xref: /openbmc/linux/fs/btrfs/backref.c (revision f2d8b6917f3bcfb3190eb80567fea71a9b59dbd3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 
19 /* Just an arbitrary number so we can be sure this happened */
20 #define BACKREF_FOUND_SHARED 6
21 
22 struct extent_inode_elem {
23 	u64 inum;
24 	u64 offset;
25 	struct extent_inode_elem *next;
26 };
27 
28 static int check_extent_in_eb(const struct btrfs_key *key,
29 			      const struct extent_buffer *eb,
30 			      const struct btrfs_file_extent_item *fi,
31 			      u64 extent_item_pos,
32 			      struct extent_inode_elem **eie,
33 			      bool ignore_offset)
34 {
35 	u64 offset = 0;
36 	struct extent_inode_elem *e;
37 
38 	if (!ignore_offset &&
39 	    !btrfs_file_extent_compression(eb, fi) &&
40 	    !btrfs_file_extent_encryption(eb, fi) &&
41 	    !btrfs_file_extent_other_encoding(eb, fi)) {
42 		u64 data_offset;
43 		u64 data_len;
44 
45 		data_offset = btrfs_file_extent_offset(eb, fi);
46 		data_len = btrfs_file_extent_num_bytes(eb, fi);
47 
48 		if (extent_item_pos < data_offset ||
49 		    extent_item_pos >= data_offset + data_len)
50 			return 1;
51 		offset = extent_item_pos - data_offset;
52 	}
53 
54 	e = kmalloc(sizeof(*e), GFP_NOFS);
55 	if (!e)
56 		return -ENOMEM;
57 
58 	e->next = *eie;
59 	e->inum = key->objectid;
60 	e->offset = key->offset + offset;
61 	*eie = e;
62 
63 	return 0;
64 }
65 
66 static void free_inode_elem_list(struct extent_inode_elem *eie)
67 {
68 	struct extent_inode_elem *eie_next;
69 
70 	for (; eie; eie = eie_next) {
71 		eie_next = eie->next;
72 		kfree(eie);
73 	}
74 }
75 
76 static int find_extent_in_eb(const struct extent_buffer *eb,
77 			     u64 wanted_disk_byte, u64 extent_item_pos,
78 			     struct extent_inode_elem **eie,
79 			     bool ignore_offset)
80 {
81 	u64 disk_byte;
82 	struct btrfs_key key;
83 	struct btrfs_file_extent_item *fi;
84 	int slot;
85 	int nritems;
86 	int extent_type;
87 	int ret;
88 
89 	/*
90 	 * from the shared data ref, we only have the leaf but we need
91 	 * the key. thus, we must look into all items and see that we
92 	 * find one (some) with a reference to our extent item.
93 	 */
94 	nritems = btrfs_header_nritems(eb);
95 	for (slot = 0; slot < nritems; ++slot) {
96 		btrfs_item_key_to_cpu(eb, &key, slot);
97 		if (key.type != BTRFS_EXTENT_DATA_KEY)
98 			continue;
99 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 		extent_type = btrfs_file_extent_type(eb, fi);
101 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 			continue;
103 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 		if (disk_byte != wanted_disk_byte)
106 			continue;
107 
108 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 		if (ret < 0)
110 			return ret;
111 	}
112 
113 	return 0;
114 }
115 
116 struct preftree {
117 	struct rb_root_cached root;
118 	unsigned int count;
119 };
120 
121 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
122 
123 struct preftrees {
124 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 	struct preftree indirect_missing_keys;
127 };
128 
129 /*
130  * Checks for a shared extent during backref search.
131  *
132  * The share_count tracks prelim_refs (direct and indirect) having a
133  * ref->count >0:
134  *  - incremented when a ref->count transitions to >0
135  *  - decremented when a ref->count transitions to <1
136  */
137 struct share_check {
138 	u64 root_objectid;
139 	u64 inum;
140 	int share_count;
141 };
142 
143 static inline int extent_is_shared(struct share_check *sc)
144 {
145 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146 }
147 
148 static struct kmem_cache *btrfs_prelim_ref_cache;
149 
150 int __init btrfs_prelim_ref_init(void)
151 {
152 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153 					sizeof(struct prelim_ref),
154 					0,
155 					SLAB_MEM_SPREAD,
156 					NULL);
157 	if (!btrfs_prelim_ref_cache)
158 		return -ENOMEM;
159 	return 0;
160 }
161 
162 void __cold btrfs_prelim_ref_exit(void)
163 {
164 	kmem_cache_destroy(btrfs_prelim_ref_cache);
165 }
166 
167 static void free_pref(struct prelim_ref *ref)
168 {
169 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
170 }
171 
172 /*
173  * Return 0 when both refs are for the same block (and can be merged).
174  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175  * indicates a 'higher' block.
176  */
177 static int prelim_ref_compare(struct prelim_ref *ref1,
178 			      struct prelim_ref *ref2)
179 {
180 	if (ref1->level < ref2->level)
181 		return -1;
182 	if (ref1->level > ref2->level)
183 		return 1;
184 	if (ref1->root_id < ref2->root_id)
185 		return -1;
186 	if (ref1->root_id > ref2->root_id)
187 		return 1;
188 	if (ref1->key_for_search.type < ref2->key_for_search.type)
189 		return -1;
190 	if (ref1->key_for_search.type > ref2->key_for_search.type)
191 		return 1;
192 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193 		return -1;
194 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195 		return 1;
196 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197 		return -1;
198 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199 		return 1;
200 	if (ref1->parent < ref2->parent)
201 		return -1;
202 	if (ref1->parent > ref2->parent)
203 		return 1;
204 
205 	return 0;
206 }
207 
208 static void update_share_count(struct share_check *sc, int oldcount,
209 			       int newcount)
210 {
211 	if ((!sc) || (oldcount == 0 && newcount < 1))
212 		return;
213 
214 	if (oldcount > 0 && newcount < 1)
215 		sc->share_count--;
216 	else if (oldcount < 1 && newcount > 0)
217 		sc->share_count++;
218 }
219 
220 /*
221  * Add @newref to the @root rbtree, merging identical refs.
222  *
223  * Callers should assume that newref has been freed after calling.
224  */
225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226 			      struct preftree *preftree,
227 			      struct prelim_ref *newref,
228 			      struct share_check *sc)
229 {
230 	struct rb_root_cached *root;
231 	struct rb_node **p;
232 	struct rb_node *parent = NULL;
233 	struct prelim_ref *ref;
234 	int result;
235 	bool leftmost = true;
236 
237 	root = &preftree->root;
238 	p = &root->rb_root.rb_node;
239 
240 	while (*p) {
241 		parent = *p;
242 		ref = rb_entry(parent, struct prelim_ref, rbnode);
243 		result = prelim_ref_compare(ref, newref);
244 		if (result < 0) {
245 			p = &(*p)->rb_left;
246 		} else if (result > 0) {
247 			p = &(*p)->rb_right;
248 			leftmost = false;
249 		} else {
250 			/* Identical refs, merge them and free @newref */
251 			struct extent_inode_elem *eie = ref->inode_list;
252 
253 			while (eie && eie->next)
254 				eie = eie->next;
255 
256 			if (!eie)
257 				ref->inode_list = newref->inode_list;
258 			else
259 				eie->next = newref->inode_list;
260 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261 						     preftree->count);
262 			/*
263 			 * A delayed ref can have newref->count < 0.
264 			 * The ref->count is updated to follow any
265 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 			 */
267 			update_share_count(sc, ref->count,
268 					   ref->count + newref->count);
269 			ref->count += newref->count;
270 			free_pref(newref);
271 			return;
272 		}
273 	}
274 
275 	update_share_count(sc, 0, newref->count);
276 	preftree->count++;
277 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278 	rb_link_node(&newref->rbnode, parent, p);
279 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
280 }
281 
282 /*
283  * Release the entire tree.  We don't care about internal consistency so
284  * just free everything and then reset the tree root.
285  */
286 static void prelim_release(struct preftree *preftree)
287 {
288 	struct prelim_ref *ref, *next_ref;
289 
290 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
291 					     &preftree->root.rb_root, rbnode)
292 		free_pref(ref);
293 
294 	preftree->root = RB_ROOT_CACHED;
295 	preftree->count = 0;
296 }
297 
298 /*
299  * the rules for all callers of this function are:
300  * - obtaining the parent is the goal
301  * - if you add a key, you must know that it is a correct key
302  * - if you cannot add the parent or a correct key, then we will look into the
303  *   block later to set a correct key
304  *
305  * delayed refs
306  * ============
307  *        backref type | shared | indirect | shared | indirect
308  * information         |   tree |     tree |   data |     data
309  * --------------------+--------+----------+--------+----------
310  *      parent logical |    y   |     -    |    -   |     -
311  *      key to resolve |    -   |     y    |    y   |     y
312  *  tree block logical |    -   |     -    |    -   |     -
313  *  root for resolving |    y   |     y    |    y   |     y
314  *
315  * - column 1:       we've the parent -> done
316  * - column 2, 3, 4: we use the key to find the parent
317  *
318  * on disk refs (inline or keyed)
319  * ==============================
320  *        backref type | shared | indirect | shared | indirect
321  * information         |   tree |     tree |   data |     data
322  * --------------------+--------+----------+--------+----------
323  *      parent logical |    y   |     -    |    y   |     -
324  *      key to resolve |    -   |     -    |    -   |     y
325  *  tree block logical |    y   |     y    |    y   |     y
326  *  root for resolving |    -   |     y    |    y   |     y
327  *
328  * - column 1, 3: we've the parent -> done
329  * - column 2:    we take the first key from the block to find the parent
330  *                (see add_missing_keys)
331  * - column 4:    we use the key to find the parent
332  *
333  * additional information that's available but not required to find the parent
334  * block might help in merging entries to gain some speed.
335  */
336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
337 			  struct preftree *preftree, u64 root_id,
338 			  const struct btrfs_key *key, int level, u64 parent,
339 			  u64 wanted_disk_byte, int count,
340 			  struct share_check *sc, gfp_t gfp_mask)
341 {
342 	struct prelim_ref *ref;
343 
344 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
345 		return 0;
346 
347 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
348 	if (!ref)
349 		return -ENOMEM;
350 
351 	ref->root_id = root_id;
352 	if (key)
353 		ref->key_for_search = *key;
354 	else
355 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
356 
357 	ref->inode_list = NULL;
358 	ref->level = level;
359 	ref->count = count;
360 	ref->parent = parent;
361 	ref->wanted_disk_byte = wanted_disk_byte;
362 	prelim_ref_insert(fs_info, preftree, ref, sc);
363 	return extent_is_shared(sc);
364 }
365 
366 /* direct refs use root == 0, key == NULL */
367 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
368 			  struct preftrees *preftrees, int level, u64 parent,
369 			  u64 wanted_disk_byte, int count,
370 			  struct share_check *sc, gfp_t gfp_mask)
371 {
372 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
373 			      parent, wanted_disk_byte, count, sc, gfp_mask);
374 }
375 
376 /* indirect refs use parent == 0 */
377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
378 			    struct preftrees *preftrees, u64 root_id,
379 			    const struct btrfs_key *key, int level,
380 			    u64 wanted_disk_byte, int count,
381 			    struct share_check *sc, gfp_t gfp_mask)
382 {
383 	struct preftree *tree = &preftrees->indirect;
384 
385 	if (!key)
386 		tree = &preftrees->indirect_missing_keys;
387 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
388 			      wanted_disk_byte, count, sc, gfp_mask);
389 }
390 
391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
392 {
393 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
394 	struct rb_node *parent = NULL;
395 	struct prelim_ref *ref = NULL;
396 	struct prelim_ref target = {};
397 	int result;
398 
399 	target.parent = bytenr;
400 
401 	while (*p) {
402 		parent = *p;
403 		ref = rb_entry(parent, struct prelim_ref, rbnode);
404 		result = prelim_ref_compare(ref, &target);
405 
406 		if (result < 0)
407 			p = &(*p)->rb_left;
408 		else if (result > 0)
409 			p = &(*p)->rb_right;
410 		else
411 			return 1;
412 	}
413 	return 0;
414 }
415 
416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
417 			   struct ulist *parents,
418 			   struct preftrees *preftrees, struct prelim_ref *ref,
419 			   int level, u64 time_seq, const u64 *extent_item_pos,
420 			   bool ignore_offset)
421 {
422 	int ret = 0;
423 	int slot;
424 	struct extent_buffer *eb;
425 	struct btrfs_key key;
426 	struct btrfs_key *key_for_search = &ref->key_for_search;
427 	struct btrfs_file_extent_item *fi;
428 	struct extent_inode_elem *eie = NULL, *old = NULL;
429 	u64 disk_byte;
430 	u64 wanted_disk_byte = ref->wanted_disk_byte;
431 	u64 count = 0;
432 	u64 data_offset;
433 
434 	if (level != 0) {
435 		eb = path->nodes[level];
436 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
437 		if (ret < 0)
438 			return ret;
439 		return 0;
440 	}
441 
442 	/*
443 	 * 1. We normally enter this function with the path already pointing to
444 	 *    the first item to check. But sometimes, we may enter it with
445 	 *    slot == nritems.
446 	 * 2. We are searching for normal backref but bytenr of this leaf
447 	 *    matches shared data backref
448 	 * 3. The leaf owner is not equal to the root we are searching
449 	 *
450 	 * For these cases, go to the next leaf before we continue.
451 	 */
452 	eb = path->nodes[0];
453 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
454 	    is_shared_data_backref(preftrees, eb->start) ||
455 	    ref->root_id != btrfs_header_owner(eb)) {
456 		if (time_seq == BTRFS_SEQ_LAST)
457 			ret = btrfs_next_leaf(root, path);
458 		else
459 			ret = btrfs_next_old_leaf(root, path, time_seq);
460 	}
461 
462 	while (!ret && count < ref->count) {
463 		eb = path->nodes[0];
464 		slot = path->slots[0];
465 
466 		btrfs_item_key_to_cpu(eb, &key, slot);
467 
468 		if (key.objectid != key_for_search->objectid ||
469 		    key.type != BTRFS_EXTENT_DATA_KEY)
470 			break;
471 
472 		/*
473 		 * We are searching for normal backref but bytenr of this leaf
474 		 * matches shared data backref, OR
475 		 * the leaf owner is not equal to the root we are searching for
476 		 */
477 		if (slot == 0 &&
478 		    (is_shared_data_backref(preftrees, eb->start) ||
479 		     ref->root_id != btrfs_header_owner(eb))) {
480 			if (time_seq == BTRFS_SEQ_LAST)
481 				ret = btrfs_next_leaf(root, path);
482 			else
483 				ret = btrfs_next_old_leaf(root, path, time_seq);
484 			continue;
485 		}
486 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
487 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
488 		data_offset = btrfs_file_extent_offset(eb, fi);
489 
490 		if (disk_byte == wanted_disk_byte) {
491 			eie = NULL;
492 			old = NULL;
493 			if (ref->key_for_search.offset == key.offset - data_offset)
494 				count++;
495 			else
496 				goto next;
497 			if (extent_item_pos) {
498 				ret = check_extent_in_eb(&key, eb, fi,
499 						*extent_item_pos,
500 						&eie, ignore_offset);
501 				if (ret < 0)
502 					break;
503 			}
504 			if (ret > 0)
505 				goto next;
506 			ret = ulist_add_merge_ptr(parents, eb->start,
507 						  eie, (void **)&old, GFP_NOFS);
508 			if (ret < 0)
509 				break;
510 			if (!ret && extent_item_pos) {
511 				while (old->next)
512 					old = old->next;
513 				old->next = eie;
514 			}
515 			eie = NULL;
516 		}
517 next:
518 		if (time_seq == BTRFS_SEQ_LAST)
519 			ret = btrfs_next_item(root, path);
520 		else
521 			ret = btrfs_next_old_item(root, path, time_seq);
522 	}
523 
524 	if (ret > 0)
525 		ret = 0;
526 	else if (ret < 0)
527 		free_inode_elem_list(eie);
528 	return ret;
529 }
530 
531 /*
532  * resolve an indirect backref in the form (root_id, key, level)
533  * to a logical address
534  */
535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
536 				struct btrfs_path *path, u64 time_seq,
537 				struct preftrees *preftrees,
538 				struct prelim_ref *ref, struct ulist *parents,
539 				const u64 *extent_item_pos, bool ignore_offset)
540 {
541 	struct btrfs_root *root;
542 	struct extent_buffer *eb;
543 	int ret = 0;
544 	int root_level;
545 	int level = ref->level;
546 	struct btrfs_key search_key = ref->key_for_search;
547 
548 	/*
549 	 * If we're search_commit_root we could possibly be holding locks on
550 	 * other tree nodes.  This happens when qgroups does backref walks when
551 	 * adding new delayed refs.  To deal with this we need to look in cache
552 	 * for the root, and if we don't find it then we need to search the
553 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
554 	 * here.
555 	 */
556 	if (path->search_commit_root)
557 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
558 	else
559 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
560 	if (IS_ERR(root)) {
561 		ret = PTR_ERR(root);
562 		goto out_free;
563 	}
564 
565 	if (!path->search_commit_root &&
566 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
567 		ret = -ENOENT;
568 		goto out;
569 	}
570 
571 	if (btrfs_is_testing(fs_info)) {
572 		ret = -ENOENT;
573 		goto out;
574 	}
575 
576 	if (path->search_commit_root)
577 		root_level = btrfs_header_level(root->commit_root);
578 	else if (time_seq == BTRFS_SEQ_LAST)
579 		root_level = btrfs_header_level(root->node);
580 	else
581 		root_level = btrfs_old_root_level(root, time_seq);
582 
583 	if (root_level + 1 == level)
584 		goto out;
585 
586 	/*
587 	 * We can often find data backrefs with an offset that is too large
588 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
589 	 * subtracting a file's offset with the data offset of its
590 	 * corresponding extent data item. This can happen for example in the
591 	 * clone ioctl.
592 	 *
593 	 * So if we detect such case we set the search key's offset to zero to
594 	 * make sure we will find the matching file extent item at
595 	 * add_all_parents(), otherwise we will miss it because the offset
596 	 * taken form the backref is much larger then the offset of the file
597 	 * extent item. This can make us scan a very large number of file
598 	 * extent items, but at least it will not make us miss any.
599 	 *
600 	 * This is an ugly workaround for a behaviour that should have never
601 	 * existed, but it does and a fix for the clone ioctl would touch a lot
602 	 * of places, cause backwards incompatibility and would not fix the
603 	 * problem for extents cloned with older kernels.
604 	 */
605 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
606 	    search_key.offset >= LLONG_MAX)
607 		search_key.offset = 0;
608 	path->lowest_level = level;
609 	if (time_seq == BTRFS_SEQ_LAST)
610 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
611 	else
612 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
613 
614 	btrfs_debug(fs_info,
615 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
616 		 ref->root_id, level, ref->count, ret,
617 		 ref->key_for_search.objectid, ref->key_for_search.type,
618 		 ref->key_for_search.offset);
619 	if (ret < 0)
620 		goto out;
621 
622 	eb = path->nodes[level];
623 	while (!eb) {
624 		if (WARN_ON(!level)) {
625 			ret = 1;
626 			goto out;
627 		}
628 		level--;
629 		eb = path->nodes[level];
630 	}
631 
632 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
633 			      time_seq, extent_item_pos, ignore_offset);
634 out:
635 	btrfs_put_root(root);
636 out_free:
637 	path->lowest_level = 0;
638 	btrfs_release_path(path);
639 	return ret;
640 }
641 
642 static struct extent_inode_elem *
643 unode_aux_to_inode_list(struct ulist_node *node)
644 {
645 	if (!node)
646 		return NULL;
647 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
648 }
649 
650 /*
651  * We maintain three separate rbtrees: one for direct refs, one for
652  * indirect refs which have a key, and one for indirect refs which do not
653  * have a key. Each tree does merge on insertion.
654  *
655  * Once all of the references are located, we iterate over the tree of
656  * indirect refs with missing keys. An appropriate key is located and
657  * the ref is moved onto the tree for indirect refs. After all missing
658  * keys are thus located, we iterate over the indirect ref tree, resolve
659  * each reference, and then insert the resolved reference onto the
660  * direct tree (merging there too).
661  *
662  * New backrefs (i.e., for parent nodes) are added to the appropriate
663  * rbtree as they are encountered. The new backrefs are subsequently
664  * resolved as above.
665  */
666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
667 				 struct btrfs_path *path, u64 time_seq,
668 				 struct preftrees *preftrees,
669 				 const u64 *extent_item_pos,
670 				 struct share_check *sc, bool ignore_offset)
671 {
672 	int err;
673 	int ret = 0;
674 	struct ulist *parents;
675 	struct ulist_node *node;
676 	struct ulist_iterator uiter;
677 	struct rb_node *rnode;
678 
679 	parents = ulist_alloc(GFP_NOFS);
680 	if (!parents)
681 		return -ENOMEM;
682 
683 	/*
684 	 * We could trade memory usage for performance here by iterating
685 	 * the tree, allocating new refs for each insertion, and then
686 	 * freeing the entire indirect tree when we're done.  In some test
687 	 * cases, the tree can grow quite large (~200k objects).
688 	 */
689 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
690 		struct prelim_ref *ref;
691 
692 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
693 		if (WARN(ref->parent,
694 			 "BUG: direct ref found in indirect tree")) {
695 			ret = -EINVAL;
696 			goto out;
697 		}
698 
699 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
700 		preftrees->indirect.count--;
701 
702 		if (ref->count == 0) {
703 			free_pref(ref);
704 			continue;
705 		}
706 
707 		if (sc && sc->root_objectid &&
708 		    ref->root_id != sc->root_objectid) {
709 			free_pref(ref);
710 			ret = BACKREF_FOUND_SHARED;
711 			goto out;
712 		}
713 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
714 					   ref, parents, extent_item_pos,
715 					   ignore_offset);
716 		/*
717 		 * we can only tolerate ENOENT,otherwise,we should catch error
718 		 * and return directly.
719 		 */
720 		if (err == -ENOENT) {
721 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
722 					  NULL);
723 			continue;
724 		} else if (err) {
725 			free_pref(ref);
726 			ret = err;
727 			goto out;
728 		}
729 
730 		/* we put the first parent into the ref at hand */
731 		ULIST_ITER_INIT(&uiter);
732 		node = ulist_next(parents, &uiter);
733 		ref->parent = node ? node->val : 0;
734 		ref->inode_list = unode_aux_to_inode_list(node);
735 
736 		/* Add a prelim_ref(s) for any other parent(s). */
737 		while ((node = ulist_next(parents, &uiter))) {
738 			struct prelim_ref *new_ref;
739 
740 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
741 						   GFP_NOFS);
742 			if (!new_ref) {
743 				free_pref(ref);
744 				ret = -ENOMEM;
745 				goto out;
746 			}
747 			memcpy(new_ref, ref, sizeof(*ref));
748 			new_ref->parent = node->val;
749 			new_ref->inode_list = unode_aux_to_inode_list(node);
750 			prelim_ref_insert(fs_info, &preftrees->direct,
751 					  new_ref, NULL);
752 		}
753 
754 		/*
755 		 * Now it's a direct ref, put it in the direct tree. We must
756 		 * do this last because the ref could be merged/freed here.
757 		 */
758 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
759 
760 		ulist_reinit(parents);
761 		cond_resched();
762 	}
763 out:
764 	ulist_free(parents);
765 	return ret;
766 }
767 
768 /*
769  * read tree blocks and add keys where required.
770  */
771 static int add_missing_keys(struct btrfs_fs_info *fs_info,
772 			    struct preftrees *preftrees, bool lock)
773 {
774 	struct prelim_ref *ref;
775 	struct extent_buffer *eb;
776 	struct preftree *tree = &preftrees->indirect_missing_keys;
777 	struct rb_node *node;
778 
779 	while ((node = rb_first_cached(&tree->root))) {
780 		ref = rb_entry(node, struct prelim_ref, rbnode);
781 		rb_erase_cached(node, &tree->root);
782 
783 		BUG_ON(ref->parent);	/* should not be a direct ref */
784 		BUG_ON(ref->key_for_search.type);
785 		BUG_ON(!ref->wanted_disk_byte);
786 
787 		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
788 				     ref->root_id, 0, ref->level - 1, NULL);
789 		if (IS_ERR(eb)) {
790 			free_pref(ref);
791 			return PTR_ERR(eb);
792 		}
793 		if (!extent_buffer_uptodate(eb)) {
794 			free_pref(ref);
795 			free_extent_buffer(eb);
796 			return -EIO;
797 		}
798 
799 		if (lock)
800 			btrfs_tree_read_lock(eb);
801 		if (btrfs_header_level(eb) == 0)
802 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
803 		else
804 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
805 		if (lock)
806 			btrfs_tree_read_unlock(eb);
807 		free_extent_buffer(eb);
808 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
809 		cond_resched();
810 	}
811 	return 0;
812 }
813 
814 /*
815  * add all currently queued delayed refs from this head whose seq nr is
816  * smaller or equal that seq to the list
817  */
818 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
819 			    struct btrfs_delayed_ref_head *head, u64 seq,
820 			    struct preftrees *preftrees, struct share_check *sc)
821 {
822 	struct btrfs_delayed_ref_node *node;
823 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
824 	struct btrfs_key key;
825 	struct btrfs_key tmp_op_key;
826 	struct rb_node *n;
827 	int count;
828 	int ret = 0;
829 
830 	if (extent_op && extent_op->update_key)
831 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
832 
833 	spin_lock(&head->lock);
834 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
835 		node = rb_entry(n, struct btrfs_delayed_ref_node,
836 				ref_node);
837 		if (node->seq > seq)
838 			continue;
839 
840 		switch (node->action) {
841 		case BTRFS_ADD_DELAYED_EXTENT:
842 		case BTRFS_UPDATE_DELAYED_HEAD:
843 			WARN_ON(1);
844 			continue;
845 		case BTRFS_ADD_DELAYED_REF:
846 			count = node->ref_mod;
847 			break;
848 		case BTRFS_DROP_DELAYED_REF:
849 			count = node->ref_mod * -1;
850 			break;
851 		default:
852 			BUG();
853 		}
854 		switch (node->type) {
855 		case BTRFS_TREE_BLOCK_REF_KEY: {
856 			/* NORMAL INDIRECT METADATA backref */
857 			struct btrfs_delayed_tree_ref *ref;
858 
859 			ref = btrfs_delayed_node_to_tree_ref(node);
860 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
861 					       &tmp_op_key, ref->level + 1,
862 					       node->bytenr, count, sc,
863 					       GFP_ATOMIC);
864 			break;
865 		}
866 		case BTRFS_SHARED_BLOCK_REF_KEY: {
867 			/* SHARED DIRECT METADATA backref */
868 			struct btrfs_delayed_tree_ref *ref;
869 
870 			ref = btrfs_delayed_node_to_tree_ref(node);
871 
872 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
873 					     ref->parent, node->bytenr, count,
874 					     sc, GFP_ATOMIC);
875 			break;
876 		}
877 		case BTRFS_EXTENT_DATA_REF_KEY: {
878 			/* NORMAL INDIRECT DATA backref */
879 			struct btrfs_delayed_data_ref *ref;
880 			ref = btrfs_delayed_node_to_data_ref(node);
881 
882 			key.objectid = ref->objectid;
883 			key.type = BTRFS_EXTENT_DATA_KEY;
884 			key.offset = ref->offset;
885 
886 			/*
887 			 * Found a inum that doesn't match our known inum, we
888 			 * know it's shared.
889 			 */
890 			if (sc && sc->inum && ref->objectid != sc->inum) {
891 				ret = BACKREF_FOUND_SHARED;
892 				goto out;
893 			}
894 
895 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
896 					       &key, 0, node->bytenr, count, sc,
897 					       GFP_ATOMIC);
898 			break;
899 		}
900 		case BTRFS_SHARED_DATA_REF_KEY: {
901 			/* SHARED DIRECT FULL backref */
902 			struct btrfs_delayed_data_ref *ref;
903 
904 			ref = btrfs_delayed_node_to_data_ref(node);
905 
906 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
907 					     node->bytenr, count, sc,
908 					     GFP_ATOMIC);
909 			break;
910 		}
911 		default:
912 			WARN_ON(1);
913 		}
914 		/*
915 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
916 		 * refs have been checked.
917 		 */
918 		if (ret && (ret != BACKREF_FOUND_SHARED))
919 			break;
920 	}
921 	if (!ret)
922 		ret = extent_is_shared(sc);
923 out:
924 	spin_unlock(&head->lock);
925 	return ret;
926 }
927 
928 /*
929  * add all inline backrefs for bytenr to the list
930  *
931  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
932  */
933 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
934 			   struct btrfs_path *path, u64 bytenr,
935 			   int *info_level, struct preftrees *preftrees,
936 			   struct share_check *sc)
937 {
938 	int ret = 0;
939 	int slot;
940 	struct extent_buffer *leaf;
941 	struct btrfs_key key;
942 	struct btrfs_key found_key;
943 	unsigned long ptr;
944 	unsigned long end;
945 	struct btrfs_extent_item *ei;
946 	u64 flags;
947 	u64 item_size;
948 
949 	/*
950 	 * enumerate all inline refs
951 	 */
952 	leaf = path->nodes[0];
953 	slot = path->slots[0];
954 
955 	item_size = btrfs_item_size(leaf, slot);
956 	BUG_ON(item_size < sizeof(*ei));
957 
958 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
959 	flags = btrfs_extent_flags(leaf, ei);
960 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
961 
962 	ptr = (unsigned long)(ei + 1);
963 	end = (unsigned long)ei + item_size;
964 
965 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
966 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
967 		struct btrfs_tree_block_info *info;
968 
969 		info = (struct btrfs_tree_block_info *)ptr;
970 		*info_level = btrfs_tree_block_level(leaf, info);
971 		ptr += sizeof(struct btrfs_tree_block_info);
972 		BUG_ON(ptr > end);
973 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
974 		*info_level = found_key.offset;
975 	} else {
976 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
977 	}
978 
979 	while (ptr < end) {
980 		struct btrfs_extent_inline_ref *iref;
981 		u64 offset;
982 		int type;
983 
984 		iref = (struct btrfs_extent_inline_ref *)ptr;
985 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
986 							BTRFS_REF_TYPE_ANY);
987 		if (type == BTRFS_REF_TYPE_INVALID)
988 			return -EUCLEAN;
989 
990 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
991 
992 		switch (type) {
993 		case BTRFS_SHARED_BLOCK_REF_KEY:
994 			ret = add_direct_ref(fs_info, preftrees,
995 					     *info_level + 1, offset,
996 					     bytenr, 1, NULL, GFP_NOFS);
997 			break;
998 		case BTRFS_SHARED_DATA_REF_KEY: {
999 			struct btrfs_shared_data_ref *sdref;
1000 			int count;
1001 
1002 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1003 			count = btrfs_shared_data_ref_count(leaf, sdref);
1004 
1005 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1006 					     bytenr, count, sc, GFP_NOFS);
1007 			break;
1008 		}
1009 		case BTRFS_TREE_BLOCK_REF_KEY:
1010 			ret = add_indirect_ref(fs_info, preftrees, offset,
1011 					       NULL, *info_level + 1,
1012 					       bytenr, 1, NULL, GFP_NOFS);
1013 			break;
1014 		case BTRFS_EXTENT_DATA_REF_KEY: {
1015 			struct btrfs_extent_data_ref *dref;
1016 			int count;
1017 			u64 root;
1018 
1019 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1020 			count = btrfs_extent_data_ref_count(leaf, dref);
1021 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1022 								      dref);
1023 			key.type = BTRFS_EXTENT_DATA_KEY;
1024 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1025 
1026 			if (sc && sc->inum && key.objectid != sc->inum) {
1027 				ret = BACKREF_FOUND_SHARED;
1028 				break;
1029 			}
1030 
1031 			root = btrfs_extent_data_ref_root(leaf, dref);
1032 
1033 			ret = add_indirect_ref(fs_info, preftrees, root,
1034 					       &key, 0, bytenr, count,
1035 					       sc, GFP_NOFS);
1036 			break;
1037 		}
1038 		default:
1039 			WARN_ON(1);
1040 		}
1041 		if (ret)
1042 			return ret;
1043 		ptr += btrfs_extent_inline_ref_size(type);
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 /*
1050  * add all non-inline backrefs for bytenr to the list
1051  *
1052  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1053  */
1054 static int add_keyed_refs(struct btrfs_root *extent_root,
1055 			  struct btrfs_path *path, u64 bytenr,
1056 			  int info_level, struct preftrees *preftrees,
1057 			  struct share_check *sc)
1058 {
1059 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1060 	int ret;
1061 	int slot;
1062 	struct extent_buffer *leaf;
1063 	struct btrfs_key key;
1064 
1065 	while (1) {
1066 		ret = btrfs_next_item(extent_root, path);
1067 		if (ret < 0)
1068 			break;
1069 		if (ret) {
1070 			ret = 0;
1071 			break;
1072 		}
1073 
1074 		slot = path->slots[0];
1075 		leaf = path->nodes[0];
1076 		btrfs_item_key_to_cpu(leaf, &key, slot);
1077 
1078 		if (key.objectid != bytenr)
1079 			break;
1080 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1081 			continue;
1082 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1083 			break;
1084 
1085 		switch (key.type) {
1086 		case BTRFS_SHARED_BLOCK_REF_KEY:
1087 			/* SHARED DIRECT METADATA backref */
1088 			ret = add_direct_ref(fs_info, preftrees,
1089 					     info_level + 1, key.offset,
1090 					     bytenr, 1, NULL, GFP_NOFS);
1091 			break;
1092 		case BTRFS_SHARED_DATA_REF_KEY: {
1093 			/* SHARED DIRECT FULL backref */
1094 			struct btrfs_shared_data_ref *sdref;
1095 			int count;
1096 
1097 			sdref = btrfs_item_ptr(leaf, slot,
1098 					      struct btrfs_shared_data_ref);
1099 			count = btrfs_shared_data_ref_count(leaf, sdref);
1100 			ret = add_direct_ref(fs_info, preftrees, 0,
1101 					     key.offset, bytenr, count,
1102 					     sc, GFP_NOFS);
1103 			break;
1104 		}
1105 		case BTRFS_TREE_BLOCK_REF_KEY:
1106 			/* NORMAL INDIRECT METADATA backref */
1107 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1108 					       NULL, info_level + 1, bytenr,
1109 					       1, NULL, GFP_NOFS);
1110 			break;
1111 		case BTRFS_EXTENT_DATA_REF_KEY: {
1112 			/* NORMAL INDIRECT DATA backref */
1113 			struct btrfs_extent_data_ref *dref;
1114 			int count;
1115 			u64 root;
1116 
1117 			dref = btrfs_item_ptr(leaf, slot,
1118 					      struct btrfs_extent_data_ref);
1119 			count = btrfs_extent_data_ref_count(leaf, dref);
1120 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1121 								      dref);
1122 			key.type = BTRFS_EXTENT_DATA_KEY;
1123 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1124 
1125 			if (sc && sc->inum && key.objectid != sc->inum) {
1126 				ret = BACKREF_FOUND_SHARED;
1127 				break;
1128 			}
1129 
1130 			root = btrfs_extent_data_ref_root(leaf, dref);
1131 			ret = add_indirect_ref(fs_info, preftrees, root,
1132 					       &key, 0, bytenr, count,
1133 					       sc, GFP_NOFS);
1134 			break;
1135 		}
1136 		default:
1137 			WARN_ON(1);
1138 		}
1139 		if (ret)
1140 			return ret;
1141 
1142 	}
1143 
1144 	return ret;
1145 }
1146 
1147 /*
1148  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1149  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1150  * indirect refs to their parent bytenr.
1151  * When roots are found, they're added to the roots list
1152  *
1153  * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1154  * behave much like trans == NULL case, the difference only lies in it will not
1155  * commit root.
1156  * The special case is for qgroup to search roots in commit_transaction().
1157  *
1158  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1159  * shared extent is detected.
1160  *
1161  * Otherwise this returns 0 for success and <0 for an error.
1162  *
1163  * If ignore_offset is set to false, only extent refs whose offsets match
1164  * extent_item_pos are returned.  If true, every extent ref is returned
1165  * and extent_item_pos is ignored.
1166  *
1167  * FIXME some caching might speed things up
1168  */
1169 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1170 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1171 			     u64 time_seq, struct ulist *refs,
1172 			     struct ulist *roots, const u64 *extent_item_pos,
1173 			     struct share_check *sc, bool ignore_offset)
1174 {
1175 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
1176 	struct btrfs_key key;
1177 	struct btrfs_path *path;
1178 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1179 	struct btrfs_delayed_ref_head *head;
1180 	int info_level = 0;
1181 	int ret;
1182 	struct prelim_ref *ref;
1183 	struct rb_node *node;
1184 	struct extent_inode_elem *eie = NULL;
1185 	struct preftrees preftrees = {
1186 		.direct = PREFTREE_INIT,
1187 		.indirect = PREFTREE_INIT,
1188 		.indirect_missing_keys = PREFTREE_INIT
1189 	};
1190 
1191 	key.objectid = bytenr;
1192 	key.offset = (u64)-1;
1193 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1194 		key.type = BTRFS_METADATA_ITEM_KEY;
1195 	else
1196 		key.type = BTRFS_EXTENT_ITEM_KEY;
1197 
1198 	path = btrfs_alloc_path();
1199 	if (!path)
1200 		return -ENOMEM;
1201 	if (!trans) {
1202 		path->search_commit_root = 1;
1203 		path->skip_locking = 1;
1204 	}
1205 
1206 	if (time_seq == BTRFS_SEQ_LAST)
1207 		path->skip_locking = 1;
1208 
1209 again:
1210 	head = NULL;
1211 
1212 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1213 	if (ret < 0)
1214 		goto out;
1215 	if (ret == 0) {
1216 		/* This shouldn't happen, indicates a bug or fs corruption. */
1217 		ASSERT(ret != 0);
1218 		ret = -EUCLEAN;
1219 		goto out;
1220 	}
1221 
1222 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1223 	    time_seq != BTRFS_SEQ_LAST) {
1224 		/*
1225 		 * We have a specific time_seq we care about and trans which
1226 		 * means we have the path lock, we need to grab the ref head and
1227 		 * lock it so we have a consistent view of the refs at the given
1228 		 * time.
1229 		 */
1230 		delayed_refs = &trans->transaction->delayed_refs;
1231 		spin_lock(&delayed_refs->lock);
1232 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1233 		if (head) {
1234 			if (!mutex_trylock(&head->mutex)) {
1235 				refcount_inc(&head->refs);
1236 				spin_unlock(&delayed_refs->lock);
1237 
1238 				btrfs_release_path(path);
1239 
1240 				/*
1241 				 * Mutex was contended, block until it's
1242 				 * released and try again
1243 				 */
1244 				mutex_lock(&head->mutex);
1245 				mutex_unlock(&head->mutex);
1246 				btrfs_put_delayed_ref_head(head);
1247 				goto again;
1248 			}
1249 			spin_unlock(&delayed_refs->lock);
1250 			ret = add_delayed_refs(fs_info, head, time_seq,
1251 					       &preftrees, sc);
1252 			mutex_unlock(&head->mutex);
1253 			if (ret)
1254 				goto out;
1255 		} else {
1256 			spin_unlock(&delayed_refs->lock);
1257 		}
1258 	}
1259 
1260 	if (path->slots[0]) {
1261 		struct extent_buffer *leaf;
1262 		int slot;
1263 
1264 		path->slots[0]--;
1265 		leaf = path->nodes[0];
1266 		slot = path->slots[0];
1267 		btrfs_item_key_to_cpu(leaf, &key, slot);
1268 		if (key.objectid == bytenr &&
1269 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1270 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1271 			ret = add_inline_refs(fs_info, path, bytenr,
1272 					      &info_level, &preftrees, sc);
1273 			if (ret)
1274 				goto out;
1275 			ret = add_keyed_refs(root, path, bytenr, info_level,
1276 					     &preftrees, sc);
1277 			if (ret)
1278 				goto out;
1279 		}
1280 	}
1281 
1282 	btrfs_release_path(path);
1283 
1284 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1285 	if (ret)
1286 		goto out;
1287 
1288 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1289 
1290 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1291 				    extent_item_pos, sc, ignore_offset);
1292 	if (ret)
1293 		goto out;
1294 
1295 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1296 
1297 	/*
1298 	 * This walks the tree of merged and resolved refs. Tree blocks are
1299 	 * read in as needed. Unique entries are added to the ulist, and
1300 	 * the list of found roots is updated.
1301 	 *
1302 	 * We release the entire tree in one go before returning.
1303 	 */
1304 	node = rb_first_cached(&preftrees.direct.root);
1305 	while (node) {
1306 		ref = rb_entry(node, struct prelim_ref, rbnode);
1307 		node = rb_next(&ref->rbnode);
1308 		/*
1309 		 * ref->count < 0 can happen here if there are delayed
1310 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1311 		 * prelim_ref_insert() relies on this when merging
1312 		 * identical refs to keep the overall count correct.
1313 		 * prelim_ref_insert() will merge only those refs
1314 		 * which compare identically.  Any refs having
1315 		 * e.g. different offsets would not be merged,
1316 		 * and would retain their original ref->count < 0.
1317 		 */
1318 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1319 			if (sc && sc->root_objectid &&
1320 			    ref->root_id != sc->root_objectid) {
1321 				ret = BACKREF_FOUND_SHARED;
1322 				goto out;
1323 			}
1324 
1325 			/* no parent == root of tree */
1326 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1327 			if (ret < 0)
1328 				goto out;
1329 		}
1330 		if (ref->count && ref->parent) {
1331 			if (extent_item_pos && !ref->inode_list &&
1332 			    ref->level == 0) {
1333 				struct extent_buffer *eb;
1334 
1335 				eb = read_tree_block(fs_info, ref->parent, 0,
1336 						     0, ref->level, NULL);
1337 				if (IS_ERR(eb)) {
1338 					ret = PTR_ERR(eb);
1339 					goto out;
1340 				}
1341 				if (!extent_buffer_uptodate(eb)) {
1342 					free_extent_buffer(eb);
1343 					ret = -EIO;
1344 					goto out;
1345 				}
1346 
1347 				if (!path->skip_locking)
1348 					btrfs_tree_read_lock(eb);
1349 				ret = find_extent_in_eb(eb, bytenr,
1350 							*extent_item_pos, &eie, ignore_offset);
1351 				if (!path->skip_locking)
1352 					btrfs_tree_read_unlock(eb);
1353 				free_extent_buffer(eb);
1354 				if (ret < 0)
1355 					goto out;
1356 				ref->inode_list = eie;
1357 			}
1358 			ret = ulist_add_merge_ptr(refs, ref->parent,
1359 						  ref->inode_list,
1360 						  (void **)&eie, GFP_NOFS);
1361 			if (ret < 0)
1362 				goto out;
1363 			if (!ret && extent_item_pos) {
1364 				/*
1365 				 * We've recorded that parent, so we must extend
1366 				 * its inode list here.
1367 				 *
1368 				 * However if there was corruption we may not
1369 				 * have found an eie, return an error in this
1370 				 * case.
1371 				 */
1372 				ASSERT(eie);
1373 				if (!eie) {
1374 					ret = -EUCLEAN;
1375 					goto out;
1376 				}
1377 				while (eie->next)
1378 					eie = eie->next;
1379 				eie->next = ref->inode_list;
1380 			}
1381 			eie = NULL;
1382 		}
1383 		cond_resched();
1384 	}
1385 
1386 out:
1387 	btrfs_free_path(path);
1388 
1389 	prelim_release(&preftrees.direct);
1390 	prelim_release(&preftrees.indirect);
1391 	prelim_release(&preftrees.indirect_missing_keys);
1392 
1393 	if (ret < 0)
1394 		free_inode_elem_list(eie);
1395 	return ret;
1396 }
1397 
1398 static void free_leaf_list(struct ulist *blocks)
1399 {
1400 	struct ulist_node *node = NULL;
1401 	struct extent_inode_elem *eie;
1402 	struct ulist_iterator uiter;
1403 
1404 	ULIST_ITER_INIT(&uiter);
1405 	while ((node = ulist_next(blocks, &uiter))) {
1406 		if (!node->aux)
1407 			continue;
1408 		eie = unode_aux_to_inode_list(node);
1409 		free_inode_elem_list(eie);
1410 		node->aux = 0;
1411 	}
1412 
1413 	ulist_free(blocks);
1414 }
1415 
1416 /*
1417  * Finds all leafs with a reference to the specified combination of bytenr and
1418  * offset. key_list_head will point to a list of corresponding keys (caller must
1419  * free each list element). The leafs will be stored in the leafs ulist, which
1420  * must be freed with ulist_free.
1421  *
1422  * returns 0 on success, <0 on error
1423  */
1424 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1425 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1426 			 u64 time_seq, struct ulist **leafs,
1427 			 const u64 *extent_item_pos, bool ignore_offset)
1428 {
1429 	int ret;
1430 
1431 	*leafs = ulist_alloc(GFP_NOFS);
1432 	if (!*leafs)
1433 		return -ENOMEM;
1434 
1435 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1436 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1437 	if (ret < 0 && ret != -ENOENT) {
1438 		free_leaf_list(*leafs);
1439 		return ret;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 /*
1446  * walk all backrefs for a given extent to find all roots that reference this
1447  * extent. Walking a backref means finding all extents that reference this
1448  * extent and in turn walk the backrefs of those, too. Naturally this is a
1449  * recursive process, but here it is implemented in an iterative fashion: We
1450  * find all referencing extents for the extent in question and put them on a
1451  * list. In turn, we find all referencing extents for those, further appending
1452  * to the list. The way we iterate the list allows adding more elements after
1453  * the current while iterating. The process stops when we reach the end of the
1454  * list. Found roots are added to the roots list.
1455  *
1456  * returns 0 on success, < 0 on error.
1457  */
1458 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1459 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1460 				     u64 time_seq, struct ulist **roots,
1461 				     bool ignore_offset)
1462 {
1463 	struct ulist *tmp;
1464 	struct ulist_node *node = NULL;
1465 	struct ulist_iterator uiter;
1466 	int ret;
1467 
1468 	tmp = ulist_alloc(GFP_NOFS);
1469 	if (!tmp)
1470 		return -ENOMEM;
1471 	*roots = ulist_alloc(GFP_NOFS);
1472 	if (!*roots) {
1473 		ulist_free(tmp);
1474 		return -ENOMEM;
1475 	}
1476 
1477 	ULIST_ITER_INIT(&uiter);
1478 	while (1) {
1479 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1480 					tmp, *roots, NULL, NULL, ignore_offset);
1481 		if (ret < 0 && ret != -ENOENT) {
1482 			ulist_free(tmp);
1483 			ulist_free(*roots);
1484 			*roots = NULL;
1485 			return ret;
1486 		}
1487 		node = ulist_next(tmp, &uiter);
1488 		if (!node)
1489 			break;
1490 		bytenr = node->val;
1491 		cond_resched();
1492 	}
1493 
1494 	ulist_free(tmp);
1495 	return 0;
1496 }
1497 
1498 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1499 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1500 			 u64 time_seq, struct ulist **roots,
1501 			 bool skip_commit_root_sem)
1502 {
1503 	int ret;
1504 
1505 	if (!trans && !skip_commit_root_sem)
1506 		down_read(&fs_info->commit_root_sem);
1507 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1508 					time_seq, roots, false);
1509 	if (!trans && !skip_commit_root_sem)
1510 		up_read(&fs_info->commit_root_sem);
1511 	return ret;
1512 }
1513 
1514 /**
1515  * Check if an extent is shared or not
1516  *
1517  * @root:   root inode belongs to
1518  * @inum:   inode number of the inode whose extent we are checking
1519  * @bytenr: logical bytenr of the extent we are checking
1520  * @roots:  list of roots this extent is shared among
1521  * @tmp:    temporary list used for iteration
1522  *
1523  * btrfs_check_shared uses the backref walking code but will short
1524  * circuit as soon as it finds a root or inode that doesn't match the
1525  * one passed in. This provides a significant performance benefit for
1526  * callers (such as fiemap) which want to know whether the extent is
1527  * shared but do not need a ref count.
1528  *
1529  * This attempts to attach to the running transaction in order to account for
1530  * delayed refs, but continues on even when no running transaction exists.
1531  *
1532  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1533  */
1534 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1535 		struct ulist *roots, struct ulist *tmp)
1536 {
1537 	struct btrfs_fs_info *fs_info = root->fs_info;
1538 	struct btrfs_trans_handle *trans;
1539 	struct ulist_iterator uiter;
1540 	struct ulist_node *node;
1541 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1542 	int ret = 0;
1543 	struct share_check shared = {
1544 		.root_objectid = root->root_key.objectid,
1545 		.inum = inum,
1546 		.share_count = 0,
1547 	};
1548 
1549 	ulist_init(roots);
1550 	ulist_init(tmp);
1551 
1552 	trans = btrfs_join_transaction_nostart(root);
1553 	if (IS_ERR(trans)) {
1554 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1555 			ret = PTR_ERR(trans);
1556 			goto out;
1557 		}
1558 		trans = NULL;
1559 		down_read(&fs_info->commit_root_sem);
1560 	} else {
1561 		btrfs_get_tree_mod_seq(fs_info, &elem);
1562 	}
1563 
1564 	ULIST_ITER_INIT(&uiter);
1565 	while (1) {
1566 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1567 					roots, NULL, &shared, false);
1568 		if (ret == BACKREF_FOUND_SHARED) {
1569 			/* this is the only condition under which we return 1 */
1570 			ret = 1;
1571 			break;
1572 		}
1573 		if (ret < 0 && ret != -ENOENT)
1574 			break;
1575 		ret = 0;
1576 		node = ulist_next(tmp, &uiter);
1577 		if (!node)
1578 			break;
1579 		bytenr = node->val;
1580 		shared.share_count = 0;
1581 		cond_resched();
1582 	}
1583 
1584 	if (trans) {
1585 		btrfs_put_tree_mod_seq(fs_info, &elem);
1586 		btrfs_end_transaction(trans);
1587 	} else {
1588 		up_read(&fs_info->commit_root_sem);
1589 	}
1590 out:
1591 	ulist_release(roots);
1592 	ulist_release(tmp);
1593 	return ret;
1594 }
1595 
1596 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1597 			  u64 start_off, struct btrfs_path *path,
1598 			  struct btrfs_inode_extref **ret_extref,
1599 			  u64 *found_off)
1600 {
1601 	int ret, slot;
1602 	struct btrfs_key key;
1603 	struct btrfs_key found_key;
1604 	struct btrfs_inode_extref *extref;
1605 	const struct extent_buffer *leaf;
1606 	unsigned long ptr;
1607 
1608 	key.objectid = inode_objectid;
1609 	key.type = BTRFS_INODE_EXTREF_KEY;
1610 	key.offset = start_off;
1611 
1612 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1613 	if (ret < 0)
1614 		return ret;
1615 
1616 	while (1) {
1617 		leaf = path->nodes[0];
1618 		slot = path->slots[0];
1619 		if (slot >= btrfs_header_nritems(leaf)) {
1620 			/*
1621 			 * If the item at offset is not found,
1622 			 * btrfs_search_slot will point us to the slot
1623 			 * where it should be inserted. In our case
1624 			 * that will be the slot directly before the
1625 			 * next INODE_REF_KEY_V2 item. In the case
1626 			 * that we're pointing to the last slot in a
1627 			 * leaf, we must move one leaf over.
1628 			 */
1629 			ret = btrfs_next_leaf(root, path);
1630 			if (ret) {
1631 				if (ret >= 1)
1632 					ret = -ENOENT;
1633 				break;
1634 			}
1635 			continue;
1636 		}
1637 
1638 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1639 
1640 		/*
1641 		 * Check that we're still looking at an extended ref key for
1642 		 * this particular objectid. If we have different
1643 		 * objectid or type then there are no more to be found
1644 		 * in the tree and we can exit.
1645 		 */
1646 		ret = -ENOENT;
1647 		if (found_key.objectid != inode_objectid)
1648 			break;
1649 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1650 			break;
1651 
1652 		ret = 0;
1653 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1654 		extref = (struct btrfs_inode_extref *)ptr;
1655 		*ret_extref = extref;
1656 		if (found_off)
1657 			*found_off = found_key.offset;
1658 		break;
1659 	}
1660 
1661 	return ret;
1662 }
1663 
1664 /*
1665  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1666  * Elements of the path are separated by '/' and the path is guaranteed to be
1667  * 0-terminated. the path is only given within the current file system.
1668  * Therefore, it never starts with a '/'. the caller is responsible to provide
1669  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1670  * the start point of the resulting string is returned. this pointer is within
1671  * dest, normally.
1672  * in case the path buffer would overflow, the pointer is decremented further
1673  * as if output was written to the buffer, though no more output is actually
1674  * generated. that way, the caller can determine how much space would be
1675  * required for the path to fit into the buffer. in that case, the returned
1676  * value will be smaller than dest. callers must check this!
1677  */
1678 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1679 			u32 name_len, unsigned long name_off,
1680 			struct extent_buffer *eb_in, u64 parent,
1681 			char *dest, u32 size)
1682 {
1683 	int slot;
1684 	u64 next_inum;
1685 	int ret;
1686 	s64 bytes_left = ((s64)size) - 1;
1687 	struct extent_buffer *eb = eb_in;
1688 	struct btrfs_key found_key;
1689 	struct btrfs_inode_ref *iref;
1690 
1691 	if (bytes_left >= 0)
1692 		dest[bytes_left] = '\0';
1693 
1694 	while (1) {
1695 		bytes_left -= name_len;
1696 		if (bytes_left >= 0)
1697 			read_extent_buffer(eb, dest + bytes_left,
1698 					   name_off, name_len);
1699 		if (eb != eb_in) {
1700 			if (!path->skip_locking)
1701 				btrfs_tree_read_unlock(eb);
1702 			free_extent_buffer(eb);
1703 		}
1704 		ret = btrfs_find_item(fs_root, path, parent, 0,
1705 				BTRFS_INODE_REF_KEY, &found_key);
1706 		if (ret > 0)
1707 			ret = -ENOENT;
1708 		if (ret)
1709 			break;
1710 
1711 		next_inum = found_key.offset;
1712 
1713 		/* regular exit ahead */
1714 		if (parent == next_inum)
1715 			break;
1716 
1717 		slot = path->slots[0];
1718 		eb = path->nodes[0];
1719 		/* make sure we can use eb after releasing the path */
1720 		if (eb != eb_in) {
1721 			path->nodes[0] = NULL;
1722 			path->locks[0] = 0;
1723 		}
1724 		btrfs_release_path(path);
1725 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1726 
1727 		name_len = btrfs_inode_ref_name_len(eb, iref);
1728 		name_off = (unsigned long)(iref + 1);
1729 
1730 		parent = next_inum;
1731 		--bytes_left;
1732 		if (bytes_left >= 0)
1733 			dest[bytes_left] = '/';
1734 	}
1735 
1736 	btrfs_release_path(path);
1737 
1738 	if (ret)
1739 		return ERR_PTR(ret);
1740 
1741 	return dest + bytes_left;
1742 }
1743 
1744 /*
1745  * this makes the path point to (logical EXTENT_ITEM *)
1746  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1747  * tree blocks and <0 on error.
1748  */
1749 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1750 			struct btrfs_path *path, struct btrfs_key *found_key,
1751 			u64 *flags_ret)
1752 {
1753 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
1754 	int ret;
1755 	u64 flags;
1756 	u64 size = 0;
1757 	u32 item_size;
1758 	const struct extent_buffer *eb;
1759 	struct btrfs_extent_item *ei;
1760 	struct btrfs_key key;
1761 
1762 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1763 		key.type = BTRFS_METADATA_ITEM_KEY;
1764 	else
1765 		key.type = BTRFS_EXTENT_ITEM_KEY;
1766 	key.objectid = logical;
1767 	key.offset = (u64)-1;
1768 
1769 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1770 	if (ret < 0)
1771 		return ret;
1772 
1773 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1774 	if (ret) {
1775 		if (ret > 0)
1776 			ret = -ENOENT;
1777 		return ret;
1778 	}
1779 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1780 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1781 		size = fs_info->nodesize;
1782 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1783 		size = found_key->offset;
1784 
1785 	if (found_key->objectid > logical ||
1786 	    found_key->objectid + size <= logical) {
1787 		btrfs_debug(fs_info,
1788 			"logical %llu is not within any extent", logical);
1789 		return -ENOENT;
1790 	}
1791 
1792 	eb = path->nodes[0];
1793 	item_size = btrfs_item_size(eb, path->slots[0]);
1794 	BUG_ON(item_size < sizeof(*ei));
1795 
1796 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1797 	flags = btrfs_extent_flags(eb, ei);
1798 
1799 	btrfs_debug(fs_info,
1800 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1801 		 logical, logical - found_key->objectid, found_key->objectid,
1802 		 found_key->offset, flags, item_size);
1803 
1804 	WARN_ON(!flags_ret);
1805 	if (flags_ret) {
1806 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1807 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1808 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1809 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1810 		else
1811 			BUG();
1812 		return 0;
1813 	}
1814 
1815 	return -EIO;
1816 }
1817 
1818 /*
1819  * helper function to iterate extent inline refs. ptr must point to a 0 value
1820  * for the first call and may be modified. it is used to track state.
1821  * if more refs exist, 0 is returned and the next call to
1822  * get_extent_inline_ref must pass the modified ptr parameter to get the
1823  * next ref. after the last ref was processed, 1 is returned.
1824  * returns <0 on error
1825  */
1826 static int get_extent_inline_ref(unsigned long *ptr,
1827 				 const struct extent_buffer *eb,
1828 				 const struct btrfs_key *key,
1829 				 const struct btrfs_extent_item *ei,
1830 				 u32 item_size,
1831 				 struct btrfs_extent_inline_ref **out_eiref,
1832 				 int *out_type)
1833 {
1834 	unsigned long end;
1835 	u64 flags;
1836 	struct btrfs_tree_block_info *info;
1837 
1838 	if (!*ptr) {
1839 		/* first call */
1840 		flags = btrfs_extent_flags(eb, ei);
1841 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1842 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1843 				/* a skinny metadata extent */
1844 				*out_eiref =
1845 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1846 			} else {
1847 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1848 				info = (struct btrfs_tree_block_info *)(ei + 1);
1849 				*out_eiref =
1850 				   (struct btrfs_extent_inline_ref *)(info + 1);
1851 			}
1852 		} else {
1853 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1854 		}
1855 		*ptr = (unsigned long)*out_eiref;
1856 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1857 			return -ENOENT;
1858 	}
1859 
1860 	end = (unsigned long)ei + item_size;
1861 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1862 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1863 						     BTRFS_REF_TYPE_ANY);
1864 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1865 		return -EUCLEAN;
1866 
1867 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1868 	WARN_ON(*ptr > end);
1869 	if (*ptr == end)
1870 		return 1; /* last */
1871 
1872 	return 0;
1873 }
1874 
1875 /*
1876  * reads the tree block backref for an extent. tree level and root are returned
1877  * through out_level and out_root. ptr must point to a 0 value for the first
1878  * call and may be modified (see get_extent_inline_ref comment).
1879  * returns 0 if data was provided, 1 if there was no more data to provide or
1880  * <0 on error.
1881  */
1882 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1883 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1884 			    u32 item_size, u64 *out_root, u8 *out_level)
1885 {
1886 	int ret;
1887 	int type;
1888 	struct btrfs_extent_inline_ref *eiref;
1889 
1890 	if (*ptr == (unsigned long)-1)
1891 		return 1;
1892 
1893 	while (1) {
1894 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1895 					      &eiref, &type);
1896 		if (ret < 0)
1897 			return ret;
1898 
1899 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1900 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1901 			break;
1902 
1903 		if (ret == 1)
1904 			return 1;
1905 	}
1906 
1907 	/* we can treat both ref types equally here */
1908 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1909 
1910 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1911 		struct btrfs_tree_block_info *info;
1912 
1913 		info = (struct btrfs_tree_block_info *)(ei + 1);
1914 		*out_level = btrfs_tree_block_level(eb, info);
1915 	} else {
1916 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1917 		*out_level = (u8)key->offset;
1918 	}
1919 
1920 	if (ret == 1)
1921 		*ptr = (unsigned long)-1;
1922 
1923 	return 0;
1924 }
1925 
1926 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1927 			     struct extent_inode_elem *inode_list,
1928 			     u64 root, u64 extent_item_objectid,
1929 			     iterate_extent_inodes_t *iterate, void *ctx)
1930 {
1931 	struct extent_inode_elem *eie;
1932 	int ret = 0;
1933 
1934 	for (eie = inode_list; eie; eie = eie->next) {
1935 		btrfs_debug(fs_info,
1936 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1937 			    extent_item_objectid, eie->inum,
1938 			    eie->offset, root);
1939 		ret = iterate(eie->inum, eie->offset, root, ctx);
1940 		if (ret) {
1941 			btrfs_debug(fs_info,
1942 				    "stopping iteration for %llu due to ret=%d",
1943 				    extent_item_objectid, ret);
1944 			break;
1945 		}
1946 	}
1947 
1948 	return ret;
1949 }
1950 
1951 /*
1952  * calls iterate() for every inode that references the extent identified by
1953  * the given parameters.
1954  * when the iterator function returns a non-zero value, iteration stops.
1955  */
1956 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1957 				u64 extent_item_objectid, u64 extent_item_pos,
1958 				int search_commit_root,
1959 				iterate_extent_inodes_t *iterate, void *ctx,
1960 				bool ignore_offset)
1961 {
1962 	int ret;
1963 	struct btrfs_trans_handle *trans = NULL;
1964 	struct ulist *refs = NULL;
1965 	struct ulist *roots = NULL;
1966 	struct ulist_node *ref_node = NULL;
1967 	struct ulist_node *root_node = NULL;
1968 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
1969 	struct ulist_iterator ref_uiter;
1970 	struct ulist_iterator root_uiter;
1971 
1972 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1973 			extent_item_objectid);
1974 
1975 	if (!search_commit_root) {
1976 		trans = btrfs_attach_transaction(fs_info->tree_root);
1977 		if (IS_ERR(trans)) {
1978 			if (PTR_ERR(trans) != -ENOENT &&
1979 			    PTR_ERR(trans) != -EROFS)
1980 				return PTR_ERR(trans);
1981 			trans = NULL;
1982 		}
1983 	}
1984 
1985 	if (trans)
1986 		btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1987 	else
1988 		down_read(&fs_info->commit_root_sem);
1989 
1990 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1991 				   seq_elem.seq, &refs,
1992 				   &extent_item_pos, ignore_offset);
1993 	if (ret)
1994 		goto out;
1995 
1996 	ULIST_ITER_INIT(&ref_uiter);
1997 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1998 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1999 						seq_elem.seq, &roots,
2000 						ignore_offset);
2001 		if (ret)
2002 			break;
2003 		ULIST_ITER_INIT(&root_uiter);
2004 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2005 			btrfs_debug(fs_info,
2006 				    "root %llu references leaf %llu, data list %#llx",
2007 				    root_node->val, ref_node->val,
2008 				    ref_node->aux);
2009 			ret = iterate_leaf_refs(fs_info,
2010 						(struct extent_inode_elem *)
2011 						(uintptr_t)ref_node->aux,
2012 						root_node->val,
2013 						extent_item_objectid,
2014 						iterate, ctx);
2015 		}
2016 		ulist_free(roots);
2017 	}
2018 
2019 	free_leaf_list(refs);
2020 out:
2021 	if (trans) {
2022 		btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2023 		btrfs_end_transaction(trans);
2024 	} else {
2025 		up_read(&fs_info->commit_root_sem);
2026 	}
2027 
2028 	return ret;
2029 }
2030 
2031 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2032 				struct btrfs_path *path,
2033 				iterate_extent_inodes_t *iterate, void *ctx,
2034 				bool ignore_offset)
2035 {
2036 	int ret;
2037 	u64 extent_item_pos;
2038 	u64 flags = 0;
2039 	struct btrfs_key found_key;
2040 	int search_commit_root = path->search_commit_root;
2041 
2042 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2043 	btrfs_release_path(path);
2044 	if (ret < 0)
2045 		return ret;
2046 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2047 		return -EINVAL;
2048 
2049 	extent_item_pos = logical - found_key.objectid;
2050 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2051 					extent_item_pos, search_commit_root,
2052 					iterate, ctx, ignore_offset);
2053 
2054 	return ret;
2055 }
2056 
2057 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2058 			      struct extent_buffer *eb, void *ctx);
2059 
2060 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2061 			      struct btrfs_path *path,
2062 			      iterate_irefs_t *iterate, void *ctx)
2063 {
2064 	int ret = 0;
2065 	int slot;
2066 	u32 cur;
2067 	u32 len;
2068 	u32 name_len;
2069 	u64 parent = 0;
2070 	int found = 0;
2071 	struct extent_buffer *eb;
2072 	struct btrfs_inode_ref *iref;
2073 	struct btrfs_key found_key;
2074 
2075 	while (!ret) {
2076 		ret = btrfs_find_item(fs_root, path, inum,
2077 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2078 				&found_key);
2079 
2080 		if (ret < 0)
2081 			break;
2082 		if (ret) {
2083 			ret = found ? 0 : -ENOENT;
2084 			break;
2085 		}
2086 		++found;
2087 
2088 		parent = found_key.offset;
2089 		slot = path->slots[0];
2090 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2091 		if (!eb) {
2092 			ret = -ENOMEM;
2093 			break;
2094 		}
2095 		btrfs_release_path(path);
2096 
2097 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2098 
2099 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2100 			name_len = btrfs_inode_ref_name_len(eb, iref);
2101 			/* path must be released before calling iterate()! */
2102 			btrfs_debug(fs_root->fs_info,
2103 				"following ref at offset %u for inode %llu in tree %llu",
2104 				cur, found_key.objectid,
2105 				fs_root->root_key.objectid);
2106 			ret = iterate(parent, name_len,
2107 				      (unsigned long)(iref + 1), eb, ctx);
2108 			if (ret)
2109 				break;
2110 			len = sizeof(*iref) + name_len;
2111 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2112 		}
2113 		free_extent_buffer(eb);
2114 	}
2115 
2116 	btrfs_release_path(path);
2117 
2118 	return ret;
2119 }
2120 
2121 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2122 				 struct btrfs_path *path,
2123 				 iterate_irefs_t *iterate, void *ctx)
2124 {
2125 	int ret;
2126 	int slot;
2127 	u64 offset = 0;
2128 	u64 parent;
2129 	int found = 0;
2130 	struct extent_buffer *eb;
2131 	struct btrfs_inode_extref *extref;
2132 	u32 item_size;
2133 	u32 cur_offset;
2134 	unsigned long ptr;
2135 
2136 	while (1) {
2137 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2138 					    &offset);
2139 		if (ret < 0)
2140 			break;
2141 		if (ret) {
2142 			ret = found ? 0 : -ENOENT;
2143 			break;
2144 		}
2145 		++found;
2146 
2147 		slot = path->slots[0];
2148 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2149 		if (!eb) {
2150 			ret = -ENOMEM;
2151 			break;
2152 		}
2153 		btrfs_release_path(path);
2154 
2155 		item_size = btrfs_item_size(eb, slot);
2156 		ptr = btrfs_item_ptr_offset(eb, slot);
2157 		cur_offset = 0;
2158 
2159 		while (cur_offset < item_size) {
2160 			u32 name_len;
2161 
2162 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2163 			parent = btrfs_inode_extref_parent(eb, extref);
2164 			name_len = btrfs_inode_extref_name_len(eb, extref);
2165 			ret = iterate(parent, name_len,
2166 				      (unsigned long)&extref->name, eb, ctx);
2167 			if (ret)
2168 				break;
2169 
2170 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2171 			cur_offset += sizeof(*extref);
2172 		}
2173 		free_extent_buffer(eb);
2174 
2175 		offset++;
2176 	}
2177 
2178 	btrfs_release_path(path);
2179 
2180 	return ret;
2181 }
2182 
2183 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2184 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2185 			 void *ctx)
2186 {
2187 	int ret;
2188 	int found_refs = 0;
2189 
2190 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2191 	if (!ret)
2192 		++found_refs;
2193 	else if (ret != -ENOENT)
2194 		return ret;
2195 
2196 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2197 	if (ret == -ENOENT && found_refs)
2198 		return 0;
2199 
2200 	return ret;
2201 }
2202 
2203 /*
2204  * returns 0 if the path could be dumped (probably truncated)
2205  * returns <0 in case of an error
2206  */
2207 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2208 			 struct extent_buffer *eb, void *ctx)
2209 {
2210 	struct inode_fs_paths *ipath = ctx;
2211 	char *fspath;
2212 	char *fspath_min;
2213 	int i = ipath->fspath->elem_cnt;
2214 	const int s_ptr = sizeof(char *);
2215 	u32 bytes_left;
2216 
2217 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2218 					ipath->fspath->bytes_left - s_ptr : 0;
2219 
2220 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2221 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2222 				   name_off, eb, inum, fspath_min, bytes_left);
2223 	if (IS_ERR(fspath))
2224 		return PTR_ERR(fspath);
2225 
2226 	if (fspath > fspath_min) {
2227 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2228 		++ipath->fspath->elem_cnt;
2229 		ipath->fspath->bytes_left = fspath - fspath_min;
2230 	} else {
2231 		++ipath->fspath->elem_missed;
2232 		ipath->fspath->bytes_missing += fspath_min - fspath;
2233 		ipath->fspath->bytes_left = 0;
2234 	}
2235 
2236 	return 0;
2237 }
2238 
2239 /*
2240  * this dumps all file system paths to the inode into the ipath struct, provided
2241  * is has been created large enough. each path is zero-terminated and accessed
2242  * from ipath->fspath->val[i].
2243  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2244  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2245  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2246  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2247  * have been needed to return all paths.
2248  */
2249 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2250 {
2251 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2252 			     inode_to_path, ipath);
2253 }
2254 
2255 struct btrfs_data_container *init_data_container(u32 total_bytes)
2256 {
2257 	struct btrfs_data_container *data;
2258 	size_t alloc_bytes;
2259 
2260 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2261 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2262 	if (!data)
2263 		return ERR_PTR(-ENOMEM);
2264 
2265 	if (total_bytes >= sizeof(*data)) {
2266 		data->bytes_left = total_bytes - sizeof(*data);
2267 		data->bytes_missing = 0;
2268 	} else {
2269 		data->bytes_missing = sizeof(*data) - total_bytes;
2270 		data->bytes_left = 0;
2271 	}
2272 
2273 	data->elem_cnt = 0;
2274 	data->elem_missed = 0;
2275 
2276 	return data;
2277 }
2278 
2279 /*
2280  * allocates space to return multiple file system paths for an inode.
2281  * total_bytes to allocate are passed, note that space usable for actual path
2282  * information will be total_bytes - sizeof(struct inode_fs_paths).
2283  * the returned pointer must be freed with free_ipath() in the end.
2284  */
2285 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2286 					struct btrfs_path *path)
2287 {
2288 	struct inode_fs_paths *ifp;
2289 	struct btrfs_data_container *fspath;
2290 
2291 	fspath = init_data_container(total_bytes);
2292 	if (IS_ERR(fspath))
2293 		return ERR_CAST(fspath);
2294 
2295 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2296 	if (!ifp) {
2297 		kvfree(fspath);
2298 		return ERR_PTR(-ENOMEM);
2299 	}
2300 
2301 	ifp->btrfs_path = path;
2302 	ifp->fspath = fspath;
2303 	ifp->fs_root = fs_root;
2304 
2305 	return ifp;
2306 }
2307 
2308 void free_ipath(struct inode_fs_paths *ipath)
2309 {
2310 	if (!ipath)
2311 		return;
2312 	kvfree(ipath->fspath);
2313 	kfree(ipath);
2314 }
2315 
2316 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2317 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2318 {
2319 	struct btrfs_backref_iter *ret;
2320 
2321 	ret = kzalloc(sizeof(*ret), gfp_flag);
2322 	if (!ret)
2323 		return NULL;
2324 
2325 	ret->path = btrfs_alloc_path();
2326 	if (!ret->path) {
2327 		kfree(ret);
2328 		return NULL;
2329 	}
2330 
2331 	/* Current backref iterator only supports iteration in commit root */
2332 	ret->path->search_commit_root = 1;
2333 	ret->path->skip_locking = 1;
2334 	ret->fs_info = fs_info;
2335 
2336 	return ret;
2337 }
2338 
2339 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2340 {
2341 	struct btrfs_fs_info *fs_info = iter->fs_info;
2342 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2343 	struct btrfs_path *path = iter->path;
2344 	struct btrfs_extent_item *ei;
2345 	struct btrfs_key key;
2346 	int ret;
2347 
2348 	key.objectid = bytenr;
2349 	key.type = BTRFS_METADATA_ITEM_KEY;
2350 	key.offset = (u64)-1;
2351 	iter->bytenr = bytenr;
2352 
2353 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2354 	if (ret < 0)
2355 		return ret;
2356 	if (ret == 0) {
2357 		ret = -EUCLEAN;
2358 		goto release;
2359 	}
2360 	if (path->slots[0] == 0) {
2361 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2362 		ret = -EUCLEAN;
2363 		goto release;
2364 	}
2365 	path->slots[0]--;
2366 
2367 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2368 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2369 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2370 		ret = -ENOENT;
2371 		goto release;
2372 	}
2373 	memcpy(&iter->cur_key, &key, sizeof(key));
2374 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2375 						    path->slots[0]);
2376 	iter->end_ptr = (u32)(iter->item_ptr +
2377 			btrfs_item_size(path->nodes[0], path->slots[0]));
2378 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2379 			    struct btrfs_extent_item);
2380 
2381 	/*
2382 	 * Only support iteration on tree backref yet.
2383 	 *
2384 	 * This is an extra precaution for non skinny-metadata, where
2385 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2386 	 * extent flags to determine if it's a tree block.
2387 	 */
2388 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2389 		ret = -ENOTSUPP;
2390 		goto release;
2391 	}
2392 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2393 
2394 	/* If there is no inline backref, go search for keyed backref */
2395 	if (iter->cur_ptr >= iter->end_ptr) {
2396 		ret = btrfs_next_item(extent_root, path);
2397 
2398 		/* No inline nor keyed ref */
2399 		if (ret > 0) {
2400 			ret = -ENOENT;
2401 			goto release;
2402 		}
2403 		if (ret < 0)
2404 			goto release;
2405 
2406 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2407 				path->slots[0]);
2408 		if (iter->cur_key.objectid != bytenr ||
2409 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2410 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2411 			ret = -ENOENT;
2412 			goto release;
2413 		}
2414 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2415 							   path->slots[0]);
2416 		iter->item_ptr = iter->cur_ptr;
2417 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2418 				      path->nodes[0], path->slots[0]));
2419 	}
2420 
2421 	return 0;
2422 release:
2423 	btrfs_backref_iter_release(iter);
2424 	return ret;
2425 }
2426 
2427 /*
2428  * Go to the next backref item of current bytenr, can be either inlined or
2429  * keyed.
2430  *
2431  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2432  *
2433  * Return 0 if we get next backref without problem.
2434  * Return >0 if there is no extra backref for this bytenr.
2435  * Return <0 if there is something wrong happened.
2436  */
2437 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2438 {
2439 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2440 	struct btrfs_root *extent_root;
2441 	struct btrfs_path *path = iter->path;
2442 	struct btrfs_extent_inline_ref *iref;
2443 	int ret;
2444 	u32 size;
2445 
2446 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2447 		/* We're still inside the inline refs */
2448 		ASSERT(iter->cur_ptr < iter->end_ptr);
2449 
2450 		if (btrfs_backref_has_tree_block_info(iter)) {
2451 			/* First tree block info */
2452 			size = sizeof(struct btrfs_tree_block_info);
2453 		} else {
2454 			/* Use inline ref type to determine the size */
2455 			int type;
2456 
2457 			iref = (struct btrfs_extent_inline_ref *)
2458 				((unsigned long)iter->cur_ptr);
2459 			type = btrfs_extent_inline_ref_type(eb, iref);
2460 
2461 			size = btrfs_extent_inline_ref_size(type);
2462 		}
2463 		iter->cur_ptr += size;
2464 		if (iter->cur_ptr < iter->end_ptr)
2465 			return 0;
2466 
2467 		/* All inline items iterated, fall through */
2468 	}
2469 
2470 	/* We're at keyed items, there is no inline item, go to the next one */
2471 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2472 	ret = btrfs_next_item(extent_root, iter->path);
2473 	if (ret)
2474 		return ret;
2475 
2476 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2477 	if (iter->cur_key.objectid != iter->bytenr ||
2478 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2479 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2480 		return 1;
2481 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2482 					path->slots[0]);
2483 	iter->cur_ptr = iter->item_ptr;
2484 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2485 						path->slots[0]);
2486 	return 0;
2487 }
2488 
2489 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2490 			      struct btrfs_backref_cache *cache, int is_reloc)
2491 {
2492 	int i;
2493 
2494 	cache->rb_root = RB_ROOT;
2495 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2496 		INIT_LIST_HEAD(&cache->pending[i]);
2497 	INIT_LIST_HEAD(&cache->changed);
2498 	INIT_LIST_HEAD(&cache->detached);
2499 	INIT_LIST_HEAD(&cache->leaves);
2500 	INIT_LIST_HEAD(&cache->pending_edge);
2501 	INIT_LIST_HEAD(&cache->useless_node);
2502 	cache->fs_info = fs_info;
2503 	cache->is_reloc = is_reloc;
2504 }
2505 
2506 struct btrfs_backref_node *btrfs_backref_alloc_node(
2507 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2508 {
2509 	struct btrfs_backref_node *node;
2510 
2511 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2512 	node = kzalloc(sizeof(*node), GFP_NOFS);
2513 	if (!node)
2514 		return node;
2515 
2516 	INIT_LIST_HEAD(&node->list);
2517 	INIT_LIST_HEAD(&node->upper);
2518 	INIT_LIST_HEAD(&node->lower);
2519 	RB_CLEAR_NODE(&node->rb_node);
2520 	cache->nr_nodes++;
2521 	node->level = level;
2522 	node->bytenr = bytenr;
2523 
2524 	return node;
2525 }
2526 
2527 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2528 		struct btrfs_backref_cache *cache)
2529 {
2530 	struct btrfs_backref_edge *edge;
2531 
2532 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2533 	if (edge)
2534 		cache->nr_edges++;
2535 	return edge;
2536 }
2537 
2538 /*
2539  * Drop the backref node from cache, also cleaning up all its
2540  * upper edges and any uncached nodes in the path.
2541  *
2542  * This cleanup happens bottom up, thus the node should either
2543  * be the lowest node in the cache or a detached node.
2544  */
2545 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2546 				struct btrfs_backref_node *node)
2547 {
2548 	struct btrfs_backref_node *upper;
2549 	struct btrfs_backref_edge *edge;
2550 
2551 	if (!node)
2552 		return;
2553 
2554 	BUG_ON(!node->lowest && !node->detached);
2555 	while (!list_empty(&node->upper)) {
2556 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2557 				  list[LOWER]);
2558 		upper = edge->node[UPPER];
2559 		list_del(&edge->list[LOWER]);
2560 		list_del(&edge->list[UPPER]);
2561 		btrfs_backref_free_edge(cache, edge);
2562 
2563 		/*
2564 		 * Add the node to leaf node list if no other child block
2565 		 * cached.
2566 		 */
2567 		if (list_empty(&upper->lower)) {
2568 			list_add_tail(&upper->lower, &cache->leaves);
2569 			upper->lowest = 1;
2570 		}
2571 	}
2572 
2573 	btrfs_backref_drop_node(cache, node);
2574 }
2575 
2576 /*
2577  * Release all nodes/edges from current cache
2578  */
2579 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2580 {
2581 	struct btrfs_backref_node *node;
2582 	int i;
2583 
2584 	while (!list_empty(&cache->detached)) {
2585 		node = list_entry(cache->detached.next,
2586 				  struct btrfs_backref_node, list);
2587 		btrfs_backref_cleanup_node(cache, node);
2588 	}
2589 
2590 	while (!list_empty(&cache->leaves)) {
2591 		node = list_entry(cache->leaves.next,
2592 				  struct btrfs_backref_node, lower);
2593 		btrfs_backref_cleanup_node(cache, node);
2594 	}
2595 
2596 	cache->last_trans = 0;
2597 
2598 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2599 		ASSERT(list_empty(&cache->pending[i]));
2600 	ASSERT(list_empty(&cache->pending_edge));
2601 	ASSERT(list_empty(&cache->useless_node));
2602 	ASSERT(list_empty(&cache->changed));
2603 	ASSERT(list_empty(&cache->detached));
2604 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2605 	ASSERT(!cache->nr_nodes);
2606 	ASSERT(!cache->nr_edges);
2607 }
2608 
2609 /*
2610  * Handle direct tree backref
2611  *
2612  * Direct tree backref means, the backref item shows its parent bytenr
2613  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2614  *
2615  * @ref_key:	The converted backref key.
2616  *		For keyed backref, it's the item key.
2617  *		For inlined backref, objectid is the bytenr,
2618  *		type is btrfs_inline_ref_type, offset is
2619  *		btrfs_inline_ref_offset.
2620  */
2621 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2622 				      struct btrfs_key *ref_key,
2623 				      struct btrfs_backref_node *cur)
2624 {
2625 	struct btrfs_backref_edge *edge;
2626 	struct btrfs_backref_node *upper;
2627 	struct rb_node *rb_node;
2628 
2629 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2630 
2631 	/* Only reloc root uses backref pointing to itself */
2632 	if (ref_key->objectid == ref_key->offset) {
2633 		struct btrfs_root *root;
2634 
2635 		cur->is_reloc_root = 1;
2636 		/* Only reloc backref cache cares about a specific root */
2637 		if (cache->is_reloc) {
2638 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2639 			if (!root)
2640 				return -ENOENT;
2641 			cur->root = root;
2642 		} else {
2643 			/*
2644 			 * For generic purpose backref cache, reloc root node
2645 			 * is useless.
2646 			 */
2647 			list_add(&cur->list, &cache->useless_node);
2648 		}
2649 		return 0;
2650 	}
2651 
2652 	edge = btrfs_backref_alloc_edge(cache);
2653 	if (!edge)
2654 		return -ENOMEM;
2655 
2656 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2657 	if (!rb_node) {
2658 		/* Parent node not yet cached */
2659 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2660 					   cur->level + 1);
2661 		if (!upper) {
2662 			btrfs_backref_free_edge(cache, edge);
2663 			return -ENOMEM;
2664 		}
2665 
2666 		/*
2667 		 *  Backrefs for the upper level block isn't cached, add the
2668 		 *  block to pending list
2669 		 */
2670 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2671 	} else {
2672 		/* Parent node already cached */
2673 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2674 		ASSERT(upper->checked);
2675 		INIT_LIST_HEAD(&edge->list[UPPER]);
2676 	}
2677 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2678 	return 0;
2679 }
2680 
2681 /*
2682  * Handle indirect tree backref
2683  *
2684  * Indirect tree backref means, we only know which tree the node belongs to.
2685  * We still need to do a tree search to find out the parents. This is for
2686  * TREE_BLOCK_REF backref (keyed or inlined).
2687  *
2688  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2689  * @tree_key:	The first key of this tree block.
2690  * @path:	A clean (released) path, to avoid allocating path every time
2691  *		the function get called.
2692  */
2693 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2694 					struct btrfs_path *path,
2695 					struct btrfs_key *ref_key,
2696 					struct btrfs_key *tree_key,
2697 					struct btrfs_backref_node *cur)
2698 {
2699 	struct btrfs_fs_info *fs_info = cache->fs_info;
2700 	struct btrfs_backref_node *upper;
2701 	struct btrfs_backref_node *lower;
2702 	struct btrfs_backref_edge *edge;
2703 	struct extent_buffer *eb;
2704 	struct btrfs_root *root;
2705 	struct rb_node *rb_node;
2706 	int level;
2707 	bool need_check = true;
2708 	int ret;
2709 
2710 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2711 	if (IS_ERR(root))
2712 		return PTR_ERR(root);
2713 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2714 		cur->cowonly = 1;
2715 
2716 	if (btrfs_root_level(&root->root_item) == cur->level) {
2717 		/* Tree root */
2718 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2719 		/*
2720 		 * For reloc backref cache, we may ignore reloc root.  But for
2721 		 * general purpose backref cache, we can't rely on
2722 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2723 		 * current running relocation and lead to missing root.
2724 		 *
2725 		 * For general purpose backref cache, reloc root detection is
2726 		 * completely relying on direct backref (key->offset is parent
2727 		 * bytenr), thus only do such check for reloc cache.
2728 		 */
2729 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2730 			btrfs_put_root(root);
2731 			list_add(&cur->list, &cache->useless_node);
2732 		} else {
2733 			cur->root = root;
2734 		}
2735 		return 0;
2736 	}
2737 
2738 	level = cur->level + 1;
2739 
2740 	/* Search the tree to find parent blocks referring to the block */
2741 	path->search_commit_root = 1;
2742 	path->skip_locking = 1;
2743 	path->lowest_level = level;
2744 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2745 	path->lowest_level = 0;
2746 	if (ret < 0) {
2747 		btrfs_put_root(root);
2748 		return ret;
2749 	}
2750 	if (ret > 0 && path->slots[level] > 0)
2751 		path->slots[level]--;
2752 
2753 	eb = path->nodes[level];
2754 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2755 		btrfs_err(fs_info,
2756 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2757 			  cur->bytenr, level - 1, root->root_key.objectid,
2758 			  tree_key->objectid, tree_key->type, tree_key->offset);
2759 		btrfs_put_root(root);
2760 		ret = -ENOENT;
2761 		goto out;
2762 	}
2763 	lower = cur;
2764 
2765 	/* Add all nodes and edges in the path */
2766 	for (; level < BTRFS_MAX_LEVEL; level++) {
2767 		if (!path->nodes[level]) {
2768 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2769 			       lower->bytenr);
2770 			/* Same as previous should_ignore_reloc_root() call */
2771 			if (btrfs_should_ignore_reloc_root(root) &&
2772 			    cache->is_reloc) {
2773 				btrfs_put_root(root);
2774 				list_add(&lower->list, &cache->useless_node);
2775 			} else {
2776 				lower->root = root;
2777 			}
2778 			break;
2779 		}
2780 
2781 		edge = btrfs_backref_alloc_edge(cache);
2782 		if (!edge) {
2783 			btrfs_put_root(root);
2784 			ret = -ENOMEM;
2785 			goto out;
2786 		}
2787 
2788 		eb = path->nodes[level];
2789 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2790 		if (!rb_node) {
2791 			upper = btrfs_backref_alloc_node(cache, eb->start,
2792 							 lower->level + 1);
2793 			if (!upper) {
2794 				btrfs_put_root(root);
2795 				btrfs_backref_free_edge(cache, edge);
2796 				ret = -ENOMEM;
2797 				goto out;
2798 			}
2799 			upper->owner = btrfs_header_owner(eb);
2800 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2801 				upper->cowonly = 1;
2802 
2803 			/*
2804 			 * If we know the block isn't shared we can avoid
2805 			 * checking its backrefs.
2806 			 */
2807 			if (btrfs_block_can_be_shared(root, eb))
2808 				upper->checked = 0;
2809 			else
2810 				upper->checked = 1;
2811 
2812 			/*
2813 			 * Add the block to pending list if we need to check its
2814 			 * backrefs, we only do this once while walking up a
2815 			 * tree as we will catch anything else later on.
2816 			 */
2817 			if (!upper->checked && need_check) {
2818 				need_check = false;
2819 				list_add_tail(&edge->list[UPPER],
2820 					      &cache->pending_edge);
2821 			} else {
2822 				if (upper->checked)
2823 					need_check = true;
2824 				INIT_LIST_HEAD(&edge->list[UPPER]);
2825 			}
2826 		} else {
2827 			upper = rb_entry(rb_node, struct btrfs_backref_node,
2828 					 rb_node);
2829 			ASSERT(upper->checked);
2830 			INIT_LIST_HEAD(&edge->list[UPPER]);
2831 			if (!upper->owner)
2832 				upper->owner = btrfs_header_owner(eb);
2833 		}
2834 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2835 
2836 		if (rb_node) {
2837 			btrfs_put_root(root);
2838 			break;
2839 		}
2840 		lower = upper;
2841 		upper = NULL;
2842 	}
2843 out:
2844 	btrfs_release_path(path);
2845 	return ret;
2846 }
2847 
2848 /*
2849  * Add backref node @cur into @cache.
2850  *
2851  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2852  *	 links aren't yet bi-directional. Needs to finish such links.
2853  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2854  *
2855  * @path:	Released path for indirect tree backref lookup
2856  * @iter:	Released backref iter for extent tree search
2857  * @node_key:	The first key of the tree block
2858  */
2859 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2860 				struct btrfs_path *path,
2861 				struct btrfs_backref_iter *iter,
2862 				struct btrfs_key *node_key,
2863 				struct btrfs_backref_node *cur)
2864 {
2865 	struct btrfs_fs_info *fs_info = cache->fs_info;
2866 	struct btrfs_backref_edge *edge;
2867 	struct btrfs_backref_node *exist;
2868 	int ret;
2869 
2870 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2871 	if (ret < 0)
2872 		return ret;
2873 	/*
2874 	 * We skip the first btrfs_tree_block_info, as we don't use the key
2875 	 * stored in it, but fetch it from the tree block
2876 	 */
2877 	if (btrfs_backref_has_tree_block_info(iter)) {
2878 		ret = btrfs_backref_iter_next(iter);
2879 		if (ret < 0)
2880 			goto out;
2881 		/* No extra backref? This means the tree block is corrupted */
2882 		if (ret > 0) {
2883 			ret = -EUCLEAN;
2884 			goto out;
2885 		}
2886 	}
2887 	WARN_ON(cur->checked);
2888 	if (!list_empty(&cur->upper)) {
2889 		/*
2890 		 * The backref was added previously when processing backref of
2891 		 * type BTRFS_TREE_BLOCK_REF_KEY
2892 		 */
2893 		ASSERT(list_is_singular(&cur->upper));
2894 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2895 				  list[LOWER]);
2896 		ASSERT(list_empty(&edge->list[UPPER]));
2897 		exist = edge->node[UPPER];
2898 		/*
2899 		 * Add the upper level block to pending list if we need check
2900 		 * its backrefs
2901 		 */
2902 		if (!exist->checked)
2903 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2904 	} else {
2905 		exist = NULL;
2906 	}
2907 
2908 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2909 		struct extent_buffer *eb;
2910 		struct btrfs_key key;
2911 		int type;
2912 
2913 		cond_resched();
2914 		eb = btrfs_backref_get_eb(iter);
2915 
2916 		key.objectid = iter->bytenr;
2917 		if (btrfs_backref_iter_is_inline_ref(iter)) {
2918 			struct btrfs_extent_inline_ref *iref;
2919 
2920 			/* Update key for inline backref */
2921 			iref = (struct btrfs_extent_inline_ref *)
2922 				((unsigned long)iter->cur_ptr);
2923 			type = btrfs_get_extent_inline_ref_type(eb, iref,
2924 							BTRFS_REF_TYPE_BLOCK);
2925 			if (type == BTRFS_REF_TYPE_INVALID) {
2926 				ret = -EUCLEAN;
2927 				goto out;
2928 			}
2929 			key.type = type;
2930 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2931 		} else {
2932 			key.type = iter->cur_key.type;
2933 			key.offset = iter->cur_key.offset;
2934 		}
2935 
2936 		/*
2937 		 * Parent node found and matches current inline ref, no need to
2938 		 * rebuild this node for this inline ref
2939 		 */
2940 		if (exist &&
2941 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2942 		      exist->owner == key.offset) ||
2943 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2944 		      exist->bytenr == key.offset))) {
2945 			exist = NULL;
2946 			continue;
2947 		}
2948 
2949 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2950 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2951 			ret = handle_direct_tree_backref(cache, &key, cur);
2952 			if (ret < 0)
2953 				goto out;
2954 			continue;
2955 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2956 			ret = -EINVAL;
2957 			btrfs_print_v0_err(fs_info);
2958 			btrfs_handle_fs_error(fs_info, ret, NULL);
2959 			goto out;
2960 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2961 			continue;
2962 		}
2963 
2964 		/*
2965 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2966 		 * means the root objectid. We need to search the tree to get
2967 		 * its parent bytenr.
2968 		 */
2969 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2970 						   cur);
2971 		if (ret < 0)
2972 			goto out;
2973 	}
2974 	ret = 0;
2975 	cur->checked = 1;
2976 	WARN_ON(exist);
2977 out:
2978 	btrfs_backref_iter_release(iter);
2979 	return ret;
2980 }
2981 
2982 /*
2983  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2984  */
2985 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2986 				     struct btrfs_backref_node *start)
2987 {
2988 	struct list_head *useless_node = &cache->useless_node;
2989 	struct btrfs_backref_edge *edge;
2990 	struct rb_node *rb_node;
2991 	LIST_HEAD(pending_edge);
2992 
2993 	ASSERT(start->checked);
2994 
2995 	/* Insert this node to cache if it's not COW-only */
2996 	if (!start->cowonly) {
2997 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2998 					   &start->rb_node);
2999 		if (rb_node)
3000 			btrfs_backref_panic(cache->fs_info, start->bytenr,
3001 					    -EEXIST);
3002 		list_add_tail(&start->lower, &cache->leaves);
3003 	}
3004 
3005 	/*
3006 	 * Use breadth first search to iterate all related edges.
3007 	 *
3008 	 * The starting points are all the edges of this node
3009 	 */
3010 	list_for_each_entry(edge, &start->upper, list[LOWER])
3011 		list_add_tail(&edge->list[UPPER], &pending_edge);
3012 
3013 	while (!list_empty(&pending_edge)) {
3014 		struct btrfs_backref_node *upper;
3015 		struct btrfs_backref_node *lower;
3016 
3017 		edge = list_first_entry(&pending_edge,
3018 				struct btrfs_backref_edge, list[UPPER]);
3019 		list_del_init(&edge->list[UPPER]);
3020 		upper = edge->node[UPPER];
3021 		lower = edge->node[LOWER];
3022 
3023 		/* Parent is detached, no need to keep any edges */
3024 		if (upper->detached) {
3025 			list_del(&edge->list[LOWER]);
3026 			btrfs_backref_free_edge(cache, edge);
3027 
3028 			/* Lower node is orphan, queue for cleanup */
3029 			if (list_empty(&lower->upper))
3030 				list_add(&lower->list, useless_node);
3031 			continue;
3032 		}
3033 
3034 		/*
3035 		 * All new nodes added in current build_backref_tree() haven't
3036 		 * been linked to the cache rb tree.
3037 		 * So if we have upper->rb_node populated, this means a cache
3038 		 * hit. We only need to link the edge, as @upper and all its
3039 		 * parents have already been linked.
3040 		 */
3041 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3042 			if (upper->lowest) {
3043 				list_del_init(&upper->lower);
3044 				upper->lowest = 0;
3045 			}
3046 
3047 			list_add_tail(&edge->list[UPPER], &upper->lower);
3048 			continue;
3049 		}
3050 
3051 		/* Sanity check, we shouldn't have any unchecked nodes */
3052 		if (!upper->checked) {
3053 			ASSERT(0);
3054 			return -EUCLEAN;
3055 		}
3056 
3057 		/* Sanity check, COW-only node has non-COW-only parent */
3058 		if (start->cowonly != upper->cowonly) {
3059 			ASSERT(0);
3060 			return -EUCLEAN;
3061 		}
3062 
3063 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3064 		if (!upper->cowonly) {
3065 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3066 						   &upper->rb_node);
3067 			if (rb_node) {
3068 				btrfs_backref_panic(cache->fs_info,
3069 						upper->bytenr, -EEXIST);
3070 				return -EUCLEAN;
3071 			}
3072 		}
3073 
3074 		list_add_tail(&edge->list[UPPER], &upper->lower);
3075 
3076 		/*
3077 		 * Also queue all the parent edges of this uncached node
3078 		 * to finish the upper linkage
3079 		 */
3080 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3081 			list_add_tail(&edge->list[UPPER], &pending_edge);
3082 	}
3083 	return 0;
3084 }
3085 
3086 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3087 				 struct btrfs_backref_node *node)
3088 {
3089 	struct btrfs_backref_node *lower;
3090 	struct btrfs_backref_node *upper;
3091 	struct btrfs_backref_edge *edge;
3092 
3093 	while (!list_empty(&cache->useless_node)) {
3094 		lower = list_first_entry(&cache->useless_node,
3095 				   struct btrfs_backref_node, list);
3096 		list_del_init(&lower->list);
3097 	}
3098 	while (!list_empty(&cache->pending_edge)) {
3099 		edge = list_first_entry(&cache->pending_edge,
3100 				struct btrfs_backref_edge, list[UPPER]);
3101 		list_del(&edge->list[UPPER]);
3102 		list_del(&edge->list[LOWER]);
3103 		lower = edge->node[LOWER];
3104 		upper = edge->node[UPPER];
3105 		btrfs_backref_free_edge(cache, edge);
3106 
3107 		/*
3108 		 * Lower is no longer linked to any upper backref nodes and
3109 		 * isn't in the cache, we can free it ourselves.
3110 		 */
3111 		if (list_empty(&lower->upper) &&
3112 		    RB_EMPTY_NODE(&lower->rb_node))
3113 			list_add(&lower->list, &cache->useless_node);
3114 
3115 		if (!RB_EMPTY_NODE(&upper->rb_node))
3116 			continue;
3117 
3118 		/* Add this guy's upper edges to the list to process */
3119 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3120 			list_add_tail(&edge->list[UPPER],
3121 				      &cache->pending_edge);
3122 		if (list_empty(&upper->upper))
3123 			list_add(&upper->list, &cache->useless_node);
3124 	}
3125 
3126 	while (!list_empty(&cache->useless_node)) {
3127 		lower = list_first_entry(&cache->useless_node,
3128 				   struct btrfs_backref_node, list);
3129 		list_del_init(&lower->list);
3130 		if (lower == node)
3131 			node = NULL;
3132 		btrfs_backref_drop_node(cache, lower);
3133 	}
3134 
3135 	btrfs_backref_cleanup_node(cache, node);
3136 	ASSERT(list_empty(&cache->useless_node) &&
3137 	       list_empty(&cache->pending_edge));
3138 }
3139