 2015 } 2016 return 0; 2017 } 2018 btrfs_tree_unlock(right); 2019 free_extent_buffer(right); 2020 } 2021 return 1; 2022 } 2023 2024 /* 2025 * readahead one full node of leaves, finding things that are close 2026 * to the block in 'slot', and triggering ra on them. 2027 */ 2028 static void reada_for_search(struct btrfs_root *root, 2029 struct btrfs_path *path, 2030 int level, int slot, u64 objectid) 2031 { 2032 struct extent_buffer *node; 2033 struct btrfs_disk_key disk_key; 2034 u32 nritems; 2035 u64 search; 2036 u64 target; 2037 u64 nread = 0; 2038 u64 gen; 2039 int direction = path->reada; 2040 struct extent_buffer *eb; 2041 u32 nr; 2042 u32 blocksize; 2043 u32 nscan = 0; 2044 2045 if (level != 1) 2046 return; 2047 2048 if (!path->nodes[level]) 2049 return; 2050 2051 node = path->nodes[level]; 2052 2053 search = btrfs_node_blockptr(node, slot); 2054 blocksize = btrfs_level_size(root, level - 1); 2055 eb = btrfs_find_tree_block(root, search, blocksize); 2056 if (eb) { 2057 free_extent_buffer(eb); 2058 return; 2059 } 2060 2061 target = search; 2062 2063 nritems = btrfs_header_nritems(node); 2064 nr = slot; 2065 2066 while (1) { 2067 if (direction < 0) { 2068 if (nr == 0) 2069 break; 2070 nr--; 2071 } else if (direction > 0) { 2072 nr++; 2073 if (nr >= nritems) 2074 break; 2075 } 2076 if (path->reada < 0 && objectid) { 2077 btrfs_node_key(node, &disk_key, nr); 2078 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2079 break; 2080 } 2081 search = btrfs_node_blockptr(node, nr); 2082 if ((search <= target && target - search <= 65536) || 2083 (search > target && search - target <= 65536)) { 2084 gen = btrfs_node_ptr_generation(node, nr); 2085 readahead_tree_block(root, search, blocksize, gen); 2086 nread += blocksize; 2087 } 2088 nscan++; 2089 if ((nread > 65536 || nscan > 32)) 2090 break; 2091 } 2092 } 2093 2094 /* 2095 * returns -EAGAIN if it had to drop the path, or zero if everything was in 2096 * cache 2097 */ 2098 static noinline int reada_for_balance(struct btrfs_root *root, 2099 struct btrfs_path *path, int level) 2100 { 2101 int slot; 2102 int nritems; 2103 struct extent_buffer *parent; 2104 struct extent_buffer *eb; 2105 u64 gen; 2106 u64 block1 = 0; 2107 u64 block2 = 0; 2108 int ret = 0; 2109 int blocksize; 2110 2111 parent = path->nodes[level + 1]; 2112 if (!parent) 2113 return 0; 2114 2115 nritems = btrfs_header_nritems(parent); 2116 slot = path->slots[level + 1]; 2117 blocksize = btrfs_level_size(root, level); 2118 2119 if (slot > 0) { 2120 block1 = btrfs_node_blockptr(parent, slot - 1); 2121 gen = btrfs_node_ptr_generation(parent, slot - 1); 2122 eb = btrfs_find_tree_block(root, block1, blocksize); 2123 /* 2124 * if we get -eagain from btrfs_buffer_uptodate, we 2125 * don't want to return eagain here. That will loop 2126 * forever 2127 */ 2128 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2129 block1 = 0; 2130 free_extent_buffer(eb); 2131 } 2132 if (slot + 1 < nritems) { 2133 block2 = btrfs_node_blockptr(parent, slot + 1); 2134 gen = btrfs_node_ptr_generation(parent, slot + 1); 2135 eb = btrfs_find_tree_block(root, block2, blocksize); 2136 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2137 block2 = 0; 2138 free_extent_buffer(eb); 2139 } 2140 if (block1 || block2) { 2141 ret = -EAGAIN; 2142 2143 /* release the whole path */ 2144 btrfs_release_path(path); 2145 2146 /* read the blocks */ 2147 if (block1) 2148 readahead_tree_block(root, block1, blocksize, 0); 2149 if (block2) 2150 readahead_tree_block(root, block2, blocksize, 0); 2151 2152 if (block1) { 2153 eb = read_tree_block(root, block1, blocksize, 0); 2154 free_extent_buffer(eb); 2155 } 2156 if (block2) { 2157 eb = read_tree_block(root, block2, blocksize, 0); 2158 free_extent_buffer(eb); 2159 } 2160 } 2161 return ret; 2162 } 2163 2164 2165 /* 2166 * when we walk down the tree, it is usually safe to unlock the higher layers 2167 * in the tree. The exceptions are when our path goes through slot 0, because 2168 * operations on the tree might require changing key pointers higher up in the 2169 * tree. 2170 * 2171 * callers might also have set path->keep_locks, which tells this code to keep 2172 * the lock if the path points to the last slot in the block. This is part of 2173 * walking through the tree, and selecting the next slot in the higher block. 2174 * 2175 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2176 * if lowest_unlock is 1, level 0 won't be unlocked 2177 */ 2178 static noinline void unlock_up(struct btrfs_path *path, int level, 2179 int lowest_unlock, int min_write_lock_level, 2180 int *write_lock_level) 2181 { 2182 int i; 2183 int skip_level = level; 2184 int no_skips = 0; 2185 struct extent_buffer *t; 2186 2187 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2188 if (!path->nodes[i]) 2189 break; 2190 if (!path->locks[i]) 2191 break; 2192 if (!no_skips && path->slots[i] == 0) { 2193 skip_level = i + 1; 2194 continue; 2195 } 2196 if (!no_skips && path->keep_locks) { 2197 u32 nritems; 2198 t = path->nodes[i]; 2199 nritems = btrfs_header_nritems(t); 2200 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2201 skip_level = i + 1; 2202 continue; 2203 } 2204 } 2205 if (skip_level < i && i >= lowest_unlock) 2206 no_skips = 1; 2207 2208 t = path->nodes[i]; 2209 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2210 btrfs_tree_unlock_rw(t, path->locks[i]); 2211 path->locks[i] = 0; 2212 if (write_lock_level && 2213 i > min_write_lock_level && 2214 i <= *write_lock_level) { 2215 *write_lock_level = i - 1; 2216 } 2217 } 2218 } 2219 } 2220 2221 /* 2222 * This releases any locks held in the path starting at level and 2223 * going all the way up to the root. 2224 * 2225 * btrfs_search_slot will keep the lock held on higher nodes in a few 2226 * corner cases, such as COW of the block at slot zero in the node. This 2227 * ignores those rules, and it should only be called when there are no 2228 * more updates to be done higher up in the tree. 2229 */ 2230 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2231 { 2232 int i; 2233 2234 if (path->keep_locks) 2235 return; 2236 2237 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2238 if (!path->nodes[i]) 2239 continue; 2240 if (!path->locks[i]) 2241 continue; 2242 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2243 path->locks[i] = 0; 2244 } 2245 } 2246 2247 /* 2248 * helper function for btrfs_search_slot. The goal is to find a block 2249 * in cache without setting the path to blocking. If we find the block 2250 * we return zero and the path is unchanged. 2251 * 2252 * If we can't find the block, we set the path blocking and do some 2253 * reada. -EAGAIN is returned and the search must be repeated. 2254 */ 2255 static int 2256 read_block_for_search(struct btrfs_trans_handle *trans, 2257 struct btrfs_root *root, struct btrfs_path *p, 2258 struct extent_buffer **eb_ret, int level, int slot, 2259 struct btrfs_key *key, u64 time_seq) 2260 { 2261 u64 blocknr; 2262 u64 gen; 2263 u32 blocksize; 2264 struct extent_buffer *b = *eb_ret; 2265 struct extent_buffer *tmp; 2266 int ret; 2267 2268 blocknr = btrfs_node_blockptr(b, slot); 2269 gen = btrfs_node_ptr_generation(b, slot); 2270 blocksize = btrfs_level_size(root, level - 1); 2271 2272 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2273 if (tmp) { 2274 /* first we do an atomic uptodate check */ 2275 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) { 2276 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2277 /* 2278 * we found an up to date block without 2279 * sleeping, return 2280 * right away 2281 */ 2282 *eb_ret = tmp; 2283 return 0; 2284 } 2285 /* the pages were up to date, but we failed 2286 * the generation number check. Do a full 2287 * read for the generation number that is correct. 2288 * We must do this without dropping locks so 2289 * we can trust our generation number 2290 */ 2291 free_extent_buffer(tmp); 2292 btrfs_set_path_blocking(p); 2293 2294 /* now we're allowed to do a blocking uptodate check */ 2295 tmp = read_tree_block(root, blocknr, blocksize, gen); 2296 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) { 2297 *eb_ret = tmp; 2298 return 0; 2299 } 2300 free_extent_buffer(tmp); 2301 btrfs_release_path(p); 2302 return -EIO; 2303 } 2304 } 2305 2306 /* 2307 * reduce lock contention at high levels 2308 * of the btree by dropping locks before 2309 * we read. Don't release the lock on the current 2310 * level because we need to walk this node to figure 2311 * out which blocks to read. 2312 */ 2313 btrfs_unlock_up_safe(p, level + 1); 2314 btrfs_set_path_blocking(p); 2315 2316 free_extent_buffer(tmp); 2317 if (p->reada) 2318 reada_for_search(root, p, level, slot, key->objectid); 2319 2320 btrfs_release_path(p); 2321 2322 ret = -EAGAIN; 2323 tmp = read_tree_block(root, blocknr, blocksize, 0); 2324 if (tmp) { 2325 /* 2326 * If the read above didn't mark this buffer up to date, 2327 * it will never end up being up to date. Set ret to EIO now 2328 * and give up so that our caller doesn't loop forever 2329 * on our EAGAINs. 2330 */ 2331 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2332 ret = -EIO; 2333 free_extent_buffer(tmp); 2334 } 2335 return ret; 2336 } 2337 2338 /* 2339 * helper function for btrfs_search_slot. This does all of the checks 2340 * for node-level blocks and does any balancing required based on 2341 * the ins_len. 2342 * 2343 * If no extra work was required, zero is returned. If we had to 2344 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2345 * start over 2346 */ 2347 static int 2348 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2349 struct btrfs_root *root, struct btrfs_path *p, 2350 struct extent_buffer *b, int level, int ins_len, 2351 int *write_lock_level) 2352 { 2353 int ret; 2354 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2355 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2356 int sret; 2357 2358 if (*write_lock_level < level + 1) { 2359 *write_lock_level = level + 1; 2360 btrfs_release_path(p); 2361 goto again; 2362 } 2363 2364 sret = reada_for_balance(root, p, level); 2365 if (sret) 2366 goto again; 2367 2368 btrfs_set_path_blocking(p); 2369 sret = split_node(trans, root, p, level); 2370 btrfs_clear_path_blocking(p, NULL, 0); 2371 2372 BUG_ON(sret > 0); 2373 if (sret) { 2374 ret = sret; 2375 goto done; 2376 } 2377 b = p->nodes[level]; 2378 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2379 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2380 int sret; 2381 2382 if (*write_lock_level < level + 1) { 2383 *write_lock_level = level + 1; 2384 btrfs_release_path(p); 2385 goto again; 2386 } 2387 2388 sret = reada_for_balance(root, p, level); 2389 if (sret) 2390 goto again; 2391 2392 btrfs_set_path_blocking(p); 2393 sret = balance_level(trans, root, p, level); 2394 btrfs_clear_path_blocking(p, NULL, 0); 2395 2396 if (sret) { 2397 ret = sret; 2398 goto done; 2399 } 2400 b = p->nodes[level]; 2401 if (!b) { 2402 btrfs_release_path(p); 2403 goto again; 2404 } 2405 BUG_ON(btrfs_header_nritems(b) == 1); 2406 } 2407 return 0; 2408 2409 again: 2410 ret = -EAGAIN; 2411 done: 2412 return ret; 2413 } 2414 2415 /* 2416 * look for key in the tree. path is filled in with nodes along the way 2417 * if key is found, we return zero and you can find the item in the leaf 2418 * level of the path (level 0) 2419 * 2420 * If the key isn't found, the path points to the slot where it should 2421 * be inserted, and 1 is returned. If there are other errors during the 2422 * search a negative error number is returned. 2423 * 2424 * if ins_len > 0, nodes and leaves will be split as we walk down the 2425 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2426 * possible) 2427 */ 2428 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2429 *root, struct btrfs_key *key, struct btrfs_path *p, int 2430 ins_len, int cow) 2431 { 2432 struct extent_buffer *b; 2433 int slot; 2434 int ret; 2435 int err; 2436 int level; 2437 int lowest_unlock = 1; 2438 int root_lock; 2439 /* everything at write_lock_level or lower must be write locked */ 2440 int write_lock_level = 0; 2441 u8 lowest_level = 0; 2442 int min_write_lock_level; 2443 2444 lowest_level = p->lowest_level; 2445 WARN_ON(lowest_level && ins_len > 0); 2446 WARN_ON(p->nodes[0] != NULL); 2447 2448 if (ins_len < 0) { 2449 lowest_unlock = 2; 2450 2451 /* when we are removing items, we might have to go up to level 2452 * two as we update tree pointers Make sure we keep write 2453 * for those levels as well 2454 */ 2455 write_lock_level = 2; 2456 } else if (ins_len > 0) { 2457 /* 2458 * for inserting items, make sure we have a write lock on 2459 * level 1 so we can update keys 2460 */ 2461 write_lock_level = 1; 2462 } 2463 2464 if (!cow) 2465 write_lock_level = -1; 2466 2467 if (cow && (p->keep_locks || p->lowest_level)) 2468 write_lock_level = BTRFS_MAX_LEVEL; 2469 2470 min_write_lock_level = write_lock_level; 2471 2472 again: 2473 /* 2474 * we try very hard to do read locks on the root 2475 */ 2476 root_lock = BTRFS_READ_LOCK; 2477 level = 0; 2478 if (p->search_commit_root) { 2479 /* 2480 * the commit roots are read only 2481 * so we always do read locks 2482 */ 2483 b = root->commit_root; 2484 extent_buffer_get(b); 2485 level = btrfs_header_level(b); 2486 if (!p->skip_locking) 2487 btrfs_tree_read_lock(b); 2488 } else { 2489 if (p->skip_locking) { 2490 b = btrfs_root_node(root); 2491 level = btrfs_header_level(b); 2492 } else { 2493 /* we don't know the level of the root node 2494 * until we actually have it read locked 2495 */ 2496 b = btrfs_read_lock_root_node(root); 2497 level = btrfs_header_level(b); 2498 if (level <= write_lock_level) { 2499 /* whoops, must trade for write lock */ 2500 btrfs_tree_read_unlock(b); 2501 free_extent_buffer(b); 2502 b = btrfs_lock_root_node(root); 2503 root_lock = BTRFS_WRITE_LOCK; 2504 2505 /* the level might have changed, check again */ 2506 level = btrfs_header_level(b); 2507 } 2508 } 2509 } 2510 p->nodes[level] = b; 2511 if (!p->skip_locking) 2512 p->locks[level] = root_lock; 2513 2514 while (b) { 2515 level = btrfs_header_level(b); 2516 2517 /* 2518 * setup the path here so we can release it under lock 2519 * contention with the cow code 2520 */ 2521 if (cow) { 2522 /* 2523 * if we don't really need to cow this block 2524 * then we don't want to set the path blocking, 2525 * so we test it here 2526 */ 2527 if (!should_cow_block(trans, root, b)) 2528 goto cow_done; 2529 2530 btrfs_set_path_blocking(p); 2531 2532 /* 2533 * must have write locks on this node and the 2534 * parent 2535 */ 2536 if (level + 1 > write_lock_level) { 2537 write_lock_level = level + 1; 2538 btrfs_release_path(p); 2539 goto again; 2540 } 2541 2542 err = btrfs_cow_block(trans, root, b, 2543 p->nodes[level + 1], 2544 p->slots[level + 1], &b); 2545 if (err) { 2546 ret = err; 2547 goto done; 2548 } 2549 } 2550 cow_done: 2551 BUG_ON(!cow && ins_len); 2552 2553 p->nodes[level] = b; 2554 btrfs_clear_path_blocking(p, NULL, 0); 2555 2556 /* 2557 * we have a lock on b and as long as we aren't changing 2558 * the tree, there is no way to for the items in b to change. 2559 * It is safe to drop the lock on our parent before we 2560 * go through the expensive btree search on b. 2561 * 2562 * If cow is true, then we might be changing slot zero, 2563 * which may require changing the parent. So, we can't 2564 * drop the lock until after we know which slot we're 2565 * operating on. 2566 */ 2567 if (!cow) 2568 btrfs_unlock_up_safe(p, level + 1); 2569 2570 ret = bin_search(b, key, level, &slot); 2571 2572 if (level != 0) { 2573 int dec = 0; 2574 if (ret && slot > 0) { 2575 dec = 1; 2576 slot -= 1; 2577 } 2578 p->slots[level] = slot; 2579 err = setup_nodes_for_search(trans, root, p, b, level, 2580 ins_len, &write_lock_level); 2581 if (err == -EAGAIN) 2582 goto again; 2583 if (err) { 2584 ret = err; 2585 goto done; 2586 } 2587 b = p->nodes[level]; 2588 slot = p->slots[level]; 2589 2590 /* 2591 * slot 0 is special, if we change the key 2592 * we have to update the parent pointer 2593 * which means we must have a write lock 2594 * on the parent 2595 */ 2596 if (slot == 0 && cow && 2597 write_lock_level < level + 1) { 2598 write_lock_level = level + 1; 2599 btrfs_release_path(p); 2600 goto again; 2601 } 2602 2603 unlock_up(p, level, lowest_unlock, 2604 min_write_lock_level, &write_lock_level); 2605 2606 if (level == lowest_level) { 2607 if (dec) 2608 p->slots[level]++; 2609 goto done; 2610 } 2611 2612 err = read_block_for_search(trans, root, p, 2613 &b, level, slot, key, 0); 2614 if (err == -EAGAIN) 2615 goto again; 2616 if (err) { 2617 ret = err; 2618 goto done; 2619 } 2620 2621 if (!p->skip_locking) { 2622 level = btrfs_header_level(b); 2623 if (level <= write_lock_level) { 2624 err = btrfs_try_tree_write_lock(b); 2625 if (!err) { 2626 btrfs_set_path_blocking(p); 2627 btrfs_tree_lock(b); 2628 btrfs_clear_path_blocking(p, b, 2629 BTRFS_WRITE_LOCK); 2630 } 2631 p->locks[level] = BTRFS_WRITE_LOCK; 2632 } else { 2633 err = btrfs_try_tree_read_lock(b); 2634 if (!err) { 2635 btrfs_set_path_blocking(p); 2636 btrfs_tree_read_lock(b); 2637 btrfs_clear_path_blocking(p, b, 2638 BTRFS_READ_LOCK); 2639 } 2640 p->locks[level] = BTRFS_READ_LOCK; 2641 } 2642 p->nodes[level] = b; 2643 } 2644 } else { 2645 p->slots[level] = slot; 2646 if (ins_len > 0 && 2647 btrfs_leaf_free_space(root, b) < ins_len) { 2648 if (write_lock_level < 1) { 2649 write_lock_level = 1; 2650 btrfs_release_path(p); 2651 goto again; 2652 } 2653 2654 btrfs_set_path_blocking(p); 2655 err = split_leaf(trans, root, key, 2656 p, ins_len, ret == 0); 2657 btrfs_clear_path_blocking(p, NULL, 0); 2658 2659 BUG_ON(err > 0); 2660 if (err) { 2661 ret = err; 2662 goto done; 2663 } 2664 } 2665 if (!p->search_for_split) 2666 unlock_up(p, level, lowest_unlock, 2667 min_write_lock_level, &write_lock_level); 2668 goto done; 2669 } 2670 } 2671 ret = 1; 2672 done: 2673 /* 2674 * we don't really know what they plan on doing with the path 2675 * from here on, so for now just mark it as blocking 2676 */ 2677 if (!p->leave_spinning) 2678 btrfs_set_path_blocking(p); 2679 if (ret < 0) 2680 btrfs_release_path(p); 2681 return ret; 2682 } 2683 2684 /* 2685 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2686 * current state of the tree together with the operations recorded in the tree 2687 * modification log to search for the key in a previous version of this tree, as 2688 * denoted by the time_seq parameter. 2689 * 2690 * Naturally, there is no support for insert, delete or cow operations. 2691 * 2692 * The resulting path and return value will be set up as if we called 2693 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2694 */ 2695 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2696 struct btrfs_path *p, u64 time_seq) 2697 { 2698 struct extent_buffer *b; 2699 int slot; 2700 int ret; 2701 int err; 2702 int level; 2703 int lowest_unlock = 1; 2704 u8 lowest_level = 0; 2705 2706 lowest_level = p->lowest_level; 2707 WARN_ON(p->nodes[0] != NULL); 2708 2709 if (p->search_commit_root) { 2710 BUG_ON(time_seq); 2711 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2712 } 2713 2714 again: 2715 b = get_old_root(root, time_seq); 2716 level = btrfs_header_level(b); 2717 p->locks[level] = BTRFS_READ_LOCK; 2718 2719 while (b) { 2720 level = btrfs_header_level(b); 2721 p->nodes[level] = b; 2722 btrfs_clear_path_blocking(p, NULL, 0); 2723 2724 /* 2725 * we have a lock on b and as long as we aren't changing 2726 * the tree, there is no way to for the items in b to change. 2727 * It is safe to drop the lock on our parent before we 2728 * go through the expensive btree search on b. 2729 */ 2730 btrfs_unlock_up_safe(p, level + 1); 2731 2732 ret = bin_search(b, key, level, &slot); 2733 2734 if (level != 0) { 2735 int dec = 0; 2736 if (ret && slot > 0) { 2737 dec = 1; 2738 slot -= 1; 2739 } 2740 p->slots[level] = slot; 2741 unlock_up(p, level, lowest_unlock, 0, NULL); 2742 2743 if (level == lowest_level) { 2744 if (dec) 2745 p->slots[level]++; 2746 goto done; 2747 } 2748 2749 err = read_block_for_search(NULL, root, p, &b, level, 2750 slot, key, time_seq); 2751 if (err == -EAGAIN) 2752 goto again; 2753 if (err) { 2754 ret = err; 2755 goto done; 2756 } 2757 2758 level = btrfs_header_level(b); 2759 err = btrfs_try_tree_read_lock(b); 2760 if (!err) { 2761 btrfs_set_path_blocking(p); 2762 btrfs_tree_read_lock(b); 2763 btrfs_clear_path_blocking(p, b, 2764 BTRFS_READ_LOCK); 2765 } 2766 p->locks[level] = BTRFS_READ_LOCK; 2767 p->nodes[level] = b; 2768 b = tree_mod_log_rewind(root->fs_info, b, time_seq); 2769 if (b != p->nodes[level]) { 2770 btrfs_tree_unlock_rw(p->nodes[level], 2771 p->locks[level]); 2772 p->locks[level] = 0; 2773 p->nodes[level] = b; 2774 } 2775 } else { 2776 p->slots[level] = slot; 2777 unlock_up(p, level, lowest_unlock, 0, NULL); 2778 goto done; 2779 } 2780 } 2781 ret = 1; 2782 done: 2783 if (!p->leave_spinning) 2784 btrfs_set_path_blocking(p); 2785 if (ret < 0) 2786 btrfs_release_path(p); 2787 2788 return ret; 2789 } 2790 2791 /* 2792 * helper to use instead of search slot if no exact match is needed but 2793 * instead the next or previous item should be returned. 2794 * When find_higher is true, the next higher item is returned, the next lower 2795 * otherwise. 2796 * When return_any and find_higher are both true, and no higher item is found, 2797 * return the next lower instead. 2798 * When return_any is true and find_higher is false, and no lower item is found, 2799 * return the next higher instead. 2800 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2801 * < 0 on error 2802 */ 2803 int btrfs_search_slot_for_read(struct btrfs_root *root, 2804 struct btrfs_key *key, struct btrfs_path *p, 2805 int find_higher, int return_any) 2806 { 2807 int ret; 2808 struct extent_buffer *leaf; 2809 2810 again: 2811 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2812 if (ret <= 0) 2813 return ret; 2814 /* 2815 * a return value of 1 means the path is at the position where the 2816 * item should be inserted. Normally this is the next bigger item, 2817 * but in case the previous item is the last in a leaf, path points 2818 * to the first free slot in the previous leaf, i.e. at an invalid 2819 * item. 2820 */ 2821 leaf = p->nodes[0]; 2822 2823 if (find_higher) { 2824 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2825 ret = btrfs_next_leaf(root, p); 2826 if (ret <= 0) 2827 return ret; 2828 if (!return_any) 2829 return 1; 2830 /* 2831 * no higher item found, return the next 2832 * lower instead 2833 */ 2834 return_any = 0; 2835 find_higher = 0; 2836 btrfs_release_path(p); 2837 goto again; 2838 } 2839 } else { 2840 if (p->slots[0] == 0) { 2841 ret = btrfs_prev_leaf(root, p); 2842 if (ret < 0) 2843 return ret; 2844 if (!ret) { 2845 p->slots[0] = btrfs_header_nritems(leaf) - 1; 2846 return 0; 2847 } 2848 if (!return_any) 2849 return 1; 2850 /* 2851 * no lower item found, return the next 2852 * higher instead 2853 */ 2854 return_any = 0; 2855 find_higher = 1; 2856 btrfs_release_path(p); 2857 goto again; 2858 } else { 2859 --p->slots[0]; 2860 } 2861 } 2862 return 0; 2863 } 2864 2865 /* 2866 * adjust the pointers going up the tree, starting at level 2867 * making sure the right key of each node is points to 'key'. 2868 * This is used after shifting pointers to the left, so it stops 2869 * fixing up pointers when a given leaf/node is not in slot 0 of the 2870 * higher levels 2871 * 2872 */ 2873 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2874 struct btrfs_root *root, struct btrfs_path *path, 2875 struct btrfs_disk_key *key, int level) 2876 { 2877 int i; 2878 struct extent_buffer *t; 2879 2880 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2881 int tslot = path->slots[i]; 2882 if (!path->nodes[i]) 2883 break; 2884 t = path->nodes[i]; 2885 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1); 2886 btrfs_set_node_key(t, key, tslot); 2887 btrfs_mark_buffer_dirty(path->nodes[i]); 2888 if (tslot != 0) 2889 break; 2890 } 2891 } 2892 2893 /* 2894 * update item key. 2895 * 2896 * This function isn't completely safe. It's the caller's responsibility 2897 * that the new key won't break the order 2898 */ 2899 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, struct btrfs_path *path, 2901 struct btrfs_key *new_key) 2902 { 2903 struct btrfs_disk_key disk_key; 2904 struct extent_buffer *eb; 2905 int slot; 2906 2907 eb = path->nodes[0]; 2908 slot = path->slots[0]; 2909 if (slot > 0) { 2910 btrfs_item_key(eb, &disk_key, slot - 1); 2911 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 2912 } 2913 if (slot < btrfs_header_nritems(eb) - 1) { 2914 btrfs_item_key(eb, &disk_key, slot + 1); 2915 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 2916 } 2917 2918 btrfs_cpu_key_to_disk(&disk_key, new_key); 2919 btrfs_set_item_key(eb, &disk_key, slot); 2920 btrfs_mark_buffer_dirty(eb); 2921 if (slot == 0) 2922 fixup_low_keys(trans, root, path, &disk_key, 1); 2923 } 2924 2925 /* 2926 * try to push data from one node into the next node left in the 2927 * tree. 2928 * 2929 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2930 * error, and > 0 if there was no room in the left hand block. 2931 */ 2932 static int push_node_left(struct btrfs_trans_handle *trans, 2933 struct btrfs_root *root, struct extent_buffer *dst, 2934 struct extent_buffer *src, int empty) 2935 { 2936 int push_items = 0; 2937 int src_nritems; 2938 int dst_nritems; 2939 int ret = 0; 2940 2941 src_nritems = btrfs_header_nritems(src); 2942 dst_nritems = btrfs_header_nritems(dst); 2943 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2944 WARN_ON(btrfs_header_generation(src) != trans->transid); 2945 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2946 2947 if (!empty && src_nritems <= 8) 2948 return 1; 2949 2950 if (push_items <= 0) 2951 return 1; 2952 2953 if (empty) { 2954 push_items = min(src_nritems, push_items); 2955 if (push_items < src_nritems) { 2956 /* leave at least 8 pointers in the node if 2957 * we aren't going to empty it 2958 */ 2959 if (src_nritems - push_items < 8) { 2960 if (push_items <= 8) 2961 return 1; 2962 push_items -= 8; 2963 } 2964 } 2965 } else 2966 push_items = min(src_nritems - 8, push_items); 2967 2968 tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 2969 push_items); 2970 copy_extent_buffer(dst, src, 2971 btrfs_node_key_ptr_offset(dst_nritems), 2972 btrfs_node_key_ptr_offset(0), 2973 push_items * sizeof(struct btrfs_key_ptr)); 2974 2975 if (push_items < src_nritems) { 2976 /* 2977 * don't call tree_mod_log_eb_move here, key removal was already 2978 * fully logged by tree_mod_log_eb_copy above. 2979 */ 2980 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2981 btrfs_node_key_ptr_offset(push_items), 2982 (src_nritems - push_items) * 2983 sizeof(struct btrfs_key_ptr)); 2984 } 2985 btrfs_set_header_nritems(src, src_nritems - push_items); 2986 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2987 btrfs_mark_buffer_dirty(src); 2988 btrfs_mark_buffer_dirty(dst); 2989 2990 return ret; 2991 } 2992 2993 /* 2994 * try to push data from one node into the next node right in the 2995 * tree. 2996 * 2997 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2998 * error, and > 0 if there was no room in the right hand block. 2999 * 3000 * this will only push up to 1/2 the contents of the left node over 3001 */ 3002 static int balance_node_right(struct btrfs_trans_handle *trans, 3003 struct btrfs_root *root, 3004 struct extent_buffer *dst, 3005 struct extent_buffer *src) 3006 { 3007 int push_items = 0; 3008 int max_push; 3009 int src_nritems; 3010 int dst_nritems; 3011 int ret = 0; 3012 3013 WARN_ON(btrfs_header_generation(src) != trans->transid); 3014 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3015 3016 src_nritems = btrfs_header_nritems(src); 3017 dst_nritems = btrfs_header_nritems(dst); 3018 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3019 if (push_items <= 0) 3020 return 1; 3021 3022 if (src_nritems < 4) 3023 return 1; 3024 3025 max_push = src_nritems / 2 + 1; 3026 /* don't try to empty the node */ 3027 if (max_push >= src_nritems) 3028 return 1; 3029 3030 if (max_push < push_items) 3031 push_items = max_push; 3032 3033 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3034 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3035 btrfs_node_key_ptr_offset(0), 3036 (dst_nritems) * 3037 sizeof(struct btrfs_key_ptr)); 3038 3039 tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3040 src_nritems - push_items, push_items); 3041 copy_extent_buffer(dst, src, 3042 btrfs_node_key_ptr_offset(0), 3043 btrfs_node_key_ptr_offset(src_nritems - push_items), 3044 push_items * sizeof(struct btrfs_key_ptr)); 3045 3046 btrfs_set_header_nritems(src, src_nritems - push_items); 3047 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3048 3049 btrfs_mark_buffer_dirty(src); 3050 btrfs_mark_buffer_dirty(dst); 3051 3052 return ret; 3053 } 3054 3055 /* 3056 * helper function to insert a new root level in the tree. 3057 * A new node is allocated, and a single item is inserted to 3058 * point to the existing root 3059 * 3060 * returns zero on success or < 0 on failure. 3061 */ 3062 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3063 struct btrfs_root *root, 3064 struct btrfs_path *path, int level) 3065 { 3066 u64 lower_gen; 3067 struct extent_buffer *lower; 3068 struct extent_buffer *c; 3069 struct extent_buffer *old; 3070 struct btrfs_disk_key lower_key; 3071 3072 BUG_ON(path->nodes[level]); 3073 BUG_ON(path->nodes[level-1] != root->node); 3074 3075 lower = path->nodes[level-1]; 3076 if (level == 1) 3077 btrfs_item_key(lower, &lower_key, 0); 3078 else 3079 btrfs_node_key(lower, &lower_key, 0); 3080 3081 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3082 root->root_key.objectid, &lower_key, 3083 level, root->node->start, 0); 3084 if (IS_ERR(c)) 3085 return PTR_ERR(c); 3086 3087 root_add_used(root, root->nodesize); 3088 3089 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3090 btrfs_set_header_nritems(c, 1); 3091 btrfs_set_header_level(c, level); 3092 btrfs_set_header_bytenr(c, c->start); 3093 btrfs_set_header_generation(c, trans->transid); 3094 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3095 btrfs_set_header_owner(c, root->root_key.objectid); 3096 3097 write_extent_buffer(c, root->fs_info->fsid, 3098 (unsigned long)btrfs_header_fsid(c), 3099 BTRFS_FSID_SIZE); 3100 3101 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3102 (unsigned long)btrfs_header_chunk_tree_uuid(c), 3103 BTRFS_UUID_SIZE); 3104 3105 btrfs_set_node_key(c, &lower_key, 0); 3106 btrfs_set_node_blockptr(c, 0, lower->start); 3107 lower_gen = btrfs_header_generation(lower); 3108 WARN_ON(lower_gen != trans->transid); 3109 3110 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3111 3112 btrfs_mark_buffer_dirty(c); 3113 3114 old = root->node; 3115 tree_mod_log_set_root_pointer(root, c); 3116 rcu_assign_pointer(root->node, c); 3117 3118 /* the super has an extra ref to root->node */ 3119 free_extent_buffer(old); 3120 3121 add_root_to_dirty_list(root); 3122 extent_buffer_get(c); 3123 path->nodes[level] = c; 3124 path->locks[level] = BTRFS_WRITE_LOCK; 3125 path->slots[level] = 0; 3126 return 0; 3127 } 3128 3129 /* 3130 * worker function to insert a single pointer in a node. 3131 * the node should have enough room for the pointer already 3132 * 3133 * slot and level indicate where you want the key to go, and 3134 * blocknr is the block the key points to. 3135 */ 3136 static void insert_ptr(struct btrfs_trans_handle *trans, 3137 struct btrfs_root *root, struct btrfs_path *path, 3138 struct btrfs_disk_key *key, u64 bytenr, 3139 int slot, int level) 3140 { 3141 struct extent_buffer *lower; 3142 int nritems; 3143 int ret; 3144 3145 BUG_ON(!path->nodes[level]); 3146 btrfs_assert_tree_locked(path->nodes[level]); 3147 lower = path->nodes[level]; 3148 nritems = btrfs_header_nritems(lower); 3149 BUG_ON(slot > nritems); 3150 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3151 if (slot != nritems) { 3152 if (level) 3153 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3154 slot, nritems - slot); 3155 memmove_extent_buffer(lower, 3156 btrfs_node_key_ptr_offset(slot + 1), 3157 btrfs_node_key_ptr_offset(slot), 3158 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3159 } 3160 if (level) { 3161 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3162 MOD_LOG_KEY_ADD); 3163 BUG_ON(ret < 0); 3164 } 3165 btrfs_set_node_key(lower, key, slot); 3166 btrfs_set_node_blockptr(lower, slot, bytenr); 3167 WARN_ON(trans->transid == 0); 3168 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3169 btrfs_set_header_nritems(lower, nritems + 1); 3170 btrfs_mark_buffer_dirty(lower); 3171 } 3172 3173 /* 3174 * split the node at the specified level in path in two. 3175 * The path is corrected to point to the appropriate node after the split 3176 * 3177 * Before splitting this tries to make some room in the node by pushing 3178 * left and right, if either one works, it returns right away. 3179 * 3180 * returns 0 on success and < 0 on failure 3181 */ 3182 static noinline int split_node(struct btrfs_trans_handle *trans, 3183 struct btrfs_root *root, 3184 struct btrfs_path *path, int level) 3185 { 3186 struct extent_buffer *c; 3187 struct extent_buffer *split; 3188 struct btrfs_disk_key disk_key; 3189 int mid; 3190 int ret; 3191 u32 c_nritems; 3192 3193 c = path->nodes[level]; 3194 WARN_ON(btrfs_header_generation(c) != trans->transid); 3195 if (c == root->node) { 3196 /* trying to split the root, lets make a new one */ 3197 ret = insert_new_root(trans, root, path, level + 1); 3198 if (ret) 3199 return ret; 3200 } else { 3201 ret = push_nodes_for_insert(trans, root, path, level); 3202 c = path->nodes[level]; 3203 if (!ret && btrfs_header_nritems(c) < 3204 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3205 return 0; 3206 if (ret < 0) 3207 return ret; 3208 } 3209 3210 c_nritems = btrfs_header_nritems(c); 3211 mid = (c_nritems + 1) / 2; 3212 btrfs_node_key(c, &disk_key, mid); 3213 3214 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3215 root->root_key.objectid, 3216 &disk_key, level, c->start, 0); 3217 if (IS_ERR(split)) 3218 return PTR_ERR(split); 3219 3220 root_add_used(root, root->nodesize); 3221 3222 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3223 btrfs_set_header_level(split, btrfs_header_level(c)); 3224 btrfs_set_header_bytenr(split, split->start); 3225 btrfs_set_header_generation(split, trans->transid); 3226 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3227 btrfs_set_header_owner(split, root->root_key.objectid); 3228 write_extent_buffer(split, root->fs_info->fsid, 3229 (unsigned long)btrfs_header_fsid(split), 3230 BTRFS_FSID_SIZE); 3231 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3232 (unsigned long)btrfs_header_chunk_tree_uuid(split), 3233 BTRFS_UUID_SIZE); 3234 3235 tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid); 3236 copy_extent_buffer(split, c, 3237 btrfs_node_key_ptr_offset(0), 3238 btrfs_node_key_ptr_offset(mid), 3239 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3240 btrfs_set_header_nritems(split, c_nritems - mid); 3241 btrfs_set_header_nritems(c, mid); 3242 ret = 0; 3243 3244 btrfs_mark_buffer_dirty(c); 3245 btrfs_mark_buffer_dirty(split); 3246 3247 insert_ptr(trans, root, path, &disk_key, split->start, 3248 path->slots[level + 1] + 1, level + 1); 3249 3250 if (path->slots[level] >= mid) { 3251 path->slots[level] -= mid; 3252 btrfs_tree_unlock(c); 3253 free_extent_buffer(c); 3254 path->nodes[level] = split; 3255 path->slots[level + 1] += 1; 3256 } else { 3257 btrfs_tree_unlock(split); 3258 free_extent_buffer(split); 3259 } 3260 return ret; 3261 } 3262 3263 /* 3264 * how many bytes are required to store the items in a leaf. start 3265 * and nr indicate which items in the leaf to check. This totals up the 3266 * space used both by the item structs and the item data 3267 */ 3268 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3269 { 3270 int data_len; 3271 int nritems = btrfs_header_nritems(l); 3272 int end = min(nritems, start + nr) - 1; 3273 3274 if (!nr) 3275 return 0; 3276 data_len = btrfs_item_end_nr(l, start); 3277 data_len = data_len - btrfs_item_offset_nr(l, end); 3278 data_len += sizeof(struct btrfs_item) * nr; 3279 WARN_ON(data_len < 0); 3280 return data_len; 3281 } 3282 3283 /* 3284 * The space between the end of the leaf items and 3285 * the start of the leaf data. IOW, how much room 3286 * the leaf has left for both items and data 3287 */ 3288 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3289 struct extent_buffer *leaf) 3290 { 3291 int nritems = btrfs_header_nritems(leaf); 3292 int ret; 3293 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3294 if (ret < 0) { 3295 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 3296 "used %d nritems %d\n", 3297 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3298 leaf_space_used(leaf, 0, nritems), nritems); 3299 } 3300 return ret; 3301 } 3302 3303 /* 3304 * min slot controls the lowest index we're willing to push to the 3305 * right. We'll push up to and including min_slot, but no lower 3306 */ 3307 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3308 struct btrfs_root *root, 3309 struct btrfs_path *path, 3310 int data_size, int empty, 3311 struct extent_buffer *right, 3312 int free_space, u32 left_nritems, 3313 u32 min_slot) 3314 { 3315 struct extent_buffer *left = path->nodes[0]; 3316 struct extent_buffer *upper = path->nodes[1]; 3317 struct btrfs_map_token token; 3318 struct btrfs_disk_key disk_key; 3319 int slot; 3320 u32 i; 3321 int push_space = 0; 3322 int push_items = 0; 3323 struct btrfs_item *item; 3324 u32 nr; 3325 u32 right_nritems; 3326 u32 data_end; 3327 u32 this_item_size; 3328 3329 btrfs_init_map_token(&token); 3330 3331 if (empty) 3332 nr = 0; 3333 else 3334 nr = max_t(u32, 1, min_slot); 3335 3336 if (path->slots[0] >= left_nritems) 3337 push_space += data_size; 3338 3339 slot = path->slots[1]; 3340 i = left_nritems - 1; 3341 while (i >= nr) { 3342 item = btrfs_item_nr(left, i); 3343 3344 if (!empty && push_items > 0) { 3345 if (path->slots[0] > i) 3346 break; 3347 if (path->slots[0] == i) { 3348 int space = btrfs_leaf_free_space(root, left); 3349 if (space + push_space * 2 > free_space) 3350 break; 3351 } 3352 } 3353 3354 if (path->slots[0] == i) 3355 push_space += data_size; 3356 3357 this_item_size = btrfs_item_size(left, item); 3358 if (this_item_size + sizeof(*item) + push_space > free_space) 3359 break; 3360 3361 push_items++; 3362 push_space += this_item_size + sizeof(*item); 3363 if (i == 0) 3364 break; 3365 i--; 3366 } 3367 3368 if (push_items == 0) 3369 goto out_unlock; 3370 3371 if (!empty && push_items == left_nritems) 3372 WARN_ON(1); 3373 3374 /* push left to right */ 3375 right_nritems = btrfs_header_nritems(right); 3376 3377 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3378 push_space -= leaf_data_end(root, left); 3379 3380 /* make room in the right data area */ 3381 data_end = leaf_data_end(root, right); 3382 memmove_extent_buffer(right, 3383 btrfs_leaf_data(right) + data_end - push_space, 3384 btrfs_leaf_data(right) + data_end, 3385 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3386 3387 /* copy from the left data area */ 3388 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3389 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3390 btrfs_leaf_data(left) + leaf_data_end(root, left), 3391 push_space); 3392 3393 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3394 btrfs_item_nr_offset(0), 3395 right_nritems * sizeof(struct btrfs_item)); 3396 3397 /* copy the items from left to right */ 3398 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3399 btrfs_item_nr_offset(left_nritems - push_items), 3400 push_items * sizeof(struct btrfs_item)); 3401 3402 /* update the item pointers */ 3403 right_nritems += push_items; 3404 btrfs_set_header_nritems(right, right_nritems); 3405 push_space = BTRFS_LEAF_DATA_SIZE(root); 3406 for (i = 0; i < right_nritems; i++) { 3407 item = btrfs_item_nr(right, i); 3408 push_space -= btrfs_token_item_size(right, item, &token); 3409 btrfs_set_token_item_offset(right, item, push_space, &token); 3410 } 3411 3412 left_nritems -= push_items; 3413 btrfs_set_header_nritems(left, left_nritems); 3414 3415 if (left_nritems) 3416 btrfs_mark_buffer_dirty(left); 3417 else 3418 clean_tree_block(trans, root, left); 3419 3420 btrfs_mark_buffer_dirty(right); 3421 3422 btrfs_item_key(right, &disk_key, 0); 3423 btrfs_set_node_key(upper, &disk_key, slot + 1); 3424 btrfs_mark_buffer_dirty(upper); 3425 3426 /* then fixup the leaf pointer in the path */ 3427 if (path->slots[0] >= left_nritems) { 3428 path->slots[0] -= left_nritems; 3429 if (btrfs_header_nritems(path->nodes[0]) == 0) 3430 clean_tree_block(trans, root, path->nodes[0]); 3431 btrfs_tree_unlock(path->nodes[0]); 3432 free_extent_buffer(path->nodes[0]); 3433 path->nodes[0] = right; 3434 path->slots[1] += 1; 3435 } else { 3436 btrfs_tree_unlock(right); 3437 free_extent_buffer(right); 3438 } 3439 return 0; 3440 3441 out_unlock: 3442 btrfs_tree_unlock(right); 3443 free_extent_buffer(right); 3444 return 1; 3445 } 3446 3447 /* 3448 * push some data in the path leaf to the right, trying to free up at 3449 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3450 * 3451 * returns 1 if the push failed because the other node didn't have enough 3452 * room, 0 if everything worked out and < 0 if there were major errors. 3453 * 3454 * this will push starting from min_slot to the end of the leaf. It won't 3455 * push any slot lower than min_slot 3456 */ 3457 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3458 *root, struct btrfs_path *path, 3459 int min_data_size, int data_size, 3460 int empty, u32 min_slot) 3461 { 3462 struct extent_buffer *left = path->nodes[0]; 3463 struct extent_buffer *right; 3464 struct extent_buffer *upper; 3465 int slot; 3466 int free_space; 3467 u32 left_nritems; 3468 int ret; 3469 3470 if (!path->nodes[1]) 3471 return 1; 3472 3473 slot = path->slots[1]; 3474 upper = path->nodes[1]; 3475 if (slot >= btrfs_header_nritems(upper) - 1) 3476 return 1; 3477 3478 btrfs_assert_tree_locked(path->nodes[1]); 3479 3480 right = read_node_slot(root, upper, slot + 1); 3481 if (right == NULL) 3482 return 1; 3483 3484 btrfs_tree_lock(right); 3485 btrfs_set_lock_blocking(right); 3486 3487 free_space = btrfs_leaf_free_space(root, right); 3488 if (free_space < data_size) 3489 goto out_unlock; 3490 3491 /* cow and double check */ 3492 ret = btrfs_cow_block(trans, root, right, upper, 3493 slot + 1, &right); 3494 if (ret) 3495 goto out_unlock; 3496 3497 free_space = btrfs_leaf_free_space(root, right); 3498 if (free_space < data_size) 3499 goto out_unlock; 3500 3501 left_nritems = btrfs_header_nritems(left); 3502 if (left_nritems == 0) 3503 goto out_unlock; 3504 3505 return __push_leaf_right(trans, root, path, min_data_size, empty, 3506 right, free_space, left_nritems, min_slot); 3507 out_unlock: 3508 btrfs_tree_unlock(right); 3509 free_extent_buffer(right); 3510 return 1; 3511 } 3512 3513 /* 3514 * push some data in the path leaf to the left, trying to free up at 3515 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3516 * 3517 * max_slot can put a limit on how far into the leaf we'll push items. The 3518 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3519 * items 3520 */ 3521 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3522 struct btrfs_root *root, 3523 struct btrfs_path *path, int data_size, 3524 int empty, struct extent_buffer *left, 3525 int free_space, u32 right_nritems, 3526 u32 max_slot) 3527 { 3528 struct btrfs_disk_key disk_key; 3529 struct extent_buffer *right = path->nodes[0]; 3530 int i; 3531 int push_space = 0; 3532 int push_items = 0; 3533 struct btrfs_item *item; 3534 u32 old_left_nritems; 3535 u32 nr; 3536 int ret = 0; 3537 u32 this_item_size; 3538 u32 old_left_item_size; 3539 struct btrfs_map_token token; 3540 3541 btrfs_init_map_token(&token); 3542 3543 if (empty) 3544 nr = min(right_nritems, max_slot); 3545 else 3546 nr = min(right_nritems - 1, max_slot); 3547 3548 for (i = 0; i < nr; i++) { 3549 item = btrfs_item_nr(right, i); 3550 3551 if (!empty && push_items > 0) { 3552 if (path->slots[0] < i) 3553 break; 3554 if (path->slots[0] == i) { 3555 int space = btrfs_leaf_free_space(root, right); 3556 if (space + push_space * 2 > free_space) 3557 break; 3558 } 3559 } 3560 3561 if (path->slots[0] == i) 3562 push_space += data_size; 3563 3564 this_item_size = btrfs_item_size(right, item); 3565 if (this_item_size + sizeof(*item) + push_space > free_space) 3566 break; 3567 3568 push_items++; 3569 push_space += this_item_size + sizeof(*item); 3570 } 3571 3572 if (push_items == 0) { 3573 ret = 1; 3574 goto out; 3575 } 3576 if (!empty && push_items == btrfs_header_nritems(right)) 3577 WARN_ON(1); 3578 3579 /* push data from right to left */ 3580 copy_extent_buffer(left, right, 3581 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3582 btrfs_item_nr_offset(0), 3583 push_items * sizeof(struct btrfs_item)); 3584 3585 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3586 btrfs_item_offset_nr(right, push_items - 1); 3587 3588 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3589 leaf_data_end(root, left) - push_space, 3590 btrfs_leaf_data(right) + 3591 btrfs_item_offset_nr(right, push_items - 1), 3592 push_space); 3593 old_left_nritems = btrfs_header_nritems(left); 3594 BUG_ON(old_left_nritems <= 0); 3595 3596 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3597 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3598 u32 ioff; 3599 3600 item = btrfs_item_nr(left, i); 3601 3602 ioff = btrfs_token_item_offset(left, item, &token); 3603 btrfs_set_token_item_offset(left, item, 3604 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3605 &token); 3606 } 3607 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3608 3609 /* fixup right node */ 3610 if (push_items > right_nritems) { 3611 printk(KERN_CRIT "push items %d nr %u\n", push_items, 3612 right_nritems); 3613 WARN_ON(1); 3614 } 3615 3616 if (push_items < right_nritems) { 3617 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3618 leaf_data_end(root, right); 3619 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3620 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3621 btrfs_leaf_data(right) + 3622 leaf_data_end(root, right), push_space); 3623 3624 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3625 btrfs_item_nr_offset(push_items), 3626 (btrfs_header_nritems(right) - push_items) * 3627 sizeof(struct btrfs_item)); 3628 } 3629 right_nritems -= push_items; 3630 btrfs_set_header_nritems(right, right_nritems); 3631 push_space = BTRFS_LEAF_DATA_SIZE(root); 3632 for (i = 0; i < right_nritems; i++) { 3633 item = btrfs_item_nr(right, i); 3634 3635 push_space = push_space - btrfs_token_item_size(right, 3636 item, &token); 3637 btrfs_set_token_item_offset(right, item, push_space, &token); 3638 } 3639 3640 btrfs_mark_buffer_dirty(left); 3641 if (right_nritems) 3642 btrfs_mark_buffer_dirty(right); 3643 else 3644 clean_tree_block(trans, root, right); 3645 3646 btrfs_item_key(right, &disk_key, 0); 3647 fixup_low_keys(trans, root, path, &disk_key, 1); 3648 3649 /* then fixup the leaf pointer in the path */ 3650 if (path->slots[0] < push_items) { 3651 path->slots[0] += old_left_nritems; 3652 btrfs_tree_unlock(path->nodes[0]); 3653 free_extent_buffer(path->nodes[0]); 3654 path->nodes[0] = left; 3655 path->slots[1] -= 1; 3656 } else { 3657 btrfs_tree_unlock(left); 3658 free_extent_buffer(left); 3659 path->slots[0] -= push_items; 3660 } 3661 BUG_ON(path->slots[0] < 0); 3662 return ret; 3663 out: 3664 btrfs_tree_unlock(left); 3665 free_extent_buffer(left); 3666 return ret; 3667 } 3668 3669 /* 3670 * push some data in the path leaf to the left, trying to free up at 3671 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3672 * 3673 * max_slot can put a limit on how far into the leaf we'll push items. The 3674 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3675 * items 3676 */ 3677 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3678 *root, struct btrfs_path *path, int min_data_size, 3679 int data_size, int empty, u32 max_slot) 3680 { 3681 struct extent_buffer *right = path->nodes[0]; 3682 struct extent_buffer *left; 3683 int slot; 3684 int free_space; 3685 u32 right_nritems; 3686 int ret = 0; 3687 3688 slot = path->slots[1]; 3689 if (slot == 0) 3690 return 1; 3691 if (!path->nodes[1]) 3692 return 1; 3693 3694 right_nritems = btrfs_header_nritems(right); 3695 if (right_nritems == 0) 3696 return 1; 3697 3698 btrfs_assert_tree_locked(path->nodes[1]); 3699 3700 left = read_node_slot(root, path->nodes[1], slot - 1); 3701 if (left == NULL) 3702 return 1; 3703 3704 btrfs_tree_lock(left); 3705 btrfs_set_lock_blocking(left); 3706 3707 free_space = btrfs_leaf_free_space(root, left); 3708 if (free_space < data_size) { 3709 ret = 1; 3710 goto out; 3711 } 3712 3713 /* cow and double check */ 3714 ret = btrfs_cow_block(trans, root, left, 3715 path->nodes[1], slot - 1, &left); 3716 if (ret) { 3717 /* we hit -ENOSPC, but it isn't fatal here */ 3718 if (ret == -ENOSPC) 3719 ret = 1; 3720 goto out; 3721 } 3722 3723 free_space = btrfs_leaf_free_space(root, left); 3724 if (free_space < data_size) { 3725 ret = 1; 3726 goto out; 3727 } 3728 3729 return __push_leaf_left(trans, root, path, min_data_size, 3730 empty, left, free_space, right_nritems, 3731 max_slot); 3732 out: 3733 btrfs_tree_unlock(left); 3734 free_extent_buffer(left); 3735 return ret; 3736 } 3737 3738 /* 3739 * split the path's leaf in two, making sure there is at least data_size 3740 * available for the resulting leaf level of the path. 3741 */ 3742 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 3743 struct btrfs_root *root, 3744 struct btrfs_path *path, 3745 struct extent_buffer *l, 3746 struct extent_buffer *right, 3747 int slot, int mid, int nritems) 3748 { 3749 int data_copy_size; 3750 int rt_data_off; 3751 int i; 3752 struct btrfs_disk_key disk_key; 3753 struct btrfs_map_token token; 3754 3755 btrfs_init_map_token(&token); 3756 3757 nritems = nritems - mid; 3758 btrfs_set_header_nritems(right, nritems); 3759 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 3760 3761 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 3762 btrfs_item_nr_offset(mid), 3763 nritems * sizeof(struct btrfs_item)); 3764 3765 copy_extent_buffer(right, l, 3766 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 3767 data_copy_size, btrfs_leaf_data(l) + 3768 leaf_data_end(root, l), data_copy_size); 3769 3770 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 3771 btrfs_item_end_nr(l, mid); 3772 3773 for (i = 0; i < nritems; i++) { 3774 struct btrfs_item *item = btrfs_item_nr(right, i); 3775 u32 ioff; 3776 3777 ioff = btrfs_token_item_offset(right, item, &token); 3778 btrfs_set_token_item_offset(right, item, 3779 ioff + rt_data_off, &token); 3780 } 3781 3782 btrfs_set_header_nritems(l, mid); 3783 btrfs_item_key(right, &disk_key, 0); 3784 insert_ptr(trans, root, path, &disk_key, right->start, 3785 path->slots[1] + 1, 1); 3786 3787 btrfs_mark_buffer_dirty(right); 3788 btrfs_mark_buffer_dirty(l); 3789 BUG_ON(path->slots[0] != slot); 3790 3791 if (mid <= slot) { 3792 btrfs_tree_unlock(path->nodes[0]); 3793 free_extent_buffer(path->nodes[0]); 3794 path->nodes[0] = right; 3795 path->slots[0] -= mid; 3796 path->slots[1] += 1; 3797 } else { 3798 btrfs_tree_unlock(right); 3799 free_extent_buffer(right); 3800 } 3801 3802 BUG_ON(path->slots[0] < 0); 3803 } 3804 3805 /* 3806 * double splits happen when we need to insert a big item in the middle 3807 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3808 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3809 * A B C 3810 * 3811 * We avoid this by trying to push the items on either side of our target 3812 * into the adjacent leaves. If all goes well we can avoid the double split 3813 * completely. 3814 */ 3815 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3816 struct btrfs_root *root, 3817 struct btrfs_path *path, 3818 int data_size) 3819 { 3820 int ret; 3821 int progress = 0; 3822 int slot; 3823 u32 nritems; 3824 3825 slot = path->slots[0]; 3826 3827 /* 3828 * try to push all the items after our slot into the 3829 * right leaf 3830 */ 3831 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 3832 if (ret < 0) 3833 return ret; 3834 3835 if (ret == 0) 3836 progress++; 3837 3838 nritems = btrfs_header_nritems(path->nodes[0]); 3839 /* 3840 * our goal is to get our slot at the start or end of a leaf. If 3841 * we've done so we're done 3842 */ 3843 if (path->slots[0] == 0 || path->slots[0] == nritems) 3844 return 0; 3845 3846 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3847 return 0; 3848 3849 /* try to push all the items before our slot into the next leaf */ 3850 slot = path->slots[0]; 3851 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 3852 if (ret < 0) 3853 return ret; 3854 3855 if (ret == 0) 3856 progress++; 3857 3858 if (progress) 3859 return 0; 3860 return 1; 3861 } 3862 3863 /* 3864 * split the path's leaf in two, making sure there is at least data_size 3865 * available for the resulting leaf level of the path. 3866 * 3867 * returns 0 if all went well and < 0 on failure. 3868 */ 3869 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3870 struct btrfs_root *root, 3871 struct btrfs_key *ins_key, 3872 struct btrfs_path *path, int data_size, 3873 int extend) 3874 { 3875 struct btrfs_disk_key disk_key; 3876 struct extent_buffer *l; 3877 u32 nritems; 3878 int mid; 3879 int slot; 3880 struct extent_buffer *right; 3881 int ret = 0; 3882 int wret; 3883 int split; 3884 int num_doubles = 0; 3885 int tried_avoid_double = 0; 3886 3887 l = path->nodes[0]; 3888 slot = path->slots[0]; 3889 if (extend && data_size + btrfs_item_size_nr(l, slot) + 3890 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 3891 return -EOVERFLOW; 3892 3893 /* first try to make some room by pushing left and right */ 3894 if (data_size) { 3895 wret = push_leaf_right(trans, root, path, data_size, 3896 data_size, 0, 0); 3897 if (wret < 0) 3898 return wret; 3899 if (wret) { 3900 wret = push_leaf_left(trans, root, path, data_size, 3901 data_size, 0, (u32)-1); 3902 if (wret < 0) 3903 return wret; 3904 } 3905 l = path->nodes[0]; 3906 3907 /* did the pushes work? */ 3908 if (btrfs_leaf_free_space(root, l) >= data_size) 3909 return 0; 3910 } 3911 3912 if (!path->nodes[1]) { 3913 ret = insert_new_root(trans, root, path, 1); 3914 if (ret) 3915 return ret; 3916 } 3917 again: 3918 split = 1; 3919 l = path->nodes[0]; 3920 slot = path->slots[0]; 3921 nritems = btrfs_header_nritems(l); 3922 mid = (nritems + 1) / 2; 3923 3924 if (mid <= slot) { 3925 if (nritems == 1 || 3926 leaf_space_used(l, mid, nritems - mid) + data_size > 3927 BTRFS_LEAF_DATA_SIZE(root)) { 3928 if (slot >= nritems) { 3929 split = 0; 3930 } else { 3931 mid = slot; 3932 if (mid != nritems && 3933 leaf_space_used(l, mid, nritems - mid) + 3934 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3935 if (data_size && !tried_avoid_double) 3936 goto push_for_double; 3937 split = 2; 3938 } 3939 } 3940 } 3941 } else { 3942 if (leaf_space_used(l, 0, mid) + data_size > 3943 BTRFS_LEAF_DATA_SIZE(root)) { 3944 if (!extend && data_size && slot == 0) { 3945 split = 0; 3946 } else if ((extend || !data_size) && slot == 0) { 3947 mid = 1; 3948 } else { 3949 mid = slot; 3950 if (mid != nritems && 3951 leaf_space_used(l, mid, nritems - mid) + 3952 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3953 if (data_size && !tried_avoid_double) 3954 goto push_for_double; 3955 split = 2 ; 3956 } 3957 } 3958 } 3959 } 3960 3961 if (split == 0) 3962 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3963 else 3964 btrfs_item_key(l, &disk_key, mid); 3965 3966 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 3967 root->root_key.objectid, 3968 &disk_key, 0, l->start, 0); 3969 if (IS_ERR(right)) 3970 return PTR_ERR(right); 3971 3972 root_add_used(root, root->leafsize); 3973 3974 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3975 btrfs_set_header_bytenr(right, right->start); 3976 btrfs_set_header_generation(right, trans->transid); 3977 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3978 btrfs_set_header_owner(right, root->root_key.objectid); 3979 btrfs_set_header_level(right, 0); 3980 write_extent_buffer(right, root->fs_info->fsid, 3981 (unsigned long)btrfs_header_fsid(right), 3982 BTRFS_FSID_SIZE); 3983 3984 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3985 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3986 BTRFS_UUID_SIZE); 3987 3988 if (split == 0) { 3989 if (mid <= slot) { 3990 btrfs_set_header_nritems(right, 0); 3991 insert_ptr(trans, root, path, &disk_key, right->start, 3992 path->slots[1] + 1, 1); 3993 btrfs_tree_unlock(path->nodes[0]); 3994 free_extent_buffer(path->nodes[0]); 3995 path->nodes[0] = right; 3996 path->slots[0] = 0; 3997 path->slots[1] += 1; 3998 } else { 3999 btrfs_set_header_nritems(right, 0); 4000 insert_ptr(trans, root, path, &disk_key, right->start, 4001 path->slots[1], 1); 4002 btrfs_tree_unlock(path->nodes[0]); 4003 free_extent_buffer(path->nodes[0]); 4004 path->nodes[0] = right; 4005 path->slots[0] = 0; 4006 if (path->slots[1] == 0) 4007 fixup_low_keys(trans, root, path, 4008 &disk_key, 1); 4009 } 4010 btrfs_mark_buffer_dirty(right); 4011 return ret; 4012 } 4013 4014 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4015 4016 if (split == 2) { 4017 BUG_ON(num_doubles != 0); 4018 num_doubles++; 4019 goto again; 4020 } 4021 4022 return 0; 4023 4024 push_for_double: 4025 push_for_double_split(trans, root, path, data_size); 4026 tried_avoid_double = 1; 4027 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4028 return 0; 4029 goto again; 4030 } 4031 4032 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4033 struct btrfs_root *root, 4034 struct btrfs_path *path, int ins_len) 4035 { 4036 struct btrfs_key key; 4037 struct extent_buffer *leaf; 4038 struct btrfs_file_extent_item *fi; 4039 u64 extent_len = 0; 4040 u32 item_size; 4041 int ret; 4042 4043 leaf = path->nodes[0]; 4044 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4045 4046 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4047 key.type != BTRFS_EXTENT_CSUM_KEY); 4048 4049 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4050 return 0; 4051 4052 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4053 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4054 fi = btrfs_item_ptr(leaf, path->slots[0], 4055 struct btrfs_file_extent_item); 4056 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4057 } 4058 btrfs_release_path(path); 4059 4060 path->keep_locks = 1; 4061 path->search_for_split = 1; 4062 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4063 path->search_for_split = 0; 4064 if (ret < 0) 4065 goto err; 4066 4067 ret = -EAGAIN; 4068 leaf = path->nodes[0]; 4069 /* if our item isn't there or got smaller, return now */ 4070 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4071 goto err; 4072 4073 /* the leaf has changed, it now has room. return now */ 4074 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4075 goto err; 4076 4077 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4078 fi = btrfs_item_ptr(leaf, path->slots[0], 4079 struct btrfs_file_extent_item); 4080 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4081 goto err; 4082 } 4083 4084 btrfs_set_path_blocking(path); 4085 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4086 if (ret) 4087 goto err; 4088 4089 path->keep_locks = 0; 4090 btrfs_unlock_up_safe(path, 1); 4091 return 0; 4092 err: 4093 path->keep_locks = 0; 4094 return ret; 4095 } 4096 4097 static noinline int split_item(struct btrfs_trans_handle *trans, 4098 struct btrfs_root *root, 4099 struct btrfs_path *path, 4100 struct btrfs_key *new_key, 4101 unsigned long split_offset) 4102 { 4103 struct extent_buffer *leaf; 4104 struct btrfs_item *item; 4105 struct btrfs_item *new_item; 4106 int slot; 4107 char *buf; 4108 u32 nritems; 4109 u32 item_size; 4110 u32 orig_offset; 4111 struct btrfs_disk_key disk_key; 4112 4113 leaf = path->nodes[0]; 4114 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4115 4116 btrfs_set_path_blocking(path); 4117 4118 item = btrfs_item_nr(leaf, path->slots[0]); 4119 orig_offset = btrfs_item_offset(leaf, item); 4120 item_size = btrfs_item_size(leaf, item); 4121 4122 buf = kmalloc(item_size, GFP_NOFS); 4123 if (!buf) 4124 return -ENOMEM; 4125 4126 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4127 path->slots[0]), item_size); 4128 4129 slot = path->slots[0] + 1; 4130 nritems = btrfs_header_nritems(leaf); 4131 if (slot != nritems) { 4132 /* shift the items */ 4133 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4134 btrfs_item_nr_offset(slot), 4135 (nritems - slot) * sizeof(struct btrfs_item)); 4136 } 4137 4138 btrfs_cpu_key_to_disk(&disk_key, new_key); 4139 btrfs_set_item_key(leaf, &disk_key, slot); 4140 4141 new_item = btrfs_item_nr(leaf, slot); 4142 4143 btrfs_set_item_offset(leaf, new_item, orig_offset); 4144 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4145 4146 btrfs_set_item_offset(leaf, item, 4147 orig_offset + item_size - split_offset); 4148 btrfs_set_item_size(leaf, item, split_offset); 4149 4150 btrfs_set_header_nritems(leaf, nritems + 1); 4151 4152 /* write the data for the start of the original item */ 4153 write_extent_buffer(leaf, buf, 4154 btrfs_item_ptr_offset(leaf, path->slots[0]), 4155 split_offset); 4156 4157 /* write the data for the new item */ 4158 write_extent_buffer(leaf, buf + split_offset, 4159 btrfs_item_ptr_offset(leaf, slot), 4160 item_size - split_offset); 4161 btrfs_mark_buffer_dirty(leaf); 4162 4163 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4164 kfree(buf); 4165 return 0; 4166 } 4167 4168 /* 4169 * This function splits a single item into two items, 4170 * giving 'new_key' to the new item and splitting the 4171 * old one at split_offset (from the start of the item). 4172 * 4173 * The path may be released by this operation. After 4174 * the split, the path is pointing to the old item. The 4175 * new item is going to be in the same node as the old one. 4176 * 4177 * Note, the item being split must be smaller enough to live alone on 4178 * a tree block with room for one extra struct btrfs_item 4179 * 4180 * This allows us to split the item in place, keeping a lock on the 4181 * leaf the entire time. 4182 */ 4183 int btrfs_split_item(struct btrfs_trans_handle *trans, 4184 struct btrfs_root *root, 4185 struct btrfs_path *path, 4186 struct btrfs_key *new_key, 4187 unsigned long split_offset) 4188 { 4189 int ret; 4190 ret = setup_leaf_for_split(trans, root, path, 4191 sizeof(struct btrfs_item)); 4192 if (ret) 4193 return ret; 4194 4195 ret = split_item(trans, root, path, new_key, split_offset); 4196 return ret; 4197 } 4198 4199 /* 4200 * This function duplicate a item, giving 'new_key' to the new item. 4201 * It guarantees both items live in the same tree leaf and the new item 4202 * is contiguous with the original item. 4203 * 4204 * This allows us to split file extent in place, keeping a lock on the 4205 * leaf the entire time. 4206 */ 4207 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4208 struct btrfs_root *root, 4209 struct btrfs_path *path, 4210 struct btrfs_key *new_key) 4211 { 4212 struct extent_buffer *leaf; 4213 int ret; 4214 u32 item_size; 4215 4216 leaf = path->nodes[0]; 4217 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4218 ret = setup_leaf_for_split(trans, root, path, 4219 item_size + sizeof(struct btrfs_item)); 4220 if (ret) 4221 return ret; 4222 4223 path->slots[0]++; 4224 setup_items_for_insert(trans, root, path, new_key, &item_size, 4225 item_size, item_size + 4226 sizeof(struct btrfs_item), 1); 4227 leaf = path->nodes[0]; 4228 memcpy_extent_buffer(leaf, 4229 btrfs_item_ptr_offset(leaf, path->slots[0]), 4230 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4231 item_size); 4232 return 0; 4233 } 4234 4235 /* 4236 * make the item pointed to by the path smaller. new_size indicates 4237 * how small to make it, and from_end tells us if we just chop bytes 4238 * off the end of the item or if we shift the item to chop bytes off 4239 * the front. 4240 */ 4241 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 4242 struct btrfs_root *root, 4243 struct btrfs_path *path, 4244 u32 new_size, int from_end) 4245 { 4246 int slot; 4247 struct extent_buffer *leaf; 4248 struct btrfs_item *item; 4249 u32 nritems; 4250 unsigned int data_end; 4251 unsigned int old_data_start; 4252 unsigned int old_size; 4253 unsigned int size_diff; 4254 int i; 4255 struct btrfs_map_token token; 4256 4257 btrfs_init_map_token(&token); 4258 4259 leaf = path->nodes[0]; 4260 slot = path->slots[0]; 4261 4262 old_size = btrfs_item_size_nr(leaf, slot); 4263 if (old_size == new_size) 4264 return; 4265 4266 nritems = btrfs_header_nritems(leaf); 4267 data_end = leaf_data_end(root, leaf); 4268 4269 old_data_start = btrfs_item_offset_nr(leaf, slot); 4270 4271 size_diff = old_size - new_size; 4272 4273 BUG_ON(slot < 0); 4274 BUG_ON(slot >= nritems); 4275 4276 /* 4277 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4278 */ 4279 /* first correct the data pointers */ 4280 for (i = slot; i < nritems; i++) { 4281 u32 ioff; 4282 item = btrfs_item_nr(leaf, i); 4283 4284 ioff = btrfs_token_item_offset(leaf, item, &token); 4285 btrfs_set_token_item_offset(leaf, item, 4286 ioff + size_diff, &token); 4287 } 4288 4289 /* shift the data */ 4290 if (from_end) { 4291 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4292 data_end + size_diff, btrfs_leaf_data(leaf) + 4293 data_end, old_data_start + new_size - data_end); 4294 } else { 4295 struct btrfs_disk_key disk_key; 4296 u64 offset; 4297 4298 btrfs_item_key(leaf, &disk_key, slot); 4299 4300 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4301 unsigned long ptr; 4302 struct btrfs_file_extent_item *fi; 4303 4304 fi = btrfs_item_ptr(leaf, slot, 4305 struct btrfs_file_extent_item); 4306 fi = (struct btrfs_file_extent_item *)( 4307 (unsigned long)fi - size_diff); 4308 4309 if (btrfs_file_extent_type(leaf, fi) == 4310 BTRFS_FILE_EXTENT_INLINE) { 4311 ptr = btrfs_item_ptr_offset(leaf, slot); 4312 memmove_extent_buffer(leaf, ptr, 4313 (unsigned long)fi, 4314 offsetof(struct btrfs_file_extent_item, 4315 disk_bytenr)); 4316 } 4317 } 4318 4319 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4320 data_end + size_diff, btrfs_leaf_data(leaf) + 4321 data_end, old_data_start - data_end); 4322 4323 offset = btrfs_disk_key_offset(&disk_key); 4324 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4325 btrfs_set_item_key(leaf, &disk_key, slot); 4326 if (slot == 0) 4327 fixup_low_keys(trans, root, path, &disk_key, 1); 4328 } 4329 4330 item = btrfs_item_nr(leaf, slot); 4331 btrfs_set_item_size(leaf, item, new_size); 4332 btrfs_mark_buffer_dirty(leaf); 4333 4334 if (btrfs_leaf_free_space(root, leaf) < 0) { 4335 btrfs_print_leaf(root, leaf); 4336 BUG(); 4337 } 4338 } 4339 4340 /* 4341 * make the item pointed to by the path bigger, data_size is the new size. 4342 */ 4343 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4344 struct btrfs_root *root, struct btrfs_path *path, 4345 u32 data_size) 4346 { 4347 int slot; 4348 struct extent_buffer *leaf; 4349 struct btrfs_item *item; 4350 u32 nritems; 4351 unsigned int data_end; 4352 unsigned int old_data; 4353 unsigned int old_size; 4354 int i; 4355 struct btrfs_map_token token; 4356 4357 btrfs_init_map_token(&token); 4358 4359 leaf = path->nodes[0]; 4360 4361 nritems = btrfs_header_nritems(leaf); 4362 data_end = leaf_data_end(root, leaf); 4363 4364 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4365 btrfs_print_leaf(root, leaf); 4366 BUG(); 4367 } 4368 slot = path->slots[0]; 4369 old_data = btrfs_item_end_nr(leaf, slot); 4370 4371 BUG_ON(slot < 0); 4372 if (slot >= nritems) { 4373 btrfs_print_leaf(root, leaf); 4374 printk(KERN_CRIT "slot %d too large, nritems %d\n", 4375 slot, nritems); 4376 BUG_ON(1); 4377 } 4378 4379 /* 4380 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4381 */ 4382 /* first correct the data pointers */ 4383 for (i = slot; i < nritems; i++) { 4384 u32 ioff; 4385 item = btrfs_item_nr(leaf, i); 4386 4387 ioff = btrfs_token_item_offset(leaf, item, &token); 4388 btrfs_set_token_item_offset(leaf, item, 4389 ioff - data_size, &token); 4390 } 4391 4392 /* shift the data */ 4393 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4394 data_end - data_size, btrfs_leaf_data(leaf) + 4395 data_end, old_data - data_end); 4396 4397 data_end = old_data; 4398 old_size = btrfs_item_size_nr(leaf, slot); 4399 item = btrfs_item_nr(leaf, slot); 4400 btrfs_set_item_size(leaf, item, old_size + data_size); 4401 btrfs_mark_buffer_dirty(leaf); 4402 4403 if (btrfs_leaf_free_space(root, leaf) < 0) { 4404 btrfs_print_leaf(root, leaf); 4405 BUG(); 4406 } 4407 } 4408 4409 /* 4410 * this is a helper for btrfs_insert_empty_items, the main goal here is 4411 * to save stack depth by doing the bulk of the work in a function 4412 * that doesn't call btrfs_search_slot 4413 */ 4414 void setup_items_for_insert(struct btrfs_trans_handle *trans, 4415 struct btrfs_root *root, struct btrfs_path *path, 4416 struct btrfs_key *cpu_key, u32 *data_size, 4417 u32 total_data, u32 total_size, int nr) 4418 { 4419 struct btrfs_item *item; 4420 int i; 4421 u32 nritems; 4422 unsigned int data_end; 4423 struct btrfs_disk_key disk_key; 4424 struct extent_buffer *leaf; 4425 int slot; 4426 struct btrfs_map_token token; 4427 4428 btrfs_init_map_token(&token); 4429 4430 leaf = path->nodes[0]; 4431 slot = path->slots[0]; 4432 4433 nritems = btrfs_header_nritems(leaf); 4434 data_end = leaf_data_end(root, leaf); 4435 4436 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4437 btrfs_print_leaf(root, leaf); 4438 printk(KERN_CRIT "not enough freespace need %u have %d\n", 4439 total_size, btrfs_leaf_free_space(root, leaf)); 4440 BUG(); 4441 } 4442 4443 if (slot != nritems) { 4444 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4445 4446 if (old_data < data_end) { 4447 btrfs_print_leaf(root, leaf); 4448 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 4449 slot, old_data, data_end); 4450 BUG_ON(1); 4451 } 4452 /* 4453 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4454 */ 4455 /* first correct the data pointers */ 4456 for (i = slot; i < nritems; i++) { 4457 u32 ioff; 4458 4459 item = btrfs_item_nr(leaf, i); 4460 ioff = btrfs_token_item_offset(leaf, item, &token); 4461 btrfs_set_token_item_offset(leaf, item, 4462 ioff - total_data, &token); 4463 } 4464 /* shift the items */ 4465 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4466 btrfs_item_nr_offset(slot), 4467 (nritems - slot) * sizeof(struct btrfs_item)); 4468 4469 /* shift the data */ 4470 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4471 data_end - total_data, btrfs_leaf_data(leaf) + 4472 data_end, old_data - data_end); 4473 data_end = old_data; 4474 } 4475 4476 /* setup the item for the new data */ 4477 for (i = 0; i < nr; i++) { 4478 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4479 btrfs_set_item_key(leaf, &disk_key, slot + i); 4480 item = btrfs_item_nr(leaf, slot + i); 4481 btrfs_set_token_item_offset(leaf, item, 4482 data_end - data_size[i], &token); 4483 data_end -= data_size[i]; 4484 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4485 } 4486 4487 btrfs_set_header_nritems(leaf, nritems + nr); 4488 4489 if (slot == 0) { 4490 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4491 fixup_low_keys(trans, root, path, &disk_key, 1); 4492 } 4493 btrfs_unlock_up_safe(path, 1); 4494 btrfs_mark_buffer_dirty(leaf); 4495 4496 if (btrfs_leaf_free_space(root, leaf) < 0) { 4497 btrfs_print_leaf(root, leaf); 4498 BUG(); 4499 } 4500 } 4501 4502 /* 4503 * Given a key and some data, insert items into the tree. 4504 * This does all the path init required, making room in the tree if needed. 4505 */ 4506 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4507 struct btrfs_root *root, 4508 struct btrfs_path *path, 4509 struct btrfs_key *cpu_key, u32 *data_size, 4510 int nr) 4511 { 4512 int ret = 0; 4513 int slot; 4514 int i; 4515 u32 total_size = 0; 4516 u32 total_data = 0; 4517 4518 for (i = 0; i < nr; i++) 4519 total_data += data_size[i]; 4520 4521 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4522 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4523 if (ret == 0) 4524 return -EEXIST; 4525 if (ret < 0) 4526 return ret; 4527 4528 slot = path->slots[0]; 4529 BUG_ON(slot < 0); 4530 4531 setup_items_for_insert(trans, root, path, cpu_key, data_size, 4532 total_data, total_size, nr); 4533 return 0; 4534 } 4535 4536 /* 4537 * Given a key and some data, insert an item into the tree. 4538 * This does all the path init required, making room in the tree if needed. 4539 */ 4540 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4541 *root, struct btrfs_key *cpu_key, void *data, u32 4542 data_size) 4543 { 4544 int ret = 0; 4545 struct btrfs_path *path; 4546 struct extent_buffer *leaf; 4547 unsigned long ptr; 4548 4549 path = btrfs_alloc_path(); 4550 if (!path) 4551 return -ENOMEM; 4552 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4553 if (!ret) { 4554 leaf = path->nodes[0]; 4555 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4556 write_extent_buffer(leaf, data, ptr, data_size); 4557 btrfs_mark_buffer_dirty(leaf); 4558 } 4559 btrfs_free_path(path); 4560 return ret; 4561 } 4562 4563 /* 4564 * delete the pointer from a given node. 4565 * 4566 * the tree should have been previously balanced so the deletion does not 4567 * empty a node. 4568 */ 4569 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4570 struct btrfs_path *path, int level, int slot, 4571 int tree_mod_log) 4572 { 4573 struct extent_buffer *parent = path->nodes[level]; 4574 u32 nritems; 4575 int ret; 4576 4577 nritems = btrfs_header_nritems(parent); 4578 if (slot != nritems - 1) { 4579 if (tree_mod_log && level) 4580 tree_mod_log_eb_move(root->fs_info, parent, slot, 4581 slot + 1, nritems - slot - 1); 4582 memmove_extent_buffer(parent, 4583 btrfs_node_key_ptr_offset(slot), 4584 btrfs_node_key_ptr_offset(slot + 1), 4585 sizeof(struct btrfs_key_ptr) * 4586 (nritems - slot - 1)); 4587 } else if (tree_mod_log && level) { 4588 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4589 MOD_LOG_KEY_REMOVE); 4590 BUG_ON(ret < 0); 4591 } 4592 4593 nritems--; 4594 btrfs_set_header_nritems(parent, nritems); 4595 if (nritems == 0 && parent == root->node) { 4596 BUG_ON(btrfs_header_level(root->node) != 1); 4597 /* just turn the root into a leaf and break */ 4598 btrfs_set_header_level(root->node, 0); 4599 } else if (slot == 0) { 4600 struct btrfs_disk_key disk_key; 4601 4602 btrfs_node_key(parent, &disk_key, 0); 4603 fixup_low_keys(trans, root, path, &disk_key, level + 1); 4604 } 4605 btrfs_mark_buffer_dirty(parent); 4606 } 4607 4608 /* 4609 * a helper function to delete the leaf pointed to by path->slots[1] and 4610 * path->nodes[1]. 4611 * 4612 * This deletes the pointer in path->nodes[1] and frees the leaf 4613 * block extent. zero is returned if it all worked out, < 0 otherwise. 4614 * 4615 * The path must have already been setup for deleting the leaf, including 4616 * all the proper balancing. path->nodes[1] must be locked. 4617 */ 4618 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4619 struct btrfs_root *root, 4620 struct btrfs_path *path, 4621 struct extent_buffer *leaf) 4622 { 4623 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4624 del_ptr(trans, root, path, 1, path->slots[1], 1); 4625 4626 /* 4627 * btrfs_free_extent is expensive, we want to make sure we 4628 * aren't holding any locks when we call it 4629 */ 4630 btrfs_unlock_up_safe(path, 0); 4631 4632 root_sub_used(root, leaf->len); 4633 4634 extent_buffer_get(leaf); 4635 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4636 free_extent_buffer_stale(leaf); 4637 } 4638 /* 4639 * delete the item at the leaf level in path. If that empties 4640 * the leaf, remove it from the tree 4641 */ 4642 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4643 struct btrfs_path *path, int slot, int nr) 4644 { 4645 struct extent_buffer *leaf; 4646 struct btrfs_item *item; 4647 int last_off; 4648 int dsize = 0; 4649 int ret = 0; 4650 int wret; 4651 int i; 4652 u32 nritems; 4653 struct btrfs_map_token token; 4654 4655 btrfs_init_map_token(&token); 4656 4657 leaf = path->nodes[0]; 4658 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4659 4660 for (i = 0; i < nr; i++) 4661 dsize += btrfs_item_size_nr(leaf, slot + i); 4662 4663 nritems = btrfs_header_nritems(leaf); 4664 4665 if (slot + nr != nritems) { 4666 int data_end = leaf_data_end(root, leaf); 4667 4668 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4669 data_end + dsize, 4670 btrfs_leaf_data(leaf) + data_end, 4671 last_off - data_end); 4672 4673 for (i = slot + nr; i < nritems; i++) { 4674 u32 ioff; 4675 4676 item = btrfs_item_nr(leaf, i); 4677 ioff = btrfs_token_item_offset(leaf, item, &token); 4678 btrfs_set_token_item_offset(leaf, item, 4679 ioff + dsize, &token); 4680 } 4681 4682 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4683 btrfs_item_nr_offset(slot + nr), 4684 sizeof(struct btrfs_item) * 4685 (nritems - slot - nr)); 4686 } 4687 btrfs_set_header_nritems(leaf, nritems - nr); 4688 nritems -= nr; 4689 4690 /* delete the leaf if we've emptied it */ 4691 if (nritems == 0) { 4692 if (leaf == root->node) { 4693 btrfs_set_header_level(leaf, 0); 4694 } else { 4695 btrfs_set_path_blocking(path); 4696 clean_tree_block(trans, root, leaf); 4697 btrfs_del_leaf(trans, root, path, leaf); 4698 } 4699 } else { 4700 int used = leaf_space_used(leaf, 0, nritems); 4701 if (slot == 0) { 4702 struct btrfs_disk_key disk_key; 4703 4704 btrfs_item_key(leaf, &disk_key, 0); 4705 fixup_low_keys(trans, root, path, &disk_key, 1); 4706 } 4707 4708 /* delete the leaf if it is mostly empty */ 4709 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4710 /* push_leaf_left fixes the path. 4711 * make sure the path still points to our leaf 4712 * for possible call to del_ptr below 4713 */ 4714 slot = path->slots[1]; 4715 extent_buffer_get(leaf); 4716 4717 btrfs_set_path_blocking(path); 4718 wret = push_leaf_left(trans, root, path, 1, 1, 4719 1, (u32)-1); 4720 if (wret < 0 && wret != -ENOSPC) 4721 ret = wret; 4722 4723 if (path->nodes[0] == leaf && 4724 btrfs_header_nritems(leaf)) { 4725 wret = push_leaf_right(trans, root, path, 1, 4726 1, 1, 0); 4727 if (wret < 0 && wret != -ENOSPC) 4728 ret = wret; 4729 } 4730 4731 if (btrfs_header_nritems(leaf) == 0) { 4732 path->slots[1] = slot; 4733 btrfs_del_leaf(trans, root, path, leaf); 4734 free_extent_buffer(leaf); 4735 ret = 0; 4736 } else { 4737 /* if we're still in the path, make sure 4738 * we're dirty. Otherwise, one of the 4739 * push_leaf functions must have already 4740 * dirtied this buffer 4741 */ 4742 if (path->nodes[0] == leaf) 4743 btrfs_mark_buffer_dirty(leaf); 4744 free_extent_buffer(leaf); 4745 } 4746 } else { 4747 btrfs_mark_buffer_dirty(leaf); 4748 } 4749 } 4750 return ret; 4751 } 4752 4753 /* 4754 * search the tree again to find a leaf with lesser keys 4755 * returns 0 if it found something or 1 if there are no lesser leaves. 4756 * returns < 0 on io errors. 4757 * 4758 * This may release the path, and so you may lose any locks held at the 4759 * time you call it. 4760 */ 4761 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4762 { 4763 struct btrfs_key key; 4764 struct btrfs_disk_key found_key; 4765 int ret; 4766 4767 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4768 4769 if (key.offset > 0) 4770 key.offset--; 4771 else if (key.type > 0) 4772 key.type--; 4773 else if (key.objectid > 0) 4774 key.objectid--; 4775 else 4776 return 1; 4777 4778 btrfs_release_path(path); 4779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4780 if (ret < 0) 4781 return ret; 4782 btrfs_item_key(path->nodes[0], &found_key, 0); 4783 ret = comp_keys(&found_key, &key); 4784 if (ret < 0) 4785 return 0; 4786 return 1; 4787 } 4788 4789 /* 4790 * A helper function to walk down the tree starting at min_key, and looking 4791 * for nodes or leaves that are either in cache or have a minimum 4792 * transaction id. This is used by the btree defrag code, and tree logging 4793 * 4794 * This does not cow, but it does stuff the starting key it finds back 4795 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4796 * key and get a writable path. 4797 * 4798 * This does lock as it descends, and path->keep_locks should be set 4799 * to 1 by the caller. 4800 * 4801 * This honors path->lowest_level to prevent descent past a given level 4802 * of the tree. 4803 * 4804 * min_trans indicates the oldest transaction that you are interested 4805 * in walking through. Any nodes or leaves older than min_trans are 4806 * skipped over (without reading them). 4807 * 4808 * returns zero if something useful was found, < 0 on error and 1 if there 4809 * was nothing in the tree that matched the search criteria. 4810 */ 4811 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4812 struct btrfs_key *max_key, 4813 struct btrfs_path *path, int cache_only, 4814 u64 min_trans) 4815 { 4816 struct extent_buffer *cur; 4817 struct btrfs_key found_key; 4818 int slot; 4819 int sret; 4820 u32 nritems; 4821 int level; 4822 int ret = 1; 4823 4824 WARN_ON(!path->keep_locks); 4825 again: 4826 cur = btrfs_read_lock_root_node(root); 4827 level = btrfs_header_level(cur); 4828 WARN_ON(path->nodes[level]); 4829 path->nodes[level] = cur; 4830 path->locks[level] = BTRFS_READ_LOCK; 4831 4832 if (btrfs_header_generation(cur) < min_trans) { 4833 ret = 1; 4834 goto out; 4835 } 4836 while (1) { 4837 nritems = btrfs_header_nritems(cur); 4838 level = btrfs_header_level(cur); 4839 sret = bin_search(cur, min_key, level, &slot); 4840 4841 /* at the lowest level, we're done, setup the path and exit */ 4842 if (level == path->lowest_level) { 4843 if (slot >= nritems) 4844 goto find_next_key; 4845 ret = 0; 4846 path->slots[level] = slot; 4847 btrfs_item_key_to_cpu(cur, &found_key, slot); 4848 goto out; 4849 } 4850 if (sret && slot > 0) 4851 slot--; 4852 /* 4853 * check this node pointer against the cache_only and 4854 * min_trans parameters. If it isn't in cache or is too 4855 * old, skip to the next one. 4856 */ 4857 while (slot < nritems) { 4858 u64 blockptr; 4859 u64 gen; 4860 struct extent_buffer *tmp; 4861 struct btrfs_disk_key disk_key; 4862 4863 blockptr = btrfs_node_blockptr(cur, slot); 4864 gen = btrfs_node_ptr_generation(cur, slot); 4865 if (gen < min_trans) { 4866 slot++; 4867 continue; 4868 } 4869 if (!cache_only) 4870 break; 4871 4872 if (max_key) { 4873 btrfs_node_key(cur, &disk_key, slot); 4874 if (comp_keys(&disk_key, max_key) >= 0) { 4875 ret = 1; 4876 goto out; 4877 } 4878 } 4879 4880 tmp = btrfs_find_tree_block(root, blockptr, 4881 btrfs_level_size(root, level - 1)); 4882 4883 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 4884 free_extent_buffer(tmp); 4885 break; 4886 } 4887 if (tmp) 4888 free_extent_buffer(tmp); 4889 slot++; 4890 } 4891 find_next_key: 4892 /* 4893 * we didn't find a candidate key in this node, walk forward 4894 * and find another one 4895 */ 4896 if (slot >= nritems) { 4897 path->slots[level] = slot; 4898 btrfs_set_path_blocking(path); 4899 sret = btrfs_find_next_key(root, path, min_key, level, 4900 cache_only, min_trans); 4901 if (sret == 0) { 4902 btrfs_release_path(path); 4903 goto again; 4904 } else { 4905 goto out; 4906 } 4907 } 4908 /* save our key for returning back */ 4909 btrfs_node_key_to_cpu(cur, &found_key, slot); 4910 path->slots[level] = slot; 4911 if (level == path->lowest_level) { 4912 ret = 0; 4913 unlock_up(path, level, 1, 0, NULL); 4914 goto out; 4915 } 4916 btrfs_set_path_blocking(path); 4917 cur = read_node_slot(root, cur, slot); 4918 BUG_ON(!cur); /* -ENOMEM */ 4919 4920 btrfs_tree_read_lock(cur); 4921 4922 path->locks[level - 1] = BTRFS_READ_LOCK; 4923 path->nodes[level - 1] = cur; 4924 unlock_up(path, level, 1, 0, NULL); 4925 btrfs_clear_path_blocking(path, NULL, 0); 4926 } 4927 out: 4928 if (ret == 0) 4929 memcpy(min_key, &found_key, sizeof(found_key)); 4930 btrfs_set_path_blocking(path); 4931 return ret; 4932 } 4933 4934 static void tree_move_down(struct btrfs_root *root, 4935 struct btrfs_path *path, 4936 int *level, int root_level) 4937 { 4938 BUG_ON(*level == 0); 4939 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 4940 path->slots[*level]); 4941 path->slots[*level - 1] = 0; 4942 (*level)--; 4943 } 4944 4945 static int tree_move_next_or_upnext(struct btrfs_root *root, 4946 struct btrfs_path *path, 4947 int *level, int root_level) 4948 { 4949 int ret = 0; 4950 int nritems; 4951 nritems = btrfs_header_nritems(path->nodes[*level]); 4952 4953 path->slots[*level]++; 4954 4955 while (path->slots[*level] >= nritems) { 4956 if (*level == root_level) 4957 return -1; 4958 4959 /* move upnext */ 4960 path->slots[*level] = 0; 4961 free_extent_buffer(path->nodes[*level]); 4962 path->nodes[*level] = NULL; 4963 (*level)++; 4964 path->slots[*level]++; 4965 4966 nritems = btrfs_header_nritems(path->nodes[*level]); 4967 ret = 1; 4968 } 4969 return ret; 4970 } 4971 4972 /* 4973 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 4974 * or down. 4975 */ 4976 static int tree_advance(struct btrfs_root *root, 4977 struct btrfs_path *path, 4978 int *level, int root_level, 4979 int allow_down, 4980 struct btrfs_key *key) 4981 { 4982 int ret; 4983 4984 if (*level == 0 || !allow_down) { 4985 ret = tree_move_next_or_upnext(root, path, level, root_level); 4986 } else { 4987 tree_move_down(root, path, level, root_level); 4988 ret = 0; 4989 } 4990 if (ret >= 0) { 4991 if (*level == 0) 4992 btrfs_item_key_to_cpu(path->nodes[*level], key, 4993 path->slots[*level]); 4994 else 4995 btrfs_node_key_to_cpu(path->nodes[*level], key, 4996 path->slots[*level]); 4997 } 4998 return ret; 4999 } 5000 5001 static int tree_compare_item(struct btrfs_root *left_root, 5002 struct btrfs_path *left_path, 5003 struct btrfs_path *right_path, 5004 char *tmp_buf) 5005 { 5006 int cmp; 5007 int len1, len2; 5008 unsigned long off1, off2; 5009 5010 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5011 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5012 if (len1 != len2) 5013 return 1; 5014 5015 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5016 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5017 right_path->slots[0]); 5018 5019 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5020 5021 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5022 if (cmp) 5023 return 1; 5024 return 0; 5025 } 5026 5027 #define ADVANCE 1 5028 #define ADVANCE_ONLY_NEXT -1 5029 5030 /* 5031 * This function compares two trees and calls the provided callback for 5032 * every changed/new/deleted item it finds. 5033 * If shared tree blocks are encountered, whole subtrees are skipped, making 5034 * the compare pretty fast on snapshotted subvolumes. 5035 * 5036 * This currently works on commit roots only. As commit roots are read only, 5037 * we don't do any locking. The commit roots are protected with transactions. 5038 * Transactions are ended and rejoined when a commit is tried in between. 5039 * 5040 * This function checks for modifications done to the trees while comparing. 5041 * If it detects a change, it aborts immediately. 5042 */ 5043 int btrfs_compare_trees(struct btrfs_root *left_root, 5044 struct btrfs_root *right_root, 5045 btrfs_changed_cb_t changed_cb, void *ctx) 5046 { 5047 int ret; 5048 int cmp; 5049 struct btrfs_trans_handle *trans = NULL; 5050 struct btrfs_path *left_path = NULL; 5051 struct btrfs_path *right_path = NULL; 5052 struct btrfs_key left_key; 5053 struct btrfs_key right_key; 5054 char *tmp_buf = NULL; 5055 int left_root_level; 5056 int right_root_level; 5057 int left_level; 5058 int right_level; 5059 int left_end_reached; 5060 int right_end_reached; 5061 int advance_left; 5062 int advance_right; 5063 u64 left_blockptr; 5064 u64 right_blockptr; 5065 u64 left_start_ctransid; 5066 u64 right_start_ctransid; 5067 u64 ctransid; 5068 5069 left_path = btrfs_alloc_path(); 5070 if (!left_path) { 5071 ret = -ENOMEM; 5072 goto out; 5073 } 5074 right_path = btrfs_alloc_path(); 5075 if (!right_path) { 5076 ret = -ENOMEM; 5077 goto out; 5078 } 5079 5080 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5081 if (!tmp_buf) { 5082 ret = -ENOMEM; 5083 goto out; 5084 } 5085 5086 left_path->search_commit_root = 1; 5087 left_path->skip_locking = 1; 5088 right_path->search_commit_root = 1; 5089 right_path->skip_locking = 1; 5090 5091 spin_lock(&left_root->root_times_lock); 5092 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5093 spin_unlock(&left_root->root_times_lock); 5094 5095 spin_lock(&right_root->root_times_lock); 5096 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5097 spin_unlock(&right_root->root_times_lock); 5098 5099 trans = btrfs_join_transaction(left_root); 5100 if (IS_ERR(trans)) { 5101 ret = PTR_ERR(trans); 5102 trans = NULL; 5103 goto out; 5104 } 5105 5106 /* 5107 * Strategy: Go to the first items of both trees. Then do 5108 * 5109 * If both trees are at level 0 5110 * Compare keys of current items 5111 * If left < right treat left item as new, advance left tree 5112 * and repeat 5113 * If left > right treat right item as deleted, advance right tree 5114 * and repeat 5115 * If left == right do deep compare of items, treat as changed if 5116 * needed, advance both trees and repeat 5117 * If both trees are at the same level but not at level 0 5118 * Compare keys of current nodes/leafs 5119 * If left < right advance left tree and repeat 5120 * If left > right advance right tree and repeat 5121 * If left == right compare blockptrs of the next nodes/leafs 5122 * If they match advance both trees but stay at the same level 5123 * and repeat 5124 * If they don't match advance both trees while allowing to go 5125 * deeper and repeat 5126 * If tree levels are different 5127 * Advance the tree that needs it and repeat 5128 * 5129 * Advancing a tree means: 5130 * If we are at level 0, try to go to the next slot. If that's not 5131 * possible, go one level up and repeat. Stop when we found a level 5132 * where we could go to the next slot. We may at this point be on a 5133 * node or a leaf. 5134 * 5135 * If we are not at level 0 and not on shared tree blocks, go one 5136 * level deeper. 5137 * 5138 * If we are not at level 0 and on shared tree blocks, go one slot to 5139 * the right if possible or go up and right. 5140 */ 5141 5142 left_level = btrfs_header_level(left_root->commit_root); 5143 left_root_level = left_level; 5144 left_path->nodes[left_level] = left_root->commit_root; 5145 extent_buffer_get(left_path->nodes[left_level]); 5146 5147 right_level = btrfs_header_level(right_root->commit_root); 5148 right_root_level = right_level; 5149 right_path->nodes[right_level] = right_root->commit_root; 5150 extent_buffer_get(right_path->nodes[right_level]); 5151 5152 if (left_level == 0) 5153 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5154 &left_key, left_path->slots[left_level]); 5155 else 5156 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5157 &left_key, left_path->slots[left_level]); 5158 if (right_level == 0) 5159 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5160 &right_key, right_path->slots[right_level]); 5161 else 5162 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5163 &right_key, right_path->slots[right_level]); 5164 5165 left_end_reached = right_end_reached = 0; 5166 advance_left = advance_right = 0; 5167 5168 while (1) { 5169 /* 5170 * We need to make sure the transaction does not get committed 5171 * while we do anything on commit roots. This means, we need to 5172 * join and leave transactions for every item that we process. 5173 */ 5174 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5175 btrfs_release_path(left_path); 5176 btrfs_release_path(right_path); 5177 5178 ret = btrfs_end_transaction(trans, left_root); 5179 trans = NULL; 5180 if (ret < 0) 5181 goto out; 5182 } 5183 /* now rejoin the transaction */ 5184 if (!trans) { 5185 trans = btrfs_join_transaction(left_root); 5186 if (IS_ERR(trans)) { 5187 ret = PTR_ERR(trans); 5188 trans = NULL; 5189 goto out; 5190 } 5191 5192 spin_lock(&left_root->root_times_lock); 5193 ctransid = btrfs_root_ctransid(&left_root->root_item); 5194 spin_unlock(&left_root->root_times_lock); 5195 if (ctransid != left_start_ctransid) 5196 left_start_ctransid = 0; 5197 5198 spin_lock(&right_root->root_times_lock); 5199 ctransid = btrfs_root_ctransid(&right_root->root_item); 5200 spin_unlock(&right_root->root_times_lock); 5201 if (ctransid != right_start_ctransid) 5202 right_start_ctransid = 0; 5203 5204 if (!left_start_ctransid || !right_start_ctransid) { 5205 WARN(1, KERN_WARNING 5206 "btrfs: btrfs_compare_tree detected " 5207 "a change in one of the trees while " 5208 "iterating. This is probably a " 5209 "bug.\n"); 5210 ret = -EIO; 5211 goto out; 5212 } 5213 5214 /* 5215 * the commit root may have changed, so start again 5216 * where we stopped 5217 */ 5218 left_path->lowest_level = left_level; 5219 right_path->lowest_level = right_level; 5220 ret = btrfs_search_slot(NULL, left_root, 5221 &left_key, left_path, 0, 0); 5222 if (ret < 0) 5223 goto out; 5224 ret = btrfs_search_slot(NULL, right_root, 5225 &right_key, right_path, 0, 0); 5226 if (ret < 0) 5227 goto out; 5228 } 5229 5230 if (advance_left && !left_end_reached) { 5231 ret = tree_advance(left_root, left_path, &left_level, 5232 left_root_level, 5233 advance_left != ADVANCE_ONLY_NEXT, 5234 &left_key); 5235 if (ret < 0) 5236 left_end_reached = ADVANCE; 5237 advance_left = 0; 5238 } 5239 if (advance_right && !right_end_reached) { 5240 ret = tree_advance(right_root, right_path, &right_level, 5241 right_root_level, 5242 advance_right != ADVANCE_ONLY_NEXT, 5243 &right_key); 5244 if (ret < 0) 5245 right_end_reached = ADVANCE; 5246 advance_right = 0; 5247 } 5248 5249 if (left_end_reached && right_end_reached) { 5250 ret = 0; 5251 goto out; 5252 } else if (left_end_reached) { 5253 if (right_level == 0) { 5254 ret = changed_cb(left_root, right_root, 5255 left_path, right_path, 5256 &right_key, 5257 BTRFS_COMPARE_TREE_DELETED, 5258 ctx); 5259 if (ret < 0) 5260 goto out; 5261 } 5262 advance_right = ADVANCE; 5263 continue; 5264 } else if (right_end_reached) { 5265 if (left_level == 0) { 5266 ret = changed_cb(left_root, right_root, 5267 left_path, right_path, 5268 &left_key, 5269 BTRFS_COMPARE_TREE_NEW, 5270 ctx); 5271 if (ret < 0) 5272 goto out; 5273 } 5274 advance_left = ADVANCE; 5275 continue; 5276 } 5277 5278 if (left_level == 0 && right_level == 0) { 5279 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5280 if (cmp < 0) { 5281 ret = changed_cb(left_root, right_root, 5282 left_path, right_path, 5283 &left_key, 5284 BTRFS_COMPARE_TREE_NEW, 5285 ctx); 5286 if (ret < 0) 5287 goto out; 5288 advance_left = ADVANCE; 5289 } else if (cmp > 0) { 5290 ret = changed_cb(left_root, right_root, 5291 left_path, right_path, 5292 &right_key, 5293 BTRFS_COMPARE_TREE_DELETED, 5294 ctx); 5295 if (ret < 0) 5296 goto out; 5297 advance_right = ADVANCE; 5298 } else { 5299 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5300 ret = tree_compare_item(left_root, left_path, 5301 right_path, tmp_buf); 5302 if (ret) { 5303 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5304 ret = changed_cb(left_root, right_root, 5305 left_path, right_path, 5306 &left_key, 5307 BTRFS_COMPARE_TREE_CHANGED, 5308 ctx); 5309 if (ret < 0) 5310 goto out; 5311 } 5312 advance_left = ADVANCE; 5313 advance_right = ADVANCE; 5314 } 5315 } else if (left_level == right_level) { 5316 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5317 if (cmp < 0) { 5318 advance_left = ADVANCE; 5319 } else if (cmp > 0) { 5320 advance_right = ADVANCE; 5321 } else { 5322 left_blockptr = btrfs_node_blockptr( 5323 left_path->nodes[left_level], 5324 left_path->slots[left_level]); 5325 right_blockptr = btrfs_node_blockptr( 5326 right_path->nodes[right_level], 5327 right_path->slots[right_level]); 5328 if (left_blockptr == right_blockptr) { 5329 /* 5330 * As we're on a shared block, don't 5331 * allow to go deeper. 5332 */ 5333 advance_left = ADVANCE_ONLY_NEXT; 5334 advance_right = ADVANCE_ONLY_NEXT; 5335 } else { 5336 advance_left = ADVANCE; 5337 advance_right = ADVANCE; 5338 } 5339 } 5340 } else if (left_level < right_level) { 5341 advance_right = ADVANCE; 5342 } else { 5343 advance_left = ADVANCE; 5344 } 5345 } 5346 5347 out: 5348 btrfs_free_path(left_path); 5349 btrfs_free_path(right_path); 5350 kfree(tmp_buf); 5351 5352 if (trans) { 5353 if (!ret) 5354 ret = btrfs_end_transaction(trans, left_root); 5355 else 5356 btrfs_end_transaction(trans, left_root); 5357 } 5358 5359 return ret; 5360 } 5361 5362 /* 5363 * this is similar to btrfs_next_leaf, but does not try to preserve 5364 * and fixup the path. It looks for and returns the next key in the 5365 * tree based on the current path and the cache_only and min_trans 5366 * parameters. 5367 * 5368 * 0 is returned if another key is found, < 0 if there are any errors 5369 * and 1 is returned if there are no higher keys in the tree 5370 * 5371 * path->keep_locks should be set to 1 on the search made before 5372 * calling this function. 5373 */ 5374 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5375 struct btrfs_key *key, int level, 5376 int cache_only, u64 min_trans) 5377 { 5378 int slot; 5379 struct extent_buffer *c; 5380 5381 WARN_ON(!path->keep_locks); 5382 while (level < BTRFS_MAX_LEVEL) { 5383 if (!path->nodes[level]) 5384 return 1; 5385 5386 slot = path->slots[level] + 1; 5387 c = path->nodes[level]; 5388 next: 5389 if (slot >= btrfs_header_nritems(c)) { 5390 int ret; 5391 int orig_lowest; 5392 struct btrfs_key cur_key; 5393 if (level + 1 >= BTRFS_MAX_LEVEL || 5394 !path->nodes[level + 1]) 5395 return 1; 5396 5397 if (path->locks[level + 1]) { 5398 level++; 5399 continue; 5400 } 5401 5402 slot = btrfs_header_nritems(c) - 1; 5403 if (level == 0) 5404 btrfs_item_key_to_cpu(c, &cur_key, slot); 5405 else 5406 btrfs_node_key_to_cpu(c, &cur_key, slot); 5407 5408 orig_lowest = path->lowest_level; 5409 btrfs_release_path(path); 5410 path->lowest_level = level; 5411 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5412 0, 0); 5413 path->lowest_level = orig_lowest; 5414 if (ret < 0) 5415 return ret; 5416 5417 c = path->nodes[level]; 5418 slot = path->slots[level]; 5419 if (ret == 0) 5420 slot++; 5421 goto next; 5422 } 5423 5424 if (level == 0) 5425 btrfs_item_key_to_cpu(c, key, slot); 5426 else { 5427 u64 blockptr = btrfs_node_blockptr(c, slot); 5428 u64 gen = btrfs_node_ptr_generation(c, slot); 5429 5430 if (cache_only) { 5431 struct extent_buffer *cur; 5432 cur = btrfs_find_tree_block(root, blockptr, 5433 btrfs_level_size(root, level - 1)); 5434 if (!cur || 5435 btrfs_buffer_uptodate(cur, gen, 1) <= 0) { 5436 slot++; 5437 if (cur) 5438 free_extent_buffer(cur); 5439 goto next; 5440 } 5441 free_extent_buffer(cur); 5442 } 5443 if (gen < min_trans) { 5444 slot++; 5445 goto next; 5446 } 5447 btrfs_node_key_to_cpu(c, key, slot); 5448 } 5449 return 0; 5450 } 5451 return 1; 5452 } 5453 5454 /* 5455 * search the tree again to find a leaf with greater keys 5456 * returns 0 if it found something or 1 if there are no greater leaves. 5457 * returns < 0 on io errors. 5458 */ 5459 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5460 { 5461 return btrfs_next_old_leaf(root, path, 0); 5462 } 5463 5464 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5465 u64 time_seq) 5466 { 5467 int slot; 5468 int level; 5469 struct extent_buffer *c; 5470 struct extent_buffer *next; 5471 struct btrfs_key key; 5472 u32 nritems; 5473 int ret; 5474 int old_spinning = path->leave_spinning; 5475 int next_rw_lock = 0; 5476 5477 nritems = btrfs_header_nritems(path->nodes[0]); 5478 if (nritems == 0) 5479 return 1; 5480 5481 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5482 again: 5483 level = 1; 5484 next = NULL; 5485 next_rw_lock = 0; 5486 btrfs_release_path(path); 5487 5488 path->keep_locks = 1; 5489 path->leave_spinning = 1; 5490 5491 if (time_seq) 5492 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5493 else 5494 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5495 path->keep_locks = 0; 5496 5497 if (ret < 0) 5498 return ret; 5499 5500 nritems = btrfs_header_nritems(path->nodes[0]); 5501 /* 5502 * by releasing the path above we dropped all our locks. A balance 5503 * could have added more items next to the key that used to be 5504 * at the very end of the block. So, check again here and 5505 * advance the path if there are now more items available. 5506 */ 5507 if (nritems > 0 && path->slots[0] < nritems - 1) { 5508 if (ret == 0) 5509 path->slots[0]++; 5510 ret = 0; 5511 goto done; 5512 } 5513 5514 while (level < BTRFS_MAX_LEVEL) { 5515 if (!path->nodes[level]) { 5516 ret = 1; 5517 goto done; 5518 } 5519 5520 slot = path->slots[level] + 1; 5521 c = path->nodes[level]; 5522 if (slot >= btrfs_header_nritems(c)) { 5523 level++; 5524 if (level == BTRFS_MAX_LEVEL) { 5525 ret = 1; 5526 goto done; 5527 } 5528 continue; 5529 } 5530 5531 if (next) { 5532 btrfs_tree_unlock_rw(next, next_rw_lock); 5533 free_extent_buffer(next); 5534 } 5535 5536 next = c; 5537 next_rw_lock = path->locks[level]; 5538 ret = read_block_for_search(NULL, root, path, &next, level, 5539 slot, &key, 0); 5540 if (ret == -EAGAIN) 5541 goto again; 5542 5543 if (ret < 0) { 5544 btrfs_release_path(path); 5545 goto done; 5546 } 5547 5548 if (!path->skip_locking) { 5549 ret = btrfs_try_tree_read_lock(next); 5550 if (!ret && time_seq) { 5551 /* 5552 * If we don't get the lock, we may be racing 5553 * with push_leaf_left, holding that lock while 5554 * itself waiting for the leaf we've currently 5555 * locked. To solve this situation, we give up 5556 * on our lock and cycle. 5557 */ 5558 free_extent_buffer(next); 5559 btrfs_release_path(path); 5560 cond_resched(); 5561 goto again; 5562 } 5563 if (!ret) { 5564 btrfs_set_path_blocking(path); 5565 btrfs_tree_read_lock(next); 5566 btrfs_clear_path_blocking(path, next, 5567 BTRFS_READ_LOCK); 5568 } 5569 next_rw_lock = BTRFS_READ_LOCK; 5570 } 5571 break; 5572 } 5573 path->slots[level] = slot; 5574 while (1) { 5575 level--; 5576 c = path->nodes[level]; 5577 if (path->locks[level]) 5578 btrfs_tree_unlock_rw(c, path->locks[level]); 5579 5580 free_extent_buffer(c); 5581 path->nodes[level] = next; 5582 path->slots[level] = 0; 5583 if (!path->skip_locking) 5584 path->locks[level] = next_rw_lock; 5585 if (!level) 5586 break; 5587 5588 ret = read_block_for_search(NULL, root, path, &next, level, 5589 0, &key, 0); 5590 if (ret == -EAGAIN) 5591 goto again; 5592 5593 if (ret < 0) { 5594 btrfs_release_path(path); 5595 goto done; 5596 } 5597 5598 if (!path->skip_locking) { 5599 ret = btrfs_try_tree_read_lock(next); 5600 if (!ret) { 5601 btrfs_set_path_blocking(path); 5602 btrfs_tree_read_lock(next); 5603 btrfs_clear_path_blocking(path, next, 5604 BTRFS_READ_LOCK); 5605 } 5606 next_rw_lock = BTRFS_READ_LOCK; 5607 } 5608 } 5609 ret = 0; 5610 done: 5611 unlock_up(path, 0, 1, 0, NULL); 5612 path->leave_spinning = old_spinning; 5613 if (!old_spinning) 5614 btrfs_set_path_blocking(path); 5615 5616 return ret; 5617 } 5618 5619 /* 5620 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5621 * searching until it gets past min_objectid or finds an item of 'type' 5622 * 5623 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5624 */ 5625 int btrfs_previous_item(struct btrfs_root *root, 5626 struct btrfs_path *path, u64 min_objectid, 5627 int type) 5628 { 5629 struct btrfs_key found_key; 5630 struct extent_buffer *leaf; 5631 u32 nritems; 5632 int ret; 5633 5634 while (1) { 5635 if (path->slots[0] == 0) { 5636 btrfs_set_path_blocking(path); 5637 ret = btrfs_prev_leaf(root, path); 5638 if (ret != 0) 5639 return ret; 5640 } else { 5641 path->slots[0]--; 5642 } 5643 leaf = path->nodes[0]; 5644 nritems = btrfs_header_nritems(leaf); 5645 if (nritems == 0) 5646 return 1; 5647 if (path->slots[0] == nritems) 5648 path->slots[0]--; 5649 5650 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5651 if (found_key.objectid < min_objectid) 5652 break; 5653 if (found_key.type == type) 5654 return 0; 5655 if (found_key.objectid == min_objectid && 5656 found_key.type < type) 5657 break; 5658 } 5659 return 1; 5660 } 5661