1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 23 /* Just arbitrary numbers so we can be sure one of these happened. */ 24 #define BACKREF_FOUND_SHARED 6 25 #define BACKREF_FOUND_NOT_SHARED 7 26 27 struct extent_inode_elem { 28 u64 inum; 29 u64 offset; 30 u64 num_bytes; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 35 const struct btrfs_key *key, 36 const struct extent_buffer *eb, 37 const struct btrfs_file_extent_item *fi, 38 struct extent_inode_elem **eie) 39 { 40 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 41 u64 offset = key->offset; 42 struct extent_inode_elem *e; 43 const u64 *root_ids; 44 int root_count; 45 bool cached; 46 47 if (!btrfs_file_extent_compression(eb, fi) && 48 !btrfs_file_extent_encryption(eb, fi) && 49 !btrfs_file_extent_other_encoding(eb, fi)) { 50 u64 data_offset; 51 52 data_offset = btrfs_file_extent_offset(eb, fi); 53 54 if (ctx->extent_item_pos < data_offset || 55 ctx->extent_item_pos >= data_offset + data_len) 56 return 1; 57 offset += ctx->extent_item_pos - data_offset; 58 } 59 60 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 61 goto add_inode_elem; 62 63 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 64 &root_count); 65 if (!cached) 66 goto add_inode_elem; 67 68 for (int i = 0; i < root_count; i++) { 69 int ret; 70 71 ret = ctx->indirect_ref_iterator(key->objectid, offset, 72 data_len, root_ids[i], 73 ctx->user_ctx); 74 if (ret) 75 return ret; 76 } 77 78 add_inode_elem: 79 e = kmalloc(sizeof(*e), GFP_NOFS); 80 if (!e) 81 return -ENOMEM; 82 83 e->next = *eie; 84 e->inum = key->objectid; 85 e->offset = offset; 86 e->num_bytes = data_len; 87 *eie = e; 88 89 return 0; 90 } 91 92 static void free_inode_elem_list(struct extent_inode_elem *eie) 93 { 94 struct extent_inode_elem *eie_next; 95 96 for (; eie; eie = eie_next) { 97 eie_next = eie->next; 98 kfree(eie); 99 } 100 } 101 102 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 103 const struct extent_buffer *eb, 104 struct extent_inode_elem **eie) 105 { 106 u64 disk_byte; 107 struct btrfs_key key; 108 struct btrfs_file_extent_item *fi; 109 int slot; 110 int nritems; 111 int extent_type; 112 int ret; 113 114 /* 115 * from the shared data ref, we only have the leaf but we need 116 * the key. thus, we must look into all items and see that we 117 * find one (some) with a reference to our extent item. 118 */ 119 nritems = btrfs_header_nritems(eb); 120 for (slot = 0; slot < nritems; ++slot) { 121 btrfs_item_key_to_cpu(eb, &key, slot); 122 if (key.type != BTRFS_EXTENT_DATA_KEY) 123 continue; 124 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 125 extent_type = btrfs_file_extent_type(eb, fi); 126 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 127 continue; 128 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 129 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 130 if (disk_byte != ctx->bytenr) 131 continue; 132 133 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 134 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 135 return ret; 136 } 137 138 return 0; 139 } 140 141 struct preftree { 142 struct rb_root_cached root; 143 unsigned int count; 144 }; 145 146 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 147 148 struct preftrees { 149 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 150 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 151 struct preftree indirect_missing_keys; 152 }; 153 154 /* 155 * Checks for a shared extent during backref search. 156 * 157 * The share_count tracks prelim_refs (direct and indirect) having a 158 * ref->count >0: 159 * - incremented when a ref->count transitions to >0 160 * - decremented when a ref->count transitions to <1 161 */ 162 struct share_check { 163 struct btrfs_backref_share_check_ctx *ctx; 164 struct btrfs_root *root; 165 u64 inum; 166 u64 data_bytenr; 167 u64 data_extent_gen; 168 /* 169 * Counts number of inodes that refer to an extent (different inodes in 170 * the same root or different roots) that we could find. The sharedness 171 * check typically stops once this counter gets greater than 1, so it 172 * may not reflect the total number of inodes. 173 */ 174 int share_count; 175 /* 176 * The number of times we found our inode refers to the data extent we 177 * are determining the sharedness. In other words, how many file extent 178 * items we could find for our inode that point to our target data 179 * extent. The value we get here after finishing the extent sharedness 180 * check may be smaller than reality, but if it ends up being greater 181 * than 1, then we know for sure the inode has multiple file extent 182 * items that point to our inode, and we can safely assume it's useful 183 * to cache the sharedness check result. 184 */ 185 int self_ref_count; 186 bool have_delayed_delete_refs; 187 }; 188 189 static inline int extent_is_shared(struct share_check *sc) 190 { 191 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 192 } 193 194 static struct kmem_cache *btrfs_prelim_ref_cache; 195 196 int __init btrfs_prelim_ref_init(void) 197 { 198 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 199 sizeof(struct prelim_ref), 200 0, 201 SLAB_MEM_SPREAD, 202 NULL); 203 if (!btrfs_prelim_ref_cache) 204 return -ENOMEM; 205 return 0; 206 } 207 208 void __cold btrfs_prelim_ref_exit(void) 209 { 210 kmem_cache_destroy(btrfs_prelim_ref_cache); 211 } 212 213 static void free_pref(struct prelim_ref *ref) 214 { 215 kmem_cache_free(btrfs_prelim_ref_cache, ref); 216 } 217 218 /* 219 * Return 0 when both refs are for the same block (and can be merged). 220 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 221 * indicates a 'higher' block. 222 */ 223 static int prelim_ref_compare(struct prelim_ref *ref1, 224 struct prelim_ref *ref2) 225 { 226 if (ref1->level < ref2->level) 227 return -1; 228 if (ref1->level > ref2->level) 229 return 1; 230 if (ref1->root_id < ref2->root_id) 231 return -1; 232 if (ref1->root_id > ref2->root_id) 233 return 1; 234 if (ref1->key_for_search.type < ref2->key_for_search.type) 235 return -1; 236 if (ref1->key_for_search.type > ref2->key_for_search.type) 237 return 1; 238 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 239 return -1; 240 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 241 return 1; 242 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 243 return -1; 244 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 245 return 1; 246 if (ref1->parent < ref2->parent) 247 return -1; 248 if (ref1->parent > ref2->parent) 249 return 1; 250 251 return 0; 252 } 253 254 static void update_share_count(struct share_check *sc, int oldcount, 255 int newcount, struct prelim_ref *newref) 256 { 257 if ((!sc) || (oldcount == 0 && newcount < 1)) 258 return; 259 260 if (oldcount > 0 && newcount < 1) 261 sc->share_count--; 262 else if (oldcount < 1 && newcount > 0) 263 sc->share_count++; 264 265 if (newref->root_id == sc->root->root_key.objectid && 266 newref->wanted_disk_byte == sc->data_bytenr && 267 newref->key_for_search.objectid == sc->inum) 268 sc->self_ref_count += newref->count; 269 } 270 271 /* 272 * Add @newref to the @root rbtree, merging identical refs. 273 * 274 * Callers should assume that newref has been freed after calling. 275 */ 276 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 277 struct preftree *preftree, 278 struct prelim_ref *newref, 279 struct share_check *sc) 280 { 281 struct rb_root_cached *root; 282 struct rb_node **p; 283 struct rb_node *parent = NULL; 284 struct prelim_ref *ref; 285 int result; 286 bool leftmost = true; 287 288 root = &preftree->root; 289 p = &root->rb_root.rb_node; 290 291 while (*p) { 292 parent = *p; 293 ref = rb_entry(parent, struct prelim_ref, rbnode); 294 result = prelim_ref_compare(ref, newref); 295 if (result < 0) { 296 p = &(*p)->rb_left; 297 } else if (result > 0) { 298 p = &(*p)->rb_right; 299 leftmost = false; 300 } else { 301 /* Identical refs, merge them and free @newref */ 302 struct extent_inode_elem *eie = ref->inode_list; 303 304 while (eie && eie->next) 305 eie = eie->next; 306 307 if (!eie) 308 ref->inode_list = newref->inode_list; 309 else 310 eie->next = newref->inode_list; 311 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 312 preftree->count); 313 /* 314 * A delayed ref can have newref->count < 0. 315 * The ref->count is updated to follow any 316 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 317 */ 318 update_share_count(sc, ref->count, 319 ref->count + newref->count, newref); 320 ref->count += newref->count; 321 free_pref(newref); 322 return; 323 } 324 } 325 326 update_share_count(sc, 0, newref->count, newref); 327 preftree->count++; 328 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 329 rb_link_node(&newref->rbnode, parent, p); 330 rb_insert_color_cached(&newref->rbnode, root, leftmost); 331 } 332 333 /* 334 * Release the entire tree. We don't care about internal consistency so 335 * just free everything and then reset the tree root. 336 */ 337 static void prelim_release(struct preftree *preftree) 338 { 339 struct prelim_ref *ref, *next_ref; 340 341 rbtree_postorder_for_each_entry_safe(ref, next_ref, 342 &preftree->root.rb_root, rbnode) { 343 free_inode_elem_list(ref->inode_list); 344 free_pref(ref); 345 } 346 347 preftree->root = RB_ROOT_CACHED; 348 preftree->count = 0; 349 } 350 351 /* 352 * the rules for all callers of this function are: 353 * - obtaining the parent is the goal 354 * - if you add a key, you must know that it is a correct key 355 * - if you cannot add the parent or a correct key, then we will look into the 356 * block later to set a correct key 357 * 358 * delayed refs 359 * ============ 360 * backref type | shared | indirect | shared | indirect 361 * information | tree | tree | data | data 362 * --------------------+--------+----------+--------+---------- 363 * parent logical | y | - | - | - 364 * key to resolve | - | y | y | y 365 * tree block logical | - | - | - | - 366 * root for resolving | y | y | y | y 367 * 368 * - column 1: we've the parent -> done 369 * - column 2, 3, 4: we use the key to find the parent 370 * 371 * on disk refs (inline or keyed) 372 * ============================== 373 * backref type | shared | indirect | shared | indirect 374 * information | tree | tree | data | data 375 * --------------------+--------+----------+--------+---------- 376 * parent logical | y | - | y | - 377 * key to resolve | - | - | - | y 378 * tree block logical | y | y | y | y 379 * root for resolving | - | y | y | y 380 * 381 * - column 1, 3: we've the parent -> done 382 * - column 2: we take the first key from the block to find the parent 383 * (see add_missing_keys) 384 * - column 4: we use the key to find the parent 385 * 386 * additional information that's available but not required to find the parent 387 * block might help in merging entries to gain some speed. 388 */ 389 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 390 struct preftree *preftree, u64 root_id, 391 const struct btrfs_key *key, int level, u64 parent, 392 u64 wanted_disk_byte, int count, 393 struct share_check *sc, gfp_t gfp_mask) 394 { 395 struct prelim_ref *ref; 396 397 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 398 return 0; 399 400 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 401 if (!ref) 402 return -ENOMEM; 403 404 ref->root_id = root_id; 405 if (key) 406 ref->key_for_search = *key; 407 else 408 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 409 410 ref->inode_list = NULL; 411 ref->level = level; 412 ref->count = count; 413 ref->parent = parent; 414 ref->wanted_disk_byte = wanted_disk_byte; 415 prelim_ref_insert(fs_info, preftree, ref, sc); 416 return extent_is_shared(sc); 417 } 418 419 /* direct refs use root == 0, key == NULL */ 420 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 421 struct preftrees *preftrees, int level, u64 parent, 422 u64 wanted_disk_byte, int count, 423 struct share_check *sc, gfp_t gfp_mask) 424 { 425 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 426 parent, wanted_disk_byte, count, sc, gfp_mask); 427 } 428 429 /* indirect refs use parent == 0 */ 430 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 431 struct preftrees *preftrees, u64 root_id, 432 const struct btrfs_key *key, int level, 433 u64 wanted_disk_byte, int count, 434 struct share_check *sc, gfp_t gfp_mask) 435 { 436 struct preftree *tree = &preftrees->indirect; 437 438 if (!key) 439 tree = &preftrees->indirect_missing_keys; 440 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 441 wanted_disk_byte, count, sc, gfp_mask); 442 } 443 444 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 445 { 446 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 447 struct rb_node *parent = NULL; 448 struct prelim_ref *ref = NULL; 449 struct prelim_ref target = {}; 450 int result; 451 452 target.parent = bytenr; 453 454 while (*p) { 455 parent = *p; 456 ref = rb_entry(parent, struct prelim_ref, rbnode); 457 result = prelim_ref_compare(ref, &target); 458 459 if (result < 0) 460 p = &(*p)->rb_left; 461 else if (result > 0) 462 p = &(*p)->rb_right; 463 else 464 return 1; 465 } 466 return 0; 467 } 468 469 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 470 struct btrfs_root *root, struct btrfs_path *path, 471 struct ulist *parents, 472 struct preftrees *preftrees, struct prelim_ref *ref, 473 int level) 474 { 475 int ret = 0; 476 int slot; 477 struct extent_buffer *eb; 478 struct btrfs_key key; 479 struct btrfs_key *key_for_search = &ref->key_for_search; 480 struct btrfs_file_extent_item *fi; 481 struct extent_inode_elem *eie = NULL, *old = NULL; 482 u64 disk_byte; 483 u64 wanted_disk_byte = ref->wanted_disk_byte; 484 u64 count = 0; 485 u64 data_offset; 486 487 if (level != 0) { 488 eb = path->nodes[level]; 489 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 490 if (ret < 0) 491 return ret; 492 return 0; 493 } 494 495 /* 496 * 1. We normally enter this function with the path already pointing to 497 * the first item to check. But sometimes, we may enter it with 498 * slot == nritems. 499 * 2. We are searching for normal backref but bytenr of this leaf 500 * matches shared data backref 501 * 3. The leaf owner is not equal to the root we are searching 502 * 503 * For these cases, go to the next leaf before we continue. 504 */ 505 eb = path->nodes[0]; 506 if (path->slots[0] >= btrfs_header_nritems(eb) || 507 is_shared_data_backref(preftrees, eb->start) || 508 ref->root_id != btrfs_header_owner(eb)) { 509 if (ctx->time_seq == BTRFS_SEQ_LAST) 510 ret = btrfs_next_leaf(root, path); 511 else 512 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 513 } 514 515 while (!ret && count < ref->count) { 516 eb = path->nodes[0]; 517 slot = path->slots[0]; 518 519 btrfs_item_key_to_cpu(eb, &key, slot); 520 521 if (key.objectid != key_for_search->objectid || 522 key.type != BTRFS_EXTENT_DATA_KEY) 523 break; 524 525 /* 526 * We are searching for normal backref but bytenr of this leaf 527 * matches shared data backref, OR 528 * the leaf owner is not equal to the root we are searching for 529 */ 530 if (slot == 0 && 531 (is_shared_data_backref(preftrees, eb->start) || 532 ref->root_id != btrfs_header_owner(eb))) { 533 if (ctx->time_seq == BTRFS_SEQ_LAST) 534 ret = btrfs_next_leaf(root, path); 535 else 536 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 537 continue; 538 } 539 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 540 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 541 data_offset = btrfs_file_extent_offset(eb, fi); 542 543 if (disk_byte == wanted_disk_byte) { 544 eie = NULL; 545 old = NULL; 546 if (ref->key_for_search.offset == key.offset - data_offset) 547 count++; 548 else 549 goto next; 550 if (!ctx->ignore_extent_item_pos) { 551 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 552 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 553 ret < 0) 554 break; 555 } 556 if (ret > 0) 557 goto next; 558 ret = ulist_add_merge_ptr(parents, eb->start, 559 eie, (void **)&old, GFP_NOFS); 560 if (ret < 0) 561 break; 562 if (!ret && !ctx->ignore_extent_item_pos) { 563 while (old->next) 564 old = old->next; 565 old->next = eie; 566 } 567 eie = NULL; 568 } 569 next: 570 if (ctx->time_seq == BTRFS_SEQ_LAST) 571 ret = btrfs_next_item(root, path); 572 else 573 ret = btrfs_next_old_item(root, path, ctx->time_seq); 574 } 575 576 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 577 free_inode_elem_list(eie); 578 else if (ret > 0) 579 ret = 0; 580 581 return ret; 582 } 583 584 /* 585 * resolve an indirect backref in the form (root_id, key, level) 586 * to a logical address 587 */ 588 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 589 struct btrfs_path *path, 590 struct preftrees *preftrees, 591 struct prelim_ref *ref, struct ulist *parents) 592 { 593 struct btrfs_root *root; 594 struct extent_buffer *eb; 595 int ret = 0; 596 int root_level; 597 int level = ref->level; 598 struct btrfs_key search_key = ref->key_for_search; 599 600 /* 601 * If we're search_commit_root we could possibly be holding locks on 602 * other tree nodes. This happens when qgroups does backref walks when 603 * adding new delayed refs. To deal with this we need to look in cache 604 * for the root, and if we don't find it then we need to search the 605 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 606 * here. 607 */ 608 if (path->search_commit_root) 609 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 610 else 611 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 612 if (IS_ERR(root)) { 613 ret = PTR_ERR(root); 614 goto out_free; 615 } 616 617 if (!path->search_commit_root && 618 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 619 ret = -ENOENT; 620 goto out; 621 } 622 623 if (btrfs_is_testing(ctx->fs_info)) { 624 ret = -ENOENT; 625 goto out; 626 } 627 628 if (path->search_commit_root) 629 root_level = btrfs_header_level(root->commit_root); 630 else if (ctx->time_seq == BTRFS_SEQ_LAST) 631 root_level = btrfs_header_level(root->node); 632 else 633 root_level = btrfs_old_root_level(root, ctx->time_seq); 634 635 if (root_level + 1 == level) 636 goto out; 637 638 /* 639 * We can often find data backrefs with an offset that is too large 640 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 641 * subtracting a file's offset with the data offset of its 642 * corresponding extent data item. This can happen for example in the 643 * clone ioctl. 644 * 645 * So if we detect such case we set the search key's offset to zero to 646 * make sure we will find the matching file extent item at 647 * add_all_parents(), otherwise we will miss it because the offset 648 * taken form the backref is much larger then the offset of the file 649 * extent item. This can make us scan a very large number of file 650 * extent items, but at least it will not make us miss any. 651 * 652 * This is an ugly workaround for a behaviour that should have never 653 * existed, but it does and a fix for the clone ioctl would touch a lot 654 * of places, cause backwards incompatibility and would not fix the 655 * problem for extents cloned with older kernels. 656 */ 657 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 658 search_key.offset >= LLONG_MAX) 659 search_key.offset = 0; 660 path->lowest_level = level; 661 if (ctx->time_seq == BTRFS_SEQ_LAST) 662 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 663 else 664 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 665 666 btrfs_debug(ctx->fs_info, 667 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 668 ref->root_id, level, ref->count, ret, 669 ref->key_for_search.objectid, ref->key_for_search.type, 670 ref->key_for_search.offset); 671 if (ret < 0) 672 goto out; 673 674 eb = path->nodes[level]; 675 while (!eb) { 676 if (WARN_ON(!level)) { 677 ret = 1; 678 goto out; 679 } 680 level--; 681 eb = path->nodes[level]; 682 } 683 684 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 685 out: 686 btrfs_put_root(root); 687 out_free: 688 path->lowest_level = 0; 689 btrfs_release_path(path); 690 return ret; 691 } 692 693 static struct extent_inode_elem * 694 unode_aux_to_inode_list(struct ulist_node *node) 695 { 696 if (!node) 697 return NULL; 698 return (struct extent_inode_elem *)(uintptr_t)node->aux; 699 } 700 701 static void free_leaf_list(struct ulist *ulist) 702 { 703 struct ulist_node *node; 704 struct ulist_iterator uiter; 705 706 ULIST_ITER_INIT(&uiter); 707 while ((node = ulist_next(ulist, &uiter))) 708 free_inode_elem_list(unode_aux_to_inode_list(node)); 709 710 ulist_free(ulist); 711 } 712 713 /* 714 * We maintain three separate rbtrees: one for direct refs, one for 715 * indirect refs which have a key, and one for indirect refs which do not 716 * have a key. Each tree does merge on insertion. 717 * 718 * Once all of the references are located, we iterate over the tree of 719 * indirect refs with missing keys. An appropriate key is located and 720 * the ref is moved onto the tree for indirect refs. After all missing 721 * keys are thus located, we iterate over the indirect ref tree, resolve 722 * each reference, and then insert the resolved reference onto the 723 * direct tree (merging there too). 724 * 725 * New backrefs (i.e., for parent nodes) are added to the appropriate 726 * rbtree as they are encountered. The new backrefs are subsequently 727 * resolved as above. 728 */ 729 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 730 struct btrfs_path *path, 731 struct preftrees *preftrees, 732 struct share_check *sc) 733 { 734 int err; 735 int ret = 0; 736 struct ulist *parents; 737 struct ulist_node *node; 738 struct ulist_iterator uiter; 739 struct rb_node *rnode; 740 741 parents = ulist_alloc(GFP_NOFS); 742 if (!parents) 743 return -ENOMEM; 744 745 /* 746 * We could trade memory usage for performance here by iterating 747 * the tree, allocating new refs for each insertion, and then 748 * freeing the entire indirect tree when we're done. In some test 749 * cases, the tree can grow quite large (~200k objects). 750 */ 751 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 752 struct prelim_ref *ref; 753 754 ref = rb_entry(rnode, struct prelim_ref, rbnode); 755 if (WARN(ref->parent, 756 "BUG: direct ref found in indirect tree")) { 757 ret = -EINVAL; 758 goto out; 759 } 760 761 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 762 preftrees->indirect.count--; 763 764 if (ref->count == 0) { 765 free_pref(ref); 766 continue; 767 } 768 769 if (sc && ref->root_id != sc->root->root_key.objectid) { 770 free_pref(ref); 771 ret = BACKREF_FOUND_SHARED; 772 goto out; 773 } 774 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 775 /* 776 * we can only tolerate ENOENT,otherwise,we should catch error 777 * and return directly. 778 */ 779 if (err == -ENOENT) { 780 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 781 NULL); 782 continue; 783 } else if (err) { 784 free_pref(ref); 785 ret = err; 786 goto out; 787 } 788 789 /* we put the first parent into the ref at hand */ 790 ULIST_ITER_INIT(&uiter); 791 node = ulist_next(parents, &uiter); 792 ref->parent = node ? node->val : 0; 793 ref->inode_list = unode_aux_to_inode_list(node); 794 795 /* Add a prelim_ref(s) for any other parent(s). */ 796 while ((node = ulist_next(parents, &uiter))) { 797 struct prelim_ref *new_ref; 798 799 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 800 GFP_NOFS); 801 if (!new_ref) { 802 free_pref(ref); 803 ret = -ENOMEM; 804 goto out; 805 } 806 memcpy(new_ref, ref, sizeof(*ref)); 807 new_ref->parent = node->val; 808 new_ref->inode_list = unode_aux_to_inode_list(node); 809 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 810 new_ref, NULL); 811 } 812 813 /* 814 * Now it's a direct ref, put it in the direct tree. We must 815 * do this last because the ref could be merged/freed here. 816 */ 817 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 818 819 ulist_reinit(parents); 820 cond_resched(); 821 } 822 out: 823 /* 824 * We may have inode lists attached to refs in the parents ulist, so we 825 * must free them before freeing the ulist and its refs. 826 */ 827 free_leaf_list(parents); 828 return ret; 829 } 830 831 /* 832 * read tree blocks and add keys where required. 833 */ 834 static int add_missing_keys(struct btrfs_fs_info *fs_info, 835 struct preftrees *preftrees, bool lock) 836 { 837 struct prelim_ref *ref; 838 struct extent_buffer *eb; 839 struct preftree *tree = &preftrees->indirect_missing_keys; 840 struct rb_node *node; 841 842 while ((node = rb_first_cached(&tree->root))) { 843 ref = rb_entry(node, struct prelim_ref, rbnode); 844 rb_erase_cached(node, &tree->root); 845 846 BUG_ON(ref->parent); /* should not be a direct ref */ 847 BUG_ON(ref->key_for_search.type); 848 BUG_ON(!ref->wanted_disk_byte); 849 850 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 851 ref->root_id, 0, ref->level - 1, NULL); 852 if (IS_ERR(eb)) { 853 free_pref(ref); 854 return PTR_ERR(eb); 855 } 856 if (!extent_buffer_uptodate(eb)) { 857 free_pref(ref); 858 free_extent_buffer(eb); 859 return -EIO; 860 } 861 862 if (lock) 863 btrfs_tree_read_lock(eb); 864 if (btrfs_header_level(eb) == 0) 865 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 866 else 867 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 868 if (lock) 869 btrfs_tree_read_unlock(eb); 870 free_extent_buffer(eb); 871 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 872 cond_resched(); 873 } 874 return 0; 875 } 876 877 /* 878 * add all currently queued delayed refs from this head whose seq nr is 879 * smaller or equal that seq to the list 880 */ 881 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 882 struct btrfs_delayed_ref_head *head, u64 seq, 883 struct preftrees *preftrees, struct share_check *sc) 884 { 885 struct btrfs_delayed_ref_node *node; 886 struct btrfs_key key; 887 struct rb_node *n; 888 int count; 889 int ret = 0; 890 891 spin_lock(&head->lock); 892 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 893 node = rb_entry(n, struct btrfs_delayed_ref_node, 894 ref_node); 895 if (node->seq > seq) 896 continue; 897 898 switch (node->action) { 899 case BTRFS_ADD_DELAYED_EXTENT: 900 case BTRFS_UPDATE_DELAYED_HEAD: 901 WARN_ON(1); 902 continue; 903 case BTRFS_ADD_DELAYED_REF: 904 count = node->ref_mod; 905 break; 906 case BTRFS_DROP_DELAYED_REF: 907 count = node->ref_mod * -1; 908 break; 909 default: 910 BUG(); 911 } 912 switch (node->type) { 913 case BTRFS_TREE_BLOCK_REF_KEY: { 914 /* NORMAL INDIRECT METADATA backref */ 915 struct btrfs_delayed_tree_ref *ref; 916 struct btrfs_key *key_ptr = NULL; 917 918 if (head->extent_op && head->extent_op->update_key) { 919 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 920 key_ptr = &key; 921 } 922 923 ref = btrfs_delayed_node_to_tree_ref(node); 924 ret = add_indirect_ref(fs_info, preftrees, ref->root, 925 key_ptr, ref->level + 1, 926 node->bytenr, count, sc, 927 GFP_ATOMIC); 928 break; 929 } 930 case BTRFS_SHARED_BLOCK_REF_KEY: { 931 /* SHARED DIRECT METADATA backref */ 932 struct btrfs_delayed_tree_ref *ref; 933 934 ref = btrfs_delayed_node_to_tree_ref(node); 935 936 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 937 ref->parent, node->bytenr, count, 938 sc, GFP_ATOMIC); 939 break; 940 } 941 case BTRFS_EXTENT_DATA_REF_KEY: { 942 /* NORMAL INDIRECT DATA backref */ 943 struct btrfs_delayed_data_ref *ref; 944 ref = btrfs_delayed_node_to_data_ref(node); 945 946 key.objectid = ref->objectid; 947 key.type = BTRFS_EXTENT_DATA_KEY; 948 key.offset = ref->offset; 949 950 /* 951 * If we have a share check context and a reference for 952 * another inode, we can't exit immediately. This is 953 * because even if this is a BTRFS_ADD_DELAYED_REF 954 * reference we may find next a BTRFS_DROP_DELAYED_REF 955 * which cancels out this ADD reference. 956 * 957 * If this is a DROP reference and there was no previous 958 * ADD reference, then we need to signal that when we 959 * process references from the extent tree (through 960 * add_inline_refs() and add_keyed_refs()), we should 961 * not exit early if we find a reference for another 962 * inode, because one of the delayed DROP references 963 * may cancel that reference in the extent tree. 964 */ 965 if (sc && count < 0) 966 sc->have_delayed_delete_refs = true; 967 968 ret = add_indirect_ref(fs_info, preftrees, ref->root, 969 &key, 0, node->bytenr, count, sc, 970 GFP_ATOMIC); 971 break; 972 } 973 case BTRFS_SHARED_DATA_REF_KEY: { 974 /* SHARED DIRECT FULL backref */ 975 struct btrfs_delayed_data_ref *ref; 976 977 ref = btrfs_delayed_node_to_data_ref(node); 978 979 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 980 node->bytenr, count, sc, 981 GFP_ATOMIC); 982 break; 983 } 984 default: 985 WARN_ON(1); 986 } 987 /* 988 * We must ignore BACKREF_FOUND_SHARED until all delayed 989 * refs have been checked. 990 */ 991 if (ret && (ret != BACKREF_FOUND_SHARED)) 992 break; 993 } 994 if (!ret) 995 ret = extent_is_shared(sc); 996 997 spin_unlock(&head->lock); 998 return ret; 999 } 1000 1001 /* 1002 * add all inline backrefs for bytenr to the list 1003 * 1004 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1005 */ 1006 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1007 struct btrfs_path *path, 1008 int *info_level, struct preftrees *preftrees, 1009 struct share_check *sc) 1010 { 1011 int ret = 0; 1012 int slot; 1013 struct extent_buffer *leaf; 1014 struct btrfs_key key; 1015 struct btrfs_key found_key; 1016 unsigned long ptr; 1017 unsigned long end; 1018 struct btrfs_extent_item *ei; 1019 u64 flags; 1020 u64 item_size; 1021 1022 /* 1023 * enumerate all inline refs 1024 */ 1025 leaf = path->nodes[0]; 1026 slot = path->slots[0]; 1027 1028 item_size = btrfs_item_size(leaf, slot); 1029 BUG_ON(item_size < sizeof(*ei)); 1030 1031 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1032 1033 if (ctx->check_extent_item) { 1034 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1035 if (ret) 1036 return ret; 1037 } 1038 1039 flags = btrfs_extent_flags(leaf, ei); 1040 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1041 1042 ptr = (unsigned long)(ei + 1); 1043 end = (unsigned long)ei + item_size; 1044 1045 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1046 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1047 struct btrfs_tree_block_info *info; 1048 1049 info = (struct btrfs_tree_block_info *)ptr; 1050 *info_level = btrfs_tree_block_level(leaf, info); 1051 ptr += sizeof(struct btrfs_tree_block_info); 1052 BUG_ON(ptr > end); 1053 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1054 *info_level = found_key.offset; 1055 } else { 1056 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1057 } 1058 1059 while (ptr < end) { 1060 struct btrfs_extent_inline_ref *iref; 1061 u64 offset; 1062 int type; 1063 1064 iref = (struct btrfs_extent_inline_ref *)ptr; 1065 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1066 BTRFS_REF_TYPE_ANY); 1067 if (type == BTRFS_REF_TYPE_INVALID) 1068 return -EUCLEAN; 1069 1070 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1071 1072 switch (type) { 1073 case BTRFS_SHARED_BLOCK_REF_KEY: 1074 ret = add_direct_ref(ctx->fs_info, preftrees, 1075 *info_level + 1, offset, 1076 ctx->bytenr, 1, NULL, GFP_NOFS); 1077 break; 1078 case BTRFS_SHARED_DATA_REF_KEY: { 1079 struct btrfs_shared_data_ref *sdref; 1080 int count; 1081 1082 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1083 count = btrfs_shared_data_ref_count(leaf, sdref); 1084 1085 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1086 ctx->bytenr, count, sc, GFP_NOFS); 1087 break; 1088 } 1089 case BTRFS_TREE_BLOCK_REF_KEY: 1090 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1091 NULL, *info_level + 1, 1092 ctx->bytenr, 1, NULL, GFP_NOFS); 1093 break; 1094 case BTRFS_EXTENT_DATA_REF_KEY: { 1095 struct btrfs_extent_data_ref *dref; 1096 int count; 1097 u64 root; 1098 1099 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1100 count = btrfs_extent_data_ref_count(leaf, dref); 1101 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1102 dref); 1103 key.type = BTRFS_EXTENT_DATA_KEY; 1104 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1105 1106 if (sc && key.objectid != sc->inum && 1107 !sc->have_delayed_delete_refs) { 1108 ret = BACKREF_FOUND_SHARED; 1109 break; 1110 } 1111 1112 root = btrfs_extent_data_ref_root(leaf, dref); 1113 1114 ret = add_indirect_ref(ctx->fs_info, preftrees, root, 1115 &key, 0, ctx->bytenr, count, 1116 sc, GFP_NOFS); 1117 1118 break; 1119 } 1120 default: 1121 WARN_ON(1); 1122 } 1123 if (ret) 1124 return ret; 1125 ptr += btrfs_extent_inline_ref_size(type); 1126 } 1127 1128 return 0; 1129 } 1130 1131 /* 1132 * add all non-inline backrefs for bytenr to the list 1133 * 1134 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1135 */ 1136 static int add_keyed_refs(struct btrfs_root *extent_root, 1137 struct btrfs_path *path, u64 bytenr, 1138 int info_level, struct preftrees *preftrees, 1139 struct share_check *sc) 1140 { 1141 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1142 int ret; 1143 int slot; 1144 struct extent_buffer *leaf; 1145 struct btrfs_key key; 1146 1147 while (1) { 1148 ret = btrfs_next_item(extent_root, path); 1149 if (ret < 0) 1150 break; 1151 if (ret) { 1152 ret = 0; 1153 break; 1154 } 1155 1156 slot = path->slots[0]; 1157 leaf = path->nodes[0]; 1158 btrfs_item_key_to_cpu(leaf, &key, slot); 1159 1160 if (key.objectid != bytenr) 1161 break; 1162 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1163 continue; 1164 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1165 break; 1166 1167 switch (key.type) { 1168 case BTRFS_SHARED_BLOCK_REF_KEY: 1169 /* SHARED DIRECT METADATA backref */ 1170 ret = add_direct_ref(fs_info, preftrees, 1171 info_level + 1, key.offset, 1172 bytenr, 1, NULL, GFP_NOFS); 1173 break; 1174 case BTRFS_SHARED_DATA_REF_KEY: { 1175 /* SHARED DIRECT FULL backref */ 1176 struct btrfs_shared_data_ref *sdref; 1177 int count; 1178 1179 sdref = btrfs_item_ptr(leaf, slot, 1180 struct btrfs_shared_data_ref); 1181 count = btrfs_shared_data_ref_count(leaf, sdref); 1182 ret = add_direct_ref(fs_info, preftrees, 0, 1183 key.offset, bytenr, count, 1184 sc, GFP_NOFS); 1185 break; 1186 } 1187 case BTRFS_TREE_BLOCK_REF_KEY: 1188 /* NORMAL INDIRECT METADATA backref */ 1189 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1190 NULL, info_level + 1, bytenr, 1191 1, NULL, GFP_NOFS); 1192 break; 1193 case BTRFS_EXTENT_DATA_REF_KEY: { 1194 /* NORMAL INDIRECT DATA backref */ 1195 struct btrfs_extent_data_ref *dref; 1196 int count; 1197 u64 root; 1198 1199 dref = btrfs_item_ptr(leaf, slot, 1200 struct btrfs_extent_data_ref); 1201 count = btrfs_extent_data_ref_count(leaf, dref); 1202 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1203 dref); 1204 key.type = BTRFS_EXTENT_DATA_KEY; 1205 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1206 1207 if (sc && key.objectid != sc->inum && 1208 !sc->have_delayed_delete_refs) { 1209 ret = BACKREF_FOUND_SHARED; 1210 break; 1211 } 1212 1213 root = btrfs_extent_data_ref_root(leaf, dref); 1214 ret = add_indirect_ref(fs_info, preftrees, root, 1215 &key, 0, bytenr, count, 1216 sc, GFP_NOFS); 1217 break; 1218 } 1219 default: 1220 WARN_ON(1); 1221 } 1222 if (ret) 1223 return ret; 1224 1225 } 1226 1227 return ret; 1228 } 1229 1230 /* 1231 * The caller has joined a transaction or is holding a read lock on the 1232 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1233 * snapshot field changing while updating or checking the cache. 1234 */ 1235 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1236 struct btrfs_root *root, 1237 u64 bytenr, int level, bool *is_shared) 1238 { 1239 struct btrfs_backref_shared_cache_entry *entry; 1240 1241 if (!ctx->use_path_cache) 1242 return false; 1243 1244 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1245 return false; 1246 1247 /* 1248 * Level -1 is used for the data extent, which is not reliable to cache 1249 * because its reference count can increase or decrease without us 1250 * realizing. We cache results only for extent buffers that lead from 1251 * the root node down to the leaf with the file extent item. 1252 */ 1253 ASSERT(level >= 0); 1254 1255 entry = &ctx->path_cache_entries[level]; 1256 1257 /* Unused cache entry or being used for some other extent buffer. */ 1258 if (entry->bytenr != bytenr) 1259 return false; 1260 1261 /* 1262 * We cached a false result, but the last snapshot generation of the 1263 * root changed, so we now have a snapshot. Don't trust the result. 1264 */ 1265 if (!entry->is_shared && 1266 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1267 return false; 1268 1269 /* 1270 * If we cached a true result and the last generation used for dropping 1271 * a root changed, we can not trust the result, because the dropped root 1272 * could be a snapshot sharing this extent buffer. 1273 */ 1274 if (entry->is_shared && 1275 entry->gen != btrfs_get_last_root_drop_gen(root->fs_info)) 1276 return false; 1277 1278 *is_shared = entry->is_shared; 1279 /* 1280 * If the node at this level is shared, than all nodes below are also 1281 * shared. Currently some of the nodes below may be marked as not shared 1282 * because we have just switched from one leaf to another, and switched 1283 * also other nodes above the leaf and below the current level, so mark 1284 * them as shared. 1285 */ 1286 if (*is_shared) { 1287 for (int i = 0; i < level; i++) { 1288 ctx->path_cache_entries[i].is_shared = true; 1289 ctx->path_cache_entries[i].gen = entry->gen; 1290 } 1291 } 1292 1293 return true; 1294 } 1295 1296 /* 1297 * The caller has joined a transaction or is holding a read lock on the 1298 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1299 * snapshot field changing while updating or checking the cache. 1300 */ 1301 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1302 struct btrfs_root *root, 1303 u64 bytenr, int level, bool is_shared) 1304 { 1305 struct btrfs_backref_shared_cache_entry *entry; 1306 u64 gen; 1307 1308 if (!ctx->use_path_cache) 1309 return; 1310 1311 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1312 return; 1313 1314 /* 1315 * Level -1 is used for the data extent, which is not reliable to cache 1316 * because its reference count can increase or decrease without us 1317 * realizing. We cache results only for extent buffers that lead from 1318 * the root node down to the leaf with the file extent item. 1319 */ 1320 ASSERT(level >= 0); 1321 1322 if (is_shared) 1323 gen = btrfs_get_last_root_drop_gen(root->fs_info); 1324 else 1325 gen = btrfs_root_last_snapshot(&root->root_item); 1326 1327 entry = &ctx->path_cache_entries[level]; 1328 entry->bytenr = bytenr; 1329 entry->is_shared = is_shared; 1330 entry->gen = gen; 1331 1332 /* 1333 * If we found an extent buffer is shared, set the cache result for all 1334 * extent buffers below it to true. As nodes in the path are COWed, 1335 * their sharedness is moved to their children, and if a leaf is COWed, 1336 * then the sharedness of a data extent becomes direct, the refcount of 1337 * data extent is increased in the extent item at the extent tree. 1338 */ 1339 if (is_shared) { 1340 for (int i = 0; i < level; i++) { 1341 entry = &ctx->path_cache_entries[i]; 1342 entry->is_shared = is_shared; 1343 entry->gen = gen; 1344 } 1345 } 1346 } 1347 1348 /* 1349 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1350 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1351 * indirect refs to their parent bytenr. 1352 * When roots are found, they're added to the roots list 1353 * 1354 * @ctx: Backref walking context object, must be not NULL. 1355 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1356 * shared extent is detected. 1357 * 1358 * Otherwise this returns 0 for success and <0 for an error. 1359 * 1360 * FIXME some caching might speed things up 1361 */ 1362 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1363 struct share_check *sc) 1364 { 1365 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1366 struct btrfs_key key; 1367 struct btrfs_path *path; 1368 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1369 struct btrfs_delayed_ref_head *head; 1370 int info_level = 0; 1371 int ret; 1372 struct prelim_ref *ref; 1373 struct rb_node *node; 1374 struct extent_inode_elem *eie = NULL; 1375 struct preftrees preftrees = { 1376 .direct = PREFTREE_INIT, 1377 .indirect = PREFTREE_INIT, 1378 .indirect_missing_keys = PREFTREE_INIT 1379 }; 1380 1381 /* Roots ulist is not needed when using a sharedness check context. */ 1382 if (sc) 1383 ASSERT(ctx->roots == NULL); 1384 1385 key.objectid = ctx->bytenr; 1386 key.offset = (u64)-1; 1387 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1388 key.type = BTRFS_METADATA_ITEM_KEY; 1389 else 1390 key.type = BTRFS_EXTENT_ITEM_KEY; 1391 1392 path = btrfs_alloc_path(); 1393 if (!path) 1394 return -ENOMEM; 1395 if (!ctx->trans) { 1396 path->search_commit_root = 1; 1397 path->skip_locking = 1; 1398 } 1399 1400 if (ctx->time_seq == BTRFS_SEQ_LAST) 1401 path->skip_locking = 1; 1402 1403 again: 1404 head = NULL; 1405 1406 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1407 if (ret < 0) 1408 goto out; 1409 if (ret == 0) { 1410 /* This shouldn't happen, indicates a bug or fs corruption. */ 1411 ASSERT(ret != 0); 1412 ret = -EUCLEAN; 1413 goto out; 1414 } 1415 1416 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1417 ctx->time_seq != BTRFS_SEQ_LAST) { 1418 /* 1419 * We have a specific time_seq we care about and trans which 1420 * means we have the path lock, we need to grab the ref head and 1421 * lock it so we have a consistent view of the refs at the given 1422 * time. 1423 */ 1424 delayed_refs = &ctx->trans->transaction->delayed_refs; 1425 spin_lock(&delayed_refs->lock); 1426 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1427 if (head) { 1428 if (!mutex_trylock(&head->mutex)) { 1429 refcount_inc(&head->refs); 1430 spin_unlock(&delayed_refs->lock); 1431 1432 btrfs_release_path(path); 1433 1434 /* 1435 * Mutex was contended, block until it's 1436 * released and try again 1437 */ 1438 mutex_lock(&head->mutex); 1439 mutex_unlock(&head->mutex); 1440 btrfs_put_delayed_ref_head(head); 1441 goto again; 1442 } 1443 spin_unlock(&delayed_refs->lock); 1444 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1445 &preftrees, sc); 1446 mutex_unlock(&head->mutex); 1447 if (ret) 1448 goto out; 1449 } else { 1450 spin_unlock(&delayed_refs->lock); 1451 } 1452 } 1453 1454 if (path->slots[0]) { 1455 struct extent_buffer *leaf; 1456 int slot; 1457 1458 path->slots[0]--; 1459 leaf = path->nodes[0]; 1460 slot = path->slots[0]; 1461 btrfs_item_key_to_cpu(leaf, &key, slot); 1462 if (key.objectid == ctx->bytenr && 1463 (key.type == BTRFS_EXTENT_ITEM_KEY || 1464 key.type == BTRFS_METADATA_ITEM_KEY)) { 1465 ret = add_inline_refs(ctx, path, &info_level, 1466 &preftrees, sc); 1467 if (ret) 1468 goto out; 1469 ret = add_keyed_refs(root, path, ctx->bytenr, info_level, 1470 &preftrees, sc); 1471 if (ret) 1472 goto out; 1473 } 1474 } 1475 1476 /* 1477 * If we have a share context and we reached here, it means the extent 1478 * is not directly shared (no multiple reference items for it), 1479 * otherwise we would have exited earlier with a return value of 1480 * BACKREF_FOUND_SHARED after processing delayed references or while 1481 * processing inline or keyed references from the extent tree. 1482 * The extent may however be indirectly shared through shared subtrees 1483 * as a result from creating snapshots, so we determine below what is 1484 * its parent node, in case we are dealing with a metadata extent, or 1485 * what's the leaf (or leaves), from a fs tree, that has a file extent 1486 * item pointing to it in case we are dealing with a data extent. 1487 */ 1488 ASSERT(extent_is_shared(sc) == 0); 1489 1490 /* 1491 * If we are here for a data extent and we have a share_check structure 1492 * it means the data extent is not directly shared (does not have 1493 * multiple reference items), so we have to check if a path in the fs 1494 * tree (going from the root node down to the leaf that has the file 1495 * extent item pointing to the data extent) is shared, that is, if any 1496 * of the extent buffers in the path is referenced by other trees. 1497 */ 1498 if (sc && ctx->bytenr == sc->data_bytenr) { 1499 /* 1500 * If our data extent is from a generation more recent than the 1501 * last generation used to snapshot the root, then we know that 1502 * it can not be shared through subtrees, so we can skip 1503 * resolving indirect references, there's no point in 1504 * determining the extent buffers for the path from the fs tree 1505 * root node down to the leaf that has the file extent item that 1506 * points to the data extent. 1507 */ 1508 if (sc->data_extent_gen > 1509 btrfs_root_last_snapshot(&sc->root->root_item)) { 1510 ret = BACKREF_FOUND_NOT_SHARED; 1511 goto out; 1512 } 1513 1514 /* 1515 * If we are only determining if a data extent is shared or not 1516 * and the corresponding file extent item is located in the same 1517 * leaf as the previous file extent item, we can skip resolving 1518 * indirect references for a data extent, since the fs tree path 1519 * is the same (same leaf, so same path). We skip as long as the 1520 * cached result for the leaf is valid and only if there's only 1521 * one file extent item pointing to the data extent, because in 1522 * the case of multiple file extent items, they may be located 1523 * in different leaves and therefore we have multiple paths. 1524 */ 1525 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1526 sc->self_ref_count == 1) { 1527 bool cached; 1528 bool is_shared; 1529 1530 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1531 sc->ctx->curr_leaf_bytenr, 1532 0, &is_shared); 1533 if (cached) { 1534 if (is_shared) 1535 ret = BACKREF_FOUND_SHARED; 1536 else 1537 ret = BACKREF_FOUND_NOT_SHARED; 1538 goto out; 1539 } 1540 } 1541 } 1542 1543 btrfs_release_path(path); 1544 1545 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1546 if (ret) 1547 goto out; 1548 1549 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1550 1551 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1552 if (ret) 1553 goto out; 1554 1555 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1556 1557 /* 1558 * This walks the tree of merged and resolved refs. Tree blocks are 1559 * read in as needed. Unique entries are added to the ulist, and 1560 * the list of found roots is updated. 1561 * 1562 * We release the entire tree in one go before returning. 1563 */ 1564 node = rb_first_cached(&preftrees.direct.root); 1565 while (node) { 1566 ref = rb_entry(node, struct prelim_ref, rbnode); 1567 node = rb_next(&ref->rbnode); 1568 /* 1569 * ref->count < 0 can happen here if there are delayed 1570 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1571 * prelim_ref_insert() relies on this when merging 1572 * identical refs to keep the overall count correct. 1573 * prelim_ref_insert() will merge only those refs 1574 * which compare identically. Any refs having 1575 * e.g. different offsets would not be merged, 1576 * and would retain their original ref->count < 0. 1577 */ 1578 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1579 /* no parent == root of tree */ 1580 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1581 if (ret < 0) 1582 goto out; 1583 } 1584 if (ref->count && ref->parent) { 1585 if (!ctx->ignore_extent_item_pos && !ref->inode_list && 1586 ref->level == 0) { 1587 struct extent_buffer *eb; 1588 1589 eb = read_tree_block(ctx->fs_info, ref->parent, 0, 1590 0, ref->level, NULL); 1591 if (IS_ERR(eb)) { 1592 ret = PTR_ERR(eb); 1593 goto out; 1594 } 1595 if (!extent_buffer_uptodate(eb)) { 1596 free_extent_buffer(eb); 1597 ret = -EIO; 1598 goto out; 1599 } 1600 1601 if (!path->skip_locking) 1602 btrfs_tree_read_lock(eb); 1603 ret = find_extent_in_eb(ctx, eb, &eie); 1604 if (!path->skip_locking) 1605 btrfs_tree_read_unlock(eb); 1606 free_extent_buffer(eb); 1607 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1608 ret < 0) 1609 goto out; 1610 ref->inode_list = eie; 1611 /* 1612 * We transferred the list ownership to the ref, 1613 * so set to NULL to avoid a double free in case 1614 * an error happens after this. 1615 */ 1616 eie = NULL; 1617 } 1618 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1619 ref->inode_list, 1620 (void **)&eie, GFP_NOFS); 1621 if (ret < 0) 1622 goto out; 1623 if (!ret && !ctx->ignore_extent_item_pos) { 1624 /* 1625 * We've recorded that parent, so we must extend 1626 * its inode list here. 1627 * 1628 * However if there was corruption we may not 1629 * have found an eie, return an error in this 1630 * case. 1631 */ 1632 ASSERT(eie); 1633 if (!eie) { 1634 ret = -EUCLEAN; 1635 goto out; 1636 } 1637 while (eie->next) 1638 eie = eie->next; 1639 eie->next = ref->inode_list; 1640 } 1641 eie = NULL; 1642 /* 1643 * We have transferred the inode list ownership from 1644 * this ref to the ref we added to the 'refs' ulist. 1645 * So set this ref's inode list to NULL to avoid 1646 * use-after-free when our caller uses it or double 1647 * frees in case an error happens before we return. 1648 */ 1649 ref->inode_list = NULL; 1650 } 1651 cond_resched(); 1652 } 1653 1654 out: 1655 btrfs_free_path(path); 1656 1657 prelim_release(&preftrees.direct); 1658 prelim_release(&preftrees.indirect); 1659 prelim_release(&preftrees.indirect_missing_keys); 1660 1661 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1662 free_inode_elem_list(eie); 1663 return ret; 1664 } 1665 1666 /* 1667 * Finds all leaves with a reference to the specified combination of 1668 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1669 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1670 * function. The caller should free the ulist with free_leaf_list() if 1671 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1672 * enough. 1673 * 1674 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1675 */ 1676 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1677 { 1678 int ret; 1679 1680 ASSERT(ctx->refs == NULL); 1681 1682 ctx->refs = ulist_alloc(GFP_NOFS); 1683 if (!ctx->refs) 1684 return -ENOMEM; 1685 1686 ret = find_parent_nodes(ctx, NULL); 1687 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1688 (ret < 0 && ret != -ENOENT)) { 1689 free_leaf_list(ctx->refs); 1690 ctx->refs = NULL; 1691 return ret; 1692 } 1693 1694 return 0; 1695 } 1696 1697 /* 1698 * Walk all backrefs for a given extent to find all roots that reference this 1699 * extent. Walking a backref means finding all extents that reference this 1700 * extent and in turn walk the backrefs of those, too. Naturally this is a 1701 * recursive process, but here it is implemented in an iterative fashion: We 1702 * find all referencing extents for the extent in question and put them on a 1703 * list. In turn, we find all referencing extents for those, further appending 1704 * to the list. The way we iterate the list allows adding more elements after 1705 * the current while iterating. The process stops when we reach the end of the 1706 * list. 1707 * 1708 * Found roots are added to @ctx->roots, which is allocated by this function if 1709 * it points to NULL, in which case the caller is responsible for freeing it 1710 * after it's not needed anymore. 1711 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1712 * ulist to do temporary work, and frees it before returning. 1713 * 1714 * Returns 0 on success, < 0 on error. 1715 */ 1716 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1717 { 1718 const u64 orig_bytenr = ctx->bytenr; 1719 const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos; 1720 bool roots_ulist_allocated = false; 1721 struct ulist_iterator uiter; 1722 int ret = 0; 1723 1724 ASSERT(ctx->refs == NULL); 1725 1726 ctx->refs = ulist_alloc(GFP_NOFS); 1727 if (!ctx->refs) 1728 return -ENOMEM; 1729 1730 if (!ctx->roots) { 1731 ctx->roots = ulist_alloc(GFP_NOFS); 1732 if (!ctx->roots) { 1733 ulist_free(ctx->refs); 1734 ctx->refs = NULL; 1735 return -ENOMEM; 1736 } 1737 roots_ulist_allocated = true; 1738 } 1739 1740 ctx->ignore_extent_item_pos = true; 1741 1742 ULIST_ITER_INIT(&uiter); 1743 while (1) { 1744 struct ulist_node *node; 1745 1746 ret = find_parent_nodes(ctx, NULL); 1747 if (ret < 0 && ret != -ENOENT) { 1748 if (roots_ulist_allocated) { 1749 ulist_free(ctx->roots); 1750 ctx->roots = NULL; 1751 } 1752 break; 1753 } 1754 ret = 0; 1755 node = ulist_next(ctx->refs, &uiter); 1756 if (!node) 1757 break; 1758 ctx->bytenr = node->val; 1759 cond_resched(); 1760 } 1761 1762 ulist_free(ctx->refs); 1763 ctx->refs = NULL; 1764 ctx->bytenr = orig_bytenr; 1765 ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos; 1766 1767 return ret; 1768 } 1769 1770 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1771 bool skip_commit_root_sem) 1772 { 1773 int ret; 1774 1775 if (!ctx->trans && !skip_commit_root_sem) 1776 down_read(&ctx->fs_info->commit_root_sem); 1777 ret = btrfs_find_all_roots_safe(ctx); 1778 if (!ctx->trans && !skip_commit_root_sem) 1779 up_read(&ctx->fs_info->commit_root_sem); 1780 return ret; 1781 } 1782 1783 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1784 { 1785 struct btrfs_backref_share_check_ctx *ctx; 1786 1787 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1788 if (!ctx) 1789 return NULL; 1790 1791 ulist_init(&ctx->refs); 1792 1793 return ctx; 1794 } 1795 1796 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1797 { 1798 if (!ctx) 1799 return; 1800 1801 ulist_release(&ctx->refs); 1802 kfree(ctx); 1803 } 1804 1805 /* 1806 * Check if a data extent is shared or not. 1807 * 1808 * @inode: The inode whose extent we are checking. 1809 * @bytenr: Logical bytenr of the extent we are checking. 1810 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1811 * not known. 1812 * @ctx: A backref sharedness check context. 1813 * 1814 * btrfs_is_data_extent_shared uses the backref walking code but will short 1815 * circuit as soon as it finds a root or inode that doesn't match the 1816 * one passed in. This provides a significant performance benefit for 1817 * callers (such as fiemap) which want to know whether the extent is 1818 * shared but do not need a ref count. 1819 * 1820 * This attempts to attach to the running transaction in order to account for 1821 * delayed refs, but continues on even when no running transaction exists. 1822 * 1823 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1824 */ 1825 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1826 u64 extent_gen, 1827 struct btrfs_backref_share_check_ctx *ctx) 1828 { 1829 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1830 struct btrfs_root *root = inode->root; 1831 struct btrfs_fs_info *fs_info = root->fs_info; 1832 struct btrfs_trans_handle *trans; 1833 struct ulist_iterator uiter; 1834 struct ulist_node *node; 1835 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1836 int ret = 0; 1837 struct share_check shared = { 1838 .ctx = ctx, 1839 .root = root, 1840 .inum = btrfs_ino(inode), 1841 .data_bytenr = bytenr, 1842 .data_extent_gen = extent_gen, 1843 .share_count = 0, 1844 .self_ref_count = 0, 1845 .have_delayed_delete_refs = false, 1846 }; 1847 int level; 1848 1849 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1850 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1851 return ctx->prev_extents_cache[i].is_shared; 1852 } 1853 1854 ulist_init(&ctx->refs); 1855 1856 trans = btrfs_join_transaction_nostart(root); 1857 if (IS_ERR(trans)) { 1858 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1859 ret = PTR_ERR(trans); 1860 goto out; 1861 } 1862 trans = NULL; 1863 down_read(&fs_info->commit_root_sem); 1864 } else { 1865 btrfs_get_tree_mod_seq(fs_info, &elem); 1866 walk_ctx.time_seq = elem.seq; 1867 } 1868 1869 walk_ctx.ignore_extent_item_pos = true; 1870 walk_ctx.trans = trans; 1871 walk_ctx.fs_info = fs_info; 1872 walk_ctx.refs = &ctx->refs; 1873 1874 /* -1 means we are in the bytenr of the data extent. */ 1875 level = -1; 1876 ULIST_ITER_INIT(&uiter); 1877 ctx->use_path_cache = true; 1878 while (1) { 1879 bool is_shared; 1880 bool cached; 1881 1882 walk_ctx.bytenr = bytenr; 1883 ret = find_parent_nodes(&walk_ctx, &shared); 1884 if (ret == BACKREF_FOUND_SHARED || 1885 ret == BACKREF_FOUND_NOT_SHARED) { 1886 /* If shared must return 1, otherwise return 0. */ 1887 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1888 if (level >= 0) 1889 store_backref_shared_cache(ctx, root, bytenr, 1890 level, ret == 1); 1891 break; 1892 } 1893 if (ret < 0 && ret != -ENOENT) 1894 break; 1895 ret = 0; 1896 1897 /* 1898 * If our data extent was not directly shared (without multiple 1899 * reference items), than it might have a single reference item 1900 * with a count > 1 for the same offset, which means there are 2 1901 * (or more) file extent items that point to the data extent - 1902 * this happens when a file extent item needs to be split and 1903 * then one item gets moved to another leaf due to a b+tree leaf 1904 * split when inserting some item. In this case the file extent 1905 * items may be located in different leaves and therefore some 1906 * of the leaves may be referenced through shared subtrees while 1907 * others are not. Since our extent buffer cache only works for 1908 * a single path (by far the most common case and simpler to 1909 * deal with), we can not use it if we have multiple leaves 1910 * (which implies multiple paths). 1911 */ 1912 if (level == -1 && ctx->refs.nnodes > 1) 1913 ctx->use_path_cache = false; 1914 1915 if (level >= 0) 1916 store_backref_shared_cache(ctx, root, bytenr, 1917 level, false); 1918 node = ulist_next(&ctx->refs, &uiter); 1919 if (!node) 1920 break; 1921 bytenr = node->val; 1922 level++; 1923 cached = lookup_backref_shared_cache(ctx, root, bytenr, level, 1924 &is_shared); 1925 if (cached) { 1926 ret = (is_shared ? 1 : 0); 1927 break; 1928 } 1929 shared.share_count = 0; 1930 shared.have_delayed_delete_refs = false; 1931 cond_resched(); 1932 } 1933 1934 /* 1935 * Cache the sharedness result for the data extent if we know our inode 1936 * has more than 1 file extent item that refers to the data extent. 1937 */ 1938 if (ret >= 0 && shared.self_ref_count > 1) { 1939 int slot = ctx->prev_extents_cache_slot; 1940 1941 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 1942 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 1943 1944 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 1945 ctx->prev_extents_cache_slot = slot; 1946 } 1947 1948 if (trans) { 1949 btrfs_put_tree_mod_seq(fs_info, &elem); 1950 btrfs_end_transaction(trans); 1951 } else { 1952 up_read(&fs_info->commit_root_sem); 1953 } 1954 out: 1955 ulist_release(&ctx->refs); 1956 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 1957 1958 return ret; 1959 } 1960 1961 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1962 u64 start_off, struct btrfs_path *path, 1963 struct btrfs_inode_extref **ret_extref, 1964 u64 *found_off) 1965 { 1966 int ret, slot; 1967 struct btrfs_key key; 1968 struct btrfs_key found_key; 1969 struct btrfs_inode_extref *extref; 1970 const struct extent_buffer *leaf; 1971 unsigned long ptr; 1972 1973 key.objectid = inode_objectid; 1974 key.type = BTRFS_INODE_EXTREF_KEY; 1975 key.offset = start_off; 1976 1977 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1978 if (ret < 0) 1979 return ret; 1980 1981 while (1) { 1982 leaf = path->nodes[0]; 1983 slot = path->slots[0]; 1984 if (slot >= btrfs_header_nritems(leaf)) { 1985 /* 1986 * If the item at offset is not found, 1987 * btrfs_search_slot will point us to the slot 1988 * where it should be inserted. In our case 1989 * that will be the slot directly before the 1990 * next INODE_REF_KEY_V2 item. In the case 1991 * that we're pointing to the last slot in a 1992 * leaf, we must move one leaf over. 1993 */ 1994 ret = btrfs_next_leaf(root, path); 1995 if (ret) { 1996 if (ret >= 1) 1997 ret = -ENOENT; 1998 break; 1999 } 2000 continue; 2001 } 2002 2003 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2004 2005 /* 2006 * Check that we're still looking at an extended ref key for 2007 * this particular objectid. If we have different 2008 * objectid or type then there are no more to be found 2009 * in the tree and we can exit. 2010 */ 2011 ret = -ENOENT; 2012 if (found_key.objectid != inode_objectid) 2013 break; 2014 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2015 break; 2016 2017 ret = 0; 2018 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2019 extref = (struct btrfs_inode_extref *)ptr; 2020 *ret_extref = extref; 2021 if (found_off) 2022 *found_off = found_key.offset; 2023 break; 2024 } 2025 2026 return ret; 2027 } 2028 2029 /* 2030 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2031 * Elements of the path are separated by '/' and the path is guaranteed to be 2032 * 0-terminated. the path is only given within the current file system. 2033 * Therefore, it never starts with a '/'. the caller is responsible to provide 2034 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2035 * the start point of the resulting string is returned. this pointer is within 2036 * dest, normally. 2037 * in case the path buffer would overflow, the pointer is decremented further 2038 * as if output was written to the buffer, though no more output is actually 2039 * generated. that way, the caller can determine how much space would be 2040 * required for the path to fit into the buffer. in that case, the returned 2041 * value will be smaller than dest. callers must check this! 2042 */ 2043 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2044 u32 name_len, unsigned long name_off, 2045 struct extent_buffer *eb_in, u64 parent, 2046 char *dest, u32 size) 2047 { 2048 int slot; 2049 u64 next_inum; 2050 int ret; 2051 s64 bytes_left = ((s64)size) - 1; 2052 struct extent_buffer *eb = eb_in; 2053 struct btrfs_key found_key; 2054 struct btrfs_inode_ref *iref; 2055 2056 if (bytes_left >= 0) 2057 dest[bytes_left] = '\0'; 2058 2059 while (1) { 2060 bytes_left -= name_len; 2061 if (bytes_left >= 0) 2062 read_extent_buffer(eb, dest + bytes_left, 2063 name_off, name_len); 2064 if (eb != eb_in) { 2065 if (!path->skip_locking) 2066 btrfs_tree_read_unlock(eb); 2067 free_extent_buffer(eb); 2068 } 2069 ret = btrfs_find_item(fs_root, path, parent, 0, 2070 BTRFS_INODE_REF_KEY, &found_key); 2071 if (ret > 0) 2072 ret = -ENOENT; 2073 if (ret) 2074 break; 2075 2076 next_inum = found_key.offset; 2077 2078 /* regular exit ahead */ 2079 if (parent == next_inum) 2080 break; 2081 2082 slot = path->slots[0]; 2083 eb = path->nodes[0]; 2084 /* make sure we can use eb after releasing the path */ 2085 if (eb != eb_in) { 2086 path->nodes[0] = NULL; 2087 path->locks[0] = 0; 2088 } 2089 btrfs_release_path(path); 2090 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2091 2092 name_len = btrfs_inode_ref_name_len(eb, iref); 2093 name_off = (unsigned long)(iref + 1); 2094 2095 parent = next_inum; 2096 --bytes_left; 2097 if (bytes_left >= 0) 2098 dest[bytes_left] = '/'; 2099 } 2100 2101 btrfs_release_path(path); 2102 2103 if (ret) 2104 return ERR_PTR(ret); 2105 2106 return dest + bytes_left; 2107 } 2108 2109 /* 2110 * this makes the path point to (logical EXTENT_ITEM *) 2111 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2112 * tree blocks and <0 on error. 2113 */ 2114 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2115 struct btrfs_path *path, struct btrfs_key *found_key, 2116 u64 *flags_ret) 2117 { 2118 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2119 int ret; 2120 u64 flags; 2121 u64 size = 0; 2122 u32 item_size; 2123 const struct extent_buffer *eb; 2124 struct btrfs_extent_item *ei; 2125 struct btrfs_key key; 2126 2127 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2128 key.type = BTRFS_METADATA_ITEM_KEY; 2129 else 2130 key.type = BTRFS_EXTENT_ITEM_KEY; 2131 key.objectid = logical; 2132 key.offset = (u64)-1; 2133 2134 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2135 if (ret < 0) 2136 return ret; 2137 2138 ret = btrfs_previous_extent_item(extent_root, path, 0); 2139 if (ret) { 2140 if (ret > 0) 2141 ret = -ENOENT; 2142 return ret; 2143 } 2144 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2145 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2146 size = fs_info->nodesize; 2147 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2148 size = found_key->offset; 2149 2150 if (found_key->objectid > logical || 2151 found_key->objectid + size <= logical) { 2152 btrfs_debug(fs_info, 2153 "logical %llu is not within any extent", logical); 2154 return -ENOENT; 2155 } 2156 2157 eb = path->nodes[0]; 2158 item_size = btrfs_item_size(eb, path->slots[0]); 2159 BUG_ON(item_size < sizeof(*ei)); 2160 2161 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2162 flags = btrfs_extent_flags(eb, ei); 2163 2164 btrfs_debug(fs_info, 2165 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2166 logical, logical - found_key->objectid, found_key->objectid, 2167 found_key->offset, flags, item_size); 2168 2169 WARN_ON(!flags_ret); 2170 if (flags_ret) { 2171 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2172 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2173 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2174 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2175 else 2176 BUG(); 2177 return 0; 2178 } 2179 2180 return -EIO; 2181 } 2182 2183 /* 2184 * helper function to iterate extent inline refs. ptr must point to a 0 value 2185 * for the first call and may be modified. it is used to track state. 2186 * if more refs exist, 0 is returned and the next call to 2187 * get_extent_inline_ref must pass the modified ptr parameter to get the 2188 * next ref. after the last ref was processed, 1 is returned. 2189 * returns <0 on error 2190 */ 2191 static int get_extent_inline_ref(unsigned long *ptr, 2192 const struct extent_buffer *eb, 2193 const struct btrfs_key *key, 2194 const struct btrfs_extent_item *ei, 2195 u32 item_size, 2196 struct btrfs_extent_inline_ref **out_eiref, 2197 int *out_type) 2198 { 2199 unsigned long end; 2200 u64 flags; 2201 struct btrfs_tree_block_info *info; 2202 2203 if (!*ptr) { 2204 /* first call */ 2205 flags = btrfs_extent_flags(eb, ei); 2206 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2207 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2208 /* a skinny metadata extent */ 2209 *out_eiref = 2210 (struct btrfs_extent_inline_ref *)(ei + 1); 2211 } else { 2212 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2213 info = (struct btrfs_tree_block_info *)(ei + 1); 2214 *out_eiref = 2215 (struct btrfs_extent_inline_ref *)(info + 1); 2216 } 2217 } else { 2218 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2219 } 2220 *ptr = (unsigned long)*out_eiref; 2221 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2222 return -ENOENT; 2223 } 2224 2225 end = (unsigned long)ei + item_size; 2226 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2227 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2228 BTRFS_REF_TYPE_ANY); 2229 if (*out_type == BTRFS_REF_TYPE_INVALID) 2230 return -EUCLEAN; 2231 2232 *ptr += btrfs_extent_inline_ref_size(*out_type); 2233 WARN_ON(*ptr > end); 2234 if (*ptr == end) 2235 return 1; /* last */ 2236 2237 return 0; 2238 } 2239 2240 /* 2241 * reads the tree block backref for an extent. tree level and root are returned 2242 * through out_level and out_root. ptr must point to a 0 value for the first 2243 * call and may be modified (see get_extent_inline_ref comment). 2244 * returns 0 if data was provided, 1 if there was no more data to provide or 2245 * <0 on error. 2246 */ 2247 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2248 struct btrfs_key *key, struct btrfs_extent_item *ei, 2249 u32 item_size, u64 *out_root, u8 *out_level) 2250 { 2251 int ret; 2252 int type; 2253 struct btrfs_extent_inline_ref *eiref; 2254 2255 if (*ptr == (unsigned long)-1) 2256 return 1; 2257 2258 while (1) { 2259 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2260 &eiref, &type); 2261 if (ret < 0) 2262 return ret; 2263 2264 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2265 type == BTRFS_SHARED_BLOCK_REF_KEY) 2266 break; 2267 2268 if (ret == 1) 2269 return 1; 2270 } 2271 2272 /* we can treat both ref types equally here */ 2273 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2274 2275 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2276 struct btrfs_tree_block_info *info; 2277 2278 info = (struct btrfs_tree_block_info *)(ei + 1); 2279 *out_level = btrfs_tree_block_level(eb, info); 2280 } else { 2281 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2282 *out_level = (u8)key->offset; 2283 } 2284 2285 if (ret == 1) 2286 *ptr = (unsigned long)-1; 2287 2288 return 0; 2289 } 2290 2291 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2292 struct extent_inode_elem *inode_list, 2293 u64 root, u64 extent_item_objectid, 2294 iterate_extent_inodes_t *iterate, void *ctx) 2295 { 2296 struct extent_inode_elem *eie; 2297 int ret = 0; 2298 2299 for (eie = inode_list; eie; eie = eie->next) { 2300 btrfs_debug(fs_info, 2301 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2302 extent_item_objectid, eie->inum, 2303 eie->offset, root); 2304 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2305 if (ret) { 2306 btrfs_debug(fs_info, 2307 "stopping iteration for %llu due to ret=%d", 2308 extent_item_objectid, ret); 2309 break; 2310 } 2311 } 2312 2313 return ret; 2314 } 2315 2316 /* 2317 * calls iterate() for every inode that references the extent identified by 2318 * the given parameters. 2319 * when the iterator function returns a non-zero value, iteration stops. 2320 */ 2321 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2322 bool search_commit_root, 2323 iterate_extent_inodes_t *iterate, void *user_ctx) 2324 { 2325 int ret; 2326 struct ulist *refs; 2327 struct ulist_node *ref_node; 2328 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2329 struct ulist_iterator ref_uiter; 2330 2331 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2332 ctx->bytenr); 2333 2334 ASSERT(ctx->trans == NULL); 2335 ASSERT(ctx->roots == NULL); 2336 2337 if (!search_commit_root) { 2338 struct btrfs_trans_handle *trans; 2339 2340 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2341 if (IS_ERR(trans)) { 2342 if (PTR_ERR(trans) != -ENOENT && 2343 PTR_ERR(trans) != -EROFS) 2344 return PTR_ERR(trans); 2345 trans = NULL; 2346 } 2347 ctx->trans = trans; 2348 } 2349 2350 if (ctx->trans) { 2351 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2352 ctx->time_seq = seq_elem.seq; 2353 } else { 2354 down_read(&ctx->fs_info->commit_root_sem); 2355 } 2356 2357 ret = btrfs_find_all_leafs(ctx); 2358 if (ret) 2359 goto out; 2360 refs = ctx->refs; 2361 ctx->refs = NULL; 2362 2363 ULIST_ITER_INIT(&ref_uiter); 2364 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2365 const u64 leaf_bytenr = ref_node->val; 2366 struct ulist_node *root_node; 2367 struct ulist_iterator root_uiter; 2368 struct extent_inode_elem *inode_list; 2369 2370 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2371 2372 if (ctx->cache_lookup) { 2373 const u64 *root_ids; 2374 int root_count; 2375 bool cached; 2376 2377 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2378 &root_ids, &root_count); 2379 if (cached) { 2380 for (int i = 0; i < root_count; i++) { 2381 ret = iterate_leaf_refs(ctx->fs_info, 2382 inode_list, 2383 root_ids[i], 2384 leaf_bytenr, 2385 iterate, 2386 user_ctx); 2387 if (ret) 2388 break; 2389 } 2390 continue; 2391 } 2392 } 2393 2394 if (!ctx->roots) { 2395 ctx->roots = ulist_alloc(GFP_NOFS); 2396 if (!ctx->roots) { 2397 ret = -ENOMEM; 2398 break; 2399 } 2400 } 2401 2402 ctx->bytenr = leaf_bytenr; 2403 ret = btrfs_find_all_roots_safe(ctx); 2404 if (ret) 2405 break; 2406 2407 if (ctx->cache_store) 2408 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2409 2410 ULIST_ITER_INIT(&root_uiter); 2411 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2412 btrfs_debug(ctx->fs_info, 2413 "root %llu references leaf %llu, data list %#llx", 2414 root_node->val, ref_node->val, 2415 ref_node->aux); 2416 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2417 root_node->val, ctx->bytenr, 2418 iterate, user_ctx); 2419 } 2420 ulist_reinit(ctx->roots); 2421 } 2422 2423 free_leaf_list(refs); 2424 out: 2425 if (ctx->trans) { 2426 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2427 btrfs_end_transaction(ctx->trans); 2428 ctx->trans = NULL; 2429 } else { 2430 up_read(&ctx->fs_info->commit_root_sem); 2431 } 2432 2433 ulist_free(ctx->roots); 2434 ctx->roots = NULL; 2435 2436 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2437 ret = 0; 2438 2439 return ret; 2440 } 2441 2442 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2443 { 2444 struct btrfs_data_container *inodes = ctx; 2445 const size_t c = 3 * sizeof(u64); 2446 2447 if (inodes->bytes_left >= c) { 2448 inodes->bytes_left -= c; 2449 inodes->val[inodes->elem_cnt] = inum; 2450 inodes->val[inodes->elem_cnt + 1] = offset; 2451 inodes->val[inodes->elem_cnt + 2] = root; 2452 inodes->elem_cnt += 3; 2453 } else { 2454 inodes->bytes_missing += c - inodes->bytes_left; 2455 inodes->bytes_left = 0; 2456 inodes->elem_missed += 3; 2457 } 2458 2459 return 0; 2460 } 2461 2462 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2463 struct btrfs_path *path, 2464 void *ctx, bool ignore_offset) 2465 { 2466 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2467 int ret; 2468 u64 flags = 0; 2469 struct btrfs_key found_key; 2470 int search_commit_root = path->search_commit_root; 2471 2472 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2473 btrfs_release_path(path); 2474 if (ret < 0) 2475 return ret; 2476 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2477 return -EINVAL; 2478 2479 walk_ctx.bytenr = found_key.objectid; 2480 if (ignore_offset) 2481 walk_ctx.ignore_extent_item_pos = true; 2482 else 2483 walk_ctx.extent_item_pos = logical - found_key.objectid; 2484 walk_ctx.fs_info = fs_info; 2485 2486 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2487 build_ino_list, ctx); 2488 } 2489 2490 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2491 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2492 2493 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2494 { 2495 int ret = 0; 2496 int slot; 2497 u32 cur; 2498 u32 len; 2499 u32 name_len; 2500 u64 parent = 0; 2501 int found = 0; 2502 struct btrfs_root *fs_root = ipath->fs_root; 2503 struct btrfs_path *path = ipath->btrfs_path; 2504 struct extent_buffer *eb; 2505 struct btrfs_inode_ref *iref; 2506 struct btrfs_key found_key; 2507 2508 while (!ret) { 2509 ret = btrfs_find_item(fs_root, path, inum, 2510 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2511 &found_key); 2512 2513 if (ret < 0) 2514 break; 2515 if (ret) { 2516 ret = found ? 0 : -ENOENT; 2517 break; 2518 } 2519 ++found; 2520 2521 parent = found_key.offset; 2522 slot = path->slots[0]; 2523 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2524 if (!eb) { 2525 ret = -ENOMEM; 2526 break; 2527 } 2528 btrfs_release_path(path); 2529 2530 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2531 2532 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2533 name_len = btrfs_inode_ref_name_len(eb, iref); 2534 /* path must be released before calling iterate()! */ 2535 btrfs_debug(fs_root->fs_info, 2536 "following ref at offset %u for inode %llu in tree %llu", 2537 cur, found_key.objectid, 2538 fs_root->root_key.objectid); 2539 ret = inode_to_path(parent, name_len, 2540 (unsigned long)(iref + 1), eb, ipath); 2541 if (ret) 2542 break; 2543 len = sizeof(*iref) + name_len; 2544 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2545 } 2546 free_extent_buffer(eb); 2547 } 2548 2549 btrfs_release_path(path); 2550 2551 return ret; 2552 } 2553 2554 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2555 { 2556 int ret; 2557 int slot; 2558 u64 offset = 0; 2559 u64 parent; 2560 int found = 0; 2561 struct btrfs_root *fs_root = ipath->fs_root; 2562 struct btrfs_path *path = ipath->btrfs_path; 2563 struct extent_buffer *eb; 2564 struct btrfs_inode_extref *extref; 2565 u32 item_size; 2566 u32 cur_offset; 2567 unsigned long ptr; 2568 2569 while (1) { 2570 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2571 &offset); 2572 if (ret < 0) 2573 break; 2574 if (ret) { 2575 ret = found ? 0 : -ENOENT; 2576 break; 2577 } 2578 ++found; 2579 2580 slot = path->slots[0]; 2581 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2582 if (!eb) { 2583 ret = -ENOMEM; 2584 break; 2585 } 2586 btrfs_release_path(path); 2587 2588 item_size = btrfs_item_size(eb, slot); 2589 ptr = btrfs_item_ptr_offset(eb, slot); 2590 cur_offset = 0; 2591 2592 while (cur_offset < item_size) { 2593 u32 name_len; 2594 2595 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2596 parent = btrfs_inode_extref_parent(eb, extref); 2597 name_len = btrfs_inode_extref_name_len(eb, extref); 2598 ret = inode_to_path(parent, name_len, 2599 (unsigned long)&extref->name, eb, ipath); 2600 if (ret) 2601 break; 2602 2603 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2604 cur_offset += sizeof(*extref); 2605 } 2606 free_extent_buffer(eb); 2607 2608 offset++; 2609 } 2610 2611 btrfs_release_path(path); 2612 2613 return ret; 2614 } 2615 2616 /* 2617 * returns 0 if the path could be dumped (probably truncated) 2618 * returns <0 in case of an error 2619 */ 2620 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2621 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2622 { 2623 char *fspath; 2624 char *fspath_min; 2625 int i = ipath->fspath->elem_cnt; 2626 const int s_ptr = sizeof(char *); 2627 u32 bytes_left; 2628 2629 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2630 ipath->fspath->bytes_left - s_ptr : 0; 2631 2632 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2633 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2634 name_off, eb, inum, fspath_min, bytes_left); 2635 if (IS_ERR(fspath)) 2636 return PTR_ERR(fspath); 2637 2638 if (fspath > fspath_min) { 2639 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2640 ++ipath->fspath->elem_cnt; 2641 ipath->fspath->bytes_left = fspath - fspath_min; 2642 } else { 2643 ++ipath->fspath->elem_missed; 2644 ipath->fspath->bytes_missing += fspath_min - fspath; 2645 ipath->fspath->bytes_left = 0; 2646 } 2647 2648 return 0; 2649 } 2650 2651 /* 2652 * this dumps all file system paths to the inode into the ipath struct, provided 2653 * is has been created large enough. each path is zero-terminated and accessed 2654 * from ipath->fspath->val[i]. 2655 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2656 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2657 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2658 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2659 * have been needed to return all paths. 2660 */ 2661 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2662 { 2663 int ret; 2664 int found_refs = 0; 2665 2666 ret = iterate_inode_refs(inum, ipath); 2667 if (!ret) 2668 ++found_refs; 2669 else if (ret != -ENOENT) 2670 return ret; 2671 2672 ret = iterate_inode_extrefs(inum, ipath); 2673 if (ret == -ENOENT && found_refs) 2674 return 0; 2675 2676 return ret; 2677 } 2678 2679 struct btrfs_data_container *init_data_container(u32 total_bytes) 2680 { 2681 struct btrfs_data_container *data; 2682 size_t alloc_bytes; 2683 2684 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2685 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2686 if (!data) 2687 return ERR_PTR(-ENOMEM); 2688 2689 if (total_bytes >= sizeof(*data)) { 2690 data->bytes_left = total_bytes - sizeof(*data); 2691 data->bytes_missing = 0; 2692 } else { 2693 data->bytes_missing = sizeof(*data) - total_bytes; 2694 data->bytes_left = 0; 2695 } 2696 2697 data->elem_cnt = 0; 2698 data->elem_missed = 0; 2699 2700 return data; 2701 } 2702 2703 /* 2704 * allocates space to return multiple file system paths for an inode. 2705 * total_bytes to allocate are passed, note that space usable for actual path 2706 * information will be total_bytes - sizeof(struct inode_fs_paths). 2707 * the returned pointer must be freed with free_ipath() in the end. 2708 */ 2709 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2710 struct btrfs_path *path) 2711 { 2712 struct inode_fs_paths *ifp; 2713 struct btrfs_data_container *fspath; 2714 2715 fspath = init_data_container(total_bytes); 2716 if (IS_ERR(fspath)) 2717 return ERR_CAST(fspath); 2718 2719 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2720 if (!ifp) { 2721 kvfree(fspath); 2722 return ERR_PTR(-ENOMEM); 2723 } 2724 2725 ifp->btrfs_path = path; 2726 ifp->fspath = fspath; 2727 ifp->fs_root = fs_root; 2728 2729 return ifp; 2730 } 2731 2732 void free_ipath(struct inode_fs_paths *ipath) 2733 { 2734 if (!ipath) 2735 return; 2736 kvfree(ipath->fspath); 2737 kfree(ipath); 2738 } 2739 2740 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2741 { 2742 struct btrfs_backref_iter *ret; 2743 2744 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2745 if (!ret) 2746 return NULL; 2747 2748 ret->path = btrfs_alloc_path(); 2749 if (!ret->path) { 2750 kfree(ret); 2751 return NULL; 2752 } 2753 2754 /* Current backref iterator only supports iteration in commit root */ 2755 ret->path->search_commit_root = 1; 2756 ret->path->skip_locking = 1; 2757 ret->fs_info = fs_info; 2758 2759 return ret; 2760 } 2761 2762 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2763 { 2764 struct btrfs_fs_info *fs_info = iter->fs_info; 2765 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2766 struct btrfs_path *path = iter->path; 2767 struct btrfs_extent_item *ei; 2768 struct btrfs_key key; 2769 int ret; 2770 2771 key.objectid = bytenr; 2772 key.type = BTRFS_METADATA_ITEM_KEY; 2773 key.offset = (u64)-1; 2774 iter->bytenr = bytenr; 2775 2776 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2777 if (ret < 0) 2778 return ret; 2779 if (ret == 0) { 2780 ret = -EUCLEAN; 2781 goto release; 2782 } 2783 if (path->slots[0] == 0) { 2784 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2785 ret = -EUCLEAN; 2786 goto release; 2787 } 2788 path->slots[0]--; 2789 2790 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2791 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2792 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2793 ret = -ENOENT; 2794 goto release; 2795 } 2796 memcpy(&iter->cur_key, &key, sizeof(key)); 2797 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2798 path->slots[0]); 2799 iter->end_ptr = (u32)(iter->item_ptr + 2800 btrfs_item_size(path->nodes[0], path->slots[0])); 2801 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2802 struct btrfs_extent_item); 2803 2804 /* 2805 * Only support iteration on tree backref yet. 2806 * 2807 * This is an extra precaution for non skinny-metadata, where 2808 * EXTENT_ITEM is also used for tree blocks, that we can only use 2809 * extent flags to determine if it's a tree block. 2810 */ 2811 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2812 ret = -ENOTSUPP; 2813 goto release; 2814 } 2815 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2816 2817 /* If there is no inline backref, go search for keyed backref */ 2818 if (iter->cur_ptr >= iter->end_ptr) { 2819 ret = btrfs_next_item(extent_root, path); 2820 2821 /* No inline nor keyed ref */ 2822 if (ret > 0) { 2823 ret = -ENOENT; 2824 goto release; 2825 } 2826 if (ret < 0) 2827 goto release; 2828 2829 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2830 path->slots[0]); 2831 if (iter->cur_key.objectid != bytenr || 2832 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2833 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2834 ret = -ENOENT; 2835 goto release; 2836 } 2837 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2838 path->slots[0]); 2839 iter->item_ptr = iter->cur_ptr; 2840 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2841 path->nodes[0], path->slots[0])); 2842 } 2843 2844 return 0; 2845 release: 2846 btrfs_backref_iter_release(iter); 2847 return ret; 2848 } 2849 2850 /* 2851 * Go to the next backref item of current bytenr, can be either inlined or 2852 * keyed. 2853 * 2854 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2855 * 2856 * Return 0 if we get next backref without problem. 2857 * Return >0 if there is no extra backref for this bytenr. 2858 * Return <0 if there is something wrong happened. 2859 */ 2860 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2861 { 2862 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2863 struct btrfs_root *extent_root; 2864 struct btrfs_path *path = iter->path; 2865 struct btrfs_extent_inline_ref *iref; 2866 int ret; 2867 u32 size; 2868 2869 if (btrfs_backref_iter_is_inline_ref(iter)) { 2870 /* We're still inside the inline refs */ 2871 ASSERT(iter->cur_ptr < iter->end_ptr); 2872 2873 if (btrfs_backref_has_tree_block_info(iter)) { 2874 /* First tree block info */ 2875 size = sizeof(struct btrfs_tree_block_info); 2876 } else { 2877 /* Use inline ref type to determine the size */ 2878 int type; 2879 2880 iref = (struct btrfs_extent_inline_ref *) 2881 ((unsigned long)iter->cur_ptr); 2882 type = btrfs_extent_inline_ref_type(eb, iref); 2883 2884 size = btrfs_extent_inline_ref_size(type); 2885 } 2886 iter->cur_ptr += size; 2887 if (iter->cur_ptr < iter->end_ptr) 2888 return 0; 2889 2890 /* All inline items iterated, fall through */ 2891 } 2892 2893 /* We're at keyed items, there is no inline item, go to the next one */ 2894 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2895 ret = btrfs_next_item(extent_root, iter->path); 2896 if (ret) 2897 return ret; 2898 2899 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2900 if (iter->cur_key.objectid != iter->bytenr || 2901 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2902 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2903 return 1; 2904 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2905 path->slots[0]); 2906 iter->cur_ptr = iter->item_ptr; 2907 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2908 path->slots[0]); 2909 return 0; 2910 } 2911 2912 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2913 struct btrfs_backref_cache *cache, int is_reloc) 2914 { 2915 int i; 2916 2917 cache->rb_root = RB_ROOT; 2918 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2919 INIT_LIST_HEAD(&cache->pending[i]); 2920 INIT_LIST_HEAD(&cache->changed); 2921 INIT_LIST_HEAD(&cache->detached); 2922 INIT_LIST_HEAD(&cache->leaves); 2923 INIT_LIST_HEAD(&cache->pending_edge); 2924 INIT_LIST_HEAD(&cache->useless_node); 2925 cache->fs_info = fs_info; 2926 cache->is_reloc = is_reloc; 2927 } 2928 2929 struct btrfs_backref_node *btrfs_backref_alloc_node( 2930 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2931 { 2932 struct btrfs_backref_node *node; 2933 2934 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2935 node = kzalloc(sizeof(*node), GFP_NOFS); 2936 if (!node) 2937 return node; 2938 2939 INIT_LIST_HEAD(&node->list); 2940 INIT_LIST_HEAD(&node->upper); 2941 INIT_LIST_HEAD(&node->lower); 2942 RB_CLEAR_NODE(&node->rb_node); 2943 cache->nr_nodes++; 2944 node->level = level; 2945 node->bytenr = bytenr; 2946 2947 return node; 2948 } 2949 2950 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2951 struct btrfs_backref_cache *cache) 2952 { 2953 struct btrfs_backref_edge *edge; 2954 2955 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2956 if (edge) 2957 cache->nr_edges++; 2958 return edge; 2959 } 2960 2961 /* 2962 * Drop the backref node from cache, also cleaning up all its 2963 * upper edges and any uncached nodes in the path. 2964 * 2965 * This cleanup happens bottom up, thus the node should either 2966 * be the lowest node in the cache or a detached node. 2967 */ 2968 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2969 struct btrfs_backref_node *node) 2970 { 2971 struct btrfs_backref_node *upper; 2972 struct btrfs_backref_edge *edge; 2973 2974 if (!node) 2975 return; 2976 2977 BUG_ON(!node->lowest && !node->detached); 2978 while (!list_empty(&node->upper)) { 2979 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2980 list[LOWER]); 2981 upper = edge->node[UPPER]; 2982 list_del(&edge->list[LOWER]); 2983 list_del(&edge->list[UPPER]); 2984 btrfs_backref_free_edge(cache, edge); 2985 2986 /* 2987 * Add the node to leaf node list if no other child block 2988 * cached. 2989 */ 2990 if (list_empty(&upper->lower)) { 2991 list_add_tail(&upper->lower, &cache->leaves); 2992 upper->lowest = 1; 2993 } 2994 } 2995 2996 btrfs_backref_drop_node(cache, node); 2997 } 2998 2999 /* 3000 * Release all nodes/edges from current cache 3001 */ 3002 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3003 { 3004 struct btrfs_backref_node *node; 3005 int i; 3006 3007 while (!list_empty(&cache->detached)) { 3008 node = list_entry(cache->detached.next, 3009 struct btrfs_backref_node, list); 3010 btrfs_backref_cleanup_node(cache, node); 3011 } 3012 3013 while (!list_empty(&cache->leaves)) { 3014 node = list_entry(cache->leaves.next, 3015 struct btrfs_backref_node, lower); 3016 btrfs_backref_cleanup_node(cache, node); 3017 } 3018 3019 cache->last_trans = 0; 3020 3021 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3022 ASSERT(list_empty(&cache->pending[i])); 3023 ASSERT(list_empty(&cache->pending_edge)); 3024 ASSERT(list_empty(&cache->useless_node)); 3025 ASSERT(list_empty(&cache->changed)); 3026 ASSERT(list_empty(&cache->detached)); 3027 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3028 ASSERT(!cache->nr_nodes); 3029 ASSERT(!cache->nr_edges); 3030 } 3031 3032 /* 3033 * Handle direct tree backref 3034 * 3035 * Direct tree backref means, the backref item shows its parent bytenr 3036 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3037 * 3038 * @ref_key: The converted backref key. 3039 * For keyed backref, it's the item key. 3040 * For inlined backref, objectid is the bytenr, 3041 * type is btrfs_inline_ref_type, offset is 3042 * btrfs_inline_ref_offset. 3043 */ 3044 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3045 struct btrfs_key *ref_key, 3046 struct btrfs_backref_node *cur) 3047 { 3048 struct btrfs_backref_edge *edge; 3049 struct btrfs_backref_node *upper; 3050 struct rb_node *rb_node; 3051 3052 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3053 3054 /* Only reloc root uses backref pointing to itself */ 3055 if (ref_key->objectid == ref_key->offset) { 3056 struct btrfs_root *root; 3057 3058 cur->is_reloc_root = 1; 3059 /* Only reloc backref cache cares about a specific root */ 3060 if (cache->is_reloc) { 3061 root = find_reloc_root(cache->fs_info, cur->bytenr); 3062 if (!root) 3063 return -ENOENT; 3064 cur->root = root; 3065 } else { 3066 /* 3067 * For generic purpose backref cache, reloc root node 3068 * is useless. 3069 */ 3070 list_add(&cur->list, &cache->useless_node); 3071 } 3072 return 0; 3073 } 3074 3075 edge = btrfs_backref_alloc_edge(cache); 3076 if (!edge) 3077 return -ENOMEM; 3078 3079 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3080 if (!rb_node) { 3081 /* Parent node not yet cached */ 3082 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3083 cur->level + 1); 3084 if (!upper) { 3085 btrfs_backref_free_edge(cache, edge); 3086 return -ENOMEM; 3087 } 3088 3089 /* 3090 * Backrefs for the upper level block isn't cached, add the 3091 * block to pending list 3092 */ 3093 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3094 } else { 3095 /* Parent node already cached */ 3096 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3097 ASSERT(upper->checked); 3098 INIT_LIST_HEAD(&edge->list[UPPER]); 3099 } 3100 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3101 return 0; 3102 } 3103 3104 /* 3105 * Handle indirect tree backref 3106 * 3107 * Indirect tree backref means, we only know which tree the node belongs to. 3108 * We still need to do a tree search to find out the parents. This is for 3109 * TREE_BLOCK_REF backref (keyed or inlined). 3110 * 3111 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3112 * @tree_key: The first key of this tree block. 3113 * @path: A clean (released) path, to avoid allocating path every time 3114 * the function get called. 3115 */ 3116 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 3117 struct btrfs_path *path, 3118 struct btrfs_key *ref_key, 3119 struct btrfs_key *tree_key, 3120 struct btrfs_backref_node *cur) 3121 { 3122 struct btrfs_fs_info *fs_info = cache->fs_info; 3123 struct btrfs_backref_node *upper; 3124 struct btrfs_backref_node *lower; 3125 struct btrfs_backref_edge *edge; 3126 struct extent_buffer *eb; 3127 struct btrfs_root *root; 3128 struct rb_node *rb_node; 3129 int level; 3130 bool need_check = true; 3131 int ret; 3132 3133 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3134 if (IS_ERR(root)) 3135 return PTR_ERR(root); 3136 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3137 cur->cowonly = 1; 3138 3139 if (btrfs_root_level(&root->root_item) == cur->level) { 3140 /* Tree root */ 3141 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3142 /* 3143 * For reloc backref cache, we may ignore reloc root. But for 3144 * general purpose backref cache, we can't rely on 3145 * btrfs_should_ignore_reloc_root() as it may conflict with 3146 * current running relocation and lead to missing root. 3147 * 3148 * For general purpose backref cache, reloc root detection is 3149 * completely relying on direct backref (key->offset is parent 3150 * bytenr), thus only do such check for reloc cache. 3151 */ 3152 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3153 btrfs_put_root(root); 3154 list_add(&cur->list, &cache->useless_node); 3155 } else { 3156 cur->root = root; 3157 } 3158 return 0; 3159 } 3160 3161 level = cur->level + 1; 3162 3163 /* Search the tree to find parent blocks referring to the block */ 3164 path->search_commit_root = 1; 3165 path->skip_locking = 1; 3166 path->lowest_level = level; 3167 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3168 path->lowest_level = 0; 3169 if (ret < 0) { 3170 btrfs_put_root(root); 3171 return ret; 3172 } 3173 if (ret > 0 && path->slots[level] > 0) 3174 path->slots[level]--; 3175 3176 eb = path->nodes[level]; 3177 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3178 btrfs_err(fs_info, 3179 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3180 cur->bytenr, level - 1, root->root_key.objectid, 3181 tree_key->objectid, tree_key->type, tree_key->offset); 3182 btrfs_put_root(root); 3183 ret = -ENOENT; 3184 goto out; 3185 } 3186 lower = cur; 3187 3188 /* Add all nodes and edges in the path */ 3189 for (; level < BTRFS_MAX_LEVEL; level++) { 3190 if (!path->nodes[level]) { 3191 ASSERT(btrfs_root_bytenr(&root->root_item) == 3192 lower->bytenr); 3193 /* Same as previous should_ignore_reloc_root() call */ 3194 if (btrfs_should_ignore_reloc_root(root) && 3195 cache->is_reloc) { 3196 btrfs_put_root(root); 3197 list_add(&lower->list, &cache->useless_node); 3198 } else { 3199 lower->root = root; 3200 } 3201 break; 3202 } 3203 3204 edge = btrfs_backref_alloc_edge(cache); 3205 if (!edge) { 3206 btrfs_put_root(root); 3207 ret = -ENOMEM; 3208 goto out; 3209 } 3210 3211 eb = path->nodes[level]; 3212 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3213 if (!rb_node) { 3214 upper = btrfs_backref_alloc_node(cache, eb->start, 3215 lower->level + 1); 3216 if (!upper) { 3217 btrfs_put_root(root); 3218 btrfs_backref_free_edge(cache, edge); 3219 ret = -ENOMEM; 3220 goto out; 3221 } 3222 upper->owner = btrfs_header_owner(eb); 3223 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3224 upper->cowonly = 1; 3225 3226 /* 3227 * If we know the block isn't shared we can avoid 3228 * checking its backrefs. 3229 */ 3230 if (btrfs_block_can_be_shared(root, eb)) 3231 upper->checked = 0; 3232 else 3233 upper->checked = 1; 3234 3235 /* 3236 * Add the block to pending list if we need to check its 3237 * backrefs, we only do this once while walking up a 3238 * tree as we will catch anything else later on. 3239 */ 3240 if (!upper->checked && need_check) { 3241 need_check = false; 3242 list_add_tail(&edge->list[UPPER], 3243 &cache->pending_edge); 3244 } else { 3245 if (upper->checked) 3246 need_check = true; 3247 INIT_LIST_HEAD(&edge->list[UPPER]); 3248 } 3249 } else { 3250 upper = rb_entry(rb_node, struct btrfs_backref_node, 3251 rb_node); 3252 ASSERT(upper->checked); 3253 INIT_LIST_HEAD(&edge->list[UPPER]); 3254 if (!upper->owner) 3255 upper->owner = btrfs_header_owner(eb); 3256 } 3257 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3258 3259 if (rb_node) { 3260 btrfs_put_root(root); 3261 break; 3262 } 3263 lower = upper; 3264 upper = NULL; 3265 } 3266 out: 3267 btrfs_release_path(path); 3268 return ret; 3269 } 3270 3271 /* 3272 * Add backref node @cur into @cache. 3273 * 3274 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3275 * links aren't yet bi-directional. Needs to finish such links. 3276 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3277 * 3278 * @path: Released path for indirect tree backref lookup 3279 * @iter: Released backref iter for extent tree search 3280 * @node_key: The first key of the tree block 3281 */ 3282 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 3283 struct btrfs_path *path, 3284 struct btrfs_backref_iter *iter, 3285 struct btrfs_key *node_key, 3286 struct btrfs_backref_node *cur) 3287 { 3288 struct btrfs_fs_info *fs_info = cache->fs_info; 3289 struct btrfs_backref_edge *edge; 3290 struct btrfs_backref_node *exist; 3291 int ret; 3292 3293 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3294 if (ret < 0) 3295 return ret; 3296 /* 3297 * We skip the first btrfs_tree_block_info, as we don't use the key 3298 * stored in it, but fetch it from the tree block 3299 */ 3300 if (btrfs_backref_has_tree_block_info(iter)) { 3301 ret = btrfs_backref_iter_next(iter); 3302 if (ret < 0) 3303 goto out; 3304 /* No extra backref? This means the tree block is corrupted */ 3305 if (ret > 0) { 3306 ret = -EUCLEAN; 3307 goto out; 3308 } 3309 } 3310 WARN_ON(cur->checked); 3311 if (!list_empty(&cur->upper)) { 3312 /* 3313 * The backref was added previously when processing backref of 3314 * type BTRFS_TREE_BLOCK_REF_KEY 3315 */ 3316 ASSERT(list_is_singular(&cur->upper)); 3317 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3318 list[LOWER]); 3319 ASSERT(list_empty(&edge->list[UPPER])); 3320 exist = edge->node[UPPER]; 3321 /* 3322 * Add the upper level block to pending list if we need check 3323 * its backrefs 3324 */ 3325 if (!exist->checked) 3326 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3327 } else { 3328 exist = NULL; 3329 } 3330 3331 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3332 struct extent_buffer *eb; 3333 struct btrfs_key key; 3334 int type; 3335 3336 cond_resched(); 3337 eb = btrfs_backref_get_eb(iter); 3338 3339 key.objectid = iter->bytenr; 3340 if (btrfs_backref_iter_is_inline_ref(iter)) { 3341 struct btrfs_extent_inline_ref *iref; 3342 3343 /* Update key for inline backref */ 3344 iref = (struct btrfs_extent_inline_ref *) 3345 ((unsigned long)iter->cur_ptr); 3346 type = btrfs_get_extent_inline_ref_type(eb, iref, 3347 BTRFS_REF_TYPE_BLOCK); 3348 if (type == BTRFS_REF_TYPE_INVALID) { 3349 ret = -EUCLEAN; 3350 goto out; 3351 } 3352 key.type = type; 3353 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3354 } else { 3355 key.type = iter->cur_key.type; 3356 key.offset = iter->cur_key.offset; 3357 } 3358 3359 /* 3360 * Parent node found and matches current inline ref, no need to 3361 * rebuild this node for this inline ref 3362 */ 3363 if (exist && 3364 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3365 exist->owner == key.offset) || 3366 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3367 exist->bytenr == key.offset))) { 3368 exist = NULL; 3369 continue; 3370 } 3371 3372 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3373 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3374 ret = handle_direct_tree_backref(cache, &key, cur); 3375 if (ret < 0) 3376 goto out; 3377 continue; 3378 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3379 ret = -EINVAL; 3380 btrfs_print_v0_err(fs_info); 3381 btrfs_handle_fs_error(fs_info, ret, NULL); 3382 goto out; 3383 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 3384 continue; 3385 } 3386 3387 /* 3388 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 3389 * means the root objectid. We need to search the tree to get 3390 * its parent bytenr. 3391 */ 3392 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 3393 cur); 3394 if (ret < 0) 3395 goto out; 3396 } 3397 ret = 0; 3398 cur->checked = 1; 3399 WARN_ON(exist); 3400 out: 3401 btrfs_backref_iter_release(iter); 3402 return ret; 3403 } 3404 3405 /* 3406 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3407 */ 3408 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3409 struct btrfs_backref_node *start) 3410 { 3411 struct list_head *useless_node = &cache->useless_node; 3412 struct btrfs_backref_edge *edge; 3413 struct rb_node *rb_node; 3414 LIST_HEAD(pending_edge); 3415 3416 ASSERT(start->checked); 3417 3418 /* Insert this node to cache if it's not COW-only */ 3419 if (!start->cowonly) { 3420 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3421 &start->rb_node); 3422 if (rb_node) 3423 btrfs_backref_panic(cache->fs_info, start->bytenr, 3424 -EEXIST); 3425 list_add_tail(&start->lower, &cache->leaves); 3426 } 3427 3428 /* 3429 * Use breadth first search to iterate all related edges. 3430 * 3431 * The starting points are all the edges of this node 3432 */ 3433 list_for_each_entry(edge, &start->upper, list[LOWER]) 3434 list_add_tail(&edge->list[UPPER], &pending_edge); 3435 3436 while (!list_empty(&pending_edge)) { 3437 struct btrfs_backref_node *upper; 3438 struct btrfs_backref_node *lower; 3439 3440 edge = list_first_entry(&pending_edge, 3441 struct btrfs_backref_edge, list[UPPER]); 3442 list_del_init(&edge->list[UPPER]); 3443 upper = edge->node[UPPER]; 3444 lower = edge->node[LOWER]; 3445 3446 /* Parent is detached, no need to keep any edges */ 3447 if (upper->detached) { 3448 list_del(&edge->list[LOWER]); 3449 btrfs_backref_free_edge(cache, edge); 3450 3451 /* Lower node is orphan, queue for cleanup */ 3452 if (list_empty(&lower->upper)) 3453 list_add(&lower->list, useless_node); 3454 continue; 3455 } 3456 3457 /* 3458 * All new nodes added in current build_backref_tree() haven't 3459 * been linked to the cache rb tree. 3460 * So if we have upper->rb_node populated, this means a cache 3461 * hit. We only need to link the edge, as @upper and all its 3462 * parents have already been linked. 3463 */ 3464 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3465 if (upper->lowest) { 3466 list_del_init(&upper->lower); 3467 upper->lowest = 0; 3468 } 3469 3470 list_add_tail(&edge->list[UPPER], &upper->lower); 3471 continue; 3472 } 3473 3474 /* Sanity check, we shouldn't have any unchecked nodes */ 3475 if (!upper->checked) { 3476 ASSERT(0); 3477 return -EUCLEAN; 3478 } 3479 3480 /* Sanity check, COW-only node has non-COW-only parent */ 3481 if (start->cowonly != upper->cowonly) { 3482 ASSERT(0); 3483 return -EUCLEAN; 3484 } 3485 3486 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3487 if (!upper->cowonly) { 3488 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3489 &upper->rb_node); 3490 if (rb_node) { 3491 btrfs_backref_panic(cache->fs_info, 3492 upper->bytenr, -EEXIST); 3493 return -EUCLEAN; 3494 } 3495 } 3496 3497 list_add_tail(&edge->list[UPPER], &upper->lower); 3498 3499 /* 3500 * Also queue all the parent edges of this uncached node 3501 * to finish the upper linkage 3502 */ 3503 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3504 list_add_tail(&edge->list[UPPER], &pending_edge); 3505 } 3506 return 0; 3507 } 3508 3509 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3510 struct btrfs_backref_node *node) 3511 { 3512 struct btrfs_backref_node *lower; 3513 struct btrfs_backref_node *upper; 3514 struct btrfs_backref_edge *edge; 3515 3516 while (!list_empty(&cache->useless_node)) { 3517 lower = list_first_entry(&cache->useless_node, 3518 struct btrfs_backref_node, list); 3519 list_del_init(&lower->list); 3520 } 3521 while (!list_empty(&cache->pending_edge)) { 3522 edge = list_first_entry(&cache->pending_edge, 3523 struct btrfs_backref_edge, list[UPPER]); 3524 list_del(&edge->list[UPPER]); 3525 list_del(&edge->list[LOWER]); 3526 lower = edge->node[LOWER]; 3527 upper = edge->node[UPPER]; 3528 btrfs_backref_free_edge(cache, edge); 3529 3530 /* 3531 * Lower is no longer linked to any upper backref nodes and 3532 * isn't in the cache, we can free it ourselves. 3533 */ 3534 if (list_empty(&lower->upper) && 3535 RB_EMPTY_NODE(&lower->rb_node)) 3536 list_add(&lower->list, &cache->useless_node); 3537 3538 if (!RB_EMPTY_NODE(&upper->rb_node)) 3539 continue; 3540 3541 /* Add this guy's upper edges to the list to process */ 3542 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3543 list_add_tail(&edge->list[UPPER], 3544 &cache->pending_edge); 3545 if (list_empty(&upper->upper)) 3546 list_add(&upper->list, &cache->useless_node); 3547 } 3548 3549 while (!list_empty(&cache->useless_node)) { 3550 lower = list_first_entry(&cache->useless_node, 3551 struct btrfs_backref_node, list); 3552 list_del_init(&lower->list); 3553 if (lower == node) 3554 node = NULL; 3555 btrfs_backref_drop_node(cache, lower); 3556 } 3557 3558 btrfs_backref_cleanup_node(cache, node); 3559 ASSERT(list_empty(&cache->useless_node) && 3560 list_empty(&cache->pending_edge)); 3561 } 3562