xref: /openbmc/linux/fs/btrfs/bio.c (revision 71df088c1cc090d232eb691d8f42284a2c6409eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  * Copyright (C) 2022 Christoph Hellwig.
5  */
6 
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "check-integrity.h"
14 #include "dev-replace.h"
15 #include "rcu-string.h"
16 #include "zoned.h"
17 #include "file-item.h"
18 
19 static struct bio_set btrfs_bioset;
20 static struct bio_set btrfs_clone_bioset;
21 static struct bio_set btrfs_repair_bioset;
22 static mempool_t btrfs_failed_bio_pool;
23 
24 struct btrfs_failed_bio {
25 	struct btrfs_bio *bbio;
26 	int num_copies;
27 	atomic_t repair_count;
28 };
29 
30 /*
31  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
32  * is already initialized by the block layer.
33  */
34 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
35 		    btrfs_bio_end_io_t end_io, void *private)
36 {
37 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
38 	bbio->fs_info = fs_info;
39 	bbio->end_io = end_io;
40 	bbio->private = private;
41 	atomic_set(&bbio->pending_ios, 1);
42 }
43 
44 /*
45  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
46  * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
47  *
48  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
49  * a mempool.
50  */
51 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
52 				  struct btrfs_fs_info *fs_info,
53 				  btrfs_bio_end_io_t end_io, void *private)
54 {
55 	struct btrfs_bio *bbio;
56 	struct bio *bio;
57 
58 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
59 	bbio = btrfs_bio(bio);
60 	btrfs_bio_init(bbio, fs_info, end_io, private);
61 	return bbio;
62 }
63 
64 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
65 					 struct btrfs_bio *orig_bbio,
66 					 u64 map_length, bool use_append)
67 {
68 	struct btrfs_bio *bbio;
69 	struct bio *bio;
70 
71 	if (use_append) {
72 		unsigned int nr_segs;
73 
74 		bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
75 				   &btrfs_clone_bioset, map_length);
76 	} else {
77 		bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
78 				GFP_NOFS, &btrfs_clone_bioset);
79 	}
80 	bbio = btrfs_bio(bio);
81 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
82 	bbio->inode = orig_bbio->inode;
83 	bbio->file_offset = orig_bbio->file_offset;
84 	if (!(orig_bbio->bio.bi_opf & REQ_BTRFS_ONE_ORDERED))
85 		orig_bbio->file_offset += map_length;
86 
87 	atomic_inc(&orig_bbio->pending_ios);
88 	return bbio;
89 }
90 
91 static void btrfs_orig_write_end_io(struct bio *bio);
92 
93 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
94 				       struct btrfs_bio *orig_bbio)
95 {
96 	/*
97 	 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
98 	 * just blindly propagate a write failure here.  Instead increment the
99 	 * error count in the original I/O context so that it is guaranteed to
100 	 * be larger than the error tolerance.
101 	 */
102 	if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
103 		struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
104 		struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
105 
106 		atomic_add(orig_bioc->max_errors, &orig_bioc->error);
107 	} else {
108 		orig_bbio->bio.bi_status = bbio->bio.bi_status;
109 	}
110 }
111 
112 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
113 {
114 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
115 		struct btrfs_bio *orig_bbio = bbio->private;
116 
117 		if (bbio->bio.bi_status)
118 			btrfs_bbio_propagate_error(bbio, orig_bbio);
119 		bio_put(&bbio->bio);
120 		bbio = orig_bbio;
121 	}
122 
123 	if (atomic_dec_and_test(&bbio->pending_ios))
124 		bbio->end_io(bbio);
125 }
126 
127 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
128 {
129 	if (cur_mirror == fbio->num_copies)
130 		return cur_mirror + 1 - fbio->num_copies;
131 	return cur_mirror + 1;
132 }
133 
134 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
135 {
136 	if (cur_mirror == 1)
137 		return fbio->num_copies;
138 	return cur_mirror - 1;
139 }
140 
141 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
142 {
143 	if (atomic_dec_and_test(&fbio->repair_count)) {
144 		btrfs_orig_bbio_end_io(fbio->bbio);
145 		mempool_free(fbio, &btrfs_failed_bio_pool);
146 	}
147 }
148 
149 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
150 				 struct btrfs_device *dev)
151 {
152 	struct btrfs_failed_bio *fbio = repair_bbio->private;
153 	struct btrfs_inode *inode = repair_bbio->inode;
154 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
155 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
156 	int mirror = repair_bbio->mirror_num;
157 
158 	if (repair_bbio->bio.bi_status ||
159 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
160 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
161 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
162 
163 		mirror = next_repair_mirror(fbio, mirror);
164 		if (mirror == fbio->bbio->mirror_num) {
165 			btrfs_debug(fs_info, "no mirror left");
166 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
167 			goto done;
168 		}
169 
170 		btrfs_submit_bio(repair_bbio, mirror);
171 		return;
172 	}
173 
174 	do {
175 		mirror = prev_repair_mirror(fbio, mirror);
176 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
177 				  repair_bbio->file_offset, fs_info->sectorsize,
178 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
179 				  bv->bv_page, bv->bv_offset, mirror);
180 	} while (mirror != fbio->bbio->mirror_num);
181 
182 done:
183 	btrfs_repair_done(fbio);
184 	bio_put(&repair_bbio->bio);
185 }
186 
187 /*
188  * Try to kick off a repair read to the next available mirror for a bad sector.
189  *
190  * This primarily tries to recover good data to serve the actual read request,
191  * but also tries to write the good data back to the bad mirror(s) when a
192  * read succeeded to restore the redundancy.
193  */
194 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
195 						  u32 bio_offset,
196 						  struct bio_vec *bv,
197 						  struct btrfs_failed_bio *fbio)
198 {
199 	struct btrfs_inode *inode = failed_bbio->inode;
200 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
201 	const u32 sectorsize = fs_info->sectorsize;
202 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
203 	struct btrfs_bio *repair_bbio;
204 	struct bio *repair_bio;
205 	int num_copies;
206 	int mirror;
207 
208 	btrfs_debug(fs_info, "repair read error: read error at %llu",
209 		    failed_bbio->file_offset + bio_offset);
210 
211 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
212 	if (num_copies == 1) {
213 		btrfs_debug(fs_info, "no copy to repair from");
214 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
215 		return fbio;
216 	}
217 
218 	if (!fbio) {
219 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
220 		fbio->bbio = failed_bbio;
221 		fbio->num_copies = num_copies;
222 		atomic_set(&fbio->repair_count, 1);
223 	}
224 
225 	atomic_inc(&fbio->repair_count);
226 
227 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
228 				      &btrfs_repair_bioset);
229 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
230 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
231 
232 	repair_bbio = btrfs_bio(repair_bio);
233 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
234 	repair_bbio->inode = failed_bbio->inode;
235 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
236 
237 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
238 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
239 	btrfs_submit_bio(repair_bbio, mirror);
240 	return fbio;
241 }
242 
243 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
244 {
245 	struct btrfs_inode *inode = bbio->inode;
246 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
247 	u32 sectorsize = fs_info->sectorsize;
248 	struct bvec_iter *iter = &bbio->saved_iter;
249 	blk_status_t status = bbio->bio.bi_status;
250 	struct btrfs_failed_bio *fbio = NULL;
251 	u32 offset = 0;
252 
253 	/* Read-repair requires the inode field to be set by the submitter. */
254 	ASSERT(inode);
255 
256 	/*
257 	 * Hand off repair bios to the repair code as there is no upper level
258 	 * submitter for them.
259 	 */
260 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
261 		btrfs_end_repair_bio(bbio, dev);
262 		return;
263 	}
264 
265 	/* Clear the I/O error. A failed repair will reset it. */
266 	bbio->bio.bi_status = BLK_STS_OK;
267 
268 	while (iter->bi_size) {
269 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
270 
271 		bv.bv_len = min(bv.bv_len, sectorsize);
272 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
273 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
274 
275 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
276 		offset += sectorsize;
277 	}
278 
279 	if (bbio->csum != bbio->csum_inline)
280 		kfree(bbio->csum);
281 
282 	if (fbio)
283 		btrfs_repair_done(fbio);
284 	else
285 		btrfs_orig_bbio_end_io(bbio);
286 }
287 
288 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
289 {
290 	if (!dev || !dev->bdev)
291 		return;
292 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
293 		return;
294 
295 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
296 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
297 	else if (!(bio->bi_opf & REQ_RAHEAD))
298 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
299 	if (bio->bi_opf & REQ_PREFLUSH)
300 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
301 }
302 
303 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
304 						struct bio *bio)
305 {
306 	if (bio->bi_opf & REQ_META)
307 		return fs_info->endio_meta_workers;
308 	return fs_info->endio_workers;
309 }
310 
311 static void btrfs_end_bio_work(struct work_struct *work)
312 {
313 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
314 
315 	/* Metadata reads are checked and repaired by the submitter. */
316 	if (bbio->inode && !(bbio->bio.bi_opf & REQ_META))
317 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
318 	else
319 		btrfs_orig_bbio_end_io(bbio);
320 }
321 
322 static void btrfs_simple_end_io(struct bio *bio)
323 {
324 	struct btrfs_bio *bbio = btrfs_bio(bio);
325 	struct btrfs_device *dev = bio->bi_private;
326 	struct btrfs_fs_info *fs_info = bbio->fs_info;
327 
328 	btrfs_bio_counter_dec(fs_info);
329 
330 	if (bio->bi_status)
331 		btrfs_log_dev_io_error(bio, dev);
332 
333 	if (bio_op(bio) == REQ_OP_READ) {
334 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
335 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
336 	} else {
337 		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
338 			btrfs_record_physical_zoned(bbio);
339 		btrfs_orig_bbio_end_io(bbio);
340 	}
341 }
342 
343 static void btrfs_raid56_end_io(struct bio *bio)
344 {
345 	struct btrfs_io_context *bioc = bio->bi_private;
346 	struct btrfs_bio *bbio = btrfs_bio(bio);
347 
348 	btrfs_bio_counter_dec(bioc->fs_info);
349 	bbio->mirror_num = bioc->mirror_num;
350 	if (bio_op(bio) == REQ_OP_READ && bbio->inode &&
351 	    !(bbio->bio.bi_opf & REQ_META))
352 		btrfs_check_read_bio(bbio, NULL);
353 	else
354 		btrfs_orig_bbio_end_io(bbio);
355 
356 	btrfs_put_bioc(bioc);
357 }
358 
359 static void btrfs_orig_write_end_io(struct bio *bio)
360 {
361 	struct btrfs_io_stripe *stripe = bio->bi_private;
362 	struct btrfs_io_context *bioc = stripe->bioc;
363 	struct btrfs_bio *bbio = btrfs_bio(bio);
364 
365 	btrfs_bio_counter_dec(bioc->fs_info);
366 
367 	if (bio->bi_status) {
368 		atomic_inc(&bioc->error);
369 		btrfs_log_dev_io_error(bio, stripe->dev);
370 	}
371 
372 	/*
373 	 * Only send an error to the higher layers if it is beyond the tolerance
374 	 * threshold.
375 	 */
376 	if (atomic_read(&bioc->error) > bioc->max_errors)
377 		bio->bi_status = BLK_STS_IOERR;
378 	else
379 		bio->bi_status = BLK_STS_OK;
380 
381 	btrfs_orig_bbio_end_io(bbio);
382 	btrfs_put_bioc(bioc);
383 }
384 
385 static void btrfs_clone_write_end_io(struct bio *bio)
386 {
387 	struct btrfs_io_stripe *stripe = bio->bi_private;
388 
389 	if (bio->bi_status) {
390 		atomic_inc(&stripe->bioc->error);
391 		btrfs_log_dev_io_error(bio, stripe->dev);
392 	}
393 
394 	/* Pass on control to the original bio this one was cloned from */
395 	bio_endio(stripe->bioc->orig_bio);
396 	bio_put(bio);
397 }
398 
399 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
400 {
401 	if (!dev || !dev->bdev ||
402 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
403 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
404 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
405 		bio_io_error(bio);
406 		return;
407 	}
408 
409 	bio_set_dev(bio, dev->bdev);
410 
411 	/*
412 	 * For zone append writing, bi_sector must point the beginning of the
413 	 * zone
414 	 */
415 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
416 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
417 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
418 
419 		ASSERT(btrfs_dev_is_sequential(dev, physical));
420 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
421 	}
422 	btrfs_debug_in_rcu(dev->fs_info,
423 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
424 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
425 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
426 		dev->devid, bio->bi_iter.bi_size);
427 
428 	btrfsic_check_bio(bio);
429 
430 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
431 		blkcg_punt_bio_submit(bio);
432 	else
433 		submit_bio(bio);
434 }
435 
436 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
437 {
438 	struct bio *orig_bio = bioc->orig_bio, *bio;
439 
440 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
441 
442 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
443 	if (dev_nr == bioc->num_stripes - 1) {
444 		bio = orig_bio;
445 		bio->bi_end_io = btrfs_orig_write_end_io;
446 	} else {
447 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
448 		bio_inc_remaining(orig_bio);
449 		bio->bi_end_io = btrfs_clone_write_end_io;
450 	}
451 
452 	bio->bi_private = &bioc->stripes[dev_nr];
453 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
454 	bioc->stripes[dev_nr].bioc = bioc;
455 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
456 }
457 
458 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
459 			       struct btrfs_io_stripe *smap, int mirror_num)
460 {
461 	/* Do not leak our private flag into the block layer. */
462 	bio->bi_opf &= ~REQ_BTRFS_ONE_ORDERED;
463 
464 	if (!bioc) {
465 		/* Single mirror read/write fast path. */
466 		btrfs_bio(bio)->mirror_num = mirror_num;
467 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
468 		if (bio_op(bio) != REQ_OP_READ)
469 			btrfs_bio(bio)->orig_physical = smap->physical;
470 		bio->bi_private = smap->dev;
471 		bio->bi_end_io = btrfs_simple_end_io;
472 		btrfs_submit_dev_bio(smap->dev, bio);
473 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
474 		/* Parity RAID write or read recovery. */
475 		bio->bi_private = bioc;
476 		bio->bi_end_io = btrfs_raid56_end_io;
477 		if (bio_op(bio) == REQ_OP_READ)
478 			raid56_parity_recover(bio, bioc, mirror_num);
479 		else
480 			raid56_parity_write(bio, bioc);
481 	} else {
482 		/* Write to multiple mirrors. */
483 		int total_devs = bioc->num_stripes;
484 
485 		bioc->orig_bio = bio;
486 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
487 			btrfs_submit_mirrored_bio(bioc, dev_nr);
488 	}
489 }
490 
491 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
492 {
493 	if (bbio->bio.bi_opf & REQ_META)
494 		return btree_csum_one_bio(bbio);
495 	return btrfs_csum_one_bio(bbio);
496 }
497 
498 /*
499  * Async submit bios are used to offload expensive checksumming onto the worker
500  * threads.
501  */
502 struct async_submit_bio {
503 	struct btrfs_bio *bbio;
504 	struct btrfs_io_context *bioc;
505 	struct btrfs_io_stripe smap;
506 	int mirror_num;
507 	struct btrfs_work work;
508 };
509 
510 /*
511  * In order to insert checksums into the metadata in large chunks, we wait
512  * until bio submission time.   All the pages in the bio are checksummed and
513  * sums are attached onto the ordered extent record.
514  *
515  * At IO completion time the csums attached on the ordered extent record are
516  * inserted into the btree.
517  */
518 static void run_one_async_start(struct btrfs_work *work)
519 {
520 	struct async_submit_bio *async =
521 		container_of(work, struct async_submit_bio, work);
522 	blk_status_t ret;
523 
524 	ret = btrfs_bio_csum(async->bbio);
525 	if (ret)
526 		async->bbio->bio.bi_status = ret;
527 }
528 
529 /*
530  * In order to insert checksums into the metadata in large chunks, we wait
531  * until bio submission time.   All the pages in the bio are checksummed and
532  * sums are attached onto the ordered extent record.
533  *
534  * At IO completion time the csums attached on the ordered extent record are
535  * inserted into the tree.
536  */
537 static void run_one_async_done(struct btrfs_work *work)
538 {
539 	struct async_submit_bio *async =
540 		container_of(work, struct async_submit_bio, work);
541 	struct bio *bio = &async->bbio->bio;
542 
543 	/* If an error occurred we just want to clean up the bio and move on. */
544 	if (bio->bi_status) {
545 		btrfs_orig_bbio_end_io(async->bbio);
546 		return;
547 	}
548 
549 	/*
550 	 * All of the bios that pass through here are from async helpers.
551 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
552 	 * context.  This changes nothing when cgroups aren't in use.
553 	 */
554 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
555 	__btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
556 }
557 
558 static void run_one_async_free(struct btrfs_work *work)
559 {
560 	kfree(container_of(work, struct async_submit_bio, work));
561 }
562 
563 static bool should_async_write(struct btrfs_bio *bbio)
564 {
565 	/* Submit synchronously if the checksum implementation is fast. */
566 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
567 		return false;
568 
569 	/*
570 	 * Try to defer the submission to a workqueue to parallelize the
571 	 * checksum calculation unless the I/O is issued synchronously.
572 	 */
573 	if (op_is_sync(bbio->bio.bi_opf))
574 		return false;
575 
576 	/* Zoned devices require I/O to be submitted in order. */
577 	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
578 		return false;
579 
580 	return true;
581 }
582 
583 /*
584  * Submit bio to an async queue.
585  *
586  * Return true if the work has been succesfuly submitted, else false.
587  */
588 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
589 				struct btrfs_io_context *bioc,
590 				struct btrfs_io_stripe *smap, int mirror_num)
591 {
592 	struct btrfs_fs_info *fs_info = bbio->fs_info;
593 	struct async_submit_bio *async;
594 
595 	async = kmalloc(sizeof(*async), GFP_NOFS);
596 	if (!async)
597 		return false;
598 
599 	async->bbio = bbio;
600 	async->bioc = bioc;
601 	async->smap = *smap;
602 	async->mirror_num = mirror_num;
603 
604 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
605 			run_one_async_free);
606 	btrfs_queue_work(fs_info->workers, &async->work);
607 	return true;
608 }
609 
610 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
611 {
612 	struct btrfs_inode *inode = bbio->inode;
613 	struct btrfs_fs_info *fs_info = bbio->fs_info;
614 	struct btrfs_bio *orig_bbio = bbio;
615 	struct bio *bio = &bbio->bio;
616 	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
617 	u64 length = bio->bi_iter.bi_size;
618 	u64 map_length = length;
619 	bool use_append = btrfs_use_zone_append(bbio);
620 	struct btrfs_io_context *bioc = NULL;
621 	struct btrfs_io_stripe smap;
622 	blk_status_t ret;
623 	int error;
624 
625 	btrfs_bio_counter_inc_blocked(fs_info);
626 	error = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
627 				  &bioc, &smap, &mirror_num, 1);
628 	if (error) {
629 		ret = errno_to_blk_status(error);
630 		goto fail;
631 	}
632 
633 	map_length = min(map_length, length);
634 	if (use_append)
635 		map_length = min(map_length, fs_info->max_zone_append_size);
636 
637 	if (map_length < length) {
638 		bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
639 		bio = &bbio->bio;
640 	}
641 
642 	/*
643 	 * Save the iter for the end_io handler and preload the checksums for
644 	 * data reads.
645 	 */
646 	if (bio_op(bio) == REQ_OP_READ && inode && !(bio->bi_opf & REQ_META)) {
647 		bbio->saved_iter = bio->bi_iter;
648 		ret = btrfs_lookup_bio_sums(bbio);
649 		if (ret)
650 			goto fail_put_bio;
651 	}
652 
653 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
654 		if (use_append) {
655 			bio->bi_opf &= ~REQ_OP_WRITE;
656 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
657 		}
658 
659 		/*
660 		 * Csum items for reloc roots have already been cloned at this
661 		 * point, so they are handled as part of the no-checksum case.
662 		 */
663 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
664 		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
665 		    !btrfs_is_data_reloc_root(inode->root)) {
666 			if (should_async_write(bbio) &&
667 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
668 				goto done;
669 
670 			ret = btrfs_bio_csum(bbio);
671 			if (ret)
672 				goto fail_put_bio;
673 		} else if (use_append) {
674 			ret = btrfs_alloc_dummy_sum(bbio);
675 			if (ret)
676 				goto fail_put_bio;
677 		}
678 	}
679 
680 	__btrfs_submit_bio(bio, bioc, &smap, mirror_num);
681 done:
682 	return map_length == length;
683 
684 fail_put_bio:
685 	if (map_length < length)
686 		bio_put(bio);
687 fail:
688 	btrfs_bio_counter_dec(fs_info);
689 	btrfs_bio_end_io(orig_bbio, ret);
690 	/* Do not submit another chunk */
691 	return true;
692 }
693 
694 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
695 {
696 	/* If bbio->inode is not populated, its file_offset must be 0. */
697 	ASSERT(bbio->inode || bbio->file_offset == 0);
698 
699 	while (!btrfs_submit_chunk(bbio, mirror_num))
700 		;
701 }
702 
703 /*
704  * Submit a repair write.
705  *
706  * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
707  * RAID setup.  Here we only want to write the one bad copy, so we do the
708  * mapping ourselves and submit the bio directly.
709  *
710  * The I/O is issued synchronously to block the repair read completion from
711  * freeing the bio.
712  */
713 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
714 			    u64 length, u64 logical, struct page *page,
715 			    unsigned int pg_offset, int mirror_num)
716 {
717 	struct btrfs_io_stripe smap = { 0 };
718 	struct bio_vec bvec;
719 	struct bio bio;
720 	int ret = 0;
721 
722 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
723 	BUG_ON(!mirror_num);
724 
725 	if (btrfs_repair_one_zone(fs_info, logical))
726 		return 0;
727 
728 	/*
729 	 * Avoid races with device replace and make sure our bioc has devices
730 	 * associated to its stripes that don't go away while we are doing the
731 	 * read repair operation.
732 	 */
733 	btrfs_bio_counter_inc_blocked(fs_info);
734 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
735 	if (ret < 0)
736 		goto out_counter_dec;
737 
738 	if (!smap.dev->bdev ||
739 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
740 		ret = -EIO;
741 		goto out_counter_dec;
742 	}
743 
744 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
745 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
746 	__bio_add_page(&bio, page, length, pg_offset);
747 
748 	btrfsic_check_bio(&bio);
749 	ret = submit_bio_wait(&bio);
750 	if (ret) {
751 		/* try to remap that extent elsewhere? */
752 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
753 		goto out_bio_uninit;
754 	}
755 
756 	btrfs_info_rl_in_rcu(fs_info,
757 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
758 			     ino, start, btrfs_dev_name(smap.dev),
759 			     smap.physical >> SECTOR_SHIFT);
760 	ret = 0;
761 
762 out_bio_uninit:
763 	bio_uninit(&bio);
764 out_counter_dec:
765 	btrfs_bio_counter_dec(fs_info);
766 	return ret;
767 }
768 
769 /*
770  * Submit a btrfs_bio based repair write.
771  *
772  * If @dev_replace is true, the write would be submitted to dev-replace target.
773  */
774 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
775 {
776 	struct btrfs_fs_info *fs_info = bbio->fs_info;
777 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
778 	u64 length = bbio->bio.bi_iter.bi_size;
779 	struct btrfs_io_stripe smap = { 0 };
780 	int ret;
781 
782 	ASSERT(fs_info);
783 	ASSERT(mirror_num > 0);
784 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
785 	ASSERT(!bbio->inode);
786 
787 	btrfs_bio_counter_inc_blocked(fs_info);
788 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
789 	if (ret < 0)
790 		goto fail;
791 
792 	if (dev_replace) {
793 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
794 		smap.dev = fs_info->dev_replace.tgtdev;
795 	}
796 	__btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
797 	return;
798 
799 fail:
800 	btrfs_bio_counter_dec(fs_info);
801 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
802 }
803 
804 int __init btrfs_bioset_init(void)
805 {
806 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
807 			offsetof(struct btrfs_bio, bio),
808 			BIOSET_NEED_BVECS))
809 		return -ENOMEM;
810 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
811 			offsetof(struct btrfs_bio, bio), 0))
812 		goto out_free_bioset;
813 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
814 			offsetof(struct btrfs_bio, bio),
815 			BIOSET_NEED_BVECS))
816 		goto out_free_clone_bioset;
817 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
818 				      sizeof(struct btrfs_failed_bio)))
819 		goto out_free_repair_bioset;
820 	return 0;
821 
822 out_free_repair_bioset:
823 	bioset_exit(&btrfs_repair_bioset);
824 out_free_clone_bioset:
825 	bioset_exit(&btrfs_clone_bioset);
826 out_free_bioset:
827 	bioset_exit(&btrfs_bioset);
828 	return -ENOMEM;
829 }
830 
831 void __cold btrfs_bioset_exit(void)
832 {
833 	mempool_exit(&btrfs_failed_bio_pool);
834 	bioset_exit(&btrfs_repair_bioset);
835 	bioset_exit(&btrfs_clone_bioset);
836 	bioset_exit(&btrfs_bioset);
837 }
838