1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 * Copyright (C) 2022 Christoph Hellwig. 5 */ 6 7 #include <linux/bio.h> 8 #include "bio.h" 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "raid56.h" 12 #include "async-thread.h" 13 #include "check-integrity.h" 14 #include "dev-replace.h" 15 #include "rcu-string.h" 16 #include "zoned.h" 17 #include "file-item.h" 18 19 static struct bio_set btrfs_bioset; 20 static struct bio_set btrfs_repair_bioset; 21 static mempool_t btrfs_failed_bio_pool; 22 23 struct btrfs_failed_bio { 24 struct btrfs_bio *bbio; 25 int num_copies; 26 atomic_t repair_count; 27 }; 28 29 /* 30 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 31 * is already initialized by the block layer. 32 */ 33 static inline void btrfs_bio_init(struct btrfs_bio *bbio, 34 struct btrfs_inode *inode, 35 btrfs_bio_end_io_t end_io, void *private) 36 { 37 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 38 bbio->inode = inode; 39 bbio->end_io = end_io; 40 bbio->private = private; 41 } 42 43 /* 44 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 45 * btrfs, and is used for all I/O submitted through btrfs_submit_bio. 46 * 47 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 48 * a mempool. 49 */ 50 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 51 struct btrfs_inode *inode, 52 btrfs_bio_end_io_t end_io, void *private) 53 { 54 struct bio *bio; 55 56 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 57 btrfs_bio_init(btrfs_bio(bio), inode, end_io, private); 58 return bio; 59 } 60 61 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size, 62 struct btrfs_inode *inode, 63 btrfs_bio_end_io_t end_io, void *private) 64 { 65 struct bio *bio; 66 struct btrfs_bio *bbio; 67 68 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 69 70 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset); 71 bbio = btrfs_bio(bio); 72 btrfs_bio_init(bbio, inode, end_io, private); 73 74 bio_trim(bio, offset >> 9, size >> 9); 75 return bio; 76 } 77 78 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 79 { 80 if (cur_mirror == fbio->num_copies) 81 return cur_mirror + 1 - fbio->num_copies; 82 return cur_mirror + 1; 83 } 84 85 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror) 86 { 87 if (cur_mirror == 1) 88 return fbio->num_copies; 89 return cur_mirror - 1; 90 } 91 92 static void btrfs_repair_done(struct btrfs_failed_bio *fbio) 93 { 94 if (atomic_dec_and_test(&fbio->repair_count)) { 95 fbio->bbio->end_io(fbio->bbio); 96 mempool_free(fbio, &btrfs_failed_bio_pool); 97 } 98 } 99 100 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio, 101 struct btrfs_device *dev) 102 { 103 struct btrfs_failed_bio *fbio = repair_bbio->private; 104 struct btrfs_inode *inode = repair_bbio->inode; 105 struct btrfs_fs_info *fs_info = inode->root->fs_info; 106 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio); 107 int mirror = repair_bbio->mirror_num; 108 109 if (repair_bbio->bio.bi_status || 110 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) { 111 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ); 112 repair_bbio->bio.bi_iter = repair_bbio->iter; 113 114 mirror = next_repair_mirror(fbio, mirror); 115 if (mirror == fbio->bbio->mirror_num) { 116 btrfs_debug(fs_info, "no mirror left"); 117 fbio->bbio->bio.bi_status = BLK_STS_IOERR; 118 goto done; 119 } 120 121 btrfs_submit_bio(fs_info, &repair_bbio->bio, mirror); 122 return; 123 } 124 125 do { 126 mirror = prev_repair_mirror(fbio, mirror); 127 btrfs_repair_io_failure(fs_info, btrfs_ino(inode), 128 repair_bbio->file_offset, fs_info->sectorsize, 129 repair_bbio->iter.bi_sector << SECTOR_SHIFT, 130 bv->bv_page, bv->bv_offset, mirror); 131 } while (mirror != fbio->bbio->mirror_num); 132 133 done: 134 btrfs_repair_done(fbio); 135 bio_put(&repair_bbio->bio); 136 } 137 138 /* 139 * Try to kick off a repair read to the next available mirror for a bad sector. 140 * 141 * This primarily tries to recover good data to serve the actual read request, 142 * but also tries to write the good data back to the bad mirror(s) when a 143 * read succeeded to restore the redundancy. 144 */ 145 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio, 146 u32 bio_offset, 147 struct bio_vec *bv, 148 struct btrfs_failed_bio *fbio) 149 { 150 struct btrfs_inode *inode = failed_bbio->inode; 151 struct btrfs_fs_info *fs_info = inode->root->fs_info; 152 const u32 sectorsize = fs_info->sectorsize; 153 const u64 logical = (failed_bbio->iter.bi_sector << SECTOR_SHIFT); 154 struct btrfs_bio *repair_bbio; 155 struct bio *repair_bio; 156 int num_copies; 157 int mirror; 158 159 btrfs_debug(fs_info, "repair read error: read error at %llu", 160 failed_bbio->file_offset + bio_offset); 161 162 num_copies = btrfs_num_copies(fs_info, logical, sectorsize); 163 if (num_copies == 1) { 164 btrfs_debug(fs_info, "no copy to repair from"); 165 failed_bbio->bio.bi_status = BLK_STS_IOERR; 166 return fbio; 167 } 168 169 if (!fbio) { 170 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS); 171 fbio->bbio = failed_bbio; 172 fbio->num_copies = num_copies; 173 atomic_set(&fbio->repair_count, 1); 174 } 175 176 atomic_inc(&fbio->repair_count); 177 178 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, 179 &btrfs_repair_bioset); 180 repair_bio->bi_iter.bi_sector = failed_bbio->iter.bi_sector; 181 bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset); 182 183 repair_bbio = btrfs_bio(repair_bio); 184 btrfs_bio_init(repair_bbio, failed_bbio->inode, NULL, fbio); 185 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset; 186 187 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num); 188 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror); 189 btrfs_submit_bio(fs_info, repair_bio, mirror); 190 return fbio; 191 } 192 193 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev) 194 { 195 struct btrfs_inode *inode = bbio->inode; 196 struct btrfs_fs_info *fs_info = inode->root->fs_info; 197 u32 sectorsize = fs_info->sectorsize; 198 struct bvec_iter *iter = &bbio->iter; 199 blk_status_t status = bbio->bio.bi_status; 200 struct btrfs_failed_bio *fbio = NULL; 201 u32 offset = 0; 202 203 /* 204 * Hand off repair bios to the repair code as there is no upper level 205 * submitter for them. 206 */ 207 if (bbio->bio.bi_pool == &btrfs_repair_bioset) { 208 btrfs_end_repair_bio(bbio, dev); 209 return; 210 } 211 212 /* Clear the I/O error. A failed repair will reset it. */ 213 bbio->bio.bi_status = BLK_STS_OK; 214 215 while (iter->bi_size) { 216 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter); 217 218 bv.bv_len = min(bv.bv_len, sectorsize); 219 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv)) 220 fbio = repair_one_sector(bbio, offset, &bv, fbio); 221 222 bio_advance_iter_single(&bbio->bio, iter, sectorsize); 223 offset += sectorsize; 224 } 225 226 btrfs_bio_free_csum(bbio); 227 228 if (fbio) 229 btrfs_repair_done(fbio); 230 else 231 bbio->end_io(bbio); 232 } 233 234 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 235 { 236 if (!dev || !dev->bdev) 237 return; 238 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 239 return; 240 241 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 242 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 243 if (!(bio->bi_opf & REQ_RAHEAD)) 244 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 245 if (bio->bi_opf & REQ_PREFLUSH) 246 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 247 } 248 249 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 250 struct bio *bio) 251 { 252 if (bio->bi_opf & REQ_META) 253 return fs_info->endio_meta_workers; 254 return fs_info->endio_workers; 255 } 256 257 static void btrfs_end_bio_work(struct work_struct *work) 258 { 259 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); 260 261 /* Metadata reads are checked and repaired by the submitter. */ 262 if (bbio->bio.bi_opf & REQ_META) 263 bbio->end_io(bbio); 264 else 265 btrfs_check_read_bio(bbio, bbio->device); 266 } 267 268 static void btrfs_simple_end_io(struct bio *bio) 269 { 270 struct btrfs_fs_info *fs_info = bio->bi_private; 271 struct btrfs_bio *bbio = btrfs_bio(bio); 272 273 btrfs_bio_counter_dec(fs_info); 274 275 if (bio->bi_status) 276 btrfs_log_dev_io_error(bio, bbio->device); 277 278 if (bio_op(bio) == REQ_OP_READ) { 279 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 280 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 281 } else { 282 bbio->end_io(bbio); 283 } 284 } 285 286 static void btrfs_raid56_end_io(struct bio *bio) 287 { 288 struct btrfs_io_context *bioc = bio->bi_private; 289 struct btrfs_bio *bbio = btrfs_bio(bio); 290 291 btrfs_bio_counter_dec(bioc->fs_info); 292 bbio->mirror_num = bioc->mirror_num; 293 if (bio_op(bio) == REQ_OP_READ && !(bbio->bio.bi_opf & REQ_META)) 294 btrfs_check_read_bio(bbio, NULL); 295 else 296 bbio->end_io(bbio); 297 298 btrfs_put_bioc(bioc); 299 } 300 301 static void btrfs_orig_write_end_io(struct bio *bio) 302 { 303 struct btrfs_io_stripe *stripe = bio->bi_private; 304 struct btrfs_io_context *bioc = stripe->bioc; 305 struct btrfs_bio *bbio = btrfs_bio(bio); 306 307 btrfs_bio_counter_dec(bioc->fs_info); 308 309 if (bio->bi_status) { 310 atomic_inc(&bioc->error); 311 btrfs_log_dev_io_error(bio, stripe->dev); 312 } 313 314 /* 315 * Only send an error to the higher layers if it is beyond the tolerance 316 * threshold. 317 */ 318 if (atomic_read(&bioc->error) > bioc->max_errors) 319 bio->bi_status = BLK_STS_IOERR; 320 else 321 bio->bi_status = BLK_STS_OK; 322 323 bbio->end_io(bbio); 324 btrfs_put_bioc(bioc); 325 } 326 327 static void btrfs_clone_write_end_io(struct bio *bio) 328 { 329 struct btrfs_io_stripe *stripe = bio->bi_private; 330 331 if (bio->bi_status) { 332 atomic_inc(&stripe->bioc->error); 333 btrfs_log_dev_io_error(bio, stripe->dev); 334 } 335 336 /* Pass on control to the original bio this one was cloned from */ 337 bio_endio(stripe->bioc->orig_bio); 338 bio_put(bio); 339 } 340 341 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 342 { 343 if (!dev || !dev->bdev || 344 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 345 (btrfs_op(bio) == BTRFS_MAP_WRITE && 346 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 347 bio_io_error(bio); 348 return; 349 } 350 351 bio_set_dev(bio, dev->bdev); 352 353 /* 354 * For zone append writing, bi_sector must point the beginning of the 355 * zone 356 */ 357 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 358 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 359 360 if (btrfs_dev_is_sequential(dev, physical)) { 361 u64 zone_start = round_down(physical, 362 dev->fs_info->zone_size); 363 364 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 365 } else { 366 bio->bi_opf &= ~REQ_OP_ZONE_APPEND; 367 bio->bi_opf |= REQ_OP_WRITE; 368 } 369 } 370 btrfs_debug_in_rcu(dev->fs_info, 371 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 372 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 373 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), 374 dev->devid, bio->bi_iter.bi_size); 375 376 btrfsic_check_bio(bio); 377 submit_bio(bio); 378 } 379 380 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 381 { 382 struct bio *orig_bio = bioc->orig_bio, *bio; 383 384 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 385 386 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 387 if (dev_nr == bioc->num_stripes - 1) { 388 bio = orig_bio; 389 bio->bi_end_io = btrfs_orig_write_end_io; 390 } else { 391 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 392 bio_inc_remaining(orig_bio); 393 bio->bi_end_io = btrfs_clone_write_end_io; 394 } 395 396 bio->bi_private = &bioc->stripes[dev_nr]; 397 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 398 bioc->stripes[dev_nr].bioc = bioc; 399 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 400 } 401 402 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num) 403 { 404 struct btrfs_bio *bbio = btrfs_bio(bio); 405 u64 logical = bio->bi_iter.bi_sector << 9; 406 u64 length = bio->bi_iter.bi_size; 407 u64 map_length = length; 408 struct btrfs_io_context *bioc = NULL; 409 struct btrfs_io_stripe smap; 410 blk_status_t ret; 411 int error; 412 413 btrfs_bio_counter_inc_blocked(fs_info); 414 error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 415 &bioc, &smap, &mirror_num, 1); 416 if (error) { 417 ret = errno_to_blk_status(error); 418 goto fail; 419 } 420 421 if (map_length < length) { 422 btrfs_crit(fs_info, 423 "mapping failed logical %llu bio len %llu len %llu", 424 logical, length, map_length); 425 BUG(); 426 } 427 428 /* 429 * Save the iter for the end_io handler and preload the checksums for 430 * data reads. 431 */ 432 if (bio_op(bio) == REQ_OP_READ && !(bio->bi_opf & REQ_META)) { 433 bbio->iter = bio->bi_iter; 434 ret = btrfs_lookup_bio_sums(bbio); 435 if (ret) 436 goto fail; 437 } 438 439 if (!bioc) { 440 /* Single mirror read/write fast path */ 441 bbio->mirror_num = mirror_num; 442 bbio->device = smap.dev; 443 bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 444 bio->bi_private = fs_info; 445 bio->bi_end_io = btrfs_simple_end_io; 446 btrfs_submit_dev_bio(smap.dev, bio); 447 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 448 /* Parity RAID write or read recovery */ 449 bio->bi_private = bioc; 450 bio->bi_end_io = btrfs_raid56_end_io; 451 if (bio_op(bio) == REQ_OP_READ) 452 raid56_parity_recover(bio, bioc, mirror_num); 453 else 454 raid56_parity_write(bio, bioc); 455 } else { 456 /* Write to multiple mirrors */ 457 int total_devs = bioc->num_stripes; 458 int dev_nr; 459 460 bioc->orig_bio = bio; 461 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) 462 btrfs_submit_mirrored_bio(bioc, dev_nr); 463 } 464 return; 465 466 fail: 467 btrfs_bio_counter_dec(fs_info); 468 btrfs_bio_end_io(bbio, ret); 469 } 470 471 /* 472 * Submit a repair write. 473 * 474 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a 475 * RAID setup. Here we only want to write the one bad copy, so we do the 476 * mapping ourselves and submit the bio directly. 477 * 478 * The I/O is issued synchronously to block the repair read completion from 479 * freeing the bio. 480 */ 481 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, 482 u64 length, u64 logical, struct page *page, 483 unsigned int pg_offset, int mirror_num) 484 { 485 struct btrfs_device *dev; 486 struct bio_vec bvec; 487 struct bio bio; 488 u64 map_length = 0; 489 u64 sector; 490 struct btrfs_io_context *bioc = NULL; 491 int ret = 0; 492 493 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); 494 BUG_ON(!mirror_num); 495 496 if (btrfs_repair_one_zone(fs_info, logical)) 497 return 0; 498 499 map_length = length; 500 501 /* 502 * Avoid races with device replace and make sure our bioc has devices 503 * associated to its stripes that don't go away while we are doing the 504 * read repair operation. 505 */ 506 btrfs_bio_counter_inc_blocked(fs_info); 507 if (btrfs_is_parity_mirror(fs_info, logical, length)) { 508 /* 509 * Note that we don't use BTRFS_MAP_WRITE because it's supposed 510 * to update all raid stripes, but here we just want to correct 511 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad 512 * stripe's dev and sector. 513 */ 514 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, 515 &map_length, &bioc, 0); 516 if (ret) 517 goto out_counter_dec; 518 ASSERT(bioc->mirror_num == 1); 519 } else { 520 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, 521 &map_length, &bioc, mirror_num); 522 if (ret) 523 goto out_counter_dec; 524 /* 525 * This happens when dev-replace is also running, and the 526 * mirror_num indicates the dev-replace target. 527 * 528 * In this case, we don't need to do anything, as the read 529 * error just means the replace progress hasn't reached our 530 * read range, and later replace routine would handle it well. 531 */ 532 if (mirror_num != bioc->mirror_num) 533 goto out_counter_dec; 534 } 535 536 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; 537 dev = bioc->stripes[bioc->mirror_num - 1].dev; 538 btrfs_put_bioc(bioc); 539 540 if (!dev || !dev->bdev || 541 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 542 ret = -EIO; 543 goto out_counter_dec; 544 } 545 546 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); 547 bio.bi_iter.bi_sector = sector; 548 __bio_add_page(&bio, page, length, pg_offset); 549 550 btrfsic_check_bio(&bio); 551 ret = submit_bio_wait(&bio); 552 if (ret) { 553 /* try to remap that extent elsewhere? */ 554 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 555 goto out_bio_uninit; 556 } 557 558 btrfs_info_rl_in_rcu(fs_info, 559 "read error corrected: ino %llu off %llu (dev %s sector %llu)", 560 ino, start, btrfs_dev_name(dev), sector); 561 ret = 0; 562 563 out_bio_uninit: 564 bio_uninit(&bio); 565 out_counter_dec: 566 btrfs_bio_counter_dec(fs_info); 567 return ret; 568 } 569 570 int __init btrfs_bioset_init(void) 571 { 572 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 573 offsetof(struct btrfs_bio, bio), 574 BIOSET_NEED_BVECS)) 575 return -ENOMEM; 576 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE, 577 offsetof(struct btrfs_bio, bio), 578 BIOSET_NEED_BVECS)) 579 goto out_free_bioset; 580 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE, 581 sizeof(struct btrfs_failed_bio))) 582 goto out_free_repair_bioset; 583 return 0; 584 585 out_free_repair_bioset: 586 bioset_exit(&btrfs_repair_bioset); 587 out_free_bioset: 588 bioset_exit(&btrfs_bioset); 589 return -ENOMEM; 590 } 591 592 void __cold btrfs_bioset_exit(void) 593 { 594 mempool_exit(&btrfs_failed_bio_pool); 595 bioset_exit(&btrfs_repair_bioset); 596 bioset_exit(&btrfs_bioset); 597 } 598