xref: /openbmc/linux/fs/btrfs/ctree.c (revision 498456d33e2ee5150f045e604e4531b088083e7a)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 		    int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 				 struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	struct btrfs_path *path;
49 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 	return path;
51 }
52 
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 	int i;
60 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 		if (!p->nodes[i] || !p->locks[i])
62 			continue;
63 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 		if (p->locks[i] == BTRFS_READ_LOCK)
65 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 	}
69 }
70 
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 					struct extent_buffer *held, int held_rw)
81 {
82 	int i;
83 
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85 	/* lockdep really cares that we take all of these spinlocks
86 	 * in the right order.  If any of the locks in the path are not
87 	 * currently blocking, it is going to complain.  So, make really
88 	 * really sure by forcing the path to blocking before we clear
89 	 * the path blocking.
90 	 */
91 	if (held) {
92 		btrfs_set_lock_blocking_rw(held, held_rw);
93 		if (held_rw == BTRFS_WRITE_LOCK)
94 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95 		else if (held_rw == BTRFS_READ_LOCK)
96 			held_rw = BTRFS_READ_LOCK_BLOCKING;
97 	}
98 	btrfs_set_path_blocking(p);
99 #endif
100 
101 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102 		if (p->nodes[i] && p->locks[i]) {
103 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105 				p->locks[i] = BTRFS_WRITE_LOCK;
106 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107 				p->locks[i] = BTRFS_READ_LOCK;
108 		}
109 	}
110 
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112 	if (held)
113 		btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116 
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120 	if (!p)
121 		return;
122 	btrfs_release_path(p);
123 	kmem_cache_free(btrfs_path_cachep, p);
124 }
125 
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134 	int i;
135 
136 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137 		p->slots[i] = 0;
138 		if (!p->nodes[i])
139 			continue;
140 		if (p->locks[i]) {
141 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142 			p->locks[i] = 0;
143 		}
144 		free_extent_buffer(p->nodes[i]);
145 		p->nodes[i] = NULL;
146 	}
147 }
148 
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161 	struct extent_buffer *eb;
162 
163 	while (1) {
164 		rcu_read_lock();
165 		eb = rcu_dereference(root->node);
166 
167 		/*
168 		 * RCU really hurts here, we could free up the root node because
169 		 * it was cow'ed but we may not get the new root node yet so do
170 		 * the inc_not_zero dance and if it doesn't work then
171 		 * synchronize_rcu and try again.
172 		 */
173 		if (atomic_inc_not_zero(&eb->refs)) {
174 			rcu_read_unlock();
175 			break;
176 		}
177 		rcu_read_unlock();
178 		synchronize_rcu();
179 	}
180 	return eb;
181 }
182 
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189 	struct extent_buffer *eb;
190 
191 	while (1) {
192 		eb = btrfs_root_node(root);
193 		btrfs_tree_lock(eb);
194 		if (eb == root->node)
195 			break;
196 		btrfs_tree_unlock(eb);
197 		free_extent_buffer(eb);
198 	}
199 	return eb;
200 }
201 
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208 	struct extent_buffer *eb;
209 
210 	while (1) {
211 		eb = btrfs_root_node(root);
212 		btrfs_tree_read_lock(eb);
213 		if (eb == root->node)
214 			break;
215 		btrfs_tree_read_unlock(eb);
216 		free_extent_buffer(eb);
217 	}
218 	return eb;
219 }
220 
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227 	spin_lock(&root->fs_info->trans_lock);
228 	if (root->track_dirty && list_empty(&root->dirty_list)) {
229 		list_add(&root->dirty_list,
230 			 &root->fs_info->dirty_cowonly_roots);
231 	}
232 	spin_unlock(&root->fs_info->trans_lock);
233 }
234 
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 		      struct btrfs_root *root,
242 		      struct extent_buffer *buf,
243 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 	struct extent_buffer *cow;
246 	int ret = 0;
247 	int level;
248 	struct btrfs_disk_key disk_key;
249 
250 	WARN_ON(root->ref_cows && trans->transid !=
251 		root->fs_info->running_transaction->transid);
252 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253 
254 	level = btrfs_header_level(buf);
255 	if (level == 0)
256 		btrfs_item_key(buf, &disk_key, 0);
257 	else
258 		btrfs_node_key(buf, &disk_key, 0);
259 
260 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261 				     new_root_objectid, &disk_key, level,
262 				     buf->start, 0);
263 	if (IS_ERR(cow))
264 		return PTR_ERR(cow);
265 
266 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
267 	btrfs_set_header_bytenr(cow, cow->start);
268 	btrfs_set_header_generation(cow, trans->transid);
269 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271 				     BTRFS_HEADER_FLAG_RELOC);
272 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274 	else
275 		btrfs_set_header_owner(cow, new_root_objectid);
276 
277 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
278 			    BTRFS_FSID_SIZE);
279 
280 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
283 	else
284 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
285 
286 	if (ret)
287 		return ret;
288 
289 	btrfs_mark_buffer_dirty(cow);
290 	*cow_ret = cow;
291 	return 0;
292 }
293 
294 enum mod_log_op {
295 	MOD_LOG_KEY_REPLACE,
296 	MOD_LOG_KEY_ADD,
297 	MOD_LOG_KEY_REMOVE,
298 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 	MOD_LOG_MOVE_KEYS,
301 	MOD_LOG_ROOT_REPLACE,
302 };
303 
304 struct tree_mod_move {
305 	int dst_slot;
306 	int nr_items;
307 };
308 
309 struct tree_mod_root {
310 	u64 logical;
311 	u8 level;
312 };
313 
314 struct tree_mod_elem {
315 	struct rb_node node;
316 	u64 index;		/* shifted logical */
317 	u64 seq;
318 	enum mod_log_op op;
319 
320 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 	int slot;
322 
323 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 	u64 generation;
325 
326 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 	struct btrfs_disk_key key;
328 	u64 blockptr;
329 
330 	/* this is used for op == MOD_LOG_MOVE_KEYS */
331 	struct tree_mod_move move;
332 
333 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
334 	struct tree_mod_root old_root;
335 };
336 
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339 	read_lock(&fs_info->tree_mod_log_lock);
340 }
341 
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344 	read_unlock(&fs_info->tree_mod_log_lock);
345 }
346 
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349 	write_lock(&fs_info->tree_mod_log_lock);
350 }
351 
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354 	write_unlock(&fs_info->tree_mod_log_lock);
355 }
356 
357 /*
358  * Increment the upper half of tree_mod_seq, set lower half zero.
359  *
360  * Must be called with fs_info->tree_mod_seq_lock held.
361  */
362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
363 {
364 	u64 seq = atomic64_read(&fs_info->tree_mod_seq);
365 	seq &= 0xffffffff00000000ull;
366 	seq += 1ull << 32;
367 	atomic64_set(&fs_info->tree_mod_seq, seq);
368 	return seq;
369 }
370 
371 /*
372  * Increment the lower half of tree_mod_seq.
373  *
374  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
375  * are generated should not technically require a spin lock here. (Rationale:
376  * incrementing the minor while incrementing the major seq number is between its
377  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
378  * just returns a unique sequence number as usual.) We have decided to leave
379  * that requirement in here and rethink it once we notice it really imposes a
380  * problem on some workload.
381  */
382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
383 {
384 	return atomic64_inc_return(&fs_info->tree_mod_seq);
385 }
386 
387 /*
388  * return the last minor in the previous major tree_mod_seq number
389  */
390 u64 btrfs_tree_mod_seq_prev(u64 seq)
391 {
392 	return (seq & 0xffffffff00000000ull) - 1ull;
393 }
394 
395 /*
396  * This adds a new blocker to the tree mod log's blocker list if the @elem
397  * passed does not already have a sequence number set. So when a caller expects
398  * to record tree modifications, it should ensure to set elem->seq to zero
399  * before calling btrfs_get_tree_mod_seq.
400  * Returns a fresh, unused tree log modification sequence number, even if no new
401  * blocker was added.
402  */
403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
404 			   struct seq_list *elem)
405 {
406 	u64 seq;
407 
408 	tree_mod_log_write_lock(fs_info);
409 	spin_lock(&fs_info->tree_mod_seq_lock);
410 	if (!elem->seq) {
411 		elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
412 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
413 	}
414 	seq = btrfs_inc_tree_mod_seq_minor(fs_info);
415 	spin_unlock(&fs_info->tree_mod_seq_lock);
416 	tree_mod_log_write_unlock(fs_info);
417 
418 	return seq;
419 }
420 
421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
422 			    struct seq_list *elem)
423 {
424 	struct rb_root *tm_root;
425 	struct rb_node *node;
426 	struct rb_node *next;
427 	struct seq_list *cur_elem;
428 	struct tree_mod_elem *tm;
429 	u64 min_seq = (u64)-1;
430 	u64 seq_putting = elem->seq;
431 
432 	if (!seq_putting)
433 		return;
434 
435 	spin_lock(&fs_info->tree_mod_seq_lock);
436 	list_del(&elem->list);
437 	elem->seq = 0;
438 
439 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
440 		if (cur_elem->seq < min_seq) {
441 			if (seq_putting > cur_elem->seq) {
442 				/*
443 				 * blocker with lower sequence number exists, we
444 				 * cannot remove anything from the log
445 				 */
446 				spin_unlock(&fs_info->tree_mod_seq_lock);
447 				return;
448 			}
449 			min_seq = cur_elem->seq;
450 		}
451 	}
452 	spin_unlock(&fs_info->tree_mod_seq_lock);
453 
454 	/*
455 	 * anything that's lower than the lowest existing (read: blocked)
456 	 * sequence number can be removed from the tree.
457 	 */
458 	tree_mod_log_write_lock(fs_info);
459 	tm_root = &fs_info->tree_mod_log;
460 	for (node = rb_first(tm_root); node; node = next) {
461 		next = rb_next(node);
462 		tm = container_of(node, struct tree_mod_elem, node);
463 		if (tm->seq > min_seq)
464 			continue;
465 		rb_erase(node, tm_root);
466 		kfree(tm);
467 	}
468 	tree_mod_log_write_unlock(fs_info);
469 }
470 
471 /*
472  * key order of the log:
473  *       index -> sequence
474  *
475  * the index is the shifted logical of the *new* root node for root replace
476  * operations, or the shifted logical of the affected block for all other
477  * operations.
478  */
479 static noinline int
480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
481 {
482 	struct rb_root *tm_root;
483 	struct rb_node **new;
484 	struct rb_node *parent = NULL;
485 	struct tree_mod_elem *cur;
486 	int ret = 0;
487 
488 	BUG_ON(!tm);
489 
490 	tree_mod_log_write_lock(fs_info);
491 	if (list_empty(&fs_info->tree_mod_seq_list)) {
492 		tree_mod_log_write_unlock(fs_info);
493 		/*
494 		 * Ok we no longer care about logging modifications, free up tm
495 		 * and return 0.  Any callers shouldn't be using tm after
496 		 * calling tree_mod_log_insert, but if they do we can just
497 		 * change this to return a special error code to let the callers
498 		 * do their own thing.
499 		 */
500 		kfree(tm);
501 		return 0;
502 	}
503 
504 	spin_lock(&fs_info->tree_mod_seq_lock);
505 	tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
506 	spin_unlock(&fs_info->tree_mod_seq_lock);
507 
508 	tm_root = &fs_info->tree_mod_log;
509 	new = &tm_root->rb_node;
510 	while (*new) {
511 		cur = container_of(*new, struct tree_mod_elem, node);
512 		parent = *new;
513 		if (cur->index < tm->index)
514 			new = &((*new)->rb_left);
515 		else if (cur->index > tm->index)
516 			new = &((*new)->rb_right);
517 		else if (cur->seq < tm->seq)
518 			new = &((*new)->rb_left);
519 		else if (cur->seq > tm->seq)
520 			new = &((*new)->rb_right);
521 		else {
522 			ret = -EEXIST;
523 			kfree(tm);
524 			goto out;
525 		}
526 	}
527 
528 	rb_link_node(&tm->node, parent, new);
529 	rb_insert_color(&tm->node, tm_root);
530 out:
531 	tree_mod_log_write_unlock(fs_info);
532 	return ret;
533 }
534 
535 /*
536  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
537  * returns zero with the tree_mod_log_lock acquired. The caller must hold
538  * this until all tree mod log insertions are recorded in the rb tree and then
539  * call tree_mod_log_write_unlock() to release.
540  */
541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
542 				    struct extent_buffer *eb) {
543 	smp_mb();
544 	if (list_empty(&(fs_info)->tree_mod_seq_list))
545 		return 1;
546 	if (eb && btrfs_header_level(eb) == 0)
547 		return 1;
548 	return 0;
549 }
550 
551 static inline int
552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
553 			  struct extent_buffer *eb, int slot,
554 			  enum mod_log_op op, gfp_t flags)
555 {
556 	struct tree_mod_elem *tm;
557 
558 	tm = kzalloc(sizeof(*tm), flags);
559 	if (!tm)
560 		return -ENOMEM;
561 
562 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
563 	if (op != MOD_LOG_KEY_ADD) {
564 		btrfs_node_key(eb, &tm->key, slot);
565 		tm->blockptr = btrfs_node_blockptr(eb, slot);
566 	}
567 	tm->op = op;
568 	tm->slot = slot;
569 	tm->generation = btrfs_node_ptr_generation(eb, slot);
570 
571 	return __tree_mod_log_insert(fs_info, tm);
572 }
573 
574 static noinline int
575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
576 			struct extent_buffer *eb, int slot,
577 			enum mod_log_op op, gfp_t flags)
578 {
579 	if (tree_mod_dont_log(fs_info, eb))
580 		return 0;
581 
582 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
583 }
584 
585 static noinline int
586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
587 			 struct extent_buffer *eb, int dst_slot, int src_slot,
588 			 int nr_items, gfp_t flags)
589 {
590 	struct tree_mod_elem *tm;
591 	int ret;
592 	int i;
593 
594 	if (tree_mod_dont_log(fs_info, eb))
595 		return 0;
596 
597 	/*
598 	 * When we override something during the move, we log these removals.
599 	 * This can only happen when we move towards the beginning of the
600 	 * buffer, i.e. dst_slot < src_slot.
601 	 */
602 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
603 		ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
604 				MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
605 		BUG_ON(ret < 0);
606 	}
607 
608 	tm = kzalloc(sizeof(*tm), flags);
609 	if (!tm)
610 		return -ENOMEM;
611 
612 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
613 	tm->slot = src_slot;
614 	tm->move.dst_slot = dst_slot;
615 	tm->move.nr_items = nr_items;
616 	tm->op = MOD_LOG_MOVE_KEYS;
617 
618 	return __tree_mod_log_insert(fs_info, tm);
619 }
620 
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624 	int i;
625 	u32 nritems;
626 	int ret;
627 
628 	if (btrfs_header_level(eb) == 0)
629 		return;
630 
631 	nritems = btrfs_header_nritems(eb);
632 	for (i = nritems - 1; i >= 0; i--) {
633 		ret = __tree_mod_log_insert_key(fs_info, eb, i,
634 				MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
635 		BUG_ON(ret < 0);
636 	}
637 }
638 
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641 			 struct extent_buffer *old_root,
642 			 struct extent_buffer *new_root, gfp_t flags,
643 			 int log_removal)
644 {
645 	struct tree_mod_elem *tm;
646 
647 	if (tree_mod_dont_log(fs_info, NULL))
648 		return 0;
649 
650 	if (log_removal)
651 		__tree_mod_log_free_eb(fs_info, old_root);
652 
653 	tm = kzalloc(sizeof(*tm), flags);
654 	if (!tm)
655 		return -ENOMEM;
656 
657 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
658 	tm->old_root.logical = old_root->start;
659 	tm->old_root.level = btrfs_header_level(old_root);
660 	tm->generation = btrfs_header_generation(old_root);
661 	tm->op = MOD_LOG_ROOT_REPLACE;
662 
663 	return __tree_mod_log_insert(fs_info, tm);
664 }
665 
666 static struct tree_mod_elem *
667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668 		      int smallest)
669 {
670 	struct rb_root *tm_root;
671 	struct rb_node *node;
672 	struct tree_mod_elem *cur = NULL;
673 	struct tree_mod_elem *found = NULL;
674 	u64 index = start >> PAGE_CACHE_SHIFT;
675 
676 	tree_mod_log_read_lock(fs_info);
677 	tm_root = &fs_info->tree_mod_log;
678 	node = tm_root->rb_node;
679 	while (node) {
680 		cur = container_of(node, struct tree_mod_elem, node);
681 		if (cur->index < index) {
682 			node = node->rb_left;
683 		} else if (cur->index > index) {
684 			node = node->rb_right;
685 		} else if (cur->seq < min_seq) {
686 			node = node->rb_left;
687 		} else if (!smallest) {
688 			/* we want the node with the highest seq */
689 			if (found)
690 				BUG_ON(found->seq > cur->seq);
691 			found = cur;
692 			node = node->rb_left;
693 		} else if (cur->seq > min_seq) {
694 			/* we want the node with the smallest seq */
695 			if (found)
696 				BUG_ON(found->seq < cur->seq);
697 			found = cur;
698 			node = node->rb_right;
699 		} else {
700 			found = cur;
701 			break;
702 		}
703 	}
704 	tree_mod_log_read_unlock(fs_info);
705 
706 	return found;
707 }
708 
709 /*
710  * this returns the element from the log with the smallest time sequence
711  * value that's in the log (the oldest log item). any element with a time
712  * sequence lower than min_seq will be ignored.
713  */
714 static struct tree_mod_elem *
715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
716 			   u64 min_seq)
717 {
718 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 }
720 
721 /*
722  * this returns the element from the log with the largest time sequence
723  * value that's in the log (the most recent log item). any element with
724  * a time sequence lower than min_seq will be ignored.
725  */
726 static struct tree_mod_elem *
727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
728 {
729 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
730 }
731 
732 static noinline void
733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
734 		     struct extent_buffer *src, unsigned long dst_offset,
735 		     unsigned long src_offset, int nr_items)
736 {
737 	int ret;
738 	int i;
739 
740 	if (tree_mod_dont_log(fs_info, NULL))
741 		return;
742 
743 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
744 		return;
745 
746 	for (i = 0; i < nr_items; i++) {
747 		ret = __tree_mod_log_insert_key(fs_info, src,
748 						i + src_offset,
749 						MOD_LOG_KEY_REMOVE, GFP_NOFS);
750 		BUG_ON(ret < 0);
751 		ret = __tree_mod_log_insert_key(fs_info, dst,
752 						     i + dst_offset,
753 						     MOD_LOG_KEY_ADD,
754 						     GFP_NOFS);
755 		BUG_ON(ret < 0);
756 	}
757 }
758 
759 static inline void
760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
761 		     int dst_offset, int src_offset, int nr_items)
762 {
763 	int ret;
764 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
765 				       nr_items, GFP_NOFS);
766 	BUG_ON(ret < 0);
767 }
768 
769 static noinline void
770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
771 			  struct extent_buffer *eb, int slot, int atomic)
772 {
773 	int ret;
774 
775 	ret = __tree_mod_log_insert_key(fs_info, eb, slot,
776 					MOD_LOG_KEY_REPLACE,
777 					atomic ? GFP_ATOMIC : GFP_NOFS);
778 	BUG_ON(ret < 0);
779 }
780 
781 static noinline void
782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
783 {
784 	if (tree_mod_dont_log(fs_info, eb))
785 		return;
786 	__tree_mod_log_free_eb(fs_info, eb);
787 }
788 
789 static noinline void
790 tree_mod_log_set_root_pointer(struct btrfs_root *root,
791 			      struct extent_buffer *new_root_node,
792 			      int log_removal)
793 {
794 	int ret;
795 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
796 				       new_root_node, GFP_NOFS, log_removal);
797 	BUG_ON(ret < 0);
798 }
799 
800 /*
801  * check if the tree block can be shared by multiple trees
802  */
803 int btrfs_block_can_be_shared(struct btrfs_root *root,
804 			      struct extent_buffer *buf)
805 {
806 	/*
807 	 * Tree blocks not in refernece counted trees and tree roots
808 	 * are never shared. If a block was allocated after the last
809 	 * snapshot and the block was not allocated by tree relocation,
810 	 * we know the block is not shared.
811 	 */
812 	if (root->ref_cows &&
813 	    buf != root->node && buf != root->commit_root &&
814 	    (btrfs_header_generation(buf) <=
815 	     btrfs_root_last_snapshot(&root->root_item) ||
816 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
817 		return 1;
818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819 	if (root->ref_cows &&
820 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
821 		return 1;
822 #endif
823 	return 0;
824 }
825 
826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
827 				       struct btrfs_root *root,
828 				       struct extent_buffer *buf,
829 				       struct extent_buffer *cow,
830 				       int *last_ref)
831 {
832 	u64 refs;
833 	u64 owner;
834 	u64 flags;
835 	u64 new_flags = 0;
836 	int ret;
837 
838 	/*
839 	 * Backrefs update rules:
840 	 *
841 	 * Always use full backrefs for extent pointers in tree block
842 	 * allocated by tree relocation.
843 	 *
844 	 * If a shared tree block is no longer referenced by its owner
845 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
846 	 * use full backrefs for extent pointers in tree block.
847 	 *
848 	 * If a tree block is been relocating
849 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
850 	 * use full backrefs for extent pointers in tree block.
851 	 * The reason for this is some operations (such as drop tree)
852 	 * are only allowed for blocks use full backrefs.
853 	 */
854 
855 	if (btrfs_block_can_be_shared(root, buf)) {
856 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
857 					       btrfs_header_level(buf), 1,
858 					       &refs, &flags);
859 		if (ret)
860 			return ret;
861 		if (refs == 0) {
862 			ret = -EROFS;
863 			btrfs_std_error(root->fs_info, ret);
864 			return ret;
865 		}
866 	} else {
867 		refs = 1;
868 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
869 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
870 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
871 		else
872 			flags = 0;
873 	}
874 
875 	owner = btrfs_header_owner(buf);
876 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
877 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
878 
879 	if (refs > 1) {
880 		if ((owner == root->root_key.objectid ||
881 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
882 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
883 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
884 			BUG_ON(ret); /* -ENOMEM */
885 
886 			if (root->root_key.objectid ==
887 			    BTRFS_TREE_RELOC_OBJECTID) {
888 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
889 				BUG_ON(ret); /* -ENOMEM */
890 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
891 				BUG_ON(ret); /* -ENOMEM */
892 			}
893 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
894 		} else {
895 
896 			if (root->root_key.objectid ==
897 			    BTRFS_TREE_RELOC_OBJECTID)
898 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899 			else
900 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
901 			BUG_ON(ret); /* -ENOMEM */
902 		}
903 		if (new_flags != 0) {
904 			int level = btrfs_header_level(buf);
905 
906 			ret = btrfs_set_disk_extent_flags(trans, root,
907 							  buf->start,
908 							  buf->len,
909 							  new_flags, level, 0);
910 			if (ret)
911 				return ret;
912 		}
913 	} else {
914 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
915 			if (root->root_key.objectid ==
916 			    BTRFS_TREE_RELOC_OBJECTID)
917 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
918 			else
919 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
920 			BUG_ON(ret); /* -ENOMEM */
921 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
922 			BUG_ON(ret); /* -ENOMEM */
923 		}
924 		clean_tree_block(trans, root, buf);
925 		*last_ref = 1;
926 	}
927 	return 0;
928 }
929 
930 /*
931  * does the dirty work in cow of a single block.  The parent block (if
932  * supplied) is updated to point to the new cow copy.  The new buffer is marked
933  * dirty and returned locked.  If you modify the block it needs to be marked
934  * dirty again.
935  *
936  * search_start -- an allocation hint for the new block
937  *
938  * empty_size -- a hint that you plan on doing more cow.  This is the size in
939  * bytes the allocator should try to find free next to the block it returns.
940  * This is just a hint and may be ignored by the allocator.
941  */
942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
943 			     struct btrfs_root *root,
944 			     struct extent_buffer *buf,
945 			     struct extent_buffer *parent, int parent_slot,
946 			     struct extent_buffer **cow_ret,
947 			     u64 search_start, u64 empty_size)
948 {
949 	struct btrfs_disk_key disk_key;
950 	struct extent_buffer *cow;
951 	int level, ret;
952 	int last_ref = 0;
953 	int unlock_orig = 0;
954 	u64 parent_start;
955 
956 	if (*cow_ret == buf)
957 		unlock_orig = 1;
958 
959 	btrfs_assert_tree_locked(buf);
960 
961 	WARN_ON(root->ref_cows && trans->transid !=
962 		root->fs_info->running_transaction->transid);
963 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
964 
965 	level = btrfs_header_level(buf);
966 
967 	if (level == 0)
968 		btrfs_item_key(buf, &disk_key, 0);
969 	else
970 		btrfs_node_key(buf, &disk_key, 0);
971 
972 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
973 		if (parent)
974 			parent_start = parent->start;
975 		else
976 			parent_start = 0;
977 	} else
978 		parent_start = 0;
979 
980 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
981 				     root->root_key.objectid, &disk_key,
982 				     level, search_start, empty_size);
983 	if (IS_ERR(cow))
984 		return PTR_ERR(cow);
985 
986 	/* cow is set to blocking by btrfs_init_new_buffer */
987 
988 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
989 	btrfs_set_header_bytenr(cow, cow->start);
990 	btrfs_set_header_generation(cow, trans->transid);
991 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
992 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
993 				     BTRFS_HEADER_FLAG_RELOC);
994 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
995 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
996 	else
997 		btrfs_set_header_owner(cow, root->root_key.objectid);
998 
999 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1000 			    BTRFS_FSID_SIZE);
1001 
1002 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1003 	if (ret) {
1004 		btrfs_abort_transaction(trans, root, ret);
1005 		return ret;
1006 	}
1007 
1008 	if (root->ref_cows) {
1009 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1010 		if (ret)
1011 			return ret;
1012 	}
1013 
1014 	if (buf == root->node) {
1015 		WARN_ON(parent && parent != buf);
1016 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1017 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1018 			parent_start = buf->start;
1019 		else
1020 			parent_start = 0;
1021 
1022 		extent_buffer_get(cow);
1023 		tree_mod_log_set_root_pointer(root, cow, 1);
1024 		rcu_assign_pointer(root->node, cow);
1025 
1026 		btrfs_free_tree_block(trans, root, buf, parent_start,
1027 				      last_ref);
1028 		free_extent_buffer(buf);
1029 		add_root_to_dirty_list(root);
1030 	} else {
1031 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1032 			parent_start = parent->start;
1033 		else
1034 			parent_start = 0;
1035 
1036 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1037 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1038 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1039 		btrfs_set_node_blockptr(parent, parent_slot,
1040 					cow->start);
1041 		btrfs_set_node_ptr_generation(parent, parent_slot,
1042 					      trans->transid);
1043 		btrfs_mark_buffer_dirty(parent);
1044 		if (last_ref)
1045 			tree_mod_log_free_eb(root->fs_info, buf);
1046 		btrfs_free_tree_block(trans, root, buf, parent_start,
1047 				      last_ref);
1048 	}
1049 	if (unlock_orig)
1050 		btrfs_tree_unlock(buf);
1051 	free_extent_buffer_stale(buf);
1052 	btrfs_mark_buffer_dirty(cow);
1053 	*cow_ret = cow;
1054 	return 0;
1055 }
1056 
1057 /*
1058  * returns the logical address of the oldest predecessor of the given root.
1059  * entries older than time_seq are ignored.
1060  */
1061 static struct tree_mod_elem *
1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1063 			   struct extent_buffer *eb_root, u64 time_seq)
1064 {
1065 	struct tree_mod_elem *tm;
1066 	struct tree_mod_elem *found = NULL;
1067 	u64 root_logical = eb_root->start;
1068 	int looped = 0;
1069 
1070 	if (!time_seq)
1071 		return NULL;
1072 
1073 	/*
1074 	 * the very last operation that's logged for a root is the replacement
1075 	 * operation (if it is replaced at all). this has the index of the *new*
1076 	 * root, making it the very first operation that's logged for this root.
1077 	 */
1078 	while (1) {
1079 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1080 						time_seq);
1081 		if (!looped && !tm)
1082 			return NULL;
1083 		/*
1084 		 * if there are no tree operation for the oldest root, we simply
1085 		 * return it. this should only happen if that (old) root is at
1086 		 * level 0.
1087 		 */
1088 		if (!tm)
1089 			break;
1090 
1091 		/*
1092 		 * if there's an operation that's not a root replacement, we
1093 		 * found the oldest version of our root. normally, we'll find a
1094 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1095 		 */
1096 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1097 			break;
1098 
1099 		found = tm;
1100 		root_logical = tm->old_root.logical;
1101 		looped = 1;
1102 	}
1103 
1104 	/* if there's no old root to return, return what we found instead */
1105 	if (!found)
1106 		found = tm;
1107 
1108 	return found;
1109 }
1110 
1111 /*
1112  * tm is a pointer to the first operation to rewind within eb. then, all
1113  * previous operations will be rewinded (until we reach something older than
1114  * time_seq).
1115  */
1116 static void
1117 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1118 		      u64 time_seq, struct tree_mod_elem *first_tm)
1119 {
1120 	u32 n;
1121 	struct rb_node *next;
1122 	struct tree_mod_elem *tm = first_tm;
1123 	unsigned long o_dst;
1124 	unsigned long o_src;
1125 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1126 
1127 	n = btrfs_header_nritems(eb);
1128 	tree_mod_log_read_lock(fs_info);
1129 	while (tm && tm->seq >= time_seq) {
1130 		/*
1131 		 * all the operations are recorded with the operator used for
1132 		 * the modification. as we're going backwards, we do the
1133 		 * opposite of each operation here.
1134 		 */
1135 		switch (tm->op) {
1136 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1137 			BUG_ON(tm->slot < n);
1138 			/* Fallthrough */
1139 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1140 		case MOD_LOG_KEY_REMOVE:
1141 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1142 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1143 			btrfs_set_node_ptr_generation(eb, tm->slot,
1144 						      tm->generation);
1145 			n++;
1146 			break;
1147 		case MOD_LOG_KEY_REPLACE:
1148 			BUG_ON(tm->slot >= n);
1149 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1150 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1151 			btrfs_set_node_ptr_generation(eb, tm->slot,
1152 						      tm->generation);
1153 			break;
1154 		case MOD_LOG_KEY_ADD:
1155 			/* if a move operation is needed it's in the log */
1156 			n--;
1157 			break;
1158 		case MOD_LOG_MOVE_KEYS:
1159 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1160 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1161 			memmove_extent_buffer(eb, o_dst, o_src,
1162 					      tm->move.nr_items * p_size);
1163 			break;
1164 		case MOD_LOG_ROOT_REPLACE:
1165 			/*
1166 			 * this operation is special. for roots, this must be
1167 			 * handled explicitly before rewinding.
1168 			 * for non-roots, this operation may exist if the node
1169 			 * was a root: root A -> child B; then A gets empty and
1170 			 * B is promoted to the new root. in the mod log, we'll
1171 			 * have a root-replace operation for B, a tree block
1172 			 * that is no root. we simply ignore that operation.
1173 			 */
1174 			break;
1175 		}
1176 		next = rb_next(&tm->node);
1177 		if (!next)
1178 			break;
1179 		tm = container_of(next, struct tree_mod_elem, node);
1180 		if (tm->index != first_tm->index)
1181 			break;
1182 	}
1183 	tree_mod_log_read_unlock(fs_info);
1184 	btrfs_set_header_nritems(eb, n);
1185 }
1186 
1187 /*
1188  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1189  * is returned. If rewind operations happen, a fresh buffer is returned. The
1190  * returned buffer is always read-locked. If the returned buffer is not the
1191  * input buffer, the lock on the input buffer is released and the input buffer
1192  * is freed (its refcount is decremented).
1193  */
1194 static struct extent_buffer *
1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1196 		    struct extent_buffer *eb, u64 time_seq)
1197 {
1198 	struct extent_buffer *eb_rewin;
1199 	struct tree_mod_elem *tm;
1200 
1201 	if (!time_seq)
1202 		return eb;
1203 
1204 	if (btrfs_header_level(eb) == 0)
1205 		return eb;
1206 
1207 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1208 	if (!tm)
1209 		return eb;
1210 
1211 	btrfs_set_path_blocking(path);
1212 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1213 
1214 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1215 		BUG_ON(tm->slot != 0);
1216 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1217 						fs_info->tree_root->nodesize);
1218 		if (!eb_rewin) {
1219 			btrfs_tree_read_unlock_blocking(eb);
1220 			free_extent_buffer(eb);
1221 			return NULL;
1222 		}
1223 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1224 		btrfs_set_header_backref_rev(eb_rewin,
1225 					     btrfs_header_backref_rev(eb));
1226 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1227 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1228 	} else {
1229 		eb_rewin = btrfs_clone_extent_buffer(eb);
1230 		if (!eb_rewin) {
1231 			btrfs_tree_read_unlock_blocking(eb);
1232 			free_extent_buffer(eb);
1233 			return NULL;
1234 		}
1235 	}
1236 
1237 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1238 	btrfs_tree_read_unlock_blocking(eb);
1239 	free_extent_buffer(eb);
1240 
1241 	extent_buffer_get(eb_rewin);
1242 	btrfs_tree_read_lock(eb_rewin);
1243 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1244 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1245 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1246 
1247 	return eb_rewin;
1248 }
1249 
1250 /*
1251  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1252  * value. If there are no changes, the current root->root_node is returned. If
1253  * anything changed in between, there's a fresh buffer allocated on which the
1254  * rewind operations are done. In any case, the returned buffer is read locked.
1255  * Returns NULL on error (with no locks held).
1256  */
1257 static inline struct extent_buffer *
1258 get_old_root(struct btrfs_root *root, u64 time_seq)
1259 {
1260 	struct tree_mod_elem *tm;
1261 	struct extent_buffer *eb = NULL;
1262 	struct extent_buffer *eb_root;
1263 	struct extent_buffer *old;
1264 	struct tree_mod_root *old_root = NULL;
1265 	u64 old_generation = 0;
1266 	u64 logical;
1267 	u32 blocksize;
1268 
1269 	eb_root = btrfs_read_lock_root_node(root);
1270 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1271 	if (!tm)
1272 		return eb_root;
1273 
1274 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1275 		old_root = &tm->old_root;
1276 		old_generation = tm->generation;
1277 		logical = old_root->logical;
1278 	} else {
1279 		logical = eb_root->start;
1280 	}
1281 
1282 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1283 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1284 		btrfs_tree_read_unlock(eb_root);
1285 		free_extent_buffer(eb_root);
1286 		blocksize = btrfs_level_size(root, old_root->level);
1287 		old = read_tree_block(root, logical, blocksize, 0);
1288 		if (!old || !extent_buffer_uptodate(old)) {
1289 			free_extent_buffer(old);
1290 			pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1291 				logical);
1292 			WARN_ON(1);
1293 		} else {
1294 			eb = btrfs_clone_extent_buffer(old);
1295 			free_extent_buffer(old);
1296 		}
1297 	} else if (old_root) {
1298 		btrfs_tree_read_unlock(eb_root);
1299 		free_extent_buffer(eb_root);
1300 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1301 	} else {
1302 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1303 		eb = btrfs_clone_extent_buffer(eb_root);
1304 		btrfs_tree_read_unlock_blocking(eb_root);
1305 		free_extent_buffer(eb_root);
1306 	}
1307 
1308 	if (!eb)
1309 		return NULL;
1310 	extent_buffer_get(eb);
1311 	btrfs_tree_read_lock(eb);
1312 	if (old_root) {
1313 		btrfs_set_header_bytenr(eb, eb->start);
1314 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1315 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1316 		btrfs_set_header_level(eb, old_root->level);
1317 		btrfs_set_header_generation(eb, old_generation);
1318 	}
1319 	if (tm)
1320 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1321 	else
1322 		WARN_ON(btrfs_header_level(eb) != 0);
1323 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1324 
1325 	return eb;
1326 }
1327 
1328 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1329 {
1330 	struct tree_mod_elem *tm;
1331 	int level;
1332 	struct extent_buffer *eb_root = btrfs_root_node(root);
1333 
1334 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1335 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1336 		level = tm->old_root.level;
1337 	} else {
1338 		level = btrfs_header_level(eb_root);
1339 	}
1340 	free_extent_buffer(eb_root);
1341 
1342 	return level;
1343 }
1344 
1345 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1346 				   struct btrfs_root *root,
1347 				   struct extent_buffer *buf)
1348 {
1349 	/* ensure we can see the force_cow */
1350 	smp_rmb();
1351 
1352 	/*
1353 	 * We do not need to cow a block if
1354 	 * 1) this block is not created or changed in this transaction;
1355 	 * 2) this block does not belong to TREE_RELOC tree;
1356 	 * 3) the root is not forced COW.
1357 	 *
1358 	 * What is forced COW:
1359 	 *    when we create snapshot during commiting the transaction,
1360 	 *    after we've finished coping src root, we must COW the shared
1361 	 *    block to ensure the metadata consistency.
1362 	 */
1363 	if (btrfs_header_generation(buf) == trans->transid &&
1364 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1365 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1366 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1367 	    !root->force_cow)
1368 		return 0;
1369 	return 1;
1370 }
1371 
1372 /*
1373  * cows a single block, see __btrfs_cow_block for the real work.
1374  * This version of it has extra checks so that a block isn't cow'd more than
1375  * once per transaction, as long as it hasn't been written yet
1376  */
1377 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1378 		    struct btrfs_root *root, struct extent_buffer *buf,
1379 		    struct extent_buffer *parent, int parent_slot,
1380 		    struct extent_buffer **cow_ret)
1381 {
1382 	u64 search_start;
1383 	int ret;
1384 
1385 	if (trans->transaction != root->fs_info->running_transaction)
1386 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1387 		       trans->transid,
1388 		       root->fs_info->running_transaction->transid);
1389 
1390 	if (trans->transid != root->fs_info->generation)
1391 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1392 		       trans->transid, root->fs_info->generation);
1393 
1394 	if (!should_cow_block(trans, root, buf)) {
1395 		*cow_ret = buf;
1396 		return 0;
1397 	}
1398 
1399 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1400 
1401 	if (parent)
1402 		btrfs_set_lock_blocking(parent);
1403 	btrfs_set_lock_blocking(buf);
1404 
1405 	ret = __btrfs_cow_block(trans, root, buf, parent,
1406 				 parent_slot, cow_ret, search_start, 0);
1407 
1408 	trace_btrfs_cow_block(root, buf, *cow_ret);
1409 
1410 	return ret;
1411 }
1412 
1413 /*
1414  * helper function for defrag to decide if two blocks pointed to by a
1415  * node are actually close by
1416  */
1417 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1418 {
1419 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1420 		return 1;
1421 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1422 		return 1;
1423 	return 0;
1424 }
1425 
1426 /*
1427  * compare two keys in a memcmp fashion
1428  */
1429 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1430 {
1431 	struct btrfs_key k1;
1432 
1433 	btrfs_disk_key_to_cpu(&k1, disk);
1434 
1435 	return btrfs_comp_cpu_keys(&k1, k2);
1436 }
1437 
1438 /*
1439  * same as comp_keys only with two btrfs_key's
1440  */
1441 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1442 {
1443 	if (k1->objectid > k2->objectid)
1444 		return 1;
1445 	if (k1->objectid < k2->objectid)
1446 		return -1;
1447 	if (k1->type > k2->type)
1448 		return 1;
1449 	if (k1->type < k2->type)
1450 		return -1;
1451 	if (k1->offset > k2->offset)
1452 		return 1;
1453 	if (k1->offset < k2->offset)
1454 		return -1;
1455 	return 0;
1456 }
1457 
1458 /*
1459  * this is used by the defrag code to go through all the
1460  * leaves pointed to by a node and reallocate them so that
1461  * disk order is close to key order
1462  */
1463 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1464 		       struct btrfs_root *root, struct extent_buffer *parent,
1465 		       int start_slot, u64 *last_ret,
1466 		       struct btrfs_key *progress)
1467 {
1468 	struct extent_buffer *cur;
1469 	u64 blocknr;
1470 	u64 gen;
1471 	u64 search_start = *last_ret;
1472 	u64 last_block = 0;
1473 	u64 other;
1474 	u32 parent_nritems;
1475 	int end_slot;
1476 	int i;
1477 	int err = 0;
1478 	int parent_level;
1479 	int uptodate;
1480 	u32 blocksize;
1481 	int progress_passed = 0;
1482 	struct btrfs_disk_key disk_key;
1483 
1484 	parent_level = btrfs_header_level(parent);
1485 
1486 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1487 	WARN_ON(trans->transid != root->fs_info->generation);
1488 
1489 	parent_nritems = btrfs_header_nritems(parent);
1490 	blocksize = btrfs_level_size(root, parent_level - 1);
1491 	end_slot = parent_nritems;
1492 
1493 	if (parent_nritems == 1)
1494 		return 0;
1495 
1496 	btrfs_set_lock_blocking(parent);
1497 
1498 	for (i = start_slot; i < end_slot; i++) {
1499 		int close = 1;
1500 
1501 		btrfs_node_key(parent, &disk_key, i);
1502 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1503 			continue;
1504 
1505 		progress_passed = 1;
1506 		blocknr = btrfs_node_blockptr(parent, i);
1507 		gen = btrfs_node_ptr_generation(parent, i);
1508 		if (last_block == 0)
1509 			last_block = blocknr;
1510 
1511 		if (i > 0) {
1512 			other = btrfs_node_blockptr(parent, i - 1);
1513 			close = close_blocks(blocknr, other, blocksize);
1514 		}
1515 		if (!close && i < end_slot - 2) {
1516 			other = btrfs_node_blockptr(parent, i + 1);
1517 			close = close_blocks(blocknr, other, blocksize);
1518 		}
1519 		if (close) {
1520 			last_block = blocknr;
1521 			continue;
1522 		}
1523 
1524 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1525 		if (cur)
1526 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1527 		else
1528 			uptodate = 0;
1529 		if (!cur || !uptodate) {
1530 			if (!cur) {
1531 				cur = read_tree_block(root, blocknr,
1532 							 blocksize, gen);
1533 				if (!cur || !extent_buffer_uptodate(cur)) {
1534 					free_extent_buffer(cur);
1535 					return -EIO;
1536 				}
1537 			} else if (!uptodate) {
1538 				err = btrfs_read_buffer(cur, gen);
1539 				if (err) {
1540 					free_extent_buffer(cur);
1541 					return err;
1542 				}
1543 			}
1544 		}
1545 		if (search_start == 0)
1546 			search_start = last_block;
1547 
1548 		btrfs_tree_lock(cur);
1549 		btrfs_set_lock_blocking(cur);
1550 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1551 					&cur, search_start,
1552 					min(16 * blocksize,
1553 					    (end_slot - i) * blocksize));
1554 		if (err) {
1555 			btrfs_tree_unlock(cur);
1556 			free_extent_buffer(cur);
1557 			break;
1558 		}
1559 		search_start = cur->start;
1560 		last_block = cur->start;
1561 		*last_ret = search_start;
1562 		btrfs_tree_unlock(cur);
1563 		free_extent_buffer(cur);
1564 	}
1565 	return err;
1566 }
1567 
1568 /*
1569  * The leaf data grows from end-to-front in the node.
1570  * this returns the address of the start of the last item,
1571  * which is the stop of the leaf data stack
1572  */
1573 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1574 					 struct extent_buffer *leaf)
1575 {
1576 	u32 nr = btrfs_header_nritems(leaf);
1577 	if (nr == 0)
1578 		return BTRFS_LEAF_DATA_SIZE(root);
1579 	return btrfs_item_offset_nr(leaf, nr - 1);
1580 }
1581 
1582 
1583 /*
1584  * search for key in the extent_buffer.  The items start at offset p,
1585  * and they are item_size apart.  There are 'max' items in p.
1586  *
1587  * the slot in the array is returned via slot, and it points to
1588  * the place where you would insert key if it is not found in
1589  * the array.
1590  *
1591  * slot may point to max if the key is bigger than all of the keys
1592  */
1593 static noinline int generic_bin_search(struct extent_buffer *eb,
1594 				       unsigned long p,
1595 				       int item_size, struct btrfs_key *key,
1596 				       int max, int *slot)
1597 {
1598 	int low = 0;
1599 	int high = max;
1600 	int mid;
1601 	int ret;
1602 	struct btrfs_disk_key *tmp = NULL;
1603 	struct btrfs_disk_key unaligned;
1604 	unsigned long offset;
1605 	char *kaddr = NULL;
1606 	unsigned long map_start = 0;
1607 	unsigned long map_len = 0;
1608 	int err;
1609 
1610 	while (low < high) {
1611 		mid = (low + high) / 2;
1612 		offset = p + mid * item_size;
1613 
1614 		if (!kaddr || offset < map_start ||
1615 		    (offset + sizeof(struct btrfs_disk_key)) >
1616 		    map_start + map_len) {
1617 
1618 			err = map_private_extent_buffer(eb, offset,
1619 						sizeof(struct btrfs_disk_key),
1620 						&kaddr, &map_start, &map_len);
1621 
1622 			if (!err) {
1623 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1624 							map_start);
1625 			} else {
1626 				read_extent_buffer(eb, &unaligned,
1627 						   offset, sizeof(unaligned));
1628 				tmp = &unaligned;
1629 			}
1630 
1631 		} else {
1632 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1633 							map_start);
1634 		}
1635 		ret = comp_keys(tmp, key);
1636 
1637 		if (ret < 0)
1638 			low = mid + 1;
1639 		else if (ret > 0)
1640 			high = mid;
1641 		else {
1642 			*slot = mid;
1643 			return 0;
1644 		}
1645 	}
1646 	*slot = low;
1647 	return 1;
1648 }
1649 
1650 /*
1651  * simple bin_search frontend that does the right thing for
1652  * leaves vs nodes
1653  */
1654 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1655 		      int level, int *slot)
1656 {
1657 	if (level == 0)
1658 		return generic_bin_search(eb,
1659 					  offsetof(struct btrfs_leaf, items),
1660 					  sizeof(struct btrfs_item),
1661 					  key, btrfs_header_nritems(eb),
1662 					  slot);
1663 	else
1664 		return generic_bin_search(eb,
1665 					  offsetof(struct btrfs_node, ptrs),
1666 					  sizeof(struct btrfs_key_ptr),
1667 					  key, btrfs_header_nritems(eb),
1668 					  slot);
1669 }
1670 
1671 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1672 		     int level, int *slot)
1673 {
1674 	return bin_search(eb, key, level, slot);
1675 }
1676 
1677 static void root_add_used(struct btrfs_root *root, u32 size)
1678 {
1679 	spin_lock(&root->accounting_lock);
1680 	btrfs_set_root_used(&root->root_item,
1681 			    btrfs_root_used(&root->root_item) + size);
1682 	spin_unlock(&root->accounting_lock);
1683 }
1684 
1685 static void root_sub_used(struct btrfs_root *root, u32 size)
1686 {
1687 	spin_lock(&root->accounting_lock);
1688 	btrfs_set_root_used(&root->root_item,
1689 			    btrfs_root_used(&root->root_item) - size);
1690 	spin_unlock(&root->accounting_lock);
1691 }
1692 
1693 /* given a node and slot number, this reads the blocks it points to.  The
1694  * extent buffer is returned with a reference taken (but unlocked).
1695  * NULL is returned on error.
1696  */
1697 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1698 				   struct extent_buffer *parent, int slot)
1699 {
1700 	int level = btrfs_header_level(parent);
1701 	struct extent_buffer *eb;
1702 
1703 	if (slot < 0)
1704 		return NULL;
1705 	if (slot >= btrfs_header_nritems(parent))
1706 		return NULL;
1707 
1708 	BUG_ON(level == 0);
1709 
1710 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1711 			     btrfs_level_size(root, level - 1),
1712 			     btrfs_node_ptr_generation(parent, slot));
1713 	if (eb && !extent_buffer_uptodate(eb)) {
1714 		free_extent_buffer(eb);
1715 		eb = NULL;
1716 	}
1717 
1718 	return eb;
1719 }
1720 
1721 /*
1722  * node level balancing, used to make sure nodes are in proper order for
1723  * item deletion.  We balance from the top down, so we have to make sure
1724  * that a deletion won't leave an node completely empty later on.
1725  */
1726 static noinline int balance_level(struct btrfs_trans_handle *trans,
1727 			 struct btrfs_root *root,
1728 			 struct btrfs_path *path, int level)
1729 {
1730 	struct extent_buffer *right = NULL;
1731 	struct extent_buffer *mid;
1732 	struct extent_buffer *left = NULL;
1733 	struct extent_buffer *parent = NULL;
1734 	int ret = 0;
1735 	int wret;
1736 	int pslot;
1737 	int orig_slot = path->slots[level];
1738 	u64 orig_ptr;
1739 
1740 	if (level == 0)
1741 		return 0;
1742 
1743 	mid = path->nodes[level];
1744 
1745 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1746 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1747 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1748 
1749 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1750 
1751 	if (level < BTRFS_MAX_LEVEL - 1) {
1752 		parent = path->nodes[level + 1];
1753 		pslot = path->slots[level + 1];
1754 	}
1755 
1756 	/*
1757 	 * deal with the case where there is only one pointer in the root
1758 	 * by promoting the node below to a root
1759 	 */
1760 	if (!parent) {
1761 		struct extent_buffer *child;
1762 
1763 		if (btrfs_header_nritems(mid) != 1)
1764 			return 0;
1765 
1766 		/* promote the child to a root */
1767 		child = read_node_slot(root, mid, 0);
1768 		if (!child) {
1769 			ret = -EROFS;
1770 			btrfs_std_error(root->fs_info, ret);
1771 			goto enospc;
1772 		}
1773 
1774 		btrfs_tree_lock(child);
1775 		btrfs_set_lock_blocking(child);
1776 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1777 		if (ret) {
1778 			btrfs_tree_unlock(child);
1779 			free_extent_buffer(child);
1780 			goto enospc;
1781 		}
1782 
1783 		tree_mod_log_set_root_pointer(root, child, 1);
1784 		rcu_assign_pointer(root->node, child);
1785 
1786 		add_root_to_dirty_list(root);
1787 		btrfs_tree_unlock(child);
1788 
1789 		path->locks[level] = 0;
1790 		path->nodes[level] = NULL;
1791 		clean_tree_block(trans, root, mid);
1792 		btrfs_tree_unlock(mid);
1793 		/* once for the path */
1794 		free_extent_buffer(mid);
1795 
1796 		root_sub_used(root, mid->len);
1797 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1798 		/* once for the root ptr */
1799 		free_extent_buffer_stale(mid);
1800 		return 0;
1801 	}
1802 	if (btrfs_header_nritems(mid) >
1803 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1804 		return 0;
1805 
1806 	left = read_node_slot(root, parent, pslot - 1);
1807 	if (left) {
1808 		btrfs_tree_lock(left);
1809 		btrfs_set_lock_blocking(left);
1810 		wret = btrfs_cow_block(trans, root, left,
1811 				       parent, pslot - 1, &left);
1812 		if (wret) {
1813 			ret = wret;
1814 			goto enospc;
1815 		}
1816 	}
1817 	right = read_node_slot(root, parent, pslot + 1);
1818 	if (right) {
1819 		btrfs_tree_lock(right);
1820 		btrfs_set_lock_blocking(right);
1821 		wret = btrfs_cow_block(trans, root, right,
1822 				       parent, pslot + 1, &right);
1823 		if (wret) {
1824 			ret = wret;
1825 			goto enospc;
1826 		}
1827 	}
1828 
1829 	/* first, try to make some room in the middle buffer */
1830 	if (left) {
1831 		orig_slot += btrfs_header_nritems(left);
1832 		wret = push_node_left(trans, root, left, mid, 1);
1833 		if (wret < 0)
1834 			ret = wret;
1835 	}
1836 
1837 	/*
1838 	 * then try to empty the right most buffer into the middle
1839 	 */
1840 	if (right) {
1841 		wret = push_node_left(trans, root, mid, right, 1);
1842 		if (wret < 0 && wret != -ENOSPC)
1843 			ret = wret;
1844 		if (btrfs_header_nritems(right) == 0) {
1845 			clean_tree_block(trans, root, right);
1846 			btrfs_tree_unlock(right);
1847 			del_ptr(root, path, level + 1, pslot + 1);
1848 			root_sub_used(root, right->len);
1849 			btrfs_free_tree_block(trans, root, right, 0, 1);
1850 			free_extent_buffer_stale(right);
1851 			right = NULL;
1852 		} else {
1853 			struct btrfs_disk_key right_key;
1854 			btrfs_node_key(right, &right_key, 0);
1855 			tree_mod_log_set_node_key(root->fs_info, parent,
1856 						  pslot + 1, 0);
1857 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1858 			btrfs_mark_buffer_dirty(parent);
1859 		}
1860 	}
1861 	if (btrfs_header_nritems(mid) == 1) {
1862 		/*
1863 		 * we're not allowed to leave a node with one item in the
1864 		 * tree during a delete.  A deletion from lower in the tree
1865 		 * could try to delete the only pointer in this node.
1866 		 * So, pull some keys from the left.
1867 		 * There has to be a left pointer at this point because
1868 		 * otherwise we would have pulled some pointers from the
1869 		 * right
1870 		 */
1871 		if (!left) {
1872 			ret = -EROFS;
1873 			btrfs_std_error(root->fs_info, ret);
1874 			goto enospc;
1875 		}
1876 		wret = balance_node_right(trans, root, mid, left);
1877 		if (wret < 0) {
1878 			ret = wret;
1879 			goto enospc;
1880 		}
1881 		if (wret == 1) {
1882 			wret = push_node_left(trans, root, left, mid, 1);
1883 			if (wret < 0)
1884 				ret = wret;
1885 		}
1886 		BUG_ON(wret == 1);
1887 	}
1888 	if (btrfs_header_nritems(mid) == 0) {
1889 		clean_tree_block(trans, root, mid);
1890 		btrfs_tree_unlock(mid);
1891 		del_ptr(root, path, level + 1, pslot);
1892 		root_sub_used(root, mid->len);
1893 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1894 		free_extent_buffer_stale(mid);
1895 		mid = NULL;
1896 	} else {
1897 		/* update the parent key to reflect our changes */
1898 		struct btrfs_disk_key mid_key;
1899 		btrfs_node_key(mid, &mid_key, 0);
1900 		tree_mod_log_set_node_key(root->fs_info, parent,
1901 					  pslot, 0);
1902 		btrfs_set_node_key(parent, &mid_key, pslot);
1903 		btrfs_mark_buffer_dirty(parent);
1904 	}
1905 
1906 	/* update the path */
1907 	if (left) {
1908 		if (btrfs_header_nritems(left) > orig_slot) {
1909 			extent_buffer_get(left);
1910 			/* left was locked after cow */
1911 			path->nodes[level] = left;
1912 			path->slots[level + 1] -= 1;
1913 			path->slots[level] = orig_slot;
1914 			if (mid) {
1915 				btrfs_tree_unlock(mid);
1916 				free_extent_buffer(mid);
1917 			}
1918 		} else {
1919 			orig_slot -= btrfs_header_nritems(left);
1920 			path->slots[level] = orig_slot;
1921 		}
1922 	}
1923 	/* double check we haven't messed things up */
1924 	if (orig_ptr !=
1925 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1926 		BUG();
1927 enospc:
1928 	if (right) {
1929 		btrfs_tree_unlock(right);
1930 		free_extent_buffer(right);
1931 	}
1932 	if (left) {
1933 		if (path->nodes[level] != left)
1934 			btrfs_tree_unlock(left);
1935 		free_extent_buffer(left);
1936 	}
1937 	return ret;
1938 }
1939 
1940 /* Node balancing for insertion.  Here we only split or push nodes around
1941  * when they are completely full.  This is also done top down, so we
1942  * have to be pessimistic.
1943  */
1944 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1945 					  struct btrfs_root *root,
1946 					  struct btrfs_path *path, int level)
1947 {
1948 	struct extent_buffer *right = NULL;
1949 	struct extent_buffer *mid;
1950 	struct extent_buffer *left = NULL;
1951 	struct extent_buffer *parent = NULL;
1952 	int ret = 0;
1953 	int wret;
1954 	int pslot;
1955 	int orig_slot = path->slots[level];
1956 
1957 	if (level == 0)
1958 		return 1;
1959 
1960 	mid = path->nodes[level];
1961 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1962 
1963 	if (level < BTRFS_MAX_LEVEL - 1) {
1964 		parent = path->nodes[level + 1];
1965 		pslot = path->slots[level + 1];
1966 	}
1967 
1968 	if (!parent)
1969 		return 1;
1970 
1971 	left = read_node_slot(root, parent, pslot - 1);
1972 
1973 	/* first, try to make some room in the middle buffer */
1974 	if (left) {
1975 		u32 left_nr;
1976 
1977 		btrfs_tree_lock(left);
1978 		btrfs_set_lock_blocking(left);
1979 
1980 		left_nr = btrfs_header_nritems(left);
1981 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1982 			wret = 1;
1983 		} else {
1984 			ret = btrfs_cow_block(trans, root, left, parent,
1985 					      pslot - 1, &left);
1986 			if (ret)
1987 				wret = 1;
1988 			else {
1989 				wret = push_node_left(trans, root,
1990 						      left, mid, 0);
1991 			}
1992 		}
1993 		if (wret < 0)
1994 			ret = wret;
1995 		if (wret == 0) {
1996 			struct btrfs_disk_key disk_key;
1997 			orig_slot += left_nr;
1998 			btrfs_node_key(mid, &disk_key, 0);
1999 			tree_mod_log_set_node_key(root->fs_info, parent,
2000 						  pslot, 0);
2001 			btrfs_set_node_key(parent, &disk_key, pslot);
2002 			btrfs_mark_buffer_dirty(parent);
2003 			if (btrfs_header_nritems(left) > orig_slot) {
2004 				path->nodes[level] = left;
2005 				path->slots[level + 1] -= 1;
2006 				path->slots[level] = orig_slot;
2007 				btrfs_tree_unlock(mid);
2008 				free_extent_buffer(mid);
2009 			} else {
2010 				orig_slot -=
2011 					btrfs_header_nritems(left);
2012 				path->slots[level] = orig_slot;
2013 				btrfs_tree_unlock(left);
2014 				free_extent_buffer(left);
2015 			}
2016 			return 0;
2017 		}
2018 		btrfs_tree_unlock(left);
2019 		free_extent_buffer(left);
2020 	}
2021 	right = read_node_slot(root, parent, pslot + 1);
2022 
2023 	/*
2024 	 * then try to empty the right most buffer into the middle
2025 	 */
2026 	if (right) {
2027 		u32 right_nr;
2028 
2029 		btrfs_tree_lock(right);
2030 		btrfs_set_lock_blocking(right);
2031 
2032 		right_nr = btrfs_header_nritems(right);
2033 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2034 			wret = 1;
2035 		} else {
2036 			ret = btrfs_cow_block(trans, root, right,
2037 					      parent, pslot + 1,
2038 					      &right);
2039 			if (ret)
2040 				wret = 1;
2041 			else {
2042 				wret = balance_node_right(trans, root,
2043 							  right, mid);
2044 			}
2045 		}
2046 		if (wret < 0)
2047 			ret = wret;
2048 		if (wret == 0) {
2049 			struct btrfs_disk_key disk_key;
2050 
2051 			btrfs_node_key(right, &disk_key, 0);
2052 			tree_mod_log_set_node_key(root->fs_info, parent,
2053 						  pslot + 1, 0);
2054 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2055 			btrfs_mark_buffer_dirty(parent);
2056 
2057 			if (btrfs_header_nritems(mid) <= orig_slot) {
2058 				path->nodes[level] = right;
2059 				path->slots[level + 1] += 1;
2060 				path->slots[level] = orig_slot -
2061 					btrfs_header_nritems(mid);
2062 				btrfs_tree_unlock(mid);
2063 				free_extent_buffer(mid);
2064 			} else {
2065 				btrfs_tree_unlock(right);
2066 				free_extent_buffer(right);
2067 			}
2068 			return 0;
2069 		}
2070 		btrfs_tree_unlock(right);
2071 		free_extent_buffer(right);
2072 	}
2073 	return 1;
2074 }
2075 
2076 /*
2077  * readahead one full node of leaves, finding things that are close
2078  * to the block in 'slot', and triggering ra on them.
2079  */
2080 static void reada_for_search(struct btrfs_root *root,
2081 			     struct btrfs_path *path,
2082 			     int level, int slot, u64 objectid)
2083 {
2084 	struct extent_buffer *node;
2085 	struct btrfs_disk_key disk_key;
2086 	u32 nritems;
2087 	u64 search;
2088 	u64 target;
2089 	u64 nread = 0;
2090 	u64 gen;
2091 	int direction = path->reada;
2092 	struct extent_buffer *eb;
2093 	u32 nr;
2094 	u32 blocksize;
2095 	u32 nscan = 0;
2096 
2097 	if (level != 1)
2098 		return;
2099 
2100 	if (!path->nodes[level])
2101 		return;
2102 
2103 	node = path->nodes[level];
2104 
2105 	search = btrfs_node_blockptr(node, slot);
2106 	blocksize = btrfs_level_size(root, level - 1);
2107 	eb = btrfs_find_tree_block(root, search, blocksize);
2108 	if (eb) {
2109 		free_extent_buffer(eb);
2110 		return;
2111 	}
2112 
2113 	target = search;
2114 
2115 	nritems = btrfs_header_nritems(node);
2116 	nr = slot;
2117 
2118 	while (1) {
2119 		if (direction < 0) {
2120 			if (nr == 0)
2121 				break;
2122 			nr--;
2123 		} else if (direction > 0) {
2124 			nr++;
2125 			if (nr >= nritems)
2126 				break;
2127 		}
2128 		if (path->reada < 0 && objectid) {
2129 			btrfs_node_key(node, &disk_key, nr);
2130 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2131 				break;
2132 		}
2133 		search = btrfs_node_blockptr(node, nr);
2134 		if ((search <= target && target - search <= 65536) ||
2135 		    (search > target && search - target <= 65536)) {
2136 			gen = btrfs_node_ptr_generation(node, nr);
2137 			readahead_tree_block(root, search, blocksize, gen);
2138 			nread += blocksize;
2139 		}
2140 		nscan++;
2141 		if ((nread > 65536 || nscan > 32))
2142 			break;
2143 	}
2144 }
2145 
2146 static noinline void reada_for_balance(struct btrfs_root *root,
2147 				       struct btrfs_path *path, int level)
2148 {
2149 	int slot;
2150 	int nritems;
2151 	struct extent_buffer *parent;
2152 	struct extent_buffer *eb;
2153 	u64 gen;
2154 	u64 block1 = 0;
2155 	u64 block2 = 0;
2156 	int blocksize;
2157 
2158 	parent = path->nodes[level + 1];
2159 	if (!parent)
2160 		return;
2161 
2162 	nritems = btrfs_header_nritems(parent);
2163 	slot = path->slots[level + 1];
2164 	blocksize = btrfs_level_size(root, level);
2165 
2166 	if (slot > 0) {
2167 		block1 = btrfs_node_blockptr(parent, slot - 1);
2168 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2169 		eb = btrfs_find_tree_block(root, block1, blocksize);
2170 		/*
2171 		 * if we get -eagain from btrfs_buffer_uptodate, we
2172 		 * don't want to return eagain here.  That will loop
2173 		 * forever
2174 		 */
2175 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2176 			block1 = 0;
2177 		free_extent_buffer(eb);
2178 	}
2179 	if (slot + 1 < nritems) {
2180 		block2 = btrfs_node_blockptr(parent, slot + 1);
2181 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2182 		eb = btrfs_find_tree_block(root, block2, blocksize);
2183 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2184 			block2 = 0;
2185 		free_extent_buffer(eb);
2186 	}
2187 
2188 	if (block1)
2189 		readahead_tree_block(root, block1, blocksize, 0);
2190 	if (block2)
2191 		readahead_tree_block(root, block2, blocksize, 0);
2192 }
2193 
2194 
2195 /*
2196  * when we walk down the tree, it is usually safe to unlock the higher layers
2197  * in the tree.  The exceptions are when our path goes through slot 0, because
2198  * operations on the tree might require changing key pointers higher up in the
2199  * tree.
2200  *
2201  * callers might also have set path->keep_locks, which tells this code to keep
2202  * the lock if the path points to the last slot in the block.  This is part of
2203  * walking through the tree, and selecting the next slot in the higher block.
2204  *
2205  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2206  * if lowest_unlock is 1, level 0 won't be unlocked
2207  */
2208 static noinline void unlock_up(struct btrfs_path *path, int level,
2209 			       int lowest_unlock, int min_write_lock_level,
2210 			       int *write_lock_level)
2211 {
2212 	int i;
2213 	int skip_level = level;
2214 	int no_skips = 0;
2215 	struct extent_buffer *t;
2216 
2217 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2218 		if (!path->nodes[i])
2219 			break;
2220 		if (!path->locks[i])
2221 			break;
2222 		if (!no_skips && path->slots[i] == 0) {
2223 			skip_level = i + 1;
2224 			continue;
2225 		}
2226 		if (!no_skips && path->keep_locks) {
2227 			u32 nritems;
2228 			t = path->nodes[i];
2229 			nritems = btrfs_header_nritems(t);
2230 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2231 				skip_level = i + 1;
2232 				continue;
2233 			}
2234 		}
2235 		if (skip_level < i && i >= lowest_unlock)
2236 			no_skips = 1;
2237 
2238 		t = path->nodes[i];
2239 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2240 			btrfs_tree_unlock_rw(t, path->locks[i]);
2241 			path->locks[i] = 0;
2242 			if (write_lock_level &&
2243 			    i > min_write_lock_level &&
2244 			    i <= *write_lock_level) {
2245 				*write_lock_level = i - 1;
2246 			}
2247 		}
2248 	}
2249 }
2250 
2251 /*
2252  * This releases any locks held in the path starting at level and
2253  * going all the way up to the root.
2254  *
2255  * btrfs_search_slot will keep the lock held on higher nodes in a few
2256  * corner cases, such as COW of the block at slot zero in the node.  This
2257  * ignores those rules, and it should only be called when there are no
2258  * more updates to be done higher up in the tree.
2259  */
2260 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2261 {
2262 	int i;
2263 
2264 	if (path->keep_locks)
2265 		return;
2266 
2267 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2268 		if (!path->nodes[i])
2269 			continue;
2270 		if (!path->locks[i])
2271 			continue;
2272 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2273 		path->locks[i] = 0;
2274 	}
2275 }
2276 
2277 /*
2278  * helper function for btrfs_search_slot.  The goal is to find a block
2279  * in cache without setting the path to blocking.  If we find the block
2280  * we return zero and the path is unchanged.
2281  *
2282  * If we can't find the block, we set the path blocking and do some
2283  * reada.  -EAGAIN is returned and the search must be repeated.
2284  */
2285 static int
2286 read_block_for_search(struct btrfs_trans_handle *trans,
2287 		       struct btrfs_root *root, struct btrfs_path *p,
2288 		       struct extent_buffer **eb_ret, int level, int slot,
2289 		       struct btrfs_key *key, u64 time_seq)
2290 {
2291 	u64 blocknr;
2292 	u64 gen;
2293 	u32 blocksize;
2294 	struct extent_buffer *b = *eb_ret;
2295 	struct extent_buffer *tmp;
2296 	int ret;
2297 
2298 	blocknr = btrfs_node_blockptr(b, slot);
2299 	gen = btrfs_node_ptr_generation(b, slot);
2300 	blocksize = btrfs_level_size(root, level - 1);
2301 
2302 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2303 	if (tmp) {
2304 		/* first we do an atomic uptodate check */
2305 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2306 			*eb_ret = tmp;
2307 			return 0;
2308 		}
2309 
2310 		/* the pages were up to date, but we failed
2311 		 * the generation number check.  Do a full
2312 		 * read for the generation number that is correct.
2313 		 * We must do this without dropping locks so
2314 		 * we can trust our generation number
2315 		 */
2316 		btrfs_set_path_blocking(p);
2317 
2318 		/* now we're allowed to do a blocking uptodate check */
2319 		ret = btrfs_read_buffer(tmp, gen);
2320 		if (!ret) {
2321 			*eb_ret = tmp;
2322 			return 0;
2323 		}
2324 		free_extent_buffer(tmp);
2325 		btrfs_release_path(p);
2326 		return -EIO;
2327 	}
2328 
2329 	/*
2330 	 * reduce lock contention at high levels
2331 	 * of the btree by dropping locks before
2332 	 * we read.  Don't release the lock on the current
2333 	 * level because we need to walk this node to figure
2334 	 * out which blocks to read.
2335 	 */
2336 	btrfs_unlock_up_safe(p, level + 1);
2337 	btrfs_set_path_blocking(p);
2338 
2339 	free_extent_buffer(tmp);
2340 	if (p->reada)
2341 		reada_for_search(root, p, level, slot, key->objectid);
2342 
2343 	btrfs_release_path(p);
2344 
2345 	ret = -EAGAIN;
2346 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2347 	if (tmp) {
2348 		/*
2349 		 * If the read above didn't mark this buffer up to date,
2350 		 * it will never end up being up to date.  Set ret to EIO now
2351 		 * and give up so that our caller doesn't loop forever
2352 		 * on our EAGAINs.
2353 		 */
2354 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2355 			ret = -EIO;
2356 		free_extent_buffer(tmp);
2357 	}
2358 	return ret;
2359 }
2360 
2361 /*
2362  * helper function for btrfs_search_slot.  This does all of the checks
2363  * for node-level blocks and does any balancing required based on
2364  * the ins_len.
2365  *
2366  * If no extra work was required, zero is returned.  If we had to
2367  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2368  * start over
2369  */
2370 static int
2371 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2372 		       struct btrfs_root *root, struct btrfs_path *p,
2373 		       struct extent_buffer *b, int level, int ins_len,
2374 		       int *write_lock_level)
2375 {
2376 	int ret;
2377 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2378 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2379 		int sret;
2380 
2381 		if (*write_lock_level < level + 1) {
2382 			*write_lock_level = level + 1;
2383 			btrfs_release_path(p);
2384 			goto again;
2385 		}
2386 
2387 		btrfs_set_path_blocking(p);
2388 		reada_for_balance(root, p, level);
2389 		sret = split_node(trans, root, p, level);
2390 		btrfs_clear_path_blocking(p, NULL, 0);
2391 
2392 		BUG_ON(sret > 0);
2393 		if (sret) {
2394 			ret = sret;
2395 			goto done;
2396 		}
2397 		b = p->nodes[level];
2398 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2399 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2400 		int sret;
2401 
2402 		if (*write_lock_level < level + 1) {
2403 			*write_lock_level = level + 1;
2404 			btrfs_release_path(p);
2405 			goto again;
2406 		}
2407 
2408 		btrfs_set_path_blocking(p);
2409 		reada_for_balance(root, p, level);
2410 		sret = balance_level(trans, root, p, level);
2411 		btrfs_clear_path_blocking(p, NULL, 0);
2412 
2413 		if (sret) {
2414 			ret = sret;
2415 			goto done;
2416 		}
2417 		b = p->nodes[level];
2418 		if (!b) {
2419 			btrfs_release_path(p);
2420 			goto again;
2421 		}
2422 		BUG_ON(btrfs_header_nritems(b) == 1);
2423 	}
2424 	return 0;
2425 
2426 again:
2427 	ret = -EAGAIN;
2428 done:
2429 	return ret;
2430 }
2431 
2432 static void key_search_validate(struct extent_buffer *b,
2433 				struct btrfs_key *key,
2434 				int level)
2435 {
2436 #ifdef CONFIG_BTRFS_ASSERT
2437 	struct btrfs_disk_key disk_key;
2438 
2439 	btrfs_cpu_key_to_disk(&disk_key, key);
2440 
2441 	if (level == 0)
2442 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2443 		    offsetof(struct btrfs_leaf, items[0].key),
2444 		    sizeof(disk_key)));
2445 	else
2446 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2447 		    offsetof(struct btrfs_node, ptrs[0].key),
2448 		    sizeof(disk_key)));
2449 #endif
2450 }
2451 
2452 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2453 		      int level, int *prev_cmp, int *slot)
2454 {
2455 	if (*prev_cmp != 0) {
2456 		*prev_cmp = bin_search(b, key, level, slot);
2457 		return *prev_cmp;
2458 	}
2459 
2460 	key_search_validate(b, key, level);
2461 	*slot = 0;
2462 
2463 	return 0;
2464 }
2465 
2466 /*
2467  * look for key in the tree.  path is filled in with nodes along the way
2468  * if key is found, we return zero and you can find the item in the leaf
2469  * level of the path (level 0)
2470  *
2471  * If the key isn't found, the path points to the slot where it should
2472  * be inserted, and 1 is returned.  If there are other errors during the
2473  * search a negative error number is returned.
2474  *
2475  * if ins_len > 0, nodes and leaves will be split as we walk down the
2476  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2477  * possible)
2478  */
2479 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2480 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2481 		      ins_len, int cow)
2482 {
2483 	struct extent_buffer *b;
2484 	int slot;
2485 	int ret;
2486 	int err;
2487 	int level;
2488 	int lowest_unlock = 1;
2489 	int root_lock;
2490 	/* everything at write_lock_level or lower must be write locked */
2491 	int write_lock_level = 0;
2492 	u8 lowest_level = 0;
2493 	int min_write_lock_level;
2494 	int prev_cmp;
2495 
2496 	lowest_level = p->lowest_level;
2497 	WARN_ON(lowest_level && ins_len > 0);
2498 	WARN_ON(p->nodes[0] != NULL);
2499 
2500 	if (ins_len < 0) {
2501 		lowest_unlock = 2;
2502 
2503 		/* when we are removing items, we might have to go up to level
2504 		 * two as we update tree pointers  Make sure we keep write
2505 		 * for those levels as well
2506 		 */
2507 		write_lock_level = 2;
2508 	} else if (ins_len > 0) {
2509 		/*
2510 		 * for inserting items, make sure we have a write lock on
2511 		 * level 1 so we can update keys
2512 		 */
2513 		write_lock_level = 1;
2514 	}
2515 
2516 	if (!cow)
2517 		write_lock_level = -1;
2518 
2519 	if (cow && (p->keep_locks || p->lowest_level))
2520 		write_lock_level = BTRFS_MAX_LEVEL;
2521 
2522 	min_write_lock_level = write_lock_level;
2523 
2524 again:
2525 	prev_cmp = -1;
2526 	/*
2527 	 * we try very hard to do read locks on the root
2528 	 */
2529 	root_lock = BTRFS_READ_LOCK;
2530 	level = 0;
2531 	if (p->search_commit_root) {
2532 		/*
2533 		 * the commit roots are read only
2534 		 * so we always do read locks
2535 		 */
2536 		b = root->commit_root;
2537 		extent_buffer_get(b);
2538 		level = btrfs_header_level(b);
2539 		if (!p->skip_locking)
2540 			btrfs_tree_read_lock(b);
2541 	} else {
2542 		if (p->skip_locking) {
2543 			b = btrfs_root_node(root);
2544 			level = btrfs_header_level(b);
2545 		} else {
2546 			/* we don't know the level of the root node
2547 			 * until we actually have it read locked
2548 			 */
2549 			b = btrfs_read_lock_root_node(root);
2550 			level = btrfs_header_level(b);
2551 			if (level <= write_lock_level) {
2552 				/* whoops, must trade for write lock */
2553 				btrfs_tree_read_unlock(b);
2554 				free_extent_buffer(b);
2555 				b = btrfs_lock_root_node(root);
2556 				root_lock = BTRFS_WRITE_LOCK;
2557 
2558 				/* the level might have changed, check again */
2559 				level = btrfs_header_level(b);
2560 			}
2561 		}
2562 	}
2563 	p->nodes[level] = b;
2564 	if (!p->skip_locking)
2565 		p->locks[level] = root_lock;
2566 
2567 	while (b) {
2568 		level = btrfs_header_level(b);
2569 
2570 		/*
2571 		 * setup the path here so we can release it under lock
2572 		 * contention with the cow code
2573 		 */
2574 		if (cow) {
2575 			/*
2576 			 * if we don't really need to cow this block
2577 			 * then we don't want to set the path blocking,
2578 			 * so we test it here
2579 			 */
2580 			if (!should_cow_block(trans, root, b))
2581 				goto cow_done;
2582 
2583 			btrfs_set_path_blocking(p);
2584 
2585 			/*
2586 			 * must have write locks on this node and the
2587 			 * parent
2588 			 */
2589 			if (level > write_lock_level ||
2590 			    (level + 1 > write_lock_level &&
2591 			    level + 1 < BTRFS_MAX_LEVEL &&
2592 			    p->nodes[level + 1])) {
2593 				write_lock_level = level + 1;
2594 				btrfs_release_path(p);
2595 				goto again;
2596 			}
2597 
2598 			err = btrfs_cow_block(trans, root, b,
2599 					      p->nodes[level + 1],
2600 					      p->slots[level + 1], &b);
2601 			if (err) {
2602 				ret = err;
2603 				goto done;
2604 			}
2605 		}
2606 cow_done:
2607 		BUG_ON(!cow && ins_len);
2608 
2609 		p->nodes[level] = b;
2610 		btrfs_clear_path_blocking(p, NULL, 0);
2611 
2612 		/*
2613 		 * we have a lock on b and as long as we aren't changing
2614 		 * the tree, there is no way to for the items in b to change.
2615 		 * It is safe to drop the lock on our parent before we
2616 		 * go through the expensive btree search on b.
2617 		 *
2618 		 * If cow is true, then we might be changing slot zero,
2619 		 * which may require changing the parent.  So, we can't
2620 		 * drop the lock until after we know which slot we're
2621 		 * operating on.
2622 		 */
2623 		if (!cow)
2624 			btrfs_unlock_up_safe(p, level + 1);
2625 
2626 		ret = key_search(b, key, level, &prev_cmp, &slot);
2627 
2628 		if (level != 0) {
2629 			int dec = 0;
2630 			if (ret && slot > 0) {
2631 				dec = 1;
2632 				slot -= 1;
2633 			}
2634 			p->slots[level] = slot;
2635 			err = setup_nodes_for_search(trans, root, p, b, level,
2636 					     ins_len, &write_lock_level);
2637 			if (err == -EAGAIN)
2638 				goto again;
2639 			if (err) {
2640 				ret = err;
2641 				goto done;
2642 			}
2643 			b = p->nodes[level];
2644 			slot = p->slots[level];
2645 
2646 			/*
2647 			 * slot 0 is special, if we change the key
2648 			 * we have to update the parent pointer
2649 			 * which means we must have a write lock
2650 			 * on the parent
2651 			 */
2652 			if (slot == 0 && cow &&
2653 			    write_lock_level < level + 1) {
2654 				write_lock_level = level + 1;
2655 				btrfs_release_path(p);
2656 				goto again;
2657 			}
2658 
2659 			unlock_up(p, level, lowest_unlock,
2660 				  min_write_lock_level, &write_lock_level);
2661 
2662 			if (level == lowest_level) {
2663 				if (dec)
2664 					p->slots[level]++;
2665 				goto done;
2666 			}
2667 
2668 			err = read_block_for_search(trans, root, p,
2669 						    &b, level, slot, key, 0);
2670 			if (err == -EAGAIN)
2671 				goto again;
2672 			if (err) {
2673 				ret = err;
2674 				goto done;
2675 			}
2676 
2677 			if (!p->skip_locking) {
2678 				level = btrfs_header_level(b);
2679 				if (level <= write_lock_level) {
2680 					err = btrfs_try_tree_write_lock(b);
2681 					if (!err) {
2682 						btrfs_set_path_blocking(p);
2683 						btrfs_tree_lock(b);
2684 						btrfs_clear_path_blocking(p, b,
2685 								  BTRFS_WRITE_LOCK);
2686 					}
2687 					p->locks[level] = BTRFS_WRITE_LOCK;
2688 				} else {
2689 					err = btrfs_try_tree_read_lock(b);
2690 					if (!err) {
2691 						btrfs_set_path_blocking(p);
2692 						btrfs_tree_read_lock(b);
2693 						btrfs_clear_path_blocking(p, b,
2694 								  BTRFS_READ_LOCK);
2695 					}
2696 					p->locks[level] = BTRFS_READ_LOCK;
2697 				}
2698 				p->nodes[level] = b;
2699 			}
2700 		} else {
2701 			p->slots[level] = slot;
2702 			if (ins_len > 0 &&
2703 			    btrfs_leaf_free_space(root, b) < ins_len) {
2704 				if (write_lock_level < 1) {
2705 					write_lock_level = 1;
2706 					btrfs_release_path(p);
2707 					goto again;
2708 				}
2709 
2710 				btrfs_set_path_blocking(p);
2711 				err = split_leaf(trans, root, key,
2712 						 p, ins_len, ret == 0);
2713 				btrfs_clear_path_blocking(p, NULL, 0);
2714 
2715 				BUG_ON(err > 0);
2716 				if (err) {
2717 					ret = err;
2718 					goto done;
2719 				}
2720 			}
2721 			if (!p->search_for_split)
2722 				unlock_up(p, level, lowest_unlock,
2723 					  min_write_lock_level, &write_lock_level);
2724 			goto done;
2725 		}
2726 	}
2727 	ret = 1;
2728 done:
2729 	/*
2730 	 * we don't really know what they plan on doing with the path
2731 	 * from here on, so for now just mark it as blocking
2732 	 */
2733 	if (!p->leave_spinning)
2734 		btrfs_set_path_blocking(p);
2735 	if (ret < 0)
2736 		btrfs_release_path(p);
2737 	return ret;
2738 }
2739 
2740 /*
2741  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2742  * current state of the tree together with the operations recorded in the tree
2743  * modification log to search for the key in a previous version of this tree, as
2744  * denoted by the time_seq parameter.
2745  *
2746  * Naturally, there is no support for insert, delete or cow operations.
2747  *
2748  * The resulting path and return value will be set up as if we called
2749  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2750  */
2751 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2752 			  struct btrfs_path *p, u64 time_seq)
2753 {
2754 	struct extent_buffer *b;
2755 	int slot;
2756 	int ret;
2757 	int err;
2758 	int level;
2759 	int lowest_unlock = 1;
2760 	u8 lowest_level = 0;
2761 	int prev_cmp = -1;
2762 
2763 	lowest_level = p->lowest_level;
2764 	WARN_ON(p->nodes[0] != NULL);
2765 
2766 	if (p->search_commit_root) {
2767 		BUG_ON(time_seq);
2768 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2769 	}
2770 
2771 again:
2772 	b = get_old_root(root, time_seq);
2773 	level = btrfs_header_level(b);
2774 	p->locks[level] = BTRFS_READ_LOCK;
2775 
2776 	while (b) {
2777 		level = btrfs_header_level(b);
2778 		p->nodes[level] = b;
2779 		btrfs_clear_path_blocking(p, NULL, 0);
2780 
2781 		/*
2782 		 * we have a lock on b and as long as we aren't changing
2783 		 * the tree, there is no way to for the items in b to change.
2784 		 * It is safe to drop the lock on our parent before we
2785 		 * go through the expensive btree search on b.
2786 		 */
2787 		btrfs_unlock_up_safe(p, level + 1);
2788 
2789 		/*
2790 		 * Since we can unwind eb's we want to do a real search every
2791 		 * time.
2792 		 */
2793 		prev_cmp = -1;
2794 		ret = key_search(b, key, level, &prev_cmp, &slot);
2795 
2796 		if (level != 0) {
2797 			int dec = 0;
2798 			if (ret && slot > 0) {
2799 				dec = 1;
2800 				slot -= 1;
2801 			}
2802 			p->slots[level] = slot;
2803 			unlock_up(p, level, lowest_unlock, 0, NULL);
2804 
2805 			if (level == lowest_level) {
2806 				if (dec)
2807 					p->slots[level]++;
2808 				goto done;
2809 			}
2810 
2811 			err = read_block_for_search(NULL, root, p, &b, level,
2812 						    slot, key, time_seq);
2813 			if (err == -EAGAIN)
2814 				goto again;
2815 			if (err) {
2816 				ret = err;
2817 				goto done;
2818 			}
2819 
2820 			level = btrfs_header_level(b);
2821 			err = btrfs_try_tree_read_lock(b);
2822 			if (!err) {
2823 				btrfs_set_path_blocking(p);
2824 				btrfs_tree_read_lock(b);
2825 				btrfs_clear_path_blocking(p, b,
2826 							  BTRFS_READ_LOCK);
2827 			}
2828 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
2829 			if (!b) {
2830 				ret = -ENOMEM;
2831 				goto done;
2832 			}
2833 			p->locks[level] = BTRFS_READ_LOCK;
2834 			p->nodes[level] = b;
2835 		} else {
2836 			p->slots[level] = slot;
2837 			unlock_up(p, level, lowest_unlock, 0, NULL);
2838 			goto done;
2839 		}
2840 	}
2841 	ret = 1;
2842 done:
2843 	if (!p->leave_spinning)
2844 		btrfs_set_path_blocking(p);
2845 	if (ret < 0)
2846 		btrfs_release_path(p);
2847 
2848 	return ret;
2849 }
2850 
2851 /*
2852  * helper to use instead of search slot if no exact match is needed but
2853  * instead the next or previous item should be returned.
2854  * When find_higher is true, the next higher item is returned, the next lower
2855  * otherwise.
2856  * When return_any and find_higher are both true, and no higher item is found,
2857  * return the next lower instead.
2858  * When return_any is true and find_higher is false, and no lower item is found,
2859  * return the next higher instead.
2860  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2861  * < 0 on error
2862  */
2863 int btrfs_search_slot_for_read(struct btrfs_root *root,
2864 			       struct btrfs_key *key, struct btrfs_path *p,
2865 			       int find_higher, int return_any)
2866 {
2867 	int ret;
2868 	struct extent_buffer *leaf;
2869 
2870 again:
2871 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2872 	if (ret <= 0)
2873 		return ret;
2874 	/*
2875 	 * a return value of 1 means the path is at the position where the
2876 	 * item should be inserted. Normally this is the next bigger item,
2877 	 * but in case the previous item is the last in a leaf, path points
2878 	 * to the first free slot in the previous leaf, i.e. at an invalid
2879 	 * item.
2880 	 */
2881 	leaf = p->nodes[0];
2882 
2883 	if (find_higher) {
2884 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2885 			ret = btrfs_next_leaf(root, p);
2886 			if (ret <= 0)
2887 				return ret;
2888 			if (!return_any)
2889 				return 1;
2890 			/*
2891 			 * no higher item found, return the next
2892 			 * lower instead
2893 			 */
2894 			return_any = 0;
2895 			find_higher = 0;
2896 			btrfs_release_path(p);
2897 			goto again;
2898 		}
2899 	} else {
2900 		if (p->slots[0] == 0) {
2901 			ret = btrfs_prev_leaf(root, p);
2902 			if (ret < 0)
2903 				return ret;
2904 			if (!ret) {
2905 				p->slots[0] = btrfs_header_nritems(leaf) - 1;
2906 				return 0;
2907 			}
2908 			if (!return_any)
2909 				return 1;
2910 			/*
2911 			 * no lower item found, return the next
2912 			 * higher instead
2913 			 */
2914 			return_any = 0;
2915 			find_higher = 1;
2916 			btrfs_release_path(p);
2917 			goto again;
2918 		} else {
2919 			--p->slots[0];
2920 		}
2921 	}
2922 	return 0;
2923 }
2924 
2925 /*
2926  * adjust the pointers going up the tree, starting at level
2927  * making sure the right key of each node is points to 'key'.
2928  * This is used after shifting pointers to the left, so it stops
2929  * fixing up pointers when a given leaf/node is not in slot 0 of the
2930  * higher levels
2931  *
2932  */
2933 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2934 			   struct btrfs_disk_key *key, int level)
2935 {
2936 	int i;
2937 	struct extent_buffer *t;
2938 
2939 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2940 		int tslot = path->slots[i];
2941 		if (!path->nodes[i])
2942 			break;
2943 		t = path->nodes[i];
2944 		tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2945 		btrfs_set_node_key(t, key, tslot);
2946 		btrfs_mark_buffer_dirty(path->nodes[i]);
2947 		if (tslot != 0)
2948 			break;
2949 	}
2950 }
2951 
2952 /*
2953  * update item key.
2954  *
2955  * This function isn't completely safe. It's the caller's responsibility
2956  * that the new key won't break the order
2957  */
2958 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2959 			     struct btrfs_key *new_key)
2960 {
2961 	struct btrfs_disk_key disk_key;
2962 	struct extent_buffer *eb;
2963 	int slot;
2964 
2965 	eb = path->nodes[0];
2966 	slot = path->slots[0];
2967 	if (slot > 0) {
2968 		btrfs_item_key(eb, &disk_key, slot - 1);
2969 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2970 	}
2971 	if (slot < btrfs_header_nritems(eb) - 1) {
2972 		btrfs_item_key(eb, &disk_key, slot + 1);
2973 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2974 	}
2975 
2976 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2977 	btrfs_set_item_key(eb, &disk_key, slot);
2978 	btrfs_mark_buffer_dirty(eb);
2979 	if (slot == 0)
2980 		fixup_low_keys(root, path, &disk_key, 1);
2981 }
2982 
2983 /*
2984  * try to push data from one node into the next node left in the
2985  * tree.
2986  *
2987  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2988  * error, and > 0 if there was no room in the left hand block.
2989  */
2990 static int push_node_left(struct btrfs_trans_handle *trans,
2991 			  struct btrfs_root *root, struct extent_buffer *dst,
2992 			  struct extent_buffer *src, int empty)
2993 {
2994 	int push_items = 0;
2995 	int src_nritems;
2996 	int dst_nritems;
2997 	int ret = 0;
2998 
2999 	src_nritems = btrfs_header_nritems(src);
3000 	dst_nritems = btrfs_header_nritems(dst);
3001 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3002 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3003 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3004 
3005 	if (!empty && src_nritems <= 8)
3006 		return 1;
3007 
3008 	if (push_items <= 0)
3009 		return 1;
3010 
3011 	if (empty) {
3012 		push_items = min(src_nritems, push_items);
3013 		if (push_items < src_nritems) {
3014 			/* leave at least 8 pointers in the node if
3015 			 * we aren't going to empty it
3016 			 */
3017 			if (src_nritems - push_items < 8) {
3018 				if (push_items <= 8)
3019 					return 1;
3020 				push_items -= 8;
3021 			}
3022 		}
3023 	} else
3024 		push_items = min(src_nritems - 8, push_items);
3025 
3026 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3027 			     push_items);
3028 	copy_extent_buffer(dst, src,
3029 			   btrfs_node_key_ptr_offset(dst_nritems),
3030 			   btrfs_node_key_ptr_offset(0),
3031 			   push_items * sizeof(struct btrfs_key_ptr));
3032 
3033 	if (push_items < src_nritems) {
3034 		/*
3035 		 * don't call tree_mod_log_eb_move here, key removal was already
3036 		 * fully logged by tree_mod_log_eb_copy above.
3037 		 */
3038 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3039 				      btrfs_node_key_ptr_offset(push_items),
3040 				      (src_nritems - push_items) *
3041 				      sizeof(struct btrfs_key_ptr));
3042 	}
3043 	btrfs_set_header_nritems(src, src_nritems - push_items);
3044 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3045 	btrfs_mark_buffer_dirty(src);
3046 	btrfs_mark_buffer_dirty(dst);
3047 
3048 	return ret;
3049 }
3050 
3051 /*
3052  * try to push data from one node into the next node right in the
3053  * tree.
3054  *
3055  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3056  * error, and > 0 if there was no room in the right hand block.
3057  *
3058  * this will  only push up to 1/2 the contents of the left node over
3059  */
3060 static int balance_node_right(struct btrfs_trans_handle *trans,
3061 			      struct btrfs_root *root,
3062 			      struct extent_buffer *dst,
3063 			      struct extent_buffer *src)
3064 {
3065 	int push_items = 0;
3066 	int max_push;
3067 	int src_nritems;
3068 	int dst_nritems;
3069 	int ret = 0;
3070 
3071 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3072 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3073 
3074 	src_nritems = btrfs_header_nritems(src);
3075 	dst_nritems = btrfs_header_nritems(dst);
3076 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3077 	if (push_items <= 0)
3078 		return 1;
3079 
3080 	if (src_nritems < 4)
3081 		return 1;
3082 
3083 	max_push = src_nritems / 2 + 1;
3084 	/* don't try to empty the node */
3085 	if (max_push >= src_nritems)
3086 		return 1;
3087 
3088 	if (max_push < push_items)
3089 		push_items = max_push;
3090 
3091 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3092 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3093 				      btrfs_node_key_ptr_offset(0),
3094 				      (dst_nritems) *
3095 				      sizeof(struct btrfs_key_ptr));
3096 
3097 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3098 			     src_nritems - push_items, push_items);
3099 	copy_extent_buffer(dst, src,
3100 			   btrfs_node_key_ptr_offset(0),
3101 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3102 			   push_items * sizeof(struct btrfs_key_ptr));
3103 
3104 	btrfs_set_header_nritems(src, src_nritems - push_items);
3105 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3106 
3107 	btrfs_mark_buffer_dirty(src);
3108 	btrfs_mark_buffer_dirty(dst);
3109 
3110 	return ret;
3111 }
3112 
3113 /*
3114  * helper function to insert a new root level in the tree.
3115  * A new node is allocated, and a single item is inserted to
3116  * point to the existing root
3117  *
3118  * returns zero on success or < 0 on failure.
3119  */
3120 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3121 			   struct btrfs_root *root,
3122 			   struct btrfs_path *path, int level)
3123 {
3124 	u64 lower_gen;
3125 	struct extent_buffer *lower;
3126 	struct extent_buffer *c;
3127 	struct extent_buffer *old;
3128 	struct btrfs_disk_key lower_key;
3129 
3130 	BUG_ON(path->nodes[level]);
3131 	BUG_ON(path->nodes[level-1] != root->node);
3132 
3133 	lower = path->nodes[level-1];
3134 	if (level == 1)
3135 		btrfs_item_key(lower, &lower_key, 0);
3136 	else
3137 		btrfs_node_key(lower, &lower_key, 0);
3138 
3139 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3140 				   root->root_key.objectid, &lower_key,
3141 				   level, root->node->start, 0);
3142 	if (IS_ERR(c))
3143 		return PTR_ERR(c);
3144 
3145 	root_add_used(root, root->nodesize);
3146 
3147 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3148 	btrfs_set_header_nritems(c, 1);
3149 	btrfs_set_header_level(c, level);
3150 	btrfs_set_header_bytenr(c, c->start);
3151 	btrfs_set_header_generation(c, trans->transid);
3152 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3153 	btrfs_set_header_owner(c, root->root_key.objectid);
3154 
3155 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3156 			    BTRFS_FSID_SIZE);
3157 
3158 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3159 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3160 
3161 	btrfs_set_node_key(c, &lower_key, 0);
3162 	btrfs_set_node_blockptr(c, 0, lower->start);
3163 	lower_gen = btrfs_header_generation(lower);
3164 	WARN_ON(lower_gen != trans->transid);
3165 
3166 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3167 
3168 	btrfs_mark_buffer_dirty(c);
3169 
3170 	old = root->node;
3171 	tree_mod_log_set_root_pointer(root, c, 0);
3172 	rcu_assign_pointer(root->node, c);
3173 
3174 	/* the super has an extra ref to root->node */
3175 	free_extent_buffer(old);
3176 
3177 	add_root_to_dirty_list(root);
3178 	extent_buffer_get(c);
3179 	path->nodes[level] = c;
3180 	path->locks[level] = BTRFS_WRITE_LOCK;
3181 	path->slots[level] = 0;
3182 	return 0;
3183 }
3184 
3185 /*
3186  * worker function to insert a single pointer in a node.
3187  * the node should have enough room for the pointer already
3188  *
3189  * slot and level indicate where you want the key to go, and
3190  * blocknr is the block the key points to.
3191  */
3192 static void insert_ptr(struct btrfs_trans_handle *trans,
3193 		       struct btrfs_root *root, struct btrfs_path *path,
3194 		       struct btrfs_disk_key *key, u64 bytenr,
3195 		       int slot, int level)
3196 {
3197 	struct extent_buffer *lower;
3198 	int nritems;
3199 	int ret;
3200 
3201 	BUG_ON(!path->nodes[level]);
3202 	btrfs_assert_tree_locked(path->nodes[level]);
3203 	lower = path->nodes[level];
3204 	nritems = btrfs_header_nritems(lower);
3205 	BUG_ON(slot > nritems);
3206 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3207 	if (slot != nritems) {
3208 		if (level)
3209 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3210 					     slot, nritems - slot);
3211 		memmove_extent_buffer(lower,
3212 			      btrfs_node_key_ptr_offset(slot + 1),
3213 			      btrfs_node_key_ptr_offset(slot),
3214 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3215 	}
3216 	if (level) {
3217 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3218 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3219 		BUG_ON(ret < 0);
3220 	}
3221 	btrfs_set_node_key(lower, key, slot);
3222 	btrfs_set_node_blockptr(lower, slot, bytenr);
3223 	WARN_ON(trans->transid == 0);
3224 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3225 	btrfs_set_header_nritems(lower, nritems + 1);
3226 	btrfs_mark_buffer_dirty(lower);
3227 }
3228 
3229 /*
3230  * split the node at the specified level in path in two.
3231  * The path is corrected to point to the appropriate node after the split
3232  *
3233  * Before splitting this tries to make some room in the node by pushing
3234  * left and right, if either one works, it returns right away.
3235  *
3236  * returns 0 on success and < 0 on failure
3237  */
3238 static noinline int split_node(struct btrfs_trans_handle *trans,
3239 			       struct btrfs_root *root,
3240 			       struct btrfs_path *path, int level)
3241 {
3242 	struct extent_buffer *c;
3243 	struct extent_buffer *split;
3244 	struct btrfs_disk_key disk_key;
3245 	int mid;
3246 	int ret;
3247 	u32 c_nritems;
3248 
3249 	c = path->nodes[level];
3250 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3251 	if (c == root->node) {
3252 		/*
3253 		 * trying to split the root, lets make a new one
3254 		 *
3255 		 * tree mod log: We don't log_removal old root in
3256 		 * insert_new_root, because that root buffer will be kept as a
3257 		 * normal node. We are going to log removal of half of the
3258 		 * elements below with tree_mod_log_eb_copy. We're holding a
3259 		 * tree lock on the buffer, which is why we cannot race with
3260 		 * other tree_mod_log users.
3261 		 */
3262 		ret = insert_new_root(trans, root, path, level + 1);
3263 		if (ret)
3264 			return ret;
3265 	} else {
3266 		ret = push_nodes_for_insert(trans, root, path, level);
3267 		c = path->nodes[level];
3268 		if (!ret && btrfs_header_nritems(c) <
3269 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3270 			return 0;
3271 		if (ret < 0)
3272 			return ret;
3273 	}
3274 
3275 	c_nritems = btrfs_header_nritems(c);
3276 	mid = (c_nritems + 1) / 2;
3277 	btrfs_node_key(c, &disk_key, mid);
3278 
3279 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3280 					root->root_key.objectid,
3281 					&disk_key, level, c->start, 0);
3282 	if (IS_ERR(split))
3283 		return PTR_ERR(split);
3284 
3285 	root_add_used(root, root->nodesize);
3286 
3287 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3288 	btrfs_set_header_level(split, btrfs_header_level(c));
3289 	btrfs_set_header_bytenr(split, split->start);
3290 	btrfs_set_header_generation(split, trans->transid);
3291 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3292 	btrfs_set_header_owner(split, root->root_key.objectid);
3293 	write_extent_buffer(split, root->fs_info->fsid,
3294 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3295 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3296 			    btrfs_header_chunk_tree_uuid(split),
3297 			    BTRFS_UUID_SIZE);
3298 
3299 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3300 	copy_extent_buffer(split, c,
3301 			   btrfs_node_key_ptr_offset(0),
3302 			   btrfs_node_key_ptr_offset(mid),
3303 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3304 	btrfs_set_header_nritems(split, c_nritems - mid);
3305 	btrfs_set_header_nritems(c, mid);
3306 	ret = 0;
3307 
3308 	btrfs_mark_buffer_dirty(c);
3309 	btrfs_mark_buffer_dirty(split);
3310 
3311 	insert_ptr(trans, root, path, &disk_key, split->start,
3312 		   path->slots[level + 1] + 1, level + 1);
3313 
3314 	if (path->slots[level] >= mid) {
3315 		path->slots[level] -= mid;
3316 		btrfs_tree_unlock(c);
3317 		free_extent_buffer(c);
3318 		path->nodes[level] = split;
3319 		path->slots[level + 1] += 1;
3320 	} else {
3321 		btrfs_tree_unlock(split);
3322 		free_extent_buffer(split);
3323 	}
3324 	return ret;
3325 }
3326 
3327 /*
3328  * how many bytes are required to store the items in a leaf.  start
3329  * and nr indicate which items in the leaf to check.  This totals up the
3330  * space used both by the item structs and the item data
3331  */
3332 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3333 {
3334 	struct btrfs_item *start_item;
3335 	struct btrfs_item *end_item;
3336 	struct btrfs_map_token token;
3337 	int data_len;
3338 	int nritems = btrfs_header_nritems(l);
3339 	int end = min(nritems, start + nr) - 1;
3340 
3341 	if (!nr)
3342 		return 0;
3343 	btrfs_init_map_token(&token);
3344 	start_item = btrfs_item_nr(start);
3345 	end_item = btrfs_item_nr(end);
3346 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3347 		btrfs_token_item_size(l, start_item, &token);
3348 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3349 	data_len += sizeof(struct btrfs_item) * nr;
3350 	WARN_ON(data_len < 0);
3351 	return data_len;
3352 }
3353 
3354 /*
3355  * The space between the end of the leaf items and
3356  * the start of the leaf data.  IOW, how much room
3357  * the leaf has left for both items and data
3358  */
3359 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3360 				   struct extent_buffer *leaf)
3361 {
3362 	int nritems = btrfs_header_nritems(leaf);
3363 	int ret;
3364 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3365 	if (ret < 0) {
3366 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3367 		       "used %d nritems %d\n",
3368 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3369 		       leaf_space_used(leaf, 0, nritems), nritems);
3370 	}
3371 	return ret;
3372 }
3373 
3374 /*
3375  * min slot controls the lowest index we're willing to push to the
3376  * right.  We'll push up to and including min_slot, but no lower
3377  */
3378 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3379 				      struct btrfs_root *root,
3380 				      struct btrfs_path *path,
3381 				      int data_size, int empty,
3382 				      struct extent_buffer *right,
3383 				      int free_space, u32 left_nritems,
3384 				      u32 min_slot)
3385 {
3386 	struct extent_buffer *left = path->nodes[0];
3387 	struct extent_buffer *upper = path->nodes[1];
3388 	struct btrfs_map_token token;
3389 	struct btrfs_disk_key disk_key;
3390 	int slot;
3391 	u32 i;
3392 	int push_space = 0;
3393 	int push_items = 0;
3394 	struct btrfs_item *item;
3395 	u32 nr;
3396 	u32 right_nritems;
3397 	u32 data_end;
3398 	u32 this_item_size;
3399 
3400 	btrfs_init_map_token(&token);
3401 
3402 	if (empty)
3403 		nr = 0;
3404 	else
3405 		nr = max_t(u32, 1, min_slot);
3406 
3407 	if (path->slots[0] >= left_nritems)
3408 		push_space += data_size;
3409 
3410 	slot = path->slots[1];
3411 	i = left_nritems - 1;
3412 	while (i >= nr) {
3413 		item = btrfs_item_nr(i);
3414 
3415 		if (!empty && push_items > 0) {
3416 			if (path->slots[0] > i)
3417 				break;
3418 			if (path->slots[0] == i) {
3419 				int space = btrfs_leaf_free_space(root, left);
3420 				if (space + push_space * 2 > free_space)
3421 					break;
3422 			}
3423 		}
3424 
3425 		if (path->slots[0] == i)
3426 			push_space += data_size;
3427 
3428 		this_item_size = btrfs_item_size(left, item);
3429 		if (this_item_size + sizeof(*item) + push_space > free_space)
3430 			break;
3431 
3432 		push_items++;
3433 		push_space += this_item_size + sizeof(*item);
3434 		if (i == 0)
3435 			break;
3436 		i--;
3437 	}
3438 
3439 	if (push_items == 0)
3440 		goto out_unlock;
3441 
3442 	WARN_ON(!empty && push_items == left_nritems);
3443 
3444 	/* push left to right */
3445 	right_nritems = btrfs_header_nritems(right);
3446 
3447 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3448 	push_space -= leaf_data_end(root, left);
3449 
3450 	/* make room in the right data area */
3451 	data_end = leaf_data_end(root, right);
3452 	memmove_extent_buffer(right,
3453 			      btrfs_leaf_data(right) + data_end - push_space,
3454 			      btrfs_leaf_data(right) + data_end,
3455 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3456 
3457 	/* copy from the left data area */
3458 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3459 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3460 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3461 		     push_space);
3462 
3463 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3464 			      btrfs_item_nr_offset(0),
3465 			      right_nritems * sizeof(struct btrfs_item));
3466 
3467 	/* copy the items from left to right */
3468 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3469 		   btrfs_item_nr_offset(left_nritems - push_items),
3470 		   push_items * sizeof(struct btrfs_item));
3471 
3472 	/* update the item pointers */
3473 	right_nritems += push_items;
3474 	btrfs_set_header_nritems(right, right_nritems);
3475 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3476 	for (i = 0; i < right_nritems; i++) {
3477 		item = btrfs_item_nr(i);
3478 		push_space -= btrfs_token_item_size(right, item, &token);
3479 		btrfs_set_token_item_offset(right, item, push_space, &token);
3480 	}
3481 
3482 	left_nritems -= push_items;
3483 	btrfs_set_header_nritems(left, left_nritems);
3484 
3485 	if (left_nritems)
3486 		btrfs_mark_buffer_dirty(left);
3487 	else
3488 		clean_tree_block(trans, root, left);
3489 
3490 	btrfs_mark_buffer_dirty(right);
3491 
3492 	btrfs_item_key(right, &disk_key, 0);
3493 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3494 	btrfs_mark_buffer_dirty(upper);
3495 
3496 	/* then fixup the leaf pointer in the path */
3497 	if (path->slots[0] >= left_nritems) {
3498 		path->slots[0] -= left_nritems;
3499 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3500 			clean_tree_block(trans, root, path->nodes[0]);
3501 		btrfs_tree_unlock(path->nodes[0]);
3502 		free_extent_buffer(path->nodes[0]);
3503 		path->nodes[0] = right;
3504 		path->slots[1] += 1;
3505 	} else {
3506 		btrfs_tree_unlock(right);
3507 		free_extent_buffer(right);
3508 	}
3509 	return 0;
3510 
3511 out_unlock:
3512 	btrfs_tree_unlock(right);
3513 	free_extent_buffer(right);
3514 	return 1;
3515 }
3516 
3517 /*
3518  * push some data in the path leaf to the right, trying to free up at
3519  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3520  *
3521  * returns 1 if the push failed because the other node didn't have enough
3522  * room, 0 if everything worked out and < 0 if there were major errors.
3523  *
3524  * this will push starting from min_slot to the end of the leaf.  It won't
3525  * push any slot lower than min_slot
3526  */
3527 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3528 			   *root, struct btrfs_path *path,
3529 			   int min_data_size, int data_size,
3530 			   int empty, u32 min_slot)
3531 {
3532 	struct extent_buffer *left = path->nodes[0];
3533 	struct extent_buffer *right;
3534 	struct extent_buffer *upper;
3535 	int slot;
3536 	int free_space;
3537 	u32 left_nritems;
3538 	int ret;
3539 
3540 	if (!path->nodes[1])
3541 		return 1;
3542 
3543 	slot = path->slots[1];
3544 	upper = path->nodes[1];
3545 	if (slot >= btrfs_header_nritems(upper) - 1)
3546 		return 1;
3547 
3548 	btrfs_assert_tree_locked(path->nodes[1]);
3549 
3550 	right = read_node_slot(root, upper, slot + 1);
3551 	if (right == NULL)
3552 		return 1;
3553 
3554 	btrfs_tree_lock(right);
3555 	btrfs_set_lock_blocking(right);
3556 
3557 	free_space = btrfs_leaf_free_space(root, right);
3558 	if (free_space < data_size)
3559 		goto out_unlock;
3560 
3561 	/* cow and double check */
3562 	ret = btrfs_cow_block(trans, root, right, upper,
3563 			      slot + 1, &right);
3564 	if (ret)
3565 		goto out_unlock;
3566 
3567 	free_space = btrfs_leaf_free_space(root, right);
3568 	if (free_space < data_size)
3569 		goto out_unlock;
3570 
3571 	left_nritems = btrfs_header_nritems(left);
3572 	if (left_nritems == 0)
3573 		goto out_unlock;
3574 
3575 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3576 				right, free_space, left_nritems, min_slot);
3577 out_unlock:
3578 	btrfs_tree_unlock(right);
3579 	free_extent_buffer(right);
3580 	return 1;
3581 }
3582 
3583 /*
3584  * push some data in the path leaf to the left, trying to free up at
3585  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3586  *
3587  * max_slot can put a limit on how far into the leaf we'll push items.  The
3588  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3589  * items
3590  */
3591 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3592 				     struct btrfs_root *root,
3593 				     struct btrfs_path *path, int data_size,
3594 				     int empty, struct extent_buffer *left,
3595 				     int free_space, u32 right_nritems,
3596 				     u32 max_slot)
3597 {
3598 	struct btrfs_disk_key disk_key;
3599 	struct extent_buffer *right = path->nodes[0];
3600 	int i;
3601 	int push_space = 0;
3602 	int push_items = 0;
3603 	struct btrfs_item *item;
3604 	u32 old_left_nritems;
3605 	u32 nr;
3606 	int ret = 0;
3607 	u32 this_item_size;
3608 	u32 old_left_item_size;
3609 	struct btrfs_map_token token;
3610 
3611 	btrfs_init_map_token(&token);
3612 
3613 	if (empty)
3614 		nr = min(right_nritems, max_slot);
3615 	else
3616 		nr = min(right_nritems - 1, max_slot);
3617 
3618 	for (i = 0; i < nr; i++) {
3619 		item = btrfs_item_nr(i);
3620 
3621 		if (!empty && push_items > 0) {
3622 			if (path->slots[0] < i)
3623 				break;
3624 			if (path->slots[0] == i) {
3625 				int space = btrfs_leaf_free_space(root, right);
3626 				if (space + push_space * 2 > free_space)
3627 					break;
3628 			}
3629 		}
3630 
3631 		if (path->slots[0] == i)
3632 			push_space += data_size;
3633 
3634 		this_item_size = btrfs_item_size(right, item);
3635 		if (this_item_size + sizeof(*item) + push_space > free_space)
3636 			break;
3637 
3638 		push_items++;
3639 		push_space += this_item_size + sizeof(*item);
3640 	}
3641 
3642 	if (push_items == 0) {
3643 		ret = 1;
3644 		goto out;
3645 	}
3646 	if (!empty && push_items == btrfs_header_nritems(right))
3647 		WARN_ON(1);
3648 
3649 	/* push data from right to left */
3650 	copy_extent_buffer(left, right,
3651 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3652 			   btrfs_item_nr_offset(0),
3653 			   push_items * sizeof(struct btrfs_item));
3654 
3655 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3656 		     btrfs_item_offset_nr(right, push_items - 1);
3657 
3658 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3659 		     leaf_data_end(root, left) - push_space,
3660 		     btrfs_leaf_data(right) +
3661 		     btrfs_item_offset_nr(right, push_items - 1),
3662 		     push_space);
3663 	old_left_nritems = btrfs_header_nritems(left);
3664 	BUG_ON(old_left_nritems <= 0);
3665 
3666 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3667 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3668 		u32 ioff;
3669 
3670 		item = btrfs_item_nr(i);
3671 
3672 		ioff = btrfs_token_item_offset(left, item, &token);
3673 		btrfs_set_token_item_offset(left, item,
3674 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3675 		      &token);
3676 	}
3677 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3678 
3679 	/* fixup right node */
3680 	if (push_items > right_nritems)
3681 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3682 		       right_nritems);
3683 
3684 	if (push_items < right_nritems) {
3685 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3686 						  leaf_data_end(root, right);
3687 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3688 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3689 				      btrfs_leaf_data(right) +
3690 				      leaf_data_end(root, right), push_space);
3691 
3692 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3693 			      btrfs_item_nr_offset(push_items),
3694 			     (btrfs_header_nritems(right) - push_items) *
3695 			     sizeof(struct btrfs_item));
3696 	}
3697 	right_nritems -= push_items;
3698 	btrfs_set_header_nritems(right, right_nritems);
3699 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3700 	for (i = 0; i < right_nritems; i++) {
3701 		item = btrfs_item_nr(i);
3702 
3703 		push_space = push_space - btrfs_token_item_size(right,
3704 								item, &token);
3705 		btrfs_set_token_item_offset(right, item, push_space, &token);
3706 	}
3707 
3708 	btrfs_mark_buffer_dirty(left);
3709 	if (right_nritems)
3710 		btrfs_mark_buffer_dirty(right);
3711 	else
3712 		clean_tree_block(trans, root, right);
3713 
3714 	btrfs_item_key(right, &disk_key, 0);
3715 	fixup_low_keys(root, path, &disk_key, 1);
3716 
3717 	/* then fixup the leaf pointer in the path */
3718 	if (path->slots[0] < push_items) {
3719 		path->slots[0] += old_left_nritems;
3720 		btrfs_tree_unlock(path->nodes[0]);
3721 		free_extent_buffer(path->nodes[0]);
3722 		path->nodes[0] = left;
3723 		path->slots[1] -= 1;
3724 	} else {
3725 		btrfs_tree_unlock(left);
3726 		free_extent_buffer(left);
3727 		path->slots[0] -= push_items;
3728 	}
3729 	BUG_ON(path->slots[0] < 0);
3730 	return ret;
3731 out:
3732 	btrfs_tree_unlock(left);
3733 	free_extent_buffer(left);
3734 	return ret;
3735 }
3736 
3737 /*
3738  * push some data in the path leaf to the left, trying to free up at
3739  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3740  *
3741  * max_slot can put a limit on how far into the leaf we'll push items.  The
3742  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3743  * items
3744  */
3745 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3746 			  *root, struct btrfs_path *path, int min_data_size,
3747 			  int data_size, int empty, u32 max_slot)
3748 {
3749 	struct extent_buffer *right = path->nodes[0];
3750 	struct extent_buffer *left;
3751 	int slot;
3752 	int free_space;
3753 	u32 right_nritems;
3754 	int ret = 0;
3755 
3756 	slot = path->slots[1];
3757 	if (slot == 0)
3758 		return 1;
3759 	if (!path->nodes[1])
3760 		return 1;
3761 
3762 	right_nritems = btrfs_header_nritems(right);
3763 	if (right_nritems == 0)
3764 		return 1;
3765 
3766 	btrfs_assert_tree_locked(path->nodes[1]);
3767 
3768 	left = read_node_slot(root, path->nodes[1], slot - 1);
3769 	if (left == NULL)
3770 		return 1;
3771 
3772 	btrfs_tree_lock(left);
3773 	btrfs_set_lock_blocking(left);
3774 
3775 	free_space = btrfs_leaf_free_space(root, left);
3776 	if (free_space < data_size) {
3777 		ret = 1;
3778 		goto out;
3779 	}
3780 
3781 	/* cow and double check */
3782 	ret = btrfs_cow_block(trans, root, left,
3783 			      path->nodes[1], slot - 1, &left);
3784 	if (ret) {
3785 		/* we hit -ENOSPC, but it isn't fatal here */
3786 		if (ret == -ENOSPC)
3787 			ret = 1;
3788 		goto out;
3789 	}
3790 
3791 	free_space = btrfs_leaf_free_space(root, left);
3792 	if (free_space < data_size) {
3793 		ret = 1;
3794 		goto out;
3795 	}
3796 
3797 	return __push_leaf_left(trans, root, path, min_data_size,
3798 			       empty, left, free_space, right_nritems,
3799 			       max_slot);
3800 out:
3801 	btrfs_tree_unlock(left);
3802 	free_extent_buffer(left);
3803 	return ret;
3804 }
3805 
3806 /*
3807  * split the path's leaf in two, making sure there is at least data_size
3808  * available for the resulting leaf level of the path.
3809  */
3810 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3811 				    struct btrfs_root *root,
3812 				    struct btrfs_path *path,
3813 				    struct extent_buffer *l,
3814 				    struct extent_buffer *right,
3815 				    int slot, int mid, int nritems)
3816 {
3817 	int data_copy_size;
3818 	int rt_data_off;
3819 	int i;
3820 	struct btrfs_disk_key disk_key;
3821 	struct btrfs_map_token token;
3822 
3823 	btrfs_init_map_token(&token);
3824 
3825 	nritems = nritems - mid;
3826 	btrfs_set_header_nritems(right, nritems);
3827 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3828 
3829 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3830 			   btrfs_item_nr_offset(mid),
3831 			   nritems * sizeof(struct btrfs_item));
3832 
3833 	copy_extent_buffer(right, l,
3834 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3835 		     data_copy_size, btrfs_leaf_data(l) +
3836 		     leaf_data_end(root, l), data_copy_size);
3837 
3838 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3839 		      btrfs_item_end_nr(l, mid);
3840 
3841 	for (i = 0; i < nritems; i++) {
3842 		struct btrfs_item *item = btrfs_item_nr(i);
3843 		u32 ioff;
3844 
3845 		ioff = btrfs_token_item_offset(right, item, &token);
3846 		btrfs_set_token_item_offset(right, item,
3847 					    ioff + rt_data_off, &token);
3848 	}
3849 
3850 	btrfs_set_header_nritems(l, mid);
3851 	btrfs_item_key(right, &disk_key, 0);
3852 	insert_ptr(trans, root, path, &disk_key, right->start,
3853 		   path->slots[1] + 1, 1);
3854 
3855 	btrfs_mark_buffer_dirty(right);
3856 	btrfs_mark_buffer_dirty(l);
3857 	BUG_ON(path->slots[0] != slot);
3858 
3859 	if (mid <= slot) {
3860 		btrfs_tree_unlock(path->nodes[0]);
3861 		free_extent_buffer(path->nodes[0]);
3862 		path->nodes[0] = right;
3863 		path->slots[0] -= mid;
3864 		path->slots[1] += 1;
3865 	} else {
3866 		btrfs_tree_unlock(right);
3867 		free_extent_buffer(right);
3868 	}
3869 
3870 	BUG_ON(path->slots[0] < 0);
3871 }
3872 
3873 /*
3874  * double splits happen when we need to insert a big item in the middle
3875  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3876  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3877  *          A                 B                 C
3878  *
3879  * We avoid this by trying to push the items on either side of our target
3880  * into the adjacent leaves.  If all goes well we can avoid the double split
3881  * completely.
3882  */
3883 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3884 					  struct btrfs_root *root,
3885 					  struct btrfs_path *path,
3886 					  int data_size)
3887 {
3888 	int ret;
3889 	int progress = 0;
3890 	int slot;
3891 	u32 nritems;
3892 
3893 	slot = path->slots[0];
3894 
3895 	/*
3896 	 * try to push all the items after our slot into the
3897 	 * right leaf
3898 	 */
3899 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3900 	if (ret < 0)
3901 		return ret;
3902 
3903 	if (ret == 0)
3904 		progress++;
3905 
3906 	nritems = btrfs_header_nritems(path->nodes[0]);
3907 	/*
3908 	 * our goal is to get our slot at the start or end of a leaf.  If
3909 	 * we've done so we're done
3910 	 */
3911 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3912 		return 0;
3913 
3914 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3915 		return 0;
3916 
3917 	/* try to push all the items before our slot into the next leaf */
3918 	slot = path->slots[0];
3919 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3920 	if (ret < 0)
3921 		return ret;
3922 
3923 	if (ret == 0)
3924 		progress++;
3925 
3926 	if (progress)
3927 		return 0;
3928 	return 1;
3929 }
3930 
3931 /*
3932  * split the path's leaf in two, making sure there is at least data_size
3933  * available for the resulting leaf level of the path.
3934  *
3935  * returns 0 if all went well and < 0 on failure.
3936  */
3937 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3938 			       struct btrfs_root *root,
3939 			       struct btrfs_key *ins_key,
3940 			       struct btrfs_path *path, int data_size,
3941 			       int extend)
3942 {
3943 	struct btrfs_disk_key disk_key;
3944 	struct extent_buffer *l;
3945 	u32 nritems;
3946 	int mid;
3947 	int slot;
3948 	struct extent_buffer *right;
3949 	int ret = 0;
3950 	int wret;
3951 	int split;
3952 	int num_doubles = 0;
3953 	int tried_avoid_double = 0;
3954 
3955 	l = path->nodes[0];
3956 	slot = path->slots[0];
3957 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3958 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3959 		return -EOVERFLOW;
3960 
3961 	/* first try to make some room by pushing left and right */
3962 	if (data_size && path->nodes[1]) {
3963 		wret = push_leaf_right(trans, root, path, data_size,
3964 				       data_size, 0, 0);
3965 		if (wret < 0)
3966 			return wret;
3967 		if (wret) {
3968 			wret = push_leaf_left(trans, root, path, data_size,
3969 					      data_size, 0, (u32)-1);
3970 			if (wret < 0)
3971 				return wret;
3972 		}
3973 		l = path->nodes[0];
3974 
3975 		/* did the pushes work? */
3976 		if (btrfs_leaf_free_space(root, l) >= data_size)
3977 			return 0;
3978 	}
3979 
3980 	if (!path->nodes[1]) {
3981 		ret = insert_new_root(trans, root, path, 1);
3982 		if (ret)
3983 			return ret;
3984 	}
3985 again:
3986 	split = 1;
3987 	l = path->nodes[0];
3988 	slot = path->slots[0];
3989 	nritems = btrfs_header_nritems(l);
3990 	mid = (nritems + 1) / 2;
3991 
3992 	if (mid <= slot) {
3993 		if (nritems == 1 ||
3994 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3995 			BTRFS_LEAF_DATA_SIZE(root)) {
3996 			if (slot >= nritems) {
3997 				split = 0;
3998 			} else {
3999 				mid = slot;
4000 				if (mid != nritems &&
4001 				    leaf_space_used(l, mid, nritems - mid) +
4002 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4003 					if (data_size && !tried_avoid_double)
4004 						goto push_for_double;
4005 					split = 2;
4006 				}
4007 			}
4008 		}
4009 	} else {
4010 		if (leaf_space_used(l, 0, mid) + data_size >
4011 			BTRFS_LEAF_DATA_SIZE(root)) {
4012 			if (!extend && data_size && slot == 0) {
4013 				split = 0;
4014 			} else if ((extend || !data_size) && slot == 0) {
4015 				mid = 1;
4016 			} else {
4017 				mid = slot;
4018 				if (mid != nritems &&
4019 				    leaf_space_used(l, mid, nritems - mid) +
4020 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4021 					if (data_size && !tried_avoid_double)
4022 						goto push_for_double;
4023 					split = 2 ;
4024 				}
4025 			}
4026 		}
4027 	}
4028 
4029 	if (split == 0)
4030 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4031 	else
4032 		btrfs_item_key(l, &disk_key, mid);
4033 
4034 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4035 					root->root_key.objectid,
4036 					&disk_key, 0, l->start, 0);
4037 	if (IS_ERR(right))
4038 		return PTR_ERR(right);
4039 
4040 	root_add_used(root, root->leafsize);
4041 
4042 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4043 	btrfs_set_header_bytenr(right, right->start);
4044 	btrfs_set_header_generation(right, trans->transid);
4045 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4046 	btrfs_set_header_owner(right, root->root_key.objectid);
4047 	btrfs_set_header_level(right, 0);
4048 	write_extent_buffer(right, root->fs_info->fsid,
4049 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4050 
4051 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4052 			    btrfs_header_chunk_tree_uuid(right),
4053 			    BTRFS_UUID_SIZE);
4054 
4055 	if (split == 0) {
4056 		if (mid <= slot) {
4057 			btrfs_set_header_nritems(right, 0);
4058 			insert_ptr(trans, root, path, &disk_key, right->start,
4059 				   path->slots[1] + 1, 1);
4060 			btrfs_tree_unlock(path->nodes[0]);
4061 			free_extent_buffer(path->nodes[0]);
4062 			path->nodes[0] = right;
4063 			path->slots[0] = 0;
4064 			path->slots[1] += 1;
4065 		} else {
4066 			btrfs_set_header_nritems(right, 0);
4067 			insert_ptr(trans, root, path, &disk_key, right->start,
4068 					  path->slots[1], 1);
4069 			btrfs_tree_unlock(path->nodes[0]);
4070 			free_extent_buffer(path->nodes[0]);
4071 			path->nodes[0] = right;
4072 			path->slots[0] = 0;
4073 			if (path->slots[1] == 0)
4074 				fixup_low_keys(root, path, &disk_key, 1);
4075 		}
4076 		btrfs_mark_buffer_dirty(right);
4077 		return ret;
4078 	}
4079 
4080 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4081 
4082 	if (split == 2) {
4083 		BUG_ON(num_doubles != 0);
4084 		num_doubles++;
4085 		goto again;
4086 	}
4087 
4088 	return 0;
4089 
4090 push_for_double:
4091 	push_for_double_split(trans, root, path, data_size);
4092 	tried_avoid_double = 1;
4093 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4094 		return 0;
4095 	goto again;
4096 }
4097 
4098 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4099 					 struct btrfs_root *root,
4100 					 struct btrfs_path *path, int ins_len)
4101 {
4102 	struct btrfs_key key;
4103 	struct extent_buffer *leaf;
4104 	struct btrfs_file_extent_item *fi;
4105 	u64 extent_len = 0;
4106 	u32 item_size;
4107 	int ret;
4108 
4109 	leaf = path->nodes[0];
4110 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4111 
4112 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4113 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4114 
4115 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4116 		return 0;
4117 
4118 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4119 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4120 		fi = btrfs_item_ptr(leaf, path->slots[0],
4121 				    struct btrfs_file_extent_item);
4122 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4123 	}
4124 	btrfs_release_path(path);
4125 
4126 	path->keep_locks = 1;
4127 	path->search_for_split = 1;
4128 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4129 	path->search_for_split = 0;
4130 	if (ret < 0)
4131 		goto err;
4132 
4133 	ret = -EAGAIN;
4134 	leaf = path->nodes[0];
4135 	/* if our item isn't there or got smaller, return now */
4136 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4137 		goto err;
4138 
4139 	/* the leaf has  changed, it now has room.  return now */
4140 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4141 		goto err;
4142 
4143 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4144 		fi = btrfs_item_ptr(leaf, path->slots[0],
4145 				    struct btrfs_file_extent_item);
4146 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4147 			goto err;
4148 	}
4149 
4150 	btrfs_set_path_blocking(path);
4151 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4152 	if (ret)
4153 		goto err;
4154 
4155 	path->keep_locks = 0;
4156 	btrfs_unlock_up_safe(path, 1);
4157 	return 0;
4158 err:
4159 	path->keep_locks = 0;
4160 	return ret;
4161 }
4162 
4163 static noinline int split_item(struct btrfs_trans_handle *trans,
4164 			       struct btrfs_root *root,
4165 			       struct btrfs_path *path,
4166 			       struct btrfs_key *new_key,
4167 			       unsigned long split_offset)
4168 {
4169 	struct extent_buffer *leaf;
4170 	struct btrfs_item *item;
4171 	struct btrfs_item *new_item;
4172 	int slot;
4173 	char *buf;
4174 	u32 nritems;
4175 	u32 item_size;
4176 	u32 orig_offset;
4177 	struct btrfs_disk_key disk_key;
4178 
4179 	leaf = path->nodes[0];
4180 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4181 
4182 	btrfs_set_path_blocking(path);
4183 
4184 	item = btrfs_item_nr(path->slots[0]);
4185 	orig_offset = btrfs_item_offset(leaf, item);
4186 	item_size = btrfs_item_size(leaf, item);
4187 
4188 	buf = kmalloc(item_size, GFP_NOFS);
4189 	if (!buf)
4190 		return -ENOMEM;
4191 
4192 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4193 			    path->slots[0]), item_size);
4194 
4195 	slot = path->slots[0] + 1;
4196 	nritems = btrfs_header_nritems(leaf);
4197 	if (slot != nritems) {
4198 		/* shift the items */
4199 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4200 				btrfs_item_nr_offset(slot),
4201 				(nritems - slot) * sizeof(struct btrfs_item));
4202 	}
4203 
4204 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4205 	btrfs_set_item_key(leaf, &disk_key, slot);
4206 
4207 	new_item = btrfs_item_nr(slot);
4208 
4209 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4210 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4211 
4212 	btrfs_set_item_offset(leaf, item,
4213 			      orig_offset + item_size - split_offset);
4214 	btrfs_set_item_size(leaf, item, split_offset);
4215 
4216 	btrfs_set_header_nritems(leaf, nritems + 1);
4217 
4218 	/* write the data for the start of the original item */
4219 	write_extent_buffer(leaf, buf,
4220 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4221 			    split_offset);
4222 
4223 	/* write the data for the new item */
4224 	write_extent_buffer(leaf, buf + split_offset,
4225 			    btrfs_item_ptr_offset(leaf, slot),
4226 			    item_size - split_offset);
4227 	btrfs_mark_buffer_dirty(leaf);
4228 
4229 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4230 	kfree(buf);
4231 	return 0;
4232 }
4233 
4234 /*
4235  * This function splits a single item into two items,
4236  * giving 'new_key' to the new item and splitting the
4237  * old one at split_offset (from the start of the item).
4238  *
4239  * The path may be released by this operation.  After
4240  * the split, the path is pointing to the old item.  The
4241  * new item is going to be in the same node as the old one.
4242  *
4243  * Note, the item being split must be smaller enough to live alone on
4244  * a tree block with room for one extra struct btrfs_item
4245  *
4246  * This allows us to split the item in place, keeping a lock on the
4247  * leaf the entire time.
4248  */
4249 int btrfs_split_item(struct btrfs_trans_handle *trans,
4250 		     struct btrfs_root *root,
4251 		     struct btrfs_path *path,
4252 		     struct btrfs_key *new_key,
4253 		     unsigned long split_offset)
4254 {
4255 	int ret;
4256 	ret = setup_leaf_for_split(trans, root, path,
4257 				   sizeof(struct btrfs_item));
4258 	if (ret)
4259 		return ret;
4260 
4261 	ret = split_item(trans, root, path, new_key, split_offset);
4262 	return ret;
4263 }
4264 
4265 /*
4266  * This function duplicate a item, giving 'new_key' to the new item.
4267  * It guarantees both items live in the same tree leaf and the new item
4268  * is contiguous with the original item.
4269  *
4270  * This allows us to split file extent in place, keeping a lock on the
4271  * leaf the entire time.
4272  */
4273 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4274 			 struct btrfs_root *root,
4275 			 struct btrfs_path *path,
4276 			 struct btrfs_key *new_key)
4277 {
4278 	struct extent_buffer *leaf;
4279 	int ret;
4280 	u32 item_size;
4281 
4282 	leaf = path->nodes[0];
4283 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4284 	ret = setup_leaf_for_split(trans, root, path,
4285 				   item_size + sizeof(struct btrfs_item));
4286 	if (ret)
4287 		return ret;
4288 
4289 	path->slots[0]++;
4290 	setup_items_for_insert(root, path, new_key, &item_size,
4291 			       item_size, item_size +
4292 			       sizeof(struct btrfs_item), 1);
4293 	leaf = path->nodes[0];
4294 	memcpy_extent_buffer(leaf,
4295 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4296 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4297 			     item_size);
4298 	return 0;
4299 }
4300 
4301 /*
4302  * make the item pointed to by the path smaller.  new_size indicates
4303  * how small to make it, and from_end tells us if we just chop bytes
4304  * off the end of the item or if we shift the item to chop bytes off
4305  * the front.
4306  */
4307 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4308 			 u32 new_size, int from_end)
4309 {
4310 	int slot;
4311 	struct extent_buffer *leaf;
4312 	struct btrfs_item *item;
4313 	u32 nritems;
4314 	unsigned int data_end;
4315 	unsigned int old_data_start;
4316 	unsigned int old_size;
4317 	unsigned int size_diff;
4318 	int i;
4319 	struct btrfs_map_token token;
4320 
4321 	btrfs_init_map_token(&token);
4322 
4323 	leaf = path->nodes[0];
4324 	slot = path->slots[0];
4325 
4326 	old_size = btrfs_item_size_nr(leaf, slot);
4327 	if (old_size == new_size)
4328 		return;
4329 
4330 	nritems = btrfs_header_nritems(leaf);
4331 	data_end = leaf_data_end(root, leaf);
4332 
4333 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4334 
4335 	size_diff = old_size - new_size;
4336 
4337 	BUG_ON(slot < 0);
4338 	BUG_ON(slot >= nritems);
4339 
4340 	/*
4341 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4342 	 */
4343 	/* first correct the data pointers */
4344 	for (i = slot; i < nritems; i++) {
4345 		u32 ioff;
4346 		item = btrfs_item_nr(i);
4347 
4348 		ioff = btrfs_token_item_offset(leaf, item, &token);
4349 		btrfs_set_token_item_offset(leaf, item,
4350 					    ioff + size_diff, &token);
4351 	}
4352 
4353 	/* shift the data */
4354 	if (from_end) {
4355 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4356 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4357 			      data_end, old_data_start + new_size - data_end);
4358 	} else {
4359 		struct btrfs_disk_key disk_key;
4360 		u64 offset;
4361 
4362 		btrfs_item_key(leaf, &disk_key, slot);
4363 
4364 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4365 			unsigned long ptr;
4366 			struct btrfs_file_extent_item *fi;
4367 
4368 			fi = btrfs_item_ptr(leaf, slot,
4369 					    struct btrfs_file_extent_item);
4370 			fi = (struct btrfs_file_extent_item *)(
4371 			     (unsigned long)fi - size_diff);
4372 
4373 			if (btrfs_file_extent_type(leaf, fi) ==
4374 			    BTRFS_FILE_EXTENT_INLINE) {
4375 				ptr = btrfs_item_ptr_offset(leaf, slot);
4376 				memmove_extent_buffer(leaf, ptr,
4377 				      (unsigned long)fi,
4378 				      offsetof(struct btrfs_file_extent_item,
4379 						 disk_bytenr));
4380 			}
4381 		}
4382 
4383 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4384 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4385 			      data_end, old_data_start - data_end);
4386 
4387 		offset = btrfs_disk_key_offset(&disk_key);
4388 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4389 		btrfs_set_item_key(leaf, &disk_key, slot);
4390 		if (slot == 0)
4391 			fixup_low_keys(root, path, &disk_key, 1);
4392 	}
4393 
4394 	item = btrfs_item_nr(slot);
4395 	btrfs_set_item_size(leaf, item, new_size);
4396 	btrfs_mark_buffer_dirty(leaf);
4397 
4398 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4399 		btrfs_print_leaf(root, leaf);
4400 		BUG();
4401 	}
4402 }
4403 
4404 /*
4405  * make the item pointed to by the path bigger, data_size is the added size.
4406  */
4407 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4408 		       u32 data_size)
4409 {
4410 	int slot;
4411 	struct extent_buffer *leaf;
4412 	struct btrfs_item *item;
4413 	u32 nritems;
4414 	unsigned int data_end;
4415 	unsigned int old_data;
4416 	unsigned int old_size;
4417 	int i;
4418 	struct btrfs_map_token token;
4419 
4420 	btrfs_init_map_token(&token);
4421 
4422 	leaf = path->nodes[0];
4423 
4424 	nritems = btrfs_header_nritems(leaf);
4425 	data_end = leaf_data_end(root, leaf);
4426 
4427 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4428 		btrfs_print_leaf(root, leaf);
4429 		BUG();
4430 	}
4431 	slot = path->slots[0];
4432 	old_data = btrfs_item_end_nr(leaf, slot);
4433 
4434 	BUG_ON(slot < 0);
4435 	if (slot >= nritems) {
4436 		btrfs_print_leaf(root, leaf);
4437 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4438 		       slot, nritems);
4439 		BUG_ON(1);
4440 	}
4441 
4442 	/*
4443 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4444 	 */
4445 	/* first correct the data pointers */
4446 	for (i = slot; i < nritems; i++) {
4447 		u32 ioff;
4448 		item = btrfs_item_nr(i);
4449 
4450 		ioff = btrfs_token_item_offset(leaf, item, &token);
4451 		btrfs_set_token_item_offset(leaf, item,
4452 					    ioff - data_size, &token);
4453 	}
4454 
4455 	/* shift the data */
4456 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4457 		      data_end - data_size, btrfs_leaf_data(leaf) +
4458 		      data_end, old_data - data_end);
4459 
4460 	data_end = old_data;
4461 	old_size = btrfs_item_size_nr(leaf, slot);
4462 	item = btrfs_item_nr(slot);
4463 	btrfs_set_item_size(leaf, item, old_size + data_size);
4464 	btrfs_mark_buffer_dirty(leaf);
4465 
4466 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4467 		btrfs_print_leaf(root, leaf);
4468 		BUG();
4469 	}
4470 }
4471 
4472 /*
4473  * this is a helper for btrfs_insert_empty_items, the main goal here is
4474  * to save stack depth by doing the bulk of the work in a function
4475  * that doesn't call btrfs_search_slot
4476  */
4477 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4478 			    struct btrfs_key *cpu_key, u32 *data_size,
4479 			    u32 total_data, u32 total_size, int nr)
4480 {
4481 	struct btrfs_item *item;
4482 	int i;
4483 	u32 nritems;
4484 	unsigned int data_end;
4485 	struct btrfs_disk_key disk_key;
4486 	struct extent_buffer *leaf;
4487 	int slot;
4488 	struct btrfs_map_token token;
4489 
4490 	btrfs_init_map_token(&token);
4491 
4492 	leaf = path->nodes[0];
4493 	slot = path->slots[0];
4494 
4495 	nritems = btrfs_header_nritems(leaf);
4496 	data_end = leaf_data_end(root, leaf);
4497 
4498 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4499 		btrfs_print_leaf(root, leaf);
4500 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4501 		       total_size, btrfs_leaf_free_space(root, leaf));
4502 		BUG();
4503 	}
4504 
4505 	if (slot != nritems) {
4506 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4507 
4508 		if (old_data < data_end) {
4509 			btrfs_print_leaf(root, leaf);
4510 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4511 			       slot, old_data, data_end);
4512 			BUG_ON(1);
4513 		}
4514 		/*
4515 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4516 		 */
4517 		/* first correct the data pointers */
4518 		for (i = slot; i < nritems; i++) {
4519 			u32 ioff;
4520 
4521 			item = btrfs_item_nr( i);
4522 			ioff = btrfs_token_item_offset(leaf, item, &token);
4523 			btrfs_set_token_item_offset(leaf, item,
4524 						    ioff - total_data, &token);
4525 		}
4526 		/* shift the items */
4527 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4528 			      btrfs_item_nr_offset(slot),
4529 			      (nritems - slot) * sizeof(struct btrfs_item));
4530 
4531 		/* shift the data */
4532 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4533 			      data_end - total_data, btrfs_leaf_data(leaf) +
4534 			      data_end, old_data - data_end);
4535 		data_end = old_data;
4536 	}
4537 
4538 	/* setup the item for the new data */
4539 	for (i = 0; i < nr; i++) {
4540 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4541 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4542 		item = btrfs_item_nr(slot + i);
4543 		btrfs_set_token_item_offset(leaf, item,
4544 					    data_end - data_size[i], &token);
4545 		data_end -= data_size[i];
4546 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4547 	}
4548 
4549 	btrfs_set_header_nritems(leaf, nritems + nr);
4550 
4551 	if (slot == 0) {
4552 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4553 		fixup_low_keys(root, path, &disk_key, 1);
4554 	}
4555 	btrfs_unlock_up_safe(path, 1);
4556 	btrfs_mark_buffer_dirty(leaf);
4557 
4558 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4559 		btrfs_print_leaf(root, leaf);
4560 		BUG();
4561 	}
4562 }
4563 
4564 /*
4565  * Given a key and some data, insert items into the tree.
4566  * This does all the path init required, making room in the tree if needed.
4567  */
4568 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4569 			    struct btrfs_root *root,
4570 			    struct btrfs_path *path,
4571 			    struct btrfs_key *cpu_key, u32 *data_size,
4572 			    int nr)
4573 {
4574 	int ret = 0;
4575 	int slot;
4576 	int i;
4577 	u32 total_size = 0;
4578 	u32 total_data = 0;
4579 
4580 	for (i = 0; i < nr; i++)
4581 		total_data += data_size[i];
4582 
4583 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4584 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4585 	if (ret == 0)
4586 		return -EEXIST;
4587 	if (ret < 0)
4588 		return ret;
4589 
4590 	slot = path->slots[0];
4591 	BUG_ON(slot < 0);
4592 
4593 	setup_items_for_insert(root, path, cpu_key, data_size,
4594 			       total_data, total_size, nr);
4595 	return 0;
4596 }
4597 
4598 /*
4599  * Given a key and some data, insert an item into the tree.
4600  * This does all the path init required, making room in the tree if needed.
4601  */
4602 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4603 		      *root, struct btrfs_key *cpu_key, void *data, u32
4604 		      data_size)
4605 {
4606 	int ret = 0;
4607 	struct btrfs_path *path;
4608 	struct extent_buffer *leaf;
4609 	unsigned long ptr;
4610 
4611 	path = btrfs_alloc_path();
4612 	if (!path)
4613 		return -ENOMEM;
4614 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4615 	if (!ret) {
4616 		leaf = path->nodes[0];
4617 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4618 		write_extent_buffer(leaf, data, ptr, data_size);
4619 		btrfs_mark_buffer_dirty(leaf);
4620 	}
4621 	btrfs_free_path(path);
4622 	return ret;
4623 }
4624 
4625 /*
4626  * delete the pointer from a given node.
4627  *
4628  * the tree should have been previously balanced so the deletion does not
4629  * empty a node.
4630  */
4631 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4632 		    int level, int slot)
4633 {
4634 	struct extent_buffer *parent = path->nodes[level];
4635 	u32 nritems;
4636 	int ret;
4637 
4638 	nritems = btrfs_header_nritems(parent);
4639 	if (slot != nritems - 1) {
4640 		if (level)
4641 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4642 					     slot + 1, nritems - slot - 1);
4643 		memmove_extent_buffer(parent,
4644 			      btrfs_node_key_ptr_offset(slot),
4645 			      btrfs_node_key_ptr_offset(slot + 1),
4646 			      sizeof(struct btrfs_key_ptr) *
4647 			      (nritems - slot - 1));
4648 	} else if (level) {
4649 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4650 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4651 		BUG_ON(ret < 0);
4652 	}
4653 
4654 	nritems--;
4655 	btrfs_set_header_nritems(parent, nritems);
4656 	if (nritems == 0 && parent == root->node) {
4657 		BUG_ON(btrfs_header_level(root->node) != 1);
4658 		/* just turn the root into a leaf and break */
4659 		btrfs_set_header_level(root->node, 0);
4660 	} else if (slot == 0) {
4661 		struct btrfs_disk_key disk_key;
4662 
4663 		btrfs_node_key(parent, &disk_key, 0);
4664 		fixup_low_keys(root, path, &disk_key, level + 1);
4665 	}
4666 	btrfs_mark_buffer_dirty(parent);
4667 }
4668 
4669 /*
4670  * a helper function to delete the leaf pointed to by path->slots[1] and
4671  * path->nodes[1].
4672  *
4673  * This deletes the pointer in path->nodes[1] and frees the leaf
4674  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4675  *
4676  * The path must have already been setup for deleting the leaf, including
4677  * all the proper balancing.  path->nodes[1] must be locked.
4678  */
4679 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4680 				    struct btrfs_root *root,
4681 				    struct btrfs_path *path,
4682 				    struct extent_buffer *leaf)
4683 {
4684 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4685 	del_ptr(root, path, 1, path->slots[1]);
4686 
4687 	/*
4688 	 * btrfs_free_extent is expensive, we want to make sure we
4689 	 * aren't holding any locks when we call it
4690 	 */
4691 	btrfs_unlock_up_safe(path, 0);
4692 
4693 	root_sub_used(root, leaf->len);
4694 
4695 	extent_buffer_get(leaf);
4696 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4697 	free_extent_buffer_stale(leaf);
4698 }
4699 /*
4700  * delete the item at the leaf level in path.  If that empties
4701  * the leaf, remove it from the tree
4702  */
4703 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4704 		    struct btrfs_path *path, int slot, int nr)
4705 {
4706 	struct extent_buffer *leaf;
4707 	struct btrfs_item *item;
4708 	int last_off;
4709 	int dsize = 0;
4710 	int ret = 0;
4711 	int wret;
4712 	int i;
4713 	u32 nritems;
4714 	struct btrfs_map_token token;
4715 
4716 	btrfs_init_map_token(&token);
4717 
4718 	leaf = path->nodes[0];
4719 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4720 
4721 	for (i = 0; i < nr; i++)
4722 		dsize += btrfs_item_size_nr(leaf, slot + i);
4723 
4724 	nritems = btrfs_header_nritems(leaf);
4725 
4726 	if (slot + nr != nritems) {
4727 		int data_end = leaf_data_end(root, leaf);
4728 
4729 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4730 			      data_end + dsize,
4731 			      btrfs_leaf_data(leaf) + data_end,
4732 			      last_off - data_end);
4733 
4734 		for (i = slot + nr; i < nritems; i++) {
4735 			u32 ioff;
4736 
4737 			item = btrfs_item_nr(i);
4738 			ioff = btrfs_token_item_offset(leaf, item, &token);
4739 			btrfs_set_token_item_offset(leaf, item,
4740 						    ioff + dsize, &token);
4741 		}
4742 
4743 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4744 			      btrfs_item_nr_offset(slot + nr),
4745 			      sizeof(struct btrfs_item) *
4746 			      (nritems - slot - nr));
4747 	}
4748 	btrfs_set_header_nritems(leaf, nritems - nr);
4749 	nritems -= nr;
4750 
4751 	/* delete the leaf if we've emptied it */
4752 	if (nritems == 0) {
4753 		if (leaf == root->node) {
4754 			btrfs_set_header_level(leaf, 0);
4755 		} else {
4756 			btrfs_set_path_blocking(path);
4757 			clean_tree_block(trans, root, leaf);
4758 			btrfs_del_leaf(trans, root, path, leaf);
4759 		}
4760 	} else {
4761 		int used = leaf_space_used(leaf, 0, nritems);
4762 		if (slot == 0) {
4763 			struct btrfs_disk_key disk_key;
4764 
4765 			btrfs_item_key(leaf, &disk_key, 0);
4766 			fixup_low_keys(root, path, &disk_key, 1);
4767 		}
4768 
4769 		/* delete the leaf if it is mostly empty */
4770 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4771 			/* push_leaf_left fixes the path.
4772 			 * make sure the path still points to our leaf
4773 			 * for possible call to del_ptr below
4774 			 */
4775 			slot = path->slots[1];
4776 			extent_buffer_get(leaf);
4777 
4778 			btrfs_set_path_blocking(path);
4779 			wret = push_leaf_left(trans, root, path, 1, 1,
4780 					      1, (u32)-1);
4781 			if (wret < 0 && wret != -ENOSPC)
4782 				ret = wret;
4783 
4784 			if (path->nodes[0] == leaf &&
4785 			    btrfs_header_nritems(leaf)) {
4786 				wret = push_leaf_right(trans, root, path, 1,
4787 						       1, 1, 0);
4788 				if (wret < 0 && wret != -ENOSPC)
4789 					ret = wret;
4790 			}
4791 
4792 			if (btrfs_header_nritems(leaf) == 0) {
4793 				path->slots[1] = slot;
4794 				btrfs_del_leaf(trans, root, path, leaf);
4795 				free_extent_buffer(leaf);
4796 				ret = 0;
4797 			} else {
4798 				/* if we're still in the path, make sure
4799 				 * we're dirty.  Otherwise, one of the
4800 				 * push_leaf functions must have already
4801 				 * dirtied this buffer
4802 				 */
4803 				if (path->nodes[0] == leaf)
4804 					btrfs_mark_buffer_dirty(leaf);
4805 				free_extent_buffer(leaf);
4806 			}
4807 		} else {
4808 			btrfs_mark_buffer_dirty(leaf);
4809 		}
4810 	}
4811 	return ret;
4812 }
4813 
4814 /*
4815  * search the tree again to find a leaf with lesser keys
4816  * returns 0 if it found something or 1 if there are no lesser leaves.
4817  * returns < 0 on io errors.
4818  *
4819  * This may release the path, and so you may lose any locks held at the
4820  * time you call it.
4821  */
4822 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4823 {
4824 	struct btrfs_key key;
4825 	struct btrfs_disk_key found_key;
4826 	int ret;
4827 
4828 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4829 
4830 	if (key.offset > 0)
4831 		key.offset--;
4832 	else if (key.type > 0)
4833 		key.type--;
4834 	else if (key.objectid > 0)
4835 		key.objectid--;
4836 	else
4837 		return 1;
4838 
4839 	btrfs_release_path(path);
4840 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4841 	if (ret < 0)
4842 		return ret;
4843 	btrfs_item_key(path->nodes[0], &found_key, 0);
4844 	ret = comp_keys(&found_key, &key);
4845 	if (ret < 0)
4846 		return 0;
4847 	return 1;
4848 }
4849 
4850 /*
4851  * A helper function to walk down the tree starting at min_key, and looking
4852  * for nodes or leaves that are have a minimum transaction id.
4853  * This is used by the btree defrag code, and tree logging
4854  *
4855  * This does not cow, but it does stuff the starting key it finds back
4856  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4857  * key and get a writable path.
4858  *
4859  * This does lock as it descends, and path->keep_locks should be set
4860  * to 1 by the caller.
4861  *
4862  * This honors path->lowest_level to prevent descent past a given level
4863  * of the tree.
4864  *
4865  * min_trans indicates the oldest transaction that you are interested
4866  * in walking through.  Any nodes or leaves older than min_trans are
4867  * skipped over (without reading them).
4868  *
4869  * returns zero if something useful was found, < 0 on error and 1 if there
4870  * was nothing in the tree that matched the search criteria.
4871  */
4872 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4873 			 struct btrfs_path *path,
4874 			 u64 min_trans)
4875 {
4876 	struct extent_buffer *cur;
4877 	struct btrfs_key found_key;
4878 	int slot;
4879 	int sret;
4880 	u32 nritems;
4881 	int level;
4882 	int ret = 1;
4883 
4884 	WARN_ON(!path->keep_locks);
4885 again:
4886 	cur = btrfs_read_lock_root_node(root);
4887 	level = btrfs_header_level(cur);
4888 	WARN_ON(path->nodes[level]);
4889 	path->nodes[level] = cur;
4890 	path->locks[level] = BTRFS_READ_LOCK;
4891 
4892 	if (btrfs_header_generation(cur) < min_trans) {
4893 		ret = 1;
4894 		goto out;
4895 	}
4896 	while (1) {
4897 		nritems = btrfs_header_nritems(cur);
4898 		level = btrfs_header_level(cur);
4899 		sret = bin_search(cur, min_key, level, &slot);
4900 
4901 		/* at the lowest level, we're done, setup the path and exit */
4902 		if (level == path->lowest_level) {
4903 			if (slot >= nritems)
4904 				goto find_next_key;
4905 			ret = 0;
4906 			path->slots[level] = slot;
4907 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4908 			goto out;
4909 		}
4910 		if (sret && slot > 0)
4911 			slot--;
4912 		/*
4913 		 * check this node pointer against the min_trans parameters.
4914 		 * If it is too old, old, skip to the next one.
4915 		 */
4916 		while (slot < nritems) {
4917 			u64 gen;
4918 
4919 			gen = btrfs_node_ptr_generation(cur, slot);
4920 			if (gen < min_trans) {
4921 				slot++;
4922 				continue;
4923 			}
4924 			break;
4925 		}
4926 find_next_key:
4927 		/*
4928 		 * we didn't find a candidate key in this node, walk forward
4929 		 * and find another one
4930 		 */
4931 		if (slot >= nritems) {
4932 			path->slots[level] = slot;
4933 			btrfs_set_path_blocking(path);
4934 			sret = btrfs_find_next_key(root, path, min_key, level,
4935 						  min_trans);
4936 			if (sret == 0) {
4937 				btrfs_release_path(path);
4938 				goto again;
4939 			} else {
4940 				goto out;
4941 			}
4942 		}
4943 		/* save our key for returning back */
4944 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4945 		path->slots[level] = slot;
4946 		if (level == path->lowest_level) {
4947 			ret = 0;
4948 			unlock_up(path, level, 1, 0, NULL);
4949 			goto out;
4950 		}
4951 		btrfs_set_path_blocking(path);
4952 		cur = read_node_slot(root, cur, slot);
4953 		BUG_ON(!cur); /* -ENOMEM */
4954 
4955 		btrfs_tree_read_lock(cur);
4956 
4957 		path->locks[level - 1] = BTRFS_READ_LOCK;
4958 		path->nodes[level - 1] = cur;
4959 		unlock_up(path, level, 1, 0, NULL);
4960 		btrfs_clear_path_blocking(path, NULL, 0);
4961 	}
4962 out:
4963 	if (ret == 0)
4964 		memcpy(min_key, &found_key, sizeof(found_key));
4965 	btrfs_set_path_blocking(path);
4966 	return ret;
4967 }
4968 
4969 static void tree_move_down(struct btrfs_root *root,
4970 			   struct btrfs_path *path,
4971 			   int *level, int root_level)
4972 {
4973 	BUG_ON(*level == 0);
4974 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4975 					path->slots[*level]);
4976 	path->slots[*level - 1] = 0;
4977 	(*level)--;
4978 }
4979 
4980 static int tree_move_next_or_upnext(struct btrfs_root *root,
4981 				    struct btrfs_path *path,
4982 				    int *level, int root_level)
4983 {
4984 	int ret = 0;
4985 	int nritems;
4986 	nritems = btrfs_header_nritems(path->nodes[*level]);
4987 
4988 	path->slots[*level]++;
4989 
4990 	while (path->slots[*level] >= nritems) {
4991 		if (*level == root_level)
4992 			return -1;
4993 
4994 		/* move upnext */
4995 		path->slots[*level] = 0;
4996 		free_extent_buffer(path->nodes[*level]);
4997 		path->nodes[*level] = NULL;
4998 		(*level)++;
4999 		path->slots[*level]++;
5000 
5001 		nritems = btrfs_header_nritems(path->nodes[*level]);
5002 		ret = 1;
5003 	}
5004 	return ret;
5005 }
5006 
5007 /*
5008  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5009  * or down.
5010  */
5011 static int tree_advance(struct btrfs_root *root,
5012 			struct btrfs_path *path,
5013 			int *level, int root_level,
5014 			int allow_down,
5015 			struct btrfs_key *key)
5016 {
5017 	int ret;
5018 
5019 	if (*level == 0 || !allow_down) {
5020 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5021 	} else {
5022 		tree_move_down(root, path, level, root_level);
5023 		ret = 0;
5024 	}
5025 	if (ret >= 0) {
5026 		if (*level == 0)
5027 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5028 					path->slots[*level]);
5029 		else
5030 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5031 					path->slots[*level]);
5032 	}
5033 	return ret;
5034 }
5035 
5036 static int tree_compare_item(struct btrfs_root *left_root,
5037 			     struct btrfs_path *left_path,
5038 			     struct btrfs_path *right_path,
5039 			     char *tmp_buf)
5040 {
5041 	int cmp;
5042 	int len1, len2;
5043 	unsigned long off1, off2;
5044 
5045 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5046 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5047 	if (len1 != len2)
5048 		return 1;
5049 
5050 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5051 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5052 				right_path->slots[0]);
5053 
5054 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5055 
5056 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5057 	if (cmp)
5058 		return 1;
5059 	return 0;
5060 }
5061 
5062 #define ADVANCE 1
5063 #define ADVANCE_ONLY_NEXT -1
5064 
5065 /*
5066  * This function compares two trees and calls the provided callback for
5067  * every changed/new/deleted item it finds.
5068  * If shared tree blocks are encountered, whole subtrees are skipped, making
5069  * the compare pretty fast on snapshotted subvolumes.
5070  *
5071  * This currently works on commit roots only. As commit roots are read only,
5072  * we don't do any locking. The commit roots are protected with transactions.
5073  * Transactions are ended and rejoined when a commit is tried in between.
5074  *
5075  * This function checks for modifications done to the trees while comparing.
5076  * If it detects a change, it aborts immediately.
5077  */
5078 int btrfs_compare_trees(struct btrfs_root *left_root,
5079 			struct btrfs_root *right_root,
5080 			btrfs_changed_cb_t changed_cb, void *ctx)
5081 {
5082 	int ret;
5083 	int cmp;
5084 	struct btrfs_trans_handle *trans = NULL;
5085 	struct btrfs_path *left_path = NULL;
5086 	struct btrfs_path *right_path = NULL;
5087 	struct btrfs_key left_key;
5088 	struct btrfs_key right_key;
5089 	char *tmp_buf = NULL;
5090 	int left_root_level;
5091 	int right_root_level;
5092 	int left_level;
5093 	int right_level;
5094 	int left_end_reached;
5095 	int right_end_reached;
5096 	int advance_left;
5097 	int advance_right;
5098 	u64 left_blockptr;
5099 	u64 right_blockptr;
5100 	u64 left_start_ctransid;
5101 	u64 right_start_ctransid;
5102 	u64 ctransid;
5103 
5104 	left_path = btrfs_alloc_path();
5105 	if (!left_path) {
5106 		ret = -ENOMEM;
5107 		goto out;
5108 	}
5109 	right_path = btrfs_alloc_path();
5110 	if (!right_path) {
5111 		ret = -ENOMEM;
5112 		goto out;
5113 	}
5114 
5115 	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5116 	if (!tmp_buf) {
5117 		ret = -ENOMEM;
5118 		goto out;
5119 	}
5120 
5121 	left_path->search_commit_root = 1;
5122 	left_path->skip_locking = 1;
5123 	right_path->search_commit_root = 1;
5124 	right_path->skip_locking = 1;
5125 
5126 	spin_lock(&left_root->root_item_lock);
5127 	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5128 	spin_unlock(&left_root->root_item_lock);
5129 
5130 	spin_lock(&right_root->root_item_lock);
5131 	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5132 	spin_unlock(&right_root->root_item_lock);
5133 
5134 	trans = btrfs_join_transaction(left_root);
5135 	if (IS_ERR(trans)) {
5136 		ret = PTR_ERR(trans);
5137 		trans = NULL;
5138 		goto out;
5139 	}
5140 
5141 	/*
5142 	 * Strategy: Go to the first items of both trees. Then do
5143 	 *
5144 	 * If both trees are at level 0
5145 	 *   Compare keys of current items
5146 	 *     If left < right treat left item as new, advance left tree
5147 	 *       and repeat
5148 	 *     If left > right treat right item as deleted, advance right tree
5149 	 *       and repeat
5150 	 *     If left == right do deep compare of items, treat as changed if
5151 	 *       needed, advance both trees and repeat
5152 	 * If both trees are at the same level but not at level 0
5153 	 *   Compare keys of current nodes/leafs
5154 	 *     If left < right advance left tree and repeat
5155 	 *     If left > right advance right tree and repeat
5156 	 *     If left == right compare blockptrs of the next nodes/leafs
5157 	 *       If they match advance both trees but stay at the same level
5158 	 *         and repeat
5159 	 *       If they don't match advance both trees while allowing to go
5160 	 *         deeper and repeat
5161 	 * If tree levels are different
5162 	 *   Advance the tree that needs it and repeat
5163 	 *
5164 	 * Advancing a tree means:
5165 	 *   If we are at level 0, try to go to the next slot. If that's not
5166 	 *   possible, go one level up and repeat. Stop when we found a level
5167 	 *   where we could go to the next slot. We may at this point be on a
5168 	 *   node or a leaf.
5169 	 *
5170 	 *   If we are not at level 0 and not on shared tree blocks, go one
5171 	 *   level deeper.
5172 	 *
5173 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5174 	 *   the right if possible or go up and right.
5175 	 */
5176 
5177 	left_level = btrfs_header_level(left_root->commit_root);
5178 	left_root_level = left_level;
5179 	left_path->nodes[left_level] = left_root->commit_root;
5180 	extent_buffer_get(left_path->nodes[left_level]);
5181 
5182 	right_level = btrfs_header_level(right_root->commit_root);
5183 	right_root_level = right_level;
5184 	right_path->nodes[right_level] = right_root->commit_root;
5185 	extent_buffer_get(right_path->nodes[right_level]);
5186 
5187 	if (left_level == 0)
5188 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5189 				&left_key, left_path->slots[left_level]);
5190 	else
5191 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5192 				&left_key, left_path->slots[left_level]);
5193 	if (right_level == 0)
5194 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5195 				&right_key, right_path->slots[right_level]);
5196 	else
5197 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5198 				&right_key, right_path->slots[right_level]);
5199 
5200 	left_end_reached = right_end_reached = 0;
5201 	advance_left = advance_right = 0;
5202 
5203 	while (1) {
5204 		/*
5205 		 * We need to make sure the transaction does not get committed
5206 		 * while we do anything on commit roots. This means, we need to
5207 		 * join and leave transactions for every item that we process.
5208 		 */
5209 		if (trans && btrfs_should_end_transaction(trans, left_root)) {
5210 			btrfs_release_path(left_path);
5211 			btrfs_release_path(right_path);
5212 
5213 			ret = btrfs_end_transaction(trans, left_root);
5214 			trans = NULL;
5215 			if (ret < 0)
5216 				goto out;
5217 		}
5218 		/* now rejoin the transaction */
5219 		if (!trans) {
5220 			trans = btrfs_join_transaction(left_root);
5221 			if (IS_ERR(trans)) {
5222 				ret = PTR_ERR(trans);
5223 				trans = NULL;
5224 				goto out;
5225 			}
5226 
5227 			spin_lock(&left_root->root_item_lock);
5228 			ctransid = btrfs_root_ctransid(&left_root->root_item);
5229 			spin_unlock(&left_root->root_item_lock);
5230 			if (ctransid != left_start_ctransid)
5231 				left_start_ctransid = 0;
5232 
5233 			spin_lock(&right_root->root_item_lock);
5234 			ctransid = btrfs_root_ctransid(&right_root->root_item);
5235 			spin_unlock(&right_root->root_item_lock);
5236 			if (ctransid != right_start_ctransid)
5237 				right_start_ctransid = 0;
5238 
5239 			if (!left_start_ctransid || !right_start_ctransid) {
5240 				WARN(1, KERN_WARNING
5241 					"btrfs: btrfs_compare_tree detected "
5242 					"a change in one of the trees while "
5243 					"iterating. This is probably a "
5244 					"bug.\n");
5245 				ret = -EIO;
5246 				goto out;
5247 			}
5248 
5249 			/*
5250 			 * the commit root may have changed, so start again
5251 			 * where we stopped
5252 			 */
5253 			left_path->lowest_level = left_level;
5254 			right_path->lowest_level = right_level;
5255 			ret = btrfs_search_slot(NULL, left_root,
5256 					&left_key, left_path, 0, 0);
5257 			if (ret < 0)
5258 				goto out;
5259 			ret = btrfs_search_slot(NULL, right_root,
5260 					&right_key, right_path, 0, 0);
5261 			if (ret < 0)
5262 				goto out;
5263 		}
5264 
5265 		if (advance_left && !left_end_reached) {
5266 			ret = tree_advance(left_root, left_path, &left_level,
5267 					left_root_level,
5268 					advance_left != ADVANCE_ONLY_NEXT,
5269 					&left_key);
5270 			if (ret < 0)
5271 				left_end_reached = ADVANCE;
5272 			advance_left = 0;
5273 		}
5274 		if (advance_right && !right_end_reached) {
5275 			ret = tree_advance(right_root, right_path, &right_level,
5276 					right_root_level,
5277 					advance_right != ADVANCE_ONLY_NEXT,
5278 					&right_key);
5279 			if (ret < 0)
5280 				right_end_reached = ADVANCE;
5281 			advance_right = 0;
5282 		}
5283 
5284 		if (left_end_reached && right_end_reached) {
5285 			ret = 0;
5286 			goto out;
5287 		} else if (left_end_reached) {
5288 			if (right_level == 0) {
5289 				ret = changed_cb(left_root, right_root,
5290 						left_path, right_path,
5291 						&right_key,
5292 						BTRFS_COMPARE_TREE_DELETED,
5293 						ctx);
5294 				if (ret < 0)
5295 					goto out;
5296 			}
5297 			advance_right = ADVANCE;
5298 			continue;
5299 		} else if (right_end_reached) {
5300 			if (left_level == 0) {
5301 				ret = changed_cb(left_root, right_root,
5302 						left_path, right_path,
5303 						&left_key,
5304 						BTRFS_COMPARE_TREE_NEW,
5305 						ctx);
5306 				if (ret < 0)
5307 					goto out;
5308 			}
5309 			advance_left = ADVANCE;
5310 			continue;
5311 		}
5312 
5313 		if (left_level == 0 && right_level == 0) {
5314 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5315 			if (cmp < 0) {
5316 				ret = changed_cb(left_root, right_root,
5317 						left_path, right_path,
5318 						&left_key,
5319 						BTRFS_COMPARE_TREE_NEW,
5320 						ctx);
5321 				if (ret < 0)
5322 					goto out;
5323 				advance_left = ADVANCE;
5324 			} else if (cmp > 0) {
5325 				ret = changed_cb(left_root, right_root,
5326 						left_path, right_path,
5327 						&right_key,
5328 						BTRFS_COMPARE_TREE_DELETED,
5329 						ctx);
5330 				if (ret < 0)
5331 					goto out;
5332 				advance_right = ADVANCE;
5333 			} else {
5334 				enum btrfs_compare_tree_result cmp;
5335 
5336 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5337 				ret = tree_compare_item(left_root, left_path,
5338 						right_path, tmp_buf);
5339 				if (ret)
5340 					cmp = BTRFS_COMPARE_TREE_CHANGED;
5341 				else
5342 					cmp = BTRFS_COMPARE_TREE_SAME;
5343 				ret = changed_cb(left_root, right_root,
5344 						 left_path, right_path,
5345 						 &left_key, cmp, ctx);
5346 				if (ret < 0)
5347 					goto out;
5348 				advance_left = ADVANCE;
5349 				advance_right = ADVANCE;
5350 			}
5351 		} else if (left_level == right_level) {
5352 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5353 			if (cmp < 0) {
5354 				advance_left = ADVANCE;
5355 			} else if (cmp > 0) {
5356 				advance_right = ADVANCE;
5357 			} else {
5358 				left_blockptr = btrfs_node_blockptr(
5359 						left_path->nodes[left_level],
5360 						left_path->slots[left_level]);
5361 				right_blockptr = btrfs_node_blockptr(
5362 						right_path->nodes[right_level],
5363 						right_path->slots[right_level]);
5364 				if (left_blockptr == right_blockptr) {
5365 					/*
5366 					 * As we're on a shared block, don't
5367 					 * allow to go deeper.
5368 					 */
5369 					advance_left = ADVANCE_ONLY_NEXT;
5370 					advance_right = ADVANCE_ONLY_NEXT;
5371 				} else {
5372 					advance_left = ADVANCE;
5373 					advance_right = ADVANCE;
5374 				}
5375 			}
5376 		} else if (left_level < right_level) {
5377 			advance_right = ADVANCE;
5378 		} else {
5379 			advance_left = ADVANCE;
5380 		}
5381 	}
5382 
5383 out:
5384 	btrfs_free_path(left_path);
5385 	btrfs_free_path(right_path);
5386 	kfree(tmp_buf);
5387 
5388 	if (trans) {
5389 		if (!ret)
5390 			ret = btrfs_end_transaction(trans, left_root);
5391 		else
5392 			btrfs_end_transaction(trans, left_root);
5393 	}
5394 
5395 	return ret;
5396 }
5397 
5398 /*
5399  * this is similar to btrfs_next_leaf, but does not try to preserve
5400  * and fixup the path.  It looks for and returns the next key in the
5401  * tree based on the current path and the min_trans parameters.
5402  *
5403  * 0 is returned if another key is found, < 0 if there are any errors
5404  * and 1 is returned if there are no higher keys in the tree
5405  *
5406  * path->keep_locks should be set to 1 on the search made before
5407  * calling this function.
5408  */
5409 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5410 			struct btrfs_key *key, int level, u64 min_trans)
5411 {
5412 	int slot;
5413 	struct extent_buffer *c;
5414 
5415 	WARN_ON(!path->keep_locks);
5416 	while (level < BTRFS_MAX_LEVEL) {
5417 		if (!path->nodes[level])
5418 			return 1;
5419 
5420 		slot = path->slots[level] + 1;
5421 		c = path->nodes[level];
5422 next:
5423 		if (slot >= btrfs_header_nritems(c)) {
5424 			int ret;
5425 			int orig_lowest;
5426 			struct btrfs_key cur_key;
5427 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5428 			    !path->nodes[level + 1])
5429 				return 1;
5430 
5431 			if (path->locks[level + 1]) {
5432 				level++;
5433 				continue;
5434 			}
5435 
5436 			slot = btrfs_header_nritems(c) - 1;
5437 			if (level == 0)
5438 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5439 			else
5440 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5441 
5442 			orig_lowest = path->lowest_level;
5443 			btrfs_release_path(path);
5444 			path->lowest_level = level;
5445 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5446 						0, 0);
5447 			path->lowest_level = orig_lowest;
5448 			if (ret < 0)
5449 				return ret;
5450 
5451 			c = path->nodes[level];
5452 			slot = path->slots[level];
5453 			if (ret == 0)
5454 				slot++;
5455 			goto next;
5456 		}
5457 
5458 		if (level == 0)
5459 			btrfs_item_key_to_cpu(c, key, slot);
5460 		else {
5461 			u64 gen = btrfs_node_ptr_generation(c, slot);
5462 
5463 			if (gen < min_trans) {
5464 				slot++;
5465 				goto next;
5466 			}
5467 			btrfs_node_key_to_cpu(c, key, slot);
5468 		}
5469 		return 0;
5470 	}
5471 	return 1;
5472 }
5473 
5474 /*
5475  * search the tree again to find a leaf with greater keys
5476  * returns 0 if it found something or 1 if there are no greater leaves.
5477  * returns < 0 on io errors.
5478  */
5479 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5480 {
5481 	return btrfs_next_old_leaf(root, path, 0);
5482 }
5483 
5484 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5485 			u64 time_seq)
5486 {
5487 	int slot;
5488 	int level;
5489 	struct extent_buffer *c;
5490 	struct extent_buffer *next;
5491 	struct btrfs_key key;
5492 	u32 nritems;
5493 	int ret;
5494 	int old_spinning = path->leave_spinning;
5495 	int next_rw_lock = 0;
5496 
5497 	nritems = btrfs_header_nritems(path->nodes[0]);
5498 	if (nritems == 0)
5499 		return 1;
5500 
5501 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5502 again:
5503 	level = 1;
5504 	next = NULL;
5505 	next_rw_lock = 0;
5506 	btrfs_release_path(path);
5507 
5508 	path->keep_locks = 1;
5509 	path->leave_spinning = 1;
5510 
5511 	if (time_seq)
5512 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5513 	else
5514 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5515 	path->keep_locks = 0;
5516 
5517 	if (ret < 0)
5518 		return ret;
5519 
5520 	nritems = btrfs_header_nritems(path->nodes[0]);
5521 	/*
5522 	 * by releasing the path above we dropped all our locks.  A balance
5523 	 * could have added more items next to the key that used to be
5524 	 * at the very end of the block.  So, check again here and
5525 	 * advance the path if there are now more items available.
5526 	 */
5527 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5528 		if (ret == 0)
5529 			path->slots[0]++;
5530 		ret = 0;
5531 		goto done;
5532 	}
5533 
5534 	while (level < BTRFS_MAX_LEVEL) {
5535 		if (!path->nodes[level]) {
5536 			ret = 1;
5537 			goto done;
5538 		}
5539 
5540 		slot = path->slots[level] + 1;
5541 		c = path->nodes[level];
5542 		if (slot >= btrfs_header_nritems(c)) {
5543 			level++;
5544 			if (level == BTRFS_MAX_LEVEL) {
5545 				ret = 1;
5546 				goto done;
5547 			}
5548 			continue;
5549 		}
5550 
5551 		if (next) {
5552 			btrfs_tree_unlock_rw(next, next_rw_lock);
5553 			free_extent_buffer(next);
5554 		}
5555 
5556 		next = c;
5557 		next_rw_lock = path->locks[level];
5558 		ret = read_block_for_search(NULL, root, path, &next, level,
5559 					    slot, &key, 0);
5560 		if (ret == -EAGAIN)
5561 			goto again;
5562 
5563 		if (ret < 0) {
5564 			btrfs_release_path(path);
5565 			goto done;
5566 		}
5567 
5568 		if (!path->skip_locking) {
5569 			ret = btrfs_try_tree_read_lock(next);
5570 			if (!ret && time_seq) {
5571 				/*
5572 				 * If we don't get the lock, we may be racing
5573 				 * with push_leaf_left, holding that lock while
5574 				 * itself waiting for the leaf we've currently
5575 				 * locked. To solve this situation, we give up
5576 				 * on our lock and cycle.
5577 				 */
5578 				free_extent_buffer(next);
5579 				btrfs_release_path(path);
5580 				cond_resched();
5581 				goto again;
5582 			}
5583 			if (!ret) {
5584 				btrfs_set_path_blocking(path);
5585 				btrfs_tree_read_lock(next);
5586 				btrfs_clear_path_blocking(path, next,
5587 							  BTRFS_READ_LOCK);
5588 			}
5589 			next_rw_lock = BTRFS_READ_LOCK;
5590 		}
5591 		break;
5592 	}
5593 	path->slots[level] = slot;
5594 	while (1) {
5595 		level--;
5596 		c = path->nodes[level];
5597 		if (path->locks[level])
5598 			btrfs_tree_unlock_rw(c, path->locks[level]);
5599 
5600 		free_extent_buffer(c);
5601 		path->nodes[level] = next;
5602 		path->slots[level] = 0;
5603 		if (!path->skip_locking)
5604 			path->locks[level] = next_rw_lock;
5605 		if (!level)
5606 			break;
5607 
5608 		ret = read_block_for_search(NULL, root, path, &next, level,
5609 					    0, &key, 0);
5610 		if (ret == -EAGAIN)
5611 			goto again;
5612 
5613 		if (ret < 0) {
5614 			btrfs_release_path(path);
5615 			goto done;
5616 		}
5617 
5618 		if (!path->skip_locking) {
5619 			ret = btrfs_try_tree_read_lock(next);
5620 			if (!ret) {
5621 				btrfs_set_path_blocking(path);
5622 				btrfs_tree_read_lock(next);
5623 				btrfs_clear_path_blocking(path, next,
5624 							  BTRFS_READ_LOCK);
5625 			}
5626 			next_rw_lock = BTRFS_READ_LOCK;
5627 		}
5628 	}
5629 	ret = 0;
5630 done:
5631 	unlock_up(path, 0, 1, 0, NULL);
5632 	path->leave_spinning = old_spinning;
5633 	if (!old_spinning)
5634 		btrfs_set_path_blocking(path);
5635 
5636 	return ret;
5637 }
5638 
5639 /*
5640  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5641  * searching until it gets past min_objectid or finds an item of 'type'
5642  *
5643  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5644  */
5645 int btrfs_previous_item(struct btrfs_root *root,
5646 			struct btrfs_path *path, u64 min_objectid,
5647 			int type)
5648 {
5649 	struct btrfs_key found_key;
5650 	struct extent_buffer *leaf;
5651 	u32 nritems;
5652 	int ret;
5653 
5654 	while (1) {
5655 		if (path->slots[0] == 0) {
5656 			btrfs_set_path_blocking(path);
5657 			ret = btrfs_prev_leaf(root, path);
5658 			if (ret != 0)
5659 				return ret;
5660 		} else {
5661 			path->slots[0]--;
5662 		}
5663 		leaf = path->nodes[0];
5664 		nritems = btrfs_header_nritems(leaf);
5665 		if (nritems == 0)
5666 			return 1;
5667 		if (path->slots[0] == nritems)
5668 			path->slots[0]--;
5669 
5670 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5671 		if (found_key.objectid < min_objectid)
5672 			break;
5673 		if (found_key.type == type)
5674 			return 0;
5675 		if (found_key.objectid == min_objectid &&
5676 		    found_key.type < type)
5677 			break;
5678 	}
5679 	return 1;
5680 }
5681