xref: /openbmc/linux/fs/btrfs/ctree.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 		      *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
22 		      int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 			  struct extent_buffer *dst,
25 			  struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 static const struct btrfs_csums {
33 	u16		size;
34 	const char	name[10];
35 	const char	driver[12];
36 } btrfs_csums[] = {
37 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 				     .driver = "blake2b-256" },
42 };
43 
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46 	u16 t = btrfs_super_csum_type(s);
47 	/*
48 	 * csum type is validated at mount time
49 	 */
50 	return btrfs_csums[t].size;
51 }
52 
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55 	/* csum type is validated at mount time */
56 	return btrfs_csums[csum_type].name;
57 }
58 
59 /*
60  * Return driver name if defined, otherwise the name that's also a valid driver
61  * name
62  */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65 	/* csum type is validated at mount time */
66 	return btrfs_csums[csum_type].driver[0] ?
67 		btrfs_csums[csum_type].driver :
68 		btrfs_csums[csum_type].name;
69 }
70 
71 size_t __attribute_const__ btrfs_get_num_csums(void)
72 {
73 	return ARRAY_SIZE(btrfs_csums);
74 }
75 
76 struct btrfs_path *btrfs_alloc_path(void)
77 {
78 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
79 }
80 
81 /* this also releases the path */
82 void btrfs_free_path(struct btrfs_path *p)
83 {
84 	if (!p)
85 		return;
86 	btrfs_release_path(p);
87 	kmem_cache_free(btrfs_path_cachep, p);
88 }
89 
90 /*
91  * path release drops references on the extent buffers in the path
92  * and it drops any locks held by this path
93  *
94  * It is safe to call this on paths that no locks or extent buffers held.
95  */
96 noinline void btrfs_release_path(struct btrfs_path *p)
97 {
98 	int i;
99 
100 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101 		p->slots[i] = 0;
102 		if (!p->nodes[i])
103 			continue;
104 		if (p->locks[i]) {
105 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 			p->locks[i] = 0;
107 		}
108 		free_extent_buffer(p->nodes[i]);
109 		p->nodes[i] = NULL;
110 	}
111 }
112 
113 /*
114  * safely gets a reference on the root node of a tree.  A lock
115  * is not taken, so a concurrent writer may put a different node
116  * at the root of the tree.  See btrfs_lock_root_node for the
117  * looping required.
118  *
119  * The extent buffer returned by this has a reference taken, so
120  * it won't disappear.  It may stop being the root of the tree
121  * at any time because there are no locks held.
122  */
123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
124 {
125 	struct extent_buffer *eb;
126 
127 	while (1) {
128 		rcu_read_lock();
129 		eb = rcu_dereference(root->node);
130 
131 		/*
132 		 * RCU really hurts here, we could free up the root node because
133 		 * it was COWed but we may not get the new root node yet so do
134 		 * the inc_not_zero dance and if it doesn't work then
135 		 * synchronize_rcu and try again.
136 		 */
137 		if (atomic_inc_not_zero(&eb->refs)) {
138 			rcu_read_unlock();
139 			break;
140 		}
141 		rcu_read_unlock();
142 		synchronize_rcu();
143 	}
144 	return eb;
145 }
146 
147 /*
148  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
149  * just get put onto a simple dirty list.  Transaction walks this list to make
150  * sure they get properly updated on disk.
151  */
152 static void add_root_to_dirty_list(struct btrfs_root *root)
153 {
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
157 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
158 		return;
159 
160 	spin_lock(&fs_info->trans_lock);
161 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
162 		/* Want the extent tree to be the last on the list */
163 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164 			list_move_tail(&root->dirty_list,
165 				       &fs_info->dirty_cowonly_roots);
166 		else
167 			list_move(&root->dirty_list,
168 				  &fs_info->dirty_cowonly_roots);
169 	}
170 	spin_unlock(&fs_info->trans_lock);
171 }
172 
173 /*
174  * used by snapshot creation to make a copy of a root for a tree with
175  * a given objectid.  The buffer with the new root node is returned in
176  * cow_ret, and this func returns zero on success or a negative error code.
177  */
178 int btrfs_copy_root(struct btrfs_trans_handle *trans,
179 		      struct btrfs_root *root,
180 		      struct extent_buffer *buf,
181 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
182 {
183 	struct btrfs_fs_info *fs_info = root->fs_info;
184 	struct extent_buffer *cow;
185 	int ret = 0;
186 	int level;
187 	struct btrfs_disk_key disk_key;
188 
189 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190 		trans->transid != fs_info->running_transaction->transid);
191 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 		trans->transid != root->last_trans);
193 
194 	level = btrfs_header_level(buf);
195 	if (level == 0)
196 		btrfs_item_key(buf, &disk_key, 0);
197 	else
198 		btrfs_node_key(buf, &disk_key, 0);
199 
200 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201 				     &disk_key, level, buf->start, 0,
202 				     BTRFS_NESTING_NEW_ROOT);
203 	if (IS_ERR(cow))
204 		return PTR_ERR(cow);
205 
206 	copy_extent_buffer_full(cow, buf);
207 	btrfs_set_header_bytenr(cow, cow->start);
208 	btrfs_set_header_generation(cow, trans->transid);
209 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
210 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
211 				     BTRFS_HEADER_FLAG_RELOC);
212 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
213 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
214 	else
215 		btrfs_set_header_owner(cow, new_root_objectid);
216 
217 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
218 
219 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
220 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
221 		ret = btrfs_inc_ref(trans, root, cow, 1);
222 	else
223 		ret = btrfs_inc_ref(trans, root, cow, 0);
224 	if (ret) {
225 		btrfs_tree_unlock(cow);
226 		free_extent_buffer(cow);
227 		btrfs_abort_transaction(trans, ret);
228 		return ret;
229 	}
230 
231 	btrfs_mark_buffer_dirty(cow);
232 	*cow_ret = cow;
233 	return 0;
234 }
235 
236 enum mod_log_op {
237 	MOD_LOG_KEY_REPLACE,
238 	MOD_LOG_KEY_ADD,
239 	MOD_LOG_KEY_REMOVE,
240 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
241 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
242 	MOD_LOG_MOVE_KEYS,
243 	MOD_LOG_ROOT_REPLACE,
244 };
245 
246 struct tree_mod_root {
247 	u64 logical;
248 	u8 level;
249 };
250 
251 struct tree_mod_elem {
252 	struct rb_node node;
253 	u64 logical;
254 	u64 seq;
255 	enum mod_log_op op;
256 
257 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
258 	int slot;
259 
260 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
261 	u64 generation;
262 
263 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
264 	struct btrfs_disk_key key;
265 	u64 blockptr;
266 
267 	/* this is used for op == MOD_LOG_MOVE_KEYS */
268 	struct {
269 		int dst_slot;
270 		int nr_items;
271 	} move;
272 
273 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
274 	struct tree_mod_root old_root;
275 };
276 
277 /*
278  * Pull a new tree mod seq number for our operation.
279  */
280 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
281 {
282 	return atomic64_inc_return(&fs_info->tree_mod_seq);
283 }
284 
285 /*
286  * This adds a new blocker to the tree mod log's blocker list if the @elem
287  * passed does not already have a sequence number set. So when a caller expects
288  * to record tree modifications, it should ensure to set elem->seq to zero
289  * before calling btrfs_get_tree_mod_seq.
290  * Returns a fresh, unused tree log modification sequence number, even if no new
291  * blocker was added.
292  */
293 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
294 			   struct seq_list *elem)
295 {
296 	write_lock(&fs_info->tree_mod_log_lock);
297 	if (!elem->seq) {
298 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
299 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
300 	}
301 	write_unlock(&fs_info->tree_mod_log_lock);
302 
303 	return elem->seq;
304 }
305 
306 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
307 			    struct seq_list *elem)
308 {
309 	struct rb_root *tm_root;
310 	struct rb_node *node;
311 	struct rb_node *next;
312 	struct tree_mod_elem *tm;
313 	u64 min_seq = (u64)-1;
314 	u64 seq_putting = elem->seq;
315 
316 	if (!seq_putting)
317 		return;
318 
319 	write_lock(&fs_info->tree_mod_log_lock);
320 	list_del(&elem->list);
321 	elem->seq = 0;
322 
323 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
324 		struct seq_list *first;
325 
326 		first = list_first_entry(&fs_info->tree_mod_seq_list,
327 					 struct seq_list, list);
328 		if (seq_putting > first->seq) {
329 			/*
330 			 * Blocker with lower sequence number exists, we
331 			 * cannot remove anything from the log.
332 			 */
333 			write_unlock(&fs_info->tree_mod_log_lock);
334 			return;
335 		}
336 		min_seq = first->seq;
337 	}
338 
339 	/*
340 	 * anything that's lower than the lowest existing (read: blocked)
341 	 * sequence number can be removed from the tree.
342 	 */
343 	tm_root = &fs_info->tree_mod_log;
344 	for (node = rb_first(tm_root); node; node = next) {
345 		next = rb_next(node);
346 		tm = rb_entry(node, struct tree_mod_elem, node);
347 		if (tm->seq >= min_seq)
348 			continue;
349 		rb_erase(node, tm_root);
350 		kfree(tm);
351 	}
352 	write_unlock(&fs_info->tree_mod_log_lock);
353 }
354 
355 /*
356  * key order of the log:
357  *       node/leaf start address -> sequence
358  *
359  * The 'start address' is the logical address of the *new* root node
360  * for root replace operations, or the logical address of the affected
361  * block for all other operations.
362  */
363 static noinline int
364 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
365 {
366 	struct rb_root *tm_root;
367 	struct rb_node **new;
368 	struct rb_node *parent = NULL;
369 	struct tree_mod_elem *cur;
370 
371 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
372 
373 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
374 
375 	tm_root = &fs_info->tree_mod_log;
376 	new = &tm_root->rb_node;
377 	while (*new) {
378 		cur = rb_entry(*new, struct tree_mod_elem, node);
379 		parent = *new;
380 		if (cur->logical < tm->logical)
381 			new = &((*new)->rb_left);
382 		else if (cur->logical > tm->logical)
383 			new = &((*new)->rb_right);
384 		else if (cur->seq < tm->seq)
385 			new = &((*new)->rb_left);
386 		else if (cur->seq > tm->seq)
387 			new = &((*new)->rb_right);
388 		else
389 			return -EEXIST;
390 	}
391 
392 	rb_link_node(&tm->node, parent, new);
393 	rb_insert_color(&tm->node, tm_root);
394 	return 0;
395 }
396 
397 /*
398  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
399  * returns zero with the tree_mod_log_lock acquired. The caller must hold
400  * this until all tree mod log insertions are recorded in the rb tree and then
401  * write unlock fs_info::tree_mod_log_lock.
402  */
403 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
404 				    struct extent_buffer *eb) {
405 	smp_mb();
406 	if (list_empty(&(fs_info)->tree_mod_seq_list))
407 		return 1;
408 	if (eb && btrfs_header_level(eb) == 0)
409 		return 1;
410 
411 	write_lock(&fs_info->tree_mod_log_lock);
412 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
413 		write_unlock(&fs_info->tree_mod_log_lock);
414 		return 1;
415 	}
416 
417 	return 0;
418 }
419 
420 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
421 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
422 				    struct extent_buffer *eb)
423 {
424 	smp_mb();
425 	if (list_empty(&(fs_info)->tree_mod_seq_list))
426 		return 0;
427 	if (eb && btrfs_header_level(eb) == 0)
428 		return 0;
429 
430 	return 1;
431 }
432 
433 static struct tree_mod_elem *
434 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
435 		    enum mod_log_op op, gfp_t flags)
436 {
437 	struct tree_mod_elem *tm;
438 
439 	tm = kzalloc(sizeof(*tm), flags);
440 	if (!tm)
441 		return NULL;
442 
443 	tm->logical = eb->start;
444 	if (op != MOD_LOG_KEY_ADD) {
445 		btrfs_node_key(eb, &tm->key, slot);
446 		tm->blockptr = btrfs_node_blockptr(eb, slot);
447 	}
448 	tm->op = op;
449 	tm->slot = slot;
450 	tm->generation = btrfs_node_ptr_generation(eb, slot);
451 	RB_CLEAR_NODE(&tm->node);
452 
453 	return tm;
454 }
455 
456 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
457 		enum mod_log_op op, gfp_t flags)
458 {
459 	struct tree_mod_elem *tm;
460 	int ret;
461 
462 	if (!tree_mod_need_log(eb->fs_info, eb))
463 		return 0;
464 
465 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
466 	if (!tm)
467 		return -ENOMEM;
468 
469 	if (tree_mod_dont_log(eb->fs_info, eb)) {
470 		kfree(tm);
471 		return 0;
472 	}
473 
474 	ret = __tree_mod_log_insert(eb->fs_info, tm);
475 	write_unlock(&eb->fs_info->tree_mod_log_lock);
476 	if (ret)
477 		kfree(tm);
478 
479 	return ret;
480 }
481 
482 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
483 		int dst_slot, int src_slot, int nr_items)
484 {
485 	struct tree_mod_elem *tm = NULL;
486 	struct tree_mod_elem **tm_list = NULL;
487 	int ret = 0;
488 	int i;
489 	int locked = 0;
490 
491 	if (!tree_mod_need_log(eb->fs_info, eb))
492 		return 0;
493 
494 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
495 	if (!tm_list)
496 		return -ENOMEM;
497 
498 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
499 	if (!tm) {
500 		ret = -ENOMEM;
501 		goto free_tms;
502 	}
503 
504 	tm->logical = eb->start;
505 	tm->slot = src_slot;
506 	tm->move.dst_slot = dst_slot;
507 	tm->move.nr_items = nr_items;
508 	tm->op = MOD_LOG_MOVE_KEYS;
509 
510 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
511 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
512 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
513 		if (!tm_list[i]) {
514 			ret = -ENOMEM;
515 			goto free_tms;
516 		}
517 	}
518 
519 	if (tree_mod_dont_log(eb->fs_info, eb))
520 		goto free_tms;
521 	locked = 1;
522 
523 	/*
524 	 * When we override something during the move, we log these removals.
525 	 * This can only happen when we move towards the beginning of the
526 	 * buffer, i.e. dst_slot < src_slot.
527 	 */
528 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
529 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
530 		if (ret)
531 			goto free_tms;
532 	}
533 
534 	ret = __tree_mod_log_insert(eb->fs_info, tm);
535 	if (ret)
536 		goto free_tms;
537 	write_unlock(&eb->fs_info->tree_mod_log_lock);
538 	kfree(tm_list);
539 
540 	return 0;
541 free_tms:
542 	for (i = 0; i < nr_items; i++) {
543 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
544 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
545 		kfree(tm_list[i]);
546 	}
547 	if (locked)
548 		write_unlock(&eb->fs_info->tree_mod_log_lock);
549 	kfree(tm_list);
550 	kfree(tm);
551 
552 	return ret;
553 }
554 
555 static inline int
556 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
557 		       struct tree_mod_elem **tm_list,
558 		       int nritems)
559 {
560 	int i, j;
561 	int ret;
562 
563 	for (i = nritems - 1; i >= 0; i--) {
564 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
565 		if (ret) {
566 			for (j = nritems - 1; j > i; j--)
567 				rb_erase(&tm_list[j]->node,
568 					 &fs_info->tree_mod_log);
569 			return ret;
570 		}
571 	}
572 
573 	return 0;
574 }
575 
576 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
577 			 struct extent_buffer *new_root, int log_removal)
578 {
579 	struct btrfs_fs_info *fs_info = old_root->fs_info;
580 	struct tree_mod_elem *tm = NULL;
581 	struct tree_mod_elem **tm_list = NULL;
582 	int nritems = 0;
583 	int ret = 0;
584 	int i;
585 
586 	if (!tree_mod_need_log(fs_info, NULL))
587 		return 0;
588 
589 	if (log_removal && btrfs_header_level(old_root) > 0) {
590 		nritems = btrfs_header_nritems(old_root);
591 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
592 				  GFP_NOFS);
593 		if (!tm_list) {
594 			ret = -ENOMEM;
595 			goto free_tms;
596 		}
597 		for (i = 0; i < nritems; i++) {
598 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
599 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
600 			if (!tm_list[i]) {
601 				ret = -ENOMEM;
602 				goto free_tms;
603 			}
604 		}
605 	}
606 
607 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
608 	if (!tm) {
609 		ret = -ENOMEM;
610 		goto free_tms;
611 	}
612 
613 	tm->logical = new_root->start;
614 	tm->old_root.logical = old_root->start;
615 	tm->old_root.level = btrfs_header_level(old_root);
616 	tm->generation = btrfs_header_generation(old_root);
617 	tm->op = MOD_LOG_ROOT_REPLACE;
618 
619 	if (tree_mod_dont_log(fs_info, NULL))
620 		goto free_tms;
621 
622 	if (tm_list)
623 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
624 	if (!ret)
625 		ret = __tree_mod_log_insert(fs_info, tm);
626 
627 	write_unlock(&fs_info->tree_mod_log_lock);
628 	if (ret)
629 		goto free_tms;
630 	kfree(tm_list);
631 
632 	return ret;
633 
634 free_tms:
635 	if (tm_list) {
636 		for (i = 0; i < nritems; i++)
637 			kfree(tm_list[i]);
638 		kfree(tm_list);
639 	}
640 	kfree(tm);
641 
642 	return ret;
643 }
644 
645 static struct tree_mod_elem *
646 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
647 		      int smallest)
648 {
649 	struct rb_root *tm_root;
650 	struct rb_node *node;
651 	struct tree_mod_elem *cur = NULL;
652 	struct tree_mod_elem *found = NULL;
653 
654 	read_lock(&fs_info->tree_mod_log_lock);
655 	tm_root = &fs_info->tree_mod_log;
656 	node = tm_root->rb_node;
657 	while (node) {
658 		cur = rb_entry(node, struct tree_mod_elem, node);
659 		if (cur->logical < start) {
660 			node = node->rb_left;
661 		} else if (cur->logical > start) {
662 			node = node->rb_right;
663 		} else if (cur->seq < min_seq) {
664 			node = node->rb_left;
665 		} else if (!smallest) {
666 			/* we want the node with the highest seq */
667 			if (found)
668 				BUG_ON(found->seq > cur->seq);
669 			found = cur;
670 			node = node->rb_left;
671 		} else if (cur->seq > min_seq) {
672 			/* we want the node with the smallest seq */
673 			if (found)
674 				BUG_ON(found->seq < cur->seq);
675 			found = cur;
676 			node = node->rb_right;
677 		} else {
678 			found = cur;
679 			break;
680 		}
681 	}
682 	read_unlock(&fs_info->tree_mod_log_lock);
683 
684 	return found;
685 }
686 
687 /*
688  * this returns the element from the log with the smallest time sequence
689  * value that's in the log (the oldest log item). any element with a time
690  * sequence lower than min_seq will be ignored.
691  */
692 static struct tree_mod_elem *
693 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
694 			   u64 min_seq)
695 {
696 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
697 }
698 
699 /*
700  * this returns the element from the log with the largest time sequence
701  * value that's in the log (the most recent log item). any element with
702  * a time sequence lower than min_seq will be ignored.
703  */
704 static struct tree_mod_elem *
705 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
706 {
707 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
708 }
709 
710 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
711 		     struct extent_buffer *src, unsigned long dst_offset,
712 		     unsigned long src_offset, int nr_items)
713 {
714 	struct btrfs_fs_info *fs_info = dst->fs_info;
715 	int ret = 0;
716 	struct tree_mod_elem **tm_list = NULL;
717 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
718 	int i;
719 	int locked = 0;
720 
721 	if (!tree_mod_need_log(fs_info, NULL))
722 		return 0;
723 
724 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
725 		return 0;
726 
727 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
728 			  GFP_NOFS);
729 	if (!tm_list)
730 		return -ENOMEM;
731 
732 	tm_list_add = tm_list;
733 	tm_list_rem = tm_list + nr_items;
734 	for (i = 0; i < nr_items; i++) {
735 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
736 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
737 		if (!tm_list_rem[i]) {
738 			ret = -ENOMEM;
739 			goto free_tms;
740 		}
741 
742 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
743 		    MOD_LOG_KEY_ADD, GFP_NOFS);
744 		if (!tm_list_add[i]) {
745 			ret = -ENOMEM;
746 			goto free_tms;
747 		}
748 	}
749 
750 	if (tree_mod_dont_log(fs_info, NULL))
751 		goto free_tms;
752 	locked = 1;
753 
754 	for (i = 0; i < nr_items; i++) {
755 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
756 		if (ret)
757 			goto free_tms;
758 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
759 		if (ret)
760 			goto free_tms;
761 	}
762 
763 	write_unlock(&fs_info->tree_mod_log_lock);
764 	kfree(tm_list);
765 
766 	return 0;
767 
768 free_tms:
769 	for (i = 0; i < nr_items * 2; i++) {
770 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
771 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
772 		kfree(tm_list[i]);
773 	}
774 	if (locked)
775 		write_unlock(&fs_info->tree_mod_log_lock);
776 	kfree(tm_list);
777 
778 	return ret;
779 }
780 
781 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
782 {
783 	struct tree_mod_elem **tm_list = NULL;
784 	int nritems = 0;
785 	int i;
786 	int ret = 0;
787 
788 	if (btrfs_header_level(eb) == 0)
789 		return 0;
790 
791 	if (!tree_mod_need_log(eb->fs_info, NULL))
792 		return 0;
793 
794 	nritems = btrfs_header_nritems(eb);
795 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
796 	if (!tm_list)
797 		return -ENOMEM;
798 
799 	for (i = 0; i < nritems; i++) {
800 		tm_list[i] = alloc_tree_mod_elem(eb, i,
801 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
802 		if (!tm_list[i]) {
803 			ret = -ENOMEM;
804 			goto free_tms;
805 		}
806 	}
807 
808 	if (tree_mod_dont_log(eb->fs_info, eb))
809 		goto free_tms;
810 
811 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
812 	write_unlock(&eb->fs_info->tree_mod_log_lock);
813 	if (ret)
814 		goto free_tms;
815 	kfree(tm_list);
816 
817 	return 0;
818 
819 free_tms:
820 	for (i = 0; i < nritems; i++)
821 		kfree(tm_list[i]);
822 	kfree(tm_list);
823 
824 	return ret;
825 }
826 
827 /*
828  * check if the tree block can be shared by multiple trees
829  */
830 int btrfs_block_can_be_shared(struct btrfs_root *root,
831 			      struct extent_buffer *buf)
832 {
833 	/*
834 	 * Tree blocks not in shareable trees and tree roots are never shared.
835 	 * If a block was allocated after the last snapshot and the block was
836 	 * not allocated by tree relocation, we know the block is not shared.
837 	 */
838 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
839 	    buf != root->node && buf != root->commit_root &&
840 	    (btrfs_header_generation(buf) <=
841 	     btrfs_root_last_snapshot(&root->root_item) ||
842 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
843 		return 1;
844 
845 	return 0;
846 }
847 
848 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
849 				       struct btrfs_root *root,
850 				       struct extent_buffer *buf,
851 				       struct extent_buffer *cow,
852 				       int *last_ref)
853 {
854 	struct btrfs_fs_info *fs_info = root->fs_info;
855 	u64 refs;
856 	u64 owner;
857 	u64 flags;
858 	u64 new_flags = 0;
859 	int ret;
860 
861 	/*
862 	 * Backrefs update rules:
863 	 *
864 	 * Always use full backrefs for extent pointers in tree block
865 	 * allocated by tree relocation.
866 	 *
867 	 * If a shared tree block is no longer referenced by its owner
868 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
869 	 * use full backrefs for extent pointers in tree block.
870 	 *
871 	 * If a tree block is been relocating
872 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
873 	 * use full backrefs for extent pointers in tree block.
874 	 * The reason for this is some operations (such as drop tree)
875 	 * are only allowed for blocks use full backrefs.
876 	 */
877 
878 	if (btrfs_block_can_be_shared(root, buf)) {
879 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
880 					       btrfs_header_level(buf), 1,
881 					       &refs, &flags);
882 		if (ret)
883 			return ret;
884 		if (refs == 0) {
885 			ret = -EROFS;
886 			btrfs_handle_fs_error(fs_info, ret, NULL);
887 			return ret;
888 		}
889 	} else {
890 		refs = 1;
891 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
892 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
893 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
894 		else
895 			flags = 0;
896 	}
897 
898 	owner = btrfs_header_owner(buf);
899 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
900 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
901 
902 	if (refs > 1) {
903 		if ((owner == root->root_key.objectid ||
904 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
905 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
906 			ret = btrfs_inc_ref(trans, root, buf, 1);
907 			if (ret)
908 				return ret;
909 
910 			if (root->root_key.objectid ==
911 			    BTRFS_TREE_RELOC_OBJECTID) {
912 				ret = btrfs_dec_ref(trans, root, buf, 0);
913 				if (ret)
914 					return ret;
915 				ret = btrfs_inc_ref(trans, root, cow, 1);
916 				if (ret)
917 					return ret;
918 			}
919 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
920 		} else {
921 
922 			if (root->root_key.objectid ==
923 			    BTRFS_TREE_RELOC_OBJECTID)
924 				ret = btrfs_inc_ref(trans, root, cow, 1);
925 			else
926 				ret = btrfs_inc_ref(trans, root, cow, 0);
927 			if (ret)
928 				return ret;
929 		}
930 		if (new_flags != 0) {
931 			int level = btrfs_header_level(buf);
932 
933 			ret = btrfs_set_disk_extent_flags(trans, buf,
934 							  new_flags, level, 0);
935 			if (ret)
936 				return ret;
937 		}
938 	} else {
939 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
940 			if (root->root_key.objectid ==
941 			    BTRFS_TREE_RELOC_OBJECTID)
942 				ret = btrfs_inc_ref(trans, root, cow, 1);
943 			else
944 				ret = btrfs_inc_ref(trans, root, cow, 0);
945 			if (ret)
946 				return ret;
947 			ret = btrfs_dec_ref(trans, root, buf, 1);
948 			if (ret)
949 				return ret;
950 		}
951 		btrfs_clean_tree_block(buf);
952 		*last_ref = 1;
953 	}
954 	return 0;
955 }
956 
957 static struct extent_buffer *alloc_tree_block_no_bg_flush(
958 					  struct btrfs_trans_handle *trans,
959 					  struct btrfs_root *root,
960 					  u64 parent_start,
961 					  const struct btrfs_disk_key *disk_key,
962 					  int level,
963 					  u64 hint,
964 					  u64 empty_size,
965 					  enum btrfs_lock_nesting nest)
966 {
967 	struct btrfs_fs_info *fs_info = root->fs_info;
968 	struct extent_buffer *ret;
969 
970 	/*
971 	 * If we are COWing a node/leaf from the extent, chunk, device or free
972 	 * space trees, make sure that we do not finish block group creation of
973 	 * pending block groups. We do this to avoid a deadlock.
974 	 * COWing can result in allocation of a new chunk, and flushing pending
975 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
976 	 * when finishing allocation of a new chunk. Creation of a pending block
977 	 * group modifies the extent, chunk, device and free space trees,
978 	 * therefore we could deadlock with ourselves since we are holding a
979 	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
980 	 * try to COW later.
981 	 * For similar reasons, we also need to delay flushing pending block
982 	 * groups when splitting a leaf or node, from one of those trees, since
983 	 * we are holding a write lock on it and its parent or when inserting a
984 	 * new root node for one of those trees.
985 	 */
986 	if (root == fs_info->extent_root ||
987 	    root == fs_info->chunk_root ||
988 	    root == fs_info->dev_root ||
989 	    root == fs_info->free_space_root)
990 		trans->can_flush_pending_bgs = false;
991 
992 	ret = btrfs_alloc_tree_block(trans, root, parent_start,
993 				     root->root_key.objectid, disk_key, level,
994 				     hint, empty_size, nest);
995 	trans->can_flush_pending_bgs = true;
996 
997 	return ret;
998 }
999 
1000 /*
1001  * does the dirty work in cow of a single block.  The parent block (if
1002  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1003  * dirty and returned locked.  If you modify the block it needs to be marked
1004  * dirty again.
1005  *
1006  * search_start -- an allocation hint for the new block
1007  *
1008  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1009  * bytes the allocator should try to find free next to the block it returns.
1010  * This is just a hint and may be ignored by the allocator.
1011  */
1012 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1013 			     struct btrfs_root *root,
1014 			     struct extent_buffer *buf,
1015 			     struct extent_buffer *parent, int parent_slot,
1016 			     struct extent_buffer **cow_ret,
1017 			     u64 search_start, u64 empty_size,
1018 			     enum btrfs_lock_nesting nest)
1019 {
1020 	struct btrfs_fs_info *fs_info = root->fs_info;
1021 	struct btrfs_disk_key disk_key;
1022 	struct extent_buffer *cow;
1023 	int level, ret;
1024 	int last_ref = 0;
1025 	int unlock_orig = 0;
1026 	u64 parent_start = 0;
1027 
1028 	if (*cow_ret == buf)
1029 		unlock_orig = 1;
1030 
1031 	btrfs_assert_tree_locked(buf);
1032 
1033 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1034 		trans->transid != fs_info->running_transaction->transid);
1035 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1036 		trans->transid != root->last_trans);
1037 
1038 	level = btrfs_header_level(buf);
1039 
1040 	if (level == 0)
1041 		btrfs_item_key(buf, &disk_key, 0);
1042 	else
1043 		btrfs_node_key(buf, &disk_key, 0);
1044 
1045 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1046 		parent_start = parent->start;
1047 
1048 	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1049 					   level, search_start, empty_size, nest);
1050 	if (IS_ERR(cow))
1051 		return PTR_ERR(cow);
1052 
1053 	/* cow is set to blocking by btrfs_init_new_buffer */
1054 
1055 	copy_extent_buffer_full(cow, buf);
1056 	btrfs_set_header_bytenr(cow, cow->start);
1057 	btrfs_set_header_generation(cow, trans->transid);
1058 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1059 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1060 				     BTRFS_HEADER_FLAG_RELOC);
1061 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1062 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1063 	else
1064 		btrfs_set_header_owner(cow, root->root_key.objectid);
1065 
1066 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1067 
1068 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1069 	if (ret) {
1070 		btrfs_tree_unlock(cow);
1071 		free_extent_buffer(cow);
1072 		btrfs_abort_transaction(trans, ret);
1073 		return ret;
1074 	}
1075 
1076 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1077 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1078 		if (ret) {
1079 			btrfs_tree_unlock(cow);
1080 			free_extent_buffer(cow);
1081 			btrfs_abort_transaction(trans, ret);
1082 			return ret;
1083 		}
1084 	}
1085 
1086 	if (buf == root->node) {
1087 		WARN_ON(parent && parent != buf);
1088 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1089 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1090 			parent_start = buf->start;
1091 
1092 		atomic_inc(&cow->refs);
1093 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1094 		BUG_ON(ret < 0);
1095 		rcu_assign_pointer(root->node, cow);
1096 
1097 		btrfs_free_tree_block(trans, root, buf, parent_start,
1098 				      last_ref);
1099 		free_extent_buffer(buf);
1100 		add_root_to_dirty_list(root);
1101 	} else {
1102 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1103 		tree_mod_log_insert_key(parent, parent_slot,
1104 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1105 		btrfs_set_node_blockptr(parent, parent_slot,
1106 					cow->start);
1107 		btrfs_set_node_ptr_generation(parent, parent_slot,
1108 					      trans->transid);
1109 		btrfs_mark_buffer_dirty(parent);
1110 		if (last_ref) {
1111 			ret = tree_mod_log_free_eb(buf);
1112 			if (ret) {
1113 				btrfs_tree_unlock(cow);
1114 				free_extent_buffer(cow);
1115 				btrfs_abort_transaction(trans, ret);
1116 				return ret;
1117 			}
1118 		}
1119 		btrfs_free_tree_block(trans, root, buf, parent_start,
1120 				      last_ref);
1121 	}
1122 	if (unlock_orig)
1123 		btrfs_tree_unlock(buf);
1124 	free_extent_buffer_stale(buf);
1125 	btrfs_mark_buffer_dirty(cow);
1126 	*cow_ret = cow;
1127 	return 0;
1128 }
1129 
1130 /*
1131  * returns the logical address of the oldest predecessor of the given root.
1132  * entries older than time_seq are ignored.
1133  */
1134 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1135 		struct extent_buffer *eb_root, u64 time_seq)
1136 {
1137 	struct tree_mod_elem *tm;
1138 	struct tree_mod_elem *found = NULL;
1139 	u64 root_logical = eb_root->start;
1140 	int looped = 0;
1141 
1142 	if (!time_seq)
1143 		return NULL;
1144 
1145 	/*
1146 	 * the very last operation that's logged for a root is the
1147 	 * replacement operation (if it is replaced at all). this has
1148 	 * the logical address of the *new* root, making it the very
1149 	 * first operation that's logged for this root.
1150 	 */
1151 	while (1) {
1152 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1153 						time_seq);
1154 		if (!looped && !tm)
1155 			return NULL;
1156 		/*
1157 		 * if there are no tree operation for the oldest root, we simply
1158 		 * return it. this should only happen if that (old) root is at
1159 		 * level 0.
1160 		 */
1161 		if (!tm)
1162 			break;
1163 
1164 		/*
1165 		 * if there's an operation that's not a root replacement, we
1166 		 * found the oldest version of our root. normally, we'll find a
1167 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1168 		 */
1169 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1170 			break;
1171 
1172 		found = tm;
1173 		root_logical = tm->old_root.logical;
1174 		looped = 1;
1175 	}
1176 
1177 	/* if there's no old root to return, return what we found instead */
1178 	if (!found)
1179 		found = tm;
1180 
1181 	return found;
1182 }
1183 
1184 /*
1185  * tm is a pointer to the first operation to rewind within eb. then, all
1186  * previous operations will be rewound (until we reach something older than
1187  * time_seq).
1188  */
1189 static void
1190 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1191 		      u64 time_seq, struct tree_mod_elem *first_tm)
1192 {
1193 	u32 n;
1194 	struct rb_node *next;
1195 	struct tree_mod_elem *tm = first_tm;
1196 	unsigned long o_dst;
1197 	unsigned long o_src;
1198 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1199 
1200 	n = btrfs_header_nritems(eb);
1201 	read_lock(&fs_info->tree_mod_log_lock);
1202 	while (tm && tm->seq >= time_seq) {
1203 		/*
1204 		 * all the operations are recorded with the operator used for
1205 		 * the modification. as we're going backwards, we do the
1206 		 * opposite of each operation here.
1207 		 */
1208 		switch (tm->op) {
1209 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1210 			BUG_ON(tm->slot < n);
1211 			fallthrough;
1212 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1213 		case MOD_LOG_KEY_REMOVE:
1214 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1215 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1216 			btrfs_set_node_ptr_generation(eb, tm->slot,
1217 						      tm->generation);
1218 			n++;
1219 			break;
1220 		case MOD_LOG_KEY_REPLACE:
1221 			BUG_ON(tm->slot >= n);
1222 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1223 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1224 			btrfs_set_node_ptr_generation(eb, tm->slot,
1225 						      tm->generation);
1226 			break;
1227 		case MOD_LOG_KEY_ADD:
1228 			/* if a move operation is needed it's in the log */
1229 			n--;
1230 			break;
1231 		case MOD_LOG_MOVE_KEYS:
1232 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1233 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1234 			memmove_extent_buffer(eb, o_dst, o_src,
1235 					      tm->move.nr_items * p_size);
1236 			break;
1237 		case MOD_LOG_ROOT_REPLACE:
1238 			/*
1239 			 * this operation is special. for roots, this must be
1240 			 * handled explicitly before rewinding.
1241 			 * for non-roots, this operation may exist if the node
1242 			 * was a root: root A -> child B; then A gets empty and
1243 			 * B is promoted to the new root. in the mod log, we'll
1244 			 * have a root-replace operation for B, a tree block
1245 			 * that is no root. we simply ignore that operation.
1246 			 */
1247 			break;
1248 		}
1249 		next = rb_next(&tm->node);
1250 		if (!next)
1251 			break;
1252 		tm = rb_entry(next, struct tree_mod_elem, node);
1253 		if (tm->logical != first_tm->logical)
1254 			break;
1255 	}
1256 	read_unlock(&fs_info->tree_mod_log_lock);
1257 	btrfs_set_header_nritems(eb, n);
1258 }
1259 
1260 /*
1261  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1262  * is returned. If rewind operations happen, a fresh buffer is returned. The
1263  * returned buffer is always read-locked. If the returned buffer is not the
1264  * input buffer, the lock on the input buffer is released and the input buffer
1265  * is freed (its refcount is decremented).
1266  */
1267 static struct extent_buffer *
1268 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1269 		    struct extent_buffer *eb, u64 time_seq)
1270 {
1271 	struct extent_buffer *eb_rewin;
1272 	struct tree_mod_elem *tm;
1273 
1274 	if (!time_seq)
1275 		return eb;
1276 
1277 	if (btrfs_header_level(eb) == 0)
1278 		return eb;
1279 
1280 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1281 	if (!tm)
1282 		return eb;
1283 
1284 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1285 		BUG_ON(tm->slot != 0);
1286 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1287 		if (!eb_rewin) {
1288 			btrfs_tree_read_unlock(eb);
1289 			free_extent_buffer(eb);
1290 			return NULL;
1291 		}
1292 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1293 		btrfs_set_header_backref_rev(eb_rewin,
1294 					     btrfs_header_backref_rev(eb));
1295 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1296 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1297 	} else {
1298 		eb_rewin = btrfs_clone_extent_buffer(eb);
1299 		if (!eb_rewin) {
1300 			btrfs_tree_read_unlock(eb);
1301 			free_extent_buffer(eb);
1302 			return NULL;
1303 		}
1304 	}
1305 
1306 	btrfs_tree_read_unlock(eb);
1307 	free_extent_buffer(eb);
1308 
1309 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1310 				       eb_rewin, btrfs_header_level(eb_rewin));
1311 	btrfs_tree_read_lock(eb_rewin);
1312 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1313 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1314 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1315 
1316 	return eb_rewin;
1317 }
1318 
1319 /*
1320  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1321  * value. If there are no changes, the current root->root_node is returned. If
1322  * anything changed in between, there's a fresh buffer allocated on which the
1323  * rewind operations are done. In any case, the returned buffer is read locked.
1324  * Returns NULL on error (with no locks held).
1325  */
1326 static inline struct extent_buffer *
1327 get_old_root(struct btrfs_root *root, u64 time_seq)
1328 {
1329 	struct btrfs_fs_info *fs_info = root->fs_info;
1330 	struct tree_mod_elem *tm;
1331 	struct extent_buffer *eb = NULL;
1332 	struct extent_buffer *eb_root;
1333 	u64 eb_root_owner = 0;
1334 	struct extent_buffer *old;
1335 	struct tree_mod_root *old_root = NULL;
1336 	u64 old_generation = 0;
1337 	u64 logical;
1338 	int level;
1339 
1340 	eb_root = btrfs_read_lock_root_node(root);
1341 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1342 	if (!tm)
1343 		return eb_root;
1344 
1345 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1346 		old_root = &tm->old_root;
1347 		old_generation = tm->generation;
1348 		logical = old_root->logical;
1349 		level = old_root->level;
1350 	} else {
1351 		logical = eb_root->start;
1352 		level = btrfs_header_level(eb_root);
1353 	}
1354 
1355 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1356 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1357 		btrfs_tree_read_unlock(eb_root);
1358 		free_extent_buffer(eb_root);
1359 		old = read_tree_block(fs_info, logical, root->root_key.objectid,
1360 				      0, level, NULL);
1361 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1362 			if (!IS_ERR(old))
1363 				free_extent_buffer(old);
1364 			btrfs_warn(fs_info,
1365 				   "failed to read tree block %llu from get_old_root",
1366 				   logical);
1367 		} else {
1368 			eb = btrfs_clone_extent_buffer(old);
1369 			free_extent_buffer(old);
1370 		}
1371 	} else if (old_root) {
1372 		eb_root_owner = btrfs_header_owner(eb_root);
1373 		btrfs_tree_read_unlock(eb_root);
1374 		free_extent_buffer(eb_root);
1375 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1376 	} else {
1377 		eb = btrfs_clone_extent_buffer(eb_root);
1378 		btrfs_tree_read_unlock(eb_root);
1379 		free_extent_buffer(eb_root);
1380 	}
1381 
1382 	if (!eb)
1383 		return NULL;
1384 	if (old_root) {
1385 		btrfs_set_header_bytenr(eb, eb->start);
1386 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1387 		btrfs_set_header_owner(eb, eb_root_owner);
1388 		btrfs_set_header_level(eb, old_root->level);
1389 		btrfs_set_header_generation(eb, old_generation);
1390 	}
1391 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1392 				       btrfs_header_level(eb));
1393 	btrfs_tree_read_lock(eb);
1394 	if (tm)
1395 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1396 	else
1397 		WARN_ON(btrfs_header_level(eb) != 0);
1398 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1399 
1400 	return eb;
1401 }
1402 
1403 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1404 {
1405 	struct tree_mod_elem *tm;
1406 	int level;
1407 	struct extent_buffer *eb_root = btrfs_root_node(root);
1408 
1409 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1410 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1411 		level = tm->old_root.level;
1412 	} else {
1413 		level = btrfs_header_level(eb_root);
1414 	}
1415 	free_extent_buffer(eb_root);
1416 
1417 	return level;
1418 }
1419 
1420 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1421 				   struct btrfs_root *root,
1422 				   struct extent_buffer *buf)
1423 {
1424 	if (btrfs_is_testing(root->fs_info))
1425 		return 0;
1426 
1427 	/* Ensure we can see the FORCE_COW bit */
1428 	smp_mb__before_atomic();
1429 
1430 	/*
1431 	 * We do not need to cow a block if
1432 	 * 1) this block is not created or changed in this transaction;
1433 	 * 2) this block does not belong to TREE_RELOC tree;
1434 	 * 3) the root is not forced COW.
1435 	 *
1436 	 * What is forced COW:
1437 	 *    when we create snapshot during committing the transaction,
1438 	 *    after we've finished copying src root, we must COW the shared
1439 	 *    block to ensure the metadata consistency.
1440 	 */
1441 	if (btrfs_header_generation(buf) == trans->transid &&
1442 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1443 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1444 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1445 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1446 		return 0;
1447 	return 1;
1448 }
1449 
1450 /*
1451  * cows a single block, see __btrfs_cow_block for the real work.
1452  * This version of it has extra checks so that a block isn't COWed more than
1453  * once per transaction, as long as it hasn't been written yet
1454  */
1455 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1456 		    struct btrfs_root *root, struct extent_buffer *buf,
1457 		    struct extent_buffer *parent, int parent_slot,
1458 		    struct extent_buffer **cow_ret,
1459 		    enum btrfs_lock_nesting nest)
1460 {
1461 	struct btrfs_fs_info *fs_info = root->fs_info;
1462 	u64 search_start;
1463 	int ret;
1464 
1465 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1466 		btrfs_err(fs_info,
1467 			"COW'ing blocks on a fs root that's being dropped");
1468 
1469 	if (trans->transaction != fs_info->running_transaction)
1470 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1471 		       trans->transid,
1472 		       fs_info->running_transaction->transid);
1473 
1474 	if (trans->transid != fs_info->generation)
1475 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1476 		       trans->transid, fs_info->generation);
1477 
1478 	if (!should_cow_block(trans, root, buf)) {
1479 		trans->dirty = true;
1480 		*cow_ret = buf;
1481 		return 0;
1482 	}
1483 
1484 	search_start = buf->start & ~((u64)SZ_1G - 1);
1485 
1486 	/*
1487 	 * Before CoWing this block for later modification, check if it's
1488 	 * the subtree root and do the delayed subtree trace if needed.
1489 	 *
1490 	 * Also We don't care about the error, as it's handled internally.
1491 	 */
1492 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1493 	ret = __btrfs_cow_block(trans, root, buf, parent,
1494 				 parent_slot, cow_ret, search_start, 0, nest);
1495 
1496 	trace_btrfs_cow_block(root, buf, *cow_ret);
1497 
1498 	return ret;
1499 }
1500 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
1501 
1502 /*
1503  * helper function for defrag to decide if two blocks pointed to by a
1504  * node are actually close by
1505  */
1506 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1507 {
1508 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1509 		return 1;
1510 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1511 		return 1;
1512 	return 0;
1513 }
1514 
1515 #ifdef __LITTLE_ENDIAN
1516 
1517 /*
1518  * Compare two keys, on little-endian the disk order is same as CPU order and
1519  * we can avoid the conversion.
1520  */
1521 static int comp_keys(const struct btrfs_disk_key *disk_key,
1522 		     const struct btrfs_key *k2)
1523 {
1524 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1525 
1526 	return btrfs_comp_cpu_keys(k1, k2);
1527 }
1528 
1529 #else
1530 
1531 /*
1532  * compare two keys in a memcmp fashion
1533  */
1534 static int comp_keys(const struct btrfs_disk_key *disk,
1535 		     const struct btrfs_key *k2)
1536 {
1537 	struct btrfs_key k1;
1538 
1539 	btrfs_disk_key_to_cpu(&k1, disk);
1540 
1541 	return btrfs_comp_cpu_keys(&k1, k2);
1542 }
1543 #endif
1544 
1545 /*
1546  * same as comp_keys only with two btrfs_key's
1547  */
1548 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1549 {
1550 	if (k1->objectid > k2->objectid)
1551 		return 1;
1552 	if (k1->objectid < k2->objectid)
1553 		return -1;
1554 	if (k1->type > k2->type)
1555 		return 1;
1556 	if (k1->type < k2->type)
1557 		return -1;
1558 	if (k1->offset > k2->offset)
1559 		return 1;
1560 	if (k1->offset < k2->offset)
1561 		return -1;
1562 	return 0;
1563 }
1564 
1565 /*
1566  * this is used by the defrag code to go through all the
1567  * leaves pointed to by a node and reallocate them so that
1568  * disk order is close to key order
1569  */
1570 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1571 		       struct btrfs_root *root, struct extent_buffer *parent,
1572 		       int start_slot, u64 *last_ret,
1573 		       struct btrfs_key *progress)
1574 {
1575 	struct btrfs_fs_info *fs_info = root->fs_info;
1576 	struct extent_buffer *cur;
1577 	u64 blocknr;
1578 	u64 search_start = *last_ret;
1579 	u64 last_block = 0;
1580 	u64 other;
1581 	u32 parent_nritems;
1582 	int end_slot;
1583 	int i;
1584 	int err = 0;
1585 	u32 blocksize;
1586 	int progress_passed = 0;
1587 	struct btrfs_disk_key disk_key;
1588 
1589 	WARN_ON(trans->transaction != fs_info->running_transaction);
1590 	WARN_ON(trans->transid != fs_info->generation);
1591 
1592 	parent_nritems = btrfs_header_nritems(parent);
1593 	blocksize = fs_info->nodesize;
1594 	end_slot = parent_nritems - 1;
1595 
1596 	if (parent_nritems <= 1)
1597 		return 0;
1598 
1599 	for (i = start_slot; i <= end_slot; i++) {
1600 		int close = 1;
1601 
1602 		btrfs_node_key(parent, &disk_key, i);
1603 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1604 			continue;
1605 
1606 		progress_passed = 1;
1607 		blocknr = btrfs_node_blockptr(parent, i);
1608 		if (last_block == 0)
1609 			last_block = blocknr;
1610 
1611 		if (i > 0) {
1612 			other = btrfs_node_blockptr(parent, i - 1);
1613 			close = close_blocks(blocknr, other, blocksize);
1614 		}
1615 		if (!close && i < end_slot) {
1616 			other = btrfs_node_blockptr(parent, i + 1);
1617 			close = close_blocks(blocknr, other, blocksize);
1618 		}
1619 		if (close) {
1620 			last_block = blocknr;
1621 			continue;
1622 		}
1623 
1624 		cur = btrfs_read_node_slot(parent, i);
1625 		if (IS_ERR(cur))
1626 			return PTR_ERR(cur);
1627 		if (search_start == 0)
1628 			search_start = last_block;
1629 
1630 		btrfs_tree_lock(cur);
1631 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1632 					&cur, search_start,
1633 					min(16 * blocksize,
1634 					    (end_slot - i) * blocksize),
1635 					BTRFS_NESTING_COW);
1636 		if (err) {
1637 			btrfs_tree_unlock(cur);
1638 			free_extent_buffer(cur);
1639 			break;
1640 		}
1641 		search_start = cur->start;
1642 		last_block = cur->start;
1643 		*last_ret = search_start;
1644 		btrfs_tree_unlock(cur);
1645 		free_extent_buffer(cur);
1646 	}
1647 	return err;
1648 }
1649 
1650 /*
1651  * search for key in the extent_buffer.  The items start at offset p,
1652  * and they are item_size apart.  There are 'max' items in p.
1653  *
1654  * the slot in the array is returned via slot, and it points to
1655  * the place where you would insert key if it is not found in
1656  * the array.
1657  *
1658  * slot may point to max if the key is bigger than all of the keys
1659  */
1660 static noinline int generic_bin_search(struct extent_buffer *eb,
1661 				       unsigned long p, int item_size,
1662 				       const struct btrfs_key *key,
1663 				       int max, int *slot)
1664 {
1665 	int low = 0;
1666 	int high = max;
1667 	int ret;
1668 	const int key_size = sizeof(struct btrfs_disk_key);
1669 
1670 	if (low > high) {
1671 		btrfs_err(eb->fs_info,
1672 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1673 			  __func__, low, high, eb->start,
1674 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1675 		return -EINVAL;
1676 	}
1677 
1678 	while (low < high) {
1679 		unsigned long oip;
1680 		unsigned long offset;
1681 		struct btrfs_disk_key *tmp;
1682 		struct btrfs_disk_key unaligned;
1683 		int mid;
1684 
1685 		mid = (low + high) / 2;
1686 		offset = p + mid * item_size;
1687 		oip = offset_in_page(offset);
1688 
1689 		if (oip + key_size <= PAGE_SIZE) {
1690 			const unsigned long idx = get_eb_page_index(offset);
1691 			char *kaddr = page_address(eb->pages[idx]);
1692 
1693 			oip = get_eb_offset_in_page(eb, offset);
1694 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1695 		} else {
1696 			read_extent_buffer(eb, &unaligned, offset, key_size);
1697 			tmp = &unaligned;
1698 		}
1699 
1700 		ret = comp_keys(tmp, key);
1701 
1702 		if (ret < 0)
1703 			low = mid + 1;
1704 		else if (ret > 0)
1705 			high = mid;
1706 		else {
1707 			*slot = mid;
1708 			return 0;
1709 		}
1710 	}
1711 	*slot = low;
1712 	return 1;
1713 }
1714 
1715 /*
1716  * simple bin_search frontend that does the right thing for
1717  * leaves vs nodes
1718  */
1719 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1720 		     int *slot)
1721 {
1722 	if (btrfs_header_level(eb) == 0)
1723 		return generic_bin_search(eb,
1724 					  offsetof(struct btrfs_leaf, items),
1725 					  sizeof(struct btrfs_item),
1726 					  key, btrfs_header_nritems(eb),
1727 					  slot);
1728 	else
1729 		return generic_bin_search(eb,
1730 					  offsetof(struct btrfs_node, ptrs),
1731 					  sizeof(struct btrfs_key_ptr),
1732 					  key, btrfs_header_nritems(eb),
1733 					  slot);
1734 }
1735 
1736 static void root_add_used(struct btrfs_root *root, u32 size)
1737 {
1738 	spin_lock(&root->accounting_lock);
1739 	btrfs_set_root_used(&root->root_item,
1740 			    btrfs_root_used(&root->root_item) + size);
1741 	spin_unlock(&root->accounting_lock);
1742 }
1743 
1744 static void root_sub_used(struct btrfs_root *root, u32 size)
1745 {
1746 	spin_lock(&root->accounting_lock);
1747 	btrfs_set_root_used(&root->root_item,
1748 			    btrfs_root_used(&root->root_item) - size);
1749 	spin_unlock(&root->accounting_lock);
1750 }
1751 
1752 /* given a node and slot number, this reads the blocks it points to.  The
1753  * extent buffer is returned with a reference taken (but unlocked).
1754  */
1755 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1756 					   int slot)
1757 {
1758 	int level = btrfs_header_level(parent);
1759 	struct extent_buffer *eb;
1760 	struct btrfs_key first_key;
1761 
1762 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1763 		return ERR_PTR(-ENOENT);
1764 
1765 	BUG_ON(level == 0);
1766 
1767 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1768 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1769 			     btrfs_header_owner(parent),
1770 			     btrfs_node_ptr_generation(parent, slot),
1771 			     level - 1, &first_key);
1772 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1773 		free_extent_buffer(eb);
1774 		eb = ERR_PTR(-EIO);
1775 	}
1776 
1777 	return eb;
1778 }
1779 
1780 /*
1781  * node level balancing, used to make sure nodes are in proper order for
1782  * item deletion.  We balance from the top down, so we have to make sure
1783  * that a deletion won't leave an node completely empty later on.
1784  */
1785 static noinline int balance_level(struct btrfs_trans_handle *trans,
1786 			 struct btrfs_root *root,
1787 			 struct btrfs_path *path, int level)
1788 {
1789 	struct btrfs_fs_info *fs_info = root->fs_info;
1790 	struct extent_buffer *right = NULL;
1791 	struct extent_buffer *mid;
1792 	struct extent_buffer *left = NULL;
1793 	struct extent_buffer *parent = NULL;
1794 	int ret = 0;
1795 	int wret;
1796 	int pslot;
1797 	int orig_slot = path->slots[level];
1798 	u64 orig_ptr;
1799 
1800 	ASSERT(level > 0);
1801 
1802 	mid = path->nodes[level];
1803 
1804 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1805 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1806 
1807 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1808 
1809 	if (level < BTRFS_MAX_LEVEL - 1) {
1810 		parent = path->nodes[level + 1];
1811 		pslot = path->slots[level + 1];
1812 	}
1813 
1814 	/*
1815 	 * deal with the case where there is only one pointer in the root
1816 	 * by promoting the node below to a root
1817 	 */
1818 	if (!parent) {
1819 		struct extent_buffer *child;
1820 
1821 		if (btrfs_header_nritems(mid) != 1)
1822 			return 0;
1823 
1824 		/* promote the child to a root */
1825 		child = btrfs_read_node_slot(mid, 0);
1826 		if (IS_ERR(child)) {
1827 			ret = PTR_ERR(child);
1828 			btrfs_handle_fs_error(fs_info, ret, NULL);
1829 			goto enospc;
1830 		}
1831 
1832 		btrfs_tree_lock(child);
1833 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1834 				      BTRFS_NESTING_COW);
1835 		if (ret) {
1836 			btrfs_tree_unlock(child);
1837 			free_extent_buffer(child);
1838 			goto enospc;
1839 		}
1840 
1841 		ret = tree_mod_log_insert_root(root->node, child, 1);
1842 		BUG_ON(ret < 0);
1843 		rcu_assign_pointer(root->node, child);
1844 
1845 		add_root_to_dirty_list(root);
1846 		btrfs_tree_unlock(child);
1847 
1848 		path->locks[level] = 0;
1849 		path->nodes[level] = NULL;
1850 		btrfs_clean_tree_block(mid);
1851 		btrfs_tree_unlock(mid);
1852 		/* once for the path */
1853 		free_extent_buffer(mid);
1854 
1855 		root_sub_used(root, mid->len);
1856 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1857 		/* once for the root ptr */
1858 		free_extent_buffer_stale(mid);
1859 		return 0;
1860 	}
1861 	if (btrfs_header_nritems(mid) >
1862 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1863 		return 0;
1864 
1865 	left = btrfs_read_node_slot(parent, pslot - 1);
1866 	if (IS_ERR(left))
1867 		left = NULL;
1868 
1869 	if (left) {
1870 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1871 		wret = btrfs_cow_block(trans, root, left,
1872 				       parent, pslot - 1, &left,
1873 				       BTRFS_NESTING_LEFT_COW);
1874 		if (wret) {
1875 			ret = wret;
1876 			goto enospc;
1877 		}
1878 	}
1879 
1880 	right = btrfs_read_node_slot(parent, pslot + 1);
1881 	if (IS_ERR(right))
1882 		right = NULL;
1883 
1884 	if (right) {
1885 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1886 		wret = btrfs_cow_block(trans, root, right,
1887 				       parent, pslot + 1, &right,
1888 				       BTRFS_NESTING_RIGHT_COW);
1889 		if (wret) {
1890 			ret = wret;
1891 			goto enospc;
1892 		}
1893 	}
1894 
1895 	/* first, try to make some room in the middle buffer */
1896 	if (left) {
1897 		orig_slot += btrfs_header_nritems(left);
1898 		wret = push_node_left(trans, left, mid, 1);
1899 		if (wret < 0)
1900 			ret = wret;
1901 	}
1902 
1903 	/*
1904 	 * then try to empty the right most buffer into the middle
1905 	 */
1906 	if (right) {
1907 		wret = push_node_left(trans, mid, right, 1);
1908 		if (wret < 0 && wret != -ENOSPC)
1909 			ret = wret;
1910 		if (btrfs_header_nritems(right) == 0) {
1911 			btrfs_clean_tree_block(right);
1912 			btrfs_tree_unlock(right);
1913 			del_ptr(root, path, level + 1, pslot + 1);
1914 			root_sub_used(root, right->len);
1915 			btrfs_free_tree_block(trans, root, right, 0, 1);
1916 			free_extent_buffer_stale(right);
1917 			right = NULL;
1918 		} else {
1919 			struct btrfs_disk_key right_key;
1920 			btrfs_node_key(right, &right_key, 0);
1921 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1922 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1923 			BUG_ON(ret < 0);
1924 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1925 			btrfs_mark_buffer_dirty(parent);
1926 		}
1927 	}
1928 	if (btrfs_header_nritems(mid) == 1) {
1929 		/*
1930 		 * we're not allowed to leave a node with one item in the
1931 		 * tree during a delete.  A deletion from lower in the tree
1932 		 * could try to delete the only pointer in this node.
1933 		 * So, pull some keys from the left.
1934 		 * There has to be a left pointer at this point because
1935 		 * otherwise we would have pulled some pointers from the
1936 		 * right
1937 		 */
1938 		if (!left) {
1939 			ret = -EROFS;
1940 			btrfs_handle_fs_error(fs_info, ret, NULL);
1941 			goto enospc;
1942 		}
1943 		wret = balance_node_right(trans, mid, left);
1944 		if (wret < 0) {
1945 			ret = wret;
1946 			goto enospc;
1947 		}
1948 		if (wret == 1) {
1949 			wret = push_node_left(trans, left, mid, 1);
1950 			if (wret < 0)
1951 				ret = wret;
1952 		}
1953 		BUG_ON(wret == 1);
1954 	}
1955 	if (btrfs_header_nritems(mid) == 0) {
1956 		btrfs_clean_tree_block(mid);
1957 		btrfs_tree_unlock(mid);
1958 		del_ptr(root, path, level + 1, pslot);
1959 		root_sub_used(root, mid->len);
1960 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1961 		free_extent_buffer_stale(mid);
1962 		mid = NULL;
1963 	} else {
1964 		/* update the parent key to reflect our changes */
1965 		struct btrfs_disk_key mid_key;
1966 		btrfs_node_key(mid, &mid_key, 0);
1967 		ret = tree_mod_log_insert_key(parent, pslot,
1968 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1969 		BUG_ON(ret < 0);
1970 		btrfs_set_node_key(parent, &mid_key, pslot);
1971 		btrfs_mark_buffer_dirty(parent);
1972 	}
1973 
1974 	/* update the path */
1975 	if (left) {
1976 		if (btrfs_header_nritems(left) > orig_slot) {
1977 			atomic_inc(&left->refs);
1978 			/* left was locked after cow */
1979 			path->nodes[level] = left;
1980 			path->slots[level + 1] -= 1;
1981 			path->slots[level] = orig_slot;
1982 			if (mid) {
1983 				btrfs_tree_unlock(mid);
1984 				free_extent_buffer(mid);
1985 			}
1986 		} else {
1987 			orig_slot -= btrfs_header_nritems(left);
1988 			path->slots[level] = orig_slot;
1989 		}
1990 	}
1991 	/* double check we haven't messed things up */
1992 	if (orig_ptr !=
1993 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1994 		BUG();
1995 enospc:
1996 	if (right) {
1997 		btrfs_tree_unlock(right);
1998 		free_extent_buffer(right);
1999 	}
2000 	if (left) {
2001 		if (path->nodes[level] != left)
2002 			btrfs_tree_unlock(left);
2003 		free_extent_buffer(left);
2004 	}
2005 	return ret;
2006 }
2007 
2008 /* Node balancing for insertion.  Here we only split or push nodes around
2009  * when they are completely full.  This is also done top down, so we
2010  * have to be pessimistic.
2011  */
2012 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2013 					  struct btrfs_root *root,
2014 					  struct btrfs_path *path, int level)
2015 {
2016 	struct btrfs_fs_info *fs_info = root->fs_info;
2017 	struct extent_buffer *right = NULL;
2018 	struct extent_buffer *mid;
2019 	struct extent_buffer *left = NULL;
2020 	struct extent_buffer *parent = NULL;
2021 	int ret = 0;
2022 	int wret;
2023 	int pslot;
2024 	int orig_slot = path->slots[level];
2025 
2026 	if (level == 0)
2027 		return 1;
2028 
2029 	mid = path->nodes[level];
2030 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2031 
2032 	if (level < BTRFS_MAX_LEVEL - 1) {
2033 		parent = path->nodes[level + 1];
2034 		pslot = path->slots[level + 1];
2035 	}
2036 
2037 	if (!parent)
2038 		return 1;
2039 
2040 	left = btrfs_read_node_slot(parent, pslot - 1);
2041 	if (IS_ERR(left))
2042 		left = NULL;
2043 
2044 	/* first, try to make some room in the middle buffer */
2045 	if (left) {
2046 		u32 left_nr;
2047 
2048 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
2049 
2050 		left_nr = btrfs_header_nritems(left);
2051 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2052 			wret = 1;
2053 		} else {
2054 			ret = btrfs_cow_block(trans, root, left, parent,
2055 					      pslot - 1, &left,
2056 					      BTRFS_NESTING_LEFT_COW);
2057 			if (ret)
2058 				wret = 1;
2059 			else {
2060 				wret = push_node_left(trans, left, mid, 0);
2061 			}
2062 		}
2063 		if (wret < 0)
2064 			ret = wret;
2065 		if (wret == 0) {
2066 			struct btrfs_disk_key disk_key;
2067 			orig_slot += left_nr;
2068 			btrfs_node_key(mid, &disk_key, 0);
2069 			ret = tree_mod_log_insert_key(parent, pslot,
2070 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2071 			BUG_ON(ret < 0);
2072 			btrfs_set_node_key(parent, &disk_key, pslot);
2073 			btrfs_mark_buffer_dirty(parent);
2074 			if (btrfs_header_nritems(left) > orig_slot) {
2075 				path->nodes[level] = left;
2076 				path->slots[level + 1] -= 1;
2077 				path->slots[level] = orig_slot;
2078 				btrfs_tree_unlock(mid);
2079 				free_extent_buffer(mid);
2080 			} else {
2081 				orig_slot -=
2082 					btrfs_header_nritems(left);
2083 				path->slots[level] = orig_slot;
2084 				btrfs_tree_unlock(left);
2085 				free_extent_buffer(left);
2086 			}
2087 			return 0;
2088 		}
2089 		btrfs_tree_unlock(left);
2090 		free_extent_buffer(left);
2091 	}
2092 	right = btrfs_read_node_slot(parent, pslot + 1);
2093 	if (IS_ERR(right))
2094 		right = NULL;
2095 
2096 	/*
2097 	 * then try to empty the right most buffer into the middle
2098 	 */
2099 	if (right) {
2100 		u32 right_nr;
2101 
2102 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2103 
2104 		right_nr = btrfs_header_nritems(right);
2105 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2106 			wret = 1;
2107 		} else {
2108 			ret = btrfs_cow_block(trans, root, right,
2109 					      parent, pslot + 1,
2110 					      &right, BTRFS_NESTING_RIGHT_COW);
2111 			if (ret)
2112 				wret = 1;
2113 			else {
2114 				wret = balance_node_right(trans, right, mid);
2115 			}
2116 		}
2117 		if (wret < 0)
2118 			ret = wret;
2119 		if (wret == 0) {
2120 			struct btrfs_disk_key disk_key;
2121 
2122 			btrfs_node_key(right, &disk_key, 0);
2123 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2124 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2125 			BUG_ON(ret < 0);
2126 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2127 			btrfs_mark_buffer_dirty(parent);
2128 
2129 			if (btrfs_header_nritems(mid) <= orig_slot) {
2130 				path->nodes[level] = right;
2131 				path->slots[level + 1] += 1;
2132 				path->slots[level] = orig_slot -
2133 					btrfs_header_nritems(mid);
2134 				btrfs_tree_unlock(mid);
2135 				free_extent_buffer(mid);
2136 			} else {
2137 				btrfs_tree_unlock(right);
2138 				free_extent_buffer(right);
2139 			}
2140 			return 0;
2141 		}
2142 		btrfs_tree_unlock(right);
2143 		free_extent_buffer(right);
2144 	}
2145 	return 1;
2146 }
2147 
2148 /*
2149  * readahead one full node of leaves, finding things that are close
2150  * to the block in 'slot', and triggering ra on them.
2151  */
2152 static void reada_for_search(struct btrfs_fs_info *fs_info,
2153 			     struct btrfs_path *path,
2154 			     int level, int slot, u64 objectid)
2155 {
2156 	struct extent_buffer *node;
2157 	struct btrfs_disk_key disk_key;
2158 	u32 nritems;
2159 	u64 search;
2160 	u64 target;
2161 	u64 nread = 0;
2162 	struct extent_buffer *eb;
2163 	u32 nr;
2164 	u32 blocksize;
2165 	u32 nscan = 0;
2166 
2167 	if (level != 1)
2168 		return;
2169 
2170 	if (!path->nodes[level])
2171 		return;
2172 
2173 	node = path->nodes[level];
2174 
2175 	search = btrfs_node_blockptr(node, slot);
2176 	blocksize = fs_info->nodesize;
2177 	eb = find_extent_buffer(fs_info, search);
2178 	if (eb) {
2179 		free_extent_buffer(eb);
2180 		return;
2181 	}
2182 
2183 	target = search;
2184 
2185 	nritems = btrfs_header_nritems(node);
2186 	nr = slot;
2187 
2188 	while (1) {
2189 		if (path->reada == READA_BACK) {
2190 			if (nr == 0)
2191 				break;
2192 			nr--;
2193 		} else if (path->reada == READA_FORWARD) {
2194 			nr++;
2195 			if (nr >= nritems)
2196 				break;
2197 		}
2198 		if (path->reada == READA_BACK && objectid) {
2199 			btrfs_node_key(node, &disk_key, nr);
2200 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2201 				break;
2202 		}
2203 		search = btrfs_node_blockptr(node, nr);
2204 		if ((search <= target && target - search <= 65536) ||
2205 		    (search > target && search - target <= 65536)) {
2206 			btrfs_readahead_node_child(node, nr);
2207 			nread += blocksize;
2208 		}
2209 		nscan++;
2210 		if ((nread > 65536 || nscan > 32))
2211 			break;
2212 	}
2213 }
2214 
2215 static noinline void reada_for_balance(struct btrfs_path *path, int level)
2216 {
2217 	struct extent_buffer *parent;
2218 	int slot;
2219 	int nritems;
2220 
2221 	parent = path->nodes[level + 1];
2222 	if (!parent)
2223 		return;
2224 
2225 	nritems = btrfs_header_nritems(parent);
2226 	slot = path->slots[level + 1];
2227 
2228 	if (slot > 0)
2229 		btrfs_readahead_node_child(parent, slot - 1);
2230 	if (slot + 1 < nritems)
2231 		btrfs_readahead_node_child(parent, slot + 1);
2232 }
2233 
2234 
2235 /*
2236  * when we walk down the tree, it is usually safe to unlock the higher layers
2237  * in the tree.  The exceptions are when our path goes through slot 0, because
2238  * operations on the tree might require changing key pointers higher up in the
2239  * tree.
2240  *
2241  * callers might also have set path->keep_locks, which tells this code to keep
2242  * the lock if the path points to the last slot in the block.  This is part of
2243  * walking through the tree, and selecting the next slot in the higher block.
2244  *
2245  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2246  * if lowest_unlock is 1, level 0 won't be unlocked
2247  */
2248 static noinline void unlock_up(struct btrfs_path *path, int level,
2249 			       int lowest_unlock, int min_write_lock_level,
2250 			       int *write_lock_level)
2251 {
2252 	int i;
2253 	int skip_level = level;
2254 	int no_skips = 0;
2255 	struct extent_buffer *t;
2256 
2257 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2258 		if (!path->nodes[i])
2259 			break;
2260 		if (!path->locks[i])
2261 			break;
2262 		if (!no_skips && path->slots[i] == 0) {
2263 			skip_level = i + 1;
2264 			continue;
2265 		}
2266 		if (!no_skips && path->keep_locks) {
2267 			u32 nritems;
2268 			t = path->nodes[i];
2269 			nritems = btrfs_header_nritems(t);
2270 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2271 				skip_level = i + 1;
2272 				continue;
2273 			}
2274 		}
2275 		if (skip_level < i && i >= lowest_unlock)
2276 			no_skips = 1;
2277 
2278 		t = path->nodes[i];
2279 		if (i >= lowest_unlock && i > skip_level) {
2280 			btrfs_tree_unlock_rw(t, path->locks[i]);
2281 			path->locks[i] = 0;
2282 			if (write_lock_level &&
2283 			    i > min_write_lock_level &&
2284 			    i <= *write_lock_level) {
2285 				*write_lock_level = i - 1;
2286 			}
2287 		}
2288 	}
2289 }
2290 
2291 /*
2292  * helper function for btrfs_search_slot.  The goal is to find a block
2293  * in cache without setting the path to blocking.  If we find the block
2294  * we return zero and the path is unchanged.
2295  *
2296  * If we can't find the block, we set the path blocking and do some
2297  * reada.  -EAGAIN is returned and the search must be repeated.
2298  */
2299 static int
2300 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2301 		      struct extent_buffer **eb_ret, int level, int slot,
2302 		      const struct btrfs_key *key)
2303 {
2304 	struct btrfs_fs_info *fs_info = root->fs_info;
2305 	u64 blocknr;
2306 	u64 gen;
2307 	struct extent_buffer *tmp;
2308 	struct btrfs_key first_key;
2309 	int ret;
2310 	int parent_level;
2311 
2312 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
2313 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
2314 	parent_level = btrfs_header_level(*eb_ret);
2315 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2316 
2317 	tmp = find_extent_buffer(fs_info, blocknr);
2318 	if (tmp) {
2319 		/* first we do an atomic uptodate check */
2320 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2321 			/*
2322 			 * Do extra check for first_key, eb can be stale due to
2323 			 * being cached, read from scrub, or have multiple
2324 			 * parents (shared tree blocks).
2325 			 */
2326 			if (btrfs_verify_level_key(tmp,
2327 					parent_level - 1, &first_key, gen)) {
2328 				free_extent_buffer(tmp);
2329 				return -EUCLEAN;
2330 			}
2331 			*eb_ret = tmp;
2332 			return 0;
2333 		}
2334 
2335 		/* now we're allowed to do a blocking uptodate check */
2336 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2337 		if (!ret) {
2338 			*eb_ret = tmp;
2339 			return 0;
2340 		}
2341 		free_extent_buffer(tmp);
2342 		btrfs_release_path(p);
2343 		return -EIO;
2344 	}
2345 
2346 	/*
2347 	 * reduce lock contention at high levels
2348 	 * of the btree by dropping locks before
2349 	 * we read.  Don't release the lock on the current
2350 	 * level because we need to walk this node to figure
2351 	 * out which blocks to read.
2352 	 */
2353 	btrfs_unlock_up_safe(p, level + 1);
2354 
2355 	if (p->reada != READA_NONE)
2356 		reada_for_search(fs_info, p, level, slot, key->objectid);
2357 
2358 	ret = -EAGAIN;
2359 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
2360 			      gen, parent_level - 1, &first_key);
2361 	if (!IS_ERR(tmp)) {
2362 		/*
2363 		 * If the read above didn't mark this buffer up to date,
2364 		 * it will never end up being up to date.  Set ret to EIO now
2365 		 * and give up so that our caller doesn't loop forever
2366 		 * on our EAGAINs.
2367 		 */
2368 		if (!extent_buffer_uptodate(tmp))
2369 			ret = -EIO;
2370 		free_extent_buffer(tmp);
2371 	} else {
2372 		ret = PTR_ERR(tmp);
2373 	}
2374 
2375 	btrfs_release_path(p);
2376 	return ret;
2377 }
2378 
2379 /*
2380  * helper function for btrfs_search_slot.  This does all of the checks
2381  * for node-level blocks and does any balancing required based on
2382  * the ins_len.
2383  *
2384  * If no extra work was required, zero is returned.  If we had to
2385  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2386  * start over
2387  */
2388 static int
2389 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2390 		       struct btrfs_root *root, struct btrfs_path *p,
2391 		       struct extent_buffer *b, int level, int ins_len,
2392 		       int *write_lock_level)
2393 {
2394 	struct btrfs_fs_info *fs_info = root->fs_info;
2395 	int ret = 0;
2396 
2397 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2398 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2399 
2400 		if (*write_lock_level < level + 1) {
2401 			*write_lock_level = level + 1;
2402 			btrfs_release_path(p);
2403 			return -EAGAIN;
2404 		}
2405 
2406 		reada_for_balance(p, level);
2407 		ret = split_node(trans, root, p, level);
2408 
2409 		b = p->nodes[level];
2410 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2411 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2412 
2413 		if (*write_lock_level < level + 1) {
2414 			*write_lock_level = level + 1;
2415 			btrfs_release_path(p);
2416 			return -EAGAIN;
2417 		}
2418 
2419 		reada_for_balance(p, level);
2420 		ret = balance_level(trans, root, p, level);
2421 		if (ret)
2422 			return ret;
2423 
2424 		b = p->nodes[level];
2425 		if (!b) {
2426 			btrfs_release_path(p);
2427 			return -EAGAIN;
2428 		}
2429 		BUG_ON(btrfs_header_nritems(b) == 1);
2430 	}
2431 	return ret;
2432 }
2433 
2434 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2435 		u64 iobjectid, u64 ioff, u8 key_type,
2436 		struct btrfs_key *found_key)
2437 {
2438 	int ret;
2439 	struct btrfs_key key;
2440 	struct extent_buffer *eb;
2441 
2442 	ASSERT(path);
2443 	ASSERT(found_key);
2444 
2445 	key.type = key_type;
2446 	key.objectid = iobjectid;
2447 	key.offset = ioff;
2448 
2449 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2450 	if (ret < 0)
2451 		return ret;
2452 
2453 	eb = path->nodes[0];
2454 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2455 		ret = btrfs_next_leaf(fs_root, path);
2456 		if (ret)
2457 			return ret;
2458 		eb = path->nodes[0];
2459 	}
2460 
2461 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2462 	if (found_key->type != key.type ||
2463 			found_key->objectid != key.objectid)
2464 		return 1;
2465 
2466 	return 0;
2467 }
2468 
2469 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2470 							struct btrfs_path *p,
2471 							int write_lock_level)
2472 {
2473 	struct btrfs_fs_info *fs_info = root->fs_info;
2474 	struct extent_buffer *b;
2475 	int root_lock;
2476 	int level = 0;
2477 
2478 	/* We try very hard to do read locks on the root */
2479 	root_lock = BTRFS_READ_LOCK;
2480 
2481 	if (p->search_commit_root) {
2482 		/*
2483 		 * The commit roots are read only so we always do read locks,
2484 		 * and we always must hold the commit_root_sem when doing
2485 		 * searches on them, the only exception is send where we don't
2486 		 * want to block transaction commits for a long time, so
2487 		 * we need to clone the commit root in order to avoid races
2488 		 * with transaction commits that create a snapshot of one of
2489 		 * the roots used by a send operation.
2490 		 */
2491 		if (p->need_commit_sem) {
2492 			down_read(&fs_info->commit_root_sem);
2493 			b = btrfs_clone_extent_buffer(root->commit_root);
2494 			up_read(&fs_info->commit_root_sem);
2495 			if (!b)
2496 				return ERR_PTR(-ENOMEM);
2497 
2498 		} else {
2499 			b = root->commit_root;
2500 			atomic_inc(&b->refs);
2501 		}
2502 		level = btrfs_header_level(b);
2503 		/*
2504 		 * Ensure that all callers have set skip_locking when
2505 		 * p->search_commit_root = 1.
2506 		 */
2507 		ASSERT(p->skip_locking == 1);
2508 
2509 		goto out;
2510 	}
2511 
2512 	if (p->skip_locking) {
2513 		b = btrfs_root_node(root);
2514 		level = btrfs_header_level(b);
2515 		goto out;
2516 	}
2517 
2518 	/*
2519 	 * If the level is set to maximum, we can skip trying to get the read
2520 	 * lock.
2521 	 */
2522 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2523 		/*
2524 		 * We don't know the level of the root node until we actually
2525 		 * have it read locked
2526 		 */
2527 		b = btrfs_read_lock_root_node(root);
2528 		level = btrfs_header_level(b);
2529 		if (level > write_lock_level)
2530 			goto out;
2531 
2532 		/* Whoops, must trade for write lock */
2533 		btrfs_tree_read_unlock(b);
2534 		free_extent_buffer(b);
2535 	}
2536 
2537 	b = btrfs_lock_root_node(root);
2538 	root_lock = BTRFS_WRITE_LOCK;
2539 
2540 	/* The level might have changed, check again */
2541 	level = btrfs_header_level(b);
2542 
2543 out:
2544 	p->nodes[level] = b;
2545 	if (!p->skip_locking)
2546 		p->locks[level] = root_lock;
2547 	/*
2548 	 * Callers are responsible for dropping b's references.
2549 	 */
2550 	return b;
2551 }
2552 
2553 
2554 /*
2555  * btrfs_search_slot - look for a key in a tree and perform necessary
2556  * modifications to preserve tree invariants.
2557  *
2558  * @trans:	Handle of transaction, used when modifying the tree
2559  * @p:		Holds all btree nodes along the search path
2560  * @root:	The root node of the tree
2561  * @key:	The key we are looking for
2562  * @ins_len:	Indicates purpose of search:
2563  *              >0  for inserts it's size of item inserted (*)
2564  *              <0  for deletions
2565  *               0  for plain searches, not modifying the tree
2566  *
2567  *              (*) If size of item inserted doesn't include
2568  *              sizeof(struct btrfs_item), then p->search_for_extension must
2569  *              be set.
2570  * @cow:	boolean should CoW operations be performed. Must always be 1
2571  *		when modifying the tree.
2572  *
2573  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2574  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2575  *
2576  * If @key is found, 0 is returned and you can find the item in the leaf level
2577  * of the path (level 0)
2578  *
2579  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2580  * points to the slot where it should be inserted
2581  *
2582  * If an error is encountered while searching the tree a negative error number
2583  * is returned
2584  */
2585 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2586 		      const struct btrfs_key *key, struct btrfs_path *p,
2587 		      int ins_len, int cow)
2588 {
2589 	struct extent_buffer *b;
2590 	int slot;
2591 	int ret;
2592 	int err;
2593 	int level;
2594 	int lowest_unlock = 1;
2595 	/* everything at write_lock_level or lower must be write locked */
2596 	int write_lock_level = 0;
2597 	u8 lowest_level = 0;
2598 	int min_write_lock_level;
2599 	int prev_cmp;
2600 
2601 	lowest_level = p->lowest_level;
2602 	WARN_ON(lowest_level && ins_len > 0);
2603 	WARN_ON(p->nodes[0] != NULL);
2604 	BUG_ON(!cow && ins_len);
2605 
2606 	if (ins_len < 0) {
2607 		lowest_unlock = 2;
2608 
2609 		/* when we are removing items, we might have to go up to level
2610 		 * two as we update tree pointers  Make sure we keep write
2611 		 * for those levels as well
2612 		 */
2613 		write_lock_level = 2;
2614 	} else if (ins_len > 0) {
2615 		/*
2616 		 * for inserting items, make sure we have a write lock on
2617 		 * level 1 so we can update keys
2618 		 */
2619 		write_lock_level = 1;
2620 	}
2621 
2622 	if (!cow)
2623 		write_lock_level = -1;
2624 
2625 	if (cow && (p->keep_locks || p->lowest_level))
2626 		write_lock_level = BTRFS_MAX_LEVEL;
2627 
2628 	min_write_lock_level = write_lock_level;
2629 
2630 again:
2631 	prev_cmp = -1;
2632 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2633 	if (IS_ERR(b)) {
2634 		ret = PTR_ERR(b);
2635 		goto done;
2636 	}
2637 
2638 	while (b) {
2639 		int dec = 0;
2640 
2641 		level = btrfs_header_level(b);
2642 
2643 		if (cow) {
2644 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2645 
2646 			/*
2647 			 * if we don't really need to cow this block
2648 			 * then we don't want to set the path blocking,
2649 			 * so we test it here
2650 			 */
2651 			if (!should_cow_block(trans, root, b)) {
2652 				trans->dirty = true;
2653 				goto cow_done;
2654 			}
2655 
2656 			/*
2657 			 * must have write locks on this node and the
2658 			 * parent
2659 			 */
2660 			if (level > write_lock_level ||
2661 			    (level + 1 > write_lock_level &&
2662 			    level + 1 < BTRFS_MAX_LEVEL &&
2663 			    p->nodes[level + 1])) {
2664 				write_lock_level = level + 1;
2665 				btrfs_release_path(p);
2666 				goto again;
2667 			}
2668 
2669 			if (last_level)
2670 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2671 						      &b,
2672 						      BTRFS_NESTING_COW);
2673 			else
2674 				err = btrfs_cow_block(trans, root, b,
2675 						      p->nodes[level + 1],
2676 						      p->slots[level + 1], &b,
2677 						      BTRFS_NESTING_COW);
2678 			if (err) {
2679 				ret = err;
2680 				goto done;
2681 			}
2682 		}
2683 cow_done:
2684 		p->nodes[level] = b;
2685 		/*
2686 		 * Leave path with blocking locks to avoid massive
2687 		 * lock context switch, this is made on purpose.
2688 		 */
2689 
2690 		/*
2691 		 * we have a lock on b and as long as we aren't changing
2692 		 * the tree, there is no way to for the items in b to change.
2693 		 * It is safe to drop the lock on our parent before we
2694 		 * go through the expensive btree search on b.
2695 		 *
2696 		 * If we're inserting or deleting (ins_len != 0), then we might
2697 		 * be changing slot zero, which may require changing the parent.
2698 		 * So, we can't drop the lock until after we know which slot
2699 		 * we're operating on.
2700 		 */
2701 		if (!ins_len && !p->keep_locks) {
2702 			int u = level + 1;
2703 
2704 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2705 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2706 				p->locks[u] = 0;
2707 			}
2708 		}
2709 
2710 		/*
2711 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2712 		 * we can safely assume the target key will always be in slot 0
2713 		 * on lower levels due to the invariants BTRFS' btree provides,
2714 		 * namely that a btrfs_key_ptr entry always points to the
2715 		 * lowest key in the child node, thus we can skip searching
2716 		 * lower levels
2717 		 */
2718 		if (prev_cmp == 0) {
2719 			slot = 0;
2720 			ret = 0;
2721 		} else {
2722 			ret = btrfs_bin_search(b, key, &slot);
2723 			prev_cmp = ret;
2724 			if (ret < 0)
2725 				goto done;
2726 		}
2727 
2728 		if (level == 0) {
2729 			p->slots[level] = slot;
2730 			/*
2731 			 * Item key already exists. In this case, if we are
2732 			 * allowed to insert the item (for example, in dir_item
2733 			 * case, item key collision is allowed), it will be
2734 			 * merged with the original item. Only the item size
2735 			 * grows, no new btrfs item will be added. If
2736 			 * search_for_extension is not set, ins_len already
2737 			 * accounts the size btrfs_item, deduct it here so leaf
2738 			 * space check will be correct.
2739 			 */
2740 			if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
2741 				ASSERT(ins_len >= sizeof(struct btrfs_item));
2742 				ins_len -= sizeof(struct btrfs_item);
2743 			}
2744 			if (ins_len > 0 &&
2745 			    btrfs_leaf_free_space(b) < ins_len) {
2746 				if (write_lock_level < 1) {
2747 					write_lock_level = 1;
2748 					btrfs_release_path(p);
2749 					goto again;
2750 				}
2751 
2752 				err = split_leaf(trans, root, key,
2753 						 p, ins_len, ret == 0);
2754 
2755 				BUG_ON(err > 0);
2756 				if (err) {
2757 					ret = err;
2758 					goto done;
2759 				}
2760 			}
2761 			if (!p->search_for_split)
2762 				unlock_up(p, level, lowest_unlock,
2763 					  min_write_lock_level, NULL);
2764 			goto done;
2765 		}
2766 		if (ret && slot > 0) {
2767 			dec = 1;
2768 			slot--;
2769 		}
2770 		p->slots[level] = slot;
2771 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2772 					     &write_lock_level);
2773 		if (err == -EAGAIN)
2774 			goto again;
2775 		if (err) {
2776 			ret = err;
2777 			goto done;
2778 		}
2779 		b = p->nodes[level];
2780 		slot = p->slots[level];
2781 
2782 		/*
2783 		 * Slot 0 is special, if we change the key we have to update
2784 		 * the parent pointer which means we must have a write lock on
2785 		 * the parent
2786 		 */
2787 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2788 			write_lock_level = level + 1;
2789 			btrfs_release_path(p);
2790 			goto again;
2791 		}
2792 
2793 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2794 			  &write_lock_level);
2795 
2796 		if (level == lowest_level) {
2797 			if (dec)
2798 				p->slots[level]++;
2799 			goto done;
2800 		}
2801 
2802 		err = read_block_for_search(root, p, &b, level, slot, key);
2803 		if (err == -EAGAIN)
2804 			goto again;
2805 		if (err) {
2806 			ret = err;
2807 			goto done;
2808 		}
2809 
2810 		if (!p->skip_locking) {
2811 			level = btrfs_header_level(b);
2812 			if (level <= write_lock_level) {
2813 				btrfs_tree_lock(b);
2814 				p->locks[level] = BTRFS_WRITE_LOCK;
2815 			} else {
2816 				btrfs_tree_read_lock(b);
2817 				p->locks[level] = BTRFS_READ_LOCK;
2818 			}
2819 			p->nodes[level] = b;
2820 		}
2821 	}
2822 	ret = 1;
2823 done:
2824 	if (ret < 0 && !p->skip_release_on_error)
2825 		btrfs_release_path(p);
2826 	return ret;
2827 }
2828 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2829 
2830 /*
2831  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2832  * current state of the tree together with the operations recorded in the tree
2833  * modification log to search for the key in a previous version of this tree, as
2834  * denoted by the time_seq parameter.
2835  *
2836  * Naturally, there is no support for insert, delete or cow operations.
2837  *
2838  * The resulting path and return value will be set up as if we called
2839  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2840  */
2841 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2842 			  struct btrfs_path *p, u64 time_seq)
2843 {
2844 	struct btrfs_fs_info *fs_info = root->fs_info;
2845 	struct extent_buffer *b;
2846 	int slot;
2847 	int ret;
2848 	int err;
2849 	int level;
2850 	int lowest_unlock = 1;
2851 	u8 lowest_level = 0;
2852 
2853 	lowest_level = p->lowest_level;
2854 	WARN_ON(p->nodes[0] != NULL);
2855 
2856 	if (p->search_commit_root) {
2857 		BUG_ON(time_seq);
2858 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2859 	}
2860 
2861 again:
2862 	b = get_old_root(root, time_seq);
2863 	if (!b) {
2864 		ret = -EIO;
2865 		goto done;
2866 	}
2867 	level = btrfs_header_level(b);
2868 	p->locks[level] = BTRFS_READ_LOCK;
2869 
2870 	while (b) {
2871 		int dec = 0;
2872 
2873 		level = btrfs_header_level(b);
2874 		p->nodes[level] = b;
2875 
2876 		/*
2877 		 * we have a lock on b and as long as we aren't changing
2878 		 * the tree, there is no way to for the items in b to change.
2879 		 * It is safe to drop the lock on our parent before we
2880 		 * go through the expensive btree search on b.
2881 		 */
2882 		btrfs_unlock_up_safe(p, level + 1);
2883 
2884 		ret = btrfs_bin_search(b, key, &slot);
2885 		if (ret < 0)
2886 			goto done;
2887 
2888 		if (level == 0) {
2889 			p->slots[level] = slot;
2890 			unlock_up(p, level, lowest_unlock, 0, NULL);
2891 			goto done;
2892 		}
2893 
2894 		if (ret && slot > 0) {
2895 			dec = 1;
2896 			slot--;
2897 		}
2898 		p->slots[level] = slot;
2899 		unlock_up(p, level, lowest_unlock, 0, NULL);
2900 
2901 		if (level == lowest_level) {
2902 			if (dec)
2903 				p->slots[level]++;
2904 			goto done;
2905 		}
2906 
2907 		err = read_block_for_search(root, p, &b, level, slot, key);
2908 		if (err == -EAGAIN)
2909 			goto again;
2910 		if (err) {
2911 			ret = err;
2912 			goto done;
2913 		}
2914 
2915 		level = btrfs_header_level(b);
2916 		btrfs_tree_read_lock(b);
2917 		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2918 		if (!b) {
2919 			ret = -ENOMEM;
2920 			goto done;
2921 		}
2922 		p->locks[level] = BTRFS_READ_LOCK;
2923 		p->nodes[level] = b;
2924 	}
2925 	ret = 1;
2926 done:
2927 	if (ret < 0)
2928 		btrfs_release_path(p);
2929 
2930 	return ret;
2931 }
2932 
2933 /*
2934  * helper to use instead of search slot if no exact match is needed but
2935  * instead the next or previous item should be returned.
2936  * When find_higher is true, the next higher item is returned, the next lower
2937  * otherwise.
2938  * When return_any and find_higher are both true, and no higher item is found,
2939  * return the next lower instead.
2940  * When return_any is true and find_higher is false, and no lower item is found,
2941  * return the next higher instead.
2942  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2943  * < 0 on error
2944  */
2945 int btrfs_search_slot_for_read(struct btrfs_root *root,
2946 			       const struct btrfs_key *key,
2947 			       struct btrfs_path *p, int find_higher,
2948 			       int return_any)
2949 {
2950 	int ret;
2951 	struct extent_buffer *leaf;
2952 
2953 again:
2954 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2955 	if (ret <= 0)
2956 		return ret;
2957 	/*
2958 	 * a return value of 1 means the path is at the position where the
2959 	 * item should be inserted. Normally this is the next bigger item,
2960 	 * but in case the previous item is the last in a leaf, path points
2961 	 * to the first free slot in the previous leaf, i.e. at an invalid
2962 	 * item.
2963 	 */
2964 	leaf = p->nodes[0];
2965 
2966 	if (find_higher) {
2967 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2968 			ret = btrfs_next_leaf(root, p);
2969 			if (ret <= 0)
2970 				return ret;
2971 			if (!return_any)
2972 				return 1;
2973 			/*
2974 			 * no higher item found, return the next
2975 			 * lower instead
2976 			 */
2977 			return_any = 0;
2978 			find_higher = 0;
2979 			btrfs_release_path(p);
2980 			goto again;
2981 		}
2982 	} else {
2983 		if (p->slots[0] == 0) {
2984 			ret = btrfs_prev_leaf(root, p);
2985 			if (ret < 0)
2986 				return ret;
2987 			if (!ret) {
2988 				leaf = p->nodes[0];
2989 				if (p->slots[0] == btrfs_header_nritems(leaf))
2990 					p->slots[0]--;
2991 				return 0;
2992 			}
2993 			if (!return_any)
2994 				return 1;
2995 			/*
2996 			 * no lower item found, return the next
2997 			 * higher instead
2998 			 */
2999 			return_any = 0;
3000 			find_higher = 1;
3001 			btrfs_release_path(p);
3002 			goto again;
3003 		} else {
3004 			--p->slots[0];
3005 		}
3006 	}
3007 	return 0;
3008 }
3009 
3010 /*
3011  * adjust the pointers going up the tree, starting at level
3012  * making sure the right key of each node is points to 'key'.
3013  * This is used after shifting pointers to the left, so it stops
3014  * fixing up pointers when a given leaf/node is not in slot 0 of the
3015  * higher levels
3016  *
3017  */
3018 static void fixup_low_keys(struct btrfs_path *path,
3019 			   struct btrfs_disk_key *key, int level)
3020 {
3021 	int i;
3022 	struct extent_buffer *t;
3023 	int ret;
3024 
3025 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3026 		int tslot = path->slots[i];
3027 
3028 		if (!path->nodes[i])
3029 			break;
3030 		t = path->nodes[i];
3031 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3032 				GFP_ATOMIC);
3033 		BUG_ON(ret < 0);
3034 		btrfs_set_node_key(t, key, tslot);
3035 		btrfs_mark_buffer_dirty(path->nodes[i]);
3036 		if (tslot != 0)
3037 			break;
3038 	}
3039 }
3040 
3041 /*
3042  * update item key.
3043  *
3044  * This function isn't completely safe. It's the caller's responsibility
3045  * that the new key won't break the order
3046  */
3047 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3048 			     struct btrfs_path *path,
3049 			     const struct btrfs_key *new_key)
3050 {
3051 	struct btrfs_disk_key disk_key;
3052 	struct extent_buffer *eb;
3053 	int slot;
3054 
3055 	eb = path->nodes[0];
3056 	slot = path->slots[0];
3057 	if (slot > 0) {
3058 		btrfs_item_key(eb, &disk_key, slot - 1);
3059 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3060 			btrfs_crit(fs_info,
3061 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3062 				   slot, btrfs_disk_key_objectid(&disk_key),
3063 				   btrfs_disk_key_type(&disk_key),
3064 				   btrfs_disk_key_offset(&disk_key),
3065 				   new_key->objectid, new_key->type,
3066 				   new_key->offset);
3067 			btrfs_print_leaf(eb);
3068 			BUG();
3069 		}
3070 	}
3071 	if (slot < btrfs_header_nritems(eb) - 1) {
3072 		btrfs_item_key(eb, &disk_key, slot + 1);
3073 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3074 			btrfs_crit(fs_info,
3075 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3076 				   slot, btrfs_disk_key_objectid(&disk_key),
3077 				   btrfs_disk_key_type(&disk_key),
3078 				   btrfs_disk_key_offset(&disk_key),
3079 				   new_key->objectid, new_key->type,
3080 				   new_key->offset);
3081 			btrfs_print_leaf(eb);
3082 			BUG();
3083 		}
3084 	}
3085 
3086 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3087 	btrfs_set_item_key(eb, &disk_key, slot);
3088 	btrfs_mark_buffer_dirty(eb);
3089 	if (slot == 0)
3090 		fixup_low_keys(path, &disk_key, 1);
3091 }
3092 
3093 /*
3094  * Check key order of two sibling extent buffers.
3095  *
3096  * Return true if something is wrong.
3097  * Return false if everything is fine.
3098  *
3099  * Tree-checker only works inside one tree block, thus the following
3100  * corruption can not be detected by tree-checker:
3101  *
3102  * Leaf @left			| Leaf @right
3103  * --------------------------------------------------------------
3104  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
3105  *
3106  * Key f6 in leaf @left itself is valid, but not valid when the next
3107  * key in leaf @right is 7.
3108  * This can only be checked at tree block merge time.
3109  * And since tree checker has ensured all key order in each tree block
3110  * is correct, we only need to bother the last key of @left and the first
3111  * key of @right.
3112  */
3113 static bool check_sibling_keys(struct extent_buffer *left,
3114 			       struct extent_buffer *right)
3115 {
3116 	struct btrfs_key left_last;
3117 	struct btrfs_key right_first;
3118 	int level = btrfs_header_level(left);
3119 	int nr_left = btrfs_header_nritems(left);
3120 	int nr_right = btrfs_header_nritems(right);
3121 
3122 	/* No key to check in one of the tree blocks */
3123 	if (!nr_left || !nr_right)
3124 		return false;
3125 
3126 	if (level) {
3127 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
3128 		btrfs_node_key_to_cpu(right, &right_first, 0);
3129 	} else {
3130 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
3131 		btrfs_item_key_to_cpu(right, &right_first, 0);
3132 	}
3133 
3134 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
3135 		btrfs_crit(left->fs_info,
3136 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
3137 			   left_last.objectid, left_last.type,
3138 			   left_last.offset, right_first.objectid,
3139 			   right_first.type, right_first.offset);
3140 		return true;
3141 	}
3142 	return false;
3143 }
3144 
3145 /*
3146  * try to push data from one node into the next node left in the
3147  * tree.
3148  *
3149  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3150  * error, and > 0 if there was no room in the left hand block.
3151  */
3152 static int push_node_left(struct btrfs_trans_handle *trans,
3153 			  struct extent_buffer *dst,
3154 			  struct extent_buffer *src, int empty)
3155 {
3156 	struct btrfs_fs_info *fs_info = trans->fs_info;
3157 	int push_items = 0;
3158 	int src_nritems;
3159 	int dst_nritems;
3160 	int ret = 0;
3161 
3162 	src_nritems = btrfs_header_nritems(src);
3163 	dst_nritems = btrfs_header_nritems(dst);
3164 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3165 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3166 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3167 
3168 	if (!empty && src_nritems <= 8)
3169 		return 1;
3170 
3171 	if (push_items <= 0)
3172 		return 1;
3173 
3174 	if (empty) {
3175 		push_items = min(src_nritems, push_items);
3176 		if (push_items < src_nritems) {
3177 			/* leave at least 8 pointers in the node if
3178 			 * we aren't going to empty it
3179 			 */
3180 			if (src_nritems - push_items < 8) {
3181 				if (push_items <= 8)
3182 					return 1;
3183 				push_items -= 8;
3184 			}
3185 		}
3186 	} else
3187 		push_items = min(src_nritems - 8, push_items);
3188 
3189 	/* dst is the left eb, src is the middle eb */
3190 	if (check_sibling_keys(dst, src)) {
3191 		ret = -EUCLEAN;
3192 		btrfs_abort_transaction(trans, ret);
3193 		return ret;
3194 	}
3195 	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3196 	if (ret) {
3197 		btrfs_abort_transaction(trans, ret);
3198 		return ret;
3199 	}
3200 	copy_extent_buffer(dst, src,
3201 			   btrfs_node_key_ptr_offset(dst_nritems),
3202 			   btrfs_node_key_ptr_offset(0),
3203 			   push_items * sizeof(struct btrfs_key_ptr));
3204 
3205 	if (push_items < src_nritems) {
3206 		/*
3207 		 * Don't call tree_mod_log_insert_move here, key removal was
3208 		 * already fully logged by tree_mod_log_eb_copy above.
3209 		 */
3210 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3211 				      btrfs_node_key_ptr_offset(push_items),
3212 				      (src_nritems - push_items) *
3213 				      sizeof(struct btrfs_key_ptr));
3214 	}
3215 	btrfs_set_header_nritems(src, src_nritems - push_items);
3216 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3217 	btrfs_mark_buffer_dirty(src);
3218 	btrfs_mark_buffer_dirty(dst);
3219 
3220 	return ret;
3221 }
3222 
3223 /*
3224  * try to push data from one node into the next node right in the
3225  * tree.
3226  *
3227  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3228  * error, and > 0 if there was no room in the right hand block.
3229  *
3230  * this will  only push up to 1/2 the contents of the left node over
3231  */
3232 static int balance_node_right(struct btrfs_trans_handle *trans,
3233 			      struct extent_buffer *dst,
3234 			      struct extent_buffer *src)
3235 {
3236 	struct btrfs_fs_info *fs_info = trans->fs_info;
3237 	int push_items = 0;
3238 	int max_push;
3239 	int src_nritems;
3240 	int dst_nritems;
3241 	int ret = 0;
3242 
3243 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3244 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3245 
3246 	src_nritems = btrfs_header_nritems(src);
3247 	dst_nritems = btrfs_header_nritems(dst);
3248 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3249 	if (push_items <= 0)
3250 		return 1;
3251 
3252 	if (src_nritems < 4)
3253 		return 1;
3254 
3255 	max_push = src_nritems / 2 + 1;
3256 	/* don't try to empty the node */
3257 	if (max_push >= src_nritems)
3258 		return 1;
3259 
3260 	if (max_push < push_items)
3261 		push_items = max_push;
3262 
3263 	/* dst is the right eb, src is the middle eb */
3264 	if (check_sibling_keys(src, dst)) {
3265 		ret = -EUCLEAN;
3266 		btrfs_abort_transaction(trans, ret);
3267 		return ret;
3268 	}
3269 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3270 	BUG_ON(ret < 0);
3271 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3272 				      btrfs_node_key_ptr_offset(0),
3273 				      (dst_nritems) *
3274 				      sizeof(struct btrfs_key_ptr));
3275 
3276 	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3277 				   push_items);
3278 	if (ret) {
3279 		btrfs_abort_transaction(trans, ret);
3280 		return ret;
3281 	}
3282 	copy_extent_buffer(dst, src,
3283 			   btrfs_node_key_ptr_offset(0),
3284 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3285 			   push_items * sizeof(struct btrfs_key_ptr));
3286 
3287 	btrfs_set_header_nritems(src, src_nritems - push_items);
3288 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3289 
3290 	btrfs_mark_buffer_dirty(src);
3291 	btrfs_mark_buffer_dirty(dst);
3292 
3293 	return ret;
3294 }
3295 
3296 /*
3297  * helper function to insert a new root level in the tree.
3298  * A new node is allocated, and a single item is inserted to
3299  * point to the existing root
3300  *
3301  * returns zero on success or < 0 on failure.
3302  */
3303 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3304 			   struct btrfs_root *root,
3305 			   struct btrfs_path *path, int level)
3306 {
3307 	struct btrfs_fs_info *fs_info = root->fs_info;
3308 	u64 lower_gen;
3309 	struct extent_buffer *lower;
3310 	struct extent_buffer *c;
3311 	struct extent_buffer *old;
3312 	struct btrfs_disk_key lower_key;
3313 	int ret;
3314 
3315 	BUG_ON(path->nodes[level]);
3316 	BUG_ON(path->nodes[level-1] != root->node);
3317 
3318 	lower = path->nodes[level-1];
3319 	if (level == 1)
3320 		btrfs_item_key(lower, &lower_key, 0);
3321 	else
3322 		btrfs_node_key(lower, &lower_key, 0);
3323 
3324 	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3325 					 root->node->start, 0,
3326 					 BTRFS_NESTING_NEW_ROOT);
3327 	if (IS_ERR(c))
3328 		return PTR_ERR(c);
3329 
3330 	root_add_used(root, fs_info->nodesize);
3331 
3332 	btrfs_set_header_nritems(c, 1);
3333 	btrfs_set_node_key(c, &lower_key, 0);
3334 	btrfs_set_node_blockptr(c, 0, lower->start);
3335 	lower_gen = btrfs_header_generation(lower);
3336 	WARN_ON(lower_gen != trans->transid);
3337 
3338 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3339 
3340 	btrfs_mark_buffer_dirty(c);
3341 
3342 	old = root->node;
3343 	ret = tree_mod_log_insert_root(root->node, c, 0);
3344 	BUG_ON(ret < 0);
3345 	rcu_assign_pointer(root->node, c);
3346 
3347 	/* the super has an extra ref to root->node */
3348 	free_extent_buffer(old);
3349 
3350 	add_root_to_dirty_list(root);
3351 	atomic_inc(&c->refs);
3352 	path->nodes[level] = c;
3353 	path->locks[level] = BTRFS_WRITE_LOCK;
3354 	path->slots[level] = 0;
3355 	return 0;
3356 }
3357 
3358 /*
3359  * worker function to insert a single pointer in a node.
3360  * the node should have enough room for the pointer already
3361  *
3362  * slot and level indicate where you want the key to go, and
3363  * blocknr is the block the key points to.
3364  */
3365 static void insert_ptr(struct btrfs_trans_handle *trans,
3366 		       struct btrfs_path *path,
3367 		       struct btrfs_disk_key *key, u64 bytenr,
3368 		       int slot, int level)
3369 {
3370 	struct extent_buffer *lower;
3371 	int nritems;
3372 	int ret;
3373 
3374 	BUG_ON(!path->nodes[level]);
3375 	btrfs_assert_tree_locked(path->nodes[level]);
3376 	lower = path->nodes[level];
3377 	nritems = btrfs_header_nritems(lower);
3378 	BUG_ON(slot > nritems);
3379 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3380 	if (slot != nritems) {
3381 		if (level) {
3382 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3383 					nritems - slot);
3384 			BUG_ON(ret < 0);
3385 		}
3386 		memmove_extent_buffer(lower,
3387 			      btrfs_node_key_ptr_offset(slot + 1),
3388 			      btrfs_node_key_ptr_offset(slot),
3389 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3390 	}
3391 	if (level) {
3392 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3393 				GFP_NOFS);
3394 		BUG_ON(ret < 0);
3395 	}
3396 	btrfs_set_node_key(lower, key, slot);
3397 	btrfs_set_node_blockptr(lower, slot, bytenr);
3398 	WARN_ON(trans->transid == 0);
3399 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3400 	btrfs_set_header_nritems(lower, nritems + 1);
3401 	btrfs_mark_buffer_dirty(lower);
3402 }
3403 
3404 /*
3405  * split the node at the specified level in path in two.
3406  * The path is corrected to point to the appropriate node after the split
3407  *
3408  * Before splitting this tries to make some room in the node by pushing
3409  * left and right, if either one works, it returns right away.
3410  *
3411  * returns 0 on success and < 0 on failure
3412  */
3413 static noinline int split_node(struct btrfs_trans_handle *trans,
3414 			       struct btrfs_root *root,
3415 			       struct btrfs_path *path, int level)
3416 {
3417 	struct btrfs_fs_info *fs_info = root->fs_info;
3418 	struct extent_buffer *c;
3419 	struct extent_buffer *split;
3420 	struct btrfs_disk_key disk_key;
3421 	int mid;
3422 	int ret;
3423 	u32 c_nritems;
3424 
3425 	c = path->nodes[level];
3426 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3427 	if (c == root->node) {
3428 		/*
3429 		 * trying to split the root, lets make a new one
3430 		 *
3431 		 * tree mod log: We don't log_removal old root in
3432 		 * insert_new_root, because that root buffer will be kept as a
3433 		 * normal node. We are going to log removal of half of the
3434 		 * elements below with tree_mod_log_eb_copy. We're holding a
3435 		 * tree lock on the buffer, which is why we cannot race with
3436 		 * other tree_mod_log users.
3437 		 */
3438 		ret = insert_new_root(trans, root, path, level + 1);
3439 		if (ret)
3440 			return ret;
3441 	} else {
3442 		ret = push_nodes_for_insert(trans, root, path, level);
3443 		c = path->nodes[level];
3444 		if (!ret && btrfs_header_nritems(c) <
3445 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3446 			return 0;
3447 		if (ret < 0)
3448 			return ret;
3449 	}
3450 
3451 	c_nritems = btrfs_header_nritems(c);
3452 	mid = (c_nritems + 1) / 2;
3453 	btrfs_node_key(c, &disk_key, mid);
3454 
3455 	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3456 					     c->start, 0, BTRFS_NESTING_SPLIT);
3457 	if (IS_ERR(split))
3458 		return PTR_ERR(split);
3459 
3460 	root_add_used(root, fs_info->nodesize);
3461 	ASSERT(btrfs_header_level(c) == level);
3462 
3463 	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3464 	if (ret) {
3465 		btrfs_abort_transaction(trans, ret);
3466 		return ret;
3467 	}
3468 	copy_extent_buffer(split, c,
3469 			   btrfs_node_key_ptr_offset(0),
3470 			   btrfs_node_key_ptr_offset(mid),
3471 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3472 	btrfs_set_header_nritems(split, c_nritems - mid);
3473 	btrfs_set_header_nritems(c, mid);
3474 
3475 	btrfs_mark_buffer_dirty(c);
3476 	btrfs_mark_buffer_dirty(split);
3477 
3478 	insert_ptr(trans, path, &disk_key, split->start,
3479 		   path->slots[level + 1] + 1, level + 1);
3480 
3481 	if (path->slots[level] >= mid) {
3482 		path->slots[level] -= mid;
3483 		btrfs_tree_unlock(c);
3484 		free_extent_buffer(c);
3485 		path->nodes[level] = split;
3486 		path->slots[level + 1] += 1;
3487 	} else {
3488 		btrfs_tree_unlock(split);
3489 		free_extent_buffer(split);
3490 	}
3491 	return 0;
3492 }
3493 
3494 /*
3495  * how many bytes are required to store the items in a leaf.  start
3496  * and nr indicate which items in the leaf to check.  This totals up the
3497  * space used both by the item structs and the item data
3498  */
3499 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3500 {
3501 	struct btrfs_item *start_item;
3502 	struct btrfs_item *end_item;
3503 	int data_len;
3504 	int nritems = btrfs_header_nritems(l);
3505 	int end = min(nritems, start + nr) - 1;
3506 
3507 	if (!nr)
3508 		return 0;
3509 	start_item = btrfs_item_nr(start);
3510 	end_item = btrfs_item_nr(end);
3511 	data_len = btrfs_item_offset(l, start_item) +
3512 		   btrfs_item_size(l, start_item);
3513 	data_len = data_len - btrfs_item_offset(l, end_item);
3514 	data_len += sizeof(struct btrfs_item) * nr;
3515 	WARN_ON(data_len < 0);
3516 	return data_len;
3517 }
3518 
3519 /*
3520  * The space between the end of the leaf items and
3521  * the start of the leaf data.  IOW, how much room
3522  * the leaf has left for both items and data
3523  */
3524 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3525 {
3526 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3527 	int nritems = btrfs_header_nritems(leaf);
3528 	int ret;
3529 
3530 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3531 	if (ret < 0) {
3532 		btrfs_crit(fs_info,
3533 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3534 			   ret,
3535 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3536 			   leaf_space_used(leaf, 0, nritems), nritems);
3537 	}
3538 	return ret;
3539 }
3540 
3541 /*
3542  * min slot controls the lowest index we're willing to push to the
3543  * right.  We'll push up to and including min_slot, but no lower
3544  */
3545 static noinline int __push_leaf_right(struct btrfs_path *path,
3546 				      int data_size, int empty,
3547 				      struct extent_buffer *right,
3548 				      int free_space, u32 left_nritems,
3549 				      u32 min_slot)
3550 {
3551 	struct btrfs_fs_info *fs_info = right->fs_info;
3552 	struct extent_buffer *left = path->nodes[0];
3553 	struct extent_buffer *upper = path->nodes[1];
3554 	struct btrfs_map_token token;
3555 	struct btrfs_disk_key disk_key;
3556 	int slot;
3557 	u32 i;
3558 	int push_space = 0;
3559 	int push_items = 0;
3560 	struct btrfs_item *item;
3561 	u32 nr;
3562 	u32 right_nritems;
3563 	u32 data_end;
3564 	u32 this_item_size;
3565 
3566 	if (empty)
3567 		nr = 0;
3568 	else
3569 		nr = max_t(u32, 1, min_slot);
3570 
3571 	if (path->slots[0] >= left_nritems)
3572 		push_space += data_size;
3573 
3574 	slot = path->slots[1];
3575 	i = left_nritems - 1;
3576 	while (i >= nr) {
3577 		item = btrfs_item_nr(i);
3578 
3579 		if (!empty && push_items > 0) {
3580 			if (path->slots[0] > i)
3581 				break;
3582 			if (path->slots[0] == i) {
3583 				int space = btrfs_leaf_free_space(left);
3584 
3585 				if (space + push_space * 2 > free_space)
3586 					break;
3587 			}
3588 		}
3589 
3590 		if (path->slots[0] == i)
3591 			push_space += data_size;
3592 
3593 		this_item_size = btrfs_item_size(left, item);
3594 		if (this_item_size + sizeof(*item) + push_space > free_space)
3595 			break;
3596 
3597 		push_items++;
3598 		push_space += this_item_size + sizeof(*item);
3599 		if (i == 0)
3600 			break;
3601 		i--;
3602 	}
3603 
3604 	if (push_items == 0)
3605 		goto out_unlock;
3606 
3607 	WARN_ON(!empty && push_items == left_nritems);
3608 
3609 	/* push left to right */
3610 	right_nritems = btrfs_header_nritems(right);
3611 
3612 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3613 	push_space -= leaf_data_end(left);
3614 
3615 	/* make room in the right data area */
3616 	data_end = leaf_data_end(right);
3617 	memmove_extent_buffer(right,
3618 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3619 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3620 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3621 
3622 	/* copy from the left data area */
3623 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3624 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3625 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3626 		     push_space);
3627 
3628 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3629 			      btrfs_item_nr_offset(0),
3630 			      right_nritems * sizeof(struct btrfs_item));
3631 
3632 	/* copy the items from left to right */
3633 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3634 		   btrfs_item_nr_offset(left_nritems - push_items),
3635 		   push_items * sizeof(struct btrfs_item));
3636 
3637 	/* update the item pointers */
3638 	btrfs_init_map_token(&token, right);
3639 	right_nritems += push_items;
3640 	btrfs_set_header_nritems(right, right_nritems);
3641 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3642 	for (i = 0; i < right_nritems; i++) {
3643 		item = btrfs_item_nr(i);
3644 		push_space -= btrfs_token_item_size(&token, item);
3645 		btrfs_set_token_item_offset(&token, item, push_space);
3646 	}
3647 
3648 	left_nritems -= push_items;
3649 	btrfs_set_header_nritems(left, left_nritems);
3650 
3651 	if (left_nritems)
3652 		btrfs_mark_buffer_dirty(left);
3653 	else
3654 		btrfs_clean_tree_block(left);
3655 
3656 	btrfs_mark_buffer_dirty(right);
3657 
3658 	btrfs_item_key(right, &disk_key, 0);
3659 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3660 	btrfs_mark_buffer_dirty(upper);
3661 
3662 	/* then fixup the leaf pointer in the path */
3663 	if (path->slots[0] >= left_nritems) {
3664 		path->slots[0] -= left_nritems;
3665 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3666 			btrfs_clean_tree_block(path->nodes[0]);
3667 		btrfs_tree_unlock(path->nodes[0]);
3668 		free_extent_buffer(path->nodes[0]);
3669 		path->nodes[0] = right;
3670 		path->slots[1] += 1;
3671 	} else {
3672 		btrfs_tree_unlock(right);
3673 		free_extent_buffer(right);
3674 	}
3675 	return 0;
3676 
3677 out_unlock:
3678 	btrfs_tree_unlock(right);
3679 	free_extent_buffer(right);
3680 	return 1;
3681 }
3682 
3683 /*
3684  * push some data in the path leaf to the right, trying to free up at
3685  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3686  *
3687  * returns 1 if the push failed because the other node didn't have enough
3688  * room, 0 if everything worked out and < 0 if there were major errors.
3689  *
3690  * this will push starting from min_slot to the end of the leaf.  It won't
3691  * push any slot lower than min_slot
3692  */
3693 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3694 			   *root, struct btrfs_path *path,
3695 			   int min_data_size, int data_size,
3696 			   int empty, u32 min_slot)
3697 {
3698 	struct extent_buffer *left = path->nodes[0];
3699 	struct extent_buffer *right;
3700 	struct extent_buffer *upper;
3701 	int slot;
3702 	int free_space;
3703 	u32 left_nritems;
3704 	int ret;
3705 
3706 	if (!path->nodes[1])
3707 		return 1;
3708 
3709 	slot = path->slots[1];
3710 	upper = path->nodes[1];
3711 	if (slot >= btrfs_header_nritems(upper) - 1)
3712 		return 1;
3713 
3714 	btrfs_assert_tree_locked(path->nodes[1]);
3715 
3716 	right = btrfs_read_node_slot(upper, slot + 1);
3717 	/*
3718 	 * slot + 1 is not valid or we fail to read the right node,
3719 	 * no big deal, just return.
3720 	 */
3721 	if (IS_ERR(right))
3722 		return 1;
3723 
3724 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3725 
3726 	free_space = btrfs_leaf_free_space(right);
3727 	if (free_space < data_size)
3728 		goto out_unlock;
3729 
3730 	/* cow and double check */
3731 	ret = btrfs_cow_block(trans, root, right, upper,
3732 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3733 	if (ret)
3734 		goto out_unlock;
3735 
3736 	free_space = btrfs_leaf_free_space(right);
3737 	if (free_space < data_size)
3738 		goto out_unlock;
3739 
3740 	left_nritems = btrfs_header_nritems(left);
3741 	if (left_nritems == 0)
3742 		goto out_unlock;
3743 
3744 	if (check_sibling_keys(left, right)) {
3745 		ret = -EUCLEAN;
3746 		btrfs_tree_unlock(right);
3747 		free_extent_buffer(right);
3748 		return ret;
3749 	}
3750 	if (path->slots[0] == left_nritems && !empty) {
3751 		/* Key greater than all keys in the leaf, right neighbor has
3752 		 * enough room for it and we're not emptying our leaf to delete
3753 		 * it, therefore use right neighbor to insert the new item and
3754 		 * no need to touch/dirty our left leaf. */
3755 		btrfs_tree_unlock(left);
3756 		free_extent_buffer(left);
3757 		path->nodes[0] = right;
3758 		path->slots[0] = 0;
3759 		path->slots[1]++;
3760 		return 0;
3761 	}
3762 
3763 	return __push_leaf_right(path, min_data_size, empty,
3764 				right, free_space, left_nritems, min_slot);
3765 out_unlock:
3766 	btrfs_tree_unlock(right);
3767 	free_extent_buffer(right);
3768 	return 1;
3769 }
3770 
3771 /*
3772  * push some data in the path leaf to the left, trying to free up at
3773  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3774  *
3775  * max_slot can put a limit on how far into the leaf we'll push items.  The
3776  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3777  * items
3778  */
3779 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3780 				     int empty, struct extent_buffer *left,
3781 				     int free_space, u32 right_nritems,
3782 				     u32 max_slot)
3783 {
3784 	struct btrfs_fs_info *fs_info = left->fs_info;
3785 	struct btrfs_disk_key disk_key;
3786 	struct extent_buffer *right = path->nodes[0];
3787 	int i;
3788 	int push_space = 0;
3789 	int push_items = 0;
3790 	struct btrfs_item *item;
3791 	u32 old_left_nritems;
3792 	u32 nr;
3793 	int ret = 0;
3794 	u32 this_item_size;
3795 	u32 old_left_item_size;
3796 	struct btrfs_map_token token;
3797 
3798 	if (empty)
3799 		nr = min(right_nritems, max_slot);
3800 	else
3801 		nr = min(right_nritems - 1, max_slot);
3802 
3803 	for (i = 0; i < nr; i++) {
3804 		item = btrfs_item_nr(i);
3805 
3806 		if (!empty && push_items > 0) {
3807 			if (path->slots[0] < i)
3808 				break;
3809 			if (path->slots[0] == i) {
3810 				int space = btrfs_leaf_free_space(right);
3811 
3812 				if (space + push_space * 2 > free_space)
3813 					break;
3814 			}
3815 		}
3816 
3817 		if (path->slots[0] == i)
3818 			push_space += data_size;
3819 
3820 		this_item_size = btrfs_item_size(right, item);
3821 		if (this_item_size + sizeof(*item) + push_space > free_space)
3822 			break;
3823 
3824 		push_items++;
3825 		push_space += this_item_size + sizeof(*item);
3826 	}
3827 
3828 	if (push_items == 0) {
3829 		ret = 1;
3830 		goto out;
3831 	}
3832 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3833 
3834 	/* push data from right to left */
3835 	copy_extent_buffer(left, right,
3836 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3837 			   btrfs_item_nr_offset(0),
3838 			   push_items * sizeof(struct btrfs_item));
3839 
3840 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3841 		     btrfs_item_offset_nr(right, push_items - 1);
3842 
3843 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3844 		     leaf_data_end(left) - push_space,
3845 		     BTRFS_LEAF_DATA_OFFSET +
3846 		     btrfs_item_offset_nr(right, push_items - 1),
3847 		     push_space);
3848 	old_left_nritems = btrfs_header_nritems(left);
3849 	BUG_ON(old_left_nritems <= 0);
3850 
3851 	btrfs_init_map_token(&token, left);
3852 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3853 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3854 		u32 ioff;
3855 
3856 		item = btrfs_item_nr(i);
3857 
3858 		ioff = btrfs_token_item_offset(&token, item);
3859 		btrfs_set_token_item_offset(&token, item,
3860 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3861 	}
3862 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3863 
3864 	/* fixup right node */
3865 	if (push_items > right_nritems)
3866 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3867 		       right_nritems);
3868 
3869 	if (push_items < right_nritems) {
3870 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3871 						  leaf_data_end(right);
3872 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3873 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3874 				      BTRFS_LEAF_DATA_OFFSET +
3875 				      leaf_data_end(right), push_space);
3876 
3877 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3878 			      btrfs_item_nr_offset(push_items),
3879 			     (btrfs_header_nritems(right) - push_items) *
3880 			     sizeof(struct btrfs_item));
3881 	}
3882 
3883 	btrfs_init_map_token(&token, right);
3884 	right_nritems -= push_items;
3885 	btrfs_set_header_nritems(right, right_nritems);
3886 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3887 	for (i = 0; i < right_nritems; i++) {
3888 		item = btrfs_item_nr(i);
3889 
3890 		push_space = push_space - btrfs_token_item_size(&token, item);
3891 		btrfs_set_token_item_offset(&token, item, push_space);
3892 	}
3893 
3894 	btrfs_mark_buffer_dirty(left);
3895 	if (right_nritems)
3896 		btrfs_mark_buffer_dirty(right);
3897 	else
3898 		btrfs_clean_tree_block(right);
3899 
3900 	btrfs_item_key(right, &disk_key, 0);
3901 	fixup_low_keys(path, &disk_key, 1);
3902 
3903 	/* then fixup the leaf pointer in the path */
3904 	if (path->slots[0] < push_items) {
3905 		path->slots[0] += old_left_nritems;
3906 		btrfs_tree_unlock(path->nodes[0]);
3907 		free_extent_buffer(path->nodes[0]);
3908 		path->nodes[0] = left;
3909 		path->slots[1] -= 1;
3910 	} else {
3911 		btrfs_tree_unlock(left);
3912 		free_extent_buffer(left);
3913 		path->slots[0] -= push_items;
3914 	}
3915 	BUG_ON(path->slots[0] < 0);
3916 	return ret;
3917 out:
3918 	btrfs_tree_unlock(left);
3919 	free_extent_buffer(left);
3920 	return ret;
3921 }
3922 
3923 /*
3924  * push some data in the path leaf to the left, trying to free up at
3925  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3926  *
3927  * max_slot can put a limit on how far into the leaf we'll push items.  The
3928  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3929  * items
3930  */
3931 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3932 			  *root, struct btrfs_path *path, int min_data_size,
3933 			  int data_size, int empty, u32 max_slot)
3934 {
3935 	struct extent_buffer *right = path->nodes[0];
3936 	struct extent_buffer *left;
3937 	int slot;
3938 	int free_space;
3939 	u32 right_nritems;
3940 	int ret = 0;
3941 
3942 	slot = path->slots[1];
3943 	if (slot == 0)
3944 		return 1;
3945 	if (!path->nodes[1])
3946 		return 1;
3947 
3948 	right_nritems = btrfs_header_nritems(right);
3949 	if (right_nritems == 0)
3950 		return 1;
3951 
3952 	btrfs_assert_tree_locked(path->nodes[1]);
3953 
3954 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3955 	/*
3956 	 * slot - 1 is not valid or we fail to read the left node,
3957 	 * no big deal, just return.
3958 	 */
3959 	if (IS_ERR(left))
3960 		return 1;
3961 
3962 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3963 
3964 	free_space = btrfs_leaf_free_space(left);
3965 	if (free_space < data_size) {
3966 		ret = 1;
3967 		goto out;
3968 	}
3969 
3970 	/* cow and double check */
3971 	ret = btrfs_cow_block(trans, root, left,
3972 			      path->nodes[1], slot - 1, &left,
3973 			      BTRFS_NESTING_LEFT_COW);
3974 	if (ret) {
3975 		/* we hit -ENOSPC, but it isn't fatal here */
3976 		if (ret == -ENOSPC)
3977 			ret = 1;
3978 		goto out;
3979 	}
3980 
3981 	free_space = btrfs_leaf_free_space(left);
3982 	if (free_space < data_size) {
3983 		ret = 1;
3984 		goto out;
3985 	}
3986 
3987 	if (check_sibling_keys(left, right)) {
3988 		ret = -EUCLEAN;
3989 		goto out;
3990 	}
3991 	return __push_leaf_left(path, min_data_size,
3992 			       empty, left, free_space, right_nritems,
3993 			       max_slot);
3994 out:
3995 	btrfs_tree_unlock(left);
3996 	free_extent_buffer(left);
3997 	return ret;
3998 }
3999 
4000 /*
4001  * split the path's leaf in two, making sure there is at least data_size
4002  * available for the resulting leaf level of the path.
4003  */
4004 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4005 				    struct btrfs_path *path,
4006 				    struct extent_buffer *l,
4007 				    struct extent_buffer *right,
4008 				    int slot, int mid, int nritems)
4009 {
4010 	struct btrfs_fs_info *fs_info = trans->fs_info;
4011 	int data_copy_size;
4012 	int rt_data_off;
4013 	int i;
4014 	struct btrfs_disk_key disk_key;
4015 	struct btrfs_map_token token;
4016 
4017 	nritems = nritems - mid;
4018 	btrfs_set_header_nritems(right, nritems);
4019 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4020 
4021 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4022 			   btrfs_item_nr_offset(mid),
4023 			   nritems * sizeof(struct btrfs_item));
4024 
4025 	copy_extent_buffer(right, l,
4026 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4027 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4028 		     leaf_data_end(l), data_copy_size);
4029 
4030 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4031 
4032 	btrfs_init_map_token(&token, right);
4033 	for (i = 0; i < nritems; i++) {
4034 		struct btrfs_item *item = btrfs_item_nr(i);
4035 		u32 ioff;
4036 
4037 		ioff = btrfs_token_item_offset(&token, item);
4038 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4039 	}
4040 
4041 	btrfs_set_header_nritems(l, mid);
4042 	btrfs_item_key(right, &disk_key, 0);
4043 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4044 
4045 	btrfs_mark_buffer_dirty(right);
4046 	btrfs_mark_buffer_dirty(l);
4047 	BUG_ON(path->slots[0] != slot);
4048 
4049 	if (mid <= slot) {
4050 		btrfs_tree_unlock(path->nodes[0]);
4051 		free_extent_buffer(path->nodes[0]);
4052 		path->nodes[0] = right;
4053 		path->slots[0] -= mid;
4054 		path->slots[1] += 1;
4055 	} else {
4056 		btrfs_tree_unlock(right);
4057 		free_extent_buffer(right);
4058 	}
4059 
4060 	BUG_ON(path->slots[0] < 0);
4061 }
4062 
4063 /*
4064  * double splits happen when we need to insert a big item in the middle
4065  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4066  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4067  *          A                 B                 C
4068  *
4069  * We avoid this by trying to push the items on either side of our target
4070  * into the adjacent leaves.  If all goes well we can avoid the double split
4071  * completely.
4072  */
4073 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4074 					  struct btrfs_root *root,
4075 					  struct btrfs_path *path,
4076 					  int data_size)
4077 {
4078 	int ret;
4079 	int progress = 0;
4080 	int slot;
4081 	u32 nritems;
4082 	int space_needed = data_size;
4083 
4084 	slot = path->slots[0];
4085 	if (slot < btrfs_header_nritems(path->nodes[0]))
4086 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4087 
4088 	/*
4089 	 * try to push all the items after our slot into the
4090 	 * right leaf
4091 	 */
4092 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4093 	if (ret < 0)
4094 		return ret;
4095 
4096 	if (ret == 0)
4097 		progress++;
4098 
4099 	nritems = btrfs_header_nritems(path->nodes[0]);
4100 	/*
4101 	 * our goal is to get our slot at the start or end of a leaf.  If
4102 	 * we've done so we're done
4103 	 */
4104 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4105 		return 0;
4106 
4107 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4108 		return 0;
4109 
4110 	/* try to push all the items before our slot into the next leaf */
4111 	slot = path->slots[0];
4112 	space_needed = data_size;
4113 	if (slot > 0)
4114 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4115 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4116 	if (ret < 0)
4117 		return ret;
4118 
4119 	if (ret == 0)
4120 		progress++;
4121 
4122 	if (progress)
4123 		return 0;
4124 	return 1;
4125 }
4126 
4127 /*
4128  * split the path's leaf in two, making sure there is at least data_size
4129  * available for the resulting leaf level of the path.
4130  *
4131  * returns 0 if all went well and < 0 on failure.
4132  */
4133 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4134 			       struct btrfs_root *root,
4135 			       const struct btrfs_key *ins_key,
4136 			       struct btrfs_path *path, int data_size,
4137 			       int extend)
4138 {
4139 	struct btrfs_disk_key disk_key;
4140 	struct extent_buffer *l;
4141 	u32 nritems;
4142 	int mid;
4143 	int slot;
4144 	struct extent_buffer *right;
4145 	struct btrfs_fs_info *fs_info = root->fs_info;
4146 	int ret = 0;
4147 	int wret;
4148 	int split;
4149 	int num_doubles = 0;
4150 	int tried_avoid_double = 0;
4151 
4152 	l = path->nodes[0];
4153 	slot = path->slots[0];
4154 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4155 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4156 		return -EOVERFLOW;
4157 
4158 	/* first try to make some room by pushing left and right */
4159 	if (data_size && path->nodes[1]) {
4160 		int space_needed = data_size;
4161 
4162 		if (slot < btrfs_header_nritems(l))
4163 			space_needed -= btrfs_leaf_free_space(l);
4164 
4165 		wret = push_leaf_right(trans, root, path, space_needed,
4166 				       space_needed, 0, 0);
4167 		if (wret < 0)
4168 			return wret;
4169 		if (wret) {
4170 			space_needed = data_size;
4171 			if (slot > 0)
4172 				space_needed -= btrfs_leaf_free_space(l);
4173 			wret = push_leaf_left(trans, root, path, space_needed,
4174 					      space_needed, 0, (u32)-1);
4175 			if (wret < 0)
4176 				return wret;
4177 		}
4178 		l = path->nodes[0];
4179 
4180 		/* did the pushes work? */
4181 		if (btrfs_leaf_free_space(l) >= data_size)
4182 			return 0;
4183 	}
4184 
4185 	if (!path->nodes[1]) {
4186 		ret = insert_new_root(trans, root, path, 1);
4187 		if (ret)
4188 			return ret;
4189 	}
4190 again:
4191 	split = 1;
4192 	l = path->nodes[0];
4193 	slot = path->slots[0];
4194 	nritems = btrfs_header_nritems(l);
4195 	mid = (nritems + 1) / 2;
4196 
4197 	if (mid <= slot) {
4198 		if (nritems == 1 ||
4199 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4200 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4201 			if (slot >= nritems) {
4202 				split = 0;
4203 			} else {
4204 				mid = slot;
4205 				if (mid != nritems &&
4206 				    leaf_space_used(l, mid, nritems - mid) +
4207 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4208 					if (data_size && !tried_avoid_double)
4209 						goto push_for_double;
4210 					split = 2;
4211 				}
4212 			}
4213 		}
4214 	} else {
4215 		if (leaf_space_used(l, 0, mid) + data_size >
4216 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4217 			if (!extend && data_size && slot == 0) {
4218 				split = 0;
4219 			} else if ((extend || !data_size) && slot == 0) {
4220 				mid = 1;
4221 			} else {
4222 				mid = slot;
4223 				if (mid != nritems &&
4224 				    leaf_space_used(l, mid, nritems - mid) +
4225 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4226 					if (data_size && !tried_avoid_double)
4227 						goto push_for_double;
4228 					split = 2;
4229 				}
4230 			}
4231 		}
4232 	}
4233 
4234 	if (split == 0)
4235 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4236 	else
4237 		btrfs_item_key(l, &disk_key, mid);
4238 
4239 	/*
4240 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
4241 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
4242 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
4243 	 * out.  In the future we could add a
4244 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
4245 	 * use BTRFS_NESTING_NEW_ROOT.
4246 	 */
4247 	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4248 					     l->start, 0, num_doubles ?
4249 					     BTRFS_NESTING_NEW_ROOT :
4250 					     BTRFS_NESTING_SPLIT);
4251 	if (IS_ERR(right))
4252 		return PTR_ERR(right);
4253 
4254 	root_add_used(root, fs_info->nodesize);
4255 
4256 	if (split == 0) {
4257 		if (mid <= slot) {
4258 			btrfs_set_header_nritems(right, 0);
4259 			insert_ptr(trans, path, &disk_key,
4260 				   right->start, path->slots[1] + 1, 1);
4261 			btrfs_tree_unlock(path->nodes[0]);
4262 			free_extent_buffer(path->nodes[0]);
4263 			path->nodes[0] = right;
4264 			path->slots[0] = 0;
4265 			path->slots[1] += 1;
4266 		} else {
4267 			btrfs_set_header_nritems(right, 0);
4268 			insert_ptr(trans, path, &disk_key,
4269 				   right->start, path->slots[1], 1);
4270 			btrfs_tree_unlock(path->nodes[0]);
4271 			free_extent_buffer(path->nodes[0]);
4272 			path->nodes[0] = right;
4273 			path->slots[0] = 0;
4274 			if (path->slots[1] == 0)
4275 				fixup_low_keys(path, &disk_key, 1);
4276 		}
4277 		/*
4278 		 * We create a new leaf 'right' for the required ins_len and
4279 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4280 		 * the content of ins_len to 'right'.
4281 		 */
4282 		return ret;
4283 	}
4284 
4285 	copy_for_split(trans, path, l, right, slot, mid, nritems);
4286 
4287 	if (split == 2) {
4288 		BUG_ON(num_doubles != 0);
4289 		num_doubles++;
4290 		goto again;
4291 	}
4292 
4293 	return 0;
4294 
4295 push_for_double:
4296 	push_for_double_split(trans, root, path, data_size);
4297 	tried_avoid_double = 1;
4298 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4299 		return 0;
4300 	goto again;
4301 }
4302 
4303 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4304 					 struct btrfs_root *root,
4305 					 struct btrfs_path *path, int ins_len)
4306 {
4307 	struct btrfs_key key;
4308 	struct extent_buffer *leaf;
4309 	struct btrfs_file_extent_item *fi;
4310 	u64 extent_len = 0;
4311 	u32 item_size;
4312 	int ret;
4313 
4314 	leaf = path->nodes[0];
4315 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4316 
4317 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4318 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4319 
4320 	if (btrfs_leaf_free_space(leaf) >= ins_len)
4321 		return 0;
4322 
4323 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4324 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4325 		fi = btrfs_item_ptr(leaf, path->slots[0],
4326 				    struct btrfs_file_extent_item);
4327 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4328 	}
4329 	btrfs_release_path(path);
4330 
4331 	path->keep_locks = 1;
4332 	path->search_for_split = 1;
4333 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4334 	path->search_for_split = 0;
4335 	if (ret > 0)
4336 		ret = -EAGAIN;
4337 	if (ret < 0)
4338 		goto err;
4339 
4340 	ret = -EAGAIN;
4341 	leaf = path->nodes[0];
4342 	/* if our item isn't there, return now */
4343 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4344 		goto err;
4345 
4346 	/* the leaf has  changed, it now has room.  return now */
4347 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4348 		goto err;
4349 
4350 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4351 		fi = btrfs_item_ptr(leaf, path->slots[0],
4352 				    struct btrfs_file_extent_item);
4353 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4354 			goto err;
4355 	}
4356 
4357 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4358 	if (ret)
4359 		goto err;
4360 
4361 	path->keep_locks = 0;
4362 	btrfs_unlock_up_safe(path, 1);
4363 	return 0;
4364 err:
4365 	path->keep_locks = 0;
4366 	return ret;
4367 }
4368 
4369 static noinline int split_item(struct btrfs_path *path,
4370 			       const struct btrfs_key *new_key,
4371 			       unsigned long split_offset)
4372 {
4373 	struct extent_buffer *leaf;
4374 	struct btrfs_item *item;
4375 	struct btrfs_item *new_item;
4376 	int slot;
4377 	char *buf;
4378 	u32 nritems;
4379 	u32 item_size;
4380 	u32 orig_offset;
4381 	struct btrfs_disk_key disk_key;
4382 
4383 	leaf = path->nodes[0];
4384 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4385 
4386 	item = btrfs_item_nr(path->slots[0]);
4387 	orig_offset = btrfs_item_offset(leaf, item);
4388 	item_size = btrfs_item_size(leaf, item);
4389 
4390 	buf = kmalloc(item_size, GFP_NOFS);
4391 	if (!buf)
4392 		return -ENOMEM;
4393 
4394 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4395 			    path->slots[0]), item_size);
4396 
4397 	slot = path->slots[0] + 1;
4398 	nritems = btrfs_header_nritems(leaf);
4399 	if (slot != nritems) {
4400 		/* shift the items */
4401 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4402 				btrfs_item_nr_offset(slot),
4403 				(nritems - slot) * sizeof(struct btrfs_item));
4404 	}
4405 
4406 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4407 	btrfs_set_item_key(leaf, &disk_key, slot);
4408 
4409 	new_item = btrfs_item_nr(slot);
4410 
4411 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4412 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4413 
4414 	btrfs_set_item_offset(leaf, item,
4415 			      orig_offset + item_size - split_offset);
4416 	btrfs_set_item_size(leaf, item, split_offset);
4417 
4418 	btrfs_set_header_nritems(leaf, nritems + 1);
4419 
4420 	/* write the data for the start of the original item */
4421 	write_extent_buffer(leaf, buf,
4422 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4423 			    split_offset);
4424 
4425 	/* write the data for the new item */
4426 	write_extent_buffer(leaf, buf + split_offset,
4427 			    btrfs_item_ptr_offset(leaf, slot),
4428 			    item_size - split_offset);
4429 	btrfs_mark_buffer_dirty(leaf);
4430 
4431 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4432 	kfree(buf);
4433 	return 0;
4434 }
4435 
4436 /*
4437  * This function splits a single item into two items,
4438  * giving 'new_key' to the new item and splitting the
4439  * old one at split_offset (from the start of the item).
4440  *
4441  * The path may be released by this operation.  After
4442  * the split, the path is pointing to the old item.  The
4443  * new item is going to be in the same node as the old one.
4444  *
4445  * Note, the item being split must be smaller enough to live alone on
4446  * a tree block with room for one extra struct btrfs_item
4447  *
4448  * This allows us to split the item in place, keeping a lock on the
4449  * leaf the entire time.
4450  */
4451 int btrfs_split_item(struct btrfs_trans_handle *trans,
4452 		     struct btrfs_root *root,
4453 		     struct btrfs_path *path,
4454 		     const struct btrfs_key *new_key,
4455 		     unsigned long split_offset)
4456 {
4457 	int ret;
4458 	ret = setup_leaf_for_split(trans, root, path,
4459 				   sizeof(struct btrfs_item));
4460 	if (ret)
4461 		return ret;
4462 
4463 	ret = split_item(path, new_key, split_offset);
4464 	return ret;
4465 }
4466 
4467 /*
4468  * This function duplicate a item, giving 'new_key' to the new item.
4469  * It guarantees both items live in the same tree leaf and the new item
4470  * is contiguous with the original item.
4471  *
4472  * This allows us to split file extent in place, keeping a lock on the
4473  * leaf the entire time.
4474  */
4475 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4476 			 struct btrfs_root *root,
4477 			 struct btrfs_path *path,
4478 			 const struct btrfs_key *new_key)
4479 {
4480 	struct extent_buffer *leaf;
4481 	int ret;
4482 	u32 item_size;
4483 
4484 	leaf = path->nodes[0];
4485 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4486 	ret = setup_leaf_for_split(trans, root, path,
4487 				   item_size + sizeof(struct btrfs_item));
4488 	if (ret)
4489 		return ret;
4490 
4491 	path->slots[0]++;
4492 	setup_items_for_insert(root, path, new_key, &item_size, 1);
4493 	leaf = path->nodes[0];
4494 	memcpy_extent_buffer(leaf,
4495 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4496 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4497 			     item_size);
4498 	return 0;
4499 }
4500 
4501 /*
4502  * make the item pointed to by the path smaller.  new_size indicates
4503  * how small to make it, and from_end tells us if we just chop bytes
4504  * off the end of the item or if we shift the item to chop bytes off
4505  * the front.
4506  */
4507 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4508 {
4509 	int slot;
4510 	struct extent_buffer *leaf;
4511 	struct btrfs_item *item;
4512 	u32 nritems;
4513 	unsigned int data_end;
4514 	unsigned int old_data_start;
4515 	unsigned int old_size;
4516 	unsigned int size_diff;
4517 	int i;
4518 	struct btrfs_map_token token;
4519 
4520 	leaf = path->nodes[0];
4521 	slot = path->slots[0];
4522 
4523 	old_size = btrfs_item_size_nr(leaf, slot);
4524 	if (old_size == new_size)
4525 		return;
4526 
4527 	nritems = btrfs_header_nritems(leaf);
4528 	data_end = leaf_data_end(leaf);
4529 
4530 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4531 
4532 	size_diff = old_size - new_size;
4533 
4534 	BUG_ON(slot < 0);
4535 	BUG_ON(slot >= nritems);
4536 
4537 	/*
4538 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4539 	 */
4540 	/* first correct the data pointers */
4541 	btrfs_init_map_token(&token, leaf);
4542 	for (i = slot; i < nritems; i++) {
4543 		u32 ioff;
4544 		item = btrfs_item_nr(i);
4545 
4546 		ioff = btrfs_token_item_offset(&token, item);
4547 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
4548 	}
4549 
4550 	/* shift the data */
4551 	if (from_end) {
4552 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4553 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4554 			      data_end, old_data_start + new_size - data_end);
4555 	} else {
4556 		struct btrfs_disk_key disk_key;
4557 		u64 offset;
4558 
4559 		btrfs_item_key(leaf, &disk_key, slot);
4560 
4561 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4562 			unsigned long ptr;
4563 			struct btrfs_file_extent_item *fi;
4564 
4565 			fi = btrfs_item_ptr(leaf, slot,
4566 					    struct btrfs_file_extent_item);
4567 			fi = (struct btrfs_file_extent_item *)(
4568 			     (unsigned long)fi - size_diff);
4569 
4570 			if (btrfs_file_extent_type(leaf, fi) ==
4571 			    BTRFS_FILE_EXTENT_INLINE) {
4572 				ptr = btrfs_item_ptr_offset(leaf, slot);
4573 				memmove_extent_buffer(leaf, ptr,
4574 				      (unsigned long)fi,
4575 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4576 			}
4577 		}
4578 
4579 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4580 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4581 			      data_end, old_data_start - data_end);
4582 
4583 		offset = btrfs_disk_key_offset(&disk_key);
4584 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4585 		btrfs_set_item_key(leaf, &disk_key, slot);
4586 		if (slot == 0)
4587 			fixup_low_keys(path, &disk_key, 1);
4588 	}
4589 
4590 	item = btrfs_item_nr(slot);
4591 	btrfs_set_item_size(leaf, item, new_size);
4592 	btrfs_mark_buffer_dirty(leaf);
4593 
4594 	if (btrfs_leaf_free_space(leaf) < 0) {
4595 		btrfs_print_leaf(leaf);
4596 		BUG();
4597 	}
4598 }
4599 
4600 /*
4601  * make the item pointed to by the path bigger, data_size is the added size.
4602  */
4603 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4604 {
4605 	int slot;
4606 	struct extent_buffer *leaf;
4607 	struct btrfs_item *item;
4608 	u32 nritems;
4609 	unsigned int data_end;
4610 	unsigned int old_data;
4611 	unsigned int old_size;
4612 	int i;
4613 	struct btrfs_map_token token;
4614 
4615 	leaf = path->nodes[0];
4616 
4617 	nritems = btrfs_header_nritems(leaf);
4618 	data_end = leaf_data_end(leaf);
4619 
4620 	if (btrfs_leaf_free_space(leaf) < data_size) {
4621 		btrfs_print_leaf(leaf);
4622 		BUG();
4623 	}
4624 	slot = path->slots[0];
4625 	old_data = btrfs_item_end_nr(leaf, slot);
4626 
4627 	BUG_ON(slot < 0);
4628 	if (slot >= nritems) {
4629 		btrfs_print_leaf(leaf);
4630 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4631 			   slot, nritems);
4632 		BUG();
4633 	}
4634 
4635 	/*
4636 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4637 	 */
4638 	/* first correct the data pointers */
4639 	btrfs_init_map_token(&token, leaf);
4640 	for (i = slot; i < nritems; i++) {
4641 		u32 ioff;
4642 		item = btrfs_item_nr(i);
4643 
4644 		ioff = btrfs_token_item_offset(&token, item);
4645 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4646 	}
4647 
4648 	/* shift the data */
4649 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4650 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4651 		      data_end, old_data - data_end);
4652 
4653 	data_end = old_data;
4654 	old_size = btrfs_item_size_nr(leaf, slot);
4655 	item = btrfs_item_nr(slot);
4656 	btrfs_set_item_size(leaf, item, old_size + data_size);
4657 	btrfs_mark_buffer_dirty(leaf);
4658 
4659 	if (btrfs_leaf_free_space(leaf) < 0) {
4660 		btrfs_print_leaf(leaf);
4661 		BUG();
4662 	}
4663 }
4664 
4665 /**
4666  * setup_items_for_insert - Helper called before inserting one or more items
4667  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
4668  * in a function that doesn't call btrfs_search_slot
4669  *
4670  * @root:	root we are inserting items to
4671  * @path:	points to the leaf/slot where we are going to insert new items
4672  * @cpu_key:	array of keys for items to be inserted
4673  * @data_size:	size of the body of each item we are going to insert
4674  * @nr:		size of @cpu_key/@data_size arrays
4675  */
4676 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4677 			    const struct btrfs_key *cpu_key, u32 *data_size,
4678 			    int nr)
4679 {
4680 	struct btrfs_fs_info *fs_info = root->fs_info;
4681 	struct btrfs_item *item;
4682 	int i;
4683 	u32 nritems;
4684 	unsigned int data_end;
4685 	struct btrfs_disk_key disk_key;
4686 	struct extent_buffer *leaf;
4687 	int slot;
4688 	struct btrfs_map_token token;
4689 	u32 total_size;
4690 	u32 total_data = 0;
4691 
4692 	for (i = 0; i < nr; i++)
4693 		total_data += data_size[i];
4694 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4695 
4696 	if (path->slots[0] == 0) {
4697 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4698 		fixup_low_keys(path, &disk_key, 1);
4699 	}
4700 	btrfs_unlock_up_safe(path, 1);
4701 
4702 	leaf = path->nodes[0];
4703 	slot = path->slots[0];
4704 
4705 	nritems = btrfs_header_nritems(leaf);
4706 	data_end = leaf_data_end(leaf);
4707 
4708 	if (btrfs_leaf_free_space(leaf) < total_size) {
4709 		btrfs_print_leaf(leaf);
4710 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4711 			   total_size, btrfs_leaf_free_space(leaf));
4712 		BUG();
4713 	}
4714 
4715 	btrfs_init_map_token(&token, leaf);
4716 	if (slot != nritems) {
4717 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4718 
4719 		if (old_data < data_end) {
4720 			btrfs_print_leaf(leaf);
4721 			btrfs_crit(fs_info,
4722 		"item at slot %d with data offset %u beyond data end of leaf %u",
4723 				   slot, old_data, data_end);
4724 			BUG();
4725 		}
4726 		/*
4727 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4728 		 */
4729 		/* first correct the data pointers */
4730 		for (i = slot; i < nritems; i++) {
4731 			u32 ioff;
4732 
4733 			item = btrfs_item_nr(i);
4734 			ioff = btrfs_token_item_offset(&token, item);
4735 			btrfs_set_token_item_offset(&token, item,
4736 						    ioff - total_data);
4737 		}
4738 		/* shift the items */
4739 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4740 			      btrfs_item_nr_offset(slot),
4741 			      (nritems - slot) * sizeof(struct btrfs_item));
4742 
4743 		/* shift the data */
4744 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4745 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4746 			      data_end, old_data - data_end);
4747 		data_end = old_data;
4748 	}
4749 
4750 	/* setup the item for the new data */
4751 	for (i = 0; i < nr; i++) {
4752 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4753 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4754 		item = btrfs_item_nr(slot + i);
4755 		data_end -= data_size[i];
4756 		btrfs_set_token_item_offset(&token, item, data_end);
4757 		btrfs_set_token_item_size(&token, item, data_size[i]);
4758 	}
4759 
4760 	btrfs_set_header_nritems(leaf, nritems + nr);
4761 	btrfs_mark_buffer_dirty(leaf);
4762 
4763 	if (btrfs_leaf_free_space(leaf) < 0) {
4764 		btrfs_print_leaf(leaf);
4765 		BUG();
4766 	}
4767 }
4768 
4769 /*
4770  * Given a key and some data, insert items into the tree.
4771  * This does all the path init required, making room in the tree if needed.
4772  */
4773 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4774 			    struct btrfs_root *root,
4775 			    struct btrfs_path *path,
4776 			    const struct btrfs_key *cpu_key, u32 *data_size,
4777 			    int nr)
4778 {
4779 	int ret = 0;
4780 	int slot;
4781 	int i;
4782 	u32 total_size = 0;
4783 	u32 total_data = 0;
4784 
4785 	for (i = 0; i < nr; i++)
4786 		total_data += data_size[i];
4787 
4788 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4789 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4790 	if (ret == 0)
4791 		return -EEXIST;
4792 	if (ret < 0)
4793 		return ret;
4794 
4795 	slot = path->slots[0];
4796 	BUG_ON(slot < 0);
4797 
4798 	setup_items_for_insert(root, path, cpu_key, data_size, nr);
4799 	return 0;
4800 }
4801 
4802 /*
4803  * Given a key and some data, insert an item into the tree.
4804  * This does all the path init required, making room in the tree if needed.
4805  */
4806 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4807 		      const struct btrfs_key *cpu_key, void *data,
4808 		      u32 data_size)
4809 {
4810 	int ret = 0;
4811 	struct btrfs_path *path;
4812 	struct extent_buffer *leaf;
4813 	unsigned long ptr;
4814 
4815 	path = btrfs_alloc_path();
4816 	if (!path)
4817 		return -ENOMEM;
4818 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4819 	if (!ret) {
4820 		leaf = path->nodes[0];
4821 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4822 		write_extent_buffer(leaf, data, ptr, data_size);
4823 		btrfs_mark_buffer_dirty(leaf);
4824 	}
4825 	btrfs_free_path(path);
4826 	return ret;
4827 }
4828 
4829 /*
4830  * delete the pointer from a given node.
4831  *
4832  * the tree should have been previously balanced so the deletion does not
4833  * empty a node.
4834  */
4835 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4836 		    int level, int slot)
4837 {
4838 	struct extent_buffer *parent = path->nodes[level];
4839 	u32 nritems;
4840 	int ret;
4841 
4842 	nritems = btrfs_header_nritems(parent);
4843 	if (slot != nritems - 1) {
4844 		if (level) {
4845 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4846 					nritems - slot - 1);
4847 			BUG_ON(ret < 0);
4848 		}
4849 		memmove_extent_buffer(parent,
4850 			      btrfs_node_key_ptr_offset(slot),
4851 			      btrfs_node_key_ptr_offset(slot + 1),
4852 			      sizeof(struct btrfs_key_ptr) *
4853 			      (nritems - slot - 1));
4854 	} else if (level) {
4855 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4856 				GFP_NOFS);
4857 		BUG_ON(ret < 0);
4858 	}
4859 
4860 	nritems--;
4861 	btrfs_set_header_nritems(parent, nritems);
4862 	if (nritems == 0 && parent == root->node) {
4863 		BUG_ON(btrfs_header_level(root->node) != 1);
4864 		/* just turn the root into a leaf and break */
4865 		btrfs_set_header_level(root->node, 0);
4866 	} else if (slot == 0) {
4867 		struct btrfs_disk_key disk_key;
4868 
4869 		btrfs_node_key(parent, &disk_key, 0);
4870 		fixup_low_keys(path, &disk_key, level + 1);
4871 	}
4872 	btrfs_mark_buffer_dirty(parent);
4873 }
4874 
4875 /*
4876  * a helper function to delete the leaf pointed to by path->slots[1] and
4877  * path->nodes[1].
4878  *
4879  * This deletes the pointer in path->nodes[1] and frees the leaf
4880  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4881  *
4882  * The path must have already been setup for deleting the leaf, including
4883  * all the proper balancing.  path->nodes[1] must be locked.
4884  */
4885 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4886 				    struct btrfs_root *root,
4887 				    struct btrfs_path *path,
4888 				    struct extent_buffer *leaf)
4889 {
4890 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4891 	del_ptr(root, path, 1, path->slots[1]);
4892 
4893 	/*
4894 	 * btrfs_free_extent is expensive, we want to make sure we
4895 	 * aren't holding any locks when we call it
4896 	 */
4897 	btrfs_unlock_up_safe(path, 0);
4898 
4899 	root_sub_used(root, leaf->len);
4900 
4901 	atomic_inc(&leaf->refs);
4902 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4903 	free_extent_buffer_stale(leaf);
4904 }
4905 /*
4906  * delete the item at the leaf level in path.  If that empties
4907  * the leaf, remove it from the tree
4908  */
4909 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4910 		    struct btrfs_path *path, int slot, int nr)
4911 {
4912 	struct btrfs_fs_info *fs_info = root->fs_info;
4913 	struct extent_buffer *leaf;
4914 	struct btrfs_item *item;
4915 	u32 last_off;
4916 	u32 dsize = 0;
4917 	int ret = 0;
4918 	int wret;
4919 	int i;
4920 	u32 nritems;
4921 
4922 	leaf = path->nodes[0];
4923 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4924 
4925 	for (i = 0; i < nr; i++)
4926 		dsize += btrfs_item_size_nr(leaf, slot + i);
4927 
4928 	nritems = btrfs_header_nritems(leaf);
4929 
4930 	if (slot + nr != nritems) {
4931 		int data_end = leaf_data_end(leaf);
4932 		struct btrfs_map_token token;
4933 
4934 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4935 			      data_end + dsize,
4936 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4937 			      last_off - data_end);
4938 
4939 		btrfs_init_map_token(&token, leaf);
4940 		for (i = slot + nr; i < nritems; i++) {
4941 			u32 ioff;
4942 
4943 			item = btrfs_item_nr(i);
4944 			ioff = btrfs_token_item_offset(&token, item);
4945 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4946 		}
4947 
4948 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4949 			      btrfs_item_nr_offset(slot + nr),
4950 			      sizeof(struct btrfs_item) *
4951 			      (nritems - slot - nr));
4952 	}
4953 	btrfs_set_header_nritems(leaf, nritems - nr);
4954 	nritems -= nr;
4955 
4956 	/* delete the leaf if we've emptied it */
4957 	if (nritems == 0) {
4958 		if (leaf == root->node) {
4959 			btrfs_set_header_level(leaf, 0);
4960 		} else {
4961 			btrfs_clean_tree_block(leaf);
4962 			btrfs_del_leaf(trans, root, path, leaf);
4963 		}
4964 	} else {
4965 		int used = leaf_space_used(leaf, 0, nritems);
4966 		if (slot == 0) {
4967 			struct btrfs_disk_key disk_key;
4968 
4969 			btrfs_item_key(leaf, &disk_key, 0);
4970 			fixup_low_keys(path, &disk_key, 1);
4971 		}
4972 
4973 		/* delete the leaf if it is mostly empty */
4974 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4975 			/* push_leaf_left fixes the path.
4976 			 * make sure the path still points to our leaf
4977 			 * for possible call to del_ptr below
4978 			 */
4979 			slot = path->slots[1];
4980 			atomic_inc(&leaf->refs);
4981 
4982 			wret = push_leaf_left(trans, root, path, 1, 1,
4983 					      1, (u32)-1);
4984 			if (wret < 0 && wret != -ENOSPC)
4985 				ret = wret;
4986 
4987 			if (path->nodes[0] == leaf &&
4988 			    btrfs_header_nritems(leaf)) {
4989 				wret = push_leaf_right(trans, root, path, 1,
4990 						       1, 1, 0);
4991 				if (wret < 0 && wret != -ENOSPC)
4992 					ret = wret;
4993 			}
4994 
4995 			if (btrfs_header_nritems(leaf) == 0) {
4996 				path->slots[1] = slot;
4997 				btrfs_del_leaf(trans, root, path, leaf);
4998 				free_extent_buffer(leaf);
4999 				ret = 0;
5000 			} else {
5001 				/* if we're still in the path, make sure
5002 				 * we're dirty.  Otherwise, one of the
5003 				 * push_leaf functions must have already
5004 				 * dirtied this buffer
5005 				 */
5006 				if (path->nodes[0] == leaf)
5007 					btrfs_mark_buffer_dirty(leaf);
5008 				free_extent_buffer(leaf);
5009 			}
5010 		} else {
5011 			btrfs_mark_buffer_dirty(leaf);
5012 		}
5013 	}
5014 	return ret;
5015 }
5016 
5017 /*
5018  * search the tree again to find a leaf with lesser keys
5019  * returns 0 if it found something or 1 if there are no lesser leaves.
5020  * returns < 0 on io errors.
5021  *
5022  * This may release the path, and so you may lose any locks held at the
5023  * time you call it.
5024  */
5025 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5026 {
5027 	struct btrfs_key key;
5028 	struct btrfs_disk_key found_key;
5029 	int ret;
5030 
5031 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5032 
5033 	if (key.offset > 0) {
5034 		key.offset--;
5035 	} else if (key.type > 0) {
5036 		key.type--;
5037 		key.offset = (u64)-1;
5038 	} else if (key.objectid > 0) {
5039 		key.objectid--;
5040 		key.type = (u8)-1;
5041 		key.offset = (u64)-1;
5042 	} else {
5043 		return 1;
5044 	}
5045 
5046 	btrfs_release_path(path);
5047 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5048 	if (ret < 0)
5049 		return ret;
5050 	btrfs_item_key(path->nodes[0], &found_key, 0);
5051 	ret = comp_keys(&found_key, &key);
5052 	/*
5053 	 * We might have had an item with the previous key in the tree right
5054 	 * before we released our path. And after we released our path, that
5055 	 * item might have been pushed to the first slot (0) of the leaf we
5056 	 * were holding due to a tree balance. Alternatively, an item with the
5057 	 * previous key can exist as the only element of a leaf (big fat item).
5058 	 * Therefore account for these 2 cases, so that our callers (like
5059 	 * btrfs_previous_item) don't miss an existing item with a key matching
5060 	 * the previous key we computed above.
5061 	 */
5062 	if (ret <= 0)
5063 		return 0;
5064 	return 1;
5065 }
5066 
5067 /*
5068  * A helper function to walk down the tree starting at min_key, and looking
5069  * for nodes or leaves that are have a minimum transaction id.
5070  * This is used by the btree defrag code, and tree logging
5071  *
5072  * This does not cow, but it does stuff the starting key it finds back
5073  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5074  * key and get a writable path.
5075  *
5076  * This honors path->lowest_level to prevent descent past a given level
5077  * of the tree.
5078  *
5079  * min_trans indicates the oldest transaction that you are interested
5080  * in walking through.  Any nodes or leaves older than min_trans are
5081  * skipped over (without reading them).
5082  *
5083  * returns zero if something useful was found, < 0 on error and 1 if there
5084  * was nothing in the tree that matched the search criteria.
5085  */
5086 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5087 			 struct btrfs_path *path,
5088 			 u64 min_trans)
5089 {
5090 	struct extent_buffer *cur;
5091 	struct btrfs_key found_key;
5092 	int slot;
5093 	int sret;
5094 	u32 nritems;
5095 	int level;
5096 	int ret = 1;
5097 	int keep_locks = path->keep_locks;
5098 
5099 	path->keep_locks = 1;
5100 again:
5101 	cur = btrfs_read_lock_root_node(root);
5102 	level = btrfs_header_level(cur);
5103 	WARN_ON(path->nodes[level]);
5104 	path->nodes[level] = cur;
5105 	path->locks[level] = BTRFS_READ_LOCK;
5106 
5107 	if (btrfs_header_generation(cur) < min_trans) {
5108 		ret = 1;
5109 		goto out;
5110 	}
5111 	while (1) {
5112 		nritems = btrfs_header_nritems(cur);
5113 		level = btrfs_header_level(cur);
5114 		sret = btrfs_bin_search(cur, min_key, &slot);
5115 		if (sret < 0) {
5116 			ret = sret;
5117 			goto out;
5118 		}
5119 
5120 		/* at the lowest level, we're done, setup the path and exit */
5121 		if (level == path->lowest_level) {
5122 			if (slot >= nritems)
5123 				goto find_next_key;
5124 			ret = 0;
5125 			path->slots[level] = slot;
5126 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5127 			goto out;
5128 		}
5129 		if (sret && slot > 0)
5130 			slot--;
5131 		/*
5132 		 * check this node pointer against the min_trans parameters.
5133 		 * If it is too old, skip to the next one.
5134 		 */
5135 		while (slot < nritems) {
5136 			u64 gen;
5137 
5138 			gen = btrfs_node_ptr_generation(cur, slot);
5139 			if (gen < min_trans) {
5140 				slot++;
5141 				continue;
5142 			}
5143 			break;
5144 		}
5145 find_next_key:
5146 		/*
5147 		 * we didn't find a candidate key in this node, walk forward
5148 		 * and find another one
5149 		 */
5150 		if (slot >= nritems) {
5151 			path->slots[level] = slot;
5152 			sret = btrfs_find_next_key(root, path, min_key, level,
5153 						  min_trans);
5154 			if (sret == 0) {
5155 				btrfs_release_path(path);
5156 				goto again;
5157 			} else {
5158 				goto out;
5159 			}
5160 		}
5161 		/* save our key for returning back */
5162 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5163 		path->slots[level] = slot;
5164 		if (level == path->lowest_level) {
5165 			ret = 0;
5166 			goto out;
5167 		}
5168 		cur = btrfs_read_node_slot(cur, slot);
5169 		if (IS_ERR(cur)) {
5170 			ret = PTR_ERR(cur);
5171 			goto out;
5172 		}
5173 
5174 		btrfs_tree_read_lock(cur);
5175 
5176 		path->locks[level - 1] = BTRFS_READ_LOCK;
5177 		path->nodes[level - 1] = cur;
5178 		unlock_up(path, level, 1, 0, NULL);
5179 	}
5180 out:
5181 	path->keep_locks = keep_locks;
5182 	if (ret == 0) {
5183 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5184 		memcpy(min_key, &found_key, sizeof(found_key));
5185 	}
5186 	return ret;
5187 }
5188 
5189 /*
5190  * this is similar to btrfs_next_leaf, but does not try to preserve
5191  * and fixup the path.  It looks for and returns the next key in the
5192  * tree based on the current path and the min_trans parameters.
5193  *
5194  * 0 is returned if another key is found, < 0 if there are any errors
5195  * and 1 is returned if there are no higher keys in the tree
5196  *
5197  * path->keep_locks should be set to 1 on the search made before
5198  * calling this function.
5199  */
5200 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5201 			struct btrfs_key *key, int level, u64 min_trans)
5202 {
5203 	int slot;
5204 	struct extent_buffer *c;
5205 
5206 	WARN_ON(!path->keep_locks && !path->skip_locking);
5207 	while (level < BTRFS_MAX_LEVEL) {
5208 		if (!path->nodes[level])
5209 			return 1;
5210 
5211 		slot = path->slots[level] + 1;
5212 		c = path->nodes[level];
5213 next:
5214 		if (slot >= btrfs_header_nritems(c)) {
5215 			int ret;
5216 			int orig_lowest;
5217 			struct btrfs_key cur_key;
5218 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5219 			    !path->nodes[level + 1])
5220 				return 1;
5221 
5222 			if (path->locks[level + 1] || path->skip_locking) {
5223 				level++;
5224 				continue;
5225 			}
5226 
5227 			slot = btrfs_header_nritems(c) - 1;
5228 			if (level == 0)
5229 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5230 			else
5231 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5232 
5233 			orig_lowest = path->lowest_level;
5234 			btrfs_release_path(path);
5235 			path->lowest_level = level;
5236 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5237 						0, 0);
5238 			path->lowest_level = orig_lowest;
5239 			if (ret < 0)
5240 				return ret;
5241 
5242 			c = path->nodes[level];
5243 			slot = path->slots[level];
5244 			if (ret == 0)
5245 				slot++;
5246 			goto next;
5247 		}
5248 
5249 		if (level == 0)
5250 			btrfs_item_key_to_cpu(c, key, slot);
5251 		else {
5252 			u64 gen = btrfs_node_ptr_generation(c, slot);
5253 
5254 			if (gen < min_trans) {
5255 				slot++;
5256 				goto next;
5257 			}
5258 			btrfs_node_key_to_cpu(c, key, slot);
5259 		}
5260 		return 0;
5261 	}
5262 	return 1;
5263 }
5264 
5265 /*
5266  * search the tree again to find a leaf with greater keys
5267  * returns 0 if it found something or 1 if there are no greater leaves.
5268  * returns < 0 on io errors.
5269  */
5270 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5271 {
5272 	return btrfs_next_old_leaf(root, path, 0);
5273 }
5274 
5275 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5276 			u64 time_seq)
5277 {
5278 	int slot;
5279 	int level;
5280 	struct extent_buffer *c;
5281 	struct extent_buffer *next;
5282 	struct btrfs_key key;
5283 	u32 nritems;
5284 	int ret;
5285 	int i;
5286 
5287 	nritems = btrfs_header_nritems(path->nodes[0]);
5288 	if (nritems == 0)
5289 		return 1;
5290 
5291 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5292 again:
5293 	level = 1;
5294 	next = NULL;
5295 	btrfs_release_path(path);
5296 
5297 	path->keep_locks = 1;
5298 
5299 	if (time_seq)
5300 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5301 	else
5302 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5303 	path->keep_locks = 0;
5304 
5305 	if (ret < 0)
5306 		return ret;
5307 
5308 	nritems = btrfs_header_nritems(path->nodes[0]);
5309 	/*
5310 	 * by releasing the path above we dropped all our locks.  A balance
5311 	 * could have added more items next to the key that used to be
5312 	 * at the very end of the block.  So, check again here and
5313 	 * advance the path if there are now more items available.
5314 	 */
5315 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5316 		if (ret == 0)
5317 			path->slots[0]++;
5318 		ret = 0;
5319 		goto done;
5320 	}
5321 	/*
5322 	 * So the above check misses one case:
5323 	 * - after releasing the path above, someone has removed the item that
5324 	 *   used to be at the very end of the block, and balance between leafs
5325 	 *   gets another one with bigger key.offset to replace it.
5326 	 *
5327 	 * This one should be returned as well, or we can get leaf corruption
5328 	 * later(esp. in __btrfs_drop_extents()).
5329 	 *
5330 	 * And a bit more explanation about this check,
5331 	 * with ret > 0, the key isn't found, the path points to the slot
5332 	 * where it should be inserted, so the path->slots[0] item must be the
5333 	 * bigger one.
5334 	 */
5335 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5336 		ret = 0;
5337 		goto done;
5338 	}
5339 
5340 	while (level < BTRFS_MAX_LEVEL) {
5341 		if (!path->nodes[level]) {
5342 			ret = 1;
5343 			goto done;
5344 		}
5345 
5346 		slot = path->slots[level] + 1;
5347 		c = path->nodes[level];
5348 		if (slot >= btrfs_header_nritems(c)) {
5349 			level++;
5350 			if (level == BTRFS_MAX_LEVEL) {
5351 				ret = 1;
5352 				goto done;
5353 			}
5354 			continue;
5355 		}
5356 
5357 
5358 		/*
5359 		 * Our current level is where we're going to start from, and to
5360 		 * make sure lockdep doesn't complain we need to drop our locks
5361 		 * and nodes from 0 to our current level.
5362 		 */
5363 		for (i = 0; i < level; i++) {
5364 			if (path->locks[level]) {
5365 				btrfs_tree_read_unlock(path->nodes[i]);
5366 				path->locks[i] = 0;
5367 			}
5368 			free_extent_buffer(path->nodes[i]);
5369 			path->nodes[i] = NULL;
5370 		}
5371 
5372 		next = c;
5373 		ret = read_block_for_search(root, path, &next, level,
5374 					    slot, &key);
5375 		if (ret == -EAGAIN)
5376 			goto again;
5377 
5378 		if (ret < 0) {
5379 			btrfs_release_path(path);
5380 			goto done;
5381 		}
5382 
5383 		if (!path->skip_locking) {
5384 			ret = btrfs_try_tree_read_lock(next);
5385 			if (!ret && time_seq) {
5386 				/*
5387 				 * If we don't get the lock, we may be racing
5388 				 * with push_leaf_left, holding that lock while
5389 				 * itself waiting for the leaf we've currently
5390 				 * locked. To solve this situation, we give up
5391 				 * on our lock and cycle.
5392 				 */
5393 				free_extent_buffer(next);
5394 				btrfs_release_path(path);
5395 				cond_resched();
5396 				goto again;
5397 			}
5398 			if (!ret)
5399 				btrfs_tree_read_lock(next);
5400 		}
5401 		break;
5402 	}
5403 	path->slots[level] = slot;
5404 	while (1) {
5405 		level--;
5406 		path->nodes[level] = next;
5407 		path->slots[level] = 0;
5408 		if (!path->skip_locking)
5409 			path->locks[level] = BTRFS_READ_LOCK;
5410 		if (!level)
5411 			break;
5412 
5413 		ret = read_block_for_search(root, path, &next, level,
5414 					    0, &key);
5415 		if (ret == -EAGAIN)
5416 			goto again;
5417 
5418 		if (ret < 0) {
5419 			btrfs_release_path(path);
5420 			goto done;
5421 		}
5422 
5423 		if (!path->skip_locking)
5424 			btrfs_tree_read_lock(next);
5425 	}
5426 	ret = 0;
5427 done:
5428 	unlock_up(path, 0, 1, 0, NULL);
5429 
5430 	return ret;
5431 }
5432 
5433 /*
5434  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5435  * searching until it gets past min_objectid or finds an item of 'type'
5436  *
5437  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5438  */
5439 int btrfs_previous_item(struct btrfs_root *root,
5440 			struct btrfs_path *path, u64 min_objectid,
5441 			int type)
5442 {
5443 	struct btrfs_key found_key;
5444 	struct extent_buffer *leaf;
5445 	u32 nritems;
5446 	int ret;
5447 
5448 	while (1) {
5449 		if (path->slots[0] == 0) {
5450 			ret = btrfs_prev_leaf(root, path);
5451 			if (ret != 0)
5452 				return ret;
5453 		} else {
5454 			path->slots[0]--;
5455 		}
5456 		leaf = path->nodes[0];
5457 		nritems = btrfs_header_nritems(leaf);
5458 		if (nritems == 0)
5459 			return 1;
5460 		if (path->slots[0] == nritems)
5461 			path->slots[0]--;
5462 
5463 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5464 		if (found_key.objectid < min_objectid)
5465 			break;
5466 		if (found_key.type == type)
5467 			return 0;
5468 		if (found_key.objectid == min_objectid &&
5469 		    found_key.type < type)
5470 			break;
5471 	}
5472 	return 1;
5473 }
5474 
5475 /*
5476  * search in extent tree to find a previous Metadata/Data extent item with
5477  * min objecitd.
5478  *
5479  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5480  */
5481 int btrfs_previous_extent_item(struct btrfs_root *root,
5482 			struct btrfs_path *path, u64 min_objectid)
5483 {
5484 	struct btrfs_key found_key;
5485 	struct extent_buffer *leaf;
5486 	u32 nritems;
5487 	int ret;
5488 
5489 	while (1) {
5490 		if (path->slots[0] == 0) {
5491 			ret = btrfs_prev_leaf(root, path);
5492 			if (ret != 0)
5493 				return ret;
5494 		} else {
5495 			path->slots[0]--;
5496 		}
5497 		leaf = path->nodes[0];
5498 		nritems = btrfs_header_nritems(leaf);
5499 		if (nritems == 0)
5500 			return 1;
5501 		if (path->slots[0] == nritems)
5502 			path->slots[0]--;
5503 
5504 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5505 		if (found_key.objectid < min_objectid)
5506 			break;
5507 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5508 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5509 			return 0;
5510 		if (found_key.objectid == min_objectid &&
5511 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5512 			break;
5513 	}
5514 	return 1;
5515 }
5516