xref: /openbmc/linux/fs/btrfs/ctree.c (revision 2f38b3e1900634e64a186873b3388b1bf85dabc0)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 		    struct btrfs_path *path, int level, int slot,
42 		    int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 				 struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 					  u32 blocksize, u64 parent_transid,
47 					  u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 						u64 bytenr, u32 blocksize,
50 						u64 time_seq);
51 
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54 	struct btrfs_path *path;
55 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56 	return path;
57 }
58 
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65 	int i;
66 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 		if (!p->nodes[i] || !p->locks[i])
68 			continue;
69 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 		if (p->locks[i] == BTRFS_READ_LOCK)
71 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74 	}
75 }
76 
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86 					struct extent_buffer *held, int held_rw)
87 {
88 	int i;
89 
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 	/* lockdep really cares that we take all of these spinlocks
92 	 * in the right order.  If any of the locks in the path are not
93 	 * currently blocking, it is going to complain.  So, make really
94 	 * really sure by forcing the path to blocking before we clear
95 	 * the path blocking.
96 	 */
97 	if (held) {
98 		btrfs_set_lock_blocking_rw(held, held_rw);
99 		if (held_rw == BTRFS_WRITE_LOCK)
100 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 		else if (held_rw == BTRFS_READ_LOCK)
102 			held_rw = BTRFS_READ_LOCK_BLOCKING;
103 	}
104 	btrfs_set_path_blocking(p);
105 #endif
106 
107 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 		if (p->nodes[i] && p->locks[i]) {
109 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 				p->locks[i] = BTRFS_WRITE_LOCK;
112 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 				p->locks[i] = BTRFS_READ_LOCK;
114 		}
115 	}
116 
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 	if (held)
119 		btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122 
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126 	if (!p)
127 		return;
128 	btrfs_release_path(p);
129 	kmem_cache_free(btrfs_path_cachep, p);
130 }
131 
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140 	int i;
141 
142 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143 		p->slots[i] = 0;
144 		if (!p->nodes[i])
145 			continue;
146 		if (p->locks[i]) {
147 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148 			p->locks[i] = 0;
149 		}
150 		free_extent_buffer(p->nodes[i]);
151 		p->nodes[i] = NULL;
152 	}
153 }
154 
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167 	struct extent_buffer *eb;
168 
169 	while (1) {
170 		rcu_read_lock();
171 		eb = rcu_dereference(root->node);
172 
173 		/*
174 		 * RCU really hurts here, we could free up the root node because
175 		 * it was cow'ed but we may not get the new root node yet so do
176 		 * the inc_not_zero dance and if it doesn't work then
177 		 * synchronize_rcu and try again.
178 		 */
179 		if (atomic_inc_not_zero(&eb->refs)) {
180 			rcu_read_unlock();
181 			break;
182 		}
183 		rcu_read_unlock();
184 		synchronize_rcu();
185 	}
186 	return eb;
187 }
188 
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195 	struct extent_buffer *eb;
196 
197 	while (1) {
198 		eb = btrfs_root_node(root);
199 		btrfs_tree_lock(eb);
200 		if (eb == root->node)
201 			break;
202 		btrfs_tree_unlock(eb);
203 		free_extent_buffer(eb);
204 	}
205 	return eb;
206 }
207 
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214 	struct extent_buffer *eb;
215 
216 	while (1) {
217 		eb = btrfs_root_node(root);
218 		btrfs_tree_read_lock(eb);
219 		if (eb == root->node)
220 			break;
221 		btrfs_tree_read_unlock(eb);
222 		free_extent_buffer(eb);
223 	}
224 	return eb;
225 }
226 
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233 	spin_lock(&root->fs_info->trans_lock);
234 	if (root->track_dirty && list_empty(&root->dirty_list)) {
235 		list_add(&root->dirty_list,
236 			 &root->fs_info->dirty_cowonly_roots);
237 	}
238 	spin_unlock(&root->fs_info->trans_lock);
239 }
240 
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 		      struct btrfs_root *root,
248 		      struct extent_buffer *buf,
249 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251 	struct extent_buffer *cow;
252 	int ret = 0;
253 	int level;
254 	struct btrfs_disk_key disk_key;
255 
256 	WARN_ON(root->ref_cows && trans->transid !=
257 		root->fs_info->running_transaction->transid);
258 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259 
260 	level = btrfs_header_level(buf);
261 	if (level == 0)
262 		btrfs_item_key(buf, &disk_key, 0);
263 	else
264 		btrfs_node_key(buf, &disk_key, 0);
265 
266 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 				     new_root_objectid, &disk_key, level,
268 				     buf->start, 0);
269 	if (IS_ERR(cow))
270 		return PTR_ERR(cow);
271 
272 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 	btrfs_set_header_bytenr(cow, cow->start);
274 	btrfs_set_header_generation(cow, trans->transid);
275 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 				     BTRFS_HEADER_FLAG_RELOC);
278 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 	else
281 		btrfs_set_header_owner(cow, new_root_objectid);
282 
283 	write_extent_buffer(cow, root->fs_info->fsid,
284 			    (unsigned long)btrfs_header_fsid(cow),
285 			    BTRFS_FSID_SIZE);
286 
287 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
288 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290 	else
291 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292 
293 	if (ret)
294 		return ret;
295 
296 	btrfs_mark_buffer_dirty(cow);
297 	*cow_ret = cow;
298 	return 0;
299 }
300 
301 enum mod_log_op {
302 	MOD_LOG_KEY_REPLACE,
303 	MOD_LOG_KEY_ADD,
304 	MOD_LOG_KEY_REMOVE,
305 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 	MOD_LOG_MOVE_KEYS,
308 	MOD_LOG_ROOT_REPLACE,
309 };
310 
311 struct tree_mod_move {
312 	int dst_slot;
313 	int nr_items;
314 };
315 
316 struct tree_mod_root {
317 	u64 logical;
318 	u8 level;
319 };
320 
321 struct tree_mod_elem {
322 	struct rb_node node;
323 	u64 index;		/* shifted logical */
324 	u64 seq;
325 	enum mod_log_op op;
326 
327 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 	int slot;
329 
330 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 	u64 generation;
332 
333 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 	struct btrfs_disk_key key;
335 	u64 blockptr;
336 
337 	/* this is used for op == MOD_LOG_MOVE_KEYS */
338 	struct tree_mod_move move;
339 
340 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
341 	struct tree_mod_root old_root;
342 };
343 
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345 {
346 	read_lock(&fs_info->tree_mod_log_lock);
347 }
348 
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350 {
351 	read_unlock(&fs_info->tree_mod_log_lock);
352 }
353 
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355 {
356 	write_lock(&fs_info->tree_mod_log_lock);
357 }
358 
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360 {
361 	write_unlock(&fs_info->tree_mod_log_lock);
362 }
363 
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 			   struct seq_list *elem)
374 {
375 	u64 seq;
376 
377 	tree_mod_log_write_lock(fs_info);
378 	spin_lock(&fs_info->tree_mod_seq_lock);
379 	if (!elem->seq) {
380 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 	}
383 	seq = btrfs_inc_tree_mod_seq(fs_info);
384 	spin_unlock(&fs_info->tree_mod_seq_lock);
385 	tree_mod_log_write_unlock(fs_info);
386 
387 	return seq;
388 }
389 
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391 			    struct seq_list *elem)
392 {
393 	struct rb_root *tm_root;
394 	struct rb_node *node;
395 	struct rb_node *next;
396 	struct seq_list *cur_elem;
397 	struct tree_mod_elem *tm;
398 	u64 min_seq = (u64)-1;
399 	u64 seq_putting = elem->seq;
400 
401 	if (!seq_putting)
402 		return;
403 
404 	spin_lock(&fs_info->tree_mod_seq_lock);
405 	list_del(&elem->list);
406 	elem->seq = 0;
407 
408 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409 		if (cur_elem->seq < min_seq) {
410 			if (seq_putting > cur_elem->seq) {
411 				/*
412 				 * blocker with lower sequence number exists, we
413 				 * cannot remove anything from the log
414 				 */
415 				spin_unlock(&fs_info->tree_mod_seq_lock);
416 				return;
417 			}
418 			min_seq = cur_elem->seq;
419 		}
420 	}
421 	spin_unlock(&fs_info->tree_mod_seq_lock);
422 
423 	/*
424 	 * we removed the lowest blocker from the blocker list, so there may be
425 	 * more processible delayed refs.
426 	 */
427 	wake_up(&fs_info->tree_mod_seq_wait);
428 
429 	/*
430 	 * anything that's lower than the lowest existing (read: blocked)
431 	 * sequence number can be removed from the tree.
432 	 */
433 	tree_mod_log_write_lock(fs_info);
434 	tm_root = &fs_info->tree_mod_log;
435 	for (node = rb_first(tm_root); node; node = next) {
436 		next = rb_next(node);
437 		tm = container_of(node, struct tree_mod_elem, node);
438 		if (tm->seq > min_seq)
439 			continue;
440 		rb_erase(node, tm_root);
441 		kfree(tm);
442 	}
443 	tree_mod_log_write_unlock(fs_info);
444 }
445 
446 /*
447  * key order of the log:
448  *       index -> sequence
449  *
450  * the index is the shifted logical of the *new* root node for root replace
451  * operations, or the shifted logical of the affected block for all other
452  * operations.
453  */
454 static noinline int
455 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
456 {
457 	struct rb_root *tm_root;
458 	struct rb_node **new;
459 	struct rb_node *parent = NULL;
460 	struct tree_mod_elem *cur;
461 
462 	BUG_ON(!tm || !tm->seq);
463 
464 	tm_root = &fs_info->tree_mod_log;
465 	new = &tm_root->rb_node;
466 	while (*new) {
467 		cur = container_of(*new, struct tree_mod_elem, node);
468 		parent = *new;
469 		if (cur->index < tm->index)
470 			new = &((*new)->rb_left);
471 		else if (cur->index > tm->index)
472 			new = &((*new)->rb_right);
473 		else if (cur->seq < tm->seq)
474 			new = &((*new)->rb_left);
475 		else if (cur->seq > tm->seq)
476 			new = &((*new)->rb_right);
477 		else {
478 			kfree(tm);
479 			return -EEXIST;
480 		}
481 	}
482 
483 	rb_link_node(&tm->node, parent, new);
484 	rb_insert_color(&tm->node, tm_root);
485 	return 0;
486 }
487 
488 /*
489  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
490  * returns zero with the tree_mod_log_lock acquired. The caller must hold
491  * this until all tree mod log insertions are recorded in the rb tree and then
492  * call tree_mod_log_write_unlock() to release.
493  */
494 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
495 				    struct extent_buffer *eb) {
496 	smp_mb();
497 	if (list_empty(&(fs_info)->tree_mod_seq_list))
498 		return 1;
499 	if (eb && btrfs_header_level(eb) == 0)
500 		return 1;
501 
502 	tree_mod_log_write_lock(fs_info);
503 	if (list_empty(&fs_info->tree_mod_seq_list)) {
504 		/*
505 		 * someone emptied the list while we were waiting for the lock.
506 		 * we must not add to the list when no blocker exists.
507 		 */
508 		tree_mod_log_write_unlock(fs_info);
509 		return 1;
510 	}
511 
512 	return 0;
513 }
514 
515 /*
516  * This allocates memory and gets a tree modification sequence number.
517  *
518  * Returns <0 on error.
519  * Returns >0 (the added sequence number) on success.
520  */
521 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
522 				 struct tree_mod_elem **tm_ret)
523 {
524 	struct tree_mod_elem *tm;
525 
526 	/*
527 	 * once we switch from spin locks to something different, we should
528 	 * honor the flags parameter here.
529 	 */
530 	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
531 	if (!tm)
532 		return -ENOMEM;
533 
534 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
535 	return tm->seq;
536 }
537 
538 static inline int
539 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
540 			  struct extent_buffer *eb, int slot,
541 			  enum mod_log_op op, gfp_t flags)
542 {
543 	int ret;
544 	struct tree_mod_elem *tm;
545 
546 	ret = tree_mod_alloc(fs_info, flags, &tm);
547 	if (ret < 0)
548 		return ret;
549 
550 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
551 	if (op != MOD_LOG_KEY_ADD) {
552 		btrfs_node_key(eb, &tm->key, slot);
553 		tm->blockptr = btrfs_node_blockptr(eb, slot);
554 	}
555 	tm->op = op;
556 	tm->slot = slot;
557 	tm->generation = btrfs_node_ptr_generation(eb, slot);
558 
559 	return __tree_mod_log_insert(fs_info, tm);
560 }
561 
562 static noinline int
563 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
564 			     struct extent_buffer *eb, int slot,
565 			     enum mod_log_op op, gfp_t flags)
566 {
567 	int ret;
568 
569 	if (tree_mod_dont_log(fs_info, eb))
570 		return 0;
571 
572 	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
573 
574 	tree_mod_log_write_unlock(fs_info);
575 	return ret;
576 }
577 
578 static noinline int
579 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
580 			int slot, enum mod_log_op op)
581 {
582 	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
583 }
584 
585 static noinline int
586 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
587 			     struct extent_buffer *eb, int slot,
588 			     enum mod_log_op op)
589 {
590 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
591 }
592 
593 static noinline int
594 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
595 			 struct extent_buffer *eb, int dst_slot, int src_slot,
596 			 int nr_items, gfp_t flags)
597 {
598 	struct tree_mod_elem *tm;
599 	int ret;
600 	int i;
601 
602 	if (tree_mod_dont_log(fs_info, eb))
603 		return 0;
604 
605 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
606 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
607 					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
608 		BUG_ON(ret < 0);
609 	}
610 
611 	ret = tree_mod_alloc(fs_info, flags, &tm);
612 	if (ret < 0)
613 		goto out;
614 
615 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
616 	tm->slot = src_slot;
617 	tm->move.dst_slot = dst_slot;
618 	tm->move.nr_items = nr_items;
619 	tm->op = MOD_LOG_MOVE_KEYS;
620 
621 	ret = __tree_mod_log_insert(fs_info, tm);
622 out:
623 	tree_mod_log_write_unlock(fs_info);
624 	return ret;
625 }
626 
627 static inline void
628 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
629 {
630 	int i;
631 	u32 nritems;
632 	int ret;
633 
634 	nritems = btrfs_header_nritems(eb);
635 	for (i = nritems - 1; i >= 0; i--) {
636 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
637 					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
638 		BUG_ON(ret < 0);
639 	}
640 }
641 
642 static noinline int
643 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
644 			 struct extent_buffer *old_root,
645 			 struct extent_buffer *new_root, gfp_t flags)
646 {
647 	struct tree_mod_elem *tm;
648 	int ret;
649 
650 	if (tree_mod_dont_log(fs_info, NULL))
651 		return 0;
652 
653 	__tree_mod_log_free_eb(fs_info, old_root);
654 
655 	ret = tree_mod_alloc(fs_info, flags, &tm);
656 	if (ret < 0)
657 		goto out;
658 
659 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
660 	tm->old_root.logical = old_root->start;
661 	tm->old_root.level = btrfs_header_level(old_root);
662 	tm->generation = btrfs_header_generation(old_root);
663 	tm->op = MOD_LOG_ROOT_REPLACE;
664 
665 	ret = __tree_mod_log_insert(fs_info, tm);
666 out:
667 	tree_mod_log_write_unlock(fs_info);
668 	return ret;
669 }
670 
671 static struct tree_mod_elem *
672 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
673 		      int smallest)
674 {
675 	struct rb_root *tm_root;
676 	struct rb_node *node;
677 	struct tree_mod_elem *cur = NULL;
678 	struct tree_mod_elem *found = NULL;
679 	u64 index = start >> PAGE_CACHE_SHIFT;
680 
681 	tree_mod_log_read_lock(fs_info);
682 	tm_root = &fs_info->tree_mod_log;
683 	node = tm_root->rb_node;
684 	while (node) {
685 		cur = container_of(node, struct tree_mod_elem, node);
686 		if (cur->index < index) {
687 			node = node->rb_left;
688 		} else if (cur->index > index) {
689 			node = node->rb_right;
690 		} else if (cur->seq < min_seq) {
691 			node = node->rb_left;
692 		} else if (!smallest) {
693 			/* we want the node with the highest seq */
694 			if (found)
695 				BUG_ON(found->seq > cur->seq);
696 			found = cur;
697 			node = node->rb_left;
698 		} else if (cur->seq > min_seq) {
699 			/* we want the node with the smallest seq */
700 			if (found)
701 				BUG_ON(found->seq < cur->seq);
702 			found = cur;
703 			node = node->rb_right;
704 		} else {
705 			found = cur;
706 			break;
707 		}
708 	}
709 	tree_mod_log_read_unlock(fs_info);
710 
711 	return found;
712 }
713 
714 /*
715  * this returns the element from the log with the smallest time sequence
716  * value that's in the log (the oldest log item). any element with a time
717  * sequence lower than min_seq will be ignored.
718  */
719 static struct tree_mod_elem *
720 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
721 			   u64 min_seq)
722 {
723 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
724 }
725 
726 /*
727  * this returns the element from the log with the largest time sequence
728  * value that's in the log (the most recent log item). any element with
729  * a time sequence lower than min_seq will be ignored.
730  */
731 static struct tree_mod_elem *
732 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
733 {
734 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
735 }
736 
737 static noinline void
738 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
739 		     struct extent_buffer *src, unsigned long dst_offset,
740 		     unsigned long src_offset, int nr_items)
741 {
742 	int ret;
743 	int i;
744 
745 	if (tree_mod_dont_log(fs_info, NULL))
746 		return;
747 
748 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
749 		tree_mod_log_write_unlock(fs_info);
750 		return;
751 	}
752 
753 	for (i = 0; i < nr_items; i++) {
754 		ret = tree_mod_log_insert_key_locked(fs_info, src,
755 						     i + src_offset,
756 						     MOD_LOG_KEY_REMOVE);
757 		BUG_ON(ret < 0);
758 		ret = tree_mod_log_insert_key_locked(fs_info, dst,
759 						     i + dst_offset,
760 						     MOD_LOG_KEY_ADD);
761 		BUG_ON(ret < 0);
762 	}
763 
764 	tree_mod_log_write_unlock(fs_info);
765 }
766 
767 static inline void
768 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
769 		     int dst_offset, int src_offset, int nr_items)
770 {
771 	int ret;
772 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
773 				       nr_items, GFP_NOFS);
774 	BUG_ON(ret < 0);
775 }
776 
777 static noinline void
778 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
779 			  struct extent_buffer *eb,
780 			  struct btrfs_disk_key *disk_key, int slot, int atomic)
781 {
782 	int ret;
783 
784 	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
785 					   MOD_LOG_KEY_REPLACE,
786 					   atomic ? GFP_ATOMIC : GFP_NOFS);
787 	BUG_ON(ret < 0);
788 }
789 
790 static noinline void
791 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
792 {
793 	if (tree_mod_dont_log(fs_info, eb))
794 		return;
795 
796 	__tree_mod_log_free_eb(fs_info, eb);
797 
798 	tree_mod_log_write_unlock(fs_info);
799 }
800 
801 static noinline void
802 tree_mod_log_set_root_pointer(struct btrfs_root *root,
803 			      struct extent_buffer *new_root_node)
804 {
805 	int ret;
806 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
807 				       new_root_node, GFP_NOFS);
808 	BUG_ON(ret < 0);
809 }
810 
811 /*
812  * check if the tree block can be shared by multiple trees
813  */
814 int btrfs_block_can_be_shared(struct btrfs_root *root,
815 			      struct extent_buffer *buf)
816 {
817 	/*
818 	 * Tree blocks not in refernece counted trees and tree roots
819 	 * are never shared. If a block was allocated after the last
820 	 * snapshot and the block was not allocated by tree relocation,
821 	 * we know the block is not shared.
822 	 */
823 	if (root->ref_cows &&
824 	    buf != root->node && buf != root->commit_root &&
825 	    (btrfs_header_generation(buf) <=
826 	     btrfs_root_last_snapshot(&root->root_item) ||
827 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
828 		return 1;
829 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
830 	if (root->ref_cows &&
831 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
832 		return 1;
833 #endif
834 	return 0;
835 }
836 
837 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
838 				       struct btrfs_root *root,
839 				       struct extent_buffer *buf,
840 				       struct extent_buffer *cow,
841 				       int *last_ref)
842 {
843 	u64 refs;
844 	u64 owner;
845 	u64 flags;
846 	u64 new_flags = 0;
847 	int ret;
848 
849 	/*
850 	 * Backrefs update rules:
851 	 *
852 	 * Always use full backrefs for extent pointers in tree block
853 	 * allocated by tree relocation.
854 	 *
855 	 * If a shared tree block is no longer referenced by its owner
856 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
857 	 * use full backrefs for extent pointers in tree block.
858 	 *
859 	 * If a tree block is been relocating
860 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
861 	 * use full backrefs for extent pointers in tree block.
862 	 * The reason for this is some operations (such as drop tree)
863 	 * are only allowed for blocks use full backrefs.
864 	 */
865 
866 	if (btrfs_block_can_be_shared(root, buf)) {
867 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
868 					       buf->len, &refs, &flags);
869 		if (ret)
870 			return ret;
871 		if (refs == 0) {
872 			ret = -EROFS;
873 			btrfs_std_error(root->fs_info, ret);
874 			return ret;
875 		}
876 	} else {
877 		refs = 1;
878 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
879 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
880 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881 		else
882 			flags = 0;
883 	}
884 
885 	owner = btrfs_header_owner(buf);
886 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
887 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
888 
889 	if (refs > 1) {
890 		if ((owner == root->root_key.objectid ||
891 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
892 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
893 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
894 			BUG_ON(ret); /* -ENOMEM */
895 
896 			if (root->root_key.objectid ==
897 			    BTRFS_TREE_RELOC_OBJECTID) {
898 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
899 				BUG_ON(ret); /* -ENOMEM */
900 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
901 				BUG_ON(ret); /* -ENOMEM */
902 			}
903 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
904 		} else {
905 
906 			if (root->root_key.objectid ==
907 			    BTRFS_TREE_RELOC_OBJECTID)
908 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
909 			else
910 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
911 			BUG_ON(ret); /* -ENOMEM */
912 		}
913 		if (new_flags != 0) {
914 			ret = btrfs_set_disk_extent_flags(trans, root,
915 							  buf->start,
916 							  buf->len,
917 							  new_flags, 0);
918 			if (ret)
919 				return ret;
920 		}
921 	} else {
922 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
923 			if (root->root_key.objectid ==
924 			    BTRFS_TREE_RELOC_OBJECTID)
925 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
926 			else
927 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
928 			BUG_ON(ret); /* -ENOMEM */
929 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
930 			BUG_ON(ret); /* -ENOMEM */
931 		}
932 		/*
933 		 * don't log freeing in case we're freeing the root node, this
934 		 * is done by tree_mod_log_set_root_pointer later
935 		 */
936 		if (buf != root->node && btrfs_header_level(buf) != 0)
937 			tree_mod_log_free_eb(root->fs_info, buf);
938 		clean_tree_block(trans, root, buf);
939 		*last_ref = 1;
940 	}
941 	return 0;
942 }
943 
944 /*
945  * does the dirty work in cow of a single block.  The parent block (if
946  * supplied) is updated to point to the new cow copy.  The new buffer is marked
947  * dirty and returned locked.  If you modify the block it needs to be marked
948  * dirty again.
949  *
950  * search_start -- an allocation hint for the new block
951  *
952  * empty_size -- a hint that you plan on doing more cow.  This is the size in
953  * bytes the allocator should try to find free next to the block it returns.
954  * This is just a hint and may be ignored by the allocator.
955  */
956 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
957 			     struct btrfs_root *root,
958 			     struct extent_buffer *buf,
959 			     struct extent_buffer *parent, int parent_slot,
960 			     struct extent_buffer **cow_ret,
961 			     u64 search_start, u64 empty_size)
962 {
963 	struct btrfs_disk_key disk_key;
964 	struct extent_buffer *cow;
965 	int level, ret;
966 	int last_ref = 0;
967 	int unlock_orig = 0;
968 	u64 parent_start;
969 
970 	if (*cow_ret == buf)
971 		unlock_orig = 1;
972 
973 	btrfs_assert_tree_locked(buf);
974 
975 	WARN_ON(root->ref_cows && trans->transid !=
976 		root->fs_info->running_transaction->transid);
977 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
978 
979 	level = btrfs_header_level(buf);
980 
981 	if (level == 0)
982 		btrfs_item_key(buf, &disk_key, 0);
983 	else
984 		btrfs_node_key(buf, &disk_key, 0);
985 
986 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
987 		if (parent)
988 			parent_start = parent->start;
989 		else
990 			parent_start = 0;
991 	} else
992 		parent_start = 0;
993 
994 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
995 				     root->root_key.objectid, &disk_key,
996 				     level, search_start, empty_size);
997 	if (IS_ERR(cow))
998 		return PTR_ERR(cow);
999 
1000 	/* cow is set to blocking by btrfs_init_new_buffer */
1001 
1002 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1003 	btrfs_set_header_bytenr(cow, cow->start);
1004 	btrfs_set_header_generation(cow, trans->transid);
1005 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1006 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1007 				     BTRFS_HEADER_FLAG_RELOC);
1008 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1009 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1010 	else
1011 		btrfs_set_header_owner(cow, root->root_key.objectid);
1012 
1013 	write_extent_buffer(cow, root->fs_info->fsid,
1014 			    (unsigned long)btrfs_header_fsid(cow),
1015 			    BTRFS_FSID_SIZE);
1016 
1017 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1018 	if (ret) {
1019 		btrfs_abort_transaction(trans, root, ret);
1020 		return ret;
1021 	}
1022 
1023 	if (root->ref_cows)
1024 		btrfs_reloc_cow_block(trans, root, buf, cow);
1025 
1026 	if (buf == root->node) {
1027 		WARN_ON(parent && parent != buf);
1028 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1029 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1030 			parent_start = buf->start;
1031 		else
1032 			parent_start = 0;
1033 
1034 		extent_buffer_get(cow);
1035 		tree_mod_log_set_root_pointer(root, cow);
1036 		rcu_assign_pointer(root->node, cow);
1037 
1038 		btrfs_free_tree_block(trans, root, buf, parent_start,
1039 				      last_ref);
1040 		free_extent_buffer(buf);
1041 		add_root_to_dirty_list(root);
1042 	} else {
1043 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1044 			parent_start = parent->start;
1045 		else
1046 			parent_start = 0;
1047 
1048 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1049 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1050 					MOD_LOG_KEY_REPLACE);
1051 		btrfs_set_node_blockptr(parent, parent_slot,
1052 					cow->start);
1053 		btrfs_set_node_ptr_generation(parent, parent_slot,
1054 					      trans->transid);
1055 		btrfs_mark_buffer_dirty(parent);
1056 		btrfs_free_tree_block(trans, root, buf, parent_start,
1057 				      last_ref);
1058 	}
1059 	if (unlock_orig)
1060 		btrfs_tree_unlock(buf);
1061 	free_extent_buffer_stale(buf);
1062 	btrfs_mark_buffer_dirty(cow);
1063 	*cow_ret = cow;
1064 	return 0;
1065 }
1066 
1067 /*
1068  * returns the logical address of the oldest predecessor of the given root.
1069  * entries older than time_seq are ignored.
1070  */
1071 static struct tree_mod_elem *
1072 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1073 			   struct btrfs_root *root, u64 time_seq)
1074 {
1075 	struct tree_mod_elem *tm;
1076 	struct tree_mod_elem *found = NULL;
1077 	u64 root_logical = root->node->start;
1078 	int looped = 0;
1079 
1080 	if (!time_seq)
1081 		return 0;
1082 
1083 	/*
1084 	 * the very last operation that's logged for a root is the replacement
1085 	 * operation (if it is replaced at all). this has the index of the *new*
1086 	 * root, making it the very first operation that's logged for this root.
1087 	 */
1088 	while (1) {
1089 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1090 						time_seq);
1091 		if (!looped && !tm)
1092 			return 0;
1093 		/*
1094 		 * if there are no tree operation for the oldest root, we simply
1095 		 * return it. this should only happen if that (old) root is at
1096 		 * level 0.
1097 		 */
1098 		if (!tm)
1099 			break;
1100 
1101 		/*
1102 		 * if there's an operation that's not a root replacement, we
1103 		 * found the oldest version of our root. normally, we'll find a
1104 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1105 		 */
1106 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1107 			break;
1108 
1109 		found = tm;
1110 		root_logical = tm->old_root.logical;
1111 		BUG_ON(root_logical == root->node->start);
1112 		looped = 1;
1113 	}
1114 
1115 	/* if there's no old root to return, return what we found instead */
1116 	if (!found)
1117 		found = tm;
1118 
1119 	return found;
1120 }
1121 
1122 /*
1123  * tm is a pointer to the first operation to rewind within eb. then, all
1124  * previous operations will be rewinded (until we reach something older than
1125  * time_seq).
1126  */
1127 static void
1128 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1129 		      struct tree_mod_elem *first_tm)
1130 {
1131 	u32 n;
1132 	struct rb_node *next;
1133 	struct tree_mod_elem *tm = first_tm;
1134 	unsigned long o_dst;
1135 	unsigned long o_src;
1136 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1137 
1138 	n = btrfs_header_nritems(eb);
1139 	while (tm && tm->seq >= time_seq) {
1140 		/*
1141 		 * all the operations are recorded with the operator used for
1142 		 * the modification. as we're going backwards, we do the
1143 		 * opposite of each operation here.
1144 		 */
1145 		switch (tm->op) {
1146 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1147 			BUG_ON(tm->slot < n);
1148 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1149 		case MOD_LOG_KEY_REMOVE:
1150 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1151 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1152 			btrfs_set_node_ptr_generation(eb, tm->slot,
1153 						      tm->generation);
1154 			n++;
1155 			break;
1156 		case MOD_LOG_KEY_REPLACE:
1157 			BUG_ON(tm->slot >= n);
1158 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1159 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1160 			btrfs_set_node_ptr_generation(eb, tm->slot,
1161 						      tm->generation);
1162 			break;
1163 		case MOD_LOG_KEY_ADD:
1164 			/* if a move operation is needed it's in the log */
1165 			n--;
1166 			break;
1167 		case MOD_LOG_MOVE_KEYS:
1168 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1169 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1170 			memmove_extent_buffer(eb, o_dst, o_src,
1171 					      tm->move.nr_items * p_size);
1172 			break;
1173 		case MOD_LOG_ROOT_REPLACE:
1174 			/*
1175 			 * this operation is special. for roots, this must be
1176 			 * handled explicitly before rewinding.
1177 			 * for non-roots, this operation may exist if the node
1178 			 * was a root: root A -> child B; then A gets empty and
1179 			 * B is promoted to the new root. in the mod log, we'll
1180 			 * have a root-replace operation for B, a tree block
1181 			 * that is no root. we simply ignore that operation.
1182 			 */
1183 			break;
1184 		}
1185 		next = rb_next(&tm->node);
1186 		if (!next)
1187 			break;
1188 		tm = container_of(next, struct tree_mod_elem, node);
1189 		if (tm->index != first_tm->index)
1190 			break;
1191 	}
1192 	btrfs_set_header_nritems(eb, n);
1193 }
1194 
1195 static struct extent_buffer *
1196 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1197 		    u64 time_seq)
1198 {
1199 	struct extent_buffer *eb_rewin;
1200 	struct tree_mod_elem *tm;
1201 
1202 	if (!time_seq)
1203 		return eb;
1204 
1205 	if (btrfs_header_level(eb) == 0)
1206 		return eb;
1207 
1208 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1209 	if (!tm)
1210 		return eb;
1211 
1212 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1213 		BUG_ON(tm->slot != 0);
1214 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1215 						fs_info->tree_root->nodesize);
1216 		BUG_ON(!eb_rewin);
1217 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1218 		btrfs_set_header_backref_rev(eb_rewin,
1219 					     btrfs_header_backref_rev(eb));
1220 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1221 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1222 	} else {
1223 		eb_rewin = btrfs_clone_extent_buffer(eb);
1224 		BUG_ON(!eb_rewin);
1225 	}
1226 
1227 	extent_buffer_get(eb_rewin);
1228 	free_extent_buffer(eb);
1229 
1230 	__tree_mod_log_rewind(eb_rewin, time_seq, tm);
1231 
1232 	return eb_rewin;
1233 }
1234 
1235 /*
1236  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1237  * value. If there are no changes, the current root->root_node is returned. If
1238  * anything changed in between, there's a fresh buffer allocated on which the
1239  * rewind operations are done. In any case, the returned buffer is read locked.
1240  * Returns NULL on error (with no locks held).
1241  */
1242 static inline struct extent_buffer *
1243 get_old_root(struct btrfs_root *root, u64 time_seq)
1244 {
1245 	struct tree_mod_elem *tm;
1246 	struct extent_buffer *eb;
1247 	struct tree_mod_root *old_root = NULL;
1248 	u64 old_generation = 0;
1249 	u64 logical;
1250 
1251 	eb = btrfs_read_lock_root_node(root);
1252 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1253 	if (!tm)
1254 		return root->node;
1255 
1256 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1257 		old_root = &tm->old_root;
1258 		old_generation = tm->generation;
1259 		logical = old_root->logical;
1260 	} else {
1261 		logical = root->node->start;
1262 	}
1263 
1264 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1265 	if (old_root)
1266 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1267 	else
1268 		eb = btrfs_clone_extent_buffer(root->node);
1269 	btrfs_tree_read_unlock(root->node);
1270 	free_extent_buffer(root->node);
1271 	if (!eb)
1272 		return NULL;
1273 	btrfs_tree_read_lock(eb);
1274 	if (old_root) {
1275 		btrfs_set_header_bytenr(eb, eb->start);
1276 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1277 		btrfs_set_header_owner(eb, root->root_key.objectid);
1278 		btrfs_set_header_level(eb, old_root->level);
1279 		btrfs_set_header_generation(eb, old_generation);
1280 	}
1281 	if (tm)
1282 		__tree_mod_log_rewind(eb, time_seq, tm);
1283 	else
1284 		WARN_ON(btrfs_header_level(eb) != 0);
1285 	extent_buffer_get(eb);
1286 
1287 	return eb;
1288 }
1289 
1290 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1291 				   struct btrfs_root *root,
1292 				   struct extent_buffer *buf)
1293 {
1294 	/* ensure we can see the force_cow */
1295 	smp_rmb();
1296 
1297 	/*
1298 	 * We do not need to cow a block if
1299 	 * 1) this block is not created or changed in this transaction;
1300 	 * 2) this block does not belong to TREE_RELOC tree;
1301 	 * 3) the root is not forced COW.
1302 	 *
1303 	 * What is forced COW:
1304 	 *    when we create snapshot during commiting the transaction,
1305 	 *    after we've finished coping src root, we must COW the shared
1306 	 *    block to ensure the metadata consistency.
1307 	 */
1308 	if (btrfs_header_generation(buf) == trans->transid &&
1309 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1310 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1311 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1312 	    !root->force_cow)
1313 		return 0;
1314 	return 1;
1315 }
1316 
1317 /*
1318  * cows a single block, see __btrfs_cow_block for the real work.
1319  * This version of it has extra checks so that a block isn't cow'd more than
1320  * once per transaction, as long as it hasn't been written yet
1321  */
1322 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1323 		    struct btrfs_root *root, struct extent_buffer *buf,
1324 		    struct extent_buffer *parent, int parent_slot,
1325 		    struct extent_buffer **cow_ret)
1326 {
1327 	u64 search_start;
1328 	int ret;
1329 
1330 	if (trans->transaction != root->fs_info->running_transaction) {
1331 		printk(KERN_CRIT "trans %llu running %llu\n",
1332 		       (unsigned long long)trans->transid,
1333 		       (unsigned long long)
1334 		       root->fs_info->running_transaction->transid);
1335 		WARN_ON(1);
1336 	}
1337 	if (trans->transid != root->fs_info->generation) {
1338 		printk(KERN_CRIT "trans %llu running %llu\n",
1339 		       (unsigned long long)trans->transid,
1340 		       (unsigned long long)root->fs_info->generation);
1341 		WARN_ON(1);
1342 	}
1343 
1344 	if (!should_cow_block(trans, root, buf)) {
1345 		*cow_ret = buf;
1346 		return 0;
1347 	}
1348 
1349 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1350 
1351 	if (parent)
1352 		btrfs_set_lock_blocking(parent);
1353 	btrfs_set_lock_blocking(buf);
1354 
1355 	ret = __btrfs_cow_block(trans, root, buf, parent,
1356 				 parent_slot, cow_ret, search_start, 0);
1357 
1358 	trace_btrfs_cow_block(root, buf, *cow_ret);
1359 
1360 	return ret;
1361 }
1362 
1363 /*
1364  * helper function for defrag to decide if two blocks pointed to by a
1365  * node are actually close by
1366  */
1367 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1368 {
1369 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1370 		return 1;
1371 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1372 		return 1;
1373 	return 0;
1374 }
1375 
1376 /*
1377  * compare two keys in a memcmp fashion
1378  */
1379 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1380 {
1381 	struct btrfs_key k1;
1382 
1383 	btrfs_disk_key_to_cpu(&k1, disk);
1384 
1385 	return btrfs_comp_cpu_keys(&k1, k2);
1386 }
1387 
1388 /*
1389  * same as comp_keys only with two btrfs_key's
1390  */
1391 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1392 {
1393 	if (k1->objectid > k2->objectid)
1394 		return 1;
1395 	if (k1->objectid < k2->objectid)
1396 		return -1;
1397 	if (k1->type > k2->type)
1398 		return 1;
1399 	if (k1->type < k2->type)
1400 		return -1;
1401 	if (k1->offset > k2->offset)
1402 		return 1;
1403 	if (k1->offset < k2->offset)
1404 		return -1;
1405 	return 0;
1406 }
1407 
1408 /*
1409  * this is used by the defrag code to go through all the
1410  * leaves pointed to by a node and reallocate them so that
1411  * disk order is close to key order
1412  */
1413 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1414 		       struct btrfs_root *root, struct extent_buffer *parent,
1415 		       int start_slot, int cache_only, u64 *last_ret,
1416 		       struct btrfs_key *progress)
1417 {
1418 	struct extent_buffer *cur;
1419 	u64 blocknr;
1420 	u64 gen;
1421 	u64 search_start = *last_ret;
1422 	u64 last_block = 0;
1423 	u64 other;
1424 	u32 parent_nritems;
1425 	int end_slot;
1426 	int i;
1427 	int err = 0;
1428 	int parent_level;
1429 	int uptodate;
1430 	u32 blocksize;
1431 	int progress_passed = 0;
1432 	struct btrfs_disk_key disk_key;
1433 
1434 	parent_level = btrfs_header_level(parent);
1435 	if (cache_only && parent_level != 1)
1436 		return 0;
1437 
1438 	if (trans->transaction != root->fs_info->running_transaction)
1439 		WARN_ON(1);
1440 	if (trans->transid != root->fs_info->generation)
1441 		WARN_ON(1);
1442 
1443 	parent_nritems = btrfs_header_nritems(parent);
1444 	blocksize = btrfs_level_size(root, parent_level - 1);
1445 	end_slot = parent_nritems;
1446 
1447 	if (parent_nritems == 1)
1448 		return 0;
1449 
1450 	btrfs_set_lock_blocking(parent);
1451 
1452 	for (i = start_slot; i < end_slot; i++) {
1453 		int close = 1;
1454 
1455 		btrfs_node_key(parent, &disk_key, i);
1456 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1457 			continue;
1458 
1459 		progress_passed = 1;
1460 		blocknr = btrfs_node_blockptr(parent, i);
1461 		gen = btrfs_node_ptr_generation(parent, i);
1462 		if (last_block == 0)
1463 			last_block = blocknr;
1464 
1465 		if (i > 0) {
1466 			other = btrfs_node_blockptr(parent, i - 1);
1467 			close = close_blocks(blocknr, other, blocksize);
1468 		}
1469 		if (!close && i < end_slot - 2) {
1470 			other = btrfs_node_blockptr(parent, i + 1);
1471 			close = close_blocks(blocknr, other, blocksize);
1472 		}
1473 		if (close) {
1474 			last_block = blocknr;
1475 			continue;
1476 		}
1477 
1478 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1479 		if (cur)
1480 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1481 		else
1482 			uptodate = 0;
1483 		if (!cur || !uptodate) {
1484 			if (cache_only) {
1485 				free_extent_buffer(cur);
1486 				continue;
1487 			}
1488 			if (!cur) {
1489 				cur = read_tree_block(root, blocknr,
1490 							 blocksize, gen);
1491 				if (!cur)
1492 					return -EIO;
1493 			} else if (!uptodate) {
1494 				err = btrfs_read_buffer(cur, gen);
1495 				if (err) {
1496 					free_extent_buffer(cur);
1497 					return err;
1498 				}
1499 			}
1500 		}
1501 		if (search_start == 0)
1502 			search_start = last_block;
1503 
1504 		btrfs_tree_lock(cur);
1505 		btrfs_set_lock_blocking(cur);
1506 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1507 					&cur, search_start,
1508 					min(16 * blocksize,
1509 					    (end_slot - i) * blocksize));
1510 		if (err) {
1511 			btrfs_tree_unlock(cur);
1512 			free_extent_buffer(cur);
1513 			break;
1514 		}
1515 		search_start = cur->start;
1516 		last_block = cur->start;
1517 		*last_ret = search_start;
1518 		btrfs_tree_unlock(cur);
1519 		free_extent_buffer(cur);
1520 	}
1521 	return err;
1522 }
1523 
1524 /*
1525  * The leaf data grows from end-to-front in the node.
1526  * this returns the address of the start of the last item,
1527  * which is the stop of the leaf data stack
1528  */
1529 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1530 					 struct extent_buffer *leaf)
1531 {
1532 	u32 nr = btrfs_header_nritems(leaf);
1533 	if (nr == 0)
1534 		return BTRFS_LEAF_DATA_SIZE(root);
1535 	return btrfs_item_offset_nr(leaf, nr - 1);
1536 }
1537 
1538 
1539 /*
1540  * search for key in the extent_buffer.  The items start at offset p,
1541  * and they are item_size apart.  There are 'max' items in p.
1542  *
1543  * the slot in the array is returned via slot, and it points to
1544  * the place where you would insert key if it is not found in
1545  * the array.
1546  *
1547  * slot may point to max if the key is bigger than all of the keys
1548  */
1549 static noinline int generic_bin_search(struct extent_buffer *eb,
1550 				       unsigned long p,
1551 				       int item_size, struct btrfs_key *key,
1552 				       int max, int *slot)
1553 {
1554 	int low = 0;
1555 	int high = max;
1556 	int mid;
1557 	int ret;
1558 	struct btrfs_disk_key *tmp = NULL;
1559 	struct btrfs_disk_key unaligned;
1560 	unsigned long offset;
1561 	char *kaddr = NULL;
1562 	unsigned long map_start = 0;
1563 	unsigned long map_len = 0;
1564 	int err;
1565 
1566 	while (low < high) {
1567 		mid = (low + high) / 2;
1568 		offset = p + mid * item_size;
1569 
1570 		if (!kaddr || offset < map_start ||
1571 		    (offset + sizeof(struct btrfs_disk_key)) >
1572 		    map_start + map_len) {
1573 
1574 			err = map_private_extent_buffer(eb, offset,
1575 						sizeof(struct btrfs_disk_key),
1576 						&kaddr, &map_start, &map_len);
1577 
1578 			if (!err) {
1579 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1580 							map_start);
1581 			} else {
1582 				read_extent_buffer(eb, &unaligned,
1583 						   offset, sizeof(unaligned));
1584 				tmp = &unaligned;
1585 			}
1586 
1587 		} else {
1588 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1589 							map_start);
1590 		}
1591 		ret = comp_keys(tmp, key);
1592 
1593 		if (ret < 0)
1594 			low = mid + 1;
1595 		else if (ret > 0)
1596 			high = mid;
1597 		else {
1598 			*slot = mid;
1599 			return 0;
1600 		}
1601 	}
1602 	*slot = low;
1603 	return 1;
1604 }
1605 
1606 /*
1607  * simple bin_search frontend that does the right thing for
1608  * leaves vs nodes
1609  */
1610 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1611 		      int level, int *slot)
1612 {
1613 	if (level == 0)
1614 		return generic_bin_search(eb,
1615 					  offsetof(struct btrfs_leaf, items),
1616 					  sizeof(struct btrfs_item),
1617 					  key, btrfs_header_nritems(eb),
1618 					  slot);
1619 	else
1620 		return generic_bin_search(eb,
1621 					  offsetof(struct btrfs_node, ptrs),
1622 					  sizeof(struct btrfs_key_ptr),
1623 					  key, btrfs_header_nritems(eb),
1624 					  slot);
1625 }
1626 
1627 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1628 		     int level, int *slot)
1629 {
1630 	return bin_search(eb, key, level, slot);
1631 }
1632 
1633 static void root_add_used(struct btrfs_root *root, u32 size)
1634 {
1635 	spin_lock(&root->accounting_lock);
1636 	btrfs_set_root_used(&root->root_item,
1637 			    btrfs_root_used(&root->root_item) + size);
1638 	spin_unlock(&root->accounting_lock);
1639 }
1640 
1641 static void root_sub_used(struct btrfs_root *root, u32 size)
1642 {
1643 	spin_lock(&root->accounting_lock);
1644 	btrfs_set_root_used(&root->root_item,
1645 			    btrfs_root_used(&root->root_item) - size);
1646 	spin_unlock(&root->accounting_lock);
1647 }
1648 
1649 /* given a node and slot number, this reads the blocks it points to.  The
1650  * extent buffer is returned with a reference taken (but unlocked).
1651  * NULL is returned on error.
1652  */
1653 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1654 				   struct extent_buffer *parent, int slot)
1655 {
1656 	int level = btrfs_header_level(parent);
1657 	if (slot < 0)
1658 		return NULL;
1659 	if (slot >= btrfs_header_nritems(parent))
1660 		return NULL;
1661 
1662 	BUG_ON(level == 0);
1663 
1664 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1665 		       btrfs_level_size(root, level - 1),
1666 		       btrfs_node_ptr_generation(parent, slot));
1667 }
1668 
1669 /*
1670  * node level balancing, used to make sure nodes are in proper order for
1671  * item deletion.  We balance from the top down, so we have to make sure
1672  * that a deletion won't leave an node completely empty later on.
1673  */
1674 static noinline int balance_level(struct btrfs_trans_handle *trans,
1675 			 struct btrfs_root *root,
1676 			 struct btrfs_path *path, int level)
1677 {
1678 	struct extent_buffer *right = NULL;
1679 	struct extent_buffer *mid;
1680 	struct extent_buffer *left = NULL;
1681 	struct extent_buffer *parent = NULL;
1682 	int ret = 0;
1683 	int wret;
1684 	int pslot;
1685 	int orig_slot = path->slots[level];
1686 	u64 orig_ptr;
1687 
1688 	if (level == 0)
1689 		return 0;
1690 
1691 	mid = path->nodes[level];
1692 
1693 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1694 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1695 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1696 
1697 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1698 
1699 	if (level < BTRFS_MAX_LEVEL - 1) {
1700 		parent = path->nodes[level + 1];
1701 		pslot = path->slots[level + 1];
1702 	}
1703 
1704 	/*
1705 	 * deal with the case where there is only one pointer in the root
1706 	 * by promoting the node below to a root
1707 	 */
1708 	if (!parent) {
1709 		struct extent_buffer *child;
1710 
1711 		if (btrfs_header_nritems(mid) != 1)
1712 			return 0;
1713 
1714 		/* promote the child to a root */
1715 		child = read_node_slot(root, mid, 0);
1716 		if (!child) {
1717 			ret = -EROFS;
1718 			btrfs_std_error(root->fs_info, ret);
1719 			goto enospc;
1720 		}
1721 
1722 		btrfs_tree_lock(child);
1723 		btrfs_set_lock_blocking(child);
1724 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1725 		if (ret) {
1726 			btrfs_tree_unlock(child);
1727 			free_extent_buffer(child);
1728 			goto enospc;
1729 		}
1730 
1731 		tree_mod_log_set_root_pointer(root, child);
1732 		rcu_assign_pointer(root->node, child);
1733 
1734 		add_root_to_dirty_list(root);
1735 		btrfs_tree_unlock(child);
1736 
1737 		path->locks[level] = 0;
1738 		path->nodes[level] = NULL;
1739 		clean_tree_block(trans, root, mid);
1740 		btrfs_tree_unlock(mid);
1741 		/* once for the path */
1742 		free_extent_buffer(mid);
1743 
1744 		root_sub_used(root, mid->len);
1745 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1746 		/* once for the root ptr */
1747 		free_extent_buffer_stale(mid);
1748 		return 0;
1749 	}
1750 	if (btrfs_header_nritems(mid) >
1751 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1752 		return 0;
1753 
1754 	left = read_node_slot(root, parent, pslot - 1);
1755 	if (left) {
1756 		btrfs_tree_lock(left);
1757 		btrfs_set_lock_blocking(left);
1758 		wret = btrfs_cow_block(trans, root, left,
1759 				       parent, pslot - 1, &left);
1760 		if (wret) {
1761 			ret = wret;
1762 			goto enospc;
1763 		}
1764 	}
1765 	right = read_node_slot(root, parent, pslot + 1);
1766 	if (right) {
1767 		btrfs_tree_lock(right);
1768 		btrfs_set_lock_blocking(right);
1769 		wret = btrfs_cow_block(trans, root, right,
1770 				       parent, pslot + 1, &right);
1771 		if (wret) {
1772 			ret = wret;
1773 			goto enospc;
1774 		}
1775 	}
1776 
1777 	/* first, try to make some room in the middle buffer */
1778 	if (left) {
1779 		orig_slot += btrfs_header_nritems(left);
1780 		wret = push_node_left(trans, root, left, mid, 1);
1781 		if (wret < 0)
1782 			ret = wret;
1783 	}
1784 
1785 	/*
1786 	 * then try to empty the right most buffer into the middle
1787 	 */
1788 	if (right) {
1789 		wret = push_node_left(trans, root, mid, right, 1);
1790 		if (wret < 0 && wret != -ENOSPC)
1791 			ret = wret;
1792 		if (btrfs_header_nritems(right) == 0) {
1793 			clean_tree_block(trans, root, right);
1794 			btrfs_tree_unlock(right);
1795 			del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1796 			root_sub_used(root, right->len);
1797 			btrfs_free_tree_block(trans, root, right, 0, 1);
1798 			free_extent_buffer_stale(right);
1799 			right = NULL;
1800 		} else {
1801 			struct btrfs_disk_key right_key;
1802 			btrfs_node_key(right, &right_key, 0);
1803 			tree_mod_log_set_node_key(root->fs_info, parent,
1804 						  &right_key, pslot + 1, 0);
1805 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1806 			btrfs_mark_buffer_dirty(parent);
1807 		}
1808 	}
1809 	if (btrfs_header_nritems(mid) == 1) {
1810 		/*
1811 		 * we're not allowed to leave a node with one item in the
1812 		 * tree during a delete.  A deletion from lower in the tree
1813 		 * could try to delete the only pointer in this node.
1814 		 * So, pull some keys from the left.
1815 		 * There has to be a left pointer at this point because
1816 		 * otherwise we would have pulled some pointers from the
1817 		 * right
1818 		 */
1819 		if (!left) {
1820 			ret = -EROFS;
1821 			btrfs_std_error(root->fs_info, ret);
1822 			goto enospc;
1823 		}
1824 		wret = balance_node_right(trans, root, mid, left);
1825 		if (wret < 0) {
1826 			ret = wret;
1827 			goto enospc;
1828 		}
1829 		if (wret == 1) {
1830 			wret = push_node_left(trans, root, left, mid, 1);
1831 			if (wret < 0)
1832 				ret = wret;
1833 		}
1834 		BUG_ON(wret == 1);
1835 	}
1836 	if (btrfs_header_nritems(mid) == 0) {
1837 		clean_tree_block(trans, root, mid);
1838 		btrfs_tree_unlock(mid);
1839 		del_ptr(trans, root, path, level + 1, pslot, 1);
1840 		root_sub_used(root, mid->len);
1841 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1842 		free_extent_buffer_stale(mid);
1843 		mid = NULL;
1844 	} else {
1845 		/* update the parent key to reflect our changes */
1846 		struct btrfs_disk_key mid_key;
1847 		btrfs_node_key(mid, &mid_key, 0);
1848 		tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1849 					  pslot, 0);
1850 		btrfs_set_node_key(parent, &mid_key, pslot);
1851 		btrfs_mark_buffer_dirty(parent);
1852 	}
1853 
1854 	/* update the path */
1855 	if (left) {
1856 		if (btrfs_header_nritems(left) > orig_slot) {
1857 			extent_buffer_get(left);
1858 			/* left was locked after cow */
1859 			path->nodes[level] = left;
1860 			path->slots[level + 1] -= 1;
1861 			path->slots[level] = orig_slot;
1862 			if (mid) {
1863 				btrfs_tree_unlock(mid);
1864 				free_extent_buffer(mid);
1865 			}
1866 		} else {
1867 			orig_slot -= btrfs_header_nritems(left);
1868 			path->slots[level] = orig_slot;
1869 		}
1870 	}
1871 	/* double check we haven't messed things up */
1872 	if (orig_ptr !=
1873 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1874 		BUG();
1875 enospc:
1876 	if (right) {
1877 		btrfs_tree_unlock(right);
1878 		free_extent_buffer(right);
1879 	}
1880 	if (left) {
1881 		if (path->nodes[level] != left)
1882 			btrfs_tree_unlock(left);
1883 		free_extent_buffer(left);
1884 	}
1885 	return ret;
1886 }
1887 
1888 /* Node balancing for insertion.  Here we only split or push nodes around
1889  * when they are completely full.  This is also done top down, so we
1890  * have to be pessimistic.
1891  */
1892 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1893 					  struct btrfs_root *root,
1894 					  struct btrfs_path *path, int level)
1895 {
1896 	struct extent_buffer *right = NULL;
1897 	struct extent_buffer *mid;
1898 	struct extent_buffer *left = NULL;
1899 	struct extent_buffer *parent = NULL;
1900 	int ret = 0;
1901 	int wret;
1902 	int pslot;
1903 	int orig_slot = path->slots[level];
1904 
1905 	if (level == 0)
1906 		return 1;
1907 
1908 	mid = path->nodes[level];
1909 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1910 
1911 	if (level < BTRFS_MAX_LEVEL - 1) {
1912 		parent = path->nodes[level + 1];
1913 		pslot = path->slots[level + 1];
1914 	}
1915 
1916 	if (!parent)
1917 		return 1;
1918 
1919 	left = read_node_slot(root, parent, pslot - 1);
1920 
1921 	/* first, try to make some room in the middle buffer */
1922 	if (left) {
1923 		u32 left_nr;
1924 
1925 		btrfs_tree_lock(left);
1926 		btrfs_set_lock_blocking(left);
1927 
1928 		left_nr = btrfs_header_nritems(left);
1929 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1930 			wret = 1;
1931 		} else {
1932 			ret = btrfs_cow_block(trans, root, left, parent,
1933 					      pslot - 1, &left);
1934 			if (ret)
1935 				wret = 1;
1936 			else {
1937 				wret = push_node_left(trans, root,
1938 						      left, mid, 0);
1939 			}
1940 		}
1941 		if (wret < 0)
1942 			ret = wret;
1943 		if (wret == 0) {
1944 			struct btrfs_disk_key disk_key;
1945 			orig_slot += left_nr;
1946 			btrfs_node_key(mid, &disk_key, 0);
1947 			tree_mod_log_set_node_key(root->fs_info, parent,
1948 						  &disk_key, pslot, 0);
1949 			btrfs_set_node_key(parent, &disk_key, pslot);
1950 			btrfs_mark_buffer_dirty(parent);
1951 			if (btrfs_header_nritems(left) > orig_slot) {
1952 				path->nodes[level] = left;
1953 				path->slots[level + 1] -= 1;
1954 				path->slots[level] = orig_slot;
1955 				btrfs_tree_unlock(mid);
1956 				free_extent_buffer(mid);
1957 			} else {
1958 				orig_slot -=
1959 					btrfs_header_nritems(left);
1960 				path->slots[level] = orig_slot;
1961 				btrfs_tree_unlock(left);
1962 				free_extent_buffer(left);
1963 			}
1964 			return 0;
1965 		}
1966 		btrfs_tree_unlock(left);
1967 		free_extent_buffer(left);
1968 	}
1969 	right = read_node_slot(root, parent, pslot + 1);
1970 
1971 	/*
1972 	 * then try to empty the right most buffer into the middle
1973 	 */
1974 	if (right) {
1975 		u32 right_nr;
1976 
1977 		btrfs_tree_lock(right);
1978 		btrfs_set_lock_blocking(right);
1979 
1980 		right_nr = btrfs_header_nritems(right);
1981 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1982 			wret = 1;
1983 		} else {
1984 			ret = btrfs_cow_block(trans, root, right,
1985 					      parent, pslot + 1,
1986 					      &right);
1987 			if (ret)
1988 				wret = 1;
1989 			else {
1990 				wret = balance_node_right(trans, root,
1991 							  right, mid);
1992 			}
1993 		}
1994 		if (wret < 0)
1995 			ret = wret;
1996 		if (wret == 0) {
1997 			struct btrfs_disk_key disk_key;
1998 
1999 			btrfs_node_key(right, &disk_key, 0);
2000 			tree_mod_log_set_node_key(root->fs_info, parent,
2001 						  &disk_key, pslot + 1, 0);
2002 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2003 			btrfs_mark_buffer_dirty(parent);
2004 
2005 			if (btrfs_header_nritems(mid) <= orig_slot) {
2006 				path->nodes[level] = right;
2007 				path->slots[level + 1] += 1;
2008 				path->slots[level] = orig_slot -
2009 					btrfs_header_nritems(mid);
2010 				btrfs_tree_unlock(mid);
2011 				free_extent_buffer(mid);
2012 			} else {
2013 				btrfs_tree_unlock(right);
2014 				free_extent_buffer(right);
2015 			}
2016 			return 0;
2017 		}
2018 		btrfs_tree_unlock(right);
2019 		free_extent_buffer(right);
2020 	}
2021 	return 1;
2022 }
2023 
2024 /*
2025  * readahead one full node of leaves, finding things that are close
2026  * to the block in 'slot', and triggering ra on them.
2027  */
2028 static void reada_for_search(struct btrfs_root *root,
2029 			     struct btrfs_path *path,
2030 			     int level, int slot, u64 objectid)
2031 {
2032 	struct extent_buffer *node;
2033 	struct btrfs_disk_key disk_key;
2034 	u32 nritems;
2035 	u64 search;
2036 	u64 target;
2037 	u64 nread = 0;
2038 	u64 gen;
2039 	int direction = path->reada;
2040 	struct extent_buffer *eb;
2041 	u32 nr;
2042 	u32 blocksize;
2043 	u32 nscan = 0;
2044 
2045 	if (level != 1)
2046 		return;
2047 
2048 	if (!path->nodes[level])
2049 		return;
2050 
2051 	node = path->nodes[level];
2052 
2053 	search = btrfs_node_blockptr(node, slot);
2054 	blocksize = btrfs_level_size(root, level - 1);
2055 	eb = btrfs_find_tree_block(root, search, blocksize);
2056 	if (eb) {
2057 		free_extent_buffer(eb);
2058 		return;
2059 	}
2060 
2061 	target = search;
2062 
2063 	nritems = btrfs_header_nritems(node);
2064 	nr = slot;
2065 
2066 	while (1) {
2067 		if (direction < 0) {
2068 			if (nr == 0)
2069 				break;
2070 			nr--;
2071 		} else if (direction > 0) {
2072 			nr++;
2073 			if (nr >= nritems)
2074 				break;
2075 		}
2076 		if (path->reada < 0 && objectid) {
2077 			btrfs_node_key(node, &disk_key, nr);
2078 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2079 				break;
2080 		}
2081 		search = btrfs_node_blockptr(node, nr);
2082 		if ((search <= target && target - search <= 65536) ||
2083 		    (search > target && search - target <= 65536)) {
2084 			gen = btrfs_node_ptr_generation(node, nr);
2085 			readahead_tree_block(root, search, blocksize, gen);
2086 			nread += blocksize;
2087 		}
2088 		nscan++;
2089 		if ((nread > 65536 || nscan > 32))
2090 			break;
2091 	}
2092 }
2093 
2094 /*
2095  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2096  * cache
2097  */
2098 static noinline int reada_for_balance(struct btrfs_root *root,
2099 				      struct btrfs_path *path, int level)
2100 {
2101 	int slot;
2102 	int nritems;
2103 	struct extent_buffer *parent;
2104 	struct extent_buffer *eb;
2105 	u64 gen;
2106 	u64 block1 = 0;
2107 	u64 block2 = 0;
2108 	int ret = 0;
2109 	int blocksize;
2110 
2111 	parent = path->nodes[level + 1];
2112 	if (!parent)
2113 		return 0;
2114 
2115 	nritems = btrfs_header_nritems(parent);
2116 	slot = path->slots[level + 1];
2117 	blocksize = btrfs_level_size(root, level);
2118 
2119 	if (slot > 0) {
2120 		block1 = btrfs_node_blockptr(parent, slot - 1);
2121 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2122 		eb = btrfs_find_tree_block(root, block1, blocksize);
2123 		/*
2124 		 * if we get -eagain from btrfs_buffer_uptodate, we
2125 		 * don't want to return eagain here.  That will loop
2126 		 * forever
2127 		 */
2128 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2129 			block1 = 0;
2130 		free_extent_buffer(eb);
2131 	}
2132 	if (slot + 1 < nritems) {
2133 		block2 = btrfs_node_blockptr(parent, slot + 1);
2134 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2135 		eb = btrfs_find_tree_block(root, block2, blocksize);
2136 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2137 			block2 = 0;
2138 		free_extent_buffer(eb);
2139 	}
2140 	if (block1 || block2) {
2141 		ret = -EAGAIN;
2142 
2143 		/* release the whole path */
2144 		btrfs_release_path(path);
2145 
2146 		/* read the blocks */
2147 		if (block1)
2148 			readahead_tree_block(root, block1, blocksize, 0);
2149 		if (block2)
2150 			readahead_tree_block(root, block2, blocksize, 0);
2151 
2152 		if (block1) {
2153 			eb = read_tree_block(root, block1, blocksize, 0);
2154 			free_extent_buffer(eb);
2155 		}
2156 		if (block2) {
2157 			eb = read_tree_block(root, block2, blocksize, 0);
2158 			free_extent_buffer(eb);
2159 		}
2160 	}
2161 	return ret;
2162 }
2163 
2164 
2165 /*
2166  * when we walk down the tree, it is usually safe to unlock the higher layers
2167  * in the tree.  The exceptions are when our path goes through slot 0, because
2168  * operations on the tree might require changing key pointers higher up in the
2169  * tree.
2170  *
2171  * callers might also have set path->keep_locks, which tells this code to keep
2172  * the lock if the path points to the last slot in the block.  This is part of
2173  * walking through the tree, and selecting the next slot in the higher block.
2174  *
2175  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2176  * if lowest_unlock is 1, level 0 won't be unlocked
2177  */
2178 static noinline void unlock_up(struct btrfs_path *path, int level,
2179 			       int lowest_unlock, int min_write_lock_level,
2180 			       int *write_lock_level)
2181 {
2182 	int i;
2183 	int skip_level = level;
2184 	int no_skips = 0;
2185 	struct extent_buffer *t;
2186 
2187 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2188 		if (!path->nodes[i])
2189 			break;
2190 		if (!path->locks[i])
2191 			break;
2192 		if (!no_skips && path->slots[i] == 0) {
2193 			skip_level = i + 1;
2194 			continue;
2195 		}
2196 		if (!no_skips && path->keep_locks) {
2197 			u32 nritems;
2198 			t = path->nodes[i];
2199 			nritems = btrfs_header_nritems(t);
2200 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2201 				skip_level = i + 1;
2202 				continue;
2203 			}
2204 		}
2205 		if (skip_level < i && i >= lowest_unlock)
2206 			no_skips = 1;
2207 
2208 		t = path->nodes[i];
2209 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2210 			btrfs_tree_unlock_rw(t, path->locks[i]);
2211 			path->locks[i] = 0;
2212 			if (write_lock_level &&
2213 			    i > min_write_lock_level &&
2214 			    i <= *write_lock_level) {
2215 				*write_lock_level = i - 1;
2216 			}
2217 		}
2218 	}
2219 }
2220 
2221 /*
2222  * This releases any locks held in the path starting at level and
2223  * going all the way up to the root.
2224  *
2225  * btrfs_search_slot will keep the lock held on higher nodes in a few
2226  * corner cases, such as COW of the block at slot zero in the node.  This
2227  * ignores those rules, and it should only be called when there are no
2228  * more updates to be done higher up in the tree.
2229  */
2230 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2231 {
2232 	int i;
2233 
2234 	if (path->keep_locks)
2235 		return;
2236 
2237 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2238 		if (!path->nodes[i])
2239 			continue;
2240 		if (!path->locks[i])
2241 			continue;
2242 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2243 		path->locks[i] = 0;
2244 	}
2245 }
2246 
2247 /*
2248  * helper function for btrfs_search_slot.  The goal is to find a block
2249  * in cache without setting the path to blocking.  If we find the block
2250  * we return zero and the path is unchanged.
2251  *
2252  * If we can't find the block, we set the path blocking and do some
2253  * reada.  -EAGAIN is returned and the search must be repeated.
2254  */
2255 static int
2256 read_block_for_search(struct btrfs_trans_handle *trans,
2257 		       struct btrfs_root *root, struct btrfs_path *p,
2258 		       struct extent_buffer **eb_ret, int level, int slot,
2259 		       struct btrfs_key *key, u64 time_seq)
2260 {
2261 	u64 blocknr;
2262 	u64 gen;
2263 	u32 blocksize;
2264 	struct extent_buffer *b = *eb_ret;
2265 	struct extent_buffer *tmp;
2266 	int ret;
2267 
2268 	blocknr = btrfs_node_blockptr(b, slot);
2269 	gen = btrfs_node_ptr_generation(b, slot);
2270 	blocksize = btrfs_level_size(root, level - 1);
2271 
2272 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2273 	if (tmp) {
2274 		/* first we do an atomic uptodate check */
2275 		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2276 			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2277 				/*
2278 				 * we found an up to date block without
2279 				 * sleeping, return
2280 				 * right away
2281 				 */
2282 				*eb_ret = tmp;
2283 				return 0;
2284 			}
2285 			/* the pages were up to date, but we failed
2286 			 * the generation number check.  Do a full
2287 			 * read for the generation number that is correct.
2288 			 * We must do this without dropping locks so
2289 			 * we can trust our generation number
2290 			 */
2291 			free_extent_buffer(tmp);
2292 			btrfs_set_path_blocking(p);
2293 
2294 			/* now we're allowed to do a blocking uptodate check */
2295 			tmp = read_tree_block(root, blocknr, blocksize, gen);
2296 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2297 				*eb_ret = tmp;
2298 				return 0;
2299 			}
2300 			free_extent_buffer(tmp);
2301 			btrfs_release_path(p);
2302 			return -EIO;
2303 		}
2304 	}
2305 
2306 	/*
2307 	 * reduce lock contention at high levels
2308 	 * of the btree by dropping locks before
2309 	 * we read.  Don't release the lock on the current
2310 	 * level because we need to walk this node to figure
2311 	 * out which blocks to read.
2312 	 */
2313 	btrfs_unlock_up_safe(p, level + 1);
2314 	btrfs_set_path_blocking(p);
2315 
2316 	free_extent_buffer(tmp);
2317 	if (p->reada)
2318 		reada_for_search(root, p, level, slot, key->objectid);
2319 
2320 	btrfs_release_path(p);
2321 
2322 	ret = -EAGAIN;
2323 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2324 	if (tmp) {
2325 		/*
2326 		 * If the read above didn't mark this buffer up to date,
2327 		 * it will never end up being up to date.  Set ret to EIO now
2328 		 * and give up so that our caller doesn't loop forever
2329 		 * on our EAGAINs.
2330 		 */
2331 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2332 			ret = -EIO;
2333 		free_extent_buffer(tmp);
2334 	}
2335 	return ret;
2336 }
2337 
2338 /*
2339  * helper function for btrfs_search_slot.  This does all of the checks
2340  * for node-level blocks and does any balancing required based on
2341  * the ins_len.
2342  *
2343  * If no extra work was required, zero is returned.  If we had to
2344  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2345  * start over
2346  */
2347 static int
2348 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2349 		       struct btrfs_root *root, struct btrfs_path *p,
2350 		       struct extent_buffer *b, int level, int ins_len,
2351 		       int *write_lock_level)
2352 {
2353 	int ret;
2354 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2355 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2356 		int sret;
2357 
2358 		if (*write_lock_level < level + 1) {
2359 			*write_lock_level = level + 1;
2360 			btrfs_release_path(p);
2361 			goto again;
2362 		}
2363 
2364 		sret = reada_for_balance(root, p, level);
2365 		if (sret)
2366 			goto again;
2367 
2368 		btrfs_set_path_blocking(p);
2369 		sret = split_node(trans, root, p, level);
2370 		btrfs_clear_path_blocking(p, NULL, 0);
2371 
2372 		BUG_ON(sret > 0);
2373 		if (sret) {
2374 			ret = sret;
2375 			goto done;
2376 		}
2377 		b = p->nodes[level];
2378 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2379 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2380 		int sret;
2381 
2382 		if (*write_lock_level < level + 1) {
2383 			*write_lock_level = level + 1;
2384 			btrfs_release_path(p);
2385 			goto again;
2386 		}
2387 
2388 		sret = reada_for_balance(root, p, level);
2389 		if (sret)
2390 			goto again;
2391 
2392 		btrfs_set_path_blocking(p);
2393 		sret = balance_level(trans, root, p, level);
2394 		btrfs_clear_path_blocking(p, NULL, 0);
2395 
2396 		if (sret) {
2397 			ret = sret;
2398 			goto done;
2399 		}
2400 		b = p->nodes[level];
2401 		if (!b) {
2402 			btrfs_release_path(p);
2403 			goto again;
2404 		}
2405 		BUG_ON(btrfs_header_nritems(b) == 1);
2406 	}
2407 	return 0;
2408 
2409 again:
2410 	ret = -EAGAIN;
2411 done:
2412 	return ret;
2413 }
2414 
2415 /*
2416  * look for key in the tree.  path is filled in with nodes along the way
2417  * if key is found, we return zero and you can find the item in the leaf
2418  * level of the path (level 0)
2419  *
2420  * If the key isn't found, the path points to the slot where it should
2421  * be inserted, and 1 is returned.  If there are other errors during the
2422  * search a negative error number is returned.
2423  *
2424  * if ins_len > 0, nodes and leaves will be split as we walk down the
2425  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2426  * possible)
2427  */
2428 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2429 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2430 		      ins_len, int cow)
2431 {
2432 	struct extent_buffer *b;
2433 	int slot;
2434 	int ret;
2435 	int err;
2436 	int level;
2437 	int lowest_unlock = 1;
2438 	int root_lock;
2439 	/* everything at write_lock_level or lower must be write locked */
2440 	int write_lock_level = 0;
2441 	u8 lowest_level = 0;
2442 	int min_write_lock_level;
2443 
2444 	lowest_level = p->lowest_level;
2445 	WARN_ON(lowest_level && ins_len > 0);
2446 	WARN_ON(p->nodes[0] != NULL);
2447 
2448 	if (ins_len < 0) {
2449 		lowest_unlock = 2;
2450 
2451 		/* when we are removing items, we might have to go up to level
2452 		 * two as we update tree pointers  Make sure we keep write
2453 		 * for those levels as well
2454 		 */
2455 		write_lock_level = 2;
2456 	} else if (ins_len > 0) {
2457 		/*
2458 		 * for inserting items, make sure we have a write lock on
2459 		 * level 1 so we can update keys
2460 		 */
2461 		write_lock_level = 1;
2462 	}
2463 
2464 	if (!cow)
2465 		write_lock_level = -1;
2466 
2467 	if (cow && (p->keep_locks || p->lowest_level))
2468 		write_lock_level = BTRFS_MAX_LEVEL;
2469 
2470 	min_write_lock_level = write_lock_level;
2471 
2472 again:
2473 	/*
2474 	 * we try very hard to do read locks on the root
2475 	 */
2476 	root_lock = BTRFS_READ_LOCK;
2477 	level = 0;
2478 	if (p->search_commit_root) {
2479 		/*
2480 		 * the commit roots are read only
2481 		 * so we always do read locks
2482 		 */
2483 		b = root->commit_root;
2484 		extent_buffer_get(b);
2485 		level = btrfs_header_level(b);
2486 		if (!p->skip_locking)
2487 			btrfs_tree_read_lock(b);
2488 	} else {
2489 		if (p->skip_locking) {
2490 			b = btrfs_root_node(root);
2491 			level = btrfs_header_level(b);
2492 		} else {
2493 			/* we don't know the level of the root node
2494 			 * until we actually have it read locked
2495 			 */
2496 			b = btrfs_read_lock_root_node(root);
2497 			level = btrfs_header_level(b);
2498 			if (level <= write_lock_level) {
2499 				/* whoops, must trade for write lock */
2500 				btrfs_tree_read_unlock(b);
2501 				free_extent_buffer(b);
2502 				b = btrfs_lock_root_node(root);
2503 				root_lock = BTRFS_WRITE_LOCK;
2504 
2505 				/* the level might have changed, check again */
2506 				level = btrfs_header_level(b);
2507 			}
2508 		}
2509 	}
2510 	p->nodes[level] = b;
2511 	if (!p->skip_locking)
2512 		p->locks[level] = root_lock;
2513 
2514 	while (b) {
2515 		level = btrfs_header_level(b);
2516 
2517 		/*
2518 		 * setup the path here so we can release it under lock
2519 		 * contention with the cow code
2520 		 */
2521 		if (cow) {
2522 			/*
2523 			 * if we don't really need to cow this block
2524 			 * then we don't want to set the path blocking,
2525 			 * so we test it here
2526 			 */
2527 			if (!should_cow_block(trans, root, b))
2528 				goto cow_done;
2529 
2530 			btrfs_set_path_blocking(p);
2531 
2532 			/*
2533 			 * must have write locks on this node and the
2534 			 * parent
2535 			 */
2536 			if (level + 1 > write_lock_level) {
2537 				write_lock_level = level + 1;
2538 				btrfs_release_path(p);
2539 				goto again;
2540 			}
2541 
2542 			err = btrfs_cow_block(trans, root, b,
2543 					      p->nodes[level + 1],
2544 					      p->slots[level + 1], &b);
2545 			if (err) {
2546 				ret = err;
2547 				goto done;
2548 			}
2549 		}
2550 cow_done:
2551 		BUG_ON(!cow && ins_len);
2552 
2553 		p->nodes[level] = b;
2554 		btrfs_clear_path_blocking(p, NULL, 0);
2555 
2556 		/*
2557 		 * we have a lock on b and as long as we aren't changing
2558 		 * the tree, there is no way to for the items in b to change.
2559 		 * It is safe to drop the lock on our parent before we
2560 		 * go through the expensive btree search on b.
2561 		 *
2562 		 * If cow is true, then we might be changing slot zero,
2563 		 * which may require changing the parent.  So, we can't
2564 		 * drop the lock until after we know which slot we're
2565 		 * operating on.
2566 		 */
2567 		if (!cow)
2568 			btrfs_unlock_up_safe(p, level + 1);
2569 
2570 		ret = bin_search(b, key, level, &slot);
2571 
2572 		if (level != 0) {
2573 			int dec = 0;
2574 			if (ret && slot > 0) {
2575 				dec = 1;
2576 				slot -= 1;
2577 			}
2578 			p->slots[level] = slot;
2579 			err = setup_nodes_for_search(trans, root, p, b, level,
2580 					     ins_len, &write_lock_level);
2581 			if (err == -EAGAIN)
2582 				goto again;
2583 			if (err) {
2584 				ret = err;
2585 				goto done;
2586 			}
2587 			b = p->nodes[level];
2588 			slot = p->slots[level];
2589 
2590 			/*
2591 			 * slot 0 is special, if we change the key
2592 			 * we have to update the parent pointer
2593 			 * which means we must have a write lock
2594 			 * on the parent
2595 			 */
2596 			if (slot == 0 && cow &&
2597 			    write_lock_level < level + 1) {
2598 				write_lock_level = level + 1;
2599 				btrfs_release_path(p);
2600 				goto again;
2601 			}
2602 
2603 			unlock_up(p, level, lowest_unlock,
2604 				  min_write_lock_level, &write_lock_level);
2605 
2606 			if (level == lowest_level) {
2607 				if (dec)
2608 					p->slots[level]++;
2609 				goto done;
2610 			}
2611 
2612 			err = read_block_for_search(trans, root, p,
2613 						    &b, level, slot, key, 0);
2614 			if (err == -EAGAIN)
2615 				goto again;
2616 			if (err) {
2617 				ret = err;
2618 				goto done;
2619 			}
2620 
2621 			if (!p->skip_locking) {
2622 				level = btrfs_header_level(b);
2623 				if (level <= write_lock_level) {
2624 					err = btrfs_try_tree_write_lock(b);
2625 					if (!err) {
2626 						btrfs_set_path_blocking(p);
2627 						btrfs_tree_lock(b);
2628 						btrfs_clear_path_blocking(p, b,
2629 								  BTRFS_WRITE_LOCK);
2630 					}
2631 					p->locks[level] = BTRFS_WRITE_LOCK;
2632 				} else {
2633 					err = btrfs_try_tree_read_lock(b);
2634 					if (!err) {
2635 						btrfs_set_path_blocking(p);
2636 						btrfs_tree_read_lock(b);
2637 						btrfs_clear_path_blocking(p, b,
2638 								  BTRFS_READ_LOCK);
2639 					}
2640 					p->locks[level] = BTRFS_READ_LOCK;
2641 				}
2642 				p->nodes[level] = b;
2643 			}
2644 		} else {
2645 			p->slots[level] = slot;
2646 			if (ins_len > 0 &&
2647 			    btrfs_leaf_free_space(root, b) < ins_len) {
2648 				if (write_lock_level < 1) {
2649 					write_lock_level = 1;
2650 					btrfs_release_path(p);
2651 					goto again;
2652 				}
2653 
2654 				btrfs_set_path_blocking(p);
2655 				err = split_leaf(trans, root, key,
2656 						 p, ins_len, ret == 0);
2657 				btrfs_clear_path_blocking(p, NULL, 0);
2658 
2659 				BUG_ON(err > 0);
2660 				if (err) {
2661 					ret = err;
2662 					goto done;
2663 				}
2664 			}
2665 			if (!p->search_for_split)
2666 				unlock_up(p, level, lowest_unlock,
2667 					  min_write_lock_level, &write_lock_level);
2668 			goto done;
2669 		}
2670 	}
2671 	ret = 1;
2672 done:
2673 	/*
2674 	 * we don't really know what they plan on doing with the path
2675 	 * from here on, so for now just mark it as blocking
2676 	 */
2677 	if (!p->leave_spinning)
2678 		btrfs_set_path_blocking(p);
2679 	if (ret < 0)
2680 		btrfs_release_path(p);
2681 	return ret;
2682 }
2683 
2684 /*
2685  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2686  * current state of the tree together with the operations recorded in the tree
2687  * modification log to search for the key in a previous version of this tree, as
2688  * denoted by the time_seq parameter.
2689  *
2690  * Naturally, there is no support for insert, delete or cow operations.
2691  *
2692  * The resulting path and return value will be set up as if we called
2693  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2694  */
2695 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2696 			  struct btrfs_path *p, u64 time_seq)
2697 {
2698 	struct extent_buffer *b;
2699 	int slot;
2700 	int ret;
2701 	int err;
2702 	int level;
2703 	int lowest_unlock = 1;
2704 	u8 lowest_level = 0;
2705 
2706 	lowest_level = p->lowest_level;
2707 	WARN_ON(p->nodes[0] != NULL);
2708 
2709 	if (p->search_commit_root) {
2710 		BUG_ON(time_seq);
2711 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2712 	}
2713 
2714 again:
2715 	b = get_old_root(root, time_seq);
2716 	level = btrfs_header_level(b);
2717 	p->locks[level] = BTRFS_READ_LOCK;
2718 
2719 	while (b) {
2720 		level = btrfs_header_level(b);
2721 		p->nodes[level] = b;
2722 		btrfs_clear_path_blocking(p, NULL, 0);
2723 
2724 		/*
2725 		 * we have a lock on b and as long as we aren't changing
2726 		 * the tree, there is no way to for the items in b to change.
2727 		 * It is safe to drop the lock on our parent before we
2728 		 * go through the expensive btree search on b.
2729 		 */
2730 		btrfs_unlock_up_safe(p, level + 1);
2731 
2732 		ret = bin_search(b, key, level, &slot);
2733 
2734 		if (level != 0) {
2735 			int dec = 0;
2736 			if (ret && slot > 0) {
2737 				dec = 1;
2738 				slot -= 1;
2739 			}
2740 			p->slots[level] = slot;
2741 			unlock_up(p, level, lowest_unlock, 0, NULL);
2742 
2743 			if (level == lowest_level) {
2744 				if (dec)
2745 					p->slots[level]++;
2746 				goto done;
2747 			}
2748 
2749 			err = read_block_for_search(NULL, root, p, &b, level,
2750 						    slot, key, time_seq);
2751 			if (err == -EAGAIN)
2752 				goto again;
2753 			if (err) {
2754 				ret = err;
2755 				goto done;
2756 			}
2757 
2758 			level = btrfs_header_level(b);
2759 			err = btrfs_try_tree_read_lock(b);
2760 			if (!err) {
2761 				btrfs_set_path_blocking(p);
2762 				btrfs_tree_read_lock(b);
2763 				btrfs_clear_path_blocking(p, b,
2764 							  BTRFS_READ_LOCK);
2765 			}
2766 			p->locks[level] = BTRFS_READ_LOCK;
2767 			p->nodes[level] = b;
2768 			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2769 			if (b != p->nodes[level]) {
2770 				btrfs_tree_unlock_rw(p->nodes[level],
2771 						     p->locks[level]);
2772 				p->locks[level] = 0;
2773 				p->nodes[level] = b;
2774 			}
2775 		} else {
2776 			p->slots[level] = slot;
2777 			unlock_up(p, level, lowest_unlock, 0, NULL);
2778 			goto done;
2779 		}
2780 	}
2781 	ret = 1;
2782 done:
2783 	if (!p->leave_spinning)
2784 		btrfs_set_path_blocking(p);
2785 	if (ret < 0)
2786 		btrfs_release_path(p);
2787 
2788 	return ret;
2789 }
2790 
2791 /*
2792  * helper to use instead of search slot if no exact match is needed but
2793  * instead the next or previous item should be returned.
2794  * When find_higher is true, the next higher item is returned, the next lower
2795  * otherwise.
2796  * When return_any and find_higher are both true, and no higher item is found,
2797  * return the next lower instead.
2798  * When return_any is true and find_higher is false, and no lower item is found,
2799  * return the next higher instead.
2800  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2801  * < 0 on error
2802  */
2803 int btrfs_search_slot_for_read(struct btrfs_root *root,
2804 			       struct btrfs_key *key, struct btrfs_path *p,
2805 			       int find_higher, int return_any)
2806 {
2807 	int ret;
2808 	struct extent_buffer *leaf;
2809 
2810 again:
2811 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2812 	if (ret <= 0)
2813 		return ret;
2814 	/*
2815 	 * a return value of 1 means the path is at the position where the
2816 	 * item should be inserted. Normally this is the next bigger item,
2817 	 * but in case the previous item is the last in a leaf, path points
2818 	 * to the first free slot in the previous leaf, i.e. at an invalid
2819 	 * item.
2820 	 */
2821 	leaf = p->nodes[0];
2822 
2823 	if (find_higher) {
2824 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2825 			ret = btrfs_next_leaf(root, p);
2826 			if (ret <= 0)
2827 				return ret;
2828 			if (!return_any)
2829 				return 1;
2830 			/*
2831 			 * no higher item found, return the next
2832 			 * lower instead
2833 			 */
2834 			return_any = 0;
2835 			find_higher = 0;
2836 			btrfs_release_path(p);
2837 			goto again;
2838 		}
2839 	} else {
2840 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2841 			/* we're sitting on an invalid slot */
2842 			if (p->slots[0] == 0) {
2843 				ret = btrfs_prev_leaf(root, p);
2844 				if (ret <= 0)
2845 					return ret;
2846 				if (!return_any)
2847 					return 1;
2848 				/*
2849 				 * no lower item found, return the next
2850 				 * higher instead
2851 				 */
2852 				return_any = 0;
2853 				find_higher = 1;
2854 				btrfs_release_path(p);
2855 				goto again;
2856 			}
2857 			--p->slots[0];
2858 		}
2859 	}
2860 	return 0;
2861 }
2862 
2863 /*
2864  * adjust the pointers going up the tree, starting at level
2865  * making sure the right key of each node is points to 'key'.
2866  * This is used after shifting pointers to the left, so it stops
2867  * fixing up pointers when a given leaf/node is not in slot 0 of the
2868  * higher levels
2869  *
2870  */
2871 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2872 			   struct btrfs_root *root, struct btrfs_path *path,
2873 			   struct btrfs_disk_key *key, int level)
2874 {
2875 	int i;
2876 	struct extent_buffer *t;
2877 
2878 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2879 		int tslot = path->slots[i];
2880 		if (!path->nodes[i])
2881 			break;
2882 		t = path->nodes[i];
2883 		tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2884 		btrfs_set_node_key(t, key, tslot);
2885 		btrfs_mark_buffer_dirty(path->nodes[i]);
2886 		if (tslot != 0)
2887 			break;
2888 	}
2889 }
2890 
2891 /*
2892  * update item key.
2893  *
2894  * This function isn't completely safe. It's the caller's responsibility
2895  * that the new key won't break the order
2896  */
2897 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2898 			     struct btrfs_root *root, struct btrfs_path *path,
2899 			     struct btrfs_key *new_key)
2900 {
2901 	struct btrfs_disk_key disk_key;
2902 	struct extent_buffer *eb;
2903 	int slot;
2904 
2905 	eb = path->nodes[0];
2906 	slot = path->slots[0];
2907 	if (slot > 0) {
2908 		btrfs_item_key(eb, &disk_key, slot - 1);
2909 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2910 	}
2911 	if (slot < btrfs_header_nritems(eb) - 1) {
2912 		btrfs_item_key(eb, &disk_key, slot + 1);
2913 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2914 	}
2915 
2916 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2917 	btrfs_set_item_key(eb, &disk_key, slot);
2918 	btrfs_mark_buffer_dirty(eb);
2919 	if (slot == 0)
2920 		fixup_low_keys(trans, root, path, &disk_key, 1);
2921 }
2922 
2923 /*
2924  * try to push data from one node into the next node left in the
2925  * tree.
2926  *
2927  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2928  * error, and > 0 if there was no room in the left hand block.
2929  */
2930 static int push_node_left(struct btrfs_trans_handle *trans,
2931 			  struct btrfs_root *root, struct extent_buffer *dst,
2932 			  struct extent_buffer *src, int empty)
2933 {
2934 	int push_items = 0;
2935 	int src_nritems;
2936 	int dst_nritems;
2937 	int ret = 0;
2938 
2939 	src_nritems = btrfs_header_nritems(src);
2940 	dst_nritems = btrfs_header_nritems(dst);
2941 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2942 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2943 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2944 
2945 	if (!empty && src_nritems <= 8)
2946 		return 1;
2947 
2948 	if (push_items <= 0)
2949 		return 1;
2950 
2951 	if (empty) {
2952 		push_items = min(src_nritems, push_items);
2953 		if (push_items < src_nritems) {
2954 			/* leave at least 8 pointers in the node if
2955 			 * we aren't going to empty it
2956 			 */
2957 			if (src_nritems - push_items < 8) {
2958 				if (push_items <= 8)
2959 					return 1;
2960 				push_items -= 8;
2961 			}
2962 		}
2963 	} else
2964 		push_items = min(src_nritems - 8, push_items);
2965 
2966 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2967 			     push_items);
2968 	copy_extent_buffer(dst, src,
2969 			   btrfs_node_key_ptr_offset(dst_nritems),
2970 			   btrfs_node_key_ptr_offset(0),
2971 			   push_items * sizeof(struct btrfs_key_ptr));
2972 
2973 	if (push_items < src_nritems) {
2974 		tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2975 				     src_nritems - push_items);
2976 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2977 				      btrfs_node_key_ptr_offset(push_items),
2978 				      (src_nritems - push_items) *
2979 				      sizeof(struct btrfs_key_ptr));
2980 	}
2981 	btrfs_set_header_nritems(src, src_nritems - push_items);
2982 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2983 	btrfs_mark_buffer_dirty(src);
2984 	btrfs_mark_buffer_dirty(dst);
2985 
2986 	return ret;
2987 }
2988 
2989 /*
2990  * try to push data from one node into the next node right in the
2991  * tree.
2992  *
2993  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2994  * error, and > 0 if there was no room in the right hand block.
2995  *
2996  * this will  only push up to 1/2 the contents of the left node over
2997  */
2998 static int balance_node_right(struct btrfs_trans_handle *trans,
2999 			      struct btrfs_root *root,
3000 			      struct extent_buffer *dst,
3001 			      struct extent_buffer *src)
3002 {
3003 	int push_items = 0;
3004 	int max_push;
3005 	int src_nritems;
3006 	int dst_nritems;
3007 	int ret = 0;
3008 
3009 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3010 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3011 
3012 	src_nritems = btrfs_header_nritems(src);
3013 	dst_nritems = btrfs_header_nritems(dst);
3014 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3015 	if (push_items <= 0)
3016 		return 1;
3017 
3018 	if (src_nritems < 4)
3019 		return 1;
3020 
3021 	max_push = src_nritems / 2 + 1;
3022 	/* don't try to empty the node */
3023 	if (max_push >= src_nritems)
3024 		return 1;
3025 
3026 	if (max_push < push_items)
3027 		push_items = max_push;
3028 
3029 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3030 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3031 				      btrfs_node_key_ptr_offset(0),
3032 				      (dst_nritems) *
3033 				      sizeof(struct btrfs_key_ptr));
3034 
3035 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3036 			     src_nritems - push_items, push_items);
3037 	copy_extent_buffer(dst, src,
3038 			   btrfs_node_key_ptr_offset(0),
3039 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3040 			   push_items * sizeof(struct btrfs_key_ptr));
3041 
3042 	btrfs_set_header_nritems(src, src_nritems - push_items);
3043 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3044 
3045 	btrfs_mark_buffer_dirty(src);
3046 	btrfs_mark_buffer_dirty(dst);
3047 
3048 	return ret;
3049 }
3050 
3051 /*
3052  * helper function to insert a new root level in the tree.
3053  * A new node is allocated, and a single item is inserted to
3054  * point to the existing root
3055  *
3056  * returns zero on success or < 0 on failure.
3057  */
3058 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3059 			   struct btrfs_root *root,
3060 			   struct btrfs_path *path, int level)
3061 {
3062 	u64 lower_gen;
3063 	struct extent_buffer *lower;
3064 	struct extent_buffer *c;
3065 	struct extent_buffer *old;
3066 	struct btrfs_disk_key lower_key;
3067 
3068 	BUG_ON(path->nodes[level]);
3069 	BUG_ON(path->nodes[level-1] != root->node);
3070 
3071 	lower = path->nodes[level-1];
3072 	if (level == 1)
3073 		btrfs_item_key(lower, &lower_key, 0);
3074 	else
3075 		btrfs_node_key(lower, &lower_key, 0);
3076 
3077 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3078 				   root->root_key.objectid, &lower_key,
3079 				   level, root->node->start, 0);
3080 	if (IS_ERR(c))
3081 		return PTR_ERR(c);
3082 
3083 	root_add_used(root, root->nodesize);
3084 
3085 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3086 	btrfs_set_header_nritems(c, 1);
3087 	btrfs_set_header_level(c, level);
3088 	btrfs_set_header_bytenr(c, c->start);
3089 	btrfs_set_header_generation(c, trans->transid);
3090 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3091 	btrfs_set_header_owner(c, root->root_key.objectid);
3092 
3093 	write_extent_buffer(c, root->fs_info->fsid,
3094 			    (unsigned long)btrfs_header_fsid(c),
3095 			    BTRFS_FSID_SIZE);
3096 
3097 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3098 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
3099 			    BTRFS_UUID_SIZE);
3100 
3101 	btrfs_set_node_key(c, &lower_key, 0);
3102 	btrfs_set_node_blockptr(c, 0, lower->start);
3103 	lower_gen = btrfs_header_generation(lower);
3104 	WARN_ON(lower_gen != trans->transid);
3105 
3106 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3107 
3108 	btrfs_mark_buffer_dirty(c);
3109 
3110 	old = root->node;
3111 	tree_mod_log_set_root_pointer(root, c);
3112 	rcu_assign_pointer(root->node, c);
3113 
3114 	/* the super has an extra ref to root->node */
3115 	free_extent_buffer(old);
3116 
3117 	add_root_to_dirty_list(root);
3118 	extent_buffer_get(c);
3119 	path->nodes[level] = c;
3120 	path->locks[level] = BTRFS_WRITE_LOCK;
3121 	path->slots[level] = 0;
3122 	return 0;
3123 }
3124 
3125 /*
3126  * worker function to insert a single pointer in a node.
3127  * the node should have enough room for the pointer already
3128  *
3129  * slot and level indicate where you want the key to go, and
3130  * blocknr is the block the key points to.
3131  */
3132 static void insert_ptr(struct btrfs_trans_handle *trans,
3133 		       struct btrfs_root *root, struct btrfs_path *path,
3134 		       struct btrfs_disk_key *key, u64 bytenr,
3135 		       int slot, int level)
3136 {
3137 	struct extent_buffer *lower;
3138 	int nritems;
3139 	int ret;
3140 
3141 	BUG_ON(!path->nodes[level]);
3142 	btrfs_assert_tree_locked(path->nodes[level]);
3143 	lower = path->nodes[level];
3144 	nritems = btrfs_header_nritems(lower);
3145 	BUG_ON(slot > nritems);
3146 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3147 	if (slot != nritems) {
3148 		if (level)
3149 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3150 					     slot, nritems - slot);
3151 		memmove_extent_buffer(lower,
3152 			      btrfs_node_key_ptr_offset(slot + 1),
3153 			      btrfs_node_key_ptr_offset(slot),
3154 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3155 	}
3156 	if (level) {
3157 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3158 					      MOD_LOG_KEY_ADD);
3159 		BUG_ON(ret < 0);
3160 	}
3161 	btrfs_set_node_key(lower, key, slot);
3162 	btrfs_set_node_blockptr(lower, slot, bytenr);
3163 	WARN_ON(trans->transid == 0);
3164 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3165 	btrfs_set_header_nritems(lower, nritems + 1);
3166 	btrfs_mark_buffer_dirty(lower);
3167 }
3168 
3169 /*
3170  * split the node at the specified level in path in two.
3171  * The path is corrected to point to the appropriate node after the split
3172  *
3173  * Before splitting this tries to make some room in the node by pushing
3174  * left and right, if either one works, it returns right away.
3175  *
3176  * returns 0 on success and < 0 on failure
3177  */
3178 static noinline int split_node(struct btrfs_trans_handle *trans,
3179 			       struct btrfs_root *root,
3180 			       struct btrfs_path *path, int level)
3181 {
3182 	struct extent_buffer *c;
3183 	struct extent_buffer *split;
3184 	struct btrfs_disk_key disk_key;
3185 	int mid;
3186 	int ret;
3187 	u32 c_nritems;
3188 
3189 	c = path->nodes[level];
3190 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3191 	if (c == root->node) {
3192 		/* trying to split the root, lets make a new one */
3193 		ret = insert_new_root(trans, root, path, level + 1);
3194 		if (ret)
3195 			return ret;
3196 	} else {
3197 		ret = push_nodes_for_insert(trans, root, path, level);
3198 		c = path->nodes[level];
3199 		if (!ret && btrfs_header_nritems(c) <
3200 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3201 			return 0;
3202 		if (ret < 0)
3203 			return ret;
3204 	}
3205 
3206 	c_nritems = btrfs_header_nritems(c);
3207 	mid = (c_nritems + 1) / 2;
3208 	btrfs_node_key(c, &disk_key, mid);
3209 
3210 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3211 					root->root_key.objectid,
3212 					&disk_key, level, c->start, 0);
3213 	if (IS_ERR(split))
3214 		return PTR_ERR(split);
3215 
3216 	root_add_used(root, root->nodesize);
3217 
3218 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3219 	btrfs_set_header_level(split, btrfs_header_level(c));
3220 	btrfs_set_header_bytenr(split, split->start);
3221 	btrfs_set_header_generation(split, trans->transid);
3222 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3223 	btrfs_set_header_owner(split, root->root_key.objectid);
3224 	write_extent_buffer(split, root->fs_info->fsid,
3225 			    (unsigned long)btrfs_header_fsid(split),
3226 			    BTRFS_FSID_SIZE);
3227 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3228 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
3229 			    BTRFS_UUID_SIZE);
3230 
3231 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3232 	copy_extent_buffer(split, c,
3233 			   btrfs_node_key_ptr_offset(0),
3234 			   btrfs_node_key_ptr_offset(mid),
3235 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3236 	btrfs_set_header_nritems(split, c_nritems - mid);
3237 	btrfs_set_header_nritems(c, mid);
3238 	ret = 0;
3239 
3240 	btrfs_mark_buffer_dirty(c);
3241 	btrfs_mark_buffer_dirty(split);
3242 
3243 	insert_ptr(trans, root, path, &disk_key, split->start,
3244 		   path->slots[level + 1] + 1, level + 1);
3245 
3246 	if (path->slots[level] >= mid) {
3247 		path->slots[level] -= mid;
3248 		btrfs_tree_unlock(c);
3249 		free_extent_buffer(c);
3250 		path->nodes[level] = split;
3251 		path->slots[level + 1] += 1;
3252 	} else {
3253 		btrfs_tree_unlock(split);
3254 		free_extent_buffer(split);
3255 	}
3256 	return ret;
3257 }
3258 
3259 /*
3260  * how many bytes are required to store the items in a leaf.  start
3261  * and nr indicate which items in the leaf to check.  This totals up the
3262  * space used both by the item structs and the item data
3263  */
3264 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3265 {
3266 	int data_len;
3267 	int nritems = btrfs_header_nritems(l);
3268 	int end = min(nritems, start + nr) - 1;
3269 
3270 	if (!nr)
3271 		return 0;
3272 	data_len = btrfs_item_end_nr(l, start);
3273 	data_len = data_len - btrfs_item_offset_nr(l, end);
3274 	data_len += sizeof(struct btrfs_item) * nr;
3275 	WARN_ON(data_len < 0);
3276 	return data_len;
3277 }
3278 
3279 /*
3280  * The space between the end of the leaf items and
3281  * the start of the leaf data.  IOW, how much room
3282  * the leaf has left for both items and data
3283  */
3284 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3285 				   struct extent_buffer *leaf)
3286 {
3287 	int nritems = btrfs_header_nritems(leaf);
3288 	int ret;
3289 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3290 	if (ret < 0) {
3291 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3292 		       "used %d nritems %d\n",
3293 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3294 		       leaf_space_used(leaf, 0, nritems), nritems);
3295 	}
3296 	return ret;
3297 }
3298 
3299 /*
3300  * min slot controls the lowest index we're willing to push to the
3301  * right.  We'll push up to and including min_slot, but no lower
3302  */
3303 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3304 				      struct btrfs_root *root,
3305 				      struct btrfs_path *path,
3306 				      int data_size, int empty,
3307 				      struct extent_buffer *right,
3308 				      int free_space, u32 left_nritems,
3309 				      u32 min_slot)
3310 {
3311 	struct extent_buffer *left = path->nodes[0];
3312 	struct extent_buffer *upper = path->nodes[1];
3313 	struct btrfs_map_token token;
3314 	struct btrfs_disk_key disk_key;
3315 	int slot;
3316 	u32 i;
3317 	int push_space = 0;
3318 	int push_items = 0;
3319 	struct btrfs_item *item;
3320 	u32 nr;
3321 	u32 right_nritems;
3322 	u32 data_end;
3323 	u32 this_item_size;
3324 
3325 	btrfs_init_map_token(&token);
3326 
3327 	if (empty)
3328 		nr = 0;
3329 	else
3330 		nr = max_t(u32, 1, min_slot);
3331 
3332 	if (path->slots[0] >= left_nritems)
3333 		push_space += data_size;
3334 
3335 	slot = path->slots[1];
3336 	i = left_nritems - 1;
3337 	while (i >= nr) {
3338 		item = btrfs_item_nr(left, i);
3339 
3340 		if (!empty && push_items > 0) {
3341 			if (path->slots[0] > i)
3342 				break;
3343 			if (path->slots[0] == i) {
3344 				int space = btrfs_leaf_free_space(root, left);
3345 				if (space + push_space * 2 > free_space)
3346 					break;
3347 			}
3348 		}
3349 
3350 		if (path->slots[0] == i)
3351 			push_space += data_size;
3352 
3353 		this_item_size = btrfs_item_size(left, item);
3354 		if (this_item_size + sizeof(*item) + push_space > free_space)
3355 			break;
3356 
3357 		push_items++;
3358 		push_space += this_item_size + sizeof(*item);
3359 		if (i == 0)
3360 			break;
3361 		i--;
3362 	}
3363 
3364 	if (push_items == 0)
3365 		goto out_unlock;
3366 
3367 	if (!empty && push_items == left_nritems)
3368 		WARN_ON(1);
3369 
3370 	/* push left to right */
3371 	right_nritems = btrfs_header_nritems(right);
3372 
3373 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3374 	push_space -= leaf_data_end(root, left);
3375 
3376 	/* make room in the right data area */
3377 	data_end = leaf_data_end(root, right);
3378 	memmove_extent_buffer(right,
3379 			      btrfs_leaf_data(right) + data_end - push_space,
3380 			      btrfs_leaf_data(right) + data_end,
3381 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3382 
3383 	/* copy from the left data area */
3384 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3385 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3386 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3387 		     push_space);
3388 
3389 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3390 			      btrfs_item_nr_offset(0),
3391 			      right_nritems * sizeof(struct btrfs_item));
3392 
3393 	/* copy the items from left to right */
3394 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3395 		   btrfs_item_nr_offset(left_nritems - push_items),
3396 		   push_items * sizeof(struct btrfs_item));
3397 
3398 	/* update the item pointers */
3399 	right_nritems += push_items;
3400 	btrfs_set_header_nritems(right, right_nritems);
3401 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3402 	for (i = 0; i < right_nritems; i++) {
3403 		item = btrfs_item_nr(right, i);
3404 		push_space -= btrfs_token_item_size(right, item, &token);
3405 		btrfs_set_token_item_offset(right, item, push_space, &token);
3406 	}
3407 
3408 	left_nritems -= push_items;
3409 	btrfs_set_header_nritems(left, left_nritems);
3410 
3411 	if (left_nritems)
3412 		btrfs_mark_buffer_dirty(left);
3413 	else
3414 		clean_tree_block(trans, root, left);
3415 
3416 	btrfs_mark_buffer_dirty(right);
3417 
3418 	btrfs_item_key(right, &disk_key, 0);
3419 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3420 	btrfs_mark_buffer_dirty(upper);
3421 
3422 	/* then fixup the leaf pointer in the path */
3423 	if (path->slots[0] >= left_nritems) {
3424 		path->slots[0] -= left_nritems;
3425 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3426 			clean_tree_block(trans, root, path->nodes[0]);
3427 		btrfs_tree_unlock(path->nodes[0]);
3428 		free_extent_buffer(path->nodes[0]);
3429 		path->nodes[0] = right;
3430 		path->slots[1] += 1;
3431 	} else {
3432 		btrfs_tree_unlock(right);
3433 		free_extent_buffer(right);
3434 	}
3435 	return 0;
3436 
3437 out_unlock:
3438 	btrfs_tree_unlock(right);
3439 	free_extent_buffer(right);
3440 	return 1;
3441 }
3442 
3443 /*
3444  * push some data in the path leaf to the right, trying to free up at
3445  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3446  *
3447  * returns 1 if the push failed because the other node didn't have enough
3448  * room, 0 if everything worked out and < 0 if there were major errors.
3449  *
3450  * this will push starting from min_slot to the end of the leaf.  It won't
3451  * push any slot lower than min_slot
3452  */
3453 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3454 			   *root, struct btrfs_path *path,
3455 			   int min_data_size, int data_size,
3456 			   int empty, u32 min_slot)
3457 {
3458 	struct extent_buffer *left = path->nodes[0];
3459 	struct extent_buffer *right;
3460 	struct extent_buffer *upper;
3461 	int slot;
3462 	int free_space;
3463 	u32 left_nritems;
3464 	int ret;
3465 
3466 	if (!path->nodes[1])
3467 		return 1;
3468 
3469 	slot = path->slots[1];
3470 	upper = path->nodes[1];
3471 	if (slot >= btrfs_header_nritems(upper) - 1)
3472 		return 1;
3473 
3474 	btrfs_assert_tree_locked(path->nodes[1]);
3475 
3476 	right = read_node_slot(root, upper, slot + 1);
3477 	if (right == NULL)
3478 		return 1;
3479 
3480 	btrfs_tree_lock(right);
3481 	btrfs_set_lock_blocking(right);
3482 
3483 	free_space = btrfs_leaf_free_space(root, right);
3484 	if (free_space < data_size)
3485 		goto out_unlock;
3486 
3487 	/* cow and double check */
3488 	ret = btrfs_cow_block(trans, root, right, upper,
3489 			      slot + 1, &right);
3490 	if (ret)
3491 		goto out_unlock;
3492 
3493 	free_space = btrfs_leaf_free_space(root, right);
3494 	if (free_space < data_size)
3495 		goto out_unlock;
3496 
3497 	left_nritems = btrfs_header_nritems(left);
3498 	if (left_nritems == 0)
3499 		goto out_unlock;
3500 
3501 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3502 				right, free_space, left_nritems, min_slot);
3503 out_unlock:
3504 	btrfs_tree_unlock(right);
3505 	free_extent_buffer(right);
3506 	return 1;
3507 }
3508 
3509 /*
3510  * push some data in the path leaf to the left, trying to free up at
3511  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3512  *
3513  * max_slot can put a limit on how far into the leaf we'll push items.  The
3514  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3515  * items
3516  */
3517 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3518 				     struct btrfs_root *root,
3519 				     struct btrfs_path *path, int data_size,
3520 				     int empty, struct extent_buffer *left,
3521 				     int free_space, u32 right_nritems,
3522 				     u32 max_slot)
3523 {
3524 	struct btrfs_disk_key disk_key;
3525 	struct extent_buffer *right = path->nodes[0];
3526 	int i;
3527 	int push_space = 0;
3528 	int push_items = 0;
3529 	struct btrfs_item *item;
3530 	u32 old_left_nritems;
3531 	u32 nr;
3532 	int ret = 0;
3533 	u32 this_item_size;
3534 	u32 old_left_item_size;
3535 	struct btrfs_map_token token;
3536 
3537 	btrfs_init_map_token(&token);
3538 
3539 	if (empty)
3540 		nr = min(right_nritems, max_slot);
3541 	else
3542 		nr = min(right_nritems - 1, max_slot);
3543 
3544 	for (i = 0; i < nr; i++) {
3545 		item = btrfs_item_nr(right, i);
3546 
3547 		if (!empty && push_items > 0) {
3548 			if (path->slots[0] < i)
3549 				break;
3550 			if (path->slots[0] == i) {
3551 				int space = btrfs_leaf_free_space(root, right);
3552 				if (space + push_space * 2 > free_space)
3553 					break;
3554 			}
3555 		}
3556 
3557 		if (path->slots[0] == i)
3558 			push_space += data_size;
3559 
3560 		this_item_size = btrfs_item_size(right, item);
3561 		if (this_item_size + sizeof(*item) + push_space > free_space)
3562 			break;
3563 
3564 		push_items++;
3565 		push_space += this_item_size + sizeof(*item);
3566 	}
3567 
3568 	if (push_items == 0) {
3569 		ret = 1;
3570 		goto out;
3571 	}
3572 	if (!empty && push_items == btrfs_header_nritems(right))
3573 		WARN_ON(1);
3574 
3575 	/* push data from right to left */
3576 	copy_extent_buffer(left, right,
3577 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3578 			   btrfs_item_nr_offset(0),
3579 			   push_items * sizeof(struct btrfs_item));
3580 
3581 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3582 		     btrfs_item_offset_nr(right, push_items - 1);
3583 
3584 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3585 		     leaf_data_end(root, left) - push_space,
3586 		     btrfs_leaf_data(right) +
3587 		     btrfs_item_offset_nr(right, push_items - 1),
3588 		     push_space);
3589 	old_left_nritems = btrfs_header_nritems(left);
3590 	BUG_ON(old_left_nritems <= 0);
3591 
3592 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3593 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3594 		u32 ioff;
3595 
3596 		item = btrfs_item_nr(left, i);
3597 
3598 		ioff = btrfs_token_item_offset(left, item, &token);
3599 		btrfs_set_token_item_offset(left, item,
3600 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3601 		      &token);
3602 	}
3603 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3604 
3605 	/* fixup right node */
3606 	if (push_items > right_nritems) {
3607 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
3608 		       right_nritems);
3609 		WARN_ON(1);
3610 	}
3611 
3612 	if (push_items < right_nritems) {
3613 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3614 						  leaf_data_end(root, right);
3615 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3616 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3617 				      btrfs_leaf_data(right) +
3618 				      leaf_data_end(root, right), push_space);
3619 
3620 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3621 			      btrfs_item_nr_offset(push_items),
3622 			     (btrfs_header_nritems(right) - push_items) *
3623 			     sizeof(struct btrfs_item));
3624 	}
3625 	right_nritems -= push_items;
3626 	btrfs_set_header_nritems(right, right_nritems);
3627 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3628 	for (i = 0; i < right_nritems; i++) {
3629 		item = btrfs_item_nr(right, i);
3630 
3631 		push_space = push_space - btrfs_token_item_size(right,
3632 								item, &token);
3633 		btrfs_set_token_item_offset(right, item, push_space, &token);
3634 	}
3635 
3636 	btrfs_mark_buffer_dirty(left);
3637 	if (right_nritems)
3638 		btrfs_mark_buffer_dirty(right);
3639 	else
3640 		clean_tree_block(trans, root, right);
3641 
3642 	btrfs_item_key(right, &disk_key, 0);
3643 	fixup_low_keys(trans, root, path, &disk_key, 1);
3644 
3645 	/* then fixup the leaf pointer in the path */
3646 	if (path->slots[0] < push_items) {
3647 		path->slots[0] += old_left_nritems;
3648 		btrfs_tree_unlock(path->nodes[0]);
3649 		free_extent_buffer(path->nodes[0]);
3650 		path->nodes[0] = left;
3651 		path->slots[1] -= 1;
3652 	} else {
3653 		btrfs_tree_unlock(left);
3654 		free_extent_buffer(left);
3655 		path->slots[0] -= push_items;
3656 	}
3657 	BUG_ON(path->slots[0] < 0);
3658 	return ret;
3659 out:
3660 	btrfs_tree_unlock(left);
3661 	free_extent_buffer(left);
3662 	return ret;
3663 }
3664 
3665 /*
3666  * push some data in the path leaf to the left, trying to free up at
3667  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3668  *
3669  * max_slot can put a limit on how far into the leaf we'll push items.  The
3670  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3671  * items
3672  */
3673 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3674 			  *root, struct btrfs_path *path, int min_data_size,
3675 			  int data_size, int empty, u32 max_slot)
3676 {
3677 	struct extent_buffer *right = path->nodes[0];
3678 	struct extent_buffer *left;
3679 	int slot;
3680 	int free_space;
3681 	u32 right_nritems;
3682 	int ret = 0;
3683 
3684 	slot = path->slots[1];
3685 	if (slot == 0)
3686 		return 1;
3687 	if (!path->nodes[1])
3688 		return 1;
3689 
3690 	right_nritems = btrfs_header_nritems(right);
3691 	if (right_nritems == 0)
3692 		return 1;
3693 
3694 	btrfs_assert_tree_locked(path->nodes[1]);
3695 
3696 	left = read_node_slot(root, path->nodes[1], slot - 1);
3697 	if (left == NULL)
3698 		return 1;
3699 
3700 	btrfs_tree_lock(left);
3701 	btrfs_set_lock_blocking(left);
3702 
3703 	free_space = btrfs_leaf_free_space(root, left);
3704 	if (free_space < data_size) {
3705 		ret = 1;
3706 		goto out;
3707 	}
3708 
3709 	/* cow and double check */
3710 	ret = btrfs_cow_block(trans, root, left,
3711 			      path->nodes[1], slot - 1, &left);
3712 	if (ret) {
3713 		/* we hit -ENOSPC, but it isn't fatal here */
3714 		if (ret == -ENOSPC)
3715 			ret = 1;
3716 		goto out;
3717 	}
3718 
3719 	free_space = btrfs_leaf_free_space(root, left);
3720 	if (free_space < data_size) {
3721 		ret = 1;
3722 		goto out;
3723 	}
3724 
3725 	return __push_leaf_left(trans, root, path, min_data_size,
3726 			       empty, left, free_space, right_nritems,
3727 			       max_slot);
3728 out:
3729 	btrfs_tree_unlock(left);
3730 	free_extent_buffer(left);
3731 	return ret;
3732 }
3733 
3734 /*
3735  * split the path's leaf in two, making sure there is at least data_size
3736  * available for the resulting leaf level of the path.
3737  */
3738 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3739 				    struct btrfs_root *root,
3740 				    struct btrfs_path *path,
3741 				    struct extent_buffer *l,
3742 				    struct extent_buffer *right,
3743 				    int slot, int mid, int nritems)
3744 {
3745 	int data_copy_size;
3746 	int rt_data_off;
3747 	int i;
3748 	struct btrfs_disk_key disk_key;
3749 	struct btrfs_map_token token;
3750 
3751 	btrfs_init_map_token(&token);
3752 
3753 	nritems = nritems - mid;
3754 	btrfs_set_header_nritems(right, nritems);
3755 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3756 
3757 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3758 			   btrfs_item_nr_offset(mid),
3759 			   nritems * sizeof(struct btrfs_item));
3760 
3761 	copy_extent_buffer(right, l,
3762 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3763 		     data_copy_size, btrfs_leaf_data(l) +
3764 		     leaf_data_end(root, l), data_copy_size);
3765 
3766 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3767 		      btrfs_item_end_nr(l, mid);
3768 
3769 	for (i = 0; i < nritems; i++) {
3770 		struct btrfs_item *item = btrfs_item_nr(right, i);
3771 		u32 ioff;
3772 
3773 		ioff = btrfs_token_item_offset(right, item, &token);
3774 		btrfs_set_token_item_offset(right, item,
3775 					    ioff + rt_data_off, &token);
3776 	}
3777 
3778 	btrfs_set_header_nritems(l, mid);
3779 	btrfs_item_key(right, &disk_key, 0);
3780 	insert_ptr(trans, root, path, &disk_key, right->start,
3781 		   path->slots[1] + 1, 1);
3782 
3783 	btrfs_mark_buffer_dirty(right);
3784 	btrfs_mark_buffer_dirty(l);
3785 	BUG_ON(path->slots[0] != slot);
3786 
3787 	if (mid <= slot) {
3788 		btrfs_tree_unlock(path->nodes[0]);
3789 		free_extent_buffer(path->nodes[0]);
3790 		path->nodes[0] = right;
3791 		path->slots[0] -= mid;
3792 		path->slots[1] += 1;
3793 	} else {
3794 		btrfs_tree_unlock(right);
3795 		free_extent_buffer(right);
3796 	}
3797 
3798 	BUG_ON(path->slots[0] < 0);
3799 }
3800 
3801 /*
3802  * double splits happen when we need to insert a big item in the middle
3803  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3804  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3805  *          A                 B                 C
3806  *
3807  * We avoid this by trying to push the items on either side of our target
3808  * into the adjacent leaves.  If all goes well we can avoid the double split
3809  * completely.
3810  */
3811 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3812 					  struct btrfs_root *root,
3813 					  struct btrfs_path *path,
3814 					  int data_size)
3815 {
3816 	int ret;
3817 	int progress = 0;
3818 	int slot;
3819 	u32 nritems;
3820 
3821 	slot = path->slots[0];
3822 
3823 	/*
3824 	 * try to push all the items after our slot into the
3825 	 * right leaf
3826 	 */
3827 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3828 	if (ret < 0)
3829 		return ret;
3830 
3831 	if (ret == 0)
3832 		progress++;
3833 
3834 	nritems = btrfs_header_nritems(path->nodes[0]);
3835 	/*
3836 	 * our goal is to get our slot at the start or end of a leaf.  If
3837 	 * we've done so we're done
3838 	 */
3839 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3840 		return 0;
3841 
3842 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3843 		return 0;
3844 
3845 	/* try to push all the items before our slot into the next leaf */
3846 	slot = path->slots[0];
3847 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3848 	if (ret < 0)
3849 		return ret;
3850 
3851 	if (ret == 0)
3852 		progress++;
3853 
3854 	if (progress)
3855 		return 0;
3856 	return 1;
3857 }
3858 
3859 /*
3860  * split the path's leaf in two, making sure there is at least data_size
3861  * available for the resulting leaf level of the path.
3862  *
3863  * returns 0 if all went well and < 0 on failure.
3864  */
3865 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3866 			       struct btrfs_root *root,
3867 			       struct btrfs_key *ins_key,
3868 			       struct btrfs_path *path, int data_size,
3869 			       int extend)
3870 {
3871 	struct btrfs_disk_key disk_key;
3872 	struct extent_buffer *l;
3873 	u32 nritems;
3874 	int mid;
3875 	int slot;
3876 	struct extent_buffer *right;
3877 	int ret = 0;
3878 	int wret;
3879 	int split;
3880 	int num_doubles = 0;
3881 	int tried_avoid_double = 0;
3882 
3883 	l = path->nodes[0];
3884 	slot = path->slots[0];
3885 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3886 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3887 		return -EOVERFLOW;
3888 
3889 	/* first try to make some room by pushing left and right */
3890 	if (data_size) {
3891 		wret = push_leaf_right(trans, root, path, data_size,
3892 				       data_size, 0, 0);
3893 		if (wret < 0)
3894 			return wret;
3895 		if (wret) {
3896 			wret = push_leaf_left(trans, root, path, data_size,
3897 					      data_size, 0, (u32)-1);
3898 			if (wret < 0)
3899 				return wret;
3900 		}
3901 		l = path->nodes[0];
3902 
3903 		/* did the pushes work? */
3904 		if (btrfs_leaf_free_space(root, l) >= data_size)
3905 			return 0;
3906 	}
3907 
3908 	if (!path->nodes[1]) {
3909 		ret = insert_new_root(trans, root, path, 1);
3910 		if (ret)
3911 			return ret;
3912 	}
3913 again:
3914 	split = 1;
3915 	l = path->nodes[0];
3916 	slot = path->slots[0];
3917 	nritems = btrfs_header_nritems(l);
3918 	mid = (nritems + 1) / 2;
3919 
3920 	if (mid <= slot) {
3921 		if (nritems == 1 ||
3922 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3923 			BTRFS_LEAF_DATA_SIZE(root)) {
3924 			if (slot >= nritems) {
3925 				split = 0;
3926 			} else {
3927 				mid = slot;
3928 				if (mid != nritems &&
3929 				    leaf_space_used(l, mid, nritems - mid) +
3930 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3931 					if (data_size && !tried_avoid_double)
3932 						goto push_for_double;
3933 					split = 2;
3934 				}
3935 			}
3936 		}
3937 	} else {
3938 		if (leaf_space_used(l, 0, mid) + data_size >
3939 			BTRFS_LEAF_DATA_SIZE(root)) {
3940 			if (!extend && data_size && slot == 0) {
3941 				split = 0;
3942 			} else if ((extend || !data_size) && slot == 0) {
3943 				mid = 1;
3944 			} else {
3945 				mid = slot;
3946 				if (mid != nritems &&
3947 				    leaf_space_used(l, mid, nritems - mid) +
3948 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3949 					if (data_size && !tried_avoid_double)
3950 						goto push_for_double;
3951 					split = 2 ;
3952 				}
3953 			}
3954 		}
3955 	}
3956 
3957 	if (split == 0)
3958 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3959 	else
3960 		btrfs_item_key(l, &disk_key, mid);
3961 
3962 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3963 					root->root_key.objectid,
3964 					&disk_key, 0, l->start, 0);
3965 	if (IS_ERR(right))
3966 		return PTR_ERR(right);
3967 
3968 	root_add_used(root, root->leafsize);
3969 
3970 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3971 	btrfs_set_header_bytenr(right, right->start);
3972 	btrfs_set_header_generation(right, trans->transid);
3973 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3974 	btrfs_set_header_owner(right, root->root_key.objectid);
3975 	btrfs_set_header_level(right, 0);
3976 	write_extent_buffer(right, root->fs_info->fsid,
3977 			    (unsigned long)btrfs_header_fsid(right),
3978 			    BTRFS_FSID_SIZE);
3979 
3980 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3981 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
3982 			    BTRFS_UUID_SIZE);
3983 
3984 	if (split == 0) {
3985 		if (mid <= slot) {
3986 			btrfs_set_header_nritems(right, 0);
3987 			insert_ptr(trans, root, path, &disk_key, right->start,
3988 				   path->slots[1] + 1, 1);
3989 			btrfs_tree_unlock(path->nodes[0]);
3990 			free_extent_buffer(path->nodes[0]);
3991 			path->nodes[0] = right;
3992 			path->slots[0] = 0;
3993 			path->slots[1] += 1;
3994 		} else {
3995 			btrfs_set_header_nritems(right, 0);
3996 			insert_ptr(trans, root, path, &disk_key, right->start,
3997 					  path->slots[1], 1);
3998 			btrfs_tree_unlock(path->nodes[0]);
3999 			free_extent_buffer(path->nodes[0]);
4000 			path->nodes[0] = right;
4001 			path->slots[0] = 0;
4002 			if (path->slots[1] == 0)
4003 				fixup_low_keys(trans, root, path,
4004 					       &disk_key, 1);
4005 		}
4006 		btrfs_mark_buffer_dirty(right);
4007 		return ret;
4008 	}
4009 
4010 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4011 
4012 	if (split == 2) {
4013 		BUG_ON(num_doubles != 0);
4014 		num_doubles++;
4015 		goto again;
4016 	}
4017 
4018 	return 0;
4019 
4020 push_for_double:
4021 	push_for_double_split(trans, root, path, data_size);
4022 	tried_avoid_double = 1;
4023 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4024 		return 0;
4025 	goto again;
4026 }
4027 
4028 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4029 					 struct btrfs_root *root,
4030 					 struct btrfs_path *path, int ins_len)
4031 {
4032 	struct btrfs_key key;
4033 	struct extent_buffer *leaf;
4034 	struct btrfs_file_extent_item *fi;
4035 	u64 extent_len = 0;
4036 	u32 item_size;
4037 	int ret;
4038 
4039 	leaf = path->nodes[0];
4040 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4041 
4042 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4043 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4044 
4045 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4046 		return 0;
4047 
4048 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4049 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4050 		fi = btrfs_item_ptr(leaf, path->slots[0],
4051 				    struct btrfs_file_extent_item);
4052 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4053 	}
4054 	btrfs_release_path(path);
4055 
4056 	path->keep_locks = 1;
4057 	path->search_for_split = 1;
4058 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4059 	path->search_for_split = 0;
4060 	if (ret < 0)
4061 		goto err;
4062 
4063 	ret = -EAGAIN;
4064 	leaf = path->nodes[0];
4065 	/* if our item isn't there or got smaller, return now */
4066 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4067 		goto err;
4068 
4069 	/* the leaf has  changed, it now has room.  return now */
4070 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4071 		goto err;
4072 
4073 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4074 		fi = btrfs_item_ptr(leaf, path->slots[0],
4075 				    struct btrfs_file_extent_item);
4076 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4077 			goto err;
4078 	}
4079 
4080 	btrfs_set_path_blocking(path);
4081 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4082 	if (ret)
4083 		goto err;
4084 
4085 	path->keep_locks = 0;
4086 	btrfs_unlock_up_safe(path, 1);
4087 	return 0;
4088 err:
4089 	path->keep_locks = 0;
4090 	return ret;
4091 }
4092 
4093 static noinline int split_item(struct btrfs_trans_handle *trans,
4094 			       struct btrfs_root *root,
4095 			       struct btrfs_path *path,
4096 			       struct btrfs_key *new_key,
4097 			       unsigned long split_offset)
4098 {
4099 	struct extent_buffer *leaf;
4100 	struct btrfs_item *item;
4101 	struct btrfs_item *new_item;
4102 	int slot;
4103 	char *buf;
4104 	u32 nritems;
4105 	u32 item_size;
4106 	u32 orig_offset;
4107 	struct btrfs_disk_key disk_key;
4108 
4109 	leaf = path->nodes[0];
4110 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4111 
4112 	btrfs_set_path_blocking(path);
4113 
4114 	item = btrfs_item_nr(leaf, path->slots[0]);
4115 	orig_offset = btrfs_item_offset(leaf, item);
4116 	item_size = btrfs_item_size(leaf, item);
4117 
4118 	buf = kmalloc(item_size, GFP_NOFS);
4119 	if (!buf)
4120 		return -ENOMEM;
4121 
4122 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4123 			    path->slots[0]), item_size);
4124 
4125 	slot = path->slots[0] + 1;
4126 	nritems = btrfs_header_nritems(leaf);
4127 	if (slot != nritems) {
4128 		/* shift the items */
4129 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4130 				btrfs_item_nr_offset(slot),
4131 				(nritems - slot) * sizeof(struct btrfs_item));
4132 	}
4133 
4134 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4135 	btrfs_set_item_key(leaf, &disk_key, slot);
4136 
4137 	new_item = btrfs_item_nr(leaf, slot);
4138 
4139 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4140 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4141 
4142 	btrfs_set_item_offset(leaf, item,
4143 			      orig_offset + item_size - split_offset);
4144 	btrfs_set_item_size(leaf, item, split_offset);
4145 
4146 	btrfs_set_header_nritems(leaf, nritems + 1);
4147 
4148 	/* write the data for the start of the original item */
4149 	write_extent_buffer(leaf, buf,
4150 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4151 			    split_offset);
4152 
4153 	/* write the data for the new item */
4154 	write_extent_buffer(leaf, buf + split_offset,
4155 			    btrfs_item_ptr_offset(leaf, slot),
4156 			    item_size - split_offset);
4157 	btrfs_mark_buffer_dirty(leaf);
4158 
4159 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4160 	kfree(buf);
4161 	return 0;
4162 }
4163 
4164 /*
4165  * This function splits a single item into two items,
4166  * giving 'new_key' to the new item and splitting the
4167  * old one at split_offset (from the start of the item).
4168  *
4169  * The path may be released by this operation.  After
4170  * the split, the path is pointing to the old item.  The
4171  * new item is going to be in the same node as the old one.
4172  *
4173  * Note, the item being split must be smaller enough to live alone on
4174  * a tree block with room for one extra struct btrfs_item
4175  *
4176  * This allows us to split the item in place, keeping a lock on the
4177  * leaf the entire time.
4178  */
4179 int btrfs_split_item(struct btrfs_trans_handle *trans,
4180 		     struct btrfs_root *root,
4181 		     struct btrfs_path *path,
4182 		     struct btrfs_key *new_key,
4183 		     unsigned long split_offset)
4184 {
4185 	int ret;
4186 	ret = setup_leaf_for_split(trans, root, path,
4187 				   sizeof(struct btrfs_item));
4188 	if (ret)
4189 		return ret;
4190 
4191 	ret = split_item(trans, root, path, new_key, split_offset);
4192 	return ret;
4193 }
4194 
4195 /*
4196  * This function duplicate a item, giving 'new_key' to the new item.
4197  * It guarantees both items live in the same tree leaf and the new item
4198  * is contiguous with the original item.
4199  *
4200  * This allows us to split file extent in place, keeping a lock on the
4201  * leaf the entire time.
4202  */
4203 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4204 			 struct btrfs_root *root,
4205 			 struct btrfs_path *path,
4206 			 struct btrfs_key *new_key)
4207 {
4208 	struct extent_buffer *leaf;
4209 	int ret;
4210 	u32 item_size;
4211 
4212 	leaf = path->nodes[0];
4213 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4214 	ret = setup_leaf_for_split(trans, root, path,
4215 				   item_size + sizeof(struct btrfs_item));
4216 	if (ret)
4217 		return ret;
4218 
4219 	path->slots[0]++;
4220 	setup_items_for_insert(trans, root, path, new_key, &item_size,
4221 			       item_size, item_size +
4222 			       sizeof(struct btrfs_item), 1);
4223 	leaf = path->nodes[0];
4224 	memcpy_extent_buffer(leaf,
4225 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4226 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4227 			     item_size);
4228 	return 0;
4229 }
4230 
4231 /*
4232  * make the item pointed to by the path smaller.  new_size indicates
4233  * how small to make it, and from_end tells us if we just chop bytes
4234  * off the end of the item or if we shift the item to chop bytes off
4235  * the front.
4236  */
4237 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4238 			 struct btrfs_root *root,
4239 			 struct btrfs_path *path,
4240 			 u32 new_size, int from_end)
4241 {
4242 	int slot;
4243 	struct extent_buffer *leaf;
4244 	struct btrfs_item *item;
4245 	u32 nritems;
4246 	unsigned int data_end;
4247 	unsigned int old_data_start;
4248 	unsigned int old_size;
4249 	unsigned int size_diff;
4250 	int i;
4251 	struct btrfs_map_token token;
4252 
4253 	btrfs_init_map_token(&token);
4254 
4255 	leaf = path->nodes[0];
4256 	slot = path->slots[0];
4257 
4258 	old_size = btrfs_item_size_nr(leaf, slot);
4259 	if (old_size == new_size)
4260 		return;
4261 
4262 	nritems = btrfs_header_nritems(leaf);
4263 	data_end = leaf_data_end(root, leaf);
4264 
4265 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4266 
4267 	size_diff = old_size - new_size;
4268 
4269 	BUG_ON(slot < 0);
4270 	BUG_ON(slot >= nritems);
4271 
4272 	/*
4273 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4274 	 */
4275 	/* first correct the data pointers */
4276 	for (i = slot; i < nritems; i++) {
4277 		u32 ioff;
4278 		item = btrfs_item_nr(leaf, i);
4279 
4280 		ioff = btrfs_token_item_offset(leaf, item, &token);
4281 		btrfs_set_token_item_offset(leaf, item,
4282 					    ioff + size_diff, &token);
4283 	}
4284 
4285 	/* shift the data */
4286 	if (from_end) {
4287 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4288 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4289 			      data_end, old_data_start + new_size - data_end);
4290 	} else {
4291 		struct btrfs_disk_key disk_key;
4292 		u64 offset;
4293 
4294 		btrfs_item_key(leaf, &disk_key, slot);
4295 
4296 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4297 			unsigned long ptr;
4298 			struct btrfs_file_extent_item *fi;
4299 
4300 			fi = btrfs_item_ptr(leaf, slot,
4301 					    struct btrfs_file_extent_item);
4302 			fi = (struct btrfs_file_extent_item *)(
4303 			     (unsigned long)fi - size_diff);
4304 
4305 			if (btrfs_file_extent_type(leaf, fi) ==
4306 			    BTRFS_FILE_EXTENT_INLINE) {
4307 				ptr = btrfs_item_ptr_offset(leaf, slot);
4308 				memmove_extent_buffer(leaf, ptr,
4309 				      (unsigned long)fi,
4310 				      offsetof(struct btrfs_file_extent_item,
4311 						 disk_bytenr));
4312 			}
4313 		}
4314 
4315 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4316 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4317 			      data_end, old_data_start - data_end);
4318 
4319 		offset = btrfs_disk_key_offset(&disk_key);
4320 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4321 		btrfs_set_item_key(leaf, &disk_key, slot);
4322 		if (slot == 0)
4323 			fixup_low_keys(trans, root, path, &disk_key, 1);
4324 	}
4325 
4326 	item = btrfs_item_nr(leaf, slot);
4327 	btrfs_set_item_size(leaf, item, new_size);
4328 	btrfs_mark_buffer_dirty(leaf);
4329 
4330 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4331 		btrfs_print_leaf(root, leaf);
4332 		BUG();
4333 	}
4334 }
4335 
4336 /*
4337  * make the item pointed to by the path bigger, data_size is the new size.
4338  */
4339 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4340 		       struct btrfs_root *root, struct btrfs_path *path,
4341 		       u32 data_size)
4342 {
4343 	int slot;
4344 	struct extent_buffer *leaf;
4345 	struct btrfs_item *item;
4346 	u32 nritems;
4347 	unsigned int data_end;
4348 	unsigned int old_data;
4349 	unsigned int old_size;
4350 	int i;
4351 	struct btrfs_map_token token;
4352 
4353 	btrfs_init_map_token(&token);
4354 
4355 	leaf = path->nodes[0];
4356 
4357 	nritems = btrfs_header_nritems(leaf);
4358 	data_end = leaf_data_end(root, leaf);
4359 
4360 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4361 		btrfs_print_leaf(root, leaf);
4362 		BUG();
4363 	}
4364 	slot = path->slots[0];
4365 	old_data = btrfs_item_end_nr(leaf, slot);
4366 
4367 	BUG_ON(slot < 0);
4368 	if (slot >= nritems) {
4369 		btrfs_print_leaf(root, leaf);
4370 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4371 		       slot, nritems);
4372 		BUG_ON(1);
4373 	}
4374 
4375 	/*
4376 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4377 	 */
4378 	/* first correct the data pointers */
4379 	for (i = slot; i < nritems; i++) {
4380 		u32 ioff;
4381 		item = btrfs_item_nr(leaf, i);
4382 
4383 		ioff = btrfs_token_item_offset(leaf, item, &token);
4384 		btrfs_set_token_item_offset(leaf, item,
4385 					    ioff - data_size, &token);
4386 	}
4387 
4388 	/* shift the data */
4389 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4390 		      data_end - data_size, btrfs_leaf_data(leaf) +
4391 		      data_end, old_data - data_end);
4392 
4393 	data_end = old_data;
4394 	old_size = btrfs_item_size_nr(leaf, slot);
4395 	item = btrfs_item_nr(leaf, slot);
4396 	btrfs_set_item_size(leaf, item, old_size + data_size);
4397 	btrfs_mark_buffer_dirty(leaf);
4398 
4399 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4400 		btrfs_print_leaf(root, leaf);
4401 		BUG();
4402 	}
4403 }
4404 
4405 /*
4406  * Given a key and some data, insert items into the tree.
4407  * This does all the path init required, making room in the tree if needed.
4408  * Returns the number of keys that were inserted.
4409  */
4410 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4411 			    struct btrfs_root *root,
4412 			    struct btrfs_path *path,
4413 			    struct btrfs_key *cpu_key, u32 *data_size,
4414 			    int nr)
4415 {
4416 	struct extent_buffer *leaf;
4417 	struct btrfs_item *item;
4418 	int ret = 0;
4419 	int slot;
4420 	int i;
4421 	u32 nritems;
4422 	u32 total_data = 0;
4423 	u32 total_size = 0;
4424 	unsigned int data_end;
4425 	struct btrfs_disk_key disk_key;
4426 	struct btrfs_key found_key;
4427 	struct btrfs_map_token token;
4428 
4429 	btrfs_init_map_token(&token);
4430 
4431 	for (i = 0; i < nr; i++) {
4432 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4433 		    BTRFS_LEAF_DATA_SIZE(root)) {
4434 			break;
4435 			nr = i;
4436 		}
4437 		total_data += data_size[i];
4438 		total_size += data_size[i] + sizeof(struct btrfs_item);
4439 	}
4440 	BUG_ON(nr == 0);
4441 
4442 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4443 	if (ret == 0)
4444 		return -EEXIST;
4445 	if (ret < 0)
4446 		goto out;
4447 
4448 	leaf = path->nodes[0];
4449 
4450 	nritems = btrfs_header_nritems(leaf);
4451 	data_end = leaf_data_end(root, leaf);
4452 
4453 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4454 		for (i = nr; i >= 0; i--) {
4455 			total_data -= data_size[i];
4456 			total_size -= data_size[i] + sizeof(struct btrfs_item);
4457 			if (total_size < btrfs_leaf_free_space(root, leaf))
4458 				break;
4459 		}
4460 		nr = i;
4461 	}
4462 
4463 	slot = path->slots[0];
4464 	BUG_ON(slot < 0);
4465 
4466 	if (slot != nritems) {
4467 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4468 
4469 		item = btrfs_item_nr(leaf, slot);
4470 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4471 
4472 		/* figure out how many keys we can insert in here */
4473 		total_data = data_size[0];
4474 		for (i = 1; i < nr; i++) {
4475 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4476 				break;
4477 			total_data += data_size[i];
4478 		}
4479 		nr = i;
4480 
4481 		if (old_data < data_end) {
4482 			btrfs_print_leaf(root, leaf);
4483 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4484 			       slot, old_data, data_end);
4485 			BUG_ON(1);
4486 		}
4487 		/*
4488 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4489 		 */
4490 		/* first correct the data pointers */
4491 		for (i = slot; i < nritems; i++) {
4492 			u32 ioff;
4493 
4494 			item = btrfs_item_nr(leaf, i);
4495 			ioff = btrfs_token_item_offset(leaf, item, &token);
4496 			btrfs_set_token_item_offset(leaf, item,
4497 						    ioff - total_data, &token);
4498 		}
4499 		/* shift the items */
4500 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4501 			      btrfs_item_nr_offset(slot),
4502 			      (nritems - slot) * sizeof(struct btrfs_item));
4503 
4504 		/* shift the data */
4505 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4506 			      data_end - total_data, btrfs_leaf_data(leaf) +
4507 			      data_end, old_data - data_end);
4508 		data_end = old_data;
4509 	} else {
4510 		/*
4511 		 * this sucks but it has to be done, if we are inserting at
4512 		 * the end of the leaf only insert 1 of the items, since we
4513 		 * have no way of knowing whats on the next leaf and we'd have
4514 		 * to drop our current locks to figure it out
4515 		 */
4516 		nr = 1;
4517 	}
4518 
4519 	/* setup the item for the new data */
4520 	for (i = 0; i < nr; i++) {
4521 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4522 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4523 		item = btrfs_item_nr(leaf, slot + i);
4524 		btrfs_set_token_item_offset(leaf, item,
4525 					    data_end - data_size[i], &token);
4526 		data_end -= data_size[i];
4527 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4528 	}
4529 	btrfs_set_header_nritems(leaf, nritems + nr);
4530 	btrfs_mark_buffer_dirty(leaf);
4531 
4532 	ret = 0;
4533 	if (slot == 0) {
4534 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4535 		fixup_low_keys(trans, root, path, &disk_key, 1);
4536 	}
4537 
4538 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4539 		btrfs_print_leaf(root, leaf);
4540 		BUG();
4541 	}
4542 out:
4543 	if (!ret)
4544 		ret = nr;
4545 	return ret;
4546 }
4547 
4548 /*
4549  * this is a helper for btrfs_insert_empty_items, the main goal here is
4550  * to save stack depth by doing the bulk of the work in a function
4551  * that doesn't call btrfs_search_slot
4552  */
4553 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4554 			    struct btrfs_root *root, struct btrfs_path *path,
4555 			    struct btrfs_key *cpu_key, u32 *data_size,
4556 			    u32 total_data, u32 total_size, int nr)
4557 {
4558 	struct btrfs_item *item;
4559 	int i;
4560 	u32 nritems;
4561 	unsigned int data_end;
4562 	struct btrfs_disk_key disk_key;
4563 	struct extent_buffer *leaf;
4564 	int slot;
4565 	struct btrfs_map_token token;
4566 
4567 	btrfs_init_map_token(&token);
4568 
4569 	leaf = path->nodes[0];
4570 	slot = path->slots[0];
4571 
4572 	nritems = btrfs_header_nritems(leaf);
4573 	data_end = leaf_data_end(root, leaf);
4574 
4575 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4576 		btrfs_print_leaf(root, leaf);
4577 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4578 		       total_size, btrfs_leaf_free_space(root, leaf));
4579 		BUG();
4580 	}
4581 
4582 	if (slot != nritems) {
4583 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4584 
4585 		if (old_data < data_end) {
4586 			btrfs_print_leaf(root, leaf);
4587 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4588 			       slot, old_data, data_end);
4589 			BUG_ON(1);
4590 		}
4591 		/*
4592 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4593 		 */
4594 		/* first correct the data pointers */
4595 		for (i = slot; i < nritems; i++) {
4596 			u32 ioff;
4597 
4598 			item = btrfs_item_nr(leaf, i);
4599 			ioff = btrfs_token_item_offset(leaf, item, &token);
4600 			btrfs_set_token_item_offset(leaf, item,
4601 						    ioff - total_data, &token);
4602 		}
4603 		/* shift the items */
4604 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4605 			      btrfs_item_nr_offset(slot),
4606 			      (nritems - slot) * sizeof(struct btrfs_item));
4607 
4608 		/* shift the data */
4609 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4610 			      data_end - total_data, btrfs_leaf_data(leaf) +
4611 			      data_end, old_data - data_end);
4612 		data_end = old_data;
4613 	}
4614 
4615 	/* setup the item for the new data */
4616 	for (i = 0; i < nr; i++) {
4617 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4618 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4619 		item = btrfs_item_nr(leaf, slot + i);
4620 		btrfs_set_token_item_offset(leaf, item,
4621 					    data_end - data_size[i], &token);
4622 		data_end -= data_size[i];
4623 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4624 	}
4625 
4626 	btrfs_set_header_nritems(leaf, nritems + nr);
4627 
4628 	if (slot == 0) {
4629 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4630 		fixup_low_keys(trans, root, path, &disk_key, 1);
4631 	}
4632 	btrfs_unlock_up_safe(path, 1);
4633 	btrfs_mark_buffer_dirty(leaf);
4634 
4635 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4636 		btrfs_print_leaf(root, leaf);
4637 		BUG();
4638 	}
4639 }
4640 
4641 /*
4642  * Given a key and some data, insert items into the tree.
4643  * This does all the path init required, making room in the tree if needed.
4644  */
4645 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4646 			    struct btrfs_root *root,
4647 			    struct btrfs_path *path,
4648 			    struct btrfs_key *cpu_key, u32 *data_size,
4649 			    int nr)
4650 {
4651 	int ret = 0;
4652 	int slot;
4653 	int i;
4654 	u32 total_size = 0;
4655 	u32 total_data = 0;
4656 
4657 	for (i = 0; i < nr; i++)
4658 		total_data += data_size[i];
4659 
4660 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4661 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4662 	if (ret == 0)
4663 		return -EEXIST;
4664 	if (ret < 0)
4665 		return ret;
4666 
4667 	slot = path->slots[0];
4668 	BUG_ON(slot < 0);
4669 
4670 	setup_items_for_insert(trans, root, path, cpu_key, data_size,
4671 			       total_data, total_size, nr);
4672 	return 0;
4673 }
4674 
4675 /*
4676  * Given a key and some data, insert an item into the tree.
4677  * This does all the path init required, making room in the tree if needed.
4678  */
4679 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4680 		      *root, struct btrfs_key *cpu_key, void *data, u32
4681 		      data_size)
4682 {
4683 	int ret = 0;
4684 	struct btrfs_path *path;
4685 	struct extent_buffer *leaf;
4686 	unsigned long ptr;
4687 
4688 	path = btrfs_alloc_path();
4689 	if (!path)
4690 		return -ENOMEM;
4691 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4692 	if (!ret) {
4693 		leaf = path->nodes[0];
4694 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4695 		write_extent_buffer(leaf, data, ptr, data_size);
4696 		btrfs_mark_buffer_dirty(leaf);
4697 	}
4698 	btrfs_free_path(path);
4699 	return ret;
4700 }
4701 
4702 /*
4703  * delete the pointer from a given node.
4704  *
4705  * the tree should have been previously balanced so the deletion does not
4706  * empty a node.
4707  */
4708 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4709 		    struct btrfs_path *path, int level, int slot,
4710 		    int tree_mod_log)
4711 {
4712 	struct extent_buffer *parent = path->nodes[level];
4713 	u32 nritems;
4714 	int ret;
4715 
4716 	nritems = btrfs_header_nritems(parent);
4717 	if (slot != nritems - 1) {
4718 		if (tree_mod_log && level)
4719 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4720 					     slot + 1, nritems - slot - 1);
4721 		memmove_extent_buffer(parent,
4722 			      btrfs_node_key_ptr_offset(slot),
4723 			      btrfs_node_key_ptr_offset(slot + 1),
4724 			      sizeof(struct btrfs_key_ptr) *
4725 			      (nritems - slot - 1));
4726 	} else if (tree_mod_log && level) {
4727 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4728 					      MOD_LOG_KEY_REMOVE);
4729 		BUG_ON(ret < 0);
4730 	}
4731 
4732 	nritems--;
4733 	btrfs_set_header_nritems(parent, nritems);
4734 	if (nritems == 0 && parent == root->node) {
4735 		BUG_ON(btrfs_header_level(root->node) != 1);
4736 		/* just turn the root into a leaf and break */
4737 		btrfs_set_header_level(root->node, 0);
4738 	} else if (slot == 0) {
4739 		struct btrfs_disk_key disk_key;
4740 
4741 		btrfs_node_key(parent, &disk_key, 0);
4742 		fixup_low_keys(trans, root, path, &disk_key, level + 1);
4743 	}
4744 	btrfs_mark_buffer_dirty(parent);
4745 }
4746 
4747 /*
4748  * a helper function to delete the leaf pointed to by path->slots[1] and
4749  * path->nodes[1].
4750  *
4751  * This deletes the pointer in path->nodes[1] and frees the leaf
4752  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4753  *
4754  * The path must have already been setup for deleting the leaf, including
4755  * all the proper balancing.  path->nodes[1] must be locked.
4756  */
4757 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4758 				    struct btrfs_root *root,
4759 				    struct btrfs_path *path,
4760 				    struct extent_buffer *leaf)
4761 {
4762 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4763 	del_ptr(trans, root, path, 1, path->slots[1], 1);
4764 
4765 	/*
4766 	 * btrfs_free_extent is expensive, we want to make sure we
4767 	 * aren't holding any locks when we call it
4768 	 */
4769 	btrfs_unlock_up_safe(path, 0);
4770 
4771 	root_sub_used(root, leaf->len);
4772 
4773 	extent_buffer_get(leaf);
4774 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4775 	free_extent_buffer_stale(leaf);
4776 }
4777 /*
4778  * delete the item at the leaf level in path.  If that empties
4779  * the leaf, remove it from the tree
4780  */
4781 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4782 		    struct btrfs_path *path, int slot, int nr)
4783 {
4784 	struct extent_buffer *leaf;
4785 	struct btrfs_item *item;
4786 	int last_off;
4787 	int dsize = 0;
4788 	int ret = 0;
4789 	int wret;
4790 	int i;
4791 	u32 nritems;
4792 	struct btrfs_map_token token;
4793 
4794 	btrfs_init_map_token(&token);
4795 
4796 	leaf = path->nodes[0];
4797 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4798 
4799 	for (i = 0; i < nr; i++)
4800 		dsize += btrfs_item_size_nr(leaf, slot + i);
4801 
4802 	nritems = btrfs_header_nritems(leaf);
4803 
4804 	if (slot + nr != nritems) {
4805 		int data_end = leaf_data_end(root, leaf);
4806 
4807 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4808 			      data_end + dsize,
4809 			      btrfs_leaf_data(leaf) + data_end,
4810 			      last_off - data_end);
4811 
4812 		for (i = slot + nr; i < nritems; i++) {
4813 			u32 ioff;
4814 
4815 			item = btrfs_item_nr(leaf, i);
4816 			ioff = btrfs_token_item_offset(leaf, item, &token);
4817 			btrfs_set_token_item_offset(leaf, item,
4818 						    ioff + dsize, &token);
4819 		}
4820 
4821 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4822 			      btrfs_item_nr_offset(slot + nr),
4823 			      sizeof(struct btrfs_item) *
4824 			      (nritems - slot - nr));
4825 	}
4826 	btrfs_set_header_nritems(leaf, nritems - nr);
4827 	nritems -= nr;
4828 
4829 	/* delete the leaf if we've emptied it */
4830 	if (nritems == 0) {
4831 		if (leaf == root->node) {
4832 			btrfs_set_header_level(leaf, 0);
4833 		} else {
4834 			btrfs_set_path_blocking(path);
4835 			clean_tree_block(trans, root, leaf);
4836 			btrfs_del_leaf(trans, root, path, leaf);
4837 		}
4838 	} else {
4839 		int used = leaf_space_used(leaf, 0, nritems);
4840 		if (slot == 0) {
4841 			struct btrfs_disk_key disk_key;
4842 
4843 			btrfs_item_key(leaf, &disk_key, 0);
4844 			fixup_low_keys(trans, root, path, &disk_key, 1);
4845 		}
4846 
4847 		/* delete the leaf if it is mostly empty */
4848 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4849 			/* push_leaf_left fixes the path.
4850 			 * make sure the path still points to our leaf
4851 			 * for possible call to del_ptr below
4852 			 */
4853 			slot = path->slots[1];
4854 			extent_buffer_get(leaf);
4855 
4856 			btrfs_set_path_blocking(path);
4857 			wret = push_leaf_left(trans, root, path, 1, 1,
4858 					      1, (u32)-1);
4859 			if (wret < 0 && wret != -ENOSPC)
4860 				ret = wret;
4861 
4862 			if (path->nodes[0] == leaf &&
4863 			    btrfs_header_nritems(leaf)) {
4864 				wret = push_leaf_right(trans, root, path, 1,
4865 						       1, 1, 0);
4866 				if (wret < 0 && wret != -ENOSPC)
4867 					ret = wret;
4868 			}
4869 
4870 			if (btrfs_header_nritems(leaf) == 0) {
4871 				path->slots[1] = slot;
4872 				btrfs_del_leaf(trans, root, path, leaf);
4873 				free_extent_buffer(leaf);
4874 				ret = 0;
4875 			} else {
4876 				/* if we're still in the path, make sure
4877 				 * we're dirty.  Otherwise, one of the
4878 				 * push_leaf functions must have already
4879 				 * dirtied this buffer
4880 				 */
4881 				if (path->nodes[0] == leaf)
4882 					btrfs_mark_buffer_dirty(leaf);
4883 				free_extent_buffer(leaf);
4884 			}
4885 		} else {
4886 			btrfs_mark_buffer_dirty(leaf);
4887 		}
4888 	}
4889 	return ret;
4890 }
4891 
4892 /*
4893  * search the tree again to find a leaf with lesser keys
4894  * returns 0 if it found something or 1 if there are no lesser leaves.
4895  * returns < 0 on io errors.
4896  *
4897  * This may release the path, and so you may lose any locks held at the
4898  * time you call it.
4899  */
4900 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4901 {
4902 	struct btrfs_key key;
4903 	struct btrfs_disk_key found_key;
4904 	int ret;
4905 
4906 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4907 
4908 	if (key.offset > 0)
4909 		key.offset--;
4910 	else if (key.type > 0)
4911 		key.type--;
4912 	else if (key.objectid > 0)
4913 		key.objectid--;
4914 	else
4915 		return 1;
4916 
4917 	btrfs_release_path(path);
4918 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4919 	if (ret < 0)
4920 		return ret;
4921 	btrfs_item_key(path->nodes[0], &found_key, 0);
4922 	ret = comp_keys(&found_key, &key);
4923 	if (ret < 0)
4924 		return 0;
4925 	return 1;
4926 }
4927 
4928 /*
4929  * A helper function to walk down the tree starting at min_key, and looking
4930  * for nodes or leaves that are either in cache or have a minimum
4931  * transaction id.  This is used by the btree defrag code, and tree logging
4932  *
4933  * This does not cow, but it does stuff the starting key it finds back
4934  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4935  * key and get a writable path.
4936  *
4937  * This does lock as it descends, and path->keep_locks should be set
4938  * to 1 by the caller.
4939  *
4940  * This honors path->lowest_level to prevent descent past a given level
4941  * of the tree.
4942  *
4943  * min_trans indicates the oldest transaction that you are interested
4944  * in walking through.  Any nodes or leaves older than min_trans are
4945  * skipped over (without reading them).
4946  *
4947  * returns zero if something useful was found, < 0 on error and 1 if there
4948  * was nothing in the tree that matched the search criteria.
4949  */
4950 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4951 			 struct btrfs_key *max_key,
4952 			 struct btrfs_path *path, int cache_only,
4953 			 u64 min_trans)
4954 {
4955 	struct extent_buffer *cur;
4956 	struct btrfs_key found_key;
4957 	int slot;
4958 	int sret;
4959 	u32 nritems;
4960 	int level;
4961 	int ret = 1;
4962 
4963 	WARN_ON(!path->keep_locks);
4964 again:
4965 	cur = btrfs_read_lock_root_node(root);
4966 	level = btrfs_header_level(cur);
4967 	WARN_ON(path->nodes[level]);
4968 	path->nodes[level] = cur;
4969 	path->locks[level] = BTRFS_READ_LOCK;
4970 
4971 	if (btrfs_header_generation(cur) < min_trans) {
4972 		ret = 1;
4973 		goto out;
4974 	}
4975 	while (1) {
4976 		nritems = btrfs_header_nritems(cur);
4977 		level = btrfs_header_level(cur);
4978 		sret = bin_search(cur, min_key, level, &slot);
4979 
4980 		/* at the lowest level, we're done, setup the path and exit */
4981 		if (level == path->lowest_level) {
4982 			if (slot >= nritems)
4983 				goto find_next_key;
4984 			ret = 0;
4985 			path->slots[level] = slot;
4986 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4987 			goto out;
4988 		}
4989 		if (sret && slot > 0)
4990 			slot--;
4991 		/*
4992 		 * check this node pointer against the cache_only and
4993 		 * min_trans parameters.  If it isn't in cache or is too
4994 		 * old, skip to the next one.
4995 		 */
4996 		while (slot < nritems) {
4997 			u64 blockptr;
4998 			u64 gen;
4999 			struct extent_buffer *tmp;
5000 			struct btrfs_disk_key disk_key;
5001 
5002 			blockptr = btrfs_node_blockptr(cur, slot);
5003 			gen = btrfs_node_ptr_generation(cur, slot);
5004 			if (gen < min_trans) {
5005 				slot++;
5006 				continue;
5007 			}
5008 			if (!cache_only)
5009 				break;
5010 
5011 			if (max_key) {
5012 				btrfs_node_key(cur, &disk_key, slot);
5013 				if (comp_keys(&disk_key, max_key) >= 0) {
5014 					ret = 1;
5015 					goto out;
5016 				}
5017 			}
5018 
5019 			tmp = btrfs_find_tree_block(root, blockptr,
5020 					    btrfs_level_size(root, level - 1));
5021 
5022 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
5023 				free_extent_buffer(tmp);
5024 				break;
5025 			}
5026 			if (tmp)
5027 				free_extent_buffer(tmp);
5028 			slot++;
5029 		}
5030 find_next_key:
5031 		/*
5032 		 * we didn't find a candidate key in this node, walk forward
5033 		 * and find another one
5034 		 */
5035 		if (slot >= nritems) {
5036 			path->slots[level] = slot;
5037 			btrfs_set_path_blocking(path);
5038 			sret = btrfs_find_next_key(root, path, min_key, level,
5039 						  cache_only, min_trans);
5040 			if (sret == 0) {
5041 				btrfs_release_path(path);
5042 				goto again;
5043 			} else {
5044 				goto out;
5045 			}
5046 		}
5047 		/* save our key for returning back */
5048 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5049 		path->slots[level] = slot;
5050 		if (level == path->lowest_level) {
5051 			ret = 0;
5052 			unlock_up(path, level, 1, 0, NULL);
5053 			goto out;
5054 		}
5055 		btrfs_set_path_blocking(path);
5056 		cur = read_node_slot(root, cur, slot);
5057 		BUG_ON(!cur); /* -ENOMEM */
5058 
5059 		btrfs_tree_read_lock(cur);
5060 
5061 		path->locks[level - 1] = BTRFS_READ_LOCK;
5062 		path->nodes[level - 1] = cur;
5063 		unlock_up(path, level, 1, 0, NULL);
5064 		btrfs_clear_path_blocking(path, NULL, 0);
5065 	}
5066 out:
5067 	if (ret == 0)
5068 		memcpy(min_key, &found_key, sizeof(found_key));
5069 	btrfs_set_path_blocking(path);
5070 	return ret;
5071 }
5072 
5073 /*
5074  * this is similar to btrfs_next_leaf, but does not try to preserve
5075  * and fixup the path.  It looks for and returns the next key in the
5076  * tree based on the current path and the cache_only and min_trans
5077  * parameters.
5078  *
5079  * 0 is returned if another key is found, < 0 if there are any errors
5080  * and 1 is returned if there are no higher keys in the tree
5081  *
5082  * path->keep_locks should be set to 1 on the search made before
5083  * calling this function.
5084  */
5085 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5086 			struct btrfs_key *key, int level,
5087 			int cache_only, u64 min_trans)
5088 {
5089 	int slot;
5090 	struct extent_buffer *c;
5091 
5092 	WARN_ON(!path->keep_locks);
5093 	while (level < BTRFS_MAX_LEVEL) {
5094 		if (!path->nodes[level])
5095 			return 1;
5096 
5097 		slot = path->slots[level] + 1;
5098 		c = path->nodes[level];
5099 next:
5100 		if (slot >= btrfs_header_nritems(c)) {
5101 			int ret;
5102 			int orig_lowest;
5103 			struct btrfs_key cur_key;
5104 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5105 			    !path->nodes[level + 1])
5106 				return 1;
5107 
5108 			if (path->locks[level + 1]) {
5109 				level++;
5110 				continue;
5111 			}
5112 
5113 			slot = btrfs_header_nritems(c) - 1;
5114 			if (level == 0)
5115 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5116 			else
5117 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5118 
5119 			orig_lowest = path->lowest_level;
5120 			btrfs_release_path(path);
5121 			path->lowest_level = level;
5122 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5123 						0, 0);
5124 			path->lowest_level = orig_lowest;
5125 			if (ret < 0)
5126 				return ret;
5127 
5128 			c = path->nodes[level];
5129 			slot = path->slots[level];
5130 			if (ret == 0)
5131 				slot++;
5132 			goto next;
5133 		}
5134 
5135 		if (level == 0)
5136 			btrfs_item_key_to_cpu(c, key, slot);
5137 		else {
5138 			u64 blockptr = btrfs_node_blockptr(c, slot);
5139 			u64 gen = btrfs_node_ptr_generation(c, slot);
5140 
5141 			if (cache_only) {
5142 				struct extent_buffer *cur;
5143 				cur = btrfs_find_tree_block(root, blockptr,
5144 					    btrfs_level_size(root, level - 1));
5145 				if (!cur ||
5146 				    btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5147 					slot++;
5148 					if (cur)
5149 						free_extent_buffer(cur);
5150 					goto next;
5151 				}
5152 				free_extent_buffer(cur);
5153 			}
5154 			if (gen < min_trans) {
5155 				slot++;
5156 				goto next;
5157 			}
5158 			btrfs_node_key_to_cpu(c, key, slot);
5159 		}
5160 		return 0;
5161 	}
5162 	return 1;
5163 }
5164 
5165 /*
5166  * search the tree again to find a leaf with greater keys
5167  * returns 0 if it found something or 1 if there are no greater leaves.
5168  * returns < 0 on io errors.
5169  */
5170 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5171 {
5172 	return btrfs_next_old_leaf(root, path, 0);
5173 }
5174 
5175 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5176 			u64 time_seq)
5177 {
5178 	int slot;
5179 	int level;
5180 	struct extent_buffer *c;
5181 	struct extent_buffer *next;
5182 	struct btrfs_key key;
5183 	u32 nritems;
5184 	int ret;
5185 	int old_spinning = path->leave_spinning;
5186 	int next_rw_lock = 0;
5187 
5188 	nritems = btrfs_header_nritems(path->nodes[0]);
5189 	if (nritems == 0)
5190 		return 1;
5191 
5192 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5193 again:
5194 	level = 1;
5195 	next = NULL;
5196 	next_rw_lock = 0;
5197 	btrfs_release_path(path);
5198 
5199 	path->keep_locks = 1;
5200 	path->leave_spinning = 1;
5201 
5202 	if (time_seq)
5203 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5204 	else
5205 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5206 	path->keep_locks = 0;
5207 
5208 	if (ret < 0)
5209 		return ret;
5210 
5211 	nritems = btrfs_header_nritems(path->nodes[0]);
5212 	/*
5213 	 * by releasing the path above we dropped all our locks.  A balance
5214 	 * could have added more items next to the key that used to be
5215 	 * at the very end of the block.  So, check again here and
5216 	 * advance the path if there are now more items available.
5217 	 */
5218 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5219 		if (ret == 0)
5220 			path->slots[0]++;
5221 		ret = 0;
5222 		goto done;
5223 	}
5224 
5225 	while (level < BTRFS_MAX_LEVEL) {
5226 		if (!path->nodes[level]) {
5227 			ret = 1;
5228 			goto done;
5229 		}
5230 
5231 		slot = path->slots[level] + 1;
5232 		c = path->nodes[level];
5233 		if (slot >= btrfs_header_nritems(c)) {
5234 			level++;
5235 			if (level == BTRFS_MAX_LEVEL) {
5236 				ret = 1;
5237 				goto done;
5238 			}
5239 			continue;
5240 		}
5241 
5242 		if (next) {
5243 			btrfs_tree_unlock_rw(next, next_rw_lock);
5244 			free_extent_buffer(next);
5245 		}
5246 
5247 		next = c;
5248 		next_rw_lock = path->locks[level];
5249 		ret = read_block_for_search(NULL, root, path, &next, level,
5250 					    slot, &key, 0);
5251 		if (ret == -EAGAIN)
5252 			goto again;
5253 
5254 		if (ret < 0) {
5255 			btrfs_release_path(path);
5256 			goto done;
5257 		}
5258 
5259 		if (!path->skip_locking) {
5260 			ret = btrfs_try_tree_read_lock(next);
5261 			if (!ret && time_seq) {
5262 				/*
5263 				 * If we don't get the lock, we may be racing
5264 				 * with push_leaf_left, holding that lock while
5265 				 * itself waiting for the leaf we've currently
5266 				 * locked. To solve this situation, we give up
5267 				 * on our lock and cycle.
5268 				 */
5269 				free_extent_buffer(next);
5270 				btrfs_release_path(path);
5271 				cond_resched();
5272 				goto again;
5273 			}
5274 			if (!ret) {
5275 				btrfs_set_path_blocking(path);
5276 				btrfs_tree_read_lock(next);
5277 				btrfs_clear_path_blocking(path, next,
5278 							  BTRFS_READ_LOCK);
5279 			}
5280 			next_rw_lock = BTRFS_READ_LOCK;
5281 		}
5282 		break;
5283 	}
5284 	path->slots[level] = slot;
5285 	while (1) {
5286 		level--;
5287 		c = path->nodes[level];
5288 		if (path->locks[level])
5289 			btrfs_tree_unlock_rw(c, path->locks[level]);
5290 
5291 		free_extent_buffer(c);
5292 		path->nodes[level] = next;
5293 		path->slots[level] = 0;
5294 		if (!path->skip_locking)
5295 			path->locks[level] = next_rw_lock;
5296 		if (!level)
5297 			break;
5298 
5299 		ret = read_block_for_search(NULL, root, path, &next, level,
5300 					    0, &key, 0);
5301 		if (ret == -EAGAIN)
5302 			goto again;
5303 
5304 		if (ret < 0) {
5305 			btrfs_release_path(path);
5306 			goto done;
5307 		}
5308 
5309 		if (!path->skip_locking) {
5310 			ret = btrfs_try_tree_read_lock(next);
5311 			if (!ret) {
5312 				btrfs_set_path_blocking(path);
5313 				btrfs_tree_read_lock(next);
5314 				btrfs_clear_path_blocking(path, next,
5315 							  BTRFS_READ_LOCK);
5316 			}
5317 			next_rw_lock = BTRFS_READ_LOCK;
5318 		}
5319 	}
5320 	ret = 0;
5321 done:
5322 	unlock_up(path, 0, 1, 0, NULL);
5323 	path->leave_spinning = old_spinning;
5324 	if (!old_spinning)
5325 		btrfs_set_path_blocking(path);
5326 
5327 	return ret;
5328 }
5329 
5330 /*
5331  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5332  * searching until it gets past min_objectid or finds an item of 'type'
5333  *
5334  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5335  */
5336 int btrfs_previous_item(struct btrfs_root *root,
5337 			struct btrfs_path *path, u64 min_objectid,
5338 			int type)
5339 {
5340 	struct btrfs_key found_key;
5341 	struct extent_buffer *leaf;
5342 	u32 nritems;
5343 	int ret;
5344 
5345 	while (1) {
5346 		if (path->slots[0] == 0) {
5347 			btrfs_set_path_blocking(path);
5348 			ret = btrfs_prev_leaf(root, path);
5349 			if (ret != 0)
5350 				return ret;
5351 		} else {
5352 			path->slots[0]--;
5353 		}
5354 		leaf = path->nodes[0];
5355 		nritems = btrfs_header_nritems(leaf);
5356 		if (nritems == 0)
5357 			return 1;
5358 		if (path->slots[0] == nritems)
5359 			path->slots[0]--;
5360 
5361 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5362 		if (found_key.objectid < min_objectid)
5363 			break;
5364 		if (found_key.type == type)
5365 			return 0;
5366 		if (found_key.objectid == min_objectid &&
5367 		    found_key.type < type)
5368 			break;
5369 	}
5370 	return 1;
5371 }
5372