1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/pagemap.h> 11 #include <linux/highmem.h> 12 #include <linux/time.h> 13 #include <linux/init.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sched/mm.h> 19 #include <linux/log2.h> 20 #include <crypto/hash.h> 21 #include "misc.h" 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "ordered-data.h" 28 #include "compression.h" 29 #include "extent_io.h" 30 #include "extent_map.h" 31 32 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" }; 33 34 const char* btrfs_compress_type2str(enum btrfs_compression_type type) 35 { 36 switch (type) { 37 case BTRFS_COMPRESS_ZLIB: 38 case BTRFS_COMPRESS_LZO: 39 case BTRFS_COMPRESS_ZSTD: 40 case BTRFS_COMPRESS_NONE: 41 return btrfs_compress_types[type]; 42 default: 43 break; 44 } 45 46 return NULL; 47 } 48 49 bool btrfs_compress_is_valid_type(const char *str, size_t len) 50 { 51 int i; 52 53 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) { 54 size_t comp_len = strlen(btrfs_compress_types[i]); 55 56 if (len < comp_len) 57 continue; 58 59 if (!strncmp(btrfs_compress_types[i], str, comp_len)) 60 return true; 61 } 62 return false; 63 } 64 65 static int compression_compress_pages(int type, struct list_head *ws, 66 struct address_space *mapping, u64 start, struct page **pages, 67 unsigned long *out_pages, unsigned long *total_in, 68 unsigned long *total_out) 69 { 70 switch (type) { 71 case BTRFS_COMPRESS_ZLIB: 72 return zlib_compress_pages(ws, mapping, start, pages, 73 out_pages, total_in, total_out); 74 case BTRFS_COMPRESS_LZO: 75 return lzo_compress_pages(ws, mapping, start, pages, 76 out_pages, total_in, total_out); 77 case BTRFS_COMPRESS_ZSTD: 78 return zstd_compress_pages(ws, mapping, start, pages, 79 out_pages, total_in, total_out); 80 case BTRFS_COMPRESS_NONE: 81 default: 82 /* 83 * This can't happen, the type is validated several times 84 * before we get here. As a sane fallback, return what the 85 * callers will understand as 'no compression happened'. 86 */ 87 return -E2BIG; 88 } 89 } 90 91 static int compression_decompress_bio(int type, struct list_head *ws, 92 struct compressed_bio *cb) 93 { 94 switch (type) { 95 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb); 96 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb); 97 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb); 98 case BTRFS_COMPRESS_NONE: 99 default: 100 /* 101 * This can't happen, the type is validated several times 102 * before we get here. 103 */ 104 BUG(); 105 } 106 } 107 108 static int compression_decompress(int type, struct list_head *ws, 109 unsigned char *data_in, struct page *dest_page, 110 unsigned long start_byte, size_t srclen, size_t destlen) 111 { 112 switch (type) { 113 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page, 114 start_byte, srclen, destlen); 115 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page, 116 start_byte, srclen, destlen); 117 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page, 118 start_byte, srclen, destlen); 119 case BTRFS_COMPRESS_NONE: 120 default: 121 /* 122 * This can't happen, the type is validated several times 123 * before we get here. 124 */ 125 BUG(); 126 } 127 } 128 129 static int btrfs_decompress_bio(struct compressed_bio *cb); 130 131 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info, 132 unsigned long disk_size) 133 { 134 return sizeof(struct compressed_bio) + 135 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size; 136 } 137 138 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio, 139 u64 disk_start) 140 { 141 struct btrfs_fs_info *fs_info = inode->root->fs_info; 142 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 143 const u32 csum_size = fs_info->csum_size; 144 struct page *page; 145 unsigned long i; 146 char *kaddr; 147 u8 csum[BTRFS_CSUM_SIZE]; 148 struct compressed_bio *cb = bio->bi_private; 149 u8 *cb_sum = cb->sums; 150 151 if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM)) 152 return 0; 153 154 shash->tfm = fs_info->csum_shash; 155 156 for (i = 0; i < cb->nr_pages; i++) { 157 page = cb->compressed_pages[i]; 158 159 kaddr = kmap_atomic(page); 160 crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum); 161 kunmap_atomic(kaddr); 162 163 if (memcmp(&csum, cb_sum, csum_size)) { 164 btrfs_print_data_csum_error(inode, disk_start, 165 csum, cb_sum, cb->mirror_num); 166 if (btrfs_io_bio(bio)->device) 167 btrfs_dev_stat_inc_and_print( 168 btrfs_io_bio(bio)->device, 169 BTRFS_DEV_STAT_CORRUPTION_ERRS); 170 return -EIO; 171 } 172 cb_sum += csum_size; 173 } 174 return 0; 175 } 176 177 /* when we finish reading compressed pages from the disk, we 178 * decompress them and then run the bio end_io routines on the 179 * decompressed pages (in the inode address space). 180 * 181 * This allows the checksumming and other IO error handling routines 182 * to work normally 183 * 184 * The compressed pages are freed here, and it must be run 185 * in process context 186 */ 187 static void end_compressed_bio_read(struct bio *bio) 188 { 189 struct compressed_bio *cb = bio->bi_private; 190 struct inode *inode; 191 struct page *page; 192 unsigned long index; 193 unsigned int mirror = btrfs_io_bio(bio)->mirror_num; 194 int ret = 0; 195 196 if (bio->bi_status) 197 cb->errors = 1; 198 199 /* if there are more bios still pending for this compressed 200 * extent, just exit 201 */ 202 if (!refcount_dec_and_test(&cb->pending_bios)) 203 goto out; 204 205 /* 206 * Record the correct mirror_num in cb->orig_bio so that 207 * read-repair can work properly. 208 */ 209 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror; 210 cb->mirror_num = mirror; 211 212 /* 213 * Some IO in this cb have failed, just skip checksum as there 214 * is no way it could be correct. 215 */ 216 if (cb->errors == 1) 217 goto csum_failed; 218 219 inode = cb->inode; 220 ret = check_compressed_csum(BTRFS_I(inode), bio, 221 bio->bi_iter.bi_sector << 9); 222 if (ret) 223 goto csum_failed; 224 225 /* ok, we're the last bio for this extent, lets start 226 * the decompression. 227 */ 228 ret = btrfs_decompress_bio(cb); 229 230 csum_failed: 231 if (ret) 232 cb->errors = 1; 233 234 /* release the compressed pages */ 235 index = 0; 236 for (index = 0; index < cb->nr_pages; index++) { 237 page = cb->compressed_pages[index]; 238 page->mapping = NULL; 239 put_page(page); 240 } 241 242 /* do io completion on the original bio */ 243 if (cb->errors) { 244 bio_io_error(cb->orig_bio); 245 } else { 246 struct bio_vec *bvec; 247 struct bvec_iter_all iter_all; 248 249 /* 250 * we have verified the checksum already, set page 251 * checked so the end_io handlers know about it 252 */ 253 ASSERT(!bio_flagged(bio, BIO_CLONED)); 254 bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) 255 SetPageChecked(bvec->bv_page); 256 257 bio_endio(cb->orig_bio); 258 } 259 260 /* finally free the cb struct */ 261 kfree(cb->compressed_pages); 262 kfree(cb); 263 out: 264 bio_put(bio); 265 } 266 267 /* 268 * Clear the writeback bits on all of the file 269 * pages for a compressed write 270 */ 271 static noinline void end_compressed_writeback(struct inode *inode, 272 const struct compressed_bio *cb) 273 { 274 unsigned long index = cb->start >> PAGE_SHIFT; 275 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT; 276 struct page *pages[16]; 277 unsigned long nr_pages = end_index - index + 1; 278 int i; 279 int ret; 280 281 if (cb->errors) 282 mapping_set_error(inode->i_mapping, -EIO); 283 284 while (nr_pages > 0) { 285 ret = find_get_pages_contig(inode->i_mapping, index, 286 min_t(unsigned long, 287 nr_pages, ARRAY_SIZE(pages)), pages); 288 if (ret == 0) { 289 nr_pages -= 1; 290 index += 1; 291 continue; 292 } 293 for (i = 0; i < ret; i++) { 294 if (cb->errors) 295 SetPageError(pages[i]); 296 end_page_writeback(pages[i]); 297 put_page(pages[i]); 298 } 299 nr_pages -= ret; 300 index += ret; 301 } 302 /* the inode may be gone now */ 303 } 304 305 /* 306 * do the cleanup once all the compressed pages hit the disk. 307 * This will clear writeback on the file pages and free the compressed 308 * pages. 309 * 310 * This also calls the writeback end hooks for the file pages so that 311 * metadata and checksums can be updated in the file. 312 */ 313 static void end_compressed_bio_write(struct bio *bio) 314 { 315 struct compressed_bio *cb = bio->bi_private; 316 struct inode *inode; 317 struct page *page; 318 unsigned long index; 319 320 if (bio->bi_status) 321 cb->errors = 1; 322 323 /* if there are more bios still pending for this compressed 324 * extent, just exit 325 */ 326 if (!refcount_dec_and_test(&cb->pending_bios)) 327 goto out; 328 329 /* ok, we're the last bio for this extent, step one is to 330 * call back into the FS and do all the end_io operations 331 */ 332 inode = cb->inode; 333 cb->compressed_pages[0]->mapping = cb->inode->i_mapping; 334 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0], 335 cb->start, cb->start + cb->len - 1, 336 bio->bi_status == BLK_STS_OK); 337 cb->compressed_pages[0]->mapping = NULL; 338 339 end_compressed_writeback(inode, cb); 340 /* note, our inode could be gone now */ 341 342 /* 343 * release the compressed pages, these came from alloc_page and 344 * are not attached to the inode at all 345 */ 346 index = 0; 347 for (index = 0; index < cb->nr_pages; index++) { 348 page = cb->compressed_pages[index]; 349 page->mapping = NULL; 350 put_page(page); 351 } 352 353 /* finally free the cb struct */ 354 kfree(cb->compressed_pages); 355 kfree(cb); 356 out: 357 bio_put(bio); 358 } 359 360 /* 361 * worker function to build and submit bios for previously compressed pages. 362 * The corresponding pages in the inode should be marked for writeback 363 * and the compressed pages should have a reference on them for dropping 364 * when the IO is complete. 365 * 366 * This also checksums the file bytes and gets things ready for 367 * the end io hooks. 368 */ 369 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start, 370 unsigned long len, u64 disk_start, 371 unsigned long compressed_len, 372 struct page **compressed_pages, 373 unsigned long nr_pages, 374 unsigned int write_flags, 375 struct cgroup_subsys_state *blkcg_css) 376 { 377 struct btrfs_fs_info *fs_info = inode->root->fs_info; 378 struct bio *bio = NULL; 379 struct compressed_bio *cb; 380 unsigned long bytes_left; 381 int pg_index = 0; 382 struct page *page; 383 u64 first_byte = disk_start; 384 blk_status_t ret; 385 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM; 386 387 WARN_ON(!PAGE_ALIGNED(start)); 388 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 389 if (!cb) 390 return BLK_STS_RESOURCE; 391 refcount_set(&cb->pending_bios, 0); 392 cb->errors = 0; 393 cb->inode = &inode->vfs_inode; 394 cb->start = start; 395 cb->len = len; 396 cb->mirror_num = 0; 397 cb->compressed_pages = compressed_pages; 398 cb->compressed_len = compressed_len; 399 cb->orig_bio = NULL; 400 cb->nr_pages = nr_pages; 401 402 bio = btrfs_bio_alloc(first_byte); 403 bio->bi_opf = REQ_OP_WRITE | write_flags; 404 bio->bi_private = cb; 405 bio->bi_end_io = end_compressed_bio_write; 406 407 if (blkcg_css) { 408 bio->bi_opf |= REQ_CGROUP_PUNT; 409 kthread_associate_blkcg(blkcg_css); 410 } 411 refcount_set(&cb->pending_bios, 1); 412 413 /* create and submit bios for the compressed pages */ 414 bytes_left = compressed_len; 415 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) { 416 int submit = 0; 417 418 page = compressed_pages[pg_index]; 419 page->mapping = inode->vfs_inode.i_mapping; 420 if (bio->bi_iter.bi_size) 421 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio, 422 0); 423 424 page->mapping = NULL; 425 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) < 426 PAGE_SIZE) { 427 /* 428 * inc the count before we submit the bio so 429 * we know the end IO handler won't happen before 430 * we inc the count. Otherwise, the cb might get 431 * freed before we're done setting it up 432 */ 433 refcount_inc(&cb->pending_bios); 434 ret = btrfs_bio_wq_end_io(fs_info, bio, 435 BTRFS_WQ_ENDIO_DATA); 436 BUG_ON(ret); /* -ENOMEM */ 437 438 if (!skip_sum) { 439 ret = btrfs_csum_one_bio(inode, bio, start, 1); 440 BUG_ON(ret); /* -ENOMEM */ 441 } 442 443 ret = btrfs_map_bio(fs_info, bio, 0); 444 if (ret) { 445 bio->bi_status = ret; 446 bio_endio(bio); 447 } 448 449 bio = btrfs_bio_alloc(first_byte); 450 bio->bi_opf = REQ_OP_WRITE | write_flags; 451 bio->bi_private = cb; 452 bio->bi_end_io = end_compressed_bio_write; 453 if (blkcg_css) 454 bio->bi_opf |= REQ_CGROUP_PUNT; 455 bio_add_page(bio, page, PAGE_SIZE, 0); 456 } 457 if (bytes_left < PAGE_SIZE) { 458 btrfs_info(fs_info, 459 "bytes left %lu compress len %lu nr %lu", 460 bytes_left, cb->compressed_len, cb->nr_pages); 461 } 462 bytes_left -= PAGE_SIZE; 463 first_byte += PAGE_SIZE; 464 cond_resched(); 465 } 466 467 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 468 BUG_ON(ret); /* -ENOMEM */ 469 470 if (!skip_sum) { 471 ret = btrfs_csum_one_bio(inode, bio, start, 1); 472 BUG_ON(ret); /* -ENOMEM */ 473 } 474 475 ret = btrfs_map_bio(fs_info, bio, 0); 476 if (ret) { 477 bio->bi_status = ret; 478 bio_endio(bio); 479 } 480 481 if (blkcg_css) 482 kthread_associate_blkcg(NULL); 483 484 return 0; 485 } 486 487 static u64 bio_end_offset(struct bio *bio) 488 { 489 struct bio_vec *last = bio_last_bvec_all(bio); 490 491 return page_offset(last->bv_page) + last->bv_len + last->bv_offset; 492 } 493 494 static noinline int add_ra_bio_pages(struct inode *inode, 495 u64 compressed_end, 496 struct compressed_bio *cb) 497 { 498 unsigned long end_index; 499 unsigned long pg_index; 500 u64 last_offset; 501 u64 isize = i_size_read(inode); 502 int ret; 503 struct page *page; 504 unsigned long nr_pages = 0; 505 struct extent_map *em; 506 struct address_space *mapping = inode->i_mapping; 507 struct extent_map_tree *em_tree; 508 struct extent_io_tree *tree; 509 u64 end; 510 int misses = 0; 511 512 last_offset = bio_end_offset(cb->orig_bio); 513 em_tree = &BTRFS_I(inode)->extent_tree; 514 tree = &BTRFS_I(inode)->io_tree; 515 516 if (isize == 0) 517 return 0; 518 519 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT; 520 521 while (last_offset < compressed_end) { 522 pg_index = last_offset >> PAGE_SHIFT; 523 524 if (pg_index > end_index) 525 break; 526 527 page = xa_load(&mapping->i_pages, pg_index); 528 if (page && !xa_is_value(page)) { 529 misses++; 530 if (misses > 4) 531 break; 532 goto next; 533 } 534 535 page = __page_cache_alloc(mapping_gfp_constraint(mapping, 536 ~__GFP_FS)); 537 if (!page) 538 break; 539 540 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) { 541 put_page(page); 542 goto next; 543 } 544 545 /* 546 * at this point, we have a locked page in the page cache 547 * for these bytes in the file. But, we have to make 548 * sure they map to this compressed extent on disk. 549 */ 550 ret = set_page_extent_mapped(page); 551 if (ret < 0) { 552 unlock_page(page); 553 put_page(page); 554 break; 555 } 556 557 end = last_offset + PAGE_SIZE - 1; 558 lock_extent(tree, last_offset, end); 559 read_lock(&em_tree->lock); 560 em = lookup_extent_mapping(em_tree, last_offset, 561 PAGE_SIZE); 562 read_unlock(&em_tree->lock); 563 564 if (!em || last_offset < em->start || 565 (last_offset + PAGE_SIZE > extent_map_end(em)) || 566 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) { 567 free_extent_map(em); 568 unlock_extent(tree, last_offset, end); 569 unlock_page(page); 570 put_page(page); 571 break; 572 } 573 free_extent_map(em); 574 575 if (page->index == end_index) { 576 char *userpage; 577 size_t zero_offset = offset_in_page(isize); 578 579 if (zero_offset) { 580 int zeros; 581 zeros = PAGE_SIZE - zero_offset; 582 userpage = kmap_atomic(page); 583 memset(userpage + zero_offset, 0, zeros); 584 flush_dcache_page(page); 585 kunmap_atomic(userpage); 586 } 587 } 588 589 ret = bio_add_page(cb->orig_bio, page, 590 PAGE_SIZE, 0); 591 592 if (ret == PAGE_SIZE) { 593 nr_pages++; 594 put_page(page); 595 } else { 596 unlock_extent(tree, last_offset, end); 597 unlock_page(page); 598 put_page(page); 599 break; 600 } 601 next: 602 last_offset += PAGE_SIZE; 603 } 604 return 0; 605 } 606 607 /* 608 * for a compressed read, the bio we get passed has all the inode pages 609 * in it. We don't actually do IO on those pages but allocate new ones 610 * to hold the compressed pages on disk. 611 * 612 * bio->bi_iter.bi_sector points to the compressed extent on disk 613 * bio->bi_io_vec points to all of the inode pages 614 * 615 * After the compressed pages are read, we copy the bytes into the 616 * bio we were passed and then call the bio end_io calls 617 */ 618 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio, 619 int mirror_num, unsigned long bio_flags) 620 { 621 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 622 struct extent_map_tree *em_tree; 623 struct compressed_bio *cb; 624 unsigned long compressed_len; 625 unsigned long nr_pages; 626 unsigned long pg_index; 627 struct page *page; 628 struct bio *comp_bio; 629 u64 cur_disk_byte = bio->bi_iter.bi_sector << 9; 630 u64 em_len; 631 u64 em_start; 632 struct extent_map *em; 633 blk_status_t ret = BLK_STS_RESOURCE; 634 int faili = 0; 635 u8 *sums; 636 637 em_tree = &BTRFS_I(inode)->extent_tree; 638 639 /* we need the actual starting offset of this extent in the file */ 640 read_lock(&em_tree->lock); 641 em = lookup_extent_mapping(em_tree, 642 page_offset(bio_first_page_all(bio)), 643 PAGE_SIZE); 644 read_unlock(&em_tree->lock); 645 if (!em) 646 return BLK_STS_IOERR; 647 648 compressed_len = em->block_len; 649 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS); 650 if (!cb) 651 goto out; 652 653 refcount_set(&cb->pending_bios, 0); 654 cb->errors = 0; 655 cb->inode = inode; 656 cb->mirror_num = mirror_num; 657 sums = cb->sums; 658 659 cb->start = em->orig_start; 660 em_len = em->len; 661 em_start = em->start; 662 663 free_extent_map(em); 664 em = NULL; 665 666 cb->len = bio->bi_iter.bi_size; 667 cb->compressed_len = compressed_len; 668 cb->compress_type = extent_compress_type(bio_flags); 669 cb->orig_bio = bio; 670 671 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE); 672 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *), 673 GFP_NOFS); 674 if (!cb->compressed_pages) 675 goto fail1; 676 677 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 678 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS | 679 __GFP_HIGHMEM); 680 if (!cb->compressed_pages[pg_index]) { 681 faili = pg_index - 1; 682 ret = BLK_STS_RESOURCE; 683 goto fail2; 684 } 685 } 686 faili = nr_pages - 1; 687 cb->nr_pages = nr_pages; 688 689 add_ra_bio_pages(inode, em_start + em_len, cb); 690 691 /* include any pages we added in add_ra-bio_pages */ 692 cb->len = bio->bi_iter.bi_size; 693 694 comp_bio = btrfs_bio_alloc(cur_disk_byte); 695 comp_bio->bi_opf = REQ_OP_READ; 696 comp_bio->bi_private = cb; 697 comp_bio->bi_end_io = end_compressed_bio_read; 698 refcount_set(&cb->pending_bios, 1); 699 700 for (pg_index = 0; pg_index < nr_pages; pg_index++) { 701 int submit = 0; 702 703 page = cb->compressed_pages[pg_index]; 704 page->mapping = inode->i_mapping; 705 page->index = em_start >> PAGE_SHIFT; 706 707 if (comp_bio->bi_iter.bi_size) 708 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, 709 comp_bio, 0); 710 711 page->mapping = NULL; 712 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) < 713 PAGE_SIZE) { 714 unsigned int nr_sectors; 715 716 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, 717 BTRFS_WQ_ENDIO_DATA); 718 BUG_ON(ret); /* -ENOMEM */ 719 720 /* 721 * inc the count before we submit the bio so 722 * we know the end IO handler won't happen before 723 * we inc the count. Otherwise, the cb might get 724 * freed before we're done setting it up 725 */ 726 refcount_inc(&cb->pending_bios); 727 728 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 729 BUG_ON(ret); /* -ENOMEM */ 730 731 nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size, 732 fs_info->sectorsize); 733 sums += fs_info->csum_size * nr_sectors; 734 735 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 736 if (ret) { 737 comp_bio->bi_status = ret; 738 bio_endio(comp_bio); 739 } 740 741 comp_bio = btrfs_bio_alloc(cur_disk_byte); 742 comp_bio->bi_opf = REQ_OP_READ; 743 comp_bio->bi_private = cb; 744 comp_bio->bi_end_io = end_compressed_bio_read; 745 746 bio_add_page(comp_bio, page, PAGE_SIZE, 0); 747 } 748 cur_disk_byte += PAGE_SIZE; 749 } 750 751 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA); 752 BUG_ON(ret); /* -ENOMEM */ 753 754 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums); 755 BUG_ON(ret); /* -ENOMEM */ 756 757 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num); 758 if (ret) { 759 comp_bio->bi_status = ret; 760 bio_endio(comp_bio); 761 } 762 763 return 0; 764 765 fail2: 766 while (faili >= 0) { 767 __free_page(cb->compressed_pages[faili]); 768 faili--; 769 } 770 771 kfree(cb->compressed_pages); 772 fail1: 773 kfree(cb); 774 out: 775 free_extent_map(em); 776 return ret; 777 } 778 779 /* 780 * Heuristic uses systematic sampling to collect data from the input data 781 * range, the logic can be tuned by the following constants: 782 * 783 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample 784 * @SAMPLING_INTERVAL - range from which the sampled data can be collected 785 */ 786 #define SAMPLING_READ_SIZE (16) 787 #define SAMPLING_INTERVAL (256) 788 789 /* 790 * For statistical analysis of the input data we consider bytes that form a 791 * Galois Field of 256 objects. Each object has an attribute count, ie. how 792 * many times the object appeared in the sample. 793 */ 794 #define BUCKET_SIZE (256) 795 796 /* 797 * The size of the sample is based on a statistical sampling rule of thumb. 798 * The common way is to perform sampling tests as long as the number of 799 * elements in each cell is at least 5. 800 * 801 * Instead of 5, we choose 32 to obtain more accurate results. 802 * If the data contain the maximum number of symbols, which is 256, we obtain a 803 * sample size bound by 8192. 804 * 805 * For a sample of at most 8KB of data per data range: 16 consecutive bytes 806 * from up to 512 locations. 807 */ 808 #define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \ 809 SAMPLING_READ_SIZE / SAMPLING_INTERVAL) 810 811 struct bucket_item { 812 u32 count; 813 }; 814 815 struct heuristic_ws { 816 /* Partial copy of input data */ 817 u8 *sample; 818 u32 sample_size; 819 /* Buckets store counters for each byte value */ 820 struct bucket_item *bucket; 821 /* Sorting buffer */ 822 struct bucket_item *bucket_b; 823 struct list_head list; 824 }; 825 826 static struct workspace_manager heuristic_wsm; 827 828 static void free_heuristic_ws(struct list_head *ws) 829 { 830 struct heuristic_ws *workspace; 831 832 workspace = list_entry(ws, struct heuristic_ws, list); 833 834 kvfree(workspace->sample); 835 kfree(workspace->bucket); 836 kfree(workspace->bucket_b); 837 kfree(workspace); 838 } 839 840 static struct list_head *alloc_heuristic_ws(unsigned int level) 841 { 842 struct heuristic_ws *ws; 843 844 ws = kzalloc(sizeof(*ws), GFP_KERNEL); 845 if (!ws) 846 return ERR_PTR(-ENOMEM); 847 848 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL); 849 if (!ws->sample) 850 goto fail; 851 852 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL); 853 if (!ws->bucket) 854 goto fail; 855 856 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL); 857 if (!ws->bucket_b) 858 goto fail; 859 860 INIT_LIST_HEAD(&ws->list); 861 return &ws->list; 862 fail: 863 free_heuristic_ws(&ws->list); 864 return ERR_PTR(-ENOMEM); 865 } 866 867 const struct btrfs_compress_op btrfs_heuristic_compress = { 868 .workspace_manager = &heuristic_wsm, 869 }; 870 871 static const struct btrfs_compress_op * const btrfs_compress_op[] = { 872 /* The heuristic is represented as compression type 0 */ 873 &btrfs_heuristic_compress, 874 &btrfs_zlib_compress, 875 &btrfs_lzo_compress, 876 &btrfs_zstd_compress, 877 }; 878 879 static struct list_head *alloc_workspace(int type, unsigned int level) 880 { 881 switch (type) { 882 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level); 883 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level); 884 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level); 885 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level); 886 default: 887 /* 888 * This can't happen, the type is validated several times 889 * before we get here. 890 */ 891 BUG(); 892 } 893 } 894 895 static void free_workspace(int type, struct list_head *ws) 896 { 897 switch (type) { 898 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws); 899 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws); 900 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws); 901 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws); 902 default: 903 /* 904 * This can't happen, the type is validated several times 905 * before we get here. 906 */ 907 BUG(); 908 } 909 } 910 911 static void btrfs_init_workspace_manager(int type) 912 { 913 struct workspace_manager *wsm; 914 struct list_head *workspace; 915 916 wsm = btrfs_compress_op[type]->workspace_manager; 917 INIT_LIST_HEAD(&wsm->idle_ws); 918 spin_lock_init(&wsm->ws_lock); 919 atomic_set(&wsm->total_ws, 0); 920 init_waitqueue_head(&wsm->ws_wait); 921 922 /* 923 * Preallocate one workspace for each compression type so we can 924 * guarantee forward progress in the worst case 925 */ 926 workspace = alloc_workspace(type, 0); 927 if (IS_ERR(workspace)) { 928 pr_warn( 929 "BTRFS: cannot preallocate compression workspace, will try later\n"); 930 } else { 931 atomic_set(&wsm->total_ws, 1); 932 wsm->free_ws = 1; 933 list_add(workspace, &wsm->idle_ws); 934 } 935 } 936 937 static void btrfs_cleanup_workspace_manager(int type) 938 { 939 struct workspace_manager *wsman; 940 struct list_head *ws; 941 942 wsman = btrfs_compress_op[type]->workspace_manager; 943 while (!list_empty(&wsman->idle_ws)) { 944 ws = wsman->idle_ws.next; 945 list_del(ws); 946 free_workspace(type, ws); 947 atomic_dec(&wsman->total_ws); 948 } 949 } 950 951 /* 952 * This finds an available workspace or allocates a new one. 953 * If it's not possible to allocate a new one, waits until there's one. 954 * Preallocation makes a forward progress guarantees and we do not return 955 * errors. 956 */ 957 struct list_head *btrfs_get_workspace(int type, unsigned int level) 958 { 959 struct workspace_manager *wsm; 960 struct list_head *workspace; 961 int cpus = num_online_cpus(); 962 unsigned nofs_flag; 963 struct list_head *idle_ws; 964 spinlock_t *ws_lock; 965 atomic_t *total_ws; 966 wait_queue_head_t *ws_wait; 967 int *free_ws; 968 969 wsm = btrfs_compress_op[type]->workspace_manager; 970 idle_ws = &wsm->idle_ws; 971 ws_lock = &wsm->ws_lock; 972 total_ws = &wsm->total_ws; 973 ws_wait = &wsm->ws_wait; 974 free_ws = &wsm->free_ws; 975 976 again: 977 spin_lock(ws_lock); 978 if (!list_empty(idle_ws)) { 979 workspace = idle_ws->next; 980 list_del(workspace); 981 (*free_ws)--; 982 spin_unlock(ws_lock); 983 return workspace; 984 985 } 986 if (atomic_read(total_ws) > cpus) { 987 DEFINE_WAIT(wait); 988 989 spin_unlock(ws_lock); 990 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE); 991 if (atomic_read(total_ws) > cpus && !*free_ws) 992 schedule(); 993 finish_wait(ws_wait, &wait); 994 goto again; 995 } 996 atomic_inc(total_ws); 997 spin_unlock(ws_lock); 998 999 /* 1000 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have 1001 * to turn it off here because we might get called from the restricted 1002 * context of btrfs_compress_bio/btrfs_compress_pages 1003 */ 1004 nofs_flag = memalloc_nofs_save(); 1005 workspace = alloc_workspace(type, level); 1006 memalloc_nofs_restore(nofs_flag); 1007 1008 if (IS_ERR(workspace)) { 1009 atomic_dec(total_ws); 1010 wake_up(ws_wait); 1011 1012 /* 1013 * Do not return the error but go back to waiting. There's a 1014 * workspace preallocated for each type and the compression 1015 * time is bounded so we get to a workspace eventually. This 1016 * makes our caller's life easier. 1017 * 1018 * To prevent silent and low-probability deadlocks (when the 1019 * initial preallocation fails), check if there are any 1020 * workspaces at all. 1021 */ 1022 if (atomic_read(total_ws) == 0) { 1023 static DEFINE_RATELIMIT_STATE(_rs, 1024 /* once per minute */ 60 * HZ, 1025 /* no burst */ 1); 1026 1027 if (__ratelimit(&_rs)) { 1028 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n"); 1029 } 1030 } 1031 goto again; 1032 } 1033 return workspace; 1034 } 1035 1036 static struct list_head *get_workspace(int type, int level) 1037 { 1038 switch (type) { 1039 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level); 1040 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level); 1041 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level); 1042 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level); 1043 default: 1044 /* 1045 * This can't happen, the type is validated several times 1046 * before we get here. 1047 */ 1048 BUG(); 1049 } 1050 } 1051 1052 /* 1053 * put a workspace struct back on the list or free it if we have enough 1054 * idle ones sitting around 1055 */ 1056 void btrfs_put_workspace(int type, struct list_head *ws) 1057 { 1058 struct workspace_manager *wsm; 1059 struct list_head *idle_ws; 1060 spinlock_t *ws_lock; 1061 atomic_t *total_ws; 1062 wait_queue_head_t *ws_wait; 1063 int *free_ws; 1064 1065 wsm = btrfs_compress_op[type]->workspace_manager; 1066 idle_ws = &wsm->idle_ws; 1067 ws_lock = &wsm->ws_lock; 1068 total_ws = &wsm->total_ws; 1069 ws_wait = &wsm->ws_wait; 1070 free_ws = &wsm->free_ws; 1071 1072 spin_lock(ws_lock); 1073 if (*free_ws <= num_online_cpus()) { 1074 list_add(ws, idle_ws); 1075 (*free_ws)++; 1076 spin_unlock(ws_lock); 1077 goto wake; 1078 } 1079 spin_unlock(ws_lock); 1080 1081 free_workspace(type, ws); 1082 atomic_dec(total_ws); 1083 wake: 1084 cond_wake_up(ws_wait); 1085 } 1086 1087 static void put_workspace(int type, struct list_head *ws) 1088 { 1089 switch (type) { 1090 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws); 1091 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws); 1092 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws); 1093 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws); 1094 default: 1095 /* 1096 * This can't happen, the type is validated several times 1097 * before we get here. 1098 */ 1099 BUG(); 1100 } 1101 } 1102 1103 /* 1104 * Adjust @level according to the limits of the compression algorithm or 1105 * fallback to default 1106 */ 1107 static unsigned int btrfs_compress_set_level(int type, unsigned level) 1108 { 1109 const struct btrfs_compress_op *ops = btrfs_compress_op[type]; 1110 1111 if (level == 0) 1112 level = ops->default_level; 1113 else 1114 level = min(level, ops->max_level); 1115 1116 return level; 1117 } 1118 1119 /* 1120 * Given an address space and start and length, compress the bytes into @pages 1121 * that are allocated on demand. 1122 * 1123 * @type_level is encoded algorithm and level, where level 0 means whatever 1124 * default the algorithm chooses and is opaque here; 1125 * - compression algo are 0-3 1126 * - the level are bits 4-7 1127 * 1128 * @out_pages is an in/out parameter, holds maximum number of pages to allocate 1129 * and returns number of actually allocated pages 1130 * 1131 * @total_in is used to return the number of bytes actually read. It 1132 * may be smaller than the input length if we had to exit early because we 1133 * ran out of room in the pages array or because we cross the 1134 * max_out threshold. 1135 * 1136 * @total_out is an in/out parameter, must be set to the input length and will 1137 * be also used to return the total number of compressed bytes 1138 * 1139 * @max_out tells us the max number of bytes that we're allowed to 1140 * stuff into pages 1141 */ 1142 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping, 1143 u64 start, struct page **pages, 1144 unsigned long *out_pages, 1145 unsigned long *total_in, 1146 unsigned long *total_out) 1147 { 1148 int type = btrfs_compress_type(type_level); 1149 int level = btrfs_compress_level(type_level); 1150 struct list_head *workspace; 1151 int ret; 1152 1153 level = btrfs_compress_set_level(type, level); 1154 workspace = get_workspace(type, level); 1155 ret = compression_compress_pages(type, workspace, mapping, start, pages, 1156 out_pages, total_in, total_out); 1157 put_workspace(type, workspace); 1158 return ret; 1159 } 1160 1161 /* 1162 * pages_in is an array of pages with compressed data. 1163 * 1164 * disk_start is the starting logical offset of this array in the file 1165 * 1166 * orig_bio contains the pages from the file that we want to decompress into 1167 * 1168 * srclen is the number of bytes in pages_in 1169 * 1170 * The basic idea is that we have a bio that was created by readpages. 1171 * The pages in the bio are for the uncompressed data, and they may not 1172 * be contiguous. They all correspond to the range of bytes covered by 1173 * the compressed extent. 1174 */ 1175 static int btrfs_decompress_bio(struct compressed_bio *cb) 1176 { 1177 struct list_head *workspace; 1178 int ret; 1179 int type = cb->compress_type; 1180 1181 workspace = get_workspace(type, 0); 1182 ret = compression_decompress_bio(type, workspace, cb); 1183 put_workspace(type, workspace); 1184 1185 return ret; 1186 } 1187 1188 /* 1189 * a less complex decompression routine. Our compressed data fits in a 1190 * single page, and we want to read a single page out of it. 1191 * start_byte tells us the offset into the compressed data we're interested in 1192 */ 1193 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page, 1194 unsigned long start_byte, size_t srclen, size_t destlen) 1195 { 1196 struct list_head *workspace; 1197 int ret; 1198 1199 workspace = get_workspace(type, 0); 1200 ret = compression_decompress(type, workspace, data_in, dest_page, 1201 start_byte, srclen, destlen); 1202 put_workspace(type, workspace); 1203 1204 return ret; 1205 } 1206 1207 void __init btrfs_init_compress(void) 1208 { 1209 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE); 1210 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB); 1211 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO); 1212 zstd_init_workspace_manager(); 1213 } 1214 1215 void __cold btrfs_exit_compress(void) 1216 { 1217 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE); 1218 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB); 1219 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO); 1220 zstd_cleanup_workspace_manager(); 1221 } 1222 1223 /* 1224 * Copy uncompressed data from working buffer to pages. 1225 * 1226 * buf_start is the byte offset we're of the start of our workspace buffer. 1227 * 1228 * total_out is the last byte of the buffer 1229 */ 1230 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start, 1231 unsigned long total_out, u64 disk_start, 1232 struct bio *bio) 1233 { 1234 unsigned long buf_offset; 1235 unsigned long current_buf_start; 1236 unsigned long start_byte; 1237 unsigned long prev_start_byte; 1238 unsigned long working_bytes = total_out - buf_start; 1239 unsigned long bytes; 1240 char *kaddr; 1241 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter); 1242 1243 /* 1244 * start byte is the first byte of the page we're currently 1245 * copying into relative to the start of the compressed data. 1246 */ 1247 start_byte = page_offset(bvec.bv_page) - disk_start; 1248 1249 /* we haven't yet hit data corresponding to this page */ 1250 if (total_out <= start_byte) 1251 return 1; 1252 1253 /* 1254 * the start of the data we care about is offset into 1255 * the middle of our working buffer 1256 */ 1257 if (total_out > start_byte && buf_start < start_byte) { 1258 buf_offset = start_byte - buf_start; 1259 working_bytes -= buf_offset; 1260 } else { 1261 buf_offset = 0; 1262 } 1263 current_buf_start = buf_start; 1264 1265 /* copy bytes from the working buffer into the pages */ 1266 while (working_bytes > 0) { 1267 bytes = min_t(unsigned long, bvec.bv_len, 1268 PAGE_SIZE - (buf_offset % PAGE_SIZE)); 1269 bytes = min(bytes, working_bytes); 1270 1271 kaddr = kmap_atomic(bvec.bv_page); 1272 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes); 1273 kunmap_atomic(kaddr); 1274 flush_dcache_page(bvec.bv_page); 1275 1276 buf_offset += bytes; 1277 working_bytes -= bytes; 1278 current_buf_start += bytes; 1279 1280 /* check if we need to pick another page */ 1281 bio_advance(bio, bytes); 1282 if (!bio->bi_iter.bi_size) 1283 return 0; 1284 bvec = bio_iter_iovec(bio, bio->bi_iter); 1285 prev_start_byte = start_byte; 1286 start_byte = page_offset(bvec.bv_page) - disk_start; 1287 1288 /* 1289 * We need to make sure we're only adjusting 1290 * our offset into compression working buffer when 1291 * we're switching pages. Otherwise we can incorrectly 1292 * keep copying when we were actually done. 1293 */ 1294 if (start_byte != prev_start_byte) { 1295 /* 1296 * make sure our new page is covered by this 1297 * working buffer 1298 */ 1299 if (total_out <= start_byte) 1300 return 1; 1301 1302 /* 1303 * the next page in the biovec might not be adjacent 1304 * to the last page, but it might still be found 1305 * inside this working buffer. bump our offset pointer 1306 */ 1307 if (total_out > start_byte && 1308 current_buf_start < start_byte) { 1309 buf_offset = start_byte - buf_start; 1310 working_bytes = total_out - start_byte; 1311 current_buf_start = buf_start + buf_offset; 1312 } 1313 } 1314 } 1315 1316 return 1; 1317 } 1318 1319 /* 1320 * Shannon Entropy calculation 1321 * 1322 * Pure byte distribution analysis fails to determine compressibility of data. 1323 * Try calculating entropy to estimate the average minimum number of bits 1324 * needed to encode the sampled data. 1325 * 1326 * For convenience, return the percentage of needed bits, instead of amount of 1327 * bits directly. 1328 * 1329 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy 1330 * and can be compressible with high probability 1331 * 1332 * @ENTROPY_LVL_HIGH - data are not compressible with high probability 1333 * 1334 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate. 1335 */ 1336 #define ENTROPY_LVL_ACEPTABLE (65) 1337 #define ENTROPY_LVL_HIGH (80) 1338 1339 /* 1340 * For increasead precision in shannon_entropy calculation, 1341 * let's do pow(n, M) to save more digits after comma: 1342 * 1343 * - maximum int bit length is 64 1344 * - ilog2(MAX_SAMPLE_SIZE) -> 13 1345 * - 13 * 4 = 52 < 64 -> M = 4 1346 * 1347 * So use pow(n, 4). 1348 */ 1349 static inline u32 ilog2_w(u64 n) 1350 { 1351 return ilog2(n * n * n * n); 1352 } 1353 1354 static u32 shannon_entropy(struct heuristic_ws *ws) 1355 { 1356 const u32 entropy_max = 8 * ilog2_w(2); 1357 u32 entropy_sum = 0; 1358 u32 p, p_base, sz_base; 1359 u32 i; 1360 1361 sz_base = ilog2_w(ws->sample_size); 1362 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) { 1363 p = ws->bucket[i].count; 1364 p_base = ilog2_w(p); 1365 entropy_sum += p * (sz_base - p_base); 1366 } 1367 1368 entropy_sum /= ws->sample_size; 1369 return entropy_sum * 100 / entropy_max; 1370 } 1371 1372 #define RADIX_BASE 4U 1373 #define COUNTERS_SIZE (1U << RADIX_BASE) 1374 1375 static u8 get4bits(u64 num, int shift) { 1376 u8 low4bits; 1377 1378 num >>= shift; 1379 /* Reverse order */ 1380 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE); 1381 return low4bits; 1382 } 1383 1384 /* 1385 * Use 4 bits as radix base 1386 * Use 16 u32 counters for calculating new position in buf array 1387 * 1388 * @array - array that will be sorted 1389 * @array_buf - buffer array to store sorting results 1390 * must be equal in size to @array 1391 * @num - array size 1392 */ 1393 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf, 1394 int num) 1395 { 1396 u64 max_num; 1397 u64 buf_num; 1398 u32 counters[COUNTERS_SIZE]; 1399 u32 new_addr; 1400 u32 addr; 1401 int bitlen; 1402 int shift; 1403 int i; 1404 1405 /* 1406 * Try avoid useless loop iterations for small numbers stored in big 1407 * counters. Example: 48 33 4 ... in 64bit array 1408 */ 1409 max_num = array[0].count; 1410 for (i = 1; i < num; i++) { 1411 buf_num = array[i].count; 1412 if (buf_num > max_num) 1413 max_num = buf_num; 1414 } 1415 1416 buf_num = ilog2(max_num); 1417 bitlen = ALIGN(buf_num, RADIX_BASE * 2); 1418 1419 shift = 0; 1420 while (shift < bitlen) { 1421 memset(counters, 0, sizeof(counters)); 1422 1423 for (i = 0; i < num; i++) { 1424 buf_num = array[i].count; 1425 addr = get4bits(buf_num, shift); 1426 counters[addr]++; 1427 } 1428 1429 for (i = 1; i < COUNTERS_SIZE; i++) 1430 counters[i] += counters[i - 1]; 1431 1432 for (i = num - 1; i >= 0; i--) { 1433 buf_num = array[i].count; 1434 addr = get4bits(buf_num, shift); 1435 counters[addr]--; 1436 new_addr = counters[addr]; 1437 array_buf[new_addr] = array[i]; 1438 } 1439 1440 shift += RADIX_BASE; 1441 1442 /* 1443 * Normal radix expects to move data from a temporary array, to 1444 * the main one. But that requires some CPU time. Avoid that 1445 * by doing another sort iteration to original array instead of 1446 * memcpy() 1447 */ 1448 memset(counters, 0, sizeof(counters)); 1449 1450 for (i = 0; i < num; i ++) { 1451 buf_num = array_buf[i].count; 1452 addr = get4bits(buf_num, shift); 1453 counters[addr]++; 1454 } 1455 1456 for (i = 1; i < COUNTERS_SIZE; i++) 1457 counters[i] += counters[i - 1]; 1458 1459 for (i = num - 1; i >= 0; i--) { 1460 buf_num = array_buf[i].count; 1461 addr = get4bits(buf_num, shift); 1462 counters[addr]--; 1463 new_addr = counters[addr]; 1464 array[new_addr] = array_buf[i]; 1465 } 1466 1467 shift += RADIX_BASE; 1468 } 1469 } 1470 1471 /* 1472 * Size of the core byte set - how many bytes cover 90% of the sample 1473 * 1474 * There are several types of structured binary data that use nearly all byte 1475 * values. The distribution can be uniform and counts in all buckets will be 1476 * nearly the same (eg. encrypted data). Unlikely to be compressible. 1477 * 1478 * Other possibility is normal (Gaussian) distribution, where the data could 1479 * be potentially compressible, but we have to take a few more steps to decide 1480 * how much. 1481 * 1482 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently, 1483 * compression algo can easy fix that 1484 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high 1485 * probability is not compressible 1486 */ 1487 #define BYTE_CORE_SET_LOW (64) 1488 #define BYTE_CORE_SET_HIGH (200) 1489 1490 static int byte_core_set_size(struct heuristic_ws *ws) 1491 { 1492 u32 i; 1493 u32 coreset_sum = 0; 1494 const u32 core_set_threshold = ws->sample_size * 90 / 100; 1495 struct bucket_item *bucket = ws->bucket; 1496 1497 /* Sort in reverse order */ 1498 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE); 1499 1500 for (i = 0; i < BYTE_CORE_SET_LOW; i++) 1501 coreset_sum += bucket[i].count; 1502 1503 if (coreset_sum > core_set_threshold) 1504 return i; 1505 1506 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) { 1507 coreset_sum += bucket[i].count; 1508 if (coreset_sum > core_set_threshold) 1509 break; 1510 } 1511 1512 return i; 1513 } 1514 1515 /* 1516 * Count byte values in buckets. 1517 * This heuristic can detect textual data (configs, xml, json, html, etc). 1518 * Because in most text-like data byte set is restricted to limited number of 1519 * possible characters, and that restriction in most cases makes data easy to 1520 * compress. 1521 * 1522 * @BYTE_SET_THRESHOLD - consider all data within this byte set size: 1523 * less - compressible 1524 * more - need additional analysis 1525 */ 1526 #define BYTE_SET_THRESHOLD (64) 1527 1528 static u32 byte_set_size(const struct heuristic_ws *ws) 1529 { 1530 u32 i; 1531 u32 byte_set_size = 0; 1532 1533 for (i = 0; i < BYTE_SET_THRESHOLD; i++) { 1534 if (ws->bucket[i].count > 0) 1535 byte_set_size++; 1536 } 1537 1538 /* 1539 * Continue collecting count of byte values in buckets. If the byte 1540 * set size is bigger then the threshold, it's pointless to continue, 1541 * the detection technique would fail for this type of data. 1542 */ 1543 for (; i < BUCKET_SIZE; i++) { 1544 if (ws->bucket[i].count > 0) { 1545 byte_set_size++; 1546 if (byte_set_size > BYTE_SET_THRESHOLD) 1547 return byte_set_size; 1548 } 1549 } 1550 1551 return byte_set_size; 1552 } 1553 1554 static bool sample_repeated_patterns(struct heuristic_ws *ws) 1555 { 1556 const u32 half_of_sample = ws->sample_size / 2; 1557 const u8 *data = ws->sample; 1558 1559 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0; 1560 } 1561 1562 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end, 1563 struct heuristic_ws *ws) 1564 { 1565 struct page *page; 1566 u64 index, index_end; 1567 u32 i, curr_sample_pos; 1568 u8 *in_data; 1569 1570 /* 1571 * Compression handles the input data by chunks of 128KiB 1572 * (defined by BTRFS_MAX_UNCOMPRESSED) 1573 * 1574 * We do the same for the heuristic and loop over the whole range. 1575 * 1576 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will 1577 * process no more than BTRFS_MAX_UNCOMPRESSED at a time. 1578 */ 1579 if (end - start > BTRFS_MAX_UNCOMPRESSED) 1580 end = start + BTRFS_MAX_UNCOMPRESSED; 1581 1582 index = start >> PAGE_SHIFT; 1583 index_end = end >> PAGE_SHIFT; 1584 1585 /* Don't miss unaligned end */ 1586 if (!IS_ALIGNED(end, PAGE_SIZE)) 1587 index_end++; 1588 1589 curr_sample_pos = 0; 1590 while (index < index_end) { 1591 page = find_get_page(inode->i_mapping, index); 1592 in_data = kmap(page); 1593 /* Handle case where the start is not aligned to PAGE_SIZE */ 1594 i = start % PAGE_SIZE; 1595 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) { 1596 /* Don't sample any garbage from the last page */ 1597 if (start > end - SAMPLING_READ_SIZE) 1598 break; 1599 memcpy(&ws->sample[curr_sample_pos], &in_data[i], 1600 SAMPLING_READ_SIZE); 1601 i += SAMPLING_INTERVAL; 1602 start += SAMPLING_INTERVAL; 1603 curr_sample_pos += SAMPLING_READ_SIZE; 1604 } 1605 kunmap(page); 1606 put_page(page); 1607 1608 index++; 1609 } 1610 1611 ws->sample_size = curr_sample_pos; 1612 } 1613 1614 /* 1615 * Compression heuristic. 1616 * 1617 * For now is's a naive and optimistic 'return true', we'll extend the logic to 1618 * quickly (compared to direct compression) detect data characteristics 1619 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible 1620 * data. 1621 * 1622 * The following types of analysis can be performed: 1623 * - detect mostly zero data 1624 * - detect data with low "byte set" size (text, etc) 1625 * - detect data with low/high "core byte" set 1626 * 1627 * Return non-zero if the compression should be done, 0 otherwise. 1628 */ 1629 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end) 1630 { 1631 struct list_head *ws_list = get_workspace(0, 0); 1632 struct heuristic_ws *ws; 1633 u32 i; 1634 u8 byte; 1635 int ret = 0; 1636 1637 ws = list_entry(ws_list, struct heuristic_ws, list); 1638 1639 heuristic_collect_sample(inode, start, end, ws); 1640 1641 if (sample_repeated_patterns(ws)) { 1642 ret = 1; 1643 goto out; 1644 } 1645 1646 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE); 1647 1648 for (i = 0; i < ws->sample_size; i++) { 1649 byte = ws->sample[i]; 1650 ws->bucket[byte].count++; 1651 } 1652 1653 i = byte_set_size(ws); 1654 if (i < BYTE_SET_THRESHOLD) { 1655 ret = 2; 1656 goto out; 1657 } 1658 1659 i = byte_core_set_size(ws); 1660 if (i <= BYTE_CORE_SET_LOW) { 1661 ret = 3; 1662 goto out; 1663 } 1664 1665 if (i >= BYTE_CORE_SET_HIGH) { 1666 ret = 0; 1667 goto out; 1668 } 1669 1670 i = shannon_entropy(ws); 1671 if (i <= ENTROPY_LVL_ACEPTABLE) { 1672 ret = 4; 1673 goto out; 1674 } 1675 1676 /* 1677 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be 1678 * needed to give green light to compression. 1679 * 1680 * For now just assume that compression at that level is not worth the 1681 * resources because: 1682 * 1683 * 1. it is possible to defrag the data later 1684 * 1685 * 2. the data would turn out to be hardly compressible, eg. 150 byte 1686 * values, every bucket has counter at level ~54. The heuristic would 1687 * be confused. This can happen when data have some internal repeated 1688 * patterns like "abbacbbc...". This can be detected by analyzing 1689 * pairs of bytes, which is too costly. 1690 */ 1691 if (i < ENTROPY_LVL_HIGH) { 1692 ret = 5; 1693 goto out; 1694 } else { 1695 ret = 0; 1696 goto out; 1697 } 1698 1699 out: 1700 put_workspace(0, ws_list); 1701 return ret; 1702 } 1703 1704 /* 1705 * Convert the compression suffix (eg. after "zlib" starting with ":") to 1706 * level, unrecognized string will set the default level 1707 */ 1708 unsigned int btrfs_compress_str2level(unsigned int type, const char *str) 1709 { 1710 unsigned int level = 0; 1711 int ret; 1712 1713 if (!type) 1714 return 0; 1715 1716 if (str[0] == ':') { 1717 ret = kstrtouint(str + 1, 10, &level); 1718 if (ret) 1719 level = 0; 1720 } 1721 1722 level = btrfs_compress_set_level(type, level); 1723 1724 return level; 1725 } 1726