xref: /openbmc/linux/fs/btrfs/bio.c (revision f8c44673e5a5f5131773d4a6974fb8ea4db033f8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "check-integrity.h"
14 #include "dev-replace.h"
15 #include "rcu-string.h"
16 #include "zoned.h"
17 #include "file-item.h"
18 
19 static struct bio_set btrfs_bioset;
20 static struct bio_set btrfs_repair_bioset;
21 static mempool_t btrfs_failed_bio_pool;
22 
23 struct btrfs_failed_bio {
24 	struct btrfs_bio *bbio;
25 	int num_copies;
26 	atomic_t repair_count;
27 };
28 
29 /*
30  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
31  * is already initialized by the block layer.
32  */
33 static inline void btrfs_bio_init(struct btrfs_bio *bbio,
34 				  struct btrfs_inode *inode,
35 				  btrfs_bio_end_io_t end_io, void *private)
36 {
37 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
38 	bbio->inode = inode;
39 	bbio->end_io = end_io;
40 	bbio->private = private;
41 }
42 
43 /*
44  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
45  * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
46  *
47  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
48  * a mempool.
49  */
50 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
51 			    struct btrfs_inode *inode,
52 			    btrfs_bio_end_io_t end_io, void *private)
53 {
54 	struct bio *bio;
55 
56 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
57 	btrfs_bio_init(btrfs_bio(bio), inode, end_io, private);
58 	return bio;
59 }
60 
61 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size,
62 				    struct btrfs_inode *inode,
63 				    btrfs_bio_end_io_t end_io, void *private)
64 {
65 	struct bio *bio;
66 	struct btrfs_bio *bbio;
67 
68 	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
69 
70 	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
71 	bbio = btrfs_bio(bio);
72 	btrfs_bio_init(bbio, inode, end_io, private);
73 
74 	bio_trim(bio, offset >> 9, size >> 9);
75 	return bio;
76 }
77 
78 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
79 {
80 	if (cur_mirror == fbio->num_copies)
81 		return cur_mirror + 1 - fbio->num_copies;
82 	return cur_mirror + 1;
83 }
84 
85 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
86 {
87 	if (cur_mirror == 1)
88 		return fbio->num_copies;
89 	return cur_mirror - 1;
90 }
91 
92 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
93 {
94 	if (atomic_dec_and_test(&fbio->repair_count)) {
95 		fbio->bbio->end_io(fbio->bbio);
96 		mempool_free(fbio, &btrfs_failed_bio_pool);
97 	}
98 }
99 
100 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
101 				 struct btrfs_device *dev)
102 {
103 	struct btrfs_failed_bio *fbio = repair_bbio->private;
104 	struct btrfs_inode *inode = repair_bbio->inode;
105 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
106 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
107 	int mirror = repair_bbio->mirror_num;
108 
109 	if (repair_bbio->bio.bi_status ||
110 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
111 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
112 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
113 
114 		mirror = next_repair_mirror(fbio, mirror);
115 		if (mirror == fbio->bbio->mirror_num) {
116 			btrfs_debug(fs_info, "no mirror left");
117 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
118 			goto done;
119 		}
120 
121 		btrfs_submit_bio(fs_info, &repair_bbio->bio, mirror);
122 		return;
123 	}
124 
125 	do {
126 		mirror = prev_repair_mirror(fbio, mirror);
127 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
128 				  repair_bbio->file_offset, fs_info->sectorsize,
129 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
130 				  bv->bv_page, bv->bv_offset, mirror);
131 	} while (mirror != fbio->bbio->mirror_num);
132 
133 done:
134 	btrfs_repair_done(fbio);
135 	bio_put(&repair_bbio->bio);
136 }
137 
138 /*
139  * Try to kick off a repair read to the next available mirror for a bad sector.
140  *
141  * This primarily tries to recover good data to serve the actual read request,
142  * but also tries to write the good data back to the bad mirror(s) when a
143  * read succeeded to restore the redundancy.
144  */
145 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
146 						  u32 bio_offset,
147 						  struct bio_vec *bv,
148 						  struct btrfs_failed_bio *fbio)
149 {
150 	struct btrfs_inode *inode = failed_bbio->inode;
151 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
152 	const u32 sectorsize = fs_info->sectorsize;
153 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
154 	struct btrfs_bio *repair_bbio;
155 	struct bio *repair_bio;
156 	int num_copies;
157 	int mirror;
158 
159 	btrfs_debug(fs_info, "repair read error: read error at %llu",
160 		    failed_bbio->file_offset + bio_offset);
161 
162 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
163 	if (num_copies == 1) {
164 		btrfs_debug(fs_info, "no copy to repair from");
165 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
166 		return fbio;
167 	}
168 
169 	if (!fbio) {
170 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
171 		fbio->bbio = failed_bbio;
172 		fbio->num_copies = num_copies;
173 		atomic_set(&fbio->repair_count, 1);
174 	}
175 
176 	atomic_inc(&fbio->repair_count);
177 
178 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
179 				      &btrfs_repair_bioset);
180 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
181 	bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
182 
183 	repair_bbio = btrfs_bio(repair_bio);
184 	btrfs_bio_init(repair_bbio, failed_bbio->inode, NULL, fbio);
185 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
186 
187 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
188 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
189 	btrfs_submit_bio(fs_info, repair_bio, mirror);
190 	return fbio;
191 }
192 
193 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
194 {
195 	struct btrfs_inode *inode = bbio->inode;
196 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
197 	u32 sectorsize = fs_info->sectorsize;
198 	struct bvec_iter *iter = &bbio->saved_iter;
199 	blk_status_t status = bbio->bio.bi_status;
200 	struct btrfs_failed_bio *fbio = NULL;
201 	u32 offset = 0;
202 
203 	/*
204 	 * Hand off repair bios to the repair code as there is no upper level
205 	 * submitter for them.
206 	 */
207 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
208 		btrfs_end_repair_bio(bbio, dev);
209 		return;
210 	}
211 
212 	/* Clear the I/O error. A failed repair will reset it. */
213 	bbio->bio.bi_status = BLK_STS_OK;
214 
215 	while (iter->bi_size) {
216 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
217 
218 		bv.bv_len = min(bv.bv_len, sectorsize);
219 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
220 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
221 
222 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
223 		offset += sectorsize;
224 	}
225 
226 	if (bbio->csum != bbio->csum_inline)
227 		kfree(bbio->csum);
228 
229 	if (fbio)
230 		btrfs_repair_done(fbio);
231 	else
232 		bbio->end_io(bbio);
233 }
234 
235 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
236 {
237 	if (!dev || !dev->bdev)
238 		return;
239 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
240 		return;
241 
242 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
243 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
244 	if (!(bio->bi_opf & REQ_RAHEAD))
245 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
246 	if (bio->bi_opf & REQ_PREFLUSH)
247 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
248 }
249 
250 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
251 						struct bio *bio)
252 {
253 	if (bio->bi_opf & REQ_META)
254 		return fs_info->endio_meta_workers;
255 	return fs_info->endio_workers;
256 }
257 
258 static void btrfs_end_bio_work(struct work_struct *work)
259 {
260 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
261 
262 	/* Metadata reads are checked and repaired by the submitter. */
263 	if (bbio->bio.bi_opf & REQ_META)
264 		bbio->end_io(bbio);
265 	else
266 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
267 }
268 
269 static void btrfs_simple_end_io(struct bio *bio)
270 {
271 	struct btrfs_bio *bbio = btrfs_bio(bio);
272 	struct btrfs_device *dev = bio->bi_private;
273 	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
274 
275 	btrfs_bio_counter_dec(fs_info);
276 
277 	if (bio->bi_status)
278 		btrfs_log_dev_io_error(bio, dev);
279 
280 	if (bio_op(bio) == REQ_OP_READ) {
281 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
282 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
283 	} else {
284 		bbio->end_io(bbio);
285 	}
286 }
287 
288 static void btrfs_raid56_end_io(struct bio *bio)
289 {
290 	struct btrfs_io_context *bioc = bio->bi_private;
291 	struct btrfs_bio *bbio = btrfs_bio(bio);
292 
293 	btrfs_bio_counter_dec(bioc->fs_info);
294 	bbio->mirror_num = bioc->mirror_num;
295 	if (bio_op(bio) == REQ_OP_READ && !(bbio->bio.bi_opf & REQ_META))
296 		btrfs_check_read_bio(bbio, NULL);
297 	else
298 		bbio->end_io(bbio);
299 
300 	btrfs_put_bioc(bioc);
301 }
302 
303 static void btrfs_orig_write_end_io(struct bio *bio)
304 {
305 	struct btrfs_io_stripe *stripe = bio->bi_private;
306 	struct btrfs_io_context *bioc = stripe->bioc;
307 	struct btrfs_bio *bbio = btrfs_bio(bio);
308 
309 	btrfs_bio_counter_dec(bioc->fs_info);
310 
311 	if (bio->bi_status) {
312 		atomic_inc(&bioc->error);
313 		btrfs_log_dev_io_error(bio, stripe->dev);
314 	}
315 
316 	/*
317 	 * Only send an error to the higher layers if it is beyond the tolerance
318 	 * threshold.
319 	 */
320 	if (atomic_read(&bioc->error) > bioc->max_errors)
321 		bio->bi_status = BLK_STS_IOERR;
322 	else
323 		bio->bi_status = BLK_STS_OK;
324 
325 	bbio->end_io(bbio);
326 	btrfs_put_bioc(bioc);
327 }
328 
329 static void btrfs_clone_write_end_io(struct bio *bio)
330 {
331 	struct btrfs_io_stripe *stripe = bio->bi_private;
332 
333 	if (bio->bi_status) {
334 		atomic_inc(&stripe->bioc->error);
335 		btrfs_log_dev_io_error(bio, stripe->dev);
336 	}
337 
338 	/* Pass on control to the original bio this one was cloned from */
339 	bio_endio(stripe->bioc->orig_bio);
340 	bio_put(bio);
341 }
342 
343 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
344 {
345 	if (!dev || !dev->bdev ||
346 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
347 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
348 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
349 		bio_io_error(bio);
350 		return;
351 	}
352 
353 	bio_set_dev(bio, dev->bdev);
354 
355 	/*
356 	 * For zone append writing, bi_sector must point the beginning of the
357 	 * zone
358 	 */
359 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
360 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
361 
362 		if (btrfs_dev_is_sequential(dev, physical)) {
363 			u64 zone_start = round_down(physical,
364 						    dev->fs_info->zone_size);
365 
366 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
367 		} else {
368 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
369 			bio->bi_opf |= REQ_OP_WRITE;
370 		}
371 	}
372 	btrfs_debug_in_rcu(dev->fs_info,
373 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
374 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
375 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
376 		dev->devid, bio->bi_iter.bi_size);
377 
378 	btrfsic_check_bio(bio);
379 	submit_bio(bio);
380 }
381 
382 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
383 {
384 	struct bio *orig_bio = bioc->orig_bio, *bio;
385 
386 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
387 
388 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
389 	if (dev_nr == bioc->num_stripes - 1) {
390 		bio = orig_bio;
391 		bio->bi_end_io = btrfs_orig_write_end_io;
392 	} else {
393 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
394 		bio_inc_remaining(orig_bio);
395 		bio->bi_end_io = btrfs_clone_write_end_io;
396 	}
397 
398 	bio->bi_private = &bioc->stripes[dev_nr];
399 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
400 	bioc->stripes[dev_nr].bioc = bioc;
401 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
402 }
403 
404 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
405 {
406 	struct btrfs_bio *bbio = btrfs_bio(bio);
407 	u64 logical = bio->bi_iter.bi_sector << 9;
408 	u64 length = bio->bi_iter.bi_size;
409 	u64 map_length = length;
410 	struct btrfs_io_context *bioc = NULL;
411 	struct btrfs_io_stripe smap;
412 	blk_status_t ret;
413 	int error;
414 
415 	btrfs_bio_counter_inc_blocked(fs_info);
416 	error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
417 				  &bioc, &smap, &mirror_num, 1);
418 	if (error) {
419 		ret = errno_to_blk_status(error);
420 		goto fail;
421 	}
422 
423 	if (map_length < length) {
424 		btrfs_crit(fs_info,
425 			   "mapping failed logical %llu bio len %llu len %llu",
426 			   logical, length, map_length);
427 		BUG();
428 	}
429 
430 	/*
431 	 * Save the iter for the end_io handler and preload the checksums for
432 	 * data reads.
433 	 */
434 	if (bio_op(bio) == REQ_OP_READ && !(bio->bi_opf & REQ_META)) {
435 		bbio->saved_iter = bio->bi_iter;
436 		ret = btrfs_lookup_bio_sums(bbio);
437 		if (ret)
438 			goto fail;
439 	}
440 
441 	/* Do not leak our private flag into the block layer. */
442 	bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED;
443 
444 	if (!bioc) {
445 		/* Single mirror read/write fast path */
446 		bbio->mirror_num = mirror_num;
447 		bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
448 		bio->bi_private = smap.dev;
449 		bio->bi_end_io = btrfs_simple_end_io;
450 		btrfs_submit_dev_bio(smap.dev, bio);
451 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
452 		/* Parity RAID write or read recovery */
453 		bio->bi_private = bioc;
454 		bio->bi_end_io = btrfs_raid56_end_io;
455 		if (bio_op(bio) == REQ_OP_READ)
456 			raid56_parity_recover(bio, bioc, mirror_num);
457 		else
458 			raid56_parity_write(bio, bioc);
459 	} else {
460 		/* Write to multiple mirrors */
461 		int total_devs = bioc->num_stripes;
462 		int dev_nr;
463 
464 		bioc->orig_bio = bio;
465 		for (dev_nr = 0; dev_nr < total_devs; dev_nr++)
466 			btrfs_submit_mirrored_bio(bioc, dev_nr);
467 	}
468 	return;
469 
470 fail:
471 	btrfs_bio_counter_dec(fs_info);
472 	btrfs_bio_end_io(bbio, ret);
473 }
474 
475 /*
476  * Submit a repair write.
477  *
478  * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
479  * RAID setup.  Here we only want to write the one bad copy, so we do the
480  * mapping ourselves and submit the bio directly.
481  *
482  * The I/O is issued synchronously to block the repair read completion from
483  * freeing the bio.
484  */
485 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
486 			    u64 length, u64 logical, struct page *page,
487 			    unsigned int pg_offset, int mirror_num)
488 {
489 	struct btrfs_device *dev;
490 	struct bio_vec bvec;
491 	struct bio bio;
492 	u64 map_length = 0;
493 	u64 sector;
494 	struct btrfs_io_context *bioc = NULL;
495 	int ret = 0;
496 
497 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
498 	BUG_ON(!mirror_num);
499 
500 	if (btrfs_repair_one_zone(fs_info, logical))
501 		return 0;
502 
503 	map_length = length;
504 
505 	/*
506 	 * Avoid races with device replace and make sure our bioc has devices
507 	 * associated to its stripes that don't go away while we are doing the
508 	 * read repair operation.
509 	 */
510 	btrfs_bio_counter_inc_blocked(fs_info);
511 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
512 		/*
513 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
514 		 * to update all raid stripes, but here we just want to correct
515 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
516 		 * stripe's dev and sector.
517 		 */
518 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
519 				      &map_length, &bioc, 0);
520 		if (ret)
521 			goto out_counter_dec;
522 		ASSERT(bioc->mirror_num == 1);
523 	} else {
524 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
525 				      &map_length, &bioc, mirror_num);
526 		if (ret)
527 			goto out_counter_dec;
528 		/*
529 		 * This happens when dev-replace is also running, and the
530 		 * mirror_num indicates the dev-replace target.
531 		 *
532 		 * In this case, we don't need to do anything, as the read
533 		 * error just means the replace progress hasn't reached our
534 		 * read range, and later replace routine would handle it well.
535 		 */
536 		if (mirror_num != bioc->mirror_num)
537 			goto out_counter_dec;
538 	}
539 
540 	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
541 	dev = bioc->stripes[bioc->mirror_num - 1].dev;
542 	btrfs_put_bioc(bioc);
543 
544 	if (!dev || !dev->bdev ||
545 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
546 		ret = -EIO;
547 		goto out_counter_dec;
548 	}
549 
550 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
551 	bio.bi_iter.bi_sector = sector;
552 	__bio_add_page(&bio, page, length, pg_offset);
553 
554 	btrfsic_check_bio(&bio);
555 	ret = submit_bio_wait(&bio);
556 	if (ret) {
557 		/* try to remap that extent elsewhere? */
558 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
559 		goto out_bio_uninit;
560 	}
561 
562 	btrfs_info_rl_in_rcu(fs_info,
563 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
564 			     ino, start, btrfs_dev_name(dev), sector);
565 	ret = 0;
566 
567 out_bio_uninit:
568 	bio_uninit(&bio);
569 out_counter_dec:
570 	btrfs_bio_counter_dec(fs_info);
571 	return ret;
572 }
573 
574 int __init btrfs_bioset_init(void)
575 {
576 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
577 			offsetof(struct btrfs_bio, bio),
578 			BIOSET_NEED_BVECS))
579 		return -ENOMEM;
580 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
581 			offsetof(struct btrfs_bio, bio),
582 			BIOSET_NEED_BVECS))
583 		goto out_free_bioset;
584 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
585 				      sizeof(struct btrfs_failed_bio)))
586 		goto out_free_repair_bioset;
587 	return 0;
588 
589 out_free_repair_bioset:
590 	bioset_exit(&btrfs_repair_bioset);
591 out_free_bioset:
592 	bioset_exit(&btrfs_bioset);
593 	return -ENOMEM;
594 }
595 
596 void __cold btrfs_bioset_exit(void)
597 {
598 	mempool_exit(&btrfs_failed_bio_pool);
599 	bioset_exit(&btrfs_repair_bioset);
600 	bioset_exit(&btrfs_bioset);
601 }
602