1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 data_offset; 40 u64 data_len; 41 struct extent_inode_elem *e; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 50 e = kmalloc(sizeof(*e), GFP_NOFS); 51 if (!e) 52 return -ENOMEM; 53 54 e->next = *eie; 55 e->inum = key->objectid; 56 e->offset = key->offset + (extent_item_pos - data_offset); 57 *eie = e; 58 59 return 0; 60 } 61 62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 63 u64 extent_item_pos, 64 struct extent_inode_elem **eie) 65 { 66 u64 disk_byte; 67 struct btrfs_key key; 68 struct btrfs_file_extent_item *fi; 69 int slot; 70 int nritems; 71 int extent_type; 72 int ret; 73 74 /* 75 * from the shared data ref, we only have the leaf but we need 76 * the key. thus, we must look into all items and see that we 77 * find one (some) with a reference to our extent item. 78 */ 79 nritems = btrfs_header_nritems(eb); 80 for (slot = 0; slot < nritems; ++slot) { 81 btrfs_item_key_to_cpu(eb, &key, slot); 82 if (key.type != BTRFS_EXTENT_DATA_KEY) 83 continue; 84 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 85 extent_type = btrfs_file_extent_type(eb, fi); 86 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 87 continue; 88 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 89 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 90 if (disk_byte != wanted_disk_byte) 91 continue; 92 93 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 94 if (ret < 0) 95 return ret; 96 } 97 98 return 0; 99 } 100 101 /* 102 * this structure records all encountered refs on the way up to the root 103 */ 104 struct __prelim_ref { 105 struct list_head list; 106 u64 root_id; 107 struct btrfs_key key_for_search; 108 int level; 109 int count; 110 struct extent_inode_elem *inode_list; 111 u64 parent; 112 u64 wanted_disk_byte; 113 }; 114 115 /* 116 * the rules for all callers of this function are: 117 * - obtaining the parent is the goal 118 * - if you add a key, you must know that it is a correct key 119 * - if you cannot add the parent or a correct key, then we will look into the 120 * block later to set a correct key 121 * 122 * delayed refs 123 * ============ 124 * backref type | shared | indirect | shared | indirect 125 * information | tree | tree | data | data 126 * --------------------+--------+----------+--------+---------- 127 * parent logical | y | - | - | - 128 * key to resolve | - | y | y | y 129 * tree block logical | - | - | - | - 130 * root for resolving | y | y | y | y 131 * 132 * - column 1: we've the parent -> done 133 * - column 2, 3, 4: we use the key to find the parent 134 * 135 * on disk refs (inline or keyed) 136 * ============================== 137 * backref type | shared | indirect | shared | indirect 138 * information | tree | tree | data | data 139 * --------------------+--------+----------+--------+---------- 140 * parent logical | y | - | y | - 141 * key to resolve | - | - | - | y 142 * tree block logical | y | y | y | y 143 * root for resolving | - | y | y | y 144 * 145 * - column 1, 3: we've the parent -> done 146 * - column 2: we take the first key from the block to find the parent 147 * (see __add_missing_keys) 148 * - column 4: we use the key to find the parent 149 * 150 * additional information that's available but not required to find the parent 151 * block might help in merging entries to gain some speed. 152 */ 153 154 static int __add_prelim_ref(struct list_head *head, u64 root_id, 155 struct btrfs_key *key, int level, 156 u64 parent, u64 wanted_disk_byte, int count) 157 { 158 struct __prelim_ref *ref; 159 160 /* in case we're adding delayed refs, we're holding the refs spinlock */ 161 ref = kmalloc(sizeof(*ref), GFP_ATOMIC); 162 if (!ref) 163 return -ENOMEM; 164 165 ref->root_id = root_id; 166 if (key) 167 ref->key_for_search = *key; 168 else 169 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 170 171 ref->inode_list = NULL; 172 ref->level = level; 173 ref->count = count; 174 ref->parent = parent; 175 ref->wanted_disk_byte = wanted_disk_byte; 176 list_add_tail(&ref->list, head); 177 178 return 0; 179 } 180 181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 182 struct ulist *parents, int level, 183 struct btrfs_key *key_for_search, u64 time_seq, 184 u64 wanted_disk_byte, 185 const u64 *extent_item_pos) 186 { 187 int ret = 0; 188 int slot; 189 struct extent_buffer *eb; 190 struct btrfs_key key; 191 struct btrfs_file_extent_item *fi; 192 struct extent_inode_elem *eie = NULL; 193 u64 disk_byte; 194 195 if (level != 0) { 196 eb = path->nodes[level]; 197 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 198 if (ret < 0) 199 return ret; 200 return 0; 201 } 202 203 /* 204 * We normally enter this function with the path already pointing to 205 * the first item to check. But sometimes, we may enter it with 206 * slot==nritems. In that case, go to the next leaf before we continue. 207 */ 208 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 209 ret = btrfs_next_old_leaf(root, path, time_seq); 210 211 while (!ret) { 212 eb = path->nodes[0]; 213 slot = path->slots[0]; 214 215 btrfs_item_key_to_cpu(eb, &key, slot); 216 217 if (key.objectid != key_for_search->objectid || 218 key.type != BTRFS_EXTENT_DATA_KEY) 219 break; 220 221 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 222 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 223 224 if (disk_byte == wanted_disk_byte) { 225 eie = NULL; 226 if (extent_item_pos) { 227 ret = check_extent_in_eb(&key, eb, fi, 228 *extent_item_pos, 229 &eie); 230 if (ret < 0) 231 break; 232 } 233 if (!ret) { 234 ret = ulist_add(parents, eb->start, 235 (uintptr_t)eie, GFP_NOFS); 236 if (ret < 0) 237 break; 238 if (!extent_item_pos) { 239 ret = btrfs_next_old_leaf(root, path, 240 time_seq); 241 continue; 242 } 243 } 244 } 245 ret = btrfs_next_old_item(root, path, time_seq); 246 } 247 248 if (ret > 0) 249 ret = 0; 250 return ret; 251 } 252 253 /* 254 * resolve an indirect backref in the form (root_id, key, level) 255 * to a logical address 256 */ 257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 258 int search_commit_root, 259 u64 time_seq, 260 struct __prelim_ref *ref, 261 struct ulist *parents, 262 const u64 *extent_item_pos) 263 { 264 struct btrfs_path *path; 265 struct btrfs_root *root; 266 struct btrfs_key root_key; 267 struct extent_buffer *eb; 268 int ret = 0; 269 int root_level; 270 int level = ref->level; 271 272 path = btrfs_alloc_path(); 273 if (!path) 274 return -ENOMEM; 275 path->search_commit_root = !!search_commit_root; 276 277 root_key.objectid = ref->root_id; 278 root_key.type = BTRFS_ROOT_ITEM_KEY; 279 root_key.offset = (u64)-1; 280 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 281 if (IS_ERR(root)) { 282 ret = PTR_ERR(root); 283 goto out; 284 } 285 286 root_level = btrfs_old_root_level(root, time_seq); 287 288 if (root_level + 1 == level) 289 goto out; 290 291 path->lowest_level = level; 292 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 293 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 294 "%d for key (%llu %u %llu)\n", 295 (unsigned long long)ref->root_id, level, ref->count, ret, 296 (unsigned long long)ref->key_for_search.objectid, 297 ref->key_for_search.type, 298 (unsigned long long)ref->key_for_search.offset); 299 if (ret < 0) 300 goto out; 301 302 eb = path->nodes[level]; 303 while (!eb) { 304 if (!level) { 305 WARN_ON(1); 306 ret = 1; 307 goto out; 308 } 309 level--; 310 eb = path->nodes[level]; 311 } 312 313 ret = add_all_parents(root, path, parents, level, &ref->key_for_search, 314 time_seq, ref->wanted_disk_byte, 315 extent_item_pos); 316 out: 317 btrfs_free_path(path); 318 return ret; 319 } 320 321 /* 322 * resolve all indirect backrefs from the list 323 */ 324 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 325 int search_commit_root, u64 time_seq, 326 struct list_head *head, 327 const u64 *extent_item_pos) 328 { 329 int err; 330 int ret = 0; 331 struct __prelim_ref *ref; 332 struct __prelim_ref *ref_safe; 333 struct __prelim_ref *new_ref; 334 struct ulist *parents; 335 struct ulist_node *node; 336 struct ulist_iterator uiter; 337 338 parents = ulist_alloc(GFP_NOFS); 339 if (!parents) 340 return -ENOMEM; 341 342 /* 343 * _safe allows us to insert directly after the current item without 344 * iterating over the newly inserted items. 345 * we're also allowed to re-assign ref during iteration. 346 */ 347 list_for_each_entry_safe(ref, ref_safe, head, list) { 348 if (ref->parent) /* already direct */ 349 continue; 350 if (ref->count == 0) 351 continue; 352 err = __resolve_indirect_ref(fs_info, search_commit_root, 353 time_seq, ref, parents, 354 extent_item_pos); 355 if (err) 356 continue; 357 358 /* we put the first parent into the ref at hand */ 359 ULIST_ITER_INIT(&uiter); 360 node = ulist_next(parents, &uiter); 361 ref->parent = node ? node->val : 0; 362 ref->inode_list = node ? 363 (struct extent_inode_elem *)(uintptr_t)node->aux : 0; 364 365 /* additional parents require new refs being added here */ 366 while ((node = ulist_next(parents, &uiter))) { 367 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS); 368 if (!new_ref) { 369 ret = -ENOMEM; 370 break; 371 } 372 memcpy(new_ref, ref, sizeof(*ref)); 373 new_ref->parent = node->val; 374 new_ref->inode_list = (struct extent_inode_elem *) 375 (uintptr_t)node->aux; 376 list_add(&new_ref->list, &ref->list); 377 } 378 ulist_reinit(parents); 379 } 380 381 ulist_free(parents); 382 return ret; 383 } 384 385 static inline int ref_for_same_block(struct __prelim_ref *ref1, 386 struct __prelim_ref *ref2) 387 { 388 if (ref1->level != ref2->level) 389 return 0; 390 if (ref1->root_id != ref2->root_id) 391 return 0; 392 if (ref1->key_for_search.type != ref2->key_for_search.type) 393 return 0; 394 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 395 return 0; 396 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 397 return 0; 398 if (ref1->parent != ref2->parent) 399 return 0; 400 401 return 1; 402 } 403 404 /* 405 * read tree blocks and add keys where required. 406 */ 407 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 408 struct list_head *head) 409 { 410 struct list_head *pos; 411 struct extent_buffer *eb; 412 413 list_for_each(pos, head) { 414 struct __prelim_ref *ref; 415 ref = list_entry(pos, struct __prelim_ref, list); 416 417 if (ref->parent) 418 continue; 419 if (ref->key_for_search.type) 420 continue; 421 BUG_ON(!ref->wanted_disk_byte); 422 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 423 fs_info->tree_root->leafsize, 0); 424 BUG_ON(!eb); 425 btrfs_tree_read_lock(eb); 426 if (btrfs_header_level(eb) == 0) 427 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 428 else 429 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 430 btrfs_tree_read_unlock(eb); 431 free_extent_buffer(eb); 432 } 433 return 0; 434 } 435 436 /* 437 * merge two lists of backrefs and adjust counts accordingly 438 * 439 * mode = 1: merge identical keys, if key is set 440 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 441 * additionally, we could even add a key range for the blocks we 442 * looked into to merge even more (-> replace unresolved refs by those 443 * having a parent). 444 * mode = 2: merge identical parents 445 */ 446 static int __merge_refs(struct list_head *head, int mode) 447 { 448 struct list_head *pos1; 449 450 list_for_each(pos1, head) { 451 struct list_head *n2; 452 struct list_head *pos2; 453 struct __prelim_ref *ref1; 454 455 ref1 = list_entry(pos1, struct __prelim_ref, list); 456 457 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 458 pos2 = n2, n2 = pos2->next) { 459 struct __prelim_ref *ref2; 460 struct __prelim_ref *xchg; 461 struct extent_inode_elem *eie; 462 463 ref2 = list_entry(pos2, struct __prelim_ref, list); 464 465 if (mode == 1) { 466 if (!ref_for_same_block(ref1, ref2)) 467 continue; 468 if (!ref1->parent && ref2->parent) { 469 xchg = ref1; 470 ref1 = ref2; 471 ref2 = xchg; 472 } 473 } else { 474 if (ref1->parent != ref2->parent) 475 continue; 476 } 477 478 eie = ref1->inode_list; 479 while (eie && eie->next) 480 eie = eie->next; 481 if (eie) 482 eie->next = ref2->inode_list; 483 else 484 ref1->inode_list = ref2->inode_list; 485 ref1->count += ref2->count; 486 487 list_del(&ref2->list); 488 kfree(ref2); 489 } 490 491 } 492 return 0; 493 } 494 495 /* 496 * add all currently queued delayed refs from this head whose seq nr is 497 * smaller or equal that seq to the list 498 */ 499 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 500 struct list_head *prefs) 501 { 502 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 503 struct rb_node *n = &head->node.rb_node; 504 struct btrfs_key key; 505 struct btrfs_key op_key = {0}; 506 int sgn; 507 int ret = 0; 508 509 if (extent_op && extent_op->update_key) 510 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 511 512 while ((n = rb_prev(n))) { 513 struct btrfs_delayed_ref_node *node; 514 node = rb_entry(n, struct btrfs_delayed_ref_node, 515 rb_node); 516 if (node->bytenr != head->node.bytenr) 517 break; 518 WARN_ON(node->is_head); 519 520 if (node->seq > seq) 521 continue; 522 523 switch (node->action) { 524 case BTRFS_ADD_DELAYED_EXTENT: 525 case BTRFS_UPDATE_DELAYED_HEAD: 526 WARN_ON(1); 527 continue; 528 case BTRFS_ADD_DELAYED_REF: 529 sgn = 1; 530 break; 531 case BTRFS_DROP_DELAYED_REF: 532 sgn = -1; 533 break; 534 default: 535 BUG_ON(1); 536 } 537 switch (node->type) { 538 case BTRFS_TREE_BLOCK_REF_KEY: { 539 struct btrfs_delayed_tree_ref *ref; 540 541 ref = btrfs_delayed_node_to_tree_ref(node); 542 ret = __add_prelim_ref(prefs, ref->root, &op_key, 543 ref->level + 1, 0, node->bytenr, 544 node->ref_mod * sgn); 545 break; 546 } 547 case BTRFS_SHARED_BLOCK_REF_KEY: { 548 struct btrfs_delayed_tree_ref *ref; 549 550 ref = btrfs_delayed_node_to_tree_ref(node); 551 ret = __add_prelim_ref(prefs, ref->root, NULL, 552 ref->level + 1, ref->parent, 553 node->bytenr, 554 node->ref_mod * sgn); 555 break; 556 } 557 case BTRFS_EXTENT_DATA_REF_KEY: { 558 struct btrfs_delayed_data_ref *ref; 559 ref = btrfs_delayed_node_to_data_ref(node); 560 561 key.objectid = ref->objectid; 562 key.type = BTRFS_EXTENT_DATA_KEY; 563 key.offset = ref->offset; 564 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 565 node->bytenr, 566 node->ref_mod * sgn); 567 break; 568 } 569 case BTRFS_SHARED_DATA_REF_KEY: { 570 struct btrfs_delayed_data_ref *ref; 571 572 ref = btrfs_delayed_node_to_data_ref(node); 573 574 key.objectid = ref->objectid; 575 key.type = BTRFS_EXTENT_DATA_KEY; 576 key.offset = ref->offset; 577 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 578 ref->parent, node->bytenr, 579 node->ref_mod * sgn); 580 break; 581 } 582 default: 583 WARN_ON(1); 584 } 585 BUG_ON(ret); 586 } 587 588 return 0; 589 } 590 591 /* 592 * add all inline backrefs for bytenr to the list 593 */ 594 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 595 struct btrfs_path *path, u64 bytenr, 596 int *info_level, struct list_head *prefs) 597 { 598 int ret = 0; 599 int slot; 600 struct extent_buffer *leaf; 601 struct btrfs_key key; 602 unsigned long ptr; 603 unsigned long end; 604 struct btrfs_extent_item *ei; 605 u64 flags; 606 u64 item_size; 607 608 /* 609 * enumerate all inline refs 610 */ 611 leaf = path->nodes[0]; 612 slot = path->slots[0]; 613 614 item_size = btrfs_item_size_nr(leaf, slot); 615 BUG_ON(item_size < sizeof(*ei)); 616 617 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 618 flags = btrfs_extent_flags(leaf, ei); 619 620 ptr = (unsigned long)(ei + 1); 621 end = (unsigned long)ei + item_size; 622 623 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 624 struct btrfs_tree_block_info *info; 625 626 info = (struct btrfs_tree_block_info *)ptr; 627 *info_level = btrfs_tree_block_level(leaf, info); 628 ptr += sizeof(struct btrfs_tree_block_info); 629 BUG_ON(ptr > end); 630 } else { 631 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 632 } 633 634 while (ptr < end) { 635 struct btrfs_extent_inline_ref *iref; 636 u64 offset; 637 int type; 638 639 iref = (struct btrfs_extent_inline_ref *)ptr; 640 type = btrfs_extent_inline_ref_type(leaf, iref); 641 offset = btrfs_extent_inline_ref_offset(leaf, iref); 642 643 switch (type) { 644 case BTRFS_SHARED_BLOCK_REF_KEY: 645 ret = __add_prelim_ref(prefs, 0, NULL, 646 *info_level + 1, offset, 647 bytenr, 1); 648 break; 649 case BTRFS_SHARED_DATA_REF_KEY: { 650 struct btrfs_shared_data_ref *sdref; 651 int count; 652 653 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 654 count = btrfs_shared_data_ref_count(leaf, sdref); 655 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 656 bytenr, count); 657 break; 658 } 659 case BTRFS_TREE_BLOCK_REF_KEY: 660 ret = __add_prelim_ref(prefs, offset, NULL, 661 *info_level + 1, 0, 662 bytenr, 1); 663 break; 664 case BTRFS_EXTENT_DATA_REF_KEY: { 665 struct btrfs_extent_data_ref *dref; 666 int count; 667 u64 root; 668 669 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 670 count = btrfs_extent_data_ref_count(leaf, dref); 671 key.objectid = btrfs_extent_data_ref_objectid(leaf, 672 dref); 673 key.type = BTRFS_EXTENT_DATA_KEY; 674 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 675 root = btrfs_extent_data_ref_root(leaf, dref); 676 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 677 bytenr, count); 678 break; 679 } 680 default: 681 WARN_ON(1); 682 } 683 BUG_ON(ret); 684 ptr += btrfs_extent_inline_ref_size(type); 685 } 686 687 return 0; 688 } 689 690 /* 691 * add all non-inline backrefs for bytenr to the list 692 */ 693 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 694 struct btrfs_path *path, u64 bytenr, 695 int info_level, struct list_head *prefs) 696 { 697 struct btrfs_root *extent_root = fs_info->extent_root; 698 int ret; 699 int slot; 700 struct extent_buffer *leaf; 701 struct btrfs_key key; 702 703 while (1) { 704 ret = btrfs_next_item(extent_root, path); 705 if (ret < 0) 706 break; 707 if (ret) { 708 ret = 0; 709 break; 710 } 711 712 slot = path->slots[0]; 713 leaf = path->nodes[0]; 714 btrfs_item_key_to_cpu(leaf, &key, slot); 715 716 if (key.objectid != bytenr) 717 break; 718 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 719 continue; 720 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 721 break; 722 723 switch (key.type) { 724 case BTRFS_SHARED_BLOCK_REF_KEY: 725 ret = __add_prelim_ref(prefs, 0, NULL, 726 info_level + 1, key.offset, 727 bytenr, 1); 728 break; 729 case BTRFS_SHARED_DATA_REF_KEY: { 730 struct btrfs_shared_data_ref *sdref; 731 int count; 732 733 sdref = btrfs_item_ptr(leaf, slot, 734 struct btrfs_shared_data_ref); 735 count = btrfs_shared_data_ref_count(leaf, sdref); 736 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 737 bytenr, count); 738 break; 739 } 740 case BTRFS_TREE_BLOCK_REF_KEY: 741 ret = __add_prelim_ref(prefs, key.offset, NULL, 742 info_level + 1, 0, 743 bytenr, 1); 744 break; 745 case BTRFS_EXTENT_DATA_REF_KEY: { 746 struct btrfs_extent_data_ref *dref; 747 int count; 748 u64 root; 749 750 dref = btrfs_item_ptr(leaf, slot, 751 struct btrfs_extent_data_ref); 752 count = btrfs_extent_data_ref_count(leaf, dref); 753 key.objectid = btrfs_extent_data_ref_objectid(leaf, 754 dref); 755 key.type = BTRFS_EXTENT_DATA_KEY; 756 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 757 root = btrfs_extent_data_ref_root(leaf, dref); 758 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 759 bytenr, count); 760 break; 761 } 762 default: 763 WARN_ON(1); 764 } 765 BUG_ON(ret); 766 } 767 768 return ret; 769 } 770 771 /* 772 * this adds all existing backrefs (inline backrefs, backrefs and delayed 773 * refs) for the given bytenr to the refs list, merges duplicates and resolves 774 * indirect refs to their parent bytenr. 775 * When roots are found, they're added to the roots list 776 * 777 * FIXME some caching might speed things up 778 */ 779 static int find_parent_nodes(struct btrfs_trans_handle *trans, 780 struct btrfs_fs_info *fs_info, u64 bytenr, 781 u64 time_seq, struct ulist *refs, 782 struct ulist *roots, const u64 *extent_item_pos) 783 { 784 struct btrfs_key key; 785 struct btrfs_path *path; 786 struct btrfs_delayed_ref_root *delayed_refs = NULL; 787 struct btrfs_delayed_ref_head *head; 788 int info_level = 0; 789 int ret; 790 int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT); 791 struct list_head prefs_delayed; 792 struct list_head prefs; 793 struct __prelim_ref *ref; 794 795 INIT_LIST_HEAD(&prefs); 796 INIT_LIST_HEAD(&prefs_delayed); 797 798 key.objectid = bytenr; 799 key.type = BTRFS_EXTENT_ITEM_KEY; 800 key.offset = (u64)-1; 801 802 path = btrfs_alloc_path(); 803 if (!path) 804 return -ENOMEM; 805 path->search_commit_root = !!search_commit_root; 806 807 /* 808 * grab both a lock on the path and a lock on the delayed ref head. 809 * We need both to get a consistent picture of how the refs look 810 * at a specified point in time 811 */ 812 again: 813 head = NULL; 814 815 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 816 if (ret < 0) 817 goto out; 818 BUG_ON(ret == 0); 819 820 if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) { 821 /* 822 * look if there are updates for this ref queued and lock the 823 * head 824 */ 825 delayed_refs = &trans->transaction->delayed_refs; 826 spin_lock(&delayed_refs->lock); 827 head = btrfs_find_delayed_ref_head(trans, bytenr); 828 if (head) { 829 if (!mutex_trylock(&head->mutex)) { 830 atomic_inc(&head->node.refs); 831 spin_unlock(&delayed_refs->lock); 832 833 btrfs_release_path(path); 834 835 /* 836 * Mutex was contended, block until it's 837 * released and try again 838 */ 839 mutex_lock(&head->mutex); 840 mutex_unlock(&head->mutex); 841 btrfs_put_delayed_ref(&head->node); 842 goto again; 843 } 844 ret = __add_delayed_refs(head, time_seq, 845 &prefs_delayed); 846 mutex_unlock(&head->mutex); 847 if (ret) { 848 spin_unlock(&delayed_refs->lock); 849 goto out; 850 } 851 } 852 spin_unlock(&delayed_refs->lock); 853 } 854 855 if (path->slots[0]) { 856 struct extent_buffer *leaf; 857 int slot; 858 859 path->slots[0]--; 860 leaf = path->nodes[0]; 861 slot = path->slots[0]; 862 btrfs_item_key_to_cpu(leaf, &key, slot); 863 if (key.objectid == bytenr && 864 key.type == BTRFS_EXTENT_ITEM_KEY) { 865 ret = __add_inline_refs(fs_info, path, bytenr, 866 &info_level, &prefs); 867 if (ret) 868 goto out; 869 ret = __add_keyed_refs(fs_info, path, bytenr, 870 info_level, &prefs); 871 if (ret) 872 goto out; 873 } 874 } 875 btrfs_release_path(path); 876 877 list_splice_init(&prefs_delayed, &prefs); 878 879 ret = __add_missing_keys(fs_info, &prefs); 880 if (ret) 881 goto out; 882 883 ret = __merge_refs(&prefs, 1); 884 if (ret) 885 goto out; 886 887 ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq, 888 &prefs, extent_item_pos); 889 if (ret) 890 goto out; 891 892 ret = __merge_refs(&prefs, 2); 893 if (ret) 894 goto out; 895 896 while (!list_empty(&prefs)) { 897 ref = list_first_entry(&prefs, struct __prelim_ref, list); 898 list_del(&ref->list); 899 WARN_ON(ref->count < 0); 900 if (ref->count && ref->root_id && ref->parent == 0) { 901 /* no parent == root of tree */ 902 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 903 if (ret < 0) 904 goto out; 905 } 906 if (ref->count && ref->parent) { 907 struct extent_inode_elem *eie = NULL; 908 if (extent_item_pos && !ref->inode_list) { 909 u32 bsz; 910 struct extent_buffer *eb; 911 bsz = btrfs_level_size(fs_info->extent_root, 912 info_level); 913 eb = read_tree_block(fs_info->extent_root, 914 ref->parent, bsz, 0); 915 BUG_ON(!eb); 916 ret = find_extent_in_eb(eb, bytenr, 917 *extent_item_pos, &eie); 918 ref->inode_list = eie; 919 free_extent_buffer(eb); 920 } 921 ret = ulist_add_merge(refs, ref->parent, 922 (uintptr_t)ref->inode_list, 923 (u64 *)&eie, GFP_NOFS); 924 if (ret < 0) 925 goto out; 926 if (!ret && extent_item_pos) { 927 /* 928 * we've recorded that parent, so we must extend 929 * its inode list here 930 */ 931 BUG_ON(!eie); 932 while (eie->next) 933 eie = eie->next; 934 eie->next = ref->inode_list; 935 } 936 } 937 kfree(ref); 938 } 939 940 out: 941 btrfs_free_path(path); 942 while (!list_empty(&prefs)) { 943 ref = list_first_entry(&prefs, struct __prelim_ref, list); 944 list_del(&ref->list); 945 kfree(ref); 946 } 947 while (!list_empty(&prefs_delayed)) { 948 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 949 list); 950 list_del(&ref->list); 951 kfree(ref); 952 } 953 954 return ret; 955 } 956 957 static void free_leaf_list(struct ulist *blocks) 958 { 959 struct ulist_node *node = NULL; 960 struct extent_inode_elem *eie; 961 struct extent_inode_elem *eie_next; 962 struct ulist_iterator uiter; 963 964 ULIST_ITER_INIT(&uiter); 965 while ((node = ulist_next(blocks, &uiter))) { 966 if (!node->aux) 967 continue; 968 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 969 for (; eie; eie = eie_next) { 970 eie_next = eie->next; 971 kfree(eie); 972 } 973 node->aux = 0; 974 } 975 976 ulist_free(blocks); 977 } 978 979 /* 980 * Finds all leafs with a reference to the specified combination of bytenr and 981 * offset. key_list_head will point to a list of corresponding keys (caller must 982 * free each list element). The leafs will be stored in the leafs ulist, which 983 * must be freed with ulist_free. 984 * 985 * returns 0 on success, <0 on error 986 */ 987 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 988 struct btrfs_fs_info *fs_info, u64 bytenr, 989 u64 time_seq, struct ulist **leafs, 990 const u64 *extent_item_pos) 991 { 992 struct ulist *tmp; 993 int ret; 994 995 tmp = ulist_alloc(GFP_NOFS); 996 if (!tmp) 997 return -ENOMEM; 998 *leafs = ulist_alloc(GFP_NOFS); 999 if (!*leafs) { 1000 ulist_free(tmp); 1001 return -ENOMEM; 1002 } 1003 1004 ret = find_parent_nodes(trans, fs_info, bytenr, 1005 time_seq, *leafs, tmp, extent_item_pos); 1006 ulist_free(tmp); 1007 1008 if (ret < 0 && ret != -ENOENT) { 1009 free_leaf_list(*leafs); 1010 return ret; 1011 } 1012 1013 return 0; 1014 } 1015 1016 /* 1017 * walk all backrefs for a given extent to find all roots that reference this 1018 * extent. Walking a backref means finding all extents that reference this 1019 * extent and in turn walk the backrefs of those, too. Naturally this is a 1020 * recursive process, but here it is implemented in an iterative fashion: We 1021 * find all referencing extents for the extent in question and put them on a 1022 * list. In turn, we find all referencing extents for those, further appending 1023 * to the list. The way we iterate the list allows adding more elements after 1024 * the current while iterating. The process stops when we reach the end of the 1025 * list. Found roots are added to the roots list. 1026 * 1027 * returns 0 on success, < 0 on error. 1028 */ 1029 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1030 struct btrfs_fs_info *fs_info, u64 bytenr, 1031 u64 time_seq, struct ulist **roots) 1032 { 1033 struct ulist *tmp; 1034 struct ulist_node *node = NULL; 1035 struct ulist_iterator uiter; 1036 int ret; 1037 1038 tmp = ulist_alloc(GFP_NOFS); 1039 if (!tmp) 1040 return -ENOMEM; 1041 *roots = ulist_alloc(GFP_NOFS); 1042 if (!*roots) { 1043 ulist_free(tmp); 1044 return -ENOMEM; 1045 } 1046 1047 ULIST_ITER_INIT(&uiter); 1048 while (1) { 1049 ret = find_parent_nodes(trans, fs_info, bytenr, 1050 time_seq, tmp, *roots, NULL); 1051 if (ret < 0 && ret != -ENOENT) { 1052 ulist_free(tmp); 1053 ulist_free(*roots); 1054 return ret; 1055 } 1056 node = ulist_next(tmp, &uiter); 1057 if (!node) 1058 break; 1059 bytenr = node->val; 1060 } 1061 1062 ulist_free(tmp); 1063 return 0; 1064 } 1065 1066 1067 static int __inode_info(u64 inum, u64 ioff, u8 key_type, 1068 struct btrfs_root *fs_root, struct btrfs_path *path, 1069 struct btrfs_key *found_key) 1070 { 1071 int ret; 1072 struct btrfs_key key; 1073 struct extent_buffer *eb; 1074 1075 key.type = key_type; 1076 key.objectid = inum; 1077 key.offset = ioff; 1078 1079 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1080 if (ret < 0) 1081 return ret; 1082 1083 eb = path->nodes[0]; 1084 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1085 ret = btrfs_next_leaf(fs_root, path); 1086 if (ret) 1087 return ret; 1088 eb = path->nodes[0]; 1089 } 1090 1091 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1092 if (found_key->type != key.type || found_key->objectid != key.objectid) 1093 return 1; 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * this makes the path point to (inum INODE_ITEM ioff) 1100 */ 1101 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1102 struct btrfs_path *path) 1103 { 1104 struct btrfs_key key; 1105 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, 1106 &key); 1107 } 1108 1109 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1110 struct btrfs_path *path, 1111 struct btrfs_key *found_key) 1112 { 1113 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, 1114 found_key); 1115 } 1116 1117 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1118 u64 start_off, struct btrfs_path *path, 1119 struct btrfs_inode_extref **ret_extref, 1120 u64 *found_off) 1121 { 1122 int ret, slot; 1123 struct btrfs_key key; 1124 struct btrfs_key found_key; 1125 struct btrfs_inode_extref *extref; 1126 struct extent_buffer *leaf; 1127 unsigned long ptr; 1128 1129 key.objectid = inode_objectid; 1130 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1131 key.offset = start_off; 1132 1133 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1134 if (ret < 0) 1135 return ret; 1136 1137 while (1) { 1138 leaf = path->nodes[0]; 1139 slot = path->slots[0]; 1140 if (slot >= btrfs_header_nritems(leaf)) { 1141 /* 1142 * If the item at offset is not found, 1143 * btrfs_search_slot will point us to the slot 1144 * where it should be inserted. In our case 1145 * that will be the slot directly before the 1146 * next INODE_REF_KEY_V2 item. In the case 1147 * that we're pointing to the last slot in a 1148 * leaf, we must move one leaf over. 1149 */ 1150 ret = btrfs_next_leaf(root, path); 1151 if (ret) { 1152 if (ret >= 1) 1153 ret = -ENOENT; 1154 break; 1155 } 1156 continue; 1157 } 1158 1159 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1160 1161 /* 1162 * Check that we're still looking at an extended ref key for 1163 * this particular objectid. If we have different 1164 * objectid or type then there are no more to be found 1165 * in the tree and we can exit. 1166 */ 1167 ret = -ENOENT; 1168 if (found_key.objectid != inode_objectid) 1169 break; 1170 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1171 break; 1172 1173 ret = 0; 1174 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1175 extref = (struct btrfs_inode_extref *)ptr; 1176 *ret_extref = extref; 1177 if (found_off) 1178 *found_off = found_key.offset; 1179 break; 1180 } 1181 1182 return ret; 1183 } 1184 1185 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1186 u32 name_len, unsigned long name_off, 1187 struct extent_buffer *eb_in, u64 parent, 1188 char *dest, u32 size) 1189 { 1190 int slot; 1191 u64 next_inum; 1192 int ret; 1193 s64 bytes_left = ((s64)size) - 1; 1194 struct extent_buffer *eb = eb_in; 1195 struct btrfs_key found_key; 1196 int leave_spinning = path->leave_spinning; 1197 struct btrfs_inode_ref *iref; 1198 1199 if (bytes_left >= 0) 1200 dest[bytes_left] = '\0'; 1201 1202 path->leave_spinning = 1; 1203 while (1) { 1204 bytes_left -= name_len; 1205 if (bytes_left >= 0) 1206 read_extent_buffer(eb, dest + bytes_left, 1207 name_off, name_len); 1208 if (eb != eb_in) { 1209 btrfs_tree_read_unlock_blocking(eb); 1210 free_extent_buffer(eb); 1211 } 1212 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1213 if (ret > 0) 1214 ret = -ENOENT; 1215 if (ret) 1216 break; 1217 1218 next_inum = found_key.offset; 1219 1220 /* regular exit ahead */ 1221 if (parent == next_inum) 1222 break; 1223 1224 slot = path->slots[0]; 1225 eb = path->nodes[0]; 1226 /* make sure we can use eb after releasing the path */ 1227 if (eb != eb_in) { 1228 atomic_inc(&eb->refs); 1229 btrfs_tree_read_lock(eb); 1230 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1231 } 1232 btrfs_release_path(path); 1233 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1234 1235 name_len = btrfs_inode_ref_name_len(eb, iref); 1236 name_off = (unsigned long)(iref + 1); 1237 1238 parent = next_inum; 1239 --bytes_left; 1240 if (bytes_left >= 0) 1241 dest[bytes_left] = '/'; 1242 } 1243 1244 btrfs_release_path(path); 1245 path->leave_spinning = leave_spinning; 1246 1247 if (ret) 1248 return ERR_PTR(ret); 1249 1250 return dest + bytes_left; 1251 } 1252 1253 /* 1254 * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements 1255 * of the path are separated by '/' and the path is guaranteed to be 1256 * 0-terminated. the path is only given within the current file system. 1257 * Therefore, it never starts with a '/'. the caller is responsible to provide 1258 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1259 * the start point of the resulting string is returned. this pointer is within 1260 * dest, normally. 1261 * in case the path buffer would overflow, the pointer is decremented further 1262 * as if output was written to the buffer, though no more output is actually 1263 * generated. that way, the caller can determine how much space would be 1264 * required for the path to fit into the buffer. in that case, the returned 1265 * value will be smaller than dest. callers must check this! 1266 */ 1267 char *btrfs_iref_to_path(struct btrfs_root *fs_root, 1268 struct btrfs_path *path, 1269 struct btrfs_inode_ref *iref, 1270 struct extent_buffer *eb_in, u64 parent, 1271 char *dest, u32 size) 1272 { 1273 return btrfs_ref_to_path(fs_root, path, 1274 btrfs_inode_ref_name_len(eb_in, iref), 1275 (unsigned long)(iref + 1), 1276 eb_in, parent, dest, size); 1277 } 1278 1279 /* 1280 * this makes the path point to (logical EXTENT_ITEM *) 1281 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1282 * tree blocks and <0 on error. 1283 */ 1284 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1285 struct btrfs_path *path, struct btrfs_key *found_key, 1286 u64 *flags_ret) 1287 { 1288 int ret; 1289 u64 flags; 1290 u32 item_size; 1291 struct extent_buffer *eb; 1292 struct btrfs_extent_item *ei; 1293 struct btrfs_key key; 1294 1295 key.type = BTRFS_EXTENT_ITEM_KEY; 1296 key.objectid = logical; 1297 key.offset = (u64)-1; 1298 1299 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1300 if (ret < 0) 1301 return ret; 1302 ret = btrfs_previous_item(fs_info->extent_root, path, 1303 0, BTRFS_EXTENT_ITEM_KEY); 1304 if (ret < 0) 1305 return ret; 1306 1307 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1308 if (found_key->type != BTRFS_EXTENT_ITEM_KEY || 1309 found_key->objectid > logical || 1310 found_key->objectid + found_key->offset <= logical) { 1311 pr_debug("logical %llu is not within any extent\n", 1312 (unsigned long long)logical); 1313 return -ENOENT; 1314 } 1315 1316 eb = path->nodes[0]; 1317 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1318 BUG_ON(item_size < sizeof(*ei)); 1319 1320 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1321 flags = btrfs_extent_flags(eb, ei); 1322 1323 pr_debug("logical %llu is at position %llu within the extent (%llu " 1324 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1325 (unsigned long long)logical, 1326 (unsigned long long)(logical - found_key->objectid), 1327 (unsigned long long)found_key->objectid, 1328 (unsigned long long)found_key->offset, 1329 (unsigned long long)flags, item_size); 1330 1331 WARN_ON(!flags_ret); 1332 if (flags_ret) { 1333 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1334 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1335 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1336 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1337 else 1338 BUG_ON(1); 1339 return 0; 1340 } 1341 1342 return -EIO; 1343 } 1344 1345 /* 1346 * helper function to iterate extent inline refs. ptr must point to a 0 value 1347 * for the first call and may be modified. it is used to track state. 1348 * if more refs exist, 0 is returned and the next call to 1349 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1350 * next ref. after the last ref was processed, 1 is returned. 1351 * returns <0 on error 1352 */ 1353 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1354 struct btrfs_extent_item *ei, u32 item_size, 1355 struct btrfs_extent_inline_ref **out_eiref, 1356 int *out_type) 1357 { 1358 unsigned long end; 1359 u64 flags; 1360 struct btrfs_tree_block_info *info; 1361 1362 if (!*ptr) { 1363 /* first call */ 1364 flags = btrfs_extent_flags(eb, ei); 1365 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1366 info = (struct btrfs_tree_block_info *)(ei + 1); 1367 *out_eiref = 1368 (struct btrfs_extent_inline_ref *)(info + 1); 1369 } else { 1370 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1371 } 1372 *ptr = (unsigned long)*out_eiref; 1373 if ((void *)*ptr >= (void *)ei + item_size) 1374 return -ENOENT; 1375 } 1376 1377 end = (unsigned long)ei + item_size; 1378 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; 1379 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1380 1381 *ptr += btrfs_extent_inline_ref_size(*out_type); 1382 WARN_ON(*ptr > end); 1383 if (*ptr == end) 1384 return 1; /* last */ 1385 1386 return 0; 1387 } 1388 1389 /* 1390 * reads the tree block backref for an extent. tree level and root are returned 1391 * through out_level and out_root. ptr must point to a 0 value for the first 1392 * call and may be modified (see __get_extent_inline_ref comment). 1393 * returns 0 if data was provided, 1 if there was no more data to provide or 1394 * <0 on error. 1395 */ 1396 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1397 struct btrfs_extent_item *ei, u32 item_size, 1398 u64 *out_root, u8 *out_level) 1399 { 1400 int ret; 1401 int type; 1402 struct btrfs_tree_block_info *info; 1403 struct btrfs_extent_inline_ref *eiref; 1404 1405 if (*ptr == (unsigned long)-1) 1406 return 1; 1407 1408 while (1) { 1409 ret = __get_extent_inline_ref(ptr, eb, ei, item_size, 1410 &eiref, &type); 1411 if (ret < 0) 1412 return ret; 1413 1414 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1415 type == BTRFS_SHARED_BLOCK_REF_KEY) 1416 break; 1417 1418 if (ret == 1) 1419 return 1; 1420 } 1421 1422 /* we can treat both ref types equally here */ 1423 info = (struct btrfs_tree_block_info *)(ei + 1); 1424 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1425 *out_level = btrfs_tree_block_level(eb, info); 1426 1427 if (ret == 1) 1428 *ptr = (unsigned long)-1; 1429 1430 return 0; 1431 } 1432 1433 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1434 u64 root, u64 extent_item_objectid, 1435 iterate_extent_inodes_t *iterate, void *ctx) 1436 { 1437 struct extent_inode_elem *eie; 1438 int ret = 0; 1439 1440 for (eie = inode_list; eie; eie = eie->next) { 1441 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1442 "root %llu\n", extent_item_objectid, 1443 eie->inum, eie->offset, root); 1444 ret = iterate(eie->inum, eie->offset, root, ctx); 1445 if (ret) { 1446 pr_debug("stopping iteration for %llu due to ret=%d\n", 1447 extent_item_objectid, ret); 1448 break; 1449 } 1450 } 1451 1452 return ret; 1453 } 1454 1455 /* 1456 * calls iterate() for every inode that references the extent identified by 1457 * the given parameters. 1458 * when the iterator function returns a non-zero value, iteration stops. 1459 */ 1460 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1461 u64 extent_item_objectid, u64 extent_item_pos, 1462 int search_commit_root, 1463 iterate_extent_inodes_t *iterate, void *ctx) 1464 { 1465 int ret; 1466 struct list_head data_refs = LIST_HEAD_INIT(data_refs); 1467 struct list_head shared_refs = LIST_HEAD_INIT(shared_refs); 1468 struct btrfs_trans_handle *trans; 1469 struct ulist *refs = NULL; 1470 struct ulist *roots = NULL; 1471 struct ulist_node *ref_node = NULL; 1472 struct ulist_node *root_node = NULL; 1473 struct seq_list tree_mod_seq_elem = {}; 1474 struct ulist_iterator ref_uiter; 1475 struct ulist_iterator root_uiter; 1476 1477 pr_debug("resolving all inodes for extent %llu\n", 1478 extent_item_objectid); 1479 1480 if (search_commit_root) { 1481 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT; 1482 } else { 1483 trans = btrfs_join_transaction(fs_info->extent_root); 1484 if (IS_ERR(trans)) 1485 return PTR_ERR(trans); 1486 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1487 } 1488 1489 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1490 tree_mod_seq_elem.seq, &refs, 1491 &extent_item_pos); 1492 if (ret) 1493 goto out; 1494 1495 ULIST_ITER_INIT(&ref_uiter); 1496 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1497 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, 1498 tree_mod_seq_elem.seq, &roots); 1499 if (ret) 1500 break; 1501 ULIST_ITER_INIT(&root_uiter); 1502 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1503 pr_debug("root %llu references leaf %llu, data list " 1504 "%#llx\n", root_node->val, ref_node->val, 1505 (long long)ref_node->aux); 1506 ret = iterate_leaf_refs((struct extent_inode_elem *) 1507 (uintptr_t)ref_node->aux, 1508 root_node->val, 1509 extent_item_objectid, 1510 iterate, ctx); 1511 } 1512 ulist_free(roots); 1513 roots = NULL; 1514 } 1515 1516 free_leaf_list(refs); 1517 ulist_free(roots); 1518 out: 1519 if (!search_commit_root) { 1520 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1521 btrfs_end_transaction(trans, fs_info->extent_root); 1522 } 1523 1524 return ret; 1525 } 1526 1527 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1528 struct btrfs_path *path, 1529 iterate_extent_inodes_t *iterate, void *ctx) 1530 { 1531 int ret; 1532 u64 extent_item_pos; 1533 u64 flags = 0; 1534 struct btrfs_key found_key; 1535 int search_commit_root = path->search_commit_root; 1536 1537 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1538 btrfs_release_path(path); 1539 if (ret < 0) 1540 return ret; 1541 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1542 return -EINVAL; 1543 1544 extent_item_pos = logical - found_key.objectid; 1545 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1546 extent_item_pos, search_commit_root, 1547 iterate, ctx); 1548 1549 return ret; 1550 } 1551 1552 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1553 struct extent_buffer *eb, void *ctx); 1554 1555 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1556 struct btrfs_path *path, 1557 iterate_irefs_t *iterate, void *ctx) 1558 { 1559 int ret = 0; 1560 int slot; 1561 u32 cur; 1562 u32 len; 1563 u32 name_len; 1564 u64 parent = 0; 1565 int found = 0; 1566 struct extent_buffer *eb; 1567 struct btrfs_item *item; 1568 struct btrfs_inode_ref *iref; 1569 struct btrfs_key found_key; 1570 1571 while (!ret) { 1572 path->leave_spinning = 1; 1573 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1574 &found_key); 1575 if (ret < 0) 1576 break; 1577 if (ret) { 1578 ret = found ? 0 : -ENOENT; 1579 break; 1580 } 1581 ++found; 1582 1583 parent = found_key.offset; 1584 slot = path->slots[0]; 1585 eb = path->nodes[0]; 1586 /* make sure we can use eb after releasing the path */ 1587 atomic_inc(&eb->refs); 1588 btrfs_tree_read_lock(eb); 1589 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1590 btrfs_release_path(path); 1591 1592 item = btrfs_item_nr(eb, slot); 1593 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1594 1595 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1596 name_len = btrfs_inode_ref_name_len(eb, iref); 1597 /* path must be released before calling iterate()! */ 1598 pr_debug("following ref at offset %u for inode %llu in " 1599 "tree %llu\n", cur, 1600 (unsigned long long)found_key.objectid, 1601 (unsigned long long)fs_root->objectid); 1602 ret = iterate(parent, name_len, 1603 (unsigned long)(iref + 1), eb, ctx); 1604 if (ret) 1605 break; 1606 len = sizeof(*iref) + name_len; 1607 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1608 } 1609 btrfs_tree_read_unlock_blocking(eb); 1610 free_extent_buffer(eb); 1611 } 1612 1613 btrfs_release_path(path); 1614 1615 return ret; 1616 } 1617 1618 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1619 struct btrfs_path *path, 1620 iterate_irefs_t *iterate, void *ctx) 1621 { 1622 int ret; 1623 int slot; 1624 u64 offset = 0; 1625 u64 parent; 1626 int found = 0; 1627 struct extent_buffer *eb; 1628 struct btrfs_inode_extref *extref; 1629 struct extent_buffer *leaf; 1630 u32 item_size; 1631 u32 cur_offset; 1632 unsigned long ptr; 1633 1634 while (1) { 1635 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1636 &offset); 1637 if (ret < 0) 1638 break; 1639 if (ret) { 1640 ret = found ? 0 : -ENOENT; 1641 break; 1642 } 1643 ++found; 1644 1645 slot = path->slots[0]; 1646 eb = path->nodes[0]; 1647 /* make sure we can use eb after releasing the path */ 1648 atomic_inc(&eb->refs); 1649 1650 btrfs_tree_read_lock(eb); 1651 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1652 btrfs_release_path(path); 1653 1654 leaf = path->nodes[0]; 1655 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1656 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1657 cur_offset = 0; 1658 1659 while (cur_offset < item_size) { 1660 u32 name_len; 1661 1662 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1663 parent = btrfs_inode_extref_parent(eb, extref); 1664 name_len = btrfs_inode_extref_name_len(eb, extref); 1665 ret = iterate(parent, name_len, 1666 (unsigned long)&extref->name, eb, ctx); 1667 if (ret) 1668 break; 1669 1670 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1671 cur_offset += sizeof(*extref); 1672 } 1673 btrfs_tree_read_unlock_blocking(eb); 1674 free_extent_buffer(eb); 1675 1676 offset++; 1677 } 1678 1679 btrfs_release_path(path); 1680 1681 return ret; 1682 } 1683 1684 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1685 struct btrfs_path *path, iterate_irefs_t *iterate, 1686 void *ctx) 1687 { 1688 int ret; 1689 int found_refs = 0; 1690 1691 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1692 if (!ret) 1693 ++found_refs; 1694 else if (ret != -ENOENT) 1695 return ret; 1696 1697 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1698 if (ret == -ENOENT && found_refs) 1699 return 0; 1700 1701 return ret; 1702 } 1703 1704 /* 1705 * returns 0 if the path could be dumped (probably truncated) 1706 * returns <0 in case of an error 1707 */ 1708 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1709 struct extent_buffer *eb, void *ctx) 1710 { 1711 struct inode_fs_paths *ipath = ctx; 1712 char *fspath; 1713 char *fspath_min; 1714 int i = ipath->fspath->elem_cnt; 1715 const int s_ptr = sizeof(char *); 1716 u32 bytes_left; 1717 1718 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1719 ipath->fspath->bytes_left - s_ptr : 0; 1720 1721 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1722 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1723 name_off, eb, inum, fspath_min, bytes_left); 1724 if (IS_ERR(fspath)) 1725 return PTR_ERR(fspath); 1726 1727 if (fspath > fspath_min) { 1728 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1729 ++ipath->fspath->elem_cnt; 1730 ipath->fspath->bytes_left = fspath - fspath_min; 1731 } else { 1732 ++ipath->fspath->elem_missed; 1733 ipath->fspath->bytes_missing += fspath_min - fspath; 1734 ipath->fspath->bytes_left = 0; 1735 } 1736 1737 return 0; 1738 } 1739 1740 /* 1741 * this dumps all file system paths to the inode into the ipath struct, provided 1742 * is has been created large enough. each path is zero-terminated and accessed 1743 * from ipath->fspath->val[i]. 1744 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1745 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1746 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1747 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1748 * have been needed to return all paths. 1749 */ 1750 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1751 { 1752 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1753 inode_to_path, ipath); 1754 } 1755 1756 struct btrfs_data_container *init_data_container(u32 total_bytes) 1757 { 1758 struct btrfs_data_container *data; 1759 size_t alloc_bytes; 1760 1761 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1762 data = vmalloc(alloc_bytes); 1763 if (!data) 1764 return ERR_PTR(-ENOMEM); 1765 1766 if (total_bytes >= sizeof(*data)) { 1767 data->bytes_left = total_bytes - sizeof(*data); 1768 data->bytes_missing = 0; 1769 } else { 1770 data->bytes_missing = sizeof(*data) - total_bytes; 1771 data->bytes_left = 0; 1772 } 1773 1774 data->elem_cnt = 0; 1775 data->elem_missed = 0; 1776 1777 return data; 1778 } 1779 1780 /* 1781 * allocates space to return multiple file system paths for an inode. 1782 * total_bytes to allocate are passed, note that space usable for actual path 1783 * information will be total_bytes - sizeof(struct inode_fs_paths). 1784 * the returned pointer must be freed with free_ipath() in the end. 1785 */ 1786 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1787 struct btrfs_path *path) 1788 { 1789 struct inode_fs_paths *ifp; 1790 struct btrfs_data_container *fspath; 1791 1792 fspath = init_data_container(total_bytes); 1793 if (IS_ERR(fspath)) 1794 return (void *)fspath; 1795 1796 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1797 if (!ifp) { 1798 kfree(fspath); 1799 return ERR_PTR(-ENOMEM); 1800 } 1801 1802 ifp->btrfs_path = path; 1803 ifp->fspath = fspath; 1804 ifp->fs_root = fs_root; 1805 1806 return ifp; 1807 } 1808 1809 void free_ipath(struct inode_fs_paths *ipath) 1810 { 1811 if (!ipath) 1812 return; 1813 vfree(ipath->fspath); 1814 kfree(ipath); 1815 } 1816