1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "check-integrity.h" 14 #include "dev-replace.h" 15 #include "rcu-string.h" 16 #include "zoned.h" 17 #include "file-item.h" 18 19 static struct bio_set btrfs_bioset; 20 static struct bio_set btrfs_clone_bioset; 21 static struct bio_set btrfs_repair_bioset; 22 static mempool_t btrfs_failed_bio_pool; 23 24 struct btrfs_failed_bio { 25 struct btrfs_bio *bbio; 26 int num_copies; 27 atomic_t repair_count; 28 }; 29 30 /* Is this a data path I/O that needs storage layer checksum and repair? */ 31 static inline bool is_data_bbio(struct btrfs_bio *bbio) 32 { 33 return bbio->inode && is_data_inode(&bbio->inode->vfs_inode); 34 } 35 36 /* 37 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 38 * is already initialized by the block layer. 39 */ 40 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info, 41 btrfs_bio_end_io_t end_io, void *private) 42 { 43 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 44 bbio->fs_info = fs_info; 45 bbio->end_io = end_io; 46 bbio->private = private; 47 atomic_set(&bbio->pending_ios, 1); 48 } 49 50 /* 51 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 52 * btrfs, and is used for all I/O submitted through btrfs_submit_bio. 53 * 54 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 55 * a mempool. 56 */ 57 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 58 struct btrfs_fs_info *fs_info, 59 btrfs_bio_end_io_t end_io, void *private) 60 { 61 struct btrfs_bio *bbio; 62 struct bio *bio; 63 64 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 65 bbio = btrfs_bio(bio); 66 btrfs_bio_init(bbio, fs_info, end_io, private); 67 return bbio; 68 } 69 70 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info, 71 struct btrfs_bio *orig_bbio, 72 u64 map_length, bool use_append) 73 { 74 struct btrfs_bio *bbio; 75 struct bio *bio; 76 77 if (use_append) { 78 unsigned int nr_segs; 79 80 bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs, 81 &btrfs_clone_bioset, map_length); 82 } else { 83 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, 84 GFP_NOFS, &btrfs_clone_bioset); 85 } 86 bbio = btrfs_bio(bio); 87 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio); 88 bbio->inode = orig_bbio->inode; 89 bbio->file_offset = orig_bbio->file_offset; 90 orig_bbio->file_offset += map_length; 91 92 atomic_inc(&orig_bbio->pending_ios); 93 return bbio; 94 } 95 96 static void btrfs_orig_write_end_io(struct bio *bio); 97 98 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio, 99 struct btrfs_bio *orig_bbio) 100 { 101 /* 102 * For writes we tolerate nr_mirrors - 1 write failures, so we can't 103 * just blindly propagate a write failure here. Instead increment the 104 * error count in the original I/O context so that it is guaranteed to 105 * be larger than the error tolerance. 106 */ 107 if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) { 108 struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private; 109 struct btrfs_io_context *orig_bioc = orig_stripe->bioc; 110 111 atomic_add(orig_bioc->max_errors, &orig_bioc->error); 112 } else { 113 orig_bbio->bio.bi_status = bbio->bio.bi_status; 114 } 115 } 116 117 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio) 118 { 119 if (bbio->bio.bi_pool == &btrfs_clone_bioset) { 120 struct btrfs_bio *orig_bbio = bbio->private; 121 122 if (bbio->bio.bi_status) 123 btrfs_bbio_propagate_error(bbio, orig_bbio); 124 bio_put(&bbio->bio); 125 bbio = orig_bbio; 126 } 127 128 if (atomic_dec_and_test(&bbio->pending_ios)) 129 bbio->end_io(bbio); 130 } 131 132 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 133 { 134 if (cur_mirror == fbio->num_copies) 135 return cur_mirror + 1 - fbio->num_copies; 136 return cur_mirror + 1; 137 } 138 139 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 140 { 141 if (cur_mirror == 1) 142 return fbio->num_copies; 143 return cur_mirror - 1; 144 } 145 146 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 147 { 148 if (atomic_dec_and_test(&fbio->repair_count)) { 149 btrfs_orig_bbio_end_io(fbio->bbio); 150 mempool_free(fbio, &btrfs_failed_bio_pool); 151 } 152 } 153 154 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 155 struct btrfs_device *dev) 156 { 157 struct btrfs_failed_bio *fbio = repair_bbio->private; 158 struct btrfs_inode *inode = repair_bbio->inode; 159 struct btrfs_fs_info *fs_info = inode->root->fs_info; 160 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 161 int mirror = repair_bbio->mirror_num; 162 163 if (repair_bbio->bio.bi_status || 164 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 165 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 166 repair_bbio->bio.bi_iter = repair_bbio->saved_iter; 167 168 mirror = next_repair_mirror(fbio, mirror); 169 if (mirror == fbio->bbio->mirror_num) { 170 btrfs_debug(fs_info, "no mirror left"); 171 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 172 goto done; 173 } 174 175 btrfs_submit_bio(repair_bbio, mirror); 176 return; 177 } 178 179 do { 180 mirror = prev_repair_mirror(fbio, mirror); 181 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 182 repair_bbio->file_offset, fs_info->sectorsize, 183 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT, 184 bv->bv_page, bv->bv_offset, mirror); 185 } while (mirror != fbio->bbio->mirror_num); 186 187 done: 188 btrfs_repair_done(fbio); 189 bio_put(&repair_bbio->bio); 190 } 191 192 /* 193 * Try to kick off a repair read to the next available mirror for a bad sector. 194 * 195 * This primarily tries to recover good data to serve the actual read request, 196 * but also tries to write the good data back to the bad mirror(s) when a 197 * read succeeded to restore the redundancy. 198 */ 199 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 200 u32 bio_offset, 201 struct bio_vec *bv, 202 struct btrfs_failed_bio *fbio) 203 { 204 struct btrfs_inode *inode = failed_bbio->inode; 205 struct btrfs_fs_info *fs_info = inode->root->fs_info; 206 const u32 sectorsize = fs_info->sectorsize; 207 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT); 208 struct btrfs_bio *repair_bbio; 209 struct bio *repair_bio; 210 int num_copies; 211 int mirror; 212 213 btrfs_debug(fs_info, "repair read error: read error at %llu", 214 failed_bbio->file_offset + bio_offset); 215 216 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 217 if (num_copies == 1) { 218 btrfs_debug(fs_info, "no copy to repair from"); 219 failed_bbio->bio.bi_status = BLK_STS_IOERR; 220 return fbio; 221 } 222 223 if (!fbio) { 224 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 225 fbio->bbio = failed_bbio; 226 fbio->num_copies = num_copies; 227 atomic_set(&fbio->repair_count, 1); 228 } 229 230 atomic_inc(&fbio->repair_count); 231 232 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 233 &btrfs_repair_bioset); 234 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector; 235 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 236 237 repair_bbio = btrfs_bio(repair_bio); 238 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio); 239 repair_bbio->inode = failed_bbio->inode; 240 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 241 242 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 243 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 244 btrfs_submit_bio(repair_bbio, mirror); 245 return fbio; 246 } 247 248 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 249 { 250 struct btrfs_inode *inode = bbio->inode; 251 struct btrfs_fs_info *fs_info = inode->root->fs_info; 252 u32 sectorsize = fs_info->sectorsize; 253 struct bvec_iter *iter = &bbio->saved_iter; 254 blk_status_t status = bbio->bio.bi_status; 255 struct btrfs_failed_bio *fbio = NULL; 256 u32 offset = 0; 257 258 /* Read-repair requires the inode field to be set by the submitter. */ 259 ASSERT(inode); 260 261 /* 262 * Hand off repair bios to the repair code as there is no upper level 263 * submitter for them. 264 */ 265 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 266 btrfs_end_repair_bio(bbio, dev); 267 return; 268 } 269 270 /* Clear the I/O error. A failed repair will reset it. */ 271 bbio->bio.bi_status = BLK_STS_OK; 272 273 while (iter->bi_size) { 274 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 275 276 bv.bv_len = min(bv.bv_len, sectorsize); 277 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 278 fbio = repair_one_sector(bbio, offset, &bv, fbio); 279 280 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 281 offset += sectorsize; 282 } 283 284 if (bbio->csum != bbio->csum_inline) 285 kfree(bbio->csum); 286 287 if (fbio) 288 btrfs_repair_done(fbio); 289 else 290 btrfs_orig_bbio_end_io(bbio); 291 } 292 293 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 294 { 295 if (!dev || !dev->bdev) 296 return; 297 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 298 return; 299 300 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 301 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 302 else if (!(bio->bi_opf & REQ_RAHEAD)) 303 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 304 if (bio->bi_opf & REQ_PREFLUSH) 305 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 306 } 307 308 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 309 struct bio *bio) 310 { 311 if (bio->bi_opf & REQ_META) 312 return fs_info->endio_meta_workers; 313 return fs_info->endio_workers; 314 } 315 316 static void btrfs_end_bio_work(struct work_struct *work) 317 { 318 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 319 320 /* Metadata reads are checked and repaired by the submitter. */ 321 if (is_data_bbio(bbio)) 322 btrfs_check_read_bio(bbio, bbio->bio.bi_private); 323 else 324 btrfs_orig_bbio_end_io(bbio); 325 } 326 327 static void btrfs_simple_end_io(struct bio *bio) 328 { 329 struct btrfs_bio *bbio = btrfs_bio(bio); 330 struct btrfs_device *dev = bio->bi_private; 331 struct btrfs_fs_info *fs_info = bbio->fs_info; 332 333 btrfs_bio_counter_dec(fs_info); 334 335 if (bio->bi_status) 336 btrfs_log_dev_io_error(bio, dev); 337 338 if (bio_op(bio) == REQ_OP_READ) { 339 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 340 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 341 } else { 342 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status) 343 btrfs_record_physical_zoned(bbio); 344 btrfs_orig_bbio_end_io(bbio); 345 } 346 } 347 348 static void btrfs_raid56_end_io(struct bio *bio) 349 { 350 struct btrfs_io_context *bioc = bio->bi_private; 351 struct btrfs_bio *bbio = btrfs_bio(bio); 352 353 btrfs_bio_counter_dec(bioc->fs_info); 354 bbio->mirror_num = bioc->mirror_num; 355 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) 356 btrfs_check_read_bio(bbio, NULL); 357 else 358 btrfs_orig_bbio_end_io(bbio); 359 360 btrfs_put_bioc(bioc); 361 } 362 363 static void btrfs_orig_write_end_io(struct bio *bio) 364 { 365 struct btrfs_io_stripe *stripe = bio->bi_private; 366 struct btrfs_io_context *bioc = stripe->bioc; 367 struct btrfs_bio *bbio = btrfs_bio(bio); 368 369 btrfs_bio_counter_dec(bioc->fs_info); 370 371 if (bio->bi_status) { 372 atomic_inc(&bioc->error); 373 btrfs_log_dev_io_error(bio, stripe->dev); 374 } 375 376 /* 377 * Only send an error to the higher layers if it is beyond the tolerance 378 * threshold. 379 */ 380 if (atomic_read(&bioc->error) > bioc->max_errors) 381 bio->bi_status = BLK_STS_IOERR; 382 else 383 bio->bi_status = BLK_STS_OK; 384 385 btrfs_orig_bbio_end_io(bbio); 386 btrfs_put_bioc(bioc); 387 } 388 389 static void btrfs_clone_write_end_io(struct bio *bio) 390 { 391 struct btrfs_io_stripe *stripe = bio->bi_private; 392 393 if (bio->bi_status) { 394 atomic_inc(&stripe->bioc->error); 395 btrfs_log_dev_io_error(bio, stripe->dev); 396 } 397 398 /* Pass on control to the original bio this one was cloned from */ 399 bio_endio(stripe->bioc->orig_bio); 400 bio_put(bio); 401 } 402 403 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 404 { 405 if (!dev || !dev->bdev || 406 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 407 (btrfs_op(bio) == BTRFS_MAP_WRITE && 408 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 409 bio_io_error(bio); 410 return; 411 } 412 413 bio_set_dev(bio, dev->bdev); 414 415 /* 416 * For zone append writing, bi_sector must point the beginning of the 417 * zone 418 */ 419 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 420 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 421 u64 zone_start = round_down(physical, dev->fs_info->zone_size); 422 423 ASSERT(btrfs_dev_is_sequential(dev, physical)); 424 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 425 } 426 btrfs_debug_in_rcu(dev->fs_info, 427 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 428 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 429 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 430 dev->devid, bio->bi_iter.bi_size); 431 432 btrfsic_check_bio(bio); 433 434 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT) 435 blkcg_punt_bio_submit(bio); 436 else 437 submit_bio(bio); 438 } 439 440 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 441 { 442 struct bio *orig_bio = bioc->orig_bio, *bio; 443 444 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 445 446 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 447 if (dev_nr == bioc->num_stripes - 1) { 448 bio = orig_bio; 449 bio->bi_end_io = btrfs_orig_write_end_io; 450 } else { 451 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 452 bio_inc_remaining(orig_bio); 453 bio->bi_end_io = btrfs_clone_write_end_io; 454 } 455 456 bio->bi_private = &bioc->stripes[dev_nr]; 457 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 458 bioc->stripes[dev_nr].bioc = bioc; 459 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 460 } 461 462 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc, 463 struct btrfs_io_stripe *smap, int mirror_num) 464 { 465 if (!bioc) { 466 /* Single mirror read/write fast path. */ 467 btrfs_bio(bio)->mirror_num = mirror_num; 468 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT; 469 if (bio_op(bio) != REQ_OP_READ) 470 btrfs_bio(bio)->orig_physical = smap->physical; 471 bio->bi_private = smap->dev; 472 bio->bi_end_io = btrfs_simple_end_io; 473 btrfs_submit_dev_bio(smap->dev, bio); 474 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 475 /* Parity RAID write or read recovery. */ 476 bio->bi_private = bioc; 477 bio->bi_end_io = btrfs_raid56_end_io; 478 if (bio_op(bio) == REQ_OP_READ) 479 raid56_parity_recover(bio, bioc, mirror_num); 480 else 481 raid56_parity_write(bio, bioc); 482 } else { 483 /* Write to multiple mirrors. */ 484 int total_devs = bioc->num_stripes; 485 486 bioc->orig_bio = bio; 487 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++) 488 btrfs_submit_mirrored_bio(bioc, dev_nr); 489 } 490 } 491 492 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio) 493 { 494 if (bbio->bio.bi_opf & REQ_META) 495 return btree_csum_one_bio(bbio); 496 return btrfs_csum_one_bio(bbio); 497 } 498 499 /* 500 * Async submit bios are used to offload expensive checksumming onto the worker 501 * threads. 502 */ 503 struct async_submit_bio { 504 struct btrfs_bio *bbio; 505 struct btrfs_io_context *bioc; 506 struct btrfs_io_stripe smap; 507 int mirror_num; 508 struct btrfs_work work; 509 }; 510 511 /* 512 * In order to insert checksums into the metadata in large chunks, we wait 513 * until bio submission time. All the pages in the bio are checksummed and 514 * sums are attached onto the ordered extent record. 515 * 516 * At IO completion time the csums attached on the ordered extent record are 517 * inserted into the btree. 518 */ 519 static void run_one_async_start(struct btrfs_work *work) 520 { 521 struct async_submit_bio *async = 522 container_of(work, struct async_submit_bio, work); 523 blk_status_t ret; 524 525 ret = btrfs_bio_csum(async->bbio); 526 if (ret) 527 async->bbio->bio.bi_status = ret; 528 } 529 530 /* 531 * In order to insert checksums into the metadata in large chunks, we wait 532 * until bio submission time. All the pages in the bio are checksummed and 533 * sums are attached onto the ordered extent record. 534 * 535 * At IO completion time the csums attached on the ordered extent record are 536 * inserted into the tree. 537 */ 538 static void run_one_async_done(struct btrfs_work *work) 539 { 540 struct async_submit_bio *async = 541 container_of(work, struct async_submit_bio, work); 542 struct bio *bio = &async->bbio->bio; 543 544 /* If an error occurred we just want to clean up the bio and move on. */ 545 if (bio->bi_status) { 546 btrfs_orig_bbio_end_io(async->bbio); 547 return; 548 } 549 550 /* 551 * All of the bios that pass through here are from async helpers. 552 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's 553 * context. This changes nothing when cgroups aren't in use. 554 */ 555 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT; 556 __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num); 557 } 558 559 static void run_one_async_free(struct btrfs_work *work) 560 { 561 kfree(container_of(work, struct async_submit_bio, work)); 562 } 563 564 static bool should_async_write(struct btrfs_bio *bbio) 565 { 566 /* Submit synchronously if the checksum implementation is fast. */ 567 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags)) 568 return false; 569 570 /* 571 * Try to defer the submission to a workqueue to parallelize the 572 * checksum calculation unless the I/O is issued synchronously. 573 */ 574 if (op_is_sync(bbio->bio.bi_opf)) 575 return false; 576 577 /* Zoned devices require I/O to be submitted in order. */ 578 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info)) 579 return false; 580 581 return true; 582 } 583 584 /* 585 * Submit bio to an async queue. 586 * 587 * Return true if the work has been succesfuly submitted, else false. 588 */ 589 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio, 590 struct btrfs_io_context *bioc, 591 struct btrfs_io_stripe *smap, int mirror_num) 592 { 593 struct btrfs_fs_info *fs_info = bbio->fs_info; 594 struct async_submit_bio *async; 595 596 async = kmalloc(sizeof(*async), GFP_NOFS); 597 if (!async) 598 return false; 599 600 async->bbio = bbio; 601 async->bioc = bioc; 602 async->smap = *smap; 603 async->mirror_num = mirror_num; 604 605 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 606 run_one_async_free); 607 btrfs_queue_work(fs_info->workers, &async->work); 608 return true; 609 } 610 611 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num) 612 { 613 struct btrfs_inode *inode = bbio->inode; 614 struct btrfs_fs_info *fs_info = bbio->fs_info; 615 struct btrfs_bio *orig_bbio = bbio; 616 struct bio *bio = &bbio->bio; 617 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 618 u64 length = bio->bi_iter.bi_size; 619 u64 map_length = length; 620 bool use_append = btrfs_use_zone_append(bbio); 621 struct btrfs_io_context *bioc = NULL; 622 struct btrfs_io_stripe smap; 623 blk_status_t ret; 624 int error; 625 626 btrfs_bio_counter_inc_blocked(fs_info); 627 error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 628 &bioc, &smap, &mirror_num, 1); 629 if (error) { 630 ret = errno_to_blk_status(error); 631 goto fail; 632 } 633 634 map_length = min(map_length, length); 635 if (use_append) 636 map_length = min(map_length, fs_info->max_zone_append_size); 637 638 if (map_length < length) { 639 bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append); 640 bio = &bbio->bio; 641 } 642 643 /* 644 * Save the iter for the end_io handler and preload the checksums for 645 * data reads. 646 */ 647 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) { 648 bbio->saved_iter = bio->bi_iter; 649 ret = btrfs_lookup_bio_sums(bbio); 650 if (ret) 651 goto fail_put_bio; 652 } 653 654 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 655 if (use_append) { 656 bio->bi_opf &= ~REQ_OP_WRITE; 657 bio->bi_opf |= REQ_OP_ZONE_APPEND; 658 } 659 660 /* 661 * Csum items for reloc roots have already been cloned at this 662 * point, so they are handled as part of the no-checksum case. 663 */ 664 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) && 665 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) && 666 !btrfs_is_data_reloc_root(inode->root)) { 667 if (should_async_write(bbio) && 668 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num)) 669 goto done; 670 671 ret = btrfs_bio_csum(bbio); 672 if (ret) 673 goto fail_put_bio; 674 } else if (use_append) { 675 ret = btrfs_alloc_dummy_sum(bbio); 676 if (ret) 677 goto fail_put_bio; 678 } 679 } 680 681 __btrfs_submit_bio(bio, bioc, &smap, mirror_num); 682 done: 683 return map_length == length; 684 685 fail_put_bio: 686 if (map_length < length) 687 bio_put(bio); 688 fail: 689 btrfs_bio_counter_dec(fs_info); 690 btrfs_bio_end_io(orig_bbio, ret); 691 /* Do not submit another chunk */ 692 return true; 693 } 694 695 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num) 696 { 697 /* If bbio->inode is not populated, its file_offset must be 0. */ 698 ASSERT(bbio->inode || bbio->file_offset == 0); 699 700 while (!btrfs_submit_chunk(bbio, mirror_num)) 701 ; 702 } 703 704 /* 705 * Submit a repair write. 706 * 707 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a 708 * RAID setup. Here we only want to write the one bad copy, so we do the 709 * mapping ourselves and submit the bio directly. 710 * 711 * The I/O is issued synchronously to block the repair read completion from 712 * freeing the bio. 713 */ 714 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 715 u64 length, u64 logical, struct page *page, 716 unsigned int pg_offset, int mirror_num) 717 { 718 struct btrfs_io_stripe smap = { 0 }; 719 struct bio_vec bvec; 720 struct bio bio; 721 int ret = 0; 722 723 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 724 BUG_ON(!mirror_num); 725 726 if (btrfs_repair_one_zone(fs_info, logical)) 727 return 0; 728 729 /* 730 * Avoid races with device replace and make sure our bioc has devices 731 * associated to its stripes that don't go away while we are doing the 732 * read repair operation. 733 */ 734 btrfs_bio_counter_inc_blocked(fs_info); 735 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 736 if (ret < 0) 737 goto out_counter_dec; 738 739 if (!smap.dev->bdev || 740 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) { 741 ret = -EIO; 742 goto out_counter_dec; 743 } 744 745 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 746 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 747 __bio_add_page(&bio, page, length, pg_offset); 748 749 btrfsic_check_bio(&bio); 750 ret = submit_bio_wait(&bio); 751 if (ret) { 752 /* try to remap that extent elsewhere? */ 753 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS); 754 goto out_bio_uninit; 755 } 756 757 btrfs_info_rl_in_rcu(fs_info, 758 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 759 ino, start, btrfs_dev_name(smap.dev), 760 smap.physical >> SECTOR_SHIFT); 761 ret = 0; 762 763 out_bio_uninit: 764 bio_uninit(&bio); 765 out_counter_dec: 766 btrfs_bio_counter_dec(fs_info); 767 return ret; 768 } 769 770 /* 771 * Submit a btrfs_bio based repair write. 772 * 773 * If @dev_replace is true, the write would be submitted to dev-replace target. 774 */ 775 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace) 776 { 777 struct btrfs_fs_info *fs_info = bbio->fs_info; 778 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 779 u64 length = bbio->bio.bi_iter.bi_size; 780 struct btrfs_io_stripe smap = { 0 }; 781 int ret; 782 783 ASSERT(fs_info); 784 ASSERT(mirror_num > 0); 785 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE); 786 ASSERT(!bbio->inode); 787 788 btrfs_bio_counter_inc_blocked(fs_info); 789 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num); 790 if (ret < 0) 791 goto fail; 792 793 if (dev_replace) { 794 ASSERT(smap.dev == fs_info->dev_replace.srcdev); 795 smap.dev = fs_info->dev_replace.tgtdev; 796 } 797 __btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num); 798 return; 799 800 fail: 801 btrfs_bio_counter_dec(fs_info); 802 btrfs_bio_end_io(bbio, errno_to_blk_status(ret)); 803 } 804 805 int __init btrfs_bioset_init(void) 806 { 807 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 808 offsetof(struct btrfs_bio, bio), 809 BIOSET_NEED_BVECS)) 810 return -ENOMEM; 811 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE, 812 offsetof(struct btrfs_bio, bio), 0)) 813 goto out_free_bioset; 814 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 815 offsetof(struct btrfs_bio, bio), 816 BIOSET_NEED_BVECS)) 817 goto out_free_clone_bioset; 818 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 819 sizeof(struct btrfs_failed_bio))) 820 goto out_free_repair_bioset; 821 return 0; 822 823 out_free_repair_bioset: 824 bioset_exit(&btrfs_repair_bioset); 825 out_free_clone_bioset: 826 bioset_exit(&btrfs_clone_bioset); 827 out_free_bioset: 828 bioset_exit(&btrfs_bioset); 829 return -ENOMEM; 830 } 831 832 void __cold btrfs_bioset_exit(void) 833 { 834 mempool_exit(&btrfs_failed_bio_pool); 835 bioset_exit(&btrfs_repair_bioset); 836 bioset_exit(&btrfs_clone_bioset); 837 bioset_exit(&btrfs_bioset); 838 } 839