xref: /openbmc/linux/fs/btrfs/ctree.c (revision 097b8a7c9e48e2cb50fd0eb9315791921beaf484)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 		    struct btrfs_path *path, int level, int slot,
42 		    int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 				 struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 					  u32 blocksize, u64 parent_transid,
47 					  u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 						u64 bytenr, u32 blocksize,
50 						u64 time_seq);
51 
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54 	struct btrfs_path *path;
55 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56 	return path;
57 }
58 
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65 	int i;
66 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 		if (!p->nodes[i] || !p->locks[i])
68 			continue;
69 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 		if (p->locks[i] == BTRFS_READ_LOCK)
71 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74 	}
75 }
76 
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86 					struct extent_buffer *held, int held_rw)
87 {
88 	int i;
89 
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 	/* lockdep really cares that we take all of these spinlocks
92 	 * in the right order.  If any of the locks in the path are not
93 	 * currently blocking, it is going to complain.  So, make really
94 	 * really sure by forcing the path to blocking before we clear
95 	 * the path blocking.
96 	 */
97 	if (held) {
98 		btrfs_set_lock_blocking_rw(held, held_rw);
99 		if (held_rw == BTRFS_WRITE_LOCK)
100 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 		else if (held_rw == BTRFS_READ_LOCK)
102 			held_rw = BTRFS_READ_LOCK_BLOCKING;
103 	}
104 	btrfs_set_path_blocking(p);
105 #endif
106 
107 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 		if (p->nodes[i] && p->locks[i]) {
109 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 				p->locks[i] = BTRFS_WRITE_LOCK;
112 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 				p->locks[i] = BTRFS_READ_LOCK;
114 		}
115 	}
116 
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 	if (held)
119 		btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122 
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126 	if (!p)
127 		return;
128 	btrfs_release_path(p);
129 	kmem_cache_free(btrfs_path_cachep, p);
130 }
131 
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140 	int i;
141 
142 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143 		p->slots[i] = 0;
144 		if (!p->nodes[i])
145 			continue;
146 		if (p->locks[i]) {
147 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148 			p->locks[i] = 0;
149 		}
150 		free_extent_buffer(p->nodes[i]);
151 		p->nodes[i] = NULL;
152 	}
153 }
154 
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167 	struct extent_buffer *eb;
168 
169 	while (1) {
170 		rcu_read_lock();
171 		eb = rcu_dereference(root->node);
172 
173 		/*
174 		 * RCU really hurts here, we could free up the root node because
175 		 * it was cow'ed but we may not get the new root node yet so do
176 		 * the inc_not_zero dance and if it doesn't work then
177 		 * synchronize_rcu and try again.
178 		 */
179 		if (atomic_inc_not_zero(&eb->refs)) {
180 			rcu_read_unlock();
181 			break;
182 		}
183 		rcu_read_unlock();
184 		synchronize_rcu();
185 	}
186 	return eb;
187 }
188 
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195 	struct extent_buffer *eb;
196 
197 	while (1) {
198 		eb = btrfs_root_node(root);
199 		btrfs_tree_lock(eb);
200 		if (eb == root->node)
201 			break;
202 		btrfs_tree_unlock(eb);
203 		free_extent_buffer(eb);
204 	}
205 	return eb;
206 }
207 
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214 	struct extent_buffer *eb;
215 
216 	while (1) {
217 		eb = btrfs_root_node(root);
218 		btrfs_tree_read_lock(eb);
219 		if (eb == root->node)
220 			break;
221 		btrfs_tree_read_unlock(eb);
222 		free_extent_buffer(eb);
223 	}
224 	return eb;
225 }
226 
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233 	spin_lock(&root->fs_info->trans_lock);
234 	if (root->track_dirty && list_empty(&root->dirty_list)) {
235 		list_add(&root->dirty_list,
236 			 &root->fs_info->dirty_cowonly_roots);
237 	}
238 	spin_unlock(&root->fs_info->trans_lock);
239 }
240 
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 		      struct btrfs_root *root,
248 		      struct extent_buffer *buf,
249 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251 	struct extent_buffer *cow;
252 	int ret = 0;
253 	int level;
254 	struct btrfs_disk_key disk_key;
255 
256 	WARN_ON(root->ref_cows && trans->transid !=
257 		root->fs_info->running_transaction->transid);
258 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259 
260 	level = btrfs_header_level(buf);
261 	if (level == 0)
262 		btrfs_item_key(buf, &disk_key, 0);
263 	else
264 		btrfs_node_key(buf, &disk_key, 0);
265 
266 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 				     new_root_objectid, &disk_key, level,
268 				     buf->start, 0);
269 	if (IS_ERR(cow))
270 		return PTR_ERR(cow);
271 
272 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 	btrfs_set_header_bytenr(cow, cow->start);
274 	btrfs_set_header_generation(cow, trans->transid);
275 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 				     BTRFS_HEADER_FLAG_RELOC);
278 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 	else
281 		btrfs_set_header_owner(cow, new_root_objectid);
282 
283 	write_extent_buffer(cow, root->fs_info->fsid,
284 			    (unsigned long)btrfs_header_fsid(cow),
285 			    BTRFS_FSID_SIZE);
286 
287 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
288 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290 	else
291 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292 
293 	if (ret)
294 		return ret;
295 
296 	btrfs_mark_buffer_dirty(cow);
297 	*cow_ret = cow;
298 	return 0;
299 }
300 
301 enum mod_log_op {
302 	MOD_LOG_KEY_REPLACE,
303 	MOD_LOG_KEY_ADD,
304 	MOD_LOG_KEY_REMOVE,
305 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 	MOD_LOG_MOVE_KEYS,
308 	MOD_LOG_ROOT_REPLACE,
309 };
310 
311 struct tree_mod_move {
312 	int dst_slot;
313 	int nr_items;
314 };
315 
316 struct tree_mod_root {
317 	u64 logical;
318 	u8 level;
319 };
320 
321 struct tree_mod_elem {
322 	struct rb_node node;
323 	u64 index;		/* shifted logical */
324 	u64 seq;
325 	enum mod_log_op op;
326 
327 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 	int slot;
329 
330 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 	u64 generation;
332 
333 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 	struct btrfs_disk_key key;
335 	u64 blockptr;
336 
337 	/* this is used for op == MOD_LOG_MOVE_KEYS */
338 	struct tree_mod_move move;
339 
340 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
341 	struct tree_mod_root old_root;
342 };
343 
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345 {
346 	read_lock(&fs_info->tree_mod_log_lock);
347 }
348 
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350 {
351 	read_unlock(&fs_info->tree_mod_log_lock);
352 }
353 
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355 {
356 	write_lock(&fs_info->tree_mod_log_lock);
357 }
358 
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360 {
361 	write_unlock(&fs_info->tree_mod_log_lock);
362 }
363 
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 			   struct seq_list *elem)
374 {
375 	u64 seq;
376 
377 	tree_mod_log_write_lock(fs_info);
378 	spin_lock(&fs_info->tree_mod_seq_lock);
379 	if (!elem->seq) {
380 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 	}
383 	seq = btrfs_inc_tree_mod_seq(fs_info);
384 	spin_unlock(&fs_info->tree_mod_seq_lock);
385 	tree_mod_log_write_unlock(fs_info);
386 
387 	return seq;
388 }
389 
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391 			    struct seq_list *elem)
392 {
393 	struct rb_root *tm_root;
394 	struct rb_node *node;
395 	struct rb_node *next;
396 	struct seq_list *cur_elem;
397 	struct tree_mod_elem *tm;
398 	u64 min_seq = (u64)-1;
399 	u64 seq_putting = elem->seq;
400 
401 	if (!seq_putting)
402 		return;
403 
404 	spin_lock(&fs_info->tree_mod_seq_lock);
405 	list_del(&elem->list);
406 	elem->seq = 0;
407 
408 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409 		if (cur_elem->seq < min_seq) {
410 			if (seq_putting > cur_elem->seq) {
411 				/*
412 				 * blocker with lower sequence number exists, we
413 				 * cannot remove anything from the log
414 				 */
415 				spin_unlock(&fs_info->tree_mod_seq_lock);
416 				return;
417 			}
418 			min_seq = cur_elem->seq;
419 		}
420 	}
421 	spin_unlock(&fs_info->tree_mod_seq_lock);
422 
423 	/*
424 	 * we removed the lowest blocker from the blocker list, so there may be
425 	 * more processible delayed refs.
426 	 */
427 	wake_up(&fs_info->tree_mod_seq_wait);
428 
429 	/*
430 	 * anything that's lower than the lowest existing (read: blocked)
431 	 * sequence number can be removed from the tree.
432 	 */
433 	tree_mod_log_write_lock(fs_info);
434 	tm_root = &fs_info->tree_mod_log;
435 	for (node = rb_first(tm_root); node; node = next) {
436 		next = rb_next(node);
437 		tm = container_of(node, struct tree_mod_elem, node);
438 		if (tm->seq > min_seq)
439 			continue;
440 		rb_erase(node, tm_root);
441 		kfree(tm);
442 	}
443 	tree_mod_log_write_unlock(fs_info);
444 }
445 
446 /*
447  * key order of the log:
448  *       index -> sequence
449  *
450  * the index is the shifted logical of the *new* root node for root replace
451  * operations, or the shifted logical of the affected block for all other
452  * operations.
453  */
454 static noinline int
455 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
456 {
457 	struct rb_root *tm_root;
458 	struct rb_node **new;
459 	struct rb_node *parent = NULL;
460 	struct tree_mod_elem *cur;
461 
462 	BUG_ON(!tm || !tm->seq);
463 
464 	tm_root = &fs_info->tree_mod_log;
465 	new = &tm_root->rb_node;
466 	while (*new) {
467 		cur = container_of(*new, struct tree_mod_elem, node);
468 		parent = *new;
469 		if (cur->index < tm->index)
470 			new = &((*new)->rb_left);
471 		else if (cur->index > tm->index)
472 			new = &((*new)->rb_right);
473 		else if (cur->seq < tm->seq)
474 			new = &((*new)->rb_left);
475 		else if (cur->seq > tm->seq)
476 			new = &((*new)->rb_right);
477 		else {
478 			kfree(tm);
479 			return -EEXIST;
480 		}
481 	}
482 
483 	rb_link_node(&tm->node, parent, new);
484 	rb_insert_color(&tm->node, tm_root);
485 	return 0;
486 }
487 
488 /*
489  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
490  * returns zero with the tree_mod_log_lock acquired. The caller must hold
491  * this until all tree mod log insertions are recorded in the rb tree and then
492  * call tree_mod_log_write_unlock() to release.
493  */
494 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
495 				    struct extent_buffer *eb) {
496 	smp_mb();
497 	if (list_empty(&(fs_info)->tree_mod_seq_list))
498 		return 1;
499 	if (eb && btrfs_header_level(eb) == 0)
500 		return 1;
501 
502 	tree_mod_log_write_lock(fs_info);
503 	if (list_empty(&fs_info->tree_mod_seq_list)) {
504 		/*
505 		 * someone emptied the list while we were waiting for the lock.
506 		 * we must not add to the list when no blocker exists.
507 		 */
508 		tree_mod_log_write_unlock(fs_info);
509 		return 1;
510 	}
511 
512 	return 0;
513 }
514 
515 /*
516  * This allocates memory and gets a tree modification sequence number.
517  *
518  * Returns <0 on error.
519  * Returns >0 (the added sequence number) on success.
520  */
521 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
522 				 struct tree_mod_elem **tm_ret)
523 {
524 	struct tree_mod_elem *tm;
525 
526 	/*
527 	 * once we switch from spin locks to something different, we should
528 	 * honor the flags parameter here.
529 	 */
530 	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
531 	if (!tm)
532 		return -ENOMEM;
533 
534 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
535 	return tm->seq;
536 }
537 
538 static inline int
539 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
540 			  struct extent_buffer *eb, int slot,
541 			  enum mod_log_op op, gfp_t flags)
542 {
543 	int ret;
544 	struct tree_mod_elem *tm;
545 
546 	ret = tree_mod_alloc(fs_info, flags, &tm);
547 	if (ret < 0)
548 		return ret;
549 
550 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
551 	if (op != MOD_LOG_KEY_ADD) {
552 		btrfs_node_key(eb, &tm->key, slot);
553 		tm->blockptr = btrfs_node_blockptr(eb, slot);
554 	}
555 	tm->op = op;
556 	tm->slot = slot;
557 	tm->generation = btrfs_node_ptr_generation(eb, slot);
558 
559 	return __tree_mod_log_insert(fs_info, tm);
560 }
561 
562 static noinline int
563 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
564 			     struct extent_buffer *eb, int slot,
565 			     enum mod_log_op op, gfp_t flags)
566 {
567 	int ret;
568 
569 	if (tree_mod_dont_log(fs_info, eb))
570 		return 0;
571 
572 	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
573 
574 	tree_mod_log_write_unlock(fs_info);
575 	return ret;
576 }
577 
578 static noinline int
579 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
580 			int slot, enum mod_log_op op)
581 {
582 	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
583 }
584 
585 static noinline int
586 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
587 			     struct extent_buffer *eb, int slot,
588 			     enum mod_log_op op)
589 {
590 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
591 }
592 
593 static noinline int
594 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
595 			 struct extent_buffer *eb, int dst_slot, int src_slot,
596 			 int nr_items, gfp_t flags)
597 {
598 	struct tree_mod_elem *tm;
599 	int ret;
600 	int i;
601 
602 	if (tree_mod_dont_log(fs_info, eb))
603 		return 0;
604 
605 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
606 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
607 					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
608 		BUG_ON(ret < 0);
609 	}
610 
611 	ret = tree_mod_alloc(fs_info, flags, &tm);
612 	if (ret < 0)
613 		goto out;
614 
615 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
616 	tm->slot = src_slot;
617 	tm->move.dst_slot = dst_slot;
618 	tm->move.nr_items = nr_items;
619 	tm->op = MOD_LOG_MOVE_KEYS;
620 
621 	ret = __tree_mod_log_insert(fs_info, tm);
622 out:
623 	tree_mod_log_write_unlock(fs_info);
624 	return ret;
625 }
626 
627 static inline void
628 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
629 {
630 	int i;
631 	u32 nritems;
632 	int ret;
633 
634 	nritems = btrfs_header_nritems(eb);
635 	for (i = nritems - 1; i >= 0; i--) {
636 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
637 					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
638 		BUG_ON(ret < 0);
639 	}
640 }
641 
642 static noinline int
643 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
644 			 struct extent_buffer *old_root,
645 			 struct extent_buffer *new_root, gfp_t flags)
646 {
647 	struct tree_mod_elem *tm;
648 	int ret;
649 
650 	if (tree_mod_dont_log(fs_info, NULL))
651 		return 0;
652 
653 	__tree_mod_log_free_eb(fs_info, old_root);
654 
655 	ret = tree_mod_alloc(fs_info, flags, &tm);
656 	if (ret < 0)
657 		goto out;
658 
659 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
660 	tm->old_root.logical = old_root->start;
661 	tm->old_root.level = btrfs_header_level(old_root);
662 	tm->generation = btrfs_header_generation(old_root);
663 	tm->op = MOD_LOG_ROOT_REPLACE;
664 
665 	ret = __tree_mod_log_insert(fs_info, tm);
666 out:
667 	tree_mod_log_write_unlock(fs_info);
668 	return ret;
669 }
670 
671 static struct tree_mod_elem *
672 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
673 		      int smallest)
674 {
675 	struct rb_root *tm_root;
676 	struct rb_node *node;
677 	struct tree_mod_elem *cur = NULL;
678 	struct tree_mod_elem *found = NULL;
679 	u64 index = start >> PAGE_CACHE_SHIFT;
680 
681 	tree_mod_log_read_lock(fs_info);
682 	tm_root = &fs_info->tree_mod_log;
683 	node = tm_root->rb_node;
684 	while (node) {
685 		cur = container_of(node, struct tree_mod_elem, node);
686 		if (cur->index < index) {
687 			node = node->rb_left;
688 		} else if (cur->index > index) {
689 			node = node->rb_right;
690 		} else if (cur->seq < min_seq) {
691 			node = node->rb_left;
692 		} else if (!smallest) {
693 			/* we want the node with the highest seq */
694 			if (found)
695 				BUG_ON(found->seq > cur->seq);
696 			found = cur;
697 			node = node->rb_left;
698 		} else if (cur->seq > min_seq) {
699 			/* we want the node with the smallest seq */
700 			if (found)
701 				BUG_ON(found->seq < cur->seq);
702 			found = cur;
703 			node = node->rb_right;
704 		} else {
705 			found = cur;
706 			break;
707 		}
708 	}
709 	tree_mod_log_read_unlock(fs_info);
710 
711 	return found;
712 }
713 
714 /*
715  * this returns the element from the log with the smallest time sequence
716  * value that's in the log (the oldest log item). any element with a time
717  * sequence lower than min_seq will be ignored.
718  */
719 static struct tree_mod_elem *
720 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
721 			   u64 min_seq)
722 {
723 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
724 }
725 
726 /*
727  * this returns the element from the log with the largest time sequence
728  * value that's in the log (the most recent log item). any element with
729  * a time sequence lower than min_seq will be ignored.
730  */
731 static struct tree_mod_elem *
732 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
733 {
734 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
735 }
736 
737 static noinline void
738 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
739 		     struct extent_buffer *src, unsigned long dst_offset,
740 		     unsigned long src_offset, int nr_items)
741 {
742 	int ret;
743 	int i;
744 
745 	if (tree_mod_dont_log(fs_info, NULL))
746 		return;
747 
748 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
749 		tree_mod_log_write_unlock(fs_info);
750 		return;
751 	}
752 
753 	for (i = 0; i < nr_items; i++) {
754 		ret = tree_mod_log_insert_key_locked(fs_info, src,
755 						     i + src_offset,
756 						     MOD_LOG_KEY_REMOVE);
757 		BUG_ON(ret < 0);
758 		ret = tree_mod_log_insert_key_locked(fs_info, dst,
759 						     i + dst_offset,
760 						     MOD_LOG_KEY_ADD);
761 		BUG_ON(ret < 0);
762 	}
763 
764 	tree_mod_log_write_unlock(fs_info);
765 }
766 
767 static inline void
768 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
769 		     int dst_offset, int src_offset, int nr_items)
770 {
771 	int ret;
772 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
773 				       nr_items, GFP_NOFS);
774 	BUG_ON(ret < 0);
775 }
776 
777 static noinline void
778 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
779 			  struct extent_buffer *eb,
780 			  struct btrfs_disk_key *disk_key, int slot, int atomic)
781 {
782 	int ret;
783 
784 	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
785 					   MOD_LOG_KEY_REPLACE,
786 					   atomic ? GFP_ATOMIC : GFP_NOFS);
787 	BUG_ON(ret < 0);
788 }
789 
790 static noinline void
791 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
792 {
793 	if (tree_mod_dont_log(fs_info, eb))
794 		return;
795 
796 	__tree_mod_log_free_eb(fs_info, eb);
797 
798 	tree_mod_log_write_unlock(fs_info);
799 }
800 
801 static noinline void
802 tree_mod_log_set_root_pointer(struct btrfs_root *root,
803 			      struct extent_buffer *new_root_node)
804 {
805 	int ret;
806 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
807 				       new_root_node, GFP_NOFS);
808 	BUG_ON(ret < 0);
809 }
810 
811 /*
812  * check if the tree block can be shared by multiple trees
813  */
814 int btrfs_block_can_be_shared(struct btrfs_root *root,
815 			      struct extent_buffer *buf)
816 {
817 	/*
818 	 * Tree blocks not in refernece counted trees and tree roots
819 	 * are never shared. If a block was allocated after the last
820 	 * snapshot and the block was not allocated by tree relocation,
821 	 * we know the block is not shared.
822 	 */
823 	if (root->ref_cows &&
824 	    buf != root->node && buf != root->commit_root &&
825 	    (btrfs_header_generation(buf) <=
826 	     btrfs_root_last_snapshot(&root->root_item) ||
827 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
828 		return 1;
829 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
830 	if (root->ref_cows &&
831 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
832 		return 1;
833 #endif
834 	return 0;
835 }
836 
837 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
838 				       struct btrfs_root *root,
839 				       struct extent_buffer *buf,
840 				       struct extent_buffer *cow,
841 				       int *last_ref)
842 {
843 	u64 refs;
844 	u64 owner;
845 	u64 flags;
846 	u64 new_flags = 0;
847 	int ret;
848 
849 	/*
850 	 * Backrefs update rules:
851 	 *
852 	 * Always use full backrefs for extent pointers in tree block
853 	 * allocated by tree relocation.
854 	 *
855 	 * If a shared tree block is no longer referenced by its owner
856 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
857 	 * use full backrefs for extent pointers in tree block.
858 	 *
859 	 * If a tree block is been relocating
860 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
861 	 * use full backrefs for extent pointers in tree block.
862 	 * The reason for this is some operations (such as drop tree)
863 	 * are only allowed for blocks use full backrefs.
864 	 */
865 
866 	if (btrfs_block_can_be_shared(root, buf)) {
867 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
868 					       buf->len, &refs, &flags);
869 		if (ret)
870 			return ret;
871 		if (refs == 0) {
872 			ret = -EROFS;
873 			btrfs_std_error(root->fs_info, ret);
874 			return ret;
875 		}
876 	} else {
877 		refs = 1;
878 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
879 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
880 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881 		else
882 			flags = 0;
883 	}
884 
885 	owner = btrfs_header_owner(buf);
886 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
887 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
888 
889 	if (refs > 1) {
890 		if ((owner == root->root_key.objectid ||
891 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
892 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
893 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
894 			BUG_ON(ret); /* -ENOMEM */
895 
896 			if (root->root_key.objectid ==
897 			    BTRFS_TREE_RELOC_OBJECTID) {
898 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
899 				BUG_ON(ret); /* -ENOMEM */
900 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
901 				BUG_ON(ret); /* -ENOMEM */
902 			}
903 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
904 		} else {
905 
906 			if (root->root_key.objectid ==
907 			    BTRFS_TREE_RELOC_OBJECTID)
908 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
909 			else
910 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
911 			BUG_ON(ret); /* -ENOMEM */
912 		}
913 		if (new_flags != 0) {
914 			ret = btrfs_set_disk_extent_flags(trans, root,
915 							  buf->start,
916 							  buf->len,
917 							  new_flags, 0);
918 			if (ret)
919 				return ret;
920 		}
921 	} else {
922 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
923 			if (root->root_key.objectid ==
924 			    BTRFS_TREE_RELOC_OBJECTID)
925 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
926 			else
927 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
928 			BUG_ON(ret); /* -ENOMEM */
929 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
930 			BUG_ON(ret); /* -ENOMEM */
931 		}
932 		/*
933 		 * don't log freeing in case we're freeing the root node, this
934 		 * is done by tree_mod_log_set_root_pointer later
935 		 */
936 		if (buf != root->node && btrfs_header_level(buf) != 0)
937 			tree_mod_log_free_eb(root->fs_info, buf);
938 		clean_tree_block(trans, root, buf);
939 		*last_ref = 1;
940 	}
941 	return 0;
942 }
943 
944 /*
945  * does the dirty work in cow of a single block.  The parent block (if
946  * supplied) is updated to point to the new cow copy.  The new buffer is marked
947  * dirty and returned locked.  If you modify the block it needs to be marked
948  * dirty again.
949  *
950  * search_start -- an allocation hint for the new block
951  *
952  * empty_size -- a hint that you plan on doing more cow.  This is the size in
953  * bytes the allocator should try to find free next to the block it returns.
954  * This is just a hint and may be ignored by the allocator.
955  */
956 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
957 			     struct btrfs_root *root,
958 			     struct extent_buffer *buf,
959 			     struct extent_buffer *parent, int parent_slot,
960 			     struct extent_buffer **cow_ret,
961 			     u64 search_start, u64 empty_size)
962 {
963 	struct btrfs_disk_key disk_key;
964 	struct extent_buffer *cow;
965 	int level, ret;
966 	int last_ref = 0;
967 	int unlock_orig = 0;
968 	u64 parent_start;
969 
970 	if (*cow_ret == buf)
971 		unlock_orig = 1;
972 
973 	btrfs_assert_tree_locked(buf);
974 
975 	WARN_ON(root->ref_cows && trans->transid !=
976 		root->fs_info->running_transaction->transid);
977 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
978 
979 	level = btrfs_header_level(buf);
980 
981 	if (level == 0)
982 		btrfs_item_key(buf, &disk_key, 0);
983 	else
984 		btrfs_node_key(buf, &disk_key, 0);
985 
986 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
987 		if (parent)
988 			parent_start = parent->start;
989 		else
990 			parent_start = 0;
991 	} else
992 		parent_start = 0;
993 
994 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
995 				     root->root_key.objectid, &disk_key,
996 				     level, search_start, empty_size);
997 	if (IS_ERR(cow))
998 		return PTR_ERR(cow);
999 
1000 	/* cow is set to blocking by btrfs_init_new_buffer */
1001 
1002 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1003 	btrfs_set_header_bytenr(cow, cow->start);
1004 	btrfs_set_header_generation(cow, trans->transid);
1005 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1006 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1007 				     BTRFS_HEADER_FLAG_RELOC);
1008 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1009 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1010 	else
1011 		btrfs_set_header_owner(cow, root->root_key.objectid);
1012 
1013 	write_extent_buffer(cow, root->fs_info->fsid,
1014 			    (unsigned long)btrfs_header_fsid(cow),
1015 			    BTRFS_FSID_SIZE);
1016 
1017 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1018 	if (ret) {
1019 		btrfs_abort_transaction(trans, root, ret);
1020 		return ret;
1021 	}
1022 
1023 	if (root->ref_cows)
1024 		btrfs_reloc_cow_block(trans, root, buf, cow);
1025 
1026 	if (buf == root->node) {
1027 		WARN_ON(parent && parent != buf);
1028 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1029 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1030 			parent_start = buf->start;
1031 		else
1032 			parent_start = 0;
1033 
1034 		extent_buffer_get(cow);
1035 		tree_mod_log_set_root_pointer(root, cow);
1036 		rcu_assign_pointer(root->node, cow);
1037 
1038 		btrfs_free_tree_block(trans, root, buf, parent_start,
1039 				      last_ref);
1040 		free_extent_buffer(buf);
1041 		add_root_to_dirty_list(root);
1042 	} else {
1043 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1044 			parent_start = parent->start;
1045 		else
1046 			parent_start = 0;
1047 
1048 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1049 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1050 					MOD_LOG_KEY_REPLACE);
1051 		btrfs_set_node_blockptr(parent, parent_slot,
1052 					cow->start);
1053 		btrfs_set_node_ptr_generation(parent, parent_slot,
1054 					      trans->transid);
1055 		btrfs_mark_buffer_dirty(parent);
1056 		btrfs_free_tree_block(trans, root, buf, parent_start,
1057 				      last_ref);
1058 	}
1059 	if (unlock_orig)
1060 		btrfs_tree_unlock(buf);
1061 	free_extent_buffer_stale(buf);
1062 	btrfs_mark_buffer_dirty(cow);
1063 	*cow_ret = cow;
1064 	return 0;
1065 }
1066 
1067 /*
1068  * returns the logical address of the oldest predecessor of the given root.
1069  * entries older than time_seq are ignored.
1070  */
1071 static struct tree_mod_elem *
1072 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1073 			   struct btrfs_root *root, u64 time_seq)
1074 {
1075 	struct tree_mod_elem *tm;
1076 	struct tree_mod_elem *found = NULL;
1077 	u64 root_logical = root->node->start;
1078 	int looped = 0;
1079 
1080 	if (!time_seq)
1081 		return 0;
1082 
1083 	/*
1084 	 * the very last operation that's logged for a root is the replacement
1085 	 * operation (if it is replaced at all). this has the index of the *new*
1086 	 * root, making it the very first operation that's logged for this root.
1087 	 */
1088 	while (1) {
1089 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1090 						time_seq);
1091 		if (!looped && !tm)
1092 			return 0;
1093 		/*
1094 		 * if there are no tree operation for the oldest root, we simply
1095 		 * return it. this should only happen if that (old) root is at
1096 		 * level 0.
1097 		 */
1098 		if (!tm)
1099 			break;
1100 
1101 		/*
1102 		 * if there's an operation that's not a root replacement, we
1103 		 * found the oldest version of our root. normally, we'll find a
1104 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1105 		 */
1106 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1107 			break;
1108 
1109 		found = tm;
1110 		root_logical = tm->old_root.logical;
1111 		BUG_ON(root_logical == root->node->start);
1112 		looped = 1;
1113 	}
1114 
1115 	/* if there's no old root to return, return what we found instead */
1116 	if (!found)
1117 		found = tm;
1118 
1119 	return found;
1120 }
1121 
1122 /*
1123  * tm is a pointer to the first operation to rewind within eb. then, all
1124  * previous operations will be rewinded (until we reach something older than
1125  * time_seq).
1126  */
1127 static void
1128 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1129 		      struct tree_mod_elem *first_tm)
1130 {
1131 	u32 n;
1132 	struct rb_node *next;
1133 	struct tree_mod_elem *tm = first_tm;
1134 	unsigned long o_dst;
1135 	unsigned long o_src;
1136 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1137 
1138 	n = btrfs_header_nritems(eb);
1139 	while (tm && tm->seq >= time_seq) {
1140 		/*
1141 		 * all the operations are recorded with the operator used for
1142 		 * the modification. as we're going backwards, we do the
1143 		 * opposite of each operation here.
1144 		 */
1145 		switch (tm->op) {
1146 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1147 			BUG_ON(tm->slot < n);
1148 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1149 		case MOD_LOG_KEY_REMOVE:
1150 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1151 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1152 			btrfs_set_node_ptr_generation(eb, tm->slot,
1153 						      tm->generation);
1154 			n++;
1155 			break;
1156 		case MOD_LOG_KEY_REPLACE:
1157 			BUG_ON(tm->slot >= n);
1158 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1159 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1160 			btrfs_set_node_ptr_generation(eb, tm->slot,
1161 						      tm->generation);
1162 			break;
1163 		case MOD_LOG_KEY_ADD:
1164 			/* if a move operation is needed it's in the log */
1165 			n--;
1166 			break;
1167 		case MOD_LOG_MOVE_KEYS:
1168 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1169 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1170 			memmove_extent_buffer(eb, o_dst, o_src,
1171 					      tm->move.nr_items * p_size);
1172 			break;
1173 		case MOD_LOG_ROOT_REPLACE:
1174 			/*
1175 			 * this operation is special. for roots, this must be
1176 			 * handled explicitly before rewinding.
1177 			 * for non-roots, this operation may exist if the node
1178 			 * was a root: root A -> child B; then A gets empty and
1179 			 * B is promoted to the new root. in the mod log, we'll
1180 			 * have a root-replace operation for B, a tree block
1181 			 * that is no root. we simply ignore that operation.
1182 			 */
1183 			break;
1184 		}
1185 		next = rb_next(&tm->node);
1186 		if (!next)
1187 			break;
1188 		tm = container_of(next, struct tree_mod_elem, node);
1189 		if (tm->index != first_tm->index)
1190 			break;
1191 	}
1192 	btrfs_set_header_nritems(eb, n);
1193 }
1194 
1195 static struct extent_buffer *
1196 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1197 		    u64 time_seq)
1198 {
1199 	struct extent_buffer *eb_rewin;
1200 	struct tree_mod_elem *tm;
1201 
1202 	if (!time_seq)
1203 		return eb;
1204 
1205 	if (btrfs_header_level(eb) == 0)
1206 		return eb;
1207 
1208 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1209 	if (!tm)
1210 		return eb;
1211 
1212 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1213 		BUG_ON(tm->slot != 0);
1214 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1215 						fs_info->tree_root->nodesize);
1216 		BUG_ON(!eb_rewin);
1217 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1218 		btrfs_set_header_backref_rev(eb_rewin,
1219 					     btrfs_header_backref_rev(eb));
1220 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1221 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1222 	} else {
1223 		eb_rewin = btrfs_clone_extent_buffer(eb);
1224 		BUG_ON(!eb_rewin);
1225 	}
1226 
1227 	extent_buffer_get(eb_rewin);
1228 	free_extent_buffer(eb);
1229 
1230 	__tree_mod_log_rewind(eb_rewin, time_seq, tm);
1231 
1232 	return eb_rewin;
1233 }
1234 
1235 /*
1236  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1237  * value. If there are no changes, the current root->root_node is returned. If
1238  * anything changed in between, there's a fresh buffer allocated on which the
1239  * rewind operations are done. In any case, the returned buffer is read locked.
1240  * Returns NULL on error (with no locks held).
1241  */
1242 static inline struct extent_buffer *
1243 get_old_root(struct btrfs_root *root, u64 time_seq)
1244 {
1245 	struct tree_mod_elem *tm;
1246 	struct extent_buffer *eb;
1247 	struct tree_mod_root *old_root = NULL;
1248 	u64 old_generation = 0;
1249 	u64 logical;
1250 
1251 	eb = btrfs_read_lock_root_node(root);
1252 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1253 	if (!tm)
1254 		return root->node;
1255 
1256 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1257 		old_root = &tm->old_root;
1258 		old_generation = tm->generation;
1259 		logical = old_root->logical;
1260 	} else {
1261 		logical = root->node->start;
1262 	}
1263 
1264 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1265 	if (old_root)
1266 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1267 	else
1268 		eb = btrfs_clone_extent_buffer(root->node);
1269 	btrfs_tree_read_unlock(root->node);
1270 	free_extent_buffer(root->node);
1271 	if (!eb)
1272 		return NULL;
1273 	btrfs_tree_read_lock(eb);
1274 	if (old_root) {
1275 		btrfs_set_header_bytenr(eb, eb->start);
1276 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1277 		btrfs_set_header_owner(eb, root->root_key.objectid);
1278 		btrfs_set_header_level(eb, old_root->level);
1279 		btrfs_set_header_generation(eb, old_generation);
1280 	}
1281 	if (tm)
1282 		__tree_mod_log_rewind(eb, time_seq, tm);
1283 	else
1284 		WARN_ON(btrfs_header_level(eb) != 0);
1285 	extent_buffer_get(eb);
1286 
1287 	return eb;
1288 }
1289 
1290 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1291 				   struct btrfs_root *root,
1292 				   struct extent_buffer *buf)
1293 {
1294 	/* ensure we can see the force_cow */
1295 	smp_rmb();
1296 
1297 	/*
1298 	 * We do not need to cow a block if
1299 	 * 1) this block is not created or changed in this transaction;
1300 	 * 2) this block does not belong to TREE_RELOC tree;
1301 	 * 3) the root is not forced COW.
1302 	 *
1303 	 * What is forced COW:
1304 	 *    when we create snapshot during commiting the transaction,
1305 	 *    after we've finished coping src root, we must COW the shared
1306 	 *    block to ensure the metadata consistency.
1307 	 */
1308 	if (btrfs_header_generation(buf) == trans->transid &&
1309 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1310 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1311 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1312 	    !root->force_cow)
1313 		return 0;
1314 	return 1;
1315 }
1316 
1317 /*
1318  * cows a single block, see __btrfs_cow_block for the real work.
1319  * This version of it has extra checks so that a block isn't cow'd more than
1320  * once per transaction, as long as it hasn't been written yet
1321  */
1322 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1323 		    struct btrfs_root *root, struct extent_buffer *buf,
1324 		    struct extent_buffer *parent, int parent_slot,
1325 		    struct extent_buffer **cow_ret)
1326 {
1327 	u64 search_start;
1328 	int ret;
1329 
1330 	if (trans->transaction != root->fs_info->running_transaction) {
1331 		printk(KERN_CRIT "trans %llu running %llu\n",
1332 		       (unsigned long long)trans->transid,
1333 		       (unsigned long long)
1334 		       root->fs_info->running_transaction->transid);
1335 		WARN_ON(1);
1336 	}
1337 	if (trans->transid != root->fs_info->generation) {
1338 		printk(KERN_CRIT "trans %llu running %llu\n",
1339 		       (unsigned long long)trans->transid,
1340 		       (unsigned long long)root->fs_info->generation);
1341 		WARN_ON(1);
1342 	}
1343 
1344 	if (!should_cow_block(trans, root, buf)) {
1345 		*cow_ret = buf;
1346 		return 0;
1347 	}
1348 
1349 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1350 
1351 	if (parent)
1352 		btrfs_set_lock_blocking(parent);
1353 	btrfs_set_lock_blocking(buf);
1354 
1355 	ret = __btrfs_cow_block(trans, root, buf, parent,
1356 				 parent_slot, cow_ret, search_start, 0);
1357 
1358 	trace_btrfs_cow_block(root, buf, *cow_ret);
1359 
1360 	return ret;
1361 }
1362 
1363 /*
1364  * helper function for defrag to decide if two blocks pointed to by a
1365  * node are actually close by
1366  */
1367 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1368 {
1369 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1370 		return 1;
1371 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1372 		return 1;
1373 	return 0;
1374 }
1375 
1376 /*
1377  * compare two keys in a memcmp fashion
1378  */
1379 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1380 {
1381 	struct btrfs_key k1;
1382 
1383 	btrfs_disk_key_to_cpu(&k1, disk);
1384 
1385 	return btrfs_comp_cpu_keys(&k1, k2);
1386 }
1387 
1388 /*
1389  * same as comp_keys only with two btrfs_key's
1390  */
1391 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1392 {
1393 	if (k1->objectid > k2->objectid)
1394 		return 1;
1395 	if (k1->objectid < k2->objectid)
1396 		return -1;
1397 	if (k1->type > k2->type)
1398 		return 1;
1399 	if (k1->type < k2->type)
1400 		return -1;
1401 	if (k1->offset > k2->offset)
1402 		return 1;
1403 	if (k1->offset < k2->offset)
1404 		return -1;
1405 	return 0;
1406 }
1407 
1408 /*
1409  * this is used by the defrag code to go through all the
1410  * leaves pointed to by a node and reallocate them so that
1411  * disk order is close to key order
1412  */
1413 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1414 		       struct btrfs_root *root, struct extent_buffer *parent,
1415 		       int start_slot, int cache_only, u64 *last_ret,
1416 		       struct btrfs_key *progress)
1417 {
1418 	struct extent_buffer *cur;
1419 	u64 blocknr;
1420 	u64 gen;
1421 	u64 search_start = *last_ret;
1422 	u64 last_block = 0;
1423 	u64 other;
1424 	u32 parent_nritems;
1425 	int end_slot;
1426 	int i;
1427 	int err = 0;
1428 	int parent_level;
1429 	int uptodate;
1430 	u32 blocksize;
1431 	int progress_passed = 0;
1432 	struct btrfs_disk_key disk_key;
1433 
1434 	parent_level = btrfs_header_level(parent);
1435 	if (cache_only && parent_level != 1)
1436 		return 0;
1437 
1438 	if (trans->transaction != root->fs_info->running_transaction)
1439 		WARN_ON(1);
1440 	if (trans->transid != root->fs_info->generation)
1441 		WARN_ON(1);
1442 
1443 	parent_nritems = btrfs_header_nritems(parent);
1444 	blocksize = btrfs_level_size(root, parent_level - 1);
1445 	end_slot = parent_nritems;
1446 
1447 	if (parent_nritems == 1)
1448 		return 0;
1449 
1450 	btrfs_set_lock_blocking(parent);
1451 
1452 	for (i = start_slot; i < end_slot; i++) {
1453 		int close = 1;
1454 
1455 		btrfs_node_key(parent, &disk_key, i);
1456 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1457 			continue;
1458 
1459 		progress_passed = 1;
1460 		blocknr = btrfs_node_blockptr(parent, i);
1461 		gen = btrfs_node_ptr_generation(parent, i);
1462 		if (last_block == 0)
1463 			last_block = blocknr;
1464 
1465 		if (i > 0) {
1466 			other = btrfs_node_blockptr(parent, i - 1);
1467 			close = close_blocks(blocknr, other, blocksize);
1468 		}
1469 		if (!close && i < end_slot - 2) {
1470 			other = btrfs_node_blockptr(parent, i + 1);
1471 			close = close_blocks(blocknr, other, blocksize);
1472 		}
1473 		if (close) {
1474 			last_block = blocknr;
1475 			continue;
1476 		}
1477 
1478 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1479 		if (cur)
1480 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1481 		else
1482 			uptodate = 0;
1483 		if (!cur || !uptodate) {
1484 			if (cache_only) {
1485 				free_extent_buffer(cur);
1486 				continue;
1487 			}
1488 			if (!cur) {
1489 				cur = read_tree_block(root, blocknr,
1490 							 blocksize, gen);
1491 				if (!cur)
1492 					return -EIO;
1493 			} else if (!uptodate) {
1494 				err = btrfs_read_buffer(cur, gen);
1495 				if (err) {
1496 					free_extent_buffer(cur);
1497 					return err;
1498 				}
1499 			}
1500 		}
1501 		if (search_start == 0)
1502 			search_start = last_block;
1503 
1504 		btrfs_tree_lock(cur);
1505 		btrfs_set_lock_blocking(cur);
1506 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1507 					&cur, search_start,
1508 					min(16 * blocksize,
1509 					    (end_slot - i) * blocksize));
1510 		if (err) {
1511 			btrfs_tree_unlock(cur);
1512 			free_extent_buffer(cur);
1513 			break;
1514 		}
1515 		search_start = cur->start;
1516 		last_block = cur->start;
1517 		*last_ret = search_start;
1518 		btrfs_tree_unlock(cur);
1519 		free_extent_buffer(cur);
1520 	}
1521 	return err;
1522 }
1523 
1524 /*
1525  * The leaf data grows from end-to-front in the node.
1526  * this returns the address of the start of the last item,
1527  * which is the stop of the leaf data stack
1528  */
1529 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1530 					 struct extent_buffer *leaf)
1531 {
1532 	u32 nr = btrfs_header_nritems(leaf);
1533 	if (nr == 0)
1534 		return BTRFS_LEAF_DATA_SIZE(root);
1535 	return btrfs_item_offset_nr(leaf, nr - 1);
1536 }
1537 
1538 
1539 /*
1540  * search for key in the extent_buffer.  The items start at offset p,
1541  * and they are item_size apart.  There are 'max' items in p.
1542  *
1543  * the slot in the array is returned via slot, and it points to
1544  * the place where you would insert key if it is not found in
1545  * the array.
1546  *
1547  * slot may point to max if the key is bigger than all of the keys
1548  */
1549 static noinline int generic_bin_search(struct extent_buffer *eb,
1550 				       unsigned long p,
1551 				       int item_size, struct btrfs_key *key,
1552 				       int max, int *slot)
1553 {
1554 	int low = 0;
1555 	int high = max;
1556 	int mid;
1557 	int ret;
1558 	struct btrfs_disk_key *tmp = NULL;
1559 	struct btrfs_disk_key unaligned;
1560 	unsigned long offset;
1561 	char *kaddr = NULL;
1562 	unsigned long map_start = 0;
1563 	unsigned long map_len = 0;
1564 	int err;
1565 
1566 	while (low < high) {
1567 		mid = (low + high) / 2;
1568 		offset = p + mid * item_size;
1569 
1570 		if (!kaddr || offset < map_start ||
1571 		    (offset + sizeof(struct btrfs_disk_key)) >
1572 		    map_start + map_len) {
1573 
1574 			err = map_private_extent_buffer(eb, offset,
1575 						sizeof(struct btrfs_disk_key),
1576 						&kaddr, &map_start, &map_len);
1577 
1578 			if (!err) {
1579 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1580 							map_start);
1581 			} else {
1582 				read_extent_buffer(eb, &unaligned,
1583 						   offset, sizeof(unaligned));
1584 				tmp = &unaligned;
1585 			}
1586 
1587 		} else {
1588 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1589 							map_start);
1590 		}
1591 		ret = comp_keys(tmp, key);
1592 
1593 		if (ret < 0)
1594 			low = mid + 1;
1595 		else if (ret > 0)
1596 			high = mid;
1597 		else {
1598 			*slot = mid;
1599 			return 0;
1600 		}
1601 	}
1602 	*slot = low;
1603 	return 1;
1604 }
1605 
1606 /*
1607  * simple bin_search frontend that does the right thing for
1608  * leaves vs nodes
1609  */
1610 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1611 		      int level, int *slot)
1612 {
1613 	if (level == 0)
1614 		return generic_bin_search(eb,
1615 					  offsetof(struct btrfs_leaf, items),
1616 					  sizeof(struct btrfs_item),
1617 					  key, btrfs_header_nritems(eb),
1618 					  slot);
1619 	else
1620 		return generic_bin_search(eb,
1621 					  offsetof(struct btrfs_node, ptrs),
1622 					  sizeof(struct btrfs_key_ptr),
1623 					  key, btrfs_header_nritems(eb),
1624 					  slot);
1625 }
1626 
1627 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1628 		     int level, int *slot)
1629 {
1630 	return bin_search(eb, key, level, slot);
1631 }
1632 
1633 static void root_add_used(struct btrfs_root *root, u32 size)
1634 {
1635 	spin_lock(&root->accounting_lock);
1636 	btrfs_set_root_used(&root->root_item,
1637 			    btrfs_root_used(&root->root_item) + size);
1638 	spin_unlock(&root->accounting_lock);
1639 }
1640 
1641 static void root_sub_used(struct btrfs_root *root, u32 size)
1642 {
1643 	spin_lock(&root->accounting_lock);
1644 	btrfs_set_root_used(&root->root_item,
1645 			    btrfs_root_used(&root->root_item) - size);
1646 	spin_unlock(&root->accounting_lock);
1647 }
1648 
1649 /* given a node and slot number, this reads the blocks it points to.  The
1650  * extent buffer is returned with a reference taken (but unlocked).
1651  * NULL is returned on error.
1652  */
1653 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1654 				   struct extent_buffer *parent, int slot)
1655 {
1656 	int level = btrfs_header_level(parent);
1657 	if (slot < 0)
1658 		return NULL;
1659 	if (slot >= btrfs_header_nritems(parent))
1660 		return NULL;
1661 
1662 	BUG_ON(level == 0);
1663 
1664 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1665 		       btrfs_level_size(root, level - 1),
1666 		       btrfs_node_ptr_generation(parent, slot));
1667 }
1668 
1669 /*
1670  * node level balancing, used to make sure nodes are in proper order for
1671  * item deletion.  We balance from the top down, so we have to make sure
1672  * that a deletion won't leave an node completely empty later on.
1673  */
1674 static noinline int balance_level(struct btrfs_trans_handle *trans,
1675 			 struct btrfs_root *root,
1676 			 struct btrfs_path *path, int level)
1677 {
1678 	struct extent_buffer *right = NULL;
1679 	struct extent_buffer *mid;
1680 	struct extent_buffer *left = NULL;
1681 	struct extent_buffer *parent = NULL;
1682 	int ret = 0;
1683 	int wret;
1684 	int pslot;
1685 	int orig_slot = path->slots[level];
1686 	u64 orig_ptr;
1687 
1688 	if (level == 0)
1689 		return 0;
1690 
1691 	mid = path->nodes[level];
1692 
1693 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1694 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1695 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1696 
1697 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1698 
1699 	if (level < BTRFS_MAX_LEVEL - 1) {
1700 		parent = path->nodes[level + 1];
1701 		pslot = path->slots[level + 1];
1702 	}
1703 
1704 	/*
1705 	 * deal with the case where there is only one pointer in the root
1706 	 * by promoting the node below to a root
1707 	 */
1708 	if (!parent) {
1709 		struct extent_buffer *child;
1710 
1711 		if (btrfs_header_nritems(mid) != 1)
1712 			return 0;
1713 
1714 		/* promote the child to a root */
1715 		child = read_node_slot(root, mid, 0);
1716 		if (!child) {
1717 			ret = -EROFS;
1718 			btrfs_std_error(root->fs_info, ret);
1719 			goto enospc;
1720 		}
1721 
1722 		btrfs_tree_lock(child);
1723 		btrfs_set_lock_blocking(child);
1724 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1725 		if (ret) {
1726 			btrfs_tree_unlock(child);
1727 			free_extent_buffer(child);
1728 			goto enospc;
1729 		}
1730 
1731 		tree_mod_log_set_root_pointer(root, child);
1732 		rcu_assign_pointer(root->node, child);
1733 
1734 		add_root_to_dirty_list(root);
1735 		btrfs_tree_unlock(child);
1736 
1737 		path->locks[level] = 0;
1738 		path->nodes[level] = NULL;
1739 		clean_tree_block(trans, root, mid);
1740 		btrfs_tree_unlock(mid);
1741 		/* once for the path */
1742 		free_extent_buffer(mid);
1743 
1744 		root_sub_used(root, mid->len);
1745 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1746 		/* once for the root ptr */
1747 		free_extent_buffer_stale(mid);
1748 		return 0;
1749 	}
1750 	if (btrfs_header_nritems(mid) >
1751 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1752 		return 0;
1753 
1754 	left = read_node_slot(root, parent, pslot - 1);
1755 	if (left) {
1756 		btrfs_tree_lock(left);
1757 		btrfs_set_lock_blocking(left);
1758 		wret = btrfs_cow_block(trans, root, left,
1759 				       parent, pslot - 1, &left);
1760 		if (wret) {
1761 			ret = wret;
1762 			goto enospc;
1763 		}
1764 	}
1765 	right = read_node_slot(root, parent, pslot + 1);
1766 	if (right) {
1767 		btrfs_tree_lock(right);
1768 		btrfs_set_lock_blocking(right);
1769 		wret = btrfs_cow_block(trans, root, right,
1770 				       parent, pslot + 1, &right);
1771 		if (wret) {
1772 			ret = wret;
1773 			goto enospc;
1774 		}
1775 	}
1776 
1777 	/* first, try to make some room in the middle buffer */
1778 	if (left) {
1779 		orig_slot += btrfs_header_nritems(left);
1780 		wret = push_node_left(trans, root, left, mid, 1);
1781 		if (wret < 0)
1782 			ret = wret;
1783 	}
1784 
1785 	/*
1786 	 * then try to empty the right most buffer into the middle
1787 	 */
1788 	if (right) {
1789 		wret = push_node_left(trans, root, mid, right, 1);
1790 		if (wret < 0 && wret != -ENOSPC)
1791 			ret = wret;
1792 		if (btrfs_header_nritems(right) == 0) {
1793 			clean_tree_block(trans, root, right);
1794 			btrfs_tree_unlock(right);
1795 			del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1796 			root_sub_used(root, right->len);
1797 			btrfs_free_tree_block(trans, root, right, 0, 1);
1798 			free_extent_buffer_stale(right);
1799 			right = NULL;
1800 		} else {
1801 			struct btrfs_disk_key right_key;
1802 			btrfs_node_key(right, &right_key, 0);
1803 			tree_mod_log_set_node_key(root->fs_info, parent,
1804 						  &right_key, pslot + 1, 0);
1805 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1806 			btrfs_mark_buffer_dirty(parent);
1807 		}
1808 	}
1809 	if (btrfs_header_nritems(mid) == 1) {
1810 		/*
1811 		 * we're not allowed to leave a node with one item in the
1812 		 * tree during a delete.  A deletion from lower in the tree
1813 		 * could try to delete the only pointer in this node.
1814 		 * So, pull some keys from the left.
1815 		 * There has to be a left pointer at this point because
1816 		 * otherwise we would have pulled some pointers from the
1817 		 * right
1818 		 */
1819 		if (!left) {
1820 			ret = -EROFS;
1821 			btrfs_std_error(root->fs_info, ret);
1822 			goto enospc;
1823 		}
1824 		wret = balance_node_right(trans, root, mid, left);
1825 		if (wret < 0) {
1826 			ret = wret;
1827 			goto enospc;
1828 		}
1829 		if (wret == 1) {
1830 			wret = push_node_left(trans, root, left, mid, 1);
1831 			if (wret < 0)
1832 				ret = wret;
1833 		}
1834 		BUG_ON(wret == 1);
1835 	}
1836 	if (btrfs_header_nritems(mid) == 0) {
1837 		clean_tree_block(trans, root, mid);
1838 		btrfs_tree_unlock(mid);
1839 		del_ptr(trans, root, path, level + 1, pslot, 1);
1840 		root_sub_used(root, mid->len);
1841 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1842 		free_extent_buffer_stale(mid);
1843 		mid = NULL;
1844 	} else {
1845 		/* update the parent key to reflect our changes */
1846 		struct btrfs_disk_key mid_key;
1847 		btrfs_node_key(mid, &mid_key, 0);
1848 		tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1849 					  pslot, 0);
1850 		btrfs_set_node_key(parent, &mid_key, pslot);
1851 		btrfs_mark_buffer_dirty(parent);
1852 	}
1853 
1854 	/* update the path */
1855 	if (left) {
1856 		if (btrfs_header_nritems(left) > orig_slot) {
1857 			extent_buffer_get(left);
1858 			/* left was locked after cow */
1859 			path->nodes[level] = left;
1860 			path->slots[level + 1] -= 1;
1861 			path->slots[level] = orig_slot;
1862 			if (mid) {
1863 				btrfs_tree_unlock(mid);
1864 				free_extent_buffer(mid);
1865 			}
1866 		} else {
1867 			orig_slot -= btrfs_header_nritems(left);
1868 			path->slots[level] = orig_slot;
1869 		}
1870 	}
1871 	/* double check we haven't messed things up */
1872 	if (orig_ptr !=
1873 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1874 		BUG();
1875 enospc:
1876 	if (right) {
1877 		btrfs_tree_unlock(right);
1878 		free_extent_buffer(right);
1879 	}
1880 	if (left) {
1881 		if (path->nodes[level] != left)
1882 			btrfs_tree_unlock(left);
1883 		free_extent_buffer(left);
1884 	}
1885 	return ret;
1886 }
1887 
1888 /* Node balancing for insertion.  Here we only split or push nodes around
1889  * when they are completely full.  This is also done top down, so we
1890  * have to be pessimistic.
1891  */
1892 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1893 					  struct btrfs_root *root,
1894 					  struct btrfs_path *path, int level)
1895 {
1896 	struct extent_buffer *right = NULL;
1897 	struct extent_buffer *mid;
1898 	struct extent_buffer *left = NULL;
1899 	struct extent_buffer *parent = NULL;
1900 	int ret = 0;
1901 	int wret;
1902 	int pslot;
1903 	int orig_slot = path->slots[level];
1904 
1905 	if (level == 0)
1906 		return 1;
1907 
1908 	mid = path->nodes[level];
1909 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1910 
1911 	if (level < BTRFS_MAX_LEVEL - 1) {
1912 		parent = path->nodes[level + 1];
1913 		pslot = path->slots[level + 1];
1914 	}
1915 
1916 	if (!parent)
1917 		return 1;
1918 
1919 	left = read_node_slot(root, parent, pslot - 1);
1920 
1921 	/* first, try to make some room in the middle buffer */
1922 	if (left) {
1923 		u32 left_nr;
1924 
1925 		btrfs_tree_lock(left);
1926 		btrfs_set_lock_blocking(left);
1927 
1928 		left_nr = btrfs_header_nritems(left);
1929 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1930 			wret = 1;
1931 		} else {
1932 			ret = btrfs_cow_block(trans, root, left, parent,
1933 					      pslot - 1, &left);
1934 			if (ret)
1935 				wret = 1;
1936 			else {
1937 				wret = push_node_left(trans, root,
1938 						      left, mid, 0);
1939 			}
1940 		}
1941 		if (wret < 0)
1942 			ret = wret;
1943 		if (wret == 0) {
1944 			struct btrfs_disk_key disk_key;
1945 			orig_slot += left_nr;
1946 			btrfs_node_key(mid, &disk_key, 0);
1947 			tree_mod_log_set_node_key(root->fs_info, parent,
1948 						  &disk_key, pslot, 0);
1949 			btrfs_set_node_key(parent, &disk_key, pslot);
1950 			btrfs_mark_buffer_dirty(parent);
1951 			if (btrfs_header_nritems(left) > orig_slot) {
1952 				path->nodes[level] = left;
1953 				path->slots[level + 1] -= 1;
1954 				path->slots[level] = orig_slot;
1955 				btrfs_tree_unlock(mid);
1956 				free_extent_buffer(mid);
1957 			} else {
1958 				orig_slot -=
1959 					btrfs_header_nritems(left);
1960 				path->slots[level] = orig_slot;
1961 				btrfs_tree_unlock(left);
1962 				free_extent_buffer(left);
1963 			}
1964 			return 0;
1965 		}
1966 		btrfs_tree_unlock(left);
1967 		free_extent_buffer(left);
1968 	}
1969 	right = read_node_slot(root, parent, pslot + 1);
1970 
1971 	/*
1972 	 * then try to empty the right most buffer into the middle
1973 	 */
1974 	if (right) {
1975 		u32 right_nr;
1976 
1977 		btrfs_tree_lock(right);
1978 		btrfs_set_lock_blocking(right);
1979 
1980 		right_nr = btrfs_header_nritems(right);
1981 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1982 			wret = 1;
1983 		} else {
1984 			ret = btrfs_cow_block(trans, root, right,
1985 					      parent, pslot + 1,
1986 					      &right);
1987 			if (ret)
1988 				wret = 1;
1989 			else {
1990 				wret = balance_node_right(trans, root,
1991 							  right, mid);
1992 			}
1993 		}
1994 		if (wret < 0)
1995 			ret = wret;
1996 		if (wret == 0) {
1997 			struct btrfs_disk_key disk_key;
1998 
1999 			btrfs_node_key(right, &disk_key, 0);
2000 			tree_mod_log_set_node_key(root->fs_info, parent,
2001 						  &disk_key, pslot + 1, 0);
2002 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2003 			btrfs_mark_buffer_dirty(parent);
2004 
2005 			if (btrfs_header_nritems(mid) <= orig_slot) {
2006 				path->nodes[level] = right;
2007 				path->slots[level + 1] += 1;
2008 				path->slots[level] = orig_slot -
2009 					btrfs_header_nritems(mid);
2010 				btrfs_tree_unlock(mid);
2011 				free_extent_buffer(mid);
2012 			} else {
2013 				btrfs_tree_unlock(right);
2014 				free_extent_buffer(right);
2015 			}
2016 			return 0;
2017 		}
2018 		btrfs_tree_unlock(right);
2019 		free_extent_buffer(right);
2020 	}
2021 	return 1;
2022 }
2023 
2024 /*
2025  * readahead one full node of leaves, finding things that are close
2026  * to the block in 'slot', and triggering ra on them.
2027  */
2028 static void reada_for_search(struct btrfs_root *root,
2029 			     struct btrfs_path *path,
2030 			     int level, int slot, u64 objectid)
2031 {
2032 	struct extent_buffer *node;
2033 	struct btrfs_disk_key disk_key;
2034 	u32 nritems;
2035 	u64 search;
2036 	u64 target;
2037 	u64 nread = 0;
2038 	u64 gen;
2039 	int direction = path->reada;
2040 	struct extent_buffer *eb;
2041 	u32 nr;
2042 	u32 blocksize;
2043 	u32 nscan = 0;
2044 
2045 	if (level != 1)
2046 		return;
2047 
2048 	if (!path->nodes[level])
2049 		return;
2050 
2051 	node = path->nodes[level];
2052 
2053 	search = btrfs_node_blockptr(node, slot);
2054 	blocksize = btrfs_level_size(root, level - 1);
2055 	eb = btrfs_find_tree_block(root, search, blocksize);
2056 	if (eb) {
2057 		free_extent_buffer(eb);
2058 		return;
2059 	}
2060 
2061 	target = search;
2062 
2063 	nritems = btrfs_header_nritems(node);
2064 	nr = slot;
2065 
2066 	while (1) {
2067 		if (direction < 0) {
2068 			if (nr == 0)
2069 				break;
2070 			nr--;
2071 		} else if (direction > 0) {
2072 			nr++;
2073 			if (nr >= nritems)
2074 				break;
2075 		}
2076 		if (path->reada < 0 && objectid) {
2077 			btrfs_node_key(node, &disk_key, nr);
2078 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2079 				break;
2080 		}
2081 		search = btrfs_node_blockptr(node, nr);
2082 		if ((search <= target && target - search <= 65536) ||
2083 		    (search > target && search - target <= 65536)) {
2084 			gen = btrfs_node_ptr_generation(node, nr);
2085 			readahead_tree_block(root, search, blocksize, gen);
2086 			nread += blocksize;
2087 		}
2088 		nscan++;
2089 		if ((nread > 65536 || nscan > 32))
2090 			break;
2091 	}
2092 }
2093 
2094 /*
2095  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2096  * cache
2097  */
2098 static noinline int reada_for_balance(struct btrfs_root *root,
2099 				      struct btrfs_path *path, int level)
2100 {
2101 	int slot;
2102 	int nritems;
2103 	struct extent_buffer *parent;
2104 	struct extent_buffer *eb;
2105 	u64 gen;
2106 	u64 block1 = 0;
2107 	u64 block2 = 0;
2108 	int ret = 0;
2109 	int blocksize;
2110 
2111 	parent = path->nodes[level + 1];
2112 	if (!parent)
2113 		return 0;
2114 
2115 	nritems = btrfs_header_nritems(parent);
2116 	slot = path->slots[level + 1];
2117 	blocksize = btrfs_level_size(root, level);
2118 
2119 	if (slot > 0) {
2120 		block1 = btrfs_node_blockptr(parent, slot - 1);
2121 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2122 		eb = btrfs_find_tree_block(root, block1, blocksize);
2123 		/*
2124 		 * if we get -eagain from btrfs_buffer_uptodate, we
2125 		 * don't want to return eagain here.  That will loop
2126 		 * forever
2127 		 */
2128 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2129 			block1 = 0;
2130 		free_extent_buffer(eb);
2131 	}
2132 	if (slot + 1 < nritems) {
2133 		block2 = btrfs_node_blockptr(parent, slot + 1);
2134 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2135 		eb = btrfs_find_tree_block(root, block2, blocksize);
2136 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2137 			block2 = 0;
2138 		free_extent_buffer(eb);
2139 	}
2140 	if (block1 || block2) {
2141 		ret = -EAGAIN;
2142 
2143 		/* release the whole path */
2144 		btrfs_release_path(path);
2145 
2146 		/* read the blocks */
2147 		if (block1)
2148 			readahead_tree_block(root, block1, blocksize, 0);
2149 		if (block2)
2150 			readahead_tree_block(root, block2, blocksize, 0);
2151 
2152 		if (block1) {
2153 			eb = read_tree_block(root, block1, blocksize, 0);
2154 			free_extent_buffer(eb);
2155 		}
2156 		if (block2) {
2157 			eb = read_tree_block(root, block2, blocksize, 0);
2158 			free_extent_buffer(eb);
2159 		}
2160 	}
2161 	return ret;
2162 }
2163 
2164 
2165 /*
2166  * when we walk down the tree, it is usually safe to unlock the higher layers
2167  * in the tree.  The exceptions are when our path goes through slot 0, because
2168  * operations on the tree might require changing key pointers higher up in the
2169  * tree.
2170  *
2171  * callers might also have set path->keep_locks, which tells this code to keep
2172  * the lock if the path points to the last slot in the block.  This is part of
2173  * walking through the tree, and selecting the next slot in the higher block.
2174  *
2175  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2176  * if lowest_unlock is 1, level 0 won't be unlocked
2177  */
2178 static noinline void unlock_up(struct btrfs_path *path, int level,
2179 			       int lowest_unlock, int min_write_lock_level,
2180 			       int *write_lock_level)
2181 {
2182 	int i;
2183 	int skip_level = level;
2184 	int no_skips = 0;
2185 	struct extent_buffer *t;
2186 
2187 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2188 		if (!path->nodes[i])
2189 			break;
2190 		if (!path->locks[i])
2191 			break;
2192 		if (!no_skips && path->slots[i] == 0) {
2193 			skip_level = i + 1;
2194 			continue;
2195 		}
2196 		if (!no_skips && path->keep_locks) {
2197 			u32 nritems;
2198 			t = path->nodes[i];
2199 			nritems = btrfs_header_nritems(t);
2200 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2201 				skip_level = i + 1;
2202 				continue;
2203 			}
2204 		}
2205 		if (skip_level < i && i >= lowest_unlock)
2206 			no_skips = 1;
2207 
2208 		t = path->nodes[i];
2209 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2210 			btrfs_tree_unlock_rw(t, path->locks[i]);
2211 			path->locks[i] = 0;
2212 			if (write_lock_level &&
2213 			    i > min_write_lock_level &&
2214 			    i <= *write_lock_level) {
2215 				*write_lock_level = i - 1;
2216 			}
2217 		}
2218 	}
2219 }
2220 
2221 /*
2222  * This releases any locks held in the path starting at level and
2223  * going all the way up to the root.
2224  *
2225  * btrfs_search_slot will keep the lock held on higher nodes in a few
2226  * corner cases, such as COW of the block at slot zero in the node.  This
2227  * ignores those rules, and it should only be called when there are no
2228  * more updates to be done higher up in the tree.
2229  */
2230 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2231 {
2232 	int i;
2233 
2234 	if (path->keep_locks)
2235 		return;
2236 
2237 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2238 		if (!path->nodes[i])
2239 			continue;
2240 		if (!path->locks[i])
2241 			continue;
2242 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2243 		path->locks[i] = 0;
2244 	}
2245 }
2246 
2247 /*
2248  * helper function for btrfs_search_slot.  The goal is to find a block
2249  * in cache without setting the path to blocking.  If we find the block
2250  * we return zero and the path is unchanged.
2251  *
2252  * If we can't find the block, we set the path blocking and do some
2253  * reada.  -EAGAIN is returned and the search must be repeated.
2254  */
2255 static int
2256 read_block_for_search(struct btrfs_trans_handle *trans,
2257 		       struct btrfs_root *root, struct btrfs_path *p,
2258 		       struct extent_buffer **eb_ret, int level, int slot,
2259 		       struct btrfs_key *key, u64 time_seq)
2260 {
2261 	u64 blocknr;
2262 	u64 gen;
2263 	u32 blocksize;
2264 	struct extent_buffer *b = *eb_ret;
2265 	struct extent_buffer *tmp;
2266 	int ret;
2267 
2268 	blocknr = btrfs_node_blockptr(b, slot);
2269 	gen = btrfs_node_ptr_generation(b, slot);
2270 	blocksize = btrfs_level_size(root, level - 1);
2271 
2272 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2273 	if (tmp) {
2274 		/* first we do an atomic uptodate check */
2275 		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2276 			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2277 				/*
2278 				 * we found an up to date block without
2279 				 * sleeping, return
2280 				 * right away
2281 				 */
2282 				*eb_ret = tmp;
2283 				return 0;
2284 			}
2285 			/* the pages were up to date, but we failed
2286 			 * the generation number check.  Do a full
2287 			 * read for the generation number that is correct.
2288 			 * We must do this without dropping locks so
2289 			 * we can trust our generation number
2290 			 */
2291 			free_extent_buffer(tmp);
2292 			btrfs_set_path_blocking(p);
2293 
2294 			/* now we're allowed to do a blocking uptodate check */
2295 			tmp = read_tree_block(root, blocknr, blocksize, gen);
2296 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2297 				*eb_ret = tmp;
2298 				return 0;
2299 			}
2300 			free_extent_buffer(tmp);
2301 			btrfs_release_path(p);
2302 			return -EIO;
2303 		}
2304 	}
2305 
2306 	/*
2307 	 * reduce lock contention at high levels
2308 	 * of the btree by dropping locks before
2309 	 * we read.  Don't release the lock on the current
2310 	 * level because we need to walk this node to figure
2311 	 * out which blocks to read.
2312 	 */
2313 	btrfs_unlock_up_safe(p, level + 1);
2314 	btrfs_set_path_blocking(p);
2315 
2316 	free_extent_buffer(tmp);
2317 	if (p->reada)
2318 		reada_for_search(root, p, level, slot, key->objectid);
2319 
2320 	btrfs_release_path(p);
2321 
2322 	ret = -EAGAIN;
2323 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2324 	if (tmp) {
2325 		/*
2326 		 * If the read above didn't mark this buffer up to date,
2327 		 * it will never end up being up to date.  Set ret to EIO now
2328 		 * and give up so that our caller doesn't loop forever
2329 		 * on our EAGAINs.
2330 		 */
2331 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2332 			ret = -EIO;
2333 		free_extent_buffer(tmp);
2334 	}
2335 	return ret;
2336 }
2337 
2338 /*
2339  * helper function for btrfs_search_slot.  This does all of the checks
2340  * for node-level blocks and does any balancing required based on
2341  * the ins_len.
2342  *
2343  * If no extra work was required, zero is returned.  If we had to
2344  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2345  * start over
2346  */
2347 static int
2348 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2349 		       struct btrfs_root *root, struct btrfs_path *p,
2350 		       struct extent_buffer *b, int level, int ins_len,
2351 		       int *write_lock_level)
2352 {
2353 	int ret;
2354 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2355 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2356 		int sret;
2357 
2358 		if (*write_lock_level < level + 1) {
2359 			*write_lock_level = level + 1;
2360 			btrfs_release_path(p);
2361 			goto again;
2362 		}
2363 
2364 		sret = reada_for_balance(root, p, level);
2365 		if (sret)
2366 			goto again;
2367 
2368 		btrfs_set_path_blocking(p);
2369 		sret = split_node(trans, root, p, level);
2370 		btrfs_clear_path_blocking(p, NULL, 0);
2371 
2372 		BUG_ON(sret > 0);
2373 		if (sret) {
2374 			ret = sret;
2375 			goto done;
2376 		}
2377 		b = p->nodes[level];
2378 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2379 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2380 		int sret;
2381 
2382 		if (*write_lock_level < level + 1) {
2383 			*write_lock_level = level + 1;
2384 			btrfs_release_path(p);
2385 			goto again;
2386 		}
2387 
2388 		sret = reada_for_balance(root, p, level);
2389 		if (sret)
2390 			goto again;
2391 
2392 		btrfs_set_path_blocking(p);
2393 		sret = balance_level(trans, root, p, level);
2394 		btrfs_clear_path_blocking(p, NULL, 0);
2395 
2396 		if (sret) {
2397 			ret = sret;
2398 			goto done;
2399 		}
2400 		b = p->nodes[level];
2401 		if (!b) {
2402 			btrfs_release_path(p);
2403 			goto again;
2404 		}
2405 		BUG_ON(btrfs_header_nritems(b) == 1);
2406 	}
2407 	return 0;
2408 
2409 again:
2410 	ret = -EAGAIN;
2411 done:
2412 	return ret;
2413 }
2414 
2415 /*
2416  * look for key in the tree.  path is filled in with nodes along the way
2417  * if key is found, we return zero and you can find the item in the leaf
2418  * level of the path (level 0)
2419  *
2420  * If the key isn't found, the path points to the slot where it should
2421  * be inserted, and 1 is returned.  If there are other errors during the
2422  * search a negative error number is returned.
2423  *
2424  * if ins_len > 0, nodes and leaves will be split as we walk down the
2425  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2426  * possible)
2427  */
2428 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2429 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2430 		      ins_len, int cow)
2431 {
2432 	struct extent_buffer *b;
2433 	int slot;
2434 	int ret;
2435 	int err;
2436 	int level;
2437 	int lowest_unlock = 1;
2438 	int root_lock;
2439 	/* everything at write_lock_level or lower must be write locked */
2440 	int write_lock_level = 0;
2441 	u8 lowest_level = 0;
2442 	int min_write_lock_level;
2443 
2444 	lowest_level = p->lowest_level;
2445 	WARN_ON(lowest_level && ins_len > 0);
2446 	WARN_ON(p->nodes[0] != NULL);
2447 
2448 	if (ins_len < 0) {
2449 		lowest_unlock = 2;
2450 
2451 		/* when we are removing items, we might have to go up to level
2452 		 * two as we update tree pointers  Make sure we keep write
2453 		 * for those levels as well
2454 		 */
2455 		write_lock_level = 2;
2456 	} else if (ins_len > 0) {
2457 		/*
2458 		 * for inserting items, make sure we have a write lock on
2459 		 * level 1 so we can update keys
2460 		 */
2461 		write_lock_level = 1;
2462 	}
2463 
2464 	if (!cow)
2465 		write_lock_level = -1;
2466 
2467 	if (cow && (p->keep_locks || p->lowest_level))
2468 		write_lock_level = BTRFS_MAX_LEVEL;
2469 
2470 	min_write_lock_level = write_lock_level;
2471 
2472 again:
2473 	/*
2474 	 * we try very hard to do read locks on the root
2475 	 */
2476 	root_lock = BTRFS_READ_LOCK;
2477 	level = 0;
2478 	if (p->search_commit_root) {
2479 		/*
2480 		 * the commit roots are read only
2481 		 * so we always do read locks
2482 		 */
2483 		b = root->commit_root;
2484 		extent_buffer_get(b);
2485 		level = btrfs_header_level(b);
2486 		if (!p->skip_locking)
2487 			btrfs_tree_read_lock(b);
2488 	} else {
2489 		if (p->skip_locking) {
2490 			b = btrfs_root_node(root);
2491 			level = btrfs_header_level(b);
2492 		} else {
2493 			/* we don't know the level of the root node
2494 			 * until we actually have it read locked
2495 			 */
2496 			b = btrfs_read_lock_root_node(root);
2497 			level = btrfs_header_level(b);
2498 			if (level <= write_lock_level) {
2499 				/* whoops, must trade for write lock */
2500 				btrfs_tree_read_unlock(b);
2501 				free_extent_buffer(b);
2502 				b = btrfs_lock_root_node(root);
2503 				root_lock = BTRFS_WRITE_LOCK;
2504 
2505 				/* the level might have changed, check again */
2506 				level = btrfs_header_level(b);
2507 			}
2508 		}
2509 	}
2510 	p->nodes[level] = b;
2511 	if (!p->skip_locking)
2512 		p->locks[level] = root_lock;
2513 
2514 	while (b) {
2515 		level = btrfs_header_level(b);
2516 
2517 		/*
2518 		 * setup the path here so we can release it under lock
2519 		 * contention with the cow code
2520 		 */
2521 		if (cow) {
2522 			/*
2523 			 * if we don't really need to cow this block
2524 			 * then we don't want to set the path blocking,
2525 			 * so we test it here
2526 			 */
2527 			if (!should_cow_block(trans, root, b))
2528 				goto cow_done;
2529 
2530 			btrfs_set_path_blocking(p);
2531 
2532 			/*
2533 			 * must have write locks on this node and the
2534 			 * parent
2535 			 */
2536 			if (level + 1 > write_lock_level) {
2537 				write_lock_level = level + 1;
2538 				btrfs_release_path(p);
2539 				goto again;
2540 			}
2541 
2542 			err = btrfs_cow_block(trans, root, b,
2543 					      p->nodes[level + 1],
2544 					      p->slots[level + 1], &b);
2545 			if (err) {
2546 				ret = err;
2547 				goto done;
2548 			}
2549 		}
2550 cow_done:
2551 		BUG_ON(!cow && ins_len);
2552 
2553 		p->nodes[level] = b;
2554 		btrfs_clear_path_blocking(p, NULL, 0);
2555 
2556 		/*
2557 		 * we have a lock on b and as long as we aren't changing
2558 		 * the tree, there is no way to for the items in b to change.
2559 		 * It is safe to drop the lock on our parent before we
2560 		 * go through the expensive btree search on b.
2561 		 *
2562 		 * If cow is true, then we might be changing slot zero,
2563 		 * which may require changing the parent.  So, we can't
2564 		 * drop the lock until after we know which slot we're
2565 		 * operating on.
2566 		 */
2567 		if (!cow)
2568 			btrfs_unlock_up_safe(p, level + 1);
2569 
2570 		ret = bin_search(b, key, level, &slot);
2571 
2572 		if (level != 0) {
2573 			int dec = 0;
2574 			if (ret && slot > 0) {
2575 				dec = 1;
2576 				slot -= 1;
2577 			}
2578 			p->slots[level] = slot;
2579 			err = setup_nodes_for_search(trans, root, p, b, level,
2580 					     ins_len, &write_lock_level);
2581 			if (err == -EAGAIN)
2582 				goto again;
2583 			if (err) {
2584 				ret = err;
2585 				goto done;
2586 			}
2587 			b = p->nodes[level];
2588 			slot = p->slots[level];
2589 
2590 			/*
2591 			 * slot 0 is special, if we change the key
2592 			 * we have to update the parent pointer
2593 			 * which means we must have a write lock
2594 			 * on the parent
2595 			 */
2596 			if (slot == 0 && cow &&
2597 			    write_lock_level < level + 1) {
2598 				write_lock_level = level + 1;
2599 				btrfs_release_path(p);
2600 				goto again;
2601 			}
2602 
2603 			unlock_up(p, level, lowest_unlock,
2604 				  min_write_lock_level, &write_lock_level);
2605 
2606 			if (level == lowest_level) {
2607 				if (dec)
2608 					p->slots[level]++;
2609 				goto done;
2610 			}
2611 
2612 			err = read_block_for_search(trans, root, p,
2613 						    &b, level, slot, key, 0);
2614 			if (err == -EAGAIN)
2615 				goto again;
2616 			if (err) {
2617 				ret = err;
2618 				goto done;
2619 			}
2620 
2621 			if (!p->skip_locking) {
2622 				level = btrfs_header_level(b);
2623 				if (level <= write_lock_level) {
2624 					err = btrfs_try_tree_write_lock(b);
2625 					if (!err) {
2626 						btrfs_set_path_blocking(p);
2627 						btrfs_tree_lock(b);
2628 						btrfs_clear_path_blocking(p, b,
2629 								  BTRFS_WRITE_LOCK);
2630 					}
2631 					p->locks[level] = BTRFS_WRITE_LOCK;
2632 				} else {
2633 					err = btrfs_try_tree_read_lock(b);
2634 					if (!err) {
2635 						btrfs_set_path_blocking(p);
2636 						btrfs_tree_read_lock(b);
2637 						btrfs_clear_path_blocking(p, b,
2638 								  BTRFS_READ_LOCK);
2639 					}
2640 					p->locks[level] = BTRFS_READ_LOCK;
2641 				}
2642 				p->nodes[level] = b;
2643 			}
2644 		} else {
2645 			p->slots[level] = slot;
2646 			if (ins_len > 0 &&
2647 			    btrfs_leaf_free_space(root, b) < ins_len) {
2648 				if (write_lock_level < 1) {
2649 					write_lock_level = 1;
2650 					btrfs_release_path(p);
2651 					goto again;
2652 				}
2653 
2654 				btrfs_set_path_blocking(p);
2655 				err = split_leaf(trans, root, key,
2656 						 p, ins_len, ret == 0);
2657 				btrfs_clear_path_blocking(p, NULL, 0);
2658 
2659 				BUG_ON(err > 0);
2660 				if (err) {
2661 					ret = err;
2662 					goto done;
2663 				}
2664 			}
2665 			if (!p->search_for_split)
2666 				unlock_up(p, level, lowest_unlock,
2667 					  min_write_lock_level, &write_lock_level);
2668 			goto done;
2669 		}
2670 	}
2671 	ret = 1;
2672 done:
2673 	/*
2674 	 * we don't really know what they plan on doing with the path
2675 	 * from here on, so for now just mark it as blocking
2676 	 */
2677 	if (!p->leave_spinning)
2678 		btrfs_set_path_blocking(p);
2679 	if (ret < 0)
2680 		btrfs_release_path(p);
2681 	return ret;
2682 }
2683 
2684 /*
2685  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2686  * current state of the tree together with the operations recorded in the tree
2687  * modification log to search for the key in a previous version of this tree, as
2688  * denoted by the time_seq parameter.
2689  *
2690  * Naturally, there is no support for insert, delete or cow operations.
2691  *
2692  * The resulting path and return value will be set up as if we called
2693  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2694  */
2695 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2696 			  struct btrfs_path *p, u64 time_seq)
2697 {
2698 	struct extent_buffer *b;
2699 	int slot;
2700 	int ret;
2701 	int err;
2702 	int level;
2703 	int lowest_unlock = 1;
2704 	u8 lowest_level = 0;
2705 
2706 	lowest_level = p->lowest_level;
2707 	WARN_ON(p->nodes[0] != NULL);
2708 
2709 	if (p->search_commit_root) {
2710 		BUG_ON(time_seq);
2711 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2712 	}
2713 
2714 again:
2715 	b = get_old_root(root, time_seq);
2716 	level = btrfs_header_level(b);
2717 	p->locks[level] = BTRFS_READ_LOCK;
2718 
2719 	while (b) {
2720 		level = btrfs_header_level(b);
2721 		p->nodes[level] = b;
2722 		btrfs_clear_path_blocking(p, NULL, 0);
2723 
2724 		/*
2725 		 * we have a lock on b and as long as we aren't changing
2726 		 * the tree, there is no way to for the items in b to change.
2727 		 * It is safe to drop the lock on our parent before we
2728 		 * go through the expensive btree search on b.
2729 		 */
2730 		btrfs_unlock_up_safe(p, level + 1);
2731 
2732 		ret = bin_search(b, key, level, &slot);
2733 
2734 		if (level != 0) {
2735 			int dec = 0;
2736 			if (ret && slot > 0) {
2737 				dec = 1;
2738 				slot -= 1;
2739 			}
2740 			p->slots[level] = slot;
2741 			unlock_up(p, level, lowest_unlock, 0, NULL);
2742 
2743 			if (level == lowest_level) {
2744 				if (dec)
2745 					p->slots[level]++;
2746 				goto done;
2747 			}
2748 
2749 			err = read_block_for_search(NULL, root, p, &b, level,
2750 						    slot, key, time_seq);
2751 			if (err == -EAGAIN)
2752 				goto again;
2753 			if (err) {
2754 				ret = err;
2755 				goto done;
2756 			}
2757 
2758 			level = btrfs_header_level(b);
2759 			err = btrfs_try_tree_read_lock(b);
2760 			if (!err) {
2761 				btrfs_set_path_blocking(p);
2762 				btrfs_tree_read_lock(b);
2763 				btrfs_clear_path_blocking(p, b,
2764 							  BTRFS_READ_LOCK);
2765 			}
2766 			p->locks[level] = BTRFS_READ_LOCK;
2767 			p->nodes[level] = b;
2768 			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2769 			if (b != p->nodes[level]) {
2770 				btrfs_tree_unlock_rw(p->nodes[level],
2771 						     p->locks[level]);
2772 				p->locks[level] = 0;
2773 				p->nodes[level] = b;
2774 			}
2775 		} else {
2776 			p->slots[level] = slot;
2777 			unlock_up(p, level, lowest_unlock, 0, NULL);
2778 			goto done;
2779 		}
2780 	}
2781 	ret = 1;
2782 done:
2783 	if (!p->leave_spinning)
2784 		btrfs_set_path_blocking(p);
2785 	if (ret < 0)
2786 		btrfs_release_path(p);
2787 
2788 	return ret;
2789 }
2790 
2791 /*
2792  * adjust the pointers going up the tree, starting at level
2793  * making sure the right key of each node is points to 'key'.
2794  * This is used after shifting pointers to the left, so it stops
2795  * fixing up pointers when a given leaf/node is not in slot 0 of the
2796  * higher levels
2797  *
2798  */
2799 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2800 			   struct btrfs_root *root, struct btrfs_path *path,
2801 			   struct btrfs_disk_key *key, int level)
2802 {
2803 	int i;
2804 	struct extent_buffer *t;
2805 
2806 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2807 		int tslot = path->slots[i];
2808 		if (!path->nodes[i])
2809 			break;
2810 		t = path->nodes[i];
2811 		tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2812 		btrfs_set_node_key(t, key, tslot);
2813 		btrfs_mark_buffer_dirty(path->nodes[i]);
2814 		if (tslot != 0)
2815 			break;
2816 	}
2817 }
2818 
2819 /*
2820  * update item key.
2821  *
2822  * This function isn't completely safe. It's the caller's responsibility
2823  * that the new key won't break the order
2824  */
2825 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2826 			     struct btrfs_root *root, struct btrfs_path *path,
2827 			     struct btrfs_key *new_key)
2828 {
2829 	struct btrfs_disk_key disk_key;
2830 	struct extent_buffer *eb;
2831 	int slot;
2832 
2833 	eb = path->nodes[0];
2834 	slot = path->slots[0];
2835 	if (slot > 0) {
2836 		btrfs_item_key(eb, &disk_key, slot - 1);
2837 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2838 	}
2839 	if (slot < btrfs_header_nritems(eb) - 1) {
2840 		btrfs_item_key(eb, &disk_key, slot + 1);
2841 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2842 	}
2843 
2844 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2845 	btrfs_set_item_key(eb, &disk_key, slot);
2846 	btrfs_mark_buffer_dirty(eb);
2847 	if (slot == 0)
2848 		fixup_low_keys(trans, root, path, &disk_key, 1);
2849 }
2850 
2851 /*
2852  * try to push data from one node into the next node left in the
2853  * tree.
2854  *
2855  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2856  * error, and > 0 if there was no room in the left hand block.
2857  */
2858 static int push_node_left(struct btrfs_trans_handle *trans,
2859 			  struct btrfs_root *root, struct extent_buffer *dst,
2860 			  struct extent_buffer *src, int empty)
2861 {
2862 	int push_items = 0;
2863 	int src_nritems;
2864 	int dst_nritems;
2865 	int ret = 0;
2866 
2867 	src_nritems = btrfs_header_nritems(src);
2868 	dst_nritems = btrfs_header_nritems(dst);
2869 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2870 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2871 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2872 
2873 	if (!empty && src_nritems <= 8)
2874 		return 1;
2875 
2876 	if (push_items <= 0)
2877 		return 1;
2878 
2879 	if (empty) {
2880 		push_items = min(src_nritems, push_items);
2881 		if (push_items < src_nritems) {
2882 			/* leave at least 8 pointers in the node if
2883 			 * we aren't going to empty it
2884 			 */
2885 			if (src_nritems - push_items < 8) {
2886 				if (push_items <= 8)
2887 					return 1;
2888 				push_items -= 8;
2889 			}
2890 		}
2891 	} else
2892 		push_items = min(src_nritems - 8, push_items);
2893 
2894 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2895 			     push_items);
2896 	copy_extent_buffer(dst, src,
2897 			   btrfs_node_key_ptr_offset(dst_nritems),
2898 			   btrfs_node_key_ptr_offset(0),
2899 			   push_items * sizeof(struct btrfs_key_ptr));
2900 
2901 	if (push_items < src_nritems) {
2902 		tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2903 				     src_nritems - push_items);
2904 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2905 				      btrfs_node_key_ptr_offset(push_items),
2906 				      (src_nritems - push_items) *
2907 				      sizeof(struct btrfs_key_ptr));
2908 	}
2909 	btrfs_set_header_nritems(src, src_nritems - push_items);
2910 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2911 	btrfs_mark_buffer_dirty(src);
2912 	btrfs_mark_buffer_dirty(dst);
2913 
2914 	return ret;
2915 }
2916 
2917 /*
2918  * try to push data from one node into the next node right in the
2919  * tree.
2920  *
2921  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2922  * error, and > 0 if there was no room in the right hand block.
2923  *
2924  * this will  only push up to 1/2 the contents of the left node over
2925  */
2926 static int balance_node_right(struct btrfs_trans_handle *trans,
2927 			      struct btrfs_root *root,
2928 			      struct extent_buffer *dst,
2929 			      struct extent_buffer *src)
2930 {
2931 	int push_items = 0;
2932 	int max_push;
2933 	int src_nritems;
2934 	int dst_nritems;
2935 	int ret = 0;
2936 
2937 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2938 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2939 
2940 	src_nritems = btrfs_header_nritems(src);
2941 	dst_nritems = btrfs_header_nritems(dst);
2942 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2943 	if (push_items <= 0)
2944 		return 1;
2945 
2946 	if (src_nritems < 4)
2947 		return 1;
2948 
2949 	max_push = src_nritems / 2 + 1;
2950 	/* don't try to empty the node */
2951 	if (max_push >= src_nritems)
2952 		return 1;
2953 
2954 	if (max_push < push_items)
2955 		push_items = max_push;
2956 
2957 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
2958 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2959 				      btrfs_node_key_ptr_offset(0),
2960 				      (dst_nritems) *
2961 				      sizeof(struct btrfs_key_ptr));
2962 
2963 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2964 			     src_nritems - push_items, push_items);
2965 	copy_extent_buffer(dst, src,
2966 			   btrfs_node_key_ptr_offset(0),
2967 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2968 			   push_items * sizeof(struct btrfs_key_ptr));
2969 
2970 	btrfs_set_header_nritems(src, src_nritems - push_items);
2971 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2972 
2973 	btrfs_mark_buffer_dirty(src);
2974 	btrfs_mark_buffer_dirty(dst);
2975 
2976 	return ret;
2977 }
2978 
2979 /*
2980  * helper function to insert a new root level in the tree.
2981  * A new node is allocated, and a single item is inserted to
2982  * point to the existing root
2983  *
2984  * returns zero on success or < 0 on failure.
2985  */
2986 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2987 			   struct btrfs_root *root,
2988 			   struct btrfs_path *path, int level)
2989 {
2990 	u64 lower_gen;
2991 	struct extent_buffer *lower;
2992 	struct extent_buffer *c;
2993 	struct extent_buffer *old;
2994 	struct btrfs_disk_key lower_key;
2995 
2996 	BUG_ON(path->nodes[level]);
2997 	BUG_ON(path->nodes[level-1] != root->node);
2998 
2999 	lower = path->nodes[level-1];
3000 	if (level == 1)
3001 		btrfs_item_key(lower, &lower_key, 0);
3002 	else
3003 		btrfs_node_key(lower, &lower_key, 0);
3004 
3005 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3006 				   root->root_key.objectid, &lower_key,
3007 				   level, root->node->start, 0);
3008 	if (IS_ERR(c))
3009 		return PTR_ERR(c);
3010 
3011 	root_add_used(root, root->nodesize);
3012 
3013 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3014 	btrfs_set_header_nritems(c, 1);
3015 	btrfs_set_header_level(c, level);
3016 	btrfs_set_header_bytenr(c, c->start);
3017 	btrfs_set_header_generation(c, trans->transid);
3018 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3019 	btrfs_set_header_owner(c, root->root_key.objectid);
3020 
3021 	write_extent_buffer(c, root->fs_info->fsid,
3022 			    (unsigned long)btrfs_header_fsid(c),
3023 			    BTRFS_FSID_SIZE);
3024 
3025 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3026 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
3027 			    BTRFS_UUID_SIZE);
3028 
3029 	btrfs_set_node_key(c, &lower_key, 0);
3030 	btrfs_set_node_blockptr(c, 0, lower->start);
3031 	lower_gen = btrfs_header_generation(lower);
3032 	WARN_ON(lower_gen != trans->transid);
3033 
3034 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3035 
3036 	btrfs_mark_buffer_dirty(c);
3037 
3038 	old = root->node;
3039 	tree_mod_log_set_root_pointer(root, c);
3040 	rcu_assign_pointer(root->node, c);
3041 
3042 	/* the super has an extra ref to root->node */
3043 	free_extent_buffer(old);
3044 
3045 	add_root_to_dirty_list(root);
3046 	extent_buffer_get(c);
3047 	path->nodes[level] = c;
3048 	path->locks[level] = BTRFS_WRITE_LOCK;
3049 	path->slots[level] = 0;
3050 	return 0;
3051 }
3052 
3053 /*
3054  * worker function to insert a single pointer in a node.
3055  * the node should have enough room for the pointer already
3056  *
3057  * slot and level indicate where you want the key to go, and
3058  * blocknr is the block the key points to.
3059  */
3060 static void insert_ptr(struct btrfs_trans_handle *trans,
3061 		       struct btrfs_root *root, struct btrfs_path *path,
3062 		       struct btrfs_disk_key *key, u64 bytenr,
3063 		       int slot, int level)
3064 {
3065 	struct extent_buffer *lower;
3066 	int nritems;
3067 	int ret;
3068 
3069 	BUG_ON(!path->nodes[level]);
3070 	btrfs_assert_tree_locked(path->nodes[level]);
3071 	lower = path->nodes[level];
3072 	nritems = btrfs_header_nritems(lower);
3073 	BUG_ON(slot > nritems);
3074 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3075 	if (slot != nritems) {
3076 		if (level)
3077 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3078 					     slot, nritems - slot);
3079 		memmove_extent_buffer(lower,
3080 			      btrfs_node_key_ptr_offset(slot + 1),
3081 			      btrfs_node_key_ptr_offset(slot),
3082 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3083 	}
3084 	if (level) {
3085 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3086 					      MOD_LOG_KEY_ADD);
3087 		BUG_ON(ret < 0);
3088 	}
3089 	btrfs_set_node_key(lower, key, slot);
3090 	btrfs_set_node_blockptr(lower, slot, bytenr);
3091 	WARN_ON(trans->transid == 0);
3092 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3093 	btrfs_set_header_nritems(lower, nritems + 1);
3094 	btrfs_mark_buffer_dirty(lower);
3095 }
3096 
3097 /*
3098  * split the node at the specified level in path in two.
3099  * The path is corrected to point to the appropriate node after the split
3100  *
3101  * Before splitting this tries to make some room in the node by pushing
3102  * left and right, if either one works, it returns right away.
3103  *
3104  * returns 0 on success and < 0 on failure
3105  */
3106 static noinline int split_node(struct btrfs_trans_handle *trans,
3107 			       struct btrfs_root *root,
3108 			       struct btrfs_path *path, int level)
3109 {
3110 	struct extent_buffer *c;
3111 	struct extent_buffer *split;
3112 	struct btrfs_disk_key disk_key;
3113 	int mid;
3114 	int ret;
3115 	u32 c_nritems;
3116 
3117 	c = path->nodes[level];
3118 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3119 	if (c == root->node) {
3120 		/* trying to split the root, lets make a new one */
3121 		ret = insert_new_root(trans, root, path, level + 1);
3122 		if (ret)
3123 			return ret;
3124 	} else {
3125 		ret = push_nodes_for_insert(trans, root, path, level);
3126 		c = path->nodes[level];
3127 		if (!ret && btrfs_header_nritems(c) <
3128 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3129 			return 0;
3130 		if (ret < 0)
3131 			return ret;
3132 	}
3133 
3134 	c_nritems = btrfs_header_nritems(c);
3135 	mid = (c_nritems + 1) / 2;
3136 	btrfs_node_key(c, &disk_key, mid);
3137 
3138 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3139 					root->root_key.objectid,
3140 					&disk_key, level, c->start, 0);
3141 	if (IS_ERR(split))
3142 		return PTR_ERR(split);
3143 
3144 	root_add_used(root, root->nodesize);
3145 
3146 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3147 	btrfs_set_header_level(split, btrfs_header_level(c));
3148 	btrfs_set_header_bytenr(split, split->start);
3149 	btrfs_set_header_generation(split, trans->transid);
3150 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3151 	btrfs_set_header_owner(split, root->root_key.objectid);
3152 	write_extent_buffer(split, root->fs_info->fsid,
3153 			    (unsigned long)btrfs_header_fsid(split),
3154 			    BTRFS_FSID_SIZE);
3155 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3156 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
3157 			    BTRFS_UUID_SIZE);
3158 
3159 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3160 	copy_extent_buffer(split, c,
3161 			   btrfs_node_key_ptr_offset(0),
3162 			   btrfs_node_key_ptr_offset(mid),
3163 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3164 	btrfs_set_header_nritems(split, c_nritems - mid);
3165 	btrfs_set_header_nritems(c, mid);
3166 	ret = 0;
3167 
3168 	btrfs_mark_buffer_dirty(c);
3169 	btrfs_mark_buffer_dirty(split);
3170 
3171 	insert_ptr(trans, root, path, &disk_key, split->start,
3172 		   path->slots[level + 1] + 1, level + 1);
3173 
3174 	if (path->slots[level] >= mid) {
3175 		path->slots[level] -= mid;
3176 		btrfs_tree_unlock(c);
3177 		free_extent_buffer(c);
3178 		path->nodes[level] = split;
3179 		path->slots[level + 1] += 1;
3180 	} else {
3181 		btrfs_tree_unlock(split);
3182 		free_extent_buffer(split);
3183 	}
3184 	return ret;
3185 }
3186 
3187 /*
3188  * how many bytes are required to store the items in a leaf.  start
3189  * and nr indicate which items in the leaf to check.  This totals up the
3190  * space used both by the item structs and the item data
3191  */
3192 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3193 {
3194 	int data_len;
3195 	int nritems = btrfs_header_nritems(l);
3196 	int end = min(nritems, start + nr) - 1;
3197 
3198 	if (!nr)
3199 		return 0;
3200 	data_len = btrfs_item_end_nr(l, start);
3201 	data_len = data_len - btrfs_item_offset_nr(l, end);
3202 	data_len += sizeof(struct btrfs_item) * nr;
3203 	WARN_ON(data_len < 0);
3204 	return data_len;
3205 }
3206 
3207 /*
3208  * The space between the end of the leaf items and
3209  * the start of the leaf data.  IOW, how much room
3210  * the leaf has left for both items and data
3211  */
3212 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3213 				   struct extent_buffer *leaf)
3214 {
3215 	int nritems = btrfs_header_nritems(leaf);
3216 	int ret;
3217 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3218 	if (ret < 0) {
3219 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3220 		       "used %d nritems %d\n",
3221 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3222 		       leaf_space_used(leaf, 0, nritems), nritems);
3223 	}
3224 	return ret;
3225 }
3226 
3227 /*
3228  * min slot controls the lowest index we're willing to push to the
3229  * right.  We'll push up to and including min_slot, but no lower
3230  */
3231 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3232 				      struct btrfs_root *root,
3233 				      struct btrfs_path *path,
3234 				      int data_size, int empty,
3235 				      struct extent_buffer *right,
3236 				      int free_space, u32 left_nritems,
3237 				      u32 min_slot)
3238 {
3239 	struct extent_buffer *left = path->nodes[0];
3240 	struct extent_buffer *upper = path->nodes[1];
3241 	struct btrfs_map_token token;
3242 	struct btrfs_disk_key disk_key;
3243 	int slot;
3244 	u32 i;
3245 	int push_space = 0;
3246 	int push_items = 0;
3247 	struct btrfs_item *item;
3248 	u32 nr;
3249 	u32 right_nritems;
3250 	u32 data_end;
3251 	u32 this_item_size;
3252 
3253 	btrfs_init_map_token(&token);
3254 
3255 	if (empty)
3256 		nr = 0;
3257 	else
3258 		nr = max_t(u32, 1, min_slot);
3259 
3260 	if (path->slots[0] >= left_nritems)
3261 		push_space += data_size;
3262 
3263 	slot = path->slots[1];
3264 	i = left_nritems - 1;
3265 	while (i >= nr) {
3266 		item = btrfs_item_nr(left, i);
3267 
3268 		if (!empty && push_items > 0) {
3269 			if (path->slots[0] > i)
3270 				break;
3271 			if (path->slots[0] == i) {
3272 				int space = btrfs_leaf_free_space(root, left);
3273 				if (space + push_space * 2 > free_space)
3274 					break;
3275 			}
3276 		}
3277 
3278 		if (path->slots[0] == i)
3279 			push_space += data_size;
3280 
3281 		this_item_size = btrfs_item_size(left, item);
3282 		if (this_item_size + sizeof(*item) + push_space > free_space)
3283 			break;
3284 
3285 		push_items++;
3286 		push_space += this_item_size + sizeof(*item);
3287 		if (i == 0)
3288 			break;
3289 		i--;
3290 	}
3291 
3292 	if (push_items == 0)
3293 		goto out_unlock;
3294 
3295 	if (!empty && push_items == left_nritems)
3296 		WARN_ON(1);
3297 
3298 	/* push left to right */
3299 	right_nritems = btrfs_header_nritems(right);
3300 
3301 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3302 	push_space -= leaf_data_end(root, left);
3303 
3304 	/* make room in the right data area */
3305 	data_end = leaf_data_end(root, right);
3306 	memmove_extent_buffer(right,
3307 			      btrfs_leaf_data(right) + data_end - push_space,
3308 			      btrfs_leaf_data(right) + data_end,
3309 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3310 
3311 	/* copy from the left data area */
3312 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3313 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3314 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3315 		     push_space);
3316 
3317 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3318 			      btrfs_item_nr_offset(0),
3319 			      right_nritems * sizeof(struct btrfs_item));
3320 
3321 	/* copy the items from left to right */
3322 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3323 		   btrfs_item_nr_offset(left_nritems - push_items),
3324 		   push_items * sizeof(struct btrfs_item));
3325 
3326 	/* update the item pointers */
3327 	right_nritems += push_items;
3328 	btrfs_set_header_nritems(right, right_nritems);
3329 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3330 	for (i = 0; i < right_nritems; i++) {
3331 		item = btrfs_item_nr(right, i);
3332 		push_space -= btrfs_token_item_size(right, item, &token);
3333 		btrfs_set_token_item_offset(right, item, push_space, &token);
3334 	}
3335 
3336 	left_nritems -= push_items;
3337 	btrfs_set_header_nritems(left, left_nritems);
3338 
3339 	if (left_nritems)
3340 		btrfs_mark_buffer_dirty(left);
3341 	else
3342 		clean_tree_block(trans, root, left);
3343 
3344 	btrfs_mark_buffer_dirty(right);
3345 
3346 	btrfs_item_key(right, &disk_key, 0);
3347 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3348 	btrfs_mark_buffer_dirty(upper);
3349 
3350 	/* then fixup the leaf pointer in the path */
3351 	if (path->slots[0] >= left_nritems) {
3352 		path->slots[0] -= left_nritems;
3353 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3354 			clean_tree_block(trans, root, path->nodes[0]);
3355 		btrfs_tree_unlock(path->nodes[0]);
3356 		free_extent_buffer(path->nodes[0]);
3357 		path->nodes[0] = right;
3358 		path->slots[1] += 1;
3359 	} else {
3360 		btrfs_tree_unlock(right);
3361 		free_extent_buffer(right);
3362 	}
3363 	return 0;
3364 
3365 out_unlock:
3366 	btrfs_tree_unlock(right);
3367 	free_extent_buffer(right);
3368 	return 1;
3369 }
3370 
3371 /*
3372  * push some data in the path leaf to the right, trying to free up at
3373  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3374  *
3375  * returns 1 if the push failed because the other node didn't have enough
3376  * room, 0 if everything worked out and < 0 if there were major errors.
3377  *
3378  * this will push starting from min_slot to the end of the leaf.  It won't
3379  * push any slot lower than min_slot
3380  */
3381 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3382 			   *root, struct btrfs_path *path,
3383 			   int min_data_size, int data_size,
3384 			   int empty, u32 min_slot)
3385 {
3386 	struct extent_buffer *left = path->nodes[0];
3387 	struct extent_buffer *right;
3388 	struct extent_buffer *upper;
3389 	int slot;
3390 	int free_space;
3391 	u32 left_nritems;
3392 	int ret;
3393 
3394 	if (!path->nodes[1])
3395 		return 1;
3396 
3397 	slot = path->slots[1];
3398 	upper = path->nodes[1];
3399 	if (slot >= btrfs_header_nritems(upper) - 1)
3400 		return 1;
3401 
3402 	btrfs_assert_tree_locked(path->nodes[1]);
3403 
3404 	right = read_node_slot(root, upper, slot + 1);
3405 	if (right == NULL)
3406 		return 1;
3407 
3408 	btrfs_tree_lock(right);
3409 	btrfs_set_lock_blocking(right);
3410 
3411 	free_space = btrfs_leaf_free_space(root, right);
3412 	if (free_space < data_size)
3413 		goto out_unlock;
3414 
3415 	/* cow and double check */
3416 	ret = btrfs_cow_block(trans, root, right, upper,
3417 			      slot + 1, &right);
3418 	if (ret)
3419 		goto out_unlock;
3420 
3421 	free_space = btrfs_leaf_free_space(root, right);
3422 	if (free_space < data_size)
3423 		goto out_unlock;
3424 
3425 	left_nritems = btrfs_header_nritems(left);
3426 	if (left_nritems == 0)
3427 		goto out_unlock;
3428 
3429 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3430 				right, free_space, left_nritems, min_slot);
3431 out_unlock:
3432 	btrfs_tree_unlock(right);
3433 	free_extent_buffer(right);
3434 	return 1;
3435 }
3436 
3437 /*
3438  * push some data in the path leaf to the left, trying to free up at
3439  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3440  *
3441  * max_slot can put a limit on how far into the leaf we'll push items.  The
3442  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3443  * items
3444  */
3445 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3446 				     struct btrfs_root *root,
3447 				     struct btrfs_path *path, int data_size,
3448 				     int empty, struct extent_buffer *left,
3449 				     int free_space, u32 right_nritems,
3450 				     u32 max_slot)
3451 {
3452 	struct btrfs_disk_key disk_key;
3453 	struct extent_buffer *right = path->nodes[0];
3454 	int i;
3455 	int push_space = 0;
3456 	int push_items = 0;
3457 	struct btrfs_item *item;
3458 	u32 old_left_nritems;
3459 	u32 nr;
3460 	int ret = 0;
3461 	u32 this_item_size;
3462 	u32 old_left_item_size;
3463 	struct btrfs_map_token token;
3464 
3465 	btrfs_init_map_token(&token);
3466 
3467 	if (empty)
3468 		nr = min(right_nritems, max_slot);
3469 	else
3470 		nr = min(right_nritems - 1, max_slot);
3471 
3472 	for (i = 0; i < nr; i++) {
3473 		item = btrfs_item_nr(right, i);
3474 
3475 		if (!empty && push_items > 0) {
3476 			if (path->slots[0] < i)
3477 				break;
3478 			if (path->slots[0] == i) {
3479 				int space = btrfs_leaf_free_space(root, right);
3480 				if (space + push_space * 2 > free_space)
3481 					break;
3482 			}
3483 		}
3484 
3485 		if (path->slots[0] == i)
3486 			push_space += data_size;
3487 
3488 		this_item_size = btrfs_item_size(right, item);
3489 		if (this_item_size + sizeof(*item) + push_space > free_space)
3490 			break;
3491 
3492 		push_items++;
3493 		push_space += this_item_size + sizeof(*item);
3494 	}
3495 
3496 	if (push_items == 0) {
3497 		ret = 1;
3498 		goto out;
3499 	}
3500 	if (!empty && push_items == btrfs_header_nritems(right))
3501 		WARN_ON(1);
3502 
3503 	/* push data from right to left */
3504 	copy_extent_buffer(left, right,
3505 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3506 			   btrfs_item_nr_offset(0),
3507 			   push_items * sizeof(struct btrfs_item));
3508 
3509 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3510 		     btrfs_item_offset_nr(right, push_items - 1);
3511 
3512 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3513 		     leaf_data_end(root, left) - push_space,
3514 		     btrfs_leaf_data(right) +
3515 		     btrfs_item_offset_nr(right, push_items - 1),
3516 		     push_space);
3517 	old_left_nritems = btrfs_header_nritems(left);
3518 	BUG_ON(old_left_nritems <= 0);
3519 
3520 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3521 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3522 		u32 ioff;
3523 
3524 		item = btrfs_item_nr(left, i);
3525 
3526 		ioff = btrfs_token_item_offset(left, item, &token);
3527 		btrfs_set_token_item_offset(left, item,
3528 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3529 		      &token);
3530 	}
3531 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3532 
3533 	/* fixup right node */
3534 	if (push_items > right_nritems) {
3535 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
3536 		       right_nritems);
3537 		WARN_ON(1);
3538 	}
3539 
3540 	if (push_items < right_nritems) {
3541 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3542 						  leaf_data_end(root, right);
3543 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3544 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3545 				      btrfs_leaf_data(right) +
3546 				      leaf_data_end(root, right), push_space);
3547 
3548 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3549 			      btrfs_item_nr_offset(push_items),
3550 			     (btrfs_header_nritems(right) - push_items) *
3551 			     sizeof(struct btrfs_item));
3552 	}
3553 	right_nritems -= push_items;
3554 	btrfs_set_header_nritems(right, right_nritems);
3555 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3556 	for (i = 0; i < right_nritems; i++) {
3557 		item = btrfs_item_nr(right, i);
3558 
3559 		push_space = push_space - btrfs_token_item_size(right,
3560 								item, &token);
3561 		btrfs_set_token_item_offset(right, item, push_space, &token);
3562 	}
3563 
3564 	btrfs_mark_buffer_dirty(left);
3565 	if (right_nritems)
3566 		btrfs_mark_buffer_dirty(right);
3567 	else
3568 		clean_tree_block(trans, root, right);
3569 
3570 	btrfs_item_key(right, &disk_key, 0);
3571 	fixup_low_keys(trans, root, path, &disk_key, 1);
3572 
3573 	/* then fixup the leaf pointer in the path */
3574 	if (path->slots[0] < push_items) {
3575 		path->slots[0] += old_left_nritems;
3576 		btrfs_tree_unlock(path->nodes[0]);
3577 		free_extent_buffer(path->nodes[0]);
3578 		path->nodes[0] = left;
3579 		path->slots[1] -= 1;
3580 	} else {
3581 		btrfs_tree_unlock(left);
3582 		free_extent_buffer(left);
3583 		path->slots[0] -= push_items;
3584 	}
3585 	BUG_ON(path->slots[0] < 0);
3586 	return ret;
3587 out:
3588 	btrfs_tree_unlock(left);
3589 	free_extent_buffer(left);
3590 	return ret;
3591 }
3592 
3593 /*
3594  * push some data in the path leaf to the left, trying to free up at
3595  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3596  *
3597  * max_slot can put a limit on how far into the leaf we'll push items.  The
3598  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3599  * items
3600  */
3601 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3602 			  *root, struct btrfs_path *path, int min_data_size,
3603 			  int data_size, int empty, u32 max_slot)
3604 {
3605 	struct extent_buffer *right = path->nodes[0];
3606 	struct extent_buffer *left;
3607 	int slot;
3608 	int free_space;
3609 	u32 right_nritems;
3610 	int ret = 0;
3611 
3612 	slot = path->slots[1];
3613 	if (slot == 0)
3614 		return 1;
3615 	if (!path->nodes[1])
3616 		return 1;
3617 
3618 	right_nritems = btrfs_header_nritems(right);
3619 	if (right_nritems == 0)
3620 		return 1;
3621 
3622 	btrfs_assert_tree_locked(path->nodes[1]);
3623 
3624 	left = read_node_slot(root, path->nodes[1], slot - 1);
3625 	if (left == NULL)
3626 		return 1;
3627 
3628 	btrfs_tree_lock(left);
3629 	btrfs_set_lock_blocking(left);
3630 
3631 	free_space = btrfs_leaf_free_space(root, left);
3632 	if (free_space < data_size) {
3633 		ret = 1;
3634 		goto out;
3635 	}
3636 
3637 	/* cow and double check */
3638 	ret = btrfs_cow_block(trans, root, left,
3639 			      path->nodes[1], slot - 1, &left);
3640 	if (ret) {
3641 		/* we hit -ENOSPC, but it isn't fatal here */
3642 		if (ret == -ENOSPC)
3643 			ret = 1;
3644 		goto out;
3645 	}
3646 
3647 	free_space = btrfs_leaf_free_space(root, left);
3648 	if (free_space < data_size) {
3649 		ret = 1;
3650 		goto out;
3651 	}
3652 
3653 	return __push_leaf_left(trans, root, path, min_data_size,
3654 			       empty, left, free_space, right_nritems,
3655 			       max_slot);
3656 out:
3657 	btrfs_tree_unlock(left);
3658 	free_extent_buffer(left);
3659 	return ret;
3660 }
3661 
3662 /*
3663  * split the path's leaf in two, making sure there is at least data_size
3664  * available for the resulting leaf level of the path.
3665  */
3666 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3667 				    struct btrfs_root *root,
3668 				    struct btrfs_path *path,
3669 				    struct extent_buffer *l,
3670 				    struct extent_buffer *right,
3671 				    int slot, int mid, int nritems)
3672 {
3673 	int data_copy_size;
3674 	int rt_data_off;
3675 	int i;
3676 	struct btrfs_disk_key disk_key;
3677 	struct btrfs_map_token token;
3678 
3679 	btrfs_init_map_token(&token);
3680 
3681 	nritems = nritems - mid;
3682 	btrfs_set_header_nritems(right, nritems);
3683 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3684 
3685 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3686 			   btrfs_item_nr_offset(mid),
3687 			   nritems * sizeof(struct btrfs_item));
3688 
3689 	copy_extent_buffer(right, l,
3690 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3691 		     data_copy_size, btrfs_leaf_data(l) +
3692 		     leaf_data_end(root, l), data_copy_size);
3693 
3694 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3695 		      btrfs_item_end_nr(l, mid);
3696 
3697 	for (i = 0; i < nritems; i++) {
3698 		struct btrfs_item *item = btrfs_item_nr(right, i);
3699 		u32 ioff;
3700 
3701 		ioff = btrfs_token_item_offset(right, item, &token);
3702 		btrfs_set_token_item_offset(right, item,
3703 					    ioff + rt_data_off, &token);
3704 	}
3705 
3706 	btrfs_set_header_nritems(l, mid);
3707 	btrfs_item_key(right, &disk_key, 0);
3708 	insert_ptr(trans, root, path, &disk_key, right->start,
3709 		   path->slots[1] + 1, 1);
3710 
3711 	btrfs_mark_buffer_dirty(right);
3712 	btrfs_mark_buffer_dirty(l);
3713 	BUG_ON(path->slots[0] != slot);
3714 
3715 	if (mid <= slot) {
3716 		btrfs_tree_unlock(path->nodes[0]);
3717 		free_extent_buffer(path->nodes[0]);
3718 		path->nodes[0] = right;
3719 		path->slots[0] -= mid;
3720 		path->slots[1] += 1;
3721 	} else {
3722 		btrfs_tree_unlock(right);
3723 		free_extent_buffer(right);
3724 	}
3725 
3726 	BUG_ON(path->slots[0] < 0);
3727 }
3728 
3729 /*
3730  * double splits happen when we need to insert a big item in the middle
3731  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3732  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3733  *          A                 B                 C
3734  *
3735  * We avoid this by trying to push the items on either side of our target
3736  * into the adjacent leaves.  If all goes well we can avoid the double split
3737  * completely.
3738  */
3739 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3740 					  struct btrfs_root *root,
3741 					  struct btrfs_path *path,
3742 					  int data_size)
3743 {
3744 	int ret;
3745 	int progress = 0;
3746 	int slot;
3747 	u32 nritems;
3748 
3749 	slot = path->slots[0];
3750 
3751 	/*
3752 	 * try to push all the items after our slot into the
3753 	 * right leaf
3754 	 */
3755 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3756 	if (ret < 0)
3757 		return ret;
3758 
3759 	if (ret == 0)
3760 		progress++;
3761 
3762 	nritems = btrfs_header_nritems(path->nodes[0]);
3763 	/*
3764 	 * our goal is to get our slot at the start or end of a leaf.  If
3765 	 * we've done so we're done
3766 	 */
3767 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3768 		return 0;
3769 
3770 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3771 		return 0;
3772 
3773 	/* try to push all the items before our slot into the next leaf */
3774 	slot = path->slots[0];
3775 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3776 	if (ret < 0)
3777 		return ret;
3778 
3779 	if (ret == 0)
3780 		progress++;
3781 
3782 	if (progress)
3783 		return 0;
3784 	return 1;
3785 }
3786 
3787 /*
3788  * split the path's leaf in two, making sure there is at least data_size
3789  * available for the resulting leaf level of the path.
3790  *
3791  * returns 0 if all went well and < 0 on failure.
3792  */
3793 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3794 			       struct btrfs_root *root,
3795 			       struct btrfs_key *ins_key,
3796 			       struct btrfs_path *path, int data_size,
3797 			       int extend)
3798 {
3799 	struct btrfs_disk_key disk_key;
3800 	struct extent_buffer *l;
3801 	u32 nritems;
3802 	int mid;
3803 	int slot;
3804 	struct extent_buffer *right;
3805 	int ret = 0;
3806 	int wret;
3807 	int split;
3808 	int num_doubles = 0;
3809 	int tried_avoid_double = 0;
3810 
3811 	l = path->nodes[0];
3812 	slot = path->slots[0];
3813 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3814 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3815 		return -EOVERFLOW;
3816 
3817 	/* first try to make some room by pushing left and right */
3818 	if (data_size) {
3819 		wret = push_leaf_right(trans, root, path, data_size,
3820 				       data_size, 0, 0);
3821 		if (wret < 0)
3822 			return wret;
3823 		if (wret) {
3824 			wret = push_leaf_left(trans, root, path, data_size,
3825 					      data_size, 0, (u32)-1);
3826 			if (wret < 0)
3827 				return wret;
3828 		}
3829 		l = path->nodes[0];
3830 
3831 		/* did the pushes work? */
3832 		if (btrfs_leaf_free_space(root, l) >= data_size)
3833 			return 0;
3834 	}
3835 
3836 	if (!path->nodes[1]) {
3837 		ret = insert_new_root(trans, root, path, 1);
3838 		if (ret)
3839 			return ret;
3840 	}
3841 again:
3842 	split = 1;
3843 	l = path->nodes[0];
3844 	slot = path->slots[0];
3845 	nritems = btrfs_header_nritems(l);
3846 	mid = (nritems + 1) / 2;
3847 
3848 	if (mid <= slot) {
3849 		if (nritems == 1 ||
3850 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3851 			BTRFS_LEAF_DATA_SIZE(root)) {
3852 			if (slot >= nritems) {
3853 				split = 0;
3854 			} else {
3855 				mid = slot;
3856 				if (mid != nritems &&
3857 				    leaf_space_used(l, mid, nritems - mid) +
3858 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3859 					if (data_size && !tried_avoid_double)
3860 						goto push_for_double;
3861 					split = 2;
3862 				}
3863 			}
3864 		}
3865 	} else {
3866 		if (leaf_space_used(l, 0, mid) + data_size >
3867 			BTRFS_LEAF_DATA_SIZE(root)) {
3868 			if (!extend && data_size && slot == 0) {
3869 				split = 0;
3870 			} else if ((extend || !data_size) && slot == 0) {
3871 				mid = 1;
3872 			} else {
3873 				mid = slot;
3874 				if (mid != nritems &&
3875 				    leaf_space_used(l, mid, nritems - mid) +
3876 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3877 					if (data_size && !tried_avoid_double)
3878 						goto push_for_double;
3879 					split = 2 ;
3880 				}
3881 			}
3882 		}
3883 	}
3884 
3885 	if (split == 0)
3886 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3887 	else
3888 		btrfs_item_key(l, &disk_key, mid);
3889 
3890 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3891 					root->root_key.objectid,
3892 					&disk_key, 0, l->start, 0);
3893 	if (IS_ERR(right))
3894 		return PTR_ERR(right);
3895 
3896 	root_add_used(root, root->leafsize);
3897 
3898 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3899 	btrfs_set_header_bytenr(right, right->start);
3900 	btrfs_set_header_generation(right, trans->transid);
3901 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3902 	btrfs_set_header_owner(right, root->root_key.objectid);
3903 	btrfs_set_header_level(right, 0);
3904 	write_extent_buffer(right, root->fs_info->fsid,
3905 			    (unsigned long)btrfs_header_fsid(right),
3906 			    BTRFS_FSID_SIZE);
3907 
3908 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3909 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
3910 			    BTRFS_UUID_SIZE);
3911 
3912 	if (split == 0) {
3913 		if (mid <= slot) {
3914 			btrfs_set_header_nritems(right, 0);
3915 			insert_ptr(trans, root, path, &disk_key, right->start,
3916 				   path->slots[1] + 1, 1);
3917 			btrfs_tree_unlock(path->nodes[0]);
3918 			free_extent_buffer(path->nodes[0]);
3919 			path->nodes[0] = right;
3920 			path->slots[0] = 0;
3921 			path->slots[1] += 1;
3922 		} else {
3923 			btrfs_set_header_nritems(right, 0);
3924 			insert_ptr(trans, root, path, &disk_key, right->start,
3925 					  path->slots[1], 1);
3926 			btrfs_tree_unlock(path->nodes[0]);
3927 			free_extent_buffer(path->nodes[0]);
3928 			path->nodes[0] = right;
3929 			path->slots[0] = 0;
3930 			if (path->slots[1] == 0)
3931 				fixup_low_keys(trans, root, path,
3932 					       &disk_key, 1);
3933 		}
3934 		btrfs_mark_buffer_dirty(right);
3935 		return ret;
3936 	}
3937 
3938 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3939 
3940 	if (split == 2) {
3941 		BUG_ON(num_doubles != 0);
3942 		num_doubles++;
3943 		goto again;
3944 	}
3945 
3946 	return 0;
3947 
3948 push_for_double:
3949 	push_for_double_split(trans, root, path, data_size);
3950 	tried_avoid_double = 1;
3951 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3952 		return 0;
3953 	goto again;
3954 }
3955 
3956 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3957 					 struct btrfs_root *root,
3958 					 struct btrfs_path *path, int ins_len)
3959 {
3960 	struct btrfs_key key;
3961 	struct extent_buffer *leaf;
3962 	struct btrfs_file_extent_item *fi;
3963 	u64 extent_len = 0;
3964 	u32 item_size;
3965 	int ret;
3966 
3967 	leaf = path->nodes[0];
3968 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3969 
3970 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3971 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3972 
3973 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3974 		return 0;
3975 
3976 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3977 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3978 		fi = btrfs_item_ptr(leaf, path->slots[0],
3979 				    struct btrfs_file_extent_item);
3980 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3981 	}
3982 	btrfs_release_path(path);
3983 
3984 	path->keep_locks = 1;
3985 	path->search_for_split = 1;
3986 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3987 	path->search_for_split = 0;
3988 	if (ret < 0)
3989 		goto err;
3990 
3991 	ret = -EAGAIN;
3992 	leaf = path->nodes[0];
3993 	/* if our item isn't there or got smaller, return now */
3994 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3995 		goto err;
3996 
3997 	/* the leaf has  changed, it now has room.  return now */
3998 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3999 		goto err;
4000 
4001 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4002 		fi = btrfs_item_ptr(leaf, path->slots[0],
4003 				    struct btrfs_file_extent_item);
4004 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4005 			goto err;
4006 	}
4007 
4008 	btrfs_set_path_blocking(path);
4009 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4010 	if (ret)
4011 		goto err;
4012 
4013 	path->keep_locks = 0;
4014 	btrfs_unlock_up_safe(path, 1);
4015 	return 0;
4016 err:
4017 	path->keep_locks = 0;
4018 	return ret;
4019 }
4020 
4021 static noinline int split_item(struct btrfs_trans_handle *trans,
4022 			       struct btrfs_root *root,
4023 			       struct btrfs_path *path,
4024 			       struct btrfs_key *new_key,
4025 			       unsigned long split_offset)
4026 {
4027 	struct extent_buffer *leaf;
4028 	struct btrfs_item *item;
4029 	struct btrfs_item *new_item;
4030 	int slot;
4031 	char *buf;
4032 	u32 nritems;
4033 	u32 item_size;
4034 	u32 orig_offset;
4035 	struct btrfs_disk_key disk_key;
4036 
4037 	leaf = path->nodes[0];
4038 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4039 
4040 	btrfs_set_path_blocking(path);
4041 
4042 	item = btrfs_item_nr(leaf, path->slots[0]);
4043 	orig_offset = btrfs_item_offset(leaf, item);
4044 	item_size = btrfs_item_size(leaf, item);
4045 
4046 	buf = kmalloc(item_size, GFP_NOFS);
4047 	if (!buf)
4048 		return -ENOMEM;
4049 
4050 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4051 			    path->slots[0]), item_size);
4052 
4053 	slot = path->slots[0] + 1;
4054 	nritems = btrfs_header_nritems(leaf);
4055 	if (slot != nritems) {
4056 		/* shift the items */
4057 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4058 				btrfs_item_nr_offset(slot),
4059 				(nritems - slot) * sizeof(struct btrfs_item));
4060 	}
4061 
4062 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4063 	btrfs_set_item_key(leaf, &disk_key, slot);
4064 
4065 	new_item = btrfs_item_nr(leaf, slot);
4066 
4067 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4068 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4069 
4070 	btrfs_set_item_offset(leaf, item,
4071 			      orig_offset + item_size - split_offset);
4072 	btrfs_set_item_size(leaf, item, split_offset);
4073 
4074 	btrfs_set_header_nritems(leaf, nritems + 1);
4075 
4076 	/* write the data for the start of the original item */
4077 	write_extent_buffer(leaf, buf,
4078 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4079 			    split_offset);
4080 
4081 	/* write the data for the new item */
4082 	write_extent_buffer(leaf, buf + split_offset,
4083 			    btrfs_item_ptr_offset(leaf, slot),
4084 			    item_size - split_offset);
4085 	btrfs_mark_buffer_dirty(leaf);
4086 
4087 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4088 	kfree(buf);
4089 	return 0;
4090 }
4091 
4092 /*
4093  * This function splits a single item into two items,
4094  * giving 'new_key' to the new item and splitting the
4095  * old one at split_offset (from the start of the item).
4096  *
4097  * The path may be released by this operation.  After
4098  * the split, the path is pointing to the old item.  The
4099  * new item is going to be in the same node as the old one.
4100  *
4101  * Note, the item being split must be smaller enough to live alone on
4102  * a tree block with room for one extra struct btrfs_item
4103  *
4104  * This allows us to split the item in place, keeping a lock on the
4105  * leaf the entire time.
4106  */
4107 int btrfs_split_item(struct btrfs_trans_handle *trans,
4108 		     struct btrfs_root *root,
4109 		     struct btrfs_path *path,
4110 		     struct btrfs_key *new_key,
4111 		     unsigned long split_offset)
4112 {
4113 	int ret;
4114 	ret = setup_leaf_for_split(trans, root, path,
4115 				   sizeof(struct btrfs_item));
4116 	if (ret)
4117 		return ret;
4118 
4119 	ret = split_item(trans, root, path, new_key, split_offset);
4120 	return ret;
4121 }
4122 
4123 /*
4124  * This function duplicate a item, giving 'new_key' to the new item.
4125  * It guarantees both items live in the same tree leaf and the new item
4126  * is contiguous with the original item.
4127  *
4128  * This allows us to split file extent in place, keeping a lock on the
4129  * leaf the entire time.
4130  */
4131 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4132 			 struct btrfs_root *root,
4133 			 struct btrfs_path *path,
4134 			 struct btrfs_key *new_key)
4135 {
4136 	struct extent_buffer *leaf;
4137 	int ret;
4138 	u32 item_size;
4139 
4140 	leaf = path->nodes[0];
4141 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4142 	ret = setup_leaf_for_split(trans, root, path,
4143 				   item_size + sizeof(struct btrfs_item));
4144 	if (ret)
4145 		return ret;
4146 
4147 	path->slots[0]++;
4148 	setup_items_for_insert(trans, root, path, new_key, &item_size,
4149 			       item_size, item_size +
4150 			       sizeof(struct btrfs_item), 1);
4151 	leaf = path->nodes[0];
4152 	memcpy_extent_buffer(leaf,
4153 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4154 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4155 			     item_size);
4156 	return 0;
4157 }
4158 
4159 /*
4160  * make the item pointed to by the path smaller.  new_size indicates
4161  * how small to make it, and from_end tells us if we just chop bytes
4162  * off the end of the item or if we shift the item to chop bytes off
4163  * the front.
4164  */
4165 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4166 			 struct btrfs_root *root,
4167 			 struct btrfs_path *path,
4168 			 u32 new_size, int from_end)
4169 {
4170 	int slot;
4171 	struct extent_buffer *leaf;
4172 	struct btrfs_item *item;
4173 	u32 nritems;
4174 	unsigned int data_end;
4175 	unsigned int old_data_start;
4176 	unsigned int old_size;
4177 	unsigned int size_diff;
4178 	int i;
4179 	struct btrfs_map_token token;
4180 
4181 	btrfs_init_map_token(&token);
4182 
4183 	leaf = path->nodes[0];
4184 	slot = path->slots[0];
4185 
4186 	old_size = btrfs_item_size_nr(leaf, slot);
4187 	if (old_size == new_size)
4188 		return;
4189 
4190 	nritems = btrfs_header_nritems(leaf);
4191 	data_end = leaf_data_end(root, leaf);
4192 
4193 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4194 
4195 	size_diff = old_size - new_size;
4196 
4197 	BUG_ON(slot < 0);
4198 	BUG_ON(slot >= nritems);
4199 
4200 	/*
4201 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4202 	 */
4203 	/* first correct the data pointers */
4204 	for (i = slot; i < nritems; i++) {
4205 		u32 ioff;
4206 		item = btrfs_item_nr(leaf, i);
4207 
4208 		ioff = btrfs_token_item_offset(leaf, item, &token);
4209 		btrfs_set_token_item_offset(leaf, item,
4210 					    ioff + size_diff, &token);
4211 	}
4212 
4213 	/* shift the data */
4214 	if (from_end) {
4215 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4216 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4217 			      data_end, old_data_start + new_size - data_end);
4218 	} else {
4219 		struct btrfs_disk_key disk_key;
4220 		u64 offset;
4221 
4222 		btrfs_item_key(leaf, &disk_key, slot);
4223 
4224 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4225 			unsigned long ptr;
4226 			struct btrfs_file_extent_item *fi;
4227 
4228 			fi = btrfs_item_ptr(leaf, slot,
4229 					    struct btrfs_file_extent_item);
4230 			fi = (struct btrfs_file_extent_item *)(
4231 			     (unsigned long)fi - size_diff);
4232 
4233 			if (btrfs_file_extent_type(leaf, fi) ==
4234 			    BTRFS_FILE_EXTENT_INLINE) {
4235 				ptr = btrfs_item_ptr_offset(leaf, slot);
4236 				memmove_extent_buffer(leaf, ptr,
4237 				      (unsigned long)fi,
4238 				      offsetof(struct btrfs_file_extent_item,
4239 						 disk_bytenr));
4240 			}
4241 		}
4242 
4243 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4244 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4245 			      data_end, old_data_start - data_end);
4246 
4247 		offset = btrfs_disk_key_offset(&disk_key);
4248 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4249 		btrfs_set_item_key(leaf, &disk_key, slot);
4250 		if (slot == 0)
4251 			fixup_low_keys(trans, root, path, &disk_key, 1);
4252 	}
4253 
4254 	item = btrfs_item_nr(leaf, slot);
4255 	btrfs_set_item_size(leaf, item, new_size);
4256 	btrfs_mark_buffer_dirty(leaf);
4257 
4258 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4259 		btrfs_print_leaf(root, leaf);
4260 		BUG();
4261 	}
4262 }
4263 
4264 /*
4265  * make the item pointed to by the path bigger, data_size is the new size.
4266  */
4267 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4268 		       struct btrfs_root *root, struct btrfs_path *path,
4269 		       u32 data_size)
4270 {
4271 	int slot;
4272 	struct extent_buffer *leaf;
4273 	struct btrfs_item *item;
4274 	u32 nritems;
4275 	unsigned int data_end;
4276 	unsigned int old_data;
4277 	unsigned int old_size;
4278 	int i;
4279 	struct btrfs_map_token token;
4280 
4281 	btrfs_init_map_token(&token);
4282 
4283 	leaf = path->nodes[0];
4284 
4285 	nritems = btrfs_header_nritems(leaf);
4286 	data_end = leaf_data_end(root, leaf);
4287 
4288 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4289 		btrfs_print_leaf(root, leaf);
4290 		BUG();
4291 	}
4292 	slot = path->slots[0];
4293 	old_data = btrfs_item_end_nr(leaf, slot);
4294 
4295 	BUG_ON(slot < 0);
4296 	if (slot >= nritems) {
4297 		btrfs_print_leaf(root, leaf);
4298 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4299 		       slot, nritems);
4300 		BUG_ON(1);
4301 	}
4302 
4303 	/*
4304 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4305 	 */
4306 	/* first correct the data pointers */
4307 	for (i = slot; i < nritems; i++) {
4308 		u32 ioff;
4309 		item = btrfs_item_nr(leaf, i);
4310 
4311 		ioff = btrfs_token_item_offset(leaf, item, &token);
4312 		btrfs_set_token_item_offset(leaf, item,
4313 					    ioff - data_size, &token);
4314 	}
4315 
4316 	/* shift the data */
4317 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4318 		      data_end - data_size, btrfs_leaf_data(leaf) +
4319 		      data_end, old_data - data_end);
4320 
4321 	data_end = old_data;
4322 	old_size = btrfs_item_size_nr(leaf, slot);
4323 	item = btrfs_item_nr(leaf, slot);
4324 	btrfs_set_item_size(leaf, item, old_size + data_size);
4325 	btrfs_mark_buffer_dirty(leaf);
4326 
4327 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4328 		btrfs_print_leaf(root, leaf);
4329 		BUG();
4330 	}
4331 }
4332 
4333 /*
4334  * Given a key and some data, insert items into the tree.
4335  * This does all the path init required, making room in the tree if needed.
4336  * Returns the number of keys that were inserted.
4337  */
4338 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4339 			    struct btrfs_root *root,
4340 			    struct btrfs_path *path,
4341 			    struct btrfs_key *cpu_key, u32 *data_size,
4342 			    int nr)
4343 {
4344 	struct extent_buffer *leaf;
4345 	struct btrfs_item *item;
4346 	int ret = 0;
4347 	int slot;
4348 	int i;
4349 	u32 nritems;
4350 	u32 total_data = 0;
4351 	u32 total_size = 0;
4352 	unsigned int data_end;
4353 	struct btrfs_disk_key disk_key;
4354 	struct btrfs_key found_key;
4355 	struct btrfs_map_token token;
4356 
4357 	btrfs_init_map_token(&token);
4358 
4359 	for (i = 0; i < nr; i++) {
4360 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4361 		    BTRFS_LEAF_DATA_SIZE(root)) {
4362 			break;
4363 			nr = i;
4364 		}
4365 		total_data += data_size[i];
4366 		total_size += data_size[i] + sizeof(struct btrfs_item);
4367 	}
4368 	BUG_ON(nr == 0);
4369 
4370 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4371 	if (ret == 0)
4372 		return -EEXIST;
4373 	if (ret < 0)
4374 		goto out;
4375 
4376 	leaf = path->nodes[0];
4377 
4378 	nritems = btrfs_header_nritems(leaf);
4379 	data_end = leaf_data_end(root, leaf);
4380 
4381 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4382 		for (i = nr; i >= 0; i--) {
4383 			total_data -= data_size[i];
4384 			total_size -= data_size[i] + sizeof(struct btrfs_item);
4385 			if (total_size < btrfs_leaf_free_space(root, leaf))
4386 				break;
4387 		}
4388 		nr = i;
4389 	}
4390 
4391 	slot = path->slots[0];
4392 	BUG_ON(slot < 0);
4393 
4394 	if (slot != nritems) {
4395 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4396 
4397 		item = btrfs_item_nr(leaf, slot);
4398 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4399 
4400 		/* figure out how many keys we can insert in here */
4401 		total_data = data_size[0];
4402 		for (i = 1; i < nr; i++) {
4403 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4404 				break;
4405 			total_data += data_size[i];
4406 		}
4407 		nr = i;
4408 
4409 		if (old_data < data_end) {
4410 			btrfs_print_leaf(root, leaf);
4411 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4412 			       slot, old_data, data_end);
4413 			BUG_ON(1);
4414 		}
4415 		/*
4416 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4417 		 */
4418 		/* first correct the data pointers */
4419 		for (i = slot; i < nritems; i++) {
4420 			u32 ioff;
4421 
4422 			item = btrfs_item_nr(leaf, i);
4423 			ioff = btrfs_token_item_offset(leaf, item, &token);
4424 			btrfs_set_token_item_offset(leaf, item,
4425 						    ioff - total_data, &token);
4426 		}
4427 		/* shift the items */
4428 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4429 			      btrfs_item_nr_offset(slot),
4430 			      (nritems - slot) * sizeof(struct btrfs_item));
4431 
4432 		/* shift the data */
4433 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4434 			      data_end - total_data, btrfs_leaf_data(leaf) +
4435 			      data_end, old_data - data_end);
4436 		data_end = old_data;
4437 	} else {
4438 		/*
4439 		 * this sucks but it has to be done, if we are inserting at
4440 		 * the end of the leaf only insert 1 of the items, since we
4441 		 * have no way of knowing whats on the next leaf and we'd have
4442 		 * to drop our current locks to figure it out
4443 		 */
4444 		nr = 1;
4445 	}
4446 
4447 	/* setup the item for the new data */
4448 	for (i = 0; i < nr; i++) {
4449 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4450 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4451 		item = btrfs_item_nr(leaf, slot + i);
4452 		btrfs_set_token_item_offset(leaf, item,
4453 					    data_end - data_size[i], &token);
4454 		data_end -= data_size[i];
4455 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4456 	}
4457 	btrfs_set_header_nritems(leaf, nritems + nr);
4458 	btrfs_mark_buffer_dirty(leaf);
4459 
4460 	ret = 0;
4461 	if (slot == 0) {
4462 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4463 		fixup_low_keys(trans, root, path, &disk_key, 1);
4464 	}
4465 
4466 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4467 		btrfs_print_leaf(root, leaf);
4468 		BUG();
4469 	}
4470 out:
4471 	if (!ret)
4472 		ret = nr;
4473 	return ret;
4474 }
4475 
4476 /*
4477  * this is a helper for btrfs_insert_empty_items, the main goal here is
4478  * to save stack depth by doing the bulk of the work in a function
4479  * that doesn't call btrfs_search_slot
4480  */
4481 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4482 			    struct btrfs_root *root, struct btrfs_path *path,
4483 			    struct btrfs_key *cpu_key, u32 *data_size,
4484 			    u32 total_data, u32 total_size, int nr)
4485 {
4486 	struct btrfs_item *item;
4487 	int i;
4488 	u32 nritems;
4489 	unsigned int data_end;
4490 	struct btrfs_disk_key disk_key;
4491 	struct extent_buffer *leaf;
4492 	int slot;
4493 	struct btrfs_map_token token;
4494 
4495 	btrfs_init_map_token(&token);
4496 
4497 	leaf = path->nodes[0];
4498 	slot = path->slots[0];
4499 
4500 	nritems = btrfs_header_nritems(leaf);
4501 	data_end = leaf_data_end(root, leaf);
4502 
4503 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4504 		btrfs_print_leaf(root, leaf);
4505 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4506 		       total_size, btrfs_leaf_free_space(root, leaf));
4507 		BUG();
4508 	}
4509 
4510 	if (slot != nritems) {
4511 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4512 
4513 		if (old_data < data_end) {
4514 			btrfs_print_leaf(root, leaf);
4515 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4516 			       slot, old_data, data_end);
4517 			BUG_ON(1);
4518 		}
4519 		/*
4520 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4521 		 */
4522 		/* first correct the data pointers */
4523 		for (i = slot; i < nritems; i++) {
4524 			u32 ioff;
4525 
4526 			item = btrfs_item_nr(leaf, i);
4527 			ioff = btrfs_token_item_offset(leaf, item, &token);
4528 			btrfs_set_token_item_offset(leaf, item,
4529 						    ioff - total_data, &token);
4530 		}
4531 		/* shift the items */
4532 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4533 			      btrfs_item_nr_offset(slot),
4534 			      (nritems - slot) * sizeof(struct btrfs_item));
4535 
4536 		/* shift the data */
4537 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4538 			      data_end - total_data, btrfs_leaf_data(leaf) +
4539 			      data_end, old_data - data_end);
4540 		data_end = old_data;
4541 	}
4542 
4543 	/* setup the item for the new data */
4544 	for (i = 0; i < nr; i++) {
4545 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4546 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4547 		item = btrfs_item_nr(leaf, slot + i);
4548 		btrfs_set_token_item_offset(leaf, item,
4549 					    data_end - data_size[i], &token);
4550 		data_end -= data_size[i];
4551 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4552 	}
4553 
4554 	btrfs_set_header_nritems(leaf, nritems + nr);
4555 
4556 	if (slot == 0) {
4557 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4558 		fixup_low_keys(trans, root, path, &disk_key, 1);
4559 	}
4560 	btrfs_unlock_up_safe(path, 1);
4561 	btrfs_mark_buffer_dirty(leaf);
4562 
4563 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4564 		btrfs_print_leaf(root, leaf);
4565 		BUG();
4566 	}
4567 }
4568 
4569 /*
4570  * Given a key and some data, insert items into the tree.
4571  * This does all the path init required, making room in the tree if needed.
4572  */
4573 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4574 			    struct btrfs_root *root,
4575 			    struct btrfs_path *path,
4576 			    struct btrfs_key *cpu_key, u32 *data_size,
4577 			    int nr)
4578 {
4579 	int ret = 0;
4580 	int slot;
4581 	int i;
4582 	u32 total_size = 0;
4583 	u32 total_data = 0;
4584 
4585 	for (i = 0; i < nr; i++)
4586 		total_data += data_size[i];
4587 
4588 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4589 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4590 	if (ret == 0)
4591 		return -EEXIST;
4592 	if (ret < 0)
4593 		return ret;
4594 
4595 	slot = path->slots[0];
4596 	BUG_ON(slot < 0);
4597 
4598 	setup_items_for_insert(trans, root, path, cpu_key, data_size,
4599 			       total_data, total_size, nr);
4600 	return 0;
4601 }
4602 
4603 /*
4604  * Given a key and some data, insert an item into the tree.
4605  * This does all the path init required, making room in the tree if needed.
4606  */
4607 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4608 		      *root, struct btrfs_key *cpu_key, void *data, u32
4609 		      data_size)
4610 {
4611 	int ret = 0;
4612 	struct btrfs_path *path;
4613 	struct extent_buffer *leaf;
4614 	unsigned long ptr;
4615 
4616 	path = btrfs_alloc_path();
4617 	if (!path)
4618 		return -ENOMEM;
4619 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4620 	if (!ret) {
4621 		leaf = path->nodes[0];
4622 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4623 		write_extent_buffer(leaf, data, ptr, data_size);
4624 		btrfs_mark_buffer_dirty(leaf);
4625 	}
4626 	btrfs_free_path(path);
4627 	return ret;
4628 }
4629 
4630 /*
4631  * delete the pointer from a given node.
4632  *
4633  * the tree should have been previously balanced so the deletion does not
4634  * empty a node.
4635  */
4636 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4637 		    struct btrfs_path *path, int level, int slot,
4638 		    int tree_mod_log)
4639 {
4640 	struct extent_buffer *parent = path->nodes[level];
4641 	u32 nritems;
4642 	int ret;
4643 
4644 	nritems = btrfs_header_nritems(parent);
4645 	if (slot != nritems - 1) {
4646 		if (tree_mod_log && level)
4647 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4648 					     slot + 1, nritems - slot - 1);
4649 		memmove_extent_buffer(parent,
4650 			      btrfs_node_key_ptr_offset(slot),
4651 			      btrfs_node_key_ptr_offset(slot + 1),
4652 			      sizeof(struct btrfs_key_ptr) *
4653 			      (nritems - slot - 1));
4654 	} else if (tree_mod_log && level) {
4655 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4656 					      MOD_LOG_KEY_REMOVE);
4657 		BUG_ON(ret < 0);
4658 	}
4659 
4660 	nritems--;
4661 	btrfs_set_header_nritems(parent, nritems);
4662 	if (nritems == 0 && parent == root->node) {
4663 		BUG_ON(btrfs_header_level(root->node) != 1);
4664 		/* just turn the root into a leaf and break */
4665 		btrfs_set_header_level(root->node, 0);
4666 	} else if (slot == 0) {
4667 		struct btrfs_disk_key disk_key;
4668 
4669 		btrfs_node_key(parent, &disk_key, 0);
4670 		fixup_low_keys(trans, root, path, &disk_key, level + 1);
4671 	}
4672 	btrfs_mark_buffer_dirty(parent);
4673 }
4674 
4675 /*
4676  * a helper function to delete the leaf pointed to by path->slots[1] and
4677  * path->nodes[1].
4678  *
4679  * This deletes the pointer in path->nodes[1] and frees the leaf
4680  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4681  *
4682  * The path must have already been setup for deleting the leaf, including
4683  * all the proper balancing.  path->nodes[1] must be locked.
4684  */
4685 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4686 				    struct btrfs_root *root,
4687 				    struct btrfs_path *path,
4688 				    struct extent_buffer *leaf)
4689 {
4690 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4691 	del_ptr(trans, root, path, 1, path->slots[1], 1);
4692 
4693 	/*
4694 	 * btrfs_free_extent is expensive, we want to make sure we
4695 	 * aren't holding any locks when we call it
4696 	 */
4697 	btrfs_unlock_up_safe(path, 0);
4698 
4699 	root_sub_used(root, leaf->len);
4700 
4701 	extent_buffer_get(leaf);
4702 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4703 	free_extent_buffer_stale(leaf);
4704 }
4705 /*
4706  * delete the item at the leaf level in path.  If that empties
4707  * the leaf, remove it from the tree
4708  */
4709 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4710 		    struct btrfs_path *path, int slot, int nr)
4711 {
4712 	struct extent_buffer *leaf;
4713 	struct btrfs_item *item;
4714 	int last_off;
4715 	int dsize = 0;
4716 	int ret = 0;
4717 	int wret;
4718 	int i;
4719 	u32 nritems;
4720 	struct btrfs_map_token token;
4721 
4722 	btrfs_init_map_token(&token);
4723 
4724 	leaf = path->nodes[0];
4725 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4726 
4727 	for (i = 0; i < nr; i++)
4728 		dsize += btrfs_item_size_nr(leaf, slot + i);
4729 
4730 	nritems = btrfs_header_nritems(leaf);
4731 
4732 	if (slot + nr != nritems) {
4733 		int data_end = leaf_data_end(root, leaf);
4734 
4735 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4736 			      data_end + dsize,
4737 			      btrfs_leaf_data(leaf) + data_end,
4738 			      last_off - data_end);
4739 
4740 		for (i = slot + nr; i < nritems; i++) {
4741 			u32 ioff;
4742 
4743 			item = btrfs_item_nr(leaf, i);
4744 			ioff = btrfs_token_item_offset(leaf, item, &token);
4745 			btrfs_set_token_item_offset(leaf, item,
4746 						    ioff + dsize, &token);
4747 		}
4748 
4749 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4750 			      btrfs_item_nr_offset(slot + nr),
4751 			      sizeof(struct btrfs_item) *
4752 			      (nritems - slot - nr));
4753 	}
4754 	btrfs_set_header_nritems(leaf, nritems - nr);
4755 	nritems -= nr;
4756 
4757 	/* delete the leaf if we've emptied it */
4758 	if (nritems == 0) {
4759 		if (leaf == root->node) {
4760 			btrfs_set_header_level(leaf, 0);
4761 		} else {
4762 			btrfs_set_path_blocking(path);
4763 			clean_tree_block(trans, root, leaf);
4764 			btrfs_del_leaf(trans, root, path, leaf);
4765 		}
4766 	} else {
4767 		int used = leaf_space_used(leaf, 0, nritems);
4768 		if (slot == 0) {
4769 			struct btrfs_disk_key disk_key;
4770 
4771 			btrfs_item_key(leaf, &disk_key, 0);
4772 			fixup_low_keys(trans, root, path, &disk_key, 1);
4773 		}
4774 
4775 		/* delete the leaf if it is mostly empty */
4776 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4777 			/* push_leaf_left fixes the path.
4778 			 * make sure the path still points to our leaf
4779 			 * for possible call to del_ptr below
4780 			 */
4781 			slot = path->slots[1];
4782 			extent_buffer_get(leaf);
4783 
4784 			btrfs_set_path_blocking(path);
4785 			wret = push_leaf_left(trans, root, path, 1, 1,
4786 					      1, (u32)-1);
4787 			if (wret < 0 && wret != -ENOSPC)
4788 				ret = wret;
4789 
4790 			if (path->nodes[0] == leaf &&
4791 			    btrfs_header_nritems(leaf)) {
4792 				wret = push_leaf_right(trans, root, path, 1,
4793 						       1, 1, 0);
4794 				if (wret < 0 && wret != -ENOSPC)
4795 					ret = wret;
4796 			}
4797 
4798 			if (btrfs_header_nritems(leaf) == 0) {
4799 				path->slots[1] = slot;
4800 				btrfs_del_leaf(trans, root, path, leaf);
4801 				free_extent_buffer(leaf);
4802 				ret = 0;
4803 			} else {
4804 				/* if we're still in the path, make sure
4805 				 * we're dirty.  Otherwise, one of the
4806 				 * push_leaf functions must have already
4807 				 * dirtied this buffer
4808 				 */
4809 				if (path->nodes[0] == leaf)
4810 					btrfs_mark_buffer_dirty(leaf);
4811 				free_extent_buffer(leaf);
4812 			}
4813 		} else {
4814 			btrfs_mark_buffer_dirty(leaf);
4815 		}
4816 	}
4817 	return ret;
4818 }
4819 
4820 /*
4821  * search the tree again to find a leaf with lesser keys
4822  * returns 0 if it found something or 1 if there are no lesser leaves.
4823  * returns < 0 on io errors.
4824  *
4825  * This may release the path, and so you may lose any locks held at the
4826  * time you call it.
4827  */
4828 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4829 {
4830 	struct btrfs_key key;
4831 	struct btrfs_disk_key found_key;
4832 	int ret;
4833 
4834 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4835 
4836 	if (key.offset > 0)
4837 		key.offset--;
4838 	else if (key.type > 0)
4839 		key.type--;
4840 	else if (key.objectid > 0)
4841 		key.objectid--;
4842 	else
4843 		return 1;
4844 
4845 	btrfs_release_path(path);
4846 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4847 	if (ret < 0)
4848 		return ret;
4849 	btrfs_item_key(path->nodes[0], &found_key, 0);
4850 	ret = comp_keys(&found_key, &key);
4851 	if (ret < 0)
4852 		return 0;
4853 	return 1;
4854 }
4855 
4856 /*
4857  * A helper function to walk down the tree starting at min_key, and looking
4858  * for nodes or leaves that are either in cache or have a minimum
4859  * transaction id.  This is used by the btree defrag code, and tree logging
4860  *
4861  * This does not cow, but it does stuff the starting key it finds back
4862  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4863  * key and get a writable path.
4864  *
4865  * This does lock as it descends, and path->keep_locks should be set
4866  * to 1 by the caller.
4867  *
4868  * This honors path->lowest_level to prevent descent past a given level
4869  * of the tree.
4870  *
4871  * min_trans indicates the oldest transaction that you are interested
4872  * in walking through.  Any nodes or leaves older than min_trans are
4873  * skipped over (without reading them).
4874  *
4875  * returns zero if something useful was found, < 0 on error and 1 if there
4876  * was nothing in the tree that matched the search criteria.
4877  */
4878 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4879 			 struct btrfs_key *max_key,
4880 			 struct btrfs_path *path, int cache_only,
4881 			 u64 min_trans)
4882 {
4883 	struct extent_buffer *cur;
4884 	struct btrfs_key found_key;
4885 	int slot;
4886 	int sret;
4887 	u32 nritems;
4888 	int level;
4889 	int ret = 1;
4890 
4891 	WARN_ON(!path->keep_locks);
4892 again:
4893 	cur = btrfs_read_lock_root_node(root);
4894 	level = btrfs_header_level(cur);
4895 	WARN_ON(path->nodes[level]);
4896 	path->nodes[level] = cur;
4897 	path->locks[level] = BTRFS_READ_LOCK;
4898 
4899 	if (btrfs_header_generation(cur) < min_trans) {
4900 		ret = 1;
4901 		goto out;
4902 	}
4903 	while (1) {
4904 		nritems = btrfs_header_nritems(cur);
4905 		level = btrfs_header_level(cur);
4906 		sret = bin_search(cur, min_key, level, &slot);
4907 
4908 		/* at the lowest level, we're done, setup the path and exit */
4909 		if (level == path->lowest_level) {
4910 			if (slot >= nritems)
4911 				goto find_next_key;
4912 			ret = 0;
4913 			path->slots[level] = slot;
4914 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4915 			goto out;
4916 		}
4917 		if (sret && slot > 0)
4918 			slot--;
4919 		/*
4920 		 * check this node pointer against the cache_only and
4921 		 * min_trans parameters.  If it isn't in cache or is too
4922 		 * old, skip to the next one.
4923 		 */
4924 		while (slot < nritems) {
4925 			u64 blockptr;
4926 			u64 gen;
4927 			struct extent_buffer *tmp;
4928 			struct btrfs_disk_key disk_key;
4929 
4930 			blockptr = btrfs_node_blockptr(cur, slot);
4931 			gen = btrfs_node_ptr_generation(cur, slot);
4932 			if (gen < min_trans) {
4933 				slot++;
4934 				continue;
4935 			}
4936 			if (!cache_only)
4937 				break;
4938 
4939 			if (max_key) {
4940 				btrfs_node_key(cur, &disk_key, slot);
4941 				if (comp_keys(&disk_key, max_key) >= 0) {
4942 					ret = 1;
4943 					goto out;
4944 				}
4945 			}
4946 
4947 			tmp = btrfs_find_tree_block(root, blockptr,
4948 					    btrfs_level_size(root, level - 1));
4949 
4950 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4951 				free_extent_buffer(tmp);
4952 				break;
4953 			}
4954 			if (tmp)
4955 				free_extent_buffer(tmp);
4956 			slot++;
4957 		}
4958 find_next_key:
4959 		/*
4960 		 * we didn't find a candidate key in this node, walk forward
4961 		 * and find another one
4962 		 */
4963 		if (slot >= nritems) {
4964 			path->slots[level] = slot;
4965 			btrfs_set_path_blocking(path);
4966 			sret = btrfs_find_next_key(root, path, min_key, level,
4967 						  cache_only, min_trans);
4968 			if (sret == 0) {
4969 				btrfs_release_path(path);
4970 				goto again;
4971 			} else {
4972 				goto out;
4973 			}
4974 		}
4975 		/* save our key for returning back */
4976 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4977 		path->slots[level] = slot;
4978 		if (level == path->lowest_level) {
4979 			ret = 0;
4980 			unlock_up(path, level, 1, 0, NULL);
4981 			goto out;
4982 		}
4983 		btrfs_set_path_blocking(path);
4984 		cur = read_node_slot(root, cur, slot);
4985 		BUG_ON(!cur); /* -ENOMEM */
4986 
4987 		btrfs_tree_read_lock(cur);
4988 
4989 		path->locks[level - 1] = BTRFS_READ_LOCK;
4990 		path->nodes[level - 1] = cur;
4991 		unlock_up(path, level, 1, 0, NULL);
4992 		btrfs_clear_path_blocking(path, NULL, 0);
4993 	}
4994 out:
4995 	if (ret == 0)
4996 		memcpy(min_key, &found_key, sizeof(found_key));
4997 	btrfs_set_path_blocking(path);
4998 	return ret;
4999 }
5000 
5001 /*
5002  * this is similar to btrfs_next_leaf, but does not try to preserve
5003  * and fixup the path.  It looks for and returns the next key in the
5004  * tree based on the current path and the cache_only and min_trans
5005  * parameters.
5006  *
5007  * 0 is returned if another key is found, < 0 if there are any errors
5008  * and 1 is returned if there are no higher keys in the tree
5009  *
5010  * path->keep_locks should be set to 1 on the search made before
5011  * calling this function.
5012  */
5013 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5014 			struct btrfs_key *key, int level,
5015 			int cache_only, u64 min_trans)
5016 {
5017 	int slot;
5018 	struct extent_buffer *c;
5019 
5020 	WARN_ON(!path->keep_locks);
5021 	while (level < BTRFS_MAX_LEVEL) {
5022 		if (!path->nodes[level])
5023 			return 1;
5024 
5025 		slot = path->slots[level] + 1;
5026 		c = path->nodes[level];
5027 next:
5028 		if (slot >= btrfs_header_nritems(c)) {
5029 			int ret;
5030 			int orig_lowest;
5031 			struct btrfs_key cur_key;
5032 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5033 			    !path->nodes[level + 1])
5034 				return 1;
5035 
5036 			if (path->locks[level + 1]) {
5037 				level++;
5038 				continue;
5039 			}
5040 
5041 			slot = btrfs_header_nritems(c) - 1;
5042 			if (level == 0)
5043 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5044 			else
5045 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5046 
5047 			orig_lowest = path->lowest_level;
5048 			btrfs_release_path(path);
5049 			path->lowest_level = level;
5050 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5051 						0, 0);
5052 			path->lowest_level = orig_lowest;
5053 			if (ret < 0)
5054 				return ret;
5055 
5056 			c = path->nodes[level];
5057 			slot = path->slots[level];
5058 			if (ret == 0)
5059 				slot++;
5060 			goto next;
5061 		}
5062 
5063 		if (level == 0)
5064 			btrfs_item_key_to_cpu(c, key, slot);
5065 		else {
5066 			u64 blockptr = btrfs_node_blockptr(c, slot);
5067 			u64 gen = btrfs_node_ptr_generation(c, slot);
5068 
5069 			if (cache_only) {
5070 				struct extent_buffer *cur;
5071 				cur = btrfs_find_tree_block(root, blockptr,
5072 					    btrfs_level_size(root, level - 1));
5073 				if (!cur ||
5074 				    btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5075 					slot++;
5076 					if (cur)
5077 						free_extent_buffer(cur);
5078 					goto next;
5079 				}
5080 				free_extent_buffer(cur);
5081 			}
5082 			if (gen < min_trans) {
5083 				slot++;
5084 				goto next;
5085 			}
5086 			btrfs_node_key_to_cpu(c, key, slot);
5087 		}
5088 		return 0;
5089 	}
5090 	return 1;
5091 }
5092 
5093 /*
5094  * search the tree again to find a leaf with greater keys
5095  * returns 0 if it found something or 1 if there are no greater leaves.
5096  * returns < 0 on io errors.
5097  */
5098 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5099 {
5100 	return btrfs_next_old_leaf(root, path, 0);
5101 }
5102 
5103 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5104 			u64 time_seq)
5105 {
5106 	int slot;
5107 	int level;
5108 	struct extent_buffer *c;
5109 	struct extent_buffer *next;
5110 	struct btrfs_key key;
5111 	u32 nritems;
5112 	int ret;
5113 	int old_spinning = path->leave_spinning;
5114 	int next_rw_lock = 0;
5115 
5116 	nritems = btrfs_header_nritems(path->nodes[0]);
5117 	if (nritems == 0)
5118 		return 1;
5119 
5120 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5121 again:
5122 	level = 1;
5123 	next = NULL;
5124 	next_rw_lock = 0;
5125 	btrfs_release_path(path);
5126 
5127 	path->keep_locks = 1;
5128 	path->leave_spinning = 1;
5129 
5130 	if (time_seq)
5131 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5132 	else
5133 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5134 	path->keep_locks = 0;
5135 
5136 	if (ret < 0)
5137 		return ret;
5138 
5139 	nritems = btrfs_header_nritems(path->nodes[0]);
5140 	/*
5141 	 * by releasing the path above we dropped all our locks.  A balance
5142 	 * could have added more items next to the key that used to be
5143 	 * at the very end of the block.  So, check again here and
5144 	 * advance the path if there are now more items available.
5145 	 */
5146 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5147 		if (ret == 0)
5148 			path->slots[0]++;
5149 		ret = 0;
5150 		goto done;
5151 	}
5152 
5153 	while (level < BTRFS_MAX_LEVEL) {
5154 		if (!path->nodes[level]) {
5155 			ret = 1;
5156 			goto done;
5157 		}
5158 
5159 		slot = path->slots[level] + 1;
5160 		c = path->nodes[level];
5161 		if (slot >= btrfs_header_nritems(c)) {
5162 			level++;
5163 			if (level == BTRFS_MAX_LEVEL) {
5164 				ret = 1;
5165 				goto done;
5166 			}
5167 			continue;
5168 		}
5169 
5170 		if (next) {
5171 			btrfs_tree_unlock_rw(next, next_rw_lock);
5172 			free_extent_buffer(next);
5173 		}
5174 
5175 		next = c;
5176 		next_rw_lock = path->locks[level];
5177 		ret = read_block_for_search(NULL, root, path, &next, level,
5178 					    slot, &key, 0);
5179 		if (ret == -EAGAIN)
5180 			goto again;
5181 
5182 		if (ret < 0) {
5183 			btrfs_release_path(path);
5184 			goto done;
5185 		}
5186 
5187 		if (!path->skip_locking) {
5188 			ret = btrfs_try_tree_read_lock(next);
5189 			if (!ret && time_seq) {
5190 				/*
5191 				 * If we don't get the lock, we may be racing
5192 				 * with push_leaf_left, holding that lock while
5193 				 * itself waiting for the leaf we've currently
5194 				 * locked. To solve this situation, we give up
5195 				 * on our lock and cycle.
5196 				 */
5197 				free_extent_buffer(next);
5198 				btrfs_release_path(path);
5199 				cond_resched();
5200 				goto again;
5201 			}
5202 			if (!ret) {
5203 				btrfs_set_path_blocking(path);
5204 				btrfs_tree_read_lock(next);
5205 				btrfs_clear_path_blocking(path, next,
5206 							  BTRFS_READ_LOCK);
5207 			}
5208 			next_rw_lock = BTRFS_READ_LOCK;
5209 		}
5210 		break;
5211 	}
5212 	path->slots[level] = slot;
5213 	while (1) {
5214 		level--;
5215 		c = path->nodes[level];
5216 		if (path->locks[level])
5217 			btrfs_tree_unlock_rw(c, path->locks[level]);
5218 
5219 		free_extent_buffer(c);
5220 		path->nodes[level] = next;
5221 		path->slots[level] = 0;
5222 		if (!path->skip_locking)
5223 			path->locks[level] = next_rw_lock;
5224 		if (!level)
5225 			break;
5226 
5227 		ret = read_block_for_search(NULL, root, path, &next, level,
5228 					    0, &key, 0);
5229 		if (ret == -EAGAIN)
5230 			goto again;
5231 
5232 		if (ret < 0) {
5233 			btrfs_release_path(path);
5234 			goto done;
5235 		}
5236 
5237 		if (!path->skip_locking) {
5238 			ret = btrfs_try_tree_read_lock(next);
5239 			if (!ret) {
5240 				btrfs_set_path_blocking(path);
5241 				btrfs_tree_read_lock(next);
5242 				btrfs_clear_path_blocking(path, next,
5243 							  BTRFS_READ_LOCK);
5244 			}
5245 			next_rw_lock = BTRFS_READ_LOCK;
5246 		}
5247 	}
5248 	ret = 0;
5249 done:
5250 	unlock_up(path, 0, 1, 0, NULL);
5251 	path->leave_spinning = old_spinning;
5252 	if (!old_spinning)
5253 		btrfs_set_path_blocking(path);
5254 
5255 	return ret;
5256 }
5257 
5258 /*
5259  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5260  * searching until it gets past min_objectid or finds an item of 'type'
5261  *
5262  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5263  */
5264 int btrfs_previous_item(struct btrfs_root *root,
5265 			struct btrfs_path *path, u64 min_objectid,
5266 			int type)
5267 {
5268 	struct btrfs_key found_key;
5269 	struct extent_buffer *leaf;
5270 	u32 nritems;
5271 	int ret;
5272 
5273 	while (1) {
5274 		if (path->slots[0] == 0) {
5275 			btrfs_set_path_blocking(path);
5276 			ret = btrfs_prev_leaf(root, path);
5277 			if (ret != 0)
5278 				return ret;
5279 		} else {
5280 			path->slots[0]--;
5281 		}
5282 		leaf = path->nodes[0];
5283 		nritems = btrfs_header_nritems(leaf);
5284 		if (nritems == 0)
5285 			return 1;
5286 		if (path->slots[0] == nritems)
5287 			path->slots[0]--;
5288 
5289 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5290 		if (found_key.objectid < min_objectid)
5291 			break;
5292 		if (found_key.type == type)
5293 			return 0;
5294 		if (found_key.objectid == min_objectid &&
5295 		    found_key.type < type)
5296 			break;
5297 	}
5298 	return 1;
5299 }
5300