1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 19 /* Just an arbitrary number so we can be sure this happened */ 20 #define BACKREF_FOUND_SHARED 6 21 22 struct extent_inode_elem { 23 u64 inum; 24 u64 offset; 25 struct extent_inode_elem *next; 26 }; 27 28 static int check_extent_in_eb(const struct btrfs_key *key, 29 const struct extent_buffer *eb, 30 const struct btrfs_file_extent_item *fi, 31 u64 extent_item_pos, 32 struct extent_inode_elem **eie, 33 bool ignore_offset) 34 { 35 u64 offset = 0; 36 struct extent_inode_elem *e; 37 38 if (!ignore_offset && 39 !btrfs_file_extent_compression(eb, fi) && 40 !btrfs_file_extent_encryption(eb, fi) && 41 !btrfs_file_extent_other_encoding(eb, fi)) { 42 u64 data_offset; 43 u64 data_len; 44 45 data_offset = btrfs_file_extent_offset(eb, fi); 46 data_len = btrfs_file_extent_num_bytes(eb, fi); 47 48 if (extent_item_pos < data_offset || 49 extent_item_pos >= data_offset + data_len) 50 return 1; 51 offset = extent_item_pos - data_offset; 52 } 53 54 e = kmalloc(sizeof(*e), GFP_NOFS); 55 if (!e) 56 return -ENOMEM; 57 58 e->next = *eie; 59 e->inum = key->objectid; 60 e->offset = key->offset + offset; 61 *eie = e; 62 63 return 0; 64 } 65 66 static void free_inode_elem_list(struct extent_inode_elem *eie) 67 { 68 struct extent_inode_elem *eie_next; 69 70 for (; eie; eie = eie_next) { 71 eie_next = eie->next; 72 kfree(eie); 73 } 74 } 75 76 static int find_extent_in_eb(const struct extent_buffer *eb, 77 u64 wanted_disk_byte, u64 extent_item_pos, 78 struct extent_inode_elem **eie, 79 bool ignore_offset) 80 { 81 u64 disk_byte; 82 struct btrfs_key key; 83 struct btrfs_file_extent_item *fi; 84 int slot; 85 int nritems; 86 int extent_type; 87 int ret; 88 89 /* 90 * from the shared data ref, we only have the leaf but we need 91 * the key. thus, we must look into all items and see that we 92 * find one (some) with a reference to our extent item. 93 */ 94 nritems = btrfs_header_nritems(eb); 95 for (slot = 0; slot < nritems; ++slot) { 96 btrfs_item_key_to_cpu(eb, &key, slot); 97 if (key.type != BTRFS_EXTENT_DATA_KEY) 98 continue; 99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 100 extent_type = btrfs_file_extent_type(eb, fi); 101 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 102 continue; 103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 105 if (disk_byte != wanted_disk_byte) 106 continue; 107 108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 109 if (ret < 0) 110 return ret; 111 } 112 113 return 0; 114 } 115 116 struct preftree { 117 struct rb_root_cached root; 118 unsigned int count; 119 }; 120 121 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 122 123 struct preftrees { 124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 126 struct preftree indirect_missing_keys; 127 }; 128 129 /* 130 * Checks for a shared extent during backref search. 131 * 132 * The share_count tracks prelim_refs (direct and indirect) having a 133 * ref->count >0: 134 * - incremented when a ref->count transitions to >0 135 * - decremented when a ref->count transitions to <1 136 */ 137 struct share_check { 138 u64 root_objectid; 139 u64 inum; 140 int share_count; 141 }; 142 143 static inline int extent_is_shared(struct share_check *sc) 144 { 145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 146 } 147 148 static struct kmem_cache *btrfs_prelim_ref_cache; 149 150 int __init btrfs_prelim_ref_init(void) 151 { 152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 153 sizeof(struct prelim_ref), 154 0, 155 SLAB_MEM_SPREAD, 156 NULL); 157 if (!btrfs_prelim_ref_cache) 158 return -ENOMEM; 159 return 0; 160 } 161 162 void __cold btrfs_prelim_ref_exit(void) 163 { 164 kmem_cache_destroy(btrfs_prelim_ref_cache); 165 } 166 167 static void free_pref(struct prelim_ref *ref) 168 { 169 kmem_cache_free(btrfs_prelim_ref_cache, ref); 170 } 171 172 /* 173 * Return 0 when both refs are for the same block (and can be merged). 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 175 * indicates a 'higher' block. 176 */ 177 static int prelim_ref_compare(struct prelim_ref *ref1, 178 struct prelim_ref *ref2) 179 { 180 if (ref1->level < ref2->level) 181 return -1; 182 if (ref1->level > ref2->level) 183 return 1; 184 if (ref1->root_id < ref2->root_id) 185 return -1; 186 if (ref1->root_id > ref2->root_id) 187 return 1; 188 if (ref1->key_for_search.type < ref2->key_for_search.type) 189 return -1; 190 if (ref1->key_for_search.type > ref2->key_for_search.type) 191 return 1; 192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 193 return -1; 194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 195 return 1; 196 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 197 return -1; 198 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 199 return 1; 200 if (ref1->parent < ref2->parent) 201 return -1; 202 if (ref1->parent > ref2->parent) 203 return 1; 204 205 return 0; 206 } 207 208 static void update_share_count(struct share_check *sc, int oldcount, 209 int newcount) 210 { 211 if ((!sc) || (oldcount == 0 && newcount < 1)) 212 return; 213 214 if (oldcount > 0 && newcount < 1) 215 sc->share_count--; 216 else if (oldcount < 1 && newcount > 0) 217 sc->share_count++; 218 } 219 220 /* 221 * Add @newref to the @root rbtree, merging identical refs. 222 * 223 * Callers should assume that newref has been freed after calling. 224 */ 225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 226 struct preftree *preftree, 227 struct prelim_ref *newref, 228 struct share_check *sc) 229 { 230 struct rb_root_cached *root; 231 struct rb_node **p; 232 struct rb_node *parent = NULL; 233 struct prelim_ref *ref; 234 int result; 235 bool leftmost = true; 236 237 root = &preftree->root; 238 p = &root->rb_root.rb_node; 239 240 while (*p) { 241 parent = *p; 242 ref = rb_entry(parent, struct prelim_ref, rbnode); 243 result = prelim_ref_compare(ref, newref); 244 if (result < 0) { 245 p = &(*p)->rb_left; 246 } else if (result > 0) { 247 p = &(*p)->rb_right; 248 leftmost = false; 249 } else { 250 /* Identical refs, merge them and free @newref */ 251 struct extent_inode_elem *eie = ref->inode_list; 252 253 while (eie && eie->next) 254 eie = eie->next; 255 256 if (!eie) 257 ref->inode_list = newref->inode_list; 258 else 259 eie->next = newref->inode_list; 260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 261 preftree->count); 262 /* 263 * A delayed ref can have newref->count < 0. 264 * The ref->count is updated to follow any 265 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 266 */ 267 update_share_count(sc, ref->count, 268 ref->count + newref->count); 269 ref->count += newref->count; 270 free_pref(newref); 271 return; 272 } 273 } 274 275 update_share_count(sc, 0, newref->count); 276 preftree->count++; 277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 278 rb_link_node(&newref->rbnode, parent, p); 279 rb_insert_color_cached(&newref->rbnode, root, leftmost); 280 } 281 282 /* 283 * Release the entire tree. We don't care about internal consistency so 284 * just free everything and then reset the tree root. 285 */ 286 static void prelim_release(struct preftree *preftree) 287 { 288 struct prelim_ref *ref, *next_ref; 289 290 rbtree_postorder_for_each_entry_safe(ref, next_ref, 291 &preftree->root.rb_root, rbnode) 292 free_pref(ref); 293 294 preftree->root = RB_ROOT_CACHED; 295 preftree->count = 0; 296 } 297 298 /* 299 * the rules for all callers of this function are: 300 * - obtaining the parent is the goal 301 * - if you add a key, you must know that it is a correct key 302 * - if you cannot add the parent or a correct key, then we will look into the 303 * block later to set a correct key 304 * 305 * delayed refs 306 * ============ 307 * backref type | shared | indirect | shared | indirect 308 * information | tree | tree | data | data 309 * --------------------+--------+----------+--------+---------- 310 * parent logical | y | - | - | - 311 * key to resolve | - | y | y | y 312 * tree block logical | - | - | - | - 313 * root for resolving | y | y | y | y 314 * 315 * - column 1: we've the parent -> done 316 * - column 2, 3, 4: we use the key to find the parent 317 * 318 * on disk refs (inline or keyed) 319 * ============================== 320 * backref type | shared | indirect | shared | indirect 321 * information | tree | tree | data | data 322 * --------------------+--------+----------+--------+---------- 323 * parent logical | y | - | y | - 324 * key to resolve | - | - | - | y 325 * tree block logical | y | y | y | y 326 * root for resolving | - | y | y | y 327 * 328 * - column 1, 3: we've the parent -> done 329 * - column 2: we take the first key from the block to find the parent 330 * (see add_missing_keys) 331 * - column 4: we use the key to find the parent 332 * 333 * additional information that's available but not required to find the parent 334 * block might help in merging entries to gain some speed. 335 */ 336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 337 struct preftree *preftree, u64 root_id, 338 const struct btrfs_key *key, int level, u64 parent, 339 u64 wanted_disk_byte, int count, 340 struct share_check *sc, gfp_t gfp_mask) 341 { 342 struct prelim_ref *ref; 343 344 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 345 return 0; 346 347 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 348 if (!ref) 349 return -ENOMEM; 350 351 ref->root_id = root_id; 352 if (key) 353 ref->key_for_search = *key; 354 else 355 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 356 357 ref->inode_list = NULL; 358 ref->level = level; 359 ref->count = count; 360 ref->parent = parent; 361 ref->wanted_disk_byte = wanted_disk_byte; 362 prelim_ref_insert(fs_info, preftree, ref, sc); 363 return extent_is_shared(sc); 364 } 365 366 /* direct refs use root == 0, key == NULL */ 367 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 368 struct preftrees *preftrees, int level, u64 parent, 369 u64 wanted_disk_byte, int count, 370 struct share_check *sc, gfp_t gfp_mask) 371 { 372 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 373 parent, wanted_disk_byte, count, sc, gfp_mask); 374 } 375 376 /* indirect refs use parent == 0 */ 377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 378 struct preftrees *preftrees, u64 root_id, 379 const struct btrfs_key *key, int level, 380 u64 wanted_disk_byte, int count, 381 struct share_check *sc, gfp_t gfp_mask) 382 { 383 struct preftree *tree = &preftrees->indirect; 384 385 if (!key) 386 tree = &preftrees->indirect_missing_keys; 387 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 388 wanted_disk_byte, count, sc, gfp_mask); 389 } 390 391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 392 { 393 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 394 struct rb_node *parent = NULL; 395 struct prelim_ref *ref = NULL; 396 struct prelim_ref target = {}; 397 int result; 398 399 target.parent = bytenr; 400 401 while (*p) { 402 parent = *p; 403 ref = rb_entry(parent, struct prelim_ref, rbnode); 404 result = prelim_ref_compare(ref, &target); 405 406 if (result < 0) 407 p = &(*p)->rb_left; 408 else if (result > 0) 409 p = &(*p)->rb_right; 410 else 411 return 1; 412 } 413 return 0; 414 } 415 416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 417 struct ulist *parents, 418 struct preftrees *preftrees, struct prelim_ref *ref, 419 int level, u64 time_seq, const u64 *extent_item_pos, 420 bool ignore_offset) 421 { 422 int ret = 0; 423 int slot; 424 struct extent_buffer *eb; 425 struct btrfs_key key; 426 struct btrfs_key *key_for_search = &ref->key_for_search; 427 struct btrfs_file_extent_item *fi; 428 struct extent_inode_elem *eie = NULL, *old = NULL; 429 u64 disk_byte; 430 u64 wanted_disk_byte = ref->wanted_disk_byte; 431 u64 count = 0; 432 u64 data_offset; 433 434 if (level != 0) { 435 eb = path->nodes[level]; 436 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 437 if (ret < 0) 438 return ret; 439 return 0; 440 } 441 442 /* 443 * 1. We normally enter this function with the path already pointing to 444 * the first item to check. But sometimes, we may enter it with 445 * slot == nritems. 446 * 2. We are searching for normal backref but bytenr of this leaf 447 * matches shared data backref 448 * 3. The leaf owner is not equal to the root we are searching 449 * 450 * For these cases, go to the next leaf before we continue. 451 */ 452 eb = path->nodes[0]; 453 if (path->slots[0] >= btrfs_header_nritems(eb) || 454 is_shared_data_backref(preftrees, eb->start) || 455 ref->root_id != btrfs_header_owner(eb)) { 456 if (time_seq == BTRFS_SEQ_LAST) 457 ret = btrfs_next_leaf(root, path); 458 else 459 ret = btrfs_next_old_leaf(root, path, time_seq); 460 } 461 462 while (!ret && count < ref->count) { 463 eb = path->nodes[0]; 464 slot = path->slots[0]; 465 466 btrfs_item_key_to_cpu(eb, &key, slot); 467 468 if (key.objectid != key_for_search->objectid || 469 key.type != BTRFS_EXTENT_DATA_KEY) 470 break; 471 472 /* 473 * We are searching for normal backref but bytenr of this leaf 474 * matches shared data backref, OR 475 * the leaf owner is not equal to the root we are searching for 476 */ 477 if (slot == 0 && 478 (is_shared_data_backref(preftrees, eb->start) || 479 ref->root_id != btrfs_header_owner(eb))) { 480 if (time_seq == BTRFS_SEQ_LAST) 481 ret = btrfs_next_leaf(root, path); 482 else 483 ret = btrfs_next_old_leaf(root, path, time_seq); 484 continue; 485 } 486 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 487 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 488 data_offset = btrfs_file_extent_offset(eb, fi); 489 490 if (disk_byte == wanted_disk_byte) { 491 eie = NULL; 492 old = NULL; 493 if (ref->key_for_search.offset == key.offset - data_offset) 494 count++; 495 else 496 goto next; 497 if (extent_item_pos) { 498 ret = check_extent_in_eb(&key, eb, fi, 499 *extent_item_pos, 500 &eie, ignore_offset); 501 if (ret < 0) 502 break; 503 } 504 if (ret > 0) 505 goto next; 506 ret = ulist_add_merge_ptr(parents, eb->start, 507 eie, (void **)&old, GFP_NOFS); 508 if (ret < 0) 509 break; 510 if (!ret && extent_item_pos) { 511 while (old->next) 512 old = old->next; 513 old->next = eie; 514 } 515 eie = NULL; 516 } 517 next: 518 if (time_seq == BTRFS_SEQ_LAST) 519 ret = btrfs_next_item(root, path); 520 else 521 ret = btrfs_next_old_item(root, path, time_seq); 522 } 523 524 if (ret > 0) 525 ret = 0; 526 else if (ret < 0) 527 free_inode_elem_list(eie); 528 return ret; 529 } 530 531 /* 532 * resolve an indirect backref in the form (root_id, key, level) 533 * to a logical address 534 */ 535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 536 struct btrfs_path *path, u64 time_seq, 537 struct preftrees *preftrees, 538 struct prelim_ref *ref, struct ulist *parents, 539 const u64 *extent_item_pos, bool ignore_offset) 540 { 541 struct btrfs_root *root; 542 struct extent_buffer *eb; 543 int ret = 0; 544 int root_level; 545 int level = ref->level; 546 struct btrfs_key search_key = ref->key_for_search; 547 548 /* 549 * If we're search_commit_root we could possibly be holding locks on 550 * other tree nodes. This happens when qgroups does backref walks when 551 * adding new delayed refs. To deal with this we need to look in cache 552 * for the root, and if we don't find it then we need to search the 553 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 554 * here. 555 */ 556 if (path->search_commit_root) 557 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id); 558 else 559 root = btrfs_get_fs_root(fs_info, ref->root_id, false); 560 if (IS_ERR(root)) { 561 ret = PTR_ERR(root); 562 goto out_free; 563 } 564 565 if (!path->search_commit_root && 566 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 567 ret = -ENOENT; 568 goto out; 569 } 570 571 if (btrfs_is_testing(fs_info)) { 572 ret = -ENOENT; 573 goto out; 574 } 575 576 if (path->search_commit_root) 577 root_level = btrfs_header_level(root->commit_root); 578 else if (time_seq == BTRFS_SEQ_LAST) 579 root_level = btrfs_header_level(root->node); 580 else 581 root_level = btrfs_old_root_level(root, time_seq); 582 583 if (root_level + 1 == level) 584 goto out; 585 586 /* 587 * We can often find data backrefs with an offset that is too large 588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 589 * subtracting a file's offset with the data offset of its 590 * corresponding extent data item. This can happen for example in the 591 * clone ioctl. 592 * 593 * So if we detect such case we set the search key's offset to zero to 594 * make sure we will find the matching file extent item at 595 * add_all_parents(), otherwise we will miss it because the offset 596 * taken form the backref is much larger then the offset of the file 597 * extent item. This can make us scan a very large number of file 598 * extent items, but at least it will not make us miss any. 599 * 600 * This is an ugly workaround for a behaviour that should have never 601 * existed, but it does and a fix for the clone ioctl would touch a lot 602 * of places, cause backwards incompatibility and would not fix the 603 * problem for extents cloned with older kernels. 604 */ 605 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 606 search_key.offset >= LLONG_MAX) 607 search_key.offset = 0; 608 path->lowest_level = level; 609 if (time_seq == BTRFS_SEQ_LAST) 610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 611 else 612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 613 614 btrfs_debug(fs_info, 615 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 616 ref->root_id, level, ref->count, ret, 617 ref->key_for_search.objectid, ref->key_for_search.type, 618 ref->key_for_search.offset); 619 if (ret < 0) 620 goto out; 621 622 eb = path->nodes[level]; 623 while (!eb) { 624 if (WARN_ON(!level)) { 625 ret = 1; 626 goto out; 627 } 628 level--; 629 eb = path->nodes[level]; 630 } 631 632 ret = add_all_parents(root, path, parents, preftrees, ref, level, 633 time_seq, extent_item_pos, ignore_offset); 634 out: 635 btrfs_put_root(root); 636 out_free: 637 path->lowest_level = 0; 638 btrfs_release_path(path); 639 return ret; 640 } 641 642 static struct extent_inode_elem * 643 unode_aux_to_inode_list(struct ulist_node *node) 644 { 645 if (!node) 646 return NULL; 647 return (struct extent_inode_elem *)(uintptr_t)node->aux; 648 } 649 650 /* 651 * We maintain three separate rbtrees: one for direct refs, one for 652 * indirect refs which have a key, and one for indirect refs which do not 653 * have a key. Each tree does merge on insertion. 654 * 655 * Once all of the references are located, we iterate over the tree of 656 * indirect refs with missing keys. An appropriate key is located and 657 * the ref is moved onto the tree for indirect refs. After all missing 658 * keys are thus located, we iterate over the indirect ref tree, resolve 659 * each reference, and then insert the resolved reference onto the 660 * direct tree (merging there too). 661 * 662 * New backrefs (i.e., for parent nodes) are added to the appropriate 663 * rbtree as they are encountered. The new backrefs are subsequently 664 * resolved as above. 665 */ 666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 667 struct btrfs_path *path, u64 time_seq, 668 struct preftrees *preftrees, 669 const u64 *extent_item_pos, 670 struct share_check *sc, bool ignore_offset) 671 { 672 int err; 673 int ret = 0; 674 struct ulist *parents; 675 struct ulist_node *node; 676 struct ulist_iterator uiter; 677 struct rb_node *rnode; 678 679 parents = ulist_alloc(GFP_NOFS); 680 if (!parents) 681 return -ENOMEM; 682 683 /* 684 * We could trade memory usage for performance here by iterating 685 * the tree, allocating new refs for each insertion, and then 686 * freeing the entire indirect tree when we're done. In some test 687 * cases, the tree can grow quite large (~200k objects). 688 */ 689 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 690 struct prelim_ref *ref; 691 692 ref = rb_entry(rnode, struct prelim_ref, rbnode); 693 if (WARN(ref->parent, 694 "BUG: direct ref found in indirect tree")) { 695 ret = -EINVAL; 696 goto out; 697 } 698 699 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 700 preftrees->indirect.count--; 701 702 if (ref->count == 0) { 703 free_pref(ref); 704 continue; 705 } 706 707 if (sc && sc->root_objectid && 708 ref->root_id != sc->root_objectid) { 709 free_pref(ref); 710 ret = BACKREF_FOUND_SHARED; 711 goto out; 712 } 713 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 714 ref, parents, extent_item_pos, 715 ignore_offset); 716 /* 717 * we can only tolerate ENOENT,otherwise,we should catch error 718 * and return directly. 719 */ 720 if (err == -ENOENT) { 721 prelim_ref_insert(fs_info, &preftrees->direct, ref, 722 NULL); 723 continue; 724 } else if (err) { 725 free_pref(ref); 726 ret = err; 727 goto out; 728 } 729 730 /* we put the first parent into the ref at hand */ 731 ULIST_ITER_INIT(&uiter); 732 node = ulist_next(parents, &uiter); 733 ref->parent = node ? node->val : 0; 734 ref->inode_list = unode_aux_to_inode_list(node); 735 736 /* Add a prelim_ref(s) for any other parent(s). */ 737 while ((node = ulist_next(parents, &uiter))) { 738 struct prelim_ref *new_ref; 739 740 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 741 GFP_NOFS); 742 if (!new_ref) { 743 free_pref(ref); 744 ret = -ENOMEM; 745 goto out; 746 } 747 memcpy(new_ref, ref, sizeof(*ref)); 748 new_ref->parent = node->val; 749 new_ref->inode_list = unode_aux_to_inode_list(node); 750 prelim_ref_insert(fs_info, &preftrees->direct, 751 new_ref, NULL); 752 } 753 754 /* 755 * Now it's a direct ref, put it in the direct tree. We must 756 * do this last because the ref could be merged/freed here. 757 */ 758 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 759 760 ulist_reinit(parents); 761 cond_resched(); 762 } 763 out: 764 ulist_free(parents); 765 return ret; 766 } 767 768 /* 769 * read tree blocks and add keys where required. 770 */ 771 static int add_missing_keys(struct btrfs_fs_info *fs_info, 772 struct preftrees *preftrees, bool lock) 773 { 774 struct prelim_ref *ref; 775 struct extent_buffer *eb; 776 struct preftree *tree = &preftrees->indirect_missing_keys; 777 struct rb_node *node; 778 779 while ((node = rb_first_cached(&tree->root))) { 780 ref = rb_entry(node, struct prelim_ref, rbnode); 781 rb_erase_cached(node, &tree->root); 782 783 BUG_ON(ref->parent); /* should not be a direct ref */ 784 BUG_ON(ref->key_for_search.type); 785 BUG_ON(!ref->wanted_disk_byte); 786 787 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 788 ref->root_id, 0, ref->level - 1, NULL); 789 if (IS_ERR(eb)) { 790 free_pref(ref); 791 return PTR_ERR(eb); 792 } else if (!extent_buffer_uptodate(eb)) { 793 free_pref(ref); 794 free_extent_buffer(eb); 795 return -EIO; 796 } 797 if (lock) 798 btrfs_tree_read_lock(eb); 799 if (btrfs_header_level(eb) == 0) 800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 801 else 802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 803 if (lock) 804 btrfs_tree_read_unlock(eb); 805 free_extent_buffer(eb); 806 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 807 cond_resched(); 808 } 809 return 0; 810 } 811 812 /* 813 * add all currently queued delayed refs from this head whose seq nr is 814 * smaller or equal that seq to the list 815 */ 816 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 817 struct btrfs_delayed_ref_head *head, u64 seq, 818 struct preftrees *preftrees, struct share_check *sc) 819 { 820 struct btrfs_delayed_ref_node *node; 821 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 822 struct btrfs_key key; 823 struct btrfs_key tmp_op_key; 824 struct rb_node *n; 825 int count; 826 int ret = 0; 827 828 if (extent_op && extent_op->update_key) 829 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 830 831 spin_lock(&head->lock); 832 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 833 node = rb_entry(n, struct btrfs_delayed_ref_node, 834 ref_node); 835 if (node->seq > seq) 836 continue; 837 838 switch (node->action) { 839 case BTRFS_ADD_DELAYED_EXTENT: 840 case BTRFS_UPDATE_DELAYED_HEAD: 841 WARN_ON(1); 842 continue; 843 case BTRFS_ADD_DELAYED_REF: 844 count = node->ref_mod; 845 break; 846 case BTRFS_DROP_DELAYED_REF: 847 count = node->ref_mod * -1; 848 break; 849 default: 850 BUG(); 851 } 852 switch (node->type) { 853 case BTRFS_TREE_BLOCK_REF_KEY: { 854 /* NORMAL INDIRECT METADATA backref */ 855 struct btrfs_delayed_tree_ref *ref; 856 857 ref = btrfs_delayed_node_to_tree_ref(node); 858 ret = add_indirect_ref(fs_info, preftrees, ref->root, 859 &tmp_op_key, ref->level + 1, 860 node->bytenr, count, sc, 861 GFP_ATOMIC); 862 break; 863 } 864 case BTRFS_SHARED_BLOCK_REF_KEY: { 865 /* SHARED DIRECT METADATA backref */ 866 struct btrfs_delayed_tree_ref *ref; 867 868 ref = btrfs_delayed_node_to_tree_ref(node); 869 870 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 871 ref->parent, node->bytenr, count, 872 sc, GFP_ATOMIC); 873 break; 874 } 875 case BTRFS_EXTENT_DATA_REF_KEY: { 876 /* NORMAL INDIRECT DATA backref */ 877 struct btrfs_delayed_data_ref *ref; 878 ref = btrfs_delayed_node_to_data_ref(node); 879 880 key.objectid = ref->objectid; 881 key.type = BTRFS_EXTENT_DATA_KEY; 882 key.offset = ref->offset; 883 884 /* 885 * Found a inum that doesn't match our known inum, we 886 * know it's shared. 887 */ 888 if (sc && sc->inum && ref->objectid != sc->inum) { 889 ret = BACKREF_FOUND_SHARED; 890 goto out; 891 } 892 893 ret = add_indirect_ref(fs_info, preftrees, ref->root, 894 &key, 0, node->bytenr, count, sc, 895 GFP_ATOMIC); 896 break; 897 } 898 case BTRFS_SHARED_DATA_REF_KEY: { 899 /* SHARED DIRECT FULL backref */ 900 struct btrfs_delayed_data_ref *ref; 901 902 ref = btrfs_delayed_node_to_data_ref(node); 903 904 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 905 node->bytenr, count, sc, 906 GFP_ATOMIC); 907 break; 908 } 909 default: 910 WARN_ON(1); 911 } 912 /* 913 * We must ignore BACKREF_FOUND_SHARED until all delayed 914 * refs have been checked. 915 */ 916 if (ret && (ret != BACKREF_FOUND_SHARED)) 917 break; 918 } 919 if (!ret) 920 ret = extent_is_shared(sc); 921 out: 922 spin_unlock(&head->lock); 923 return ret; 924 } 925 926 /* 927 * add all inline backrefs for bytenr to the list 928 * 929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 930 */ 931 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 932 struct btrfs_path *path, u64 bytenr, 933 int *info_level, struct preftrees *preftrees, 934 struct share_check *sc) 935 { 936 int ret = 0; 937 int slot; 938 struct extent_buffer *leaf; 939 struct btrfs_key key; 940 struct btrfs_key found_key; 941 unsigned long ptr; 942 unsigned long end; 943 struct btrfs_extent_item *ei; 944 u64 flags; 945 u64 item_size; 946 947 /* 948 * enumerate all inline refs 949 */ 950 leaf = path->nodes[0]; 951 slot = path->slots[0]; 952 953 item_size = btrfs_item_size(leaf, slot); 954 BUG_ON(item_size < sizeof(*ei)); 955 956 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 957 flags = btrfs_extent_flags(leaf, ei); 958 btrfs_item_key_to_cpu(leaf, &found_key, slot); 959 960 ptr = (unsigned long)(ei + 1); 961 end = (unsigned long)ei + item_size; 962 963 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 964 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 965 struct btrfs_tree_block_info *info; 966 967 info = (struct btrfs_tree_block_info *)ptr; 968 *info_level = btrfs_tree_block_level(leaf, info); 969 ptr += sizeof(struct btrfs_tree_block_info); 970 BUG_ON(ptr > end); 971 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 972 *info_level = found_key.offset; 973 } else { 974 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 975 } 976 977 while (ptr < end) { 978 struct btrfs_extent_inline_ref *iref; 979 u64 offset; 980 int type; 981 982 iref = (struct btrfs_extent_inline_ref *)ptr; 983 type = btrfs_get_extent_inline_ref_type(leaf, iref, 984 BTRFS_REF_TYPE_ANY); 985 if (type == BTRFS_REF_TYPE_INVALID) 986 return -EUCLEAN; 987 988 offset = btrfs_extent_inline_ref_offset(leaf, iref); 989 990 switch (type) { 991 case BTRFS_SHARED_BLOCK_REF_KEY: 992 ret = add_direct_ref(fs_info, preftrees, 993 *info_level + 1, offset, 994 bytenr, 1, NULL, GFP_NOFS); 995 break; 996 case BTRFS_SHARED_DATA_REF_KEY: { 997 struct btrfs_shared_data_ref *sdref; 998 int count; 999 1000 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1001 count = btrfs_shared_data_ref_count(leaf, sdref); 1002 1003 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1004 bytenr, count, sc, GFP_NOFS); 1005 break; 1006 } 1007 case BTRFS_TREE_BLOCK_REF_KEY: 1008 ret = add_indirect_ref(fs_info, preftrees, offset, 1009 NULL, *info_level + 1, 1010 bytenr, 1, NULL, GFP_NOFS); 1011 break; 1012 case BTRFS_EXTENT_DATA_REF_KEY: { 1013 struct btrfs_extent_data_ref *dref; 1014 int count; 1015 u64 root; 1016 1017 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1018 count = btrfs_extent_data_ref_count(leaf, dref); 1019 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1020 dref); 1021 key.type = BTRFS_EXTENT_DATA_KEY; 1022 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1023 1024 if (sc && sc->inum && key.objectid != sc->inum) { 1025 ret = BACKREF_FOUND_SHARED; 1026 break; 1027 } 1028 1029 root = btrfs_extent_data_ref_root(leaf, dref); 1030 1031 ret = add_indirect_ref(fs_info, preftrees, root, 1032 &key, 0, bytenr, count, 1033 sc, GFP_NOFS); 1034 break; 1035 } 1036 default: 1037 WARN_ON(1); 1038 } 1039 if (ret) 1040 return ret; 1041 ptr += btrfs_extent_inline_ref_size(type); 1042 } 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * add all non-inline backrefs for bytenr to the list 1049 * 1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1051 */ 1052 static int add_keyed_refs(struct btrfs_root *extent_root, 1053 struct btrfs_path *path, u64 bytenr, 1054 int info_level, struct preftrees *preftrees, 1055 struct share_check *sc) 1056 { 1057 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1058 int ret; 1059 int slot; 1060 struct extent_buffer *leaf; 1061 struct btrfs_key key; 1062 1063 while (1) { 1064 ret = btrfs_next_item(extent_root, path); 1065 if (ret < 0) 1066 break; 1067 if (ret) { 1068 ret = 0; 1069 break; 1070 } 1071 1072 slot = path->slots[0]; 1073 leaf = path->nodes[0]; 1074 btrfs_item_key_to_cpu(leaf, &key, slot); 1075 1076 if (key.objectid != bytenr) 1077 break; 1078 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1079 continue; 1080 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1081 break; 1082 1083 switch (key.type) { 1084 case BTRFS_SHARED_BLOCK_REF_KEY: 1085 /* SHARED DIRECT METADATA backref */ 1086 ret = add_direct_ref(fs_info, preftrees, 1087 info_level + 1, key.offset, 1088 bytenr, 1, NULL, GFP_NOFS); 1089 break; 1090 case BTRFS_SHARED_DATA_REF_KEY: { 1091 /* SHARED DIRECT FULL backref */ 1092 struct btrfs_shared_data_ref *sdref; 1093 int count; 1094 1095 sdref = btrfs_item_ptr(leaf, slot, 1096 struct btrfs_shared_data_ref); 1097 count = btrfs_shared_data_ref_count(leaf, sdref); 1098 ret = add_direct_ref(fs_info, preftrees, 0, 1099 key.offset, bytenr, count, 1100 sc, GFP_NOFS); 1101 break; 1102 } 1103 case BTRFS_TREE_BLOCK_REF_KEY: 1104 /* NORMAL INDIRECT METADATA backref */ 1105 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1106 NULL, info_level + 1, bytenr, 1107 1, NULL, GFP_NOFS); 1108 break; 1109 case BTRFS_EXTENT_DATA_REF_KEY: { 1110 /* NORMAL INDIRECT DATA backref */ 1111 struct btrfs_extent_data_ref *dref; 1112 int count; 1113 u64 root; 1114 1115 dref = btrfs_item_ptr(leaf, slot, 1116 struct btrfs_extent_data_ref); 1117 count = btrfs_extent_data_ref_count(leaf, dref); 1118 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1119 dref); 1120 key.type = BTRFS_EXTENT_DATA_KEY; 1121 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1122 1123 if (sc && sc->inum && key.objectid != sc->inum) { 1124 ret = BACKREF_FOUND_SHARED; 1125 break; 1126 } 1127 1128 root = btrfs_extent_data_ref_root(leaf, dref); 1129 ret = add_indirect_ref(fs_info, preftrees, root, 1130 &key, 0, bytenr, count, 1131 sc, GFP_NOFS); 1132 break; 1133 } 1134 default: 1135 WARN_ON(1); 1136 } 1137 if (ret) 1138 return ret; 1139 1140 } 1141 1142 return ret; 1143 } 1144 1145 /* 1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1148 * indirect refs to their parent bytenr. 1149 * When roots are found, they're added to the roots list 1150 * 1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and 1152 * behave much like trans == NULL case, the difference only lies in it will not 1153 * commit root. 1154 * The special case is for qgroup to search roots in commit_transaction(). 1155 * 1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1157 * shared extent is detected. 1158 * 1159 * Otherwise this returns 0 for success and <0 for an error. 1160 * 1161 * If ignore_offset is set to false, only extent refs whose offsets match 1162 * extent_item_pos are returned. If true, every extent ref is returned 1163 * and extent_item_pos is ignored. 1164 * 1165 * FIXME some caching might speed things up 1166 */ 1167 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1168 struct btrfs_fs_info *fs_info, u64 bytenr, 1169 u64 time_seq, struct ulist *refs, 1170 struct ulist *roots, const u64 *extent_item_pos, 1171 struct share_check *sc, bool ignore_offset) 1172 { 1173 struct btrfs_root *root = fs_info->extent_root; 1174 struct btrfs_key key; 1175 struct btrfs_path *path; 1176 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1177 struct btrfs_delayed_ref_head *head; 1178 int info_level = 0; 1179 int ret; 1180 struct prelim_ref *ref; 1181 struct rb_node *node; 1182 struct extent_inode_elem *eie = NULL; 1183 struct preftrees preftrees = { 1184 .direct = PREFTREE_INIT, 1185 .indirect = PREFTREE_INIT, 1186 .indirect_missing_keys = PREFTREE_INIT 1187 }; 1188 1189 key.objectid = bytenr; 1190 key.offset = (u64)-1; 1191 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1192 key.type = BTRFS_METADATA_ITEM_KEY; 1193 else 1194 key.type = BTRFS_EXTENT_ITEM_KEY; 1195 1196 path = btrfs_alloc_path(); 1197 if (!path) 1198 return -ENOMEM; 1199 if (!trans) { 1200 path->search_commit_root = 1; 1201 path->skip_locking = 1; 1202 } 1203 1204 if (time_seq == BTRFS_SEQ_LAST) 1205 path->skip_locking = 1; 1206 1207 again: 1208 head = NULL; 1209 1210 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1211 if (ret < 0) 1212 goto out; 1213 if (ret == 0) { 1214 /* This shouldn't happen, indicates a bug or fs corruption. */ 1215 ASSERT(ret != 0); 1216 ret = -EUCLEAN; 1217 goto out; 1218 } 1219 1220 if (trans && likely(trans->type != __TRANS_DUMMY) && 1221 time_seq != BTRFS_SEQ_LAST) { 1222 /* 1223 * We have a specific time_seq we care about and trans which 1224 * means we have the path lock, we need to grab the ref head and 1225 * lock it so we have a consistent view of the refs at the given 1226 * time. 1227 */ 1228 delayed_refs = &trans->transaction->delayed_refs; 1229 spin_lock(&delayed_refs->lock); 1230 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1231 if (head) { 1232 if (!mutex_trylock(&head->mutex)) { 1233 refcount_inc(&head->refs); 1234 spin_unlock(&delayed_refs->lock); 1235 1236 btrfs_release_path(path); 1237 1238 /* 1239 * Mutex was contended, block until it's 1240 * released and try again 1241 */ 1242 mutex_lock(&head->mutex); 1243 mutex_unlock(&head->mutex); 1244 btrfs_put_delayed_ref_head(head); 1245 goto again; 1246 } 1247 spin_unlock(&delayed_refs->lock); 1248 ret = add_delayed_refs(fs_info, head, time_seq, 1249 &preftrees, sc); 1250 mutex_unlock(&head->mutex); 1251 if (ret) 1252 goto out; 1253 } else { 1254 spin_unlock(&delayed_refs->lock); 1255 } 1256 } 1257 1258 if (path->slots[0]) { 1259 struct extent_buffer *leaf; 1260 int slot; 1261 1262 path->slots[0]--; 1263 leaf = path->nodes[0]; 1264 slot = path->slots[0]; 1265 btrfs_item_key_to_cpu(leaf, &key, slot); 1266 if (key.objectid == bytenr && 1267 (key.type == BTRFS_EXTENT_ITEM_KEY || 1268 key.type == BTRFS_METADATA_ITEM_KEY)) { 1269 ret = add_inline_refs(fs_info, path, bytenr, 1270 &info_level, &preftrees, sc); 1271 if (ret) 1272 goto out; 1273 ret = add_keyed_refs(root, path, bytenr, info_level, 1274 &preftrees, sc); 1275 if (ret) 1276 goto out; 1277 } 1278 } 1279 1280 btrfs_release_path(path); 1281 1282 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1283 if (ret) 1284 goto out; 1285 1286 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1287 1288 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1289 extent_item_pos, sc, ignore_offset); 1290 if (ret) 1291 goto out; 1292 1293 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1294 1295 /* 1296 * This walks the tree of merged and resolved refs. Tree blocks are 1297 * read in as needed. Unique entries are added to the ulist, and 1298 * the list of found roots is updated. 1299 * 1300 * We release the entire tree in one go before returning. 1301 */ 1302 node = rb_first_cached(&preftrees.direct.root); 1303 while (node) { 1304 ref = rb_entry(node, struct prelim_ref, rbnode); 1305 node = rb_next(&ref->rbnode); 1306 /* 1307 * ref->count < 0 can happen here if there are delayed 1308 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1309 * prelim_ref_insert() relies on this when merging 1310 * identical refs to keep the overall count correct. 1311 * prelim_ref_insert() will merge only those refs 1312 * which compare identically. Any refs having 1313 * e.g. different offsets would not be merged, 1314 * and would retain their original ref->count < 0. 1315 */ 1316 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1317 if (sc && sc->root_objectid && 1318 ref->root_id != sc->root_objectid) { 1319 ret = BACKREF_FOUND_SHARED; 1320 goto out; 1321 } 1322 1323 /* no parent == root of tree */ 1324 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1325 if (ret < 0) 1326 goto out; 1327 } 1328 if (ref->count && ref->parent) { 1329 if (extent_item_pos && !ref->inode_list && 1330 ref->level == 0) { 1331 struct extent_buffer *eb; 1332 1333 eb = read_tree_block(fs_info, ref->parent, 0, 1334 0, ref->level, NULL); 1335 if (IS_ERR(eb)) { 1336 ret = PTR_ERR(eb); 1337 goto out; 1338 } else if (!extent_buffer_uptodate(eb)) { 1339 free_extent_buffer(eb); 1340 ret = -EIO; 1341 goto out; 1342 } 1343 1344 if (!path->skip_locking) 1345 btrfs_tree_read_lock(eb); 1346 ret = find_extent_in_eb(eb, bytenr, 1347 *extent_item_pos, &eie, ignore_offset); 1348 if (!path->skip_locking) 1349 btrfs_tree_read_unlock(eb); 1350 free_extent_buffer(eb); 1351 if (ret < 0) 1352 goto out; 1353 ref->inode_list = eie; 1354 } 1355 ret = ulist_add_merge_ptr(refs, ref->parent, 1356 ref->inode_list, 1357 (void **)&eie, GFP_NOFS); 1358 if (ret < 0) 1359 goto out; 1360 if (!ret && extent_item_pos) { 1361 /* 1362 * we've recorded that parent, so we must extend 1363 * its inode list here 1364 */ 1365 BUG_ON(!eie); 1366 while (eie->next) 1367 eie = eie->next; 1368 eie->next = ref->inode_list; 1369 } 1370 eie = NULL; 1371 } 1372 cond_resched(); 1373 } 1374 1375 out: 1376 btrfs_free_path(path); 1377 1378 prelim_release(&preftrees.direct); 1379 prelim_release(&preftrees.indirect); 1380 prelim_release(&preftrees.indirect_missing_keys); 1381 1382 if (ret < 0) 1383 free_inode_elem_list(eie); 1384 return ret; 1385 } 1386 1387 static void free_leaf_list(struct ulist *blocks) 1388 { 1389 struct ulist_node *node = NULL; 1390 struct extent_inode_elem *eie; 1391 struct ulist_iterator uiter; 1392 1393 ULIST_ITER_INIT(&uiter); 1394 while ((node = ulist_next(blocks, &uiter))) { 1395 if (!node->aux) 1396 continue; 1397 eie = unode_aux_to_inode_list(node); 1398 free_inode_elem_list(eie); 1399 node->aux = 0; 1400 } 1401 1402 ulist_free(blocks); 1403 } 1404 1405 /* 1406 * Finds all leafs with a reference to the specified combination of bytenr and 1407 * offset. key_list_head will point to a list of corresponding keys (caller must 1408 * free each list element). The leafs will be stored in the leafs ulist, which 1409 * must be freed with ulist_free. 1410 * 1411 * returns 0 on success, <0 on error 1412 */ 1413 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1414 struct btrfs_fs_info *fs_info, u64 bytenr, 1415 u64 time_seq, struct ulist **leafs, 1416 const u64 *extent_item_pos, bool ignore_offset) 1417 { 1418 int ret; 1419 1420 *leafs = ulist_alloc(GFP_NOFS); 1421 if (!*leafs) 1422 return -ENOMEM; 1423 1424 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1425 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1426 if (ret < 0 && ret != -ENOENT) { 1427 free_leaf_list(*leafs); 1428 return ret; 1429 } 1430 1431 return 0; 1432 } 1433 1434 /* 1435 * walk all backrefs for a given extent to find all roots that reference this 1436 * extent. Walking a backref means finding all extents that reference this 1437 * extent and in turn walk the backrefs of those, too. Naturally this is a 1438 * recursive process, but here it is implemented in an iterative fashion: We 1439 * find all referencing extents for the extent in question and put them on a 1440 * list. In turn, we find all referencing extents for those, further appending 1441 * to the list. The way we iterate the list allows adding more elements after 1442 * the current while iterating. The process stops when we reach the end of the 1443 * list. Found roots are added to the roots list. 1444 * 1445 * returns 0 on success, < 0 on error. 1446 */ 1447 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1448 struct btrfs_fs_info *fs_info, u64 bytenr, 1449 u64 time_seq, struct ulist **roots, 1450 bool ignore_offset) 1451 { 1452 struct ulist *tmp; 1453 struct ulist_node *node = NULL; 1454 struct ulist_iterator uiter; 1455 int ret; 1456 1457 tmp = ulist_alloc(GFP_NOFS); 1458 if (!tmp) 1459 return -ENOMEM; 1460 *roots = ulist_alloc(GFP_NOFS); 1461 if (!*roots) { 1462 ulist_free(tmp); 1463 return -ENOMEM; 1464 } 1465 1466 ULIST_ITER_INIT(&uiter); 1467 while (1) { 1468 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1469 tmp, *roots, NULL, NULL, ignore_offset); 1470 if (ret < 0 && ret != -ENOENT) { 1471 ulist_free(tmp); 1472 ulist_free(*roots); 1473 *roots = NULL; 1474 return ret; 1475 } 1476 node = ulist_next(tmp, &uiter); 1477 if (!node) 1478 break; 1479 bytenr = node->val; 1480 cond_resched(); 1481 } 1482 1483 ulist_free(tmp); 1484 return 0; 1485 } 1486 1487 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1488 struct btrfs_fs_info *fs_info, u64 bytenr, 1489 u64 time_seq, struct ulist **roots, 1490 bool skip_commit_root_sem) 1491 { 1492 int ret; 1493 1494 if (!trans && !skip_commit_root_sem) 1495 down_read(&fs_info->commit_root_sem); 1496 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1497 time_seq, roots, false); 1498 if (!trans && !skip_commit_root_sem) 1499 up_read(&fs_info->commit_root_sem); 1500 return ret; 1501 } 1502 1503 /** 1504 * Check if an extent is shared or not 1505 * 1506 * @root: root inode belongs to 1507 * @inum: inode number of the inode whose extent we are checking 1508 * @bytenr: logical bytenr of the extent we are checking 1509 * @roots: list of roots this extent is shared among 1510 * @tmp: temporary list used for iteration 1511 * 1512 * btrfs_check_shared uses the backref walking code but will short 1513 * circuit as soon as it finds a root or inode that doesn't match the 1514 * one passed in. This provides a significant performance benefit for 1515 * callers (such as fiemap) which want to know whether the extent is 1516 * shared but do not need a ref count. 1517 * 1518 * This attempts to attach to the running transaction in order to account for 1519 * delayed refs, but continues on even when no running transaction exists. 1520 * 1521 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1522 */ 1523 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1524 struct ulist *roots, struct ulist *tmp) 1525 { 1526 struct btrfs_fs_info *fs_info = root->fs_info; 1527 struct btrfs_trans_handle *trans; 1528 struct ulist_iterator uiter; 1529 struct ulist_node *node; 1530 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1531 int ret = 0; 1532 struct share_check shared = { 1533 .root_objectid = root->root_key.objectid, 1534 .inum = inum, 1535 .share_count = 0, 1536 }; 1537 1538 ulist_init(roots); 1539 ulist_init(tmp); 1540 1541 trans = btrfs_join_transaction_nostart(root); 1542 if (IS_ERR(trans)) { 1543 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1544 ret = PTR_ERR(trans); 1545 goto out; 1546 } 1547 trans = NULL; 1548 down_read(&fs_info->commit_root_sem); 1549 } else { 1550 btrfs_get_tree_mod_seq(fs_info, &elem); 1551 } 1552 1553 ULIST_ITER_INIT(&uiter); 1554 while (1) { 1555 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1556 roots, NULL, &shared, false); 1557 if (ret == BACKREF_FOUND_SHARED) { 1558 /* this is the only condition under which we return 1 */ 1559 ret = 1; 1560 break; 1561 } 1562 if (ret < 0 && ret != -ENOENT) 1563 break; 1564 ret = 0; 1565 node = ulist_next(tmp, &uiter); 1566 if (!node) 1567 break; 1568 bytenr = node->val; 1569 shared.share_count = 0; 1570 cond_resched(); 1571 } 1572 1573 if (trans) { 1574 btrfs_put_tree_mod_seq(fs_info, &elem); 1575 btrfs_end_transaction(trans); 1576 } else { 1577 up_read(&fs_info->commit_root_sem); 1578 } 1579 out: 1580 ulist_release(roots); 1581 ulist_release(tmp); 1582 return ret; 1583 } 1584 1585 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1586 u64 start_off, struct btrfs_path *path, 1587 struct btrfs_inode_extref **ret_extref, 1588 u64 *found_off) 1589 { 1590 int ret, slot; 1591 struct btrfs_key key; 1592 struct btrfs_key found_key; 1593 struct btrfs_inode_extref *extref; 1594 const struct extent_buffer *leaf; 1595 unsigned long ptr; 1596 1597 key.objectid = inode_objectid; 1598 key.type = BTRFS_INODE_EXTREF_KEY; 1599 key.offset = start_off; 1600 1601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1602 if (ret < 0) 1603 return ret; 1604 1605 while (1) { 1606 leaf = path->nodes[0]; 1607 slot = path->slots[0]; 1608 if (slot >= btrfs_header_nritems(leaf)) { 1609 /* 1610 * If the item at offset is not found, 1611 * btrfs_search_slot will point us to the slot 1612 * where it should be inserted. In our case 1613 * that will be the slot directly before the 1614 * next INODE_REF_KEY_V2 item. In the case 1615 * that we're pointing to the last slot in a 1616 * leaf, we must move one leaf over. 1617 */ 1618 ret = btrfs_next_leaf(root, path); 1619 if (ret) { 1620 if (ret >= 1) 1621 ret = -ENOENT; 1622 break; 1623 } 1624 continue; 1625 } 1626 1627 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1628 1629 /* 1630 * Check that we're still looking at an extended ref key for 1631 * this particular objectid. If we have different 1632 * objectid or type then there are no more to be found 1633 * in the tree and we can exit. 1634 */ 1635 ret = -ENOENT; 1636 if (found_key.objectid != inode_objectid) 1637 break; 1638 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1639 break; 1640 1641 ret = 0; 1642 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1643 extref = (struct btrfs_inode_extref *)ptr; 1644 *ret_extref = extref; 1645 if (found_off) 1646 *found_off = found_key.offset; 1647 break; 1648 } 1649 1650 return ret; 1651 } 1652 1653 /* 1654 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1655 * Elements of the path are separated by '/' and the path is guaranteed to be 1656 * 0-terminated. the path is only given within the current file system. 1657 * Therefore, it never starts with a '/'. the caller is responsible to provide 1658 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1659 * the start point of the resulting string is returned. this pointer is within 1660 * dest, normally. 1661 * in case the path buffer would overflow, the pointer is decremented further 1662 * as if output was written to the buffer, though no more output is actually 1663 * generated. that way, the caller can determine how much space would be 1664 * required for the path to fit into the buffer. in that case, the returned 1665 * value will be smaller than dest. callers must check this! 1666 */ 1667 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1668 u32 name_len, unsigned long name_off, 1669 struct extent_buffer *eb_in, u64 parent, 1670 char *dest, u32 size) 1671 { 1672 int slot; 1673 u64 next_inum; 1674 int ret; 1675 s64 bytes_left = ((s64)size) - 1; 1676 struct extent_buffer *eb = eb_in; 1677 struct btrfs_key found_key; 1678 struct btrfs_inode_ref *iref; 1679 1680 if (bytes_left >= 0) 1681 dest[bytes_left] = '\0'; 1682 1683 while (1) { 1684 bytes_left -= name_len; 1685 if (bytes_left >= 0) 1686 read_extent_buffer(eb, dest + bytes_left, 1687 name_off, name_len); 1688 if (eb != eb_in) { 1689 if (!path->skip_locking) 1690 btrfs_tree_read_unlock(eb); 1691 free_extent_buffer(eb); 1692 } 1693 ret = btrfs_find_item(fs_root, path, parent, 0, 1694 BTRFS_INODE_REF_KEY, &found_key); 1695 if (ret > 0) 1696 ret = -ENOENT; 1697 if (ret) 1698 break; 1699 1700 next_inum = found_key.offset; 1701 1702 /* regular exit ahead */ 1703 if (parent == next_inum) 1704 break; 1705 1706 slot = path->slots[0]; 1707 eb = path->nodes[0]; 1708 /* make sure we can use eb after releasing the path */ 1709 if (eb != eb_in) { 1710 path->nodes[0] = NULL; 1711 path->locks[0] = 0; 1712 } 1713 btrfs_release_path(path); 1714 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1715 1716 name_len = btrfs_inode_ref_name_len(eb, iref); 1717 name_off = (unsigned long)(iref + 1); 1718 1719 parent = next_inum; 1720 --bytes_left; 1721 if (bytes_left >= 0) 1722 dest[bytes_left] = '/'; 1723 } 1724 1725 btrfs_release_path(path); 1726 1727 if (ret) 1728 return ERR_PTR(ret); 1729 1730 return dest + bytes_left; 1731 } 1732 1733 /* 1734 * this makes the path point to (logical EXTENT_ITEM *) 1735 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1736 * tree blocks and <0 on error. 1737 */ 1738 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1739 struct btrfs_path *path, struct btrfs_key *found_key, 1740 u64 *flags_ret) 1741 { 1742 int ret; 1743 u64 flags; 1744 u64 size = 0; 1745 u32 item_size; 1746 const struct extent_buffer *eb; 1747 struct btrfs_extent_item *ei; 1748 struct btrfs_key key; 1749 1750 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1751 key.type = BTRFS_METADATA_ITEM_KEY; 1752 else 1753 key.type = BTRFS_EXTENT_ITEM_KEY; 1754 key.objectid = logical; 1755 key.offset = (u64)-1; 1756 1757 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1758 if (ret < 0) 1759 return ret; 1760 1761 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1762 if (ret) { 1763 if (ret > 0) 1764 ret = -ENOENT; 1765 return ret; 1766 } 1767 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1768 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1769 size = fs_info->nodesize; 1770 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1771 size = found_key->offset; 1772 1773 if (found_key->objectid > logical || 1774 found_key->objectid + size <= logical) { 1775 btrfs_debug(fs_info, 1776 "logical %llu is not within any extent", logical); 1777 return -ENOENT; 1778 } 1779 1780 eb = path->nodes[0]; 1781 item_size = btrfs_item_size(eb, path->slots[0]); 1782 BUG_ON(item_size < sizeof(*ei)); 1783 1784 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1785 flags = btrfs_extent_flags(eb, ei); 1786 1787 btrfs_debug(fs_info, 1788 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1789 logical, logical - found_key->objectid, found_key->objectid, 1790 found_key->offset, flags, item_size); 1791 1792 WARN_ON(!flags_ret); 1793 if (flags_ret) { 1794 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1795 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1796 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1797 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1798 else 1799 BUG(); 1800 return 0; 1801 } 1802 1803 return -EIO; 1804 } 1805 1806 /* 1807 * helper function to iterate extent inline refs. ptr must point to a 0 value 1808 * for the first call and may be modified. it is used to track state. 1809 * if more refs exist, 0 is returned and the next call to 1810 * get_extent_inline_ref must pass the modified ptr parameter to get the 1811 * next ref. after the last ref was processed, 1 is returned. 1812 * returns <0 on error 1813 */ 1814 static int get_extent_inline_ref(unsigned long *ptr, 1815 const struct extent_buffer *eb, 1816 const struct btrfs_key *key, 1817 const struct btrfs_extent_item *ei, 1818 u32 item_size, 1819 struct btrfs_extent_inline_ref **out_eiref, 1820 int *out_type) 1821 { 1822 unsigned long end; 1823 u64 flags; 1824 struct btrfs_tree_block_info *info; 1825 1826 if (!*ptr) { 1827 /* first call */ 1828 flags = btrfs_extent_flags(eb, ei); 1829 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1830 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1831 /* a skinny metadata extent */ 1832 *out_eiref = 1833 (struct btrfs_extent_inline_ref *)(ei + 1); 1834 } else { 1835 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1836 info = (struct btrfs_tree_block_info *)(ei + 1); 1837 *out_eiref = 1838 (struct btrfs_extent_inline_ref *)(info + 1); 1839 } 1840 } else { 1841 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1842 } 1843 *ptr = (unsigned long)*out_eiref; 1844 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1845 return -ENOENT; 1846 } 1847 1848 end = (unsigned long)ei + item_size; 1849 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1850 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1851 BTRFS_REF_TYPE_ANY); 1852 if (*out_type == BTRFS_REF_TYPE_INVALID) 1853 return -EUCLEAN; 1854 1855 *ptr += btrfs_extent_inline_ref_size(*out_type); 1856 WARN_ON(*ptr > end); 1857 if (*ptr == end) 1858 return 1; /* last */ 1859 1860 return 0; 1861 } 1862 1863 /* 1864 * reads the tree block backref for an extent. tree level and root are returned 1865 * through out_level and out_root. ptr must point to a 0 value for the first 1866 * call and may be modified (see get_extent_inline_ref comment). 1867 * returns 0 if data was provided, 1 if there was no more data to provide or 1868 * <0 on error. 1869 */ 1870 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1871 struct btrfs_key *key, struct btrfs_extent_item *ei, 1872 u32 item_size, u64 *out_root, u8 *out_level) 1873 { 1874 int ret; 1875 int type; 1876 struct btrfs_extent_inline_ref *eiref; 1877 1878 if (*ptr == (unsigned long)-1) 1879 return 1; 1880 1881 while (1) { 1882 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1883 &eiref, &type); 1884 if (ret < 0) 1885 return ret; 1886 1887 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1888 type == BTRFS_SHARED_BLOCK_REF_KEY) 1889 break; 1890 1891 if (ret == 1) 1892 return 1; 1893 } 1894 1895 /* we can treat both ref types equally here */ 1896 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1897 1898 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1899 struct btrfs_tree_block_info *info; 1900 1901 info = (struct btrfs_tree_block_info *)(ei + 1); 1902 *out_level = btrfs_tree_block_level(eb, info); 1903 } else { 1904 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1905 *out_level = (u8)key->offset; 1906 } 1907 1908 if (ret == 1) 1909 *ptr = (unsigned long)-1; 1910 1911 return 0; 1912 } 1913 1914 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1915 struct extent_inode_elem *inode_list, 1916 u64 root, u64 extent_item_objectid, 1917 iterate_extent_inodes_t *iterate, void *ctx) 1918 { 1919 struct extent_inode_elem *eie; 1920 int ret = 0; 1921 1922 for (eie = inode_list; eie; eie = eie->next) { 1923 btrfs_debug(fs_info, 1924 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1925 extent_item_objectid, eie->inum, 1926 eie->offset, root); 1927 ret = iterate(eie->inum, eie->offset, root, ctx); 1928 if (ret) { 1929 btrfs_debug(fs_info, 1930 "stopping iteration for %llu due to ret=%d", 1931 extent_item_objectid, ret); 1932 break; 1933 } 1934 } 1935 1936 return ret; 1937 } 1938 1939 /* 1940 * calls iterate() for every inode that references the extent identified by 1941 * the given parameters. 1942 * when the iterator function returns a non-zero value, iteration stops. 1943 */ 1944 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1945 u64 extent_item_objectid, u64 extent_item_pos, 1946 int search_commit_root, 1947 iterate_extent_inodes_t *iterate, void *ctx, 1948 bool ignore_offset) 1949 { 1950 int ret; 1951 struct btrfs_trans_handle *trans = NULL; 1952 struct ulist *refs = NULL; 1953 struct ulist *roots = NULL; 1954 struct ulist_node *ref_node = NULL; 1955 struct ulist_node *root_node = NULL; 1956 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 1957 struct ulist_iterator ref_uiter; 1958 struct ulist_iterator root_uiter; 1959 1960 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1961 extent_item_objectid); 1962 1963 if (!search_commit_root) { 1964 trans = btrfs_attach_transaction(fs_info->extent_root); 1965 if (IS_ERR(trans)) { 1966 if (PTR_ERR(trans) != -ENOENT && 1967 PTR_ERR(trans) != -EROFS) 1968 return PTR_ERR(trans); 1969 trans = NULL; 1970 } 1971 } 1972 1973 if (trans) 1974 btrfs_get_tree_mod_seq(fs_info, &seq_elem); 1975 else 1976 down_read(&fs_info->commit_root_sem); 1977 1978 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1979 seq_elem.seq, &refs, 1980 &extent_item_pos, ignore_offset); 1981 if (ret) 1982 goto out; 1983 1984 ULIST_ITER_INIT(&ref_uiter); 1985 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1986 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1987 seq_elem.seq, &roots, 1988 ignore_offset); 1989 if (ret) 1990 break; 1991 ULIST_ITER_INIT(&root_uiter); 1992 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1993 btrfs_debug(fs_info, 1994 "root %llu references leaf %llu, data list %#llx", 1995 root_node->val, ref_node->val, 1996 ref_node->aux); 1997 ret = iterate_leaf_refs(fs_info, 1998 (struct extent_inode_elem *) 1999 (uintptr_t)ref_node->aux, 2000 root_node->val, 2001 extent_item_objectid, 2002 iterate, ctx); 2003 } 2004 ulist_free(roots); 2005 } 2006 2007 free_leaf_list(refs); 2008 out: 2009 if (trans) { 2010 btrfs_put_tree_mod_seq(fs_info, &seq_elem); 2011 btrfs_end_transaction(trans); 2012 } else { 2013 up_read(&fs_info->commit_root_sem); 2014 } 2015 2016 return ret; 2017 } 2018 2019 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2020 struct btrfs_path *path, 2021 iterate_extent_inodes_t *iterate, void *ctx, 2022 bool ignore_offset) 2023 { 2024 int ret; 2025 u64 extent_item_pos; 2026 u64 flags = 0; 2027 struct btrfs_key found_key; 2028 int search_commit_root = path->search_commit_root; 2029 2030 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2031 btrfs_release_path(path); 2032 if (ret < 0) 2033 return ret; 2034 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2035 return -EINVAL; 2036 2037 extent_item_pos = logical - found_key.objectid; 2038 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2039 extent_item_pos, search_commit_root, 2040 iterate, ctx, ignore_offset); 2041 2042 return ret; 2043 } 2044 2045 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2046 struct extent_buffer *eb, void *ctx); 2047 2048 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2049 struct btrfs_path *path, 2050 iterate_irefs_t *iterate, void *ctx) 2051 { 2052 int ret = 0; 2053 int slot; 2054 u32 cur; 2055 u32 len; 2056 u32 name_len; 2057 u64 parent = 0; 2058 int found = 0; 2059 struct extent_buffer *eb; 2060 struct btrfs_inode_ref *iref; 2061 struct btrfs_key found_key; 2062 2063 while (!ret) { 2064 ret = btrfs_find_item(fs_root, path, inum, 2065 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2066 &found_key); 2067 2068 if (ret < 0) 2069 break; 2070 if (ret) { 2071 ret = found ? 0 : -ENOENT; 2072 break; 2073 } 2074 ++found; 2075 2076 parent = found_key.offset; 2077 slot = path->slots[0]; 2078 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2079 if (!eb) { 2080 ret = -ENOMEM; 2081 break; 2082 } 2083 btrfs_release_path(path); 2084 2085 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2086 2087 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2088 name_len = btrfs_inode_ref_name_len(eb, iref); 2089 /* path must be released before calling iterate()! */ 2090 btrfs_debug(fs_root->fs_info, 2091 "following ref at offset %u for inode %llu in tree %llu", 2092 cur, found_key.objectid, 2093 fs_root->root_key.objectid); 2094 ret = iterate(parent, name_len, 2095 (unsigned long)(iref + 1), eb, ctx); 2096 if (ret) 2097 break; 2098 len = sizeof(*iref) + name_len; 2099 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2100 } 2101 free_extent_buffer(eb); 2102 } 2103 2104 btrfs_release_path(path); 2105 2106 return ret; 2107 } 2108 2109 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2110 struct btrfs_path *path, 2111 iterate_irefs_t *iterate, void *ctx) 2112 { 2113 int ret; 2114 int slot; 2115 u64 offset = 0; 2116 u64 parent; 2117 int found = 0; 2118 struct extent_buffer *eb; 2119 struct btrfs_inode_extref *extref; 2120 u32 item_size; 2121 u32 cur_offset; 2122 unsigned long ptr; 2123 2124 while (1) { 2125 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2126 &offset); 2127 if (ret < 0) 2128 break; 2129 if (ret) { 2130 ret = found ? 0 : -ENOENT; 2131 break; 2132 } 2133 ++found; 2134 2135 slot = path->slots[0]; 2136 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2137 if (!eb) { 2138 ret = -ENOMEM; 2139 break; 2140 } 2141 btrfs_release_path(path); 2142 2143 item_size = btrfs_item_size(eb, slot); 2144 ptr = btrfs_item_ptr_offset(eb, slot); 2145 cur_offset = 0; 2146 2147 while (cur_offset < item_size) { 2148 u32 name_len; 2149 2150 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2151 parent = btrfs_inode_extref_parent(eb, extref); 2152 name_len = btrfs_inode_extref_name_len(eb, extref); 2153 ret = iterate(parent, name_len, 2154 (unsigned long)&extref->name, eb, ctx); 2155 if (ret) 2156 break; 2157 2158 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2159 cur_offset += sizeof(*extref); 2160 } 2161 free_extent_buffer(eb); 2162 2163 offset++; 2164 } 2165 2166 btrfs_release_path(path); 2167 2168 return ret; 2169 } 2170 2171 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2172 struct btrfs_path *path, iterate_irefs_t *iterate, 2173 void *ctx) 2174 { 2175 int ret; 2176 int found_refs = 0; 2177 2178 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2179 if (!ret) 2180 ++found_refs; 2181 else if (ret != -ENOENT) 2182 return ret; 2183 2184 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2185 if (ret == -ENOENT && found_refs) 2186 return 0; 2187 2188 return ret; 2189 } 2190 2191 /* 2192 * returns 0 if the path could be dumped (probably truncated) 2193 * returns <0 in case of an error 2194 */ 2195 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2196 struct extent_buffer *eb, void *ctx) 2197 { 2198 struct inode_fs_paths *ipath = ctx; 2199 char *fspath; 2200 char *fspath_min; 2201 int i = ipath->fspath->elem_cnt; 2202 const int s_ptr = sizeof(char *); 2203 u32 bytes_left; 2204 2205 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2206 ipath->fspath->bytes_left - s_ptr : 0; 2207 2208 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2209 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2210 name_off, eb, inum, fspath_min, bytes_left); 2211 if (IS_ERR(fspath)) 2212 return PTR_ERR(fspath); 2213 2214 if (fspath > fspath_min) { 2215 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2216 ++ipath->fspath->elem_cnt; 2217 ipath->fspath->bytes_left = fspath - fspath_min; 2218 } else { 2219 ++ipath->fspath->elem_missed; 2220 ipath->fspath->bytes_missing += fspath_min - fspath; 2221 ipath->fspath->bytes_left = 0; 2222 } 2223 2224 return 0; 2225 } 2226 2227 /* 2228 * this dumps all file system paths to the inode into the ipath struct, provided 2229 * is has been created large enough. each path is zero-terminated and accessed 2230 * from ipath->fspath->val[i]. 2231 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2232 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2233 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2234 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2235 * have been needed to return all paths. 2236 */ 2237 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2238 { 2239 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2240 inode_to_path, ipath); 2241 } 2242 2243 struct btrfs_data_container *init_data_container(u32 total_bytes) 2244 { 2245 struct btrfs_data_container *data; 2246 size_t alloc_bytes; 2247 2248 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2249 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2250 if (!data) 2251 return ERR_PTR(-ENOMEM); 2252 2253 if (total_bytes >= sizeof(*data)) { 2254 data->bytes_left = total_bytes - sizeof(*data); 2255 data->bytes_missing = 0; 2256 } else { 2257 data->bytes_missing = sizeof(*data) - total_bytes; 2258 data->bytes_left = 0; 2259 } 2260 2261 data->elem_cnt = 0; 2262 data->elem_missed = 0; 2263 2264 return data; 2265 } 2266 2267 /* 2268 * allocates space to return multiple file system paths for an inode. 2269 * total_bytes to allocate are passed, note that space usable for actual path 2270 * information will be total_bytes - sizeof(struct inode_fs_paths). 2271 * the returned pointer must be freed with free_ipath() in the end. 2272 */ 2273 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2274 struct btrfs_path *path) 2275 { 2276 struct inode_fs_paths *ifp; 2277 struct btrfs_data_container *fspath; 2278 2279 fspath = init_data_container(total_bytes); 2280 if (IS_ERR(fspath)) 2281 return ERR_CAST(fspath); 2282 2283 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2284 if (!ifp) { 2285 kvfree(fspath); 2286 return ERR_PTR(-ENOMEM); 2287 } 2288 2289 ifp->btrfs_path = path; 2290 ifp->fspath = fspath; 2291 ifp->fs_root = fs_root; 2292 2293 return ifp; 2294 } 2295 2296 void free_ipath(struct inode_fs_paths *ipath) 2297 { 2298 if (!ipath) 2299 return; 2300 kvfree(ipath->fspath); 2301 kfree(ipath); 2302 } 2303 2304 struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2305 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2306 { 2307 struct btrfs_backref_iter *ret; 2308 2309 ret = kzalloc(sizeof(*ret), gfp_flag); 2310 if (!ret) 2311 return NULL; 2312 2313 ret->path = btrfs_alloc_path(); 2314 if (!ret->path) { 2315 kfree(ret); 2316 return NULL; 2317 } 2318 2319 /* Current backref iterator only supports iteration in commit root */ 2320 ret->path->search_commit_root = 1; 2321 ret->path->skip_locking = 1; 2322 ret->fs_info = fs_info; 2323 2324 return ret; 2325 } 2326 2327 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2328 { 2329 struct btrfs_fs_info *fs_info = iter->fs_info; 2330 struct btrfs_path *path = iter->path; 2331 struct btrfs_extent_item *ei; 2332 struct btrfs_key key; 2333 int ret; 2334 2335 key.objectid = bytenr; 2336 key.type = BTRFS_METADATA_ITEM_KEY; 2337 key.offset = (u64)-1; 2338 iter->bytenr = bytenr; 2339 2340 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 2341 if (ret < 0) 2342 return ret; 2343 if (ret == 0) { 2344 ret = -EUCLEAN; 2345 goto release; 2346 } 2347 if (path->slots[0] == 0) { 2348 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2349 ret = -EUCLEAN; 2350 goto release; 2351 } 2352 path->slots[0]--; 2353 2354 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2355 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2356 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2357 ret = -ENOENT; 2358 goto release; 2359 } 2360 memcpy(&iter->cur_key, &key, sizeof(key)); 2361 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2362 path->slots[0]); 2363 iter->end_ptr = (u32)(iter->item_ptr + 2364 btrfs_item_size(path->nodes[0], path->slots[0])); 2365 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2366 struct btrfs_extent_item); 2367 2368 /* 2369 * Only support iteration on tree backref yet. 2370 * 2371 * This is an extra precaution for non skinny-metadata, where 2372 * EXTENT_ITEM is also used for tree blocks, that we can only use 2373 * extent flags to determine if it's a tree block. 2374 */ 2375 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2376 ret = -ENOTSUPP; 2377 goto release; 2378 } 2379 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2380 2381 /* If there is no inline backref, go search for keyed backref */ 2382 if (iter->cur_ptr >= iter->end_ptr) { 2383 ret = btrfs_next_item(fs_info->extent_root, path); 2384 2385 /* No inline nor keyed ref */ 2386 if (ret > 0) { 2387 ret = -ENOENT; 2388 goto release; 2389 } 2390 if (ret < 0) 2391 goto release; 2392 2393 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2394 path->slots[0]); 2395 if (iter->cur_key.objectid != bytenr || 2396 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2397 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2398 ret = -ENOENT; 2399 goto release; 2400 } 2401 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2402 path->slots[0]); 2403 iter->item_ptr = iter->cur_ptr; 2404 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2405 path->nodes[0], path->slots[0])); 2406 } 2407 2408 return 0; 2409 release: 2410 btrfs_backref_iter_release(iter); 2411 return ret; 2412 } 2413 2414 /* 2415 * Go to the next backref item of current bytenr, can be either inlined or 2416 * keyed. 2417 * 2418 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2419 * 2420 * Return 0 if we get next backref without problem. 2421 * Return >0 if there is no extra backref for this bytenr. 2422 * Return <0 if there is something wrong happened. 2423 */ 2424 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2425 { 2426 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2427 struct btrfs_path *path = iter->path; 2428 struct btrfs_extent_inline_ref *iref; 2429 int ret; 2430 u32 size; 2431 2432 if (btrfs_backref_iter_is_inline_ref(iter)) { 2433 /* We're still inside the inline refs */ 2434 ASSERT(iter->cur_ptr < iter->end_ptr); 2435 2436 if (btrfs_backref_has_tree_block_info(iter)) { 2437 /* First tree block info */ 2438 size = sizeof(struct btrfs_tree_block_info); 2439 } else { 2440 /* Use inline ref type to determine the size */ 2441 int type; 2442 2443 iref = (struct btrfs_extent_inline_ref *) 2444 ((unsigned long)iter->cur_ptr); 2445 type = btrfs_extent_inline_ref_type(eb, iref); 2446 2447 size = btrfs_extent_inline_ref_size(type); 2448 } 2449 iter->cur_ptr += size; 2450 if (iter->cur_ptr < iter->end_ptr) 2451 return 0; 2452 2453 /* All inline items iterated, fall through */ 2454 } 2455 2456 /* We're at keyed items, there is no inline item, go to the next one */ 2457 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path); 2458 if (ret) 2459 return ret; 2460 2461 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2462 if (iter->cur_key.objectid != iter->bytenr || 2463 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2464 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2465 return 1; 2466 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2467 path->slots[0]); 2468 iter->cur_ptr = iter->item_ptr; 2469 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2470 path->slots[0]); 2471 return 0; 2472 } 2473 2474 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2475 struct btrfs_backref_cache *cache, int is_reloc) 2476 { 2477 int i; 2478 2479 cache->rb_root = RB_ROOT; 2480 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2481 INIT_LIST_HEAD(&cache->pending[i]); 2482 INIT_LIST_HEAD(&cache->changed); 2483 INIT_LIST_HEAD(&cache->detached); 2484 INIT_LIST_HEAD(&cache->leaves); 2485 INIT_LIST_HEAD(&cache->pending_edge); 2486 INIT_LIST_HEAD(&cache->useless_node); 2487 cache->fs_info = fs_info; 2488 cache->is_reloc = is_reloc; 2489 } 2490 2491 struct btrfs_backref_node *btrfs_backref_alloc_node( 2492 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2493 { 2494 struct btrfs_backref_node *node; 2495 2496 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2497 node = kzalloc(sizeof(*node), GFP_NOFS); 2498 if (!node) 2499 return node; 2500 2501 INIT_LIST_HEAD(&node->list); 2502 INIT_LIST_HEAD(&node->upper); 2503 INIT_LIST_HEAD(&node->lower); 2504 RB_CLEAR_NODE(&node->rb_node); 2505 cache->nr_nodes++; 2506 node->level = level; 2507 node->bytenr = bytenr; 2508 2509 return node; 2510 } 2511 2512 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2513 struct btrfs_backref_cache *cache) 2514 { 2515 struct btrfs_backref_edge *edge; 2516 2517 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2518 if (edge) 2519 cache->nr_edges++; 2520 return edge; 2521 } 2522 2523 /* 2524 * Drop the backref node from cache, also cleaning up all its 2525 * upper edges and any uncached nodes in the path. 2526 * 2527 * This cleanup happens bottom up, thus the node should either 2528 * be the lowest node in the cache or a detached node. 2529 */ 2530 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2531 struct btrfs_backref_node *node) 2532 { 2533 struct btrfs_backref_node *upper; 2534 struct btrfs_backref_edge *edge; 2535 2536 if (!node) 2537 return; 2538 2539 BUG_ON(!node->lowest && !node->detached); 2540 while (!list_empty(&node->upper)) { 2541 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2542 list[LOWER]); 2543 upper = edge->node[UPPER]; 2544 list_del(&edge->list[LOWER]); 2545 list_del(&edge->list[UPPER]); 2546 btrfs_backref_free_edge(cache, edge); 2547 2548 /* 2549 * Add the node to leaf node list if no other child block 2550 * cached. 2551 */ 2552 if (list_empty(&upper->lower)) { 2553 list_add_tail(&upper->lower, &cache->leaves); 2554 upper->lowest = 1; 2555 } 2556 } 2557 2558 btrfs_backref_drop_node(cache, node); 2559 } 2560 2561 /* 2562 * Release all nodes/edges from current cache 2563 */ 2564 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2565 { 2566 struct btrfs_backref_node *node; 2567 int i; 2568 2569 while (!list_empty(&cache->detached)) { 2570 node = list_entry(cache->detached.next, 2571 struct btrfs_backref_node, list); 2572 btrfs_backref_cleanup_node(cache, node); 2573 } 2574 2575 while (!list_empty(&cache->leaves)) { 2576 node = list_entry(cache->leaves.next, 2577 struct btrfs_backref_node, lower); 2578 btrfs_backref_cleanup_node(cache, node); 2579 } 2580 2581 cache->last_trans = 0; 2582 2583 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2584 ASSERT(list_empty(&cache->pending[i])); 2585 ASSERT(list_empty(&cache->pending_edge)); 2586 ASSERT(list_empty(&cache->useless_node)); 2587 ASSERT(list_empty(&cache->changed)); 2588 ASSERT(list_empty(&cache->detached)); 2589 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2590 ASSERT(!cache->nr_nodes); 2591 ASSERT(!cache->nr_edges); 2592 } 2593 2594 /* 2595 * Handle direct tree backref 2596 * 2597 * Direct tree backref means, the backref item shows its parent bytenr 2598 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2599 * 2600 * @ref_key: The converted backref key. 2601 * For keyed backref, it's the item key. 2602 * For inlined backref, objectid is the bytenr, 2603 * type is btrfs_inline_ref_type, offset is 2604 * btrfs_inline_ref_offset. 2605 */ 2606 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2607 struct btrfs_key *ref_key, 2608 struct btrfs_backref_node *cur) 2609 { 2610 struct btrfs_backref_edge *edge; 2611 struct btrfs_backref_node *upper; 2612 struct rb_node *rb_node; 2613 2614 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2615 2616 /* Only reloc root uses backref pointing to itself */ 2617 if (ref_key->objectid == ref_key->offset) { 2618 struct btrfs_root *root; 2619 2620 cur->is_reloc_root = 1; 2621 /* Only reloc backref cache cares about a specific root */ 2622 if (cache->is_reloc) { 2623 root = find_reloc_root(cache->fs_info, cur->bytenr); 2624 if (!root) 2625 return -ENOENT; 2626 cur->root = root; 2627 } else { 2628 /* 2629 * For generic purpose backref cache, reloc root node 2630 * is useless. 2631 */ 2632 list_add(&cur->list, &cache->useless_node); 2633 } 2634 return 0; 2635 } 2636 2637 edge = btrfs_backref_alloc_edge(cache); 2638 if (!edge) 2639 return -ENOMEM; 2640 2641 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2642 if (!rb_node) { 2643 /* Parent node not yet cached */ 2644 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2645 cur->level + 1); 2646 if (!upper) { 2647 btrfs_backref_free_edge(cache, edge); 2648 return -ENOMEM; 2649 } 2650 2651 /* 2652 * Backrefs for the upper level block isn't cached, add the 2653 * block to pending list 2654 */ 2655 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2656 } else { 2657 /* Parent node already cached */ 2658 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2659 ASSERT(upper->checked); 2660 INIT_LIST_HEAD(&edge->list[UPPER]); 2661 } 2662 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2663 return 0; 2664 } 2665 2666 /* 2667 * Handle indirect tree backref 2668 * 2669 * Indirect tree backref means, we only know which tree the node belongs to. 2670 * We still need to do a tree search to find out the parents. This is for 2671 * TREE_BLOCK_REF backref (keyed or inlined). 2672 * 2673 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2674 * @tree_key: The first key of this tree block. 2675 * @path: A clean (released) path, to avoid allocating path every time 2676 * the function get called. 2677 */ 2678 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2679 struct btrfs_path *path, 2680 struct btrfs_key *ref_key, 2681 struct btrfs_key *tree_key, 2682 struct btrfs_backref_node *cur) 2683 { 2684 struct btrfs_fs_info *fs_info = cache->fs_info; 2685 struct btrfs_backref_node *upper; 2686 struct btrfs_backref_node *lower; 2687 struct btrfs_backref_edge *edge; 2688 struct extent_buffer *eb; 2689 struct btrfs_root *root; 2690 struct rb_node *rb_node; 2691 int level; 2692 bool need_check = true; 2693 int ret; 2694 2695 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 2696 if (IS_ERR(root)) 2697 return PTR_ERR(root); 2698 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2699 cur->cowonly = 1; 2700 2701 if (btrfs_root_level(&root->root_item) == cur->level) { 2702 /* Tree root */ 2703 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2704 /* 2705 * For reloc backref cache, we may ignore reloc root. But for 2706 * general purpose backref cache, we can't rely on 2707 * btrfs_should_ignore_reloc_root() as it may conflict with 2708 * current running relocation and lead to missing root. 2709 * 2710 * For general purpose backref cache, reloc root detection is 2711 * completely relying on direct backref (key->offset is parent 2712 * bytenr), thus only do such check for reloc cache. 2713 */ 2714 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 2715 btrfs_put_root(root); 2716 list_add(&cur->list, &cache->useless_node); 2717 } else { 2718 cur->root = root; 2719 } 2720 return 0; 2721 } 2722 2723 level = cur->level + 1; 2724 2725 /* Search the tree to find parent blocks referring to the block */ 2726 path->search_commit_root = 1; 2727 path->skip_locking = 1; 2728 path->lowest_level = level; 2729 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2730 path->lowest_level = 0; 2731 if (ret < 0) { 2732 btrfs_put_root(root); 2733 return ret; 2734 } 2735 if (ret > 0 && path->slots[level] > 0) 2736 path->slots[level]--; 2737 2738 eb = path->nodes[level]; 2739 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2740 btrfs_err(fs_info, 2741 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2742 cur->bytenr, level - 1, root->root_key.objectid, 2743 tree_key->objectid, tree_key->type, tree_key->offset); 2744 btrfs_put_root(root); 2745 ret = -ENOENT; 2746 goto out; 2747 } 2748 lower = cur; 2749 2750 /* Add all nodes and edges in the path */ 2751 for (; level < BTRFS_MAX_LEVEL; level++) { 2752 if (!path->nodes[level]) { 2753 ASSERT(btrfs_root_bytenr(&root->root_item) == 2754 lower->bytenr); 2755 /* Same as previous should_ignore_reloc_root() call */ 2756 if (btrfs_should_ignore_reloc_root(root) && 2757 cache->is_reloc) { 2758 btrfs_put_root(root); 2759 list_add(&lower->list, &cache->useless_node); 2760 } else { 2761 lower->root = root; 2762 } 2763 break; 2764 } 2765 2766 edge = btrfs_backref_alloc_edge(cache); 2767 if (!edge) { 2768 btrfs_put_root(root); 2769 ret = -ENOMEM; 2770 goto out; 2771 } 2772 2773 eb = path->nodes[level]; 2774 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2775 if (!rb_node) { 2776 upper = btrfs_backref_alloc_node(cache, eb->start, 2777 lower->level + 1); 2778 if (!upper) { 2779 btrfs_put_root(root); 2780 btrfs_backref_free_edge(cache, edge); 2781 ret = -ENOMEM; 2782 goto out; 2783 } 2784 upper->owner = btrfs_header_owner(eb); 2785 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2786 upper->cowonly = 1; 2787 2788 /* 2789 * If we know the block isn't shared we can avoid 2790 * checking its backrefs. 2791 */ 2792 if (btrfs_block_can_be_shared(root, eb)) 2793 upper->checked = 0; 2794 else 2795 upper->checked = 1; 2796 2797 /* 2798 * Add the block to pending list if we need to check its 2799 * backrefs, we only do this once while walking up a 2800 * tree as we will catch anything else later on. 2801 */ 2802 if (!upper->checked && need_check) { 2803 need_check = false; 2804 list_add_tail(&edge->list[UPPER], 2805 &cache->pending_edge); 2806 } else { 2807 if (upper->checked) 2808 need_check = true; 2809 INIT_LIST_HEAD(&edge->list[UPPER]); 2810 } 2811 } else { 2812 upper = rb_entry(rb_node, struct btrfs_backref_node, 2813 rb_node); 2814 ASSERT(upper->checked); 2815 INIT_LIST_HEAD(&edge->list[UPPER]); 2816 if (!upper->owner) 2817 upper->owner = btrfs_header_owner(eb); 2818 } 2819 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2820 2821 if (rb_node) { 2822 btrfs_put_root(root); 2823 break; 2824 } 2825 lower = upper; 2826 upper = NULL; 2827 } 2828 out: 2829 btrfs_release_path(path); 2830 return ret; 2831 } 2832 2833 /* 2834 * Add backref node @cur into @cache. 2835 * 2836 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2837 * links aren't yet bi-directional. Needs to finish such links. 2838 * Use btrfs_backref_finish_upper_links() to finish such linkage. 2839 * 2840 * @path: Released path for indirect tree backref lookup 2841 * @iter: Released backref iter for extent tree search 2842 * @node_key: The first key of the tree block 2843 */ 2844 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2845 struct btrfs_path *path, 2846 struct btrfs_backref_iter *iter, 2847 struct btrfs_key *node_key, 2848 struct btrfs_backref_node *cur) 2849 { 2850 struct btrfs_fs_info *fs_info = cache->fs_info; 2851 struct btrfs_backref_edge *edge; 2852 struct btrfs_backref_node *exist; 2853 int ret; 2854 2855 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2856 if (ret < 0) 2857 return ret; 2858 /* 2859 * We skip the first btrfs_tree_block_info, as we don't use the key 2860 * stored in it, but fetch it from the tree block 2861 */ 2862 if (btrfs_backref_has_tree_block_info(iter)) { 2863 ret = btrfs_backref_iter_next(iter); 2864 if (ret < 0) 2865 goto out; 2866 /* No extra backref? This means the tree block is corrupted */ 2867 if (ret > 0) { 2868 ret = -EUCLEAN; 2869 goto out; 2870 } 2871 } 2872 WARN_ON(cur->checked); 2873 if (!list_empty(&cur->upper)) { 2874 /* 2875 * The backref was added previously when processing backref of 2876 * type BTRFS_TREE_BLOCK_REF_KEY 2877 */ 2878 ASSERT(list_is_singular(&cur->upper)); 2879 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2880 list[LOWER]); 2881 ASSERT(list_empty(&edge->list[UPPER])); 2882 exist = edge->node[UPPER]; 2883 /* 2884 * Add the upper level block to pending list if we need check 2885 * its backrefs 2886 */ 2887 if (!exist->checked) 2888 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2889 } else { 2890 exist = NULL; 2891 } 2892 2893 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2894 struct extent_buffer *eb; 2895 struct btrfs_key key; 2896 int type; 2897 2898 cond_resched(); 2899 eb = btrfs_backref_get_eb(iter); 2900 2901 key.objectid = iter->bytenr; 2902 if (btrfs_backref_iter_is_inline_ref(iter)) { 2903 struct btrfs_extent_inline_ref *iref; 2904 2905 /* Update key for inline backref */ 2906 iref = (struct btrfs_extent_inline_ref *) 2907 ((unsigned long)iter->cur_ptr); 2908 type = btrfs_get_extent_inline_ref_type(eb, iref, 2909 BTRFS_REF_TYPE_BLOCK); 2910 if (type == BTRFS_REF_TYPE_INVALID) { 2911 ret = -EUCLEAN; 2912 goto out; 2913 } 2914 key.type = type; 2915 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2916 } else { 2917 key.type = iter->cur_key.type; 2918 key.offset = iter->cur_key.offset; 2919 } 2920 2921 /* 2922 * Parent node found and matches current inline ref, no need to 2923 * rebuild this node for this inline ref 2924 */ 2925 if (exist && 2926 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2927 exist->owner == key.offset) || 2928 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2929 exist->bytenr == key.offset))) { 2930 exist = NULL; 2931 continue; 2932 } 2933 2934 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 2935 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 2936 ret = handle_direct_tree_backref(cache, &key, cur); 2937 if (ret < 0) 2938 goto out; 2939 continue; 2940 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 2941 ret = -EINVAL; 2942 btrfs_print_v0_err(fs_info); 2943 btrfs_handle_fs_error(fs_info, ret, NULL); 2944 goto out; 2945 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 2946 continue; 2947 } 2948 2949 /* 2950 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 2951 * means the root objectid. We need to search the tree to get 2952 * its parent bytenr. 2953 */ 2954 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 2955 cur); 2956 if (ret < 0) 2957 goto out; 2958 } 2959 ret = 0; 2960 cur->checked = 1; 2961 WARN_ON(exist); 2962 out: 2963 btrfs_backref_iter_release(iter); 2964 return ret; 2965 } 2966 2967 /* 2968 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 2969 */ 2970 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 2971 struct btrfs_backref_node *start) 2972 { 2973 struct list_head *useless_node = &cache->useless_node; 2974 struct btrfs_backref_edge *edge; 2975 struct rb_node *rb_node; 2976 LIST_HEAD(pending_edge); 2977 2978 ASSERT(start->checked); 2979 2980 /* Insert this node to cache if it's not COW-only */ 2981 if (!start->cowonly) { 2982 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 2983 &start->rb_node); 2984 if (rb_node) 2985 btrfs_backref_panic(cache->fs_info, start->bytenr, 2986 -EEXIST); 2987 list_add_tail(&start->lower, &cache->leaves); 2988 } 2989 2990 /* 2991 * Use breadth first search to iterate all related edges. 2992 * 2993 * The starting points are all the edges of this node 2994 */ 2995 list_for_each_entry(edge, &start->upper, list[LOWER]) 2996 list_add_tail(&edge->list[UPPER], &pending_edge); 2997 2998 while (!list_empty(&pending_edge)) { 2999 struct btrfs_backref_node *upper; 3000 struct btrfs_backref_node *lower; 3001 3002 edge = list_first_entry(&pending_edge, 3003 struct btrfs_backref_edge, list[UPPER]); 3004 list_del_init(&edge->list[UPPER]); 3005 upper = edge->node[UPPER]; 3006 lower = edge->node[LOWER]; 3007 3008 /* Parent is detached, no need to keep any edges */ 3009 if (upper->detached) { 3010 list_del(&edge->list[LOWER]); 3011 btrfs_backref_free_edge(cache, edge); 3012 3013 /* Lower node is orphan, queue for cleanup */ 3014 if (list_empty(&lower->upper)) 3015 list_add(&lower->list, useless_node); 3016 continue; 3017 } 3018 3019 /* 3020 * All new nodes added in current build_backref_tree() haven't 3021 * been linked to the cache rb tree. 3022 * So if we have upper->rb_node populated, this means a cache 3023 * hit. We only need to link the edge, as @upper and all its 3024 * parents have already been linked. 3025 */ 3026 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3027 if (upper->lowest) { 3028 list_del_init(&upper->lower); 3029 upper->lowest = 0; 3030 } 3031 3032 list_add_tail(&edge->list[UPPER], &upper->lower); 3033 continue; 3034 } 3035 3036 /* Sanity check, we shouldn't have any unchecked nodes */ 3037 if (!upper->checked) { 3038 ASSERT(0); 3039 return -EUCLEAN; 3040 } 3041 3042 /* Sanity check, COW-only node has non-COW-only parent */ 3043 if (start->cowonly != upper->cowonly) { 3044 ASSERT(0); 3045 return -EUCLEAN; 3046 } 3047 3048 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3049 if (!upper->cowonly) { 3050 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3051 &upper->rb_node); 3052 if (rb_node) { 3053 btrfs_backref_panic(cache->fs_info, 3054 upper->bytenr, -EEXIST); 3055 return -EUCLEAN; 3056 } 3057 } 3058 3059 list_add_tail(&edge->list[UPPER], &upper->lower); 3060 3061 /* 3062 * Also queue all the parent edges of this uncached node 3063 * to finish the upper linkage 3064 */ 3065 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3066 list_add_tail(&edge->list[UPPER], &pending_edge); 3067 } 3068 return 0; 3069 } 3070 3071 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3072 struct btrfs_backref_node *node) 3073 { 3074 struct btrfs_backref_node *lower; 3075 struct btrfs_backref_node *upper; 3076 struct btrfs_backref_edge *edge; 3077 3078 while (!list_empty(&cache->useless_node)) { 3079 lower = list_first_entry(&cache->useless_node, 3080 struct btrfs_backref_node, list); 3081 list_del_init(&lower->list); 3082 } 3083 while (!list_empty(&cache->pending_edge)) { 3084 edge = list_first_entry(&cache->pending_edge, 3085 struct btrfs_backref_edge, list[UPPER]); 3086 list_del(&edge->list[UPPER]); 3087 list_del(&edge->list[LOWER]); 3088 lower = edge->node[LOWER]; 3089 upper = edge->node[UPPER]; 3090 btrfs_backref_free_edge(cache, edge); 3091 3092 /* 3093 * Lower is no longer linked to any upper backref nodes and 3094 * isn't in the cache, we can free it ourselves. 3095 */ 3096 if (list_empty(&lower->upper) && 3097 RB_EMPTY_NODE(&lower->rb_node)) 3098 list_add(&lower->list, &cache->useless_node); 3099 3100 if (!RB_EMPTY_NODE(&upper->rb_node)) 3101 continue; 3102 3103 /* Add this guy's upper edges to the list to process */ 3104 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3105 list_add_tail(&edge->list[UPPER], 3106 &cache->pending_edge); 3107 if (list_empty(&upper->upper)) 3108 list_add(&upper->list, &cache->useless_node); 3109 } 3110 3111 while (!list_empty(&cache->useless_node)) { 3112 lower = list_first_entry(&cache->useless_node, 3113 struct btrfs_backref_node, list); 3114 list_del_init(&lower->list); 3115 if (lower == node) 3116 node = NULL; 3117 btrfs_backref_drop_node(cache, lower); 3118 } 3119 3120 btrfs_backref_cleanup_node(cache, node); 3121 ASSERT(list_empty(&cache->useless_node) && 3122 list_empty(&cache->pending_edge)); 3123 } 3124