xref: /openbmc/linux/fs/btrfs/bio.c (revision 7276aa7d38255b40e578267c3634ebc05f5d5236)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "check-integrity.h"
14 #include "dev-replace.h"
15 #include "rcu-string.h"
16 #include "zoned.h"
17 
18 static struct bio_set btrfs_bioset;
19 
20 /*
21  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
22  * is already initialized by the block layer.
23  */
24 static inline void btrfs_bio_init(struct btrfs_bio *bbio,
25 				  struct btrfs_inode *inode,
26 				  btrfs_bio_end_io_t end_io, void *private)
27 {
28 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
29 	bbio->inode = inode;
30 	bbio->end_io = end_io;
31 	bbio->private = private;
32 }
33 
34 /*
35  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
36  * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
37  *
38  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
39  * a mempool.
40  */
41 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
42 			    struct btrfs_inode *inode,
43 			    btrfs_bio_end_io_t end_io, void *private)
44 {
45 	struct bio *bio;
46 
47 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
48 	btrfs_bio_init(btrfs_bio(bio), inode, end_io, private);
49 	return bio;
50 }
51 
52 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size,
53 				    struct btrfs_inode *inode,
54 				    btrfs_bio_end_io_t end_io, void *private)
55 {
56 	struct bio *bio;
57 	struct btrfs_bio *bbio;
58 
59 	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
60 
61 	bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
62 	bbio = btrfs_bio(bio);
63 	btrfs_bio_init(bbio, inode, end_io, private);
64 
65 	bio_trim(bio, offset >> 9, size >> 9);
66 	return bio;
67 }
68 
69 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
70 {
71 	if (!dev || !dev->bdev)
72 		return;
73 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
74 		return;
75 
76 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
77 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
78 	if (!(bio->bi_opf & REQ_RAHEAD))
79 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
80 	if (bio->bi_opf & REQ_PREFLUSH)
81 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
82 }
83 
84 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
85 						struct bio *bio)
86 {
87 	if (bio->bi_opf & REQ_META)
88 		return fs_info->endio_meta_workers;
89 	return fs_info->endio_workers;
90 }
91 
92 static void btrfs_end_bio_work(struct work_struct *work)
93 {
94 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
95 
96 	bbio->end_io(bbio);
97 }
98 
99 static void btrfs_simple_end_io(struct bio *bio)
100 {
101 	struct btrfs_fs_info *fs_info = bio->bi_private;
102 	struct btrfs_bio *bbio = btrfs_bio(bio);
103 
104 	btrfs_bio_counter_dec(fs_info);
105 
106 	if (bio->bi_status)
107 		btrfs_log_dev_io_error(bio, bbio->device);
108 
109 	if (bio_op(bio) == REQ_OP_READ) {
110 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
111 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
112 	} else {
113 		bbio->end_io(bbio);
114 	}
115 }
116 
117 static void btrfs_raid56_end_io(struct bio *bio)
118 {
119 	struct btrfs_io_context *bioc = bio->bi_private;
120 	struct btrfs_bio *bbio = btrfs_bio(bio);
121 
122 	btrfs_bio_counter_dec(bioc->fs_info);
123 	bbio->mirror_num = bioc->mirror_num;
124 	bbio->end_io(bbio);
125 
126 	btrfs_put_bioc(bioc);
127 }
128 
129 static void btrfs_orig_write_end_io(struct bio *bio)
130 {
131 	struct btrfs_io_stripe *stripe = bio->bi_private;
132 	struct btrfs_io_context *bioc = stripe->bioc;
133 	struct btrfs_bio *bbio = btrfs_bio(bio);
134 
135 	btrfs_bio_counter_dec(bioc->fs_info);
136 
137 	if (bio->bi_status) {
138 		atomic_inc(&bioc->error);
139 		btrfs_log_dev_io_error(bio, stripe->dev);
140 	}
141 
142 	/*
143 	 * Only send an error to the higher layers if it is beyond the tolerance
144 	 * threshold.
145 	 */
146 	if (atomic_read(&bioc->error) > bioc->max_errors)
147 		bio->bi_status = BLK_STS_IOERR;
148 	else
149 		bio->bi_status = BLK_STS_OK;
150 
151 	bbio->end_io(bbio);
152 	btrfs_put_bioc(bioc);
153 }
154 
155 static void btrfs_clone_write_end_io(struct bio *bio)
156 {
157 	struct btrfs_io_stripe *stripe = bio->bi_private;
158 
159 	if (bio->bi_status) {
160 		atomic_inc(&stripe->bioc->error);
161 		btrfs_log_dev_io_error(bio, stripe->dev);
162 	}
163 
164 	/* Pass on control to the original bio this one was cloned from */
165 	bio_endio(stripe->bioc->orig_bio);
166 	bio_put(bio);
167 }
168 
169 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
170 {
171 	if (!dev || !dev->bdev ||
172 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
173 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
174 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
175 		bio_io_error(bio);
176 		return;
177 	}
178 
179 	bio_set_dev(bio, dev->bdev);
180 
181 	/*
182 	 * For zone append writing, bi_sector must point the beginning of the
183 	 * zone
184 	 */
185 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
186 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
187 
188 		if (btrfs_dev_is_sequential(dev, physical)) {
189 			u64 zone_start = round_down(physical,
190 						    dev->fs_info->zone_size);
191 
192 			bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
193 		} else {
194 			bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
195 			bio->bi_opf |= REQ_OP_WRITE;
196 		}
197 	}
198 	btrfs_debug_in_rcu(dev->fs_info,
199 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
200 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
201 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
202 		dev->devid, bio->bi_iter.bi_size);
203 
204 	btrfsic_check_bio(bio);
205 	submit_bio(bio);
206 }
207 
208 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
209 {
210 	struct bio *orig_bio = bioc->orig_bio, *bio;
211 
212 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
213 
214 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
215 	if (dev_nr == bioc->num_stripes - 1) {
216 		bio = orig_bio;
217 		bio->bi_end_io = btrfs_orig_write_end_io;
218 	} else {
219 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
220 		bio_inc_remaining(orig_bio);
221 		bio->bi_end_io = btrfs_clone_write_end_io;
222 	}
223 
224 	bio->bi_private = &bioc->stripes[dev_nr];
225 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
226 	bioc->stripes[dev_nr].bioc = bioc;
227 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
228 }
229 
230 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num)
231 {
232 	struct btrfs_bio *bbio = btrfs_bio(bio);
233 	u64 logical = bio->bi_iter.bi_sector << 9;
234 	u64 length = bio->bi_iter.bi_size;
235 	u64 map_length = length;
236 	struct btrfs_io_context *bioc = NULL;
237 	struct btrfs_io_stripe smap;
238 	blk_status_t ret;
239 	int error;
240 
241 	btrfs_bio_counter_inc_blocked(fs_info);
242 	error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
243 				  &bioc, &smap, &mirror_num, 1);
244 	if (error) {
245 		ret = errno_to_blk_status(error);
246 		goto fail;
247 	}
248 
249 	if (map_length < length) {
250 		btrfs_crit(fs_info,
251 			   "mapping failed logical %llu bio len %llu len %llu",
252 			   logical, length, map_length);
253 		BUG();
254 	}
255 
256 	/* Save the iter for the end_io handler for data reads. */
257 	if (bio_op(bio) == REQ_OP_READ && !(bio->bi_opf & REQ_META))
258 		bbio->iter = bio->bi_iter;
259 
260 	if (!bioc) {
261 		/* Single mirror read/write fast path */
262 		bbio->mirror_num = mirror_num;
263 		bbio->device = smap.dev;
264 		bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
265 		bio->bi_private = fs_info;
266 		bio->bi_end_io = btrfs_simple_end_io;
267 		btrfs_submit_dev_bio(smap.dev, bio);
268 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
269 		/* Parity RAID write or read recovery */
270 		bio->bi_private = bioc;
271 		bio->bi_end_io = btrfs_raid56_end_io;
272 		if (bio_op(bio) == REQ_OP_READ)
273 			raid56_parity_recover(bio, bioc, mirror_num);
274 		else
275 			raid56_parity_write(bio, bioc);
276 	} else {
277 		/* Write to multiple mirrors */
278 		int total_devs = bioc->num_stripes;
279 		int dev_nr;
280 
281 		bioc->orig_bio = bio;
282 		for (dev_nr = 0; dev_nr < total_devs; dev_nr++)
283 			btrfs_submit_mirrored_bio(bioc, dev_nr);
284 	}
285 	return;
286 
287 fail:
288 	btrfs_bio_counter_dec(fs_info);
289 	btrfs_bio_end_io(bbio, ret);
290 }
291 
292 /*
293  * Submit a repair write.
294  *
295  * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
296  * RAID setup.  Here we only want to write the one bad copy, so we do the
297  * mapping ourselves and submit the bio directly.
298  *
299  * The I/O is issued synchronously to block the repair read completion from
300  * freeing the bio.
301  */
302 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
303 			    u64 length, u64 logical, struct page *page,
304 			    unsigned int pg_offset, int mirror_num)
305 {
306 	struct btrfs_device *dev;
307 	struct bio_vec bvec;
308 	struct bio bio;
309 	u64 map_length = 0;
310 	u64 sector;
311 	struct btrfs_io_context *bioc = NULL;
312 	int ret = 0;
313 
314 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
315 	BUG_ON(!mirror_num);
316 
317 	if (btrfs_repair_one_zone(fs_info, logical))
318 		return 0;
319 
320 	map_length = length;
321 
322 	/*
323 	 * Avoid races with device replace and make sure our bioc has devices
324 	 * associated to its stripes that don't go away while we are doing the
325 	 * read repair operation.
326 	 */
327 	btrfs_bio_counter_inc_blocked(fs_info);
328 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
329 		/*
330 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
331 		 * to update all raid stripes, but here we just want to correct
332 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
333 		 * stripe's dev and sector.
334 		 */
335 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
336 				      &map_length, &bioc, 0);
337 		if (ret)
338 			goto out_counter_dec;
339 		ASSERT(bioc->mirror_num == 1);
340 	} else {
341 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
342 				      &map_length, &bioc, mirror_num);
343 		if (ret)
344 			goto out_counter_dec;
345 		/*
346 		 * This happens when dev-replace is also running, and the
347 		 * mirror_num indicates the dev-replace target.
348 		 *
349 		 * In this case, we don't need to do anything, as the read
350 		 * error just means the replace progress hasn't reached our
351 		 * read range, and later replace routine would handle it well.
352 		 */
353 		if (mirror_num != bioc->mirror_num)
354 			goto out_counter_dec;
355 	}
356 
357 	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
358 	dev = bioc->stripes[bioc->mirror_num - 1].dev;
359 	btrfs_put_bioc(bioc);
360 
361 	if (!dev || !dev->bdev ||
362 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
363 		ret = -EIO;
364 		goto out_counter_dec;
365 	}
366 
367 	bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
368 	bio.bi_iter.bi_sector = sector;
369 	__bio_add_page(&bio, page, length, pg_offset);
370 
371 	btrfsic_check_bio(&bio);
372 	ret = submit_bio_wait(&bio);
373 	if (ret) {
374 		/* try to remap that extent elsewhere? */
375 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
376 		goto out_bio_uninit;
377 	}
378 
379 	btrfs_info_rl_in_rcu(fs_info,
380 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
381 			     ino, start, btrfs_dev_name(dev), sector);
382 	ret = 0;
383 
384 out_bio_uninit:
385 	bio_uninit(&bio);
386 out_counter_dec:
387 	btrfs_bio_counter_dec(fs_info);
388 	return ret;
389 }
390 
391 int __init btrfs_bioset_init(void)
392 {
393 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
394 			offsetof(struct btrfs_bio, bio),
395 			BIOSET_NEED_BVECS))
396 		return -ENOMEM;
397 	return 0;
398 }
399 
400 void __cold btrfs_bioset_exit(void)
401 {
402 	bioset_exit(&btrfs_bioset);
403 }
404