xref: /openbmc/linux/fs/btrfs/ctree.c (revision 57911b8ba814fae01306376a0d02bc7cdc88dc94)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 		    struct btrfs_path *path, int level, int slot,
42 		    int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 				 struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 					  u32 blocksize, u64 parent_transid,
47 					  u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 						u64 bytenr, u32 blocksize,
50 						u64 time_seq);
51 
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54 	struct btrfs_path *path;
55 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56 	return path;
57 }
58 
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65 	int i;
66 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 		if (!p->nodes[i] || !p->locks[i])
68 			continue;
69 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 		if (p->locks[i] == BTRFS_READ_LOCK)
71 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74 	}
75 }
76 
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86 					struct extent_buffer *held, int held_rw)
87 {
88 	int i;
89 
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 	/* lockdep really cares that we take all of these spinlocks
92 	 * in the right order.  If any of the locks in the path are not
93 	 * currently blocking, it is going to complain.  So, make really
94 	 * really sure by forcing the path to blocking before we clear
95 	 * the path blocking.
96 	 */
97 	if (held) {
98 		btrfs_set_lock_blocking_rw(held, held_rw);
99 		if (held_rw == BTRFS_WRITE_LOCK)
100 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 		else if (held_rw == BTRFS_READ_LOCK)
102 			held_rw = BTRFS_READ_LOCK_BLOCKING;
103 	}
104 	btrfs_set_path_blocking(p);
105 #endif
106 
107 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 		if (p->nodes[i] && p->locks[i]) {
109 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 				p->locks[i] = BTRFS_WRITE_LOCK;
112 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 				p->locks[i] = BTRFS_READ_LOCK;
114 		}
115 	}
116 
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 	if (held)
119 		btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122 
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126 	if (!p)
127 		return;
128 	btrfs_release_path(p);
129 	kmem_cache_free(btrfs_path_cachep, p);
130 }
131 
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140 	int i;
141 
142 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143 		p->slots[i] = 0;
144 		if (!p->nodes[i])
145 			continue;
146 		if (p->locks[i]) {
147 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148 			p->locks[i] = 0;
149 		}
150 		free_extent_buffer(p->nodes[i]);
151 		p->nodes[i] = NULL;
152 	}
153 }
154 
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167 	struct extent_buffer *eb;
168 
169 	while (1) {
170 		rcu_read_lock();
171 		eb = rcu_dereference(root->node);
172 
173 		/*
174 		 * RCU really hurts here, we could free up the root node because
175 		 * it was cow'ed but we may not get the new root node yet so do
176 		 * the inc_not_zero dance and if it doesn't work then
177 		 * synchronize_rcu and try again.
178 		 */
179 		if (atomic_inc_not_zero(&eb->refs)) {
180 			rcu_read_unlock();
181 			break;
182 		}
183 		rcu_read_unlock();
184 		synchronize_rcu();
185 	}
186 	return eb;
187 }
188 
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195 	struct extent_buffer *eb;
196 
197 	while (1) {
198 		eb = btrfs_root_node(root);
199 		btrfs_tree_lock(eb);
200 		if (eb == root->node)
201 			break;
202 		btrfs_tree_unlock(eb);
203 		free_extent_buffer(eb);
204 	}
205 	return eb;
206 }
207 
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214 	struct extent_buffer *eb;
215 
216 	while (1) {
217 		eb = btrfs_root_node(root);
218 		btrfs_tree_read_lock(eb);
219 		if (eb == root->node)
220 			break;
221 		btrfs_tree_read_unlock(eb);
222 		free_extent_buffer(eb);
223 	}
224 	return eb;
225 }
226 
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233 	spin_lock(&root->fs_info->trans_lock);
234 	if (root->track_dirty && list_empty(&root->dirty_list)) {
235 		list_add(&root->dirty_list,
236 			 &root->fs_info->dirty_cowonly_roots);
237 	}
238 	spin_unlock(&root->fs_info->trans_lock);
239 }
240 
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 		      struct btrfs_root *root,
248 		      struct extent_buffer *buf,
249 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251 	struct extent_buffer *cow;
252 	int ret = 0;
253 	int level;
254 	struct btrfs_disk_key disk_key;
255 
256 	WARN_ON(root->ref_cows && trans->transid !=
257 		root->fs_info->running_transaction->transid);
258 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259 
260 	level = btrfs_header_level(buf);
261 	if (level == 0)
262 		btrfs_item_key(buf, &disk_key, 0);
263 	else
264 		btrfs_node_key(buf, &disk_key, 0);
265 
266 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 				     new_root_objectid, &disk_key, level,
268 				     buf->start, 0);
269 	if (IS_ERR(cow))
270 		return PTR_ERR(cow);
271 
272 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 	btrfs_set_header_bytenr(cow, cow->start);
274 	btrfs_set_header_generation(cow, trans->transid);
275 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 				     BTRFS_HEADER_FLAG_RELOC);
278 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 	else
281 		btrfs_set_header_owner(cow, new_root_objectid);
282 
283 	write_extent_buffer(cow, root->fs_info->fsid,
284 			    (unsigned long)btrfs_header_fsid(cow),
285 			    BTRFS_FSID_SIZE);
286 
287 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
288 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290 	else
291 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292 
293 	if (ret)
294 		return ret;
295 
296 	btrfs_mark_buffer_dirty(cow);
297 	*cow_ret = cow;
298 	return 0;
299 }
300 
301 enum mod_log_op {
302 	MOD_LOG_KEY_REPLACE,
303 	MOD_LOG_KEY_ADD,
304 	MOD_LOG_KEY_REMOVE,
305 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 	MOD_LOG_MOVE_KEYS,
308 	MOD_LOG_ROOT_REPLACE,
309 };
310 
311 struct tree_mod_move {
312 	int dst_slot;
313 	int nr_items;
314 };
315 
316 struct tree_mod_root {
317 	u64 logical;
318 	u8 level;
319 };
320 
321 struct tree_mod_elem {
322 	struct rb_node node;
323 	u64 index;		/* shifted logical */
324 	u64 seq;
325 	enum mod_log_op op;
326 
327 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 	int slot;
329 
330 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 	u64 generation;
332 
333 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 	struct btrfs_disk_key key;
335 	u64 blockptr;
336 
337 	/* this is used for op == MOD_LOG_MOVE_KEYS */
338 	struct tree_mod_move move;
339 
340 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
341 	struct tree_mod_root old_root;
342 };
343 
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345 {
346 	read_lock(&fs_info->tree_mod_log_lock);
347 }
348 
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350 {
351 	read_unlock(&fs_info->tree_mod_log_lock);
352 }
353 
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355 {
356 	write_lock(&fs_info->tree_mod_log_lock);
357 }
358 
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360 {
361 	write_unlock(&fs_info->tree_mod_log_lock);
362 }
363 
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 			   struct seq_list *elem)
374 {
375 	u64 seq;
376 
377 	tree_mod_log_write_lock(fs_info);
378 	spin_lock(&fs_info->tree_mod_seq_lock);
379 	if (!elem->seq) {
380 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 	}
383 	seq = btrfs_inc_tree_mod_seq(fs_info);
384 	spin_unlock(&fs_info->tree_mod_seq_lock);
385 	tree_mod_log_write_unlock(fs_info);
386 
387 	return seq;
388 }
389 
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391 			    struct seq_list *elem)
392 {
393 	struct rb_root *tm_root;
394 	struct rb_node *node;
395 	struct rb_node *next;
396 	struct seq_list *cur_elem;
397 	struct tree_mod_elem *tm;
398 	u64 min_seq = (u64)-1;
399 	u64 seq_putting = elem->seq;
400 
401 	if (!seq_putting)
402 		return;
403 
404 	spin_lock(&fs_info->tree_mod_seq_lock);
405 	list_del(&elem->list);
406 	elem->seq = 0;
407 
408 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409 		if (cur_elem->seq < min_seq) {
410 			if (seq_putting > cur_elem->seq) {
411 				/*
412 				 * blocker with lower sequence number exists, we
413 				 * cannot remove anything from the log
414 				 */
415 				spin_unlock(&fs_info->tree_mod_seq_lock);
416 				return;
417 			}
418 			min_seq = cur_elem->seq;
419 		}
420 	}
421 	spin_unlock(&fs_info->tree_mod_seq_lock);
422 
423 	/*
424 	 * anything that's lower than the lowest existing (read: blocked)
425 	 * sequence number can be removed from the tree.
426 	 */
427 	tree_mod_log_write_lock(fs_info);
428 	tm_root = &fs_info->tree_mod_log;
429 	for (node = rb_first(tm_root); node; node = next) {
430 		next = rb_next(node);
431 		tm = container_of(node, struct tree_mod_elem, node);
432 		if (tm->seq > min_seq)
433 			continue;
434 		rb_erase(node, tm_root);
435 		kfree(tm);
436 	}
437 	tree_mod_log_write_unlock(fs_info);
438 }
439 
440 /*
441  * key order of the log:
442  *       index -> sequence
443  *
444  * the index is the shifted logical of the *new* root node for root replace
445  * operations, or the shifted logical of the affected block for all other
446  * operations.
447  */
448 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 {
451 	struct rb_root *tm_root;
452 	struct rb_node **new;
453 	struct rb_node *parent = NULL;
454 	struct tree_mod_elem *cur;
455 
456 	BUG_ON(!tm || !tm->seq);
457 
458 	tm_root = &fs_info->tree_mod_log;
459 	new = &tm_root->rb_node;
460 	while (*new) {
461 		cur = container_of(*new, struct tree_mod_elem, node);
462 		parent = *new;
463 		if (cur->index < tm->index)
464 			new = &((*new)->rb_left);
465 		else if (cur->index > tm->index)
466 			new = &((*new)->rb_right);
467 		else if (cur->seq < tm->seq)
468 			new = &((*new)->rb_left);
469 		else if (cur->seq > tm->seq)
470 			new = &((*new)->rb_right);
471 		else {
472 			kfree(tm);
473 			return -EEXIST;
474 		}
475 	}
476 
477 	rb_link_node(&tm->node, parent, new);
478 	rb_insert_color(&tm->node, tm_root);
479 	return 0;
480 }
481 
482 /*
483  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484  * returns zero with the tree_mod_log_lock acquired. The caller must hold
485  * this until all tree mod log insertions are recorded in the rb tree and then
486  * call tree_mod_log_write_unlock() to release.
487  */
488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 				    struct extent_buffer *eb) {
490 	smp_mb();
491 	if (list_empty(&(fs_info)->tree_mod_seq_list))
492 		return 1;
493 	if (eb && btrfs_header_level(eb) == 0)
494 		return 1;
495 
496 	tree_mod_log_write_lock(fs_info);
497 	if (list_empty(&fs_info->tree_mod_seq_list)) {
498 		/*
499 		 * someone emptied the list while we were waiting for the lock.
500 		 * we must not add to the list when no blocker exists.
501 		 */
502 		tree_mod_log_write_unlock(fs_info);
503 		return 1;
504 	}
505 
506 	return 0;
507 }
508 
509 /*
510  * This allocates memory and gets a tree modification sequence number.
511  *
512  * Returns <0 on error.
513  * Returns >0 (the added sequence number) on success.
514  */
515 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
516 				 struct tree_mod_elem **tm_ret)
517 {
518 	struct tree_mod_elem *tm;
519 
520 	/*
521 	 * once we switch from spin locks to something different, we should
522 	 * honor the flags parameter here.
523 	 */
524 	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
525 	if (!tm)
526 		return -ENOMEM;
527 
528 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
529 	return tm->seq;
530 }
531 
532 static inline int
533 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
534 			  struct extent_buffer *eb, int slot,
535 			  enum mod_log_op op, gfp_t flags)
536 {
537 	int ret;
538 	struct tree_mod_elem *tm;
539 
540 	ret = tree_mod_alloc(fs_info, flags, &tm);
541 	if (ret < 0)
542 		return ret;
543 
544 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
545 	if (op != MOD_LOG_KEY_ADD) {
546 		btrfs_node_key(eb, &tm->key, slot);
547 		tm->blockptr = btrfs_node_blockptr(eb, slot);
548 	}
549 	tm->op = op;
550 	tm->slot = slot;
551 	tm->generation = btrfs_node_ptr_generation(eb, slot);
552 
553 	return __tree_mod_log_insert(fs_info, tm);
554 }
555 
556 static noinline int
557 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
558 			     struct extent_buffer *eb, int slot,
559 			     enum mod_log_op op, gfp_t flags)
560 {
561 	int ret;
562 
563 	if (tree_mod_dont_log(fs_info, eb))
564 		return 0;
565 
566 	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
567 
568 	tree_mod_log_write_unlock(fs_info);
569 	return ret;
570 }
571 
572 static noinline int
573 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
574 			int slot, enum mod_log_op op)
575 {
576 	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
577 }
578 
579 static noinline int
580 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
581 			     struct extent_buffer *eb, int slot,
582 			     enum mod_log_op op)
583 {
584 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
585 }
586 
587 static noinline int
588 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
589 			 struct extent_buffer *eb, int dst_slot, int src_slot,
590 			 int nr_items, gfp_t flags)
591 {
592 	struct tree_mod_elem *tm;
593 	int ret;
594 	int i;
595 
596 	if (tree_mod_dont_log(fs_info, eb))
597 		return 0;
598 
599 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
601 					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
602 		BUG_ON(ret < 0);
603 	}
604 
605 	ret = tree_mod_alloc(fs_info, flags, &tm);
606 	if (ret < 0)
607 		goto out;
608 
609 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
610 	tm->slot = src_slot;
611 	tm->move.dst_slot = dst_slot;
612 	tm->move.nr_items = nr_items;
613 	tm->op = MOD_LOG_MOVE_KEYS;
614 
615 	ret = __tree_mod_log_insert(fs_info, tm);
616 out:
617 	tree_mod_log_write_unlock(fs_info);
618 	return ret;
619 }
620 
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624 	int i;
625 	u32 nritems;
626 	int ret;
627 
628 	if (btrfs_header_level(eb) == 0)
629 		return;
630 
631 	nritems = btrfs_header_nritems(eb);
632 	for (i = nritems - 1; i >= 0; i--) {
633 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
634 					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
635 		BUG_ON(ret < 0);
636 	}
637 }
638 
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641 			 struct extent_buffer *old_root,
642 			 struct extent_buffer *new_root, gfp_t flags)
643 {
644 	struct tree_mod_elem *tm;
645 	int ret;
646 
647 	if (tree_mod_dont_log(fs_info, NULL))
648 		return 0;
649 
650 	__tree_mod_log_free_eb(fs_info, old_root);
651 
652 	ret = tree_mod_alloc(fs_info, flags, &tm);
653 	if (ret < 0)
654 		goto out;
655 
656 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
657 	tm->old_root.logical = old_root->start;
658 	tm->old_root.level = btrfs_header_level(old_root);
659 	tm->generation = btrfs_header_generation(old_root);
660 	tm->op = MOD_LOG_ROOT_REPLACE;
661 
662 	ret = __tree_mod_log_insert(fs_info, tm);
663 out:
664 	tree_mod_log_write_unlock(fs_info);
665 	return ret;
666 }
667 
668 static struct tree_mod_elem *
669 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
670 		      int smallest)
671 {
672 	struct rb_root *tm_root;
673 	struct rb_node *node;
674 	struct tree_mod_elem *cur = NULL;
675 	struct tree_mod_elem *found = NULL;
676 	u64 index = start >> PAGE_CACHE_SHIFT;
677 
678 	tree_mod_log_read_lock(fs_info);
679 	tm_root = &fs_info->tree_mod_log;
680 	node = tm_root->rb_node;
681 	while (node) {
682 		cur = container_of(node, struct tree_mod_elem, node);
683 		if (cur->index < index) {
684 			node = node->rb_left;
685 		} else if (cur->index > index) {
686 			node = node->rb_right;
687 		} else if (cur->seq < min_seq) {
688 			node = node->rb_left;
689 		} else if (!smallest) {
690 			/* we want the node with the highest seq */
691 			if (found)
692 				BUG_ON(found->seq > cur->seq);
693 			found = cur;
694 			node = node->rb_left;
695 		} else if (cur->seq > min_seq) {
696 			/* we want the node with the smallest seq */
697 			if (found)
698 				BUG_ON(found->seq < cur->seq);
699 			found = cur;
700 			node = node->rb_right;
701 		} else {
702 			found = cur;
703 			break;
704 		}
705 	}
706 	tree_mod_log_read_unlock(fs_info);
707 
708 	return found;
709 }
710 
711 /*
712  * this returns the element from the log with the smallest time sequence
713  * value that's in the log (the oldest log item). any element with a time
714  * sequence lower than min_seq will be ignored.
715  */
716 static struct tree_mod_elem *
717 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
718 			   u64 min_seq)
719 {
720 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
721 }
722 
723 /*
724  * this returns the element from the log with the largest time sequence
725  * value that's in the log (the most recent log item). any element with
726  * a time sequence lower than min_seq will be ignored.
727  */
728 static struct tree_mod_elem *
729 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
730 {
731 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
732 }
733 
734 static noinline void
735 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
736 		     struct extent_buffer *src, unsigned long dst_offset,
737 		     unsigned long src_offset, int nr_items)
738 {
739 	int ret;
740 	int i;
741 
742 	if (tree_mod_dont_log(fs_info, NULL))
743 		return;
744 
745 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
746 		tree_mod_log_write_unlock(fs_info);
747 		return;
748 	}
749 
750 	for (i = 0; i < nr_items; i++) {
751 		ret = tree_mod_log_insert_key_locked(fs_info, src,
752 						     i + src_offset,
753 						     MOD_LOG_KEY_REMOVE);
754 		BUG_ON(ret < 0);
755 		ret = tree_mod_log_insert_key_locked(fs_info, dst,
756 						     i + dst_offset,
757 						     MOD_LOG_KEY_ADD);
758 		BUG_ON(ret < 0);
759 	}
760 
761 	tree_mod_log_write_unlock(fs_info);
762 }
763 
764 static inline void
765 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
766 		     int dst_offset, int src_offset, int nr_items)
767 {
768 	int ret;
769 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
770 				       nr_items, GFP_NOFS);
771 	BUG_ON(ret < 0);
772 }
773 
774 static noinline void
775 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
776 			  struct extent_buffer *eb,
777 			  struct btrfs_disk_key *disk_key, int slot, int atomic)
778 {
779 	int ret;
780 
781 	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
782 					   MOD_LOG_KEY_REPLACE,
783 					   atomic ? GFP_ATOMIC : GFP_NOFS);
784 	BUG_ON(ret < 0);
785 }
786 
787 static noinline void
788 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
789 {
790 	if (tree_mod_dont_log(fs_info, eb))
791 		return;
792 
793 	__tree_mod_log_free_eb(fs_info, eb);
794 
795 	tree_mod_log_write_unlock(fs_info);
796 }
797 
798 static noinline void
799 tree_mod_log_set_root_pointer(struct btrfs_root *root,
800 			      struct extent_buffer *new_root_node)
801 {
802 	int ret;
803 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
804 				       new_root_node, GFP_NOFS);
805 	BUG_ON(ret < 0);
806 }
807 
808 /*
809  * check if the tree block can be shared by multiple trees
810  */
811 int btrfs_block_can_be_shared(struct btrfs_root *root,
812 			      struct extent_buffer *buf)
813 {
814 	/*
815 	 * Tree blocks not in refernece counted trees and tree roots
816 	 * are never shared. If a block was allocated after the last
817 	 * snapshot and the block was not allocated by tree relocation,
818 	 * we know the block is not shared.
819 	 */
820 	if (root->ref_cows &&
821 	    buf != root->node && buf != root->commit_root &&
822 	    (btrfs_header_generation(buf) <=
823 	     btrfs_root_last_snapshot(&root->root_item) ||
824 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
825 		return 1;
826 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
827 	if (root->ref_cows &&
828 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
829 		return 1;
830 #endif
831 	return 0;
832 }
833 
834 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
835 				       struct btrfs_root *root,
836 				       struct extent_buffer *buf,
837 				       struct extent_buffer *cow,
838 				       int *last_ref)
839 {
840 	u64 refs;
841 	u64 owner;
842 	u64 flags;
843 	u64 new_flags = 0;
844 	int ret;
845 
846 	/*
847 	 * Backrefs update rules:
848 	 *
849 	 * Always use full backrefs for extent pointers in tree block
850 	 * allocated by tree relocation.
851 	 *
852 	 * If a shared tree block is no longer referenced by its owner
853 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
854 	 * use full backrefs for extent pointers in tree block.
855 	 *
856 	 * If a tree block is been relocating
857 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
858 	 * use full backrefs for extent pointers in tree block.
859 	 * The reason for this is some operations (such as drop tree)
860 	 * are only allowed for blocks use full backrefs.
861 	 */
862 
863 	if (btrfs_block_can_be_shared(root, buf)) {
864 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
865 					       buf->len, &refs, &flags);
866 		if (ret)
867 			return ret;
868 		if (refs == 0) {
869 			ret = -EROFS;
870 			btrfs_std_error(root->fs_info, ret);
871 			return ret;
872 		}
873 	} else {
874 		refs = 1;
875 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
876 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
877 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
878 		else
879 			flags = 0;
880 	}
881 
882 	owner = btrfs_header_owner(buf);
883 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
884 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
885 
886 	if (refs > 1) {
887 		if ((owner == root->root_key.objectid ||
888 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
889 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
890 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
891 			BUG_ON(ret); /* -ENOMEM */
892 
893 			if (root->root_key.objectid ==
894 			    BTRFS_TREE_RELOC_OBJECTID) {
895 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
896 				BUG_ON(ret); /* -ENOMEM */
897 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
898 				BUG_ON(ret); /* -ENOMEM */
899 			}
900 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
901 		} else {
902 
903 			if (root->root_key.objectid ==
904 			    BTRFS_TREE_RELOC_OBJECTID)
905 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
906 			else
907 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
908 			BUG_ON(ret); /* -ENOMEM */
909 		}
910 		if (new_flags != 0) {
911 			ret = btrfs_set_disk_extent_flags(trans, root,
912 							  buf->start,
913 							  buf->len,
914 							  new_flags, 0);
915 			if (ret)
916 				return ret;
917 		}
918 	} else {
919 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
920 			if (root->root_key.objectid ==
921 			    BTRFS_TREE_RELOC_OBJECTID)
922 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
923 			else
924 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
925 			BUG_ON(ret); /* -ENOMEM */
926 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
927 			BUG_ON(ret); /* -ENOMEM */
928 		}
929 		/*
930 		 * don't log freeing in case we're freeing the root node, this
931 		 * is done by tree_mod_log_set_root_pointer later
932 		 */
933 		if (buf != root->node && btrfs_header_level(buf) != 0)
934 			tree_mod_log_free_eb(root->fs_info, buf);
935 		clean_tree_block(trans, root, buf);
936 		*last_ref = 1;
937 	}
938 	return 0;
939 }
940 
941 /*
942  * does the dirty work in cow of a single block.  The parent block (if
943  * supplied) is updated to point to the new cow copy.  The new buffer is marked
944  * dirty and returned locked.  If you modify the block it needs to be marked
945  * dirty again.
946  *
947  * search_start -- an allocation hint for the new block
948  *
949  * empty_size -- a hint that you plan on doing more cow.  This is the size in
950  * bytes the allocator should try to find free next to the block it returns.
951  * This is just a hint and may be ignored by the allocator.
952  */
953 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
954 			     struct btrfs_root *root,
955 			     struct extent_buffer *buf,
956 			     struct extent_buffer *parent, int parent_slot,
957 			     struct extent_buffer **cow_ret,
958 			     u64 search_start, u64 empty_size)
959 {
960 	struct btrfs_disk_key disk_key;
961 	struct extent_buffer *cow;
962 	int level, ret;
963 	int last_ref = 0;
964 	int unlock_orig = 0;
965 	u64 parent_start;
966 
967 	if (*cow_ret == buf)
968 		unlock_orig = 1;
969 
970 	btrfs_assert_tree_locked(buf);
971 
972 	WARN_ON(root->ref_cows && trans->transid !=
973 		root->fs_info->running_transaction->transid);
974 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
975 
976 	level = btrfs_header_level(buf);
977 
978 	if (level == 0)
979 		btrfs_item_key(buf, &disk_key, 0);
980 	else
981 		btrfs_node_key(buf, &disk_key, 0);
982 
983 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
984 		if (parent)
985 			parent_start = parent->start;
986 		else
987 			parent_start = 0;
988 	} else
989 		parent_start = 0;
990 
991 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
992 				     root->root_key.objectid, &disk_key,
993 				     level, search_start, empty_size);
994 	if (IS_ERR(cow))
995 		return PTR_ERR(cow);
996 
997 	/* cow is set to blocking by btrfs_init_new_buffer */
998 
999 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1000 	btrfs_set_header_bytenr(cow, cow->start);
1001 	btrfs_set_header_generation(cow, trans->transid);
1002 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1003 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1004 				     BTRFS_HEADER_FLAG_RELOC);
1005 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1006 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1007 	else
1008 		btrfs_set_header_owner(cow, root->root_key.objectid);
1009 
1010 	write_extent_buffer(cow, root->fs_info->fsid,
1011 			    (unsigned long)btrfs_header_fsid(cow),
1012 			    BTRFS_FSID_SIZE);
1013 
1014 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1015 	if (ret) {
1016 		btrfs_abort_transaction(trans, root, ret);
1017 		return ret;
1018 	}
1019 
1020 	if (root->ref_cows)
1021 		btrfs_reloc_cow_block(trans, root, buf, cow);
1022 
1023 	if (buf == root->node) {
1024 		WARN_ON(parent && parent != buf);
1025 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1026 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1027 			parent_start = buf->start;
1028 		else
1029 			parent_start = 0;
1030 
1031 		extent_buffer_get(cow);
1032 		tree_mod_log_set_root_pointer(root, cow);
1033 		rcu_assign_pointer(root->node, cow);
1034 
1035 		btrfs_free_tree_block(trans, root, buf, parent_start,
1036 				      last_ref);
1037 		free_extent_buffer(buf);
1038 		add_root_to_dirty_list(root);
1039 	} else {
1040 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1041 			parent_start = parent->start;
1042 		else
1043 			parent_start = 0;
1044 
1045 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1046 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1047 					MOD_LOG_KEY_REPLACE);
1048 		btrfs_set_node_blockptr(parent, parent_slot,
1049 					cow->start);
1050 		btrfs_set_node_ptr_generation(parent, parent_slot,
1051 					      trans->transid);
1052 		btrfs_mark_buffer_dirty(parent);
1053 		btrfs_free_tree_block(trans, root, buf, parent_start,
1054 				      last_ref);
1055 	}
1056 	if (unlock_orig)
1057 		btrfs_tree_unlock(buf);
1058 	free_extent_buffer_stale(buf);
1059 	btrfs_mark_buffer_dirty(cow);
1060 	*cow_ret = cow;
1061 	return 0;
1062 }
1063 
1064 /*
1065  * returns the logical address of the oldest predecessor of the given root.
1066  * entries older than time_seq are ignored.
1067  */
1068 static struct tree_mod_elem *
1069 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1070 			   struct btrfs_root *root, u64 time_seq)
1071 {
1072 	struct tree_mod_elem *tm;
1073 	struct tree_mod_elem *found = NULL;
1074 	u64 root_logical = root->node->start;
1075 	int looped = 0;
1076 
1077 	if (!time_seq)
1078 		return 0;
1079 
1080 	/*
1081 	 * the very last operation that's logged for a root is the replacement
1082 	 * operation (if it is replaced at all). this has the index of the *new*
1083 	 * root, making it the very first operation that's logged for this root.
1084 	 */
1085 	while (1) {
1086 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1087 						time_seq);
1088 		if (!looped && !tm)
1089 			return 0;
1090 		/*
1091 		 * if there are no tree operation for the oldest root, we simply
1092 		 * return it. this should only happen if that (old) root is at
1093 		 * level 0.
1094 		 */
1095 		if (!tm)
1096 			break;
1097 
1098 		/*
1099 		 * if there's an operation that's not a root replacement, we
1100 		 * found the oldest version of our root. normally, we'll find a
1101 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1102 		 */
1103 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1104 			break;
1105 
1106 		found = tm;
1107 		root_logical = tm->old_root.logical;
1108 		BUG_ON(root_logical == root->node->start);
1109 		looped = 1;
1110 	}
1111 
1112 	/* if there's no old root to return, return what we found instead */
1113 	if (!found)
1114 		found = tm;
1115 
1116 	return found;
1117 }
1118 
1119 /*
1120  * tm is a pointer to the first operation to rewind within eb. then, all
1121  * previous operations will be rewinded (until we reach something older than
1122  * time_seq).
1123  */
1124 static void
1125 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1126 		      struct tree_mod_elem *first_tm)
1127 {
1128 	u32 n;
1129 	struct rb_node *next;
1130 	struct tree_mod_elem *tm = first_tm;
1131 	unsigned long o_dst;
1132 	unsigned long o_src;
1133 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1134 
1135 	n = btrfs_header_nritems(eb);
1136 	while (tm && tm->seq >= time_seq) {
1137 		/*
1138 		 * all the operations are recorded with the operator used for
1139 		 * the modification. as we're going backwards, we do the
1140 		 * opposite of each operation here.
1141 		 */
1142 		switch (tm->op) {
1143 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1144 			BUG_ON(tm->slot < n);
1145 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1146 		case MOD_LOG_KEY_REMOVE:
1147 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1148 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1149 			btrfs_set_node_ptr_generation(eb, tm->slot,
1150 						      tm->generation);
1151 			n++;
1152 			break;
1153 		case MOD_LOG_KEY_REPLACE:
1154 			BUG_ON(tm->slot >= n);
1155 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1156 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1157 			btrfs_set_node_ptr_generation(eb, tm->slot,
1158 						      tm->generation);
1159 			break;
1160 		case MOD_LOG_KEY_ADD:
1161 			/* if a move operation is needed it's in the log */
1162 			n--;
1163 			break;
1164 		case MOD_LOG_MOVE_KEYS:
1165 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1166 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1167 			memmove_extent_buffer(eb, o_dst, o_src,
1168 					      tm->move.nr_items * p_size);
1169 			break;
1170 		case MOD_LOG_ROOT_REPLACE:
1171 			/*
1172 			 * this operation is special. for roots, this must be
1173 			 * handled explicitly before rewinding.
1174 			 * for non-roots, this operation may exist if the node
1175 			 * was a root: root A -> child B; then A gets empty and
1176 			 * B is promoted to the new root. in the mod log, we'll
1177 			 * have a root-replace operation for B, a tree block
1178 			 * that is no root. we simply ignore that operation.
1179 			 */
1180 			break;
1181 		}
1182 		next = rb_next(&tm->node);
1183 		if (!next)
1184 			break;
1185 		tm = container_of(next, struct tree_mod_elem, node);
1186 		if (tm->index != first_tm->index)
1187 			break;
1188 	}
1189 	btrfs_set_header_nritems(eb, n);
1190 }
1191 
1192 static struct extent_buffer *
1193 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1194 		    u64 time_seq)
1195 {
1196 	struct extent_buffer *eb_rewin;
1197 	struct tree_mod_elem *tm;
1198 
1199 	if (!time_seq)
1200 		return eb;
1201 
1202 	if (btrfs_header_level(eb) == 0)
1203 		return eb;
1204 
1205 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1206 	if (!tm)
1207 		return eb;
1208 
1209 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1210 		BUG_ON(tm->slot != 0);
1211 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1212 						fs_info->tree_root->nodesize);
1213 		BUG_ON(!eb_rewin);
1214 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1215 		btrfs_set_header_backref_rev(eb_rewin,
1216 					     btrfs_header_backref_rev(eb));
1217 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1218 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1219 	} else {
1220 		eb_rewin = btrfs_clone_extent_buffer(eb);
1221 		BUG_ON(!eb_rewin);
1222 	}
1223 
1224 	extent_buffer_get(eb_rewin);
1225 	free_extent_buffer(eb);
1226 
1227 	__tree_mod_log_rewind(eb_rewin, time_seq, tm);
1228 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1229 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
1230 
1231 	return eb_rewin;
1232 }
1233 
1234 /*
1235  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1236  * value. If there are no changes, the current root->root_node is returned. If
1237  * anything changed in between, there's a fresh buffer allocated on which the
1238  * rewind operations are done. In any case, the returned buffer is read locked.
1239  * Returns NULL on error (with no locks held).
1240  */
1241 static inline struct extent_buffer *
1242 get_old_root(struct btrfs_root *root, u64 time_seq)
1243 {
1244 	struct tree_mod_elem *tm;
1245 	struct extent_buffer *eb;
1246 	struct tree_mod_root *old_root = NULL;
1247 	u64 old_generation = 0;
1248 	u64 logical;
1249 
1250 	eb = btrfs_read_lock_root_node(root);
1251 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1252 	if (!tm)
1253 		return root->node;
1254 
1255 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1256 		old_root = &tm->old_root;
1257 		old_generation = tm->generation;
1258 		logical = old_root->logical;
1259 	} else {
1260 		logical = root->node->start;
1261 	}
1262 
1263 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1264 	if (old_root)
1265 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1266 	else
1267 		eb = btrfs_clone_extent_buffer(root->node);
1268 	btrfs_tree_read_unlock(root->node);
1269 	free_extent_buffer(root->node);
1270 	if (!eb)
1271 		return NULL;
1272 	btrfs_tree_read_lock(eb);
1273 	if (old_root) {
1274 		btrfs_set_header_bytenr(eb, eb->start);
1275 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1276 		btrfs_set_header_owner(eb, root->root_key.objectid);
1277 		btrfs_set_header_level(eb, old_root->level);
1278 		btrfs_set_header_generation(eb, old_generation);
1279 	}
1280 	if (tm)
1281 		__tree_mod_log_rewind(eb, time_seq, tm);
1282 	else
1283 		WARN_ON(btrfs_header_level(eb) != 0);
1284 	extent_buffer_get(eb);
1285 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1286 
1287 	return eb;
1288 }
1289 
1290 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1291 				   struct btrfs_root *root,
1292 				   struct extent_buffer *buf)
1293 {
1294 	/* ensure we can see the force_cow */
1295 	smp_rmb();
1296 
1297 	/*
1298 	 * We do not need to cow a block if
1299 	 * 1) this block is not created or changed in this transaction;
1300 	 * 2) this block does not belong to TREE_RELOC tree;
1301 	 * 3) the root is not forced COW.
1302 	 *
1303 	 * What is forced COW:
1304 	 *    when we create snapshot during commiting the transaction,
1305 	 *    after we've finished coping src root, we must COW the shared
1306 	 *    block to ensure the metadata consistency.
1307 	 */
1308 	if (btrfs_header_generation(buf) == trans->transid &&
1309 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1310 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1311 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1312 	    !root->force_cow)
1313 		return 0;
1314 	return 1;
1315 }
1316 
1317 /*
1318  * cows a single block, see __btrfs_cow_block for the real work.
1319  * This version of it has extra checks so that a block isn't cow'd more than
1320  * once per transaction, as long as it hasn't been written yet
1321  */
1322 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1323 		    struct btrfs_root *root, struct extent_buffer *buf,
1324 		    struct extent_buffer *parent, int parent_slot,
1325 		    struct extent_buffer **cow_ret)
1326 {
1327 	u64 search_start;
1328 	int ret;
1329 
1330 	if (trans->transaction != root->fs_info->running_transaction) {
1331 		printk(KERN_CRIT "trans %llu running %llu\n",
1332 		       (unsigned long long)trans->transid,
1333 		       (unsigned long long)
1334 		       root->fs_info->running_transaction->transid);
1335 		WARN_ON(1);
1336 	}
1337 	if (trans->transid != root->fs_info->generation) {
1338 		printk(KERN_CRIT "trans %llu running %llu\n",
1339 		       (unsigned long long)trans->transid,
1340 		       (unsigned long long)root->fs_info->generation);
1341 		WARN_ON(1);
1342 	}
1343 
1344 	if (!should_cow_block(trans, root, buf)) {
1345 		*cow_ret = buf;
1346 		return 0;
1347 	}
1348 
1349 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1350 
1351 	if (parent)
1352 		btrfs_set_lock_blocking(parent);
1353 	btrfs_set_lock_blocking(buf);
1354 
1355 	ret = __btrfs_cow_block(trans, root, buf, parent,
1356 				 parent_slot, cow_ret, search_start, 0);
1357 
1358 	trace_btrfs_cow_block(root, buf, *cow_ret);
1359 
1360 	return ret;
1361 }
1362 
1363 /*
1364  * helper function for defrag to decide if two blocks pointed to by a
1365  * node are actually close by
1366  */
1367 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1368 {
1369 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1370 		return 1;
1371 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1372 		return 1;
1373 	return 0;
1374 }
1375 
1376 /*
1377  * compare two keys in a memcmp fashion
1378  */
1379 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1380 {
1381 	struct btrfs_key k1;
1382 
1383 	btrfs_disk_key_to_cpu(&k1, disk);
1384 
1385 	return btrfs_comp_cpu_keys(&k1, k2);
1386 }
1387 
1388 /*
1389  * same as comp_keys only with two btrfs_key's
1390  */
1391 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1392 {
1393 	if (k1->objectid > k2->objectid)
1394 		return 1;
1395 	if (k1->objectid < k2->objectid)
1396 		return -1;
1397 	if (k1->type > k2->type)
1398 		return 1;
1399 	if (k1->type < k2->type)
1400 		return -1;
1401 	if (k1->offset > k2->offset)
1402 		return 1;
1403 	if (k1->offset < k2->offset)
1404 		return -1;
1405 	return 0;
1406 }
1407 
1408 /*
1409  * this is used by the defrag code to go through all the
1410  * leaves pointed to by a node and reallocate them so that
1411  * disk order is close to key order
1412  */
1413 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1414 		       struct btrfs_root *root, struct extent_buffer *parent,
1415 		       int start_slot, int cache_only, u64 *last_ret,
1416 		       struct btrfs_key *progress)
1417 {
1418 	struct extent_buffer *cur;
1419 	u64 blocknr;
1420 	u64 gen;
1421 	u64 search_start = *last_ret;
1422 	u64 last_block = 0;
1423 	u64 other;
1424 	u32 parent_nritems;
1425 	int end_slot;
1426 	int i;
1427 	int err = 0;
1428 	int parent_level;
1429 	int uptodate;
1430 	u32 blocksize;
1431 	int progress_passed = 0;
1432 	struct btrfs_disk_key disk_key;
1433 
1434 	parent_level = btrfs_header_level(parent);
1435 	if (cache_only && parent_level != 1)
1436 		return 0;
1437 
1438 	if (trans->transaction != root->fs_info->running_transaction)
1439 		WARN_ON(1);
1440 	if (trans->transid != root->fs_info->generation)
1441 		WARN_ON(1);
1442 
1443 	parent_nritems = btrfs_header_nritems(parent);
1444 	blocksize = btrfs_level_size(root, parent_level - 1);
1445 	end_slot = parent_nritems;
1446 
1447 	if (parent_nritems == 1)
1448 		return 0;
1449 
1450 	btrfs_set_lock_blocking(parent);
1451 
1452 	for (i = start_slot; i < end_slot; i++) {
1453 		int close = 1;
1454 
1455 		btrfs_node_key(parent, &disk_key, i);
1456 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1457 			continue;
1458 
1459 		progress_passed = 1;
1460 		blocknr = btrfs_node_blockptr(parent, i);
1461 		gen = btrfs_node_ptr_generation(parent, i);
1462 		if (last_block == 0)
1463 			last_block = blocknr;
1464 
1465 		if (i > 0) {
1466 			other = btrfs_node_blockptr(parent, i - 1);
1467 			close = close_blocks(blocknr, other, blocksize);
1468 		}
1469 		if (!close && i < end_slot - 2) {
1470 			other = btrfs_node_blockptr(parent, i + 1);
1471 			close = close_blocks(blocknr, other, blocksize);
1472 		}
1473 		if (close) {
1474 			last_block = blocknr;
1475 			continue;
1476 		}
1477 
1478 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1479 		if (cur)
1480 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1481 		else
1482 			uptodate = 0;
1483 		if (!cur || !uptodate) {
1484 			if (cache_only) {
1485 				free_extent_buffer(cur);
1486 				continue;
1487 			}
1488 			if (!cur) {
1489 				cur = read_tree_block(root, blocknr,
1490 							 blocksize, gen);
1491 				if (!cur)
1492 					return -EIO;
1493 			} else if (!uptodate) {
1494 				err = btrfs_read_buffer(cur, gen);
1495 				if (err) {
1496 					free_extent_buffer(cur);
1497 					return err;
1498 				}
1499 			}
1500 		}
1501 		if (search_start == 0)
1502 			search_start = last_block;
1503 
1504 		btrfs_tree_lock(cur);
1505 		btrfs_set_lock_blocking(cur);
1506 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1507 					&cur, search_start,
1508 					min(16 * blocksize,
1509 					    (end_slot - i) * blocksize));
1510 		if (err) {
1511 			btrfs_tree_unlock(cur);
1512 			free_extent_buffer(cur);
1513 			break;
1514 		}
1515 		search_start = cur->start;
1516 		last_block = cur->start;
1517 		*last_ret = search_start;
1518 		btrfs_tree_unlock(cur);
1519 		free_extent_buffer(cur);
1520 	}
1521 	return err;
1522 }
1523 
1524 /*
1525  * The leaf data grows from end-to-front in the node.
1526  * this returns the address of the start of the last item,
1527  * which is the stop of the leaf data stack
1528  */
1529 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1530 					 struct extent_buffer *leaf)
1531 {
1532 	u32 nr = btrfs_header_nritems(leaf);
1533 	if (nr == 0)
1534 		return BTRFS_LEAF_DATA_SIZE(root);
1535 	return btrfs_item_offset_nr(leaf, nr - 1);
1536 }
1537 
1538 
1539 /*
1540  * search for key in the extent_buffer.  The items start at offset p,
1541  * and they are item_size apart.  There are 'max' items in p.
1542  *
1543  * the slot in the array is returned via slot, and it points to
1544  * the place where you would insert key if it is not found in
1545  * the array.
1546  *
1547  * slot may point to max if the key is bigger than all of the keys
1548  */
1549 static noinline int generic_bin_search(struct extent_buffer *eb,
1550 				       unsigned long p,
1551 				       int item_size, struct btrfs_key *key,
1552 				       int max, int *slot)
1553 {
1554 	int low = 0;
1555 	int high = max;
1556 	int mid;
1557 	int ret;
1558 	struct btrfs_disk_key *tmp = NULL;
1559 	struct btrfs_disk_key unaligned;
1560 	unsigned long offset;
1561 	char *kaddr = NULL;
1562 	unsigned long map_start = 0;
1563 	unsigned long map_len = 0;
1564 	int err;
1565 
1566 	while (low < high) {
1567 		mid = (low + high) / 2;
1568 		offset = p + mid * item_size;
1569 
1570 		if (!kaddr || offset < map_start ||
1571 		    (offset + sizeof(struct btrfs_disk_key)) >
1572 		    map_start + map_len) {
1573 
1574 			err = map_private_extent_buffer(eb, offset,
1575 						sizeof(struct btrfs_disk_key),
1576 						&kaddr, &map_start, &map_len);
1577 
1578 			if (!err) {
1579 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1580 							map_start);
1581 			} else {
1582 				read_extent_buffer(eb, &unaligned,
1583 						   offset, sizeof(unaligned));
1584 				tmp = &unaligned;
1585 			}
1586 
1587 		} else {
1588 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1589 							map_start);
1590 		}
1591 		ret = comp_keys(tmp, key);
1592 
1593 		if (ret < 0)
1594 			low = mid + 1;
1595 		else if (ret > 0)
1596 			high = mid;
1597 		else {
1598 			*slot = mid;
1599 			return 0;
1600 		}
1601 	}
1602 	*slot = low;
1603 	return 1;
1604 }
1605 
1606 /*
1607  * simple bin_search frontend that does the right thing for
1608  * leaves vs nodes
1609  */
1610 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1611 		      int level, int *slot)
1612 {
1613 	if (level == 0)
1614 		return generic_bin_search(eb,
1615 					  offsetof(struct btrfs_leaf, items),
1616 					  sizeof(struct btrfs_item),
1617 					  key, btrfs_header_nritems(eb),
1618 					  slot);
1619 	else
1620 		return generic_bin_search(eb,
1621 					  offsetof(struct btrfs_node, ptrs),
1622 					  sizeof(struct btrfs_key_ptr),
1623 					  key, btrfs_header_nritems(eb),
1624 					  slot);
1625 }
1626 
1627 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1628 		     int level, int *slot)
1629 {
1630 	return bin_search(eb, key, level, slot);
1631 }
1632 
1633 static void root_add_used(struct btrfs_root *root, u32 size)
1634 {
1635 	spin_lock(&root->accounting_lock);
1636 	btrfs_set_root_used(&root->root_item,
1637 			    btrfs_root_used(&root->root_item) + size);
1638 	spin_unlock(&root->accounting_lock);
1639 }
1640 
1641 static void root_sub_used(struct btrfs_root *root, u32 size)
1642 {
1643 	spin_lock(&root->accounting_lock);
1644 	btrfs_set_root_used(&root->root_item,
1645 			    btrfs_root_used(&root->root_item) - size);
1646 	spin_unlock(&root->accounting_lock);
1647 }
1648 
1649 /* given a node and slot number, this reads the blocks it points to.  The
1650  * extent buffer is returned with a reference taken (but unlocked).
1651  * NULL is returned on error.
1652  */
1653 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1654 				   struct extent_buffer *parent, int slot)
1655 {
1656 	int level = btrfs_header_level(parent);
1657 	if (slot < 0)
1658 		return NULL;
1659 	if (slot >= btrfs_header_nritems(parent))
1660 		return NULL;
1661 
1662 	BUG_ON(level == 0);
1663 
1664 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1665 		       btrfs_level_size(root, level - 1),
1666 		       btrfs_node_ptr_generation(parent, slot));
1667 }
1668 
1669 /*
1670  * node level balancing, used to make sure nodes are in proper order for
1671  * item deletion.  We balance from the top down, so we have to make sure
1672  * that a deletion won't leave an node completely empty later on.
1673  */
1674 static noinline int balance_level(struct btrfs_trans_handle *trans,
1675 			 struct btrfs_root *root,
1676 			 struct btrfs_path *path, int level)
1677 {
1678 	struct extent_buffer *right = NULL;
1679 	struct extent_buffer *mid;
1680 	struct extent_buffer *left = NULL;
1681 	struct extent_buffer *parent = NULL;
1682 	int ret = 0;
1683 	int wret;
1684 	int pslot;
1685 	int orig_slot = path->slots[level];
1686 	u64 orig_ptr;
1687 
1688 	if (level == 0)
1689 		return 0;
1690 
1691 	mid = path->nodes[level];
1692 
1693 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1694 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1695 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1696 
1697 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1698 
1699 	if (level < BTRFS_MAX_LEVEL - 1) {
1700 		parent = path->nodes[level + 1];
1701 		pslot = path->slots[level + 1];
1702 	}
1703 
1704 	/*
1705 	 * deal with the case where there is only one pointer in the root
1706 	 * by promoting the node below to a root
1707 	 */
1708 	if (!parent) {
1709 		struct extent_buffer *child;
1710 
1711 		if (btrfs_header_nritems(mid) != 1)
1712 			return 0;
1713 
1714 		/* promote the child to a root */
1715 		child = read_node_slot(root, mid, 0);
1716 		if (!child) {
1717 			ret = -EROFS;
1718 			btrfs_std_error(root->fs_info, ret);
1719 			goto enospc;
1720 		}
1721 
1722 		btrfs_tree_lock(child);
1723 		btrfs_set_lock_blocking(child);
1724 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1725 		if (ret) {
1726 			btrfs_tree_unlock(child);
1727 			free_extent_buffer(child);
1728 			goto enospc;
1729 		}
1730 
1731 		tree_mod_log_set_root_pointer(root, child);
1732 		rcu_assign_pointer(root->node, child);
1733 
1734 		add_root_to_dirty_list(root);
1735 		btrfs_tree_unlock(child);
1736 
1737 		path->locks[level] = 0;
1738 		path->nodes[level] = NULL;
1739 		clean_tree_block(trans, root, mid);
1740 		btrfs_tree_unlock(mid);
1741 		/* once for the path */
1742 		free_extent_buffer(mid);
1743 
1744 		root_sub_used(root, mid->len);
1745 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1746 		/* once for the root ptr */
1747 		free_extent_buffer_stale(mid);
1748 		return 0;
1749 	}
1750 	if (btrfs_header_nritems(mid) >
1751 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1752 		return 0;
1753 
1754 	left = read_node_slot(root, parent, pslot - 1);
1755 	if (left) {
1756 		btrfs_tree_lock(left);
1757 		btrfs_set_lock_blocking(left);
1758 		wret = btrfs_cow_block(trans, root, left,
1759 				       parent, pslot - 1, &left);
1760 		if (wret) {
1761 			ret = wret;
1762 			goto enospc;
1763 		}
1764 	}
1765 	right = read_node_slot(root, parent, pslot + 1);
1766 	if (right) {
1767 		btrfs_tree_lock(right);
1768 		btrfs_set_lock_blocking(right);
1769 		wret = btrfs_cow_block(trans, root, right,
1770 				       parent, pslot + 1, &right);
1771 		if (wret) {
1772 			ret = wret;
1773 			goto enospc;
1774 		}
1775 	}
1776 
1777 	/* first, try to make some room in the middle buffer */
1778 	if (left) {
1779 		orig_slot += btrfs_header_nritems(left);
1780 		wret = push_node_left(trans, root, left, mid, 1);
1781 		if (wret < 0)
1782 			ret = wret;
1783 	}
1784 
1785 	/*
1786 	 * then try to empty the right most buffer into the middle
1787 	 */
1788 	if (right) {
1789 		wret = push_node_left(trans, root, mid, right, 1);
1790 		if (wret < 0 && wret != -ENOSPC)
1791 			ret = wret;
1792 		if (btrfs_header_nritems(right) == 0) {
1793 			clean_tree_block(trans, root, right);
1794 			btrfs_tree_unlock(right);
1795 			del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1796 			root_sub_used(root, right->len);
1797 			btrfs_free_tree_block(trans, root, right, 0, 1);
1798 			free_extent_buffer_stale(right);
1799 			right = NULL;
1800 		} else {
1801 			struct btrfs_disk_key right_key;
1802 			btrfs_node_key(right, &right_key, 0);
1803 			tree_mod_log_set_node_key(root->fs_info, parent,
1804 						  &right_key, pslot + 1, 0);
1805 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1806 			btrfs_mark_buffer_dirty(parent);
1807 		}
1808 	}
1809 	if (btrfs_header_nritems(mid) == 1) {
1810 		/*
1811 		 * we're not allowed to leave a node with one item in the
1812 		 * tree during a delete.  A deletion from lower in the tree
1813 		 * could try to delete the only pointer in this node.
1814 		 * So, pull some keys from the left.
1815 		 * There has to be a left pointer at this point because
1816 		 * otherwise we would have pulled some pointers from the
1817 		 * right
1818 		 */
1819 		if (!left) {
1820 			ret = -EROFS;
1821 			btrfs_std_error(root->fs_info, ret);
1822 			goto enospc;
1823 		}
1824 		wret = balance_node_right(trans, root, mid, left);
1825 		if (wret < 0) {
1826 			ret = wret;
1827 			goto enospc;
1828 		}
1829 		if (wret == 1) {
1830 			wret = push_node_left(trans, root, left, mid, 1);
1831 			if (wret < 0)
1832 				ret = wret;
1833 		}
1834 		BUG_ON(wret == 1);
1835 	}
1836 	if (btrfs_header_nritems(mid) == 0) {
1837 		clean_tree_block(trans, root, mid);
1838 		btrfs_tree_unlock(mid);
1839 		del_ptr(trans, root, path, level + 1, pslot, 1);
1840 		root_sub_used(root, mid->len);
1841 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1842 		free_extent_buffer_stale(mid);
1843 		mid = NULL;
1844 	} else {
1845 		/* update the parent key to reflect our changes */
1846 		struct btrfs_disk_key mid_key;
1847 		btrfs_node_key(mid, &mid_key, 0);
1848 		tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1849 					  pslot, 0);
1850 		btrfs_set_node_key(parent, &mid_key, pslot);
1851 		btrfs_mark_buffer_dirty(parent);
1852 	}
1853 
1854 	/* update the path */
1855 	if (left) {
1856 		if (btrfs_header_nritems(left) > orig_slot) {
1857 			extent_buffer_get(left);
1858 			/* left was locked after cow */
1859 			path->nodes[level] = left;
1860 			path->slots[level + 1] -= 1;
1861 			path->slots[level] = orig_slot;
1862 			if (mid) {
1863 				btrfs_tree_unlock(mid);
1864 				free_extent_buffer(mid);
1865 			}
1866 		} else {
1867 			orig_slot -= btrfs_header_nritems(left);
1868 			path->slots[level] = orig_slot;
1869 		}
1870 	}
1871 	/* double check we haven't messed things up */
1872 	if (orig_ptr !=
1873 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1874 		BUG();
1875 enospc:
1876 	if (right) {
1877 		btrfs_tree_unlock(right);
1878 		free_extent_buffer(right);
1879 	}
1880 	if (left) {
1881 		if (path->nodes[level] != left)
1882 			btrfs_tree_unlock(left);
1883 		free_extent_buffer(left);
1884 	}
1885 	return ret;
1886 }
1887 
1888 /* Node balancing for insertion.  Here we only split or push nodes around
1889  * when they are completely full.  This is also done top down, so we
1890  * have to be pessimistic.
1891  */
1892 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1893 					  struct btrfs_root *root,
1894 					  struct btrfs_path *path, int level)
1895 {
1896 	struct extent_buffer *right = NULL;
1897 	struct extent_buffer *mid;
1898 	struct extent_buffer *left = NULL;
1899 	struct extent_buffer *parent = NULL;
1900 	int ret = 0;
1901 	int wret;
1902 	int pslot;
1903 	int orig_slot = path->slots[level];
1904 
1905 	if (level == 0)
1906 		return 1;
1907 
1908 	mid = path->nodes[level];
1909 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1910 
1911 	if (level < BTRFS_MAX_LEVEL - 1) {
1912 		parent = path->nodes[level + 1];
1913 		pslot = path->slots[level + 1];
1914 	}
1915 
1916 	if (!parent)
1917 		return 1;
1918 
1919 	left = read_node_slot(root, parent, pslot - 1);
1920 
1921 	/* first, try to make some room in the middle buffer */
1922 	if (left) {
1923 		u32 left_nr;
1924 
1925 		btrfs_tree_lock(left);
1926 		btrfs_set_lock_blocking(left);
1927 
1928 		left_nr = btrfs_header_nritems(left);
1929 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1930 			wret = 1;
1931 		} else {
1932 			ret = btrfs_cow_block(trans, root, left, parent,
1933 					      pslot - 1, &left);
1934 			if (ret)
1935 				wret = 1;
1936 			else {
1937 				wret = push_node_left(trans, root,
1938 						      left, mid, 0);
1939 			}
1940 		}
1941 		if (wret < 0)
1942 			ret = wret;
1943 		if (wret == 0) {
1944 			struct btrfs_disk_key disk_key;
1945 			orig_slot += left_nr;
1946 			btrfs_node_key(mid, &disk_key, 0);
1947 			tree_mod_log_set_node_key(root->fs_info, parent,
1948 						  &disk_key, pslot, 0);
1949 			btrfs_set_node_key(parent, &disk_key, pslot);
1950 			btrfs_mark_buffer_dirty(parent);
1951 			if (btrfs_header_nritems(left) > orig_slot) {
1952 				path->nodes[level] = left;
1953 				path->slots[level + 1] -= 1;
1954 				path->slots[level] = orig_slot;
1955 				btrfs_tree_unlock(mid);
1956 				free_extent_buffer(mid);
1957 			} else {
1958 				orig_slot -=
1959 					btrfs_header_nritems(left);
1960 				path->slots[level] = orig_slot;
1961 				btrfs_tree_unlock(left);
1962 				free_extent_buffer(left);
1963 			}
1964 			return 0;
1965 		}
1966 		btrfs_tree_unlock(left);
1967 		free_extent_buffer(left);
1968 	}
1969 	right = read_node_slot(root, parent, pslot + 1);
1970 
1971 	/*
1972 	 * then try to empty the right most buffer into the middle
1973 	 */
1974 	if (right) {
1975 		u32 right_nr;
1976 
1977 		btrfs_tree_lock(right);
1978 		btrfs_set_lock_blocking(right);
1979 
1980 		right_nr = btrfs_header_nritems(right);
1981 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1982 			wret = 1;
1983 		} else {
1984 			ret = btrfs_cow_block(trans, root, right,
1985 					      parent, pslot + 1,
1986 					      &right);
1987 			if (ret)
1988 				wret = 1;
1989 			else {
1990 				wret = balance_node_right(trans, root,
1991 							  right, mid);
1992 			}
1993 		}
1994 		if (wret < 0)
1995 			ret = wret;
1996 		if (wret == 0) {
1997 			struct btrfs_disk_key disk_key;
1998 
1999 			btrfs_node_key(right, &disk_key, 0);
2000 			tree_mod_log_set_node_key(root->fs_info, parent,
2001 						  &disk_key, pslot + 1, 0);
2002 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2003 			btrfs_mark_buffer_dirty(parent);
2004 
2005 			if (btrfs_header_nritems(mid) <= orig_slot) {
2006 				path->nodes[level] = right;
2007 				path->slots[level + 1] += 1;
2008 				path->slots[level] = orig_slot -
2009 					btrfs_header_nritems(mid);
2010 				btrfs_tree_unlock(mid);
2011 				free_extent_buffer(mid);
2012 			} else {
2013 				btrfs_tree_unlock(right);
2014 				free_extent_buffer(right);
2015 			}
2016 			return 0;
2017 		}
2018 		btrfs_tree_unlock(right);
2019 		free_extent_buffer(right);
2020 	}
2021 	return 1;
2022 }
2023 
2024 /*
2025  * readahead one full node of leaves, finding things that are close
2026  * to the block in 'slot', and triggering ra on them.
2027  */
2028 static void reada_for_search(struct btrfs_root *root,
2029 			     struct btrfs_path *path,
2030 			     int level, int slot, u64 objectid)
2031 {
2032 	struct extent_buffer *node;
2033 	struct btrfs_disk_key disk_key;
2034 	u32 nritems;
2035 	u64 search;
2036 	u64 target;
2037 	u64 nread = 0;
2038 	u64 gen;
2039 	int direction = path->reada;
2040 	struct extent_buffer *eb;
2041 	u32 nr;
2042 	u32 blocksize;
2043 	u32 nscan = 0;
2044 
2045 	if (level != 1)
2046 		return;
2047 
2048 	if (!path->nodes[level])
2049 		return;
2050 
2051 	node = path->nodes[level];
2052 
2053 	search = btrfs_node_blockptr(node, slot);
2054 	blocksize = btrfs_level_size(root, level - 1);
2055 	eb = btrfs_find_tree_block(root, search, blocksize);
2056 	if (eb) {
2057 		free_extent_buffer(eb);
2058 		return;
2059 	}
2060 
2061 	target = search;
2062 
2063 	nritems = btrfs_header_nritems(node);
2064 	nr = slot;
2065 
2066 	while (1) {
2067 		if (direction < 0) {
2068 			if (nr == 0)
2069 				break;
2070 			nr--;
2071 		} else if (direction > 0) {
2072 			nr++;
2073 			if (nr >= nritems)
2074 				break;
2075 		}
2076 		if (path->reada < 0 && objectid) {
2077 			btrfs_node_key(node, &disk_key, nr);
2078 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2079 				break;
2080 		}
2081 		search = btrfs_node_blockptr(node, nr);
2082 		if ((search <= target && target - search <= 65536) ||
2083 		    (search > target && search - target <= 65536)) {
2084 			gen = btrfs_node_ptr_generation(node, nr);
2085 			readahead_tree_block(root, search, blocksize, gen);
2086 			nread += blocksize;
2087 		}
2088 		nscan++;
2089 		if ((nread > 65536 || nscan > 32))
2090 			break;
2091 	}
2092 }
2093 
2094 /*
2095  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2096  * cache
2097  */
2098 static noinline int reada_for_balance(struct btrfs_root *root,
2099 				      struct btrfs_path *path, int level)
2100 {
2101 	int slot;
2102 	int nritems;
2103 	struct extent_buffer *parent;
2104 	struct extent_buffer *eb;
2105 	u64 gen;
2106 	u64 block1 = 0;
2107 	u64 block2 = 0;
2108 	int ret = 0;
2109 	int blocksize;
2110 
2111 	parent = path->nodes[level + 1];
2112 	if (!parent)
2113 		return 0;
2114 
2115 	nritems = btrfs_header_nritems(parent);
2116 	slot = path->slots[level + 1];
2117 	blocksize = btrfs_level_size(root, level);
2118 
2119 	if (slot > 0) {
2120 		block1 = btrfs_node_blockptr(parent, slot - 1);
2121 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2122 		eb = btrfs_find_tree_block(root, block1, blocksize);
2123 		/*
2124 		 * if we get -eagain from btrfs_buffer_uptodate, we
2125 		 * don't want to return eagain here.  That will loop
2126 		 * forever
2127 		 */
2128 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2129 			block1 = 0;
2130 		free_extent_buffer(eb);
2131 	}
2132 	if (slot + 1 < nritems) {
2133 		block2 = btrfs_node_blockptr(parent, slot + 1);
2134 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2135 		eb = btrfs_find_tree_block(root, block2, blocksize);
2136 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2137 			block2 = 0;
2138 		free_extent_buffer(eb);
2139 	}
2140 	if (block1 || block2) {
2141 		ret = -EAGAIN;
2142 
2143 		/* release the whole path */
2144 		btrfs_release_path(path);
2145 
2146 		/* read the blocks */
2147 		if (block1)
2148 			readahead_tree_block(root, block1, blocksize, 0);
2149 		if (block2)
2150 			readahead_tree_block(root, block2, blocksize, 0);
2151 
2152 		if (block1) {
2153 			eb = read_tree_block(root, block1, blocksize, 0);
2154 			free_extent_buffer(eb);
2155 		}
2156 		if (block2) {
2157 			eb = read_tree_block(root, block2, blocksize, 0);
2158 			free_extent_buffer(eb);
2159 		}
2160 	}
2161 	return ret;
2162 }
2163 
2164 
2165 /*
2166  * when we walk down the tree, it is usually safe to unlock the higher layers
2167  * in the tree.  The exceptions are when our path goes through slot 0, because
2168  * operations on the tree might require changing key pointers higher up in the
2169  * tree.
2170  *
2171  * callers might also have set path->keep_locks, which tells this code to keep
2172  * the lock if the path points to the last slot in the block.  This is part of
2173  * walking through the tree, and selecting the next slot in the higher block.
2174  *
2175  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2176  * if lowest_unlock is 1, level 0 won't be unlocked
2177  */
2178 static noinline void unlock_up(struct btrfs_path *path, int level,
2179 			       int lowest_unlock, int min_write_lock_level,
2180 			       int *write_lock_level)
2181 {
2182 	int i;
2183 	int skip_level = level;
2184 	int no_skips = 0;
2185 	struct extent_buffer *t;
2186 
2187 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2188 		if (!path->nodes[i])
2189 			break;
2190 		if (!path->locks[i])
2191 			break;
2192 		if (!no_skips && path->slots[i] == 0) {
2193 			skip_level = i + 1;
2194 			continue;
2195 		}
2196 		if (!no_skips && path->keep_locks) {
2197 			u32 nritems;
2198 			t = path->nodes[i];
2199 			nritems = btrfs_header_nritems(t);
2200 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2201 				skip_level = i + 1;
2202 				continue;
2203 			}
2204 		}
2205 		if (skip_level < i && i >= lowest_unlock)
2206 			no_skips = 1;
2207 
2208 		t = path->nodes[i];
2209 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2210 			btrfs_tree_unlock_rw(t, path->locks[i]);
2211 			path->locks[i] = 0;
2212 			if (write_lock_level &&
2213 			    i > min_write_lock_level &&
2214 			    i <= *write_lock_level) {
2215 				*write_lock_level = i - 1;
2216 			}
2217 		}
2218 	}
2219 }
2220 
2221 /*
2222  * This releases any locks held in the path starting at level and
2223  * going all the way up to the root.
2224  *
2225  * btrfs_search_slot will keep the lock held on higher nodes in a few
2226  * corner cases, such as COW of the block at slot zero in the node.  This
2227  * ignores those rules, and it should only be called when there are no
2228  * more updates to be done higher up in the tree.
2229  */
2230 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2231 {
2232 	int i;
2233 
2234 	if (path->keep_locks)
2235 		return;
2236 
2237 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2238 		if (!path->nodes[i])
2239 			continue;
2240 		if (!path->locks[i])
2241 			continue;
2242 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2243 		path->locks[i] = 0;
2244 	}
2245 }
2246 
2247 /*
2248  * helper function for btrfs_search_slot.  The goal is to find a block
2249  * in cache without setting the path to blocking.  If we find the block
2250  * we return zero and the path is unchanged.
2251  *
2252  * If we can't find the block, we set the path blocking and do some
2253  * reada.  -EAGAIN is returned and the search must be repeated.
2254  */
2255 static int
2256 read_block_for_search(struct btrfs_trans_handle *trans,
2257 		       struct btrfs_root *root, struct btrfs_path *p,
2258 		       struct extent_buffer **eb_ret, int level, int slot,
2259 		       struct btrfs_key *key, u64 time_seq)
2260 {
2261 	u64 blocknr;
2262 	u64 gen;
2263 	u32 blocksize;
2264 	struct extent_buffer *b = *eb_ret;
2265 	struct extent_buffer *tmp;
2266 	int ret;
2267 
2268 	blocknr = btrfs_node_blockptr(b, slot);
2269 	gen = btrfs_node_ptr_generation(b, slot);
2270 	blocksize = btrfs_level_size(root, level - 1);
2271 
2272 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2273 	if (tmp) {
2274 		/* first we do an atomic uptodate check */
2275 		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2276 			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2277 				/*
2278 				 * we found an up to date block without
2279 				 * sleeping, return
2280 				 * right away
2281 				 */
2282 				*eb_ret = tmp;
2283 				return 0;
2284 			}
2285 			/* the pages were up to date, but we failed
2286 			 * the generation number check.  Do a full
2287 			 * read for the generation number that is correct.
2288 			 * We must do this without dropping locks so
2289 			 * we can trust our generation number
2290 			 */
2291 			free_extent_buffer(tmp);
2292 			btrfs_set_path_blocking(p);
2293 
2294 			/* now we're allowed to do a blocking uptodate check */
2295 			tmp = read_tree_block(root, blocknr, blocksize, gen);
2296 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2297 				*eb_ret = tmp;
2298 				return 0;
2299 			}
2300 			free_extent_buffer(tmp);
2301 			btrfs_release_path(p);
2302 			return -EIO;
2303 		}
2304 	}
2305 
2306 	/*
2307 	 * reduce lock contention at high levels
2308 	 * of the btree by dropping locks before
2309 	 * we read.  Don't release the lock on the current
2310 	 * level because we need to walk this node to figure
2311 	 * out which blocks to read.
2312 	 */
2313 	btrfs_unlock_up_safe(p, level + 1);
2314 	btrfs_set_path_blocking(p);
2315 
2316 	free_extent_buffer(tmp);
2317 	if (p->reada)
2318 		reada_for_search(root, p, level, slot, key->objectid);
2319 
2320 	btrfs_release_path(p);
2321 
2322 	ret = -EAGAIN;
2323 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2324 	if (tmp) {
2325 		/*
2326 		 * If the read above didn't mark this buffer up to date,
2327 		 * it will never end up being up to date.  Set ret to EIO now
2328 		 * and give up so that our caller doesn't loop forever
2329 		 * on our EAGAINs.
2330 		 */
2331 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2332 			ret = -EIO;
2333 		free_extent_buffer(tmp);
2334 	}
2335 	return ret;
2336 }
2337 
2338 /*
2339  * helper function for btrfs_search_slot.  This does all of the checks
2340  * for node-level blocks and does any balancing required based on
2341  * the ins_len.
2342  *
2343  * If no extra work was required, zero is returned.  If we had to
2344  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2345  * start over
2346  */
2347 static int
2348 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2349 		       struct btrfs_root *root, struct btrfs_path *p,
2350 		       struct extent_buffer *b, int level, int ins_len,
2351 		       int *write_lock_level)
2352 {
2353 	int ret;
2354 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2355 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2356 		int sret;
2357 
2358 		if (*write_lock_level < level + 1) {
2359 			*write_lock_level = level + 1;
2360 			btrfs_release_path(p);
2361 			goto again;
2362 		}
2363 
2364 		sret = reada_for_balance(root, p, level);
2365 		if (sret)
2366 			goto again;
2367 
2368 		btrfs_set_path_blocking(p);
2369 		sret = split_node(trans, root, p, level);
2370 		btrfs_clear_path_blocking(p, NULL, 0);
2371 
2372 		BUG_ON(sret > 0);
2373 		if (sret) {
2374 			ret = sret;
2375 			goto done;
2376 		}
2377 		b = p->nodes[level];
2378 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2379 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2380 		int sret;
2381 
2382 		if (*write_lock_level < level + 1) {
2383 			*write_lock_level = level + 1;
2384 			btrfs_release_path(p);
2385 			goto again;
2386 		}
2387 
2388 		sret = reada_for_balance(root, p, level);
2389 		if (sret)
2390 			goto again;
2391 
2392 		btrfs_set_path_blocking(p);
2393 		sret = balance_level(trans, root, p, level);
2394 		btrfs_clear_path_blocking(p, NULL, 0);
2395 
2396 		if (sret) {
2397 			ret = sret;
2398 			goto done;
2399 		}
2400 		b = p->nodes[level];
2401 		if (!b) {
2402 			btrfs_release_path(p);
2403 			goto again;
2404 		}
2405 		BUG_ON(btrfs_header_nritems(b) == 1);
2406 	}
2407 	return 0;
2408 
2409 again:
2410 	ret = -EAGAIN;
2411 done:
2412 	return ret;
2413 }
2414 
2415 /*
2416  * look for key in the tree.  path is filled in with nodes along the way
2417  * if key is found, we return zero and you can find the item in the leaf
2418  * level of the path (level 0)
2419  *
2420  * If the key isn't found, the path points to the slot where it should
2421  * be inserted, and 1 is returned.  If there are other errors during the
2422  * search a negative error number is returned.
2423  *
2424  * if ins_len > 0, nodes and leaves will be split as we walk down the
2425  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2426  * possible)
2427  */
2428 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2429 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2430 		      ins_len, int cow)
2431 {
2432 	struct extent_buffer *b;
2433 	int slot;
2434 	int ret;
2435 	int err;
2436 	int level;
2437 	int lowest_unlock = 1;
2438 	int root_lock;
2439 	/* everything at write_lock_level or lower must be write locked */
2440 	int write_lock_level = 0;
2441 	u8 lowest_level = 0;
2442 	int min_write_lock_level;
2443 
2444 	lowest_level = p->lowest_level;
2445 	WARN_ON(lowest_level && ins_len > 0);
2446 	WARN_ON(p->nodes[0] != NULL);
2447 
2448 	if (ins_len < 0) {
2449 		lowest_unlock = 2;
2450 
2451 		/* when we are removing items, we might have to go up to level
2452 		 * two as we update tree pointers  Make sure we keep write
2453 		 * for those levels as well
2454 		 */
2455 		write_lock_level = 2;
2456 	} else if (ins_len > 0) {
2457 		/*
2458 		 * for inserting items, make sure we have a write lock on
2459 		 * level 1 so we can update keys
2460 		 */
2461 		write_lock_level = 1;
2462 	}
2463 
2464 	if (!cow)
2465 		write_lock_level = -1;
2466 
2467 	if (cow && (p->keep_locks || p->lowest_level))
2468 		write_lock_level = BTRFS_MAX_LEVEL;
2469 
2470 	min_write_lock_level = write_lock_level;
2471 
2472 again:
2473 	/*
2474 	 * we try very hard to do read locks on the root
2475 	 */
2476 	root_lock = BTRFS_READ_LOCK;
2477 	level = 0;
2478 	if (p->search_commit_root) {
2479 		/*
2480 		 * the commit roots are read only
2481 		 * so we always do read locks
2482 		 */
2483 		b = root->commit_root;
2484 		extent_buffer_get(b);
2485 		level = btrfs_header_level(b);
2486 		if (!p->skip_locking)
2487 			btrfs_tree_read_lock(b);
2488 	} else {
2489 		if (p->skip_locking) {
2490 			b = btrfs_root_node(root);
2491 			level = btrfs_header_level(b);
2492 		} else {
2493 			/* we don't know the level of the root node
2494 			 * until we actually have it read locked
2495 			 */
2496 			b = btrfs_read_lock_root_node(root);
2497 			level = btrfs_header_level(b);
2498 			if (level <= write_lock_level) {
2499 				/* whoops, must trade for write lock */
2500 				btrfs_tree_read_unlock(b);
2501 				free_extent_buffer(b);
2502 				b = btrfs_lock_root_node(root);
2503 				root_lock = BTRFS_WRITE_LOCK;
2504 
2505 				/* the level might have changed, check again */
2506 				level = btrfs_header_level(b);
2507 			}
2508 		}
2509 	}
2510 	p->nodes[level] = b;
2511 	if (!p->skip_locking)
2512 		p->locks[level] = root_lock;
2513 
2514 	while (b) {
2515 		level = btrfs_header_level(b);
2516 
2517 		/*
2518 		 * setup the path here so we can release it under lock
2519 		 * contention with the cow code
2520 		 */
2521 		if (cow) {
2522 			/*
2523 			 * if we don't really need to cow this block
2524 			 * then we don't want to set the path blocking,
2525 			 * so we test it here
2526 			 */
2527 			if (!should_cow_block(trans, root, b))
2528 				goto cow_done;
2529 
2530 			btrfs_set_path_blocking(p);
2531 
2532 			/*
2533 			 * must have write locks on this node and the
2534 			 * parent
2535 			 */
2536 			if (level + 1 > write_lock_level) {
2537 				write_lock_level = level + 1;
2538 				btrfs_release_path(p);
2539 				goto again;
2540 			}
2541 
2542 			err = btrfs_cow_block(trans, root, b,
2543 					      p->nodes[level + 1],
2544 					      p->slots[level + 1], &b);
2545 			if (err) {
2546 				ret = err;
2547 				goto done;
2548 			}
2549 		}
2550 cow_done:
2551 		BUG_ON(!cow && ins_len);
2552 
2553 		p->nodes[level] = b;
2554 		btrfs_clear_path_blocking(p, NULL, 0);
2555 
2556 		/*
2557 		 * we have a lock on b and as long as we aren't changing
2558 		 * the tree, there is no way to for the items in b to change.
2559 		 * It is safe to drop the lock on our parent before we
2560 		 * go through the expensive btree search on b.
2561 		 *
2562 		 * If cow is true, then we might be changing slot zero,
2563 		 * which may require changing the parent.  So, we can't
2564 		 * drop the lock until after we know which slot we're
2565 		 * operating on.
2566 		 */
2567 		if (!cow)
2568 			btrfs_unlock_up_safe(p, level + 1);
2569 
2570 		ret = bin_search(b, key, level, &slot);
2571 
2572 		if (level != 0) {
2573 			int dec = 0;
2574 			if (ret && slot > 0) {
2575 				dec = 1;
2576 				slot -= 1;
2577 			}
2578 			p->slots[level] = slot;
2579 			err = setup_nodes_for_search(trans, root, p, b, level,
2580 					     ins_len, &write_lock_level);
2581 			if (err == -EAGAIN)
2582 				goto again;
2583 			if (err) {
2584 				ret = err;
2585 				goto done;
2586 			}
2587 			b = p->nodes[level];
2588 			slot = p->slots[level];
2589 
2590 			/*
2591 			 * slot 0 is special, if we change the key
2592 			 * we have to update the parent pointer
2593 			 * which means we must have a write lock
2594 			 * on the parent
2595 			 */
2596 			if (slot == 0 && cow &&
2597 			    write_lock_level < level + 1) {
2598 				write_lock_level = level + 1;
2599 				btrfs_release_path(p);
2600 				goto again;
2601 			}
2602 
2603 			unlock_up(p, level, lowest_unlock,
2604 				  min_write_lock_level, &write_lock_level);
2605 
2606 			if (level == lowest_level) {
2607 				if (dec)
2608 					p->slots[level]++;
2609 				goto done;
2610 			}
2611 
2612 			err = read_block_for_search(trans, root, p,
2613 						    &b, level, slot, key, 0);
2614 			if (err == -EAGAIN)
2615 				goto again;
2616 			if (err) {
2617 				ret = err;
2618 				goto done;
2619 			}
2620 
2621 			if (!p->skip_locking) {
2622 				level = btrfs_header_level(b);
2623 				if (level <= write_lock_level) {
2624 					err = btrfs_try_tree_write_lock(b);
2625 					if (!err) {
2626 						btrfs_set_path_blocking(p);
2627 						btrfs_tree_lock(b);
2628 						btrfs_clear_path_blocking(p, b,
2629 								  BTRFS_WRITE_LOCK);
2630 					}
2631 					p->locks[level] = BTRFS_WRITE_LOCK;
2632 				} else {
2633 					err = btrfs_try_tree_read_lock(b);
2634 					if (!err) {
2635 						btrfs_set_path_blocking(p);
2636 						btrfs_tree_read_lock(b);
2637 						btrfs_clear_path_blocking(p, b,
2638 								  BTRFS_READ_LOCK);
2639 					}
2640 					p->locks[level] = BTRFS_READ_LOCK;
2641 				}
2642 				p->nodes[level] = b;
2643 			}
2644 		} else {
2645 			p->slots[level] = slot;
2646 			if (ins_len > 0 &&
2647 			    btrfs_leaf_free_space(root, b) < ins_len) {
2648 				if (write_lock_level < 1) {
2649 					write_lock_level = 1;
2650 					btrfs_release_path(p);
2651 					goto again;
2652 				}
2653 
2654 				btrfs_set_path_blocking(p);
2655 				err = split_leaf(trans, root, key,
2656 						 p, ins_len, ret == 0);
2657 				btrfs_clear_path_blocking(p, NULL, 0);
2658 
2659 				BUG_ON(err > 0);
2660 				if (err) {
2661 					ret = err;
2662 					goto done;
2663 				}
2664 			}
2665 			if (!p->search_for_split)
2666 				unlock_up(p, level, lowest_unlock,
2667 					  min_write_lock_level, &write_lock_level);
2668 			goto done;
2669 		}
2670 	}
2671 	ret = 1;
2672 done:
2673 	/*
2674 	 * we don't really know what they plan on doing with the path
2675 	 * from here on, so for now just mark it as blocking
2676 	 */
2677 	if (!p->leave_spinning)
2678 		btrfs_set_path_blocking(p);
2679 	if (ret < 0)
2680 		btrfs_release_path(p);
2681 	return ret;
2682 }
2683 
2684 /*
2685  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2686  * current state of the tree together with the operations recorded in the tree
2687  * modification log to search for the key in a previous version of this tree, as
2688  * denoted by the time_seq parameter.
2689  *
2690  * Naturally, there is no support for insert, delete or cow operations.
2691  *
2692  * The resulting path and return value will be set up as if we called
2693  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2694  */
2695 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2696 			  struct btrfs_path *p, u64 time_seq)
2697 {
2698 	struct extent_buffer *b;
2699 	int slot;
2700 	int ret;
2701 	int err;
2702 	int level;
2703 	int lowest_unlock = 1;
2704 	u8 lowest_level = 0;
2705 
2706 	lowest_level = p->lowest_level;
2707 	WARN_ON(p->nodes[0] != NULL);
2708 
2709 	if (p->search_commit_root) {
2710 		BUG_ON(time_seq);
2711 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2712 	}
2713 
2714 again:
2715 	b = get_old_root(root, time_seq);
2716 	level = btrfs_header_level(b);
2717 	p->locks[level] = BTRFS_READ_LOCK;
2718 
2719 	while (b) {
2720 		level = btrfs_header_level(b);
2721 		p->nodes[level] = b;
2722 		btrfs_clear_path_blocking(p, NULL, 0);
2723 
2724 		/*
2725 		 * we have a lock on b and as long as we aren't changing
2726 		 * the tree, there is no way to for the items in b to change.
2727 		 * It is safe to drop the lock on our parent before we
2728 		 * go through the expensive btree search on b.
2729 		 */
2730 		btrfs_unlock_up_safe(p, level + 1);
2731 
2732 		ret = bin_search(b, key, level, &slot);
2733 
2734 		if (level != 0) {
2735 			int dec = 0;
2736 			if (ret && slot > 0) {
2737 				dec = 1;
2738 				slot -= 1;
2739 			}
2740 			p->slots[level] = slot;
2741 			unlock_up(p, level, lowest_unlock, 0, NULL);
2742 
2743 			if (level == lowest_level) {
2744 				if (dec)
2745 					p->slots[level]++;
2746 				goto done;
2747 			}
2748 
2749 			err = read_block_for_search(NULL, root, p, &b, level,
2750 						    slot, key, time_seq);
2751 			if (err == -EAGAIN)
2752 				goto again;
2753 			if (err) {
2754 				ret = err;
2755 				goto done;
2756 			}
2757 
2758 			level = btrfs_header_level(b);
2759 			err = btrfs_try_tree_read_lock(b);
2760 			if (!err) {
2761 				btrfs_set_path_blocking(p);
2762 				btrfs_tree_read_lock(b);
2763 				btrfs_clear_path_blocking(p, b,
2764 							  BTRFS_READ_LOCK);
2765 			}
2766 			p->locks[level] = BTRFS_READ_LOCK;
2767 			p->nodes[level] = b;
2768 			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2769 			if (b != p->nodes[level]) {
2770 				btrfs_tree_unlock_rw(p->nodes[level],
2771 						     p->locks[level]);
2772 				p->locks[level] = 0;
2773 				p->nodes[level] = b;
2774 			}
2775 		} else {
2776 			p->slots[level] = slot;
2777 			unlock_up(p, level, lowest_unlock, 0, NULL);
2778 			goto done;
2779 		}
2780 	}
2781 	ret = 1;
2782 done:
2783 	if (!p->leave_spinning)
2784 		btrfs_set_path_blocking(p);
2785 	if (ret < 0)
2786 		btrfs_release_path(p);
2787 
2788 	return ret;
2789 }
2790 
2791 /*
2792  * helper to use instead of search slot if no exact match is needed but
2793  * instead the next or previous item should be returned.
2794  * When find_higher is true, the next higher item is returned, the next lower
2795  * otherwise.
2796  * When return_any and find_higher are both true, and no higher item is found,
2797  * return the next lower instead.
2798  * When return_any is true and find_higher is false, and no lower item is found,
2799  * return the next higher instead.
2800  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2801  * < 0 on error
2802  */
2803 int btrfs_search_slot_for_read(struct btrfs_root *root,
2804 			       struct btrfs_key *key, struct btrfs_path *p,
2805 			       int find_higher, int return_any)
2806 {
2807 	int ret;
2808 	struct extent_buffer *leaf;
2809 
2810 again:
2811 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2812 	if (ret <= 0)
2813 		return ret;
2814 	/*
2815 	 * a return value of 1 means the path is at the position where the
2816 	 * item should be inserted. Normally this is the next bigger item,
2817 	 * but in case the previous item is the last in a leaf, path points
2818 	 * to the first free slot in the previous leaf, i.e. at an invalid
2819 	 * item.
2820 	 */
2821 	leaf = p->nodes[0];
2822 
2823 	if (find_higher) {
2824 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2825 			ret = btrfs_next_leaf(root, p);
2826 			if (ret <= 0)
2827 				return ret;
2828 			if (!return_any)
2829 				return 1;
2830 			/*
2831 			 * no higher item found, return the next
2832 			 * lower instead
2833 			 */
2834 			return_any = 0;
2835 			find_higher = 0;
2836 			btrfs_release_path(p);
2837 			goto again;
2838 		}
2839 	} else {
2840 		if (p->slots[0] == 0) {
2841 			ret = btrfs_prev_leaf(root, p);
2842 			if (ret < 0)
2843 				return ret;
2844 			if (!ret) {
2845 				p->slots[0] = btrfs_header_nritems(leaf) - 1;
2846 				return 0;
2847 			}
2848 			if (!return_any)
2849 				return 1;
2850 			/*
2851 			 * no lower item found, return the next
2852 			 * higher instead
2853 			 */
2854 			return_any = 0;
2855 			find_higher = 1;
2856 			btrfs_release_path(p);
2857 			goto again;
2858 		} else {
2859 			--p->slots[0];
2860 		}
2861 	}
2862 	return 0;
2863 }
2864 
2865 /*
2866  * adjust the pointers going up the tree, starting at level
2867  * making sure the right key of each node is points to 'key'.
2868  * This is used after shifting pointers to the left, so it stops
2869  * fixing up pointers when a given leaf/node is not in slot 0 of the
2870  * higher levels
2871  *
2872  */
2873 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2874 			   struct btrfs_root *root, struct btrfs_path *path,
2875 			   struct btrfs_disk_key *key, int level)
2876 {
2877 	int i;
2878 	struct extent_buffer *t;
2879 
2880 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2881 		int tslot = path->slots[i];
2882 		if (!path->nodes[i])
2883 			break;
2884 		t = path->nodes[i];
2885 		tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2886 		btrfs_set_node_key(t, key, tslot);
2887 		btrfs_mark_buffer_dirty(path->nodes[i]);
2888 		if (tslot != 0)
2889 			break;
2890 	}
2891 }
2892 
2893 /*
2894  * update item key.
2895  *
2896  * This function isn't completely safe. It's the caller's responsibility
2897  * that the new key won't break the order
2898  */
2899 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2900 			     struct btrfs_root *root, struct btrfs_path *path,
2901 			     struct btrfs_key *new_key)
2902 {
2903 	struct btrfs_disk_key disk_key;
2904 	struct extent_buffer *eb;
2905 	int slot;
2906 
2907 	eb = path->nodes[0];
2908 	slot = path->slots[0];
2909 	if (slot > 0) {
2910 		btrfs_item_key(eb, &disk_key, slot - 1);
2911 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2912 	}
2913 	if (slot < btrfs_header_nritems(eb) - 1) {
2914 		btrfs_item_key(eb, &disk_key, slot + 1);
2915 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2916 	}
2917 
2918 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2919 	btrfs_set_item_key(eb, &disk_key, slot);
2920 	btrfs_mark_buffer_dirty(eb);
2921 	if (slot == 0)
2922 		fixup_low_keys(trans, root, path, &disk_key, 1);
2923 }
2924 
2925 /*
2926  * try to push data from one node into the next node left in the
2927  * tree.
2928  *
2929  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2930  * error, and > 0 if there was no room in the left hand block.
2931  */
2932 static int push_node_left(struct btrfs_trans_handle *trans,
2933 			  struct btrfs_root *root, struct extent_buffer *dst,
2934 			  struct extent_buffer *src, int empty)
2935 {
2936 	int push_items = 0;
2937 	int src_nritems;
2938 	int dst_nritems;
2939 	int ret = 0;
2940 
2941 	src_nritems = btrfs_header_nritems(src);
2942 	dst_nritems = btrfs_header_nritems(dst);
2943 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2944 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2945 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2946 
2947 	if (!empty && src_nritems <= 8)
2948 		return 1;
2949 
2950 	if (push_items <= 0)
2951 		return 1;
2952 
2953 	if (empty) {
2954 		push_items = min(src_nritems, push_items);
2955 		if (push_items < src_nritems) {
2956 			/* leave at least 8 pointers in the node if
2957 			 * we aren't going to empty it
2958 			 */
2959 			if (src_nritems - push_items < 8) {
2960 				if (push_items <= 8)
2961 					return 1;
2962 				push_items -= 8;
2963 			}
2964 		}
2965 	} else
2966 		push_items = min(src_nritems - 8, push_items);
2967 
2968 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2969 			     push_items);
2970 	copy_extent_buffer(dst, src,
2971 			   btrfs_node_key_ptr_offset(dst_nritems),
2972 			   btrfs_node_key_ptr_offset(0),
2973 			   push_items * sizeof(struct btrfs_key_ptr));
2974 
2975 	if (push_items < src_nritems) {
2976 		/*
2977 		 * don't call tree_mod_log_eb_move here, key removal was already
2978 		 * fully logged by tree_mod_log_eb_copy above.
2979 		 */
2980 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2981 				      btrfs_node_key_ptr_offset(push_items),
2982 				      (src_nritems - push_items) *
2983 				      sizeof(struct btrfs_key_ptr));
2984 	}
2985 	btrfs_set_header_nritems(src, src_nritems - push_items);
2986 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2987 	btrfs_mark_buffer_dirty(src);
2988 	btrfs_mark_buffer_dirty(dst);
2989 
2990 	return ret;
2991 }
2992 
2993 /*
2994  * try to push data from one node into the next node right in the
2995  * tree.
2996  *
2997  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2998  * error, and > 0 if there was no room in the right hand block.
2999  *
3000  * this will  only push up to 1/2 the contents of the left node over
3001  */
3002 static int balance_node_right(struct btrfs_trans_handle *trans,
3003 			      struct btrfs_root *root,
3004 			      struct extent_buffer *dst,
3005 			      struct extent_buffer *src)
3006 {
3007 	int push_items = 0;
3008 	int max_push;
3009 	int src_nritems;
3010 	int dst_nritems;
3011 	int ret = 0;
3012 
3013 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3014 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3015 
3016 	src_nritems = btrfs_header_nritems(src);
3017 	dst_nritems = btrfs_header_nritems(dst);
3018 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3019 	if (push_items <= 0)
3020 		return 1;
3021 
3022 	if (src_nritems < 4)
3023 		return 1;
3024 
3025 	max_push = src_nritems / 2 + 1;
3026 	/* don't try to empty the node */
3027 	if (max_push >= src_nritems)
3028 		return 1;
3029 
3030 	if (max_push < push_items)
3031 		push_items = max_push;
3032 
3033 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3034 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3035 				      btrfs_node_key_ptr_offset(0),
3036 				      (dst_nritems) *
3037 				      sizeof(struct btrfs_key_ptr));
3038 
3039 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3040 			     src_nritems - push_items, push_items);
3041 	copy_extent_buffer(dst, src,
3042 			   btrfs_node_key_ptr_offset(0),
3043 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3044 			   push_items * sizeof(struct btrfs_key_ptr));
3045 
3046 	btrfs_set_header_nritems(src, src_nritems - push_items);
3047 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3048 
3049 	btrfs_mark_buffer_dirty(src);
3050 	btrfs_mark_buffer_dirty(dst);
3051 
3052 	return ret;
3053 }
3054 
3055 /*
3056  * helper function to insert a new root level in the tree.
3057  * A new node is allocated, and a single item is inserted to
3058  * point to the existing root
3059  *
3060  * returns zero on success or < 0 on failure.
3061  */
3062 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3063 			   struct btrfs_root *root,
3064 			   struct btrfs_path *path, int level)
3065 {
3066 	u64 lower_gen;
3067 	struct extent_buffer *lower;
3068 	struct extent_buffer *c;
3069 	struct extent_buffer *old;
3070 	struct btrfs_disk_key lower_key;
3071 
3072 	BUG_ON(path->nodes[level]);
3073 	BUG_ON(path->nodes[level-1] != root->node);
3074 
3075 	lower = path->nodes[level-1];
3076 	if (level == 1)
3077 		btrfs_item_key(lower, &lower_key, 0);
3078 	else
3079 		btrfs_node_key(lower, &lower_key, 0);
3080 
3081 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3082 				   root->root_key.objectid, &lower_key,
3083 				   level, root->node->start, 0);
3084 	if (IS_ERR(c))
3085 		return PTR_ERR(c);
3086 
3087 	root_add_used(root, root->nodesize);
3088 
3089 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3090 	btrfs_set_header_nritems(c, 1);
3091 	btrfs_set_header_level(c, level);
3092 	btrfs_set_header_bytenr(c, c->start);
3093 	btrfs_set_header_generation(c, trans->transid);
3094 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3095 	btrfs_set_header_owner(c, root->root_key.objectid);
3096 
3097 	write_extent_buffer(c, root->fs_info->fsid,
3098 			    (unsigned long)btrfs_header_fsid(c),
3099 			    BTRFS_FSID_SIZE);
3100 
3101 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3102 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
3103 			    BTRFS_UUID_SIZE);
3104 
3105 	btrfs_set_node_key(c, &lower_key, 0);
3106 	btrfs_set_node_blockptr(c, 0, lower->start);
3107 	lower_gen = btrfs_header_generation(lower);
3108 	WARN_ON(lower_gen != trans->transid);
3109 
3110 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3111 
3112 	btrfs_mark_buffer_dirty(c);
3113 
3114 	old = root->node;
3115 	tree_mod_log_set_root_pointer(root, c);
3116 	rcu_assign_pointer(root->node, c);
3117 
3118 	/* the super has an extra ref to root->node */
3119 	free_extent_buffer(old);
3120 
3121 	add_root_to_dirty_list(root);
3122 	extent_buffer_get(c);
3123 	path->nodes[level] = c;
3124 	path->locks[level] = BTRFS_WRITE_LOCK;
3125 	path->slots[level] = 0;
3126 	return 0;
3127 }
3128 
3129 /*
3130  * worker function to insert a single pointer in a node.
3131  * the node should have enough room for the pointer already
3132  *
3133  * slot and level indicate where you want the key to go, and
3134  * blocknr is the block the key points to.
3135  */
3136 static void insert_ptr(struct btrfs_trans_handle *trans,
3137 		       struct btrfs_root *root, struct btrfs_path *path,
3138 		       struct btrfs_disk_key *key, u64 bytenr,
3139 		       int slot, int level)
3140 {
3141 	struct extent_buffer *lower;
3142 	int nritems;
3143 	int ret;
3144 
3145 	BUG_ON(!path->nodes[level]);
3146 	btrfs_assert_tree_locked(path->nodes[level]);
3147 	lower = path->nodes[level];
3148 	nritems = btrfs_header_nritems(lower);
3149 	BUG_ON(slot > nritems);
3150 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3151 	if (slot != nritems) {
3152 		if (level)
3153 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3154 					     slot, nritems - slot);
3155 		memmove_extent_buffer(lower,
3156 			      btrfs_node_key_ptr_offset(slot + 1),
3157 			      btrfs_node_key_ptr_offset(slot),
3158 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3159 	}
3160 	if (level) {
3161 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3162 					      MOD_LOG_KEY_ADD);
3163 		BUG_ON(ret < 0);
3164 	}
3165 	btrfs_set_node_key(lower, key, slot);
3166 	btrfs_set_node_blockptr(lower, slot, bytenr);
3167 	WARN_ON(trans->transid == 0);
3168 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3169 	btrfs_set_header_nritems(lower, nritems + 1);
3170 	btrfs_mark_buffer_dirty(lower);
3171 }
3172 
3173 /*
3174  * split the node at the specified level in path in two.
3175  * The path is corrected to point to the appropriate node after the split
3176  *
3177  * Before splitting this tries to make some room in the node by pushing
3178  * left and right, if either one works, it returns right away.
3179  *
3180  * returns 0 on success and < 0 on failure
3181  */
3182 static noinline int split_node(struct btrfs_trans_handle *trans,
3183 			       struct btrfs_root *root,
3184 			       struct btrfs_path *path, int level)
3185 {
3186 	struct extent_buffer *c;
3187 	struct extent_buffer *split;
3188 	struct btrfs_disk_key disk_key;
3189 	int mid;
3190 	int ret;
3191 	u32 c_nritems;
3192 
3193 	c = path->nodes[level];
3194 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3195 	if (c == root->node) {
3196 		/* trying to split the root, lets make a new one */
3197 		ret = insert_new_root(trans, root, path, level + 1);
3198 		if (ret)
3199 			return ret;
3200 	} else {
3201 		ret = push_nodes_for_insert(trans, root, path, level);
3202 		c = path->nodes[level];
3203 		if (!ret && btrfs_header_nritems(c) <
3204 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3205 			return 0;
3206 		if (ret < 0)
3207 			return ret;
3208 	}
3209 
3210 	c_nritems = btrfs_header_nritems(c);
3211 	mid = (c_nritems + 1) / 2;
3212 	btrfs_node_key(c, &disk_key, mid);
3213 
3214 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3215 					root->root_key.objectid,
3216 					&disk_key, level, c->start, 0);
3217 	if (IS_ERR(split))
3218 		return PTR_ERR(split);
3219 
3220 	root_add_used(root, root->nodesize);
3221 
3222 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3223 	btrfs_set_header_level(split, btrfs_header_level(c));
3224 	btrfs_set_header_bytenr(split, split->start);
3225 	btrfs_set_header_generation(split, trans->transid);
3226 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3227 	btrfs_set_header_owner(split, root->root_key.objectid);
3228 	write_extent_buffer(split, root->fs_info->fsid,
3229 			    (unsigned long)btrfs_header_fsid(split),
3230 			    BTRFS_FSID_SIZE);
3231 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3232 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
3233 			    BTRFS_UUID_SIZE);
3234 
3235 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3236 	copy_extent_buffer(split, c,
3237 			   btrfs_node_key_ptr_offset(0),
3238 			   btrfs_node_key_ptr_offset(mid),
3239 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3240 	btrfs_set_header_nritems(split, c_nritems - mid);
3241 	btrfs_set_header_nritems(c, mid);
3242 	ret = 0;
3243 
3244 	btrfs_mark_buffer_dirty(c);
3245 	btrfs_mark_buffer_dirty(split);
3246 
3247 	insert_ptr(trans, root, path, &disk_key, split->start,
3248 		   path->slots[level + 1] + 1, level + 1);
3249 
3250 	if (path->slots[level] >= mid) {
3251 		path->slots[level] -= mid;
3252 		btrfs_tree_unlock(c);
3253 		free_extent_buffer(c);
3254 		path->nodes[level] = split;
3255 		path->slots[level + 1] += 1;
3256 	} else {
3257 		btrfs_tree_unlock(split);
3258 		free_extent_buffer(split);
3259 	}
3260 	return ret;
3261 }
3262 
3263 /*
3264  * how many bytes are required to store the items in a leaf.  start
3265  * and nr indicate which items in the leaf to check.  This totals up the
3266  * space used both by the item structs and the item data
3267  */
3268 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3269 {
3270 	int data_len;
3271 	int nritems = btrfs_header_nritems(l);
3272 	int end = min(nritems, start + nr) - 1;
3273 
3274 	if (!nr)
3275 		return 0;
3276 	data_len = btrfs_item_end_nr(l, start);
3277 	data_len = data_len - btrfs_item_offset_nr(l, end);
3278 	data_len += sizeof(struct btrfs_item) * nr;
3279 	WARN_ON(data_len < 0);
3280 	return data_len;
3281 }
3282 
3283 /*
3284  * The space between the end of the leaf items and
3285  * the start of the leaf data.  IOW, how much room
3286  * the leaf has left for both items and data
3287  */
3288 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3289 				   struct extent_buffer *leaf)
3290 {
3291 	int nritems = btrfs_header_nritems(leaf);
3292 	int ret;
3293 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3294 	if (ret < 0) {
3295 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3296 		       "used %d nritems %d\n",
3297 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3298 		       leaf_space_used(leaf, 0, nritems), nritems);
3299 	}
3300 	return ret;
3301 }
3302 
3303 /*
3304  * min slot controls the lowest index we're willing to push to the
3305  * right.  We'll push up to and including min_slot, but no lower
3306  */
3307 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3308 				      struct btrfs_root *root,
3309 				      struct btrfs_path *path,
3310 				      int data_size, int empty,
3311 				      struct extent_buffer *right,
3312 				      int free_space, u32 left_nritems,
3313 				      u32 min_slot)
3314 {
3315 	struct extent_buffer *left = path->nodes[0];
3316 	struct extent_buffer *upper = path->nodes[1];
3317 	struct btrfs_map_token token;
3318 	struct btrfs_disk_key disk_key;
3319 	int slot;
3320 	u32 i;
3321 	int push_space = 0;
3322 	int push_items = 0;
3323 	struct btrfs_item *item;
3324 	u32 nr;
3325 	u32 right_nritems;
3326 	u32 data_end;
3327 	u32 this_item_size;
3328 
3329 	btrfs_init_map_token(&token);
3330 
3331 	if (empty)
3332 		nr = 0;
3333 	else
3334 		nr = max_t(u32, 1, min_slot);
3335 
3336 	if (path->slots[0] >= left_nritems)
3337 		push_space += data_size;
3338 
3339 	slot = path->slots[1];
3340 	i = left_nritems - 1;
3341 	while (i >= nr) {
3342 		item = btrfs_item_nr(left, i);
3343 
3344 		if (!empty && push_items > 0) {
3345 			if (path->slots[0] > i)
3346 				break;
3347 			if (path->slots[0] == i) {
3348 				int space = btrfs_leaf_free_space(root, left);
3349 				if (space + push_space * 2 > free_space)
3350 					break;
3351 			}
3352 		}
3353 
3354 		if (path->slots[0] == i)
3355 			push_space += data_size;
3356 
3357 		this_item_size = btrfs_item_size(left, item);
3358 		if (this_item_size + sizeof(*item) + push_space > free_space)
3359 			break;
3360 
3361 		push_items++;
3362 		push_space += this_item_size + sizeof(*item);
3363 		if (i == 0)
3364 			break;
3365 		i--;
3366 	}
3367 
3368 	if (push_items == 0)
3369 		goto out_unlock;
3370 
3371 	if (!empty && push_items == left_nritems)
3372 		WARN_ON(1);
3373 
3374 	/* push left to right */
3375 	right_nritems = btrfs_header_nritems(right);
3376 
3377 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3378 	push_space -= leaf_data_end(root, left);
3379 
3380 	/* make room in the right data area */
3381 	data_end = leaf_data_end(root, right);
3382 	memmove_extent_buffer(right,
3383 			      btrfs_leaf_data(right) + data_end - push_space,
3384 			      btrfs_leaf_data(right) + data_end,
3385 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3386 
3387 	/* copy from the left data area */
3388 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3389 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3390 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3391 		     push_space);
3392 
3393 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3394 			      btrfs_item_nr_offset(0),
3395 			      right_nritems * sizeof(struct btrfs_item));
3396 
3397 	/* copy the items from left to right */
3398 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3399 		   btrfs_item_nr_offset(left_nritems - push_items),
3400 		   push_items * sizeof(struct btrfs_item));
3401 
3402 	/* update the item pointers */
3403 	right_nritems += push_items;
3404 	btrfs_set_header_nritems(right, right_nritems);
3405 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3406 	for (i = 0; i < right_nritems; i++) {
3407 		item = btrfs_item_nr(right, i);
3408 		push_space -= btrfs_token_item_size(right, item, &token);
3409 		btrfs_set_token_item_offset(right, item, push_space, &token);
3410 	}
3411 
3412 	left_nritems -= push_items;
3413 	btrfs_set_header_nritems(left, left_nritems);
3414 
3415 	if (left_nritems)
3416 		btrfs_mark_buffer_dirty(left);
3417 	else
3418 		clean_tree_block(trans, root, left);
3419 
3420 	btrfs_mark_buffer_dirty(right);
3421 
3422 	btrfs_item_key(right, &disk_key, 0);
3423 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3424 	btrfs_mark_buffer_dirty(upper);
3425 
3426 	/* then fixup the leaf pointer in the path */
3427 	if (path->slots[0] >= left_nritems) {
3428 		path->slots[0] -= left_nritems;
3429 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3430 			clean_tree_block(trans, root, path->nodes[0]);
3431 		btrfs_tree_unlock(path->nodes[0]);
3432 		free_extent_buffer(path->nodes[0]);
3433 		path->nodes[0] = right;
3434 		path->slots[1] += 1;
3435 	} else {
3436 		btrfs_tree_unlock(right);
3437 		free_extent_buffer(right);
3438 	}
3439 	return 0;
3440 
3441 out_unlock:
3442 	btrfs_tree_unlock(right);
3443 	free_extent_buffer(right);
3444 	return 1;
3445 }
3446 
3447 /*
3448  * push some data in the path leaf to the right, trying to free up at
3449  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3450  *
3451  * returns 1 if the push failed because the other node didn't have enough
3452  * room, 0 if everything worked out and < 0 if there were major errors.
3453  *
3454  * this will push starting from min_slot to the end of the leaf.  It won't
3455  * push any slot lower than min_slot
3456  */
3457 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3458 			   *root, struct btrfs_path *path,
3459 			   int min_data_size, int data_size,
3460 			   int empty, u32 min_slot)
3461 {
3462 	struct extent_buffer *left = path->nodes[0];
3463 	struct extent_buffer *right;
3464 	struct extent_buffer *upper;
3465 	int slot;
3466 	int free_space;
3467 	u32 left_nritems;
3468 	int ret;
3469 
3470 	if (!path->nodes[1])
3471 		return 1;
3472 
3473 	slot = path->slots[1];
3474 	upper = path->nodes[1];
3475 	if (slot >= btrfs_header_nritems(upper) - 1)
3476 		return 1;
3477 
3478 	btrfs_assert_tree_locked(path->nodes[1]);
3479 
3480 	right = read_node_slot(root, upper, slot + 1);
3481 	if (right == NULL)
3482 		return 1;
3483 
3484 	btrfs_tree_lock(right);
3485 	btrfs_set_lock_blocking(right);
3486 
3487 	free_space = btrfs_leaf_free_space(root, right);
3488 	if (free_space < data_size)
3489 		goto out_unlock;
3490 
3491 	/* cow and double check */
3492 	ret = btrfs_cow_block(trans, root, right, upper,
3493 			      slot + 1, &right);
3494 	if (ret)
3495 		goto out_unlock;
3496 
3497 	free_space = btrfs_leaf_free_space(root, right);
3498 	if (free_space < data_size)
3499 		goto out_unlock;
3500 
3501 	left_nritems = btrfs_header_nritems(left);
3502 	if (left_nritems == 0)
3503 		goto out_unlock;
3504 
3505 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3506 				right, free_space, left_nritems, min_slot);
3507 out_unlock:
3508 	btrfs_tree_unlock(right);
3509 	free_extent_buffer(right);
3510 	return 1;
3511 }
3512 
3513 /*
3514  * push some data in the path leaf to the left, trying to free up at
3515  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3516  *
3517  * max_slot can put a limit on how far into the leaf we'll push items.  The
3518  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3519  * items
3520  */
3521 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3522 				     struct btrfs_root *root,
3523 				     struct btrfs_path *path, int data_size,
3524 				     int empty, struct extent_buffer *left,
3525 				     int free_space, u32 right_nritems,
3526 				     u32 max_slot)
3527 {
3528 	struct btrfs_disk_key disk_key;
3529 	struct extent_buffer *right = path->nodes[0];
3530 	int i;
3531 	int push_space = 0;
3532 	int push_items = 0;
3533 	struct btrfs_item *item;
3534 	u32 old_left_nritems;
3535 	u32 nr;
3536 	int ret = 0;
3537 	u32 this_item_size;
3538 	u32 old_left_item_size;
3539 	struct btrfs_map_token token;
3540 
3541 	btrfs_init_map_token(&token);
3542 
3543 	if (empty)
3544 		nr = min(right_nritems, max_slot);
3545 	else
3546 		nr = min(right_nritems - 1, max_slot);
3547 
3548 	for (i = 0; i < nr; i++) {
3549 		item = btrfs_item_nr(right, i);
3550 
3551 		if (!empty && push_items > 0) {
3552 			if (path->slots[0] < i)
3553 				break;
3554 			if (path->slots[0] == i) {
3555 				int space = btrfs_leaf_free_space(root, right);
3556 				if (space + push_space * 2 > free_space)
3557 					break;
3558 			}
3559 		}
3560 
3561 		if (path->slots[0] == i)
3562 			push_space += data_size;
3563 
3564 		this_item_size = btrfs_item_size(right, item);
3565 		if (this_item_size + sizeof(*item) + push_space > free_space)
3566 			break;
3567 
3568 		push_items++;
3569 		push_space += this_item_size + sizeof(*item);
3570 	}
3571 
3572 	if (push_items == 0) {
3573 		ret = 1;
3574 		goto out;
3575 	}
3576 	if (!empty && push_items == btrfs_header_nritems(right))
3577 		WARN_ON(1);
3578 
3579 	/* push data from right to left */
3580 	copy_extent_buffer(left, right,
3581 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3582 			   btrfs_item_nr_offset(0),
3583 			   push_items * sizeof(struct btrfs_item));
3584 
3585 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3586 		     btrfs_item_offset_nr(right, push_items - 1);
3587 
3588 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3589 		     leaf_data_end(root, left) - push_space,
3590 		     btrfs_leaf_data(right) +
3591 		     btrfs_item_offset_nr(right, push_items - 1),
3592 		     push_space);
3593 	old_left_nritems = btrfs_header_nritems(left);
3594 	BUG_ON(old_left_nritems <= 0);
3595 
3596 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3597 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3598 		u32 ioff;
3599 
3600 		item = btrfs_item_nr(left, i);
3601 
3602 		ioff = btrfs_token_item_offset(left, item, &token);
3603 		btrfs_set_token_item_offset(left, item,
3604 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3605 		      &token);
3606 	}
3607 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3608 
3609 	/* fixup right node */
3610 	if (push_items > right_nritems) {
3611 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
3612 		       right_nritems);
3613 		WARN_ON(1);
3614 	}
3615 
3616 	if (push_items < right_nritems) {
3617 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3618 						  leaf_data_end(root, right);
3619 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3620 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3621 				      btrfs_leaf_data(right) +
3622 				      leaf_data_end(root, right), push_space);
3623 
3624 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3625 			      btrfs_item_nr_offset(push_items),
3626 			     (btrfs_header_nritems(right) - push_items) *
3627 			     sizeof(struct btrfs_item));
3628 	}
3629 	right_nritems -= push_items;
3630 	btrfs_set_header_nritems(right, right_nritems);
3631 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3632 	for (i = 0; i < right_nritems; i++) {
3633 		item = btrfs_item_nr(right, i);
3634 
3635 		push_space = push_space - btrfs_token_item_size(right,
3636 								item, &token);
3637 		btrfs_set_token_item_offset(right, item, push_space, &token);
3638 	}
3639 
3640 	btrfs_mark_buffer_dirty(left);
3641 	if (right_nritems)
3642 		btrfs_mark_buffer_dirty(right);
3643 	else
3644 		clean_tree_block(trans, root, right);
3645 
3646 	btrfs_item_key(right, &disk_key, 0);
3647 	fixup_low_keys(trans, root, path, &disk_key, 1);
3648 
3649 	/* then fixup the leaf pointer in the path */
3650 	if (path->slots[0] < push_items) {
3651 		path->slots[0] += old_left_nritems;
3652 		btrfs_tree_unlock(path->nodes[0]);
3653 		free_extent_buffer(path->nodes[0]);
3654 		path->nodes[0] = left;
3655 		path->slots[1] -= 1;
3656 	} else {
3657 		btrfs_tree_unlock(left);
3658 		free_extent_buffer(left);
3659 		path->slots[0] -= push_items;
3660 	}
3661 	BUG_ON(path->slots[0] < 0);
3662 	return ret;
3663 out:
3664 	btrfs_tree_unlock(left);
3665 	free_extent_buffer(left);
3666 	return ret;
3667 }
3668 
3669 /*
3670  * push some data in the path leaf to the left, trying to free up at
3671  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3672  *
3673  * max_slot can put a limit on how far into the leaf we'll push items.  The
3674  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3675  * items
3676  */
3677 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3678 			  *root, struct btrfs_path *path, int min_data_size,
3679 			  int data_size, int empty, u32 max_slot)
3680 {
3681 	struct extent_buffer *right = path->nodes[0];
3682 	struct extent_buffer *left;
3683 	int slot;
3684 	int free_space;
3685 	u32 right_nritems;
3686 	int ret = 0;
3687 
3688 	slot = path->slots[1];
3689 	if (slot == 0)
3690 		return 1;
3691 	if (!path->nodes[1])
3692 		return 1;
3693 
3694 	right_nritems = btrfs_header_nritems(right);
3695 	if (right_nritems == 0)
3696 		return 1;
3697 
3698 	btrfs_assert_tree_locked(path->nodes[1]);
3699 
3700 	left = read_node_slot(root, path->nodes[1], slot - 1);
3701 	if (left == NULL)
3702 		return 1;
3703 
3704 	btrfs_tree_lock(left);
3705 	btrfs_set_lock_blocking(left);
3706 
3707 	free_space = btrfs_leaf_free_space(root, left);
3708 	if (free_space < data_size) {
3709 		ret = 1;
3710 		goto out;
3711 	}
3712 
3713 	/* cow and double check */
3714 	ret = btrfs_cow_block(trans, root, left,
3715 			      path->nodes[1], slot - 1, &left);
3716 	if (ret) {
3717 		/* we hit -ENOSPC, but it isn't fatal here */
3718 		if (ret == -ENOSPC)
3719 			ret = 1;
3720 		goto out;
3721 	}
3722 
3723 	free_space = btrfs_leaf_free_space(root, left);
3724 	if (free_space < data_size) {
3725 		ret = 1;
3726 		goto out;
3727 	}
3728 
3729 	return __push_leaf_left(trans, root, path, min_data_size,
3730 			       empty, left, free_space, right_nritems,
3731 			       max_slot);
3732 out:
3733 	btrfs_tree_unlock(left);
3734 	free_extent_buffer(left);
3735 	return ret;
3736 }
3737 
3738 /*
3739  * split the path's leaf in two, making sure there is at least data_size
3740  * available for the resulting leaf level of the path.
3741  */
3742 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3743 				    struct btrfs_root *root,
3744 				    struct btrfs_path *path,
3745 				    struct extent_buffer *l,
3746 				    struct extent_buffer *right,
3747 				    int slot, int mid, int nritems)
3748 {
3749 	int data_copy_size;
3750 	int rt_data_off;
3751 	int i;
3752 	struct btrfs_disk_key disk_key;
3753 	struct btrfs_map_token token;
3754 
3755 	btrfs_init_map_token(&token);
3756 
3757 	nritems = nritems - mid;
3758 	btrfs_set_header_nritems(right, nritems);
3759 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3760 
3761 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3762 			   btrfs_item_nr_offset(mid),
3763 			   nritems * sizeof(struct btrfs_item));
3764 
3765 	copy_extent_buffer(right, l,
3766 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3767 		     data_copy_size, btrfs_leaf_data(l) +
3768 		     leaf_data_end(root, l), data_copy_size);
3769 
3770 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3771 		      btrfs_item_end_nr(l, mid);
3772 
3773 	for (i = 0; i < nritems; i++) {
3774 		struct btrfs_item *item = btrfs_item_nr(right, i);
3775 		u32 ioff;
3776 
3777 		ioff = btrfs_token_item_offset(right, item, &token);
3778 		btrfs_set_token_item_offset(right, item,
3779 					    ioff + rt_data_off, &token);
3780 	}
3781 
3782 	btrfs_set_header_nritems(l, mid);
3783 	btrfs_item_key(right, &disk_key, 0);
3784 	insert_ptr(trans, root, path, &disk_key, right->start,
3785 		   path->slots[1] + 1, 1);
3786 
3787 	btrfs_mark_buffer_dirty(right);
3788 	btrfs_mark_buffer_dirty(l);
3789 	BUG_ON(path->slots[0] != slot);
3790 
3791 	if (mid <= slot) {
3792 		btrfs_tree_unlock(path->nodes[0]);
3793 		free_extent_buffer(path->nodes[0]);
3794 		path->nodes[0] = right;
3795 		path->slots[0] -= mid;
3796 		path->slots[1] += 1;
3797 	} else {
3798 		btrfs_tree_unlock(right);
3799 		free_extent_buffer(right);
3800 	}
3801 
3802 	BUG_ON(path->slots[0] < 0);
3803 }
3804 
3805 /*
3806  * double splits happen when we need to insert a big item in the middle
3807  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3808  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3809  *          A                 B                 C
3810  *
3811  * We avoid this by trying to push the items on either side of our target
3812  * into the adjacent leaves.  If all goes well we can avoid the double split
3813  * completely.
3814  */
3815 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3816 					  struct btrfs_root *root,
3817 					  struct btrfs_path *path,
3818 					  int data_size)
3819 {
3820 	int ret;
3821 	int progress = 0;
3822 	int slot;
3823 	u32 nritems;
3824 
3825 	slot = path->slots[0];
3826 
3827 	/*
3828 	 * try to push all the items after our slot into the
3829 	 * right leaf
3830 	 */
3831 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3832 	if (ret < 0)
3833 		return ret;
3834 
3835 	if (ret == 0)
3836 		progress++;
3837 
3838 	nritems = btrfs_header_nritems(path->nodes[0]);
3839 	/*
3840 	 * our goal is to get our slot at the start or end of a leaf.  If
3841 	 * we've done so we're done
3842 	 */
3843 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3844 		return 0;
3845 
3846 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3847 		return 0;
3848 
3849 	/* try to push all the items before our slot into the next leaf */
3850 	slot = path->slots[0];
3851 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3852 	if (ret < 0)
3853 		return ret;
3854 
3855 	if (ret == 0)
3856 		progress++;
3857 
3858 	if (progress)
3859 		return 0;
3860 	return 1;
3861 }
3862 
3863 /*
3864  * split the path's leaf in two, making sure there is at least data_size
3865  * available for the resulting leaf level of the path.
3866  *
3867  * returns 0 if all went well and < 0 on failure.
3868  */
3869 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3870 			       struct btrfs_root *root,
3871 			       struct btrfs_key *ins_key,
3872 			       struct btrfs_path *path, int data_size,
3873 			       int extend)
3874 {
3875 	struct btrfs_disk_key disk_key;
3876 	struct extent_buffer *l;
3877 	u32 nritems;
3878 	int mid;
3879 	int slot;
3880 	struct extent_buffer *right;
3881 	int ret = 0;
3882 	int wret;
3883 	int split;
3884 	int num_doubles = 0;
3885 	int tried_avoid_double = 0;
3886 
3887 	l = path->nodes[0];
3888 	slot = path->slots[0];
3889 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3890 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3891 		return -EOVERFLOW;
3892 
3893 	/* first try to make some room by pushing left and right */
3894 	if (data_size) {
3895 		wret = push_leaf_right(trans, root, path, data_size,
3896 				       data_size, 0, 0);
3897 		if (wret < 0)
3898 			return wret;
3899 		if (wret) {
3900 			wret = push_leaf_left(trans, root, path, data_size,
3901 					      data_size, 0, (u32)-1);
3902 			if (wret < 0)
3903 				return wret;
3904 		}
3905 		l = path->nodes[0];
3906 
3907 		/* did the pushes work? */
3908 		if (btrfs_leaf_free_space(root, l) >= data_size)
3909 			return 0;
3910 	}
3911 
3912 	if (!path->nodes[1]) {
3913 		ret = insert_new_root(trans, root, path, 1);
3914 		if (ret)
3915 			return ret;
3916 	}
3917 again:
3918 	split = 1;
3919 	l = path->nodes[0];
3920 	slot = path->slots[0];
3921 	nritems = btrfs_header_nritems(l);
3922 	mid = (nritems + 1) / 2;
3923 
3924 	if (mid <= slot) {
3925 		if (nritems == 1 ||
3926 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3927 			BTRFS_LEAF_DATA_SIZE(root)) {
3928 			if (slot >= nritems) {
3929 				split = 0;
3930 			} else {
3931 				mid = slot;
3932 				if (mid != nritems &&
3933 				    leaf_space_used(l, mid, nritems - mid) +
3934 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3935 					if (data_size && !tried_avoid_double)
3936 						goto push_for_double;
3937 					split = 2;
3938 				}
3939 			}
3940 		}
3941 	} else {
3942 		if (leaf_space_used(l, 0, mid) + data_size >
3943 			BTRFS_LEAF_DATA_SIZE(root)) {
3944 			if (!extend && data_size && slot == 0) {
3945 				split = 0;
3946 			} else if ((extend || !data_size) && slot == 0) {
3947 				mid = 1;
3948 			} else {
3949 				mid = slot;
3950 				if (mid != nritems &&
3951 				    leaf_space_used(l, mid, nritems - mid) +
3952 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3953 					if (data_size && !tried_avoid_double)
3954 						goto push_for_double;
3955 					split = 2 ;
3956 				}
3957 			}
3958 		}
3959 	}
3960 
3961 	if (split == 0)
3962 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3963 	else
3964 		btrfs_item_key(l, &disk_key, mid);
3965 
3966 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3967 					root->root_key.objectid,
3968 					&disk_key, 0, l->start, 0);
3969 	if (IS_ERR(right))
3970 		return PTR_ERR(right);
3971 
3972 	root_add_used(root, root->leafsize);
3973 
3974 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3975 	btrfs_set_header_bytenr(right, right->start);
3976 	btrfs_set_header_generation(right, trans->transid);
3977 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3978 	btrfs_set_header_owner(right, root->root_key.objectid);
3979 	btrfs_set_header_level(right, 0);
3980 	write_extent_buffer(right, root->fs_info->fsid,
3981 			    (unsigned long)btrfs_header_fsid(right),
3982 			    BTRFS_FSID_SIZE);
3983 
3984 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3985 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
3986 			    BTRFS_UUID_SIZE);
3987 
3988 	if (split == 0) {
3989 		if (mid <= slot) {
3990 			btrfs_set_header_nritems(right, 0);
3991 			insert_ptr(trans, root, path, &disk_key, right->start,
3992 				   path->slots[1] + 1, 1);
3993 			btrfs_tree_unlock(path->nodes[0]);
3994 			free_extent_buffer(path->nodes[0]);
3995 			path->nodes[0] = right;
3996 			path->slots[0] = 0;
3997 			path->slots[1] += 1;
3998 		} else {
3999 			btrfs_set_header_nritems(right, 0);
4000 			insert_ptr(trans, root, path, &disk_key, right->start,
4001 					  path->slots[1], 1);
4002 			btrfs_tree_unlock(path->nodes[0]);
4003 			free_extent_buffer(path->nodes[0]);
4004 			path->nodes[0] = right;
4005 			path->slots[0] = 0;
4006 			if (path->slots[1] == 0)
4007 				fixup_low_keys(trans, root, path,
4008 					       &disk_key, 1);
4009 		}
4010 		btrfs_mark_buffer_dirty(right);
4011 		return ret;
4012 	}
4013 
4014 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4015 
4016 	if (split == 2) {
4017 		BUG_ON(num_doubles != 0);
4018 		num_doubles++;
4019 		goto again;
4020 	}
4021 
4022 	return 0;
4023 
4024 push_for_double:
4025 	push_for_double_split(trans, root, path, data_size);
4026 	tried_avoid_double = 1;
4027 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4028 		return 0;
4029 	goto again;
4030 }
4031 
4032 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4033 					 struct btrfs_root *root,
4034 					 struct btrfs_path *path, int ins_len)
4035 {
4036 	struct btrfs_key key;
4037 	struct extent_buffer *leaf;
4038 	struct btrfs_file_extent_item *fi;
4039 	u64 extent_len = 0;
4040 	u32 item_size;
4041 	int ret;
4042 
4043 	leaf = path->nodes[0];
4044 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4045 
4046 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4047 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4048 
4049 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4050 		return 0;
4051 
4052 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4053 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4054 		fi = btrfs_item_ptr(leaf, path->slots[0],
4055 				    struct btrfs_file_extent_item);
4056 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4057 	}
4058 	btrfs_release_path(path);
4059 
4060 	path->keep_locks = 1;
4061 	path->search_for_split = 1;
4062 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4063 	path->search_for_split = 0;
4064 	if (ret < 0)
4065 		goto err;
4066 
4067 	ret = -EAGAIN;
4068 	leaf = path->nodes[0];
4069 	/* if our item isn't there or got smaller, return now */
4070 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4071 		goto err;
4072 
4073 	/* the leaf has  changed, it now has room.  return now */
4074 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4075 		goto err;
4076 
4077 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4078 		fi = btrfs_item_ptr(leaf, path->slots[0],
4079 				    struct btrfs_file_extent_item);
4080 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4081 			goto err;
4082 	}
4083 
4084 	btrfs_set_path_blocking(path);
4085 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4086 	if (ret)
4087 		goto err;
4088 
4089 	path->keep_locks = 0;
4090 	btrfs_unlock_up_safe(path, 1);
4091 	return 0;
4092 err:
4093 	path->keep_locks = 0;
4094 	return ret;
4095 }
4096 
4097 static noinline int split_item(struct btrfs_trans_handle *trans,
4098 			       struct btrfs_root *root,
4099 			       struct btrfs_path *path,
4100 			       struct btrfs_key *new_key,
4101 			       unsigned long split_offset)
4102 {
4103 	struct extent_buffer *leaf;
4104 	struct btrfs_item *item;
4105 	struct btrfs_item *new_item;
4106 	int slot;
4107 	char *buf;
4108 	u32 nritems;
4109 	u32 item_size;
4110 	u32 orig_offset;
4111 	struct btrfs_disk_key disk_key;
4112 
4113 	leaf = path->nodes[0];
4114 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4115 
4116 	btrfs_set_path_blocking(path);
4117 
4118 	item = btrfs_item_nr(leaf, path->slots[0]);
4119 	orig_offset = btrfs_item_offset(leaf, item);
4120 	item_size = btrfs_item_size(leaf, item);
4121 
4122 	buf = kmalloc(item_size, GFP_NOFS);
4123 	if (!buf)
4124 		return -ENOMEM;
4125 
4126 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4127 			    path->slots[0]), item_size);
4128 
4129 	slot = path->slots[0] + 1;
4130 	nritems = btrfs_header_nritems(leaf);
4131 	if (slot != nritems) {
4132 		/* shift the items */
4133 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4134 				btrfs_item_nr_offset(slot),
4135 				(nritems - slot) * sizeof(struct btrfs_item));
4136 	}
4137 
4138 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4139 	btrfs_set_item_key(leaf, &disk_key, slot);
4140 
4141 	new_item = btrfs_item_nr(leaf, slot);
4142 
4143 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4144 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4145 
4146 	btrfs_set_item_offset(leaf, item,
4147 			      orig_offset + item_size - split_offset);
4148 	btrfs_set_item_size(leaf, item, split_offset);
4149 
4150 	btrfs_set_header_nritems(leaf, nritems + 1);
4151 
4152 	/* write the data for the start of the original item */
4153 	write_extent_buffer(leaf, buf,
4154 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4155 			    split_offset);
4156 
4157 	/* write the data for the new item */
4158 	write_extent_buffer(leaf, buf + split_offset,
4159 			    btrfs_item_ptr_offset(leaf, slot),
4160 			    item_size - split_offset);
4161 	btrfs_mark_buffer_dirty(leaf);
4162 
4163 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4164 	kfree(buf);
4165 	return 0;
4166 }
4167 
4168 /*
4169  * This function splits a single item into two items,
4170  * giving 'new_key' to the new item and splitting the
4171  * old one at split_offset (from the start of the item).
4172  *
4173  * The path may be released by this operation.  After
4174  * the split, the path is pointing to the old item.  The
4175  * new item is going to be in the same node as the old one.
4176  *
4177  * Note, the item being split must be smaller enough to live alone on
4178  * a tree block with room for one extra struct btrfs_item
4179  *
4180  * This allows us to split the item in place, keeping a lock on the
4181  * leaf the entire time.
4182  */
4183 int btrfs_split_item(struct btrfs_trans_handle *trans,
4184 		     struct btrfs_root *root,
4185 		     struct btrfs_path *path,
4186 		     struct btrfs_key *new_key,
4187 		     unsigned long split_offset)
4188 {
4189 	int ret;
4190 	ret = setup_leaf_for_split(trans, root, path,
4191 				   sizeof(struct btrfs_item));
4192 	if (ret)
4193 		return ret;
4194 
4195 	ret = split_item(trans, root, path, new_key, split_offset);
4196 	return ret;
4197 }
4198 
4199 /*
4200  * This function duplicate a item, giving 'new_key' to the new item.
4201  * It guarantees both items live in the same tree leaf and the new item
4202  * is contiguous with the original item.
4203  *
4204  * This allows us to split file extent in place, keeping a lock on the
4205  * leaf the entire time.
4206  */
4207 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4208 			 struct btrfs_root *root,
4209 			 struct btrfs_path *path,
4210 			 struct btrfs_key *new_key)
4211 {
4212 	struct extent_buffer *leaf;
4213 	int ret;
4214 	u32 item_size;
4215 
4216 	leaf = path->nodes[0];
4217 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4218 	ret = setup_leaf_for_split(trans, root, path,
4219 				   item_size + sizeof(struct btrfs_item));
4220 	if (ret)
4221 		return ret;
4222 
4223 	path->slots[0]++;
4224 	setup_items_for_insert(trans, root, path, new_key, &item_size,
4225 			       item_size, item_size +
4226 			       sizeof(struct btrfs_item), 1);
4227 	leaf = path->nodes[0];
4228 	memcpy_extent_buffer(leaf,
4229 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4230 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4231 			     item_size);
4232 	return 0;
4233 }
4234 
4235 /*
4236  * make the item pointed to by the path smaller.  new_size indicates
4237  * how small to make it, and from_end tells us if we just chop bytes
4238  * off the end of the item or if we shift the item to chop bytes off
4239  * the front.
4240  */
4241 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4242 			 struct btrfs_root *root,
4243 			 struct btrfs_path *path,
4244 			 u32 new_size, int from_end)
4245 {
4246 	int slot;
4247 	struct extent_buffer *leaf;
4248 	struct btrfs_item *item;
4249 	u32 nritems;
4250 	unsigned int data_end;
4251 	unsigned int old_data_start;
4252 	unsigned int old_size;
4253 	unsigned int size_diff;
4254 	int i;
4255 	struct btrfs_map_token token;
4256 
4257 	btrfs_init_map_token(&token);
4258 
4259 	leaf = path->nodes[0];
4260 	slot = path->slots[0];
4261 
4262 	old_size = btrfs_item_size_nr(leaf, slot);
4263 	if (old_size == new_size)
4264 		return;
4265 
4266 	nritems = btrfs_header_nritems(leaf);
4267 	data_end = leaf_data_end(root, leaf);
4268 
4269 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4270 
4271 	size_diff = old_size - new_size;
4272 
4273 	BUG_ON(slot < 0);
4274 	BUG_ON(slot >= nritems);
4275 
4276 	/*
4277 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4278 	 */
4279 	/* first correct the data pointers */
4280 	for (i = slot; i < nritems; i++) {
4281 		u32 ioff;
4282 		item = btrfs_item_nr(leaf, i);
4283 
4284 		ioff = btrfs_token_item_offset(leaf, item, &token);
4285 		btrfs_set_token_item_offset(leaf, item,
4286 					    ioff + size_diff, &token);
4287 	}
4288 
4289 	/* shift the data */
4290 	if (from_end) {
4291 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4292 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4293 			      data_end, old_data_start + new_size - data_end);
4294 	} else {
4295 		struct btrfs_disk_key disk_key;
4296 		u64 offset;
4297 
4298 		btrfs_item_key(leaf, &disk_key, slot);
4299 
4300 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4301 			unsigned long ptr;
4302 			struct btrfs_file_extent_item *fi;
4303 
4304 			fi = btrfs_item_ptr(leaf, slot,
4305 					    struct btrfs_file_extent_item);
4306 			fi = (struct btrfs_file_extent_item *)(
4307 			     (unsigned long)fi - size_diff);
4308 
4309 			if (btrfs_file_extent_type(leaf, fi) ==
4310 			    BTRFS_FILE_EXTENT_INLINE) {
4311 				ptr = btrfs_item_ptr_offset(leaf, slot);
4312 				memmove_extent_buffer(leaf, ptr,
4313 				      (unsigned long)fi,
4314 				      offsetof(struct btrfs_file_extent_item,
4315 						 disk_bytenr));
4316 			}
4317 		}
4318 
4319 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4320 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4321 			      data_end, old_data_start - data_end);
4322 
4323 		offset = btrfs_disk_key_offset(&disk_key);
4324 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4325 		btrfs_set_item_key(leaf, &disk_key, slot);
4326 		if (slot == 0)
4327 			fixup_low_keys(trans, root, path, &disk_key, 1);
4328 	}
4329 
4330 	item = btrfs_item_nr(leaf, slot);
4331 	btrfs_set_item_size(leaf, item, new_size);
4332 	btrfs_mark_buffer_dirty(leaf);
4333 
4334 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4335 		btrfs_print_leaf(root, leaf);
4336 		BUG();
4337 	}
4338 }
4339 
4340 /*
4341  * make the item pointed to by the path bigger, data_size is the new size.
4342  */
4343 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4344 		       struct btrfs_root *root, struct btrfs_path *path,
4345 		       u32 data_size)
4346 {
4347 	int slot;
4348 	struct extent_buffer *leaf;
4349 	struct btrfs_item *item;
4350 	u32 nritems;
4351 	unsigned int data_end;
4352 	unsigned int old_data;
4353 	unsigned int old_size;
4354 	int i;
4355 	struct btrfs_map_token token;
4356 
4357 	btrfs_init_map_token(&token);
4358 
4359 	leaf = path->nodes[0];
4360 
4361 	nritems = btrfs_header_nritems(leaf);
4362 	data_end = leaf_data_end(root, leaf);
4363 
4364 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4365 		btrfs_print_leaf(root, leaf);
4366 		BUG();
4367 	}
4368 	slot = path->slots[0];
4369 	old_data = btrfs_item_end_nr(leaf, slot);
4370 
4371 	BUG_ON(slot < 0);
4372 	if (slot >= nritems) {
4373 		btrfs_print_leaf(root, leaf);
4374 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4375 		       slot, nritems);
4376 		BUG_ON(1);
4377 	}
4378 
4379 	/*
4380 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4381 	 */
4382 	/* first correct the data pointers */
4383 	for (i = slot; i < nritems; i++) {
4384 		u32 ioff;
4385 		item = btrfs_item_nr(leaf, i);
4386 
4387 		ioff = btrfs_token_item_offset(leaf, item, &token);
4388 		btrfs_set_token_item_offset(leaf, item,
4389 					    ioff - data_size, &token);
4390 	}
4391 
4392 	/* shift the data */
4393 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4394 		      data_end - data_size, btrfs_leaf_data(leaf) +
4395 		      data_end, old_data - data_end);
4396 
4397 	data_end = old_data;
4398 	old_size = btrfs_item_size_nr(leaf, slot);
4399 	item = btrfs_item_nr(leaf, slot);
4400 	btrfs_set_item_size(leaf, item, old_size + data_size);
4401 	btrfs_mark_buffer_dirty(leaf);
4402 
4403 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4404 		btrfs_print_leaf(root, leaf);
4405 		BUG();
4406 	}
4407 }
4408 
4409 /*
4410  * this is a helper for btrfs_insert_empty_items, the main goal here is
4411  * to save stack depth by doing the bulk of the work in a function
4412  * that doesn't call btrfs_search_slot
4413  */
4414 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4415 			    struct btrfs_root *root, struct btrfs_path *path,
4416 			    struct btrfs_key *cpu_key, u32 *data_size,
4417 			    u32 total_data, u32 total_size, int nr)
4418 {
4419 	struct btrfs_item *item;
4420 	int i;
4421 	u32 nritems;
4422 	unsigned int data_end;
4423 	struct btrfs_disk_key disk_key;
4424 	struct extent_buffer *leaf;
4425 	int slot;
4426 	struct btrfs_map_token token;
4427 
4428 	btrfs_init_map_token(&token);
4429 
4430 	leaf = path->nodes[0];
4431 	slot = path->slots[0];
4432 
4433 	nritems = btrfs_header_nritems(leaf);
4434 	data_end = leaf_data_end(root, leaf);
4435 
4436 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4437 		btrfs_print_leaf(root, leaf);
4438 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4439 		       total_size, btrfs_leaf_free_space(root, leaf));
4440 		BUG();
4441 	}
4442 
4443 	if (slot != nritems) {
4444 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4445 
4446 		if (old_data < data_end) {
4447 			btrfs_print_leaf(root, leaf);
4448 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4449 			       slot, old_data, data_end);
4450 			BUG_ON(1);
4451 		}
4452 		/*
4453 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4454 		 */
4455 		/* first correct the data pointers */
4456 		for (i = slot; i < nritems; i++) {
4457 			u32 ioff;
4458 
4459 			item = btrfs_item_nr(leaf, i);
4460 			ioff = btrfs_token_item_offset(leaf, item, &token);
4461 			btrfs_set_token_item_offset(leaf, item,
4462 						    ioff - total_data, &token);
4463 		}
4464 		/* shift the items */
4465 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4466 			      btrfs_item_nr_offset(slot),
4467 			      (nritems - slot) * sizeof(struct btrfs_item));
4468 
4469 		/* shift the data */
4470 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4471 			      data_end - total_data, btrfs_leaf_data(leaf) +
4472 			      data_end, old_data - data_end);
4473 		data_end = old_data;
4474 	}
4475 
4476 	/* setup the item for the new data */
4477 	for (i = 0; i < nr; i++) {
4478 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4479 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4480 		item = btrfs_item_nr(leaf, slot + i);
4481 		btrfs_set_token_item_offset(leaf, item,
4482 					    data_end - data_size[i], &token);
4483 		data_end -= data_size[i];
4484 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4485 	}
4486 
4487 	btrfs_set_header_nritems(leaf, nritems + nr);
4488 
4489 	if (slot == 0) {
4490 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4491 		fixup_low_keys(trans, root, path, &disk_key, 1);
4492 	}
4493 	btrfs_unlock_up_safe(path, 1);
4494 	btrfs_mark_buffer_dirty(leaf);
4495 
4496 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4497 		btrfs_print_leaf(root, leaf);
4498 		BUG();
4499 	}
4500 }
4501 
4502 /*
4503  * Given a key and some data, insert items into the tree.
4504  * This does all the path init required, making room in the tree if needed.
4505  */
4506 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4507 			    struct btrfs_root *root,
4508 			    struct btrfs_path *path,
4509 			    struct btrfs_key *cpu_key, u32 *data_size,
4510 			    int nr)
4511 {
4512 	int ret = 0;
4513 	int slot;
4514 	int i;
4515 	u32 total_size = 0;
4516 	u32 total_data = 0;
4517 
4518 	for (i = 0; i < nr; i++)
4519 		total_data += data_size[i];
4520 
4521 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4522 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4523 	if (ret == 0)
4524 		return -EEXIST;
4525 	if (ret < 0)
4526 		return ret;
4527 
4528 	slot = path->slots[0];
4529 	BUG_ON(slot < 0);
4530 
4531 	setup_items_for_insert(trans, root, path, cpu_key, data_size,
4532 			       total_data, total_size, nr);
4533 	return 0;
4534 }
4535 
4536 /*
4537  * Given a key and some data, insert an item into the tree.
4538  * This does all the path init required, making room in the tree if needed.
4539  */
4540 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4541 		      *root, struct btrfs_key *cpu_key, void *data, u32
4542 		      data_size)
4543 {
4544 	int ret = 0;
4545 	struct btrfs_path *path;
4546 	struct extent_buffer *leaf;
4547 	unsigned long ptr;
4548 
4549 	path = btrfs_alloc_path();
4550 	if (!path)
4551 		return -ENOMEM;
4552 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4553 	if (!ret) {
4554 		leaf = path->nodes[0];
4555 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4556 		write_extent_buffer(leaf, data, ptr, data_size);
4557 		btrfs_mark_buffer_dirty(leaf);
4558 	}
4559 	btrfs_free_path(path);
4560 	return ret;
4561 }
4562 
4563 /*
4564  * delete the pointer from a given node.
4565  *
4566  * the tree should have been previously balanced so the deletion does not
4567  * empty a node.
4568  */
4569 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4570 		    struct btrfs_path *path, int level, int slot,
4571 		    int tree_mod_log)
4572 {
4573 	struct extent_buffer *parent = path->nodes[level];
4574 	u32 nritems;
4575 	int ret;
4576 
4577 	nritems = btrfs_header_nritems(parent);
4578 	if (slot != nritems - 1) {
4579 		if (tree_mod_log && level)
4580 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4581 					     slot + 1, nritems - slot - 1);
4582 		memmove_extent_buffer(parent,
4583 			      btrfs_node_key_ptr_offset(slot),
4584 			      btrfs_node_key_ptr_offset(slot + 1),
4585 			      sizeof(struct btrfs_key_ptr) *
4586 			      (nritems - slot - 1));
4587 	} else if (tree_mod_log && level) {
4588 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4589 					      MOD_LOG_KEY_REMOVE);
4590 		BUG_ON(ret < 0);
4591 	}
4592 
4593 	nritems--;
4594 	btrfs_set_header_nritems(parent, nritems);
4595 	if (nritems == 0 && parent == root->node) {
4596 		BUG_ON(btrfs_header_level(root->node) != 1);
4597 		/* just turn the root into a leaf and break */
4598 		btrfs_set_header_level(root->node, 0);
4599 	} else if (slot == 0) {
4600 		struct btrfs_disk_key disk_key;
4601 
4602 		btrfs_node_key(parent, &disk_key, 0);
4603 		fixup_low_keys(trans, root, path, &disk_key, level + 1);
4604 	}
4605 	btrfs_mark_buffer_dirty(parent);
4606 }
4607 
4608 /*
4609  * a helper function to delete the leaf pointed to by path->slots[1] and
4610  * path->nodes[1].
4611  *
4612  * This deletes the pointer in path->nodes[1] and frees the leaf
4613  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4614  *
4615  * The path must have already been setup for deleting the leaf, including
4616  * all the proper balancing.  path->nodes[1] must be locked.
4617  */
4618 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4619 				    struct btrfs_root *root,
4620 				    struct btrfs_path *path,
4621 				    struct extent_buffer *leaf)
4622 {
4623 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4624 	del_ptr(trans, root, path, 1, path->slots[1], 1);
4625 
4626 	/*
4627 	 * btrfs_free_extent is expensive, we want to make sure we
4628 	 * aren't holding any locks when we call it
4629 	 */
4630 	btrfs_unlock_up_safe(path, 0);
4631 
4632 	root_sub_used(root, leaf->len);
4633 
4634 	extent_buffer_get(leaf);
4635 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4636 	free_extent_buffer_stale(leaf);
4637 }
4638 /*
4639  * delete the item at the leaf level in path.  If that empties
4640  * the leaf, remove it from the tree
4641  */
4642 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4643 		    struct btrfs_path *path, int slot, int nr)
4644 {
4645 	struct extent_buffer *leaf;
4646 	struct btrfs_item *item;
4647 	int last_off;
4648 	int dsize = 0;
4649 	int ret = 0;
4650 	int wret;
4651 	int i;
4652 	u32 nritems;
4653 	struct btrfs_map_token token;
4654 
4655 	btrfs_init_map_token(&token);
4656 
4657 	leaf = path->nodes[0];
4658 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4659 
4660 	for (i = 0; i < nr; i++)
4661 		dsize += btrfs_item_size_nr(leaf, slot + i);
4662 
4663 	nritems = btrfs_header_nritems(leaf);
4664 
4665 	if (slot + nr != nritems) {
4666 		int data_end = leaf_data_end(root, leaf);
4667 
4668 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4669 			      data_end + dsize,
4670 			      btrfs_leaf_data(leaf) + data_end,
4671 			      last_off - data_end);
4672 
4673 		for (i = slot + nr; i < nritems; i++) {
4674 			u32 ioff;
4675 
4676 			item = btrfs_item_nr(leaf, i);
4677 			ioff = btrfs_token_item_offset(leaf, item, &token);
4678 			btrfs_set_token_item_offset(leaf, item,
4679 						    ioff + dsize, &token);
4680 		}
4681 
4682 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4683 			      btrfs_item_nr_offset(slot + nr),
4684 			      sizeof(struct btrfs_item) *
4685 			      (nritems - slot - nr));
4686 	}
4687 	btrfs_set_header_nritems(leaf, nritems - nr);
4688 	nritems -= nr;
4689 
4690 	/* delete the leaf if we've emptied it */
4691 	if (nritems == 0) {
4692 		if (leaf == root->node) {
4693 			btrfs_set_header_level(leaf, 0);
4694 		} else {
4695 			btrfs_set_path_blocking(path);
4696 			clean_tree_block(trans, root, leaf);
4697 			btrfs_del_leaf(trans, root, path, leaf);
4698 		}
4699 	} else {
4700 		int used = leaf_space_used(leaf, 0, nritems);
4701 		if (slot == 0) {
4702 			struct btrfs_disk_key disk_key;
4703 
4704 			btrfs_item_key(leaf, &disk_key, 0);
4705 			fixup_low_keys(trans, root, path, &disk_key, 1);
4706 		}
4707 
4708 		/* delete the leaf if it is mostly empty */
4709 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4710 			/* push_leaf_left fixes the path.
4711 			 * make sure the path still points to our leaf
4712 			 * for possible call to del_ptr below
4713 			 */
4714 			slot = path->slots[1];
4715 			extent_buffer_get(leaf);
4716 
4717 			btrfs_set_path_blocking(path);
4718 			wret = push_leaf_left(trans, root, path, 1, 1,
4719 					      1, (u32)-1);
4720 			if (wret < 0 && wret != -ENOSPC)
4721 				ret = wret;
4722 
4723 			if (path->nodes[0] == leaf &&
4724 			    btrfs_header_nritems(leaf)) {
4725 				wret = push_leaf_right(trans, root, path, 1,
4726 						       1, 1, 0);
4727 				if (wret < 0 && wret != -ENOSPC)
4728 					ret = wret;
4729 			}
4730 
4731 			if (btrfs_header_nritems(leaf) == 0) {
4732 				path->slots[1] = slot;
4733 				btrfs_del_leaf(trans, root, path, leaf);
4734 				free_extent_buffer(leaf);
4735 				ret = 0;
4736 			} else {
4737 				/* if we're still in the path, make sure
4738 				 * we're dirty.  Otherwise, one of the
4739 				 * push_leaf functions must have already
4740 				 * dirtied this buffer
4741 				 */
4742 				if (path->nodes[0] == leaf)
4743 					btrfs_mark_buffer_dirty(leaf);
4744 				free_extent_buffer(leaf);
4745 			}
4746 		} else {
4747 			btrfs_mark_buffer_dirty(leaf);
4748 		}
4749 	}
4750 	return ret;
4751 }
4752 
4753 /*
4754  * search the tree again to find a leaf with lesser keys
4755  * returns 0 if it found something or 1 if there are no lesser leaves.
4756  * returns < 0 on io errors.
4757  *
4758  * This may release the path, and so you may lose any locks held at the
4759  * time you call it.
4760  */
4761 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4762 {
4763 	struct btrfs_key key;
4764 	struct btrfs_disk_key found_key;
4765 	int ret;
4766 
4767 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4768 
4769 	if (key.offset > 0)
4770 		key.offset--;
4771 	else if (key.type > 0)
4772 		key.type--;
4773 	else if (key.objectid > 0)
4774 		key.objectid--;
4775 	else
4776 		return 1;
4777 
4778 	btrfs_release_path(path);
4779 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4780 	if (ret < 0)
4781 		return ret;
4782 	btrfs_item_key(path->nodes[0], &found_key, 0);
4783 	ret = comp_keys(&found_key, &key);
4784 	if (ret < 0)
4785 		return 0;
4786 	return 1;
4787 }
4788 
4789 /*
4790  * A helper function to walk down the tree starting at min_key, and looking
4791  * for nodes or leaves that are either in cache or have a minimum
4792  * transaction id.  This is used by the btree defrag code, and tree logging
4793  *
4794  * This does not cow, but it does stuff the starting key it finds back
4795  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4796  * key and get a writable path.
4797  *
4798  * This does lock as it descends, and path->keep_locks should be set
4799  * to 1 by the caller.
4800  *
4801  * This honors path->lowest_level to prevent descent past a given level
4802  * of the tree.
4803  *
4804  * min_trans indicates the oldest transaction that you are interested
4805  * in walking through.  Any nodes or leaves older than min_trans are
4806  * skipped over (without reading them).
4807  *
4808  * returns zero if something useful was found, < 0 on error and 1 if there
4809  * was nothing in the tree that matched the search criteria.
4810  */
4811 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4812 			 struct btrfs_key *max_key,
4813 			 struct btrfs_path *path, int cache_only,
4814 			 u64 min_trans)
4815 {
4816 	struct extent_buffer *cur;
4817 	struct btrfs_key found_key;
4818 	int slot;
4819 	int sret;
4820 	u32 nritems;
4821 	int level;
4822 	int ret = 1;
4823 
4824 	WARN_ON(!path->keep_locks);
4825 again:
4826 	cur = btrfs_read_lock_root_node(root);
4827 	level = btrfs_header_level(cur);
4828 	WARN_ON(path->nodes[level]);
4829 	path->nodes[level] = cur;
4830 	path->locks[level] = BTRFS_READ_LOCK;
4831 
4832 	if (btrfs_header_generation(cur) < min_trans) {
4833 		ret = 1;
4834 		goto out;
4835 	}
4836 	while (1) {
4837 		nritems = btrfs_header_nritems(cur);
4838 		level = btrfs_header_level(cur);
4839 		sret = bin_search(cur, min_key, level, &slot);
4840 
4841 		/* at the lowest level, we're done, setup the path and exit */
4842 		if (level == path->lowest_level) {
4843 			if (slot >= nritems)
4844 				goto find_next_key;
4845 			ret = 0;
4846 			path->slots[level] = slot;
4847 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4848 			goto out;
4849 		}
4850 		if (sret && slot > 0)
4851 			slot--;
4852 		/*
4853 		 * check this node pointer against the cache_only and
4854 		 * min_trans parameters.  If it isn't in cache or is too
4855 		 * old, skip to the next one.
4856 		 */
4857 		while (slot < nritems) {
4858 			u64 blockptr;
4859 			u64 gen;
4860 			struct extent_buffer *tmp;
4861 			struct btrfs_disk_key disk_key;
4862 
4863 			blockptr = btrfs_node_blockptr(cur, slot);
4864 			gen = btrfs_node_ptr_generation(cur, slot);
4865 			if (gen < min_trans) {
4866 				slot++;
4867 				continue;
4868 			}
4869 			if (!cache_only)
4870 				break;
4871 
4872 			if (max_key) {
4873 				btrfs_node_key(cur, &disk_key, slot);
4874 				if (comp_keys(&disk_key, max_key) >= 0) {
4875 					ret = 1;
4876 					goto out;
4877 				}
4878 			}
4879 
4880 			tmp = btrfs_find_tree_block(root, blockptr,
4881 					    btrfs_level_size(root, level - 1));
4882 
4883 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4884 				free_extent_buffer(tmp);
4885 				break;
4886 			}
4887 			if (tmp)
4888 				free_extent_buffer(tmp);
4889 			slot++;
4890 		}
4891 find_next_key:
4892 		/*
4893 		 * we didn't find a candidate key in this node, walk forward
4894 		 * and find another one
4895 		 */
4896 		if (slot >= nritems) {
4897 			path->slots[level] = slot;
4898 			btrfs_set_path_blocking(path);
4899 			sret = btrfs_find_next_key(root, path, min_key, level,
4900 						  cache_only, min_trans);
4901 			if (sret == 0) {
4902 				btrfs_release_path(path);
4903 				goto again;
4904 			} else {
4905 				goto out;
4906 			}
4907 		}
4908 		/* save our key for returning back */
4909 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4910 		path->slots[level] = slot;
4911 		if (level == path->lowest_level) {
4912 			ret = 0;
4913 			unlock_up(path, level, 1, 0, NULL);
4914 			goto out;
4915 		}
4916 		btrfs_set_path_blocking(path);
4917 		cur = read_node_slot(root, cur, slot);
4918 		BUG_ON(!cur); /* -ENOMEM */
4919 
4920 		btrfs_tree_read_lock(cur);
4921 
4922 		path->locks[level - 1] = BTRFS_READ_LOCK;
4923 		path->nodes[level - 1] = cur;
4924 		unlock_up(path, level, 1, 0, NULL);
4925 		btrfs_clear_path_blocking(path, NULL, 0);
4926 	}
4927 out:
4928 	if (ret == 0)
4929 		memcpy(min_key, &found_key, sizeof(found_key));
4930 	btrfs_set_path_blocking(path);
4931 	return ret;
4932 }
4933 
4934 static void tree_move_down(struct btrfs_root *root,
4935 			   struct btrfs_path *path,
4936 			   int *level, int root_level)
4937 {
4938 	BUG_ON(*level == 0);
4939 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4940 					path->slots[*level]);
4941 	path->slots[*level - 1] = 0;
4942 	(*level)--;
4943 }
4944 
4945 static int tree_move_next_or_upnext(struct btrfs_root *root,
4946 				    struct btrfs_path *path,
4947 				    int *level, int root_level)
4948 {
4949 	int ret = 0;
4950 	int nritems;
4951 	nritems = btrfs_header_nritems(path->nodes[*level]);
4952 
4953 	path->slots[*level]++;
4954 
4955 	while (path->slots[*level] >= nritems) {
4956 		if (*level == root_level)
4957 			return -1;
4958 
4959 		/* move upnext */
4960 		path->slots[*level] = 0;
4961 		free_extent_buffer(path->nodes[*level]);
4962 		path->nodes[*level] = NULL;
4963 		(*level)++;
4964 		path->slots[*level]++;
4965 
4966 		nritems = btrfs_header_nritems(path->nodes[*level]);
4967 		ret = 1;
4968 	}
4969 	return ret;
4970 }
4971 
4972 /*
4973  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4974  * or down.
4975  */
4976 static int tree_advance(struct btrfs_root *root,
4977 			struct btrfs_path *path,
4978 			int *level, int root_level,
4979 			int allow_down,
4980 			struct btrfs_key *key)
4981 {
4982 	int ret;
4983 
4984 	if (*level == 0 || !allow_down) {
4985 		ret = tree_move_next_or_upnext(root, path, level, root_level);
4986 	} else {
4987 		tree_move_down(root, path, level, root_level);
4988 		ret = 0;
4989 	}
4990 	if (ret >= 0) {
4991 		if (*level == 0)
4992 			btrfs_item_key_to_cpu(path->nodes[*level], key,
4993 					path->slots[*level]);
4994 		else
4995 			btrfs_node_key_to_cpu(path->nodes[*level], key,
4996 					path->slots[*level]);
4997 	}
4998 	return ret;
4999 }
5000 
5001 static int tree_compare_item(struct btrfs_root *left_root,
5002 			     struct btrfs_path *left_path,
5003 			     struct btrfs_path *right_path,
5004 			     char *tmp_buf)
5005 {
5006 	int cmp;
5007 	int len1, len2;
5008 	unsigned long off1, off2;
5009 
5010 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5011 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5012 	if (len1 != len2)
5013 		return 1;
5014 
5015 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5016 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5017 				right_path->slots[0]);
5018 
5019 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5020 
5021 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5022 	if (cmp)
5023 		return 1;
5024 	return 0;
5025 }
5026 
5027 #define ADVANCE 1
5028 #define ADVANCE_ONLY_NEXT -1
5029 
5030 /*
5031  * This function compares two trees and calls the provided callback for
5032  * every changed/new/deleted item it finds.
5033  * If shared tree blocks are encountered, whole subtrees are skipped, making
5034  * the compare pretty fast on snapshotted subvolumes.
5035  *
5036  * This currently works on commit roots only. As commit roots are read only,
5037  * we don't do any locking. The commit roots are protected with transactions.
5038  * Transactions are ended and rejoined when a commit is tried in between.
5039  *
5040  * This function checks for modifications done to the trees while comparing.
5041  * If it detects a change, it aborts immediately.
5042  */
5043 int btrfs_compare_trees(struct btrfs_root *left_root,
5044 			struct btrfs_root *right_root,
5045 			btrfs_changed_cb_t changed_cb, void *ctx)
5046 {
5047 	int ret;
5048 	int cmp;
5049 	struct btrfs_trans_handle *trans = NULL;
5050 	struct btrfs_path *left_path = NULL;
5051 	struct btrfs_path *right_path = NULL;
5052 	struct btrfs_key left_key;
5053 	struct btrfs_key right_key;
5054 	char *tmp_buf = NULL;
5055 	int left_root_level;
5056 	int right_root_level;
5057 	int left_level;
5058 	int right_level;
5059 	int left_end_reached;
5060 	int right_end_reached;
5061 	int advance_left;
5062 	int advance_right;
5063 	u64 left_blockptr;
5064 	u64 right_blockptr;
5065 	u64 left_start_ctransid;
5066 	u64 right_start_ctransid;
5067 	u64 ctransid;
5068 
5069 	left_path = btrfs_alloc_path();
5070 	if (!left_path) {
5071 		ret = -ENOMEM;
5072 		goto out;
5073 	}
5074 	right_path = btrfs_alloc_path();
5075 	if (!right_path) {
5076 		ret = -ENOMEM;
5077 		goto out;
5078 	}
5079 
5080 	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5081 	if (!tmp_buf) {
5082 		ret = -ENOMEM;
5083 		goto out;
5084 	}
5085 
5086 	left_path->search_commit_root = 1;
5087 	left_path->skip_locking = 1;
5088 	right_path->search_commit_root = 1;
5089 	right_path->skip_locking = 1;
5090 
5091 	spin_lock(&left_root->root_times_lock);
5092 	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5093 	spin_unlock(&left_root->root_times_lock);
5094 
5095 	spin_lock(&right_root->root_times_lock);
5096 	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5097 	spin_unlock(&right_root->root_times_lock);
5098 
5099 	trans = btrfs_join_transaction(left_root);
5100 	if (IS_ERR(trans)) {
5101 		ret = PTR_ERR(trans);
5102 		trans = NULL;
5103 		goto out;
5104 	}
5105 
5106 	/*
5107 	 * Strategy: Go to the first items of both trees. Then do
5108 	 *
5109 	 * If both trees are at level 0
5110 	 *   Compare keys of current items
5111 	 *     If left < right treat left item as new, advance left tree
5112 	 *       and repeat
5113 	 *     If left > right treat right item as deleted, advance right tree
5114 	 *       and repeat
5115 	 *     If left == right do deep compare of items, treat as changed if
5116 	 *       needed, advance both trees and repeat
5117 	 * If both trees are at the same level but not at level 0
5118 	 *   Compare keys of current nodes/leafs
5119 	 *     If left < right advance left tree and repeat
5120 	 *     If left > right advance right tree and repeat
5121 	 *     If left == right compare blockptrs of the next nodes/leafs
5122 	 *       If they match advance both trees but stay at the same level
5123 	 *         and repeat
5124 	 *       If they don't match advance both trees while allowing to go
5125 	 *         deeper and repeat
5126 	 * If tree levels are different
5127 	 *   Advance the tree that needs it and repeat
5128 	 *
5129 	 * Advancing a tree means:
5130 	 *   If we are at level 0, try to go to the next slot. If that's not
5131 	 *   possible, go one level up and repeat. Stop when we found a level
5132 	 *   where we could go to the next slot. We may at this point be on a
5133 	 *   node or a leaf.
5134 	 *
5135 	 *   If we are not at level 0 and not on shared tree blocks, go one
5136 	 *   level deeper.
5137 	 *
5138 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5139 	 *   the right if possible or go up and right.
5140 	 */
5141 
5142 	left_level = btrfs_header_level(left_root->commit_root);
5143 	left_root_level = left_level;
5144 	left_path->nodes[left_level] = left_root->commit_root;
5145 	extent_buffer_get(left_path->nodes[left_level]);
5146 
5147 	right_level = btrfs_header_level(right_root->commit_root);
5148 	right_root_level = right_level;
5149 	right_path->nodes[right_level] = right_root->commit_root;
5150 	extent_buffer_get(right_path->nodes[right_level]);
5151 
5152 	if (left_level == 0)
5153 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5154 				&left_key, left_path->slots[left_level]);
5155 	else
5156 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5157 				&left_key, left_path->slots[left_level]);
5158 	if (right_level == 0)
5159 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5160 				&right_key, right_path->slots[right_level]);
5161 	else
5162 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5163 				&right_key, right_path->slots[right_level]);
5164 
5165 	left_end_reached = right_end_reached = 0;
5166 	advance_left = advance_right = 0;
5167 
5168 	while (1) {
5169 		/*
5170 		 * We need to make sure the transaction does not get committed
5171 		 * while we do anything on commit roots. This means, we need to
5172 		 * join and leave transactions for every item that we process.
5173 		 */
5174 		if (trans && btrfs_should_end_transaction(trans, left_root)) {
5175 			btrfs_release_path(left_path);
5176 			btrfs_release_path(right_path);
5177 
5178 			ret = btrfs_end_transaction(trans, left_root);
5179 			trans = NULL;
5180 			if (ret < 0)
5181 				goto out;
5182 		}
5183 		/* now rejoin the transaction */
5184 		if (!trans) {
5185 			trans = btrfs_join_transaction(left_root);
5186 			if (IS_ERR(trans)) {
5187 				ret = PTR_ERR(trans);
5188 				trans = NULL;
5189 				goto out;
5190 			}
5191 
5192 			spin_lock(&left_root->root_times_lock);
5193 			ctransid = btrfs_root_ctransid(&left_root->root_item);
5194 			spin_unlock(&left_root->root_times_lock);
5195 			if (ctransid != left_start_ctransid)
5196 				left_start_ctransid = 0;
5197 
5198 			spin_lock(&right_root->root_times_lock);
5199 			ctransid = btrfs_root_ctransid(&right_root->root_item);
5200 			spin_unlock(&right_root->root_times_lock);
5201 			if (ctransid != right_start_ctransid)
5202 				right_start_ctransid = 0;
5203 
5204 			if (!left_start_ctransid || !right_start_ctransid) {
5205 				WARN(1, KERN_WARNING
5206 					"btrfs: btrfs_compare_tree detected "
5207 					"a change in one of the trees while "
5208 					"iterating. This is probably a "
5209 					"bug.\n");
5210 				ret = -EIO;
5211 				goto out;
5212 			}
5213 
5214 			/*
5215 			 * the commit root may have changed, so start again
5216 			 * where we stopped
5217 			 */
5218 			left_path->lowest_level = left_level;
5219 			right_path->lowest_level = right_level;
5220 			ret = btrfs_search_slot(NULL, left_root,
5221 					&left_key, left_path, 0, 0);
5222 			if (ret < 0)
5223 				goto out;
5224 			ret = btrfs_search_slot(NULL, right_root,
5225 					&right_key, right_path, 0, 0);
5226 			if (ret < 0)
5227 				goto out;
5228 		}
5229 
5230 		if (advance_left && !left_end_reached) {
5231 			ret = tree_advance(left_root, left_path, &left_level,
5232 					left_root_level,
5233 					advance_left != ADVANCE_ONLY_NEXT,
5234 					&left_key);
5235 			if (ret < 0)
5236 				left_end_reached = ADVANCE;
5237 			advance_left = 0;
5238 		}
5239 		if (advance_right && !right_end_reached) {
5240 			ret = tree_advance(right_root, right_path, &right_level,
5241 					right_root_level,
5242 					advance_right != ADVANCE_ONLY_NEXT,
5243 					&right_key);
5244 			if (ret < 0)
5245 				right_end_reached = ADVANCE;
5246 			advance_right = 0;
5247 		}
5248 
5249 		if (left_end_reached && right_end_reached) {
5250 			ret = 0;
5251 			goto out;
5252 		} else if (left_end_reached) {
5253 			if (right_level == 0) {
5254 				ret = changed_cb(left_root, right_root,
5255 						left_path, right_path,
5256 						&right_key,
5257 						BTRFS_COMPARE_TREE_DELETED,
5258 						ctx);
5259 				if (ret < 0)
5260 					goto out;
5261 			}
5262 			advance_right = ADVANCE;
5263 			continue;
5264 		} else if (right_end_reached) {
5265 			if (left_level == 0) {
5266 				ret = changed_cb(left_root, right_root,
5267 						left_path, right_path,
5268 						&left_key,
5269 						BTRFS_COMPARE_TREE_NEW,
5270 						ctx);
5271 				if (ret < 0)
5272 					goto out;
5273 			}
5274 			advance_left = ADVANCE;
5275 			continue;
5276 		}
5277 
5278 		if (left_level == 0 && right_level == 0) {
5279 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5280 			if (cmp < 0) {
5281 				ret = changed_cb(left_root, right_root,
5282 						left_path, right_path,
5283 						&left_key,
5284 						BTRFS_COMPARE_TREE_NEW,
5285 						ctx);
5286 				if (ret < 0)
5287 					goto out;
5288 				advance_left = ADVANCE;
5289 			} else if (cmp > 0) {
5290 				ret = changed_cb(left_root, right_root,
5291 						left_path, right_path,
5292 						&right_key,
5293 						BTRFS_COMPARE_TREE_DELETED,
5294 						ctx);
5295 				if (ret < 0)
5296 					goto out;
5297 				advance_right = ADVANCE;
5298 			} else {
5299 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5300 				ret = tree_compare_item(left_root, left_path,
5301 						right_path, tmp_buf);
5302 				if (ret) {
5303 					WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5304 					ret = changed_cb(left_root, right_root,
5305 						left_path, right_path,
5306 						&left_key,
5307 						BTRFS_COMPARE_TREE_CHANGED,
5308 						ctx);
5309 					if (ret < 0)
5310 						goto out;
5311 				}
5312 				advance_left = ADVANCE;
5313 				advance_right = ADVANCE;
5314 			}
5315 		} else if (left_level == right_level) {
5316 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5317 			if (cmp < 0) {
5318 				advance_left = ADVANCE;
5319 			} else if (cmp > 0) {
5320 				advance_right = ADVANCE;
5321 			} else {
5322 				left_blockptr = btrfs_node_blockptr(
5323 						left_path->nodes[left_level],
5324 						left_path->slots[left_level]);
5325 				right_blockptr = btrfs_node_blockptr(
5326 						right_path->nodes[right_level],
5327 						right_path->slots[right_level]);
5328 				if (left_blockptr == right_blockptr) {
5329 					/*
5330 					 * As we're on a shared block, don't
5331 					 * allow to go deeper.
5332 					 */
5333 					advance_left = ADVANCE_ONLY_NEXT;
5334 					advance_right = ADVANCE_ONLY_NEXT;
5335 				} else {
5336 					advance_left = ADVANCE;
5337 					advance_right = ADVANCE;
5338 				}
5339 			}
5340 		} else if (left_level < right_level) {
5341 			advance_right = ADVANCE;
5342 		} else {
5343 			advance_left = ADVANCE;
5344 		}
5345 	}
5346 
5347 out:
5348 	btrfs_free_path(left_path);
5349 	btrfs_free_path(right_path);
5350 	kfree(tmp_buf);
5351 
5352 	if (trans) {
5353 		if (!ret)
5354 			ret = btrfs_end_transaction(trans, left_root);
5355 		else
5356 			btrfs_end_transaction(trans, left_root);
5357 	}
5358 
5359 	return ret;
5360 }
5361 
5362 /*
5363  * this is similar to btrfs_next_leaf, but does not try to preserve
5364  * and fixup the path.  It looks for and returns the next key in the
5365  * tree based on the current path and the cache_only and min_trans
5366  * parameters.
5367  *
5368  * 0 is returned if another key is found, < 0 if there are any errors
5369  * and 1 is returned if there are no higher keys in the tree
5370  *
5371  * path->keep_locks should be set to 1 on the search made before
5372  * calling this function.
5373  */
5374 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5375 			struct btrfs_key *key, int level,
5376 			int cache_only, u64 min_trans)
5377 {
5378 	int slot;
5379 	struct extent_buffer *c;
5380 
5381 	WARN_ON(!path->keep_locks);
5382 	while (level < BTRFS_MAX_LEVEL) {
5383 		if (!path->nodes[level])
5384 			return 1;
5385 
5386 		slot = path->slots[level] + 1;
5387 		c = path->nodes[level];
5388 next:
5389 		if (slot >= btrfs_header_nritems(c)) {
5390 			int ret;
5391 			int orig_lowest;
5392 			struct btrfs_key cur_key;
5393 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5394 			    !path->nodes[level + 1])
5395 				return 1;
5396 
5397 			if (path->locks[level + 1]) {
5398 				level++;
5399 				continue;
5400 			}
5401 
5402 			slot = btrfs_header_nritems(c) - 1;
5403 			if (level == 0)
5404 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5405 			else
5406 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5407 
5408 			orig_lowest = path->lowest_level;
5409 			btrfs_release_path(path);
5410 			path->lowest_level = level;
5411 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5412 						0, 0);
5413 			path->lowest_level = orig_lowest;
5414 			if (ret < 0)
5415 				return ret;
5416 
5417 			c = path->nodes[level];
5418 			slot = path->slots[level];
5419 			if (ret == 0)
5420 				slot++;
5421 			goto next;
5422 		}
5423 
5424 		if (level == 0)
5425 			btrfs_item_key_to_cpu(c, key, slot);
5426 		else {
5427 			u64 blockptr = btrfs_node_blockptr(c, slot);
5428 			u64 gen = btrfs_node_ptr_generation(c, slot);
5429 
5430 			if (cache_only) {
5431 				struct extent_buffer *cur;
5432 				cur = btrfs_find_tree_block(root, blockptr,
5433 					    btrfs_level_size(root, level - 1));
5434 				if (!cur ||
5435 				    btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5436 					slot++;
5437 					if (cur)
5438 						free_extent_buffer(cur);
5439 					goto next;
5440 				}
5441 				free_extent_buffer(cur);
5442 			}
5443 			if (gen < min_trans) {
5444 				slot++;
5445 				goto next;
5446 			}
5447 			btrfs_node_key_to_cpu(c, key, slot);
5448 		}
5449 		return 0;
5450 	}
5451 	return 1;
5452 }
5453 
5454 /*
5455  * search the tree again to find a leaf with greater keys
5456  * returns 0 if it found something or 1 if there are no greater leaves.
5457  * returns < 0 on io errors.
5458  */
5459 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5460 {
5461 	return btrfs_next_old_leaf(root, path, 0);
5462 }
5463 
5464 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5465 			u64 time_seq)
5466 {
5467 	int slot;
5468 	int level;
5469 	struct extent_buffer *c;
5470 	struct extent_buffer *next;
5471 	struct btrfs_key key;
5472 	u32 nritems;
5473 	int ret;
5474 	int old_spinning = path->leave_spinning;
5475 	int next_rw_lock = 0;
5476 
5477 	nritems = btrfs_header_nritems(path->nodes[0]);
5478 	if (nritems == 0)
5479 		return 1;
5480 
5481 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5482 again:
5483 	level = 1;
5484 	next = NULL;
5485 	next_rw_lock = 0;
5486 	btrfs_release_path(path);
5487 
5488 	path->keep_locks = 1;
5489 	path->leave_spinning = 1;
5490 
5491 	if (time_seq)
5492 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5493 	else
5494 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5495 	path->keep_locks = 0;
5496 
5497 	if (ret < 0)
5498 		return ret;
5499 
5500 	nritems = btrfs_header_nritems(path->nodes[0]);
5501 	/*
5502 	 * by releasing the path above we dropped all our locks.  A balance
5503 	 * could have added more items next to the key that used to be
5504 	 * at the very end of the block.  So, check again here and
5505 	 * advance the path if there are now more items available.
5506 	 */
5507 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5508 		if (ret == 0)
5509 			path->slots[0]++;
5510 		ret = 0;
5511 		goto done;
5512 	}
5513 
5514 	while (level < BTRFS_MAX_LEVEL) {
5515 		if (!path->nodes[level]) {
5516 			ret = 1;
5517 			goto done;
5518 		}
5519 
5520 		slot = path->slots[level] + 1;
5521 		c = path->nodes[level];
5522 		if (slot >= btrfs_header_nritems(c)) {
5523 			level++;
5524 			if (level == BTRFS_MAX_LEVEL) {
5525 				ret = 1;
5526 				goto done;
5527 			}
5528 			continue;
5529 		}
5530 
5531 		if (next) {
5532 			btrfs_tree_unlock_rw(next, next_rw_lock);
5533 			free_extent_buffer(next);
5534 		}
5535 
5536 		next = c;
5537 		next_rw_lock = path->locks[level];
5538 		ret = read_block_for_search(NULL, root, path, &next, level,
5539 					    slot, &key, 0);
5540 		if (ret == -EAGAIN)
5541 			goto again;
5542 
5543 		if (ret < 0) {
5544 			btrfs_release_path(path);
5545 			goto done;
5546 		}
5547 
5548 		if (!path->skip_locking) {
5549 			ret = btrfs_try_tree_read_lock(next);
5550 			if (!ret && time_seq) {
5551 				/*
5552 				 * If we don't get the lock, we may be racing
5553 				 * with push_leaf_left, holding that lock while
5554 				 * itself waiting for the leaf we've currently
5555 				 * locked. To solve this situation, we give up
5556 				 * on our lock and cycle.
5557 				 */
5558 				free_extent_buffer(next);
5559 				btrfs_release_path(path);
5560 				cond_resched();
5561 				goto again;
5562 			}
5563 			if (!ret) {
5564 				btrfs_set_path_blocking(path);
5565 				btrfs_tree_read_lock(next);
5566 				btrfs_clear_path_blocking(path, next,
5567 							  BTRFS_READ_LOCK);
5568 			}
5569 			next_rw_lock = BTRFS_READ_LOCK;
5570 		}
5571 		break;
5572 	}
5573 	path->slots[level] = slot;
5574 	while (1) {
5575 		level--;
5576 		c = path->nodes[level];
5577 		if (path->locks[level])
5578 			btrfs_tree_unlock_rw(c, path->locks[level]);
5579 
5580 		free_extent_buffer(c);
5581 		path->nodes[level] = next;
5582 		path->slots[level] = 0;
5583 		if (!path->skip_locking)
5584 			path->locks[level] = next_rw_lock;
5585 		if (!level)
5586 			break;
5587 
5588 		ret = read_block_for_search(NULL, root, path, &next, level,
5589 					    0, &key, 0);
5590 		if (ret == -EAGAIN)
5591 			goto again;
5592 
5593 		if (ret < 0) {
5594 			btrfs_release_path(path);
5595 			goto done;
5596 		}
5597 
5598 		if (!path->skip_locking) {
5599 			ret = btrfs_try_tree_read_lock(next);
5600 			if (!ret) {
5601 				btrfs_set_path_blocking(path);
5602 				btrfs_tree_read_lock(next);
5603 				btrfs_clear_path_blocking(path, next,
5604 							  BTRFS_READ_LOCK);
5605 			}
5606 			next_rw_lock = BTRFS_READ_LOCK;
5607 		}
5608 	}
5609 	ret = 0;
5610 done:
5611 	unlock_up(path, 0, 1, 0, NULL);
5612 	path->leave_spinning = old_spinning;
5613 	if (!old_spinning)
5614 		btrfs_set_path_blocking(path);
5615 
5616 	return ret;
5617 }
5618 
5619 /*
5620  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5621  * searching until it gets past min_objectid or finds an item of 'type'
5622  *
5623  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5624  */
5625 int btrfs_previous_item(struct btrfs_root *root,
5626 			struct btrfs_path *path, u64 min_objectid,
5627 			int type)
5628 {
5629 	struct btrfs_key found_key;
5630 	struct extent_buffer *leaf;
5631 	u32 nritems;
5632 	int ret;
5633 
5634 	while (1) {
5635 		if (path->slots[0] == 0) {
5636 			btrfs_set_path_blocking(path);
5637 			ret = btrfs_prev_leaf(root, path);
5638 			if (ret != 0)
5639 				return ret;
5640 		} else {
5641 			path->slots[0]--;
5642 		}
5643 		leaf = path->nodes[0];
5644 		nritems = btrfs_header_nritems(leaf);
5645 		if (nritems == 0)
5646 			return 1;
5647 		if (path->slots[0] == nritems)
5648 			path->slots[0]--;
5649 
5650 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5651 		if (found_key.objectid < min_objectid)
5652 			break;
5653 		if (found_key.type == type)
5654 			return 0;
5655 		if (found_key.objectid == min_objectid &&
5656 		    found_key.type < type)
5657 			break;
5658 	}
5659 	return 1;
5660 }
5661