xref: /openbmc/linux/fs/btrfs/block-group.c (revision cbb3a19f090d5a41b822caf9ff2058e1c6bc7ea3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20 
21 /*
22  * Return target flags in extended format or 0 if restripe for this chunk_type
23  * is not in progress
24  *
25  * Should be called with balance_lock held
26  */
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 	u64 target = 0;
31 
32 	if (!bctl)
33 		return 0;
34 
35 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 	}
45 
46 	return target;
47 }
48 
49 /*
50  * @flags: available profiles in extended format (see ctree.h)
51  *
52  * Return reduced profile in chunk format.  If profile changing is in progress
53  * (either running or paused) picks the target profile (if it's already
54  * available), otherwise falls back to plain reducing.
55  */
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 	u64 num_devices = fs_info->fs_devices->rw_devices;
59 	u64 target;
60 	u64 raid_type;
61 	u64 allowed = 0;
62 
63 	/*
64 	 * See if restripe for this chunk_type is in progress, if so try to
65 	 * reduce to the target profile
66 	 */
67 	spin_lock(&fs_info->balance_lock);
68 	target = get_restripe_target(fs_info, flags);
69 	if (target) {
70 		spin_unlock(&fs_info->balance_lock);
71 		return extended_to_chunk(target);
72 	}
73 	spin_unlock(&fs_info->balance_lock);
74 
75 	/* First, mask out the RAID levels which aren't possible */
76 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 			allowed |= btrfs_raid_array[raid_type].bg_flag;
79 	}
80 	allowed &= flags;
81 
82 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 		allowed = BTRFS_BLOCK_GROUP_RAID6;
84 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 		allowed = BTRFS_BLOCK_GROUP_RAID5;
86 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 		allowed = BTRFS_BLOCK_GROUP_RAID10;
88 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 		allowed = BTRFS_BLOCK_GROUP_RAID1;
90 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 		allowed = BTRFS_BLOCK_GROUP_RAID0;
92 
93 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94 
95 	return extended_to_chunk(flags | allowed);
96 }
97 
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 	unsigned seq;
101 	u64 flags;
102 
103 	do {
104 		flags = orig_flags;
105 		seq = read_seqbegin(&fs_info->profiles_lock);
106 
107 		if (flags & BTRFS_BLOCK_GROUP_DATA)
108 			flags |= fs_info->avail_data_alloc_bits;
109 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 			flags |= fs_info->avail_system_alloc_bits;
111 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 			flags |= fs_info->avail_metadata_alloc_bits;
113 	} while (read_seqretry(&fs_info->profiles_lock, seq));
114 
115 	return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117 
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 	refcount_inc(&cache->refs);
121 }
122 
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 	if (refcount_dec_and_test(&cache->refs)) {
126 		WARN_ON(cache->pinned > 0);
127 		/*
128 		 * If there was a failure to cleanup a log tree, very likely due
129 		 * to an IO failure on a writeback attempt of one or more of its
130 		 * extent buffers, we could not do proper (and cheap) unaccounting
131 		 * of their reserved space, so don't warn on reserved > 0 in that
132 		 * case.
133 		 */
134 		if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 		    !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 			WARN_ON(cache->reserved > 0);
137 
138 		/*
139 		 * A block_group shouldn't be on the discard_list anymore.
140 		 * Remove the block_group from the discard_list to prevent us
141 		 * from causing a panic due to NULL pointer dereference.
142 		 */
143 		if (WARN_ON(!list_empty(&cache->discard_list)))
144 			btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 						  cache);
146 
147 		/*
148 		 * If not empty, someone is still holding mutex of
149 		 * full_stripe_lock, which can only be released by caller.
150 		 * And it will definitely cause use-after-free when caller
151 		 * tries to release full stripe lock.
152 		 *
153 		 * No better way to resolve, but only to warn.
154 		 */
155 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 		kfree(cache->free_space_ctl);
157 		kfree(cache->physical_map);
158 		kfree(cache);
159 	}
160 }
161 
162 /*
163  * This adds the block group to the fs_info rb tree for the block group cache
164  */
165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
166 				       struct btrfs_block_group *block_group)
167 {
168 	struct rb_node **p;
169 	struct rb_node *parent = NULL;
170 	struct btrfs_block_group *cache;
171 	bool leftmost = true;
172 
173 	ASSERT(block_group->length != 0);
174 
175 	write_lock(&info->block_group_cache_lock);
176 	p = &info->block_group_cache_tree.rb_root.rb_node;
177 
178 	while (*p) {
179 		parent = *p;
180 		cache = rb_entry(parent, struct btrfs_block_group, cache_node);
181 		if (block_group->start < cache->start) {
182 			p = &(*p)->rb_left;
183 		} else if (block_group->start > cache->start) {
184 			p = &(*p)->rb_right;
185 			leftmost = false;
186 		} else {
187 			write_unlock(&info->block_group_cache_lock);
188 			return -EEXIST;
189 		}
190 	}
191 
192 	rb_link_node(&block_group->cache_node, parent, p);
193 	rb_insert_color_cached(&block_group->cache_node,
194 			       &info->block_group_cache_tree, leftmost);
195 
196 	write_unlock(&info->block_group_cache_lock);
197 
198 	return 0;
199 }
200 
201 /*
202  * This will return the block group at or after bytenr if contains is 0, else
203  * it will return the block group that contains the bytenr
204  */
205 static struct btrfs_block_group *block_group_cache_tree_search(
206 		struct btrfs_fs_info *info, u64 bytenr, int contains)
207 {
208 	struct btrfs_block_group *cache, *ret = NULL;
209 	struct rb_node *n;
210 	u64 end, start;
211 
212 	read_lock(&info->block_group_cache_lock);
213 	n = info->block_group_cache_tree.rb_root.rb_node;
214 
215 	while (n) {
216 		cache = rb_entry(n, struct btrfs_block_group, cache_node);
217 		end = cache->start + cache->length - 1;
218 		start = cache->start;
219 
220 		if (bytenr < start) {
221 			if (!contains && (!ret || start < ret->start))
222 				ret = cache;
223 			n = n->rb_left;
224 		} else if (bytenr > start) {
225 			if (contains && bytenr <= end) {
226 				ret = cache;
227 				break;
228 			}
229 			n = n->rb_right;
230 		} else {
231 			ret = cache;
232 			break;
233 		}
234 	}
235 	if (ret)
236 		btrfs_get_block_group(ret);
237 	read_unlock(&info->block_group_cache_lock);
238 
239 	return ret;
240 }
241 
242 /*
243  * Return the block group that starts at or after bytenr
244  */
245 struct btrfs_block_group *btrfs_lookup_first_block_group(
246 		struct btrfs_fs_info *info, u64 bytenr)
247 {
248 	return block_group_cache_tree_search(info, bytenr, 0);
249 }
250 
251 /*
252  * Return the block group that contains the given bytenr
253  */
254 struct btrfs_block_group *btrfs_lookup_block_group(
255 		struct btrfs_fs_info *info, u64 bytenr)
256 {
257 	return block_group_cache_tree_search(info, bytenr, 1);
258 }
259 
260 struct btrfs_block_group *btrfs_next_block_group(
261 		struct btrfs_block_group *cache)
262 {
263 	struct btrfs_fs_info *fs_info = cache->fs_info;
264 	struct rb_node *node;
265 
266 	read_lock(&fs_info->block_group_cache_lock);
267 
268 	/* If our block group was removed, we need a full search. */
269 	if (RB_EMPTY_NODE(&cache->cache_node)) {
270 		const u64 next_bytenr = cache->start + cache->length;
271 
272 		read_unlock(&fs_info->block_group_cache_lock);
273 		btrfs_put_block_group(cache);
274 		return btrfs_lookup_first_block_group(fs_info, next_bytenr);
275 	}
276 	node = rb_next(&cache->cache_node);
277 	btrfs_put_block_group(cache);
278 	if (node) {
279 		cache = rb_entry(node, struct btrfs_block_group, cache_node);
280 		btrfs_get_block_group(cache);
281 	} else
282 		cache = NULL;
283 	read_unlock(&fs_info->block_group_cache_lock);
284 	return cache;
285 }
286 
287 /**
288  * Check if we can do a NOCOW write for a given extent.
289  *
290  * @fs_info:       The filesystem information object.
291  * @bytenr:        Logical start address of the extent.
292  *
293  * Check if we can do a NOCOW write for the given extent, and increments the
294  * number of NOCOW writers in the block group that contains the extent, as long
295  * as the block group exists and it's currently not in read-only mode.
296  *
297  * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
298  *          is responsible for calling btrfs_dec_nocow_writers() later.
299  *
300  *          Or NULL if we can not do a NOCOW write
301  */
302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
303 						  u64 bytenr)
304 {
305 	struct btrfs_block_group *bg;
306 	bool can_nocow = true;
307 
308 	bg = btrfs_lookup_block_group(fs_info, bytenr);
309 	if (!bg)
310 		return NULL;
311 
312 	spin_lock(&bg->lock);
313 	if (bg->ro)
314 		can_nocow = false;
315 	else
316 		atomic_inc(&bg->nocow_writers);
317 	spin_unlock(&bg->lock);
318 
319 	if (!can_nocow) {
320 		btrfs_put_block_group(bg);
321 		return NULL;
322 	}
323 
324 	/* No put on block group, done by btrfs_dec_nocow_writers(). */
325 	return bg;
326 }
327 
328 /**
329  * Decrement the number of NOCOW writers in a block group.
330  *
331  * @bg:       The block group.
332  *
333  * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
334  * and on the block group returned by that call. Typically this is called after
335  * creating an ordered extent for a NOCOW write, to prevent races with scrub and
336  * relocation.
337  *
338  * After this call, the caller should not use the block group anymore. It it wants
339  * to use it, then it should get a reference on it before calling this function.
340  */
341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
342 {
343 	if (atomic_dec_and_test(&bg->nocow_writers))
344 		wake_up_var(&bg->nocow_writers);
345 
346 	/* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
347 	btrfs_put_block_group(bg);
348 }
349 
350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
351 {
352 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
353 }
354 
355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
356 					const u64 start)
357 {
358 	struct btrfs_block_group *bg;
359 
360 	bg = btrfs_lookup_block_group(fs_info, start);
361 	ASSERT(bg);
362 	if (atomic_dec_and_test(&bg->reservations))
363 		wake_up_var(&bg->reservations);
364 	btrfs_put_block_group(bg);
365 }
366 
367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
368 {
369 	struct btrfs_space_info *space_info = bg->space_info;
370 
371 	ASSERT(bg->ro);
372 
373 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
374 		return;
375 
376 	/*
377 	 * Our block group is read only but before we set it to read only,
378 	 * some task might have had allocated an extent from it already, but it
379 	 * has not yet created a respective ordered extent (and added it to a
380 	 * root's list of ordered extents).
381 	 * Therefore wait for any task currently allocating extents, since the
382 	 * block group's reservations counter is incremented while a read lock
383 	 * on the groups' semaphore is held and decremented after releasing
384 	 * the read access on that semaphore and creating the ordered extent.
385 	 */
386 	down_write(&space_info->groups_sem);
387 	up_write(&space_info->groups_sem);
388 
389 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
390 }
391 
392 struct btrfs_caching_control *btrfs_get_caching_control(
393 		struct btrfs_block_group *cache)
394 {
395 	struct btrfs_caching_control *ctl;
396 
397 	spin_lock(&cache->lock);
398 	if (!cache->caching_ctl) {
399 		spin_unlock(&cache->lock);
400 		return NULL;
401 	}
402 
403 	ctl = cache->caching_ctl;
404 	refcount_inc(&ctl->count);
405 	spin_unlock(&cache->lock);
406 	return ctl;
407 }
408 
409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
410 {
411 	if (refcount_dec_and_test(&ctl->count))
412 		kfree(ctl);
413 }
414 
415 /*
416  * When we wait for progress in the block group caching, its because our
417  * allocation attempt failed at least once.  So, we must sleep and let some
418  * progress happen before we try again.
419  *
420  * This function will sleep at least once waiting for new free space to show
421  * up, and then it will check the block group free space numbers for our min
422  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
423  * a free extent of a given size, but this is a good start.
424  *
425  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
426  * any of the information in this block group.
427  */
428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
429 					   u64 num_bytes)
430 {
431 	struct btrfs_caching_control *caching_ctl;
432 
433 	caching_ctl = btrfs_get_caching_control(cache);
434 	if (!caching_ctl)
435 		return;
436 
437 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
438 		   (cache->free_space_ctl->free_space >= num_bytes));
439 
440 	btrfs_put_caching_control(caching_ctl);
441 }
442 
443 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
444 {
445 	struct btrfs_caching_control *caching_ctl;
446 	int ret = 0;
447 
448 	caching_ctl = btrfs_get_caching_control(cache);
449 	if (!caching_ctl)
450 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
451 
452 	wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
453 	if (cache->cached == BTRFS_CACHE_ERROR)
454 		ret = -EIO;
455 	btrfs_put_caching_control(caching_ctl);
456 	return ret;
457 }
458 
459 static bool space_cache_v1_done(struct btrfs_block_group *cache)
460 {
461 	bool ret;
462 
463 	spin_lock(&cache->lock);
464 	ret = cache->cached != BTRFS_CACHE_FAST;
465 	spin_unlock(&cache->lock);
466 
467 	return ret;
468 }
469 
470 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
471 				struct btrfs_caching_control *caching_ctl)
472 {
473 	wait_event(caching_ctl->wait, space_cache_v1_done(cache));
474 }
475 
476 #ifdef CONFIG_BTRFS_DEBUG
477 static void fragment_free_space(struct btrfs_block_group *block_group)
478 {
479 	struct btrfs_fs_info *fs_info = block_group->fs_info;
480 	u64 start = block_group->start;
481 	u64 len = block_group->length;
482 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
483 		fs_info->nodesize : fs_info->sectorsize;
484 	u64 step = chunk << 1;
485 
486 	while (len > chunk) {
487 		btrfs_remove_free_space(block_group, start, chunk);
488 		start += step;
489 		if (len < step)
490 			len = 0;
491 		else
492 			len -= step;
493 	}
494 }
495 #endif
496 
497 /*
498  * This is only called by btrfs_cache_block_group, since we could have freed
499  * extents we need to check the pinned_extents for any extents that can't be
500  * used yet since their free space will be released as soon as the transaction
501  * commits.
502  */
503 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
504 {
505 	struct btrfs_fs_info *info = block_group->fs_info;
506 	u64 extent_start, extent_end, size, total_added = 0;
507 	int ret;
508 
509 	while (start < end) {
510 		ret = find_first_extent_bit(&info->excluded_extents, start,
511 					    &extent_start, &extent_end,
512 					    EXTENT_DIRTY | EXTENT_UPTODATE,
513 					    NULL);
514 		if (ret)
515 			break;
516 
517 		if (extent_start <= start) {
518 			start = extent_end + 1;
519 		} else if (extent_start > start && extent_start < end) {
520 			size = extent_start - start;
521 			total_added += size;
522 			ret = btrfs_add_free_space_async_trimmed(block_group,
523 								 start, size);
524 			BUG_ON(ret); /* -ENOMEM or logic error */
525 			start = extent_end + 1;
526 		} else {
527 			break;
528 		}
529 	}
530 
531 	if (start < end) {
532 		size = end - start;
533 		total_added += size;
534 		ret = btrfs_add_free_space_async_trimmed(block_group, start,
535 							 size);
536 		BUG_ON(ret); /* -ENOMEM or logic error */
537 	}
538 
539 	return total_added;
540 }
541 
542 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
543 {
544 	struct btrfs_block_group *block_group = caching_ctl->block_group;
545 	struct btrfs_fs_info *fs_info = block_group->fs_info;
546 	struct btrfs_root *extent_root;
547 	struct btrfs_path *path;
548 	struct extent_buffer *leaf;
549 	struct btrfs_key key;
550 	u64 total_found = 0;
551 	u64 last = 0;
552 	u32 nritems;
553 	int ret;
554 	bool wakeup = true;
555 
556 	path = btrfs_alloc_path();
557 	if (!path)
558 		return -ENOMEM;
559 
560 	last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
561 	extent_root = btrfs_extent_root(fs_info, last);
562 
563 #ifdef CONFIG_BTRFS_DEBUG
564 	/*
565 	 * If we're fragmenting we don't want to make anybody think we can
566 	 * allocate from this block group until we've had a chance to fragment
567 	 * the free space.
568 	 */
569 	if (btrfs_should_fragment_free_space(block_group))
570 		wakeup = false;
571 #endif
572 	/*
573 	 * We don't want to deadlock with somebody trying to allocate a new
574 	 * extent for the extent root while also trying to search the extent
575 	 * root to add free space.  So we skip locking and search the commit
576 	 * root, since its read-only
577 	 */
578 	path->skip_locking = 1;
579 	path->search_commit_root = 1;
580 	path->reada = READA_FORWARD;
581 
582 	key.objectid = last;
583 	key.offset = 0;
584 	key.type = BTRFS_EXTENT_ITEM_KEY;
585 
586 next:
587 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
588 	if (ret < 0)
589 		goto out;
590 
591 	leaf = path->nodes[0];
592 	nritems = btrfs_header_nritems(leaf);
593 
594 	while (1) {
595 		if (btrfs_fs_closing(fs_info) > 1) {
596 			last = (u64)-1;
597 			break;
598 		}
599 
600 		if (path->slots[0] < nritems) {
601 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
602 		} else {
603 			ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
604 			if (ret)
605 				break;
606 
607 			if (need_resched() ||
608 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
609 				if (wakeup)
610 					caching_ctl->progress = last;
611 				btrfs_release_path(path);
612 				up_read(&fs_info->commit_root_sem);
613 				mutex_unlock(&caching_ctl->mutex);
614 				cond_resched();
615 				mutex_lock(&caching_ctl->mutex);
616 				down_read(&fs_info->commit_root_sem);
617 				goto next;
618 			}
619 
620 			ret = btrfs_next_leaf(extent_root, path);
621 			if (ret < 0)
622 				goto out;
623 			if (ret)
624 				break;
625 			leaf = path->nodes[0];
626 			nritems = btrfs_header_nritems(leaf);
627 			continue;
628 		}
629 
630 		if (key.objectid < last) {
631 			key.objectid = last;
632 			key.offset = 0;
633 			key.type = BTRFS_EXTENT_ITEM_KEY;
634 
635 			if (wakeup)
636 				caching_ctl->progress = last;
637 			btrfs_release_path(path);
638 			goto next;
639 		}
640 
641 		if (key.objectid < block_group->start) {
642 			path->slots[0]++;
643 			continue;
644 		}
645 
646 		if (key.objectid >= block_group->start + block_group->length)
647 			break;
648 
649 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
650 		    key.type == BTRFS_METADATA_ITEM_KEY) {
651 			total_found += add_new_free_space(block_group, last,
652 							  key.objectid);
653 			if (key.type == BTRFS_METADATA_ITEM_KEY)
654 				last = key.objectid +
655 					fs_info->nodesize;
656 			else
657 				last = key.objectid + key.offset;
658 
659 			if (total_found > CACHING_CTL_WAKE_UP) {
660 				total_found = 0;
661 				if (wakeup)
662 					wake_up(&caching_ctl->wait);
663 			}
664 		}
665 		path->slots[0]++;
666 	}
667 	ret = 0;
668 
669 	total_found += add_new_free_space(block_group, last,
670 				block_group->start + block_group->length);
671 	caching_ctl->progress = (u64)-1;
672 
673 out:
674 	btrfs_free_path(path);
675 	return ret;
676 }
677 
678 static noinline void caching_thread(struct btrfs_work *work)
679 {
680 	struct btrfs_block_group *block_group;
681 	struct btrfs_fs_info *fs_info;
682 	struct btrfs_caching_control *caching_ctl;
683 	int ret;
684 
685 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
686 	block_group = caching_ctl->block_group;
687 	fs_info = block_group->fs_info;
688 
689 	mutex_lock(&caching_ctl->mutex);
690 	down_read(&fs_info->commit_root_sem);
691 
692 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
693 		ret = load_free_space_cache(block_group);
694 		if (ret == 1) {
695 			ret = 0;
696 			goto done;
697 		}
698 
699 		/*
700 		 * We failed to load the space cache, set ourselves to
701 		 * CACHE_STARTED and carry on.
702 		 */
703 		spin_lock(&block_group->lock);
704 		block_group->cached = BTRFS_CACHE_STARTED;
705 		spin_unlock(&block_group->lock);
706 		wake_up(&caching_ctl->wait);
707 	}
708 
709 	/*
710 	 * If we are in the transaction that populated the free space tree we
711 	 * can't actually cache from the free space tree as our commit root and
712 	 * real root are the same, so we could change the contents of the blocks
713 	 * while caching.  Instead do the slow caching in this case, and after
714 	 * the transaction has committed we will be safe.
715 	 */
716 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
717 	    !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
718 		ret = load_free_space_tree(caching_ctl);
719 	else
720 		ret = load_extent_tree_free(caching_ctl);
721 done:
722 	spin_lock(&block_group->lock);
723 	block_group->caching_ctl = NULL;
724 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
725 	spin_unlock(&block_group->lock);
726 
727 #ifdef CONFIG_BTRFS_DEBUG
728 	if (btrfs_should_fragment_free_space(block_group)) {
729 		u64 bytes_used;
730 
731 		spin_lock(&block_group->space_info->lock);
732 		spin_lock(&block_group->lock);
733 		bytes_used = block_group->length - block_group->used;
734 		block_group->space_info->bytes_used += bytes_used >> 1;
735 		spin_unlock(&block_group->lock);
736 		spin_unlock(&block_group->space_info->lock);
737 		fragment_free_space(block_group);
738 	}
739 #endif
740 
741 	caching_ctl->progress = (u64)-1;
742 
743 	up_read(&fs_info->commit_root_sem);
744 	btrfs_free_excluded_extents(block_group);
745 	mutex_unlock(&caching_ctl->mutex);
746 
747 	wake_up(&caching_ctl->wait);
748 
749 	btrfs_put_caching_control(caching_ctl);
750 	btrfs_put_block_group(block_group);
751 }
752 
753 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
754 {
755 	DEFINE_WAIT(wait);
756 	struct btrfs_fs_info *fs_info = cache->fs_info;
757 	struct btrfs_caching_control *caching_ctl = NULL;
758 	int ret = 0;
759 
760 	/* Allocator for zoned filesystems does not use the cache at all */
761 	if (btrfs_is_zoned(fs_info))
762 		return 0;
763 
764 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
765 	if (!caching_ctl)
766 		return -ENOMEM;
767 
768 	INIT_LIST_HEAD(&caching_ctl->list);
769 	mutex_init(&caching_ctl->mutex);
770 	init_waitqueue_head(&caching_ctl->wait);
771 	caching_ctl->block_group = cache;
772 	caching_ctl->progress = cache->start;
773 	refcount_set(&caching_ctl->count, 2);
774 	btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
775 
776 	spin_lock(&cache->lock);
777 	if (cache->cached != BTRFS_CACHE_NO) {
778 		kfree(caching_ctl);
779 
780 		caching_ctl = cache->caching_ctl;
781 		if (caching_ctl)
782 			refcount_inc(&caching_ctl->count);
783 		spin_unlock(&cache->lock);
784 		goto out;
785 	}
786 	WARN_ON(cache->caching_ctl);
787 	cache->caching_ctl = caching_ctl;
788 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
789 		cache->cached = BTRFS_CACHE_FAST;
790 	else
791 		cache->cached = BTRFS_CACHE_STARTED;
792 	cache->has_caching_ctl = 1;
793 	spin_unlock(&cache->lock);
794 
795 	write_lock(&fs_info->block_group_cache_lock);
796 	refcount_inc(&caching_ctl->count);
797 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
798 	write_unlock(&fs_info->block_group_cache_lock);
799 
800 	btrfs_get_block_group(cache);
801 
802 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
803 out:
804 	if (load_cache_only && caching_ctl)
805 		btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
806 	if (caching_ctl)
807 		btrfs_put_caching_control(caching_ctl);
808 
809 	return ret;
810 }
811 
812 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
813 {
814 	u64 extra_flags = chunk_to_extended(flags) &
815 				BTRFS_EXTENDED_PROFILE_MASK;
816 
817 	write_seqlock(&fs_info->profiles_lock);
818 	if (flags & BTRFS_BLOCK_GROUP_DATA)
819 		fs_info->avail_data_alloc_bits &= ~extra_flags;
820 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
821 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
822 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
823 		fs_info->avail_system_alloc_bits &= ~extra_flags;
824 	write_sequnlock(&fs_info->profiles_lock);
825 }
826 
827 /*
828  * Clear incompat bits for the following feature(s):
829  *
830  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
831  *            in the whole filesystem
832  *
833  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
834  */
835 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
836 {
837 	bool found_raid56 = false;
838 	bool found_raid1c34 = false;
839 
840 	if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
841 	    (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
842 	    (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
843 		struct list_head *head = &fs_info->space_info;
844 		struct btrfs_space_info *sinfo;
845 
846 		list_for_each_entry_rcu(sinfo, head, list) {
847 			down_read(&sinfo->groups_sem);
848 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
849 				found_raid56 = true;
850 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
851 				found_raid56 = true;
852 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
853 				found_raid1c34 = true;
854 			if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
855 				found_raid1c34 = true;
856 			up_read(&sinfo->groups_sem);
857 		}
858 		if (!found_raid56)
859 			btrfs_clear_fs_incompat(fs_info, RAID56);
860 		if (!found_raid1c34)
861 			btrfs_clear_fs_incompat(fs_info, RAID1C34);
862 	}
863 }
864 
865 static int remove_block_group_item(struct btrfs_trans_handle *trans,
866 				   struct btrfs_path *path,
867 				   struct btrfs_block_group *block_group)
868 {
869 	struct btrfs_fs_info *fs_info = trans->fs_info;
870 	struct btrfs_root *root;
871 	struct btrfs_key key;
872 	int ret;
873 
874 	root = btrfs_block_group_root(fs_info);
875 	key.objectid = block_group->start;
876 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
877 	key.offset = block_group->length;
878 
879 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
880 	if (ret > 0)
881 		ret = -ENOENT;
882 	if (ret < 0)
883 		return ret;
884 
885 	ret = btrfs_del_item(trans, root, path);
886 	return ret;
887 }
888 
889 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
890 			     u64 group_start, struct extent_map *em)
891 {
892 	struct btrfs_fs_info *fs_info = trans->fs_info;
893 	struct btrfs_path *path;
894 	struct btrfs_block_group *block_group;
895 	struct btrfs_free_cluster *cluster;
896 	struct inode *inode;
897 	struct kobject *kobj = NULL;
898 	int ret;
899 	int index;
900 	int factor;
901 	struct btrfs_caching_control *caching_ctl = NULL;
902 	bool remove_em;
903 	bool remove_rsv = false;
904 
905 	block_group = btrfs_lookup_block_group(fs_info, group_start);
906 	BUG_ON(!block_group);
907 	BUG_ON(!block_group->ro);
908 
909 	trace_btrfs_remove_block_group(block_group);
910 	/*
911 	 * Free the reserved super bytes from this block group before
912 	 * remove it.
913 	 */
914 	btrfs_free_excluded_extents(block_group);
915 	btrfs_free_ref_tree_range(fs_info, block_group->start,
916 				  block_group->length);
917 
918 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
919 	factor = btrfs_bg_type_to_factor(block_group->flags);
920 
921 	/* make sure this block group isn't part of an allocation cluster */
922 	cluster = &fs_info->data_alloc_cluster;
923 	spin_lock(&cluster->refill_lock);
924 	btrfs_return_cluster_to_free_space(block_group, cluster);
925 	spin_unlock(&cluster->refill_lock);
926 
927 	/*
928 	 * make sure this block group isn't part of a metadata
929 	 * allocation cluster
930 	 */
931 	cluster = &fs_info->meta_alloc_cluster;
932 	spin_lock(&cluster->refill_lock);
933 	btrfs_return_cluster_to_free_space(block_group, cluster);
934 	spin_unlock(&cluster->refill_lock);
935 
936 	btrfs_clear_treelog_bg(block_group);
937 	btrfs_clear_data_reloc_bg(block_group);
938 
939 	path = btrfs_alloc_path();
940 	if (!path) {
941 		ret = -ENOMEM;
942 		goto out;
943 	}
944 
945 	/*
946 	 * get the inode first so any iput calls done for the io_list
947 	 * aren't the final iput (no unlinks allowed now)
948 	 */
949 	inode = lookup_free_space_inode(block_group, path);
950 
951 	mutex_lock(&trans->transaction->cache_write_mutex);
952 	/*
953 	 * Make sure our free space cache IO is done before removing the
954 	 * free space inode
955 	 */
956 	spin_lock(&trans->transaction->dirty_bgs_lock);
957 	if (!list_empty(&block_group->io_list)) {
958 		list_del_init(&block_group->io_list);
959 
960 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
961 
962 		spin_unlock(&trans->transaction->dirty_bgs_lock);
963 		btrfs_wait_cache_io(trans, block_group, path);
964 		btrfs_put_block_group(block_group);
965 		spin_lock(&trans->transaction->dirty_bgs_lock);
966 	}
967 
968 	if (!list_empty(&block_group->dirty_list)) {
969 		list_del_init(&block_group->dirty_list);
970 		remove_rsv = true;
971 		btrfs_put_block_group(block_group);
972 	}
973 	spin_unlock(&trans->transaction->dirty_bgs_lock);
974 	mutex_unlock(&trans->transaction->cache_write_mutex);
975 
976 	ret = btrfs_remove_free_space_inode(trans, inode, block_group);
977 	if (ret)
978 		goto out;
979 
980 	write_lock(&fs_info->block_group_cache_lock);
981 	rb_erase_cached(&block_group->cache_node,
982 			&fs_info->block_group_cache_tree);
983 	RB_CLEAR_NODE(&block_group->cache_node);
984 
985 	/* Once for the block groups rbtree */
986 	btrfs_put_block_group(block_group);
987 
988 	write_unlock(&fs_info->block_group_cache_lock);
989 
990 	down_write(&block_group->space_info->groups_sem);
991 	/*
992 	 * we must use list_del_init so people can check to see if they
993 	 * are still on the list after taking the semaphore
994 	 */
995 	list_del_init(&block_group->list);
996 	if (list_empty(&block_group->space_info->block_groups[index])) {
997 		kobj = block_group->space_info->block_group_kobjs[index];
998 		block_group->space_info->block_group_kobjs[index] = NULL;
999 		clear_avail_alloc_bits(fs_info, block_group->flags);
1000 	}
1001 	up_write(&block_group->space_info->groups_sem);
1002 	clear_incompat_bg_bits(fs_info, block_group->flags);
1003 	if (kobj) {
1004 		kobject_del(kobj);
1005 		kobject_put(kobj);
1006 	}
1007 
1008 	if (block_group->has_caching_ctl)
1009 		caching_ctl = btrfs_get_caching_control(block_group);
1010 	if (block_group->cached == BTRFS_CACHE_STARTED)
1011 		btrfs_wait_block_group_cache_done(block_group);
1012 	if (block_group->has_caching_ctl) {
1013 		write_lock(&fs_info->block_group_cache_lock);
1014 		if (!caching_ctl) {
1015 			struct btrfs_caching_control *ctl;
1016 
1017 			list_for_each_entry(ctl,
1018 				    &fs_info->caching_block_groups, list)
1019 				if (ctl->block_group == block_group) {
1020 					caching_ctl = ctl;
1021 					refcount_inc(&caching_ctl->count);
1022 					break;
1023 				}
1024 		}
1025 		if (caching_ctl)
1026 			list_del_init(&caching_ctl->list);
1027 		write_unlock(&fs_info->block_group_cache_lock);
1028 		if (caching_ctl) {
1029 			/* Once for the caching bgs list and once for us. */
1030 			btrfs_put_caching_control(caching_ctl);
1031 			btrfs_put_caching_control(caching_ctl);
1032 		}
1033 	}
1034 
1035 	spin_lock(&trans->transaction->dirty_bgs_lock);
1036 	WARN_ON(!list_empty(&block_group->dirty_list));
1037 	WARN_ON(!list_empty(&block_group->io_list));
1038 	spin_unlock(&trans->transaction->dirty_bgs_lock);
1039 
1040 	btrfs_remove_free_space_cache(block_group);
1041 
1042 	spin_lock(&block_group->space_info->lock);
1043 	list_del_init(&block_group->ro_list);
1044 
1045 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1046 		WARN_ON(block_group->space_info->total_bytes
1047 			< block_group->length);
1048 		WARN_ON(block_group->space_info->bytes_readonly
1049 			< block_group->length - block_group->zone_unusable);
1050 		WARN_ON(block_group->space_info->bytes_zone_unusable
1051 			< block_group->zone_unusable);
1052 		WARN_ON(block_group->space_info->disk_total
1053 			< block_group->length * factor);
1054 	}
1055 	block_group->space_info->total_bytes -= block_group->length;
1056 	block_group->space_info->bytes_readonly -=
1057 		(block_group->length - block_group->zone_unusable);
1058 	block_group->space_info->bytes_zone_unusable -=
1059 		block_group->zone_unusable;
1060 	block_group->space_info->disk_total -= block_group->length * factor;
1061 
1062 	spin_unlock(&block_group->space_info->lock);
1063 
1064 	/*
1065 	 * Remove the free space for the block group from the free space tree
1066 	 * and the block group's item from the extent tree before marking the
1067 	 * block group as removed. This is to prevent races with tasks that
1068 	 * freeze and unfreeze a block group, this task and another task
1069 	 * allocating a new block group - the unfreeze task ends up removing
1070 	 * the block group's extent map before the task calling this function
1071 	 * deletes the block group item from the extent tree, allowing for
1072 	 * another task to attempt to create another block group with the same
1073 	 * item key (and failing with -EEXIST and a transaction abort).
1074 	 */
1075 	ret = remove_block_group_free_space(trans, block_group);
1076 	if (ret)
1077 		goto out;
1078 
1079 	ret = remove_block_group_item(trans, path, block_group);
1080 	if (ret < 0)
1081 		goto out;
1082 
1083 	spin_lock(&block_group->lock);
1084 	block_group->removed = 1;
1085 	/*
1086 	 * At this point trimming or scrub can't start on this block group,
1087 	 * because we removed the block group from the rbtree
1088 	 * fs_info->block_group_cache_tree so no one can't find it anymore and
1089 	 * even if someone already got this block group before we removed it
1090 	 * from the rbtree, they have already incremented block_group->frozen -
1091 	 * if they didn't, for the trimming case they won't find any free space
1092 	 * entries because we already removed them all when we called
1093 	 * btrfs_remove_free_space_cache().
1094 	 *
1095 	 * And we must not remove the extent map from the fs_info->mapping_tree
1096 	 * to prevent the same logical address range and physical device space
1097 	 * ranges from being reused for a new block group. This is needed to
1098 	 * avoid races with trimming and scrub.
1099 	 *
1100 	 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1101 	 * completely transactionless, so while it is trimming a range the
1102 	 * currently running transaction might finish and a new one start,
1103 	 * allowing for new block groups to be created that can reuse the same
1104 	 * physical device locations unless we take this special care.
1105 	 *
1106 	 * There may also be an implicit trim operation if the file system
1107 	 * is mounted with -odiscard. The same protections must remain
1108 	 * in place until the extents have been discarded completely when
1109 	 * the transaction commit has completed.
1110 	 */
1111 	remove_em = (atomic_read(&block_group->frozen) == 0);
1112 	spin_unlock(&block_group->lock);
1113 
1114 	if (remove_em) {
1115 		struct extent_map_tree *em_tree;
1116 
1117 		em_tree = &fs_info->mapping_tree;
1118 		write_lock(&em_tree->lock);
1119 		remove_extent_mapping(em_tree, em);
1120 		write_unlock(&em_tree->lock);
1121 		/* once for the tree */
1122 		free_extent_map(em);
1123 	}
1124 
1125 out:
1126 	/* Once for the lookup reference */
1127 	btrfs_put_block_group(block_group);
1128 	if (remove_rsv)
1129 		btrfs_delayed_refs_rsv_release(fs_info, 1);
1130 	btrfs_free_path(path);
1131 	return ret;
1132 }
1133 
1134 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1135 		struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1136 {
1137 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1138 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1139 	struct extent_map *em;
1140 	struct map_lookup *map;
1141 	unsigned int num_items;
1142 
1143 	read_lock(&em_tree->lock);
1144 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1145 	read_unlock(&em_tree->lock);
1146 	ASSERT(em && em->start == chunk_offset);
1147 
1148 	/*
1149 	 * We need to reserve 3 + N units from the metadata space info in order
1150 	 * to remove a block group (done at btrfs_remove_chunk() and at
1151 	 * btrfs_remove_block_group()), which are used for:
1152 	 *
1153 	 * 1 unit for adding the free space inode's orphan (located in the tree
1154 	 * of tree roots).
1155 	 * 1 unit for deleting the block group item (located in the extent
1156 	 * tree).
1157 	 * 1 unit for deleting the free space item (located in tree of tree
1158 	 * roots).
1159 	 * N units for deleting N device extent items corresponding to each
1160 	 * stripe (located in the device tree).
1161 	 *
1162 	 * In order to remove a block group we also need to reserve units in the
1163 	 * system space info in order to update the chunk tree (update one or
1164 	 * more device items and remove one chunk item), but this is done at
1165 	 * btrfs_remove_chunk() through a call to check_system_chunk().
1166 	 */
1167 	map = em->map_lookup;
1168 	num_items = 3 + map->num_stripes;
1169 	free_extent_map(em);
1170 
1171 	return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1172 }
1173 
1174 /*
1175  * Mark block group @cache read-only, so later write won't happen to block
1176  * group @cache.
1177  *
1178  * If @force is not set, this function will only mark the block group readonly
1179  * if we have enough free space (1M) in other metadata/system block groups.
1180  * If @force is not set, this function will mark the block group readonly
1181  * without checking free space.
1182  *
1183  * NOTE: This function doesn't care if other block groups can contain all the
1184  * data in this block group. That check should be done by relocation routine,
1185  * not this function.
1186  */
1187 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1188 {
1189 	struct btrfs_space_info *sinfo = cache->space_info;
1190 	u64 num_bytes;
1191 	int ret = -ENOSPC;
1192 
1193 	spin_lock(&sinfo->lock);
1194 	spin_lock(&cache->lock);
1195 
1196 	if (cache->swap_extents) {
1197 		ret = -ETXTBSY;
1198 		goto out;
1199 	}
1200 
1201 	if (cache->ro) {
1202 		cache->ro++;
1203 		ret = 0;
1204 		goto out;
1205 	}
1206 
1207 	num_bytes = cache->length - cache->reserved - cache->pinned -
1208 		    cache->bytes_super - cache->zone_unusable - cache->used;
1209 
1210 	/*
1211 	 * Data never overcommits, even in mixed mode, so do just the straight
1212 	 * check of left over space in how much we have allocated.
1213 	 */
1214 	if (force) {
1215 		ret = 0;
1216 	} else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1217 		u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1218 
1219 		/*
1220 		 * Here we make sure if we mark this bg RO, we still have enough
1221 		 * free space as buffer.
1222 		 */
1223 		if (sinfo_used + num_bytes <= sinfo->total_bytes)
1224 			ret = 0;
1225 	} else {
1226 		/*
1227 		 * We overcommit metadata, so we need to do the
1228 		 * btrfs_can_overcommit check here, and we need to pass in
1229 		 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1230 		 * leeway to allow us to mark this block group as read only.
1231 		 */
1232 		if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1233 					 BTRFS_RESERVE_NO_FLUSH))
1234 			ret = 0;
1235 	}
1236 
1237 	if (!ret) {
1238 		sinfo->bytes_readonly += num_bytes;
1239 		if (btrfs_is_zoned(cache->fs_info)) {
1240 			/* Migrate zone_unusable bytes to readonly */
1241 			sinfo->bytes_readonly += cache->zone_unusable;
1242 			sinfo->bytes_zone_unusable -= cache->zone_unusable;
1243 			cache->zone_unusable = 0;
1244 		}
1245 		cache->ro++;
1246 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1247 	}
1248 out:
1249 	spin_unlock(&cache->lock);
1250 	spin_unlock(&sinfo->lock);
1251 	if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1252 		btrfs_info(cache->fs_info,
1253 			"unable to make block group %llu ro", cache->start);
1254 		btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1255 	}
1256 	return ret;
1257 }
1258 
1259 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1260 				 struct btrfs_block_group *bg)
1261 {
1262 	struct btrfs_fs_info *fs_info = bg->fs_info;
1263 	struct btrfs_transaction *prev_trans = NULL;
1264 	const u64 start = bg->start;
1265 	const u64 end = start + bg->length - 1;
1266 	int ret;
1267 
1268 	spin_lock(&fs_info->trans_lock);
1269 	if (trans->transaction->list.prev != &fs_info->trans_list) {
1270 		prev_trans = list_last_entry(&trans->transaction->list,
1271 					     struct btrfs_transaction, list);
1272 		refcount_inc(&prev_trans->use_count);
1273 	}
1274 	spin_unlock(&fs_info->trans_lock);
1275 
1276 	/*
1277 	 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1278 	 * btrfs_finish_extent_commit(). If we are at transaction N, another
1279 	 * task might be running finish_extent_commit() for the previous
1280 	 * transaction N - 1, and have seen a range belonging to the block
1281 	 * group in pinned_extents before we were able to clear the whole block
1282 	 * group range from pinned_extents. This means that task can lookup for
1283 	 * the block group after we unpinned it from pinned_extents and removed
1284 	 * it, leading to a BUG_ON() at unpin_extent_range().
1285 	 */
1286 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
1287 	if (prev_trans) {
1288 		ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1289 					EXTENT_DIRTY);
1290 		if (ret)
1291 			goto out;
1292 	}
1293 
1294 	ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1295 				EXTENT_DIRTY);
1296 out:
1297 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1298 	if (prev_trans)
1299 		btrfs_put_transaction(prev_trans);
1300 
1301 	return ret == 0;
1302 }
1303 
1304 /*
1305  * Process the unused_bgs list and remove any that don't have any allocated
1306  * space inside of them.
1307  */
1308 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1309 {
1310 	struct btrfs_block_group *block_group;
1311 	struct btrfs_space_info *space_info;
1312 	struct btrfs_trans_handle *trans;
1313 	const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1314 	int ret = 0;
1315 
1316 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1317 		return;
1318 
1319 	/*
1320 	 * Long running balances can keep us blocked here for eternity, so
1321 	 * simply skip deletion if we're unable to get the mutex.
1322 	 */
1323 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1324 		return;
1325 
1326 	spin_lock(&fs_info->unused_bgs_lock);
1327 	while (!list_empty(&fs_info->unused_bgs)) {
1328 		int trimming;
1329 
1330 		block_group = list_first_entry(&fs_info->unused_bgs,
1331 					       struct btrfs_block_group,
1332 					       bg_list);
1333 		list_del_init(&block_group->bg_list);
1334 
1335 		space_info = block_group->space_info;
1336 
1337 		if (ret || btrfs_mixed_space_info(space_info)) {
1338 			btrfs_put_block_group(block_group);
1339 			continue;
1340 		}
1341 		spin_unlock(&fs_info->unused_bgs_lock);
1342 
1343 		btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1344 
1345 		/* Don't want to race with allocators so take the groups_sem */
1346 		down_write(&space_info->groups_sem);
1347 
1348 		/*
1349 		 * Async discard moves the final block group discard to be prior
1350 		 * to the unused_bgs code path.  Therefore, if it's not fully
1351 		 * trimmed, punt it back to the async discard lists.
1352 		 */
1353 		if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1354 		    !btrfs_is_free_space_trimmed(block_group)) {
1355 			trace_btrfs_skip_unused_block_group(block_group);
1356 			up_write(&space_info->groups_sem);
1357 			/* Requeue if we failed because of async discard */
1358 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1359 						 block_group);
1360 			goto next;
1361 		}
1362 
1363 		spin_lock(&block_group->lock);
1364 		if (block_group->reserved || block_group->pinned ||
1365 		    block_group->used || block_group->ro ||
1366 		    list_is_singular(&block_group->list)) {
1367 			/*
1368 			 * We want to bail if we made new allocations or have
1369 			 * outstanding allocations in this block group.  We do
1370 			 * the ro check in case balance is currently acting on
1371 			 * this block group.
1372 			 */
1373 			trace_btrfs_skip_unused_block_group(block_group);
1374 			spin_unlock(&block_group->lock);
1375 			up_write(&space_info->groups_sem);
1376 			goto next;
1377 		}
1378 		spin_unlock(&block_group->lock);
1379 
1380 		/* We don't want to force the issue, only flip if it's ok. */
1381 		ret = inc_block_group_ro(block_group, 0);
1382 		up_write(&space_info->groups_sem);
1383 		if (ret < 0) {
1384 			ret = 0;
1385 			goto next;
1386 		}
1387 
1388 		ret = btrfs_zone_finish(block_group);
1389 		if (ret < 0) {
1390 			btrfs_dec_block_group_ro(block_group);
1391 			if (ret == -EAGAIN)
1392 				ret = 0;
1393 			goto next;
1394 		}
1395 
1396 		/*
1397 		 * Want to do this before we do anything else so we can recover
1398 		 * properly if we fail to join the transaction.
1399 		 */
1400 		trans = btrfs_start_trans_remove_block_group(fs_info,
1401 						     block_group->start);
1402 		if (IS_ERR(trans)) {
1403 			btrfs_dec_block_group_ro(block_group);
1404 			ret = PTR_ERR(trans);
1405 			goto next;
1406 		}
1407 
1408 		/*
1409 		 * We could have pending pinned extents for this block group,
1410 		 * just delete them, we don't care about them anymore.
1411 		 */
1412 		if (!clean_pinned_extents(trans, block_group)) {
1413 			btrfs_dec_block_group_ro(block_group);
1414 			goto end_trans;
1415 		}
1416 
1417 		/*
1418 		 * At this point, the block_group is read only and should fail
1419 		 * new allocations.  However, btrfs_finish_extent_commit() can
1420 		 * cause this block_group to be placed back on the discard
1421 		 * lists because now the block_group isn't fully discarded.
1422 		 * Bail here and try again later after discarding everything.
1423 		 */
1424 		spin_lock(&fs_info->discard_ctl.lock);
1425 		if (!list_empty(&block_group->discard_list)) {
1426 			spin_unlock(&fs_info->discard_ctl.lock);
1427 			btrfs_dec_block_group_ro(block_group);
1428 			btrfs_discard_queue_work(&fs_info->discard_ctl,
1429 						 block_group);
1430 			goto end_trans;
1431 		}
1432 		spin_unlock(&fs_info->discard_ctl.lock);
1433 
1434 		/* Reset pinned so btrfs_put_block_group doesn't complain */
1435 		spin_lock(&space_info->lock);
1436 		spin_lock(&block_group->lock);
1437 
1438 		btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1439 						     -block_group->pinned);
1440 		space_info->bytes_readonly += block_group->pinned;
1441 		block_group->pinned = 0;
1442 
1443 		spin_unlock(&block_group->lock);
1444 		spin_unlock(&space_info->lock);
1445 
1446 		/*
1447 		 * The normal path here is an unused block group is passed here,
1448 		 * then trimming is handled in the transaction commit path.
1449 		 * Async discard interposes before this to do the trimming
1450 		 * before coming down the unused block group path as trimming
1451 		 * will no longer be done later in the transaction commit path.
1452 		 */
1453 		if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1454 			goto flip_async;
1455 
1456 		/*
1457 		 * DISCARD can flip during remount. On zoned filesystems, we
1458 		 * need to reset sequential-required zones.
1459 		 */
1460 		trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1461 				btrfs_is_zoned(fs_info);
1462 
1463 		/* Implicit trim during transaction commit. */
1464 		if (trimming)
1465 			btrfs_freeze_block_group(block_group);
1466 
1467 		/*
1468 		 * Btrfs_remove_chunk will abort the transaction if things go
1469 		 * horribly wrong.
1470 		 */
1471 		ret = btrfs_remove_chunk(trans, block_group->start);
1472 
1473 		if (ret) {
1474 			if (trimming)
1475 				btrfs_unfreeze_block_group(block_group);
1476 			goto end_trans;
1477 		}
1478 
1479 		/*
1480 		 * If we're not mounted with -odiscard, we can just forget
1481 		 * about this block group. Otherwise we'll need to wait
1482 		 * until transaction commit to do the actual discard.
1483 		 */
1484 		if (trimming) {
1485 			spin_lock(&fs_info->unused_bgs_lock);
1486 			/*
1487 			 * A concurrent scrub might have added us to the list
1488 			 * fs_info->unused_bgs, so use a list_move operation
1489 			 * to add the block group to the deleted_bgs list.
1490 			 */
1491 			list_move(&block_group->bg_list,
1492 				  &trans->transaction->deleted_bgs);
1493 			spin_unlock(&fs_info->unused_bgs_lock);
1494 			btrfs_get_block_group(block_group);
1495 		}
1496 end_trans:
1497 		btrfs_end_transaction(trans);
1498 next:
1499 		btrfs_put_block_group(block_group);
1500 		spin_lock(&fs_info->unused_bgs_lock);
1501 	}
1502 	spin_unlock(&fs_info->unused_bgs_lock);
1503 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1504 	return;
1505 
1506 flip_async:
1507 	btrfs_end_transaction(trans);
1508 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1509 	btrfs_put_block_group(block_group);
1510 	btrfs_discard_punt_unused_bgs_list(fs_info);
1511 }
1512 
1513 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1514 {
1515 	struct btrfs_fs_info *fs_info = bg->fs_info;
1516 
1517 	spin_lock(&fs_info->unused_bgs_lock);
1518 	if (list_empty(&bg->bg_list)) {
1519 		btrfs_get_block_group(bg);
1520 		trace_btrfs_add_unused_block_group(bg);
1521 		list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1522 	}
1523 	spin_unlock(&fs_info->unused_bgs_lock);
1524 }
1525 
1526 /*
1527  * We want block groups with a low number of used bytes to be in the beginning
1528  * of the list, so they will get reclaimed first.
1529  */
1530 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1531 			   const struct list_head *b)
1532 {
1533 	const struct btrfs_block_group *bg1, *bg2;
1534 
1535 	bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1536 	bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1537 
1538 	return bg1->used > bg2->used;
1539 }
1540 
1541 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1542 {
1543 	if (btrfs_is_zoned(fs_info))
1544 		return btrfs_zoned_should_reclaim(fs_info);
1545 	return true;
1546 }
1547 
1548 void btrfs_reclaim_bgs_work(struct work_struct *work)
1549 {
1550 	struct btrfs_fs_info *fs_info =
1551 		container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1552 	struct btrfs_block_group *bg;
1553 	struct btrfs_space_info *space_info;
1554 
1555 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1556 		return;
1557 
1558 	if (!btrfs_should_reclaim(fs_info))
1559 		return;
1560 
1561 	sb_start_write(fs_info->sb);
1562 
1563 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1564 		sb_end_write(fs_info->sb);
1565 		return;
1566 	}
1567 
1568 	/*
1569 	 * Long running balances can keep us blocked here for eternity, so
1570 	 * simply skip reclaim if we're unable to get the mutex.
1571 	 */
1572 	if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1573 		btrfs_exclop_finish(fs_info);
1574 		sb_end_write(fs_info->sb);
1575 		return;
1576 	}
1577 
1578 	spin_lock(&fs_info->unused_bgs_lock);
1579 	/*
1580 	 * Sort happens under lock because we can't simply splice it and sort.
1581 	 * The block groups might still be in use and reachable via bg_list,
1582 	 * and their presence in the reclaim_bgs list must be preserved.
1583 	 */
1584 	list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1585 	while (!list_empty(&fs_info->reclaim_bgs)) {
1586 		u64 zone_unusable;
1587 		int ret = 0;
1588 
1589 		bg = list_first_entry(&fs_info->reclaim_bgs,
1590 				      struct btrfs_block_group,
1591 				      bg_list);
1592 		list_del_init(&bg->bg_list);
1593 
1594 		space_info = bg->space_info;
1595 		spin_unlock(&fs_info->unused_bgs_lock);
1596 
1597 		/* Don't race with allocators so take the groups_sem */
1598 		down_write(&space_info->groups_sem);
1599 
1600 		spin_lock(&bg->lock);
1601 		if (bg->reserved || bg->pinned || bg->ro) {
1602 			/*
1603 			 * We want to bail if we made new allocations or have
1604 			 * outstanding allocations in this block group.  We do
1605 			 * the ro check in case balance is currently acting on
1606 			 * this block group.
1607 			 */
1608 			spin_unlock(&bg->lock);
1609 			up_write(&space_info->groups_sem);
1610 			goto next;
1611 		}
1612 		spin_unlock(&bg->lock);
1613 
1614 		/* Get out fast, in case we're unmounting the filesystem */
1615 		if (btrfs_fs_closing(fs_info)) {
1616 			up_write(&space_info->groups_sem);
1617 			goto next;
1618 		}
1619 
1620 		/*
1621 		 * Cache the zone_unusable value before turning the block group
1622 		 * to read only. As soon as the blog group is read only it's
1623 		 * zone_unusable value gets moved to the block group's read-only
1624 		 * bytes and isn't available for calculations anymore.
1625 		 */
1626 		zone_unusable = bg->zone_unusable;
1627 		ret = inc_block_group_ro(bg, 0);
1628 		up_write(&space_info->groups_sem);
1629 		if (ret < 0)
1630 			goto next;
1631 
1632 		btrfs_info(fs_info,
1633 			"reclaiming chunk %llu with %llu%% used %llu%% unusable",
1634 				bg->start, div_u64(bg->used * 100, bg->length),
1635 				div64_u64(zone_unusable * 100, bg->length));
1636 		trace_btrfs_reclaim_block_group(bg);
1637 		ret = btrfs_relocate_chunk(fs_info, bg->start);
1638 		if (ret)
1639 			btrfs_err(fs_info, "error relocating chunk %llu",
1640 				  bg->start);
1641 
1642 next:
1643 		btrfs_put_block_group(bg);
1644 		spin_lock(&fs_info->unused_bgs_lock);
1645 	}
1646 	spin_unlock(&fs_info->unused_bgs_lock);
1647 	mutex_unlock(&fs_info->reclaim_bgs_lock);
1648 	btrfs_exclop_finish(fs_info);
1649 	sb_end_write(fs_info->sb);
1650 }
1651 
1652 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1653 {
1654 	spin_lock(&fs_info->unused_bgs_lock);
1655 	if (!list_empty(&fs_info->reclaim_bgs))
1656 		queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1657 	spin_unlock(&fs_info->unused_bgs_lock);
1658 }
1659 
1660 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1661 {
1662 	struct btrfs_fs_info *fs_info = bg->fs_info;
1663 
1664 	spin_lock(&fs_info->unused_bgs_lock);
1665 	if (list_empty(&bg->bg_list)) {
1666 		btrfs_get_block_group(bg);
1667 		trace_btrfs_add_reclaim_block_group(bg);
1668 		list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1669 	}
1670 	spin_unlock(&fs_info->unused_bgs_lock);
1671 }
1672 
1673 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1674 			   struct btrfs_path *path)
1675 {
1676 	struct extent_map_tree *em_tree;
1677 	struct extent_map *em;
1678 	struct btrfs_block_group_item bg;
1679 	struct extent_buffer *leaf;
1680 	int slot;
1681 	u64 flags;
1682 	int ret = 0;
1683 
1684 	slot = path->slots[0];
1685 	leaf = path->nodes[0];
1686 
1687 	em_tree = &fs_info->mapping_tree;
1688 	read_lock(&em_tree->lock);
1689 	em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1690 	read_unlock(&em_tree->lock);
1691 	if (!em) {
1692 		btrfs_err(fs_info,
1693 			  "logical %llu len %llu found bg but no related chunk",
1694 			  key->objectid, key->offset);
1695 		return -ENOENT;
1696 	}
1697 
1698 	if (em->start != key->objectid || em->len != key->offset) {
1699 		btrfs_err(fs_info,
1700 			"block group %llu len %llu mismatch with chunk %llu len %llu",
1701 			key->objectid, key->offset, em->start, em->len);
1702 		ret = -EUCLEAN;
1703 		goto out_free_em;
1704 	}
1705 
1706 	read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1707 			   sizeof(bg));
1708 	flags = btrfs_stack_block_group_flags(&bg) &
1709 		BTRFS_BLOCK_GROUP_TYPE_MASK;
1710 
1711 	if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1712 		btrfs_err(fs_info,
1713 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1714 			  key->objectid, key->offset, flags,
1715 			  (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1716 		ret = -EUCLEAN;
1717 	}
1718 
1719 out_free_em:
1720 	free_extent_map(em);
1721 	return ret;
1722 }
1723 
1724 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1725 				  struct btrfs_path *path,
1726 				  struct btrfs_key *key)
1727 {
1728 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
1729 	int ret;
1730 	struct btrfs_key found_key;
1731 
1732 	btrfs_for_each_slot(root, key, &found_key, path, ret) {
1733 		if (found_key.objectid >= key->objectid &&
1734 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1735 			return read_bg_from_eb(fs_info, &found_key, path);
1736 		}
1737 	}
1738 	return ret;
1739 }
1740 
1741 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1742 {
1743 	u64 extra_flags = chunk_to_extended(flags) &
1744 				BTRFS_EXTENDED_PROFILE_MASK;
1745 
1746 	write_seqlock(&fs_info->profiles_lock);
1747 	if (flags & BTRFS_BLOCK_GROUP_DATA)
1748 		fs_info->avail_data_alloc_bits |= extra_flags;
1749 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
1750 		fs_info->avail_metadata_alloc_bits |= extra_flags;
1751 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1752 		fs_info->avail_system_alloc_bits |= extra_flags;
1753 	write_sequnlock(&fs_info->profiles_lock);
1754 }
1755 
1756 /**
1757  * Map a physical disk address to a list of logical addresses
1758  *
1759  * @fs_info:       the filesystem
1760  * @chunk_start:   logical address of block group
1761  * @bdev:	   physical device to resolve, can be NULL to indicate any device
1762  * @physical:	   physical address to map to logical addresses
1763  * @logical:	   return array of logical addresses which map to @physical
1764  * @naddrs:	   length of @logical
1765  * @stripe_len:    size of IO stripe for the given block group
1766  *
1767  * Maps a particular @physical disk address to a list of @logical addresses.
1768  * Used primarily to exclude those portions of a block group that contain super
1769  * block copies.
1770  */
1771 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1772 		     struct block_device *bdev, u64 physical, u64 **logical,
1773 		     int *naddrs, int *stripe_len)
1774 {
1775 	struct extent_map *em;
1776 	struct map_lookup *map;
1777 	u64 *buf;
1778 	u64 bytenr;
1779 	u64 data_stripe_length;
1780 	u64 io_stripe_size;
1781 	int i, nr = 0;
1782 	int ret = 0;
1783 
1784 	em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1785 	if (IS_ERR(em))
1786 		return -EIO;
1787 
1788 	map = em->map_lookup;
1789 	data_stripe_length = em->orig_block_len;
1790 	io_stripe_size = map->stripe_len;
1791 	chunk_start = em->start;
1792 
1793 	/* For RAID5/6 adjust to a full IO stripe length */
1794 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1795 		io_stripe_size = map->stripe_len * nr_data_stripes(map);
1796 
1797 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1798 	if (!buf) {
1799 		ret = -ENOMEM;
1800 		goto out;
1801 	}
1802 
1803 	for (i = 0; i < map->num_stripes; i++) {
1804 		bool already_inserted = false;
1805 		u64 stripe_nr;
1806 		u64 offset;
1807 		int j;
1808 
1809 		if (!in_range(physical, map->stripes[i].physical,
1810 			      data_stripe_length))
1811 			continue;
1812 
1813 		if (bdev && map->stripes[i].dev->bdev != bdev)
1814 			continue;
1815 
1816 		stripe_nr = physical - map->stripes[i].physical;
1817 		stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1818 
1819 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1820 			stripe_nr = stripe_nr * map->num_stripes + i;
1821 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1822 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1823 			stripe_nr = stripe_nr * map->num_stripes + i;
1824 		}
1825 		/*
1826 		 * The remaining case would be for RAID56, multiply by
1827 		 * nr_data_stripes().  Alternatively, just use rmap_len below
1828 		 * instead of map->stripe_len
1829 		 */
1830 
1831 		bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1832 
1833 		/* Ensure we don't add duplicate addresses */
1834 		for (j = 0; j < nr; j++) {
1835 			if (buf[j] == bytenr) {
1836 				already_inserted = true;
1837 				break;
1838 			}
1839 		}
1840 
1841 		if (!already_inserted)
1842 			buf[nr++] = bytenr;
1843 	}
1844 
1845 	*logical = buf;
1846 	*naddrs = nr;
1847 	*stripe_len = io_stripe_size;
1848 out:
1849 	free_extent_map(em);
1850 	return ret;
1851 }
1852 
1853 static int exclude_super_stripes(struct btrfs_block_group *cache)
1854 {
1855 	struct btrfs_fs_info *fs_info = cache->fs_info;
1856 	const bool zoned = btrfs_is_zoned(fs_info);
1857 	u64 bytenr;
1858 	u64 *logical;
1859 	int stripe_len;
1860 	int i, nr, ret;
1861 
1862 	if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1863 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1864 		cache->bytes_super += stripe_len;
1865 		ret = btrfs_add_excluded_extent(fs_info, cache->start,
1866 						stripe_len);
1867 		if (ret)
1868 			return ret;
1869 	}
1870 
1871 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1872 		bytenr = btrfs_sb_offset(i);
1873 		ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1874 				       bytenr, &logical, &nr, &stripe_len);
1875 		if (ret)
1876 			return ret;
1877 
1878 		/* Shouldn't have super stripes in sequential zones */
1879 		if (zoned && nr) {
1880 			btrfs_err(fs_info,
1881 			"zoned: block group %llu must not contain super block",
1882 				  cache->start);
1883 			return -EUCLEAN;
1884 		}
1885 
1886 		while (nr--) {
1887 			u64 len = min_t(u64, stripe_len,
1888 				cache->start + cache->length - logical[nr]);
1889 
1890 			cache->bytes_super += len;
1891 			ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1892 							len);
1893 			if (ret) {
1894 				kfree(logical);
1895 				return ret;
1896 			}
1897 		}
1898 
1899 		kfree(logical);
1900 	}
1901 	return 0;
1902 }
1903 
1904 static void link_block_group(struct btrfs_block_group *cache)
1905 {
1906 	struct btrfs_space_info *space_info = cache->space_info;
1907 	int index = btrfs_bg_flags_to_raid_index(cache->flags);
1908 
1909 	down_write(&space_info->groups_sem);
1910 	list_add_tail(&cache->list, &space_info->block_groups[index]);
1911 	up_write(&space_info->groups_sem);
1912 }
1913 
1914 static struct btrfs_block_group *btrfs_create_block_group_cache(
1915 		struct btrfs_fs_info *fs_info, u64 start)
1916 {
1917 	struct btrfs_block_group *cache;
1918 
1919 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
1920 	if (!cache)
1921 		return NULL;
1922 
1923 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1924 					GFP_NOFS);
1925 	if (!cache->free_space_ctl) {
1926 		kfree(cache);
1927 		return NULL;
1928 	}
1929 
1930 	cache->start = start;
1931 
1932 	cache->fs_info = fs_info;
1933 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1934 
1935 	cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1936 
1937 	refcount_set(&cache->refs, 1);
1938 	spin_lock_init(&cache->lock);
1939 	init_rwsem(&cache->data_rwsem);
1940 	INIT_LIST_HEAD(&cache->list);
1941 	INIT_LIST_HEAD(&cache->cluster_list);
1942 	INIT_LIST_HEAD(&cache->bg_list);
1943 	INIT_LIST_HEAD(&cache->ro_list);
1944 	INIT_LIST_HEAD(&cache->discard_list);
1945 	INIT_LIST_HEAD(&cache->dirty_list);
1946 	INIT_LIST_HEAD(&cache->io_list);
1947 	INIT_LIST_HEAD(&cache->active_bg_list);
1948 	btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1949 	atomic_set(&cache->frozen, 0);
1950 	mutex_init(&cache->free_space_lock);
1951 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1952 
1953 	return cache;
1954 }
1955 
1956 /*
1957  * Iterate all chunks and verify that each of them has the corresponding block
1958  * group
1959  */
1960 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1961 {
1962 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1963 	struct extent_map *em;
1964 	struct btrfs_block_group *bg;
1965 	u64 start = 0;
1966 	int ret = 0;
1967 
1968 	while (1) {
1969 		read_lock(&map_tree->lock);
1970 		/*
1971 		 * lookup_extent_mapping will return the first extent map
1972 		 * intersecting the range, so setting @len to 1 is enough to
1973 		 * get the first chunk.
1974 		 */
1975 		em = lookup_extent_mapping(map_tree, start, 1);
1976 		read_unlock(&map_tree->lock);
1977 		if (!em)
1978 			break;
1979 
1980 		bg = btrfs_lookup_block_group(fs_info, em->start);
1981 		if (!bg) {
1982 			btrfs_err(fs_info,
1983 	"chunk start=%llu len=%llu doesn't have corresponding block group",
1984 				     em->start, em->len);
1985 			ret = -EUCLEAN;
1986 			free_extent_map(em);
1987 			break;
1988 		}
1989 		if (bg->start != em->start || bg->length != em->len ||
1990 		    (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1991 		    (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1992 			btrfs_err(fs_info,
1993 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1994 				em->start, em->len,
1995 				em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1996 				bg->start, bg->length,
1997 				bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1998 			ret = -EUCLEAN;
1999 			free_extent_map(em);
2000 			btrfs_put_block_group(bg);
2001 			break;
2002 		}
2003 		start = em->start + em->len;
2004 		free_extent_map(em);
2005 		btrfs_put_block_group(bg);
2006 	}
2007 	return ret;
2008 }
2009 
2010 static int read_one_block_group(struct btrfs_fs_info *info,
2011 				struct btrfs_block_group_item *bgi,
2012 				const struct btrfs_key *key,
2013 				int need_clear)
2014 {
2015 	struct btrfs_block_group *cache;
2016 	struct btrfs_space_info *space_info;
2017 	const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2018 	int ret;
2019 
2020 	ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2021 
2022 	cache = btrfs_create_block_group_cache(info, key->objectid);
2023 	if (!cache)
2024 		return -ENOMEM;
2025 
2026 	cache->length = key->offset;
2027 	cache->used = btrfs_stack_block_group_used(bgi);
2028 	cache->flags = btrfs_stack_block_group_flags(bgi);
2029 	cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2030 
2031 	set_free_space_tree_thresholds(cache);
2032 
2033 	if (need_clear) {
2034 		/*
2035 		 * When we mount with old space cache, we need to
2036 		 * set BTRFS_DC_CLEAR and set dirty flag.
2037 		 *
2038 		 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2039 		 *    truncate the old free space cache inode and
2040 		 *    setup a new one.
2041 		 * b) Setting 'dirty flag' makes sure that we flush
2042 		 *    the new space cache info onto disk.
2043 		 */
2044 		if (btrfs_test_opt(info, SPACE_CACHE))
2045 			cache->disk_cache_state = BTRFS_DC_CLEAR;
2046 	}
2047 	if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2048 	    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2049 			btrfs_err(info,
2050 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2051 				  cache->start);
2052 			ret = -EINVAL;
2053 			goto error;
2054 	}
2055 
2056 	ret = btrfs_load_block_group_zone_info(cache, false);
2057 	if (ret) {
2058 		btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2059 			  cache->start);
2060 		goto error;
2061 	}
2062 
2063 	/*
2064 	 * We need to exclude the super stripes now so that the space info has
2065 	 * super bytes accounted for, otherwise we'll think we have more space
2066 	 * than we actually do.
2067 	 */
2068 	ret = exclude_super_stripes(cache);
2069 	if (ret) {
2070 		/* We may have excluded something, so call this just in case. */
2071 		btrfs_free_excluded_extents(cache);
2072 		goto error;
2073 	}
2074 
2075 	/*
2076 	 * For zoned filesystem, space after the allocation offset is the only
2077 	 * free space for a block group. So, we don't need any caching work.
2078 	 * btrfs_calc_zone_unusable() will set the amount of free space and
2079 	 * zone_unusable space.
2080 	 *
2081 	 * For regular filesystem, check for two cases, either we are full, and
2082 	 * therefore don't need to bother with the caching work since we won't
2083 	 * find any space, or we are empty, and we can just add all the space
2084 	 * in and be done with it.  This saves us _a_lot_ of time, particularly
2085 	 * in the full case.
2086 	 */
2087 	if (btrfs_is_zoned(info)) {
2088 		btrfs_calc_zone_unusable(cache);
2089 		/* Should not have any excluded extents. Just in case, though. */
2090 		btrfs_free_excluded_extents(cache);
2091 	} else if (cache->length == cache->used) {
2092 		cache->last_byte_to_unpin = (u64)-1;
2093 		cache->cached = BTRFS_CACHE_FINISHED;
2094 		btrfs_free_excluded_extents(cache);
2095 	} else if (cache->used == 0) {
2096 		cache->last_byte_to_unpin = (u64)-1;
2097 		cache->cached = BTRFS_CACHE_FINISHED;
2098 		add_new_free_space(cache, cache->start,
2099 				   cache->start + cache->length);
2100 		btrfs_free_excluded_extents(cache);
2101 	}
2102 
2103 	ret = btrfs_add_block_group_cache(info, cache);
2104 	if (ret) {
2105 		btrfs_remove_free_space_cache(cache);
2106 		goto error;
2107 	}
2108 	trace_btrfs_add_block_group(info, cache, 0);
2109 	btrfs_update_space_info(info, cache->flags, cache->length,
2110 				cache->used, cache->bytes_super,
2111 				cache->zone_unusable, &space_info);
2112 
2113 	cache->space_info = space_info;
2114 
2115 	link_block_group(cache);
2116 
2117 	set_avail_alloc_bits(info, cache->flags);
2118 	if (btrfs_chunk_writeable(info, cache->start)) {
2119 		if (cache->used == 0) {
2120 			ASSERT(list_empty(&cache->bg_list));
2121 			if (btrfs_test_opt(info, DISCARD_ASYNC))
2122 				btrfs_discard_queue_work(&info->discard_ctl, cache);
2123 			else
2124 				btrfs_mark_bg_unused(cache);
2125 		}
2126 	} else {
2127 		inc_block_group_ro(cache, 1);
2128 	}
2129 
2130 	return 0;
2131 error:
2132 	btrfs_put_block_group(cache);
2133 	return ret;
2134 }
2135 
2136 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2137 {
2138 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2139 	struct btrfs_space_info *space_info;
2140 	struct rb_node *node;
2141 	int ret = 0;
2142 
2143 	for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2144 		struct extent_map *em;
2145 		struct map_lookup *map;
2146 		struct btrfs_block_group *bg;
2147 
2148 		em = rb_entry(node, struct extent_map, rb_node);
2149 		map = em->map_lookup;
2150 		bg = btrfs_create_block_group_cache(fs_info, em->start);
2151 		if (!bg) {
2152 			ret = -ENOMEM;
2153 			break;
2154 		}
2155 
2156 		/* Fill dummy cache as FULL */
2157 		bg->length = em->len;
2158 		bg->flags = map->type;
2159 		bg->last_byte_to_unpin = (u64)-1;
2160 		bg->cached = BTRFS_CACHE_FINISHED;
2161 		bg->used = em->len;
2162 		bg->flags = map->type;
2163 		ret = btrfs_add_block_group_cache(fs_info, bg);
2164 		/*
2165 		 * We may have some valid block group cache added already, in
2166 		 * that case we skip to the next one.
2167 		 */
2168 		if (ret == -EEXIST) {
2169 			ret = 0;
2170 			btrfs_put_block_group(bg);
2171 			continue;
2172 		}
2173 
2174 		if (ret) {
2175 			btrfs_remove_free_space_cache(bg);
2176 			btrfs_put_block_group(bg);
2177 			break;
2178 		}
2179 
2180 		btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2181 					0, 0, &space_info);
2182 		bg->space_info = space_info;
2183 		link_block_group(bg);
2184 
2185 		set_avail_alloc_bits(fs_info, bg->flags);
2186 	}
2187 	if (!ret)
2188 		btrfs_init_global_block_rsv(fs_info);
2189 	return ret;
2190 }
2191 
2192 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2193 {
2194 	struct btrfs_root *root = btrfs_block_group_root(info);
2195 	struct btrfs_path *path;
2196 	int ret;
2197 	struct btrfs_block_group *cache;
2198 	struct btrfs_space_info *space_info;
2199 	struct btrfs_key key;
2200 	int need_clear = 0;
2201 	u64 cache_gen;
2202 
2203 	if (!root)
2204 		return fill_dummy_bgs(info);
2205 
2206 	key.objectid = 0;
2207 	key.offset = 0;
2208 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2209 	path = btrfs_alloc_path();
2210 	if (!path)
2211 		return -ENOMEM;
2212 
2213 	cache_gen = btrfs_super_cache_generation(info->super_copy);
2214 	if (btrfs_test_opt(info, SPACE_CACHE) &&
2215 	    btrfs_super_generation(info->super_copy) != cache_gen)
2216 		need_clear = 1;
2217 	if (btrfs_test_opt(info, CLEAR_CACHE))
2218 		need_clear = 1;
2219 
2220 	while (1) {
2221 		struct btrfs_block_group_item bgi;
2222 		struct extent_buffer *leaf;
2223 		int slot;
2224 
2225 		ret = find_first_block_group(info, path, &key);
2226 		if (ret > 0)
2227 			break;
2228 		if (ret != 0)
2229 			goto error;
2230 
2231 		leaf = path->nodes[0];
2232 		slot = path->slots[0];
2233 
2234 		read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2235 				   sizeof(bgi));
2236 
2237 		btrfs_item_key_to_cpu(leaf, &key, slot);
2238 		btrfs_release_path(path);
2239 		ret = read_one_block_group(info, &bgi, &key, need_clear);
2240 		if (ret < 0)
2241 			goto error;
2242 		key.objectid += key.offset;
2243 		key.offset = 0;
2244 	}
2245 	btrfs_release_path(path);
2246 
2247 	list_for_each_entry(space_info, &info->space_info, list) {
2248 		int i;
2249 
2250 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2251 			if (list_empty(&space_info->block_groups[i]))
2252 				continue;
2253 			cache = list_first_entry(&space_info->block_groups[i],
2254 						 struct btrfs_block_group,
2255 						 list);
2256 			btrfs_sysfs_add_block_group_type(cache);
2257 		}
2258 
2259 		if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2260 		      (BTRFS_BLOCK_GROUP_RAID10 |
2261 		       BTRFS_BLOCK_GROUP_RAID1_MASK |
2262 		       BTRFS_BLOCK_GROUP_RAID56_MASK |
2263 		       BTRFS_BLOCK_GROUP_DUP)))
2264 			continue;
2265 		/*
2266 		 * Avoid allocating from un-mirrored block group if there are
2267 		 * mirrored block groups.
2268 		 */
2269 		list_for_each_entry(cache,
2270 				&space_info->block_groups[BTRFS_RAID_RAID0],
2271 				list)
2272 			inc_block_group_ro(cache, 1);
2273 		list_for_each_entry(cache,
2274 				&space_info->block_groups[BTRFS_RAID_SINGLE],
2275 				list)
2276 			inc_block_group_ro(cache, 1);
2277 	}
2278 
2279 	btrfs_init_global_block_rsv(info);
2280 	ret = check_chunk_block_group_mappings(info);
2281 error:
2282 	btrfs_free_path(path);
2283 	/*
2284 	 * We've hit some error while reading the extent tree, and have
2285 	 * rescue=ibadroots mount option.
2286 	 * Try to fill the tree using dummy block groups so that the user can
2287 	 * continue to mount and grab their data.
2288 	 */
2289 	if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2290 		ret = fill_dummy_bgs(info);
2291 	return ret;
2292 }
2293 
2294 /*
2295  * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2296  * allocation.
2297  *
2298  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2299  * phases.
2300  */
2301 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2302 				   struct btrfs_block_group *block_group)
2303 {
2304 	struct btrfs_fs_info *fs_info = trans->fs_info;
2305 	struct btrfs_block_group_item bgi;
2306 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2307 	struct btrfs_key key;
2308 
2309 	spin_lock(&block_group->lock);
2310 	btrfs_set_stack_block_group_used(&bgi, block_group->used);
2311 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2312 						   block_group->global_root_id);
2313 	btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2314 	key.objectid = block_group->start;
2315 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2316 	key.offset = block_group->length;
2317 	spin_unlock(&block_group->lock);
2318 
2319 	return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2320 }
2321 
2322 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2323 			    struct btrfs_device *device, u64 chunk_offset,
2324 			    u64 start, u64 num_bytes)
2325 {
2326 	struct btrfs_fs_info *fs_info = device->fs_info;
2327 	struct btrfs_root *root = fs_info->dev_root;
2328 	struct btrfs_path *path;
2329 	struct btrfs_dev_extent *extent;
2330 	struct extent_buffer *leaf;
2331 	struct btrfs_key key;
2332 	int ret;
2333 
2334 	WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2335 	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2336 	path = btrfs_alloc_path();
2337 	if (!path)
2338 		return -ENOMEM;
2339 
2340 	key.objectid = device->devid;
2341 	key.type = BTRFS_DEV_EXTENT_KEY;
2342 	key.offset = start;
2343 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2344 	if (ret)
2345 		goto out;
2346 
2347 	leaf = path->nodes[0];
2348 	extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2349 	btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2350 	btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2351 					    BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2352 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2353 
2354 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2355 	btrfs_mark_buffer_dirty(leaf);
2356 out:
2357 	btrfs_free_path(path);
2358 	return ret;
2359 }
2360 
2361 /*
2362  * This function belongs to phase 2.
2363  *
2364  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2365  * phases.
2366  */
2367 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2368 				   u64 chunk_offset, u64 chunk_size)
2369 {
2370 	struct btrfs_fs_info *fs_info = trans->fs_info;
2371 	struct btrfs_device *device;
2372 	struct extent_map *em;
2373 	struct map_lookup *map;
2374 	u64 dev_offset;
2375 	u64 stripe_size;
2376 	int i;
2377 	int ret = 0;
2378 
2379 	em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2380 	if (IS_ERR(em))
2381 		return PTR_ERR(em);
2382 
2383 	map = em->map_lookup;
2384 	stripe_size = em->orig_block_len;
2385 
2386 	/*
2387 	 * Take the device list mutex to prevent races with the final phase of
2388 	 * a device replace operation that replaces the device object associated
2389 	 * with the map's stripes, because the device object's id can change
2390 	 * at any time during that final phase of the device replace operation
2391 	 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2392 	 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2393 	 * resulting in persisting a device extent item with such ID.
2394 	 */
2395 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2396 	for (i = 0; i < map->num_stripes; i++) {
2397 		device = map->stripes[i].dev;
2398 		dev_offset = map->stripes[i].physical;
2399 
2400 		ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2401 				       stripe_size);
2402 		if (ret)
2403 			break;
2404 	}
2405 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2406 
2407 	free_extent_map(em);
2408 	return ret;
2409 }
2410 
2411 /*
2412  * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2413  * chunk allocation.
2414  *
2415  * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2416  * phases.
2417  */
2418 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2419 {
2420 	struct btrfs_fs_info *fs_info = trans->fs_info;
2421 	struct btrfs_block_group *block_group;
2422 	int ret = 0;
2423 
2424 	while (!list_empty(&trans->new_bgs)) {
2425 		int index;
2426 
2427 		block_group = list_first_entry(&trans->new_bgs,
2428 					       struct btrfs_block_group,
2429 					       bg_list);
2430 		if (ret)
2431 			goto next;
2432 
2433 		index = btrfs_bg_flags_to_raid_index(block_group->flags);
2434 
2435 		ret = insert_block_group_item(trans, block_group);
2436 		if (ret)
2437 			btrfs_abort_transaction(trans, ret);
2438 		if (!block_group->chunk_item_inserted) {
2439 			mutex_lock(&fs_info->chunk_mutex);
2440 			ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2441 			mutex_unlock(&fs_info->chunk_mutex);
2442 			if (ret)
2443 				btrfs_abort_transaction(trans, ret);
2444 		}
2445 		ret = insert_dev_extents(trans, block_group->start,
2446 					 block_group->length);
2447 		if (ret)
2448 			btrfs_abort_transaction(trans, ret);
2449 		add_block_group_free_space(trans, block_group);
2450 
2451 		/*
2452 		 * If we restriped during balance, we may have added a new raid
2453 		 * type, so now add the sysfs entries when it is safe to do so.
2454 		 * We don't have to worry about locking here as it's handled in
2455 		 * btrfs_sysfs_add_block_group_type.
2456 		 */
2457 		if (block_group->space_info->block_group_kobjs[index] == NULL)
2458 			btrfs_sysfs_add_block_group_type(block_group);
2459 
2460 		/* Already aborted the transaction if it failed. */
2461 next:
2462 		btrfs_delayed_refs_rsv_release(fs_info, 1);
2463 		list_del_init(&block_group->bg_list);
2464 	}
2465 	btrfs_trans_release_chunk_metadata(trans);
2466 }
2467 
2468 /*
2469  * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2470  * global root id.  For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2471  */
2472 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2473 {
2474 	u64 div = SZ_1G;
2475 	u64 index;
2476 
2477 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2478 		return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2479 
2480 	/* If we have a smaller fs index based on 128MiB. */
2481 	if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2482 		div = SZ_128M;
2483 
2484 	offset = div64_u64(offset, div);
2485 	div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2486 	return index;
2487 }
2488 
2489 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2490 						 u64 bytes_used, u64 type,
2491 						 u64 chunk_offset, u64 size)
2492 {
2493 	struct btrfs_fs_info *fs_info = trans->fs_info;
2494 	struct btrfs_block_group *cache;
2495 	int ret;
2496 
2497 	btrfs_set_log_full_commit(trans);
2498 
2499 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2500 	if (!cache)
2501 		return ERR_PTR(-ENOMEM);
2502 
2503 	cache->length = size;
2504 	set_free_space_tree_thresholds(cache);
2505 	cache->used = bytes_used;
2506 	cache->flags = type;
2507 	cache->last_byte_to_unpin = (u64)-1;
2508 	cache->cached = BTRFS_CACHE_FINISHED;
2509 	cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2510 
2511 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2512 		cache->needs_free_space = 1;
2513 
2514 	ret = btrfs_load_block_group_zone_info(cache, true);
2515 	if (ret) {
2516 		btrfs_put_block_group(cache);
2517 		return ERR_PTR(ret);
2518 	}
2519 
2520 	ret = exclude_super_stripes(cache);
2521 	if (ret) {
2522 		/* We may have excluded something, so call this just in case */
2523 		btrfs_free_excluded_extents(cache);
2524 		btrfs_put_block_group(cache);
2525 		return ERR_PTR(ret);
2526 	}
2527 
2528 	add_new_free_space(cache, chunk_offset, chunk_offset + size);
2529 
2530 	btrfs_free_excluded_extents(cache);
2531 
2532 #ifdef CONFIG_BTRFS_DEBUG
2533 	if (btrfs_should_fragment_free_space(cache)) {
2534 		u64 new_bytes_used = size - bytes_used;
2535 
2536 		bytes_used += new_bytes_used >> 1;
2537 		fragment_free_space(cache);
2538 	}
2539 #endif
2540 	/*
2541 	 * Ensure the corresponding space_info object is created and
2542 	 * assigned to our block group. We want our bg to be added to the rbtree
2543 	 * with its ->space_info set.
2544 	 */
2545 	cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2546 	ASSERT(cache->space_info);
2547 
2548 	ret = btrfs_add_block_group_cache(fs_info, cache);
2549 	if (ret) {
2550 		btrfs_remove_free_space_cache(cache);
2551 		btrfs_put_block_group(cache);
2552 		return ERR_PTR(ret);
2553 	}
2554 
2555 	/*
2556 	 * Now that our block group has its ->space_info set and is inserted in
2557 	 * the rbtree, update the space info's counters.
2558 	 */
2559 	trace_btrfs_add_block_group(fs_info, cache, 1);
2560 	btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2561 				cache->bytes_super, cache->zone_unusable,
2562 				&cache->space_info);
2563 	btrfs_update_global_block_rsv(fs_info);
2564 
2565 	link_block_group(cache);
2566 
2567 	list_add_tail(&cache->bg_list, &trans->new_bgs);
2568 	trans->delayed_ref_updates++;
2569 	btrfs_update_delayed_refs_rsv(trans);
2570 
2571 	set_avail_alloc_bits(fs_info, type);
2572 	return cache;
2573 }
2574 
2575 /*
2576  * Mark one block group RO, can be called several times for the same block
2577  * group.
2578  *
2579  * @cache:		the destination block group
2580  * @do_chunk_alloc:	whether need to do chunk pre-allocation, this is to
2581  * 			ensure we still have some free space after marking this
2582  * 			block group RO.
2583  */
2584 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2585 			     bool do_chunk_alloc)
2586 {
2587 	struct btrfs_fs_info *fs_info = cache->fs_info;
2588 	struct btrfs_trans_handle *trans;
2589 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2590 	u64 alloc_flags;
2591 	int ret;
2592 	bool dirty_bg_running;
2593 
2594 	/*
2595 	 * This can only happen when we are doing read-only scrub on read-only
2596 	 * mount.
2597 	 * In that case we should not start a new transaction on read-only fs.
2598 	 * Thus here we skip all chunk allocations.
2599 	 */
2600 	if (sb_rdonly(fs_info->sb)) {
2601 		mutex_lock(&fs_info->ro_block_group_mutex);
2602 		ret = inc_block_group_ro(cache, 0);
2603 		mutex_unlock(&fs_info->ro_block_group_mutex);
2604 		return ret;
2605 	}
2606 
2607 	do {
2608 		trans = btrfs_join_transaction(root);
2609 		if (IS_ERR(trans))
2610 			return PTR_ERR(trans);
2611 
2612 		dirty_bg_running = false;
2613 
2614 		/*
2615 		 * We're not allowed to set block groups readonly after the dirty
2616 		 * block group cache has started writing.  If it already started,
2617 		 * back off and let this transaction commit.
2618 		 */
2619 		mutex_lock(&fs_info->ro_block_group_mutex);
2620 		if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2621 			u64 transid = trans->transid;
2622 
2623 			mutex_unlock(&fs_info->ro_block_group_mutex);
2624 			btrfs_end_transaction(trans);
2625 
2626 			ret = btrfs_wait_for_commit(fs_info, transid);
2627 			if (ret)
2628 				return ret;
2629 			dirty_bg_running = true;
2630 		}
2631 	} while (dirty_bg_running);
2632 
2633 	if (do_chunk_alloc) {
2634 		/*
2635 		 * If we are changing raid levels, try to allocate a
2636 		 * corresponding block group with the new raid level.
2637 		 */
2638 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2639 		if (alloc_flags != cache->flags) {
2640 			ret = btrfs_chunk_alloc(trans, alloc_flags,
2641 						CHUNK_ALLOC_FORCE);
2642 			/*
2643 			 * ENOSPC is allowed here, we may have enough space
2644 			 * already allocated at the new raid level to carry on
2645 			 */
2646 			if (ret == -ENOSPC)
2647 				ret = 0;
2648 			if (ret < 0)
2649 				goto out;
2650 		}
2651 	}
2652 
2653 	ret = inc_block_group_ro(cache, 0);
2654 	if (!do_chunk_alloc || ret == -ETXTBSY)
2655 		goto unlock_out;
2656 	if (!ret)
2657 		goto out;
2658 	alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2659 	ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2660 	if (ret < 0)
2661 		goto out;
2662 	ret = inc_block_group_ro(cache, 0);
2663 	if (ret == -ETXTBSY)
2664 		goto unlock_out;
2665 out:
2666 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2667 		alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2668 		mutex_lock(&fs_info->chunk_mutex);
2669 		check_system_chunk(trans, alloc_flags);
2670 		mutex_unlock(&fs_info->chunk_mutex);
2671 	}
2672 unlock_out:
2673 	mutex_unlock(&fs_info->ro_block_group_mutex);
2674 
2675 	btrfs_end_transaction(trans);
2676 	return ret;
2677 }
2678 
2679 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2680 {
2681 	struct btrfs_space_info *sinfo = cache->space_info;
2682 	u64 num_bytes;
2683 
2684 	BUG_ON(!cache->ro);
2685 
2686 	spin_lock(&sinfo->lock);
2687 	spin_lock(&cache->lock);
2688 	if (!--cache->ro) {
2689 		if (btrfs_is_zoned(cache->fs_info)) {
2690 			/* Migrate zone_unusable bytes back */
2691 			cache->zone_unusable =
2692 				(cache->alloc_offset - cache->used) +
2693 				(cache->length - cache->zone_capacity);
2694 			sinfo->bytes_zone_unusable += cache->zone_unusable;
2695 			sinfo->bytes_readonly -= cache->zone_unusable;
2696 		}
2697 		num_bytes = cache->length - cache->reserved -
2698 			    cache->pinned - cache->bytes_super -
2699 			    cache->zone_unusable - cache->used;
2700 		sinfo->bytes_readonly -= num_bytes;
2701 		list_del_init(&cache->ro_list);
2702 	}
2703 	spin_unlock(&cache->lock);
2704 	spin_unlock(&sinfo->lock);
2705 }
2706 
2707 static int update_block_group_item(struct btrfs_trans_handle *trans,
2708 				   struct btrfs_path *path,
2709 				   struct btrfs_block_group *cache)
2710 {
2711 	struct btrfs_fs_info *fs_info = trans->fs_info;
2712 	int ret;
2713 	struct btrfs_root *root = btrfs_block_group_root(fs_info);
2714 	unsigned long bi;
2715 	struct extent_buffer *leaf;
2716 	struct btrfs_block_group_item bgi;
2717 	struct btrfs_key key;
2718 
2719 	key.objectid = cache->start;
2720 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2721 	key.offset = cache->length;
2722 
2723 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2724 	if (ret) {
2725 		if (ret > 0)
2726 			ret = -ENOENT;
2727 		goto fail;
2728 	}
2729 
2730 	leaf = path->nodes[0];
2731 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2732 	btrfs_set_stack_block_group_used(&bgi, cache->used);
2733 	btrfs_set_stack_block_group_chunk_objectid(&bgi,
2734 						   cache->global_root_id);
2735 	btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2736 	write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2737 	btrfs_mark_buffer_dirty(leaf);
2738 fail:
2739 	btrfs_release_path(path);
2740 	return ret;
2741 
2742 }
2743 
2744 static int cache_save_setup(struct btrfs_block_group *block_group,
2745 			    struct btrfs_trans_handle *trans,
2746 			    struct btrfs_path *path)
2747 {
2748 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2749 	struct btrfs_root *root = fs_info->tree_root;
2750 	struct inode *inode = NULL;
2751 	struct extent_changeset *data_reserved = NULL;
2752 	u64 alloc_hint = 0;
2753 	int dcs = BTRFS_DC_ERROR;
2754 	u64 cache_size = 0;
2755 	int retries = 0;
2756 	int ret = 0;
2757 
2758 	if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2759 		return 0;
2760 
2761 	/*
2762 	 * If this block group is smaller than 100 megs don't bother caching the
2763 	 * block group.
2764 	 */
2765 	if (block_group->length < (100 * SZ_1M)) {
2766 		spin_lock(&block_group->lock);
2767 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2768 		spin_unlock(&block_group->lock);
2769 		return 0;
2770 	}
2771 
2772 	if (TRANS_ABORTED(trans))
2773 		return 0;
2774 again:
2775 	inode = lookup_free_space_inode(block_group, path);
2776 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2777 		ret = PTR_ERR(inode);
2778 		btrfs_release_path(path);
2779 		goto out;
2780 	}
2781 
2782 	if (IS_ERR(inode)) {
2783 		BUG_ON(retries);
2784 		retries++;
2785 
2786 		if (block_group->ro)
2787 			goto out_free;
2788 
2789 		ret = create_free_space_inode(trans, block_group, path);
2790 		if (ret)
2791 			goto out_free;
2792 		goto again;
2793 	}
2794 
2795 	/*
2796 	 * We want to set the generation to 0, that way if anything goes wrong
2797 	 * from here on out we know not to trust this cache when we load up next
2798 	 * time.
2799 	 */
2800 	BTRFS_I(inode)->generation = 0;
2801 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2802 	if (ret) {
2803 		/*
2804 		 * So theoretically we could recover from this, simply set the
2805 		 * super cache generation to 0 so we know to invalidate the
2806 		 * cache, but then we'd have to keep track of the block groups
2807 		 * that fail this way so we know we _have_ to reset this cache
2808 		 * before the next commit or risk reading stale cache.  So to
2809 		 * limit our exposure to horrible edge cases lets just abort the
2810 		 * transaction, this only happens in really bad situations
2811 		 * anyway.
2812 		 */
2813 		btrfs_abort_transaction(trans, ret);
2814 		goto out_put;
2815 	}
2816 	WARN_ON(ret);
2817 
2818 	/* We've already setup this transaction, go ahead and exit */
2819 	if (block_group->cache_generation == trans->transid &&
2820 	    i_size_read(inode)) {
2821 		dcs = BTRFS_DC_SETUP;
2822 		goto out_put;
2823 	}
2824 
2825 	if (i_size_read(inode) > 0) {
2826 		ret = btrfs_check_trunc_cache_free_space(fs_info,
2827 					&fs_info->global_block_rsv);
2828 		if (ret)
2829 			goto out_put;
2830 
2831 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2832 		if (ret)
2833 			goto out_put;
2834 	}
2835 
2836 	spin_lock(&block_group->lock);
2837 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
2838 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2839 		/*
2840 		 * don't bother trying to write stuff out _if_
2841 		 * a) we're not cached,
2842 		 * b) we're with nospace_cache mount option,
2843 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2844 		 */
2845 		dcs = BTRFS_DC_WRITTEN;
2846 		spin_unlock(&block_group->lock);
2847 		goto out_put;
2848 	}
2849 	spin_unlock(&block_group->lock);
2850 
2851 	/*
2852 	 * We hit an ENOSPC when setting up the cache in this transaction, just
2853 	 * skip doing the setup, we've already cleared the cache so we're safe.
2854 	 */
2855 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2856 		ret = -ENOSPC;
2857 		goto out_put;
2858 	}
2859 
2860 	/*
2861 	 * Try to preallocate enough space based on how big the block group is.
2862 	 * Keep in mind this has to include any pinned space which could end up
2863 	 * taking up quite a bit since it's not folded into the other space
2864 	 * cache.
2865 	 */
2866 	cache_size = div_u64(block_group->length, SZ_256M);
2867 	if (!cache_size)
2868 		cache_size = 1;
2869 
2870 	cache_size *= 16;
2871 	cache_size *= fs_info->sectorsize;
2872 
2873 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2874 					  cache_size);
2875 	if (ret)
2876 		goto out_put;
2877 
2878 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2879 					      cache_size, cache_size,
2880 					      &alloc_hint);
2881 	/*
2882 	 * Our cache requires contiguous chunks so that we don't modify a bunch
2883 	 * of metadata or split extents when writing the cache out, which means
2884 	 * we can enospc if we are heavily fragmented in addition to just normal
2885 	 * out of space conditions.  So if we hit this just skip setting up any
2886 	 * other block groups for this transaction, maybe we'll unpin enough
2887 	 * space the next time around.
2888 	 */
2889 	if (!ret)
2890 		dcs = BTRFS_DC_SETUP;
2891 	else if (ret == -ENOSPC)
2892 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2893 
2894 out_put:
2895 	iput(inode);
2896 out_free:
2897 	btrfs_release_path(path);
2898 out:
2899 	spin_lock(&block_group->lock);
2900 	if (!ret && dcs == BTRFS_DC_SETUP)
2901 		block_group->cache_generation = trans->transid;
2902 	block_group->disk_cache_state = dcs;
2903 	spin_unlock(&block_group->lock);
2904 
2905 	extent_changeset_free(data_reserved);
2906 	return ret;
2907 }
2908 
2909 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2910 {
2911 	struct btrfs_fs_info *fs_info = trans->fs_info;
2912 	struct btrfs_block_group *cache, *tmp;
2913 	struct btrfs_transaction *cur_trans = trans->transaction;
2914 	struct btrfs_path *path;
2915 
2916 	if (list_empty(&cur_trans->dirty_bgs) ||
2917 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
2918 		return 0;
2919 
2920 	path = btrfs_alloc_path();
2921 	if (!path)
2922 		return -ENOMEM;
2923 
2924 	/* Could add new block groups, use _safe just in case */
2925 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2926 				 dirty_list) {
2927 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2928 			cache_save_setup(cache, trans, path);
2929 	}
2930 
2931 	btrfs_free_path(path);
2932 	return 0;
2933 }
2934 
2935 /*
2936  * Transaction commit does final block group cache writeback during a critical
2937  * section where nothing is allowed to change the FS.  This is required in
2938  * order for the cache to actually match the block group, but can introduce a
2939  * lot of latency into the commit.
2940  *
2941  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2942  * There's a chance we'll have to redo some of it if the block group changes
2943  * again during the commit, but it greatly reduces the commit latency by
2944  * getting rid of the easy block groups while we're still allowing others to
2945  * join the commit.
2946  */
2947 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2948 {
2949 	struct btrfs_fs_info *fs_info = trans->fs_info;
2950 	struct btrfs_block_group *cache;
2951 	struct btrfs_transaction *cur_trans = trans->transaction;
2952 	int ret = 0;
2953 	int should_put;
2954 	struct btrfs_path *path = NULL;
2955 	LIST_HEAD(dirty);
2956 	struct list_head *io = &cur_trans->io_bgs;
2957 	int loops = 0;
2958 
2959 	spin_lock(&cur_trans->dirty_bgs_lock);
2960 	if (list_empty(&cur_trans->dirty_bgs)) {
2961 		spin_unlock(&cur_trans->dirty_bgs_lock);
2962 		return 0;
2963 	}
2964 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
2965 	spin_unlock(&cur_trans->dirty_bgs_lock);
2966 
2967 again:
2968 	/* Make sure all the block groups on our dirty list actually exist */
2969 	btrfs_create_pending_block_groups(trans);
2970 
2971 	if (!path) {
2972 		path = btrfs_alloc_path();
2973 		if (!path) {
2974 			ret = -ENOMEM;
2975 			goto out;
2976 		}
2977 	}
2978 
2979 	/*
2980 	 * cache_write_mutex is here only to save us from balance or automatic
2981 	 * removal of empty block groups deleting this block group while we are
2982 	 * writing out the cache
2983 	 */
2984 	mutex_lock(&trans->transaction->cache_write_mutex);
2985 	while (!list_empty(&dirty)) {
2986 		bool drop_reserve = true;
2987 
2988 		cache = list_first_entry(&dirty, struct btrfs_block_group,
2989 					 dirty_list);
2990 		/*
2991 		 * This can happen if something re-dirties a block group that
2992 		 * is already under IO.  Just wait for it to finish and then do
2993 		 * it all again
2994 		 */
2995 		if (!list_empty(&cache->io_list)) {
2996 			list_del_init(&cache->io_list);
2997 			btrfs_wait_cache_io(trans, cache, path);
2998 			btrfs_put_block_group(cache);
2999 		}
3000 
3001 
3002 		/*
3003 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3004 		 * it should update the cache_state.  Don't delete until after
3005 		 * we wait.
3006 		 *
3007 		 * Since we're not running in the commit critical section
3008 		 * we need the dirty_bgs_lock to protect from update_block_group
3009 		 */
3010 		spin_lock(&cur_trans->dirty_bgs_lock);
3011 		list_del_init(&cache->dirty_list);
3012 		spin_unlock(&cur_trans->dirty_bgs_lock);
3013 
3014 		should_put = 1;
3015 
3016 		cache_save_setup(cache, trans, path);
3017 
3018 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3019 			cache->io_ctl.inode = NULL;
3020 			ret = btrfs_write_out_cache(trans, cache, path);
3021 			if (ret == 0 && cache->io_ctl.inode) {
3022 				should_put = 0;
3023 
3024 				/*
3025 				 * The cache_write_mutex is protecting the
3026 				 * io_list, also refer to the definition of
3027 				 * btrfs_transaction::io_bgs for more details
3028 				 */
3029 				list_add_tail(&cache->io_list, io);
3030 			} else {
3031 				/*
3032 				 * If we failed to write the cache, the
3033 				 * generation will be bad and life goes on
3034 				 */
3035 				ret = 0;
3036 			}
3037 		}
3038 		if (!ret) {
3039 			ret = update_block_group_item(trans, path, cache);
3040 			/*
3041 			 * Our block group might still be attached to the list
3042 			 * of new block groups in the transaction handle of some
3043 			 * other task (struct btrfs_trans_handle->new_bgs). This
3044 			 * means its block group item isn't yet in the extent
3045 			 * tree. If this happens ignore the error, as we will
3046 			 * try again later in the critical section of the
3047 			 * transaction commit.
3048 			 */
3049 			if (ret == -ENOENT) {
3050 				ret = 0;
3051 				spin_lock(&cur_trans->dirty_bgs_lock);
3052 				if (list_empty(&cache->dirty_list)) {
3053 					list_add_tail(&cache->dirty_list,
3054 						      &cur_trans->dirty_bgs);
3055 					btrfs_get_block_group(cache);
3056 					drop_reserve = false;
3057 				}
3058 				spin_unlock(&cur_trans->dirty_bgs_lock);
3059 			} else if (ret) {
3060 				btrfs_abort_transaction(trans, ret);
3061 			}
3062 		}
3063 
3064 		/* If it's not on the io list, we need to put the block group */
3065 		if (should_put)
3066 			btrfs_put_block_group(cache);
3067 		if (drop_reserve)
3068 			btrfs_delayed_refs_rsv_release(fs_info, 1);
3069 		/*
3070 		 * Avoid blocking other tasks for too long. It might even save
3071 		 * us from writing caches for block groups that are going to be
3072 		 * removed.
3073 		 */
3074 		mutex_unlock(&trans->transaction->cache_write_mutex);
3075 		if (ret)
3076 			goto out;
3077 		mutex_lock(&trans->transaction->cache_write_mutex);
3078 	}
3079 	mutex_unlock(&trans->transaction->cache_write_mutex);
3080 
3081 	/*
3082 	 * Go through delayed refs for all the stuff we've just kicked off
3083 	 * and then loop back (just once)
3084 	 */
3085 	if (!ret)
3086 		ret = btrfs_run_delayed_refs(trans, 0);
3087 	if (!ret && loops == 0) {
3088 		loops++;
3089 		spin_lock(&cur_trans->dirty_bgs_lock);
3090 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3091 		/*
3092 		 * dirty_bgs_lock protects us from concurrent block group
3093 		 * deletes too (not just cache_write_mutex).
3094 		 */
3095 		if (!list_empty(&dirty)) {
3096 			spin_unlock(&cur_trans->dirty_bgs_lock);
3097 			goto again;
3098 		}
3099 		spin_unlock(&cur_trans->dirty_bgs_lock);
3100 	}
3101 out:
3102 	if (ret < 0) {
3103 		spin_lock(&cur_trans->dirty_bgs_lock);
3104 		list_splice_init(&dirty, &cur_trans->dirty_bgs);
3105 		spin_unlock(&cur_trans->dirty_bgs_lock);
3106 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3107 	}
3108 
3109 	btrfs_free_path(path);
3110 	return ret;
3111 }
3112 
3113 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3114 {
3115 	struct btrfs_fs_info *fs_info = trans->fs_info;
3116 	struct btrfs_block_group *cache;
3117 	struct btrfs_transaction *cur_trans = trans->transaction;
3118 	int ret = 0;
3119 	int should_put;
3120 	struct btrfs_path *path;
3121 	struct list_head *io = &cur_trans->io_bgs;
3122 
3123 	path = btrfs_alloc_path();
3124 	if (!path)
3125 		return -ENOMEM;
3126 
3127 	/*
3128 	 * Even though we are in the critical section of the transaction commit,
3129 	 * we can still have concurrent tasks adding elements to this
3130 	 * transaction's list of dirty block groups. These tasks correspond to
3131 	 * endio free space workers started when writeback finishes for a
3132 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3133 	 * allocate new block groups as a result of COWing nodes of the root
3134 	 * tree when updating the free space inode. The writeback for the space
3135 	 * caches is triggered by an earlier call to
3136 	 * btrfs_start_dirty_block_groups() and iterations of the following
3137 	 * loop.
3138 	 * Also we want to do the cache_save_setup first and then run the
3139 	 * delayed refs to make sure we have the best chance at doing this all
3140 	 * in one shot.
3141 	 */
3142 	spin_lock(&cur_trans->dirty_bgs_lock);
3143 	while (!list_empty(&cur_trans->dirty_bgs)) {
3144 		cache = list_first_entry(&cur_trans->dirty_bgs,
3145 					 struct btrfs_block_group,
3146 					 dirty_list);
3147 
3148 		/*
3149 		 * This can happen if cache_save_setup re-dirties a block group
3150 		 * that is already under IO.  Just wait for it to finish and
3151 		 * then do it all again
3152 		 */
3153 		if (!list_empty(&cache->io_list)) {
3154 			spin_unlock(&cur_trans->dirty_bgs_lock);
3155 			list_del_init(&cache->io_list);
3156 			btrfs_wait_cache_io(trans, cache, path);
3157 			btrfs_put_block_group(cache);
3158 			spin_lock(&cur_trans->dirty_bgs_lock);
3159 		}
3160 
3161 		/*
3162 		 * Don't remove from the dirty list until after we've waited on
3163 		 * any pending IO
3164 		 */
3165 		list_del_init(&cache->dirty_list);
3166 		spin_unlock(&cur_trans->dirty_bgs_lock);
3167 		should_put = 1;
3168 
3169 		cache_save_setup(cache, trans, path);
3170 
3171 		if (!ret)
3172 			ret = btrfs_run_delayed_refs(trans,
3173 						     (unsigned long) -1);
3174 
3175 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3176 			cache->io_ctl.inode = NULL;
3177 			ret = btrfs_write_out_cache(trans, cache, path);
3178 			if (ret == 0 && cache->io_ctl.inode) {
3179 				should_put = 0;
3180 				list_add_tail(&cache->io_list, io);
3181 			} else {
3182 				/*
3183 				 * If we failed to write the cache, the
3184 				 * generation will be bad and life goes on
3185 				 */
3186 				ret = 0;
3187 			}
3188 		}
3189 		if (!ret) {
3190 			ret = update_block_group_item(trans, path, cache);
3191 			/*
3192 			 * One of the free space endio workers might have
3193 			 * created a new block group while updating a free space
3194 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3195 			 * and hasn't released its transaction handle yet, in
3196 			 * which case the new block group is still attached to
3197 			 * its transaction handle and its creation has not
3198 			 * finished yet (no block group item in the extent tree
3199 			 * yet, etc). If this is the case, wait for all free
3200 			 * space endio workers to finish and retry. This is a
3201 			 * very rare case so no need for a more efficient and
3202 			 * complex approach.
3203 			 */
3204 			if (ret == -ENOENT) {
3205 				wait_event(cur_trans->writer_wait,
3206 				   atomic_read(&cur_trans->num_writers) == 1);
3207 				ret = update_block_group_item(trans, path, cache);
3208 			}
3209 			if (ret)
3210 				btrfs_abort_transaction(trans, ret);
3211 		}
3212 
3213 		/* If its not on the io list, we need to put the block group */
3214 		if (should_put)
3215 			btrfs_put_block_group(cache);
3216 		btrfs_delayed_refs_rsv_release(fs_info, 1);
3217 		spin_lock(&cur_trans->dirty_bgs_lock);
3218 	}
3219 	spin_unlock(&cur_trans->dirty_bgs_lock);
3220 
3221 	/*
3222 	 * Refer to the definition of io_bgs member for details why it's safe
3223 	 * to use it without any locking
3224 	 */
3225 	while (!list_empty(io)) {
3226 		cache = list_first_entry(io, struct btrfs_block_group,
3227 					 io_list);
3228 		list_del_init(&cache->io_list);
3229 		btrfs_wait_cache_io(trans, cache, path);
3230 		btrfs_put_block_group(cache);
3231 	}
3232 
3233 	btrfs_free_path(path);
3234 	return ret;
3235 }
3236 
3237 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3238 					      u64 bytes_freed)
3239 {
3240 	const struct btrfs_space_info *space_info = bg->space_info;
3241 	const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3242 	const u64 new_val = bg->used;
3243 	const u64 old_val = new_val + bytes_freed;
3244 	u64 thresh;
3245 
3246 	if (reclaim_thresh == 0)
3247 		return false;
3248 
3249 	thresh = div_factor_fine(bg->length, reclaim_thresh);
3250 
3251 	/*
3252 	 * If we were below the threshold before don't reclaim, we are likely a
3253 	 * brand new block group and we don't want to relocate new block groups.
3254 	 */
3255 	if (old_val < thresh)
3256 		return false;
3257 	if (new_val >= thresh)
3258 		return false;
3259 	return true;
3260 }
3261 
3262 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3263 			     u64 bytenr, u64 num_bytes, bool alloc)
3264 {
3265 	struct btrfs_fs_info *info = trans->fs_info;
3266 	struct btrfs_block_group *cache = NULL;
3267 	u64 total = num_bytes;
3268 	u64 old_val;
3269 	u64 byte_in_group;
3270 	int factor;
3271 	int ret = 0;
3272 
3273 	/* Block accounting for super block */
3274 	spin_lock(&info->delalloc_root_lock);
3275 	old_val = btrfs_super_bytes_used(info->super_copy);
3276 	if (alloc)
3277 		old_val += num_bytes;
3278 	else
3279 		old_val -= num_bytes;
3280 	btrfs_set_super_bytes_used(info->super_copy, old_val);
3281 	spin_unlock(&info->delalloc_root_lock);
3282 
3283 	while (total) {
3284 		bool reclaim;
3285 
3286 		cache = btrfs_lookup_block_group(info, bytenr);
3287 		if (!cache) {
3288 			ret = -ENOENT;
3289 			break;
3290 		}
3291 		factor = btrfs_bg_type_to_factor(cache->flags);
3292 
3293 		/*
3294 		 * If this block group has free space cache written out, we
3295 		 * need to make sure to load it if we are removing space.  This
3296 		 * is because we need the unpinning stage to actually add the
3297 		 * space back to the block group, otherwise we will leak space.
3298 		 */
3299 		if (!alloc && !btrfs_block_group_done(cache))
3300 			btrfs_cache_block_group(cache, 1);
3301 
3302 		byte_in_group = bytenr - cache->start;
3303 		WARN_ON(byte_in_group > cache->length);
3304 
3305 		spin_lock(&cache->space_info->lock);
3306 		spin_lock(&cache->lock);
3307 
3308 		if (btrfs_test_opt(info, SPACE_CACHE) &&
3309 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
3310 			cache->disk_cache_state = BTRFS_DC_CLEAR;
3311 
3312 		old_val = cache->used;
3313 		num_bytes = min(total, cache->length - byte_in_group);
3314 		if (alloc) {
3315 			old_val += num_bytes;
3316 			cache->used = old_val;
3317 			cache->reserved -= num_bytes;
3318 			cache->space_info->bytes_reserved -= num_bytes;
3319 			cache->space_info->bytes_used += num_bytes;
3320 			cache->space_info->disk_used += num_bytes * factor;
3321 			spin_unlock(&cache->lock);
3322 			spin_unlock(&cache->space_info->lock);
3323 		} else {
3324 			old_val -= num_bytes;
3325 			cache->used = old_val;
3326 			cache->pinned += num_bytes;
3327 			btrfs_space_info_update_bytes_pinned(info,
3328 					cache->space_info, num_bytes);
3329 			cache->space_info->bytes_used -= num_bytes;
3330 			cache->space_info->disk_used -= num_bytes * factor;
3331 
3332 			reclaim = should_reclaim_block_group(cache, num_bytes);
3333 			spin_unlock(&cache->lock);
3334 			spin_unlock(&cache->space_info->lock);
3335 
3336 			set_extent_dirty(&trans->transaction->pinned_extents,
3337 					 bytenr, bytenr + num_bytes - 1,
3338 					 GFP_NOFS | __GFP_NOFAIL);
3339 		}
3340 
3341 		spin_lock(&trans->transaction->dirty_bgs_lock);
3342 		if (list_empty(&cache->dirty_list)) {
3343 			list_add_tail(&cache->dirty_list,
3344 				      &trans->transaction->dirty_bgs);
3345 			trans->delayed_ref_updates++;
3346 			btrfs_get_block_group(cache);
3347 		}
3348 		spin_unlock(&trans->transaction->dirty_bgs_lock);
3349 
3350 		/*
3351 		 * No longer have used bytes in this block group, queue it for
3352 		 * deletion. We do this after adding the block group to the
3353 		 * dirty list to avoid races between cleaner kthread and space
3354 		 * cache writeout.
3355 		 */
3356 		if (!alloc && old_val == 0) {
3357 			if (!btrfs_test_opt(info, DISCARD_ASYNC))
3358 				btrfs_mark_bg_unused(cache);
3359 		} else if (!alloc && reclaim) {
3360 			btrfs_mark_bg_to_reclaim(cache);
3361 		}
3362 
3363 		btrfs_put_block_group(cache);
3364 		total -= num_bytes;
3365 		bytenr += num_bytes;
3366 	}
3367 
3368 	/* Modified block groups are accounted for in the delayed_refs_rsv. */
3369 	btrfs_update_delayed_refs_rsv(trans);
3370 	return ret;
3371 }
3372 
3373 /**
3374  * btrfs_add_reserved_bytes - update the block_group and space info counters
3375  * @cache:	The cache we are manipulating
3376  * @ram_bytes:  The number of bytes of file content, and will be same to
3377  *              @num_bytes except for the compress path.
3378  * @num_bytes:	The number of bytes in question
3379  * @delalloc:   The blocks are allocated for the delalloc write
3380  *
3381  * This is called by the allocator when it reserves space. If this is a
3382  * reservation and the block group has become read only we cannot make the
3383  * reservation and return -EAGAIN, otherwise this function always succeeds.
3384  */
3385 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3386 			     u64 ram_bytes, u64 num_bytes, int delalloc)
3387 {
3388 	struct btrfs_space_info *space_info = cache->space_info;
3389 	int ret = 0;
3390 
3391 	spin_lock(&space_info->lock);
3392 	spin_lock(&cache->lock);
3393 	if (cache->ro) {
3394 		ret = -EAGAIN;
3395 	} else {
3396 		cache->reserved += num_bytes;
3397 		space_info->bytes_reserved += num_bytes;
3398 		trace_btrfs_space_reservation(cache->fs_info, "space_info",
3399 					      space_info->flags, num_bytes, 1);
3400 		btrfs_space_info_update_bytes_may_use(cache->fs_info,
3401 						      space_info, -ram_bytes);
3402 		if (delalloc)
3403 			cache->delalloc_bytes += num_bytes;
3404 
3405 		/*
3406 		 * Compression can use less space than we reserved, so wake
3407 		 * tickets if that happens
3408 		 */
3409 		if (num_bytes < ram_bytes)
3410 			btrfs_try_granting_tickets(cache->fs_info, space_info);
3411 	}
3412 	spin_unlock(&cache->lock);
3413 	spin_unlock(&space_info->lock);
3414 	return ret;
3415 }
3416 
3417 /**
3418  * btrfs_free_reserved_bytes - update the block_group and space info counters
3419  * @cache:      The cache we are manipulating
3420  * @num_bytes:  The number of bytes in question
3421  * @delalloc:   The blocks are allocated for the delalloc write
3422  *
3423  * This is called by somebody who is freeing space that was never actually used
3424  * on disk.  For example if you reserve some space for a new leaf in transaction
3425  * A and before transaction A commits you free that leaf, you call this with
3426  * reserve set to 0 in order to clear the reservation.
3427  */
3428 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3429 			       u64 num_bytes, int delalloc)
3430 {
3431 	struct btrfs_space_info *space_info = cache->space_info;
3432 
3433 	spin_lock(&space_info->lock);
3434 	spin_lock(&cache->lock);
3435 	if (cache->ro)
3436 		space_info->bytes_readonly += num_bytes;
3437 	cache->reserved -= num_bytes;
3438 	space_info->bytes_reserved -= num_bytes;
3439 	space_info->max_extent_size = 0;
3440 
3441 	if (delalloc)
3442 		cache->delalloc_bytes -= num_bytes;
3443 	spin_unlock(&cache->lock);
3444 
3445 	btrfs_try_granting_tickets(cache->fs_info, space_info);
3446 	spin_unlock(&space_info->lock);
3447 }
3448 
3449 static void force_metadata_allocation(struct btrfs_fs_info *info)
3450 {
3451 	struct list_head *head = &info->space_info;
3452 	struct btrfs_space_info *found;
3453 
3454 	list_for_each_entry(found, head, list) {
3455 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3456 			found->force_alloc = CHUNK_ALLOC_FORCE;
3457 	}
3458 }
3459 
3460 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3461 			      struct btrfs_space_info *sinfo, int force)
3462 {
3463 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
3464 	u64 thresh;
3465 
3466 	if (force == CHUNK_ALLOC_FORCE)
3467 		return 1;
3468 
3469 	/*
3470 	 * in limited mode, we want to have some free space up to
3471 	 * about 1% of the FS size.
3472 	 */
3473 	if (force == CHUNK_ALLOC_LIMITED) {
3474 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
3475 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3476 
3477 		if (sinfo->total_bytes - bytes_used < thresh)
3478 			return 1;
3479 	}
3480 
3481 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3482 		return 0;
3483 	return 1;
3484 }
3485 
3486 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3487 {
3488 	u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3489 
3490 	return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3491 }
3492 
3493 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3494 {
3495 	struct btrfs_block_group *bg;
3496 	int ret;
3497 
3498 	/*
3499 	 * Check if we have enough space in the system space info because we
3500 	 * will need to update device items in the chunk btree and insert a new
3501 	 * chunk item in the chunk btree as well. This will allocate a new
3502 	 * system block group if needed.
3503 	 */
3504 	check_system_chunk(trans, flags);
3505 
3506 	bg = btrfs_create_chunk(trans, flags);
3507 	if (IS_ERR(bg)) {
3508 		ret = PTR_ERR(bg);
3509 		goto out;
3510 	}
3511 
3512 	ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3513 	/*
3514 	 * Normally we are not expected to fail with -ENOSPC here, since we have
3515 	 * previously reserved space in the system space_info and allocated one
3516 	 * new system chunk if necessary. However there are three exceptions:
3517 	 *
3518 	 * 1) We may have enough free space in the system space_info but all the
3519 	 *    existing system block groups have a profile which can not be used
3520 	 *    for extent allocation.
3521 	 *
3522 	 *    This happens when mounting in degraded mode. For example we have a
3523 	 *    RAID1 filesystem with 2 devices, lose one device and mount the fs
3524 	 *    using the other device in degraded mode. If we then allocate a chunk,
3525 	 *    we may have enough free space in the existing system space_info, but
3526 	 *    none of the block groups can be used for extent allocation since they
3527 	 *    have a RAID1 profile, and because we are in degraded mode with a
3528 	 *    single device, we are forced to allocate a new system chunk with a
3529 	 *    SINGLE profile. Making check_system_chunk() iterate over all system
3530 	 *    block groups and check if they have a usable profile and enough space
3531 	 *    can be slow on very large filesystems, so we tolerate the -ENOSPC and
3532 	 *    try again after forcing allocation of a new system chunk. Like this
3533 	 *    we avoid paying the cost of that search in normal circumstances, when
3534 	 *    we were not mounted in degraded mode;
3535 	 *
3536 	 * 2) We had enough free space info the system space_info, and one suitable
3537 	 *    block group to allocate from when we called check_system_chunk()
3538 	 *    above. However right after we called it, the only system block group
3539 	 *    with enough free space got turned into RO mode by a running scrub,
3540 	 *    and in this case we have to allocate a new one and retry. We only
3541 	 *    need do this allocate and retry once, since we have a transaction
3542 	 *    handle and scrub uses the commit root to search for block groups;
3543 	 *
3544 	 * 3) We had one system block group with enough free space when we called
3545 	 *    check_system_chunk(), but after that, right before we tried to
3546 	 *    allocate the last extent buffer we needed, a discard operation came
3547 	 *    in and it temporarily removed the last free space entry from the
3548 	 *    block group (discard removes a free space entry, discards it, and
3549 	 *    then adds back the entry to the block group cache).
3550 	 */
3551 	if (ret == -ENOSPC) {
3552 		const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3553 		struct btrfs_block_group *sys_bg;
3554 
3555 		sys_bg = btrfs_create_chunk(trans, sys_flags);
3556 		if (IS_ERR(sys_bg)) {
3557 			ret = PTR_ERR(sys_bg);
3558 			btrfs_abort_transaction(trans, ret);
3559 			goto out;
3560 		}
3561 
3562 		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3563 		if (ret) {
3564 			btrfs_abort_transaction(trans, ret);
3565 			goto out;
3566 		}
3567 
3568 		ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3569 		if (ret) {
3570 			btrfs_abort_transaction(trans, ret);
3571 			goto out;
3572 		}
3573 	} else if (ret) {
3574 		btrfs_abort_transaction(trans, ret);
3575 		goto out;
3576 	}
3577 out:
3578 	btrfs_trans_release_chunk_metadata(trans);
3579 
3580 	if (ret)
3581 		return ERR_PTR(ret);
3582 
3583 	btrfs_get_block_group(bg);
3584 	return bg;
3585 }
3586 
3587 /*
3588  * Chunk allocation is done in 2 phases:
3589  *
3590  * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3591  *    the chunk, the chunk mapping, create its block group and add the items
3592  *    that belong in the chunk btree to it - more specifically, we need to
3593  *    update device items in the chunk btree and add a new chunk item to it.
3594  *
3595  * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3596  *    group item to the extent btree and the device extent items to the devices
3597  *    btree.
3598  *
3599  * This is done to prevent deadlocks. For example when COWing a node from the
3600  * extent btree we are holding a write lock on the node's parent and if we
3601  * trigger chunk allocation and attempted to insert the new block group item
3602  * in the extent btree right way, we could deadlock because the path for the
3603  * insertion can include that parent node. At first glance it seems impossible
3604  * to trigger chunk allocation after starting a transaction since tasks should
3605  * reserve enough transaction units (metadata space), however while that is true
3606  * most of the time, chunk allocation may still be triggered for several reasons:
3607  *
3608  * 1) When reserving metadata, we check if there is enough free space in the
3609  *    metadata space_info and therefore don't trigger allocation of a new chunk.
3610  *    However later when the task actually tries to COW an extent buffer from
3611  *    the extent btree or from the device btree for example, it is forced to
3612  *    allocate a new block group (chunk) because the only one that had enough
3613  *    free space was just turned to RO mode by a running scrub for example (or
3614  *    device replace, block group reclaim thread, etc), so we can not use it
3615  *    for allocating an extent and end up being forced to allocate a new one;
3616  *
3617  * 2) Because we only check that the metadata space_info has enough free bytes,
3618  *    we end up not allocating a new metadata chunk in that case. However if
3619  *    the filesystem was mounted in degraded mode, none of the existing block
3620  *    groups might be suitable for extent allocation due to their incompatible
3621  *    profile (for e.g. mounting a 2 devices filesystem, where all block groups
3622  *    use a RAID1 profile, in degraded mode using a single device). In this case
3623  *    when the task attempts to COW some extent buffer of the extent btree for
3624  *    example, it will trigger allocation of a new metadata block group with a
3625  *    suitable profile (SINGLE profile in the example of the degraded mount of
3626  *    the RAID1 filesystem);
3627  *
3628  * 3) The task has reserved enough transaction units / metadata space, but when
3629  *    it attempts to COW an extent buffer from the extent or device btree for
3630  *    example, it does not find any free extent in any metadata block group,
3631  *    therefore forced to try to allocate a new metadata block group.
3632  *    This is because some other task allocated all available extents in the
3633  *    meanwhile - this typically happens with tasks that don't reserve space
3634  *    properly, either intentionally or as a bug. One example where this is
3635  *    done intentionally is fsync, as it does not reserve any transaction units
3636  *    and ends up allocating a variable number of metadata extents for log
3637  *    tree extent buffers;
3638  *
3639  * 4) The task has reserved enough transaction units / metadata space, but right
3640  *    before it tries to allocate the last extent buffer it needs, a discard
3641  *    operation comes in and, temporarily, removes the last free space entry from
3642  *    the only metadata block group that had free space (discard starts by
3643  *    removing a free space entry from a block group, then does the discard
3644  *    operation and, once it's done, it adds back the free space entry to the
3645  *    block group).
3646  *
3647  * We also need this 2 phases setup when adding a device to a filesystem with
3648  * a seed device - we must create new metadata and system chunks without adding
3649  * any of the block group items to the chunk, extent and device btrees. If we
3650  * did not do it this way, we would get ENOSPC when attempting to update those
3651  * btrees, since all the chunks from the seed device are read-only.
3652  *
3653  * Phase 1 does the updates and insertions to the chunk btree because if we had
3654  * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3655  * parallel, we risk having too many system chunks allocated by many tasks if
3656  * many tasks reach phase 1 without the previous ones completing phase 2. In the
3657  * extreme case this leads to exhaustion of the system chunk array in the
3658  * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3659  * and with RAID filesystems (so we have more device items in the chunk btree).
3660  * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3661  * the system chunk array due to concurrent allocations") provides more details.
3662  *
3663  * Allocation of system chunks does not happen through this function. A task that
3664  * needs to update the chunk btree (the only btree that uses system chunks), must
3665  * preallocate chunk space by calling either check_system_chunk() or
3666  * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3667  * metadata chunk or when removing a chunk, while the later is used before doing
3668  * a modification to the chunk btree - use cases for the later are adding,
3669  * removing and resizing a device as well as relocation of a system chunk.
3670  * See the comment below for more details.
3671  *
3672  * The reservation of system space, done through check_system_chunk(), as well
3673  * as all the updates and insertions into the chunk btree must be done while
3674  * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3675  * an extent buffer from the chunks btree we never trigger allocation of a new
3676  * system chunk, which would result in a deadlock (trying to lock twice an
3677  * extent buffer of the chunk btree, first time before triggering the chunk
3678  * allocation and the second time during chunk allocation while attempting to
3679  * update the chunks btree). The system chunk array is also updated while holding
3680  * that mutex. The same logic applies to removing chunks - we must reserve system
3681  * space, update the chunk btree and the system chunk array in the superblock
3682  * while holding fs_info->chunk_mutex.
3683  *
3684  * This function, btrfs_chunk_alloc(), belongs to phase 1.
3685  *
3686  * If @force is CHUNK_ALLOC_FORCE:
3687  *    - return 1 if it successfully allocates a chunk,
3688  *    - return errors including -ENOSPC otherwise.
3689  * If @force is NOT CHUNK_ALLOC_FORCE:
3690  *    - return 0 if it doesn't need to allocate a new chunk,
3691  *    - return 1 if it successfully allocates a chunk,
3692  *    - return errors including -ENOSPC otherwise.
3693  */
3694 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3695 		      enum btrfs_chunk_alloc_enum force)
3696 {
3697 	struct btrfs_fs_info *fs_info = trans->fs_info;
3698 	struct btrfs_space_info *space_info;
3699 	struct btrfs_block_group *ret_bg;
3700 	bool wait_for_alloc = false;
3701 	bool should_alloc = false;
3702 	bool from_extent_allocation = false;
3703 	int ret = 0;
3704 
3705 	if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3706 		from_extent_allocation = true;
3707 		force = CHUNK_ALLOC_FORCE;
3708 	}
3709 
3710 	/* Don't re-enter if we're already allocating a chunk */
3711 	if (trans->allocating_chunk)
3712 		return -ENOSPC;
3713 	/*
3714 	 * Allocation of system chunks can not happen through this path, as we
3715 	 * could end up in a deadlock if we are allocating a data or metadata
3716 	 * chunk and there is another task modifying the chunk btree.
3717 	 *
3718 	 * This is because while we are holding the chunk mutex, we will attempt
3719 	 * to add the new chunk item to the chunk btree or update an existing
3720 	 * device item in the chunk btree, while the other task that is modifying
3721 	 * the chunk btree is attempting to COW an extent buffer while holding a
3722 	 * lock on it and on its parent - if the COW operation triggers a system
3723 	 * chunk allocation, then we can deadlock because we are holding the
3724 	 * chunk mutex and we may need to access that extent buffer or its parent
3725 	 * in order to add the chunk item or update a device item.
3726 	 *
3727 	 * Tasks that want to modify the chunk tree should reserve system space
3728 	 * before updating the chunk btree, by calling either
3729 	 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3730 	 * It's possible that after a task reserves the space, it still ends up
3731 	 * here - this happens in the cases described above at do_chunk_alloc().
3732 	 * The task will have to either retry or fail.
3733 	 */
3734 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3735 		return -ENOSPC;
3736 
3737 	space_info = btrfs_find_space_info(fs_info, flags);
3738 	ASSERT(space_info);
3739 
3740 	do {
3741 		spin_lock(&space_info->lock);
3742 		if (force < space_info->force_alloc)
3743 			force = space_info->force_alloc;
3744 		should_alloc = should_alloc_chunk(fs_info, space_info, force);
3745 		if (space_info->full) {
3746 			/* No more free physical space */
3747 			if (should_alloc)
3748 				ret = -ENOSPC;
3749 			else
3750 				ret = 0;
3751 			spin_unlock(&space_info->lock);
3752 			return ret;
3753 		} else if (!should_alloc) {
3754 			spin_unlock(&space_info->lock);
3755 			return 0;
3756 		} else if (space_info->chunk_alloc) {
3757 			/*
3758 			 * Someone is already allocating, so we need to block
3759 			 * until this someone is finished and then loop to
3760 			 * recheck if we should continue with our allocation
3761 			 * attempt.
3762 			 */
3763 			wait_for_alloc = true;
3764 			spin_unlock(&space_info->lock);
3765 			mutex_lock(&fs_info->chunk_mutex);
3766 			mutex_unlock(&fs_info->chunk_mutex);
3767 		} else {
3768 			/* Proceed with allocation */
3769 			space_info->chunk_alloc = 1;
3770 			wait_for_alloc = false;
3771 			spin_unlock(&space_info->lock);
3772 		}
3773 
3774 		cond_resched();
3775 	} while (wait_for_alloc);
3776 
3777 	mutex_lock(&fs_info->chunk_mutex);
3778 	trans->allocating_chunk = true;
3779 
3780 	/*
3781 	 * If we have mixed data/metadata chunks we want to make sure we keep
3782 	 * allocating mixed chunks instead of individual chunks.
3783 	 */
3784 	if (btrfs_mixed_space_info(space_info))
3785 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3786 
3787 	/*
3788 	 * if we're doing a data chunk, go ahead and make sure that
3789 	 * we keep a reasonable number of metadata chunks allocated in the
3790 	 * FS as well.
3791 	 */
3792 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3793 		fs_info->data_chunk_allocations++;
3794 		if (!(fs_info->data_chunk_allocations %
3795 		      fs_info->metadata_ratio))
3796 			force_metadata_allocation(fs_info);
3797 	}
3798 
3799 	ret_bg = do_chunk_alloc(trans, flags);
3800 	trans->allocating_chunk = false;
3801 
3802 	if (IS_ERR(ret_bg)) {
3803 		ret = PTR_ERR(ret_bg);
3804 	} else if (from_extent_allocation) {
3805 		/*
3806 		 * New block group is likely to be used soon. Try to activate
3807 		 * it now. Failure is OK for now.
3808 		 */
3809 		btrfs_zone_activate(ret_bg);
3810 	}
3811 
3812 	if (!ret)
3813 		btrfs_put_block_group(ret_bg);
3814 
3815 	spin_lock(&space_info->lock);
3816 	if (ret < 0) {
3817 		if (ret == -ENOSPC)
3818 			space_info->full = 1;
3819 		else
3820 			goto out;
3821 	} else {
3822 		ret = 1;
3823 		space_info->max_extent_size = 0;
3824 	}
3825 
3826 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3827 out:
3828 	space_info->chunk_alloc = 0;
3829 	spin_unlock(&space_info->lock);
3830 	mutex_unlock(&fs_info->chunk_mutex);
3831 
3832 	return ret;
3833 }
3834 
3835 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3836 {
3837 	u64 num_dev;
3838 
3839 	num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3840 	if (!num_dev)
3841 		num_dev = fs_info->fs_devices->rw_devices;
3842 
3843 	return num_dev;
3844 }
3845 
3846 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3847 				u64 bytes,
3848 				u64 type)
3849 {
3850 	struct btrfs_fs_info *fs_info = trans->fs_info;
3851 	struct btrfs_space_info *info;
3852 	u64 left;
3853 	int ret = 0;
3854 
3855 	/*
3856 	 * Needed because we can end up allocating a system chunk and for an
3857 	 * atomic and race free space reservation in the chunk block reserve.
3858 	 */
3859 	lockdep_assert_held(&fs_info->chunk_mutex);
3860 
3861 	info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3862 	spin_lock(&info->lock);
3863 	left = info->total_bytes - btrfs_space_info_used(info, true);
3864 	spin_unlock(&info->lock);
3865 
3866 	if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3867 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3868 			   left, bytes, type);
3869 		btrfs_dump_space_info(fs_info, info, 0, 0);
3870 	}
3871 
3872 	if (left < bytes) {
3873 		u64 flags = btrfs_system_alloc_profile(fs_info);
3874 		struct btrfs_block_group *bg;
3875 
3876 		/*
3877 		 * Ignore failure to create system chunk. We might end up not
3878 		 * needing it, as we might not need to COW all nodes/leafs from
3879 		 * the paths we visit in the chunk tree (they were already COWed
3880 		 * or created in the current transaction for example).
3881 		 */
3882 		bg = btrfs_create_chunk(trans, flags);
3883 		if (IS_ERR(bg)) {
3884 			ret = PTR_ERR(bg);
3885 		} else {
3886 			/*
3887 			 * If we fail to add the chunk item here, we end up
3888 			 * trying again at phase 2 of chunk allocation, at
3889 			 * btrfs_create_pending_block_groups(). So ignore
3890 			 * any error here. An ENOSPC here could happen, due to
3891 			 * the cases described at do_chunk_alloc() - the system
3892 			 * block group we just created was just turned into RO
3893 			 * mode by a scrub for example, or a running discard
3894 			 * temporarily removed its free space entries, etc.
3895 			 */
3896 			btrfs_chunk_alloc_add_chunk_item(trans, bg);
3897 		}
3898 	}
3899 
3900 	if (!ret) {
3901 		ret = btrfs_block_rsv_add(fs_info,
3902 					  &fs_info->chunk_block_rsv,
3903 					  bytes, BTRFS_RESERVE_NO_FLUSH);
3904 		if (!ret)
3905 			trans->chunk_bytes_reserved += bytes;
3906 	}
3907 }
3908 
3909 /*
3910  * Reserve space in the system space for allocating or removing a chunk.
3911  * The caller must be holding fs_info->chunk_mutex.
3912  */
3913 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3914 {
3915 	struct btrfs_fs_info *fs_info = trans->fs_info;
3916 	const u64 num_devs = get_profile_num_devs(fs_info, type);
3917 	u64 bytes;
3918 
3919 	/* num_devs device items to update and 1 chunk item to add or remove. */
3920 	bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3921 		btrfs_calc_insert_metadata_size(fs_info, 1);
3922 
3923 	reserve_chunk_space(trans, bytes, type);
3924 }
3925 
3926 /*
3927  * Reserve space in the system space, if needed, for doing a modification to the
3928  * chunk btree.
3929  *
3930  * @trans:		A transaction handle.
3931  * @is_item_insertion:	Indicate if the modification is for inserting a new item
3932  *			in the chunk btree or if it's for the deletion or update
3933  *			of an existing item.
3934  *
3935  * This is used in a context where we need to update the chunk btree outside
3936  * block group allocation and removal, to avoid a deadlock with a concurrent
3937  * task that is allocating a metadata or data block group and therefore needs to
3938  * update the chunk btree while holding the chunk mutex. After the update to the
3939  * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3940  *
3941  */
3942 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3943 				  bool is_item_insertion)
3944 {
3945 	struct btrfs_fs_info *fs_info = trans->fs_info;
3946 	u64 bytes;
3947 
3948 	if (is_item_insertion)
3949 		bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3950 	else
3951 		bytes = btrfs_calc_metadata_size(fs_info, 1);
3952 
3953 	mutex_lock(&fs_info->chunk_mutex);
3954 	reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3955 	mutex_unlock(&fs_info->chunk_mutex);
3956 }
3957 
3958 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3959 {
3960 	struct btrfs_block_group *block_group;
3961 	u64 last = 0;
3962 
3963 	while (1) {
3964 		struct inode *inode;
3965 
3966 		block_group = btrfs_lookup_first_block_group(info, last);
3967 		while (block_group) {
3968 			btrfs_wait_block_group_cache_done(block_group);
3969 			spin_lock(&block_group->lock);
3970 			if (block_group->iref)
3971 				break;
3972 			spin_unlock(&block_group->lock);
3973 			block_group = btrfs_next_block_group(block_group);
3974 		}
3975 		if (!block_group) {
3976 			if (last == 0)
3977 				break;
3978 			last = 0;
3979 			continue;
3980 		}
3981 
3982 		inode = block_group->inode;
3983 		block_group->iref = 0;
3984 		block_group->inode = NULL;
3985 		spin_unlock(&block_group->lock);
3986 		ASSERT(block_group->io_ctl.inode == NULL);
3987 		iput(inode);
3988 		last = block_group->start + block_group->length;
3989 		btrfs_put_block_group(block_group);
3990 	}
3991 }
3992 
3993 /*
3994  * Must be called only after stopping all workers, since we could have block
3995  * group caching kthreads running, and therefore they could race with us if we
3996  * freed the block groups before stopping them.
3997  */
3998 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3999 {
4000 	struct btrfs_block_group *block_group;
4001 	struct btrfs_space_info *space_info;
4002 	struct btrfs_caching_control *caching_ctl;
4003 	struct rb_node *n;
4004 
4005 	write_lock(&info->block_group_cache_lock);
4006 	while (!list_empty(&info->caching_block_groups)) {
4007 		caching_ctl = list_entry(info->caching_block_groups.next,
4008 					 struct btrfs_caching_control, list);
4009 		list_del(&caching_ctl->list);
4010 		btrfs_put_caching_control(caching_ctl);
4011 	}
4012 	write_unlock(&info->block_group_cache_lock);
4013 
4014 	spin_lock(&info->unused_bgs_lock);
4015 	while (!list_empty(&info->unused_bgs)) {
4016 		block_group = list_first_entry(&info->unused_bgs,
4017 					       struct btrfs_block_group,
4018 					       bg_list);
4019 		list_del_init(&block_group->bg_list);
4020 		btrfs_put_block_group(block_group);
4021 	}
4022 
4023 	while (!list_empty(&info->reclaim_bgs)) {
4024 		block_group = list_first_entry(&info->reclaim_bgs,
4025 					       struct btrfs_block_group,
4026 					       bg_list);
4027 		list_del_init(&block_group->bg_list);
4028 		btrfs_put_block_group(block_group);
4029 	}
4030 	spin_unlock(&info->unused_bgs_lock);
4031 
4032 	spin_lock(&info->zone_active_bgs_lock);
4033 	while (!list_empty(&info->zone_active_bgs)) {
4034 		block_group = list_first_entry(&info->zone_active_bgs,
4035 					       struct btrfs_block_group,
4036 					       active_bg_list);
4037 		list_del_init(&block_group->active_bg_list);
4038 		btrfs_put_block_group(block_group);
4039 	}
4040 	spin_unlock(&info->zone_active_bgs_lock);
4041 
4042 	write_lock(&info->block_group_cache_lock);
4043 	while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4044 		block_group = rb_entry(n, struct btrfs_block_group,
4045 				       cache_node);
4046 		rb_erase_cached(&block_group->cache_node,
4047 				&info->block_group_cache_tree);
4048 		RB_CLEAR_NODE(&block_group->cache_node);
4049 		write_unlock(&info->block_group_cache_lock);
4050 
4051 		down_write(&block_group->space_info->groups_sem);
4052 		list_del(&block_group->list);
4053 		up_write(&block_group->space_info->groups_sem);
4054 
4055 		/*
4056 		 * We haven't cached this block group, which means we could
4057 		 * possibly have excluded extents on this block group.
4058 		 */
4059 		if (block_group->cached == BTRFS_CACHE_NO ||
4060 		    block_group->cached == BTRFS_CACHE_ERROR)
4061 			btrfs_free_excluded_extents(block_group);
4062 
4063 		btrfs_remove_free_space_cache(block_group);
4064 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4065 		ASSERT(list_empty(&block_group->dirty_list));
4066 		ASSERT(list_empty(&block_group->io_list));
4067 		ASSERT(list_empty(&block_group->bg_list));
4068 		ASSERT(refcount_read(&block_group->refs) == 1);
4069 		ASSERT(block_group->swap_extents == 0);
4070 		btrfs_put_block_group(block_group);
4071 
4072 		write_lock(&info->block_group_cache_lock);
4073 	}
4074 	write_unlock(&info->block_group_cache_lock);
4075 
4076 	btrfs_release_global_block_rsv(info);
4077 
4078 	while (!list_empty(&info->space_info)) {
4079 		space_info = list_entry(info->space_info.next,
4080 					struct btrfs_space_info,
4081 					list);
4082 
4083 		/*
4084 		 * Do not hide this behind enospc_debug, this is actually
4085 		 * important and indicates a real bug if this happens.
4086 		 */
4087 		if (WARN_ON(space_info->bytes_pinned > 0 ||
4088 			    space_info->bytes_may_use > 0))
4089 			btrfs_dump_space_info(info, space_info, 0, 0);
4090 
4091 		/*
4092 		 * If there was a failure to cleanup a log tree, very likely due
4093 		 * to an IO failure on a writeback attempt of one or more of its
4094 		 * extent buffers, we could not do proper (and cheap) unaccounting
4095 		 * of their reserved space, so don't warn on bytes_reserved > 0 in
4096 		 * that case.
4097 		 */
4098 		if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4099 		    !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4100 			if (WARN_ON(space_info->bytes_reserved > 0))
4101 				btrfs_dump_space_info(info, space_info, 0, 0);
4102 		}
4103 
4104 		WARN_ON(space_info->reclaim_size > 0);
4105 		list_del(&space_info->list);
4106 		btrfs_sysfs_remove_space_info(space_info);
4107 	}
4108 	return 0;
4109 }
4110 
4111 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4112 {
4113 	atomic_inc(&cache->frozen);
4114 }
4115 
4116 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4117 {
4118 	struct btrfs_fs_info *fs_info = block_group->fs_info;
4119 	struct extent_map_tree *em_tree;
4120 	struct extent_map *em;
4121 	bool cleanup;
4122 
4123 	spin_lock(&block_group->lock);
4124 	cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4125 		   block_group->removed);
4126 	spin_unlock(&block_group->lock);
4127 
4128 	if (cleanup) {
4129 		em_tree = &fs_info->mapping_tree;
4130 		write_lock(&em_tree->lock);
4131 		em = lookup_extent_mapping(em_tree, block_group->start,
4132 					   1);
4133 		BUG_ON(!em); /* logic error, can't happen */
4134 		remove_extent_mapping(em_tree, em);
4135 		write_unlock(&em_tree->lock);
4136 
4137 		/* once for us and once for the tree */
4138 		free_extent_map(em);
4139 		free_extent_map(em);
4140 
4141 		/*
4142 		 * We may have left one free space entry and other possible
4143 		 * tasks trimming this block group have left 1 entry each one.
4144 		 * Free them if any.
4145 		 */
4146 		__btrfs_remove_free_space_cache(block_group->free_space_ctl);
4147 	}
4148 }
4149 
4150 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4151 {
4152 	bool ret = true;
4153 
4154 	spin_lock(&bg->lock);
4155 	if (bg->ro)
4156 		ret = false;
4157 	else
4158 		bg->swap_extents++;
4159 	spin_unlock(&bg->lock);
4160 
4161 	return ret;
4162 }
4163 
4164 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4165 {
4166 	spin_lock(&bg->lock);
4167 	ASSERT(!bg->ro);
4168 	ASSERT(bg->swap_extents >= amount);
4169 	bg->swap_extents -= amount;
4170 	spin_unlock(&bg->lock);
4171 }
4172