1 /* 2 * Copyright (C) 2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/slab.h> 35 #include "compat.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "ordered-data.h" 42 #include "compression.h" 43 #include "extent_io.h" 44 #include "extent_map.h" 45 46 struct compressed_bio { 47 /* number of bios pending for this compressed extent */ 48 atomic_t pending_bios; 49 50 /* the pages with the compressed data on them */ 51 struct page **compressed_pages; 52 53 /* inode that owns this data */ 54 struct inode *inode; 55 56 /* starting offset in the inode for our pages */ 57 u64 start; 58 59 /* number of bytes in the inode we're working on */ 60 unsigned long len; 61 62 /* number of bytes on disk */ 63 unsigned long compressed_len; 64 65 /* the compression algorithm for this bio */ 66 int compress_type; 67 68 /* number of compressed pages in the array */ 69 unsigned long nr_pages; 70 71 /* IO errors */ 72 int errors; 73 int mirror_num; 74 75 /* for reads, this is the bio we are copying the data into */ 76 struct bio *orig_bio; 77 78 /* 79 * the start of a variable length array of checksums only 80 * used by reads 81 */ 82 u32 sums; 83 }; 84 85 static int btrfs_decompress_biovec(int type, struct page **pages_in, 86 u64 disk_start, struct bio_vec *bvec, 87 int vcnt, size_t srclen); 88 89 static inline int compressed_bio_size(struct btrfs_root *root, 90 unsigned long disk_size) 91 { 92 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 93 94 return sizeof(struct compressed_bio) + 95 ((disk_size + root->sectorsize - 1) / root->sectorsize) * 96 csum_size; 97 } 98 99 static struct bio *compressed_bio_alloc(struct block_device *bdev, 100 u64 first_byte, gfp_t gfp_flags) 101 { 102 int nr_vecs; 103 104 nr_vecs = bio_get_nr_vecs(bdev); 105 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags); 106 } 107 108 static int check_compressed_csum(struct inode *inode, 109 struct compressed_bio *cb, 110 u64 disk_start) 111 { 112 int ret; 113 struct page *page; 114 unsigned long i; 115 char *kaddr; 116 u32 csum; 117 u32 *cb_sum = &cb->sums; 118 119 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 120 return 0; 121 122 for (i = 0; i < cb->nr_pages; i++) { 123 page = cb->compressed_pages[i]; 124 csum = ~(u32)0; 125 126 kaddr = kmap_atomic(page); 127 csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE); 128 btrfs_csum_final(csum, (char *)&csum); 129 kunmap_atomic(kaddr); 130 131 if (csum != *cb_sum) { 132 printk(KERN_INFO "btrfs csum failed ino %llu " 133 "extent %llu csum %u " 134 "wanted %u mirror %d\n", 135 (unsigned long long)btrfs_ino(inode), 136 (unsigned long long)disk_start, 137 csum, *cb_sum, cb->mirror_num); 138 ret = -EIO; 139 goto fail; 140 } 141 cb_sum++; 142 143 } 144 ret = 0; 145 fail: 146 return ret; 147 } 148 149 /* when we finish reading compressed pages from the disk, we 150 * decompress them and then run the bio end_io routines on the 151 * decompressed pages (in the inode address space). 152 * 153 * This allows the checksumming and other IO error handling routines 154 * to work normally 155 * 156 * The compressed pages are freed here, and it must be run 157 * in process context 158 */ 159 static void end_compressed_bio_read(struct bio *bio, int err) 160 { 161 struct compressed_bio *cb = bio->bi_private; 162 struct inode *inode; 163 struct page *page; 164 unsigned long index; 165 int ret; 166 167 if (err) 168 cb->errors = 1; 169 170 /* if there are more bios still pending for this compressed 171 * extent, just exit 172 */ 173 if (!atomic_dec_and_test(&cb->pending_bios)) 174 goto out; 175 176 inode = cb->inode; 177 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9); 178 if (ret) 179 goto csum_failed; 180 181 /* ok, we're the last bio for this extent, lets start 182 * the decompression. 183 */ 184 ret = btrfs_decompress_biovec(cb->compress_type, 185 cb->compressed_pages, 186 cb->start, 187 cb->orig_bio->bi_io_vec, 188 cb->orig_bio->bi_vcnt, 189 cb->compressed_len); 190 csum_failed: 191 if (ret) 192 cb->errors = 1; 193 194 /* release the compressed pages */ 195 index = 0; 196 for (index = 0; index < cb->nr_pages; index++) { 197 page = cb->compressed_pages[index]; 198 page->mapping = NULL; 199 page_cache_release(page); 200 } 201 202 /* do io completion on the original bio */ 203 if (cb->errors) { 204 bio_io_error(cb->orig_bio); 205 } else { 206 int bio_index = 0; 207 struct bio_vec *bvec = cb->orig_bio->bi_io_vec; 208 209 /* 210 * we have verified the checksum already, set page 211 * checked so the end_io handlers know about it 212 */ 213 while (bio_index < cb->orig_bio->bi_vcnt) { 214 SetPageChecked(bvec->bv_page); 215 bvec++; 216 bio_index++; 217 } 218 bio_endio(cb->orig_bio, 0); 219 } 220 221 /* finally free the cb struct */ 222 kfree(cb->compressed_pages); 223 kfree(cb); 224 out: 225 bio_put(bio); 226 } 227 228 /* 229 * Clear the writeback bits on all of the file 230 * pages for a compressed write 231 */ 232 static noinline void end_compressed_writeback(struct inode *inode, u64 start, 233 unsigned long ram_size) 234 { 235 unsigned long index = start >> PAGE_CACHE_SHIFT; 236 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT; 237 struct page *pages[16]; 238 unsigned long nr_pages = end_index - index + 1; 239 int i; 240 int ret; 241 242 while (nr_pages > 0) { 243 ret = find_get_pages_contig(inode->i_mapping, index, 244 min_t(unsigned long, 245 nr_pages, ARRAY_SIZE(pages)), pages); 246 if (ret == 0) { 247 nr_pages -= 1; 248 index += 1; 249 continue; 250 } 251 for (i = 0; i < ret; i++) { 252 end_page_writeback(pages[i]); 253 page_cache_release(pages[i]); 254 } 255 nr_pages -= ret; 256 index += ret; 257 } 258 /* the inode may be gone now */ 259 } 260 261 /* 262 * do the cleanup once all the compressed pages hit the disk. 263 * This will clear writeback on the file pages and free the compressed 264 * pages. 265 * 266 * This also calls the writeback end hooks for the file pages so that 267 * metadata and checksums can be updated in the file. 268 */ 269 static void end_compressed_bio_write(struct bio *bio, int err) 270 { 271 struct extent_io_tree *tree; 272 struct compressed_bio *cb = bio->bi_private; 273 struct inode *inode; 274 struct page *page; 275 unsigned long index; 276 277 if (err) 278 cb->errors = 1; 279 280 /* if there are more bios still pending for this compressed 281 * extent, just exit 282 */ 283 if (!atomic_dec_and_test(&cb->pending_bios)) 284 goto out; 285 286 /* ok, we're the last bio for this extent, step one is to 287 * call back into the FS and do all the end_io operations 288 */ 289 inode = cb->inode; 290 tree = &BTRFS_I(inode)->io_tree; 291 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 292 tree->ops->writepage_end_io_hook(cb->compressed_pages[0], 293 cb->start, 294 cb->start + cb->len - 1, 295 NULL, 1); 296 cb->compressed_pages[0]->mapping = NULL; 297 298 end_compressed_writeback(inode, cb->start, cb->len); 299 /* note, our inode could be gone now */ 300 301 /* 302 * release the compressed pages, these came from alloc_page and 303 * are not attached to the inode at all 304 */ 305 index = 0; 306 for (index = 0; index < cb->nr_pages; index++) { 307 page = cb->compressed_pages[index]; 308 page->mapping = NULL; 309 page_cache_release(page); 310 } 311 312 /* finally free the cb struct */ 313 kfree(cb->compressed_pages); 314 kfree(cb); 315 out: 316 bio_put(bio); 317 } 318 319 /* 320 * worker function to build and submit bios for previously compressed pages. 321 * The corresponding pages in the inode should be marked for writeback 322 * and the compressed pages should have a reference on them for dropping 323 * when the IO is complete. 324 * 325 * This also checksums the file bytes and gets things ready for 326 * the end io hooks. 327 */ 328 int btrfs_submit_compressed_write(struct inode *inode, u64 start, 329 unsigned long len, u64 disk_start, 330 unsigned long compressed_len, 331 struct page **compressed_pages, 332 unsigned long nr_pages) 333 { 334 struct bio *bio = NULL; 335 struct btrfs_root *root = BTRFS_I(inode)->root; 336 struct compressed_bio *cb; 337 unsigned long bytes_left; 338 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 339 int pg_index = 0; 340 struct page *page; 341 u64 first_byte = disk_start; 342 struct block_device *bdev; 343 int ret; 344 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 345 346 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1)); 347 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 348 if (!cb) 349 return -ENOMEM; 350 atomic_set(&cb->pending_bios, 0); 351 cb->errors = 0; 352 cb->inode = inode; 353 cb->start = start; 354 cb->len = len; 355 cb->mirror_num = 0; 356 cb->compressed_pages = compressed_pages; 357 cb->compressed_len = compressed_len; 358 cb->orig_bio = NULL; 359 cb->nr_pages = nr_pages; 360 361 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 362 363 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 364 if(!bio) { 365 kfree(cb); 366 return -ENOMEM; 367 } 368 bio->bi_private = cb; 369 bio->bi_end_io = end_compressed_bio_write; 370 atomic_inc(&cb->pending_bios); 371 372 /* create and submit bios for the compressed pages */ 373 bytes_left = compressed_len; 374 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 375 page = compressed_pages[pg_index]; 376 page->mapping = inode->i_mapping; 377 if (bio->bi_size) 378 ret = io_tree->ops->merge_bio_hook(WRITE, page, 0, 379 PAGE_CACHE_SIZE, 380 bio, 0); 381 else 382 ret = 0; 383 384 page->mapping = NULL; 385 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < 386 PAGE_CACHE_SIZE) { 387 bio_get(bio); 388 389 /* 390 * inc the count before we submit the bio so 391 * we know the end IO handler won't happen before 392 * we inc the count. Otherwise, the cb might get 393 * freed before we're done setting it up 394 */ 395 atomic_inc(&cb->pending_bios); 396 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 397 BUG_ON(ret); /* -ENOMEM */ 398 399 if (!skip_sum) { 400 ret = btrfs_csum_one_bio(root, inode, bio, 401 start, 1); 402 BUG_ON(ret); /* -ENOMEM */ 403 } 404 405 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 406 BUG_ON(ret); /* -ENOMEM */ 407 408 bio_put(bio); 409 410 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS); 411 BUG_ON(!bio); 412 bio->bi_private = cb; 413 bio->bi_end_io = end_compressed_bio_write; 414 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); 415 } 416 if (bytes_left < PAGE_CACHE_SIZE) { 417 printk("bytes left %lu compress len %lu nr %lu\n", 418 bytes_left, cb->compressed_len, cb->nr_pages); 419 } 420 bytes_left -= PAGE_CACHE_SIZE; 421 first_byte += PAGE_CACHE_SIZE; 422 cond_resched(); 423 } 424 bio_get(bio); 425 426 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 427 BUG_ON(ret); /* -ENOMEM */ 428 429 if (!skip_sum) { 430 ret = btrfs_csum_one_bio(root, inode, bio, start, 1); 431 BUG_ON(ret); /* -ENOMEM */ 432 } 433 434 ret = btrfs_map_bio(root, WRITE, bio, 0, 1); 435 BUG_ON(ret); /* -ENOMEM */ 436 437 bio_put(bio); 438 return 0; 439 } 440 441 static noinline int add_ra_bio_pages(struct inode *inode, 442 u64 compressed_end, 443 struct compressed_bio *cb) 444 { 445 unsigned long end_index; 446 unsigned long pg_index; 447 u64 last_offset; 448 u64 isize = i_size_read(inode); 449 int ret; 450 struct page *page; 451 unsigned long nr_pages = 0; 452 struct extent_map *em; 453 struct address_space *mapping = inode->i_mapping; 454 struct extent_map_tree *em_tree; 455 struct extent_io_tree *tree; 456 u64 end; 457 int misses = 0; 458 459 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page; 460 last_offset = (page_offset(page) + PAGE_CACHE_SIZE); 461 em_tree = &BTRFS_I(inode)->extent_tree; 462 tree = &BTRFS_I(inode)->io_tree; 463 464 if (isize == 0) 465 return 0; 466 467 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; 468 469 while (last_offset < compressed_end) { 470 pg_index = last_offset >> PAGE_CACHE_SHIFT; 471 472 if (pg_index > end_index) 473 break; 474 475 rcu_read_lock(); 476 page = radix_tree_lookup(&mapping->page_tree, pg_index); 477 rcu_read_unlock(); 478 if (page) { 479 misses++; 480 if (misses > 4) 481 break; 482 goto next; 483 } 484 485 page = __page_cache_alloc(mapping_gfp_mask(mapping) & 486 ~__GFP_FS); 487 if (!page) 488 break; 489 490 if (add_to_page_cache_lru(page, mapping, pg_index, 491 GFP_NOFS)) { 492 page_cache_release(page); 493 goto next; 494 } 495 496 end = last_offset + PAGE_CACHE_SIZE - 1; 497 /* 498 * at this point, we have a locked page in the page cache 499 * for these bytes in the file. But, we have to make 500 * sure they map to this compressed extent on disk. 501 */ 502 set_page_extent_mapped(page); 503 lock_extent(tree, last_offset, end); 504 read_lock(&em_tree->lock); 505 em = lookup_extent_mapping(em_tree, last_offset, 506 PAGE_CACHE_SIZE); 507 read_unlock(&em_tree->lock); 508 509 if (!em || last_offset < em->start || 510 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) || 511 (em->block_start >> 9) != cb->orig_bio->bi_sector) { 512 free_extent_map(em); 513 unlock_extent(tree, last_offset, end); 514 unlock_page(page); 515 page_cache_release(page); 516 break; 517 } 518 free_extent_map(em); 519 520 if (page->index == end_index) { 521 char *userpage; 522 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1); 523 524 if (zero_offset) { 525 int zeros; 526 zeros = PAGE_CACHE_SIZE - zero_offset; 527 userpage = kmap_atomic(page); 528 memset(userpage + zero_offset, 0, zeros); 529 flush_dcache_page(page); 530 kunmap_atomic(userpage); 531 } 532 } 533 534 ret = bio_add_page(cb->orig_bio, page, 535 PAGE_CACHE_SIZE, 0); 536 537 if (ret == PAGE_CACHE_SIZE) { 538 nr_pages++; 539 page_cache_release(page); 540 } else { 541 unlock_extent(tree, last_offset, end); 542 unlock_page(page); 543 page_cache_release(page); 544 break; 545 } 546 next: 547 last_offset += PAGE_CACHE_SIZE; 548 } 549 return 0; 550 } 551 552 /* 553 * for a compressed read, the bio we get passed has all the inode pages 554 * in it. We don't actually do IO on those pages but allocate new ones 555 * to hold the compressed pages on disk. 556 * 557 * bio->bi_sector points to the compressed extent on disk 558 * bio->bi_io_vec points to all of the inode pages 559 * bio->bi_vcnt is a count of pages 560 * 561 * After the compressed pages are read, we copy the bytes into the 562 * bio we were passed and then call the bio end_io calls 563 */ 564 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 565 int mirror_num, unsigned long bio_flags) 566 { 567 struct extent_io_tree *tree; 568 struct extent_map_tree *em_tree; 569 struct compressed_bio *cb; 570 struct btrfs_root *root = BTRFS_I(inode)->root; 571 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 572 unsigned long compressed_len; 573 unsigned long nr_pages; 574 unsigned long pg_index; 575 struct page *page; 576 struct block_device *bdev; 577 struct bio *comp_bio; 578 u64 cur_disk_byte = (u64)bio->bi_sector << 9; 579 u64 em_len; 580 u64 em_start; 581 struct extent_map *em; 582 int ret = -ENOMEM; 583 int faili = 0; 584 u32 *sums; 585 586 tree = &BTRFS_I(inode)->io_tree; 587 em_tree = &BTRFS_I(inode)->extent_tree; 588 589 /* we need the actual starting offset of this extent in the file */ 590 read_lock(&em_tree->lock); 591 em = lookup_extent_mapping(em_tree, 592 page_offset(bio->bi_io_vec->bv_page), 593 PAGE_CACHE_SIZE); 594 read_unlock(&em_tree->lock); 595 if (!em) 596 return -EIO; 597 598 compressed_len = em->block_len; 599 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS); 600 if (!cb) 601 goto out; 602 603 atomic_set(&cb->pending_bios, 0); 604 cb->errors = 0; 605 cb->inode = inode; 606 cb->mirror_num = mirror_num; 607 sums = &cb->sums; 608 609 cb->start = em->orig_start; 610 em_len = em->len; 611 em_start = em->start; 612 613 free_extent_map(em); 614 em = NULL; 615 616 cb->len = uncompressed_len; 617 cb->compressed_len = compressed_len; 618 cb->compress_type = extent_compress_type(bio_flags); 619 cb->orig_bio = bio; 620 621 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) / 622 PAGE_CACHE_SIZE; 623 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages, 624 GFP_NOFS); 625 if (!cb->compressed_pages) 626 goto fail1; 627 628 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 629 630 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 631 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 632 __GFP_HIGHMEM); 633 if (!cb->compressed_pages[pg_index]) { 634 faili = pg_index - 1; 635 ret = -ENOMEM; 636 goto fail2; 637 } 638 } 639 faili = nr_pages - 1; 640 cb->nr_pages = nr_pages; 641 642 /* In the parent-locked case, we only locked the range we are 643 * interested in. In all other cases, we can opportunistically 644 * cache decompressed data that goes beyond the requested range. */ 645 if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED)) 646 add_ra_bio_pages(inode, em_start + em_len, cb); 647 648 /* include any pages we added in add_ra-bio_pages */ 649 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE; 650 cb->len = uncompressed_len; 651 652 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS); 653 if (!comp_bio) 654 goto fail2; 655 comp_bio->bi_private = cb; 656 comp_bio->bi_end_io = end_compressed_bio_read; 657 atomic_inc(&cb->pending_bios); 658 659 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 660 page = cb->compressed_pages[pg_index]; 661 page->mapping = inode->i_mapping; 662 page->index = em_start >> PAGE_CACHE_SHIFT; 663 664 if (comp_bio->bi_size) 665 ret = tree->ops->merge_bio_hook(READ, page, 0, 666 PAGE_CACHE_SIZE, 667 comp_bio, 0); 668 else 669 ret = 0; 670 671 page->mapping = NULL; 672 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) < 673 PAGE_CACHE_SIZE) { 674 bio_get(comp_bio); 675 676 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 677 BUG_ON(ret); /* -ENOMEM */ 678 679 /* 680 * inc the count before we submit the bio so 681 * we know the end IO handler won't happen before 682 * we inc the count. Otherwise, the cb might get 683 * freed before we're done setting it up 684 */ 685 atomic_inc(&cb->pending_bios); 686 687 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 688 ret = btrfs_lookup_bio_sums(root, inode, 689 comp_bio, sums); 690 BUG_ON(ret); /* -ENOMEM */ 691 } 692 sums += (comp_bio->bi_size + root->sectorsize - 1) / 693 root->sectorsize; 694 695 ret = btrfs_map_bio(root, READ, comp_bio, 696 mirror_num, 0); 697 if (ret) 698 bio_endio(comp_bio, ret); 699 700 bio_put(comp_bio); 701 702 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, 703 GFP_NOFS); 704 BUG_ON(!comp_bio); 705 comp_bio->bi_private = cb; 706 comp_bio->bi_end_io = end_compressed_bio_read; 707 708 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0); 709 } 710 cur_disk_byte += PAGE_CACHE_SIZE; 711 } 712 bio_get(comp_bio); 713 714 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0); 715 BUG_ON(ret); /* -ENOMEM */ 716 717 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 718 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums); 719 BUG_ON(ret); /* -ENOMEM */ 720 } 721 722 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0); 723 if (ret) 724 bio_endio(comp_bio, ret); 725 726 bio_put(comp_bio); 727 return 0; 728 729 fail2: 730 while (faili >= 0) { 731 __free_page(cb->compressed_pages[faili]); 732 faili--; 733 } 734 735 kfree(cb->compressed_pages); 736 fail1: 737 kfree(cb); 738 out: 739 free_extent_map(em); 740 return ret; 741 } 742 743 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES]; 744 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES]; 745 static int comp_num_workspace[BTRFS_COMPRESS_TYPES]; 746 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES]; 747 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES]; 748 749 static struct btrfs_compress_op *btrfs_compress_op[] = { 750 &btrfs_zlib_compress, 751 &btrfs_lzo_compress, 752 }; 753 754 void __init btrfs_init_compress(void) 755 { 756 int i; 757 758 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 759 INIT_LIST_HEAD(&comp_idle_workspace[i]); 760 spin_lock_init(&comp_workspace_lock[i]); 761 atomic_set(&comp_alloc_workspace[i], 0); 762 init_waitqueue_head(&comp_workspace_wait[i]); 763 } 764 } 765 766 /* 767 * this finds an available workspace or allocates a new one 768 * ERR_PTR is returned if things go bad. 769 */ 770 static struct list_head *find_workspace(int type) 771 { 772 struct list_head *workspace; 773 int cpus = num_online_cpus(); 774 int idx = type - 1; 775 776 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 777 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 778 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 779 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 780 int *num_workspace = &comp_num_workspace[idx]; 781 again: 782 spin_lock(workspace_lock); 783 if (!list_empty(idle_workspace)) { 784 workspace = idle_workspace->next; 785 list_del(workspace); 786 (*num_workspace)--; 787 spin_unlock(workspace_lock); 788 return workspace; 789 790 } 791 if (atomic_read(alloc_workspace) > cpus) { 792 DEFINE_WAIT(wait); 793 794 spin_unlock(workspace_lock); 795 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE); 796 if (atomic_read(alloc_workspace) > cpus && !*num_workspace) 797 schedule(); 798 finish_wait(workspace_wait, &wait); 799 goto again; 800 } 801 atomic_inc(alloc_workspace); 802 spin_unlock(workspace_lock); 803 804 workspace = btrfs_compress_op[idx]->alloc_workspace(); 805 if (IS_ERR(workspace)) { 806 atomic_dec(alloc_workspace); 807 wake_up(workspace_wait); 808 } 809 return workspace; 810 } 811 812 /* 813 * put a workspace struct back on the list or free it if we have enough 814 * idle ones sitting around 815 */ 816 static void free_workspace(int type, struct list_head *workspace) 817 { 818 int idx = type - 1; 819 struct list_head *idle_workspace = &comp_idle_workspace[idx]; 820 spinlock_t *workspace_lock = &comp_workspace_lock[idx]; 821 atomic_t *alloc_workspace = &comp_alloc_workspace[idx]; 822 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx]; 823 int *num_workspace = &comp_num_workspace[idx]; 824 825 spin_lock(workspace_lock); 826 if (*num_workspace < num_online_cpus()) { 827 list_add_tail(workspace, idle_workspace); 828 (*num_workspace)++; 829 spin_unlock(workspace_lock); 830 goto wake; 831 } 832 spin_unlock(workspace_lock); 833 834 btrfs_compress_op[idx]->free_workspace(workspace); 835 atomic_dec(alloc_workspace); 836 wake: 837 smp_mb(); 838 if (waitqueue_active(workspace_wait)) 839 wake_up(workspace_wait); 840 } 841 842 /* 843 * cleanup function for module exit 844 */ 845 static void free_workspaces(void) 846 { 847 struct list_head *workspace; 848 int i; 849 850 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) { 851 while (!list_empty(&comp_idle_workspace[i])) { 852 workspace = comp_idle_workspace[i].next; 853 list_del(workspace); 854 btrfs_compress_op[i]->free_workspace(workspace); 855 atomic_dec(&comp_alloc_workspace[i]); 856 } 857 } 858 } 859 860 /* 861 * given an address space and start/len, compress the bytes. 862 * 863 * pages are allocated to hold the compressed result and stored 864 * in 'pages' 865 * 866 * out_pages is used to return the number of pages allocated. There 867 * may be pages allocated even if we return an error 868 * 869 * total_in is used to return the number of bytes actually read. It 870 * may be smaller then len if we had to exit early because we 871 * ran out of room in the pages array or because we cross the 872 * max_out threshold. 873 * 874 * total_out is used to return the total number of compressed bytes 875 * 876 * max_out tells us the max number of bytes that we're allowed to 877 * stuff into pages 878 */ 879 int btrfs_compress_pages(int type, struct address_space *mapping, 880 u64 start, unsigned long len, 881 struct page **pages, 882 unsigned long nr_dest_pages, 883 unsigned long *out_pages, 884 unsigned long *total_in, 885 unsigned long *total_out, 886 unsigned long max_out) 887 { 888 struct list_head *workspace; 889 int ret; 890 891 workspace = find_workspace(type); 892 if (IS_ERR(workspace)) 893 return -1; 894 895 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping, 896 start, len, pages, 897 nr_dest_pages, out_pages, 898 total_in, total_out, 899 max_out); 900 free_workspace(type, workspace); 901 return ret; 902 } 903 904 /* 905 * pages_in is an array of pages with compressed data. 906 * 907 * disk_start is the starting logical offset of this array in the file 908 * 909 * bvec is a bio_vec of pages from the file that we want to decompress into 910 * 911 * vcnt is the count of pages in the biovec 912 * 913 * srclen is the number of bytes in pages_in 914 * 915 * The basic idea is that we have a bio that was created by readpages. 916 * The pages in the bio are for the uncompressed data, and they may not 917 * be contiguous. They all correspond to the range of bytes covered by 918 * the compressed extent. 919 */ 920 static int btrfs_decompress_biovec(int type, struct page **pages_in, 921 u64 disk_start, struct bio_vec *bvec, 922 int vcnt, size_t srclen) 923 { 924 struct list_head *workspace; 925 int ret; 926 927 workspace = find_workspace(type); 928 if (IS_ERR(workspace)) 929 return -ENOMEM; 930 931 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in, 932 disk_start, 933 bvec, vcnt, srclen); 934 free_workspace(type, workspace); 935 return ret; 936 } 937 938 /* 939 * a less complex decompression routine. Our compressed data fits in a 940 * single page, and we want to read a single page out of it. 941 * start_byte tells us the offset into the compressed data we're interested in 942 */ 943 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 944 unsigned long start_byte, size_t srclen, size_t destlen) 945 { 946 struct list_head *workspace; 947 int ret; 948 949 workspace = find_workspace(type); 950 if (IS_ERR(workspace)) 951 return -ENOMEM; 952 953 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in, 954 dest_page, start_byte, 955 srclen, destlen); 956 957 free_workspace(type, workspace); 958 return ret; 959 } 960 961 void btrfs_exit_compress(void) 962 { 963 free_workspaces(); 964 } 965 966 /* 967 * Copy uncompressed data from working buffer to pages. 968 * 969 * buf_start is the byte offset we're of the start of our workspace buffer. 970 * 971 * total_out is the last byte of the buffer 972 */ 973 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start, 974 unsigned long total_out, u64 disk_start, 975 struct bio_vec *bvec, int vcnt, 976 unsigned long *pg_index, 977 unsigned long *pg_offset) 978 { 979 unsigned long buf_offset; 980 unsigned long current_buf_start; 981 unsigned long start_byte; 982 unsigned long working_bytes = total_out - buf_start; 983 unsigned long bytes; 984 char *kaddr; 985 struct page *page_out = bvec[*pg_index].bv_page; 986 987 /* 988 * start byte is the first byte of the page we're currently 989 * copying into relative to the start of the compressed data. 990 */ 991 start_byte = page_offset(page_out) - disk_start; 992 993 /* we haven't yet hit data corresponding to this page */ 994 if (total_out <= start_byte) 995 return 1; 996 997 /* 998 * the start of the data we care about is offset into 999 * the middle of our working buffer 1000 */ 1001 if (total_out > start_byte && buf_start < start_byte) { 1002 buf_offset = start_byte - buf_start; 1003 working_bytes -= buf_offset; 1004 } else { 1005 buf_offset = 0; 1006 } 1007 current_buf_start = buf_start; 1008 1009 /* copy bytes from the working buffer into the pages */ 1010 while (working_bytes > 0) { 1011 bytes = min(PAGE_CACHE_SIZE - *pg_offset, 1012 PAGE_CACHE_SIZE - buf_offset); 1013 bytes = min(bytes, working_bytes); 1014 kaddr = kmap_atomic(page_out); 1015 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes); 1016 kunmap_atomic(kaddr); 1017 flush_dcache_page(page_out); 1018 1019 *pg_offset += bytes; 1020 buf_offset += bytes; 1021 working_bytes -= bytes; 1022 current_buf_start += bytes; 1023 1024 /* check if we need to pick another page */ 1025 if (*pg_offset == PAGE_CACHE_SIZE) { 1026 (*pg_index)++; 1027 if (*pg_index >= vcnt) 1028 return 0; 1029 1030 page_out = bvec[*pg_index].bv_page; 1031 *pg_offset = 0; 1032 start_byte = page_offset(page_out) - disk_start; 1033 1034 /* 1035 * make sure our new page is covered by this 1036 * working buffer 1037 */ 1038 if (total_out <= start_byte) 1039 return 1; 1040 1041 /* 1042 * the next page in the biovec might not be adjacent 1043 * to the last page, but it might still be found 1044 * inside this working buffer. bump our offset pointer 1045 */ 1046 if (total_out > start_byte && 1047 current_buf_start < start_byte) { 1048 buf_offset = start_byte - buf_start; 1049 working_bytes = total_out - start_byte; 1050 current_buf_start = buf_start + buf_offset; 1051 } 1052 } 1053 } 1054 1055 return 1; 1056 } 1057